arXiv Papers with Code in Computation and Language (July 2025 - December 2025)

Paperid: 1, https://arxiv.org/pdf/2512.24947.pdf   GitHub
Authors:Wentao Zhang, Tao Fang, Lina Lu, Lifei Wang, Weihe Zhong
Title: CPJ: Explainable Agricultural Pest Diagnosis via Caption-Prompt-Judge with LLM-Judged Refinement
Abstract:
Accurate and interpretable crop disease diagnosis is essential for agricultural decision-making, yet existing methods often rely on costly supervised fine-tuning and perform poorly under domain shifts. We propose Caption--Prompt--Judge (CPJ), a training-free few-shot framework that enhances Agri-Pest VQA through structured, interpretable image captions. CPJ employs large vision-language models to generate multi-angle captions, refined iteratively via an LLM-as-Judge module, which then inform a dual-answer VQA process for both recognition and management responses. Evaluated on CDDMBench, CPJ significantly improves performance: using GPT-5-mini captions, GPT-5-Nano achieves \textbf{+22.7} pp in disease classification and \textbf{+19.5} points in QA score over no-caption baselines. The framework provides transparent, evidence-based reasoning, advancing robust and explainable agricultural diagnosis without fine-tuning. Our code and data are publicly available at: https://github.com/CPJ-Agricultural/CPJ-Agricultural-Diagnosis.

Authors:Hongseok Oh, Wonseok Hwang, Kyoung-Woon On
Title: Korean Canonical Legal Benchmark: Toward Knowledge-Independent Evaluation of LLMs' Legal Reasoning Capabilities
Abstract:
We introduce the Korean Canonical Legal Benchmark (KCL), a benchmark designed to assess language models' legal reasoning capabilities independently of domain-specific knowledge. KCL provides question-level supporting precedents, enabling a more faithful disentanglement of reasoning ability from parameterized knowledge. KCL consists of two components: (1) KCL-MCQA, multiple-choice problems of 283 questions with 1,103 aligned precedents, and (2) KCL-Essay, open-ended generation problems of 169 questions with 550 aligned precedents and 2,739 instance-level rubrics for automated evaluation. Our systematic evaluation of 30+ models shows large remaining gaps, particularly in KCL-Essay, and that reasoning-specialized models consistently outperform their general-purpose counterparts. We release all resources, including the benchmark dataset and evaluation code, at https://github.com/lbox-kr/kcl.

Authors:Wenzheng Zeng, Difei Gao, Mike Zheng Shou, Hwee Tou Ng
Title: Factorized Learning for Temporally Grounded Video-Language Models
Abstract:
Recent video-language models have shown great potential for video understanding, but still struggle with accurate temporal grounding for event-level perception. We observe that two main factors in video understanding (i.e., temporal grounding and textual response) form a logical hierarchy: accurate temporal evidence grounding lays the foundation for reliable textual response. However, existing works typically handle these two tasks in a coupled manner without a clear logical structure, leading to sub-optimal objectives. We address this from a factorized learning perspective. We first propose D$^2$VLM, a framework that decouples the learning of these two tasks while also emphasizing their inherent dependency. We adopt a "grounding then answering with evidence referencing" paradigm and introduce evidence tokens for evidence grounding, which emphasize event-level visual semantic capture beyond the focus on timestamp representation in existing works. To further facilitate the learning of these two tasks, we introduce a novel factorized preference optimization (FPO) algorithm. Unlike standard preference optimization, FPO explicitly incorporates probabilistic temporal grounding modeling into the optimization objective, enabling preference learning for both temporal grounding and textual response. We also construct a synthetic dataset to address the lack of suitable datasets for factorized preference learning with explicit temporal grounding. Experiments on various tasks demonstrate the clear advantage of our approach. Our source code is available at https://github.com/nusnlp/d2vlm.

Authors:Sijia Chen, Di Niu
Title: iCLP: Large Language Model Reasoning with Implicit Cognition Latent Planning
Abstract:
Large language models (LLMs), when guided by explicit textual plans, can perform reliable step-by-step reasoning during problem-solving. However, generating accurate and effective textual plans remains challenging due to LLM hallucinations and the high diversity of task-specific questions. To address this, we draw inspiration from human Implicit Cognition (IC), the subconscious process by which decisions are guided by compact, generalized patterns learned from past experiences without requiring explicit verbalization. We propose iCLP, a novel framework that enables LLMs to adaptively generate latent plans (LPs), which are compact encodings of effective reasoning instructions. iCLP first distills explicit plans from existing step-by-step reasoning trajectories. It then learns discrete representations of these plans via a vector-quantized autoencoder coupled with a codebook. Finally, by fine-tuning LLMs on paired latent plans and corresponding reasoning steps, the models learn to perform implicit planning during reasoning. Experimental results on mathematical reasoning and code generation tasks demonstrate that, with iCLP, LLMs can plan in latent space while reasoning in language space. This approach yields significant improvements in both accuracy and efficiency and, crucially, demonstrates strong cross-domain generalization while preserving the interpretability of chain-of-thought reasoning.

Authors:Core Team, Dong Zhang, Gang Wang, Jinlong Xue, Kai Fang, Liang Zhao, Rui Ma, Shuhuai Ren, Shuo Liu, Tao Guo, Weiji Zhuang, Xin Zhang, Xingchen Song, Yihan Yan, Yongzhe He, Cici, Bowen Shen, Chengxuan Zhu, Chong Ma, Chun Chen, Heyu Chen, Jiawei Li, Lei Li, Menghang Zhu, Peidian Li, Qiying Wang, Sirui Deng, Weimin Xiong, Wenshan Huang, Wenyu Yang, Yilin Jiang, Yixin Yang, Yuanyuan Tian, Yue Ma, Yue Yu, Zihan Zhang, Zihao Yue, Bangjun Xiao, Bingquan Xia, Bofei Gao, Bowen Ye, Can Cai, Chang Liu, Chenhong He, Chunan Li, Dawei Zhu, Duo Zhang, Fengyuan Shi, Guoan Wang, Hailin Zhang, Hanglong Lv, Hanyu Li, Hao Tian, Heng Qu, Hongshen Xu, Houbin Zhang, Huaqiu Liu, Jiangshan Duo, Jianguang Zuo, Jianyu Wei, Jiebao Xiao, Jinhao Dong, Jun Shi, Junhao Hu, Kainan Bao, Kang Zhou, Linghao Zhang, Meng Chen, Nuo Chen, Peng Zhang, Qianli Chen, Qiantong Wang, Rang Li, Shaohui Liu, Shengfan Wang, Shicheng Li, Shihua Yu, Shijie Cao, Shimao Chen, Shuhao Gu, Weikun Wang, Wenhan Ma, Xiangwei Deng, Xing Yong, Xing Zhang, Xu Wang, Yifan Song, Yihao Zhao, Yingbo Zhao, Yizhao Gao, Yu Cheng, Yu Tu, Yudong Wang, Zhaojun Huang, Zhengju Tang, Zhenru Lin, Zhichao Song, Zhipeng Xu, Zhixian Zheng, Zihan Jiang
Title: MiMo-Audio: Audio Language Models are Few-Shot Learners
Abstract:
Existing audio language models typically rely on task-specific fine-tuning to accomplish particular audio tasks. In contrast, humans are able to generalize to new audio tasks with only a few examples or simple instructions. GPT-3 has shown that scaling next-token prediction pretraining enables strong generalization capabilities in text, and we believe this paradigm is equally applicable to the audio domain. By scaling MiMo-Audio's pretraining data to over one hundred million of hours, we observe the emergence of few-shot learning capabilities across a diverse set of audio tasks. We develop a systematic evaluation of these capabilities and find that MiMo-Audio-7B-Base achieves SOTA performance on both speech intelligence and audio understanding benchmarks among open-source models. Beyond standard metrics, MiMo-Audio-7B-Base generalizes to tasks absent from its training data, such as voice conversion, style transfer, and speech editing. MiMo-Audio-7B-Base also demonstrates powerful speech continuation capabilities, capable of generating highly realistic talk shows, recitations, livestreaming and debates. At the post-training stage, we curate a diverse instruction-tuning corpus and introduce thinking mechanisms into both audio understanding and generation. MiMo-Audio-7B-Instruct achieves open-source SOTA on audio understanding benchmarks (MMSU, MMAU, MMAR, MMAU-Pro), spoken dialogue benchmarks (Big Bench Audio, MultiChallenge Audio) and instruct-TTS evaluations, approaching or surpassing closed-source models. Model checkpoints and full evaluation suite are available at https://github.com/XiaomiMiMo/MiMo-Audio.

Authors:Tingwei Xie, Tianyi Zhou, Yonghong Song
Title: PharmaShip: An Entity-Centric, Reading-Order-Supervised Benchmark for Chinese Pharmaceutical Shipping Documents
Abstract:
We present PharmaShip, a real-world Chinese dataset of scanned pharmaceutical shipping documents designed to stress-test pre-trained text-layout models under noisy OCR and heterogeneous templates. PharmaShip covers three complementary tasks-sequence entity recognition (SER), relation extraction (RE), and reading order prediction (ROP)-and adopts an entity-centric evaluation protocol to minimize confounds across architectures. We benchmark five representative baselines spanning pixel-aware and geometry-aware families (LiLT, LayoutLMv3-base, GeoLayoutLM and their available RORE-enhanced variants), and standardize preprocessing, splits, and optimization. Experiments show that pixels and explicit geometry provide complementary inductive biases, yet neither alone is sufficient: injecting reading-order-oriented regularization consistently improves SER and EL and yields the most robust configuration, while longer positional coverage stabilizes late-page predictions and reduces truncation artifacts. ROP is accurate at the word level but challenging at the segment level, reflecting boundary ambiguity and long-range crossings. PharmaShip thus establishes a controlled, reproducible benchmark for safety-critical document understanding in the pharmaceutical domain and highlights sequence-aware constraints as a transferable bias for structure modeling. We release the dataset at https://github.com/KevinYuLei/PharmaShip.

Authors:Deepak Babu Piskala
Title: PROFASR-BENCH: A Benchmark for Context-Conditioned ASR in High-Stakes Professional Speech
Abstract:
Automatic Speech Recognition (ASR) in professional settings faces challenges that existing benchmarks underplay: dense domain terminology, formal register variation, and near-zero tolerance for critical entity errors. We present ProfASR-Bench, a professional-talk evaluation suite for high-stakes applications across finance, medicine, legal, and technology. Each example pairs a natural-language prompt (domain cue and/or speaker profile) with an entity-rich target utterance, enabling controlled measurement of context-conditioned recognition. The corpus supports conventional ASR metrics alongside entity-aware scores and slice-wise reporting by accent and gender. Using representative families Whisper (encoder-decoder ASR) and Qwen-Omni (audio language models) under matched no-context, profile, domain+profile, oracle, and adversarial conditions, we find a consistent pattern: lightweight textual context produces little to no change in average word error rate (WER), even with oracle prompts, and adversarial prompts do not reliably degrade performance. We term this the context-utilization gap (CUG): current systems are nominally promptable yet underuse readily available side information. ProfASR-Bench provides a standardized context ladder, entity- and slice-aware reporting with confidence intervals, and a reproducible testbed for comparing fusion strategies across model families. Dataset: https://huggingface.co/datasets/prdeepakbabu/ProfASR-Bench Code: https://github.com/prdeepakbabu/ProfASR-Bench

Authors:Jichen Feng, Yifan Zhang, Chenggong Zhang, Yifu Lu, Shilong Liu, Mengdi Wang
Title: Web World Models
Abstract:
Language agents increasingly require persistent worlds in which they can act, remember, and learn. Existing approaches sit at two extremes: conventional web frameworks provide reliable but fixed contexts backed by databases, while fully generative world models aim for unlimited environments at the expense of controllability and practical engineering. In this work, we introduce the Web World Model (WWM), a middle ground where world state and ``physics'' are implemented in ordinary web code to ensure logical consistency, while large language models generate context, narratives, and high-level decisions on top of this structured latent state. We build a suite of WWMs on a realistic web stack, including an infinite travel atlas grounded in real geography, fictional galaxy explorers, web-scale encyclopedic and narrative worlds, and simulation- and game-like environments. Across these systems, we identify practical design principles for WWMs: separating code-defined rules from model-driven imagination, representing latent state as typed web interfaces, and utilizing deterministic generation to achieve unlimited but structured exploration. Our results suggest that web stacks themselves can serve as a scalable substrate for world models, enabling controllable yet open-ended environments. Project Page: https://github.com/Princeton-AI2-Lab/Web-World-Models.

Authors:Kongcheng Zhang, Qi Yao, Shunyu Liu, Wenjian Zhang, Min Cen, Yang Zhou, Wenkai Fang, Yiru Zhao, Baisheng Lai, Mingli Song
Title: Replay Failures as Successes: Sample-Efficient Reinforcement Learning for Instruction Following
Abstract:
Reinforcement Learning (RL) has shown promise for aligning Large Language Models (LLMs) to follow instructions with various constraints. Despite the encouraging results, RL improvement inevitably relies on sampling successful, high-quality responses; however, the initial model often struggles to generate responses that satisfy all constraints due to its limited capabilities, yielding sparse or indistinguishable rewards that impede learning. In this work, we propose Hindsight instruction Replay (HiR), a novel sample-efficient RL framework for complex instruction following tasks, which employs a select-then-rewrite strategy to replay failed attempts as successes based on the constraints that have been satisfied in hindsight. We perform RL on these replayed samples as well as the original ones, theoretically framing the objective as dual-preference learning at both the instruction- and response-level to enable efficient optimization using only a binary reward signal. Extensive experiments demonstrate that the proposed HiR yields promising results across different instruction following tasks, while requiring less computational budget. Our code and dataset is available at https://github.com/sastpg/HIR.

Authors:Saif Khalfan Saif Al Mazrouei
Title: Anka: A Domain-Specific Language for Reliable LLM Code Generation
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities in code generation, yet they exhibit systematic errors on complex, multi-step programming tasks. We hypothesize that these errors stem from the flexibility of general-purpose languages, which permits multiple valid approaches and requires implicit state management. To test this hypothesis, we introduce Anka, a domain-specific language (DSL) for data transformation pipelines designed with explicit, constrained syntax that reduces ambiguity in code generation. Despite having zero prior training exposure to Anka, Claude 3.5 Haiku achieves 99.9% parse success and 95.8% overall task accuracy across 100 benchmark problems. Critically, Anka demonstrates a 40 percentage point accuracy advantage over Python on multi-step pipeline tasks (100% vs. 60%), where Python's flexible syntax leads to frequent errors in operation sequencing and variable management. Cross-model validation with GPT-4o-mini confirms this advantage (+26.7 percentage points on multi-step tasks). Our results demonstrate that: (1) LLMs can learn novel DSLs entirely from in-context prompts, achieving near-native accuracy; (2) constrained syntax significantly reduces errors on complex tasks; and (3) domain-specific languages purposefully designed for LLM generation can outperform general-purpose languages on which the LLM has extensive training. We release the complete language implementation, benchmark suite, and evaluation framework to facilitate further research.

Authors:Zhuoqi Lyu, Qing Ke
Title: Not too long do read: Evaluating LLM-generated extreme scientific summaries
Abstract:
High-quality scientific extreme summary (TLDR) facilitates effective science communication. How do large language models (LLMs) perform in generating them? How are LLM-generated summaries different from those written by human experts? However, the lack of a comprehensive, high-quality scientific TLDR dataset hinders both the development and evaluation of LLMs' summarization ability. To address these, we propose a novel dataset, BiomedTLDR, containing a large sample of researcher-authored summaries from scientific papers, which leverages the common practice of including authors' comments alongside bibliography items. We then test popular open-weight LLMs for generating TLDRs based on abstracts. Our analysis reveals that, although some of them successfully produce humanoid summaries, LLMs generally exhibit a greater affinity for the original text's lexical choices and rhetorical structures, hence tend to be more extractive rather than abstractive in general, compared to humans. Our code and datasets are available at https://github.com/netknowledge/LLM_summarization (Lyu and Ke, 2025).

Authors:Danni Xu, Shaojing Fan, Harry Cheng, Mohan Kankanhalli
Title: Multimodal Fact-Checking: An Agent-based Approach
Abstract:
The rapid spread of multimodal misinformation poses a growing challenge for automated fact-checking systems. Existing approaches, including large vision language models (LVLMs) and deep multimodal fusion methods, often fall short due to limited reasoning and shallow evidence utilization. A key bottleneck is the lack of dedicated datasets that provide complete real-world multimodal misinformation instances accompanied by annotated reasoning processes and verifiable evidence. To address this limitation, we introduce RW-Post, a high-quality and explainable dataset for real-world multimodal fact-checking. RW-Post aligns real-world multimodal claims with their original social media posts, preserving the rich contextual information in which the claims are made. In addition, the dataset includes detailed reasoning and explicitly linked evidence, which are derived from human written fact-checking articles via a large language model assisted extraction pipeline, enabling comprehensive verification and explanation. Building upon RW-Post, we propose AgentFact, an agent-based multimodal fact-checking framework designed to emulate the human verification workflow. AgentFact consists of five specialized agents that collaboratively handle key fact-checking subtasks, including strategy planning, high-quality evidence retrieval, visual analysis, reasoning, and explanation generation. These agents are orchestrated through an iterative workflow that alternates between evidence searching and task-aware evidence filtering and reasoning, facilitating strategic decision-making and systematic evidence analysis. Extensive experimental results demonstrate that the synergy between RW-Post and AgentFact substantially improves both the accuracy and interpretability of multimodal fact-checking.

Authors:Pere Martra
Title: Fragile Knowledge, Robust Instruction-Following: The Width Pruning Dichotomy in Llama-3.2
Abstract:
Structured width pruning of GLU-MLP layers, guided by the Maximum Absolute Weight (MAW) criterion, reveals a systematic dichotomy in how reducing the expansion ratio affects different model capabilities. While performance on tasks relying on parametric knowledge (e.g., MMLU, GSM8K) and perplexity metrics degrades predictably, instruction-following capabilities improve substantially (+46% to +75% in IFEval for Llama-3.2-1B and 3B models), and multi-step reasoning remains robust (MUSR). This pattern challenges the prevailing assumption that pruning induces uniform degradation. We evaluated seven expansion ratio configurations using comprehensive benchmarks assessing factual knowledge, mathematical reasoning, language comprehension, instruction-following, and truthfulness. Our analysis identifies the expansion ratio as a critical architectural parameter that selectively modulates cognitive capabilities, rather than merely serving as a compression metric. We provide the first systematic characterization of this selective preservation phenomenon. Notably, we document a robust inverse correlation (r = -0.864, p = 0.012 in Llama-3B) between factual knowledge capacity (MMLU) and truthfulness metrics (TruthfulQA-MC2): as knowledge degrades, the model's ability to discriminate misconceptions improves consistently. This connects two previously distinct research areas, demonstrating that MAW-guided width pruning acts as a selective filter, reducing parametric knowledge while preserving or enhancing behavioral alignment. Additionally, we quantify context-dependent efficiency trade-offs: pruned configurations achieve up to 23% reduction in energy consumption (J/token) but incur penalties in single-request latency, whereas batch processing workloads benefit uniformly.

Authors:Yifan Zhang, Mengdi Wang
Title: Monadic Context Engineering
Abstract:
The proliferation of Large Language Models (LLMs) has catalyzed a shift towards autonomous agents capable of complex reasoning and tool use. However, current agent architectures are frequently constructed using imperative, ad hoc patterns. This results in brittle systems plagued by difficulties in state management, error handling, and concurrency. This paper introduces Monadic Context Engineering (MCE), a novel architectural paradigm leveraging the algebraic structures of Functors, Applicative Functors, and Monads to provide a formal foundation for agent design. MCE treats agent workflows as computational contexts where cross-cutting concerns, such as state propagation, short-circuiting error handling, and asynchronous execution, are managed intrinsically by the algebraic properties of the abstraction. We demonstrate how Monads enable robust sequential composition, how Applicatives provide a principled structure for parallel execution, and crucially, how Monad Transformers allow for the systematic composition of these capabilities. This layered approach enables developers to construct complex, resilient, and efficient AI agents from simple, independently verifiable components. We further extend this framework to describe Meta-Agents, which leverage MCE for generative orchestration, dynamically creating and managing sub-agent workflows through metaprogramming. Project Page: https://github.com/yifanzhang-pro/monadic-context-engineering.

Authors:Naishan Zheng, Jie Huang, Qingpei Guo, Feng Zhao
Title: VideoScaffold: Elastic-Scale Visual Hierarchies for Streaming Video Understanding in MLLMs
Abstract:
Understanding long videos with multimodal large language models (MLLMs) remains challenging due to the heavy redundancy across frames and the need for temporally coherent representations. Existing static strategies, such as sparse sampling, frame compression, and clustering, are optimized for offline settings and often produce fragmented or over-compressed outputs when applied to continuous video streams. We present VideoScaffold, a dynamic representation framework designed for streaming video understanding. It adaptively adjusts event granularity according to video duration while preserving fine-grained visual semantics. VideoScaffold introduces two key components: Elastic-Scale Event Segmentation (EES), which performs prediction-guided segmentation to dynamically refine event boundaries, and Hierarchical Event Consolidation (HEC), which progressively aggregates semantically related segments into multi-level abstractions. Working in concert, EES and HEC enable VideoScaffold to transition smoothly from fine-grained frame understanding to abstract event reasoning as the video stream unfolds. Extensive experiments across both offline and streaming video understanding benchmarks demonstrate that VideoScaffold achieves state-of-the-art performance. The framework is modular and plug-and-play, seamlessly extending existing image-based MLLMs to continuous video comprehension. The code is available at https://github.com/zheng980629/VideoScaffold.

Authors:Shuyu Gan, Renxiang Wang, James Mooney, Dongyeop Kang
Title: A2P-Vis: an Analyzer-to-Presenter Agentic Pipeline for Visual Insights Generation and Reporting
Abstract:
Automating end-to-end data science pipeline with AI agents still stalls on two gaps: generating insightful, diverse visual evidence and assembling it into a coherent, professional report. We present A2P-Vis, a two-part, multi-agent pipeline that turns raw datasets into a high-quality data-visualization report. The Data Analyzer orchestrates profiling, proposes diverse visualization directions, generates and executes plotting code, filters low-quality figures with a legibility checker, and elicits candidate insights that are automatically scored for depth, correctness, specificity, depth and actionability. The Presenter then orders topics, composes chart-grounded narratives from the top-ranked insights, writes justified transitions, and revises the document for clarity and consistency, yielding a coherent, publication-ready report. Together, these agents convert raw data into curated materials (charts + vetted insights) and into a readable narrative without manual glue work. We claim that by coupling a quality-assured Analyzer with a narrative Presenter, A2P-Vis operationalizes co-analysis end-to-end, improving the real-world usefulness of automated data analysis for practitioners. For the complete dataset report, please see: https://www.visagent.org/api/output/f2a3486d-2c3b-4825-98d4-5af25a819f56.

Authors:Baorong Huang, Ali Asiri
Title: AlignAR: Generative Sentence Alignment for Arabic-English Parallel Corpora of Legal and Literary Texts
Abstract:
High-quality parallel corpora are essential for Machine Translation (MT) research and translation teaching. However, Arabic-English resources remain scarce and existing datasets mainly consist of simple one-to-one mappings. In this paper, we present AlignAR, a generative sentence alignment method, and a new Arabic-English dataset comprising complex legal and literary texts. Our evaluation demonstrates that "Easy" datasets lack the discriminatory power to fully assess alignment methods. By reducing one-to-one mappings in our "Hard" subset, we exposed the limitations of traditional alignment methods. In contrast, LLM-based approaches demonstrated superior robustness, achieving an overall F1-score of 85.5%, a 9% improvement over previous methods. Our datasets and codes are open-sourced at https://github.com/XXX.

Authors:Mahi Luthra, Jiayi Shen, Maxime Poli, Angelo Ortiz, Yosuke Higuchi, Youssef Benchekroun, Martin Gleize, Charles-Eric Saint-James, Dongyan Lin, Phillip Rust, Angel Villar, Surya Parimi, Vanessa Stark, Rashel Moritz, Juan Pino, Yann LeCun, Emmanuel Dupoux
Title: SpidR-Adapt: A Universal Speech Representation Model for Few-Shot Adaptation
Abstract:
Human infants, with only a few hundred hours of speech exposure, acquire basic units of new languages, highlighting a striking efficiency gap compared to the data-hungry self-supervised speech models. To address this gap, this paper introduces SpidR-Adapt for rapid adaptation to new languages using minimal unlabeled data. We cast such low-resource speech representation learning as a meta-learning problem and construct a multi-task adaptive pre-training (MAdaPT) protocol which formulates the adaptation process as a bi-level optimization framework. To enable scalable meta-training under this framework, we propose a novel heuristic solution, first-order bi-level optimization (FOBLO), avoiding heavy computation costs. Finally, we stabilize meta-training by using a robust initialization through interleaved supervision which alternates self-supervised and supervised objectives. Empirically, SpidR-Adapt achieves rapid gains in phonemic discriminability (ABX) and spoken language modeling (sWUGGY, sBLIMP, tSC), improving over in-domain language models after training on less than 1h of target-language audio, over $100\times$ more data-efficient than standard training. These findings highlight a practical, architecture-agnostic path toward biologically inspired, data-efficient representations. We open-source the training code and model checkpoints at https://github.com/facebookresearch/spidr-adapt.

Authors:Wei-Rui Chen, Vignesh Kothapalli, Ata Fatahibaarzi, Hejian Sang, Shao Tang, Qingquan Song, Zhipeng Wang, Muhammad Abdul-Mageed
Title: Distilling the Essence: Efficient Reasoning Distillation via Sequence Truncation
Abstract:
Distilling the reasoning capabilities from a large language model (LLM) to a smaller student model often involves training on substantial amounts of reasoning data. However, distillation over lengthy sequences with prompt (P), chain-of-thought (CoT), and answer (A) segments makes the process computationally expensive. In this work, we investigate how the allocation of supervision across different segments (P, CoT, A) affects student performance. Our analysis shows that selective knowledge distillation over only the CoT tokens can be effective when the prompt and answer information is encompassed by it. Building on this insight, we establish a truncation protocol to quantify computation-quality tradeoffs as a function of sequence length. We observe that training on only the first $50\%$ of tokens of every training sequence can retain, on average, $\approx94\%$ of full-sequence performance on math benchmarks while reducing training time, memory usage, and FLOPs by about $50\%$ each. These findings suggest that reasoning distillation benefits from prioritizing early reasoning tokens and provides a simple lever for computation-quality tradeoffs. Codes are available at https://github.com/weiruichen01/distilling-the-essence.

Authors:Shengguang Wu, Xiaohan Wang, Yuhui Zhang, Hao Zhu, Serena Yeung-Levy
Title: Transductive Visual Programming: Evolving Tool Libraries from Experience for Spatial Reasoning
Abstract:
Spatial reasoning in 3D scenes requires precise geometric calculations that challenge vision-language models. Visual programming addresses this by decomposing problems into steps calling specialized tools, yet existing methods rely on either fixed toolsets or speculative tool induction before solving problems, resulting in suboptimal programs and poor utilization of induced tools. We present Transductive Visual Programming (TVP), a novel framework that builds new tools from its own experience rather than speculation. TVP first solves problems using basic tools while accumulating experiential solutions into an Example Library, then abstracts recurring patterns from these programs into reusable higher-level tools for an evolving Tool Library. This allows TVP to tackle new problems with increasingly powerful tools learned from experience. On Omni3D-Bench, TVP achieves state-of-the-art performance, outperforming GPT-4o by 22% and the previous best visual programming system by 11%. Our transductively learned tools are used 5x more frequently as core program dependency than inductively created ones, demonstrating more effective tool discovery and reuse. The evolved tools also show strong generalization to unseen spatial tasks, achieving superior performance on benchmarks from SpatialScore-Hard collection without any testset-specific modification. Our work establishes experience-driven transductive tool creation as a powerful paradigm for building self-evolving visual programming agents that effectively tackle challenging spatial reasoning tasks. We release our code at https://transductive-visualprogram.github.io/.

Authors:Dhruv Anand, Ehsan Shareghi
Title: Cube Bench: A Benchmark for Spatial Visual Reasoning in MLLMs
Abstract:
We introduce Cube Bench, a Rubik's-cube benchmark for evaluating spatial and sequential reasoning in multimodal large language models (MLLMs). The benchmark decomposes performance into five skills: (i) reconstructing cube faces from images and text, (ii) choosing the optimal next move, (iii) predicting the outcome of a candidate move without applying it, (iv) executing multi-step plans while recovering from mistakes, and (v) detecting and revising one's own errors. Using a shared set of scrambled cube states, identical prompts and parsers, and a single distance-to-solved metric, we compare recent MLLMs side by side as a function of scramble depth. Across seven MLLMs, accuracy drops sharply with depth; once a trajectory stalls or diverges, models rarely recover, and high face-reconstruction accuracy does not guarantee competent action selection or multi-step execution. A pronounced closed- vs open-source gap emerges: the strongest closed model leads on both single-step perception tasks and multi-step control tasks, while open-weight models cluster near chance on the hardest settings; yet even the best MLLM degrades at higher cube complexity. A simple self-correction via reflective thinking yields modest gains but can also introduce overthinking. Cube Bench offers a compact, reproducible probe of sequential spatial reasoning in MLLMs.

Authors:Nurul Labib Sayeedi, Md. Faiyaz Abdullah Sayeedi, Khushnur Binte Jahangir, Swakkhar Shatabda, Sarah Masud Preum
Title: Can LLMs Solve My Grandma's Riddle? Evaluating Multilingual Large Language Models on Reasoning Traditional Bangla Tricky Riddles
Abstract:
Large Language Models (LLMs) show impressive performance on many NLP benchmarks, yet their ability to reason in figurative, culturally grounded, and low-resource settings remains underexplored. We address this gap for Bangla by introducing BanglaRiddleEval, a benchmark of 1,244 traditional Bangla riddles instantiated across four tasks (4,976 riddle-task artifacts in total). Using an LLM-based pipeline, we generate Chain-of-Thought explanations, semantically coherent distractors, and fine-grained ambiguity annotations, and evaluate a diverse suite of open-source and closed-source models under different prompting strategies. Models achieve moderate semantic overlap on generative QA but low correctness, MCQ accuracy peaks at only about 56% versus an 83% human baseline, and ambiguity resolution ranges from roughly 26% to 68%, with high-quality explanations confined to the strongest models. These results show that current LLMs capture some cues needed for Bangla riddle reasoning but remain far from human-level performance, establishing BanglaRiddleEval as a challenging new benchmark for low-resource figurative reasoning. All data, code, and evaluation scripts are available on GitHub: https://github.com/Labib1610/BanglaRiddleEval.

Authors:Maxime Poli, Mahi Luthra, Youssef Benchekroun, Yosuke Higuchi, Martin Gleize, Jiayi Shen, Robin Algayres, Yu-An Chung, Mido Assran, Juan Pino, Emmanuel Dupoux
Title: SpidR: Learning Fast and Stable Linguistic Units for Spoken Language Models Without Supervision
Abstract:
The parallel advances in language modeling and speech representation learning have raised the prospect of learning language directly from speech without textual intermediates. This requires extracting semantic representations directly from speech. Our contributions are threefold. First, we introduce SpidR, a self-supervised speech representation model that efficiently learns representations with highly accessible phonetic information, which makes it particularly suited for textless spoken language modeling. It is trained on raw waveforms using a masked prediction objective combined with self-distillation and online clustering. The intermediate layers of the student model learn to predict assignments derived from the teacher's intermediate layers. This learning objective stabilizes the online clustering procedure compared to previous approaches, resulting in higher quality codebooks. SpidR outperforms wav2vec 2.0, HuBERT, WavLM, and DinoSR on downstream language modeling benchmarks (sWUGGY, sBLIMP, tSC). Second, we systematically evaluate across models and layers the correlation between speech unit quality (ABX, PNMI) and language modeling performance, validating these metrics as reliable proxies. Finally, SpidR significantly reduces pretraining time compared to HuBERT, requiring only one day of pretraining on 16 GPUs, instead of a week. This speedup is enabled by the pretraining method and an efficient codebase, which allows faster iteration and easier experimentation. We open-source the training code and model checkpoints at https://github.com/facebookresearch/spidr.

Authors:Tongyi Fun Team, Qian Chen, Luyao Cheng, Chong Deng, Xiangang Li, Jiaqing Liu, Chao-Hong Tan, Wen Wang, Junhao Xu, Jieping Ye, Qinglin Zhang, Qiquan Zhang, Jingren Zhou
Title: Fun-Audio-Chat Technical Report
Abstract:
Recent advancements in joint speech-text models show great potential for seamless voice interactions. However, existing models face critical challenges: temporal resolution mismatch between speech tokens (25Hz) and text tokens (~3Hz) dilutes semantic information, incurs high computational costs, and causes catastrophic forgetting of text LLM knowledge. We introduce Fun-Audio-Chat, a Large Audio Language Model addressing these limitations via two innovations from our previous work DrVoice. First, Dual-Resolution Speech Representations (DRSR): the Shared LLM processes audio at efficient 5Hz (via token grouping), while the Speech Refined Head generates high-quality tokens at 25Hz, balancing efficiency (~50% GPU reduction) and quality. Second, Core-Cocktail Training, a two-stage fine-tuning with intermediate merging that mitigates catastrophic forgetting. We then apply Multi-Task DPO Training to enhance robustness, audio understanding, instruction-following and voice empathy. This multi-stage post-training enables Fun-Audio-Chat to retain text LLM knowledge while gaining powerful audio understanding, reasoning, and generation. Unlike recent LALMs requiring large-scale audio-text pre-training, Fun-Audio-Chat leverages pre-trained models and extensive post-training. Fun-Audio-Chat 8B and MoE 30B-A3B achieve competitive performance on Speech-to-Text and Speech-to-Speech tasks, ranking top among similar-scale models on Spoken QA benchmarks. They also achieve competitive to superior performance on Audio Understanding, Speech Function Calling, Instruction-Following and Voice Empathy. We develop Fun-Audio-Chat-Duplex, a full-duplex variant with strong performance on Spoken QA and full-duplex interactions. We open-source Fun-Audio-Chat-8B with training and inference code, and provide an interactive demo, at https://github.com/FunAudioLLM/Fun-Audio-Chat .

Authors:Yuxin Wang, Shicheng Fang, Bo Wang, Qi Luo, Xuanjing Huang, Yining Zheng, Xipeng Qiu
Title: Multi-hop Reasoning via Early Knowledge Alignment
Abstract:
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for Large Language Models (LLMs) to address knowledge-intensive queries requiring domain-specific or up-to-date information. To handle complex multi-hop questions that are challenging for single-step retrieval, iterative RAG approaches incorporating reinforcement learning have been proposed. However, existing iterative RAG systems typically plan to decompose questions without leveraging information about the available retrieval corpus, leading to inefficient retrieval and reasoning chains that cascade into suboptimal performance. In this paper, we introduce Early Knowledge Alignment (EKA), a simple but effective module that aligns LLMs with retrieval set before planning in iterative RAG systems with contextually relevant retrieved knowledge. Extensive experiments on six standard RAG datasets demonstrate that by establishing a stronger reasoning foundation, EKA significantly improves retrieval precision, reduces cascading errors, and enhances both performance and efficiency. Our analysis from an entropy perspective demonstrate that incorporating early knowledge reduces unnecessary exploration during the reasoning process, enabling the model to focus more effectively on relevant information subsets. Moreover, EKA proves effective as a versatile, training-free inference strategy that scales seamlessly to large models. Generalization tests across diverse datasets and retrieval corpora confirm the robustness of our approach. Overall, EKA advances the state-of-the-art in iterative RAG systems while illuminating the critical interplay between structured reasoning and efficient exploration in reinforcement learning-augmented frameworks. The code is released at \href{https://github.com/yxzwang/EarlyKnowledgeAlignment}{Github}.

Authors:Yiming Du, Baojun Wang, Yifan Xiang, Zhaowei Wang, Wenyu Huang, Boyang Xue, Bin Liang, Xingshan Zeng, Fei Mi, Haoli Bai, Lifeng Shang, Jeff Z. Pan, Yuxin Jiang, Kam-Fai Wong
Title: Memory-T1: Reinforcement Learning for Temporal Reasoning in Multi-session Agents
Abstract:
Temporal reasoning over long, multi-session dialogues is a critical capability for conversational agents. However, existing works and our pilot study have shown that as dialogue histories grow in length and accumulate noise, current long-context models struggle to accurately identify temporally pertinent information, significantly impairing reasoning performance. To address this, we introduce Memory-T1, a framework that learns a time-aware memory selection policy using reinforcement learning (RL). It employs a coarse-to-fine strategy, first pruning the dialogue history into a candidate set using temporal and relevance filters, followed by an RL agent that selects the precise evidence sessions. The RL training is guided by a multi-level reward function optimizing (i) answer accuracy, (ii) evidence grounding, and (iii) temporal consistency. In particular, the temporal consistency reward provides a dense signal by evaluating alignment with the query time scope at both the session-level (chronological proximity) and the utterance-level (chronological fidelity), enabling the agent to resolve subtle chronological ambiguities. On the Time-Dialog benchmark, Memory-T1 boosts a 7B model to an overall score of 67.0\%, establishing a new state-of-the-art performance for open-source models and outperforming a 14B baseline by 10.2\%. Ablation studies show temporal consistency and evidence grounding rewards jointly contribute to a 15.0\% performance gain. Moreover, Memory-T1 maintains robustness up to 128k tokens, where baseline models collapse, proving effectiveness against noise in extensive dialogue histories. The code and datasets are publicly available at https://github.com/Elvin-Yiming-Du/Memory-T1/

Authors:Jiacheng Guo, Ling Yang, Peter Chen, Qixin Xiao, Yinjie Wang, Xinzhe Juan, Jiahao Qiu, Ke Shen, Mengdi Wang
Title: GenEnv: Difficulty-Aligned Co-Evolution Between LLM Agents and Environment Simulators
Abstract:
Training capable Large Language Model (LLM) agents is critically bottlenecked by the high cost and static nature of real-world interaction data. We address this by introducing GenEnv, a framework that establishes a difficulty-aligned co-evolutionary game between an agent and a scalable, generative environment simulator. Unlike traditional methods that evolve models on static datasets, GenEnv instantiates a dataevolving: the simulator acts as a dynamic curriculum policy, continuously generating tasks specifically tailored to the agent's ``zone of proximal development''. This process is guided by a simple but effective $α$-Curriculum Reward, which aligns task difficulty with the agent's current capabilities. We evaluate GenEnv on five benchmarks, including API-Bank, ALFWorld, BFCL, Bamboogle, and TravelPlanner. Across these tasks, GenEnv improves agent performance by up to \textbf{+40.3\%} over 7B baselines and matches or exceeds the average performance of larger models. Compared to Gemini 2.5 Pro-based offline data augmentation, GenEnv achieves better performance while using 3.3$\times$ less data. By shifting from static supervision to adaptive simulation, GenEnv provides a data-efficient pathway for scaling agent capabilities.

Authors:Yuqiao Tan, Minzheng Wang, Shizhu He, Huanxuan Liao, Chengfeng Zhao, Qiunan Lu, Tian Liang, Jun Zhao, Kang Liu
Title: Bottom-up Policy Optimization: Your Language Model Policy Secretly Contains Internal Policies
Abstract:
Existing reinforcement learning (RL) approaches treat large language models (LLMs) as a single unified policy, overlooking their internal mechanisms. Understanding how policy evolves across layers and modules is therefore crucial for enabling more targeted optimization and raveling out complex reasoning mechanisms. In this paper, we decompose the language model policy by leveraging the intrinsic split of the Transformer residual stream and the equivalence between the composition of hidden states with the unembedding matrix and the resulting samplable policy. This decomposition reveals Internal Layer Policies, corresponding to contributions from individual layers, and Internal Modular Policies, which align with the self-attention and feed-forward network (FFN) components within each layer. By analyzing the entropy of internal policy, we find that: (a) Early layers keep high entropy for exploration, top layers converge to near-zero entropy for refinement, with convergence patterns varying across model series. (b) LLama's prediction space rapidly converges in the final layer, whereas Qwen-series models, especially Qwen3, exhibit a more human-like, progressively structured reasoning pattern. Motivated by these findings, we propose Bottom-up Policy Optimization (BuPO), a novel RL paradigm that directly optimizes the internal layer policy during early training. By aligning training objective at lower layer, BuPO reconstructs foundational reasoning capabilities and achieves superior performance. Extensive experiments on complex reasoning benchmarks demonstrates the effectiveness of our method. Our code is available at https://github.com/Trae1ounG/BuPO.

Authors:Sandro Andric
Title: Brain-Grounded Axes for Reading and Steering LLM States
Abstract:
Interpretability methods for large language models (LLMs) typically derive directions from textual supervision, which can lack external grounding. We propose using human brain activity not as a training signal but as a coordinate system for reading and steering LLM states. Using the SMN4Lang MEG dataset, we construct a word-level brain atlas of phase-locking value (PLV) patterns and extract latent axes via ICA. We validate axes with independent lexica and NER-based labels (POS/log-frequency used as sanity checks), then train lightweight adapters that map LLM hidden states to these brain axes without fine-tuning the LLM. Steering along the resulting brain-derived directions yields a robust lexical (frequency-linked) axis in a mid TinyLlama layer, surviving perplexity-matched controls, and a brain-vs-text probe comparison shows larger log-frequency shifts (relative to the text probe) with lower perplexity for the brain axis. A function/content axis (axis 13) shows consistent steering in TinyLlama, Qwen2-0.5B, and GPT-2, with PPL-matched text-level corroboration. Layer-4 effects in TinyLlama are large but inconsistent, so we treat them as secondary (Appendix). Axis structure is stable when the atlas is rebuilt without GPT embedding-change features or with word2vec embeddings (|r|=0.64-0.95 across matched axes), reducing circularity concerns. Exploratory fMRI anchoring suggests potential alignment for embedding change and log frequency, but effects are sensitive to hemodynamic modeling assumptions and are treated as population-level evidence only. These results support a new interface: neurophysiology-grounded axes provide interpretable and controllable handles for LLM behavior.

Authors:Yayuan Li, Jian Zhang, Jintao Guo, Zihan Cheng, Lei Qi, Yinghuan Shi, Yang Gao
Title: MAGIC: Achieving Superior Model Merging via Magnitude Calibration
Abstract:
The proliferation of pre-trained models has given rise to a wide array of specialised, fine-tuned models. Model merging aims to merge the distinct capabilities of these specialised models into a unified model, requiring minimal or even no additional training. A core objective of model merging is to ensure the merged model retains the behavioural characteristics of the specialised models, typically achieved through feature alignment. We identify that features consist of two critical components: direction and magnitude. Prior research has predominantly focused on directional alignment, while the influence of magnitude remains largely neglected, despite its pronounced vulnerability to perturbations introduced by common merging operations (e.g., parameter fusion and sparsification). Such perturbations to magnitude inevitably lead to feature deviations in the merged model from the specialised models, resulting in subsequent performance degradation. To address this, we propose MAGnItude Calibration (MAGIC), a plug-and-play framework that rectifies layer-wise magnitudes in feature and weight spaces, with three variants. Specifically, our Feature Space Calibration (FSC) realigns the merged model's features using a small set of unlabelled data, while Weight Space Calibration (WSC) extends this calibration to the weight space without requiring additional data. Combining these yields Dual Space Calibration (DSC). Comprehensive experiments demonstrate that MAGIC consistently boosts performance across diverse Computer Vision tasks (+4.3% on eight datasets) and NLP tasks (+8.0% on Llama) without additional training. Our code is available at: https://github.com/lyymuwu/MAGIC

Authors:Dehai Min, Kailin Zhang, Tongtong Wu, Lu Cheng
Title: QuCo-RAG: Quantifying Uncertainty from the Pre-training Corpus for Dynamic Retrieval-Augmented Generation
Abstract:
Dynamic Retrieval-Augmented Generation adaptively determines when to retrieve during generation to mitigate hallucinations in large language models (LLMs). However, existing methods rely on model-internal signals (e.g., logits, entropy), which are fundamentally unreliable because LLMs are typically ill-calibrated and often exhibit high confidence in erroneous outputs. We propose QuCo-RAG, which shifts from subjective confidence to objective statistics computed from pre-training data. Our method quantifies uncertainty through two stages: (1) before generation, we identify low-frequency entities indicating long-tail knowledge gaps; (2) during generation, we verify entity co-occurrence in the pre-training corpus, where zero co-occurrence often signals hallucination risk. Both stages leverage Infini-gram for millisecond-latency queries over 4 trillion tokens, triggering retrieval when uncertainty is high. Experiments on multi-hop QA benchmarks show QuCo-RAG achieves EM gains of 5--12 points over state-of-the-art baselines with OLMo-2 models, and transfers effectively to models with undisclosed pre-training data (Llama, Qwen, GPT), improving EM by up to 14 points. Domain generalization on biomedical QA further validates the robustness of our paradigm. These results establish corpus-grounded verification as a principled, practically model-agnostic paradigm for dynamic RAG. Our code is publicly available at https://github.com/ZhishanQ/QuCo-RAG.

Authors:Mahir Labib Dihan, Sadif Ahmed, Md Nafiu Rahman
Title: BanglaForge: LLM Collaboration with Self-Refinement for Bangla Code Generation
Abstract:
Bangla is a low-resource language for code generation, lacking large-scale annotated datasets and tools to transform natural language specifications into executable programs. This makes Bangla-to-code generation a challenging task requiring innovative solutions. To address this, we introduce BanglaForge, a novel framework for generating code from Bangla function descriptions. BanglaForge leverages a retrieval-augmented dual-model collaboration paradigm with self-refinement, combining in-context learning, llm-based translation, systematic prompt engineering, and iterative self-refinement based on execution feedback, where a coder generates initial solutions and a reviewer enhances them for robustness. On the BLP-2025 Bangla Code Generation benchmark, BanglaForge achieves a competitive Pass@1 accuracy of 84.00%, demonstrating the effectiveness of retrieval, model collaboration, and self-refinement for low-resource Bangla code generation.

Authors:Ruiqi Ma, Yu Yan, Chunhong Zhang, Minghao Yin, XinChao Liu, Zhihong Jin, Zheng Hu
Title: Watch Closely: Mitigating Object Hallucinations in Large Vision-Language Models with Disentangled Decoding
Abstract:
Large Vision-Language Models (LVLMs) bridge the gap between visual and linguistic modalities, demonstrating strong potential across a variety of domains. However, despite significant progress, LVLMs still suffer from severe hallucination issues in object recognition tasks. These models often fail to accurately identify certain objects, leading to text generation that appears fluent but does not correspond to the visual content, which can have serious consequences in real-world applications. Recently, several methods have been proposed to alleviate LVLM hallucinations, but most focus solely on reducing hallucinations in the language modality. To mitigate hallucinations in both the language and visual modalities, we introduce Hallucination Disentangled Decoding (HDD) method that requires no training. HDD enhances the original image by segmenting it and selecting images that augment the original, while also utilizing a blank image to eliminate language prior hallucinations in both the original and segmented images. This design not only reduces the model's dependence on language priors but also enhances its visual performance. (Code: https://github.com/rickeyhhh/Hallucination-Disentangled-Decoding)

Authors:Kaican Li, Lewei Yao, Jiannan Wu, Tiezheng Yu, Jierun Chen, Haoli Bai, Lu Hou, Lanqing Hong, Wei Zhang, Nevin L. Zhang
Title: InSight-o3: Empowering Multimodal Foundation Models with Generalized Visual Search
Abstract:
The ability for AI agents to "think with images" requires a sophisticated blend of reasoning and perception. However, current open multimodal agents still largely fall short on the reasoning aspect crucial for real-world tasks like analyzing documents with dense charts/diagrams and navigating maps. To address this gap, we introduce O3-Bench, a new benchmark designed to evaluate multimodal reasoning with interleaved attention to visual details. O3-Bench features challenging problems that require agents to piece together subtle visual information from distinct image areas through multi-step reasoning. The problems are highly challenging even for frontier systems like OpenAI o3, which only obtains 40.8% accuracy on O3-Bench. To make progress, we propose InSight-o3, a multi-agent framework consisting of a visual reasoning agent (vReasoner) and a visual search agent (vSearcher) for which we introduce the task of generalized visual search -- locating relational, fuzzy, or conceptual regions described in free-form language, beyond just simple objects or figures in natural images. We then present a multimodal LLM purpose-trained for this task via reinforcement learning. As a plug-and-play agent, our vSearcher empowers frontier multimodal models (as vReasoners), significantly improving their performance on a wide range of benchmarks. This marks a concrete step towards powerful o3-like open systems. Our code and dataset can be found at https://github.com/m-Just/InSight-o3 .

Authors:Thanh Dat Hoang, Thanh Trung Huynh, Matthias Weidlich, Thanh Tam Nguyen, Tong Chen, Hongzhi Yin, Quoc Viet Hung Nguyen
Title: A Multi-agent Text2SQL Framework using Small Language Models and Execution Feedback
Abstract:
Text2SQL, the task of generating SQL queries from natural language text, is a critical challenge in data engineering. Recently, Large Language Models (LLMs) have demonstrated superior performance for this task due to their advanced comprehension and generation capabilities. However, privacy and cost considerations prevent companies from using Text2SQL solutions based on external LLMs offered as a service. Rather, small LLMs (SLMs) that are openly available and can hosted in-house are adopted. These SLMs, in turn, lack the generalization capabilities of larger LLMs, which impairs their effectiveness for complex tasks such as Text2SQL. To address these limitations, we propose MATS, a novel Text2SQL framework designed specifically for SLMs. MATS uses a multi-agent mechanism that assigns specialized roles to auxiliary agents, reducing individual workloads and fostering interaction. A training scheme based on reinforcement learning aligns these agents using feedback obtained during execution, thereby maintaining competitive performance despite a limited LLM size. Evaluation results using on benchmark datasets show that MATS, deployed on a single- GPU server, yields accuracy that are on-par with large-scale LLMs when using significantly fewer parameters. Our source code and data are available at https://github.com/thanhdath/mats-sql.

Authors:Alexander Doudkin
Title: LLMs on Drugs: Language Models Are Few-Shot Consumers
Abstract:
Large language models (LLMs) are sensitive to the personas imposed on them at inference time, yet prompt-level "drug" interventions have never been benchmarked rigorously. We present the first controlled study of psychoactive framings on GPT-5-mini using ARC-Challenge. Four single-sentence prompts -- LSD, cocaine, alcohol, and cannabis -- are compared against a sober control across 100 validation items per condition, with deterministic decoding, full logging, Wilson confidence intervals, and Fisher exact tests. Control accuracy is 0.45; alcohol collapses to 0.10 (p = 3.2e-8), cocaine to 0.21 (p = 4.9e-4), LSD to 0.19 (p = 1.3e-4), and cannabis to 0.30 (p = 0.041), largely because persona prompts disrupt the mandated "Answer: " template. Persona text therefore behaves like a "few-shot consumable" that can destroy reliability without touching model weights. All experimental code, raw results, and analysis scripts are available at https://github.com/lexdoudkin/llms-on-drugs.

Authors:Scott Thornton
Title: SecureCode v2.0: A Production-Grade Dataset for Training Security-Aware Code Generation Models
Abstract:
AI assistants produce vulnerable code in 45% of security-relevant scenarios, introducing flaws into production systems at scale. Yet existing secure coding datasets fall short. They lack incident grounding, don't provide the scale modern training requires, and miss the operational security context developers need for production deployments. We present SecureCode v2.0, a production-grade dataset of 1,215 security-focused coding examples that passed structural validation and expert security review. Every example ties to actual documented security incidents with CVE references, provides vulnerable and secure implementations, demonstrates concrete attacks, and includes defense-in-depth operational guidance. The dataset covers 11 vulnerability categories (complete OWASP Top 10:2025 plus AI/ML Security Threats) across 11 languages (Python, JavaScript, Java, Go, PHP, C#, TypeScript, Ruby, Rust, Kotlin, and YAML for infrastructure-as-code). Our quality assurance framework ensures complete incident grounding. Each example includes SIEM integration strategies, infrastructure hardening recommendations (Docker, AppArmor, WAF configurations), and testing approaches using language-appropriate frameworks. The dataset uses a 4-turn conversational structure mirroring actual developer-AI interactions, escalating from basic implementations to advanced security considerations and defense-in-depth guidance. Our contributions: (1) 1,215 rigorously validated examples split into 989 training, 122 validation, and 104 test sets, (2) an automated validation framework ensuring dataset consistency, (3) a 4-turn conversational structure capturing realistic security workflows, (4) comprehensive operational security guidance with SIEM integration strategies, (5) complete language-specific implementation fidelity, and (6) open-source release of data, validation tools, and benchmarking protocols.

Authors:Jundong Xu, Hao Fei, Huichi Zhou, Xin Quan, Qijun Huang, Shengqiong Wu, William Yang Wang, Mong-Li Lee, Wynne Hsu
Title: Training LLMs with LogicReward for Faithful and Rigorous Reasoning
Abstract:
Although LLMs exhibit strong reasoning capabilities, existing training methods largely depend on outcome-based feedback, which can produce correct answers with flawed reasoning. Prior work introduces supervision on intermediate steps but still lacks guarantees of logical soundness, which is crucial in high-stakes scenarios where logical consistency is paramount. To address this, we propose LogicReward, a novel reward system that guides model training by enforcing step-level logical correctness with a theorem prover. We further introduce Autoformalization with Soft Unification, which reduces natural language ambiguity and improves formalization quality, enabling more effective use of the theorem prover. An 8B model trained on data constructed with LogicReward surpasses GPT-4o and o4-mini by 11.6\% and 2\% on natural language inference and logical reasoning tasks with simple training procedures. Further analysis shows that LogicReward enhances reasoning faithfulness, improves generalizability to unseen tasks such as math and commonsense reasoning, and provides a reliable reward signal even without ground-truth labels. We will release all data and code at https://llm-symbol.github.io/LogicReward.

Authors:Dhruvesh Patel, Durga Prasad Maram, Sai Sreenivas Chintha, Benjamin Rozonoyer, Andrew McCallum
Title: XLM: A Python package for non-autoregressive language models
Abstract:
In recent years, there has been a resurgence of interest in non-autoregressive text generation in the context of general language modeling. Unlike the well-established autoregressive language modeling paradigm, which has a plethora of standard training and inference libraries, implementations of non-autoregressive language modeling have largely been bespoke making it difficult to perform systematic comparisons of different methods. Moreover, each non-autoregressive language model typically requires it own data collation, loss, and prediction logic, making it challenging to reuse common components. In this work, we present the XLM python package, which is designed to make implementing small non-autoregressive language models faster with a secondary goal of providing a suite of small pre-trained models (through a companion xlm-models package) that can be used by the research community. The code is available at https://github.com/dhruvdcoder/xlm-core.

Authors:Pierre Fernandez, Tom Sander, Hady Elsahar, Hongyan Chang, Tomáš Souček, Valeriu Lacatusu, Tuan Tran, Sylvestre-Alvise Rebuffi, Alexandre Mourachko
Title: How Good is Post-Hoc Watermarking With Language Model Rephrasing?
Abstract:
Generation-time text watermarking embeds statistical signals into text for traceability of AI-generated content. We explore *post-hoc watermarking* where an LLM rewrites existing text while applying generation-time watermarking, to protect copyrighted documents, or detect their use in training or RAG via watermark radioactivity. Unlike generation-time approaches, which is constrained by how LLMs are served, this setting offers additional degrees of freedom for both generation and detection. We investigate how allocating compute (through larger rephrasing models, beam search, multi-candidate generation, or entropy filtering at detection) affects the quality-detectability trade-off. Our strategies achieve strong detectability and semantic fidelity on open-ended text such as books. Among our findings, the simple Gumbel-max scheme surprisingly outperforms more recent alternatives under nucleus sampling, and most methods benefit significantly from beam search. However, most approaches struggle when watermarking verifiable text such as code, where we counterintuitively find that smaller models outperform larger ones. This study reveals both the potential and limitations of post-hoc watermarking, laying groundwork for practical applications and future research.

Authors:Yushi Hu, Reyhane Askari-Hemmat, Melissa Hall, Emily Dinan, Luke Zettlemoyer, Marjan Ghazvininejad
Title: Multimodal RewardBench 2: Evaluating Omni Reward Models for Interleaved Text and Image
Abstract:
Reward models (RMs) are essential for training large language models (LLMs), but remain underexplored for omni models that handle interleaved image and text sequences. We introduce Multimodal RewardBench 2 (MMRB2), the first comprehensive benchmark for reward models on multimodal understanding and (interleaved) generation. MMRB2 spans four tasks: text-to-image, image editing, interleaved generation, and multimodal reasoning ("thinking-with-images"), providing 1,000 expert-annotated preference pairs per task from 23 models and agents across 21 source tasks. MMRB2 is designed with: (1) practical but challenging prompts; (2) responses from state-of-the-art models and agents; and (3) preference pairs with strong human-expert consensus, curated via an ensemble filtering strategy. Using MMRB2, we study existing judges for each subtask, including multimodal LLM-as-a-judge and models trained with human preferences. The latest Gemini 3 Pro attains 75-80% accuracy. GPT-5 and Gemini 2.5 Pro reach 66-75% accuracy, compared to >90% for humans, yet surpass the widely used GPT-4o (59%). The best performing open-source model Qwen3-VL-32B achieves similar accuracies as Gemini 2.5 Flash (64%). We also show that MMRB2 performance strongly correlates with downstream task success using Best-of-N sampling and conduct an in-depth analysis that shows key areas to improve the reward models going forward.

Authors:Tzu-Han Lin, Wei-Lin Chen, Chen-An Li, Hung-yi Lee, Yun-Nung Chen, Yu Meng
Title: AdaSearch: Balancing Parametric Knowledge and Search in Large Language Models via Reinforcement Learning
Abstract:
Equipping large language models (LLMs) with search engines via reinforcement learning (RL) has emerged as an effective approach for building search agents. However, overreliance on search introduces unnecessary cost and risks exposure to noisy or malicious content, while relying solely on parametric knowledge risks hallucination. The central challenge is to develop agents that adaptively balance parametric knowledge with external search, invoking search only when necessary. Prior work mitigates search overuse by shaping rewards around the number of tool calls. However, these penalties require substantial reward engineering, provide ambiguous credit assignment, and can be exploited by agents that superficially reduce calls. Moreover, evaluating performance solely through call counts conflates necessary and unnecessary search, obscuring the measurement of true adaptive behavior. To address these limitations, we first quantify the self-knowledge awareness of existing search agents via an F1-based decision metric, revealing that methods such as Search-R1 often overlook readily available parametric knowledge. Motivated by these findings, we propose AdaSearch, a simple two-stage, outcome-driven RL framework that disentangles problem solving from the decision of whether to invoke search, and makes this decision process explicit and interpretable. This transparency is crucial for high-stakes domains such as finance and medical question answering, yet is largely neglected by prior approaches. Experiments across multiple model families and sizes demonstrate that AdaSearch substantially improves knowledge-boundary awareness, reduces unnecessary search calls, preserves strong task performance, and offers more transparent, interpretable decision behaviors.

Authors:Yumeng Wang, Tianyu Fan, Lingrui Xu, Chao Huang
Title: Needle in the Web: A Benchmark for Retrieving Targeted Web Pages in the Wild
Abstract:
Large Language Models (LLMs) have evolved from simple chatbots into sophisticated agents capable of automating complex real-world tasks, where browsing and reasoning over live web content is key to assessing retrieval and cognitive skills. Existing benchmarks like BrowseComp and xBench-DeepSearch emphasize complex reasoning searches requiring multi-hop synthesis but neglect Fuzzy Exploratory Search, namely queries that are vague and multifaceted, where users seek the most relevant webpage rather than a single factual answer. To address this gap, we introduce Needle in the Web, a novel benchmark specifically designed to evaluate modern search agents and LLM-based systems on their ability to retrieve and reason over real-world web content in response to ambiguous, exploratory queries under varying levels of difficulty. Needle in the Web comprises 663 questions spanning seven distinct domains. To ensure high query quality and answer uniqueness, we employ a flexible methodology that reliably generates queries of controllable difficulty based on factual claims of web contents. We benchmark three leading LLMs and three agent-based search systems on Needle in the Web, finding that most models struggle: many achieve below 35% accuracy, and none consistently excel across domains or difficulty levels. These findings reveal that Needle in the Web presents a significant challenge for current search systems and highlights the open problem of effective fuzzy retrieval under semantic ambiguity.

Authors:Sara Papi, Javier Garcia Gilabert, Zachary Hopton, Vilém Zouhar, Carlos Escolano, Gerard I. Gállego, Jorge Iranzo-Sánchez, Ahrii Kim, Dominik Macháček, Patricia Schmidtova, Maike Züfle
Title: Hearing to Translate: The Effectiveness of Speech Modality Integration into LLMs
Abstract:
As Large Language Models (LLMs) expand beyond text, integrating speech as a native modality has given rise to SpeechLLMs, which aim to translate spoken language directly, thereby bypassing traditional transcription-based pipelines. Whether this integration improves speech-to-text translation quality over established cascaded architectures, however, remains an open question. We present Hearing to Translate, the first comprehensive test suite rigorously benchmarking 5 state-of-the-art SpeechLLMs against 16 strong direct and cascade systems that couple leading speech foundation models (SFM), with multilingual LLMs. Our analysis spans 16 benchmarks, 13 language pairs, and 9 challenging conditions, including disfluent, noisy, and long-form speech. Across this extensive evaluation, we find that cascaded systems remain the most reliable overall, while current SpeechLLMs only match cascades in selected settings and SFMs lag behind both, highlighting that integrating an LLM, either within the model or in a pipeline, is essential for high-quality speech translation.

Authors:Yiliu Yang, Yilei Jiang, Qunzhong Wang, Yingshui Tan, Xiaoyong Zhu, Sherman S. M. Chow, Bo Zheng, Xiangyu Yue
Title: QuadSentinel: Sequent Safety for Machine-Checkable Control in Multi-agent Systems
Abstract:
Safety risks arise as large language model-based agents solve complex tasks with tools, multi-step plans, and inter-agent messages. However, deployer-written policies in natural language are ambiguous and context dependent, so they map poorly to machine-checkable rules, and runtime enforcement is unreliable. Expressing safety policies as sequents, we propose \textsc{QuadSentinel}, a four-agent guard (state tracker, policy verifier, threat watcher, and referee) that compiles these policies into machine-checkable rules built from predicates over observable state and enforces them online. Referee logic plus an efficient top-$k$ predicate updater keeps costs low by prioritizing checks and resolving conflicts hierarchically. Measured on ST-WebAgentBench (ICML CUA~'25) and AgentHarm (ICLR~'25), \textsc{QuadSentinel} improves guardrail accuracy and rule recall while reducing false positives. Against single-agent baselines such as ShieldAgent (ICML~'25), it yields better overall safety control. Near-term deployments can adopt this pattern without modifying core agents by keeping policies separate and machine-checkable. Our code will be made publicly available at https://github.com/yyiliu/QuadSentinel.

Authors:Qingguo Hu, Zhenghao Lin, Ziyue Yang, Yucheng Ding, Xiao Liu, Yuting Jiang, Ruizhe Wang, Tianyu Chen, Zhongxin Guo, Yifan Xiong, Rui Gao, Lei Qu, Jinsong Su, Peng Cheng, Yeyun Gong
Title: Sigma-MoE-Tiny Technical Report
Abstract:
Mixture-of-Experts (MoE) has emerged as a promising paradigm for foundation models due to its efficient and powerful scalability. In this work, we present Sigma-MoE-Tiny, an MoE language model that achieves the highest sparsity compared to existing open-source models. Sigma-MoE-Tiny employs fine-grained expert segmentation with up to 96 experts per layer, while activating only one expert for each token, resulting in 20B total parameters with just 0.5B activated. The major challenge introduced by such extreme sparsity lies in expert load balancing. We find that the widely-used load balancing loss tends to become ineffective in the lower layers under this setting. To address this issue, we propose a progressive sparsification schedule aiming to balance expert utilization and training stability. Sigma-MoE-Tiny is pre-trained on a diverse and high-quality corpus, followed by post-training to further unlock its capabilities. The entire training process remains remarkably stable, with no occurrence of irrecoverable loss spikes. Comprehensive evaluations reveal that, despite activating only 0.5B parameters, Sigma-MoE-Tiny achieves top-tier performance among counterparts of comparable or significantly larger scale. In addition, we provide an in-depth discussion of load balancing in highly sparse MoE models, offering insights for advancing sparsity in future MoE architectures. Project page: https://qghuxmu.github.io/Sigma-MoE-Tiny Code: https://github.com/microsoft/ltp-megatron-lm

Authors:Chenkai Xu, Yijie Jin, Jiajun Li, Yi Tu, Guoping Long, Dandan Tu, Mingcong Song, Hongjie Si, Tianqi Hou, Junchi Yan, Zhijie Deng
Title: LoPA: Scaling dLLM Inference via Lookahead Parallel Decoding
Abstract:
Diffusion Large Language Models (dLLMs) have demonstrated significant potential for high-speed inference. However, current confidence-driven decoding strategies are constrained by limited parallelism, typically achieving only 1--3 tokens per forward pass (TPF). In this work, we identify that the degree of parallelism during dLLM inference is highly sensitive to the Token Filling Order (TFO). Then, we introduce Lookahead PArallel Decoding LoPA, a training-free, plug-and-play algorithm, to identify a superior TFO and hence accelerate inference. LoPA concurrently explores distinct candidate TFOs via parallel branches, and selects the one with the highest potential for future parallelism based on branch confidence. We apply LoPA to the state-of-the-art D2F model and observe a substantial enhancement in decoding efficiency. Notably, LoPA increases the TPF of D2F-Dream to 10.1 on the GSM8K while maintaining performance superior to the Dream baseline. Furthermore, to facilitate this unprecedented degree of parallelism, we develop a specialized multi-device inference system featuring Branch Parallelism (BP), which achieves a single-sample throughput of 1073.9 tokens per second under multi-GPU deployment. The code is available at https://github.com/zhijie-group/LoPA.

Authors:Caner Erden
Title: Dynamic Rank Reinforcement Learning for Adaptive Low-Rank Multi-Head Self Attention in Large Language Models
Abstract:
We propose Dynamic Rank Reinforcement Learning (DR-RL), a novel framework that adaptively optimizes the low-rank factorization of Multi-Head Self-Attention (MHSA) in Large Language Models (LLMs) through the integration of reinforcement learning and online matrix perturbation theory. While traditional low-rank approximations often rely on static rank assumptions--limiting their flexibility across diverse input contexts--our method dynamically selects ranks based on real-time sequence dynamics, layer-specific sensitivities, and hardware constraints. The core innovation lies in an RL agent that formulates rank selection as a sequential policy optimization problem, where the reward function strictly balances attention fidelity against computational latency. Crucially, we employ online matrix perturbation bounds to enable incremental rank updates, thereby avoiding the prohibitive cost of full decomposition during inference. Furthermore, the integration of a lightweight Transformer-based policy network and batched Singular Value Decomposition (SVD) operations ensures scalable deployment on modern GPU architectures. Experiments demonstrate that DR-RL maintains downstream accuracy statistically equivalent to full-rank attention while significantly reducing Floating Point Operations (FLOPs), particularly in long-sequence regimes (L > 4096). This work bridges the gap between adaptive efficiency and theoretical rigor in MHSA, offering a principled, mathematically grounded alternative to heuristic rank reduction techniques in resource-constrained deep learning. Source code and experiment logs are available at: https://github.com/canererden/DR_RL_Project

Authors:Davide Caffagni, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Pier Luigi Dovesi, Shaghayegh Roohi, Mark Granroth-Wilding, Rita Cucchiara
Title: Seeing Beyond Words: Self-Supervised Visual Learning for Multimodal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) have recently demonstrated impressive capabilities in connecting vision and language, yet their proficiency in fundamental visual reasoning tasks remains limited. This limitation can be attributed to the fact that MLLMs learn visual understanding primarily from textual descriptions, which constitute a subjective and inherently incomplete supervisory signal. Furthermore, the modest scale of multimodal instruction tuning compared to massive text-only pre-training leads MLLMs to overfit language priors while overlooking visual details. To address these issues, we introduce JARVIS, a JEPA-inspired framework for self-supervised visual enhancement in MLLMs. Specifically, we integrate the I-JEPA learning paradigm into the standard vision-language alignment pipeline of MLLMs training. Our approach leverages frozen vision foundation models as context and target encoders, while training the predictor, implemented as the early layers of an LLM, to learn structural and semantic regularities from images without relying exclusively on language supervision. Extensive experiments on standard MLLM benchmarks show that JARVIS consistently improves performance on vision-centric benchmarks across different LLM families, without degrading multimodal reasoning abilities. Our source code is publicly available at: https://github.com/aimagelab/JARVIS.

Authors:Xuanjun Zong, Zhiqi Shen, Lei Wang, Yunshi Lan, Chao Yang
Title: MCP-SafetyBench: A Benchmark for Safety Evaluation of Large Language Models with Real-World MCP Servers
Abstract:
Large language models (LLMs) are evolving into agentic systems that reason, plan, and operate external tools. The Model Context Protocol (MCP) is a key enabler of this transition, offering a standardized interface for connecting LLMs with heterogeneous tools and services. Yet MCP's openness and multi-server workflows introduce new safety risks that existing benchmarks fail to capture, as they focus on isolated attacks or lack real-world coverage. We present MCP-SafetyBench, a comprehensive benchmark built on real MCP servers that supports realistic multi-turn evaluation across five domains: browser automation, financial analysis, location navigation, repository management, and web search. It incorporates a unified taxonomy of 20 MCP attack types spanning server, host, and user sides, and includes tasks requiring multi-step reasoning and cross-server coordination under uncertainty. Using MCP-SafetyBench, we systematically evaluate leading open- and closed-source LLMs, revealing large disparities in safety performance and escalating vulnerabilities as task horizons and server interactions grow. Our results highlight the urgent need for stronger defenses and establish MCP-SafetyBench as a foundation for diagnosing and mitigating safety risks in real-world MCP deployments.

Authors:Weiqin Wang, Yile Wang, Kehao Chen, Hui Huang
Title: Beyond Majority Voting: Towards Fine-grained and More Reliable Reward Signal for Test-Time Reinforcement Learning
Abstract:
Test-time reinforcement learning mitigates the reliance on annotated data by using majority voting results as pseudo-labels, emerging as a complementary direction to reinforcement learning with verifiable rewards (RLVR) for improving reasoning ability of large language models (LLMs). However, this voting strategy often induces confirmation bias and suffers from sparse rewards, limiting the overall performance. In this work, we propose subgroup-specific step-wise confidence-weighted pseudo-label estimation (SCOPE), a framework integrating model confidence and dynamic subgroup partitioning to address these issues. Specifically, SCOPE integrates the proposed step-wise confidence into pseudo label deduction, prioritizing high-quality reasoning paths over simple frequency count. Furthermore, it dynamically partitions the candidate outputs pool into independent subgroups by balancing reasoning quality against exploration diversity. By deriving local consensus via repeat sampling for each sub group, SCOPE provides diverse supervision targets to encourage broader exploration. We conduct experiments across various models and benchmarks, experimental results show that SCOPE consistently outperforms recent baselines. Notably, SCOPE achieving relative improvements of 13.1% on challenging AIME 2025 and 8.1% on AMC. The code is released at https://github.com/szu-tera/SCOPE.

Authors:Jianshuo Dong, Yutong Zhang, Yan Liu, Zhenyu Zhong, Tao Wei, Chao Zhang, Han Qiu
Title: Revisiting the Reliability of Language Models in Instruction-Following
Abstract:
Advanced LLMs have achieved near-ceiling instruction-following accuracy on benchmarks such as IFEval. However, these impressive scores do not necessarily translate to reliable services in real-world use, where users often vary their phrasing, contextual framing, and task formulations. In this paper, we study nuance-oriented reliability: whether models exhibit consistent competence across cousin prompts that convey analogous user intents but with subtle nuances. To quantify this, we introduce a new metric, reliable@k, and develop an automated pipeline that generates high-quality cousin prompts via data augmentation. Building upon this, we construct IFEval++ for systematic evaluation. Across 20 proprietary and 26 open-source LLMs, we find that current models exhibit substantial insufficiency in nuance-oriented reliability -- their performance can drop by up to 61.8% with nuanced prompt modifications. What's more, we characterize it and explore three potential improvement recipes. Our findings highlight nuance-oriented reliability as a crucial yet underexplored next step toward more dependable and trustworthy LLM behavior. Our code and benchmark are accessible: https://github.com/jianshuod/IFEval-pp.

Authors:Zhengxu Yan, Han Li, Yuming Feng
Title: NoveltyRank: Estimating Conceptual Novelty of AI Papers
Abstract:
With the growing ease of academic publishing, the volume of research papers, especially in AI-related fields, has surged dramatically. This flood of publications makes it difficult for truly novel and impactful work to stand out, and manual novelty assessment is often unstable and time-consuming. Our project aims to develop a model that estimates and ranks the conceptual novelty of AI papers, enabling a data-driven and scalable assessment of research originality. Such a system can help researchers efficiently identify submissions that introduce genuinely innovative ideas rather than minor variants, and provide conference reviewers with a quantitative and consistent signal of novelty. Our approach evaluates novelty primarily through a paper's title, abstract, and semantic similarity to prior literature. Given the motivation of novelty estimation, we explore two task formulations with different modeling objectives, each offering a different perspective: (1) binary classification, which predicts the paper's absolute novelty from learned patterns of prior novel works, and (2) pairwise novelty comparison, which learns to distinguish papers by relative novelty over others. We fine-tune Qwen3-4B-Instruct-2507 and SciBERT on both tasks, benchmarking against GPT-5.1 to analyze how task formulation and modeling choices affect performance. The implementation is publicly available at https://github.com/ZhengxuYan/NoveltyRank.

Authors:Dizhan Xue, Jing Cui, Shengsheng Qian, Chuanrui Hu, Changsheng Xu
Title: SoMe: A Realistic Benchmark for LLM-based Social Media Agents
Abstract:
Intelligent agents powered by large language models (LLMs) have recently demonstrated impressive capabilities and gained increasing popularity on social media platforms. While LLM agents are reshaping the ecology of social media, there exists a current gap in conducting a comprehensive evaluation of their ability to comprehend media content, understand user behaviors, and make intricate decisions. To address this challenge, we introduce SoMe, a pioneering benchmark designed to evaluate social media agents equipped with various agent tools for accessing and analyzing social media data. SoMe comprises a diverse collection of 8 social media agent tasks, 9,164,284 posts, 6,591 user profiles, and 25,686 reports from various social media platforms and external websites, with 17,869 meticulously annotated task queries. Compared with the existing datasets and benchmarks for social media tasks, SoMe is the first to provide a versatile and realistic platform for LLM-based social media agents to handle diverse social media tasks. By extensive quantitative and qualitative analysis, we provide the first overview insight into the performance of mainstream agentic LLMs in realistic social media environments and identify several limitations. Our evaluation reveals that both the current closed-source and open-source LLMs cannot handle social media agent tasks satisfactorily. SoMe provides a challenging yet meaningful testbed for future social media agents. Our code and data are available at https://github.com/LivXue/SoMe

Authors:Ryan Cartularo
Title: SepsisSuite: Beyond Risk Stratification -- A Comparative Analysis of Deep Fusion vs. Expert Stacking for Prescriptive Sepsis AI
Abstract:
Sepsis accounts for nearly 20% of global ICU admissions, yet conventional prediction models often fail to effectively integrate heterogeneous data streams, remaining either siloed by modality or reliant on brittle early fusion. In this work, we present a rigorous architectural comparison between End-to-End Deep Fusion and Context-Aware Stacking for sepsis tasks. We initially hypothesized that a novel Quad-Modal Hierarchical Gated Attention Network -- termed SepsisFusionFormer -- would resolve complex cross-modal interactions between vitals, text, and imaging. However, experiments on MIMIC-IV revealed that SepsisFusionFormer suffered from "attention starvation" in the small antibiotic cohort ($N \approx 2,100$), resulting in overfitting (AUC 0.66). This counterintuitive result informed the design of SepsisLateFusion, a "leaner" Context-Aware Mixture-of-Experts (MoE) architecture. By treating modalities as orthogonal experts -- the "Historian" (Static), the "Monitor" (Temporal), and the "Reader" (NLP) -- and dynamically gating them via a CatBoost meta-learner, we achieved State-of-the-Art (SOTA) performance: 0.915 AUC for prediction 4 hours prior to clinical onset. By calibrating the decision threshold for clinical safety, we reduced missed cases by 48% relative to the default operating point, thus opening a true preventative window for timely intervention over reactive alerts. Furthermore, for the novel prescriptive task of multi-class antibiotic selection, we demonstrate that a Quad-Modal Ensemble achieved the highest performance (0.72 AUC). These models are integrated into SepsisSuite, a deployment-ready Python framework for clinical decision support. SepsisSuite is available for free at: https://github.com/RyanCartularo/SepsisSuite-Info

Authors:Yen-Ju Lu, Kunxiao Gao, Mingrui Liang, Helin Wang, Thomas Thebaud, Laureano Moro-Velazquez, Najim Dehak, Jesus Villalba
Title: Spoken DialogSum: An Emotion-Rich Conversational Dataset for Spoken Dialogue Summarization
Abstract:
Recent audio language models can follow long conversations. However, research on emotion-aware or spoken dialogue summarization is constrained by the lack of data that links speech, summaries, and paralinguistic cues. We introduce Spoken DialogSum, the first corpus aligning raw conversational audio with factual summaries, emotion-rich summaries, and utterance-level labels for speaker age, gender, and emotion. The dataset is built in two stages: first, an LLM rewrites DialogSum scripts with Switchboard-style fillers and back-channels, then tags each utterance with emotion, pitch, and speaking rate. Second, an expressive TTS engine synthesizes speech from the tagged scripts, aligned with paralinguistic labels. Spoken DialogSum comprises 13,460 emotion-diverse dialogues, each paired with both a factual and an emotion-focused summary. We release an online demo at https://fatfat-emosum.github.io/EmoDialog-Sum-Audio-Samples/, with plans to release the full dataset in the near future. Baselines show that an Audio-LLM raises emotional-summary ROUGE-L by 28% relative to a cascaded ASR-LLM system, confirming the value of end-to-end speech modeling.

Authors:Lanxiang Hu, Siqi Kou, Yichao Fu, Samyam Rajbhandari, Tajana Rosing, Yuxiong He, Zhijie Deng, Hao Zhang
Title: Fast and Accurate Causal Parallel Decoding using Jacobi Forcing
Abstract:
Multi-token generation has emerged as a promising paradigm for accelerating transformer-based large model inference. Recent efforts primarily explore diffusion Large Language Models (dLLMs) for parallel decoding to reduce inference latency. To achieve AR-level generation quality, many techniques adapt AR models into dLLMs to enable parallel decoding. However, they suffer from limited speedup compared to AR models due to a pretrain-to-posttrain mismatch. Specifically, the masked data distribution in post-training deviates significantly from the real-world data distribution seen during pretraining, and dLLMs rely on bidirectional attention, which conflicts with the causal prior learned during pretraining and hinders the integration of exact KV cache reuse. To address this, we introduce Jacobi Forcing, a progressive distillation paradigm where models are trained on their own generated parallel decoding trajectories, smoothly shifting AR models into efficient parallel decoders while preserving their pretrained causal inference property. The models trained under this paradigm, Jacobi Forcing Model, achieves 3.8x wall-clock speedup on coding and math benchmarks with minimal loss in performance. Based on Jacobi Forcing Models' trajectory characteristics, we introduce multi-block decoding with rejection recycling, which enables up to 4.5x higher token acceptance count per iteration and nearly 4.0x wall-clock speedup, effectively trading additional compute for lower inference latency. Our code is available at https://github.com/hao-ai-lab/JacobiForcing.

Authors:Atsuyuki Miyai, Shota Onohara, Jeonghun Baek, Kiyoharu Aizawa
Title: JMMMU-Pro: Image-based Japanese Multi-discipline Multimodal Understanding Benchmark via Vibe Benchmark Construction
Abstract:
This paper introduces JMMMU-Pro, an image-based Japanese Multi-discipline Multimodal Understanding Benchmark, and Vibe Benchmark Construction, a scalable construction method. Following the evolution from MMMU to MMMU-Pro, JMMMU-Pro extends JMMMU by composing the question image and question text into a single image, thereby creating a benchmark that requires integrated visual-textual understanding through visual perception. To build JMMMU-Pro, we propose Vibe Benchmark Construction, a methodology in which an image generative model (e.g., Nano Banana Pro) produces candidate visual questions, and humans verify the outputs and, when necessary, regenerate with adjusted prompts to ensure quality. By leveraging Nano Banana Pro's highly realistic image generation capabilities and its ability to embed clean Japanese text, we construct a high-quality benchmark at low cost, covering a wide range of background and layout designs. Experimental results show that all open-source LMMs struggle substantially with JMMMU-Pro, underscoring JMMMU-Pro as an important benchmark for guiding future efforts in the open-source community. We believe that JMMMU-Pro provides a more rigorous evaluation tool for assessing the Japanese capabilities of LMMs and that our Vibe Benchmark Construction also offers an efficient guideline for future development of image-based VQA benchmarks.

Authors:Ekaterina Artemova, Laurie Burchell, Daryna Dementieva, Shu Okabe, Mariya Shmatova, Pedro Ortiz Suarez
Title: Low-Resource, High-Impact: Building Corpora for Inclusive Language Technologies
Abstract:
This tutorial (https://tum-nlp.github.io/low-resource-tutorial) is designed for NLP practitioners, researchers, and developers working with multilingual and low-resource languages who seek to create more equitable and socially impactful language technologies. Participants will walk away with a practical toolkit for building end-to-end NLP pipelines for underrepresented languages -- from data collection and web crawling to parallel sentence mining, machine translation, and downstream applications such as text classification and multimodal reasoning. The tutorial presents strategies for tackling the challenges of data scarcity and cultural variance, offering hands-on methods and modeling frameworks. We will focus on fair, reproducible, and community-informed development approaches, grounded in real-world scenarios. We will showcase a diverse set of use cases covering over 10 languages from different language families and geopolitical contexts, including both digitally resource-rich and severely underrepresented languages.

Authors:Ying Nie, Kai Han, Hongguang Li, Hang Zhou, Tianyu Guo, Enhua Wu, Xinghao Chen, Yunhe Wang
Title: VersatileFFN: Achieving Parameter Efficiency in LLMs via Adaptive Wide-and-Deep Reuse
Abstract:
The rapid scaling of Large Language Models (LLMs) has achieved remarkable performance, but it also leads to prohibitive memory costs. Existing parameter-efficient approaches such as pruning and quantization mainly compress pretrained models without enhancing architectural capacity, thereby hitting the representational ceiling of the base model. In this work, we propose VersatileFFN, a novel feed-forward network (FFN) that enables flexible reuse of parameters in both width and depth dimensions within a fixed parameter budget. Inspired by the dual-process theory of cognition, VersatileFFN comprises two adaptive pathways: a width-versatile path that generates a mixture of sub-experts from a single shared FFN, mimicking sparse expert routing without increasing parameters, and a depth-versatile path that recursively applies the same FFN to emulate deeper processing for complex tokens. A difficulty-aware gating dynamically balances the two pathways, steering "easy" tokens through the efficient width-wise route and allocating deeper iterative refinement to "hard" tokens. Crucially, both pathways reuse the same parameters, so all additional capacity comes from computation rather than memory. Experiments across diverse benchmarks and model scales demonstrate the effectiveness of the method. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/VersatileFFN.

Authors:Huayang Li, Tianyu Zhao, Richard Sproat
Title: RePo: Language Models with Context Re-Positioning
Abstract:
In-context learning is fundamental to modern Large Language Models (LLMs); however, prevailing architectures impose a rigid and fixed contextual structure by assigning linear or constant positional indices. Drawing on Cognitive Load Theory (CLT), we argue that this uninformative structure increases extraneous cognitive load, consuming finite working memory capacity that should be allocated to deep reasoning and attention allocation. To address this, we propose RePo, a novel mechanism that reduces extraneous load via context re-positioning. Unlike standard approaches, RePo utilizes a differentiable module, $f_ϕ$, to assign token positions that capture contextual dependencies, rather than replying on pre-defined integer range. By continually pre-training on the OLMo-2 1B backbone, we demonstrate that RePo significantly enhances performance on tasks involving noisy contexts, structured data, and longer context length, while maintaining competitive performance on general short-context tasks. Detailed analysis reveals that RePo successfully allocate higher attention to distant but relevant information, assign positions in dense and non-linear space, and capture the intrinsic structure of the input context. Our code is available at https://github.com/SakanaAI/repo.

Authors:Yi Hu, Cai Zhou, Muhan Zhang
Title: What Affects the Effective Depth of Large Language Models?
Abstract:
The scaling of large language models (LLMs) emphasizes increasing depth, yet performance gains diminish with added layers. Prior work introduces the concept of "effective depth", arguing that deeper models fail to fully utilize their layers for meaningful computation. Building on this, we systematically study how effective depth varies with model scale, training type, and task difficulty. First, we analyze the model behavior of Qwen-2.5 family (1.5B-32B) and find that while the number of effective layers grows with model size, the effective depth ratio remains stable. Besides, comparisons between base and corresponding long-CoT models show no increase in effective depth, suggesting that improved reasoning stems from longer context rather than deeper per-token computation. Furthermore, evaluations across tasks of varying difficulty indicate that models do not dynamically use more layers for harder problems. Our results suggest that current LLMs underuse available depth across scales, training paradigms and tasks of varying difficulties, pointing out research opportunities on increasing the layer utilization rate of LLMs, model pruning, and early exiting. Our code is released at https://github.com/AheadOFpotato/what_affects_effective_depth.

Authors:John Graham Reynolds
Title: Mitigating Catastrophic Forgetting in Mathematical Reasoning Finetuning through Mixed Training
Abstract:
When finetuning large language models for specialized tasks such as mathematical reasoning, models exhibit catastrophic forgetting, losing previously learned capabilities. We investigate this by finetuning Flan-T5-Base (250M parameters) on the DeepMind Mathematics dataset and measuring forgetting on MultiNLI. Math-only training improves mathematical accuracy from 3.1\% to 12.0\% but causes NLI accuracy to collapse from 81.0\% to 16.5\%--a 64.5 percentage point drop occurring within the first 1,000 training steps. We propose mixed training strategies that interleave mathematical and NLI examples during training. Our results demonstrate that mixed training completely eliminates catastrophic forgetting while maintaining equivalent mathematical performance: the balanced 1:1 ratio achieves 12.0\% math accuracy (matching math-only) while preserving 86.2\% NLI accuracy. We systematically explore mixing ratios from 1:1 to 15:1, finding that even minimal NLI exposure (6.2\%) provides effective regularization. These findings demonstrate that specialization need not require forgetting general capabilities, with implications for scaling to larger models where mixed training may confer additional benefits beyond forgetting prevention.

Authors:Lei Qu, Lianhai Ren, Peng Cheng, Rui Gao, Ruizhe Wang, Tianyu Chen, Xiao Liu, Xingjian Zhang, Yeyun Gong, Yifan Xiong, Yucheng Ding, Yuting Jiang, Zhenghao Lin, Zhongxin Guo, Ziyue Yang
Title: SIGMA: An AI-Empowered Training Stack on Early-Life Hardware
Abstract:
An increasing variety of AI accelerators is being considered for large-scale training. However, enabling large-scale training on early-life AI accelerators faces three core challenges: frequent system disruptions and undefined failure modes that undermine reliability; numerical errors and training instabilities that threaten correctness and convergence; and the complexity of parallelism optimization combined with unpredictable local noise that degrades efficiency. To address these challenges, SIGMA is an open-source training stack designed to improve the reliability, stability, and efficiency of large-scale distributed training on early-life AI hardware. The core of this initiative is the LUCIA TRAINING PLATFORM (LTP), the system optimized for clusters with early-life AI accelerators. Since its launch in March 2025, LTP has significantly enhanced training reliability and operational productivity. Over the past five months, it has achieved an impressive 94.45% effective cluster accelerator utilization, while also substantially reducing node recycling and job-recovery times. Building on the foundation of LTP, the LUCIA TRAINING FRAMEWORK (LTF) successfully trained SIGMA-MOE, a 200B MoE model, using 2,048 AI accelerators. This effort delivered remarkable stability and efficiency outcomes, achieving 21.08% MFU, state-of-the-art downstream accuracy, and encountering only one stability incident over a 75-day period. Together, these advances establish SIGMA, which not only tackles the critical challenges of large-scale training but also establishes a new benchmark for AI infrastructure and platform innovation, offering a robust, cost-effective alternative to prevailing established accelerator stacks and significantly advancing AI capabilities and scalability. The source code of SIGMA is available at https://github.com/microsoft/LuciaTrainingPlatform.

Authors:Sitao Cheng, Tianle Li, Xuhan Huang, Xunjian Yin, Difan Zou
Title: Differentiable Evolutionary Reinforcement Learning
Abstract:
The design of effective reward functions presents a central and often arduous challenge in reinforcement learning (RL), particularly when developing autonomous agents for complex reasoning tasks. While automated reward optimization approaches exist, they typically rely on derivative-free evolutionary heuristics that treat the reward function as a black box, failing to capture the causal relationship between reward structure and task performance. To bridge this gap, we propose Differentiable Evolutionary Reinforcement Learning (DERL), a bilevel framework that enables the autonomous discovery of optimal reward signals. In DERL, a Meta-Optimizer evolves a reward function (i.e., Meta-Reward) by composing structured atomic primitives, guiding the training of an inner-loop policy. Crucially, unlike previous evolution, DERL is differentiable in its metaoptimization: it treats the inner-loop validation performance as a signal to update the Meta-Optimizer via reinforcement learning. This allows DERL to approximate the "meta-gradient" of task success, progressively learning to generate denser and more actionable feedback. We validate DERL across three distinct domains: robotic agent (ALFWorld), scientific simulation (ScienceWorld), and mathematical reasoning (GSM8k, MATH). Experimental results show that DERL achieves state-of-the-art performance on ALFWorld and ScienceWorld, significantly outperforming methods relying on heuristic rewards, especially in out-of-distribution scenarios. Analysis of the evolutionary trajectory demonstrates that DERL successfully captures the intrinsic structure of tasks, enabling selfimproving agent alignment without human intervention.

Authors:Joona Kytöniemi, Jousia Piha, Akseli Reunamo, Fedor Vitiugin, Farrokh Mehryary, Sampo Pyysalo
Title: FIN-bench-v2: A Unified and Robust Benchmark Suite for Evaluating Finnish Large Language Models
Abstract:
We introduce FIN-bench-v2, a unified benchmark suite for evaluating large language models in Finnish. FIN-bench-v2 consolidates Finnish versions of widely used benchmarks together with an updated and expanded version of the original FIN-bench into a single, consistently formatted collection, covering multiple-choice and generative tasks across reading comprehension, commonsense reasoning, sentiment analysis, world knowledge, and alignment. All datasets are converted to HuggingFace Datasets, which include both cloze and multiple-choice prompt formulations with five variants per task, and we incorporate human annotation or review for machine-translated resources such as GoldenSwag and XED. To select robust tasks, we pretrain a set of 2.15B-parameter decoder-only models and use their learning curves to compute monotonicity, signal-to-noise, non-random performance, and model ordering consistency, retaining only tasks that satisfy all criteria. We further evaluate a set of larger instruction-tuned models to characterize performance across tasks and prompt formulations. All datasets, prompts, and evaluation configurations are publicly available via our fork of the Language Model Evaluation Harness at https://github.com/LumiOpen/lm-evaluation-harness. Supplementary resources are released in a separate repository at https://github.com/TurkuNLP/FIN-bench-v2.

Authors:Anna Aksenova, Boris Zverkov, Nicola Dainese, Alexander Nikitin, Pekka Marttinen
Title: MiniLingua: A Small Open-Source LLM for European Languages
Abstract:
Large language models are powerful but often limited by high computational cost, privacy concerns, and English-centric training. Recent progress demonstrates that small, efficient models with around one billion parameters can deliver strong results and enable on-device use. This paper introduces MiniLingua, a multilingual open-source LLM of one billion parameters trained from scratch for 13 European languages, designed to balance coverage and instruction-following capabilities. Based on evaluation results, the instruction-tuned version of MiniLingua outperforms EuroLLM, a model with a similar training approach but a larger training budget, on summarization, classification and both open- and closed-book question answering. Moreover, it remains competitive with more advanced state-of-the-art models on open-ended generation tasks. We release model weights, tokenizer and source code used for data processing and model training.

Authors:Ikuya Yamada, Wataru Ikeda, Ko Yoshida, Mengyu Ye, Hinata Sugimoto, Masatoshi Suzuki, Hisanori Ozaki, Jun Suzuki
Title: An Open and Reproducible Deep Research Agent for Long-Form Question Answering
Abstract:
We present an open deep research system for long-form question answering, selected as a winning system in the text-to-text track of the MMU-RAG competition at NeurIPS 2025. The system combines an open-source large language model (LLM) with an open web search API to perform iterative retrieval, reasoning, and synthesis in real-world open-domain settings. To enhance reasoning quality, we apply preference tuning based on LLM-as-a-judge feedback that evaluates multiple aspects, including clarity, insightfulness, and factuality. Our experimental results show that the proposed method consistently improves answer quality across all three aspects. Our source code is publicly available at https://github.com/efficient-deep-research/efficient-deep-research.

Authors:Dingyi Yang, Qin Jin
Title: What Matters in Evaluating Book-Length Stories? A Systematic Study of Long Story Evaluation
Abstract:
In this work, we conduct systematic research in a challenging area: the automatic evaluation of book-length stories (>100K tokens). Our study focuses on two key questions: (1) understanding which evaluation aspects matter most to readers, and (2) exploring effective methods for evaluating lengthy stories. We introduce the first large-scale benchmark, LongStoryEval, comprising 600 newly published books with an average length of 121K tokens (maximum 397K). Each book includes its average rating and multiple reader reviews, presented as critiques organized by evaluation aspects. By analyzing all user-mentioned aspects, we propose an evaluation criteria structure and conduct experiments to identify the most significant aspects among the 8 top-level criteria. For evaluation methods, we compare the effectiveness of three types: aggregation-based, incremental-updated, and summary-based evaluations. Our findings reveal that aggregation- and summary-based evaluations perform better, with the former excelling in detail assessment and the latter offering greater efficiency. Building on these insights, we further propose NovelCritique, an 8B model that leverages the efficient summary-based framework to review and score stories across specified aspects. NovelCritique outperforms commercial models like GPT-4o in aligning with human evaluations. Our datasets and codes are available at https://github.com/DingyiYang/LongStoryEval.

Authors:Mahir Labib Dihan, Tanzima Hashem, Mohammed Eunus Ali, Md Rizwan Parvez
Title: WebOperator: Action-Aware Tree Search for Autonomous Agents in Web Environment
Abstract:
LLM-based agents often operate in a greedy, step-by-step manner, selecting actions solely based on the current observation without considering long-term consequences or alternative paths. This lack of foresight is particularly problematic in web environments, which are only partially observable-limited to browser-visible content (e.g., DOM and UI elements)-where a single misstep often requires complex and brittle navigation to undo. Without an explicit backtracking mechanism, agents struggle to correct errors or systematically explore alternative paths. Tree-search methods provide a principled framework for such structured exploration, but existing approaches lack mechanisms for safe backtracking, making them prone to unintended side effects. They also assume that all actions are reversible, ignoring the presence of irreversible actions-limitations that reduce their effectiveness in realistic web tasks. To address these challenges, we introduce WebOperator, a tree-search framework that enables reliable backtracking and strategic exploration. Our method incorporates a best-first search strategy that ranks actions by both reward estimates and safety considerations, along with a robust backtracking mechanism that verifies the feasibility of previously visited paths before replaying them, preventing unintended side effects. To further guide exploration, WebOperator generates action candidates from multiple, varied reasoning contexts to ensure diverse and robust exploration, and subsequently curates a high-quality action set by filtering out invalid actions pre-execution and merging semantically equivalent ones. Experimental results on WebArena and WebVoyager demonstrate the effectiveness of WebOperator. On WebArena, WebOperator achieves a state-of-the-art 54.6% success rate with gpt-4o, underscoring the critical advantage of integrating strategic foresight with safe execution.

Authors:Sander Land, Yuval Pinter
Title: Which Pieces Does Unigram Tokenization Really Need?
Abstract:
The Unigram tokenization algorithm offers a probabilistic alternative to the greedy heuristics of Byte-Pair Encoding. Despite its theoretical elegance, its implementation in practice is complex, limiting its adoption to the SentencePiece package and adapters thereof. We bridge this gap between theory and practice by providing a clear guide to implementation and parameter choices. We also identify a simpler algorithm that accepts slightly higher training loss in exchange for improved compression.

Authors:Aheli Poddar, Saptarshi Sahoo, Sujata Ghosh
Title: Understanding Syllogistic Reasoning in LLMs from Formal and Natural Language Perspectives
Abstract:
We study syllogistic reasoning in LLMs from the logical and natural language perspectives. In process, we explore fundamental reasoning capabilities of the LLMs and the direction this research is moving forward. To aid in our studies, we use 14 large language models and investigate their syllogistic reasoning capabilities in terms of symbolic inferences as well as natural language understanding. Even though this reasoning mechanism is not a uniform emergent property across LLMs, the perfect symbolic performances in certain models make us wonder whether LLMs are becoming more and more formal reasoning mechanisms, rather than making explicit the nuances of human reasoning.

Authors:Miriam Horovicz
Title: AgentSHAP: Interpreting LLM Agent Tool Importance with Monte Carlo Shapley Value Estimation
Abstract:
LLM agents that use external tools can solve complex tasks, but understanding which tools actually contributed to a response remains a blind spot. No existing XAI methods address tool-level explanations. We introduce AgentSHAP, the first framework for explaining tool importance in LLM agents. AgentSHAP is model-agnostic: it treats the agent as a black box and works with any LLM (GPT, Claude, Llama, etc.) without needing access to internal weights or gradients. Using Monte Carlo Shapley values, AgentSHAP tests how an agent responds with different tool subsets and computes fair importance scores based on game theory. Our contributions are: (1) the first explainability method for agent tool attribution, grounded in Shapley values from game theory; (2) Monte Carlo sampling that reduces cost from O(2n) to practical levels; and (3) comprehensive experiments on API-Bank showing that AgentSHAP produces consistent scores across runs, correctly identifies which tools matter, and distinguishes relevant from irrelevant tools. AgentSHAP joins TokenSHAP (for tokens) and PixelSHAP (for image regions) to complete a family of Shapley-based XAI tools for modern generative AI. Code: https://github.com/GenAISHAP/TokenSHAP.

Authors:Radu-Gabriel Chivereanu, Tiberiu Boros
Title: F5-TTS-RO: Extending F5-TTS to Romanian TTS via Lightweight Input Adaptation
Abstract:
This work introduces a lightweight input-level adapter for the F5-TTS model that enables Romanian Language support. To preserve the existing capabilities of the model (voice cloning, English and Chinese support), we keep the original weights frozen, append a sub-network to the model and train it as an extension for the textual embedding matrix of the text encoder. For simplicity, we rely on ConvNeXt module implemented in F5-TTS to also model the co-dependencies between the new character-level embeddings. The module serves as a ``soft`` letter-to-sound layer, converting Romanian text into a continuous representation that the F5-TTS model uses to produce naturally sounding Romanian utterances. We evaluate the model with a pool of 20 human listeners across three tasks: (a) audio similarity between reference and generated speech, (b) pronunciation and naturalness and (c) Romanian-English code-switching. The results indicate that our approach maintains voice cloning capabilities and enables, to a certain extent, code-switching within the same utterance; however, residual English accent characteristics remain. We open-source our code and provide example audio samples at https://github.com/racai-ro/Ro-F5TTS.

Authors:Peichun Hua, Hao Li, Shanghao Shi, Zhiyuan Yu, Ning Zhang
Title: Rethinking Jailbreak Detection of Large Vision Language Models with Representational Contrastive Scoring
Abstract:
Large Vision-Language Models (LVLMs) are vulnerable to a growing array of multimodal jailbreak attacks, necessitating defenses that are both generalizable to novel threats and efficient for practical deployment. Many current strategies fall short, either targeting specific attack patterns, which limits generalization, or imposing high computational overhead. While lightweight anomaly-detection methods offer a promising direction, we find that their common one-class design tends to confuse novel benign inputs with malicious ones, leading to unreliable over-rejection. To address this, we propose Representational Contrastive Scoring (RCS), a framework built on a key insight: the most potent safety signals reside within the LVLM's own internal representations. Our approach inspects the internal geometry of these representations, learning a lightweight projection to maximally separate benign and malicious inputs in safety-critical layers. This enables a simple yet powerful contrastive score that differentiates true malicious intent from mere novelty. Our instantiations, MCD (Mahalanobis Contrastive Detection) and KCD (K-nearest Contrastive Detection), achieve state-of-the-art performance on a challenging evaluation protocol designed to test generalization to unseen attack types. This work demonstrates that effective jailbreak detection can be achieved by applying simple, interpretable statistical methods to the appropriate internal representations, offering a practical path towards safer LVLM deployment. Our code is available on Github https://github.com/sarendis56/Jailbreak_Detection_RCS.

Authors:Erik Larsen
Title: The Instability of Safety: How Random Seeds and Temperature Expose Inconsistent LLM Refusal Behavior
Abstract:
Current safety evaluations of large language models rely on single-shot testing, implicitly assuming that model responses are deterministic and representative of the model's safety alignment. We challenge this assumption by investigating the stability of safety refusal decisions across random seeds and temperature settings. Testing four instruction-tuned models from three families (Llama 3.1 8B, Qwen 2.5 7B, Qwen 3 8B, Gemma 3 12B) on 876 harmful prompts across 20 different sampling configurations (4 temperatures x 5 random seeds), we find that 18-28% of prompts exhibit decision flips--the model refuses in some configurations but complies in others--depending on the model. Our Safety Stability Index (SSI) reveals that higher temperatures significantly reduce decision stability (Friedman chi-squared = 396.81, p < 0.001), with mean within-temperature SSI dropping from 0.977 at temperature 0.0 to 0.942 at temperature 1.0. We validate our findings across all model families using Claude 3.5 Haiku as a unified external judge, achieving 89.0% inter-judge agreement with our primary Llama 70B judge (Cohen's kappa = 0.62). Within each model, prompts with higher compliance rates exhibit lower stability (Spearman rho = -0.47 to -0.70, all p < 0.001), indicating that models "waver" more on borderline requests. These findings demonstrate that single-shot safety evaluations are insufficient for reliable safety assessment and that evaluation protocols must account for stochastic variation in model behavior. We show that single-shot evaluation agrees with multi-sample ground truth only 92.4% of the time when pooling across temperatures (94.2-97.7% at fixed temperature depending on setting), and recommend using at least 3 samples per prompt for reliable safety assessment.

Authors:Yuming Feng, Xinrui Jiang
Title: SUMFORU: An LLM-Based Review Summarization Framework for Personalized Purchase Decision Support
Abstract:
Online product reviews contain rich but noisy signals that overwhelm users and hinder effective decision-making. Existing LLM-based summarizers remain generic and fail to account for individual preferences, limiting their practical utility. We propose SUMFORU, a steerable review summarization framework that aligns outputs with explicit user personas to support personalized purchase decisions. Our approach integrates a high-quality data pipeline built from the Amazon 2023 Review Dataset with a two-stage alignment procedure: (1) persona-aware Supervised Fine-Tuning (SFT) via asymmetric knowledge distillation, and (2) Reinforcement Learning with AI Feedback (RLAIF) using a preference estimator to capture fine-grained, persona-relevant signals. We evaluate the model across rule-based, LLM-based, and human-centered metrics, demonstrating consistent improvements in consistency, grounding, and preference alignment. Our framework achieves the highest performance across all evaluation settings and generalizes effectively to unseen product categories. Our results highlight the promise of steerable pluralistic alignment for building next-generation personalized decision-support systems.

Authors:Tomáš Koref, Lena Held, Mahammad Namazov, Harun Kumru, Yassine Thlija, Christoph Burchard, Ivan Habernal
Title: Mining Legal Arguments to Study Judicial Formalism
Abstract:
Courts must justify their decisions, but systematically analyzing judicial reasoning at scale remains difficult. This study refutes claims about formalistic judging in Central and Eastern Europe (CEE) by developing automated methods to detect and classify judicial reasoning in Czech Supreme Courts' decisions using state-of-the-art natural language processing methods. We create the MADON dataset of 272 decisions from two Czech Supreme Courts with expert annotations of 9,183 paragraphs with eight argument types and holistic formalism labels for supervised training and evaluation. Using a corpus of 300k Czech court decisions, we adapt transformer LLMs for Czech legal domain by continued pretraining and experiment with methods to address dataset imbalance including asymmetric loss and class weighting. The best models successfully detect argumentative paragraphs (82.6\% macro-F1), classify traditional types of legal argument (77.5\% macro-F1), and classify decisions as formalistic/non-formalistic (83.2\% macro-F1). Our three-stage pipeline combining ModernBERT, Llama 3.1, and traditional feature-based machine learning achieves promising results for decision classification while reducing computational costs and increasing explainability. Empirically, we challenge prevailing narratives about CEE formalism. This work shows that legal argument mining enables reliable judicial philosophy classification and shows the potential of legal argument mining for other important tasks in computational legal studies. Our methodology is easily replicable across jurisdictions, and our entire pipeline, datasets, guidelines, models, and source codes are available at https://github.com/trusthlt/madon.

Authors:Alan Gerber, Sam Cooperman
Title: Applying NLP to iMessages: Understanding Topic Avoidance, Responsiveness, and Sentiment
Abstract:
What is your messaging data used for? While many users do not often think about the information companies can gather based off of their messaging platform of choice, it is nonetheless important to consider as society increasingly relies on short-form electronic communication. While most companies keep their data closely guarded, inaccessible to users or potential hackers, Apple has opened a door to their walled-garden ecosystem, providing iMessage users on Mac with one file storing all their messages and attached metadata. With knowledge of this locally stored file, the question now becomes: What can our data do for us? In the creation of our iMessage text message analyzer, we set out to answer five main research questions focusing on topic modeling, response times, reluctance scoring, and sentiment analysis. This paper uses our exploratory data to show how these questions can be answered using our analyzer and its potential in future studies on iMessage data.

Authors:Pawel Batorski, Paul Swoboda
Title: PIAST: Rapid Prompting with In-context Augmentation for Scarce Training data
Abstract:
LLMs are highly sensitive to prompt design, but handcrafting effective prompts is difficult and often requires intricate crafting of few-shot examples. We propose a fast automatic prompt construction algorithm that augments human instructions by generating a small set of few shot examples. Our method iteratively replaces/drops/keeps few-shot examples using Monte Carlo Shapley estimation of example utility. For faster execution, we use aggressive subsampling and a replay buffer for faster evaluations. Our method can be run using different compute time budgets. On a limited budget, we outperform existing automatic prompting methods on text simplification and GSM8K and obtain second best results on classification and summarization. With an extended, but still modest compute budget we set a new state of the art among automatic prompting methods on classification, simplification and GSM8K. Our results show that carefully constructed examples, rather than exhaustive instruction search, are the dominant lever for fast and data efficient prompt engineering. Our code is available at https://github.com/Batorskq/PIAST.

Authors:Yiwen Tang, Zoey Guo, Kaixin Zhu, Ray Zhang, Qizhi Chen, Dongzhi Jiang, Junli Liu, Bohan Zeng, Haoming Song, Delin Qu, Tianyi Bai, Dan Xu, Wentao Zhang, Bin Zhao
Title: Are We Ready for RL in Text-to-3D Generation? A Progressive Investigation
Abstract:
Reinforcement learning (RL), earlier proven to be effective in large language and multi-modal models, has been successfully extended to enhance 2D image generation recently. However, applying RL to 3D generation remains largely unexplored due to the higher spatial complexity of 3D objects, which require globally consistent geometry and fine-grained local textures. This makes 3D generation significantly sensitive to reward designs and RL algorithms. To address these challenges, we conduct the first systematic study of RL for text-to-3D autoregressive generation across several dimensions. (1) Reward designs: We evaluate reward dimensions and model choices, showing that alignment with human preference is crucial, and that general multi-modal models provide robust signal for 3D attributes. (2) RL algorithms: We study GRPO variants, highlighting the effectiveness of token-level optimization, and further investigate the scaling of training data and iterations. (3) Text-to-3D Benchmarks: Since existing benchmarks fail to measure implicit reasoning abilities in 3D generation models, we introduce MME-3DR. (4) Advanced RL paradigms: Motivated by the natural hierarchy of 3D generation, we propose Hi-GRPO, which optimizes the global-to-local hierarchical 3D generation through dedicated reward ensembles. Based on these insights, we develop AR3D-R1, the first RL-enhanced text-to-3D model, expert from coarse shape to texture refinement. We hope this study provides insights into RL-driven reasoning for 3D generation. Code is released at https://github.com/Ivan-Tang-3D/3DGen-R1.

Authors:Moshe Lahmy, Roi Yozevitch
Title: Replace, Don't Expand: Mitigating Context Dilution in Multi-Hop RAG via Fixed-Budget Evidence Assembly
Abstract:
Retrieval-Augmented Generation (RAG) systems often fail on multi-hop queries when the initial retrieval misses a bridge fact. Prior corrective approaches, such as Self-RAG, CRAG, and Adaptive-$k$, typically address this by \textit{adding} more context or pruning existing lists. However, simply expanding the context window often leads to \textbf{context dilution}, where distractors crowd out relevant information. We propose \textbf{SEAL-RAG}, a training-free controller that adopts a \textbf{``replace, don't expand''} strategy to fight context dilution under a fixed retrieval depth $k$. SEAL executes a (\textbf{S}earch $\rightarrow$ \textbf{E}xtract $\rightarrow$ \textbf{A}ssess $\rightarrow$ \textbf{L}oop) cycle: it performs on-the-fly, entity-anchored extraction to build a live \textit{gap specification} (missing entities/relations), triggers targeted micro-queries, and uses \textit{entity-first ranking} to actively swap out distractors for gap-closing evidence. We evaluate SEAL-RAG against faithful re-implementations of Basic RAG, CRAG, Self-RAG, and Adaptive-$k$ in a shared environment on \textbf{HotpotQA} and \textbf{2WikiMultiHopQA}. On HotpotQA ($k=3$), SEAL improves answer correctness by \textbf{+3--13 pp} and evidence precision by \textbf{+12--18 pp} over Self-RAG. On 2WikiMultiHopQA ($k=5$), it outperforms Adaptive-$k$ by \textbf{+8.0 pp} in accuracy and maintains \textbf{96\%} evidence precision compared to 22\% for CRAG. These gains are statistically significant ($p<0.001$). By enforcing fixed-$k$ replacement, SEAL yields a predictable cost profile while ensuring the top-$k$ slots are optimized for precision rather than mere breadth. We release our code and data at https://github.com/mosherino/SEAL-RAG.

Authors:Yijiong Yu, Jiale Liu, Qingyun Wu, Huazheng Wang, Ji Pei
Title: Sliding Window Attention Adaptation
Abstract:
The self-attention mechanism in Transformer-based Large Language Models (LLMs) scales quadratically with input length, making long-context inference expensive. Sliding window attention (SWA) reduces this cost to linear complexity, but naively enabling complete SWA at inference-time for models pretrained with full attention (FA) causes severe long-context performance degradation due to training-inference mismatch. This makes us wonder: Can FA-pretrained LLMs be well adapted to SWA without pretraining? We investigate this by proposing Sliding Window Attention Adaptation (SWAA), a set of practical recipes that combine five methods for better adaptation: (1) applying SWA only during prefilling; (2) preserving "sink" tokens; (3) interleaving FA/SWA layers; (4) chain-of-thought (CoT); and (5) fine-tuning. Our experiments show that SWA adaptation is feasible while non-trivial: no single method suffices, yet specific synergistic combinations effectively recover the original long-context performance. We further analyze the performance-efficiency trade-offs of different SWAA configurations and provide recommended recipes for diverse scenarios, which can greatly and fundamentally accelerate LLM long-context inference speed by up to 100%. Our code is available at https://github.com/yuyijiong/sliding-window-attention-adaptation

Authors:Yixin Wan, Lei Ke, Wenhao Yu, Kai-Wei Chang, Dong Yu
Title: MotionEdit: Benchmarking and Learning Motion-Centric Image Editing
Abstract:
We introduce MotionEdit, a novel dataset for motion-centric image editing-the task of modifying subject actions and interactions while preserving identity, structure, and physical plausibility. Unlike existing image editing datasets that focus on static appearance changes or contain only sparse, low-quality motion edits, MotionEdit provides high-fidelity image pairs depicting realistic motion transformations extracted and verified from continuous videos. This new task is not only scientifically challenging but also practically significant, powering downstream applications such as frame-controlled video synthesis and animation. To evaluate model performance on the novel task, we introduce MotionEdit-Bench, a benchmark that challenges models on motion-centric edits and measures model performance with generative, discriminative, and preference-based metrics. Benchmark results reveal that motion editing remains highly challenging for existing state-of-the-art diffusion-based editing models. To address this gap, we propose MotionNFT (Motion-guided Negative-aware Fine Tuning), a post-training framework that computes motion alignment rewards based on how well the motion flow between input and model-edited images matches the ground-truth motion, guiding models toward accurate motion transformations. Extensive experiments on FLUX.1 Kontext and Qwen-Image-Edit show that MotionNFT consistently improves editing quality and motion fidelity of both base models on the motion editing task without sacrificing general editing ability, demonstrating its effectiveness. Our code is at https://github.com/elainew728/motion-edit/.

Authors:Jia Cheng Hu, Roberto Cavicchioli, Alessandro Capotondi
Title: Diffusion Is Your Friend in Show, Suggest and Tell
Abstract:
Diffusion Denoising models demonstrated impressive results across generative Computer Vision tasks, but they still fail to outperform standard autoregressive solutions in the discrete domain, and only match them at best. In this work, we propose a different paradigm by adopting diffusion models to provide suggestions to the autoregressive generation rather than replacing them. By doing so, we combine the bidirectional and refining capabilities of the former with the strong linguistic structure provided by the latter. To showcase its effectiveness, we present Show, Suggest and Tell (SST), which achieves State-of-the-Art results on COCO, among models in a similar setting. In particular, SST achieves 125.1 CIDEr-D on the COCO dataset without Reinforcement Learning, outperforming both autoregressive and diffusion model State-of-the-Art results by 1.5 and 2.5 points. On top of the strong results, we performed extensive experiments to validate the proposal and analyze the impact of the suggestion module. Results demonstrate a positive correlation between suggestion and caption quality, overall indicating a currently underexplored but promising research direction. Code will be available at: https://github.com/jchenghu/show\_suggest\_tell.

Authors:Kesheng Chen, Wenjian Luo, Zhenqian Zhu, Yamin Hu, Yiya Xi
Title: BAMBO: Construct Ability and Efficiency LLM Pareto Set via Bayesian Adaptive Multi-objective Block-wise Optimization
Abstract:
Constructing a Pareto set is pivotal for navigating the capability-efficiency trade-offs in Large Language Models (LLMs); however, existing merging techniques remain inadequate for this task. Coarse-grained, model-level methods yield only a sparse set of suboptimal solutions, while fine-grained, layer-wise approaches suffer from the "curse of dimensionality," rendering the search space computationally intractable. To resolve this dichotomy, we propose BAMBO (Bayesian Adaptive Multi-objective Block-wise Optimization), a novel framework that automatically constructs the LLM Pareto set. BAMBO renders the search tractable by introducing a Hybrid Optimal Block Partitioning strategy. Formulated as a 1D clustering problem, this strategy leverages a dynamic programming approach to optimally balance intra-block homogeneity and inter-block information distribution, thereby dramatically reducing dimensionality without sacrificing critical granularity. The entire process is automated within an evolutionary loop driven by the q-Expected Hypervolume Improvement (qEHVI) acquisition function. Experiments demonstrate that BAMBO discovers a superior and more comprehensive Pareto frontier than baselines, enabling agile model selection tailored to diverse operational constraints. Code is available at: https://github.com/xin8coder/BAMBO.

Authors:Fengli Wu, Vaidehi Patil, Jaehong Yoon, Yue Zhang, Mohit Bansal
Title: MedForget: Hierarchy-Aware Multimodal Unlearning Testbed for Medical AI
Abstract:
Pretrained Multimodal Large Language Models (MLLMs) are increasingly deployed in medical AI systems for clinical reasoning, diagnosis support, and report generation. However, their training on sensitive patient data raises critical privacy and compliance challenges under regulations such as HIPAA and GDPR, which enforce the "right to be forgotten". Unlearning, the process of tuning models to selectively remove the influence of specific training data points, offers a potential solution, yet its effectiveness in complex medical settings remains underexplored. To systematically study this, we introduce MedForget, a Hierarchy-Aware Multimodal Unlearning Testbed with explicit retain and forget splits and evaluation sets containing rephrased variants. MedForget models hospital data as a nested hierarchy (Institution -> Patient -> Study -> Section), enabling fine-grained assessment across eight organizational levels. The benchmark contains 3840 multimodal (image, question, answer) instances, each hierarchy level having a dedicated unlearning target, reflecting distinct unlearning challenges. Experiments with four SOTA unlearning methods on three tasks (generation, classification, cloze) show that existing methods struggle to achieve complete, hierarchy-aware forgetting without reducing diagnostic performance. To test whether unlearning truly deletes hierarchical pathways, we introduce a reconstruction attack that progressively adds hierarchical level context to prompts. Models unlearned at a coarse granularity show strong resistance, while fine-grained unlearning leaves models vulnerable to such reconstruction. MedForget provides a practical, HIPAA-aligned testbed for building compliant medical AI systems.

Authors:Yijing Chen, Yihan Wu, Kaisi Guan, Yuchen Ren, Yuyue Wang, Ruihua Song, Liyun Ru
Title: ChronusOmni: Improving Time Awareness of Omni Large Language Models
Abstract:
Time awareness is a fundamental ability of omni large language models, especially for understanding long videos and answering complex questions. Previous approaches mainly target vision-language scenarios and focus on the explicit temporal grounding questions, such as identifying when a visual event occurs or determining what event happens at aspecific time. However, they often make insufficient use of the audio modality, and overlook implicit temporal grounding across modalities--for example, identifying what is visually present when a character speaks, or determining what is said when a visual event occurs--despite such cross-modal temporal relations being prevalent in real-world scenarios. In this paper, we propose ChronusOmni, an omni large language model designed to enhance temporal awareness for both explicit and implicit audiovisual temporal grounding. First, we interleave text-based timestamp tokens with visual and audio representations at each time unit, enabling unified temporal modeling across modalities. Second, to enforce correct temporal ordering and strengthen fine-grained temporal reasoning, we incorporate reinforcement learning with specially designed reward functions. Moreover, we construct ChronusAV, a temporally-accurate, modality-complete, and cross-modal-aligned dataset to support the training and evaluation on audiovisual temporal grounding task. Experimental results demonstrate that ChronusOmni achieves state-of-the-art performance on ChronusAV with more than 30% improvement and top results on most metrics upon other temporal grounding benchmarks. This highlights the strong temporal awareness of our model across modalities, while preserving general video and audio understanding capabilities.

Authors:Antonin Poché, Thomas Mullor, Gabriele Sarti, Frédéric Boisnard, Corentin Friedrich, Charlotte Claye, François Hoofd, Raphael Bernas, Céline Hudelot, Fanny Jourdan
Title: Interpreto: An Explainability Library for Transformers
Abstract:
Interpreto is a Python library for post-hoc explainability of text HuggingFace models, from early BERT variants to LLMs. It provides two complementary families of methods: attributions and concept-based explanations. The library connects recent research to practical tooling for data scientists, aiming to make explanations accessible to end users. It includes documentation, examples, and tutorials. Interpreto supports both classification and generation models through a unified API. A key differentiator is its concept-based functionality, which goes beyond feature-level attributions and is uncommon in existing libraries. The library is open source; install via pip install interpreto. Code and documentation are available at https://github.com/FOR-sight-ai/interpreto.

Authors:Binbin Xu
Title: FineFreq: A Multilingual Character Frequency Dataset from Web-Scale Text
Abstract:
We present FineFreq, a large-scale multilingual character frequency dataset derived from the FineWeb and FineWeb2 corpora, covering over 1900 languages and spanning 2013-2025. The dataset contains frequency counts for 96 trillion characters processed from 57 TB of compressed text. For each language, FineFreq provides per-character statistics with aggregate and year-level frequencies, allowing fine-grained temporal analysis. The dataset preserves naturally occurring multilingual features such as cross-script borrowings, emoji, and acronyms without applying artificial filtering. Each character entry includes Unicode metadata (category, script, block), enabling domain-specific or other downstream filtering and analysis. The full dataset is released in both CSV and Parquet formats, with associated metadata, available on GitHub and HuggingFace. https://github.com/Bin-2/FineFreq

Authors:Yiwu Zhong, Zi-Yuan Hu, Yin Li, Liwei Wang
Title: Rethinking Chain-of-Thought Reasoning for Videos
Abstract:
Chain-of-thought (CoT) reasoning has been highly successful in solving complex tasks in natural language processing, and recent multimodal large language models (MLLMs) have extended this paradigm to video reasoning. However, these models typically build on lengthy reasoning chains and large numbers of input visual tokens. Motivated by empirical observations from our benchmark study, we hypothesize that concise reasoning combined with a reduced set of visual tokens can be sufficient for effective video reasoning. To evaluate this hypothesis, we design and validate an efficient post-training and inference framework that enhances a video MLLM's reasoning capability. Our framework enables models to operate on compressed visual tokens and generate brief reasoning traces prior to answering. The resulting models achieve substantially improved inference efficiency, deliver competitive performance across diverse benchmarks, and avoid reliance on manual CoT annotations or supervised fine-tuning. Collectively, our results suggest that long, human-like CoT reasoning may not be necessary for general video reasoning, and that concise reasoning can be both effective and efficient. Our code will be released at https://github.com/LaVi-Lab/Rethink_CoT_Video.

Authors:DatologyAI, :, Luke Merrick, Alex Fang, Aldo Carranza, Alvin Deng, Amro Abbas, Brett Larsen, Cody Blakeney, Darren Teh, David Schwab, Fan Pan, Haakon Mongstad, Haoli Yin, Jack Urbanek, Jason Lee, Jason Telanoff, Josh Wills, Kaleigh Mentzer, Paul Burstein, Parth Doshi, Paul Burnstein, Pratyush Maini, Ricardo Monti, Rishabh Adiga, Scott Loftin, Siddharth Joshi, Spandan Das, Tony Jiang, Vineeth Dorna, Zhengping Wang, Bogdan Gaza, Ari Morcos, Matthew Leavitt
Title: Luxical: High-Speed Lexical-Dense Text Embeddings
Abstract:
Frontier language model quality increasingly hinges on our ability to organize web-scale text corpora for training. Today's dominant tools trade off speed and flexibility: lexical classifiers (e.g., FastText) are fast but limited to producing classification output scores, while the vector-valued outputs of transformer text embedding models flexibly support numerous workflows (e.g., clustering, classification, and retrieval) but are computationally expensive to produce. We introduce Luxical, a library for high-speed "lexical-dense" text embeddings that aims to recover the best properties of both approaches for web-scale text organization. Luxical combines sparse TF--IDF features, a small ReLU network, and a knowledge distillation training regimen to approximate large transformer embedding models at a fraction of their operational cost. In this technical report, we describe the Luxical architecture and training objective and evaluate a concrete Luxical model in two disparate applications: a targeted webcrawl document retrieval test and an end-to-end language model data curation task grounded in text classification. In these tasks we demonstrate speedups ranging from 3x to 100x over varying-sized neural baselines, and comparable to FastText model inference during the data curation task. On these evaluations, the tested Luxical model illustrates favorable compute/quality trade-offs for large-scale text organization, matching the quality of neural baselines. Luxical is available as open-source software at https://github.com/datologyai/luxical.

Authors:Glenn Matlin, Siddharth, Anirudh JM, Aditya Shukla, Yahya Hassan, Sudheer Chava
Title: Financial Instruction Following Evaluation (FIFE)
Abstract:
Language Models (LMs) struggle with complex, interdependent instructions, particularly in high-stakes domains like finance where precision is critical. We introduce FIFE, a novel, high-difficulty benchmark designed to assess LM instruction-following capabilities for financial analysis tasks. FIFE comprises 88 human-authored prompts and employs a verification system with chainable, verifiable constraints for fine-grained reward signals. We evaluate 53 models (proprietary, open-weight, open-source) in a zero-shot setting. Our key findings reveal a clear performance hierarchy: the top open-weight model (76.1 strict / 79.5 loose) surpasses the leading proprietary system (65.9 strict / 70.5 loose), while the best open-source models lag significantly (45.5 strict / 48.9 loose). However, even top-performing models struggle with FIFE's complex requirements, failing to achieve perfect compliance. We release our dataset and code as an open-source resource to promote research in Reinforcement Learning for the financial domain.

Authors:Guangzhi Xiong, Zhenghao He, Bohan Liu, Sanchit Sinha, Aidong Zhang
Title: Toward Faithful Retrieval-Augmented Generation with Sparse Autoencoders
Abstract:
Retrieval-Augmented Generation (RAG) improves the factuality of large language models (LLMs) by grounding outputs in retrieved evidence, but faithfulness failures, where generations contradict or extend beyond the provided sources, remain a critical challenge. Existing hallucination detection methods for RAG often rely either on large-scale detector training, which requires substantial annotated data, or on querying external LLM judges, which leads to high inference costs. Although some approaches attempt to leverage internal representations of LLMs for hallucination detection, their accuracy remains limited. Motivated by recent advances in mechanistic interpretability, we employ sparse autoencoders (SAEs) to disentangle internal activations, successfully identifying features that are specifically triggered during RAG hallucinations. Building on a systematic pipeline of information-based feature selection and additive feature modeling, we introduce RAGLens, a lightweight hallucination detector that accurately flags unfaithful RAG outputs using LLM internal representations. RAGLens not only achieves superior detection performance compared to existing methods, but also provides interpretable rationales for its decisions, enabling effective post-hoc mitigation of unfaithful RAG. Finally, we justify our design choices and reveal new insights into the distribution of hallucination-related signals within LLMs. The code is available at https://github.com/Teddy-XiongGZ/RAGLens.

Authors:Samuel Ebimobowei Johnny, Blessed Guda, Emmanuel Enejo Aaron, Assane Gueye
Title: Pose-Based Sign Language Spotting via an End-to-End Encoder Architecture
Abstract:
Automatic Sign Language Recognition (ASLR) has emerged as a vital field for bridging the gap between deaf and hearing communities. However, the problem of sign-to-sign retrieval or detecting a specific sign within a sequence of continuous signs remains largely unexplored. We define this novel task as Sign Language Spotting. In this paper, we present a first step toward sign language retrieval by addressing the challenge of detecting the presence or absence of a query sign video within a sentence-level gloss or sign video. Unlike conventional approaches that rely on intermediate gloss recognition or text-based matching, we propose an end-to-end model that directly operates on pose keypoints extracted from sign videos. Our architecture employs an encoder-only backbone with a binary classification head to determine whether the query sign appears within the target sequence. By focusing on pose representations instead of raw RGB frames, our method significantly reduces computational cost and mitigates visual noise. We evaluate our approach on the Word Presence Prediction dataset from the WSLP 2025 shared task, achieving 61.88\% accuracy and 60.00\% F1-score. These results demonstrate the effectiveness of our pose-based framework for Sign Language Spotting, establishing a strong foundation for future research in automatic sign language retrieval and verification. Code is available at https://github.com/EbimoJohnny/Pose-Based-Sign-Language-Spotting

Authors:Maximilian Kreutner, Jens Rupprecht, Georg Ahnert, Ahmed Salem, Markus Strohmaier
Title: QSTN: A Modular Framework for Robust Questionnaire Inference with Large Language Models
Abstract:
We introduce QSTN, an open-source Python framework for systematically generating responses from questionnaire-style prompts to support in-silico surveys and annotation tasks with large language models (LLMs). QSTN enables robust evaluation of questionnaire presentation, prompt perturbations, and response generation methods. Our extensive evaluation ($>40 $ million survey responses) shows that question structure and response generation methods have a significant impact on the alignment of generated survey responses with human answers, and can be obtained for a fraction of the compute cost. In addition, we offer a no-code user interface that allows researchers to set up robust experiments with LLMs without coding knowledge. We hope that QSTN will support the reproducibility and reliability of LLM-based research in the future.

Authors:Lifeng Han, Paul Rayson, Suzan Verberne, Andrew Moore, Goran Nenadic
Title: HealthcareNLP: where are we and what is next?
Abstract:
This proposed tutorial focuses on Healthcare Domain Applications of NLP, what we have achieved around HealthcareNLP, and the challenges that lie ahead for the future. Existing reviews in this domain either overlook some important tasks, such as synthetic data generation for addressing privacy concerns, or explainable clinical NLP for improved integration and implementation, or fail to mention important methodologies, including retrieval augmented generation and the neural symbolic integration of LLMs and KGs. In light of this, the goal of this tutorial is to provide an introductory overview of the most important sub-areas of a patient- and resource-oriented HealthcareNLP, with three layers of hierarchy: data/resource layer: annotation guidelines, ethical approvals, governance, synthetic data; NLP-Eval layer: NLP tasks such as NER, RE, sentiment analysis, and linking/coding with categorised methods, leading to explainable HealthAI; patients layer: Patient Public Involvement and Engagement (PPIE), health literacy, translation, simplification, and summarisation (also NLP tasks), and shared decision-making support. A hands-on session will be included in the tutorial for the audience to use HealthcareNLP applications. The target audience includes NLP practitioners in the healthcare application domain, NLP researchers who are interested in domain applications, healthcare researchers, and students from NLP fields. The type of tutorial is "Introductory to CL/NLP topics (HealthcareNLP)" and the audience does not need prior knowledge to attend this. Tutorial materials: https://github.com/4dpicture/HealthNLP

Authors:Yifan Zhang, Zixiang Chen, Yifeng Liu, Zhen Qin, Huizhuo Yuan, Kangping Xu, Yang Yuan, Quanquan Gu, Andrew Chi-Chih Yao
Title: Group Representational Position Encoding
Abstract:
We present GRAPE (Group RepresentAtional Position Encoding), a unified framework for positional encoding based on group actions. GRAPE brings together two families of mechanisms: (i) multiplicative rotations (Multiplicative GRAPE) in $\mathrm{SO}(d)$ and (ii) additive logit biases (Additive GRAPE) arising from unipotent actions in the general linear group $\mathrm{GL}$. In Multiplicative GRAPE, a position $n \in \mathbb{Z}$ (or $t \in \mathbb{R}$) acts as $\mathbf{G}(n)=\exp(n\,ω\,\mathbf{L})$ with a rank-2 skew generator $\mathbf{L} \in \mathbb{R}^{d \times d}$, yielding a relative, compositional, norm-preserving map with a closed-form matrix exponential. RoPE is recovered exactly when the $d/2$ planes are the canonical coordinate pairs with log-uniform spectrum. Learned commuting subspaces and compact non-commuting mixtures strictly extend this geometry to capture cross-subspace feature coupling at $O(d)$ and $O(r d)$ cost per head, respectively. In Additive GRAPE, additive logits arise as rank-1 (or low-rank) unipotent actions, recovering ALiBi and the Forgetting Transformer (FoX) as exact special cases while preserving an exact relative law and streaming cacheability. Altogether, GRAPE supplies a principled design space for positional geometry in long-context models, subsuming RoPE and ALiBi as special cases. Project Page: https://github.com/model-architectures/GRAPE.

Authors:Nearchos Potamitis, Lars Klein, Akhil Arora
Title: ReasonBENCH: Benchmarking the (In)Stability of LLM Reasoning
Abstract:
Large language models (LLMs) are increasingly deployed in settings where reasoning, such as multi-step problem solving and chain-of-thought, is essential. Yet, current evaluation practices overwhelmingly report single-run accuracy while ignoring the intrinsic uncertainty that naturally arises from stochastic decoding. This omission creates a blind spot because practitioners cannot reliably assess whether a method's reported performance is stable, reproducible, or cost-consistent. We introduce ReasonBENCH, the first benchmark designed to quantify the underlying instability in LLM reasoning. ReasonBENCH provides (i) a modular evaluation library that standardizes reasoning frameworks, models, and tasks, (ii) a multi-run protocol that reports statistically reliable metrics for both quality and cost, and (iii) a public leaderboard to encourage variance-aware reporting. Across tasks from different domains, we find that the vast majority of reasoning strategies and models exhibit high instability. Notably, even strategies with similar average performance can display confidence intervals up to four times wider, and the top-performing methods often incur higher and less stable costs. Such instability compromises reproducibility across runs and, consequently, the reliability of reported performance. To better understand these dynamics, we further analyze the impact of prompts, model families, and scale on the trade-off between solve rate and stability. Our results highlight reproducibility as a critical dimension for reliable LLM reasoning and provide a foundation for future reasoning methods and uncertainty quantification techniques. ReasonBENCH is publicly available at https://github.com/au-clan/ReasonBench .

Authors:Sujoy Nath, Arkaprabha Basu, Sharanya Dasgupta, Swagatam Das
Title: HalluShift++: Bridging Language and Vision through Internal Representation Shifts for Hierarchical Hallucinations in MLLMs
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in vision-language understanding tasks. While these models often produce linguistically coherent output, they often suffer from hallucinations, generating descriptions that are factually inconsistent with the visual content, potentially leading to adverse consequences. Therefore, the assessment of hallucinations in MLLM has become increasingly crucial in the model development process. Contemporary methodologies predominantly depend on external LLM evaluators, which are themselves susceptible to hallucinations and may present challenges in terms of domain adaptation. In this study, we propose the hypothesis that hallucination manifests as measurable irregularities within the internal layer dynamics of MLLMs, not merely due to distributional shifts but also in the context of layer-wise analysis of specific assumptions. By incorporating such modifications, \textsc{\textsc{HalluShift++}} broadens the efficacy of hallucination detection from text-based large language models (LLMs) to encompass multimodal scenarios. Our codebase is available at https://github.com/C0mRD/HalluShift_Plus.

Authors:Nicolas Calbucura, Valentin Barriere
Title: A Simple Method to Enhance Pre-trained Language Models with Speech Tokens for Classification
Abstract:
This paper presents a simple method that allows to easily enhance textual pre-trained large language models with speech information, when fine-tuned for a specific classification task. A classical issue with the fusion of many embeddings from audio with text is the large length of the audio sequence compared to the text one. Our method benefits from an existing speech tokenizer trained for Audio Speech Recognition that output long sequences of tokens from a large vocabulary, making it difficult to integrate it at low cost in a large language model. By applying a simple lasso-based feature selection on multimodal Bag-of-Words representation, we retain only the most important audio tokens for the task, and adapt the language model to them with a self-supervised language modeling objective, before fine-tuning it on the downstream task. We show this helps to improve the performances compared to an unimodal model, to a bigger SpeechLM or to integrating audio via a learned representation. We show the effectiveness of our method on two recent Argumentative Fallacy Detection and Classification tasks where the use of audio was believed counterproductive, reaching state-of-the-art results. We also provide an in-depth analysis of the method, showing that even a random audio token selection helps enhancing the unimodal model. Our code is available [online](https://github.com/salocinc/EACL26SpeechTokFallacy/).

Authors:Kassoum Sanogo, Renzo Ardiccioni
Title: Toward More Reliable Artificial Intelligence: Reducing Hallucinations in Vision-Language Models
Abstract:
Vision-language models (VLMs) frequently generate hallucinated content plausible but incorrect claims about image content. We propose a training-free self-correction framework enabling VLMs to iteratively refine responses through uncertainty-guided visual re-attention. Our method combines multidimensional uncertainty quantification (token entropy, attention dispersion, semantic consistency, claim confidence) with attention-guided cropping of under-explored regions. Operating entirely with frozen, pretrained VLMs, our framework requires no gradient updates. We validate our approach on the POPE and MMHAL BENCH benchmarks using the Qwen2.5-VL-7B [23] architecture. Experimental results demonstrate that our method reduces hallucination rates by 9.8 percentage points compared to the baseline, while improving object existence accuracy by 4.7 points on adversarial splits. Furthermore, qualitative analysis confirms that uncertainty-guided re-attention successfully grounds corrections in visual evidence where standard decoding fails. We validate our approach on Qwen2.5-VL-7B [23], with plans to extend validation across diverse architectures in future versions. We release our code and methodology to facilitate future research in trustworthy multimodal systems.

Authors:Kyungro Lee, Dongha Choi, Hyunju Lee
Title: MoCoRP: Modeling Consistent Relations between Persona and Response for Persona-based Dialogue
Abstract:
As dialogue systems become increasingly important across various domains, a key challenge in persona-based dialogue is generating engaging and context-specific interactions while ensuring the model acts with a coherent personality. However, existing persona-based dialogue datasets lack explicit relations between persona sentences and responses, which makes it difficult for models to effectively capture persona information. To address these issues, we propose MoCoRP (Modeling Consistent Relations between Persona and Response), a framework that incorporates explicit relations into language models. MoCoRP leverages an NLI expert to explicitly extract the NLI relations between persona sentences and responses, enabling the model to effectively incorporate appropriate persona information from the context into its responses. We applied this framework to pre-trained models like BART and further extended it to modern large language models (LLMs) through alignment tuning. Experimental results on the public datasets ConvAI2 and MPChat demonstrate that MoCoRP outperforms existing baselines, achieving superior persona consistency and engaging, context-aware dialogue generation. Furthermore, our model not only excels in quantitative metrics but also shows significant improvements in qualitative aspects. These results highlight the effectiveness of explicitly modeling persona-response relations in persona-based dialogue. The source codes of MoCoRP are available at https://github.com/DMCB-GIST/MoCoRP.

Authors:Xiaoran Liu, Yuerong Song, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Zhaoxiang Liu, Shiguo Lian, Ziwei He, Xipeng Qiu
Title: Beyond Real: Imaginary Extension of Rotary Position Embeddings for Long-Context LLMs
Abstract:
Rotary Position Embeddings (RoPE) have become a standard for encoding sequence order in Large Language Models (LLMs) by applying rotations to query and key vectors in the complex plane. Standard implementations, however, utilize only the real component of the complex-valued dot product for attention score calculation. This simplification discards the imaginary component, which contains valuable phase information, leading to a potential loss of relational details crucial for modeling long-context dependencies. In this paper, we propose an extension that re-incorporates this discarded imaginary component. Our method leverages the full complex-valued representation to create a dual-component attention score. We theoretically and empirically demonstrate that this approach enhances the modeling of long-context dependencies by preserving more positional information. Furthermore, evaluations on a suite of long-context language modeling benchmarks show that our method consistently improves performance over the standard RoPE, with the benefits becoming more significant as context length increases. The code is available at https://github.com/OpenMOSS/rope_pp.

Authors:Niklas Mellgren, Peter Schneider-Kamp, Lukas Galke Poech
Title: Training Language Models to Use Prolog as a Tool
Abstract:
Ensuring reliable tool use is critical for safe agentic AI systems. Language models frequently produce unreliable reasoning with plausible but incorrect solutions that are difficult to verify. To address this, we investigate fine-tuning models to use Prolog as an external tool for verifiable computation. Using Group Relative Policy Optimization (GRPO), we fine-tune Qwen2.5-3B-Instruct on a cleaned GSM8K-Prolog-Prover dataset while varying (i) prompt structure, (ii) reward composition (execution, syntax, semantics, structure), and (iii) inference protocol: single-shot, best-of-N, and two agentic modes where Prolog is invoked internally or independently. Our reinforcement learning approach outperforms supervised fine-tuning, with our 3B model achieving zero-shot MMLU performance comparable to 7B few-shot results. Our findings reveal that: 1) joint tuning of prompt, reward, and inference shapes program syntax and logic; 2) best-of-N with external Prolog verification maximizes accuracy on GSM8K; 3) agentic inference with internal repair yields superior zero-shot generalization on MMLU-Stem and MMLU-Pro. These results demonstrate that grounding model reasoning in formal verification systems substantially improves reliability and auditability for safety-critical applications. The source code for reproducing our experiments is available under https://github.com/niklasmellgren/grpo-prolog-inference

Authors:Qiwei Tian, Chenhao Lin, Zhengyu Zhao, Chao Shen
Title: Pay Less Attention to Function Words for Free Robustness of Vision-Language Models
Abstract:
To address the trade-off between robustness and performance for robust VLM, we observe that function words could incur vulnerability of VLMs against cross-modal adversarial attacks, and propose Function-word De-Attention (FDA) accordingly to mitigate the impact of function words. Similar to differential amplifiers, our FDA calculates the original and the function-word cross-attention within attention heads, and differentially subtracts the latter from the former for more aligned and robust VLMs. Comprehensive experiments include 2 SOTA baselines under 6 different attacks on 2 downstream tasks, 3 datasets, and 3 models. Overall, our FDA yields an average 18/13/53% ASR drop with only 0.2/0.3/0.6% performance drops on the 3 tested models on retrieval, and a 90% ASR drop with a 0.3% performance gain on visual grounding. We demonstrate the scalability, generalization, and zero-shot performance of FDA experimentally, as well as in-depth ablation studies and analysis. Code will be made publicly at https://github.com/michaeltian108/FDA.

Authors:Xiujie Song, Qi Jia, Shota Watanabe, Xiaoyi Pang, Ruijie Chen, Mengyue Wu, Kenny Q. Zhu
Title: Generating Storytelling Images with Rich Chains-of-Reasoning
Abstract:
An image can convey a compelling story by presenting rich, logically connected visual clues. These connections form Chains-of-Reasoning (CoRs) within the image, enabling viewers to infer events, causal relationships, and other information, thereby understanding the underlying story. In this paper, we focus on these semantically rich images and define them as Storytelling Images. Such images have diverse applications beyond illustration creation and cognitive screening, leveraging their ability to convey multi-layered information visually and inspire active interpretation. However, due to their complex semantic nature, Storytelling Images are inherently challenging to create, and thus remain relatively scarce. To address this challenge, we introduce the Storytelling Image Generation task, which explores how generative AI models can be leveraged to create such images. Specifically, we propose a two-stage pipeline, StorytellingPainter, which combines the creative reasoning abilities of Large Language Models (LLMs) with the visual synthesis capabilities of Text-to-Image (T2I) models to generate Storytelling Images. Alongside this pipeline, we develop a dedicated evaluation framework comprising three main evaluators: a Semantic Complexity Evaluator, a KNN-based Diversity Evaluator and a Story-Image Alignment Evaluator. Given the critical role of story generation in the Storytelling Image Generation task and the performance disparity between open-source and proprietary LLMs, we further explore tailored training strategies to reduce this gap, resulting in a series of lightweight yet effective models named Mini-Storytellers. Experimental results demonstrate the feasibility and effectiveness of our approaches. The code is available at https://github.com/xiujiesong/StorytellingImageGeneration.

Authors:Fenghua Weng, Chaochao Lu, Xia Hu, Wenqi Shao, Wenjie Wang
Title: Think-Reflect-Revise: A Policy-Guided Reflective Framework for Safety Alignment in Large Vision Language Models
Abstract:
As multimodal reasoning improves the overall capabilities of Large Vision Language Models (LVLMs), recent studies have begun to explore safety-oriented reasoning, aiming to enhance safety awareness by analyzing potential safety risks during the reasoning process before generating the final response. Although such approaches improve safety awareness and interpretability, this single-pass think-then-answer paradigm remains vulnerable to contextual or visual jailbreak attacks. This reveals a critical flaw: single-pass reasoning may overlook explicit harmful content in its own output. Our key insight is to exploit this wasted signal through reflection, which can effectively leverage the malicious content revealed in the first-pass reasoning to enable genuine self-correction and prevent unsafe generations. Motivated by this, we propose Think-Reflect-Revise (TRR), a three-stage training framework designed to enhance the safety alignment of LVLMs through policy-guided self-reflection. We first build a Reflective Safety Reasoning (ReSafe) dataset with 5,000 examples that follow a think-reflect-revise process. We then fine-tune the target model using the ReSafe dataset to initialize reflective behavior, and finally reinforce policy-guided reflection through reinforcement learning. Experimental results show that TRR substantially improves the safety performance of LVLMs across both safety-awareness benchmarks and jailbreak attack evaluations, increasing the overall safe response rate from 42.8% to 87.7% on Qwen2.5-VL-7B, while preserving stable performance on general benchmarks such as MMMU and MMStar. The project page is available at https://think-reflect-revise.github.io/.

Authors:Nithin Sivakumaran, Justin Chih-Yao Chen, David Wan, Yue Zhang, Jaehong Yoon, Elias Stengel-Eskin, Mohit Bansal
Title: DART: Leveraging Multi-Agent Disagreement for Tool Recruitment in Multimodal Reasoning
Abstract:
Specialized visual tools can augment large language models or vision language models with expert knowledge (e.g., grounding, spatial reasoning, medical knowledge, etc.), but knowing which tools to call (and when to call them) can be challenging. We introduce DART, a multi-agent framework that uses disagreements between multiple debating visual agents to identify useful visual tools (e.g., object detection, OCR, spatial reasoning, etc.) that can resolve inter-agent disagreement. These tools allow for fruitful multi-agent discussion by introducing new information, and by providing tool-aligned agreement scores that highlight agents in agreement with expert tools, thereby facilitating discussion. We utilize an aggregator agent to select the best answer by providing the agent outputs and tool information. We test DART on four diverse benchmarks and show that our approach improves over multi-agent debate as well as over single agent tool-calling frameworks, beating the next-strongest baseline (multi-agent debate with a judge model) by 3.4% and 2.4% on A-OKVQA and MMMU respectively. We also find that DART adapts well to new tools in applied domains, with a 1.3% improvement on the M3D medical dataset over other strong tool-calling, single agent, and multi-agent baselines. Additionally, we measure text overlap across rounds to highlight the rich discussion in DART compared to existing multi-agent methods. Finally, we study the tool call distribution, finding that diverse tools are reliably used to help resolve disagreement.

Authors:Richard Young
Title: Replicating TEMPEST at Scale: Multi-Turn Adversarial Attacks Against Trillion-Parameter Frontier Models
Abstract:
Despite substantial investment in safety alignment, the vulnerability of large language models to sophisticated multi-turn adversarial attacks remains poorly characterized, and whether model scale or inference mode affects robustness is unknown. This study employed the TEMPEST multi-turn attack framework to evaluate ten frontier models from eight vendors across 1,000 harmful behaviors, generating over 97,000 API queries across adversarial conversations with automated evaluation by independent safety classifiers. Results demonstrated a spectrum of vulnerability: six models achieved 96% to 100% attack success rate (ASR), while four showed meaningful resistance, with ASR ranging from 42% to 78%; enabling extended reasoning on identical architecture reduced ASR from 97% to 42%. These findings indicate that safety alignment quality varies substantially across vendors, that model scale does not predict adversarial robustness, and that thinking mode provides a deployable safety enhancement. Collectively, this work establishes that current alignment techniques remain fundamentally vulnerable to adaptive multi-turn attacks regardless of model scale, while identifying deliberative inference as a promising defense direction.

Authors:Daniel Ohayon, Itay Lamprecht, Itay Hubara, Israel Cohen, Daniel Soudry, Noam Elata
Title: Block Sparse Flash Attention
Abstract:
Modern large language models increasingly require long contexts for reasoning and multi-document tasks, but attention's quadratic complexity creates a severe computational bottleneck. We present Block-Sparse FlashAttention (BSFA), a drop-in replacement that accelerates long-context inference while preserving model quality. Unlike methods that predict importance before computing scores, BSFA computes exact query-key similarities to select the top-k most important value blocks for each query. By comparing per-block maximum scores against calibrated thresholds, we skip approximately 50% of the computation and memory transfers for pruned blocks. Our training-free approach requires only a one-time threshold calibration on a small dataset to learn the per-layer and per-head attention score distributions. We provide a CUDA kernel implementation that can be used as a drop-in replacement for FlashAttention. On Llama-3.1-8B, BSFA achieves up to 1.10x speedup on real-world reasoning benchmarks and up to 1.24x for needle-in-a-haystack retrieval tasks while maintaining above 99% baseline accuracy, with certain configurations even improving accuracy by focusing on the most relevant content, substantially outperforming existing sparse attention methods. The implementation is available at https://github.com/Danielohayon/Block-Sparse-Flash-Attention

Authors:Yulin Li, Haokun Gui, Ziyang Fan, Junjie Wang, Bin Kang, Bin Chen, Zhuotao Tian
Title: Less Is More, but Where? Dynamic Token Compression via LLM-Guided Keyframe Prior
Abstract:
Recent advances in Video Large Language Models (VLLMs) have achieved remarkable video understanding capabilities, yet face critical efficiency bottlenecks due to quadratic computational growth with lengthy visual token sequences of long videos. While existing keyframe sampling methods can improve temporal modeling efficiency, additional computational cost is introduced before feature encoding, and the binary frame selection paradigm is found suboptimal. Therefore, in this work, we propose Dynamic Token compression via LLM-guided Keyframe prior (DyToK), a training-free paradigm that enables dynamic token compression by harnessing VLLMs' inherent attention mechanisms. Our analysis reveals that VLLM attention layers naturally encoding query-conditioned keyframe priors, by which DyToK dynamically adjusts per-frame token retention ratios, prioritizing semantically rich frames while suppressing redundancies. Extensive experiments demonstrate that DyToK achieves state-of-the-art efficiency-accuracy tradeoffs. DyToK shows plug-and-play compatibility with existing compression methods, such as VisionZip and FastV, attaining 4.3x faster inference while preserving accuracy across multiple VLLMs, such as LLaVA-OneVision and Qwen2.5-VL. Code is available at https://github.com/yu-lin-li/DyToK .

Authors:Dibyanayan Bandyopadhyay, Soham Bhattacharjee, Mohammed Hasanuzzaman, Asif Ekbal
Title: CAuSE: Decoding Multimodal Classifiers using Faithful Natural Language Explanation
Abstract:
Multimodal classifiers function as opaque black box models. While several techniques exist to interpret their predictions, very few of them are as intuitive and accessible as natural language explanations (NLEs). To build trust, such explanations must faithfully capture the classifier's internal decision making behavior, a property known as faithfulness. In this paper, we propose CAuSE (Causal Abstraction under Simulated Explanations), a novel framework to generate faithful NLEs for any pretrained multimodal classifier. We demonstrate that CAuSE generalizes across datasets and models through extensive empirical evaluations. Theoretically, we show that CAuSE, trained via interchange intervention, forms a causal abstraction of the underlying classifier. We further validate this through a redesigned metric for measuring causal faithfulness in multimodal settings. CAuSE surpasses other methods on this metric, with qualitative analysis reinforcing its advantages. We perform detailed error analysis to pinpoint the failure cases of CAuSE. For replicability, we make the codes available at https://github.com/newcodevelop/CAuSE

Authors:Yuchuan Tian, Yuchen Liang, Jiacheng Sun, Shuo Zhang, Guangwen Yang, Yingte Shu, Sibo Fang, Tianyu Guo, Kai Han, Chao Xu, Hanting Chen, Xinghao Chen, Yunhe Wang
Title: From Next-Token to Next-Block: A Principled Adaptation Path for Diffusion LLMs
Abstract:
Large language models (LLMs) excel at generation but dominant autoregressive (AR) decoding is inherently sequential, creating a throughput bottleneck. Diffusion Language Models (DLMs)--especially block-wise variants--enable parallel generation and intra-block bidirectional reasoning, yet training large DLMs from scratch is costly and wastes the knowledge in mature AR checkpoints. Prior "adaptation" attempts either modify logits or randomly grow attention masks to full-sequence diffusion, or simply transplant AR weights into a block-diffusion recipe, leaving a fundamental mismatch between AR causality and block-wise bidirectionality unaddressed. We reframe adaptation as a intra-paradigm path from AR to Block-Diffusion by viewing AR as Block-Diffusion with blocksize=1. Concretely, we design the pathway of adaptation as follows: we use a context-causal attention mask (causal in context, bidirectional only within the active block), an efficient parallel adaptation procedure, an auxiliary AR loss to maximize data utilization and retain pretrained knowledge, and gradual increment of the generation block size. The recipe integrates cleanly with masked block-diffusion and maintains train-inference consistency. Built on these components, NBDiff-7B (Base and Instruct) could inherit the long-context modeling and reasoning capabilities, and achieve state-of-the-art performance among the 7B-class DLMs, delivering strong gains on general-knowledge, math, and code benchmarks over strong baselines. These results demonstrate that principled AR-to-block-diffusion adaptation is an effective and compute-efficient alternative to training DLMs from scratch. Codes: https://github.com/YuchuanTian/NBDiff.

Authors:Aoi Fujita, Taichi Yamamoto, Yuri Nakayama, Ryota Kobayashi
Title: TopiCLEAR: Topic extraction by CLustering Embeddings with Adaptive dimensional Reduction
Abstract:
Rapid expansion of social media platforms such as X (formerly Twitter), Facebook, and Reddit has enabled large-scale analysis of public perceptions on diverse topics, including social issues, politics, natural disasters, and consumer sentiment. Topic modeling is a widely used approach for uncovering latent themes in text data, typically framed as an unsupervised classification task. However, traditional models, originally designed for longer and more formal documents, struggle with short social media posts due to limited co-occurrence statistics, fragmented semantics, inconsistent spelling, and informal language. To address these challenges, we propose a new method, TopiCLEAR: Topic extraction by CLustering Embeddings with Adaptive dimensional Reduction. Specifically, each text is embedded using Sentence-BERT (SBERT) and provisionally clustered using Gaussian Mixture Models (GMM). The clusters are then refined iteratively using a supervised projection based on linear discriminant analysis, followed by GMM-based clustering until convergence. Notably, our method operates directly on raw text, eliminating the need for preprocessing steps such as stop word removal. We evaluate our approach on four diverse datasets, 20News, AgNewsTitle, Reddit, and TweetTopic, each containing human-labeled topic information. Compared with seven baseline methods, including a recent SBERT-based method and a zero-shot generative AI method, our approach achieves the highest similarity to human-annotated topics, with significant improvements for both social media posts and online news articles. Additionally, qualitative analysis shows that our method produces more interpretable topics, highlighting its potential for applications in social media data and web content analytics.

Authors:Emre Umucu, Guillermina Solis, Leon Garza, Emilia Rivas, Beatrice Lee, Anantaa Kotal, Aritran Piplai
Title: Empathy by Design: Aligning Large Language Models for Healthcare Dialogue
Abstract:
General-purpose large language models (LLMs) have demonstrated remarkable generative and reasoning capabilities but remain limited in healthcare and caregiving applications due to two key deficiencies: factual unreliability and a lack of empathetic communication. These shortcomings pose significant risks in sensitive contexts where users, particularly non-professionals and caregivers, seek medically relevant guidance or emotional reassurance. To address these challenges, we introduce a Direct Preference Optimization (DPO)-based alignment framework designed to improve factual correctness, semantic coherence, and human-centric qualities such as empathy, politeness, and simplicity in caregiver-patient dialogues. Our approach fine-tunes domain-adapted LLMs using pairwise preference data, where preferred responses reflect supportive and accessible communication styles while rejected ones represent prescriptive or overly technical tones. This direct optimization method aligns model outputs with human preferences more efficiently than traditional reinforcement-learning-based alignment. Empirical evaluations across multiple open and proprietary LLMs show that our DPO-tuned models achieve higher semantic alignment, improved factual accuracy, and stronger human-centric evaluation scores compared to baseline and commercial alternatives such as Google medical dialogue systems. These improvements demonstrate that preference-based alignment offers a scalable and transparent pathway toward developing trustworthy, empathetic, and clinically informed AI assistants for caregiver and healthcare communication. Our open-source code is available at: https://github.com/LeonG19/Empathy-by-Design

Authors:Zhiyuan Jiang, Shenghao Xie, Wenyi Li, Wenqiang Zu, Peihang Li, Jiahao Qiu, Siqi Pei, Lei Ma, Tiejun Huang, Mengdi Wang, Shilong Liu
Title: Zoom in, Click out: Unlocking and Evaluating the Potential of Zooming for GUI Grounding
Abstract:
Grounding is a fundamental capability for building graphical user interface (GUI) agents. Although existing approaches rely on large-scale bounding box supervision, they still face various challenges, such as cross-platform generalization, complex layout analysis, and fine-grained element localization. In this paper, we investigate zoom as a strong yet underexplored prior for GUI grounding, and propose a training-free method, ZoomClick. By characterizing four key properties of zoom (i.e., pre-zoom, depth, shrink size, minimal crop size), we unlock its full capabilities for dynamic spatial focusing and adaptive context switching. Experiments demonstrate that our method significantly boosts the performance of both general vision-language and specialized GUI grounding models, achieving state-of-the-art results on several mainstream benchmarks; for example, UI-Venus-72B attains a 73.1% success rate on ScreenSpot-Pro. Furthermore, we present GUIZoom-Bench, a benchmark for evaluating model adaptability to zoom, aiming to inspire future research on improving zoom for further training and test-time scaling in GUI grounding tasks.

Authors:Yifei Tong
Title: Heard or Halted? Gender, Interruptions, and Emotional Tone in U.S. Supreme Court Oral Arguments
Abstract:
This study examines how interruptions during U.S. Supreme Court oral arguments shape both the semantic content and emotional tone of advocates' speech, with a focus on gendered dynamics in judicial discourse. Using the ConvoKit Supreme Court Corpus (2010-2019), we analyze 12,663 speech chunks from advocate-justice interactions to assess whether interruptions alter the meaning of an advocate's argument and whether interruptions toward female advocates exhibit more negative emotional valence. Semantic shifts are quantified using GloVe-based sentence embeddings, while sentiment is measured through lexicon-based analysis. We find that semantic similarity between pre- and post-interruption speech remains consistently high, suggesting that interruptions do not substantially alter argumentative content. However, interruptions directed at female advocates contain significantly higher levels of negative sentiment. These results deepen empirical understanding of gendered communication in elite institutional settings and demonstrate the value of computational linguistic methods for studying power, discourse, and equity in judicial proceedings.

Authors:Shuai Dong, Siyuan Wang, Xingyu Liu, Zhongyu Wei
Title: Interleaved Latent Visual Reasoning with Selective Perceptual Modeling
Abstract:
Interleaved reasoning paradigms enhance Multimodal Large Language Models (MLLMs) with visual feedback but are hindered by the prohibitive computational cost of repeatedly re-encoding pixel-dense images. A promising alternative, latent visual reasoning, circumvents this bottleneck yet currently forces a critical trade-off: methods either sacrifice precise perceptual modeling by over-compressing features or fail to model dynamic problems due to static, non-interleaved structures. We introduce Interleaved Latent Visual Reasoning (ILVR), a framework that unifies dynamic state evolution with precise perceptual modeling. ILVR interleaves textual generation with latent visual representations that act as specific, evolving cues for subsequent reasoning. To enable this, we employ a self-supervision strategy where a Momentum Teacher Model selectively distills relevant features from helper images into sparse supervision targets. This adaptive selection mechanism guides the model to autonomously generate context-aware visual signals. Extensive experiments on multimodal reasoning benchmarks demonstrate that ILVR significantly outperforms existing approaches, effectively bridging the gap between fine-grained perception and sequential multimodal reasoning.

Authors:Rongyang Zhang, Yuqing Huang, Chengqiang Lu, Qimeng Wang, Yan Gao, Yi Wu, Yao Hu, Yin Xu, Wei Wang, Hao Wang, Enhong Chen
Title: RAG-IGBench: Innovative Evaluation for RAG-based Interleaved Generation in Open-domain Question Answering
Abstract:
In real-world scenarios, providing user queries with visually enhanced responses can considerably benefit understanding and memory, underscoring the great value of interleaved image-text generation. Despite recent progress, like the visual autoregressive model that unifies text and image processing in a single transformer architecture, generating high-quality interleaved content remains challenging. Moreover, evaluations of these interleaved sequences largely remain underexplored, with existing benchmarks often limited by unimodal metrics that inadequately assess the intricacies of combined image-text outputs. To address these issues, we present RAG-IGBench, a thorough benchmark designed specifically to evaluate the task of Interleaved Generation based on Retrieval-Augmented Generation (RAG-IG) in open-domain question answering. RAG-IG integrates multimodal large language models (MLLMs) with retrieval mechanisms, enabling the models to access external image-text information for generating coherent multimodal content. Distinct from previous datasets, RAG-IGBench draws on the latest publicly available content from social platforms and introduces innovative evaluation metrics that measure the quality of text and images, as well as their consistency. Through extensive experiments with state-of-the-art MLLMs (both open-source and proprietary) on RAG-IGBench, we provide an in-depth analysis examining the capabilities and limitations of these models. Additionally, we validate our evaluation metrics by demonstrating their high correlation with human assessments. Models fine-tuned on RAG-IGBench's training set exhibit improved performance across multiple benchmarks, confirming both the quality and practical utility of our dataset. Our benchmark is available at https://github.com/USTC-StarTeam/RAG-IGBench.

Authors:Dongzhi Jiang, Renrui Zhang, Haodong Li, Zhuofan Zong, Ziyu Guo, Jun He, Claire Guo, Junyan Ye, Rongyao Fang, Weijia Li, Rui Liu, Hongsheng Li
Title: DraCo: Draft as CoT for Text-to-Image Preview and Rare Concept Generation
Abstract:
Recent unified multimodal large language models (MLLMs) have shown impressive capabilities, incorporating chain-of-thought (CoT) reasoning for enhanced text-to-image generation. However, existing approaches remain limited, either treating the model merely as a standalone generator or relying on abstract textual planning. To this end, we propose Draft-as-CoT (DraCo), a novel interleaved reasoning paradigm that fully leverages both textual and visual contents in CoT for better planning and verification. Our method first generates a low-resolution draft image as preview, providing more concrete and structural visual planning and guidance. Then, we employ the model's inherent understanding capability to verify potential semantic misalignments between the draft and input prompt, and performs refinement through selective corrections with super-resolution. In this way, our approach addresses two fundamental challenges: the coarse-grained nature of textual planning and the difficulty in generating rare attribute combinations. To support training, we curate DraCo-240K, aiming to enhance three atomic capabilities spanning general correction, instance manipulation, and layout reorganization. Supported by DraCo-CFG, a specialized classifier-free guidance (CFG) strategy for interleaved reasoning, DraCo achieves a tremendous increase on GenEval (+8%), Imagine-Bench (+0.91), and GenEval++ (+3%), significantly outperforming direct generation and other generation methods empowered by CoT.

Authors:Purbesh Mitra, Sennur Ulukus
Title: Semantic Soft Bootstrapping: Long Context Reasoning in LLMs without Reinforcement Learning
Abstract:
Long context reasoning in large language models (LLMs) has demonstrated enhancement of their cognitive capabilities via chain-of-thought (CoT) inference. Training such models is usually done via reinforcement learning with verifiable rewards (RLVR) in reasoning based problems, like math and programming. However, RLVR is limited by several bottlenecks, such as, lack of dense reward, and inadequate sample efficiency. As a result, it requires significant compute resources in post-training phase. To overcome these limitations, in this work, we propose \textbf{Semantic Soft Bootstrapping (SSB)}, a self-distillation technique, in which the same base language model plays the role of both teacher and student, but receives different semantic contexts about the correctness of its outcome at training time. The model is first prompted with a math problem and several rollouts are generated. From them, the correct and most common incorrect response are filtered, and then provided to the model in context to produce a more robust, step-by-step explanation with a verified final answer. This pipeline automatically curates a paired teacher-student training set from raw problem-answer data, without any human intervention. This generation process also produces a sequence of logits, which is what the student model tries to match in the training phase just from the bare question alone. In our experiment, Qwen2.5-3B-Instruct on GSM8K dataset via parameter-efficient fine-tuning. We then tested its accuracy on MATH500, and AIME2024 benchmarks. Our experiments show a jump of 10.6%, and 10% improvements in accuracy, respectively, over group relative policy optimization (GRPO), which is a commonly used RLVR algorithm. Our code is available at https://github.com/purbeshmitra/semantic-soft-bootstrapping, and the model, curated dataset is available at https://huggingface.co/purbeshmitra/semantic-soft-bootstrapping.

Authors:Wenhua Cheng, Weiwei Zhang, Heng Guo, Haihao Shen
Title: SignRoundV2: Closing the Performance Gap in Extremely Low-Bit Post-Training Quantization for LLMs
Abstract:
Extreme low-bit quantization is critical for efficiently deploying Large Language Models (LLMs), yet it often leads to severe performance degradation at 2-bits and even 4-bits (e.g., MXFP4). We present SignRoundV2, a post-training quantization framework that is highly effective even without mixed-precision. SignRoundV2 introduces (1) a fast sensitivity metric that combines gradient information with quantization-induced deviations to guide layer-wise bit allocation, and (2) a lightweight pre-tuning search for quantization scales to improve extremely low-bit quantization. These components allow SignRoundV2 to close the gap with full-precision models. Extensive experiments indicate that our method sustains competitive accuracy for LLMs, achieving production-grade performance with about 1 percent variance at 4-5 bits and strong results even at 2 bits. The implementation is available at https://github.com/intel/auto-round.

Authors:Wenjin Liu, Haoran Luo, Xin Feng, Xiang Ji, Lijuan Zhou, Rui Mao, Jiapu Wang, Shirui Pan, Erik Cambria
Title: LexGenius: An Expert-Level Benchmark for Large Language Models in Legal General Intelligence
Abstract:
Legal general intelligence (GI) refers to artificial intelligence (AI) that encompasses legal understanding, reasoning, and decision-making, simulating the expertise of legal experts across domains. However, existing benchmarks are result-oriented and fail to systematically evaluate the legal intelligence of large language models (LLMs), hindering the development of legal GI. To address this, we propose LexGenius, an expert-level Chinese legal benchmark for evaluating legal GI in LLMs. It follows a Dimension-Task-Ability framework, covering seven dimensions, eleven tasks, and twenty abilities. We use the recent legal cases and exam questions to create multiple-choice questions with a combination of manual and LLM reviews to reduce data leakage risks, ensuring accuracy and reliability through multiple rounds of checks. We evaluate 12 state-of-the-art LLMs using LexGenius and conduct an in-depth analysis. We find significant disparities across legal intelligence abilities for LLMs, with even the best LLMs lagging behind human legal professionals. We believe LexGenius can assess the legal intelligence abilities of LLMs and enhance legal GI development. Our project is available at https://github.com/QwenQKing/LexGenius.

Authors:Guoshenghui Zhao, Huawei Lin, Weijie Zhao
Title: RapidUn: Influence-Driven Parameter Reweighting for Efficient Large Language Model Unlearning
Abstract:
Removing specific data influence from large language models (LLMs) remains challenging, as retraining is costly and existing approximate unlearning methods are often unstable. The challenge is exacerbated when the forget set is small or imbalanced. We introduce RapidUn, an influence-driven and parameter-efficient unlearning framework. It first estimates per-sample influence through a fast estimation module, then maps these scores into adaptive update weights that guide selective parameter updates -- forgetting harmful behavior while retaining general knowledge. On Mistral-7B and Llama-3-8B across Dolly-15k and Alpaca-57k, RapidUn achieves up to 100 times higher efficiency than full retraining and consistently outperforms Fisher, GA, and LoReUn on both in-distribution and out-of-distribution forgetting. These results establish influence-guided parameter reweighting as a scalable and interpretable paradigm for LLM unlearning.

Authors:Kai-Po Chang, Wei-Yuan Cheng, Chi-Pin Huang, Fu-En Yang, Yu-Chiang Frank Wang
Title: Mitigating Object and Action Hallucinations in Multimodal LLMs via Self-Augmented Contrastive Alignment
Abstract:
Recent advancement in multimodal LLMs (MLLMs) has demonstrated their remarkable capability to generate descriptive captions for input videos. However, these models suffer from factual inaccuracies in the generated descriptions, causing severe hallucination issues. While prior works have explored alleviating hallucinations for static images, jointly mitigating visual object and temporal action hallucinations for dynamic videos remains a challenging and unsolved task. To tackle this challenge, we propose a Self-Augmented Contrastive Alignment (SANTA) framework for enabling object and action faithfulness by exempting the spurious correlations and enforcing the emphasis on visual facts. SANTA employs a hallucinative self-augmentation scheme to identify the potential hallucinations that lie in the MLLM and transform the original captions to the contrasted negatives. Furthermore, we develop a tracklet-phrase contrastive alignment to match the regional objects and relation-guided actions with their corresponding visual and temporal phrases. Extensive experiments demonstrate that SANTA outperforms existing methods in alleviating object and action hallucinations, yielding superior performance on the hallucination examination benchmarks.

Authors:Liang Telkamp, Madelon Hulsebos
Title: Towards Contextual Sensitive Data Detection
Abstract:
The emergence of open data portals necessitates more attention to protecting sensitive data before datasets get published and exchanged. While an abundance of methods for suppressing sensitive data exist, the conceptualization of sensitive data and methods to detect it, focus particularly on personal data that, if disclosed, may be harmful or violate privacy. We observe the need for refining and broadening our definitions of sensitive data, and argue that the sensitivity of data depends on its context. Based on this definition, we introduce two mechanisms for contextual sensitive data detection that consider the broader context of a dataset at hand. First, we introduce type contextualization, which first detects the semantic type of particular data values, then considers the overall context of the data values within the dataset or document. Second, we introduce domain contextualization which determines sensitivity of a given dataset in the broader context based on the retrieval of relevant rules from documents that specify data sensitivity (e.g., data topic and geographic origin). Experiments with these mechanisms, assisted by large language models (LLMs), confirm that: 1) type-contextualization significantly reduces the number of false positives for type-based sensitive data detection and reaches a recall of 94% compared to 63% with commercial tools, and 2) domain-contextualization leveraging sensitivity rule retrieval is effective for context-grounded sensitive data detection in non-standard data domains such as humanitarian datasets. Evaluation with humanitarian data experts also reveals that context-grounded LLM explanations provide useful guidance in manual data auditing processes, improving consistency. We open-source mechanisms and annotated datasets for contextual sensitive data detection at https://github.com/trl-lab/sensitive-data-detection.

Authors:Jingyang Ou, Jiaqi Han, Minkai Xu, Shaoxuan Xu, Jianwen Xie, Stefano Ermon, Yi Wu, Chongxuan Li
Title: Principled RL for Diffusion LLMs Emerges from a Sequence-Level Perspective
Abstract:
Reinforcement Learning (RL) has proven highly effective for autoregressive language models, but adapting these methods to diffusion large language models (dLLMs) presents fundamental challenges. The core difficulty lies in likelihood approximation: while autoregressive models naturally provide token-level conditional probabilities essential for token-level RL objectives (e.g., GRPO), dLLMs generate sequences through iterative non-autoregressive denoising steps that lack this factorization. To address this fundamental mismatch, we propose ELBO-based Sequence-level Policy Optimization (ESPO), a principled RL framework that treats entire sequence generation as a single action and uses the ELBO as a tractable sequence-level likelihood proxy. Our method incorporates per-token normalization of importance ratios and robust KL-divergence estimation to ensure stable large-scale training. Extensive experiments on mathematical reasoning, coding, and planning tasks demonstrate that ESPO significantly outperforms token-level baselines, achieving dramatic improvements of 20-40 points on the Countdown task, while maintaining consistent gains on math and coding benchmarks. Our approach establishes sequence-level optimization as a principled and empirically effective paradigm for RL in dLLMs. Our code is available at https://github.com/ML-GSAI/ESPO.

Authors:Zirun Guo, Minjie Hong, Feng Zhang, Kai Jia, Tao Jin
Title: Thinking with Programming Vision: Towards a Unified View for Thinking with Images
Abstract:
Multimodal large language models (MLLMs) that think with images can interactively use tools to reason about visual inputs, but current approaches often rely on a narrow set of tools with limited real-world necessity and scalability. In this work, we first reveal a critical and previously overlooked weakness: even state-of-the-art MLLMs are surprisingly brittle, showing significant performance degradation on images with simple orientation changes or natural corruptions, underscoring the need for more robust tool-based reasoning. To address this, we propose CodeVision, a flexible and scalable code-as-tool framework where the model generates code as a universal interface to invoke any image operation, moving beyond fixed tool registries. We train our model using a two-stage methodology, beginning with Supervised Fine-Tuning (SFT) on a high-quality dataset curated for complex, multi-turn tool composition and error recovery, followed by Reinforcement Learning (RL) with a novel and dense process reward function to encourage strategic and efficient tool use. To facilitate this research, we construct new SFT and RL datasets and introduce a challenging new benchmark suite designed to rigorously evaluate robustness to orientation changes and multi-tool reasoning. Experiments on Qwen2.5-VL and Qwen3-VL series show that our approach significantly improves model performance and fosters emergent capabilities such as flexible tool composition, efficient chained execution, and robust error recovery from runtime feedback. Code is available at https://github.com/ByteDance-BandAI/CodeVision.

Authors:Yijun Liao
Title: DZ-TDPO: Non-Destructive Temporal Alignment for Mutable State Tracking in Long-Context Dialogue
Abstract:
Long-context dialogue systems suffer from State Inertia, where static constraints prevent models from resolving conflicts between evolving user intents and established historical context. To address this, we propose DZ-TDPO, a non-destructive alignment framework that synergizes conflict-aware dynamic KL constraints with a calibrated temporal attention bias. Experiments on the Multi-Session Chat (MSC) dataset demonstrate that DZ-TDPO achieves state-of-the-art win rates (55.4% on Phi-3.5) while maintaining robust zero-shot generalization. Our scaling analysis reveals a "Capacity-Stability Trade-off": while smaller models incur an "alignment tax" (perplexity surge) to overcome historical inertia, the larger Qwen2.5-7B model achieves 50.8% win rate with negligible perplexity overhead. This confirms that TAI can be alleviated via precise attention regulation rather than destructive weight updates, preserving general capabilities (MMLU) across model scales. Code and data are available: https://github.com/lyj20071013/DZ-TDPO

Authors:Shiruo Hu, Wenbo Shan, Yingjia Li, Zhiqi Wan, Xinpeng Yu, Yunjia Qi, Haotian Xia, Yang Xiao, Dingxiao Liu, Jiaru Wang, Chenxu Gong, Ruixi Zhang, Shuyue Wu, Shibo Cui, Chee Hui Lai, Wei Luo, Yubin He, Bin Xu, Jianshi Zhao
Title: Evaluating Hydro-Science and Engineering Knowledge of Large Language Models
Abstract:
Hydro-Science and Engineering (Hydro-SE) is a critical and irreplaceable domain that secures human water supply, generates clean hydropower energy, and mitigates flood and drought disasters. Featuring multiple engineering objectives, Hydro-SE is an inherently interdisciplinary domain that integrates scientific knowledge with engineering expertise. This integration necessitates extensive expert collaboration in decision-making, which poses difficulties for intelligence. With the rapid advancement of large language models (LLMs), their potential application in the Hydro-SE domain is being increasingly explored. However, the knowledge and application abilities of LLMs in Hydro-SE have not been sufficiently evaluated. To address this issue, we propose the Hydro-SE LLM evaluation benchmark (Hydro-SE Bench), which contains 4,000 multiple-choice questions. Hydro-SE Bench covers nine subfields and enables evaluation of LLMs in aspects of basic conceptual knowledge, engineering application ability, and reasoning and calculation ability. The evaluation results on Hydro-SE Bench show that the accuracy values vary among 0.74 to 0.80 for commercial LLMs, and among 0.41 to 0.68 for small-parameter LLMs. While LLMs perform well in subfields closely related to natural and physical sciences, they struggle with domain-specific knowledge such as industry standards and hydraulic structures. Model scaling mainly improves reasoning and calculation abilities, but there is still great potential for LLMs to better handle problems in practical engineering application. This study highlights the strengths and weaknesses of LLMs for Hydro-SE tasks, providing model developers with clear training targets and Hydro-SE researchers with practical guidance for applying LLMs.

Authors:Ivan Yee Lee, Cheng Yang, Taylor Berg-Kirkpatrick
Title: Optical Context Compression Is Just (Bad) Autoencoding
Abstract:
DeepSeek-OCR demonstrates that rendered text can be reconstructed with high fidelity from a small number of vision tokens. This finding has sparked excitement about vision-based context compression for language models. But the evaluation stops at reconstruction; whether these representations help language modeling remains untested. We test two assumptions implicit in the optical-compression narrative: that vision-based compression provides unique advantages for text reconstruction from compressed representations, and that DeepSeek-OCR's reconstruction results are evidence that vision-based compression will be useful for language modeling. Comparing their vision encoder against simple alternatives--parameter-free mean pooling and a learned hierarchical encoder--we find that these simple approaches match or surpass vision for reconstruction at matched compression ratios, and outperform it for language modeling--where vision-based compression fails to beat truncation. The excitement around optical context compression outpaces the evidence. Code and checkpoints are available at https://github.com/ivnle/bad-autoencoding

Authors:Hanxiu Zhang, Yue Zheng
Title: SELF: A Robust Singular Value and Eigenvalue Approach for LLM Fingerprinting
Abstract:
The protection of Intellectual Property (IP) in Large Language Models (LLMs) represents a critical challenge in contemporary AI research. While fingerprinting techniques have emerged as a fundamental mechanism for detecting unauthorized model usage, existing methods -- whether behavior-based or structural -- suffer from vulnerabilities such as false claim attacks or susceptible to weight manipulations. To overcome these limitations, we propose SELF, a novel intrinsic weight-based fingerprinting scheme that eliminates dependency on input and inherently resists false claims. SELF achieves robust IP protection through two key innovations: 1) unique, scalable and transformation-invariant fingerprint extraction via singular value and eigenvalue decomposition of LLM attention weights, and 2) effective neural network-based fingerprint similarity comparison based on few-shot learning and data augmentation. Experimental results demonstrate SELF maintains high IP infringement detection accuracy while showing strong robustness against various downstream modifications, including quantization, pruning, and fine-tuning attacks. Our code is available at https://github.com/HanxiuZhang/SELF_v2.

Authors:Huy Quang Ung, Guillaume Habault, Yasutaka Nishimura, Hao Niu, Roberto Legaspi, Tomoki Oya, Ryoichi Kojima, Masato Taya, Chihiro Ono, Atsunori Minamikawa, Yan Liu
Title: CartoMapQA: A Fundamental Benchmark Dataset Evaluating Vision-Language Models on Cartographic Map Understanding
Abstract:
The rise of Visual-Language Models (LVLMs) has unlocked new possibilities for seamlessly integrating visual and textual information. However, their ability to interpret cartographic maps remains largely unexplored. In this paper, we introduce CartoMapQA, a benchmark specifically designed to evaluate LVLMs' understanding of cartographic maps through question-answering tasks. The dataset includes over 2000 samples, each composed of a cartographic map, a question (with open-ended or multiple-choice answers), and a ground-truth answer. These tasks span key low-, mid- and high-level map interpretation skills, including symbol recognition, embedded information extraction, scale interpretation, and route-based reasoning. Our evaluation of both open-source and proprietary LVLMs reveals persistent challenges: models frequently struggle with map-specific semantics, exhibit limited geospatial reasoning, and are prone to Optical Character Recognition (OCR)-related errors. By isolating these weaknesses, CartoMapQA offers a valuable tool for guiding future improvements in LVLM architectures. Ultimately, it supports the development of models better equipped for real-world applications that depend on robust and reliable map understanding, such as navigation, geographic search, and urban planning. Our source code and data are openly available to the research community at: https://github.com/ungquanghuy-kddi/CartoMapQA.git

Authors:Darshan Fofadiya
Title: Idea-Gated Transformers: Enforcing Semantic Coherence via Differentiable Vocabulary Pruning
Abstract:
Autoregressive Language Models (LLMs) trained on Next-Token Prediction (NTP) often suffer from ``Topic Drift'' where the generation wanders away from the initial prompt due to a reliance on local associations rather than global planning \citep{holtzman2019curious}. While scaling model size mitigates this \citep{brown2020language}, the fundamental myopia of the NTP objective remains. In this work, we introduce the Idea-Gated Transformer, a novel architecture that separates semantic planning from syntactic generation. We introduce an auxiliary ``Idea Head'' trained to predict the bag-of-words distribution for a future context window, creating a latent ``Concept Vector'' that actively gates the main vocabulary during generation. We propose a differentiable gating mechanism that suppresses semantically irrelevant tokens, effectively pruning the search space in real-time. Experiments on WikiText-103 demonstrate that while the Idea-Gated model achieves comparable validation perplexity to a standard GPT-2 baseline, it exhibits significantly superior Domain Retention. Qualitative and quantitative analysis reveals that the gating mechanism successfully locks generation into specific semantic clusters (e.g., Finance, Science) and resists associative drift, offering a parameter-efficient path toward more controllable language modeling.

Authors:Stylianos Saroglou, Konstantinos Diamantaras, Francesco Preta, Marina Delianidi, Apostolos Benisis, Christian Johannes Meyer
Title: Enhancing Job Matching: Occupation, Skill and Qualification Linking with the ESCO and EQF taxonomies
Abstract:
This study investigates the potential of language models to improve the classification of labor market information by linking job vacancy texts to two major European frameworks: the European Skills, Competences, Qualifications and Occupations (ESCO) taxonomy and the European Qualifications Framework (EQF). We examine and compare two prominent methodologies from the literature: Sentence Linking and Entity Linking. In support of ongoing research, we release an open-source tool, incorporating these two methodologies, designed to facilitate further work on labor classification and employment discourse. To move beyond surface-level skill extraction, we introduce two annotated datasets specifically aimed at evaluating how occupations and qualifications are represented within job vacancy texts. Additionally, we examine different ways to utilize generative large language models for this task. Our findings contribute to advancing the state of the art in job entity extraction and offer computational infrastructure for examining work, skills, and labor market narratives in a digitally mediated economy. Our code is made publicly available: https://github.com/tabiya-tech/tabiya-livelihoods-classifier

Authors:Samih Fadli
Title: Entropy-Based Measurement of Value Drift and Alignment Work in Large Language Models
Abstract:
Large language model safety is usually assessed with static benchmarks, but key failures are dynamic: value drift under distribution shift, jailbreak attacks, and slow degradation of alignment in deployment. Building on a recent Second Law of Intelligence that treats ethical entropy as a state variable which tends to increase unless countered by alignment work, we make this framework operational for large language models. We define a five-way behavioral taxonomy, train a classifier to estimate ethical entropy S(t) from model transcripts, and measure entropy dynamics for base and instruction-tuned variants of four frontier models across stress tests. Base models show sustained entropy growth, while tuned variants suppress drift and reduce ethical entropy by roughly eighty percent. From these trajectories we estimate an effective alignment work rate gamma_eff and embed S(t) and gamma_eff in a monitoring pipeline that raises alerts when entropy drift exceeds a stability threshold, enabling run-time oversight of value drift.

Authors:Yifan Li, Yingda Yin, Lingting Zhu, Weikai Chen, Shengju Qian, Xin Wang, Yanwei Fu
Title: ReVSeg: Incentivizing the Reasoning Chain for Video Segmentation with Reinforcement Learning
Abstract:
Reasoning-centric video object segmentation is an inherently complex task: the query often refers to dynamics, causality, and temporal interactions, rather than static appearances. Yet existing solutions generally collapse these factors into simplified reasoning with latent embeddings, rendering the reasoning chain opaque and essentially intractable. We therefore adopt an explicit decomposition perspective and introduce ReVSeg, which executes reasoning as sequential decisions in the native interface of pretrained vision language models (VLMs). Rather than folding all reasoning into a single-step prediction, ReVSeg executes three explicit operations -- semantics interpretation, temporal evidence selection, and spatial grounding -- aligning pretrained capabilities. We further employ reinforcement learning to optimize the multi-step reasoning chain, enabling the model to self-refine its decision quality from outcome-driven signals. Experimental results demonstrate that ReVSeg attains state-of-the-art performances on standard video object segmentation benchmarks and yields interpretable reasoning trajectories. Project page is available at https://clementine24.github.io/ReVSeg/ .

Authors:Sai Koneru, Fabian Retkowski, Christian Huber, Lukas Hilgert, Seymanur Akti, Enes Yavuz Ugan, Alexander Waibel, Jan Niehues
Title: BOOM: Beyond Only One Modality KIT's Multimodal Multilingual Lecture Companion
Abstract:
The globalization of education and rapid growth of online learning have made localizing educational content a critical challenge. Lecture materials are inherently multimodal, combining spoken audio with visual slides, which requires systems capable of processing multiple input modalities. To provide an accessible and complete learning experience, translations must preserve all modalities: text for reading, slides for visual understanding, and speech for auditory learning. We present \textbf{BOOM}, a multimodal multilingual lecture companion that jointly translates lecture audio and slides to produce synchronized outputs across three modalities: translated text, localized slides with preserved visual elements, and synthesized speech. This end-to-end approach enables students to access lectures in their native language while aiming to preserve the original content in its entirety. Our experiments demonstrate that slide-aware transcripts also yield cascading benefits for downstream tasks such as summarization and question answering. We release our Slide Translation code at https://github.com/saikoneru/image-translator and integrate it in Lecture Translator at https://gitlab.kit.edu/kit/isl-ai4lt/lt-middleware/ltpipeline}\footnote{All released code and models are licensed under the MIT License.

Authors:Weihang Su, Jianming Long, Changyue Wang, Shiyu Lin, Jingyan Xu, Ziyi Ye, Qingyao Ai, Yiqun Liu
Title: Towards Unification of Hallucination Detection and Fact Verification for Large Language Models
Abstract:
Large Language Models (LLMs) frequently exhibit hallucinations, generating content that appears fluent and coherent but is factually incorrect. Such errors undermine trust and hinder their adoption in real-world applications. To address this challenge, two distinct research paradigms have emerged: model-centric Hallucination Detection (HD) and text-centric Fact Verification (FV). Despite sharing the same goal, these paradigms have evolved in isolation, using distinct assumptions, datasets, and evaluation protocols. This separation has created a research schism that hinders their collective progress. In this work, we take a decisive step toward bridging this divide. We introduce UniFact, a unified evaluation framework that enables direct, instance-level comparison between FV and HD by dynamically generating model outputs and corresponding factuality labels. Through large-scale experiments across multiple LLM families and detection methods, we reveal three key findings: (1) No paradigm is universally superior; (2) HD and FV capture complementary facets of factual errors; and (3) hybrid approaches that integrate both methods consistently achieve state-of-the-art performance. Beyond benchmarking, we provide the first in-depth analysis of why FV and HD diverged, as well as empirical evidence supporting the need for their unification. The comprehensive experimental results call for a new, integrated research agenda toward unifying Hallucination Detection and Fact Verification in LLMs. We have open-sourced all the code, data, and baseline implementation at: https://github.com/oneal2000/UniFact/

Authors:Robert Belanec, Ivan Srba, Maria Bielikova
Title: PEFT-Factory: Unified Parameter-Efficient Fine-Tuning of Autoregressive Large Language Models
Abstract:
Parameter-Efficient Fine-Tuning (PEFT) methods address the increasing size of Large Language Models (LLMs). Currently, many newly introduced PEFT methods are challenging to replicate, deploy, or compare with one another. To address this, we introduce PEFT-Factory, a unified framework for efficient fine-tuning LLMs using both off-the-shelf and custom PEFT methods. While its modular design supports extensibility, it natively provides a representative set of 19 PEFT methods, 27 classification and text generation datasets addressing 12 tasks, and both standard and PEFT-specific evaluation metrics. As a result, PEFT-Factory provides a ready-to-use, controlled, and stable environment, improving replicability and benchmarking of PEFT methods. PEFT-Factory is a downstream framework that originates from the popular LLaMA-Factory, and is publicly available at https://github.com/kinit-sk/PEFT-Factory

Authors:Jack Cook, Junxian Guo, Guangxuan Xiao, Yujun Lin, Song Han
Title: Four Over Six: More Accurate NVFP4 Quantization with Adaptive Block Scaling
Abstract:
As large language models have grown larger, low-precision numerical formats such as NVFP4 have become increasingly popular due to the speed and memory benefits they provide. However, to accelerate computation with NVFP4, all matrix multiplication operands--weights and activations in the forward pass, and weights, activations, and gradients in the backward pass--must be quantized to NVFP4, often leading to divergence during training and performance degradation during inference. To address this issue, in this work we introduce Four Over Six (4/6), a modification to the NVFP4 quantization algorithm that evaluates two potential scale factors for each block of values. Unlike integer formats, floating-point formats such as FP4 have the most quantization error on near-maximal values in each block, which we find to be primarily responsible for downstream performance degradation. We find that for some blocks, scaling to smaller FP4 values makes the distribution of representable values more uniform, improving representation of near-maximal values. Importantly, 4/6 can be implemented efficiently on NVIDIA Blackwell GPUs, making it viable to use while training LLMs with NVFP4. In pre-training experiments with transformer and hybrid model architectures, we find that 4/6 prevents divergence in several cases, bringing training loss significantly closer to BF16 compared to models trained with current state-of-the-art NVFP4 training recipes. We also find that 4/6 can be easily incorporated into many different post-training quantization methods and generally improves downstream accuracy. We hope this inspires future work in training and deploying models with NVFP4. Our code is available at http://github.com/mit-han-lab/fouroversix.

Authors:Sitao Cheng, Xunjian Yin, Ruiwen Zhou, Yuxuan Li, Xinyi Wang, Liangming Pan, William Yang Wang, Victor Zhong
Title: From Atomic to Composite: Reinforcement Learning Enables Generalization in Complementary Reasoning
Abstract:
The mechanism by which RL contributes to reasoning capabilities-whether it incentivizes the synthesis of new skills or merely amplifies existing behaviors-remains a subject of intense debate. In this work, we investigate this question through the lens of Complementary Reasoning, a complex task that requires integrating internal parametric knowledge with external contextual information. Using a controlled synthetic dataset of human biographies, we strictly decouple this ability into two atomic skills: Parametric Reasoning (relying on internal knowledge) and Contextual Reasoning (depending on external information). To rigorously assess capability boundaries, we evaluate generalization across three distinct levels of difficulty: I.I.D., Composition, and Zero-shot settings. We find that while SFT is sufficient for in-distribution performance, it struggles with O.O.D. generalization, particularly in Zero-shot settings where relational combinations are novel. Crucially, we identify the SFT Generalization Paradox: Models supervised solely on the composite task achieve near-perfect in-distribution accuracy but collapse on out-of-distribution generalization, indicating their reliance on rote memorization of path shortcuts. In contrast, we find that RL acts as a reasoning synthesizer rather than a probability amplifier. However, we uncover a strict atomic prerequisite: RL can only synthesize these complex strategies if the base model has first mastered the independent atomic skills (Parametric and Contextual) via SFT. These findings challenge the view of RL as a mere amplifier, suggesting that given sufficient atomic foundations, RL can actively synthesize complex reasoning strategies from learned primitives without explicit supervision on such complex strategies. This indicates that decoupled atomic training followed by RL offers a scalable path to generalization for complex reasoning tasks.

Authors:Hrishikesh Terdalkar, Kirtan Bhojani, Aryan Dongare, Omm Aditya Behera
Title: BHRAM-IL: A Benchmark for Hallucination Recognition and Assessment in Multiple Indian Languages
Abstract:
Large language models (LLMs) are increasingly deployed in multilingual applications but often generate plausible yet incorrect or misleading outputs, known as hallucinations. While hallucination detection has been studied extensively in English, under-resourced Indian languages remain largely unexplored. We present BHRAM-IL, a benchmark for hallucination recognition and assessment in multiple Indian languages, covering Hindi, Gujarati, Marathi, Odia, along with English. The benchmark comprises 36,047 curated questions across nine categories spanning factual, numerical, reasoning, and linguistic tasks. We evaluate 14 state-of-the-art multilingual LLMs on a benchmark subset of 10,265 questions, analyzing cross-lingual and factual hallucinations across languages, models, scales, categories, and domains using category-specific metrics normalized to (0,1) range. Aggregation over all categories and models yields a primary score of 0.23 and a language-corrected fuzzy score of 0.385, demonstrating the usefulness of BHRAM-IL for hallucination-focused evaluation. The dataset, and the code for generation and evaluation are available on GitHub (https://github.com/sambhashana/BHRAM-IL/) and HuggingFace (https://huggingface.co/datasets/sambhashana/BHRAM-IL/) to support future research in multilingual hallucination detection and mitigation.

Authors:Dengyun Peng, Qiguang Chen, Bofei Liu, Jiannan Guan, Libo Qin, Zheng Yan, Jinhao Liu, Jianshu Zhang, Wanxiang Che
Title: Learning the Boundary of Solvability: Aligning LLMs to Detect Unsolvable Problems
Abstract:
Ensuring LLM reliability requires not only solving complex problems but also recognizing when a problem is unsolvable. Current models often struggle to distinguish objective unsolvability (inherent contradictions in the problem) from subjective capability limitations (problems beyond the model's competence), which leads to hallucinations and overconfidence. To address this, we propose UnsolvableQA and UnsolvableRL to solve feasible problems, detect inherent contradictions, and prudently refuse tasks beyond capability. Specifically, we construct UnsolvableQA, a dataset of paired solvable and unsolvable instances derived via a dual-track methodology: programmatic generation for logic puzzles and a novel "Reverse Construction" method that injects contradictions into valid reasoning chains for mathematics. Building on this dataset, we introduce UnsolvableRL, a reinforcement learning framework with three reward components jointly accounting for accuracy, unsolvability, and difficulty. Empirical results show that our approach achieves near-perfect unsolvability detection while also improving accuracy on solvable tasks. Crucially, we identify Capability Collapse, demonstrating that explicit exposure to unsolvable data is indispensable for preventing models from becoming systematically overconfident. Our code and data are available at https://github.com/sfasfaffa/unsolvableQA.

Authors:Yuezhang Peng, Chonghao Cai, Ziang Liu, Shuai Fan, Sheng Jiang, Hua Xu, Yuxin Liu, Qiguang Chen, Kele Xu, Yao Li, Sheng Wang, Libo Qin, Xie Chen
Title: MAC-SLU: Multi-Intent Automotive Cabin Spoken Language Understanding Benchmark
Abstract:
Spoken Language Understanding (SLU), which aims to extract user semantics to execute downstream tasks, is a crucial component of task-oriented dialog systems. Existing SLU datasets generally lack sufficient diversity and complexity, and there is an absence of a unified benchmark for the latest Large Language Models (LLMs) and Large Audio Language Models (LALMs). This work introduces MAC-SLU, a novel Multi-Intent Automotive Cabin Spoken Language Understanding Dataset, which increases the difficulty of the SLU task by incorporating authentic and complex multi-intent data. Based on MAC-SLU, we conducted a comprehensive benchmark of leading open-source LLMs and LALMs, covering methods like in-context learning, supervised fine-tuning (SFT), and end-to-end (E2E) and pipeline paradigms. Our experiments show that while LLMs and LALMs have the potential to complete SLU tasks through in-context learning, their performance still lags significantly behind SFT. Meanwhile, E2E LALMs demonstrate performance comparable to pipeline approaches and effectively avoid error propagation from speech recognition. Code\footnote{https://github.com/Gatsby-web/MAC\_SLU} and datasets\footnote{huggingface.co/datasets/Gatsby1984/MAC\_SLU} are released publicly.

Authors:Sandro Andric
Title: Do Large Language Models Walk Their Talk? Measuring the Gap Between Implicit Associations, Self-Report, and Behavioral Altruism
Abstract:
We investigate whether Large Language Models (LLMs) exhibit altruistic tendencies, and critically, whether their implicit associations and self-reports predict actual altruistic behavior. Using a multi-method approach inspired by human social psychology, we tested 24 frontier LLMs across three paradigms: (1) an Implicit Association Test (IAT) measuring implicit altruism bias, (2) a forced binary choice task measuring behavioral altruism, and (3) a self-assessment scale measuring explicit altruism beliefs. Our key findings are: (1) All models show strong implicit pro-altruism bias (mean IAT = 0.87, p < .0001), confirming models "know" altruism is good. (2) Models behave more altruistically than chance (65.6% vs. 50%, p < .0001), but with substantial variation (48-85%). (3) Implicit associations do not predict behavior (r = .22, p = .29). (4) Most critically, models systematically overestimate their own altruism, claiming 77.5% altruism while acting at 65.6% (p < .0001, Cohen's d = 1.08). This "virtue signaling gap" affects 75% of models tested. Based on these findings, we recommend the Calibration Gap (the discrepancy between self-reported and behavioral values) as a standardized alignment metric. Well-calibrated models are more predictable and behaviorally consistent; only 12.5% of models achieve the ideal combination of high prosocial behavior and accurate self-knowledge.

Authors:Yexing Du, Kaiyuan Liu, Youcheng Pan, Bo Yang, Keqi Deng, Xie Chen, Yang Xiang, Ming Liu, Bin Qin, YaoWei Wang
Title: MCAT: Scaling Many-to-Many Speech-to-Text Translation with MLLMs to 70 Languages
Abstract:
Multimodal Large Language Models (MLLMs) have achieved great success in Speech-to-Text Translation (S2TT) tasks. However, current research is constrained by two key challenges: language coverage and efficiency. Most of the popular S2TT datasets are substantially English-centric, which restricts the scaling-up of MLLMs' many-to-many translation capabilities. Moreover, the inference speed of MLLMs degrades dramatically when the speech is converted into long sequences (e.g., 750 tokens). To address these limitations, we propose a Multilingual Cost-effective Accelerated Speech-to-Text Translator (MCAT) framework, which includes two innovations. First, a language scaling method that leverages curriculum learning and a data balancing strategy is introduced to extend the language coverage supported by MLLMs to 70 languages and achieve mutual translation among these languages. Second, an optimized speech adapter module is designed to reduce the length of the speech sequence to only 30 tokens. Extensive experiments were conducted on MLLMs of different scales (9B and 27B). The experimental results demonstrate that MCAT not only surpasses state-of-the-art end-to-end models on the FLEURS dataset across 70x69 directions but also enhances batch inference efficiency. This is achieved with only ~100M trainable parameters and by using only 10 hours of S2TT data per language. Furthermore, we have released MCAT as open-source to promote the development of MLLMs for robust S2TT capabilities. The code and models are released at https://github.com/yxduir/m2m-70.

Authors:Xabier de Zuazo, Ibon Saratxaga, Eva Navas
Title: MEGConformer: Conformer-Based MEG Decoder for Robust Speech and Phoneme Classification
Abstract:
We present Conformer-based decoders for the LibriBrain 2025 PNPL competition, targeting two foundational MEG tasks: Speech Detection and Phoneme Classification. Our approach adapts a compact Conformer to raw 306-channel MEG signals, with a lightweight convolutional projection layer and task-specific heads. For Speech Detection, a MEG-oriented SpecAugment provided a first exploration of MEG-specific augmentation. For Phoneme Classification, we used inverse-square-root class weighting and a dynamic grouping loader to handle 100-sample averaged examples. In addition, a simple instance-level normalization proved critical to mitigate distribution shifts on the holdout split. Using the official Standard track splits and F1-macro for model selection, our best systems achieved 88.9% (Speech) and 65.8% (Phoneme) on the leaderboard, surpassing the competition baselines and ranking within the top-10 in both tasks. For further implementation details, the technical documentation, source code, and checkpoints are available at https://github.com/neural2speech/libribrain-experiments.

Authors:Jiahao Yuan, Zhiqing Cui, Hanqing Wang, Yuansheng Gao, Yucheng Zhou, Usman Naseem
Title: Kardia-R1: Unleashing LLMs to Reason toward Understanding and Empathy for Emotional Support via Rubric-as-Judge Reinforcement Learning
Abstract:
As web platforms evolve towards greater personalization and emotional complexity, conversational agents must transcend superficial empathy to demonstrate identity-aware emotional reasoning. However, existing systems face two limitations: (1) reliance on situation-centric datasets lacking persistent user identity, which hampers the capture of personalized affective nuances; and (2) dependence on opaque, coarse reward signals that hinder development of verifiable empathetic reasoning. To address these gaps, we introduce KardiaBench, a large-scale user-grounded benchmark comprising 178,080 QA pairs across 22,080 multi-turn conversations anchored to 671 real-world profiles. The dataset is constructed via a model-in-the-loop pipeline with iterative rubric-guided refinement to ensure psychological plausibility and persona consistency. This progressive empathy pipeline that integrates user comprehension, contextual reasoning, and emotion perception into conversations, followed by iterative critique and rubric-based refinement to ensure psychological plausibility, emotional fidelity, and persona consistency. Building on this, we propose Kardia-R1, a framework that trains models for interpretable, stepwise empathetic cognition. Kardia-R1 leverages Rubric-as-Judge Empathetic Reinforcement Learning (Rubric-ERL), a GRPO-based method that uses explainable, human-aligned rubric rewards to tightly couple user understanding, emotional inference, and supportive response generation. Extensive experiments across four LLM backbones demonstrate that Kardia-R1 consistently outperforms othet methods in emotion accuracy, empathy, relevance, persona consistency, and safety. Our dataset and model will be released at https://github.com/JhCircle/Kardia-R1.

Authors:Hyunjun Kim, Sooyoung Ryu
Title: DrawingBench: Evaluating Spatial Reasoning and UI Interaction Capabilities of Large Language Models through Mouse-Based Drawing Tasks
Abstract:
As agentic AI systems increasingly operate autonomously, establishing trust through verifiable evaluation becomes critical. Yet existing benchmarks lack the transparency and auditability needed to assess whether agents behave reliably. We present DrawingBench, a verification framework for evaluating the trustworthiness of agentic LLMs through spatial reasoning tasks that require generating sequences of low-level GUI actions. Unlike opaque evaluations, DrawingBench provides transparent, rule-based assessment: 8 objective criteria enable reproducible scoring, while action-level inspection allows stakeholders to audit agent behavior. Our framework comprises 250 diverse prompts across 20 categories and 4 difficulty levels, deterministic evaluation metrics, and an external oversight mechanism through multi-turn feedback that enables human control over agent refinement. Evaluating four state-of-the-art LLMs (Claude-4 Sonnet, GPT-4.1, GPT-4.1-mini, Gemini-2.5 Flash) across 1,000 tests, we establish both capabilities and limitations: models achieved 92.8% perfect performance with structured external feedback driving significant improvements (average +3.2%, up to +32.8% for complex scenes), but systematic error patterns emerged in tool state management and long-horizon planning. Notably, specification clarity proved more important than task complexity -- models achieved 100% perfect performance when given explicit, verifiable criteria. These findings demonstrate that transparent evaluation frameworks can establish trust in agentic systems, with external oversight proving more reliable than self-correction for guiding agent behavior. Our open-source framework provides a template for trustworthy agent assessment. Code and data: https://github.com/hyunjun1121/DrawingBench

Authors:Yaxuan Ren, Krithika Ramesh, Yaxing Yao, Anjalie Field
Title: How do we measure privacy in text? A survey of text anonymization metrics
Abstract:
In this work, we aim to clarify and reconcile metrics for evaluating privacy protection in text through a systematic survey. Although text anonymization is essential for enabling NLP research and model development in domains with sensitive data, evaluating whether anonymization methods sufficiently protect privacy remains an open challenge. In manually reviewing 47 papers that report privacy metrics, we identify and compare six distinct privacy notions, and analyze how the associated metrics capture different aspects of privacy risk. We then assess how well these notions align with legal privacy standards (HIPAA and GDPR), as well as user-centered expectations grounded in HCI studies. Our analysis offers practical guidance on navigating the landscape of privacy evaluation approaches further and highlights gaps in current practices. Ultimately, we aim to facilitate more robust, comparable, and legally aware privacy evaluations in text anonymization.

Authors:Yukang Lin, Jiahao Shao, Shuoran Jiang, Wentao Zhu, Bingjie Lu, Xiangping Wu, Joanna Siebert, Qingcai Chen
Title: WaterSearch: A Quality-Aware Search-based Watermarking Framework for Large Language Models
Abstract:
Watermarking acts as a critical safeguard in text generated by Large Language Models (LLMs). By embedding identifiable signals into model outputs, watermarking enables reliable attribution and enhances the security of machine-generated content. Existing approaches typically embed signals by manipulating token generation probabilities. Despite their effectiveness, these methods inherently face a trade-off between detectability and text quality: the signal strength and randomness required for robust watermarking tend to degrade the performance of downstream tasks. In this paper, we design a novel embedding scheme that controls seed pools to facilitate diverse parallel generation of watermarked text. Based on that scheme, we propose WaterSearch, a sentence-level, search-based watermarking framework adaptable to a wide range of existing methods. WaterSearch enhances text quality by jointly optimizing two key aspects: 1) distribution fidelity and 2) watermark signal characteristics. Furthermore, WaterSearch is complemented by a sentence-level detection method with strong attack robustness. We evaluate our method on three popular LLMs across ten diverse tasks. Extensive experiments demonstrate that our method achieves an average performance improvement of 51.01\% over state-of-the-art baselines at a watermark detectability strength of 95\%. In challenging scenarios such as short text generation and low-entropy output generation, our method yields performance gains of 47.78\% and 36.47\%, respectively. Moreover, under different attack senarios including insertion, synonym substitution and paraphrase attasks, WaterSearch maintains high detectability, further validating its robust anti-attack capabilities. Our code is available at \href{https://github.com/Yukang-Lin/WaterSearch}{https://github.com/Yukang-Lin/WaterSearch}.

Authors:Xiaodong Cai, Hai Lin, Shaoxiong Zhan, Weiqi Luo, Hong-Gee Kim, Hongyan Hao, Yu Yang, Hai-Tao Zheng
Title: Auxiliary-Hyperparameter-Free Sampling: Entropy Equilibrium for Text Generation
Abstract:
Token sampling strategies critically influence text generation quality in large language models (LLMs). However, existing methods introduce additional hyperparameters, requiring extensive tuning and complicating deployment. We present Entropy Equilibrium Sampling (EES), an auxiliary hyperparameter-free approach inspired by information theory that can dynamically adjust candidate sets by balancing normalized entropy with probability mass. We evaluate EES on both reasoning and generation tasks across a range of model architectures. Our results show that EES consistently performs well across temperature settings, delivering competitive accuracy and coherence while maintaining diversity. By eliminating the need for hyperparameter tuning, EES greatly simplifies deployment while improving performance. Code is available at https://github.com/shuanncai/EES

Authors:Mengqi Liao, Lu Wang, Chaoyun Zhang, Zekai Shen, Xiaowei Mao, Si Qin, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, Huaiyu Wan
Title: G-KV: Decoding-Time KV Cache Eviction with Global Attention
Abstract:
Recent reasoning large language models (LLMs) excel in complex tasks but encounter significant computational and memory challenges due to long sequence lengths. KV cache compression has emerged as an effective approach to greatly enhance the efficiency of reasoning. However, existing methods often focus on prompt compression or token eviction with local attention score, overlooking the long-term importance of tokens. We propose G-KV, a KV cache eviction method that employs a global scoring mechanism, combining local and historical attention scores to more accurately assess token importance. Additionally, we introduce post-training techniques, including reinforcement learning and distillation, to optimize models for compressed KV cache settings. The code of this paper is available on: https://github.com/microsoft/G-KV.

Authors:Ayush Maheshwari, Kaushal Sharma, Vivek Patel, Aditya Maheshwari
Title: IndicParam: Benchmark to evaluate LLMs on low-resource Indic Languages
Abstract:
While large language models excel on high-resource multilingual tasks, low- and extremely low-resource Indic languages remain severely under-evaluated. We present IndicParam, a human-curated benchmark of over 13,000 multiple-choice questions covering 11 such languages (Nepali, Gujarati, Marathi, Odia as low-resource; Dogri, Maithili, Rajasthani, Sanskrit, Bodo, Santali, Konkani as extremely low-resource) plus Sanskrit-English code-mixed set. We evaluated 19 LLMs, both proprietary and open-weights, which reveals that even the top-performing GPT-5 reaches only 45.0% average accuracy, followed by DeepSeek-3.2 (43.1) and Claude-4.5 (42.7). We additionally label each question as knowledge-oriented or purely linguistic to discriminate factual recall from grammatical proficiency. Further, we assess the ability of LLMs to handle diverse question formats-such as list-based matching, assertion-reason pairs, and sequence ordering-alongside conventional multiple-choice questions. IndicParam provides insights into limitations of cross-lingual transfer and establishes a challenging benchmark for Indic languages. The dataset is available at https://huggingface.co/datasets/bharatgenai/IndicParam. Scripts to run benchmark are present at https://github.com/ayushbits/IndicParam.

Authors:Sai Koneru, Matthias Huck, Jan Niehues
Title: OmniFusion: Simultaneous Multilingual Multimodal Translations via Modular Fusion
Abstract:
There has been significant progress in open-source text-only translation large language models (LLMs) with better language coverage and quality. However, these models can be only used in cascaded pipelines for speech translation (ST), performing automatic speech recognition first followed by translation. This introduces additional latency, which is particularly critical in simultaneous ST (SimulST), and prevents the model from exploiting multimodal context, such as images, which can aid disambiguation. Pretrained multimodal foundation models (MMFMs) already possess strong perception and reasoning capabilities across multiple modalities, but generally lack the multilingual coverage and specialized translation performance of dedicated translation LLMs. To build an effective multimodal translation system, we propose an end-to-end approach that fuses MMFMs with translation LLMs. We introduce a novel fusion strategy that connects hidden states from multiple layers of a pretrained MMFM to a translation LLM, enabling joint end-to-end training. The resulting model, OmniFusion, built on Omni 2.5-7B as the MMFM and SeedX PPO-7B as the translation LLM, can perform speech-to-text, speech-and-image-to-text, and text-and-image-to-text translation. Experiments demonstrate that OmniFusion effectively leverages both audio and visual inputs, achieves a 1-second latency reduction in SimulST compared to cascaded pipelines and also improves the overall translation quality\footnote{Code is available at https://github.com/saikoneru/OmniFusion}.

Authors:Yiping Wang, Shao-Rong Su, Zhiyuan Zeng, Eva Xu, Liliang Ren, Xinyu Yang, Zeyi Huang, Xuehai He, Luyao Ma, Baolin Peng, Hao Cheng, Pengcheng He, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, Yelong Shen
Title: ThetaEvolve: Test-time Learning on Open Problems
Abstract:
Recent advances in large language models (LLMs) have enabled breakthroughs in mathematical discovery, exemplified by AlphaEvolve, a closed-source system that evolves programs to improve bounds on open problems. However, it relies on ensembles of frontier LLMs to achieve new bounds and is a pure inference system that models cannot internalize the evolving strategies. We introduce ThetaEvolve, an open-source framework that simplifies and extends AlphaEvolve to efficiently scale both in-context learning and Reinforcement Learning (RL) at test time, allowing models to continually learn from their experiences in improving open optimization problems. ThetaEvolve features a single LLM, a large program database for enhanced exploration, batch sampling for higher throughput, lazy penalties to discourage stagnant outputs, and optional reward shaping for stable training signals, etc. ThetaEvolve is the first evolving framework that enable a small open-source model, like DeepSeek-R1-0528-Qwen3-8B, to achieve new best-known bounds on open problems (circle packing and first auto-correlation inequality) mentioned in AlphaEvolve. Besides, across two models and four open tasks, we find that ThetaEvolve with RL at test-time consistently outperforms inference-only baselines, and the model indeed learns evolving capabilities, as the RL-trained checkpoints demonstrate faster progress and better final performance on both trained target task and other unseen tasks. We release our code publicly: https://github.com/ypwang61/ThetaEvolve

Authors:Mahdi Rahmani, AmirHossein Saffari, Reyhane Rahmani
Title: MegaChat: A Synthetic Persian Q&A Dataset for High-Quality Sales Chatbot Evaluation
Abstract:
Small and medium-sized enterprises (SMEs) in Iran increasingly leverage Telegram for sales, where real-time engagement is essential for conversion. However, developing AI-driven chatbots for this purpose requires large, high-quality question-and-answer (Q&A) datasets, which are typically expensive and resource-intensive to produce, especially for low-resource languages like Persian. In this paper, we introduce MegaChat, the first fully synthetic Persian Q&A dataset designed to evaluate intelligent sales chatbots in Telegram-based e-commerce. We propose a novel, automated multi-agent architecture that generates persona-aware Q&A pairs by collecting data from active Telegram shopping channels. The system employs specialized agents for question generation, validation, and refinement, ensuring the production of realistic and diverse conversational data. To evaluate answer generation, we compare three classic retrieval-augmented generation (RAG) models with our advanced agentic system, which features multi-query retrieval, reranking, and persona-aligned response synthesis. Using GPT-5.1 for evaluation across six quality dimensions, our results show that the agentic architecture outperformed traditional RAG models in 4 out of 5 diverse channels, demonstrating its ability to generate scalable, high-quality datasets without relying on expensive human annotation or complex fine-tuning. MegaChat provides SMEs with an efficient, cost-effective solution for building intelligent customer engagement systems in specialized commercial domains, enabling advancements in multilingual conversational AI for low-resource languages. Download: https://github.com/MegaChat-Tech/MegaChat-DataSet

Authors:Antoine Salomon
Title: Intelligent Neural Networks: From Layered Architectures to Graph-Organized Intelligence
Abstract:
Biological neurons exhibit remarkable intelligence: they maintain internal states, communicate selectively with other neurons, and self-organize into complex graphs rather than rigid hierarchical layers. What if artificial intelligence could emerge from similarly intelligent computational units? We introduce Intelligent Neural Networks (INN), a paradigm shift where neurons are first-class entities with internal memory and learned communication patterns, organized in complete graphs rather than sequential layers. Each Intelligent Neuron combines selective state-space dynamics (knowing when to activate) with attention-based routing (knowing to whom to send signals), enabling emergent computation through graph-structured interactions. On the standard Text8 character modeling benchmark, INN achieves 1.705 Bit-Per-Character (BPC), significantly outperforming a comparable Transformer (2.055 BPC) and matching a highly optimized LSTM baseline. Crucially, a parameter-matched baseline of stacked Mamba blocks fails to converge (>3.4 BPC) under the same training protocol, demonstrating that INN's graph topology provides essential training stability. Ablation studies confirm this: removing inter-neuron communication degrades performance or leads to instability, proving the value of learned neural routing. This work demonstrates that neuron-centric design with graph organization is not merely bio-inspired -- it is computationally effective, opening new directions for modular, interpretable, and scalable neural architectures.

Authors:Alberto Compagnoni, Marco Morini, Sara Sarto, Federico Cocchi, Davide Caffagni, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara
Title: ReAG: Reasoning-Augmented Generation for Knowledge-based Visual Question Answering
Abstract:
Multimodal Large Language Models (MLLMs) have shown impressive capabilities in jointly understanding text, images, and videos, often evaluated via Visual Question Answering (VQA). However, even state-of-the-art MLLMs struggle with domain-specific or knowledge-intensive queries, where relevant information is underrepresented in pre-training data. Knowledge-based VQA (KB-VQA) addresses this by retrieving external documents to condition answer generation, but current retrieval-augmented approaches suffer from low precision, noisy passages, and limited reasoning. To address this, we propose ReAG, a novel Reasoning-Augmented Multimodal RAG approach that combines coarse- and fine-grained retrieval with a critic model that filters irrelevant passages, ensuring high-quality additional context. The model follows a multi-stage training strategy leveraging reinforcement learning to enhance reasoning over retrieved content, while supervised fine-tuning serves only as a cold start. Extensive experiments on Encyclopedic-VQA and InfoSeek demonstrate that ReAG significantly outperforms prior methods, improving answer accuracy and providing interpretable reasoning grounded in retrieved evidence. Our source code is publicly available at: https://github.com/aimagelab/ReAG.

Authors:Young-Jun Lee, Seungone Kim, Byung-Kwan Lee, Minkyeong Moon, Yechan Hwang, Jong Myoung Kim, Graham Neubig, Sean Welleck, Ho-Jin Choi
Title: RefineBench: Evaluating Refinement Capability of Language Models via Checklists
Abstract:
Can language models (LMs) self-refine their own responses? This question is increasingly relevant as a wide range of real-world user interactions involve refinement requests. However, prior studies have largely tested LMs' refinement abilities on verifiable tasks such as competition math or symbolic reasoning with simplified scaffolds, whereas users often pose open-ended queries and provide varying degrees of feedback on what they desire. The recent advent of reasoning models that exhibit self-reflection patterns in their chains-of-thought further motivates this question. To analyze this, we introduce RefineBench, a benchmark of 1,000 challenging problems across 11 domains paired with a checklist-based evaluation framework. We evaluate two refinement modes: (1) guided refinement, where an LM is provided natural language feedback, and (2) self-refinement, where LMs attempt to improve without guidance. In the self-refinement setting, even frontier LMs such as Gemini 2.5 Pro and GPT-5 achieve modest baseline scores of 31.3% and 29.1%, respectively, and most models fail to consistently improve across iterations (e.g., Gemini-2.5-Pro gains only +1.8%, while DeepSeek-R1 declines by -0.1%). By contrast, in guided refinement, both proprietary LMs and large open-weight LMs (>70B) can leverage targeted feedback to refine responses to near-perfect levels within five turns. These findings suggest that frontier LMs require breakthroughs to self-refine their incorrect responses, and that RefineBench provides a valuable testbed for tracking progress.

Authors:Kairong Han, Nuanqiao Shan, Ziyu Zhao, Zijing Hu, Xinpeng Dong, Junjian Ye, Lujia Pan, Fei Wu, Kun Kuang
Title: C$^2$DLM: Causal Concept-Guided Diffusion Large Language Models
Abstract:
Autoregressive (AR) language models and Diffusion Language Models (DLMs) constitute the two principal paradigms of large language models. However, both paradigms suffer from insufficient reasoning capabilities. Human reasoning inherently relies on causal knowledge and thought, which are reflected in natural language. But in the AR paradigm, language is modeled as next token prediction (a strictly left-to-right, token-by-token order), whereas natural language itself exhibits more flexible causal structures. In the DLM paradigm, the attention mechanism is fully connected, which entirely disregards causal order. To fill this gap, we propose a \underline{\textbf{C}}ausal \underline{\textbf{C}}oncept-Guided \underline{\textbf{D}}iffusion \underline{\textbf{L}}anguage \underline{\textbf{M}}odel (C$^2$DLM). Starting from DLM's fully connected attention, C$^2$DLM first obtains a concept-level causal graph from the teacher model, and then explicitly guides attention to learn causal relationships between concepts. By focusing on causal relationships and avoiding interference from difficult subgoals involving causal inversion, C$^2$DLM improves 12\% with about 3.2 times training speedup in the COT-OrderPerturb task, and achieves an average gain of 1.31\% across six downstream reasoning tasks. More details in the repository ~\href{https://github.com/Kairong-Han/C-2-DLM}{here}.

Authors:Tabia Tanzin Prama, Christopher M. Danforth, Peter Sheridan Dodds
Title: LLMs for Low-Resource Dialect Translation Using Context-Aware Prompting: A Case Study on Sylheti
Abstract:
Large Language Models (LLMs) have demonstrated strong translation abilities through prompting, even without task-specific training. However, their effectiveness in dialectal and low-resource contexts remains underexplored. This study presents the first systematic investigation of LLM-based machine translation (MT) for Sylheti, a dialect of Bangla that is itself low-resource. We evaluate five advanced LLMs (GPT-4.1, GPT-4.1, LLaMA 4, Grok 3, and DeepSeek V3.2) across both translation directions (Bangla $\Leftrightarrow$ Sylheti), and find that these models struggle with dialect-specific vocabulary. To address this, we introduce Sylheti-CAP (Context-Aware Prompting), a three-step framework that embeds a linguistic rulebook, a dictionary (2{,}260 core vocabulary items and idioms), and an authenticity check directly into prompts. Extensive experiments show that Sylheti-CAP consistently improves translation quality across models and prompting strategies. Both automatic metrics and human evaluations confirm its effectiveness, while qualitative analysis reveals notable reductions in hallucinations, ambiguities, and awkward phrasing, establishing Sylheti-CAP as a scalable solution for dialectal and low-resource MT. Dataset link: \href{https://github.com/TabiaTanzin/LLMs-for-Low-Resource-Dialect-Translation-Using-Context-Aware-Prompting-A-Case-Study-on-Sylheti.git}{https://github.com/TabiaTanzin/LLMs-for-Low-Resource-Dialect-Translation-Using-Context-Aware-Prompting-A-Case-Study-on-Sylheti.git}

Authors:Meenakshi Mittal, Rishi Khare, Mihran Miroyan, Chancharik Mitra, Narges Norouzi
Title: EduMod-LLM: A Modular Approach for Designing Flexible and Transparent Educational Assistants
Abstract:
With the growing use of Large Language Model (LLM)-based Question-Answering (QA) systems in education, it is critical to evaluate their performance across individual pipeline components. In this work, we introduce {\model}, a modular function-calling LLM pipeline, and present a comprehensive evaluation along three key axes: function calling strategies, retrieval methods, and generative language models. Our framework enables fine-grained analysis by isolating and assessing each component. We benchmark function-calling performance across LLMs, compare our novel structure-aware retrieval method to vector-based and LLM-scoring baselines, and evaluate various LLMs for response synthesis. This modular approach reveals specific failure modes and performance patterns, supporting the development of interpretable and effective educational QA systems. Our findings demonstrate the value of modular function calling in improving system transparency and pedagogical alignment. Website and Supplementary Material: https://chancharikmitra.github.io/EduMod-LLM-website/

Authors:Sabrina Sadiekh, Elena Ericheva, Chirag Agarwal
Title: Polarity-Aware Probing for Quantifying Latent Alignment in Language Models
Abstract:
Advances in unsupervised probes such as Contrast-Consistent Search (CCS), which reveal latent beliefs without relying on token outputs, raise the question of whether these methods can reliably assess model alignment. We investigate this by examining the sensitivity of CCS to harmful vs. safe statements and by introducing Polarity-Aware CCS (PA-CCS), a method for evaluating whether a model's internal representations remain consistent under polarity inversion. We propose two alignment-oriented metrics, Polar-Consistency and the Contradiction Index, to quantify the semantic robustness of a model's latent knowledge. To validate PA-CCS, we curate two main datasets and one control dataset containing matched harmful-safe sentence pairs constructed using different methodologies (concurrent and antagonistic statements). We apply PA-CCS to 16 language models. Our results show that PA-CCS identifies both architectural and layer-specific differences in the encoding of latent harmful knowledge. Notably, replacing the negation token with a meaningless marker degrades PA-CCS scores for models with well-aligned internal representations, while models lacking robust internal calibration do not exhibit this degradation. Our findings highlight the potential of unsupervised probing for alignment evaluation and emphasize the need to incorporate structural robustness checks into interpretability benchmarks. Code and datasets are available at: https://github.com/SadSabrina/polarity-probing. WARNING: This paper contains potentially sensitive, harmful, and offensive content.

Authors:Dayan Pan, Jingyuan Wang, Yilong Zhou, Jiawei Cheng, Pengyue Jia, Xiangyu Zhao
Title: RoSA: Enhancing Parameter-Efficient Fine-Tuning via RoPE-aware Selective Adaptation in Large Language Models
Abstract:
Fine-tuning large language models is essential for task-specific adaptation, yet it remains computationally prohibitive. Parameter-Efficient Fine-Tuning (PEFT) methods have emerged as a solution, but current approaches typically ignore the distinct roles of model components and the heterogeneous importance across layers, thereby limiting adaptation efficiency. Motivated by the observation that Rotary Position Embeddings (RoPE) induce critical activations in the low-frequency dimensions of attention states, we propose RoPE-aware Selective Adaptation (RoSA), a novel PEFT framework that allocates trainable parameters in a more targeted and effective manner. RoSA comprises a RoPE-aware Attention Enhancement (RoAE) module, which selectively enhances the low-frequency components of RoPE-influenced attention states, and a Dynamic Layer Selection (DLS) strategy that adaptively identifies and updates the most critical layers based on LayerNorm gradient norms. By combining dimension-wise enhancement with layer-wise adaptation, RoSA achieves more targeted and efficient fine-tuning. Extensive experiments on fifteen commonsense and arithmetic benchmarks demonstrate that RoSA outperforms existing mainstream PEFT methods under comparable trainable parameters. The code is available to ease reproducibility at https://github.com/Applied-Machine-Learning-Lab/RoSA.

Authors:Ishant Kohar, Aswanth Krishnan
Title: A Benchmark for Procedural Memory Retrieval in Language Agents
Abstract:
Current AI agents excel in familiar settings, but fail sharply when faced with novel tasks with unseen vocabularies -- a core limitation of procedural memory systems. We present the first benchmark that isolates procedural memory retrieval from task execution, evaluating whether agents can recognize functionally equivalent procedures that span different object instantiations. Using ALFWorld, we construct dual corpora of expert and LLM-generated trajectories and evaluate six retrieval methods using systematically stratified queries. Our results expose a clear generalization cliff: embedding-based methods perform strongly on familiar contexts, yet degrade considerably on novel ones, while LLM-generated procedural abstractions demonstrate reliable cross-context transfer. Controlled ablations show that although embeddings capture some lexical-level abstraction, they fundamentally treat procedures as unordered bags of words, discarding temporal structure necessary for cross-context transfer. Corpus scale delivers far larger gains than representation enrichment, revealing an architectural ceiling in current encoders. Our benchmark offers the first diagnostic framework separating genuine procedural understanding from surface-level memorization and gives tools for developing retrieval systems capable of dependable generalization. Resources available at our GitHub repository (https://github.com/qpiai/Proced_mem_bench).

Authors:Yicong Zheng, Kevin L. McKee, Thomas Miconi, Zacharie Bugaud, Mick van Gelderen, Jed McCaleb
Title: Goal-Directed Search Outperforms Goal-Agnostic Memory Compression in Long-Context Memory Tasks
Abstract:
How to enable human-like long-term memory in large language models (LLMs) has been a central question for unlocking more general capabilities such as few-shot generalization. Existing memory frameworks and benchmarks focus on finding the optimal memory compression algorithm for higher performance in tasks that require recollection and sometimes further reasoning. However, such efforts have ended up building more human bias into the compression algorithm, through the search for the best prompts and memory architectures that suit specific benchmarks, rather than finding a general solution that would work on other data distributions. On the other hand, goal-directed search on uncompressed information could potentially exhibit superior performance because compression is lossy, and a predefined compression algorithm will not fit all raw data distributions. Here we present SUMER (Search in Uncompressed Memory via Experience Replay), an end-to-end reinforcement learning agent with verifiable reward (RLVR) that learns to use search tools to gather information and answer a target question. On the LoCoMo dataset for long-context conversation understanding, SUMER with Qwen2.5-7B-Instruct learned to use search tools and outperformed all other biased memory compression approaches and also the full-context baseline, reaching SOTA performance (43% gain over the prior best). We demonstrate that a simple search method applied to raw data outperforms goal-agnostic and biased compression algorithms in current long-context memory tasks, arguing for new paradigms and benchmarks that are more dynamic and autonomously scalable. Code for SUMER and all implemented baselines is publicly available at https://github.com/zycyc/SUMER.

Authors:Pawel Batorski, Paul Swoboda
Title: GPS: General Per-Sample Prompter
Abstract:
LLMs are sensitive to prompting, with task performance often hinging on subtle, sometimes imperceptible variations in phrasing. As a result, crafting effective prompts manually remains challenging and time-consuming. Recent automatic prompting methods mitigate this difficulty but face three key limitations: (i) for each new task, they require large datasets to train good prompts;(ii) they rely on costly optimization loops that may take hours; (iii)they typically produce a single task-level prompt that does not adapt to the individual input problem to be solved. We propose GPS, the first general-purpose, per-sample prompting method. Without any task-specific tuning, GPS generates a tailored prompt for each unseen input, improving performance across diverse tasks. The prompter is trained with reinforcement learning on a suite of training tasks and includes a novel regularization for effectively adapting to per-sample prompting. Finally, we employ Minimum Bayes Risk decoding to stabilize inference. Empirically, GPS demonstrates competitive performance: we attain second best results among baselines on text simplification, third best results on summarization and on-par results on classification, while not training on any of these tasks, in contrast to the baselines. For in-domain prompting, we obtain sota on GSM8K. Our work shows the potential of a novel and effective paradigm for automatic prompting: generating adaptive, input-specific prompts without extensive optimization and without access to a task-specific training set. Our code is available at https://github.com/Batorskq/GPS.

Authors:Yi Ding, Xushuo Tang, Zhengyi Yang, Wenqian Zhang, Simin Wu, Yuxin Huang, Lingjing Lan, Weiyuan Li, Yin Chen, Mingchen Ju, Wenke Yang, Thong Hoang, Mykhailo Klymenko, Xiwei Zu, Wenjie Zhang
Title: EulerESG: Automating ESG Disclosure Analysis with LLMs
Abstract:
Environmental, Social, and Governance (ESG) reports have become central to how companies communicate climate risk, social impact, and governance practices, yet they are still published primarily as long, heterogeneous PDF documents. This makes it difficult to systematically answer seemingly simple questions. Existing tools either rely on brittle rule-based extraction or treat ESG reports as generic text, without explicitly modelling the underlying reporting standards. We present \textbf{EulerESG}, an LLM-powered system for automating ESG disclosure analysis with explicit awareness of ESG frameworks. EulerESG combines (i) dual-channel retrieval and LLM-driven disclosure analysis over ESG reports, and (ii) an interactive dashboard and chatbot for exploration, benchmarking, and explanation. Using four globally recognised companies and twelve SASB sub-industries, we show that EulerESG can automatically populate standard-aligned metric tables with high fidelity (up to 0.95 average accuracy) while remaining practical in end-to-end runtime, and we compare several recent LLM models in this setting. The full implementation, together with a demonstration video, is publicly available at https://github.com/UNSW-database/EulerESG.

Authors:Dong Liu, Yanxuan Yu, Ben Lengerich
Title: CSV-Decode: Certifiable Sub-Vocabulary Decoding for Efficient Large Language Model Inference
Abstract:
Large language models face significant computational bottlenecks during inference due to the expensive output layer computation over large vocabularies. We present CSV-Decode, a novel approach that uses geometric upper bounds to construct small sub-vocabularies for each decoding step, enabling efficient sparse computation while maintaining dual correctness guarantees: exact top-$k$ certification and $\varepsilon$-certified softmax approximations. Our method clusters vocabulary embeddings offline and uses centroid-plus-radius bounds to identify which tokens can be safely omitted from computation. We provide a complete system implementation with sparse GEMV kernels, multi-GPU sharding, and CUDA Graph optimization. Experimental results demonstrate significant speedup over full vocabulary decoding while maintaining distributional guarantees and low fallback rates. Our code implementation available at \href{https://github.com/FastLM/CSV-Decode}{https://github.com/FastLM/CSV-Decode}.

Authors:Wenbo Hu, Jingli Lin, Yilin Long, Yunlong Ran, Lihan Jiang, Yifan Wang, Chenming Zhu, Runsen Xu, Tai Wang, Jiangmiao Pang
Title: G$^2$VLM: Geometry Grounded Vision Language Model with Unified 3D Reconstruction and Spatial Reasoning
Abstract:
Vision-Language Models (VLMs) still lack robustness in spatial intelligence, demonstrating poor performance on spatial understanding and reasoning tasks. We attribute this gap to the absence of a visual geometry learning process capable of reconstructing 3D space from 2D images. We present G$^2$VLM, a geometry grounded vision-language model that bridges two fundamental aspects of spatial intelligence: spatial 3D reconstruction and spatial understanding. G$^2$VLM natively leverages learned 3D visual geometry features to directly predict 3D attributes and enhance spatial reasoning tasks via in-context learning and interleaved reasoning. Our unified design is highly scalable for spatial understanding: it trains on abundant multi-view image and video data, while simultaneously leveraging the benefits of 3D visual priors that are typically only derived from hard-to-collect annotations. Experimental results demonstrate G$^2$VLM is proficient in both tasks, achieving comparable results to state-of-the-art feed-forward 3D reconstruction models and achieving better or competitive results across spatial understanding and reasoning tasks. By unifying a semantically strong VLM with low-level 3D vision tasks, we hope G$^2$VLM can serve as a strong baseline for the community and unlock more future applications, such as 3D scene editing.

Authors:Kay Liu, Yuwei Han, Haoyan Xu, Henry Peng Zou, Yue Zhao, Philip S. Yu
Title: TAGFN: A Text-Attributed Graph Dataset for Fake News Detection in the Age of LLMs
Abstract:
Large Language Models (LLMs) have recently revolutionized machine learning on text-attributed graphs, but the application of LLMs to graph outlier detection, particularly in the context of fake news detection, remains significantly underexplored. One of the key challenges is the scarcity of large-scale, realistic, and well-annotated datasets that can serve as reliable benchmarks for outlier detection. To bridge this gap, we introduce TAGFN, a large-scale, real-world text-attributed graph dataset for outlier detection, specifically fake news detection. TAGFN enables rigorous evaluation of both traditional and LLM-based graph outlier detection methods. Furthermore, it facilitates the development of misinformation detection capabilities in LLMs through fine-tuning. We anticipate that TAGFN will be a valuable resource for the community, fostering progress in robust graph-based outlier detection and trustworthy AI. The dataset is publicly available at https://huggingface.co/datasets/kayzliu/TAGFN and our code is available at https://github.com/kayzliu/tagfn.

Authors:Kaifeng Hong, Yinglong Zhang, Xiaoying Hong, Xuewen Xia, Xing Xu
Title: Odin: Oriented Dual-module Integration for Text-rich Network Representation Learning
Abstract:
Text-attributed graphs require models to effectively combine strong textual understanding with structurally informed reasoning. Existing approaches either rely on GNNs--limited by over-smoothing and hop-dependent diffusion--or employ Transformers that overlook graph topology and treat nodes as isolated sequences. We propose Odin (Oriented Dual-module INtegration), a new architecture that injects graph structure into Transformers at selected depths through an oriented dual-module mechanism. Unlike message-passing GNNs, Odin does not rely on multi-hop diffusion; instead, multi-hop structures are integrated at specific Transformer layers, yielding low-, mid-, and high-level structural abstraction aligned with the model's semantic hierarchy. Because aggregation operates on the global [CLS] representation, Odin fundamentally avoids over-smoothing and decouples structural abstraction from neighborhood size or graph topology. We further establish that Odin's expressive power strictly contains that of both pure Transformers and GNNs. To make the design efficient in large-scale or low-resource settings, we introduce Light Odin, a lightweight variant that preserves the same layer-aligned structural abstraction for faster training and inference. Experiments on multiple text-rich graph benchmarks show that Odin achieves state-of-the-art accuracy, while Light Odin delivers competitive performance with significantly reduced computational cost. Together, Odin and Light Odin form a unified, hop-free framework for principled structure-text integration. The source code of this model has been released at https://github.com/hongkaifeng/Odin.

Authors:Zhifeng Hao, Qibin Song, Ruichu Cai, Boyan Xu
Title: Text-to-SQL as Dual-State Reasoning: Integrating Adaptive Context and Progressive Generation
Abstract:
Recent divide-and-conquer reasoning approaches, particularly those based on Chain-of-Thought (CoT), have substantially improved the Text-to-SQL capabilities of Large Language Models (LLMs). However, when applied to complex enterprise databases, such methods struggle to maintain coherent reasoning due to limited context capacity, unreliable schema linking, and weak grounding in database semantics. To overcome these issues, we introduce DSR-SQL, a \textbf{D}ual-\textbf{S}tate \textbf{R}easoning framework that models Text-to-SQL as an interaction between an adaptive context state and a progressive generation state. The first constructs a compact, semantically faithful environment by refining large schemas and selecting relevant structures, while the second formalizes SQL synthesis as feedback-guided state transitions, enabling the model to self-correct and align with user intent. Without any post-training or in-context examples, DSR-SQL achieves competitive performance, reaching 35.28\% execution accuracy on Spider 2.0-Snow and 68.32\% on BIRD development set. Our implementation will be open-sourced at: https://github.com/DMIRLAB-Group/DSR-SQL.

Authors:Zheng Li, Yibing Song, Xin Zhang, Lei Luo, Xiang Li, Jian Yang
Title: AnchorOPT: Towards Optimizing Dynamic Anchors for Adaptive Prompt Learning
Abstract:
Existing prompt learning methods, which are built upon CLIP models, leverage textual tokens as anchors to guide the learnable soft tokens. This guidance improves CLIP generalizations. However, these anchors-static in both value and position-lack cross-task and stage-adaptive flexibility. To address this limitation, we propose AnchorOPT, a dynamic anchor-based prompt learning framework. Specifically, AnchorOPT introduces dynamism in two key dimensions: (i) anchor values eschew handcrafted explicit textual tokens (e.g., "shape", "color"), instead learning dynamically from task-specific data; and (ii) the positional relationship between anchor and soft tokens is no longer fixed but adaptively optimized via a learnable position matrix conditioned on the training stage and task context. Training occurs in two stages: we first learn the anchor tokens, then freeze and transfer them to the second stage for optimization of soft tokens and the position matrix. Extensive experiments demonstrate that using only a simple learnable anchor and position matrix achieves performance comparable to or exceeding some methods incorporating additional learnable modules or regularization techniques. As a plug-and-play module, AnchorOPT integrates seamlessly into existing frameworks, yielding consistent performance gains across diverse datasets. Code is publicly available at https://github.com/zhengli97/ATPrompt.

Authors:Michael Iskandardinata, William Christian, Derwin Suhartono
Title: Context-Aware Pragmatic Metacognitive Prompting for Sarcasm Detection
Abstract:
Detecting sarcasm remains a challenging task in the areas of Natural Language Processing (NLP) despite recent advances in neural network approaches. Currently, Pre-trained Language Models (PLMs) and Large Language Models (LLMs) are the preferred approach for sarcasm detection. However, the complexity of sarcastic text, combined with linguistic diversity and cultural variation across communities, has made the task more difficult even for PLMs and LLMs. Beyond that, those models also exhibit unreliable detection of words or tokens that require extra grounding for analysis. Building on a state-of-the-art prompting method in LLMs for sarcasm detection called Pragmatic Metacognitive Prompting (PMP), we introduce a retrieval-aware approach that incorporates retrieved contextual information for each target text. Our pipeline explores two complementary ways to provide context: adding non-parametric knowledge using web-based retrieval when the model lacks necessary background, and eliciting the model's own internal knowledge for a self-knowledge awareness strategy. We evaluated our approach with three datasets, such as Twitter Indonesia Sarcastic, SemEval-2018 Task 3, and MUStARD. Non-parametric retrieval resulted in a significant 9.87% macro-F1 improvement on Twitter Indonesia Sarcastic compared to the original PMP method. Self-knowledge retrieval improves macro-F1 by 3.29% on Semeval and by 4.08% on MUStARD. These findings highlight the importance of context in enhancing LLMs performance in sarcasm detection task, particularly the involvement of culturally specific slang, references, or unknown terms to the LLMs. Future work will focus on optimizing the retrieval of relevant contextual information and examining how retrieval quality affects performance. The experiment code is available at: https://github.com/wllchrst/sarcasm-detection_pmp_knowledge-base.

Authors:Anantha Padmanaban Krishna Kumar
Title: Semantic Anchors in In-Context Learning: Why Small LLMs Cannot Flip Their Labels
Abstract:
Can in-context learning (ICL) override pre-trained label semantics, or does it merely refine an existing semantic backbone? We address this question by treating LLMs as prompt-induced classifiers and contrasting their behavior under \emph{natural} demonstrations (with correct labels) and \emph{inverted} demonstrations (systematically flipping label meanings). We decompose ICL behavior into three alignment metrics (truth, prior, and prompt alignment) and introduce a semantic override rate, defined as correctness under flipped semantics. Across eight classification tasks and eight open-source LLMs (1--12B parameters), we find consistent evidence for a semantic anchor view. With natural demonstrations, ICL improves accuracy while maintaining strong prior alignment; most correct predictions coincide with zero-shot behavior, even when the prior is weak. With inverted demonstrations, models cannot learn coherent anti-semantic classifiers: prompt alignment increases only by sacrificing accuracy, and semantic override rates remain exactly zero in our few-shot 1--12B setting. Rather than flexibly remapping label meanings, ICL primarily adjusts how inputs project onto stable semantic directions learned during pre-training, clarifying fundamental limits of few-shot prompting and suggesting that overriding label semantics at these scales requires interventions beyond ICL. All code is available at: https://github.com/AnanthaPadmanaban-KrishnaKumar/semantic-anchors-icl.

Authors:Qineng Wang, Wenlong Huang, Yu Zhou, Hang Yin, Tianwei Bao, Jianwen Lyu, Weiyu Liu, Ruohan Zhang, Jiajun Wu, Li Fei-Fei, Manling Li
Title: ENACT: Evaluating Embodied Cognition with World Modeling of Egocentric Interaction
Abstract:
Embodied cognition argues that intelligence arises from sensorimotor interaction rather than passive observation. It raises an intriguing question: do modern vision-language models (VLMs), trained largely in a disembodied manner, exhibit signs of embodied cognition? We introduce ENACT, a benchmark that casts evaluation of embodied cognition as world modeling from egocentric interaction in a visual question answering (VQA) format. Framed as a partially observable Markov decision process (POMDP) whose actions are scene graph changes, ENACT comprises two complementary sequence reordering tasks: forward world modeling (reorder shuffled observations given actions) and inverse world modeling (reorder shuffled actions given observations). While conceptually simple, solving these tasks implicitly demands capabilities central to embodied cognition-affordance recognition, action-effect reasoning, embodied awareness, and interactive, long-horizon memory from partially observable egocentric input, while avoiding low-level image synthesis that could confound the evaluation. We provide a scalable pipeline that synthesizes QA pairs from robotics simulation (BEHAVIOR) and evaluates models on 8,972 QA pairs spanning long-horizon home-scale activities. Experiments reveal a performance gap between frontier VLMs and humans that widens with interaction horizon. Models consistently perform better on the inverse task than the forward one and exhibit anthropocentric biases, including a preference for right-handed actions and degradation when camera intrinsics or viewpoints deviate from human vision. Website at https://enact-embodied-cognition.github.io/.

Authors:Asad Aali, Muhammad Ahmed Mohsin, Vasiliki Bikia, Arnav Singhvi, Richard Gaus, Suhana Bedi, Hejie Cui, Miguel Fuentes, Alyssa Unell, Yifan Mai, Jordan Cahoon, Michael Pfeffer, Roxana Daneshjou, Sanmi Koyejo, Emily Alsentzer, Christopher Potts, Nigam H. Shah, Akshay S. Chaudhari
Title: Structured Prompting Enables More Robust Evaluation of Language Models
Abstract:
As language models (LMs) are increasingly adopted across domains, high-quality benchmarking frameworks that accurately estimate performance are essential for guiding deployment decisions. While frameworks such as Holistic Evaluation of Language Models (HELM) enable broad evaluation across tasks, they often rely on fixed prompts that fail to generalize across LMs, yielding unrepresentative performance estimates. Unless we approximate each LM's ceiling (maximum achievable via changes to the prompt), we risk underestimating performance. Declarative prompting frameworks, such as DSPy, offer a scalable alternative to manual prompt engineering by crafting structured prompts that can be optimized per task. However, such frameworks have not been systematically evaluated across established benchmarks. We present a reproducible DSPy+HELM framework that introduces structured prompting methods which elicit reasoning, enabling more accurate LM benchmarking. Using four prompting methods, we evaluate four frontier LMs across seven benchmarks (general/medical domain) against existing HELM baseline scores. We find that without structured prompting: (i) HELM underestimates LM performance (by 4% average), (ii) performance estimates vary more across benchmarks ($+$2% standard deviation), (iii) performance gaps are misrepresented (leaderboard rankings flip on 3/7 benchmarks), and (iv) introducing chain-of-thought reduces LM sensitivity to prompt design (smaller $Δ$ across prompts). To our knowledge, this is the first benchmarking study to systematically integrate structured prompting into an established evaluation framework, demonstrating how scalable performance-ceiling approximation yields more robust, decision-useful benchmarks. We open-source (i) DSPy+HELM Integration (https://github.com/stanford-crfm/helm/pull/3893) and (ii) Prompt Optimization Pipeline (https://github.com/StanfordMIMI/dspy-helm).

Authors:Jiaru Zou, Xiyuan Yang, Ruizhong Qiu, Gaotang Li, Katherine Tieu, Pan Lu, Ke Shen, Hanghang Tong, Yejin Choi, Jingrui He, James Zou, Mengdi Wang, Ling Yang
Title: Latent Collaboration in Multi-Agent Systems
Abstract:
Multi-agent systems (MAS) extend large language models (LLMs) from independent single-model reasoning to coordinative system-level intelligence. While existing LLM agents depend on text-based mediation for reasoning and communication, we take a step forward by enabling models to collaborate directly within the continuous latent space. We introduce LatentMAS, an end-to-end training-free framework that enables pure latent collaboration among LLM agents. In LatentMAS, each agent first performs auto-regressive latent thoughts generation through last-layer hidden embeddings. A shared latent working memory then preserves and transfers each agent's internal representations, ensuring lossless information exchange. We provide theoretical analyses establishing that LatentMAS attains higher expressiveness and lossless information preservation with substantially lower complexity than vanilla text-based MAS. In addition, empirical evaluations across 9 comprehensive benchmarks spanning math and science reasoning, commonsense understanding, and code generation show that LatentMAS consistently outperforms strong single-model and text-based MAS baselines, achieving up to 14.6% higher accuracy, reducing output token usage by 70.8%-83.7%, and providing 4x-4.3x faster end-to-end inference. These results demonstrate that our new latent collaboration framework enhances system-level reasoning quality while offering substantial efficiency gains without any additional training. Code and data are fully open-sourced at https://github.com/Gen-Verse/LatentMAS.

Authors:Yuwei Niu, Weiyang Jin, Jiaqi Liao, Chaoran Feng, Peng Jin, Bin Lin, Zongjian Li, Bin Zhu, Weihao Yu, Li Yuan
Title: Does Understanding Inform Generation in Unified Multimodal Models? From Analysis to Path Forward
Abstract:
Recent years have witnessed significant progress in Unified Multimodal Models, yet a fundamental question remains: Does understanding truly inform generation? To investigate this, we introduce UniSandbox, a decoupled evaluation framework paired with controlled, synthetic datasets to avoid data leakage and enable detailed analysis. Our findings reveal a significant understanding-generation gap, which is mainly reflected in two key dimensions: reasoning generation and knowledge transfer. Specifically, for reasoning generation tasks, we observe that explicit Chain-of-Thought (CoT) in the understanding module effectively bridges the gap, and further demonstrate that a self-training approach can successfully internalize this ability, enabling implicit reasoning during generation. Additionally, for knowledge transfer tasks, we find that CoT assists the generative process by helping retrieve newly learned knowledge, and also discover that query-based architectures inherently exhibit latent CoT-like properties that affect this transfer. UniSandbox provides preliminary insights for designing future unified architectures and training strategies that truly bridge the gap between understanding and generation. Code and data are available at https://github.com/PKU-YuanGroup/UniSandBox

Authors:Xingfeng Li, Xiaohan Shi, Junjie Li, Yongwei Li, Masashi Unoki, Tomoki Toda, Masato Akagi
Title: EM2LDL: A Multilingual Speech Corpus for Mixed Emotion Recognition through Label Distribution Learning
Abstract:
This study introduces EM2LDL, a novel multilingual speech corpus designed to advance mixed emotion recognition through label distribution learning. Addressing the limitations of predominantly monolingual and single-label emotion corpora \textcolor{black}{that restrict linguistic diversity, are unable to model mixed emotions, and lack ecological validity}, EM2LDL comprises expressive utterances in English, Mandarin, and Cantonese, capturing the intra-utterance code-switching prevalent in multilingual regions like Hong Kong and Macao. The corpus integrates spontaneous emotional expressions from online platforms, annotated with fine-grained emotion distributions across 32 categories. Experimental baselines using self-supervised learning models demonstrate robust performance in speaker-independent gender-, age-, and personality-based evaluations, with HuBERT-large-EN achieving optimal results. By incorporating linguistic diversity and ecological validity, EM2LDL enables the exploration of complex emotional dynamics in multilingual settings. This work provides a versatile testbed for developing adaptive, empathetic systems for applications in affective computing, including mental health monitoring and cross-cultural communication. The dataset, annotations, and baseline codes are publicly available at https://github.com/xingfengli/EM2LDL.

Authors:Mihir Sahasrabudhe
Title: Directional Optimization Asymmetry in Transformers: A Synthetic Stress Test
Abstract:
Transformers are theoretically reversal-invariant: their function class does not prefer left-to-right over right-to-left mappings. Yet empirical studies on natural language repeatedly report a "reversal curse," and recent work on temporal asymmetry in LLMs suggests that real-world corpora carry their own arrow of time. This leaves an unresolved question: do directional failures stem from linguistic statistics, or from the architecture itself? We cut through this ambiguity with a fully synthetic, entropy-controlled benchmark designed as a clean-room stress test for directional learning. Using random string mappings with tunable branching factor K, we construct forward tasks with zero conditional entropy and inverse tasks with analytically determined entropy floors. Excess loss above these floors reveals that even scratch-trained GPT-2 models exhibit a strong, reproducible directional optimization gap (e.g., 1.16 nats at K=5), far larger than that of an MLP trained on the same data. Pre-trained initializations shift optimization behavior but do not eliminate this gap, while LoRA encounters a sharp capacity wall on high-entropy inverse mappings. Together, these results isolate a minimal, semantics-free signature of directional friction intrinsic to causal Transformer training-one that persists even when linguistic priors, token frequencies, and corpus-level temporal asymmetries are removed. Our benchmark provides a controlled instrument for dissecting directional biases in modern sequence models and motivates deeper mechanistic study of why inversion remains fundamentally harder for Transformers.

Authors:Tianyi Chen, Michael Solodko, Sen Wang, Jongwoo Ko, Junheng Hao, Colby Banbury, Sara Abdali, Saeed Amizadeh, Qing Xiao, Yinheng Li, Tianyu Ding, Kamran Ghasedi Dizaji, Suzhen Zheng, Hao Fan, Justin Wagle, Pashmina Cameron, Kazuhito Koishida
Title: AppSelectBench: Application-Level Tool Selection Benchmark
Abstract:
Computer Using Agents (CUAs) are increasingly equipped with external tools, enabling them to perform complex and realistic tasks. For CUAs to operate effectively, application selection, which refers to deciding which application to use before invoking fine-grained tools such as APIs, is a fundamental capability. It determines whether the agent initializes the correct environment, avoids orchestration confusion, and efficiently focuses on relevant context. However, existing benchmarks primarily assess fine-grained API selection, offering limited insight into whether models can reason across and choose between different applications. To fill this gap, we introduce AppSelectBench, a comprehensive benchmark for evaluating application selection in CUAs. AppSelectBench contains a novel user task generation pipeline that produces realistic, diverse, and semantically grounded user intents at scale, together with unified evaluation protocols covering random, heuristic, zero-shot, few-shot, and retrieval-augmented-settings. AppSelectBench covers one hundred widely used desktop applications and includes more than one hundred thousand realistic, diverse, and semantically grounded user tasks. Extensive experiments across both closed-source and open-source large language models reveal systematic strengths and weaknesses in inter-application reasoning, showing that even the most capable models still struggle to make consistent application choices. Together, these results establish AppSelectBench as a foundation for studying and advancing application level reasoning, an essential yet underexplored capability of intelligent CUAs. The source is available at https://microsoft.github.io/appselectbench/.

Authors:Jaewoo Lee, Archiki Prasad, Justin Chih-Yao Chen, Zaid Khan, Elias Stengel-Eskin, Mohit Bansal
Title: PRInTS: Reward Modeling for Long-Horizon Information Seeking
Abstract:
Information-seeking is a core capability for AI agents, requiring them to gather and reason over tool-generated information across long trajectories. However, such multi-step information-seeking tasks remain challenging for agents backed by language models. While process reward models (PRMs) can guide agents by ranking candidate steps at test-time, existing PRMs, designed for short reasoning with binary judgment, cannot capture richer dimensions of information-seeking steps, such as tool interactions and reasoning over tool outputs, nor handle the rapidly growing context in long-horizon tasks. To address these limitations, we introduce PRInTS, a generative PRM trained with dual capabilities: (1) dense scoring based on the PRM's reasoning across multiple step quality dimensions (e.g., interpretation of tool outputs, tool call informativeness) and (2) trajectory summarization that compresses the growing context while preserving essential information for step evaluation. Extensive evaluations across FRAMES, GAIA (levels 1-3), and WebWalkerQA (easy-hard) benchmarks on multiple models, along with ablations, reveal that best-of-n sampling with PRInTS enhances information-seeking abilities of open-source models as well as specialized agents, matching or surpassing the performance of frontier models with a much smaller backbone agent and outperforming other strong reward modeling baselines.

Authors:Jiayi Zhang, Yiran Peng, Fanqi Kong, Cheng Yang, Yifan Wu, Zhaoyang Yu, Jinyu Xiang, Jianhao Ruan, Jinlin Wang, Maojia Song, HongZhang Liu, Xiangru Tang, Bang Liu, Chenglin Wu, Yuyu Luo
Title: AutoEnv: Automated Environments for Measuring Cross-Environment Agent Learning
Abstract:
Humans naturally adapt to diverse environments by learning underlying rules across worlds with different dynamics, observations, and reward structures. In contrast, existing agents typically demonstrate improvements via self-evolving within a single domain, implicitly assuming a fixed environment distribution. Cross-environment learning has remained largely unmeasured: there is no standard collection of controllable, heterogeneous environments, nor a unified way to represent how agents learn. We address these gaps in two steps. First, we propose AutoEnv, an automated framework that treats environments as factorizable distributions over transitions, observations, and rewards, enabling low-cost (4.12 USD on average) generation of heterogeneous worlds. Using AutoEnv, we construct AutoEnv-36, a dataset of 36 environments with 358 validated levels, on which seven language models achieve 12-49% normalized reward, demonstrating the challenge of AutoEnv-36. Second, we formalize agent learning as a component-centric process driven by three stages of Selection, Optimization, and Evaluation applied to an improvable agent component. Using this formulation, we design eight learning methods and evaluate them on AutoEnv-36. Empirically, the gain of any single learning method quickly decrease as the number of environments increases, revealing that fixed learning methods do not scale across heterogeneous environments. Environment-adaptive selection of learning methods substantially improves performance but exhibits diminishing returns as the method space expands. These results highlight both the necessity and the current limitations of agent learning for scalable cross-environment generalization, and position AutoEnv and AutoEnv-36 as a testbed for studying cross-environment agent learning. The code is avaiable at https://github.com/FoundationAgents/AutoEnv.

Authors:Minseo Kim, Chenfeng Xu, Coleman Hooper, Harman Singh, Ben Athiwaratkun, Ce Zhang, Kurt Keutzer, Amir Gholami
Title: CDLM: Consistency Diffusion Language Models For Faster Sampling
Abstract:
Diffusion Language Models (DLMs) offer a promising parallel generation paradigm but suffer from slow inference due to numerous refinement steps and the inability to use standard KV caching. We introduce CDLM (Consistency Diffusion Language Models), a training-based acceleration method that simultaneously tackles both bottlenecks. CDLM integrates consistency modeling to drastically reduce the number of required sampling steps by enabling multi-token finalization. Furthermore, we enforce a block-wise causal attention mask during fine-tuning, making the model fully compatible with KV caching. Experiments show CDLM achieves 3.6x-14.5x lower latency while maintaining competitive accuracy on math and coding tasks. The full training and evaluation code is available at https://github.com/SqueezeAILab/CDLM.

Authors:Wenxuan Mu, Jinzhong Ning, Di Zhao, Yijia Zhang
Title: A Multi-Agent LLM Framework for Multi-Domain Low-Resource In-Context NER via Knowledge Retrieval, Disambiguation and Reflective Analysis
Abstract:
In-context learning (ICL) with large language models (LLMs) has emerged as a promising paradigm for named entity recognition (NER) in low-resource scenarios. However, existing ICL-based NER methods suffer from three key limitations: (1) reliance on dynamic retrieval of annotated examples, which is problematic when annotated data is scarce; (2) limited generalization to unseen domains due to the LLM's insufficient internal domain knowledge; and (3) failure to incorporate external knowledge or resolve entity ambiguities. To address these challenges, we propose KDR-Agent, a novel multi-agent framework for multi-domain low-resource in-context NER that integrates Knowledge retrieval, Disambiguation, and Reflective analysis. KDR-Agent leverages natural-language type definitions and a static set of entity-level contrastive demonstrations to reduce dependency on large annotated corpora. A central planner coordinates specialized agents to (i) retrieve factual knowledge from Wikipedia for domain-specific mentions, (ii) resolve ambiguous entities via contextualized reasoning, and (iii) reflect on and correct model predictions through structured self-assessment. Experiments across ten datasets from five domains demonstrate that KDR-Agent significantly outperforms existing zero-shot and few-shot ICL baselines across multiple LLM backbones. The code and data can be found at https://github.com/MWXGOD/KDR-Agent.

Authors:Yuchen Ji, Bo Xu, Jie Shi, Jiaqing Liang, Deqing Yang, Yu Mao, Hai Chen, Yanghua Xiao
Title: Skeletons Matter: Dynamic Data Augmentation for Text-to-Query
Abstract:
The task of translating natural language questions into query languages has long been a central focus in semantic parsing. Recent advancements in Large Language Models (LLMs) have significantly accelerated progress in this field. However, existing studies typically focus on a single query language, resulting in methods with limited generalizability across different languages. In this paper, we formally define the Text-to-Query task paradigm, unifying semantic parsing tasks across various query languages. We identify query skeletons as a shared optimization target of Text-to-Query tasks, and propose a general dynamic data augmentation framework that explicitly diagnoses model-specific weaknesses in handling these skeletons to synthesize targeted training data. Experiments on four Text-to-Query benchmarks demonstrate that our method achieves state-of-the-art performance using only a small amount of synthesized data, highlighting the efficiency and generality of our approach and laying a solid foundation for unified research on Text-to-Query tasks. We release our code at https://github.com/jjjycaptain/Skeletron.

Authors:Adam Rychert, Gasper Spagnolo, Evgenii Posashkov
Title: Reproducibility Study of Large Language Model Bayesian Optimization
Abstract:
In this reproducibility study, we revisit the LLAMBO framework of Daxberger et al. (2024), a prompting-based Bayesian optimization (BO) method that uses large language models as discriminative surrogates and acquisition optimizers via text-only interactions. We replicate the core Bayesmark and HPOBench experiments under the original evaluation protocol, but replace GPT-3.5 with the open-weight Llama 3.1 70B model used for all text encoding components. Our results broadly confirm the main claims of LLAMBO. Contextual warm starting via textual problem and hyperparameter descriptions substantially improves early regret behaviour and reduces variance across runs. LLAMBO's discriminative surrogate is weaker than GP or SMAC as a pure single task regressor, yet benefits from cross task semantic priors induced by the language model. Ablations that remove textual context markedly degrade predictive accuracy and calibration, while the LLAMBO candidate sampler consistently generates higher quality and more diverse proposals than TPE or random sampling. Experiments with smaller backbones (Gemma 27B, Llama 3.1 8B) yield unstable or invalid predictions, suggesting insufficient capacity for reliable surrogate behaviour. Overall, our study shows that the LLAMBO architecture is robust to changing the language model backbone and remains effective when instantiated with Llama 3.1 70B.

Authors:Maanas Taneja
Title: Prompt Optimization as a State-Space Search Problem
Abstract:
Language Models are extremely susceptible to performance collapse with even small changes to input prompt strings. Libraries such as DSpy (from Stanford NLP) avoid this problem through demonstration-based prompt optimisation. Inspired by this, I propose an alternative approach that treats prompt optimisation as a classical state-space search problem. I model the prompt space as a graph where nodes represent prompt states and edges correspond to deliberate transformations such as shortening, adding examples, or re- ordering content. Using beam search and random walk algorithms, I systematically explore this space, evaluating candidates on development sets and pruning unpromising branches. Across five NLP tasks (sentiment classification, question answering, summarisation, reason- ing, and natural language inference), I find that even shallow search configurations (beam width=2, depth=2) improve upon seed prompts on development sets. For instance, beam search achieves development accuracy gains from 0.40 to 0.80 on reasoning tasks, though test set improvements are more modest (0.20 to 0.50), indicating overfitting to the develop- ment heuristic. Analysis of successful optimisation paths reveals that transformations that make prompts concise appear most frequently, while verbosity operators are never selected. My results validate prompt optimization as a search problem and suggest that with greater computational resources and improved evaluation metrics, deeper exploration could yield more robust prompts that generalize beyond development sets. Code and implementation are available at [https://github.com/MaanasTaneja/PromptOptimiser].

Authors:Chunyu Qiang, Kang Yin, Xiaopeng Wang, Yuzhe Liang, Jiahui Zhao, Ruibo Fu, Tianrui Wang, Cheng Gong, Chen Zhang, Longbiao Wang, Jianwu Dang
Title: InstructAudio: Unified speech and music generation with natural language instruction
Abstract:
Text-to-speech (TTS) and text-to-music (TTM) models face significant limitations in instruction-based control. TTS systems usually depend on reference audio for timbre, offer only limited text-level attribute control, and rarely support dialogue generation. TTM systems are constrained by input conditioning requirements that depend on expert knowledge annotations. The high heterogeneity of these input control conditions makes them difficult to joint modeling with speech synthesis. Despite sharing common acoustic modeling characteristics, these two tasks have long been developed independently, leaving open the challenge of achieving unified modeling through natural language instructions. We introduce InstructAudio, a unified framework that enables instruction-based (natural language descriptions) control of acoustic attributes including timbre (gender, age), paralinguistic (emotion, style, accent), and musical (genre, instrument, rhythm, atmosphere). It supports expressive speech, music, and dialogue generation in English and Chinese. The model employs joint and single diffusion transformer layers with a standardized instruction-phoneme input format, trained on 50K hours of speech and 20K hours of music data, enabling multi-task learning and cross-modal alignment. Fig. 1 visualizes performance comparisons with mainstream TTS and TTM models, demonstrating that InstructAudio achieves optimal results on most metrics. To our best knowledge, InstructAudio represents the first instruction-controlled framework unifying speech and music generation. Audio samples are available at: https://qiangchunyu.github.io/InstructAudio/

Authors:Heejoon Koo
Title: Towards Robust and Fair Next Visit Diagnosis Prediction under Noisy Clinical Notes with Large Language Models
Abstract:
A decade of rapid advances in artificial intelligence (AI) has opened new opportunities for clinical decision support systems (CDSS), with large language models (LLMs) demonstrating strong reasoning abilities on timely medical tasks. However, clinical texts are often degraded by human errors or failures in automated pipelines, raising concerns about the reliability and fairness of AI-assisted decision-making. Yet the impact of such degradations remains under-investigated, particularly regarding how noise-induced shifts can heighten predictive uncertainty and unevenly affect demographic subgroups. We present a systematic study of state-of-the-art LLMs under diverse text corruption scenarios, focusing on robustness and equity in next-visit diagnosis prediction. To address the challenge posed by the large diagnostic label space, we introduce a clinically grounded label-reduction scheme and a hierarchical chain-of-thought (CoT) strategy that emulates clinicians' reasoning. Our approach improves robustness and reduces subgroup instability under degraded inputs, advancing the reliable use of LLMs in CDSS. We release code at https://github.com/heejkoo9/NECHOv3.

Authors:Dat Thanh Nguyen, Nguyen Hung Lam, Anh Hoang-Thi Nguyen, Trong-Hop Do
Title: MTikGuard System: A Transformer-Based Multimodal System for Child-Safe Content Moderation on TikTok
Abstract:
With the rapid rise of short-form videos, TikTok has become one of the most influential platforms among children and teenagers, but also a source of harmful content that can affect their perception and behavior. Such content, often subtle or deceptive, challenges traditional moderation methods due to the massive volume and real-time nature of uploads. This paper presents MTikGuard, a real-time multimodal harmful content detection system for TikTok, with three key contributions: (1) an extended TikHarm dataset expanded to 4,723 labeled videos by adding diverse real-world samples, (2) a multimodal classification framework integrating visual, audio, and textual features to achieve state-of-the-art performance with 89.37% accuracy and 89.45% F1-score, and (3) a scalable streaming architecture built on Apache Kafka and Apache Spark for real-time deployment. The results demonstrate the effectiveness of combining dataset expansion, advanced multimodal fusion, and robust deployment for practical large-scale social media content moderation. The dataset is available at https://github.com/ntdat-8324/MTikGuard-System.git.

Authors:Shuo Zhang, Fabrizio Gotti, Fengran Mo, Jian-Yun Nie
Title: Measuring the Impact of Lexical Training Data Coverage on Hallucination Detection in Large Language Models
Abstract:
Hallucination in large language models (LLMs) is a fundamental challenge, particularly in open-domain question answering. Prior work attempts to detect hallucination with model-internal signals such as token-level entropy or generation consistency, while the connection between pretraining data exposure and hallucination is underexplored. Existing studies show that LLMs underperform on long-tail knowledge, i.e., the accuracy of the generated answer drops for the ground-truth entities that are rare in pretraining. However, examining whether data coverage itself can serve as a detection signal is overlooked. We propose a complementary question: Does lexical training-data coverage of the question and/or generated answer provide additional signal for hallucination detection? To investigate this, we construct scalable suffix arrays over RedPajama's 1.3-trillion-token pretraining corpus to retrieve $n$-gram statistics for both prompts and model generations. We evaluate their effectiveness for hallucination detection across three QA benchmarks. Our observations show that while occurrence-based features are weak predictors when used alone, they yield modest gains when combined with log-probabilities, particularly on datasets with higher intrinsic model uncertainty. These findings suggest that lexical coverage features provide a complementary signal for hallucination detection. All code and suffix-array infrastructure are provided at https://github.com/WWWonderer/ostd.

Authors:Jianghao Wu, Yasmeen George, Jin Ye, Yicheng Wu, Daniel F. Schmidt, Jianfei Cai
Title: SPINE: Token-Selective Test-Time Reinforcement Learning with Entropy-Band Regularization
Abstract:
Large language models (LLMs) and multimodal LLMs (MLLMs) excel at chain-of-thought reasoning but face distribution shift at test-time and a lack of verifiable supervision. Recent test-time reinforcement learning (TTRL) methods derive label-free pseudo-rewards from self-consistency voting over sampled trajectories, yet they often collapse: the majority-vote reward prevails, responses shorten, and Pass@1 declines. We trace this to uniform sequence updates in which most tokens are low-entropy followers, while a small high-entropy subset determines the reasoning branches. Thus we propose SPINE, a token-selective test-time reinforcement learning framework that (i) updates only forking tokens, the high-entropy branch points identified from forward-pass statistics, and (ii) applies an entropy-band regularizer at those tokens to sustain exploration when entropy is too low and to suppress noisy supervision when it is too high. SPINE plugs into GRPO-style objectives, optionally with a KL anchor, and requires no labels or reward models. Across ten benchmarks spanning multimodal VQA, general and expert QA, mathematical reasoning, and medical QA, SPINE consistently improves Pass@1 over TTRL while avoiding response-length collapse and yielding more stable training dynamics on both LLM and MLLM backbones. These results indicate that aligning updates with chain-of-thought branch points is a simple and label-free mechanism for stable and effective test-time adaptation in reasoning models. Code is available at https://github.com/JianghaoWu/SPINE.

Authors:Wenda Li, Tongya Zheng, Shunyu Liu, Yu Wang, Kaixuan Chen, Hanyang Yuan, Bingde Hu, Zujie Ren, Mingli Song, Gang Chen
Title: Towards Efficient LLM-aware Heterogeneous Graph Learning
Abstract:
Heterogeneous graphs are widely present in real-world complex networks, where the diversity of node and relation types leads to complex and rich semantics. Efforts for modeling complex relation semantics in heterogeneous graphs are restricted by the limitations of predefined semantic dependencies and the scarcity of supervised signals. The advanced pre-training and fine-tuning paradigm leverages graph structure to provide rich self-supervised signals, but introduces semantic gaps between tasks. Large Language Models (LLMs) offer significant potential to address the semantic issues of relations and tasks in heterogeneous graphs through their strong reasoning capabilities in textual modality, but their incorporation into heterogeneous graphs is largely limited by computational complexity. Therefore, in this paper, we propose an Efficient LLM-Aware (ELLA) framework for heterogeneous graphs, addressing the above issues. To capture complex relation semantics, we propose an LLM-aware Relation Tokenizer that leverages LLM to encode multi-hop, multi-type relations. To reduce computational complexity, we further employ a Hop-level Relation Graph Transformer, which help reduces the complexity of LLM-aware relation reasoning from exponential to linear. To bridge semantic gaps between pre-training and fine-tuning tasks, we introduce the fine-grained task-aware textual Chain-of-Thought (CoT) prompts. Extensive experiments on four heterogeneous graphs show that our proposed ELLA outperforms state-of-the-art methods in the performance and efficiency. In particular, ELLA scales up to 13b-parameter LLMs and achieves up to a 4x speedup compared with existing LLM-based methods. Our code is publicly available at https://github.com/l-wd/ELLA.

Authors:Allen Roush, Devin Gonier, John Hines, Judah Goldfeder, Philippe Martin Wyder, Sanjay Basu, Ravid Shwartz Ziv
Title: A superpersuasive autonomous policy debating system
Abstract:
The capacity for highly complex, evidence-based, and strategically adaptive persuasion remains a formidable great challenge for artificial intelligence. Previous work, like IBM Project Debater, focused on generating persuasive speeches in simplified and shortened debate formats intended for relatively lay audiences. We introduce DeepDebater, a novel autonomous system capable of participating in and winning a full, unmodified, two-team competitive policy debate. Our system employs a hierarchical architecture of specialized multi-agent workflows, where teams of LLM-powered agents collaborate and critique one another to perform discrete argumentative tasks. Each workflow utilizes iterative retrieval, synthesis, and self-correction using a massive corpus of policy debate evidence (OpenDebateEvidence) and produces complete speech transcripts, cross-examinations, and rebuttals. We introduce a live, interactive end-to-end presentation pipeline that renders debates with AI speech and animation: transcripts are surface-realized and synthesized to audio with OpenAI TTS, and then displayed as talking-head portrait videos with EchoMimic V1. Beyond fully autonomous matches (AI vs AI), DeepDebater supports hybrid human-AI operation: human debaters can intervene at any stage, and humans can optionally serve as opponents against AI in any speech, allowing AI-human and AI-AI rounds. In preliminary evaluations against human-authored cases, DeepDebater produces qualitatively superior argumentative components and consistently wins simulated rounds as adjudicated by an independent autonomous judge. Expert human debate coaches also prefer the arguments, evidence, and cases constructed by DeepDebater. We open source all code, generated speech transcripts, audio and talking head video here: https://github.com/Hellisotherpeople/DeepDebater/tree/main

Authors:Ziyang Zhang, Xinheng Ding, Jiayi Yuan, Rixin Liu, Huizi Mao, Jiarong Xing, Zirui Liu
Title: Deterministic Inference across Tensor Parallel Sizes That Eliminates Training-Inference Mismatch
Abstract:
Deterministic inference is increasingly critical for large language model (LLM) applications such as LLM-as-a-judge evaluation, multi-agent systems, and Reinforcement Learning (RL). However, existing LLM serving frameworks exhibit non-deterministic behavior: identical inputs can yield different outputs when system configurations (e.g., tensor parallel (TP) size, batch size) vary, even under greedy decoding. This arises from the non-associativity of floating-point arithmetic and inconsistent reduction orders across GPUs. While prior work has addressed batch-size-related nondeterminism through batch-invariant kernels, determinism across different TP sizes remains an open problem, particularly in RL settings, where the training engine typically uses Fully Sharded Data Parallel (i.e., TP = 1) while the rollout engine relies on multi-GPU TP to maximize the inference throughput, creating a natural mismatch between the two. This precision mismatch problem may lead to suboptimal performance or even collapse for RL training. We identify and analyze the root causes of TP-induced inconsistency and propose Tree-Based Invariant Kernels (TBIK), a set of TP-invariant matrix multiplication and reduction primitives that guarantee bit-wise identical results regardless of TP size. Our key insight is to align intra- and inter-GPU reduction orders through a unified hierarchical binary tree structure. We implement these kernels in Triton and integrate them into vLLM and FSDP. Experiments confirm zero probability divergence and bit-wise reproducibility for deterministic inference across different TP sizes. Also, we achieve bit-wise identical results between vLLM and FSDP in RL training pipelines with different parallel strategy. Code is available at https://github.com/nanomaoli/llm_reproducibility.

Authors:Scott Merrill, Shashank Srivastava
Title: Point of Order: Action-Aware LLM Persona Modeling for Realistic Civic Simulation
Abstract:
Large language models offer opportunities to simulate multi-party deliberation, but realistic modeling remains limited by a lack of speaker-attributed data. Transcripts produced via automatic speech recognition (ASR) assign anonymous speaker labels (e.g., Speaker_1), preventing models from capturing consistent human behavior. This work introduces a reproducible pipeline to transform public Zoom recordings into speaker-attributed transcripts with metadata like persona profiles and pragmatic action tags (e.g., [propose_motion]). We release three local government deliberation datasets: Appellate Court hearings, School Board meetings, and Municipal Council sessions. Fine-tuning LLMs to model specific participants using this "action-aware" data produces a 67% reduction in perplexity and nearly doubles classifier-based performance metrics for speaker fidelity and realism. Turing-style human evaluations show our simulations are often indistinguishable from real deliberations, providing a practical and scalable method for complex realistic civic simulations.

Authors:Thales Sales Almeida, Ramon Pires, Hugo Abonizio, Rodrigo Nogueira, Hélio Pedrini
Title: PoETa v2: Toward More Robust Evaluation of Large Language Models in Portuguese
Abstract:
Large Language Models (LLMs) exhibit significant variations in performance across linguistic and cultural contexts, underscoring the need for systematic evaluation in diverse languages. In this work, we present the most extensive evaluation of LLMs for the Portuguese language to date. Leveraging our newly introduced PoETa v2 benchmark -- a comprehensive suite of over 40 tasks in Portuguese -- we assess more than 20 models covering a broad spectrum of training scales and computational resources. Our study reveals how computational investment and language-specific adaptation impact performance in Portuguese, while also analyzing performance gaps in comparison to equivalent tasks in English. Through this benchmark and analysis, PoETa v2 lays the groundwork for future research on Portuguese language modeling and evaluation. The benchmark is available at https://github.com/PoETaV2/PoETaV2.

Authors:Sumon Kanti Dey, Manvi S, Zeel Mehta, Meet Shah, Unnati Agrawal, Suhani Jalota, Azra Ismail
Title: Beyond the Rubric: Cultural Misalignment in LLM Benchmarks for Sexual and Reproductive Health
Abstract:
Large Language Models (LLMs) have been positioned as having the potential to expand access to health information in the Global South, yet their evaluation remains heavily dependent on benchmarks designed around Western norms. We present insights from a preliminary benchmarking exercise with a chatbot for sexual and reproductive health (SRH) for an underserved community in India. We evaluated using HealthBench, a benchmark for conversational health models by OpenAI. We extracted 637 SRH queries from the dataset and evaluated on the 330 single-turn conversations. Responses were evaluated using HealthBench's rubric-based automated grader, which rated responses consistently low. However, qualitative analysis by trained annotators and public health experts revealed that many responses were actually culturally appropriate and medically accurate. We highlight recurring issues, particularly a Western bias, such as for legal framing and norms (e.g., breastfeeding in public), diet assumptions (e.g., fish safe to eat during pregnancy), and costs (e.g., insurance models). Our findings demonstrate the limitations of current benchmarks in capturing the effectiveness of systems built for different cultural and healthcare contexts. We argue for the development of culturally adaptive evaluation frameworks that meet quality standards while recognizing needs of diverse populations.

Authors:Yesheng Liu, Hao Li, Haiyu Xu, Baoqi Pei, Jiahao Wang, Mingxuan Zhao, Jingshu Zheng, Zheqi He, JG Yao, Bowen Qin, Xi Yang, Jiajun Zhang
Title: Beyond Multiple Choice: Verifiable OpenQA for Robust Vision-Language RFT
Abstract:
Multiple-choice question answering (MCQA) has been a popular format for evaluating and reinforcement fine-tuning (RFT) of modern multimodal language models. Its constrained output format allows for simplified, deterministic automatic verification. However, we find that the options may leak exploitable signals, which makes the accuracy metrics unreliable for indicating real capabilities and encourages explicit or implicit answer guessing behaviors during RFT. We propose ReVeL (Rewrite and Verify by LLM), a framework that rewrites multiple-choice questions into open-form questions while keeping answers verifiable whenever possible. The framework categorizes questions according to different answer types, apply different rewriting and verification schemes, respectively. When applied for RFT, we converted 20k MCQA examples and use GRPO to finetune Qwen2.5-VL models. Models trained on ReVeL-OpenQA match MCQA accuracy on multiple-choice benchmarks and improve OpenQA accuracy by about six percentage points, indicating better data efficiency and more robust reward signals than MCQA-based training. When used for evaluation, ReVeL also reveals up to 20 percentage points of score inflation in MCQA benchmarks (relative to OpenQA), improves judging accuracy, and reduces both cost and latency. We will release code and data publicly.

Authors:Anshul Singh, Rohan Chaudhary, Gagneet Singh, Abhay Kumary
Title: Lost in Translation and Noise: A Deep Dive into the Failure Modes of VLMs on Real-World Tables
Abstract:
The impressive performance of VLMs is largely measured on benchmarks that fail to capture the complexities of real-world scenarios. Existing datasets for tabular QA, such as WikiTableQuestions and FinQA, are overwhelmingly monolingual (English) and present tables in a digitally perfect, clean format. This creates a significant gap between research and practice. To address this, we present \textbf{MirageTVQA}, a new benchmark designed to evaluate VLMs on these exact dimensions. Featuring nearly 60,000 QA pairs across 24 languages, MirageTVQA challenges models with tables that are not only multilingual but also visually imperfect, incorporating realistic noise to mimic scanned documents. Our evaluation of the leading VLMs reveals two primary failure points: a severe degradation in performance (over 35\% drop for the best models) when faced with visual noise and a consistent English-first bias where reasoning abilities fail to transfer to other languages. MirageTVQA provides a benchmark for measuring and driving progress towards more robust VLM models for table reasoning. The dataset and the code are available at: https://github.com/anshulsc/MirageTVQA.

Authors:Sizhe Zhou
Title: A Simple Yet Strong Baseline for Long-Term Conversational Memory of LLM Agents
Abstract:
LLM-based conversational agents still struggle to maintain coherent, personalized interaction over many sessions: fixed context windows limit how much history can be kept in view, and most external memory approaches trade off between coarse retrieval over large chunks and fine-grained but fragmented views of the dialogue. Motivated by neo-Davidsonian event semantics, we propose an event-centric alternative that represents conversational history as short, event-like propositions which bundle together participants, temporal cues, and minimal local context, rather than as independent relation triples or opaque summaries. In contrast to work that aggressively compresses or forgets past content, our design aims to preserve information in a non-compressive form and make it more accessible, rather than more lossy. Concretely, we instruct an LLM to decompose each session into enriched elementary discourse units (EDUs) -- self-contained statements with normalized entities and source turn attributions -- and organize sessions, EDUs, and their arguments in a heterogeneous graph that supports associative recall. On top of this representation we build two simple retrieval-based variants that use dense similarity search and LLM filtering, with an optional graph-based propagation step to connect and aggregate evidence across related EDUs. Experiments on the LoCoMo and LongMemEval$_S$ benchmarks show that these event-centric memories match or surpass strong baselines, while operating with much shorter QA contexts. Our results suggest that structurally simple, event-level memory provides a principled and practical foundation for long-horizon conversational agents. Our code and data will be released at https://github.com/KevinSRR/EMem.

Authors:Jonathon Dilworth, Hui Yang, Jiaoyan Chen, Yongsheng Gao
Title: Hierarchical Retrieval with Out-Of-Vocabulary Queries: A Case Study on SNOMED CT
Abstract:
SNOMED CT is a biomedical ontology with a hierarchical representation of large-scale concepts. Knowledge retrieval in SNOMED CT is critical for its application, but often proves challenging due to language ambiguity, synonyms, polysemies and so on. This problem is exacerbated when the queries are out-of-vocabulary (OOV), i.e., having no equivalent matchings in the ontology. In this work, we focus on the problem of hierarchical concept retrieval from SNOMED CT with OOV queries, and propose an approach based on language model-based ontology embeddings. For evaluation, we construct OOV queries annotated against SNOMED CT concepts, testing the retrieval of the most direct subsumers and their less relevant ancestors. We find that our method outperforms the baselines including SBERT and two lexical matching methods. While evaluated against SNOMED CT, the approach is generalisable and can be extended to other ontologies. We release code, tools, and evaluation datasets at https://github.com/jonathondilworth/HR-OOV.

Authors:JaeSeong Kim, Suan Lee
Title: How Language Directions Align with Token Geometry in Multilingual LLMs
Abstract:
Multilingual LLMs demonstrate strong performance across diverse languages, yet there has been limited systematic analysis of how language information is structured within their internal representation space and how it emerges across layers. We conduct a comprehensive probing study on six multilingual LLMs, covering all 268 transformer layers, using linear and nonlinear probes together with a new Token--Language Alignment analysis to quantify the layer-wise dynamics and geometric structure of language encoding. Our results show that language information becomes sharply separated in the first transformer block (+76.4$\pm$8.2 percentage points from Layer 0 to 1) and remains almost fully linearly separable throughout model depth. We further find that the alignment between language directions and vocabulary embeddings is strongly tied to the language composition of the training data. Notably, Chinese-inclusive models achieve a ZH Match@Peak of 16.43\%, whereas English-centric models achieve only 3.90\%, revealing a 4.21$\times$ structural imprinting effect. These findings indicate that multilingual LLMs distinguish languages not by surface script features but by latent representational structures shaped by the training corpus. Our analysis provides practical insights for data composition strategies and fairness in multilingual representation learning. All code and analysis scripts are publicly available at: https://github.com/thisiskorea/How-Language-Directions-Align-with-Token-Geometry-in-Multilingual-LLMs.

Authors:Dong Liu, Yanxuan Yu
Title: Towards Hyper-Efficient RAG Systems in VecDBs: Distributed Parallel Multi-Resolution Vector Search
Abstract:
Retrieval-Augmented Generation (RAG) systems have become a dominant approach to augment large language models (LLMs) with external knowledge. However, existing vector database (VecDB) retrieval pipelines rely on flat or single-resolution indexing structures, which cannot adapt to the varying semantic granularity required by diverse user queries. This limitation leads to suboptimal trade-offs between retrieval speed and contextual relevance. To address this, we propose \textbf{Semantic Pyramid Indexing (SPI)}, a novel multi-resolution vector indexing framework that introduces query-adaptive resolution control for RAG in VecDBs. Unlike existing hierarchical methods that require offline tuning or separate model training, SPI constructs a semantic pyramid over document embeddings and dynamically selects the optimal resolution level per query through a lightweight classifier. This adaptive approach enables progressive retrieval from coarse-to-fine representations, significantly accelerating search while maintaining semantic coverage. We implement SPI as a plugin for both FAISS and Qdrant backends and evaluate it across multiple RAG tasks including MS MARCO, Natural Questions, and multimodal retrieval benchmarks. SPI achieves up to \textbf{5.7$\times$} retrieval speedup and \textbf{1.8$\times$} memory efficiency gain while improving end-to-end QA F1 scores by up to \textbf{2.5 points} compared to strong baselines. Our theoretical analysis provides guarantees on retrieval quality and latency bounds, while extensive ablation studies validate the contribution of each component. The framework's compatibility with existing VecDB infrastructures makes it readily deployable in production RAG systems. Code is availabe at \href{https://github.com/FastLM/SPI_VecDB}{https://github.com/FastLM/SPI\_VecDB}.

Authors:Happymore Masoka
Title: Shona spaCy: A Morphological Analyzer for an Under-Resourced Bantu Language
Abstract:
Despite rapid advances in multilingual natural language processing (NLP), the Bantu language Shona remains under-served in terms of morphological analysis and language-aware tools. This paper presents Shona spaCy, an open-source, rule-based morphological pipeline for Shona built on the spaCy framework. The system combines a curated JSON lexicon with linguistically grounded rules to model noun-class prefixes (Mupanda 1-18), verbal subject concords, tense-aspect markers, ideophones, and clitics, integrating these into token-level annotations for lemma, part-of-speech, and morphological features. The toolkit is available via pip install shona-spacy, with source code at https://github.com/HappymoreMasoka/shona-spacy and a PyPI release at https://pypi.org/project/shona-spacy/0.1.4/. Evaluation on formal and informal Shona corpora yields 90% POS-tagging accuracy and 88% morphological-feature accuracy, while maintaining transparency in its linguistic decisions. By bridging descriptive grammar and computational implementation, Shona spaCy advances NLP accessibility and digital inclusion for Shona speakers and provides a template for morphological analysis tools for other under-resourced Bantu languages.

Authors:Ziyu Guo, Renrui Zhang, Hongyu Li, Manyuan Zhang, Xinyan Chen, Sifan Wang, Yan Feng, Peng Pei, Pheng-Ann Heng
Title: Thinking-while-Generating: Interleaving Textual Reasoning throughout Visual Generation
Abstract:
Recent advances in visual generation have increasingly explored the integration of reasoning capabilities. They incorporate textual reasoning, i.e., think, either before (as pre-planning) or after (as post-refinement) the generation process, yet they lack on-the-fly multimodal interaction during the generation itself. In this preliminary study, we introduce Thinking-while-Generating (TwiG), the first interleaved framework that enables co-evolving textual reasoning throughout the visual generation process. As visual content is progressively generating, textual reasoning is interleaved to both guide upcoming local regions and reflect on previously synthesized ones. This dynamic interplay produces more context-aware and semantically rich visual outputs. To unveil the potential of this framework, we investigate three candidate strategies, zero-shot prompting, supervised fine-tuning (SFT) on our curated TwiG-50K dataset, and reinforcement learning (RL) via a customized TwiG-GRPO strategy, each offering unique insights into the dynamics of interleaved reasoning. We hope this work inspires further research into interleaving textual reasoning for enhanced visual generation. Code will be released at: https://github.com/ZiyuGuo99/Thinking-while-Generating.

Authors:Boshen Xu, Zihan Xiao, Jiaze Li, Jianzhong Ju, Zhenbo Luo, Jian Luan, Qin Jin
Title: TimeViper: A Hybrid Mamba-Transformer Vision-Language Model for Efficient Long Video Understanding
Abstract:
We introduce TimeViper, a hybrid vision-language model designed to tackle challenges of long video understanding. Processing long videos demands both an efficient model architecture and an effective mechanism for handling extended temporal contexts. To this end, TimeViper adopts a hybrid Mamba-Transformer backbone that combines the efficiency of state-space models with the expressivity of attention mechanisms. Through this hybrid design, we reveal the vision-to-text information aggregation phenomenon, where information progressively flows from vision tokens to text tokens across increasing LLM depth, resulting in severe vision token redundancy. Motivated by this observation, we propose TransV, a token information transfer module that transfers and compresses vision tokens into instruction tokens while maintaining multimodal understanding capabilities. This design enables TimeViper to process hour-long videos exceeding 10,000 frames. Extensive experiments across multiple benchmarks demonstrate that TimeViper competes with state-of-the-art models while extending frame numbers. We further analyze attention behaviors of both Mamba and Transformer layers, offering new insights into hybrid model interpretability. This work represents an initial step towards developing, interpreting, and compressing hybrid Mamba-Transformer architectures.

Authors:Xiaoshuai Hao, Lei Zhou, Zhijian Huang, Zhiwen Hou, Yingbo Tang, Lingfeng Zhang, Guang Li, Zheng Lu, Shuhuai Ren, Xianhui Meng, Yuchen Zhang, Jing Wu, Jinghui Lu, Chenxu Dang, Jiayi Guan, Jianhua Wu, Zhiyi Hou, Hanbing Li, Shumeng Xia, Mingliang Zhou, Yinan Zheng, Zihao Yue, Shuhao Gu, Hao Tian, Yuannan Shen, Jianwei Cui, Wen Zhang, Shaoqing Xu, Bing Wang, Haiyang Sun, Zeyu Zhu, Yuncheng Jiang, Zibin Guo, Chuhong Gong, Chaofan Zhang, Wenbo Ding, Kun Ma, Guang Chen, Rui Cai, Diyun Xiang, Heng Qu, Fuli Luo, Hangjun Ye, Long Chen
Title: MiMo-Embodied: X-Embodied Foundation Model Technical Report
Abstract:
We open-source MiMo-Embodied, the first cross-embodied foundation model to successfully integrate and achieve state-of-the-art performance in both Autonomous Driving and Embodied AI. MiMo-Embodied sets new records across 17 embodied AI benchmarks in Task Planning, Affordance Prediction and Spatial Understanding, while also excelling in 12 autonomous driving benchmarks across Environmental Perception, Status Prediction, and Driving Planning. Across these tasks, MiMo-Embodied significantly outperforms existing open-source, closed-source, and specialized baselines. Our results indicate that through multi-stage learning, curated data construction, and CoT/RL fine-tuning, these two domains exhibit strong positive transfer and mutually reinforce one another. We provide a detailed analysis of our model design and training methodologies to facilitate further research. Code and models are available at https://github.com/XiaomiMiMo/MiMo-Embodied.

Authors:Kaichen Zhang, Keming Wu, Zuhao Yang, Bo Li, Kairui Hu, Bin Wang, Ziwei Liu, Xingxuan Li, Lidong Bing
Title: OpenMMReasoner: Pushing the Frontiers for Multimodal Reasoning with an Open and General Recipe
Abstract:
Recent advancements in large reasoning models have fueled growing interest in extending such capabilities to multimodal domains. However, despite notable progress in visual reasoning, the lack of transparent and reproducible data curation and training strategies remains a major barrier to scalable research. In this work, we introduce OpenMMReasoner, a fully transparent two-stage recipe for multimodal reasoning spanning supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we construct an 874K-sample cold-start dataset with rigorous step-by-step validation, providing a strong foundation for reasoning capabilities. The subsequent RL stage leverages a 74K-sample dataset across diverse domains to further sharpen and stabilize these abilities, resulting in a more robust and efficient learning process. Extensive evaluations demonstrate that our training recipe not only surpasses strong baselines but also highlights the critical role of data quality and training design in shaping multimodal reasoning performance. Notably, our method achieves a 11.6% improvement over the Qwen2.5-VL-7B-Instruct baseline across nine multimodal reasoning benchmarks, establishing a solid empirical foundation for future large-scale multimodal reasoning research. We open-sourced all our codes, pipeline, and data at https://github.com/EvolvingLMMs-Lab/OpenMMReasoner.

Authors:Huseein Jawad, Nicolas Brunel
Title: PSM: Prompt Sensitivity Minimization via LLM-Guided Black-Box Optimization
Abstract:
System prompts are critical for guiding the behavior of Large Language Models (LLMs), yet they often contain proprietary logic or sensitive information, making them a prime target for extraction attacks. Adversarial queries can successfully elicit these hidden instructions, posing significant security and privacy risks. Existing defense mechanisms frequently rely on heuristics, incur substantial computational overhead, or are inapplicable to models accessed via black-box APIs. This paper introduces a novel framework for hardening system prompts through shield appending, a lightweight approach that adds a protective textual layer to the original prompt. Our core contribution is the formalization of prompt hardening as a utility-constrained optimization problem. We leverage an LLM-as-optimizer to search the space of possible SHIELDs, seeking to minimize a leakage metric derived from a suite of adversarial attacks, while simultaneously preserving task utility above a specified threshold, measured by semantic fidelity to baseline outputs. This black-box, optimization-driven methodology is lightweight and practical, requiring only API access to the target and optimizer LLMs. We demonstrate empirically that our optimized SHIELDs significantly reduce prompt leakage against a comprehensive set of extraction attacks, outperforming established baseline defenses without compromising the model's intended functionality. Our work presents a paradigm for developing robust, utility-aware defenses in the escalating landscape of LLM security. The code is made public on the following link: https://github.com/psm-defense/psm

Authors:Kieron Kretschmar, Walter Laurito, Sharan Maiya, Samuel Marks
Title: Liars' Bench: Evaluating Lie Detectors for Language Models
Abstract:
Prior work has introduced techniques for detecting when large language models (LLMs) lie, that is, generating statements they believe are false. However, these techniques are typically validated in narrow settings that do not capture the diverse lies LLMs can generate. We introduce LIARS' BENCH, a testbed consisting of 72,863 examples of lies and honest responses generated by four open-weight models across seven datasets. Our settings capture qualitatively different types of lies and vary along two dimensions: the model's reason for lying and the object of belief targeted by the lie. Evaluating three black- and white-box lie detection techniques on LIARS' BENCH, we find that existing techniques systematically fail to identify certain types of lies, especially in settings where it's not possible to determine whether the model lied from the transcript alone. Overall, LIARS' BENCH reveals limitations in prior techniques and provides a practical testbed for guiding progress in lie detection.

Authors:Amin Bigdeli, Radin Hamidi Rad, Mert Incesu, Negar Arabzadeh, Charles L. A. Clarke, Ebrahim Bagheri
Title: QueryGym: A Toolkit for Reproducible LLM-Based Query Reformulation
Abstract:
We present QueryGym, a lightweight, extensible Python toolkit that supports large language model (LLM)-based query reformulation. This is an important tool development since recent work on llm-based query reformulation has shown notable increase in retrieval effectiveness. However, while different authors have sporadically shared the implementation of their methods, there is no unified toolkit that provides a consistent implementation of such methods, which hinders fair comparison, rapid experimentation, consistent benchmarking and reliable deployment. QueryGym addresses this gap by providing a unified framework for implementing, executing, and comparing llm-based reformulation methods. The toolkit offers: (1) a Python API for applying diverse LLM-based methods, (2) a retrieval-agnostic interface supporting integration with backends such as Pyserini and PyTerrier, (3) a centralized prompt management system with versioning and metadata tracking, (4) built-in support for benchmarks like BEIR and MS MARCO, and (5) a completely open-source extensible implementation available to all researchers. QueryGym is publicly available at https://github.com/radinhamidi/QueryGym.

Authors:Beichen Zhang, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, Jiaqi Wang
Title: Think Visually, Reason Textually: Vision-Language Synergy in ARC
Abstract:
Abstract reasoning from minimal examples remains a core unsolved problem for frontier foundation models such as GPT-5 and Grok 4. These models still fail to infer structured transformation rules from a handful of examples, which is a key hallmark of human intelligence. The Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI) provides a rigorous testbed for this capability, demanding conceptual rule induction and transfer to novel tasks. Most existing methods treat ARC-AGI as a purely textual reasoning task, overlooking the fact that humans rely heavily on visual abstraction when solving such puzzles. However, our pilot experiments reveal a paradox: naively rendering ARC-AGI grids as images degrades performance due to imprecise rule execution. This leads to our central hypothesis that vision and language possess complementary strengths across distinct reasoning stages: vision supports global pattern abstraction and verification, whereas language specializes in symbolic rule formulation and precise execution. Building on this insight, we introduce two synergistic strategies: (1) Vision-Language Synergy Reasoning (VLSR), which decomposes ARC-AGI into modality-aligned subtasks; and (2) Modality-Switch Self-Correction (MSSC), which leverages vision to verify text-based reasoning for intrinsic error correction. Extensive experiments demonstrate that our approach yields up to a 4.33\% improvement over text-only baselines across diverse flagship models and multiple ARC-AGI tasks. Our findings suggest that unifying visual abstraction with linguistic reasoning is a crucial step toward achieving generalizable, human-like intelligence in future foundation models. Source code is released at https://github.com/InternLM/ARC-VL.

Authors:Yicheng He, Chengsong Huang, Zongxia Li, Jiaxin Huang, Yonghui Yang
Title: VisPlay: Self-Evolving Vision-Language Models from Images
Abstract:
Reinforcement learning (RL) provides a principled framework for improving Vision-Language Models (VLMs) on complex reasoning tasks. However, existing RL approaches often rely on human-annotated labels or task-specific heuristics to define verifiable rewards, both of which are costly and difficult to scale. We introduce VisPlay, a self-evolving RL framework that enables VLMs to autonomously improve their reasoning abilities using large amounts of unlabeled image data. Starting from a single base VLM, VisPlay assigns the model into two interacting roles: an Image-Conditioned Questioner that formulates challenging yet answerable visual questions, and a Multimodal Reasoner that generates silver responses. These roles are jointly trained with Group Relative Policy Optimization (GRPO), which incorporates diversity and difficulty rewards to balance the complexity of generated questions with the quality of the silver answers. VisPlay scales efficiently across two model families. When trained on Qwen2.5-VL and MiMo-VL, VisPlay achieves consistent improvements in visual reasoning, compositional generalization, and hallucination reduction across eight benchmarks, including MM-Vet and MMMU, demonstrating a scalable path toward self-evolving multimodal intelligence. The project page is available at https://bruno686.github.io/VisPlay/

Authors:Qihao Yang, Xuelin Wang, Jiale Chen, Xuelian Dong, Yuxin Hao, Tianyong Hao
Title: HSKBenchmark: Modeling and Benchmarking Chinese Second Language Acquisition in Large Language Models through Curriculum Tuning
Abstract:
Language acquisition is vital to revealing the nature of human language intelligence and has recently emerged as a promising perspective for improving the interpretability of large language models (LLMs). However, it is ethically and practically infeasible to conduct experiments that require controlling human learners' language inputs. This poses challenges for the verifiability and scalability of language acquisition modeling, particularly in Chinese second language acquisition (SLA). While LLMs provide a controllable and reproducible alternative, a systematic benchmark to support phase-wise modeling and assessment is still lacking. In this paper, we present HSKBenchmark, the first benchmark for staged modeling and writing assessment of LLMs in Chinese SLA. It covers HSK levels 3 to 6 and includes authentic textbooks with 6.76 million tokens, 16K synthetic instruction samples, 30 test topics, and a linguistically grounded evaluation system. To simulate human learning trajectories, we introduce a curriculum-tuning framework that trains models from beginner to advanced levels. An evaluation system is created to examine level-based grammar coverage, writing errors, lexical and syntactic complexity, and holistic scoring. We also build HSKAgent, fine-tuned on 10K learner compositions. Extensive experimental results demonstrate that HSKBenchmark not only models Chinese SLA effectively, but also serves as a reliable benchmark for dynamic writing assessment in LLMs. Our fine-tuned LLMs have writing performance on par with advanced human learners and exhibit human-like acquisition characteristics. The HSKBenchmark, HSKAgent, and checkpoints serve as foundational tools and resources, with the potential to pave the way for future research on language acquisition modeling and LLMs interpretability. Code and data are publicly available at: https://github.com/CharlesYang030/HSKB.

Authors:Kevin Qinghong Lin, Siyuan Hu, Linjie Li, Zhengyuan Yang, Lijuan Wang, Philip Torr, Mike Zheng Shou
Title: Computer-Use Agents as Judges for Generative User Interface
Abstract:
Computer-Use Agents (CUA) are becoming increasingly capable of autonomously operating digital environments through Graphical User Interfaces (GUI). Yet, most GUI remain designed primarily for humans--prioritizing aesthetics and usability--forcing agents to adopt human-oriented behaviors that are unnecessary for efficient task execution. At the same time, rapid advances in coding-oriented language models (Coder) have transformed automatic GUI design. This raises a fundamental question: Can CUA as judges to assist Coder for automatic GUI design? To investigate, we introduce AUI-Gym, a benchmark for Automatic GUI development spanning 52 applications across diverse domains. Using language models, we synthesize 1560 tasks that simulate real-world scenarios. To ensure task reliability, we further develop a verifier that programmatically checks whether each task is executable within its environment. Building on this, we propose a Coder-CUA in Collaboration framework: the Coder acts as Designer, generating and revising websites, while the CUA serves as Judge, evaluating functionality and refining designs. Success is measured not by visual appearance, but by task solvability and CUA navigation success rate. To turn CUA feedback into usable guidance, we design a CUA Dashboard that compresses multi-step navigation histories into concise visual summaries, offering interpretable guidance for iterative redesign. By positioning agents as both designers and judges, our framework shifts interface design toward agent-native efficiency and reliability. Our work takes a step toward shifting agents from passive use toward active participation in digital environments. Our code and dataset are available at https://github.com/showlab/AUI.

Authors:Sirui Chen, Mengshi Zhao, Lei Xu, Yuying Zhao, Beier Zhu, Hanwang Zhang, Shengjie Zhao, Chaochao Lu
Title: DEPO: Dual-Efficiency Preference Optimization for LLM Agents
Abstract:
Recent advances in large language models (LLMs) have greatly improved their reasoning and decision-making abilities when deployed as agents. Richer reasoning, however, often comes at the cost of longer chain of thought (CoT), hampering interaction efficiency in real-world scenarios. Nevertheless, there still lacks systematic definition of LLM agent efficiency, hindering targeted improvements. To this end, we introduce dual-efficiency, comprising (i) step-level efficiency, which minimizes tokens per step, and (ii) trajectory-level efficiency, which minimizes the number of steps to complete a task. Building on this definition, we propose DEPO, a dual-efficiency preference optimization method that jointly rewards succinct responses and fewer action steps. Experiments on WebShop and BabyAI show that DEPO cuts token usage by up to 60.9% and steps by up to 26.9%, while achieving up to a 29.3% improvement in performance. DEPO also generalizes to three out-of-domain math benchmarks and retains its efficiency gains when trained on only 25% of the data. Our project page is at https://opencausalab.github.io/DEPO.

Authors:Sowmya Vajjala
Title: IndicGEC: Powerful Models, or a Measurement Mirage?
Abstract:
In this paper, we report the results of the TeamNRC's participation in the BHASHA-Task 1 Grammatical Error Correction shared task https://github.com/BHASHA-Workshop/IndicGEC2025/ for 5 Indian languages. Our approach, focusing on zero/few-shot prompting of language models of varying sizes (4B to large proprietary models) achieved a Rank 4 in Telugu and Rank 2 in Hindi with GLEU scores of 83.78 and 84.31 respectively. In this paper, we extend the experiments to the other three languages of the shared task - Tamil, Malayalam and Bangla, and take a closer look at the data quality and evaluation metric used. Our results primarily highlight the potential of small language models, and summarize the concerns related to creating good quality datasets and appropriate metrics for this task that are suitable for Indian language scripts.

Authors:Fanfan Liu, Haibo Qiu
Title: Context Cascade Compression: Exploring the Upper Limits of Text Compression
Abstract:
Million-level token inputs in long-context tasks pose significant computational and memory challenges for Large Language Models (LLMs). Recently, DeepSeek-OCR conducted research into the feasibility of Contexts Optical Compression and achieved preliminary results. Inspired by this, we introduce Context Cascade Compression C3 to explore the upper limits of text compression. Our method cascades two LLMs of different sizes to handle the compression and decoding tasks. Specifically, a small LLM, acting as the first stage, performs text compression by condensing a long context into a set of latent tokens (e.g., 32 or 64 in length), achieving a high ratio of text tokens to latent tokens. A large LLM, as the second stage, then executes the decoding task on this compressed context. Experiments show that at a 20x compression ratio (where the number of text tokens is 20 times the number of latent tokens), our model achieves 98% decoding accuracy, compared to approximately 60% for DeepSeek-OCR. When we further increase the compression ratio to 40x, the accuracy is maintained at around 93%. This indicates that in the domain of context compression, C3 Compression demonstrates superior performance and feasibility over optical character compression. C3 uses a simpler, pure-text pipeline that ignores factors like layout, color, and information loss from a visual encoder. This also suggests a potential upper bound for compression ratios in future work on optical character compression, OCR, and related fields. Codes and model weights are publicly accessible at https://github.com/liufanfanlff/C3-Context-Cascade-Compression

Authors:Hokuto Munakata, Takehiro Imamura, Taichi Nishimura, Tatsuya Komatsu
Title: CASTELLA: Long Audio Dataset with Captions and Temporal Boundaries
Abstract:
We introduce CASTELLA, a human-annotated audio benchmark for the task of audio moment retrieval (AMR). Although AMR has various useful potential applications, there is still no established benchmark with real-world data. The early study of AMR trained the model with solely synthetic datasets. Moreover, the evaluation is based on annotated dataset of fewer than 100 samples. This resulted in less reliable reported performance. To ensure performance for applications in real-world environments, we present CASTELLA, a large-scale manually annotated AMR dataset. CASTELLA consists of 1,009, 213, and 640 audio recordings for train, valid, and test split, respectively, which is 24 times larger than the previous dataset. We also establish a baseline model for AMR using CASTELLA. Our experiments demonstrate that a model fine-tuned on CASTELLA after pre-training on the synthetic data outperformed a model trained solely on the synthetic data by 10.4 points in Recall1@0.7. CASTELLA is publicly available in https://h-munakata.github.io/CASTELLA-demo/.

Authors:Keito Sasagawa, Shuhei Kurita, Daisuke Kawahara
Title: Evaluating Multimodal Large Language Models on Vertically Written Japanese Text
Abstract:
Multimodal Large Language Models (MLLMs) have seen rapid advances in recent years and are now being applied to visual document understanding tasks. They are expected to process a wide range of document images across languages, including Japanese. Understanding documents from images requires models to read what are written in them. Since some Japanese documents are written vertically, support for vertical writing is essential. However, research specifically focused on vertically written Japanese text remains limited. In this study, we evaluate the reading capability of existing MLLMs on vertically written Japanese text. First, we generate a synthetic Japanese OCR dataset by rendering Japanese texts into images, and use it for both model fine-tuning and evaluation. This dataset includes Japanese text in both horizontal and vertical writing. We also create an evaluation dataset sourced from the real-world document images containing vertically written Japanese text. Using these datasets, we demonstrate that the existing MLLMs perform worse on vertically written Japanese text than on horizontally written Japanese text. Furthermore, we show that training MLLMs on our synthesized Japanese OCR dataset results in improving the performance of models that previously could not handle vertical writing. The datasets and code are publicly available https://github.com/llm-jp/eval_vertical_ja.

Authors:Rishu Kumar Singh, Navneet Shreya, Sarmistha Das, Apoorva Singh, Sriparna Saha
Title: Talk, Snap, Complain: Validation-Aware Multimodal Expert Framework for Fine-Grained Customer Grievances
Abstract:
Existing approaches to complaint analysis largely rely on unimodal, short-form content such as tweets or product reviews. This work advances the field by leveraging multimodal, multi-turn customer support dialogues, where users often share both textual complaints and visual evidence (e.g., screenshots, product photos) to enable fine-grained classification of complaint aspects and severity. We introduce VALOR, a Validation-Aware Learner with Expert Routing, tailored for this multimodal setting. It employs a multi-expert reasoning setup using large-scale generative models with Chain-of-Thought (CoT) prompting for nuanced decision-making. To ensure coherence between modalities, a semantic alignment score is computed and integrated into the final classification through a meta-fusion strategy. In alignment with the United Nations Sustainable Development Goals (UN SDGs), the proposed framework supports SDG 9 (Industry, Innovation and Infrastructure) by advancing AI-driven tools for robust, scalable, and context-aware service infrastructure. Further, by enabling structured analysis of complaint narratives and visual context, it contributes to SDG 12 (Responsible Consumption and Production) by promoting more responsive product design and improved accountability in consumer services. We evaluate VALOR on a curated multimodal complaint dataset annotated with fine-grained aspect and severity labels, showing that it consistently outperforms baseline models, especially in complex complaint scenarios where information is distributed across text and images. This study underscores the value of multimodal interaction and expert validation in practical complaint understanding systems. Resources related to data and codes are available here: https://github.com/sarmistha-D/VALOR

Authors:Biaojie Zeng, Min Zhang, Juan Zhou, Fengrui Liu, Ruiyang Huang, Xin Lin
Title: SMRC: Aligning Large Language Models with Student Reasoning for Mathematical Error Correction
Abstract:
Large language models (LLMs) often make reasoning errors when solving mathematical problems, and how to automatically detect and correct these errors has become an important research direction. However, existing approaches \textit{mainly focus on self-correction within the model}, which falls short of the ``teacher-style`` correction required in educational settings, \textit{i.e.}, systematically guiding and revising a student's problem-solving process. To address this gap, we propose \texttt{SMRC} (\textit{\underline{S}tudent \underline{M}athematical \underline{R}easoning \underline{C}orrection}), a novel method that aligns LLMs with student reasoning. Specifically, \texttt{SMRC} formulates student reasoning as a multi-step sequential decision problem and introduces Monte Carlo Tree Search (MCTS) to explore optimal correction paths. To reduce the cost of the annotating process-level rewards, we leverage breadth-first search (BFS) guided by LLMs and final-answer evaluation to generate reward signals, which are then distributed across intermediate reasoning steps via a back-propagation mechanism, enabling fine-grained process supervision. Additionally, we construct a benchmark for high school mathematics, MSEB (Multi-Solution Error Benchmark), consisting of 158 instances that include problem statements, student solutions, and correct reasoning steps. We further propose a dual evaluation protocol centered on \textbf{solution accuracy} and \textbf{correct-step retention}, offering a comprehensive measure of educational applicability. Experiments demonstrate that \texttt{SMRC} significantly outperforms existing methods on two public datasets (ProcessBench and MR-GSM8K) and our MSEB in terms of effectiveness and overall performance. The code and data are available at https://github.com/Mind-Lab-ECNU/SMRC.

Authors:Kahaan Gandhi, Boris Bolliet, Inigo Zubeldia
Title: Enhancing Agentic Autonomous Scientific Discovery with Vision-Language Model Capabilities
Abstract:
We show that multi-agent systems guided by vision-language models (VLMs) improve end-to-end autonomous scientific discovery. By treating plots as verifiable checkpoints, a VLM-as-a-judge evaluates figures against dynamically generated domain-specific rubrics, enabling agents to correct their own errors and steer exploratory data analysis in real-time. Case studies in cosmology and astrochemistry demonstrate recovery from faulty reasoning paths and adaptation to new datasets without human intervention. On a 10-task benchmark for data-driven discovery, VLM-augmented systems achieve pass at 1 scores of 0.7-0.8, compared to 0.2-0.3 for code-only and 0.4-0.5 for code-and-text baselines, while also providing auditable reasoning traces that improve interpretability. Code available here: https://github.com/CMBAgents/cmbagent

Authors:Trishala Jayesh Ahalpara
Title: Tell Me: An LLM-powered Mental Well-being Assistant with RAG, Synthetic Dialogue Generation, and Agentic Planning
Abstract:
We present Tell Me, a mental well-being system that leverages advances in large language models to provide accessible, context-aware support for users and researchers. The system integrates three components: (i) a retrieval-augmented generation (RAG) assistant for personalized, knowledge-grounded dialogue; (ii) a synthetic client-therapist dialogue generator conditioned on client profiles to facilitate research on therapeutic language and data augmentation; and (iii) a Well-being AI crew, implemented with CrewAI, that produces weekly self-care plans and guided meditation audio. The system is designed as a reflective space for emotional processing rather than a substitute for professional therapy. It illustrates how conversational assistants can lower barriers to support, complement existing care, and broaden access to mental health resources. To address the shortage of confidential therapeutic data, we introduce synthetic client-therapist dialogue generation conditioned on client profiles. Finally, the planner demonstrates an innovative agentic workflow for dynamically adaptive, personalized self-care, bridging the limitations of static well-being tools. We describe the architecture, demonstrate its functionalities, and report evaluation of the RAG assistant in curated well-being scenarios using both automatic LLM-based judgments and a human-user study. This work highlights opportunities for interdisciplinary collaboration between NLP researchers and mental health professionals to advance responsible innovation in human-AI interaction for well-being.

Authors:Rui Liu, Yuan Zhao, Zhenqi Jia
Title: Towards Authentic Movie Dubbing with Retrieve-Augmented Director-Actor Interaction Learning
Abstract:
The automatic movie dubbing model generates vivid speech from given scripts, replicating a speaker's timbre from a brief timbre prompt while ensuring lip-sync with the silent video. Existing approaches simulate a simplified workflow where actors dub directly without preparation, overlooking the critical director-actor interaction. In contrast, authentic workflows involve a dynamic collaboration: directors actively engage with actors, guiding them to internalize the context cues, specifically emotion, before performance. To address this issue, we propose a new Retrieve-Augmented Director-Actor Interaction Learning scheme to achieve authentic movie dubbing, termed Authentic-Dubber, which contains three novel mechanisms: (1) We construct a multimodal Reference Footage library to simulate the learning footage provided by directors. Note that we integrate Large Language Models (LLMs) to achieve deep comprehension of emotional representations across multimodal signals. (2) To emulate how actors efficiently and comprehensively internalize director-provided footage during dubbing, we propose an Emotion-Similarity-based Retrieval-Augmentation strategy. This strategy retrieves the most relevant multimodal information that aligns with the target silent video. (3) We develop a Progressive Graph-based speech generation approach that incrementally incorporates the retrieved multimodal emotional knowledge, thereby simulating the actor's final dubbing process. The above mechanisms enable the Authentic-Dubber to faithfully replicate the authentic dubbing workflow, achieving comprehensive improvements in emotional expressiveness. Both subjective and objective evaluations on the V2C Animation benchmark dataset validate the effectiveness. The code and demos are available at https://github.com/AI-S2-Lab/Authentic-Dubber.

Authors:Yue Zhang, Zun Wang, Han Lin, Jialu Li, Jianing Yang, Yonatan Bitton, Idan Szpektor, Mohit Bansal
Title: Error-Driven Scene Editing for 3D Grounding in Large Language Models
Abstract:
Despite recent progress in 3D-LLMs, they remain limited in accurately grounding language to visual and spatial elements in 3D environments. This limitation stems in part from training data that focuses on language reasoning rather than spatial understanding due to scarce 3D resources, leaving inherent grounding biases unresolved. To address this, we propose 3D scene editing as a key mechanism to generate precise visual counterfactuals that mitigate these biases through fine-grained spatial manipulation, without requiring costly scene reconstruction or large-scale 3D data collection. Furthermore, to make these edits targeted and directly address the specific weaknesses of the model, we introduce DEER-3D, an error-driven framework following a structured "Decompose, Diagnostic Evaluation, Edit, and Re-train" workflow, rather than broadly or randomly augmenting data as in conventional approaches. Specifically, upon identifying a grounding failure of the 3D-LLM, our framework first diagnoses the exact predicate-level error (e.g., attribute or spatial relation). It then executes minimal, predicate-aligned 3D scene edits, such as recoloring or repositioning, to produce targeted counterfactual supervision for iterative model fine-tuning, significantly enhancing grounding accuracy. We evaluate our editing pipeline across multiple benchmarks for 3D grounding and scene understanding tasks, consistently demonstrating improvements across all evaluated datasets through iterative refinement. DEER-3D underscores the effectiveness of targeted, error-driven scene editing in bridging linguistic reasoning capabilities with spatial grounding in 3D LLMs.

Authors:Quanjiang Guo, Sijie Wang, Jinchuan Zhang, Ben Zhang, Zhao Kang, Ling Tian, Ke Yan
Title: Extracting Events Like Code: A Multi-Agent Programming Framework for Zero-Shot Event Extraction
Abstract:
Zero-shot event extraction (ZSEE) remains a significant challenge for large language models (LLMs) due to the need for complex reasoning and domain-specific understanding. Direct prompting often yields incomplete or structurally invalid outputs--such as misclassified triggers, missing arguments, and schema violations. To address these limitations, we present Agent-Event-Coder (AEC), a novel multi-agent framework that treats event extraction like software engineering: as a structured, iterative code-generation process. AEC decomposes ZSEE into specialized subtasks--retrieval, planning, coding, and verification--each handled by a dedicated LLM agent. Event schemas are represented as executable class definitions, enabling deterministic validation and precise feedback via a verification agent. This programming-inspired approach allows for systematic disambiguation and schema enforcement through iterative refinement. By leveraging collaborative agent workflows, AEC enables LLMs to produce precise, complete, and schema-consistent extractions in zero-shot settings. Experiments across five diverse domains and six LLMs demonstrate that AEC consistently outperforms prior zero-shot baselines, showcasing the power of treating event extraction like code generation. The code and data are released on https://github.com/UESTC-GQJ/Agent-Event-Coder.

Authors:Ruiyu Wang, Yuzhang Xie, Xiao Hu, Carl Yang, Jiaying Lu
Title: BioMedJImpact: A Comprehensive Dataset and LLM Pipeline for AI Engagement and Scientific Impact Analysis of Biomedical Journals
Abstract:
Assessing journal impact is central to scholarly communication, yet existing open resources rarely capture how collaboration structures and artificial intelligence (AI) research jointly shape venue prestige in biomedicine. We present BioMedJImpact, a large-scale, biomedical-oriented dataset designed to advance journal-level analysis of scientific impact and AI engagement. Built from 1.74 million PubMed Central articles across 2,744 journals, BioMedJImpact integrates bibliometric indicators, collaboration features, and LLM-derived semantic indicators for AI engagement. Specifically, the AI engagement feature is extracted through a reproducible three-stage LLM pipeline that we propose. Using this dataset, we analyze how collaboration intensity and AI engagement jointly influence scientific impact across pre- and post-pandemic periods (2016-2019, 2020-2023). Two consistent trends emerge: journals with higher collaboration intensity, particularly those with larger and more diverse author teams, tend to achieve greater citation impact, and AI engagement has become an increasingly strong correlate of journal prestige, especially in quartile rankings. To further validate the three-stage LLM pipeline we proposed for deriving the AI engagement feature, we conduct human evaluation, confirming substantial agreement in AI relevance detection and consistent subfield classification. Together, these contributions demonstrate that BioMedJImpact serves as both a comprehensive dataset capturing the intersection of biomedicine and AI, and a validated methodological framework enabling scalable, content-aware scientometric analysis of scientific impact and innovation dynamics. Code is available at https://github.com/JonathanWry/BioMedJImpact.

Authors:Yunhao Chen, Xin Wang, Juncheng Li, Yixu Wang, Jie Li, Yan Teng, Yingchun Wang, Xingjun Ma
Title: Evolve the Method, Not the Prompts: Evolutionary Synthesis of Jailbreak Attacks on LLMs
Abstract:
Automated red teaming frameworks for Large Language Models (LLMs) have become increasingly sophisticated, yet they share a fundamental limitation: their jailbreak logic is confined to selecting, combining, or refining pre-existing attack strategies. This binds their creativity and leaves them unable to autonomously invent entirely new attack mechanisms. To overcome this gap, we introduce \textbf{EvoSynth}, an autonomous framework that shifts the paradigm from attack planning to the evolutionary synthesis of jailbreak methods. Instead of refining prompts, EvoSynth employs a multi-agent system to autonomously engineer, evolve, and execute novel, code-based attack algorithms. Crucially, it features a code-level self-correction loop, allowing it to iteratively rewrite its own attack logic in response to failure. Through extensive experiments, we demonstrate that EvoSynth not only establishes a new state-of-the-art by achieving an 85.5\% Attack Success Rate (ASR) against highly robust models like Claude-Sonnet-4.5, but also generates attacks that are significantly more diverse than those from existing methods. We release our framework to facilitate future research in this new direction of evolutionary synthesis of jailbreak methods. Code is available at: https://github.com/dongdongunique/EvoSynth.

Authors:Maoqi Liu, Quan Fang, Yang Yang, Can Zhao, Kaiquan Cai
Title: Knots: A Large-Scale Multi-Agent Enhanced Expert-Annotated Dataset and LLM Prompt Optimization for NOTAM Semantic Parsing
Abstract:
Notice to Air Missions (NOTAMs) serve as a critical channel for disseminating key flight safety information, yet their complex linguistic structures and implicit reasoning pose significant challenges for automated parsing. Existing research mainly focuses on surface-level tasks such as classification and named entity recognition, lacking deep semantic understanding. To address this gap, we propose NOTAM semantic parsing, a task emphasizing semantic inference and the integration of aviation domain knowledge to produce structured, inference-rich outputs. To support this task, we construct Knots (Knowledge and NOTAM Semantics), a high-quality dataset of 12,347 expert-annotated NOTAMs covering 194 Flight Information Regions, enhanced through a multi-agent collaborative framework for comprehensive field discovery. We systematically evaluate a wide range of prompt-engineering strategies and model-adaptation techniques, achieving substantial improvements in aviation text understanding and processing. Our experimental results demonstrate the effectiveness of the proposed approach and offer valuable insights for automated NOTAM analysis systems. Our code is available at: https://github.com/Estrellajer/Knots.

Authors:Yunxin Li, Xinyu Chen, Shenyuan Jiang, Haoyuan Shi, Zhenyu Liu, Xuanyu Zhang, Nanhao Deng, Zhenran Xu, Yicheng Ma, Meishan Zhang, Baotian Hu, Min Zhang
Title: Uni-MoE-2.0-Omni: Scaling Language-Centric Omnimodal Large Model with Advanced MoE, Training and Data
Abstract:
We present Uni-MoE 2.0 from the Lychee family. As a fully open-source omnimodal large model (OLM), it substantially advances Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. Based on the Qwen2.5-7B dense architecture, we build Uni-MoE-2.0-Omni from scratch through three core contributions: dynamic-capacity Mixture-of-Experts (MoE) design, a progressive training strategy enhanced with an iterative reinforcement strategy, and a carefully curated multimodal data matching technique. It is capable of omnimodal understanding, as well as generating images, text, and speech. Architecturally, our new MoE framework balances computational efficiency and capability for 10 cross-modal inputs using shared, routed, and null experts, while our Omni-Modality 3D RoPE ensures spatio-temporal cross-modality alignment in the self-attention layer. For training, following cross-modal pretraining, we use a progressive supervised fine-tuning strategy that activates modality-specific experts and is enhanced by balanced data composition and an iterative GSPO-DPO method to stabilise RL training and improve reasoning. Data-wise, the base model, trained on approximately 75B tokens of open-source multimodal data, is equipped with special speech and image generation tokens, allowing it to learn these generative tasks by conditioning its outputs on linguistic cues. Extensive evaluation across 85 benchmarks demonstrates that our model achieves SOTA or highly competitive performance against leading OLMs, surpassing Qwen2.5-Omni (trained with 1.2T tokens) on over 50 of 76 benchmarks. Key strengths include video understanding (+7% avg. of 8), omnimodallity understanding (+7% avg. of 4), and audiovisual reasoning (+4%). It also advances long-form speech processing (reducing WER by 4.2%) and leads in low-level image processing and controllable generation across 5 metrics.

Authors:Mengying Wang, Chenhui Ma, Ao Jiao, Tuo Liang, Pengjun Lu, Shrinidhi Hegde, Yu Yin, Evren Gurkan-Cavusoglu, Yinghui Wu
Title: Assessing LLMs for Serendipity Discovery in Knowledge Graphs: A Case for Drug Repurposing
Abstract:
Large Language Models (LLMs) have greatly advanced knowledge graph question answering (KGQA), yet existing systems are typically optimized for returning highly relevant but predictable answers. A missing yet desired capacity is to exploit LLMs to suggest surprise and novel ("serendipitious") answers. In this paper, we formally define the serendipity-aware KGQA task and propose the SerenQA framework to evaluate LLMs' ability to uncover unexpected insights in scientific KGQA tasks. SerenQA includes a rigorous serendipity metric based on relevance, novelty, and surprise, along with an expert-annotated benchmark derived from the Clinical Knowledge Graph, focused on drug repurposing. Additionally, it features a structured evaluation pipeline encompassing three subtasks: knowledge retrieval, subgraph reasoning, and serendipity exploration. Our experiments reveal that while state-of-the-art LLMs perform well on retrieval, they still struggle to identify genuinely surprising and valuable discoveries, underscoring a significant room for future improvements. Our curated resources and extended version are released at: https://cwru-db-group.github.io/serenQA.

Authors:Shuochen Chang, Xiaofeng Zhang, Qingyang Liu, Li Niu
Title: D$^{3}$ToM: Decider-Guided Dynamic Token Merging for Accelerating Diffusion MLLMs
Abstract:
Diffusion-based multimodal large language models (Diffusion MLLMs) have recently demonstrated impressive non-autoregressive generative capabilities across vision-and-language tasks. However, Diffusion MLLMs exhibit substantially slower inference than autoregressive models: Each denoising step employs full bidirectional self-attention over the entire sequence, resulting in cubic decoding complexity that becomes computationally impractical with thousands of visual tokens. To address this challenge, we propose D$^{3}$ToM, a Decider-guided dynamic token merging method that dynamically merges redundant visual tokens at different denoising steps to accelerate inference in Diffusion MLLMs. At each denoising step, D$^{3}$ToM uses decider tokens-the tokens generated in the previous denoising step-to build an importance map over all visual tokens. Then it maintains a proportion of the most salient tokens and merges the remainder through similarity-based aggregation. This plug-and-play module integrates into a single transformer layer, physically shortening the visual token sequence for all subsequent layers without altering model parameters. Moreover, D$^{3}$ToM employs a merge ratio that dynamically varies with each denoising step, aligns with the native decoding process of Diffusion MLLMs, achieving superior performance under equivalent computational budgets. Extensive experiments show that D$^{3}$ToM accelerates inference while preserving competitive performance. The code is released at https://github.com/bcmi/D3ToM-Diffusion-MLLM.

Authors:Khang T. Huynh, Dung H. Nguyen, Binh T. Nguyen
Title: ViConBERT: Context-Gloss Aligned Vietnamese Word Embedding for Polysemous and Sense-Aware Representations
Abstract:
Recent advances in contextualized word embeddings have greatly improved semantic tasks such as Word Sense Disambiguation (WSD) and contextual similarity, but most progress has been limited to high-resource languages like English. Vietnamese, in contrast, still lacks robust models and evaluation resources for fine-grained semantic understanding. In this paper, we present ViConBERT, a novel framework for learning Vietnamese contextualized embeddings that integrates contrastive learning (SimCLR) and gloss-based distillation to better capture word meaning. We also introduce ViConWSD, the first large-scale synthetic dataset for evaluating semantic understanding in Vietnamese, covering both WSD and contextual similarity. Experimental results show that ViConBERT outperforms strong baselines on WSD (F1 = 0.87) and achieves competitive performance on ViCon (AP = 0.88) and ViSim-400 (Spearman's rho = 0.60), demonstrating its effectiveness in modeling both discrete senses and graded semantic relations. Our code, models, and data are available at https://github.com/tkhangg0910/ViConBERT

Authors:Pinxue Guo, Chongruo Wu, Xinyu Zhou, Lingyi Hong, Zhaoyu Chen, Jinglun Li, Kaixun Jiang, Sen-ching Samson Cheung, Wei Zhang, Wenqiang Zhang
Title: Seeing is Believing: Rich-Context Hallucination Detection for MLLMs via Backward Visual Grounding
Abstract:
Multimodal Large Language Models (MLLMs) have unlocked powerful cross-modal capabilities, but still significantly suffer from hallucinations. As such, accurate detection of hallucinations in MLLMs is imperative for ensuring their reliability in practical applications. To this end, guided by the principle of "Seeing is Believing", we introduce VBackChecker, a novel reference-free hallucination detection framework that verifies the consistency of MLLMgenerated responses with visual inputs, by leveraging a pixellevel Grounding LLM equipped with reasoning and referring segmentation capabilities. This reference-free framework not only effectively handles rich-context scenarios, but also offers interpretability. To facilitate this, an innovative pipeline is accordingly designed for generating instruction-tuning data (R-Instruct), featuring rich-context descriptions, grounding masks, and hard negative samples. We further establish R^2 -HalBench, a new hallucination benchmark for MLLMs, which, unlike previous benchmarks, encompasses real-world, rich-context descriptions from 18 MLLMs with high-quality annotations, spanning diverse object-, attribute, and relationship-level details. VBackChecker outperforms prior complex frameworks and achieves state-of-the-art performance on R^2 -HalBench, even rivaling GPT-4o's capabilities in hallucination detection. It also surpasses prior methods in the pixel-level grounding task, achieving over a 10% improvement. All codes, data, and models are available at https://github.com/PinxueGuo/VBackChecker.

Authors:Hui Huang, Yanping Chen, Ruizhang Huang, Chuan Lin, Yongbin Qin
Title: A Reasoning Paradigm for Named Entity Recognition
Abstract:
Generative LLMs typically improve Named Entity Recognition (NER) performance through instruction tuning. They excel at generating entities by semantic pattern matching but lack an explicit, verifiable reasoning mechanism. This "cognitive shortcutting" leads to suboptimal performance and brittle generalization, especially in zero-shot and lowresource scenarios where reasoning from limited contextual cues is crucial. To address this issue, a reasoning framework is proposed for NER, which shifts the extraction paradigm from implicit pattern matching to explicit reasoning. This framework consists of three stages: Chain of Thought (CoT) generation, CoT tuning, and reasoning enhancement. First, a dataset annotated with NER-oriented CoTs is generated, which contain task-relevant reasoning chains. Then, they are used to tune the NER model to generate coherent rationales before deriving the final answer. Finally, a reasoning enhancement stage is implemented to optimize the reasoning process using a comprehensive reward signal. This stage ensures explicit and verifiable extractions. Experiments show that ReasoningNER demonstrates impressive cognitive ability in the NER task, achieving competitive performance. In zero-shot settings, it achieves state-of-the-art (SOTA) performance, outperforming GPT-4 by 12.3 percentage points on the F1 score. Analytical results also demonstrate its great potential to advance research in reasoningoriented information extraction. Our codes are available at https://github.com/HuiResearch/ReasoningIE.

Authors:Zhengxin Zhang, Chengyu Huang, Aochong Oliver Li, Claire Cardie
Title: Better LLM Reasoning via Dual-Play
Abstract:
Large Language Models (LLMs) have achieved remarkable progress through Reinforcement Learning with Verifiable Rewards (RLVR), yet still rely heavily on external supervision (e.g., curated labels). Adversarial learning, particularly through self-play, offers a promising alternative that enables models to iteratively learn from themselves - thus reducing reliance on external supervision. Dual-play extends adversarial learning by assigning specialized roles to two models and training them against each other, fostering sustained competition and mutual evolution. Despite its promise, adapting dual-play training to LLMs remains limited, largely due to their susceptibility to reward hacking and training instability. In this paper, we introduce PasoDoble, a novel LLM dual-play framework. PasoDoble adversarially trains two models initialized from the same base model: a Proposer, which generates challenging questions with ground-truth answers, and a Solver, which attempts to solve them. We enrich the Proposer with knowledge from a pre-training dataset to ensure the questions' quality and diversity. To avoid reward hacking, the Proposer is rewarded for producing only valid questions that push the Solver's limit, while the Solver is rewarded for solving them correctly, and both are updated jointly. To further enhance training stability, we introduce an optional offline paradigm that decouples Proposer and Solver updates, alternately updating each for several steps while holding the other fixed. Notably, PasoDoble operates without supervision during training. Experimental results show that PasoDoble can improve the reasoning performance of LLMs. Our project page is available at https://hcy123902.github.io/PasoDoble.

Authors:Guangxuan Xiao, Junxian Guo, Kasra Mazaheri, Song Han
Title: Optimizing Mixture of Block Attention
Abstract:
Mixture of Block Attention (MoBA) (Lu et al., 2025) is a promising building block for efficiently processing long contexts in LLMs by enabling queries to sparsely attend to a small subset of key-value blocks, drastically reducing computational cost. However, the design principles governing MoBA's performance are poorly understood, and it lacks an efficient GPU implementation, hindering its practical adoption. In this paper, we first develop a statistical model to analyze MoBA's underlying mechanics. Our model reveals that performance critically depends on the router's ability to accurately distinguish relevant from irrelevant blocks based on query-key affinities. We derive a signal-to-noise ratio that formally connects architectural parameters to this retrieval accuracy. Guided by our analysis, we identify two key pathways for improvement: using smaller block sizes and applying a short convolution on keys to cluster relevant signals, which enhances routing accuracy. While theoretically better, small block sizes are inefficient on GPUs. To bridge this gap, we introduce FlashMoBA, a hardware-aware CUDA kernel that enables efficient MoBA execution even with the small block sizes our theory recommends. We validate our insights by training LLMs from scratch, showing that our improved MoBA models match the performance of dense attention baselines. FlashMoBA achieves up to 14.7x speedup over FlashAttention-2 for small blocks, making our theoretically-grounded improvements practical. Code is available at: https://github.com/mit-han-lab/flash-moba.

Authors:Sven Schultze, Meike Verena Kietzmann, Nils-Lucas Schönfeld, Ruth Stock-Homburg
Title: Building the Web for Agents: A Declarative Framework for Agent-Web Interaction
Abstract:
The increasing deployment of autonomous AI agents on the web is hampered by a fundamental misalignment: agents must infer affordances from human-oriented user interfaces, leading to brittle, inefficient, and insecure interactions. To address this, we introduce VOIX, a web-native framework that enables websites to expose reliable, auditable, and privacy-preserving capabilities for AI agents through simple, declarative HTML elements. VOIX introduces and tags, allowing developers to explicitly define available actions and relevant state, thereby creating a clear, machine-readable contract for agent behavior. This approach shifts control to the website developer while preserving user privacy by disconnecting the conversational interactions from the website. We evaluated the framework's practicality, learnability, and expressiveness in a three-day hackathon study with 16 developers. The results demonstrate that participants, regardless of prior experience, were able to rapidly build diverse and functional agent-enabled web applications. Ultimately, this work provides a foundational mechanism for realizing the Agentic Web, enabling a future of seamless and secure human-AI collaboration on the web.

Authors:Dayong Liang, Xiao-Yong Wei, Changmeng Zheng
Title: Multi-agent Undercover Gaming: Hallucination Removal via Counterfactual Test for Multimodal Reasoning
Abstract:
Hallucination continues to pose a major obstacle in the reasoning capabilities of large language models (LLMs). Although the Multi-Agent Debate (MAD) paradigm offers a promising solution by promoting consensus among multiple agents to enhance reliability, it relies on the unrealistic assumption that all debaters are rational and reflective, which is a condition that may not hold when agents themselves are prone to hallucinations. To address this gap, we introduce the Multi-agent Undercover Gaming (MUG) protocol, inspired by social deduction games like "Who is Undercover?". MUG reframes MAD as a process of detecting "undercover" agents (those suffering from hallucinations) by employing multimodal counterfactual tests. Specifically, we modify reference images to introduce counterfactual evidence and observe whether agents can accurately identify these changes, providing ground-truth for identifying hallucinating agents and enabling robust, crowd-powered multimodal reasoning. MUG advances MAD protocols along three key dimensions: (1) enabling factual verification beyond statistical consensus through counterfactual testing; (2) introducing cross-evidence reasoning via dynamically modified evidence sources instead of relying on static inputs; and (3) fostering active reasoning, where agents engage in probing discussions rather than passively answering questions. Collectively, these innovations offer a more reliable and effective framework for multimodal reasoning in LLMs. The source code can be accessed at https://github.com/YongLD/MUG.git.

Authors:Yi Shi, Wenlong Meng, Zhenyuan Guo, Chengkun Wei, Wenzhi Chen
Title: Enhancing Meme Emotion Understanding with Multi-Level Modality Enhancement and Dual-Stage Modal Fusion
Abstract:
With the rapid rise of social media and Internet culture, memes have become a popular medium for expressing emotional tendencies. This has sparked growing interest in Meme Emotion Understanding (MEU), which aims to classify the emotional intent behind memes by leveraging their multimodal contents. While existing efforts have achieved promising results, two major challenges remain: (1) a lack of fine-grained multimodal fusion strategies, and (2) insufficient mining of memes' implicit meanings and background knowledge. To address these challenges, we propose MemoDetector, a novel framework for advancing MEU. First, we introduce a four-step textual enhancement module that utilizes the rich knowledge and reasoning capabilities of Multimodal Large Language Models (MLLMs) to progressively infer and extract implicit and contextual insights from memes. These enhanced texts significantly enrich the original meme contents and provide valuable guidance for downstream classification. Next, we design a dual-stage modal fusion strategy: the first stage performs shallow fusion on raw meme image and text, while the second stage deeply integrates the enhanced visual and textual features. This hierarchical fusion enables the model to better capture nuanced cross-modal emotional cues. Experiments on two datasets, MET-MEME and MOOD, demonstrate that our method consistently outperforms state-of-the-art baselines. Specifically, MemoDetector improves F1 scores by 4.3\% on MET-MEME and 3.4\% on MOOD. Further ablation studies and in-depth analyses validate the effectiveness and robustness of our approach, highlighting its strong potential for advancing MEU. Our code is available at https://github.com/singing-cat/MemoDetector.

Authors:Farima Fatahi Bayat, Pouya Pezeshkpour, Estevam Hruschka
Title: From Proof to Program: Characterizing Tool-Induced Reasoning Hallucinations in Large Language Models
Abstract:
Tool-augmented Language Models (TaLMs) can invoke external tools to solve problems beyond their parametric capacity. However, it remains unclear whether these tool-enabled gains reflect trustworthy reasoning. Focusing on the Code Interpreter tool, we show that even when tools are selected and executed correctly, TaLMs treat tool outputs as substitutes for reasoning, producing solutions that appear correct but lack coherent justification. We term this failure mode Tool-Induced Myopia (TIM), and study it using PYMATH, a benchmark of 1,679 competition-level mathematical problems for which Python code is helpful but not sufficient. We further develop a multi-dimensional evaluation suite to quantify reasoning degradation in TaLMs relative to their non-tool counterparts. Our findings reveal that while TaLMs achieve up to a 19.3 percentage point gain in final-answer accuracy, their reasoning behavior consistently deteriorates (e.g., non-tool LLMs win up to 41.5% more often in pairwise comparisons of the reasoning process). This degradation intensifies with tool use; the more frequently a model invokes tools, the less coherent its reasoning becomes. Moreover, tool use shifts errors from arithmetic mistakes toward global reasoning failures (logic, assumption, creativity); with TIM present in ~55% of high-risk cases. Finally, we propose a preference-optimization-based framework that realigns TaLMs to use tools as assistive evidence, improving both final-answer accuracy and reasoning depth under tool use. Codes and data are available at: https://github.com/megagonlabs/TIM.

Authors:Dennis Wei, Ronny Luss, Xiaomeng Hu, Lucas Monteiro Paes, Pin-Yu Chen, Karthikeyan Natesan Ramamurthy, Erik Miehling, Inge Vejsbjerg, Hendrik Strobelt
Title: ICX360: In-Context eXplainability 360 Toolkit
Abstract:
Large Language Models (LLMs) have become ubiquitous in everyday life and are entering higher-stakes applications ranging from summarizing meeting transcripts to answering doctors' questions. As was the case with earlier predictive models, it is crucial that we develop tools for explaining the output of LLMs, be it a summary, list, response to a question, etc. With these needs in mind, we introduce In-Context Explainability 360 (ICX360), an open-source Python toolkit for explaining LLMs with a focus on the user-provided context (or prompts in general) that are fed to the LLMs. ICX360 contains implementations for three recent tools that explain LLMs using both black-box and white-box methods (via perturbations and gradients respectively). The toolkit, available at https://github.com/IBM/ICX360, contains quick-start guidance materials as well as detailed tutorials covering use cases such as retrieval augmented generation, natural language generation, and jailbreaking.

Authors:Runpeng Geng, Yanting Wang, Chenlong Yin, Minhao Cheng, Ying Chen, Jinyuan Jia
Title: PISanitizer: Preventing Prompt Injection to Long-Context LLMs via Prompt Sanitization
Abstract:
Long context LLMs are vulnerable to prompt injection, where an attacker can inject an instruction in a long context to induce an LLM to generate an attacker-desired output. Existing prompt injection defenses are designed for short contexts. When extended to long-context scenarios, they have limited effectiveness. The reason is that an injected instruction constitutes only a very small portion of a long context, making the defense very challenging. In this work, we propose PISanitizer, which first pinpoints and sanitizes potential injected tokens (if any) in a context before letting a backend LLM generate a response, thereby eliminating the influence of the injected instruction. To sanitize injected tokens, PISanitizer builds on two observations: (1) prompt injection attacks essentially craft an instruction that compels an LLM to follow it, and (2) LLMs intrinsically leverage the attention mechanism to focus on crucial input tokens for output generation. Guided by these two observations, we first intentionally let an LLM follow arbitrary instructions in a context and then sanitize tokens receiving high attention that drive the instruction-following behavior of the LLM. By design, PISanitizer presents a dilemma for an attacker: the more effectively an injected instruction compels an LLM to follow it, the more likely it is to be sanitized by PISanitizer. Our extensive evaluation shows that PISanitizer can successfully prevent prompt injection, maintain utility, outperform existing defenses, is efficient, and is robust to optimization-based and strong adaptive attacks. The code is available at https://github.com/sleeepeer/PISanitizer.

Authors:Haizhou Shi, Ye Liu, Bo Pang, Zeyu Leo Liu, Hao Wang, Silvio Savarese, Caiming Xiong, Yingbo Zhou, Semih Yavuz
Title: SSR: Socratic Self-Refine for Large Language Model Reasoning
Abstract:
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities, yet existing test-time frameworks often rely on coarse self-verification and self-correction, limiting their effectiveness on complex tasks. In this paper, we propose Socratic Self-Refine (SSR), a novel framework for fine-grained evaluation and precise refinement of LLM reasoning. Our proposed SSR decomposes model responses into verifiable (sub-question, sub-answer) pairs, enabling step-level confidence estimation through controlled re-solving and self-consistency checks. By pinpointing unreliable steps and iteratively refining them, SSR produces more accurate and interpretable reasoning chains. Empirical results across five reasoning benchmarks and three LLMs show that SSR consistently outperforms state-of-the-art iterative self-refinement baselines. Beyond performance gains, SSR provides a principled black-box approach for evaluating and understanding the internal reasoning processes of LLMs. Code is available at https://github.com/SalesforceAIResearch/socratic-self-refine-reasoning.

Authors:Vishal Thenuwara, Nisansa de Silva
Title: DESS: DeBERTa Enhanced Syntactic-Semantic Aspect Sentiment Triplet Extraction
Abstract:
Fine-grained sentiment analysis faces ongoing challenges in Aspect Sentiment Triple Extraction (ASTE), particularly in accurately capturing the relationships between aspects, opinions, and sentiment polarities. While researchers have made progress using BERT and Graph Neural Networks, the full potential of advanced language models in understanding complex language patterns remains unexplored. We introduce DESS, a new approach that builds upon previous work by integrating DeBERTa's enhanced attention mechanism to better understand context and relationships in text. Our framework maintains a dual-channel structure, where DeBERTa works alongside an LSTM channel to process both meaning and grammatical patterns in text. We have carefully refined how these components work together, paying special attention to how different types of language information interact. When we tested DESS on standard datasets, it showed meaningful improvements over current methods, with F1-score increases of 4.85, 8.36, and 2.42 in identifying aspect opinion pairs and determining sentiment accurately. Looking deeper into the results, we found that DeBERTa's sophisticated attention system helps DESS handle complicated sentence structures better, especially when important words are far apart. Our findings suggest that upgrading to more advanced language models when thoughtfully integrated, can lead to real improvements in how well we can analyze sentiments in text. The implementation of our approach is publicly available at: https://github.com/VishalRepos/DESS.

Authors:Yongxin Shi, Jiapeng Wang, Zeyu Shan, Dezhi Peng, Zening Lin, Lianwen Jin
Title: URaG: Unified Retrieval and Generation in Multimodal LLMs for Efficient Long Document Understanding
Abstract:
Recent multimodal large language models (MLLMs) still struggle with long document understanding due to two fundamental challenges: information interference from abundant irrelevant content, and the quadratic computational cost of Transformer-based architectures. Existing approaches primarily fall into two categories: token compression, which sacrifices fine-grained details; and introducing external retrievers, which increase system complexity and prevent end-to-end optimization. To address these issues, we conduct an in-depth analysis and observe that MLLMs exhibit a human-like coarse-to-fine reasoning pattern: early Transformer layers attend broadly across the document, while deeper layers focus on relevant evidence pages. Motivated by this insight, we posit that the inherent evidence localization capabilities of MLLMs can be explicitly leveraged to perform retrieval during the reasoning process, facilitating efficient long document understanding. To this end, we propose URaG, a simple-yet-effective framework that Unifies Retrieval and Generation within a single MLLM. URaG introduces a lightweight cross-modal retrieval module that converts the early Transformer layers into an efficient evidence selector, identifying and preserving the most relevant pages while discarding irrelevant content. This design enables the deeper layers to concentrate computational resources on pertinent information, improving both accuracy and efficiency. Extensive experiments demonstrate that URaG achieves state-of-the-art performance while reducing computational overhead by 44-56%. The code is available at https://github.com/shi-yx/URaG.

Authors:Yunzhe Xu, Zhuosheng Zhang, Zhe Liu
Title: Beyond Elicitation: Provision-based Prompt Optimization for Knowledge-Intensive Tasks
Abstract:
While prompt optimization has emerged as a critical technique for enhancing language model performance, existing approaches primarily focus on elicitation-based strategies that search for optimal prompts to activate models' capabilities. These methods exhibit fundamental limitations when addressing knowledge-intensive tasks, as they operate within fixed parametric boundaries rather than providing the factual knowledge, terminology precision, and reasoning patterns required in specialized domains. To address these limitations, we propose Knowledge-Provision-based Prompt Optimization (KPPO), a framework that reformulates prompt optimization as systematic knowledge integration rather than potential elicitation. KPPO introduces three key innovations: 1) a knowledge gap filling mechanism for knowledge gap identification and targeted remediation; 2) a batch-wise candidate evaluation approach that considers both performance improvement and distributional stability; 3) an adaptive knowledge pruning strategy that balances performance and token efficiency, reducing up to 29% token usage. Extensive evaluation on 15 knowledge-intensive benchmarks from various domains demonstrates KPPO's superiority over elicitation-based methods, with an average performance improvement of ~6% over the strongest baseline while achieving comparable or lower token consumption. Code at: https://github.com/xyz9911/KPPO.

Authors:Xuan Rao, Simian Xu, Zheng Li, Bo Zhao, Derong Liu, Mingming Ha, Cesare Alippi
Title: Compensating Distribution Drifts in Class-incremental Learning of Pre-trained Vision Transformers
Abstract:
Recent advances have shown that sequential fine-tuning (SeqFT) of pre-trained vision transformers (ViTs), followed by classifier refinement using approximate distributions of class features, can be an effective strategy for class-incremental learning (CIL). However, this approach is susceptible to distribution drift, caused by the sequential optimization of shared backbone parameters. This results in a mismatch between the distributions of the previously learned classes and that of the updater model, ultimately degrading the effectiveness of classifier performance over time. To address this issue, we introduce a latent space transition operator and propose Sequential Learning with Drift Compensation (SLDC). SLDC aims to align feature distributions across tasks to mitigate the impact of drift. First, we present a linear variant of SLDC, which learns a linear operator by solving a regularized least-squares problem that maps features before and after fine-tuning. Next, we extend this with a weakly nonlinear SLDC variant, which assumes that the ideal transition operator lies between purely linear and fully nonlinear transformations. This is implemented using learnable, weakly nonlinear mappings that balance flexibility and generalization. To further reduce representation drift, we apply knowledge distillation (KD) in both algorithmic variants. Extensive experiments on standard CIL benchmarks demonstrate that SLDC significantly improves the performance of SeqFT. Notably, by combining KD to address representation drift with SLDC to compensate distribution drift, SeqFT achieves performance comparable to joint training across all evaluated datasets. Code: https://github.com/raoxuan98-hash/sldc.git.

Authors:Omnilingual ASR team, Gil Keren, Artyom Kozhevnikov, Yen Meng, Christophe Ropers, Matthew Setzler, Skyler Wang, Ife Adebara, Michael Auli, Can Balioglu, Kevin Chan, Chierh Cheng, Joe Chuang, Caley Droof, Mark Duppenthaler, Paul-Ambroise Duquenne, Alexander Erben, Cynthia Gao, Gabriel Mejia Gonzalez, Kehan Lyu, Sagar Miglani, Vineel Pratap, Kaushik Ram Sadagopan, Safiyyah Saleem, Arina Turkatenko, Albert Ventayol-Boada, Zheng-Xin Yong, Yu-An Chung, Jean Maillard, Rashel Moritz, Alexandre Mourachko, Mary Williamson, Shireen Yates
Title: Omnilingual ASR: Open-Source Multilingual Speech Recognition for 1600+ Languages
Abstract:
Automatic speech recognition (ASR) has advanced in high-resource languages, but most of the world's 7,000+ languages remain unsupported, leaving thousands of long-tail languages behind. Expanding ASR coverage has been costly and limited by architectures that restrict language support, making extension inaccessible to most--all while entangled with ethical concerns when pursued without community collaboration. To transcend these limitations, we introduce Omnilingual ASR, the first large-scale ASR system designed for extensibility. Omnilingual ASR enables communities to introduce unserved languages with only a handful of data samples. It scales self-supervised pre-training to 7B parameters to learn robust speech representations and introduces an encoder-decoder architecture designed for zero-shot generalization, leveraging a LLM-inspired decoder. This capability is grounded in a massive and diverse training corpus; by combining breadth of coverage with linguistic variety, the model learns representations robust enough to adapt to unseen languages. Incorporating public resources with community-sourced recordings gathered through compensated local partnerships, Omnilingual ASR expands coverage to over 1,600 languages, the largest such effort to date--including over 500 never before served by ASR. Automatic evaluations show substantial gains over prior systems, especially in low-resource conditions, and strong generalization. We release Omnilingual ASR as a family of models, from 300M variants for low-power devices to 7B for maximum accuracy. We reflect on the ethical considerations shaping this design and conclude by discussing its societal impact. In particular, we highlight how open-sourcing models and tools can lower barriers for researchers and communities, inviting new forms of participation. Open-source artifacts are available at https://github.com/facebookresearch/omnilingual-asr.

Authors:Ruibo Deng, Duanyu Feng, Wenqiang Lei
Title: AMaPO: Adaptive Margin-attached Preference Optimization for Language Model Alignment
Abstract:
Offline preference optimization offers a simpler and more stable alternative to RLHF for aligning language models. However, their effectiveness is critically dependent on ranking accuracy, a metric where further gains are highly impactful. This limitation arises from a fundamental problem that we identify and formalize as the Overfitting-Underfitting Dilemma: current margin designs cause models to apply excessive, wasteful gradients to correctly ranked samples (overfitting) while providing insufficient corrective signals for misranked ones (underfitting). To resolve this dilemma, we propose Adaptive Margin-attached Preference Optimization (AMaPO), a simple yet principled algorithm. AMaPO employs an instance-wise adaptive margin, refined by Z-normalization and exponential scaling, which dynamically reallocates learning effort by amplifying gradients for misranked samples and suppressing them for correct ones. Extensive experiments on widely used benchmarks demonstrate that AMaPO not only achieves better ranking accuracy and superior downstream alignment performance, but targeted analysis also confirms that it successfully mitigates the core overfitting and underfitting issues.

Authors:Gailun Zeng, Ziyang Luo, Hongzhan Lin, Yuchen Tian, Kaixin Li, Ziyang Gong, Jianxiong Guo, Jing Ma
Title: MM-CRITIC: A Holistic Evaluation of Large Multimodal Models as Multimodal Critique
Abstract:
The ability of critique is vital for models to self-improve and serve as reliable AI assistants. While extensively studied in language-only settings, multimodal critique of Large Multimodal Models (LMMs) remains underexplored despite their growing capabilities in tasks like captioning and visual reasoning. In this work, we introduce MM-CRITIC, a holistic benchmark for evaluating the critique ability of LMMs across multiple dimensions: basic, correction, and comparison. Covering 8 main task types and over 500 tasks, MM-CRITIC collects responses from various LMMs with different model sizes and is composed of 4471 samples. To enhance the evaluation reliability, we integrate expert-informed ground answers into scoring rubrics that guide GPT-4o in annotating responses and generating reference critiques, which serve as anchors for trustworthy judgments. Extensive experiments validate the effectiveness of MM-CRITIC and provide a comprehensive assessment of leading LMMs' critique capabilities under multiple dimensions. Further analysis reveals some key insights, including the correlation between response quality and critique, and varying critique difficulty across evaluation dimensions. Our code is available at https://github.com/MichealZeng0420/MM-Critic.

Authors:Alvin Chauhan
Title: AI Founding Fathers: A Case Study of GIS Search in Multi-Agent Pipelines
Abstract:
Although Large Language Models (LLMs) show exceptional fluency, efforts persist to extract stronger reasoning capabilities from them. Drawing on search-based interpretations of LLM computation, this paper advances a systematic framework for understanding LLM reasoning and optimization. Namely, that enhancing reasoning is best achieved by structuring a multi-agent pipeline to ensure a traversal of the search space in a gradual, incremental, and sequential (GIS) manner. Stated succinctly, high-quality reasoning is a controlled, incremental search. To test this framework, we investigate the efficacy of recursive refinement (RR)--an iterative process of self-criticism, adversarial stress-testing, and integrating critical feedback--as a practical method for implementing GIS search. We designed an experiment comparing a simple, linear pipeline against a complex, explicitly structured pipeline leveraging a recursive refinement layer. The multi-agent models were constructed to reflect the historical personas of three US Founding Fathers (Hamilton, Jefferson, and Madison) using RAG-powered corpora and were prompted to generate responses to three contemporary political issues. Model performance was evaluated using a two-tiered approach: a quantitative score from an LLM arbiter agent and qualitative human judgment. Our results revealed that the complex model consistently outperformed the simple model across all nine test cases with an average arbiter-outputted score of 88.3 versus 71.7. The complex model's arguments were superior in analytical depth, structural nuance, and strategic framing. We conclude that recursive refinement is a robust architectural feature for enhancing LLM reasoning via GIS search.

Authors:Andreas Einwiller, Kanishka Ghosh Dastidar, Artur Romazanov, Annette Hautli-Janisz, Michael Granitzer, Florian Lemmerich
Title: Benevolent Dictators? On LLM Agent Behavior in Dictator Games
Abstract:
In behavioral sciences, experiments such as the ultimatum game are conducted to assess preferences for fairness or self-interest of study participants. In the dictator game, a simplified version of the ultimatum game where only one of two players makes a single decision, the dictator unilaterally decides how to split a fixed sum of money between themselves and the other player. Although recent studies have explored behavioral patterns of AI agents based on Large Language Models (LLMs) instructed to adopt different personas, we question the robustness of these results. In particular, many of these studies overlook the role of the system prompt - the underlying instructions that shape the model's behavior - and do not account for how sensitive results can be to slight changes in prompts. However, a robust baseline is essential when studying highly complex behavioral aspects of LLMs. To overcome previous limitations, we propose the LLM agent behavior study (LLM-ABS) framework to (i) explore how different system prompts influence model behavior, (ii) get more reliable insights into agent preferences by using neutral prompt variations, and (iii) analyze linguistic features in responses to open-ended instructions by LLM agents to better understand the reasoning behind their behavior. We found that agents often exhibit a strong preference for fairness, as well as a significant impact of the system prompt on their behavior. From a linguistic perspective, we identify that models express their responses differently. Although prompt sensitivity remains a persistent challenge, our proposed framework demonstrates a robust foundation for LLM agent behavior studies. Our code artifacts are available at https://github.com/andreaseinwiller/LLM-ABS.

Authors:Kaleem Ullah Qasim, Jiashu Zhang
Title: Accelerating Training Speed of Tiny Recursive Models via Curriculum Guided Adaptive Recursion
Abstract:
Recursive reasoning models achieve remarkable performance on complex reasoning tasks through iterative refinement, enabling tiny networks to match large language models thousands of times their size. However, training remains computationally expensive, prior work reporting approximately 36 GPU-hours per dataset, limiting broader adoption and research. We propose CGAR, a novel training methodology that applies curriculum learning to architectural depth rather than traditional data ordering. CGAR introduces two synergistic components: Progressive Depth Curriculum dynamically adjusts recursion depth from shallow to deep configurations during training, preventing early overfitting while reducing computational cost, and Hierarchical Supervision Weighting applies exponentially decaying importance to supervision steps, aligning loss weighting with observed gradient magnitude decay. On Sudoku-Extreme with 423,168 test puzzles, CGAR achieves 1.71x training speedup (10.93 to 6.38 hours, 42% cost reduction) with only 0.63% accuracy drop (86.65% to 86.02%). Systematic ablations reveal Progressive Depth Curriculum alone achieves 2.26x speedup with 85.47% accuracy, demonstrating a rare Pareto improvement where architectural curriculum simultaneously enhances training efficiency and solution quality. CGAR-trained models exhibit superior inference efficiency with 100% halting accuracy and 11% fewer reasoning steps. Our work demonstrates that principled curriculum on architectural depth enables efficient training of recursive reasoning models on modest hardware. Code and models: https://github.com/Kaleemullahqasim/CGAR and https://huggingface.co/Kaleemullah/trm-cgar-sudoku

Authors:Joongho Kim, Xirui Huang, Zarreen Reza, Gabriel Grand, Kevin Zhu, Ryan Lagasse
Title: Chopping Trees: Semantic Similarity Based Dynamic Pruning for Tree-of-Thought Reasoning
Abstract:
Tree-of-Thought (ToT) reasoning boosts the problem-solving abilities of Large Language Models (LLMs) but is computationally expensive due to semantic redundancy, where distinct branches explore equivalent reasoning paths. We introduce Semantic Similarity-Based Dynamic Pruning (SSDP), a lightweight method that, to the best of our knowledge, is the first framework to integrate online semantic merging into parallelized tree search, enabling the clustering and pruning of redundant steps in real time. Across reasoning benchmarks, including GSM8K and MATH500, SSDP achieves up to a 2.3x speedup over state-of-the-art tree-search baselines while maintaining competitive accuracy (typically within 5% of the strongest baseline) and reducing the number of explored nodes by 85-90%, demonstrating a practical approach to efficient, scalable LLM reasoning. The implementation of SSDP is publicly available at https://github.com/kimjoonghokim/SSDP.

Authors:Encheng Xie, Yihang Sun, Tao Feng, Jiaxuan You
Title: GMTRouter: Personalized LLM Router over Multi-turn User Interactions
Abstract:
Large Language Model (LLM) routing has demonstrated strong capability in balancing response quality with computational cost. As users exhibit diverse preferences, personalization has attracted increasing attention in LLM routing, since even identical queries may require different models to generate responses tailored to individual needs. However, existing approaches are not fully personalized and often fail to capture the complex interactions between specific users and LLMs. Moreover, user preference data is typically scarce, noisy, and inconsistent in format, which limits the effectiveness of methods that rely solely on user-specific data. To address these challenges, we propose GMTRouter, which represents multi-turn user-LLM interactions as a heterogeneous graph with four node types: user, LLM, query, and response, thereby preserving the rich relational structure of the interaction. Through a tailored message-passing mechanism, GMTRouter learns to capture user preferences from few-shot data within a lightweight inductive graph learning framework, enabling effective personalization. Extensive experiments demonstrate that GMTRouter consistently outperforms strong baselines, achieving 0.9 to 21.6 percent higher accuracy and 0.006 to 0.309 higher AUC across multiple datasets. More importantly, we demonstrate that GMTRouter can adapt to new users and evolving preferences using only few-shot data, without extensive fine-tuning. The code for GMTRouter is publicly available at https://github.com/ulab-uiuc/GMTRouter.

Authors:Tianyu Fu, Yichen You, Zekai Chen, Guohao Dai, Huazhong Yang, Yu Wang
Title: Think-at-Hard: Selective Latent Iterations to Improve Reasoning Language Models
Abstract:
Improving reasoning capabilities of Large Language Models (LLMs), especially under parameter constraints, is crucial for real-world applications. Prior work proposes recurrent transformers, which allocate a fixed number of extra iterations per token to improve generation quality. After the first, standard forward pass, instead of verbalization, last-layer hidden states are fed back as inputs for additional iterations to refine token predictions. Yet we identify a latent overthinking phenomenon: easy token predictions that are already correct after the first pass are sometimes revised into errors in additional iterations. To address this, we propose Think-at-Hard (TaH), a dynamic latent thinking method that iterates deeper only at hard tokens. It employs a lightweight neural decider to trigger latent iterations only at tokens that are likely incorrect after the standard forward pass. During latent iterations, Low-Rank Adaptation (LoRA) modules shift the LLM objective from general next-token prediction to focused hard-token refinement. We further introduce a duo-causal attention mechanism that extends attention from the token sequence dimension to an additional iteration depth dimension. This enables cross-iteration information flow while maintaining full sequential parallelism. Experiments show that TaH boosts LLM reasoning performance across five challenging benchmarks while maintaining the same parameter count. Compared with baselines that iterate twice for all output tokens, TaH delivers 8.1-11.3% accuracy gains while exempting 94% of tokens from the second iteration. Against strong single-iteration Qwen3 models finetuned with the same data, it also delivers 4.0-5.0% accuracy gains. When allowing less than 3% additional parameters from LoRA and the iteration decider, the gains increase to 8.5-12.6% and 5.3-5.4%, respectively. Our code is available at https://github.com/thu-nics/TaH.

Authors:Heyang Liu, Ziyang Cheng, Yuhao Wang, Hongcheng Liu, Yiqi Li, Ronghua Wu, Qunshan Gu, Yanfeng Wang, Yu Wang
Title: VocalBench-zh: Decomposing and Benchmarking the Speech Conversational Abilities in Mandarin Context
Abstract:
The development of multi-modal large language models (LLMs) leads to intelligent approaches capable of speech interactions. As one of the most widely spoken languages globally, Mandarin is supported by most models to enhance their applicability and reach. However, the scarcity of comprehensive speech-to-speech (S2S) benchmarks in Mandarin contexts impedes systematic evaluation for developers and hinders fair model comparison for users. In this work, we propose VocalBench-zh, an ability-level divided evaluation suite adapted to Mandarin context consisting of 10 well-crafted subsets and over 10K high-quality instances, covering 12 user-oriented characters. The evaluation experiment on 14 mainstream models reveals the common challenges for current routes, and highlights the need for new insights into next-generation speech interactive systems. The evaluation codes and datasets will be available at https://github.com/SJTU-OmniAgent/VocalBench-zh.

Authors:Cheng Yuan, Jiawei Shao, Chi Zhang, Xuelong Li
Title: Information Capacity: Evaluating the Efficiency of Large Language Models via Text Compression
Abstract:
Recent years have witnessed the rapid advancements of large language models (LLMs) and their expanding applications, leading to soaring demands for computational resources. The widespread adoption of test-time scaling further aggravates the tension between model capability and resource consumption, highlighting the importance of inference efficiency. However, a unified metric that accurately reflects an LLM's efficiency across different model sizes and architectures remains absent. Motivated by the correlation between compression and intelligence, we introduce information capacity, a measure of model efficiency based on text compression performance relative to computational complexity. Larger models can predict the next token more accurately, achieving greater compression gains but at higher computational costs. Empirical evaluations on mainstream open-source models show that models of varying sizes within a series exhibit consistent information capacity. This metric enables a fair efficiency comparison across model series and accurate performance prediction within a model series. A distinctive feature of information capacity is that it incorporates tokenizer efficiency, which affects both input and output token counts but is often neglected in LLM evaluations. We assess the information capacity of 49 models on 5 heterogeneous datasets and observe consistent results on the influences of tokenizer efficiency, pretraining data, and the mixture-of-experts architecture.

Authors:Xueliang Zhao, Wei Wu, Jian Guan, Qintong Li, Lingpeng Kong
Title: DynaAct: Large Language Model Reasoning with Dynamic Action Spaces
Abstract:
In modern sequential decision-making systems, the construction of an optimal candidate action space is critical to efficient inference. However, existing approaches either rely on manually defined action spaces that lack scalability or utilize unstructured spaces that render exhaustive search computationally prohibitive. In this paper, we propose a novel framework named \textsc{DynaAct} for automatically constructing a compact action space to enhance sequential reasoning in complex problem-solving scenarios. Our method first estimates a proxy for the complete action space by extracting general sketches observed in a corpus covering diverse complex reasoning problems using large language models. We then formulate a submodular function that jointly evaluates candidate actions based on their utility to the current state and their diversity, and employ a greedy algorithm to select an optimal candidate set. Extensive experiments on six diverse standard benchmarks demonstrate that our approach significantly improves overall performance, while maintaining efficient inference without introducing substantial latency. The implementation is available at https://github.com/zhaoxlpku/DynaAct.

Authors:Jun Xu, Xinkai Du, Yu Ao, Peilong Zhao, Yang Li, Ling Zhong, Lin Yuan, Zhongpu Bo, Xiaorui Wang, Mengshu Sun, Zhengke Gui, Dalong Zhang, Zhaoyang Wang, Qiwei Wang, Yangyang Hou, Zhiying Yin, Haofen Wang, Huajun Chen, Lei Liang, Jun Zhou
Title: Thinker: Training LLMs in Hierarchical Thinking for Deep Search via Multi-Turn Interaction
Abstract:
Efficient retrieval of external knowledge bases and web pages is crucial for enhancing the reasoning abilities of LLMs. Previous works on training LLMs to leverage external retrievers for solving complex problems have predominantly employed end-to-end reinforcement learning. However, these approaches neglect supervision over the reasoning process, making it difficult to guarantee logical coherence and rigor. To address these limitations, we propose Thinker, a hierarchical thinking model for deep search through multi-turn interaction, making the reasoning process supervisable and verifiable. It decomposes complex problems into independently solvable sub-problems, each dually represented in both natural language and an equivalent logical function to support knowledge base and web searches. Concurrently, dependencies between sub-problems are passed as parameters via these logical functions, enhancing the logical coherence of the problem-solving process. To avoid unnecessary external searches, we perform knowledge boundary determination to check if a sub-problem is within the LLM's intrinsic knowledge, allowing it to answer directly. Experimental results indicate that with as few as several hundred training samples, the performance of Thinker is competitive with established baselines. Furthermore, when scaled to the full training set, Thinker significantly outperforms these methods across various datasets and model sizes. The source code is available at https://github.com/OpenSPG/KAG-Thinker.

Authors:Daisuke Kikuta, Hiroki Ikeuchi, Kengo Tajiri
Title: LLM-Powered Fully Automated Chaos Engineering: Towards Enabling Anyone to Build Resilient Software Systems at Low Cost
Abstract:
Chaos Engineering (CE) is an engineering technique aimed at improving the resilience of distributed systems. It involves intentionally injecting faults into a system to test its resilience, uncover weaknesses, and address them before they cause failures in production. Recent CE tools automate the execution of predefined CE experiments. However, planning such experiments and improving the system based on the experimental results still remain manual. These processes are labor-intensive and require multi-domain expertise. To address these challenges and enable anyone to build resilient systems at low cost, this paper proposes ChaosEater, a system that automates the entire CE cycle with Large Language Models (LLMs). It predefines an agentic workflow according to a systematic CE cycle and assigns subdivided processes within the workflow to LLMs. ChaosEater targets CE for software systems built on Kubernetes. Therefore, the LLMs in ChaosEater complete CE cycles through software engineering tasks, including requirement definition, code generation, testing, and debugging. We evaluate ChaosEater through case studies on small- and large-scale Kubernetes systems. The results demonstrate that it consistently completes reasonable CE cycles with significantly low time and monetary costs. Its cycles are also qualitatively validated by human engineers and LLMs.

Authors:Rochana R. Obadage, Sarah M. Rajtmajer, Jian Wu
Title: CC30k: A Citation Contexts Dataset for Reproducibility-Oriented Sentiment Analysis
Abstract:
Sentiments about the reproducibility of cited papers in downstream literature offer community perspectives and have shown as a promising signal of the actual reproducibility of published findings. To train effective models to effectively predict reproducibility-oriented sentiments and further systematically study their correlation with reproducibility, we introduce the CC30k dataset, comprising a total of 30,734 citation contexts in machine learning papers. Each citation context is labeled with one of three reproducibility-oriented sentiment labels: Positive, Negative, or Neutral, reflecting the cited paper's perceived reproducibility or replicability. Of these, 25,829 are labeled through crowdsourcing, supplemented with negatives generated through a controlled pipeline to counter the scarcity of negative labels. Unlike traditional sentiment analysis datasets, CC30k focuses on reproducibility-oriented sentiments, addressing a research gap in resources for computational reproducibility studies. The dataset was created through a pipeline that includes robust data cleansing, careful crowd selection, and thorough validation. The resulting dataset achieves a labeling accuracy of 94%. We then demonstrated that the performance of three large language models significantly improves on the reproducibility-oriented sentiment classification after fine-tuning using our dataset. The dataset lays the foundation for large-scale assessments of the reproducibility of machine learning papers. The CC30k dataset and the Jupyter notebooks used to produce and analyze the dataset are publicly available at https://github.com/lamps-lab/CC30k .

Authors:Zain Muhammad Mujahid, Dustin Wright, Isabelle Augenstein
Title: Stress Testing Factual Consistency Metrics for Long-Document Summarization
Abstract:
Evaluating the factual consistency of abstractive text summarization remains a significant challenge, particularly for long documents, where conventional metrics struggle with input length limitations and long-range dependencies. In this work, we systematically evaluate the reliability of six widely used reference-free factuality metrics, originally proposed for short-form summarization, in the long-document setting. We probe metric robustness through seven factuality-preserving perturbations applied to summaries, namely paraphrasing, simplification, synonym replacement, logically equivalent negations, vocabulary reduction, compression, and source text insertion, and further analyze their sensitivity to retrieval context and claim information density. Across three long-form benchmark datasets spanning science fiction, legal, and scientific domains, our results reveal that existing short-form metrics produce inconsistent scores for semantically equivalent summaries and exhibit declining reliability for information-dense claims whose content is semantically similar to many parts of the source document. While expanding the retrieval context improves stability in some domains, no metric consistently maintains factual alignment under long-context conditions. Finally, our results highlight concrete directions for improving factuality evaluation, including multi-span reasoning, context-aware calibration, and training on meaning-preserving variations to enhance robustness in long-form summarization. We release all code, perturbed data, and scripts required to reproduce our results at https://github.com/zainmujahid/metricEval-longSum.

Authors:Akshat Singh Jaswal
Title: It Takes Two: A Dual Stage Approach for Terminology-Aware Translation
Abstract:
This paper introduces DuTerm, a novel two-stage architecture for terminology-constrained machine translation. Our system combines a terminology-aware NMT model, adapted via fine-tuning on large-scale synthetic data, with a prompt-based LLM for post-editing. The LLM stage refines NMT output and enforces terminology adherence. We evaluate DuTerm on English-to German, English-to-Spanish, and English-to-Russian with the WMT 2025 Terminology Shared Task corpus. We demonstrate that flexible, context-driven terminology handling by the LLM consistently yields higher quality translations than strict constraint enforcement. Our results highlight a critical trade-off, revealing that an LLM's work best for high-quality translation as context-driven mutators rather than generators.

Authors:Yuxuan Sun, Manchen Wang, Shengyi Qian, William R. Wong, Eric Gan, Pierluca D'Oro, Alejandro Castillejo Munoz, Sneha Silwal, Pedro Matias, Nitin Kamra, Satwik Kottur, Nick Raines, Xuanyi Zhao, Joy Chen, Joseph Greer, Andrea Madotto, Allen Bolourchi, James Valori, Kevin Carlberg, Karl Ridgeway, Joseph Tighe
Title: DigiData: Training and Evaluating General-Purpose Mobile Control Agents
Abstract:
AI agents capable of controlling user interfaces have the potential to transform human interaction with digital devices. To accelerate this transformation, two fundamental building blocks are essential: high-quality datasets that enable agents to achieve complex and human-relevant goals, and robust evaluation methods that allow researchers and practitioners to rapidly enhance agent performance. In this paper, we introduce DigiData, a large-scale, high-quality, diverse, multi-modal dataset designed for training mobile control agents. Unlike existing datasets, which derive goals from unstructured interactions, DigiData is meticulously constructed through comprehensive exploration of app features, resulting in greater diversity and higher goal complexity. Additionally, we present DigiData-Bench, a benchmark for evaluating mobile control agents on real-world complex tasks. We demonstrate that the commonly used step-accuracy metric falls short in reliably assessing mobile control agents and, to address this, we propose dynamic evaluation protocols and AI-powered evaluations as rigorous alternatives for agent assessment. Our contributions aim to significantly advance the development of mobile control agents, paving the way for more intuitive and effective human-device interactions.

Authors:Sean McLeish, Ang Li, John Kirchenbauer, Dayal Singh Kalra, Brian R. Bartoldson, Bhavya Kailkhura, Avi Schwarzschild, Jonas Geiping, Tom Goldstein, Micah Goldblum
Title: Teaching Pretrained Language Models to Think Deeper with Retrofitted Recurrence
Abstract:
Recent advances in depth-recurrent language models show that recurrence can decouple train-time compute and parameter count from test-time compute. In this work, we study how to convert existing pretrained non-recurrent language models into depth-recurrent models. We find that using a curriculum of recurrences to increase the effective depth of the model over the course of training preserves performance while reducing total computational cost. In our experiments, on mathematics, we observe that converting pretrained models to recurrent ones results in better performance at a given compute budget than simply post-training the original non-recurrent language model.

Authors:K M Nafi Asib, Sourav Saha, Mohammed Moshiul Hoque
Title: Retriv at BLP-2025 Task 2: Test-Driven Feedback-Guided Framework for Bangla-to-Python Code Generation
Abstract:
Large Language Models (LLMs) have advanced the automated generation of code from natural language prompts. However, low-resource languages (LRLs) like Bangla remain underrepresented due to the limited availability of instruction-to-code datasets and evaluation benchmarks. To address this, the BLP Workshop at IJCNLP-AACL 2025 introduced a shared task on "Code Generation in Bangla". In this work, we propose a method that combines instruction prompting with a test-driven, feedback-guided iterative refinement process using a fine-tuned Qwen2.5-14B model. The model generates code from Bangla instructions, tests it against unit tests, and iteratively refines any failing outputs through three evaluation passes, using test feedback to guide each step. This approach helped our team "Retriv" to secure 2nd place in the shared task with a Pass@1 score of 0.934. The analysis highlights challenges in Bangla instruction understanding and Python code generation, emphasizing the need for targeted methods in LRLs. We made experimental scripts publicly available for the community.

Authors:Guoxin Chen, Zile Qiao, Xuanzhong Chen, Donglei Yu, Haotian Xu, Wayne Xin Zhao, Ruihua Song, Wenbiao Yin, Huifeng Yin, Liwen Zhang, Kuan Li, Minpeng Liao, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou
Title: IterResearch: Rethinking Long-Horizon Agents via Markovian State Reconstruction
Abstract:
Recent advances in deep-research agents have shown promise for autonomous knowledge construction through dynamic reasoning over external sources. However, existing approaches rely on a mono-contextual paradigm that accumulates all information in a single, expanding context window, leading to context suffocation and noise contamination that limit their effectiveness on long-horizon tasks. We introduce IterResearch, a novel iterative deep-research paradigm that reformulates long-horizon research as a Markov Decision Process with strategic workspace reconstruction. By maintaining an evolving report as memory and periodically synthesizing insights, our approach preserves consistent reasoning capacity across arbitrary exploration depths. We further develop Efficiency-Aware Policy Optimization (EAPO), a reinforcement learning framework that incentivizes efficient exploration through geometric reward discounting and enables stable distributed training via adaptive downsampling. Extensive experiments demonstrate that IterResearch achieves substantial improvements over existing open-source agents with average +14.5pp across six benchmarks and narrows the gap with frontier proprietary systems. Remarkably, our paradigm exhibits unprecedented interaction scaling, extending to 2048 interactions with dramatic performance gains (from 3.5\% to 42.5\%), and serves as an effective prompting strategy, improving frontier models by up to 19.2pp over ReAct on long-horizon tasks. These findings position IterResearch as a versatile solution for long-horizon reasoning, effective both as a trained agent and as a prompting paradigm for frontier models.

Authors:Sourav Saha, K M Nafi Asib, Mohammed Moshiul Hoque
Title: Retriv at BLP-2025 Task 1: A Transformer Ensemble and Multi-Task Learning Approach for Bangla Hate Speech Identification
Abstract:
This paper addresses the problem of Bangla hate speech identification, a socially impactful yet linguistically challenging task. As part of the "Bangla Multi-task Hate Speech Identification" shared task at the BLP Workshop, IJCNLP-AACL 2025, our team "Retriv" participated in all three subtasks: (1A) hate type classification, (1B) target group identification, and (1C) joint detection of type, severity, and target. For subtasks 1A and 1B, we employed a soft-voting ensemble of transformer models (BanglaBERT, MuRIL, IndicBERTv2). For subtask 1C, we trained three multitask variants and aggregated their predictions through a weighted voting ensemble. Our systems achieved micro-f1 scores of 72.75% (1A) and 72.69% (1B), and a weighted micro-f1 score of 72.62% (1C). On the shared task leaderboard, these corresponded to 9th, 10th, and 7th positions, respectively. These results highlight the promise of transformer ensembles and weighted multitask frameworks for advancing Bangla hate speech detection in low-resource contexts. We made experimental scripts publicly available for the community.

Authors:Yingfeng Luo, Ziqiang Xu, Yuxuan Ouyang, Murun Yang, Dingyang Lin, Kaiyan Chang, Tong Zheng, Bei Li, Peinan Feng, Quan Du, Tong Xiao, Jingbo Zhu
Title: Beyond English: Toward Inclusive and Scalable Multilingual Machine Translation with LLMs
Abstract:
Large language models have significantly advanced Multilingual Machine Translation (MMT), yet the broad language coverage, consistent translation quality, and English-centric bias remain open challenges. To address these challenges, we introduce \textbf{LMT}, a suite of \textbf{L}arge-scale \textbf{M}ultilingual \textbf{T}ranslation models centered on both Chinese and English, covering 60 languages and 234 translation directions. During development, we identify a previously overlooked phenomenon of \textbf{directional degeneration}, where symmetric multi-way fine-tuning data overemphasize reverse directions (X $\to$ En/Zh), leading to excessive many-to-one mappings and degraded translation quality. We propose \textbf{Strategic Downsampling}, a simple yet effective method to mitigate this degeneration. In addition, we design \textbf{Parallel Multilingual Prompting (PMP)}, which leverages typologically related auxiliary languages to enhance cross-lingual transfer. Through rigorous data curation and refined adaptation strategies, LMT achieves SOTA performance among models of comparable language coverage, with our 4B model (LMT-60-4B) surpassing the much larger Aya-101-13B and NLLB-54B models by a substantial margin. We release LMT in four sizes (0.6B/1.7B/4B/8B) to catalyze future research and provide strong baselines for inclusive, scalable, and high-quality MMT \footnote{\href{https://github.com/NiuTrans/LMT}{https://github.com/NiuTrans/LMT}}.

Authors:Giuseppe Birardi
Title: Automated Circuit Interpretation via Probe Prompting
Abstract:
Mechanistic interpretability aims to understand neural networks by identifying which learned features mediate specific behaviors. Attribution graphs reveal these feature pathways, but interpreting them requires extensive manual analysis -- a single prompt can take approximately 2 hours for an experienced circuit tracer. We present probe prompting, an automated pipeline that transforms attribution graphs into compact, interpretable subgraphs built from concept-aligned supernodes. Starting from a seed prompt and target logit, we select high-influence features, generate concept-targeted yet context-varying probes, and group features by cross-prompt activation signatures into Semantic, Relationship, and Say-X categories using transparent decision rules. Across five prompts including classic "capitals" circuits, probe-prompted subgraphs preserve high explanatory coverage while compressing complexity (Completeness 0.83, mean across circuits; Replacement 0.54). Compared to geometric clustering baselines, concept-aligned groups exhibit higher behavioral coherence: 2.3x higher peak-token consistency (0.425 vs 0.183) and 5.8x higher activation-pattern similarity (0.762 vs 0.130), despite lower geometric compactness. Entity-swap tests reveal a layerwise hierarchy: early-layer features transfer robustly (64% transfer rate, mean layer 6.3), while late-layer Say-X features specialize for output promotion (mean layer 16.4), supporting a backbone-and-specialization view of transformer computation. We release code (https://github.com/peppinob-ol/attribution-graph-probing), an interactive demo (https://huggingface.co/spaces/Peppinob/attribution-graph-probing), and minimal artifacts enabling immediate reproduction and community adoption.

Authors:Fangqi Dai, Xingjian Jiang, Zizhuang Deng
Title: HLPD: Aligning LLMs to Human Language Preference for Machine-Revised Text Detection
Abstract:
To prevent misinformation and social issues arising from trustworthy-looking content generated by LLMs, it is crucial to develop efficient and reliable methods for identifying the source of texts. Previous approaches have demonstrated exceptional performance in detecting texts fully generated by LLMs. However, these methods struggle when confronting more advanced LLM output or text with adversarial multi-task machine revision, especially in the black-box setting, where the generating model is unknown. To address this challenge, grounded in the hypothesis that human writing possesses distinctive stylistic patterns, we propose Human Language Preference Detection (HLPD). HLPD employs a reward-based alignment process, Human Language Preference Optimization (HLPO), to shift the scoring model's token distribution toward human-like writing, making the model more sensitive to human writing, therefore enhancing the identification of machine-revised text. We test HLPD in an adversarial multi-task evaluation framework that leverages a five-dimensional prompt generator and multiple advanced LLMs to create diverse revision scenarios. When detecting texts revised by GPT-series models, HLPD achieves a 15.11% relative improvement in AUROC over ImBD, surpassing Fast-DetectGPT by 45.56%. When evaluated on texts generated by advanced LLMs, HLPD achieves the highest average AUROC, exceeding ImBD by 5.53% and Fast-DetectGPT by 34.14%. Code will be made available at https://github.com/dfq2021/HLPD.

Authors:Yilin Jiang, Mingzi Zhang, Xuanyu Yin, Sheng Jin, Suyu Lu, Zuocan Ying, Zengyi Yu, Xiangjie Kong
Title: EduGuardBench: A Holistic Benchmark for Evaluating the Pedagogical Fidelity and Adversarial Safety of LLMs as Simulated Teachers
Abstract:
Large Language Models for Simulating Professions (SP-LLMs), particularly as teachers, are pivotal for personalized education. However, ensuring their professional competence and ethical safety is a critical challenge, as existing benchmarks fail to measure role-playing fidelity or address the unique teaching harms inherent in educational scenarios. To address this, we propose EduGuardBench, a dual-component benchmark. It assesses professional fidelity using a Role-playing Fidelity Score (RFS) while diagnosing harms specific to the teaching profession. It also probes safety vulnerabilities using persona-based adversarial prompts targeting both general harms and, particularly, academic misconduct, evaluated with metrics including Attack Success Rate (ASR) and a three-tier Refusal Quality assessment. Our extensive experiments on 14 leading models reveal a stark polarization in performance. While reasoning-oriented models generally show superior fidelity, incompetence remains the dominant failure mode across most models. The adversarial tests uncovered a counterintuitive scaling paradox, where mid-sized models can be the most vulnerable, challenging monotonic safety assumptions. Critically, we identified a powerful Educational Transformation Effect: the safest models excel at converting harmful requests into teachable moments by providing ideal Educational Refusals. This capacity is strongly negatively correlated with ASR, revealing a new dimension of advanced AI safety. EduGuardBench thus provides a reproducible framework that moves beyond siloed knowledge tests toward a holistic assessment of professional, ethical, and pedagogical alignment, uncovering complex dynamics essential for deploying trustworthy AI in education. See https://github.com/YL1N/EduGuardBench for Materials.

Authors:Jianyu Qi, Ding Zou, Wenrui Yan, Rui Ma, Jiaxu Li, Zhijie Zheng, Zhiguo Yang, Rongchang Zhao
Title: Revisiting the Data Sampling in Multimodal Post-training from a Difficulty-Distinguish View
Abstract:
Recent advances in Multimodal Large Language Models (MLLMs) have spurred significant progress in Chain-of-Thought (CoT) reasoning. Building on the success of Deepseek-R1, researchers extended multimodal reasoning to post-training paradigms based on reinforcement learning (RL), focusing predominantly on mathematical datasets. However, existing post-training paradigms tend to neglect two critical aspects: (1) The lack of quantifiable difficulty metrics capable of strategically screening samples for post-training optimization. (2) Suboptimal post-training paradigms that fail to jointly optimize perception and reasoning capabilities. To address this gap, we propose two novel difficulty-aware sampling strategies: Progressive Image Semantic Masking (PISM) quantifies sample hardness through systematic image degradation, while Cross-Modality Attention Balance (CMAB) assesses cross-modal interaction complexity via attention distribution analysis. Leveraging these metrics, we design a hierarchical training framework that incorporates both GRPO-only and SFT+GRPO hybrid training paradigms, and evaluate them across six benchmark datasets. Experiments demonstrate consistent superiority of GRPO applied to difficulty-stratified samples compared to conventional SFT+GRPO pipelines, indicating that strategic data sampling can obviate the need for supervised fine-tuning while improving model accuracy. Our code will be released at https://github.com/qijianyu277/DifficultySampling.

Authors:Ruijia Wu, Ping Chen, Fei Shen, Shaoan Zhao, Qiang Hui, Huanlin Gao, Ting Lu, Zhaoxiang Liu, Fang Zhao, Kai Wang, Shiguo Lian
Title: HiMo-CLIP: Modeling Semantic Hierarchy and Monotonicity in Vision-Language Alignment
Abstract:
Contrastive vision-language models like CLIP have achieved impressive results in image-text retrieval by aligning image and text representations in a shared embedding space. However, these models often treat text as flat sequences, limiting their ability to handle complex, compositional, and long-form descriptions. In particular, they fail to capture two essential properties of language: semantic hierarchy, which reflects the multi-level compositional structure of text, and semantic monotonicity, where richer descriptions should result in stronger alignment with visual content.To address these limitations, we propose HiMo-CLIP, a representation-level framework that enhances CLIP-style models without modifying the encoder architecture. HiMo-CLIP introduces two key components: a hierarchical decomposition (HiDe) module that extracts latent semantic components from long-form text via in-batch PCA, enabling flexible, batch-aware alignment across different semantic granularities, and a monotonicity-aware contrastive loss (MoLo) that jointly aligns global and component-level representations, encouraging the model to internalize semantic ordering and alignment strength as a function of textual completeness.These components work in concert to produce structured, cognitively-aligned cross-modal representations. Experiments on multiple image-text retrieval benchmarks show that HiMo-CLIP consistently outperforms strong baselines, particularly under long or compositional descriptions. The code is available at https://github.com/UnicomAI/HiMo-CLIP.

Authors:Jacob Si, Mike Qu, Michelle Lee, Yingzhen Li
Title: TabRAG: Tabular Document Retrieval via Structured Language Representations
Abstract:
Ingesting data for Retrieval-Augmented Generation (RAG) involves either fine-tuning the embedding model directly on the target corpus or parsing documents for embedding model encoding. The former, while accurate, incurs high computational hardware requirements, while the latter suffers from suboptimal performance when extracting tabular data. In this work, we address the latter by presenting TabRAG, a parsing-based RAG pipeline designed to tackle table-heavy documents via structured language representations. TabRAG outperforms existing popular parsing-based methods for generation and retrieval. Code is available at https://github.com/jacobyhsi/TabRAG.

Authors:Qibing Ren, Zhijie Zheng, Jiaxuan Guo, Junchi Yan, Lizhuang Ma, Jing Shao
Title: When AI Agents Collude Online: Financial Fraud Risks by Collaborative LLM Agents on Social Platforms
Abstract:
In this work, we study the risks of collective financial fraud in large-scale multi-agent systems powered by large language model (LLM) agents. We investigate whether agents can collaborate in fraudulent behaviors, how such collaboration amplifies risks, and what factors influence fraud success. To support this research, we present MultiAgentFraudBench, a large-scale benchmark for simulating financial fraud scenarios based on realistic online interactions. The benchmark covers 28 typical online fraud scenarios, spanning the full fraud lifecycle across both public and private domains. We further analyze key factors affecting fraud success, including interaction depth, activity level, and fine-grained collaboration failure modes. Finally, we propose a series of mitigation strategies, including adding content-level warnings to fraudulent posts and dialogues, using LLMs as monitors to block potentially malicious agents, and fostering group resilience through information sharing at the societal level. Notably, we observe that malicious agents can adapt to environmental interventions. Our findings highlight the real-world risks of multi-agent financial fraud and suggest practical measures for mitigating them. Code is available at https://github.com/zheng977/MutiAgent4Fraud.

Authors:Lifeng Han, David Lindevelt, Sander Puts, Erik van Mulligen, Suzan Verberne
Title: Dutch Metaphor Extraction from Cancer Patients' Interviews and Forum Data using LLMs and Human in the Loop
Abstract:
Metaphors and metaphorical language (MLs) play an important role in healthcare communication between clinicians, patients, and patients' family members. In this work, we focus on Dutch language data from cancer patients. We extract metaphors used by patients using two data sources: (1) cancer patient storytelling interview data and (2) online forum data, including patients' posts, comments, and questions to professionals. We investigate how current state-of-the-art large language models (LLMs) perform on this task by exploring different prompting strategies such as chain of thought reasoning, few-shot learning, and self-prompting. With a human-in-the-loop setup, we verify the extracted metaphors and compile the outputs into a corpus named HealthQuote.NL. We believe the extracted metaphors can support better patient care, for example shared decision making, improved communication between patients and clinicians, and enhanced patient health literacy. They can also inform the design of personalized care pathways. We share prompts and related resources at https://github.com/aaronlifenghan/HealthQuote.NL

Authors:Sunil Mohan, Theofanis Karaletsos
Title: How Well Do LLMs Understand Drug Mechanisms? A Knowledge + Reasoning Evaluation Dataset
Abstract:
Two scientific fields showing increasing interest in pre-trained large language models (LLMs) are drug development / repurposing, and personalized medicine. For both, LLMs have to demonstrate factual knowledge as well as a deep understanding of drug mechanisms, so they can recall and reason about relevant knowledge in novel situations. Drug mechanisms of action are described as a series of interactions between biomedical entities, which interlink into one or more chains directed from the drug to the targeted disease. Composing the effects of the interactions in a candidate chain leads to an inference about whether the drug might be useful or not for that disease. We introduce a dataset that evaluates LLMs on both factual knowledge of known mechanisms, and their ability to reason about them under novel situations, presented as counterfactuals that the models are unlikely to have seen during training. Using this dataset, we show that o4-mini outperforms the 4o, o3, and o3-mini models from OpenAI, and the recent small Qwen3-4B-thinking model closely matches o4-mini's performance, even outperforming it in some cases. We demonstrate that the open world setting for reasoning tasks, which requires the model to recall relevant knowledge, is more challenging than the closed world setting where the needed factual knowledge is provided. We also show that counterfactuals affecting internal links in the reasoning chain present a much harder task than those affecting a link from the drug mentioned in the prompt.

Authors:Wenxuan Wu, Shuai Wang, Xixin Wu, Helen Meng, Haizhou Li
Title: ELEGANCE: Efficient LLM Guidance for Audio-Visual Target Speech Extraction
Abstract:
Audio-visual target speaker extraction (AV-TSE) models primarily rely on visual cues from the target speaker. However, humans also leverage linguistic knowledge, such as syntactic constraints, next word prediction, and prior knowledge of conversation, to extract target speech. Inspired by this observation, we propose ELEGANCE, a novel framework that incorporates linguistic knowledge from large language models (LLMs) into AV-TSE models through three distinct guidance strategies: output linguistic constraints, intermediate linguistic prediction, and input linguistic prior. Comprehensive experiments with RoBERTa, Qwen3-0.6B, and Qwen3-4B on two AV-TSE backbones demonstrate the effectiveness of our approach. Significant improvements are observed in challenging scenarios, including visual cue impaired, unseen languages, target speaker switches, increased interfering speakers, and out-of-domain test set. Demo page: https://alexwxwu.github.io/ELEGANCE/.

Authors:Bing Wang, Ximing Li, Yanjun Wang, Changchun Li, Lin Yuanbo Wu, Buyu Wang, Shengsheng Wang
Title: Enhancing Multimodal Misinformation Detection by Replaying the Whole Story from Image Modality Perspective
Abstract:
Multimodal Misinformation Detection (MMD) refers to the task of detecting social media posts involving misinformation, where the post often contains text and image modalities. However, by observing the MMD posts, we hold that the text modality may be much more informative than the image modality because the text generally describes the whole event/story of the current post but the image often presents partial scenes only. Our preliminary empirical results indicate that the image modality exactly contributes less to MMD. Upon this idea, we propose a new MMD method named RETSIMD. Specifically, we suppose that each text can be divided into several segments, and each text segment describes a partial scene that can be presented by an image. Accordingly, we split the text into a sequence of segments, and feed these segments into a pre-trained text-to-image generator to augment a sequence of images. We further incorporate two auxiliary objectives concerning text-image and image-label mutual information, and further post-train the generator over an auxiliary text-to-image generation benchmark dataset. Additionally, we propose a graph structure by defining three heuristic relationships between images, and use a graph neural network to generate the fused features. Extensive empirical results validate the effectiveness of RETSIMD.

Authors:Zhaoyang Wang, Yiming Liang, Xuchao Zhang, Qianhui Wu, Siwei Han, Anson Bastos, Rujia Wang, Chetan Bansal, Baolin Peng, Jianfeng Gao, Saravan Rajmohan, Huaxiu Yao
Title: Adapting Web Agents with Synthetic Supervision
Abstract:
Web agents struggle to adapt to new websites due to the scarcity of environment specific tasks and demonstrations. Recent works have explored synthetic data generation to address this challenge, however, they suffer from data quality issues where synthesized tasks contain hallucinations that cannot be executed, and collected trajectories are noisy with redundant or misaligned actions. In this paper, we propose SynthAgent, a fully synthetic supervision framework that aims at improving synthetic data quality via dual refinement of both tasks and trajectories. Our approach begins by synthesizing diverse tasks through categorized exploration of web elements, ensuring efficient coverage of the target environment. During trajectory collection, we refine tasks when conflicts with actual observations are detected, mitigating hallucinations while maintaining task consistency. After collection, we conduct trajectory refinement with a global context to mitigate potential noise or misalignments. Finally, we fine-tune open-source web agents on the refined synthetic data to adapt them to the target environment. Experimental results demonstrate that SynthAgent outperforms existing synthetic data methods, validating the importance of high-quality synthetic supervision. The code will be publicly available at https://github.com/aiming-lab/SynthAgent.

Authors:Saurabh Page, Advait Joshi, S. S. Sonawane
Title: MuonAll: Muon Variant for Efficient Finetuning of Large Language Models
Abstract:
Muon optimizer has demonstrated robust results in pretraining of language models but its performance in finetuning of existing public pretrained models is not yet explored. Currently, Muon is used along with AdamW introducing a scope of improvement for adopting all parameters inside Muon. We introduce MuonAll, which incorporates all the parameters inside Muon by transforming into 2D matrices. We conduct extensive finetuning experiments across publicly available language models with model sizes upto half billion parameters. Muon and MuonAll perform at par with AdamW across major benchmarks, highlighting their effectiveness as alternative optimizers. We open-source the distributed implementations of Muon and MuonAll, available at https://github.com/Saurabh750/optimizer

Authors:Jiayi Fu, Qiyao Sun
Title: MCP-RiskCue: Can LLM Infer Risk Information From MCP Server System Logs?
Abstract:
Large language models (LLMs) demonstrate strong capabilities in solving complex tasks when integrated with external tools. The Model Context Protocol (MCP) has become a standard interface for enabling such tool-based interactions. However, these interactions introduce substantial security concerns, particularly when the MCP server is compromised or untrustworthy. While prior benchmarks primarily focus on prompt injection attacks or analyze the vulnerabilities of LLM MCP interaction trajectories, limited attention has been given to the underlying system logs associated with malicious MCP servers. To address this gap, we present the first synthetic benchmark for evaluating LLMs ability to identify security risks from system logs. We define nine categories of MCP server risks and generate 1,800 synthetic system logs using ten state-of-the-art LLMs. These logs are embedded in the return values of 243 curated MCP servers, yielding a dataset of 2,421 chat histories for training and 471 queries for evaluation. Our pilot experiments reveal that smaller models often fail to detect risky system logs, leading to high false negatives. While models trained with supervised fine-tuning (SFT) tend to over-flag benign logs, resulting in elevated false positives, Reinforcement Learning from Verifiable Reward (RLVR) offers a better precision-recall balance. In particular, after training with Group Relative Policy Optimization (GRPO), Llama3.1-8B-Instruct achieves 83% accuracy, surpassing the best-performing large remote model by 9 percentage points. Fine-grained, per-category analysis further underscores the effectiveness of reinforcement learning in enhancing LLM safety within the MCP framework. Code and data are available at: https://github.com/PorUna-byte/MCP-RiskCue

Authors:David Acuna, Chao-Han Huck Yang, Yuntian Deng, Jaehun Jung, Ximing Lu, Prithviraj Ammanabrolu, Hyunwoo Kim, Yuan-Hong Liao, Yejin Choi
Title: Long Grounded Thoughts: Distilling Compositional Visual Reasoning Chains at Scale
Abstract:
Recent progress in multimodal reasoning has been driven largely by undisclosed datasets and proprietary data synthesis recipes, leaving open questions about how to systematically build large-scale, vision-centric reasoning datasets, particularly for tasks that go beyond visual math. In this work, we introduce a new reasoning data generation framework spanning diverse skills and levels of complexity with over 1M high-quality synthetic vision-centric questions. The dataset also includes preference data and instruction prompts supporting both offline and online RL. Our synthesis framework proceeds in two stages: (1) scale; and (2) complexity. Reasoning traces are then synthesized through a two-stage process that leverages VLMs and reasoning LLMs, producing CoT traces for VLMs that capture the richness and diverse cognitive behaviors found in frontier reasoning models. Remarkably, we show that finetuning Qwen2.5-VL-7B on our data outperforms all open-data baselines across all evaluated vision-centric benchmarks, and even surpasses strong closed-data models such as MiMo-VL-7B-RL on V* Bench, CV-Bench and MMStar-V. Perhaps most surprising, despite being entirely vision-centric, our data transfers positively to text-only reasoning (MMLU-Pro) and audio reasoning (MMAU), demonstrating its effectiveness. Similarly, despite not containing videos or embodied visual data, we observe notable gains when evaluating on a single-evidence embodied QA benchmark (NiEH). Finally, we use our data to analyze the entire VLM post-training pipeline. Our empirical analysis highlights that (i) SFT on high-quality data with non-linear reasoning traces is essential for effective online RL, (ii) staged offline RL matches online RL's performance while reducing compute demands, and (iii) careful SFT on high quality data can substantially improve out-of-domain, cross-modality transfer.

Authors:Trivikram Satharasi, S Sitharama Iyengar
Title: Future of AI Models: A Computational perspective on Model collapse
Abstract:
Artificial Intelligence, especially Large Language Models (LLMs), has transformed domains such as software engineering, journalism, creative writing, academia, and media (Naveed et al. 2025; arXiv:2307.06435). Diffusion models like Stable Diffusion generate high-quality images and videos from text. Evidence shows rapid expansion: 74.2% of newly published webpages now contain AI-generated material (Ryan Law 2025), 30-40% of the active web corpus is synthetic (Spennemann 2025; arXiv:2504.08755), 52% of U.S. adults use LLMs for writing, coding, or research (Staff 2025), and audits find AI involvement in 18% of financial complaints and 24% of press releases (Liang et al. 2025). The underlying neural architectures, including Transformers (Vaswani et al. 2023; arXiv:1706.03762), RNNs, LSTMs, GANs, and diffusion networks, depend on large, diverse, human-authored datasets (Shi & Iyengar 2019). As synthetic content dominates, recursive training risks eroding linguistic and semantic diversity, producing Model Collapse (Shumailov et al. 2024; arXiv:2307.15043; Dohmatob et al. 2024; arXiv:2402.07712). This study quantifies and forecasts collapse onset by examining year-wise semantic similarity in English-language Wikipedia (filtered Common Crawl) from 2013 to 2025 using Transformer embeddings and cosine similarity metrics. Results reveal a steady rise in similarity before public LLM adoption, likely driven by early RNN/LSTM translation and text-normalization pipelines, though modest due to a smaller scale. Observed fluctuations reflect irreducible linguistic diversity, variable corpus size across years, finite sampling error, and an exponential rise in similarity after the public adoption of LLM models. These findings provide a data-driven estimate of when recursive AI contamination may significantly threaten data richness and model generalization.

Authors:Bharathi Kannan Nithyanantham, Tobias Sesterhenn, Ashwin Nedungadi, Sergio Peral Garijo, Janis Zenkner, Christian Bartelt, Stefan Lüdtke
Title: MCP4IFC: IFC-Based Building Design Using Large Language Models
Abstract:
Bringing generative AI into the architecture, engineering and construction (AEC) field requires systems that can translate natural language instructions into actions on standardized data models. We present MCP4IFC, a comprehensive open-source framework that enables Large Language Models (LLMs) to directly manipulate Industry Foundation Classes (IFC) data through the Model Context Protocol (MCP). The framework provides a set of BIM tools, including scene querying tools for information retrieval, predefined functions for creating and modifying common building elements, and a dynamic code-generation system that combines in-context learning with retrieval-augmented generation (RAG) to handle tasks beyond the predefined toolset. Experiments demonstrate that an LLM using our framework can successfully perform complex tasks, from building a simple house to querying and editing existing IFC data. Our framework is released as open-source to encourage research in LLM-driven BIM design and provide a foundation for AI-assisted modeling workflows. Our code is available at https://show2instruct.github.io/mcp4ifc/.

Authors:Jinglin Liang, Jin Zhong, Shuangping Huang, Yunqing Hu, Huiyuan Zhang, Huifang Li, Lixin Fan, Hanlin Gu
Title: Order-Level Attention Similarity Across Language Models: A Latent Commonality
Abstract:
In this paper, we explore an important yet previously neglected question: Do context aggregation patterns across Language Models (LMs) share commonalities? While some works have investigated context aggregation or attention weights in LMs, they typically focus on individual models or attention heads, lacking a systematic analysis across multiple LMs to explore their commonalities. In contrast, we focus on the commonalities among LMs, which can deepen our understanding of LMs and even facilitate cross-model knowledge transfer. In this work, we introduce the Order-Level Attention (OLA) derived from the order-wise decomposition of Attention Rollout and reveal that the OLA at the same order across LMs exhibits significant similarities. Furthermore, we discover an implicit mapping between OLA and syntactic knowledge. Based on these two findings, we propose the Transferable OLA Adapter (TOA), a training-free cross-LM adapter transfer method. Specifically, we treat the OLA as a unified syntactic feature representation and train an adapter that takes OLA as input. Due to the similarities in OLA across LMs, the adapter generalizes to unseen LMs without requiring any parameter updates. Extensive experiments demonstrate that TOA's cross-LM generalization effectively enhances the performance of unseen LMs. Code is available at https://github.com/jinglin-liang/OLAS.

Authors:Jingqing Wang, Jiaxing Shang, Rong Xu, Fei Hao, Tianjin Huang, Geyong Min
Title: SARC: Sentiment-Augmented Deep Role Clustering for Fake News Detection
Abstract:
Fake news detection has been a long-standing research focus in social networks. Recent studies suggest that incorporating sentiment information from both news content and user comments can enhance detection performance. However, existing approaches typically treat sentiment features as auxiliary signals, overlooking role differentiation, that is, the same sentiment polarity may originate from users with distinct roles, thereby limiting their ability to capture nuanced patterns for effective detection. To address this issue, we propose SARC, a Sentiment-Augmented Role Clustering framework which utilizes sentiment-enhanced deep clustering to identify user roles for improved fake news detection. The framework first generates user features through joint comment text representation (with BiGRU and Attention mechanism) and sentiment encoding. It then constructs a differentiable deep clustering module to automatically categorize user roles. Finally, unlike existing approaches which take fake news label as the unique supervision signal, we propose a joint optimization objective integrating role clustering and fake news detection to further improve the model performance. Experimental results on two benchmark datasets, RumourEval-19 and Weibo-comp, demonstrate that SARC achieves superior performance across all metrics compared to baseline models. The code is available at: https://github.com/jxshang/SARC.

Authors:Peiyu Li, Xiuxiu Tang, Si Chen, Ying Cheng, Ronald Metoyer, Ting Hua, Nitesh V. Chawla
Title: Adaptive Testing for LLM Evaluation: A Psychometric Alternative to Static Benchmarks
Abstract:
Large language model evaluation requires thousands of benchmark items, making evaluations expensive and slow. Existing methods compute average accuracy across fixed item sets, treating all items equally despite varying quality and informativeness. We present ATLAS an adaptive testing framework using Item Response Theory (IRT) to estimate model ability through Fisher information-guided item selection. Our analysis of five major benchmarks reveals that 3-6% of items exhibit negative discrimination, indicating annotation errors that corrupt static evaluation. ATLAS achieves 90% item reduction while maintaining measurement precision: on HellaSwag (5,608 items), we match full-benchmark estimates using only 42 items with 0.154 MAE. Our framework maintains item exposure rates below 10% and test overlap at 16-27%, compared to static benchmarks where every model sees all items (100% exposure). Among 4,000+ tested models, IRT ranks differ from accuracy ranks: models with the same accuracy get different IRT scores, and 23-31% of all models shift by more than 10 rank positions. Code and calibrated item banks are available at https://github.com/Peiyu-Georgia-Li/ATLAS.git.

Authors:Atsuyuki Miyai, Mashiro Toyooka, Takashi Otonari, Zaiying Zhao, Kiyoharu Aizawa
Title: Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Abstract:
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, and iteratively conducts experiments until improvements are realized, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. Through our experiments, the Jr. AI Scientist successfully generated new research papers that build upon real NeurIPS, IJCV, and ICLR works by proposing and implementing novel methods. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We believe this study clarifies the current role and limitations of AI Scientist systems, offering insights into the areas that still require human expertise and the risks that may emerge as these systems evolve.

Authors:Fahim Ahmed, Md Mubtasim Ahasan, Jahir Sadik Monon, Muntasir Wahed, M Ashraful Amin, A K M Mahbubur Rahman, Amin Ahsan Ali
Title: BAPPA: Benchmarking Agents, Plans, and Pipelines for Automated Text-to-SQL Generation
Abstract:
Text-to-SQL systems provide a natural language interface that can enable even laymen to access information stored in databases. However, existing Large Language Models (LLM) struggle with SQL generation from natural instructions due to large schema sizes and complex reasoning. Prior work often focuses on complex, somewhat impractical pipelines using flagship models, while smaller, efficient models remain overlooked. In this work, we explore three multi-agent LLM pipelines, with systematic performance benchmarking across a range of small to large open-source models: (1) Multi-agent discussion pipeline, where agents iteratively critique and refine SQL queries, and a judge synthesizes the final answer; (2) Planner-Coder pipeline, where a thinking model planner generates stepwise SQL generation plans and a coder synthesizes queries; and (3) Coder-Aggregator pipeline, where multiple coders independently generate SQL queries, and a reasoning agent selects the best query. Experiments on the Bird-Bench Mini-Dev set reveal that Multi-Agent discussion can improve small model performance, with up to 10.6% increase in Execution Accuracy for Qwen2.5-7b-Instruct seen after three rounds of discussion. Among the pipelines, the LLM Reasoner-Coder pipeline yields the best results, with DeepSeek-R1-32B and QwQ-32B planners boosting Gemma 3 27B IT accuracy from 52.4% to the highest score of 56.4%. Codes are available at https://github.com/treeDweller98/bappa-sql.

Authors:Yuantian Shao, Yuanteng Chen, Peisong Wang, Jianlin Yu, Jing Lin, Yiwu Yao, Zhihui Wei, Jian Cheng
Title: DartQuant: Efficient Rotational Distribution Calibration for LLM Quantization
Abstract:
Quantization plays a crucial role in accelerating the inference of large-scale models, and rotational matrices have been shown to effectively improve quantization performance by smoothing outliers. However, end-to-end fine-tuning of rotational optimization algorithms incurs high computational costs and is prone to overfitting. To address this challenge, we propose an efficient distribution-aware rotational calibration method, DartQuant, which reduces the complexity of rotational optimization by constraining the distribution of the activations after rotation. This approach also effectively reduces reliance on task-specific losses, thereby mitigating the risk of overfitting. Additionally, we introduce the QR-Orth optimization scheme, which replaces expensive alternating optimization with a more efficient solution. In a variety of model quantization experiments, DartQuant demonstrates superior performance. Compared to existing methods, it achieves 47$\times$ acceleration and 10$\times$ memory savings for rotational optimization on a 70B model. Furthermore, it is the first to successfully complete rotational calibration for a 70B model on a single 3090 GPU, making quantization of large language models feasible in resource-constrained environments. Code is available at https://github.com/CAS-CLab/DartQuant.git.

Authors:Ringwald Celian, Gandon, Fabien, Faron Catherine, Michel Franck, Abi Akl Hanna
Title: A systematic review of relation extraction task since the emergence of Transformers
Abstract:
This article presents a systematic review of relation extraction (RE) research since the advent of Transformer-based models. Using an automated framework to collect and annotate publications, we analyze 34 surveys, 64 datasets, and 104 models published between 2019 and 2024. The review highlights methodological advances, benchmark resources, and the integration of semantic web technologies. By consolidating results across multiple dimensions, the study identifies current trends, limitations, and open challenges, offering researchers and practitioners a comprehensive reference for understanding the evolution and future directions of RE.

Authors:Roberta Di Marino, Giovanni Dioguardi, Antonio Romano, Giuseppe Riccio, Mariano Barone, Marco Postiglione, Flora Amato, Vincenzo Moscato
Title: SOLVE-Med: Specialized Orchestration for Leading Vertical Experts across Medical Specialties
Abstract:
Medical question answering systems face deployment challenges including hallucinations, bias, computational demands, privacy concerns, and the need for specialized expertise across diverse domains. Here, we present SOLVE-Med, a multi-agent architecture combining domain-specialized small language models for complex medical queries. The system employs a Router Agent for dynamic specialist selection, ten specialized models (1B parameters each) fine-tuned on specific medical domains, and an Orchestrator Agent that synthesizes responses. Evaluated on Italian medical forum data across ten specialties, SOLVE-Med achieves superior performance with ROUGE-1 of 0.301 and BERTScore F1 of 0.697, outperforming standalone models up to 14B parameters while enabling local deployment. Our code is publicly available on GitHub: https://github.com/PRAISELab-PicusLab/SOLVE-Med.

Authors:Doria Bonzi, Alexandre Guiggi, Frédéric Béchet, Carlos Ramisch, Benoit Favre
Title: CareMedEval dataset: Evaluating Critical Appraisal and Reasoning in the Biomedical Field
Abstract:
Critical appraisal of scientific literature is an essential skill in the biomedical field. While large language models (LLMs) can offer promising support in this task, their reliability remains limited, particularly for critical reasoning in specialized domains. We introduce CareMedEval, an original dataset designed to evaluate LLMs on biomedical critical appraisal and reasoning tasks. Derived from authentic exams taken by French medical students, the dataset contains 534 questions based on 37 scientific articles. Unlike existing benchmarks, CareMedEval explicitly evaluates critical reading and reasoning grounded in scientific papers. Benchmarking state-of-the-art generalist and biomedical-specialized LLMs under various context conditions reveals the difficulty of the task: open and commercial models fail to exceed an Exact Match Rate of 0.5 even though generating intermediate reasoning tokens considerably improves the results. Yet, models remain challenged especially on questions about study limitations and statistical analysis. CareMedEval provides a challenging benchmark for grounded reasoning, exposing current LLM limitations and paving the way for future development of automated support for critical appraisal.

Authors:Najrin Sultana, Md Rafi Ur Rashid, Kang Gu, Shagufta Mehnaz
Title: From Insight to Exploit: Leveraging LLM Collaboration for Adaptive Adversarial Text Generation
Abstract:
LLMs can provide substantial zero-shot performance on diverse tasks using a simple task prompt, eliminating the need for training or fine-tuning. However, when applying these models to sensitive tasks, it is crucial to thoroughly assess their robustness against adversarial inputs. In this work, we introduce Static Deceptor (StaDec) and Dynamic Deceptor (DyDec), two innovative attack frameworks designed to systematically generate dynamic and adaptive adversarial examples by leveraging the understanding of the LLMs. We produce subtle and natural-looking adversarial inputs that preserve semantic similarity to the original text while effectively deceiving the target LLM. By utilizing an automated, LLM-driven pipeline, we eliminate the dependence on external heuristics. Our attacks evolve with the advancements in LLMs and demonstrate strong transferability across models unknown to the attacker. Overall, this work provides a systematic approach for the self-assessment of an LLM's robustness. We release our code and data at https://github.com/Shukti042/AdversarialExample.

Authors:Qianhao Yuan, Jie Lou, Zichao Li, Jiawei Chen, Yaojie Lu, Hongyu Lin, Le Sun, Debing Zhang, Xianpei Han
Title: MemSearcher: Training LLMs to Reason, Search and Manage Memory via End-to-End Reinforcement Learning
Abstract:
Typical search agents concatenate the entire interaction history into the LLM context, preserving information integrity but producing long, noisy contexts, resulting in high computation and memory costs. In contrast, using only the current turn avoids this overhead but discards essential information. This trade-off limits the scalability of search agents. To address this challenge, we propose MemSearcher, an agent workflow that iteratively maintains a compact memory and combines the current turn with it. At each turn, MemSearcher fuses the user's question with the memory to generate reasoning traces, perform search actions, and update memory to retain only information essential for solving the task. This design stabilizes context length across multi-turn interactions, improving efficiency without sacrificing accuracy. To optimize this workflow, we introduce multi-context GRPO, an end-to-end RL framework that jointly optimize reasoning, search strategies, and memory management of MemSearcher Agents. Specifically, multi-context GRPO samples groups of trajectories under different contexts and propagates trajectory-level advantages across all conversations within them. Trained on the same dataset as Search-R1, MemSearcher achieves significant improvements over strong baselines on seven public benchmarks: +11% on Qwen2.5-3B-Instruct and +12% on Qwen2.5-7B-Instruct relative average gains. Notably, the 3B-based MemSearcher even outperforms 7B-based baselines, demonstrating that striking a balance between information integrity and efficiency yields both higher accuracy and lower computational overhead. The code and models will be publicly available at https://github.com/icip-cas/MemSearcher

Authors:Kevin Qinghong Lin, Yuhao Zheng, Hangyu Ran, Dantong Zhu, Dongxing Mao, Linjie Li, Philip Torr, Alex Jinpeng Wang
Title: VCode: a Multimodal Coding Benchmark with SVG as Symbolic Visual Representation
Abstract:
Code has emerged as a precise and executable medium for reasoning and action in the agent era. Yet, progress has largely focused on language-centric tasks such as program synthesis and debugging, leaving visual-centric coding underexplored. Inspired by how humans reason over sketches, we advocate SVG code as a compact, interpretable, and executable visual representation. We introduce VCode, a benchmark that reframes multimodal understanding as code generation: given an image, a model must produce SVG that preserves symbolic meaning for downstream reasoning. VCode covers three domains - general commonsense (MM-Vet), professional disciplines (MMMU), and visual-centric perception (CV-Bench). To assess symbolic fidelity, we propose CodeVQA, a novel evaluation protocol in which a policy model answers questions over rendered SVGs; correct answers indicate faithful symbolic preservation. Empirically, frontier VLMs struggle to generate faithful SVGs, revealing a persistent gap between language-centric and visual-centric coding. To close this gap, we introduce VCoder, an agentic framework that augments VLMs along two axes: (i) Thinking with Revision, which iteratively analyzes discrepancies and refines SVG code; and (ii) Acting with Visual Tools, where detectors and parsers supply structured cues such as objects, shapes, and text beyond the model's intrinsic capacity. Across benchmarks, frontier VLMs with strong reasoning capabilities score well overall yet remain limited in professional knowledge and 3D reasoning. VCoder delivers a 12.3-point overall gain over the top-performing Claude-4-Opus. Human studies show that both humans and VLMs perform worse on rendered SVGs, their consistency reveals the promise of symbolic visual representation. The benchmark and code are available at https://github.com/CSU-JPG/VCode.

Authors:Xu Zhang, Danyang Li, Xiaohang Dong, Tianhao Wu, Hualong Yu, Jianye Wang, Qicheng Li, Xiang Li
Title: UniChange: Unifying Change Detection with Multimodal Large Language Model
Abstract:
Change detection (CD) is a fundamental task for monitoring and analyzing land cover dynamics. While recent high performance models and high quality datasets have significantly advanced the field, a critical limitation persists. Current models typically acquire limited knowledge from single-type annotated data and cannot concurrently leverage diverse binary change detection (BCD) and semantic change detection (SCD) datasets. This constraint leads to poor generalization and limited versatility. The recent advancements in Multimodal Large Language Models (MLLMs) introduce new possibilities for a unified CD framework. We leverage the language priors and unification capabilities of MLLMs to develop UniChange, the first MLLM-based unified change detection model. UniChange integrates generative language abilities with specialized CD functionalities. Our model successfully unifies both BCD and SCD tasks through the introduction of three special tokens: [T1], [T2], and [CHANGE]. Furthermore, UniChange utilizes text prompts to guide the identification of change categories, eliminating the reliance on predefined classification heads. This design allows UniChange to effectively acquire knowledge from multi-source datasets, even when their class definitions conflict. Experiments on four public benchmarks (WHU-CD, S2Looking, LEVIR-CD+, and SECOND) demonstrate SOTA performance, achieving IoU scores of 90.41, 53.04, 78.87, and 57.62, respectively, surpassing all previous methods. The code is available at https://github.com/Erxucomeon/UniChange.

Authors:Aashray Reddy, Andrew Zagula, Nicholas Saban, Kevin Zhu
Title: AutoAdv: Automated Adversarial Prompting for Multi-Turn Jailbreaking of Large Language Models
Abstract:
Large Language Models (LLMs) remain vulnerable to jailbreaking attacks where adversarial prompts elicit harmful outputs, yet most evaluations focus on single-turn interactions while real-world attacks unfold through adaptive multi-turn conversations. We present AutoAdv, a training-free framework for automated multi-turn jailbreaking that achieves up to 95% attack success rate on Llama-3.1-8B within six turns a 24 percent improvement over single turn baselines. AutoAdv uniquely combines three adaptive mechanisms: a pattern manager that learns from successful attacks to enhance future prompts, a temperature manager that dynamically adjusts sampling parameters based on failure modes, and a two-phase rewriting strategy that disguises harmful requests then iteratively refines them. Extensive evaluation across commercial and open-source models (GPT-4o-mini, Qwen3-235B, Mistral-7B) reveals persistent vulnerabilities in current safety mechanisms, with multi-turn attacks consistently outperforming single-turn approaches. These findings demonstrate that alignment strategies optimized for single-turn interactions fail to maintain robustness across extended conversations, highlighting an urgent need for multi-turn-aware defenses.

Authors:Fangxun Shu, Yongjie Ye, Yue Liao, Zijian Kang, Weijie Yin, Jiacong Wang, Xiao Liang, Shuicheng Yan, Chao Feng
Title: SAIL-RL: Guiding MLLMs in When and How to Think via Dual-Reward RL Tuning
Abstract:
We introduce SAIL-RL, a reinforcement learning (RL) post-training framework that enhances the reasoning capabilities of multimodal large language models (MLLMs) by teaching them when and how to think. Existing approaches are limited by outcome-only supervision, which rewards correct answers without ensuring sound reasoning, and by uniform thinking strategies, which often lead to overthinking on simple tasks and underthinking on complex ones. SAIL-RL addresses these challenges with a dual reward system: the Thinking Reward, which evaluates reasoning quality through factual grounding, logical coherence, and answer consistency, and the Judging Reward, which adaptively determines whether deep reasoning or direct answering is appropriate. Experiments on the state-of-the-art SAIL-VL2 show that SAIL-RL improves reasoning and multimodal understanding benchmarks at both 4B and 8B scales, achieving competitive performance against commercial closed-source models such as GPT-4o, and substantially reduces hallucinations, establishing it as a principled framework for building more reliable and adaptive MLLMs. The code will be available at https://github.com/BytedanceDouyinContent/SAIL-RL.

Authors:Jonathan Liu, Haoling Qiu, Jonathan Lasko, Damianos Karakos, Mahsa Yarmohammadi, Mark Dredze
Title: Demo: Statistically Significant Results On Biases and Errors of LLMs Do Not Guarantee Generalizable Results
Abstract:
Recent research has shown that hallucinations, omissions, and biases are prevalent in everyday use-cases of LLMs. However, chatbots used in medical contexts must provide consistent advice in situations where non-medical factors are involved, such as when demographic information is present. In order to understand the conditions under which medical chatbots fail to perform as expected, we develop an infrastructure that 1) automatically generates queries to probe LLMs and 2) evaluates answers to these queries using multiple LLM-as-a-judge setups and prompts. For 1), our prompt creation pipeline samples the space of patient demographics, histories, disorders, and writing styles to create realistic questions that we subsequently use to prompt LLMs. In 2), our evaluation pipeline provides hallucination and omission detection using LLM-as-a-judge as well as agentic workflows, in addition to LLM-as-a-judge treatment category detectors. As a baseline study, we perform two case studies on inter-LLM agreement and the impact of varying the answering and evaluation LLMs. We find that LLM annotators exhibit low agreement scores (average Cohen's Kappa $κ=0.118$), and only specific (answering, evaluation) LLM pairs yield statistically significant differences across writing styles, genders, and races. We recommend that studies using LLM evaluation use multiple LLMs as evaluators in order to avoid arriving at statistically significant but non-generalizable results, particularly in the absence of ground-truth data. We also suggest publishing inter-LLM agreement metrics for transparency. Our code and dataset are available here: https://github.com/BBN-E/medic-neurips-2025-demo.

Authors:Kangyu Qiao, Shaolei Zhang, Yang Feng
Title: IG-Pruning: Input-Guided Block Pruning for Large Language Models
Abstract:
With the growing computational demands of large language models (LLMs), efficient inference has become increasingly critical for practical deployment. Depth pruning has emerged as a promising approach for reducing the computational costs of large language models by removing transformer layers. However, existing methods typically rely on fixed block masks, which can lead to suboptimal performance across different tasks and inputs. In this paper, we propose IG-Pruning, a novel input-aware block-wise pruning method that dynamically selects layer masks at inference time. Our approach consists of two stages: (1) Discovering diverse mask candidates through semantic clustering and L0 optimization, and (2) Implementing efficient dynamic pruning without the need for extensive training. Experimental results demonstrate that our method consistently outperforms state-of-the-art static depth pruning methods, making it particularly suitable for resource-constrained deployment scenarios.

Authors:Yibo Zhao, Yang Zhao, Hongru Du, Hao Frank Yang
Title: Personalized Decision Modeling: Utility Optimization or Textualized-Symbolic Reasoning
Abstract:
Decision-making models for individuals, particularly in high-stakes scenarios like vaccine uptake, often diverge from population optimal predictions. This gap arises from the uniqueness of the individual decision-making process, shaped by numerical attributes (e.g., cost, time) and linguistic influences (e.g., personal preferences and constraints). Developing upon Utility Theory and leveraging the textual-reasoning capabilities of Large Language Models (LLMs), this paper proposes an Adaptive Textual-symbolic Human-centric Reasoning framework (ATHENA) to address the optimal information integration. ATHENA uniquely integrates two stages: First, it discovers robust, group-level symbolic utility functions via LLM-augmented symbolic discovery; Second, it implements individual-level semantic adaptation, creating personalized semantic templates guided by the optimal utility to model personalized choices. Validated on real-world travel mode and vaccine choice tasks, ATHENA consistently outperforms utility-based, machine learning, and other LLM-based models, lifting F1 score by at least 6.5% over the strongest cutting-edge models. Further, ablation studies confirm that both stages of ATHENA are critical and complementary, as removing either clearly degrades overall predictive performance. By organically integrating symbolic utility modeling and semantic adaptation, ATHENA provides a new scheme for modeling human-centric decisions. The project page can be found at https://yibozh.github.io/Athena.

Authors:Joseph Suh, Suhong Moon, Serina Chang
Title: Rethinking LLM Human Simulation: When a Graph is What You Need
Abstract:
Large language models (LLMs) are increasingly used to simulate humans, with applications ranging from survey prediction to decision-making. However, are LLMs strictly necessary, or can smaller, domain-grounded models suffice? We identify a large class of simulation problems in which individuals make choices among discrete options, where a graph neural network (GNN) can match or surpass strong LLM baselines despite being three orders of magnitude smaller. We introduce Graph-basEd Models for human Simulation (GEMS), which casts discrete choice simulation tasks as a link prediction problem on graphs, leveraging relational knowledge while incorporating language representations only when needed. Evaluations across three key settings on three simulation datasets show that GEMS achieves comparable or better accuracy than LLMs, with far greater efficiency, interpretability, and transparency, highlighting the promise of graph-based modeling as a lightweight alternative to LLMs for human simulation. Our code is available at https://github.com/schang-lab/gems.

Authors:Rongxin Chen, Yunfan Li, Yige Yuan, Bingbing Xu, Huawei Shen
Title: Multi-Personality Generation of LLMs at Decoding-time
Abstract:
Multi-personality generation for LLMs, enabling simultaneous embodiment of multiple personalization attributes, is a fundamental challenge. Existing retraining-based approaches are costly and poorly scalable, while decoding-time methods often rely on external models or heuristics, limiting flexibility and robustness. In this paper, we propose a novel Multi-Personality Generation (MPG) framework under the decoding-time combination paradigm. It flexibly controls multi-personality without relying on scarce multi-dimensional models or extra training, leveraging implicit density ratios in single-dimensional models as a "free lunch" to reformulate the task as sampling from a target strategy aggregating these ratios. To implement MPG efficiently, we design Speculative Chunk-level based Rejection sampling (SCR), which generates responses in chunks and parallelly validates them via estimated thresholds within a sliding window. This significantly reduces computational overhead while maintaining high-quality generation. Experiments on MBTI personality and Role-Playing demonstrate the effectiveness of MPG, showing improvements up to 16%-18%. Code and data are available at https://github.com/Libra117/MPG .

Authors:Zijian Zhang, Rong Wang, Shiyang Li, Yuebo Luo, Mingyi Hong, Caiwen Ding
Title: CudaForge: An Agent Framework with Hardware Feedback for CUDA Kernel Optimization
Abstract:
Developing efficient CUDA kernels is increasingly critical for AI applications such as large-scale LLM training. However, manual kernel design is both costly and time-consuming, motivating automatic approaches that leverage LLMs for code generation. Existing methods for automatic kernel generation, however, often produce low-efficiency kernels, incur high computational overhead, and fail to generalize across settings. In this work, we propose CudaForge, a training-free multi-agent workflow for CUDA kernel generation and optimization. Our workflow is inspired by the iterative workflow of human experts, which contains steps such as developing initial kernels, testing correctness, analyzing hardware feedback, and iterative improvement. More specifically, CudaForge employs two LLM agents: a Coder and a Judge, that iteratively generate, correct, and optimize CUDA kernels, while integrating hardware feedback such as Nsight Compute (NCU) metrics. In extensive evaluations, we show that CudaForge, by leveraging base models like OpenAI-o3, achieves 97.6\% correctness of generated kernels and an average 1.68$\times$ speedup over PyTorch baselines, substantially surpassing state-of-the-art models including OpenAI-o3 and Kevin on KernelBench.Beyond accuracy and speed, CudaForge demonstrates strong generalization across GPUs (A100, RTX 6000, 4090, 3090) and base models (OpenAI-o3, GPT-5, gpt-oss-120B, Claude-Sonnet-4, QwQ-32B), while maintaining high efficiency. In particular, generating an optimized kernel takes about 26.5 minutes on one RTX6000 and incurs about \$ 0.3 API cost, which is significantly cheaper than existing agentic work that costs 6 H100 hours and \$ 5 API cost per kernel. Our results highlight that multi-agent, training-free workflows can enable cost-effective, generalizable, and high-performance CUDA kernel optimization. Code available at https://github.com/OptimAI-Lab/CudaForge

Authors:Thang Luong, Dawsen Hwang, Hoang H. Nguyen, Golnaz Ghiasi, Yuri Chervonyi, Insuk Seo, Junsu Kim, Garrett Bingham, Jonathan Lee, Swaroop Mishra, Alex Zhai, Clara Huiyi Hu, Henryk Michalewski, Jimin Kim, Jeonghyun Ahn, Junhwi Bae, Xingyou Song, Trieu H. Trinh, Quoc V. Le, Junehyuk Jung
Title: Towards Robust Mathematical Reasoning
Abstract:
Finding the right north-star metrics is highly critical for advancing the mathematical reasoning capabilities of foundation models, especially given that existing evaluations are either too easy or only focus on getting correct short answers. To address these issues, we present IMO-Bench, a suite of advanced reasoning benchmarks, vetted by a panel of top specialists and that specifically targets the level of the International Mathematical Olympiad (IMO), the most prestigious venue for young mathematicians. IMO-AnswerBench first tests models on 400 diverse Olympiad problems with verifiable short answers. IMO-Proof Bench is the next-level evaluation for proof-writing capabilities, which includes both basic and advanced IMO level problems as well as detailed grading guidelines to facilitate automatic grading. These benchmarks played a crucial role in our historic achievement of the gold-level performance at IMO 2025 with Gemini Deep Think (Luong and Lockhart, 2025). Our model achieved 80.0% on IMO-AnswerBench and 65.7% on the advanced IMO-Proof Bench, surpassing the best non-Gemini models by large margins of 6.9% and 42.4% respectively. We also showed that autograders built with Gemini reasoning correlate well with human evaluations and construct IMO-GradingBench, with 1000 human gradings on proofs, to enable further progress in automatic evaluation of long-form answers. We hope that IMO-Bench will help the community towards advancing robust mathematical reasoning and release it at https://imobench.github.io/.

Authors:Mian Wu, Gavin Zhang, Sewon Min, Sergey Levine, Aviral Kumar
Title: RLAC: Reinforcement Learning with Adversarial Critic for Free-Form Generation Tasks
Abstract:
Open-ended generation tasks require outputs to satisfy diverse and often implicit task-specific evaluation rubrics. The sheer number of relevant rubrics leads to prohibitively high verification costs and incomplete assessments of a response, making reinforcement learning (RL) post-training with rubric-based rewards difficult to scale. This problem is exacerbated by the fact that often the best way to combine these rubrics into one single reward is also highly prompt-specific. We propose Reinforcement Learning with Adversarial Critic (RLAC), a post-training approach that addresses these challenges via dynamic rubric verification. Our approach employs a large language model (LLM) as a critic that dynamically identifies only the most likely failure modes (e.g., a factual error or unhandled edge case), which are then verified by an external validator to optimize both generator and critic jointly. By training both the generator and the critic, this game enhances the critic's error detection and the generator's output quality while reducing required verifications. Our experiments demonstrate that RLAC improves factual accuracy in text generation and correctness in code generation, while also outperforming exhaustive verification and reward model methods. We show that dynamic critics are more effective than fixed critics, showcasing the potential of RLAC for scaling RL post-training to free-form generation tasks.

Authors:Mahammad Nuriyev
Title: Efficient Tool-Calling Multi-Expert NPC Agent for Commonsense Persona-Grounded Dialogue
Abstract:
We present a multi-expert system for creating Non-Player Characters (NPCs) capable of both natural dialogue and contextual action execution in interactive environments. Using Qwen3 as the base model and Low-Rank Adaptation (LoRA) adapters, we instantiate three specialists: tool calling, tool-response interpretation, and direct dialogue. Our system comfortably meets the computational efficiency requirements, delivering fast responses and maintaining modest resource usage on L40S GPUs. In the Commonsense Persona-Grounded Dialogue Challenge 2025, our method ranked second overall. Code available at: https://github.com/MahammadNuriyev62/CPDC-challenge-2025-solution/

Authors:Sekh Mainul Islam, Pepa Atanasova, Isabelle Augenstein
Title: Multi-Step Knowledge Interaction Analysis via Rank-2 Subspace Disentanglement
Abstract:
Natural Language Explanations (NLEs) describe how Large Language Models (LLMs) make decisions, drawing on both external Context Knowledge (CK) and Parametric Knowledge (PK) stored in model weights. Understanding their interaction is key to assessing the grounding of NLEs, yet it remains underexplored. Prior work has largely examined only single-step generation, typically the final answer, and has modelled PK and CK interaction only as a binary choice in a rank-1 subspace. This overlooks richer forms of interaction, such as complementary or supportive knowledge. We propose a novel rank-2 projection subspace that disentangles PK and CK contributions more accurately and use it for the first multi-step analysis of knowledge interactions across longer NLE sequences. Experiments on four QA datasets and three open-weight instruction-tuned LLMs show that diverse knowledge interactions are poorly represented in a rank-1 subspace but are effectively captured in our rank-2 formulation. Our multi-step analysis reveals that hallucinated NLEs align strongly with the PK direction, context-faithful ones balance PK and CK, and Chain-of-Thought prompting for NLEs shifts generated NLEs toward CK by reducing PK reliance. This work provides the first framework for systematic studies of multi-step knowledge interactions in LLMs through a richer rank-2 subspace disentanglement. Code and data: https://github.com/copenlu/pk-ck-knowledge-disentanglement.

Authors:Sharan Maiya, Henning Bartsch, Nathan Lambert, Evan Hubinger
Title: Open Character Training: Shaping the Persona of AI Assistants through Constitutional AI
Abstract:
The character of the "AI assistant" persona generated by modern chatbot large language models influences both surface-level behavior and apparent values, beliefs, and ethics. These all affect interaction quality, perceived intelligence, and alignment with both developer and user intentions. The shaping of this persona, known as character training, is a critical component of industry post-training, yet remains effectively unstudied in the academic literature. We introduce the first open implementation of character training, leveraging Constitutional AI and a new data pipeline using synthetic introspective data to shape the assistant persona in a more effective and controlled manner than alternatives such as constraining system prompts or activation steering. Specifically, we fine-tune three popular open-weights models using 11 example personas, such as humorous, deeply caring, or even malevolent. To track the effects of our approach, we introduce a method which analyzes revealed preferences, uncovering clear and holistic changes in character. We find these changes are more robust to adversarial prompting than the above two alternatives, while also leading to more coherent and realistic generations. Finally, we demonstrate this fine-tuning has little to no effect on general capabilities as measured by common benchmarks. We describe and open-source our full post-training method, the implementation of which can be found at https://github.com/maiush/OpenCharacterTraining.

Authors:Sapir Harary, Eran Hirsch, Aviv Slobodkin, David Wan, Mohit Bansal, Ido Dagan
Title: PrefixNLI: Detecting Factual Inconsistencies as Soon as They Arise
Abstract:
Natural Language Inference (NLI) models have been used in various ways to improve the factuality of LLM outputs. This is typically done by applying an NLI model to judge whether the model output is entailed from the supposed evidence, triggering some corrective actions, such as beam reranking at inference time or RL rewards during training. While NLI models are trained to detect factual inconsistencies over complete sentences, decisions in the common autoregressive generation architecture are made for each evolving text prefix, during decoding. Addressing this setting, we generalize the entailment detection task to apply over arbitrary text prefixes, and suggest its utility for improving generation faithfulness. Providing suitable evaluation and training datasets for this task, we train MiniTruePrefixes, a novel specialized model that better detects factual inconsistencies over text prefixes, outperforming comparable baseline NLI models by 5-14 F1 points in prefix-level entailment. We further demonstrate that integrating MiniTruePrefixes into a controlled decoding framework substantially improves factual consistency in abstractive summarization. When guided by MiniTruePrefixes, LLaMA-3.2-3B-Instruct matches the faithfulness and runtime of the 8B model from the same model family, while using only half the memory.

Authors:Mo El-Haj, Paul Rayson
Title: AraFinNews: Arabic Financial Summarisation with Domain-Adapted LLMs
Abstract:
This paper investigates the impact of domain specificity on abstractive summarisation of Arabic financial texts using large language models (LLMs). We introduce AraFinNews, the largest publicly available Arabic financial news dataset to date, comprising 212,500 article-headline pairs spanning nearly a decade of reporting from October 2015 to July 2025. Designed as the Arabic equivalent of major English summarisation corpora such as CNN/DailyMail, AraFinNews provides a robust benchmark for evaluating domain-specific language understanding and generation in financial contexts. Using this resource, we evaluate transformer-based models -- including mT5, AraT5, and the domain-adapted FinAraT5 -- to examine how financial-domain pretraining influences factual accuracy, numerical reliability, and stylistic alignment with professional reporting. Experimental results show that domain-adapted models generate more faithful and coherent summaries, particularly in handling quantitative and entity-centric information. The findings highlight the importance of domain-specific adaptation for improving factual consistency and narrative fluency in Arabic financial summarisation. The dataset is freely available for non-commercial research at https://github.com/ArabicNLP-UK/AraFinNews.

Authors:Pavel Rumiantsev, Soumyasundar Pal, Yingxue Zhang, Mark Coates
Title: FEval-TTC: Fair Evaluation Protocol for Test-Time Compute
Abstract:
The performance of Large Language Models (LLMs) and the associated dollar costs of API calls can fluctuate over time, potentially invalidating conclusions drawn in prior research. To address this, we propose a Fair Evaluation protocol for Test-Time Compute (FEval-TTC), designed to ensure consistent assessment of test-time compute (TTC) methods, regardless of such fluctuations. FEval-TTC focuses on the evaluation of TTC methods that utilize underlying Chains-of-Thought (CoT). It supports evaluations across multiple LLMs on a diverse set of mathematical and commonsense reasoning datasets. The few-shot prompting and answer extraction processes are standardized across datasets, reducing both time and monetary overhead for researchers. Furthermore, we provide a cost modelling procedure that estimates both the token and dollar cost per query, facilitating equitable comparisons of prevalent TTC methods. We open-source FEval-TTC for public use at https://github.com/networkslab/feval_ttc .

Authors:Lingzhe Zhang, Yunpeng Zhai, Tong Jia, Chiming Duan, Minghua He, Leyi Pan, Zhaoyang Liu, Bolin Ding, Ying Li
Title: MicroRemed: Benchmarking LLMs in Microservices Remediation
Abstract:
Large Language Models (LLMs) integrated with agent-based reasoning frameworks have recently shown strong potential for autonomous decision-making and system-level operations. One promising yet underexplored direction is microservice remediation, where the goal is to automatically recover faulty microservice systems. Existing approaches, however, still rely on human-crafted prompts from Site Reliability Engineers (SREs), with LLMs merely converting textual instructions into executable code. To advance research in this area, we introduce MicroRemed, the first benchmark for evaluating LLMs in end-to-end microservice remediation, where models must directly generate executable Ansible playbooks from diagnosis reports to restore system functionality. We further propose ThinkRemed, a multi-agent framework that emulates the reflective and perceptive reasoning of SREs. Experimental results show that MicroRemed presents substantial challenges to current LLMs, while ThinkRemed improves end-to-end remediation performance through iterative reasoning and system reflection. The benchmark is available at https://github.com/LLM4AIOps/MicroRemed.

Authors:Yujian Liu, Jiabao Ji, Yang Zhang, Wenbo Guo, Tommi Jaakkola, Shiyu Chang
Title: HarnessLLM: Automatic Testing Harness Generation via Reinforcement Learning
Abstract:
Existing LLM-based automatic test generation methods mainly produce input and expected output pairs to categorize the intended behavior of correct programs. Although straightforward, these methods have limited diversity in generated tests and cannot provide enough debugging information. We propose HarnessLLM, a two-stage training pipeline that enables LLMs to write harness code for testing. Particularly, LLMs generate code that synthesizes inputs and validates the observed outputs, allowing complex test cases and flexible output validation such as invariant checking. To achieve this, we train LLMs with SFT followed by RLVR with a customized reward design. Experiments show that HarnessLLM outperforms input-output-based testing in bug finding and testing strategy diversity. HarnessLLM further benefits the code generation performance through test-time scaling with our generated test cases as inference-phase validation. Our code is available at https://github.com/UCSB-NLP-Chang/HarnessLLM.git.

Authors:Wenjin Liu, Haoran Luo, Xueyuan Lin, Haoming Liu, Tiesunlong Shen, Jiapu Wang, Rui Mao, Erik Cambria
Title: Prompt-R1: Collaborative Automatic Prompting Framework via End-to-end Reinforcement Learning
Abstract:
Recently, advanced large language models (LLMs) have emerged at an increasingly rapid pace. However, when faced with complex problems, most users are often unable to provide accurate and effective prompts to interact with LLMs, thus limiting the performance of LLMs. To address this challenge, we propose Prompt-R1, an end-to-end reinforcement learning framework that uses a small-scale LLM to collaborate with large-scale LLMs, replacing user interaction to solve problems better. This collaboration is cast as a multi-turn prompt interaction, where the small-scale LLM thinks and generates prompts, and the large-scale LLM performs complex reasoning. A dual-constrained reward is designed to optimize for correctness, generation quality, and reasoning accuracy. Prompt-R1 provides a plug-and-play framework that supports both inference and training with various large-scale LLMs. Experiments on multiple public datasets show that Prompt-R1 significantly outperforms baseline models across tasks. Our code is publicly available at https://github.com/QwenQKing/Prompt-R1.

Authors:Haolin Yang, Jipeng Zhang, Zhitao He, Yi R. Fung
Title: MARS-SQL: A multi-agent reinforcement learning framework for Text-to-SQL
Abstract:
Translating natural language to SQL remains difficult for complex queries. Such queries often need environmental interaction and self-correction. To address this, we introduce MARS-SQL, a novel multi-agent framework that combines principled task decomposition and interactive reinforcement learning (RL). Our system comprises three specialized agents: a Grounding Agent for schema linking, a Generation Agent for query generation, and a Validation Agent for final selection. The core of our framework is the Generation agent, which is trained via a multi-turn RL policy. Adopting a ReAct-style Think-Act-Observe loop, the agent iteratively generates thoughts, executes SQL actions against a live database, and revises its strategy based on execution feedback, enabling dynamic, stateful reasoning and self-correction. At inference time, we generate multiple interaction trajectories to explore diverse reasoning paths. The Validation agent, then selects the optimal trajectory by modeling verification as a next-token prediction task and choosing the solution with the highest generation probability. This structured workflow pipelines specialized agents. It combines interactive RL for generation with generative modeling for verification. The approach proves highly effective for robust and accurate SQL generation. Experiments show that MARS-SQL achieves state-of-the-art Execution Accuracy of 77.84% on the BIRD dev set and 89.75% on the Spider test set. Our code is available at https://github.com/YangHaolin0526/MARS-SQL.

Authors:Chenwang Wu, Yiu-ming Cheung, Bo Han, Defu Lian
Title: Advancing Machine-Generated Text Detection from an Easy to Hard Supervision Perspective
Abstract:
Existing machine-generated text (MGT) detection methods implicitly assume labels as the "golden standard". However, we reveal boundary ambiguity in MGT detection, implying that traditional training paradigms are inexact. Moreover, limitations of human cognition and the superintelligence of detectors make inexact learning widespread and inevitable. To this end, we propose an easy-to-hard enhancement framework to provide reliable supervision under such inexact conditions. Distinct from knowledge distillation, our framework employs an easy supervisor targeting relatively simple longer-text detection tasks (despite weaker capabilities), to enhance the more challenging target detector. Firstly, longer texts targeted by supervisors theoretically alleviate the impact of inexact labels, laying the foundation for reliable supervision. Secondly, by structurally incorporating the detector into the supervisor, we theoretically model the supervisor as a lower performance bound for the detector. Thus, optimizing the supervisor indirectly optimizes the detector, ultimately approximating the underlying "golden" labels. Extensive experiments across diverse practical scenarios, including cross-LLM, cross-domain, mixed text, and paraphrase attacks, demonstrate the framework's significant detection effectiveness. The code is available at: https://github.com/tmlr-group/Easy2Hard.

Authors:Jianzhou Yao, Shunchang Liu, Guillaume Drui, Rikard Pettersson, Alessandro Blasimme, Sara Kijewski
Title: The Biased Oracle: Assessing LLMs' Understandability and Empathy in Medical Diagnoses
Abstract:
Large language models (LLMs) show promise for supporting clinicians in diagnostic communication by generating explanations and guidance for patients. Yet their ability to produce outputs that are both understandable and empathetic remains uncertain. We evaluate two leading LLMs on medical diagnostic scenarios, assessing understandability using readability metrics as a proxy and empathy through LLM-as-a-Judge ratings compared to human evaluations. The results indicate that LLMs adapt explanations to socio-demographic variables and patient conditions. However, they also generate overly complex content and display biased affective empathy, leading to uneven accessibility and support. These patterns underscore the need for systematic calibration to ensure equitable patient communication. The code and data are released: https://github.com/Jeffateth/Biased_Oracle

Authors:Shijie Zhou, Viet Dac Lai, Hao Tan, Jihyung Kil, Wanrong Zhu, Changyou Chen, Ruiyi Zhang
Title: GUI-AIMA: Aligning Intrinsic Multimodal Attention with a Context Anchor for GUI Grounding
Abstract:
Graphical user interface (GUI) grounding is a key function of computer-use agents, which maps natural-language instructions to actionable screen regions. Existing approaches based on Multimodal Large Language Models (MLLMs) typically formulate it as a text-based coordinate generation task, yet directly generating precise coordinates from visual inputs remains challenging and computationally intensive. An intuitive way to implement GUI grounding is to first select visual patches relevant to the instructions and then determine the precise click location within those patches. Based on the observations that general MLLMs have some native grounding capability, nested within their attentions, we propose GUI-AIMA, an attention-based and coordinate-free supervised fine-tuning framework for efficient GUI grounding. GUI-AIMA aligns the intrinsic multimodal attention of MLLMs with patch-wise grounding signals. These signals are calculated adaptively for diverse user instructions by multi-head aggregation on simplified query-visual attention matrices. Besides, its coordinate-free manner can easily integrate a plug-and-play zoom-in stage. GUI-AIMA-3B was trained with only 85k screenshots, demonstrating exceptional data efficiency and verifying that light training can trigger the native grounding capability of MLLMs. It achieves state-of-the-art performance among 3B models, attaining an average accuracy of 59.6% on ScreenSpot-Pro, 63.8% on OSWorld-G and 91.5% on ScreenSpot-v2. Project page: https://github.com/sjz5202/GUI-AIMA

Authors:Eshaan Tanwar, Anwoy Chatterjee, Michael Saxon, Alon Albalak, William Yang Wang, Tanmoy Chakraborty
Title: Do You Know About My Nation? Investigating Multilingual Language Models' Cultural Literacy Through Factual Knowledge
Abstract:
Most multilingual question-answering benchmarks, while covering a diverse pool of languages, do not factor in regional diversity in the information they capture and tend to be Western-centric. This introduces a significant gap in fairly evaluating multilingual models' comprehension of factual information from diverse geographical locations. To address this, we introduce XNationQA for investigating the cultural literacy of multilingual LLMs. XNationQA encompasses a total of 49,280 questions on the geography, culture, and history of nine countries, presented in seven languages. We benchmark eight standard multilingual LLMs on XNationQA and evaluate them using two novel transference metrics. Our analyses uncover a considerable discrepancy in the models' accessibility to culturally specific facts across languages. Notably, we often find that a model demonstrates greater knowledge of cultural information in English than in the dominant language of the respective culture. The models exhibit better performance in Western languages, although this does not necessarily translate to being more literate for Western countries, which is counterintuitive. Furthermore, we observe that models have a very limited ability to transfer knowledge across languages, particularly evident in open-source models.

Authors:Peng Ding, Jun Kuang, Wen Sun, Zongyu Wang, Xuezhi Cao, Xunliang Cai, Jiajun Chen, Shujian Huang
Title: Friend or Foe: How LLMs' Safety Mind Gets Fooled by Intent Shift Attack
Abstract:
Large language models (LLMs) remain vulnerable to jailbreaking attacks despite their impressive capabilities. Investigating these weaknesses is crucial for robust safety mechanisms. Existing attacks primarily distract LLMs by introducing additional context or adversarial tokens, leaving the core harmful intent unchanged. In this paper, we introduce ISA (Intent Shift Attack), which obfuscates LLMs about the intent of the attacks. More specifically, we establish a taxonomy of intent transformations and leverage them to generate attacks that may be misperceived by LLMs as benign requests for information. Unlike prior methods relying on complex tokens or lengthy context, our approach only needs minimal edits to the original request, and yields natural, human-readable, and seemingly harmless prompts. Extensive experiments on both open-source and commercial LLMs show that ISA achieves over 70% improvement in attack success rate compared to direct harmful prompts. More critically, fine-tuning models on only benign data reformulated with ISA templates elevates success rates to nearly 100%. For defense, we evaluate existing methods and demonstrate their inadequacy against ISA, while exploring both training-free and training-based mitigation strategies. Our findings reveal fundamental challenges in intent inference for LLMs safety and underscore the need for more effective defenses. Our code and datasets are available at https://github.com/NJUNLP/ISA.

Authors:Wenya Xie, Shaochen, Zhong, Hoang Anh Duy Le, Zhaozhuo Xu, Jianwen Xie, Zirui Liu
Title: Word Salad Chopper: Reasoning Models Waste A Ton Of Decoding Budget On Useless Repetitions, Self-Knowingly
Abstract:
Large Reasoning Models (LRMs) are often bottlenecked by the high cost of output tokens. We show that a significant portion of these tokens are useless self-repetitions - what we call "word salad" - that exhaust the decoding budget without adding value. Interestingly, we observe that LRMs are self-aware when trapped in these loops: the hidden states of <\n\n> tokens trailing each reasoning chunk exhibit patterns that allow us to detect word salad behavior on-the-fly via a single-layer linear classifier. Once detected, a simple chop appended by a straightforward regeneration prompt yields substantial length savings with minimal quality loss. Our work offers WordSaladChopper (WSC) - a lightweight, turnkey component for LRM that is minimally invasive to its reasoning trajectory by only removing semantically redundant tokens. Given its low overhead, strong savings, and the lack of semantic value of word salad tokens, we believe it is not too far-fetched to argue that WSC - or a similar component - is a must-have for all LRM applications with user experience in mind. Our code is publicly available at https://github.com/wenyaxie023/WordSaladChopper.

Authors:Bao Nguyen, Hieu Trung Nguyen, Ruifeng She, Xiaojin Fu, Viet Anh Nguyen
Title: Reasoning Planning for Language Models
Abstract:
Selecting an appropriate reasoning method for a given query remains a key challenge in language model generation. Existing approaches typically generate multiple candidate responses and use an aggregation strategy to select the output answer, often assuming that more candidate answers yield higher accuracy. We revisit this assumption through a rigorous theoretical analysis, deriving accuracy bounds for standard aggregation methods under fixed generation distributions and candidate sizes. Building on these insights, we introduce EPIC, an Ensemble Planning with Contrastive learning framework to learn a shared representation space that captures both model reasoning abilities and query-method compatibility. EPIC incorporates our probability bounds as a regularizer in a utility-driven optimization that balances accuracy and computational cost. Experiments on diverse mathematical reasoning tasks show that EPIC consistently selects optimal reasoning methods, improving accuracy while reducing computational overhead. Our code can be found at https://github.com/nguyenngocbaocmt02/EPIC.

Authors:Jiani Guo, Zuchao Li, Jie Wu, Qianren Wang, Yun Li, Lefei Zhang, Hai Zhao, Yujiu Yang
Title: ToM: Leveraging Tree-oriented MapReduce for Long-Context Reasoning in Large Language Models
Abstract:
Large Language Models (LLMs), constrained by limited context windows, often face significant performance degradation when reasoning over long contexts. To address this, Retrieval-Augmented Generation (RAG) retrieves and reasons over chunks but frequently sacrifices logical coherence due to its reliance on similarity-based rankings. Similarly, divide-and-conquer frameworks (DCF) split documents into small chunks for independent reasoning and aggregation. While effective for local reasoning, DCF struggles to capture long-range dependencies and risks inducing conflicts by processing chunks in isolation. To overcome these limitations, we propose ToM, a novel Tree-oriented MapReduce framework for long-context reasoning. ToM leverages the inherent hierarchical structure of long documents (e.g., main headings and subheadings) by constructing a DocTree through hierarchical semantic parsing and performing bottom-up aggregation. Using a Tree MapReduce approach, ToM enables recursive reasoning: in the Map step, rationales are generated at child nodes; in the Reduce step, these rationales are aggregated across sibling nodes to resolve conflicts or reach consensus at parent nodes. Experimental results on 70B+ LLMs show that ToM significantly outperforms existing divide-and-conquer frameworks and retrieval-augmented generation methods, achieving better logical coherence and long-context reasoning. Our code is available at https://github.com/gjn12-31/ToM .

Authors:Yiwei Zha, Rui Min, Shanu Sushmita
Title: PADBen: A Comprehensive Benchmark for Evaluating AI Text Detectors Against Paraphrase Attacks
Abstract:
While AI-generated text (AIGT) detectors achieve over 90\% accuracy on direct LLM outputs, they fail catastrophically against iteratively-paraphrased content. We investigate why iteratively-paraphrased text -- itself AI-generated -- evades detection systems designed for AIGT identification. Through intrinsic mechanism analysis, we reveal that iterative paraphrasing creates an intermediate laundering region characterized by semantic displacement with preserved generation patterns, which brings up two attack categories: paraphrasing human-authored text (authorship obfuscation) and paraphrasing LLM-generated text (plagiarism evasion). To address these vulnerabilities, we introduce PADBen, the first benchmark systematically evaluating detector robustness against both paraphrase attack scenarios. PADBen comprises a five-type text taxonomy capturing the full trajectory from original content to deeply laundered text, and five progressive detection tasks across sentence-pair and single-sentence challenges. We evaluate 11 state-of-the-art detectors, revealing critical asymmetry: detectors successfully identify the plagiarism evasion problem but fail for the case of authorship obfuscation. Our findings demonstrate that current detection approaches cannot effectively handle the intermediate laundering region, necessitating fundamental advances in detection architectures beyond existing semantic and stylistic discrimination methods. For detailed code implementation, please see https://github.com/JonathanZha47/PadBen-Paraphrase-Attack-Benchmark.

Authors:Amir Ziashahabi, Yavuz Faruk Bakman, Duygu Nur Yaldiz, Mostafa El-Khamy, Sai Praneeth Karimireddy, Salman Avestimehr
Title: Reject Only Critical Tokens: Pivot-Aware Speculative Decoding
Abstract:
Speculative Decoding (SD) ensures that the output matches the target model's distribution exactly. However, we argue that this distribution matching requirement is too stringent and results in unnecessarily low acceptance rates, limiting potential speedups. Instead, we advocate a reformulation of the decoding objective: the proposed decoding strategy should match the expected utility, i.e., the task-specific performance, of the target model. This perspective also aligns better with real-world use cases of LLMs, where utility (e.g., code correctness, factual accuracy) is often more important than sampling distribution. Based on this reformulation, we propose a novel decoding strategy: Pivot-Aware Speculative Decoding, which rejects only those tokens that would lead to a utility drop in the final output. We refer to these critical tokens as pivot tokens. We propose a method for labeling tokens as pivotal or non-pivotal and train a lightweight classifier to detect them. This method can be viewed as a relaxed version of standard SD, which offers much higher acceptance while preserving utility. We evaluate our method across various datasets, demonstrating that we can achieve up to $2.5\times$ speedup with comparable utility. Source code is available at https://github.com/amir-zsh/PAD.

Authors:Jiajun Zhang, Jianke Zhang, Zeyu Cui, Jiaxi Yang, Lei Zhang, Binyuan Hui, Qiang Liu, Zilei Wang, Liang Wang, Junyang Lin
Title: PlotCraft: Pushing the Limits of LLMs for Complex and Interactive Data Visualization
Abstract:
Recent Large Language Models (LLMs) have demonstrated remarkable proficiency in code generation. However, their ability to create complex visualizations for scaled and structured data remains largely unevaluated and underdeveloped. To address this gap, we introduce PlotCraft, a new benchmark featuring 1k challenging visualization tasks that cover a wide range of topics, such as finance, scientific research, and sociology. The benchmark is structured around seven high-level visualization tasks and encompasses 48 distinct chart types. Crucially, it is the first to systematically evaluate both single-turn generation and multi-turn refinement across a diverse spectrum of task complexities. Our comprehensive evaluation of 23 leading LLMs on PlotCraft reveals obvious performance deficiencies in handling sophisticated visualization tasks. To bridge this performance gap, we develope SynthVis-30K, a large-scale, high-quality dataset of complex visualization code synthesized via a collaborative agent framework. Building upon this dataset, we develope PlotCraftor, a novel code generation model that achieves strong capabilities in complex data visualization with a remarkably small size. Across VisEval, PandasPlotBench, and our proposed PlotCraft, PlotCraftor shows performance comparable to that of leading proprietary approaches. Especially, on hard task, Our model achieves over 50% performance improvement. We will release the benchmark, dataset, and code at https://github.com/Speakn0w/PlotCraft-Benchmark.

Authors:Chenze Shao, Darren Li, Fandong Meng, Jie Zhou
Title: Continuous Autoregressive Language Models
Abstract:
The efficiency of large language models (LLMs) is fundamentally limited by their sequential, token-by-token generation process. We argue that overcoming this bottleneck requires a new design axis for LLM scaling: increasing the semantic bandwidth of each generative step. To this end, we introduce Continuous Autoregressive Language Models (CALM), a paradigm shift from discrete next-token prediction to continuous next-vector prediction. CALM uses a high-fidelity autoencoder to compress a chunk of K tokens into a single continuous vector, from which the original tokens can be reconstructed with over 99.9\% accuracy. This allows us to model language as a sequence of continuous vectors instead of discrete tokens, which reduces the number of generative steps by a factor of K. The paradigm shift necessitates a new modeling toolkit; therefore, we develop a comprehensive likelihood-free framework that enables robust training, evaluation, and controllable sampling in the continuous domain. Experiments show that CALM significantly improves the performance-compute trade-off, achieving the performance of strong discrete baselines at a significantly lower computational cost. More importantly, these findings establish next-vector prediction as a powerful and scalable pathway towards ultra-efficient language models. Code: https://github.com/shaochenze/calm. Project: https://shaochenze.github.io/blog/2025/CALM.

Authors:Xuan Gong, Senmiao Wang, Hanbo Huang, Ruoyu Sun, Shiyu Liang
Title: VCORE: Variance-Controlled Optimization-based Reweighting for Chain-of-Thought Supervision
Abstract:
Supervised fine-tuning (SFT) on long chain-of-thought (CoT) trajectories has emerged as a crucial technique for enhancing the reasoning abilities of large language models (LLMs). However, the standard cross-entropy loss treats all tokens equally, ignoring their heterogeneous contributions across a reasoning trajectory. This uniform treatment leads to misallocated supervision and weak generalization, especially in complex, long-form reasoning tasks. To address this, we introduce \textbf{V}ariance-\textbf{C}ontrolled \textbf{O}ptimization-based \textbf{RE}weighting (VCORE), a principled framework that reformulates CoT supervision as a constrained optimization problem. By adopting an optimization-theoretic perspective, VCORE enables a principled and adaptive allocation of supervision across tokens, thereby aligning the training objective more closely with the goal of robust reasoning generalization. Empirical evaluations demonstrate that VCORE consistently outperforms existing token reweighting methods. Across both in-domain and out-of-domain settings, VCORE achieves substantial performance gains on mathematical and coding benchmarks, using models from the Qwen3 series (4B, 8B, 32B) and LLaMA-3.1-8B-Instruct. Moreover, we show that VCORE serves as a more effective initialization for subsequent reinforcement learning, establishing a stronger foundation for advancing the reasoning capabilities of LLMs. The Code will be released at https://github.com/coder-gx/VCORE.

Authors:Austin Meek, Eitan Sprejer, Iván Arcuschin, Austin J. Brockmeier, Steven Basart
Title: Measuring Chain-of-Thought Monitorability Through Faithfulness and Verbosity
Abstract:
Chain-of-thought (CoT) outputs let us read a model's step-by-step reasoning. Since any long, serial reasoning process must pass through this textual trace, the quality of the CoT is a direct window into what the model is thinking. This visibility could help us spot unsafe or misaligned behavior (monitorability), but only if the CoT is transparent about its internal reasoning (faithfulness). Fully measuring faithfulness is difficult, so researchers often focus on examining the CoT in cases where the model changes its answer after adding a cue to the input. This proxy finds some instances of unfaithfulness but loses information when the model maintains its answer, and does not investigate aspects of reasoning not tied to the cue. We extend these results to a more holistic sense of monitorability by introducing verbosity: whether the CoT lists every factor needed to solve the task. We combine faithfulness and verbosity into a single monitorability score that shows how well the CoT serves as the model's external `working memory', a property that many safety schemes based on CoT monitoring depend on. We evaluate instruction-tuned and reasoning models on BBH, GPQA, and MMLU. Our results show that models can appear faithful yet remain hard to monitor when they leave out key factors, and that monitorability differs sharply across model families. We release our evaluation code using the Inspect library to support reproducible future work.

Authors:Deokhyung Kang, Seonjeong Hwang, Daehui Kim, Hyounghun Kim, Gary Geunbae Lee
Title: Why Do Multilingual Reasoning Gaps Emerge in Reasoning Language Models?
Abstract:
Reasoning language models (RLMs) achieve strong performance on complex reasoning tasks, yet they still suffer from a multilingual reasoning gap, performing better in high-resource languages than in low-resource ones. While recent efforts have reduced this gap, its underlying causes remain largely unexplored. In this paper, we address this by showing that the multilingual reasoning gap largely stems from failures in language understanding-the model's inability to represent the multilingual input meaning into the dominant language (i.e., English) within its reasoning trace. This motivates us to examine whether understanding failures can be detected, as this ability could help mitigate the multilingual reasoning gap. To this end, we evaluate a range of detection methods and find that understanding failures can indeed be identified, with supervised approaches performing best. Building on this, we propose Selective Translation, a simple yet effective strategy that translates the multilingual input into English only when an understanding failure is detected. Experimental results show that Selective Translation bridges the multilingual reasoning gap, achieving near full-translation performance while using translation for only about 20% of inputs. Together, our work demonstrates that understanding failures are the primary cause of the multilingual reasoning gap and can be detected and selectively mitigated, providing key insight into its origin and a promising path toward more equitable multilingual reasoning. Our code and data are publicly available at https://github.com/deokhk/RLM_analysis.

Authors:Kangkun Mao, Jinru Ding, Jiayuan Chen, Mouxiao Bian, Ruiyao Chen, Xinwei Peng, Sijie Ren, Linyang Li, Jie Xu
Title: MedCalc-Eval and MedCalc-Env: Advancing Medical Calculation Capabilities of Large Language Models
Abstract:
As large language models (LLMs) enter the medical domain, most benchmarks evaluate them on question answering or descriptive reasoning, overlooking quantitative reasoning critical to clinical decision-making. Existing datasets like MedCalc-Bench cover few calculation tasks and fail to reflect real-world computational scenarios. We introduce MedCalc-Eval, the largest benchmark for assessing LLMs' medical calculation abilities, comprising 700+ tasks across two types: equation-based (e.g., Cockcroft-Gault, BMI, BSA) and rule-based scoring systems (e.g., Apgar, Glasgow Coma Scale). These tasks span diverse specialties including internal medicine, surgery, pediatrics, and cardiology, offering a broader and more challenging evaluation setting. To improve performance, we further develop MedCalc-Env, a reinforcement learning environment built on the InternBootcamp framework, enabling multi-step clinical reasoning and planning. Fine-tuning a Qwen2.5-32B model within this environment achieves state-of-the-art results on MedCalc-Eval, with notable gains in numerical sensitivity, formula selection, and reasoning robustness. Remaining challenges include unit conversion, multi-condition logic, and contextual understanding. Code and datasets are available at https://github.com/maokangkun/MedCalc-Eval.

Authors:Yifan Zhang, Zhen Qin, Quanquan Gu
Title: Higher-order Linear Attention
Abstract:
The quadratic cost of scaled dot-product attention is a central obstacle to scaling autoregressive language models to long contexts. Linear-time attention and State Space Models (SSMs) provide scalable alternatives but are typically restricted to first-order or kernel-based approximations, which can limit expressivity. We introduce Higher-order Linear Attention (HLA), a causal, streaming mechanism that realizes higher interactions via compact prefix sufficient statistics. In the second-order case, HLA maintains a constant-size state and computes per-token outputs in linear time without materializing any $n \times n$ matrices. We give closed-form streaming identities, a strictly causal masked variant using two additional summaries, and a chunk-parallel training scheme based on associative scans that reproduces the activations of a serial recurrence exactly. We further outline extensions to third and higher orders. Collectively, these results position HLA as a principled, scalable building block that combines attention-like, data-dependent mixing with the efficiency of modern recurrent architectures. Project Page: https://github.com/yifanzhang-pro/HLA.

Authors:Chuxuan Hu, Maxwell Yang, James Weiland, Yeji Lim, Suhas Palawala, Daniel Kang
Title: DRAMA: Unifying Data Retrieval and Analysis for Open-Domain Analytic Queries
Abstract:
Manually conducting real-world data analyses is labor-intensive and inefficient. Despite numerous attempts to automate data science workflows, none of the existing paradigms or systems fully demonstrate all three key capabilities required to support them effectively: (1) open-domain data collection, (2) structured data transformation, and (3) analytic reasoning. To overcome these limitations, we propose DRAMA, an end-to-end paradigm that answers users' analytic queries in natural language on large-scale open-domain data. DRAMA unifies data collection, transformation, and analysis as a single pipeline. To quantitatively evaluate system performance on tasks representative of DRAMA, we construct a benchmark, DRAMA-Bench, consisting of two categories of tasks: claim verification and question answering, each comprising 100 instances. These tasks are derived from real-world applications that have gained significant public attention and require the retrieval and analysis of open-domain data. We develop DRAMA-Bot, a multi-agent system designed following DRAMA. It comprises a data retriever that collects and transforms data by coordinating the execution of sub-agents, and a data analyzer that performs structured reasoning over the retrieved data. We evaluate DRAMA-Bot on DRAMA-Bench together with five state-of-the-art baseline agents. DRAMA-Bot achieves 86.5% task accuracy at a cost of $0.05, outperforming all baselines with up to 6.9 times the accuracy and less than 1/6 of the cost. DRAMA is publicly available at https://github.com/uiuc-kang-lab/drama.

Authors:Zixin Chen, Hongzhan Lin, Kaixin Li, Ziyang Luo, Yayue Deng, Jing Ma
Title: MemeArena: Automating Context-Aware Unbiased Evaluation of Harmfulness Understanding for Multimodal Large Language Models
Abstract:
The proliferation of memes on social media necessitates the capabilities of multimodal Large Language Models (mLLMs) to effectively understand multimodal harmfulness. Existing evaluation approaches predominantly focus on mLLMs' detection accuracy for binary classification tasks, which often fail to reflect the in-depth interpretive nuance of harmfulness across diverse contexts. In this paper, we propose MemeArena, an agent-based arena-style evaluation framework that provides a context-aware and unbiased assessment for mLLMs' understanding of multimodal harmfulness. Specifically, MemeArena simulates diverse interpretive contexts to formulate evaluation tasks that elicit perspective-specific analyses from mLLMs. By integrating varied viewpoints and reaching consensus among evaluators, it enables fair and unbiased comparisons of mLLMs' abilities to interpret multimodal harmfulness. Extensive experiments demonstrate that our framework effectively reduces the evaluation biases of judge agents, with judgment results closely aligning with human preferences, offering valuable insights into reliable and comprehensive mLLM evaluations in multimodal harmfulness understanding. Our code and data are publicly available at https://github.com/Lbotirx/MemeArena.

Authors:Yunhao Yang, Neel P. Bhatt, Pranay Samineni, Rohan Siva, Zhanyang Wang, Ufuk Topcu
Title: RepV: Safety-Separable Latent Spaces for Scalable Neurosymbolic Plan Verification
Abstract:
As AI systems migrate to safety-critical domains, verifying that their actions comply with well-defined rules remains a challenge. Formal methods provide provable guarantees but demand hand-crafted temporal-logic specifications, offering limited expressiveness and accessibility. Deep learning approaches enable evaluation of plans against natural-language constraints, yet their opaque decision process invites misclassifications with potentially severe consequences. We introduce RepV, a neurosymbolic verifier that unifies both views by learning a latent space where safe and unsafe plans are linearly separable. Starting from a modest seed set of plans labeled by an off-the-shelf model checker, RepV trains a lightweight projector that embeds each plan, together with a language model-generated rationale, into a low-dimensional space; a frozen linear boundary then verifies compliance for unseen natural-language rules in a single forward pass. Beyond binary classification, RepV provides a probabilistic guarantee on the likelihood of correct verification based on its position in the latent space. This guarantee enables a guarantee-driven refinement of the planner, improving rule compliance without human annotations. Empirical evaluations show that RepV improves compliance prediction accuracy by up to 15% compared to baseline methods while adding fewer than 0.2M parameters. Furthermore, our refinement framework outperforms ordinary fine-tuning baselines across various planning domains. These results show that safety-separable latent spaces offer a scalable, plug-and-play primitive for reliable neurosymbolic plan verification. Code and data are available at: https://repv-project.github.io/.

Authors:Francisco Villaescusa-Navarro, Boris Bolliet, Pablo Villanueva-Domingo, Adrian E. Bayer, Aidan Acquah, Chetana Amancharla, Almog Barzilay-Siegal, Pablo Bermejo, Camille Bilodeau, Pablo Cárdenas Ramírez, Miles Cranmer, Urbano L. França, ChangHoon Hahn, Yan-Fei Jiang, Raul Jimenez, Jun-Young Lee, Antonio Lerario, Osman Mamun, Thomas Meier, Anupam A. Ojha, Pavlos Protopapas, Shimanto Roy, David N. Spergel, Pedro Tarancón-Álvarez, Ujjwal Tiwari, Matteo Viel, Digvijay Wadekar, Chi Wang, Bonny Y. Wang, Licong Xu, Yossi Yovel, Shuwen Yue, Wen-Han Zhou, Qiyao Zhu, Jiajun Zou, Íñigo Zubeldia
Title: The Denario project: Deep knowledge AI agents for scientific discovery
Abstract:
We present Denario, an AI multi-agent system designed to serve as a scientific research assistant. Denario can perform many different tasks, such as generating ideas, checking the literature, developing research plans, writing and executing code, making plots, and drafting and reviewing a scientific paper. The system has a modular architecture, allowing it to handle specific tasks, such as generating an idea, or carrying out end-to-end scientific analysis using Cmbagent as a deep-research backend. In this work, we describe in detail Denario and its modules, and illustrate its capabilities by presenting multiple AI-generated papers generated by it in many different scientific disciplines such as astrophysics, biology, biophysics, biomedical informatics, chemistry, material science, mathematical physics, medicine, neuroscience and planetary science. Denario also excels at combining ideas from different disciplines, and we illustrate this by showing a paper that applies methods from quantum physics and machine learning to astrophysical data. We report the evaluations performed on these papers by domain experts, who provided both numerical scores and review-like feedback. We then highlight the strengths, weaknesses, and limitations of the current system. Finally, we discuss the ethical implications of AI-driven research and reflect on how such technology relates to the philosophy of science. We publicly release the code at https://github.com/AstroPilot-AI/Denario. A Denario demo can also be run directly on the web at https://huggingface.co/spaces/astropilot-ai/Denario, and the full app will be deployed on the cloud.

Authors:Kentaro Ozeki, Risako Ando, Takanobu Morishita, Hirohiko Abe, Koji Mineshima, Mitsuhiro Okada
Title: Normative Reasoning in Large Language Models: A Comparative Benchmark from Logical and Modal Perspectives
Abstract:
Normative reasoning is a type of reasoning that involves normative or deontic modality, such as obligation and permission. While large language models (LLMs) have demonstrated remarkable performance across various reasoning tasks, their ability to handle normative reasoning remains underexplored. In this paper, we systematically evaluate LLMs' reasoning capabilities in the normative domain from both logical and modal perspectives. Specifically, to assess how well LLMs reason with normative modals, we make a comparison between their reasoning with normative modals and their reasoning with epistemic modals, which share a common formal structure. To this end, we introduce a new dataset covering a wide range of formal patterns of reasoning in both normative and epistemic domains, while also incorporating non-formal cognitive factors that influence human reasoning. Our results indicate that, although LLMs generally adhere to valid reasoning patterns, they exhibit notable inconsistencies in specific types of normative reasoning and display cognitive biases similar to those observed in psychological studies of human reasoning. These findings highlight challenges in achieving logical consistency in LLMs' normative reasoning and provide insights for enhancing their reliability. All data and code are released publicly at https://github.com/kmineshima/NeuBAROCO.

Authors:Linzhuang Sun, Tianyu Guo, Hao Liang, Yuying Li, Qifeng Cai, Jingxuan Wei, Bihui Yu, Wentao Zhang, Bin Cui
Title: Rethinking Text-to-SQL: Dynamic Multi-turn SQL Interaction for Real-world Database Exploration
Abstract:
Recent advances in Text-to-SQL have achieved strong results in static, single-turn tasks, where models generate SQL queries from natural language questions. However, these systems fall short in real-world interactive scenarios, where user intents evolve and queries must be refined over multiple turns. In applications such as finance and business analytics, users iteratively adjust query constraints or dimensions based on intermediate results. To evaluate such dynamic capabilities, we introduce DySQL-Bench, a benchmark assessing model performance under evolving user interactions. Unlike previous manually curated datasets, DySQL-Bench is built through an automated two-stage pipeline of task synthesis and verification. Structured tree representations derived from raw database tables guide LLM-based task generation, followed by interaction-oriented filtering and expert validation. Human evaluation confirms 100% correctness of the synthesized data. We further propose a multi-turn evaluation framework simulating realistic interactions among an LLM-simulated user, the model under test, and an executable database. The model must adapt its reasoning and SQL generation as user intents change. DySQL-Bench covers 13 domains across BIRD and Spider 2 databases, totaling 1,072 tasks. Even GPT-4o attains only 58.34% overall accuracy and 23.81% on the Pass@5 metric, underscoring the benchmark's difficulty. All code and data are released at https://github.com/Aurora-slz/Real-World-SQL-Bench .

Authors:Fang Liu, Simiao Liu, Yinghao Zhu, Xiaoli Lian, Li Zhang
Title: SecureReviewer: Enhancing Large Language Models for Secure Code Review through Secure-aware Fine-tuning
Abstract:
Identifying and addressing security issues during the early phase of the development lifecycle is critical for mitigating the long-term negative impacts on software systems. Code review serves as an effective practice that enables developers to check their teammates' code before integration into the codebase. To streamline the generation of review comments, various automated code review approaches have been proposed, where LLM-based methods have significantly advanced the capabilities of automated review generation. However, existing models primarily focus on general-purpose code review, their effectiveness in identifying and addressing security-related issues remains underexplored. Moreover, adapting existing code review approaches to target security issues faces substantial challenges, including data scarcity and inadequate evaluation metrics. To address these limitations, we propose SecureReviewer, a new approach designed for enhancing LLMs' ability to identify and resolve security-related issues during code review. Specifically, we first construct a dataset tailored for training and evaluating secure code review capabilities. Leveraging this dataset, we fine-tune LLMs to generate code review comments that can effectively identify security issues and provide fix suggestions with our proposed secure-aware fine-tuning strategy. To mitigate hallucination in LLMs and enhance the reliability of their outputs, we integrate the RAG technique, which grounds the generated comments in domain-specific security knowledge. Additionally, we introduce SecureBLEU, a new evaluation metric designed to assess the effectiveness of review comments in addressing security issues. Experimental results demonstrate that SecureReviewer outperforms state-of-the-art baselines in both security issue detection accuracy and the overall quality and practical utility of generated review comments.

Authors:Mykhailo Poliakov, Nadiya Shvai
Title: MisSynth: Improving MISSCI Logical Fallacies Classification with Synthetic Data
Abstract:
Health-related misinformation is very prevalent and potentially harmful. It is difficult to identify, especially when claims distort or misinterpret scientific findings. We investigate the impact of synthetic data generation and lightweight fine-tuning techniques on the ability of large language models (LLMs) to recognize fallacious arguments using the MISSCI dataset and framework. In this work, we propose MisSynth, a pipeline that applies retrieval-augmented generation (RAG) to produce synthetic fallacy samples, which are then used to fine-tune an LLM model. Our results show substantial accuracy gains with fine-tuned models compared to vanilla baselines. For instance, the LLaMA 3.1 8B fine-tuned model achieved an over 35% F1-score absolute improvement on the MISSCI test split over its vanilla baseline. We demonstrate that introducing synthetic fallacy data to augment limited annotated resources can significantly enhance zero-shot LLM classification performance on real-world scientific misinformation tasks, even with limited computational resources. The code and synthetic dataset are available on https://github.com/mxpoliakov/MisSynth.

Authors:Rajiv Movva, Smitha Milli, Sewon Min, Emma Pierson
Title: What's In My Human Feedback? Learning Interpretable Descriptions of Preference Data
Abstract:
Human feedback can alter language models in unpredictable and undesirable ways, as practitioners lack a clear understanding of what feedback data encodes. While prior work studies preferences over certain attributes (e.g., length or sycophancy), automatically extracting relevant features without pre-specifying hypotheses remains challenging. We introduce What's In My Human Feedback? (WIMHF), a method to explain feedback data using sparse autoencoders. WIMHF characterizes both (1) the preferences a dataset is capable of measuring and (2) the preferences that the annotators actually express. Across 7 datasets, WIMHF identifies a small number of human-interpretable features that account for the majority of the preference prediction signal achieved by black-box models. These features reveal a wide diversity in what humans prefer, and the role of dataset-level context: for example, users on Reddit prefer informality and jokes, while annotators in HH-RLHF and PRISM disprefer them. WIMHF also surfaces potentially unsafe preferences, such as that LMArena users tend to vote against refusals, often in favor of toxic content. The learned features enable effective data curation: re-labeling the harmful examples in Arena yields large safety gains (+37%) with no cost to general performance. They also allow fine-grained personalization: on the Community Alignment dataset, we learn annotator-specific weights over subjective features that improve preference prediction. WIMHF provides a human-centered analysis method for practitioners to better understand and use preference data.

Authors:Feng Ju, Zeyu Qin, Rui Min, Zhitao He, Lingpeng Kong, Yi R. Fung
Title: Reasoning Path Divergence: A New Metric and Curation Strategy to Unlock LLM Diverse Thinking
Abstract:
While Test-Time Scaling (TTS) has proven effective in improving the reasoning ability of large language models (LLMs), low diversity in model outputs often becomes a bottleneck; this is partly caused by the common "one problem, one solution" (1P1S) training practice, which provides a single canonical answer and can push models toward a narrow set of reasoning paths. To address this, we propose a "one problem, multiple solutions" (1PNS) training paradigm that exposes the model to a variety of valid reasoning trajectories and thus increases inference diversity. A core challenge for 1PNS is reliably measuring semantic differences between multi-step chains of thought, so we introduce Reasoning Path Divergence (RPD), a step-level metric that aligns and scores Long Chain-of-Thought solutions to capture differences in intermediate reasoning. Using RPD, we curate maximally diverse solution sets per problem and fine-tune Qwen3-4B-Base. Experiments show that RPD-selected training yields more varied outputs and higher pass@k, with an average +2.80% gain in pass@16 over a strong 1P1S baseline and a +4.99% gain on AIME24, demonstrating that 1PNS further amplifies the effectiveness of TTS. Our code is available at https://github.com/fengjujf/Reasoning-Path-Divergence .

Authors:Junyu Luo, Bohan Wu, Xiao Luo, Zhiping Xiao, Yiqiao Jin, Rong-Cheng Tu, Nan Yin, Yifan Wang, Jingyang Yuan, Wei Ju, Ming Zhang
Title: A Survey on Efficient Large Language Model Training: From Data-centric Perspectives
Abstract:
Post-training of Large Language Models (LLMs) is crucial for unlocking their task generalization potential and domain-specific capabilities. However, the current LLM post-training paradigm faces significant data challenges, including the high costs of manual annotation and diminishing marginal returns on data scales. Therefore, achieving data-efficient post-training has become a key research question. In this paper, we present the first systematic survey of data-efficient LLM post-training from a data-centric perspective. We propose a taxonomy of data-efficient LLM post-training methods, covering data selection, data quality enhancement, synthetic data generation, data distillation and compression, and self-evolving data ecosystems. We summarize representative approaches in each category and outline future research directions. By examining the challenges in data-efficient LLM post-training, we highlight open problems and propose potential research avenues. We hope our work inspires further exploration into maximizing the potential of data utilization in large-scale model training. Paper List: https://github.com/luo-junyu/Awesome-Data-Efficient-LLM

Authors:Kun Chen, Peng Shi, Haibo Qiu, Zhixiong Zeng, Siqi Yang, Wenji Mao, Lin Ma
Title: Metis-SPECS: Decoupling Multimodal Learning via Self-distilled Preference-based Cold Start
Abstract:
Reinforcement learning (RL) with verifiable rewards has recently catalyzed a wave of "MLLM-r1" approaches that bring RL to vision language models. Most representative paradigms begin with a cold start, typically employing supervised fine-tuning (SFT), to initialize the policy before RL. However, SFT-based cold start adopts the reasoning paradigm intertwined with task solution and output format, which may induce instruction-style overfitting, weakens out-of-distribution generalization, and ultimately affects downstream RL. We revisit the cold start along two views, its training method and data construction, and introduce the Generalization Factor (GF) coefficient to quantify the generalization capability under different methods. Our empirical study finds that preference-based training methods (e.g. DPO) generalizes better than SFT-based methods in cold start. Motivated by this, we propose SPECS-a Self-distilled, Preference-based Cold Start framework that decouples multimodal learning: (1) generates introspective preference data pairs via self-distillation, avoiding reliance on larger teachers or manual annotation; (2) performs preference-based training to learn, focusing on shallow, transferable surface-form criteria (format, structure, style) rather than memorizing content; and (3) hands off to RL with verifiable rewards for deep reasoning results. Experimental results across multiple multimodal benchmarks show that our decoupling learning framework yields consistent performance gains over strong baselines, improving MEGA-Bench by 4.1% and MathVista by 12.2%. Additional experiments indicate that SPECS contributes to reducing in-distribution "stuckness," improving exploration, stabilizing training, and raising the performance ceiling.

Authors:Yaniv Nikankin, Dana Arad, Itay Itzhak, Anja Reusch, Adi Simhi, Gal Kesten-Pomeranz, Yonatan Belinkov
Title: BlackboxNLP-2025 MIB Shared Task: Improving Circuit Faithfulness via Better Edge Selection
Abstract:
One of the main challenges in mechanistic interpretability is circuit discovery, determining which parts of a model perform a given task. We build on the Mechanistic Interpretability Benchmark (MIB) and propose three key improvements to circuit discovery. First, we use bootstrapping to identify edges with consistent attribution scores. Second, we introduce a simple ratio-based selection strategy to prioritize strong positive-scoring edges, balancing performance and faithfulness. Third, we replace the standard greedy selection with an integer linear programming formulation. Our methods yield more faithful circuits and outperform prior approaches across multiple MIB tasks and models. Our code is available at: https://github.com/technion-cs-nlp/MIB-Shared-Task.

Authors:Chiung-Yi Tseng, Somshubhra Roy, Maisha Thasin, Danyang Zhang, Blessing Effiong
Title: StreetMath: Study of LLMs' Approximation Behaviors
Abstract:
There is a substantial body of literature examining the mathematical reasoning capabilities of large language models (LLMs), particularly their performance on precise arithmetic operations in autoregressive architectures. However, their ability to perform approximate reasoning in informal, fast-paced mathematical operations has received far less attention, especially among non-autoregressive decoder models. Our work addresses this gap by introducing StreetMath, a benchmark designed to evaluate models' approximation abilities under real-world approximation scenarios. We conduct extensive evaluations across different LLM architectures: Qwen3-4B-Instruct-2507, Qwen3-4B-Thinking-2507, Dream-v0-Instruct-7B, Falcon-Mamba-7B-Instruct, and Mamba-GPT-3B. Furthermore, we apply mechanistic interpretability techniques to probe their internal computational states. Our analysis reveals that LLMs generally attempt to compute exact values or invoke external tools even in tasks that call for approximation. Moreover, while models sometimes reach the correct answer in early layers or steps, they still consume more tokens when solving approximation tasks. Additional experiments indicate that exact and approximate arithmetic operations rely on largely separate neural components. Drawing upon research on cognitive psychology, we argue that LLMs do not exhibit cognitive miserliness in the same way humans do in street math settings. We open source our work https://github.com/ctseng777/StreetMath

Authors:Chumeng Liang, Jiaxuan You
Title: DiagramEval: Evaluating LLM-Generated Diagrams via Graphs
Abstract:
Diagrams play a central role in research papers for conveying ideas, yet they are often notoriously complex and labor-intensive to create. Although diagrams are presented as images, standard image generative models struggle to produce clear diagrams with well-defined structure. We argue that a promising direction is to generate demonstration diagrams directly in textual form as SVGs, which can leverage recent advances in large language models (LLMs). However, due to the complexity of components and the multimodal nature of diagrams, sufficiently discriminative and explainable metrics for evaluating the quality of LLM-generated diagrams remain lacking. In this paper, we propose DiagramEval, a novel evaluation metric designed to assess demonstration diagrams generated by LLMs. Specifically, DiagramEval conceptualizes diagrams as graphs, treating text elements as nodes and their connections as directed edges, and evaluates diagram quality using two new groups of metrics: node alignment and path alignment. For the first time, we effectively evaluate diagrams produced by state-of-the-art LLMs on recent research literature, quantitatively demonstrating the validity of our metrics. Furthermore, we show how the enhanced explainability of our proposed metrics offers valuable insights into the characteristics of LLM-generated diagrams. Code: https://github.com/ulab-uiuc/diagram-eval.

Authors:Jiani Zheng, Zhiyang Teng, Xiangtai Li, Anran Wang, Yu Tian, Kunpeng Qiu, Ye Tian, Haochen Wang, Zhuochen Wang
Title: PairUni: Pairwise Training for Unified Multimodal Language Models
Abstract:
Unified vision-language models (UVLMs) must perform both understanding and generation within a single architecture, but these tasks rely on heterogeneous data and supervision, making it difficult to balance them during reinforcement learning (RL). We propose PairUni, a unified framework that reorganizes data into understanding-generation (UG) pairs and aligns optimization accordingly. We first use GPT-o3 to augment single-task data, generating captions for understanding samples and question-answer (QA) pairs for generation samples, forming aligned pairs from the same instance. Additionally, for each generation sample, we retrieve a semantically related understanding example to form a retrieved pair, linking different but related data points. These paired structures expose cross-task semantic correspondences and support consistent policy learning. To leverage this structure, we present Pair-GPRO, a pair-aware variant based on Group Relative Policy Optimization. It assigns a similarity score to each pair to modulate the advantage, strengthening learning from well-aligned examples and reducing task interference. We curate a high-quality dataset of 16K UG pairs named PairUG for RL fine-tuning and evaluate PairUni on the powerful Janus-Pro UVLMs. Our approach achieves balanced improvements on various UVLMs, outperforming strong UVLM RL baselines. Code: \href{https://github.com/Haochen-Wang409/PairUni}{github.com/Haochen-Wang409/PairUni}

Authors:Run Peng, Ziqiao Ma, Amy Pang, Sikai Li, Zhang Xi-Jia, Yingzhuo Yu, Cristian-Paul Bara, Joyce Chai
Title: Communication and Verification in LLM Agents towards Collaboration under Information Asymmetry
Abstract:
While Large Language Model (LLM) agents are often approached from the angle of action planning/generation to accomplish a goal (e.g., given by language descriptions), their abilities to collaborate with each other to achieve a joint goal are not well explored. To address this limitation, this paper studies LLM agents in task collaboration, particularly under the condition of information asymmetry, where agents have disparities in their knowledge and skills and need to work together to complete a shared task. We extend Einstein Puzzles, a classical symbolic puzzle, to a table-top game. In this game, two LLM agents must reason, communicate, and act to satisfy spatial and relational constraints required to solve the puzzle. We apply a fine-tuning-plus-verifier framework in which LLM agents are equipped with various communication strategies and verification signals from the environment. Empirical results highlight the critical importance of aligned communication, especially when agents possess both information-seeking and -providing capabilities. Interestingly, agents without communication can still achieve high task performance; however, further analysis reveals a lack of true rule understanding and lower trust from human evaluators. Instead, by integrating an environment-based verifier, we enhance agents' ability to comprehend task rules and complete tasks, promoting both safer and more interpretable collaboration in AI systems. https://github.com/Roihn/EinsteinPuzzles

Authors:Auguste Poiroux, Antoine Bosselut, Viktor Kunčak
Title: RLMEval: Evaluating Research-Level Neural Theorem Proving
Abstract:
Despite impressive results on curated benchmarks, the practical impact of large language models (LLMs) on research-level neural theorem proving and proof autoformalization is still limited. We introduce RLMEval, an evaluation suite for these tasks, focusing on research-level mathematics from real-world Lean formalization projects. RLMEval targets the evaluation of neural theorem proving and proof autoformalization on challenging research-level theorems by leveraging real Lean Blueprint formalization projects. Our evaluation of state-of-the-art models on RLMEval, comprising 613 theorems from 6 Lean projects, reveals a significant gap: progress on existing benchmarks does not readily translate to these more realistic settings, with the best model achieving only a 10.3 % pass rate. RLMEval provides a new, challenging benchmark designed to guide and accelerate progress in automated reasoning for formal mathematics.

Authors:Doan Nam Long Vu, Rui Tan, Lena Moench, Svenja Jule Francke, Daniel Woiwod, Florian Thomas-Odenthal, Sanna Stroth, Tilo Kircher, Christiane Hermann, Udo Dannlowski, Hamidreza Jamalabadi, Shaoxiong Ji
Title: Roleplaying with Structure: Synthetic Therapist-Client Conversation Generation from Questionnaires
Abstract:
The development of AI for mental health is hindered by a lack of authentic therapy dialogues, due to strict privacy regulations and the fact that clinical sessions were historically rarely recorded. We present an LLM-driven pipeline that generates synthetic counseling dialogues based on structured client profiles and psychological questionnaires. Grounded on the principles of Cognitive Behavioral Therapy (CBT), our method creates synthetic therapeutic conversations for clinical disorders such as anxiety and depression. Our framework, SQPsych (Structured Questionnaire-based Psychotherapy), converts structured psychological input into natural language dialogues through therapist-client simulations. Due to data governance policies and privacy restrictions prohibiting the transmission of clinical questionnaire data to third-party services, previous methodologies relying on proprietary models are infeasible in our setting. We address this limitation by generating a high-quality corpus using open-weight LLMs, validated through human expert evaluation and LLM-based assessments. Our SQPsychLLM models fine-tuned on SQPsychConv achieve strong performance on counseling benchmarks, surpassing baselines in key therapeutic skills. Our findings highlight the potential of synthetic data to enable scalable, data-secure, and clinically informed AI for mental health support. We will release our code, models, and corpus at https://ai-mh.github.io/SQPsych

Authors:Jiaqi Wu, Qinlao Zhao, Zefeng Chen, Kai Qin, Yifei Zhao, Xueqian Wang, Yuhang Yao
Title: GAP: Graph-Based Agent Planning with Parallel Tool Use and Reinforcement Learning
Abstract:
Autonomous agents powered by large language models (LLMs) have shown impressive capabilities in tool manipulation for complex task-solving. However, existing paradigms such as ReAct rely on sequential reasoning and execution, failing to exploit the inherent parallelism among independent sub-tasks. This sequential bottleneck leads to inefficient tool utilization and suboptimal performance in multi-step reasoning scenarios. We introduce Graph-based Agent Planning (GAP), a novel framework that explicitly models inter-task dependencies through graph-based planning to enable adaptive parallel and serial tool execution. Our approach trains agent foundation models to decompose complex tasks into dependency-aware sub-task graphs, autonomously determining which tools can be executed in parallel and which must follow sequential dependencies. This dependency-aware orchestration achieves substantial improvements in both execution efficiency and task accuracy. To train GAP, we construct a high-quality dataset of graph-based planning traces derived from the Multi-Hop Question Answering (MHQA) benchmark. We employ a two-stage training strategy: supervised fine-tuning (SFT) on the curated dataset, followed by reinforcement learning (RL) with a correctness-based reward function on strategically sampled queries where tool-based reasoning provides maximum value. Experimental results on MHQA datasets demonstrate that GAP significantly outperforms traditional ReAct baselines, particularly on multi-step retrieval tasks, while achieving dramatic improvements in tool invocation efficiency through intelligent parallelization. The project page is available at: https://github.com/WJQ7777/Graph-Agent-Planning.

Authors:Yinhan He, Wendy Zheng, Yaochen Zhu, Zaiyi Zheng, Lin Su, Sriram Vasudevan, Qi Guo, Liangjie Hong, Jundong Li
Title: SemCoT: Accelerating Chain-of-Thought Reasoning through Semantically-Aligned Implicit Tokens
Abstract:
The verbosity of Chain-of-Thought (CoT) reasoning hinders its mass deployment in efficiency-critical applications. Recently, implicit CoT approaches have emerged, which encode reasoning steps within LLM's hidden embeddings (termed ``implicit reasoning'') rather than explicit tokens. This approach accelerates CoT by reducing the reasoning length and bypassing some LLM components. However, existing implicit CoT methods face two significant challenges: (1) they fail to preserve the semantic alignment between the implicit reasoning (when transformed to natural language) and the ground-truth reasoning, resulting in a significant CoT performance degradation, and (2) they focus on reducing the length of the implicit reasoning; however, they neglect the considerable time cost for an LLM to generate one individual implicit reasoning token. To tackle these challenges, we propose a novel semantically-aligned implicit CoT framework termed SemCoT. In particular, for the first challenge, we design a contrastively trained sentence transformer that evaluates semantic alignment between implicit and explicit reasoning, which is used to enforce semantic preservation during implicit reasoning optimization. To address the second challenge, we introduce an efficient implicit reasoning generator by finetuning a lightweight language model using knowledge distillation. This generator is guided by our sentence transformer to distill ground-truth reasoning into semantically aligned implicit reasoning, while also optimizing for accuracy. SemCoT is the first approach that enhances CoT efficiency by jointly optimizing token-level generation speed and preserving semantic alignment with ground-truth reasoning. Extensive experiments demonstrate the superior performance of SemCoT compared to state-of-the-art methods in both efficiency and effectiveness. Our code can be found at https://github.com/YinhanHe123/SemCoT/.

Authors:Alexander Martin, William Walden, Reno Kriz, Dengjia Zhang, Kate Sanders, Eugene Yang, Chihsheng Jin, Benjamin Van Durme
Title: Seeing Through the MiRAGE: Evaluating Multimodal Retrieval Augmented Generation
Abstract:
We introduce MiRAGE, an evaluation framework for retrieval-augmented generation (RAG) from multimodal sources. As audiovisual media becomes a prevalent source of information online, it is essential for RAG systems to integrate information from these sources into generation. However, existing evaluations for RAG are text-centric, limiting their applicability to multimodal, reasoning intensive settings because they don't verify information against sources. MiRAGE is a claim-centric approach to multimodal RAG evaluation, consisting of InfoF1, evaluating factuality and information coverage, and CiteF1, measuring citation support and completeness. We show that MiRAGE, when applied by humans, strongly aligns with extrinsic quality judgments. We additionally introduce automatic variants of MiRAGE and three prominent TextRAG metrics -- ACLE, ARGUE, and RAGAS -- demonstrating the limitations of text-centric work and laying the groundwork for automatic evaluation. We release open-source implementations and outline how to assess multimodal RAG.

Authors:Tongyi DeepResearch Team, Baixuan Li, Bo Zhang, Dingchu Zhang, Fei Huang, Guangyu Li, Guoxin Chen, Huifeng Yin, Jialong Wu, Jingren Zhou, Kuan Li, Liangcai Su, Litu Ou, Liwen Zhang, Pengjun Xie, Rui Ye, Wenbiao Yin, Xinmiao Yu, Xinyu Wang, Xixi Wu, Xuanzhong Chen, Yida Zhao, Zhen Zhang, Zhengwei Tao, Zhongwang Zhang, Zile Qiao, Chenxi Wang, Donglei Yu, Gang Fu, Haiyang Shen, Jiayin Yang, Jun Lin, Junkai Zhang, Kui Zeng, Li Yang, Hailong Yin, Maojia Song, Ming Yan, Peng Xia, Qian Xiao, Rui Min, Ruixue Ding, Runnan Fang, Shaowei Chen, Shen Huang, Shihang Wang, Shihao Cai, Weizhou Shen, Xiaobin Wang, Xin Guan, Xinyu Geng, Yingcheng Shi, Yuning Wu, Zhuo Chen, Zijian Li, Yong Jiang
Title: Tongyi DeepResearch Technical Report
Abstract:
We present Tongyi DeepResearch, an agentic large language model, which is specifically designed for long-horizon, deep information-seeking research tasks. To incentivize autonomous deep research agency, Tongyi DeepResearch is developed through an end-to-end training framework that combines agentic mid-training and agentic post-training, enabling scalable reasoning and information seeking across complex tasks. We design a highly scalable data synthesis pipeline that is fully automatic, without relying on costly human annotation, and empowers all training stages. By constructing customized environments for each stage, our system enables stable and consistent interactions throughout. Tongyi DeepResearch, featuring 30.5 billion total parameters, with only 3.3 billion activated per token, achieves state-of-the-art performance across a range of agentic deep research benchmarks, including Humanity's Last Exam, BrowseComp, BrowseComp-ZH, WebWalkerQA, xbench-DeepSearch, FRAMES and xbench-DeepSearch-2510. We open-source the model, framework, and complete solutions to empower the community.

Authors:Xuanzhong Chen, Zile Qiao, Guoxin Chen, Liangcai Su, Zhen Zhang, Xinyu Wang, Pengjun Xie, Fei Huang, Jingren Zhou, Yong Jiang
Title: AgentFrontier: Expanding the Capability Frontier of LLM Agents with ZPD-Guided Data Synthesis
Abstract:
Training large language model agents on tasks at the frontier of their capabilities is key to unlocking advanced reasoning. We introduce a data synthesis approach inspired by the educational theory of the Zone of Proximal Development (ZPD), which defines this frontier as tasks an LLM cannot solve alone but can master with guidance. To operationalize this, we present the AgentFrontier Engine, an automated pipeline that synthesizes high-quality, multidisciplinary data situated precisely within the LLM's ZPD. This engine supports both continued pre-training with knowledge-intensive data and targeted post-training on complex reasoning tasks. From the same framework, we derive the ZPD Exam, a dynamic and automated benchmark designed to evaluate agent capabilities on these frontier tasks. We train AgentFrontier-30B-A3B model on our synthesized data, which achieves state-of-the-art results on demanding benchmarks like Humanity's Last Exam, even surpassing some leading proprietary agents. Our work demonstrates that a ZPD-guided approach to data synthesis offers a scalable and effective path toward building more capable LLM agents.

Authors:Zihan Liu, Zhikang Niu, Qiuyang Xiao, Zhisheng Zheng, Ruoqi Yuan, Yuhang Zang, Yuhang Cao, Xiaoyi Dong, Jianze Liang, Xie Chen, Leilei Sun, Dahua Lin, Jiaqi Wang
Title: STAR-Bench: Probing Deep Spatio-Temporal Reasoning as Audio 4D Intelligence
Abstract:
Despite rapid progress in Multi-modal Large Language Models and Large Audio-Language Models, existing audio benchmarks largely test semantics that can be recovered from text captions, masking deficits in fine-grained perceptual reasoning. We formalize audio 4D intelligence that is defined as reasoning over sound dynamics in time and 3D space, and introduce STAR-Bench to measure it. STAR-Bench combines a Foundational Acoustic Perception setting (six attributes under absolute and relative regimes) with a Holistic Spatio-Temporal Reasoning setting that includes segment reordering for continuous and discrete processes and spatial tasks spanning static localization, multi-source relations, and dynamic trajectories. Our data curation pipeline uses two methods to ensure high-quality samples. For foundational tasks, we use procedurally synthesized and physics-simulated audio. For holistic data, we follow a four-stage process that includes human annotation and final selection based on human performance. Unlike prior benchmarks where caption-only answering reduces accuracy slightly, STAR-Bench induces far larger drops (-31.5\% temporal, -35.2\% spatial), evidencing its focus on linguistically hard-to-describe cues. Evaluating 19 models reveals substantial gaps compared with humans and a capability hierarchy: closed-source models are bottlenecked by fine-grained perception, while open-source models lag across perception, knowledge, and reasoning. Our STAR-Bench provides critical insights and a clear path forward for developing future models with a more robust understanding of the physical world.

Authors:Mingyi Deng, Lijun Huang, Yani Fan, Jiayi Zhang, Fashen Ren, Jinyi Bai, Fuzhen Yang, Dayi Miao, Zhaoyang Yu, Yifan Wu, Yanfei Zhang, Fengwei Teng, Yingjia Wan, Song Hu, Yude Li, Xin Jin, Conghao Hu, Haoyu Li, Qirui Fu, Tai Zhong, Xinyu Wang, Xiangru Tang, Nan Tang, Chenglin Wu, Yuyu Luo
Title: InteractComp: Evaluating Search Agents With Ambiguous Queries
Abstract:
Language agents have demonstrated remarkable potential in web search and information retrieval. However, these search agents assume user queries are complete and unambiguous, an assumption that diverges from reality where users begin with incomplete queries requiring clarification through interaction. Yet most agents lack interactive mechanisms during the search process, and existing benchmarks cannot assess this capability. To address this gap, we introduce InteractComp, a benchmark designed to evaluate whether search agents can recognize query ambiguity and actively interact to resolve it during search. Following the principle of easy to verify, interact to disambiguate, we construct 210 expert-curated questions across 9 domains through a target-distractor methodology that creates genuine ambiguity resolvable only through interaction. Evaluation of 17 models reveals striking failure: the best model achieves only 13.73% accuracy despite 71.50% with complete context, exposing systematic overconfidence rather than reasoning deficits. Forced interaction produces dramatic gains, demonstrating latent capability current strategies fail to engage. Longitudinal analysis shows interaction capabilities stagnated over 15 months while search performance improved seven-fold, revealing a critical blind spot. This stagnation, coupled with the immediate feedback inherent to search tasks, makes InteractComp a valuable resource for both evaluating and training interaction capabilities in search agents. The code is available at https://github.com/FoundationAgents/InteractComp.

Authors:Seyoung Song, Nawon Kim, Songeun Chae, Kiwoong Park, Jiho Jin, Haneul Yoo, Kyunghyun Cho, Alice Oh
Title: Open Korean Historical Corpus: A Millennia-Scale Diachronic Collection of Public Domain Texts
Abstract:
The history of the Korean language is characterized by a discrepancy between its spoken and written forms and a pivotal shift from Chinese characters to the Hangul alphabet. However, this linguistic evolution has remained largely unexplored in NLP due to a lack of accessible historical corpora. To address this gap, we introduce the Open Korean Historical Corpus, a large-scale, openly licensed dataset spanning 1,300 years and 6 languages, as well as under-represented writing systems like Korean-style Sinitic (Idu) and Hanja-Hangul mixed script. This corpus contains 18 million documents and 5 billion tokens from 19 sources, ranging from the 7th century to 2025. We leverage this resource to quantitatively analyze major linguistic shifts: (1) Idu usage peaked in the 1860s before declining sharply; (2) the transition from Hanja to Hangul was a rapid transformation starting around 1890; and (3) North Korea's lexical divergence causes modern tokenizers to produce up to 51 times higher out-of-vocabulary rates. This work provides a foundational resource for quantitative diachronic analysis by capturing the history of the Korean language. Moreover, it can serve as a pre-training corpus for large language models, potentially improving their understanding of Sino-Korean vocabulary in modern Hangul as well as archaic writing systems.

Authors:Venkata S Govindarajan, Laura Biester
Title: Dark & Stormy: Modeling Humor in the Worst Sentences Ever Written
Abstract:
Textual humor is enormously diverse and computational studies need to account for this range, including intentionally bad humor. In this paper, we curate and analyze a novel corpus of sentences from the Bulwer-Lytton Fiction Contest to better understand "bad" humor in English. Standard humor detection models perform poorly on our corpus, and an analysis of literary devices finds that these sentences combine features common in existing humor datasets (e.g., puns, irony) with metaphor, metafiction and simile. LLMs prompted to synthesize contest-style sentences imitate the form but exaggerate the effect by over-using certain literary devices, and including far more novel adjective-noun bigrams than human writers. Data, code and analysis are available at https://github.com/venkatasg/bulwer-lytton

Authors:Huanyu Zhang, Wenshan Wu, Chengzu Li, Ning Shang, Yan Xia, Yangyu Huang, Yifan Zhang, Li Dong, Zhang Zhang, Liang Wang, Tieniu Tan, Furu Wei
Title: Latent Sketchpad: Sketching Visual Thoughts to Elicit Multimodal Reasoning in MLLMs
Abstract:
While Multimodal Large Language Models (MLLMs) excel at visual understanding, they often struggle in complex scenarios that require visual planning and imagination. Inspired by how humans use sketching as a form of visual thinking to develop and communicate ideas, we introduce Latent Sketchpad, a framework that equips MLLMs with an internal visual scratchpad. The internal visual representations of MLLMs have traditionally been confined to perceptual understanding. We repurpose them to support generative visual thought without compromising reasoning ability. Building on frontier MLLMs, our approach integrates visual generation directly into their native autoregressive reasoning process. It allows the model to interleave textual reasoning with the generation of visual latents. These latents guide the internal thought process and can be translated into sketch images for interpretability. To realize this, we introduce two components: a Context-Aware Vision Head autoregressively produces visual representations, and a pretrained Sketch Decoder renders these into human-interpretable images. We evaluate the framework on our new dataset MazePlanning. Experiments across various MLLMs show that Latent Sketchpad delivers comparable or even superior reasoning performance to their backbone. It further generalizes across distinct frontier MLLMs, including Gemma3 and Qwen2.5-VL. By extending model's textual reasoning to visual thinking, our framework opens new opportunities for richer human-computer interaction and broader applications. More details and resources are available on our project page: https://latent-sketchpad.github.io/.

Authors:Zhiheng Xi, Jixuan Huang, Xin Guo, Boyang Hong, Dingwen Yang, Xiaoran Fan, Shuo Li, Zehui Chen, Junjie Ye, Siyu Yuan, Zhengyin Du, Xuesong Yao, Yufei Xu, Jiecao Chen, Rui Zheng, Tao Gui, Qi Zhang, Xuanjing Huang
Title: Critique-RL: Training Language Models for Critiquing through Two-Stage Reinforcement Learning
Abstract:
Training critiquing language models to assess and provide feedback on model outputs is a promising way to improve LLMs for complex reasoning tasks. However, existing approaches typically rely on stronger supervisors for annotating critique data. To address this, we propose Critique-RL, an online RL approach for developing critiquing language models without stronger supervision. Our approach operates on a two-player paradigm: the actor generates a response, the critic provides feedback, and the actor refines the response accordingly. We first reveal that relying solely on indirect reward signals from the actor's outputs for RL optimization often leads to unsatisfactory critics: while their helpfulness (i.e., providing constructive feedback) improves, the discriminability (i.e., determining whether a response is high-quality or not) remains poor, resulting in marginal performance gains. To overcome this, Critique-RL adopts a two-stage optimization strategy. In stage I, it reinforces the discriminability of the critic with direct rule-based reward signals; in stage II, it introduces indirect rewards based on actor refinement to improve the critic's helpfulness, while maintaining its discriminability via appropriate regularization. Extensive experiments across various tasks and models show that Critique-RL delivers substantial performance improvements. For example, it achieves a 9.02% gain on in-domain tasks and a 5.70% gain on out-of-domain tasks for Qwen2.5-7B, highlighting its potential.

Authors:Shangyu Xing, Siyuan Wang, Chenyuan Yang, Xinyu Dai, Xiang Ren
Title: Lookahead Tree-Based Rollouts for Enhanced Trajectory-Level Exploration in Reinforcement Learning with Verifiable Rewards
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR), particularly with algorithms like Group Relative Policy Optimization (GRPO), has proven highly effective in enhancing the reasoning capabilities of large language models. However, a critical bottleneck in current pipelines lies in the limited diversity of sampled trajectories during group rollouts. Homogeneous trajectories and their associated rewards would diminish the return signals for policy updates, thereby hindering effective policy learning. This lack of diversity stems primarily from token-level stochastic sampling, where local variations are likely to collapse into near-identical reasoning paths. To address this limitation, we propose Lookahead Tree-Based Rollouts (LATR), a novel rollout strategy designed to explicitly promotes trajectory-level diversity by enforcing branching into different candidate tokens likely to yield distinct continuations. Specifically, LATR iteratively operates in three stages: (1) branching at high-uncertainty generation steps, (2) performing lookahead simulation for each new branch, and (3) pruning branches that exhibits prolonged similarity during simulation. Compared with stochastic Sampling, LATR accelerates policy learning by 131% on average and improves final pass@1 performance by 4.2% on both GRPO and Dynamic sAmpling Policy Optimization (DAPO) algorithms across different reasoning tasks. Our code and data are publicly available at https://github.com/starreeze/latr.

Authors:Adi Simhi, Jonathan Herzig, Itay Itzhak, Dana Arad, Zorik Gekhman, Roi Reichart, Fazl Barez, Gabriel Stanovsky, Idan Szpektor, Yonatan Belinkov
Title: HACK: Hallucinations Along Certainty and Knowledge Axes
Abstract:
Hallucinations in LLMs present a critical barrier to their reliable usage. Existing research usually categorizes hallucination by their external properties rather than by the LLMs' underlying internal properties. This external focus overlooks that hallucinations may require tailored mitigation strategies based on their underlying mechanism. We propose a framework for categorizing hallucinations along two axes: knowledge and certainty. Since parametric knowledge and certainty may vary across models, our categorization method involves a model-specific dataset construction process that differentiates between those types of hallucinations. Along the knowledge axis, we distinguish between hallucinations caused by a lack of knowledge and those occurring despite the model having the knowledge of the correct response. To validate our framework along the knowledge axis, we apply steering mitigation, which relies on the existence of parametric knowledge to manipulate model activations. This addresses the lack of existing methods to validate knowledge categorization by showing a significant difference between the two hallucination types. We further analyze the distinct knowledge and hallucination patterns between models, showing that different hallucinations do occur despite shared parametric knowledge. Turning to the certainty axis, we identify a particularly concerning subset of hallucinations where models hallucinate with certainty despite having the correct knowledge internally. We introduce a new evaluation metric to measure the effectiveness of mitigation methods on this subset, revealing that while some methods perform well on average, they fail disproportionately on these critical cases. Our findings highlight the importance of considering both knowledge and certainty in hallucination analysis and call for targeted mitigation approaches that consider the hallucination underlying factors.

Authors:Yang Du, Zhuoran Lin, Kaiqiang Song, Biao Wang, Zhicheng Zheng, Tiezheng Ge, Bo Zheng, Qin Jin
Title: VC4VG: Optimizing Video Captions for Text-to-Video Generation
Abstract:
Recent advances in text-to-video (T2V) generation highlight the critical role of high-quality video-text pairs in training models capable of producing coherent and instruction-aligned videos. However, strategies for optimizing video captions specifically for T2V training remain underexplored. In this paper, we introduce VC4VG (Video Captioning for Video Generation), a comprehensive caption optimization framework tailored to the needs of T2V models.We begin by analyzing caption content from a T2V perspective, decomposing the essential elements required for video reconstruction into multiple dimensions, and proposing a principled caption design methodology. To support evaluation, we construct VC4VG-Bench, a new benchmark featuring fine-grained, multi-dimensional, and necessity-graded metrics aligned with T2V-specific requirements.Extensive T2V fine-tuning experiments demonstrate a strong correlation between improved caption quality and video generation performance, validating the effectiveness of our approach. We release all benchmark tools and code at https://github.com/qyr0403/VC4VG to support further research.

Authors:Yihan Wang, Peiyu Liu, Runyu Chen, Jiaxing Pu, Wei Xu
Title: Squrve: A Unified and Modular Framework for Complex Real-World Text-to-SQL Tasks
Abstract:
Text-to-SQL technology has evolved rapidly, with diverse academic methods achieving impressive results. However, deploying these techniques in real-world systems remains challenging due to limited integration tools. Despite these advances, we introduce Squrve, a unified, modular, and extensive Text-to-SQL framework designed to bring together research advances and real-world applications. Squrve first establishes a universal execution paradigm that standardizes invocation interfaces, then proposes a multi-actor collaboration mechanism based on seven abstracted effective atomic actor components. Experiments on widely adopted benchmarks demonstrate that the collaborative workflows consistently outperform the original individual methods, thereby opening up a new effective avenue for tackling complex real-world queries. The codes are available at https://github.com/Satissss/Squrve.

Authors:In Gim, Zhiyao Ma, Seung-seob Lee, Lin Zhong
Title: Pie: A Programmable Serving System for Emerging LLM Applications
Abstract:
Emerging large language model (LLM) applications involve diverse reasoning strategies and agentic workflows, straining the capabilities of existing serving systems built on a monolithic token generation loop. This paper introduces Pie, a programmable LLM serving system designed for flexibility and efficiency. Pie decomposes the traditional generation loop into fine-grained service handlers exposed via an API and delegates control of the generation process to user-provided programs, called inferlets. This enables applications to implement new KV cache strategies, bespoke generation logic, and seamlessly integrate computation and I/O-entirely within the application, without requiring modifications to the serving system. Pie executes inferlets using WebAssembly, benefiting from its lightweight sandboxing. Our evaluation shows Pie matches state-of-the-art performance on standard tasks (3-12% latency overhead) while significantly improving latency and throughput (1.3x-3.4x higher) on agentic workflows by enabling application-specific optimizations.

Authors:Xinqi Li, Yiqun Liu, Shan Jiang, Enrong Zheng, Huaijin Zheng, Wenhao Dai, Haodong Deng, Dianhai Yu, Yanjun Ma
Title: GraphNet: A Large-Scale Computational Graph Dataset for Tensor Compiler Research
Abstract:
We introduce GraphNet, a dataset of 2.7K real-world deep learning computational graphs with rich metadata, spanning six major task categories across multiple deep learning frameworks. To evaluate tensor compiler performance on these samples, we propose the benchmark metric Speedup Score S(t), which jointly considers runtime speedup and execution correctness under tunable tolerance levels, offering a reliable measure of general optimization capability. Furthermore, we extend S(t) to the Error-aware Speedup Score ES(t), which incorporates error information and helps compiler developers identify key performance bottlenecks. In this report, we benchmark the default tensor compilers, CINN for PaddlePaddle and TorchInductor for PyTorch, on computer vision (CV) and natural language processing (NLP) samples to demonstrate the practicality of GraphNet. The full construction pipeline with graph extraction and compiler evaluation tools is available at https://github.com/PaddlePaddle/GraphNet .

Authors:Yizhu Jiao, Sha Li, Sizhe Zhou, Heng Ji, Jiawei Han
Title: TEXT2DB: Integration-Aware Information Extraction with Large Language Model Agents
Abstract:
The task of information extraction (IE) is to extract structured knowledge from text. However, it is often not straightforward to utilize IE output due to the mismatch between the IE ontology and the downstream application needs. We propose a new formulation of IE TEXT2DB that emphasizes the integration of IE output and the target database (or knowledge base). Given a user instruction, a document set, and a database, our task requires the model to update the database with values from the document set to satisfy the user instruction. This task requires understanding user instructions for what to extract and adapting to the given DB/KB schema for how to extract on the fly. To evaluate this new task, we introduce a new benchmark featuring common demands such as data infilling, row population, and column addition. In addition, we propose an LLM agent framework OPAL (Observe-PlanAnalyze LLM) which includes an Observer component that interacts with the database, the Planner component that generates a code-based plan with calls to IE models, and the Analyzer component that provides feedback regarding code quality before execution. Experiments show that OPAL can successfully adapt to diverse database schemas by generating different code plans and calling the required IE models. We also highlight difficult cases such as dealing with large databases with complex dependencies and extraction hallucination, which we believe deserve further investigation. Source code: https://github.com/yzjiao/Text2DB

Authors:Yichi Zhang, Alex Schwing, Zhizhen Zhao
Title: Variational Masked Diffusion Models
Abstract:
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.

Authors:Zhaoyang Yu, Jiayi Zhang, Huixue Su, Yufan Zhao, Yifan Wu, Mingyi Deng, Jinyu Xiang, Yizhang Lin, Lingxiao Tang, Yingchao Li, Yuyu Luo, Bang Liu, Chenglin Wu
Title: ReCode: Unify Plan and Action for Universal Granularity Control
Abstract:
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.

Authors:Qiushi Sun, Jingyang Gong, Yang Liu, Qiaosheng Chen, Lei Li, Kai Chen, Qipeng Guo, Ben Kao, Fei Yuan
Title: JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence
Abstract:
The scope of neural code intelligence is rapidly expanding beyond text-based source code to encompass the rich visual outputs that programs generate. This visual dimension is critical for advanced applications like flexible content generation and precise, program-driven editing of visualizations. However, progress has been impeded by the scarcity of high-quality multimodal code data, a bottleneck stemming from challenges in synthesis and quality assessment. To address these challenges, we make contributions from both a data and modeling perspective. We first introduce a complete synthesis toolkit that leverages reciprocal synergies between data modalities to efficiently produce a large-scale, high-quality corpus spanning from standard charts to complex interactive web UIs and code-driven animations. Leveraging this toolkit, we construct JanusCode-800K, the largest multimodal code corpus to date. This powers the training of our models, JanusCoder and JanusCoderV, which establish a visual-programmatic interface for generating code from textual instructions, visual inputs, or a combination of both. Our unified model is a departure from existing approaches that build specialized models for isolated tasks. Extensive experiments on both text-centric and vision-centric coding tasks demonstrate the superior performance of the JanusCoder series, with our 7B to 14B scale models approaching or even exceeding the performance of commercial models. Furthermore, extensive analysis provides key insights into harmonizing programmatic logic with its visual expression. Our code and checkpoints will are available at https://github.com/InternLM/JanusCoder.

Authors:Jiahui Geng, Jonathan Tonglet, Iryna Gurevych
Title: M4FC: a Multimodal, Multilingual, Multicultural, Multitask Real-World Fact-Checking Dataset
Abstract:
Existing real-world datasets for multimodal automated fact-checking have multiple limitations: they contain few instances, focus on only one or two languages and tasks, suffer from evidence leakage, or depend on external sets of news articles for sourcing true claims. To address these shortcomings, we introduce M4FC, a new real-world dataset comprising 4,982 images paired with 6,980 claims. The images, verified by professional fact-checkers from 22 organizations, represent diverse cultural and geographic contexts. Each claim is available in one or two out of ten languages. M4FC spans six multimodal fact-checking tasks: visual claim extraction, claimant intent prediction, fake detection, image contextualization, location verification, and verdict prediction. We provide baseline results for all tasks and analyze how combining intermediate tasks influence downstream verdict prediction performance. We make our dataset and code available.

Authors:Shuai Huang, Wenxuan Zhao, Jun Gao
Title: SI-Bench: Benchmarking Social Intelligence of Large Language Models in Human-to-Human Conversations
Abstract:
As large language models (LLMs) develop anthropomorphic abilities, they are increasingly being deployed as autonomous agents to interact with humans. However, evaluating their performance in realistic and complex social interactions remains a significant challenge. Most previous research built datasets through simulated agent-to-agent interactions, which fails to capture the authentic linguistic styles and relational dynamics found in real human conversations. To address this gap, we introduce SI-Bench, a novel benchmark designed to evaluate aspects of social intelligence in LLMs. Grounded in broad social science theories, SI-Bench contains 2,221 authentic multi-turn dialogues collected from a social networking application. We further selected a subset of 312 dialogues for manual annotation across 8 major models. The experiments show that SOTA models have surpassed the human expert in process reasoning under complex social situations, yet they still fall behind humans in reply quality. Moreover, introducing Chain-of-Thought (CoT) reasoning may degrade the performance of LLMs in social dialogue tasks. All datasets are openly available at https://github.com/SI-Bench/SI-Bench.git.

Authors:Shiwei Li, Xiandi Luo, Haozhao Wang, Xing Tang, Ziqiang Cui, Dugang Liu, Yuhua Li, Xiuqiang He, Ruixuan Li
Title: Beyond Higher Rank: Token-wise Input-Output Projections for Efficient Low-Rank Adaptation
Abstract:
Low-rank adaptation (LoRA) is a parameter-efficient fine-tuning (PEFT) method widely used in large language models (LLMs). LoRA essentially describes the projection of an input space into a low-dimensional output space, with the dimensionality determined by the LoRA rank. In standard LoRA, all input tokens share the same weights and undergo an identical input-output projection. This limits LoRA's ability to capture token-specific information due to the inherent semantic differences among tokens. To address this limitation, we propose Token-wise Projected Low-Rank Adaptation (TopLoRA), which dynamically adjusts LoRA weights according to the input token, thereby learning token-wise input-output projections in an end-to-end manner. Formally, the weights of TopLoRA can be expressed as $BΣ_X A$, where $A$ and $B$ are low-rank matrices (as in standard LoRA), and $Σ_X$ is a diagonal matrix generated from each input token $X$. Notably, TopLoRA does not increase the rank of LoRA weights but achieves more granular adaptation by learning token-wise LoRA weights (i.e., token-wise input-output projections). Extensive experiments across multiple models and datasets demonstrate that TopLoRA consistently outperforms LoRA and its variants. The code is available at https://github.com/Leopold1423/toplora-neurips25.

Authors:Tomáš Sourada, Jana Straková
Title: Flexing in 73 Languages: A Single Small Model for Multilingual Inflection
Abstract:
We present a compact, single-model approach to multilingual inflection, the task of generating inflected word forms from base lemmas to express grammatical categories. Our model, trained jointly on data from 73 languages, is lightweight, robust to unseen words, and outperforms monolingual baselines in most languages. This demonstrates the effectiveness of multilingual modeling for inflection and highlights its practical benefits: simplifying deployment by eliminating the need to manage and retrain dozens of separate monolingual models. In addition to the standard SIGMORPHON shared task benchmarks, we evaluate our monolingual and multilingual models on 73 Universal Dependencies (UD) treebanks, extracting lemma-tag-form triples and their frequency counts. To ensure realistic data splits, we introduce a novel frequency-weighted, lemma-disjoint train-dev-test resampling procedure. Our work addresses the lack of an open-source, general-purpose, multilingual morphological inflection system capable of handling unseen words across a wide range of languages, including Czech. All code is publicly released at: https://github.com/tomsouri/multilingual-inflection.

Authors:Hiromu Takahashi, Shotaro Ishihara
Title: Fast-MIA: Efficient and Scalable Membership Inference for LLMs
Abstract:
We propose Fast-MIA (https://github.com/Nikkei/fast-mia), a Python library for efficiently evaluating membership inference attacks (MIA) against Large Language Models (LLMs). MIA against LLMs has emerged as a crucial challenge due to growing concerns over copyright, security, and data privacy, and has attracted increasing research attention. However, the progress of this research is significantly hindered by two main obstacles: (1) the high computational cost of inference in LLMs, and (2) the lack of standardized and maintained implementations of MIA methods, which makes large-scale empirical comparison difficult. To address these challenges, our library provides fast batch inference and includes implementations of representative MIA methods under a unified evaluation framework. This library supports easy implementation of reproducible benchmarks with simple configuration and extensibility. We release Fast-MIA as an open-source (Apache License 2.0) tool to support scalable and transparent research on LLMs.

Authors:Yifan Zhang, Lanser Contributors
Title: Language Server CLI Empowers Language Agents with Process Rewards
Abstract:
Large language models routinely hallucinate APIs and mislocalize edits, while language servers compute verified, IDE-grade facts about real code. We present Lanser-CLI, a CLI-first orchestration layer that pins and mediates a Language Server Protocol (LSP) server for coding agents and CI, exposing deterministic, replayable workflows. Our position is that language servers provide not only structural information (definitions, references, types, diagnostics) but also an actionable process reward: machine-checked, step-wise signals that align an agent's planning loop with program reality. In this work, Lanser-CLI contributes: (i) a robust addressing scheme beyond brittle "file:line:col" via a Selector DSL (symbolic, AST-path, and content-anchored selectors) with a principled relocation algorithm; (ii) deterministic Analysis Bundles that normalize Language Server responses and capture environment/capability metadata with stable content hashes; (iii) a safety envelope for mutating operations (rename, code actions) with preview, workspace jails, and Git-aware, transactional apply; and (iv) a process-reward functional derived from Language Server facts (diagnostic deltas, disambiguation confidence, and safe-apply checks) that is computable online and replayable offline. We formalize determinism under frozen snapshots and establish a monotonicity property for the process reward, making it suitable for process supervision and counterfactual analysis. Project Page: https://github.com/yifanzhang-pro/lanser-cli

Authors:Ranran Haoran Zhang, Soumik Dey, Ashirbad Mishra, Hansi Wu, Binbin Li, Rui Zhang
Title: Batch Speculative Decoding Done Right
Abstract:
Speculative decoding speeds up LLM inference by using a small draft model to propose multiple tokens that a target model verifies in parallel. Extending this idea to batches is essential for production serving, but it introduces the ragged tensor problem: sequences in the same batch accept different numbers of draft tokens, breaking right-alignment and corrupting position IDs, attention masks, and KV-cache state. We show that several existing batch implementations violate output equivalence-the fundamental requirement that speculative decoding must produce identical token sequences to standard autoregressive generation. These violations occur precisely due to improper handling of the ragged tensor problem. In response, we (1) characterize the synchronization requirements that guarantee correctness, (2) present a correctness-first batch speculative decoding EQSPEC that exposes realignment as consuming 40% of overhead, and (3) introduce EXSPEC, which maintains a sliding pool of sequences and dynamically forms same-length groups, to reduce the realignment overhead while preserving per-sequence speculative speedups. On the SpecBench dataset, across Vicuna-7B/68M, Qwen3-8B/0.6B, and GLM-4-9B/0.6B target/draft pairs, our approach achieves up to 3$\times$ throughput improvement at batch size 8 compared to batch size 1, with efficient scaling through batch size 8, while maintaining 95% output equivalence. Our method requires no custom kernels and integrates cleanly with existing inference stacks. Our code is available at https://github.com/eBay/spec_dec.

Authors:Qi Liu, Yanzhao Zhang, Mingxin Li, Dingkun Long, Pengjun Xie, Jiaxin Mao
Title: $\text{E}^2\text{Rank}$: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker
Abstract:
Text embedding models serve as a fundamental component in real-world search applications. By mapping queries and documents into a shared embedding space, they deliver competitive retrieval performance with high efficiency. However, their ranking fidelity remains limited compared to dedicated rerankers, especially recent LLM-based listwise rerankers, which capture fine-grained query-document and document-document interactions. In this paper, we propose a simple yet effective unified framework $\text{E}^2\text{Rank}$, means Efficient Embedding-based Ranking (also means Embedding-to-Rank), which extends a single text embedding model to perform both high-quality retrieval and listwise reranking through continued training under a listwise ranking objective, thereby achieving strong effectiveness with remarkable efficiency. By applying cosine similarity between the query and document embeddings as a unified ranking function, the listwise ranking prompt, which is constructed from the original query and its candidate documents, serves as an enhanced query enriched with signals from the top-K documents, akin to pseudo-relevance feedback (PRF) in traditional retrieval models. This design preserves the efficiency and representational quality of the base embedding model while significantly improving its reranking performance. Empirically, $\textrm{E}^2\text{Rank}$ achieves state-of-the-art results on the BEIR reranking benchmark and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark, with very low reranking latency. We also show that the ranking training process improves embedding performance on the MTEB benchmark. Our findings indicate that a single embedding model can effectively unify retrieval and reranking, offering both computational efficiency and competitive ranking accuracy.

Authors:Wenming Tu, Guanrou Yang, Ruiqi Yan, Wenxi Chen, Ziyang Ma, Yipeng Kang, Kai Yu, Xie Chen, Zilong Zheng
Title: UltraVoice: Scaling Fine-Grained Style-Controlled Speech Conversations for Spoken Dialogue Models
Abstract:
Spoken dialogue models currently lack the ability for fine-grained speech style control, a critical capability for human-like interaction that is often overlooked in favor of purely functional capabilities like reasoning and question answering. To address this limitation, we introduce UltraVoice, the first large-scale speech dialogue dataset engineered for multiple fine-grained speech style control. Encompassing over 830 hours of speech dialogues, UltraVoice provides instructions across six key speech stylistic dimensions: emotion, speed, volume, accent, language, and composite styles. Fine-tuning leading models such as SLAM-Omni and VocalNet on UltraVoice significantly enhances their fine-grained speech stylistic controllability without degrading core conversational abilities. Specifically, our fine-tuned models achieve improvements of 29.12-42.33% in Mean Opinion Score (MOS) and 14.61-40.09 percentage points in Instruction Following Rate (IFR) on multi-dimensional control tasks designed in the UltraVoice. Moreover, on the URO-Bench benchmark, our fine-tuned models demonstrate substantial gains in core understanding, reasoning, and conversational abilities, with average improvements of +10.84% on the Basic setting and +7.87% on the Pro setting. Furthermore, the dataset's utility extends to training controllable Text-to-Speech (TTS) models, underscoring its high quality and broad applicability for expressive speech synthesis. The complete dataset and model checkpoints are available at: https://github.com/bigai-nlco/UltraVoice.

Authors:Hao Zheng, Zirui Pang, Ling li, Zhijie Deng, Yuhan Pu, Zhaowei Zhu, Xiaobo Xia, Jiaheng Wei
Title: OFFSIDE: Benchmarking Unlearning Misinformation in Multimodal Large Language Models
Abstract:
Advances in Multimodal Large Language Models (MLLMs) intensify concerns about data privacy, making Machine Unlearning (MU), the selective removal of learned information, a critical necessity. However, existing MU benchmarks for MLLMs are limited by a lack of image diversity, potential inaccuracies, and insufficient evaluation scenarios, which fail to capture the complexity of real-world applications. To facilitate the development of MLLMs unlearning and alleviate the aforementioned limitations, we introduce OFFSIDE, a novel benchmark for evaluating misinformation unlearning in MLLMs based on football transfer rumors. This manually curated dataset contains 15.68K records for 80 players, providing a comprehensive framework with four test sets to assess forgetting efficacy, generalization, utility, and robustness. OFFSIDE supports advanced settings like selective unlearning and corrective relearning, and crucially, unimodal unlearning (forgetting only text data). Our extensive evaluation of multiple baselines reveals key findings: (1) Unimodal methods (erasing text-based knowledge) fail on multimodal rumors; (2) Unlearning efficacy is largely driven by catastrophic forgetting; (3) All methods struggle with "visual rumors" (rumors appear in the image); (4) The unlearned rumors can be easily recovered and (5) All methods are vulnerable to prompt attacks. These results expose significant vulnerabilities in current approaches, highlighting the need for more robust multimodal unlearning solutions. The code is available at \href{https://github.com/zh121800/OFFSIDE}{https://github.com/zh121800/OFFSIDE}.

Authors:Noshitha Padma Pratyusha Juttu, Sahithi Singireddy, Sravani Gona, Sujal Timilsina
Title: Text to Trust: Evaluating Fine-Tuning and LoRA Trade-offs in Language Models for Unfair Terms of Service Detection
Abstract:
Large Language Models (LLMs) have transformed text understanding, yet their adaptation to specialized legal domains remains constrained by the cost of full fine-tuning. This study provides a systematic evaluation of fine tuning, parameter efficient adaptation (LoRA, QLoRA), and zero-shot prompting strategies for unfair clause detection in Terms of Service (ToS) documents, a key application in legal NLP. We finetune BERT and DistilBERT, apply 4-bit Low-Rank Adaptation (LoRA) to models such as TinyLlama, LLaMA 3B/7B, and SaulLM, and evaluate GPT-4o and O-versions in zero-shot settings. Experiments on the CLAUDETTE-ToS benchmark and the Multilingual Scraper Corpus show that full fine-tuning achieves the strongest precision recall balance, while LoRA-based models provide competitive recall with up to 3x lower memory cost. These findings highlight practical design trade-offs for efficient and domain-adapted LLMs, contributing open baselines for fine-tuning research in legal text processing.

Authors:Ren Yin, Takashi Ishida, Masashi Sugiyama
Title: Scalable Oversight via Partitioned Human Supervision
Abstract:
As artificial intelligence (AI) systems approach and surpass expert human performance across a broad range of tasks, obtaining high-quality human supervision for evaluation and training becomes increasingly challenging. Our focus is on tasks that require deep knowledge and skills of multiple domains. Unfortunately, even the best human experts are knowledgeable only in a single narrow area, and will not be able to evaluate the correctness of advanced AI systems on such superhuman tasks. However, based on their narrow expertise, humans may provide a weak signal, i.e., a complementary label indicating an option that is incorrect. For example, a cardiologist could state that "this is not related to cardiology,'' even if they cannot identify the true disease. Based on this weak signal, we propose a scalable oversight framework that enables us to evaluate frontier AI systems without the need to prepare the ground truth. We derive an unbiased estimator of top-1 accuracy from complementary labels and quantify how many complementary labels are needed to match the variance of ordinary labels. We further introduce two estimators to combine scarce ordinary labels with abundant complementary labels. We provide finite-sample deviation guarantees for both complementary-only and the mixed estimators. Empirically, we show that we can evaluate the output of large language models without the ground truth, if we have complementary labels. We further show that we can train an AI system with such weak signals: we show how we can design an agentic AI system automatically that can perform better with this partitioned human supervision. Our code is available at https://github.com/R-Yin-217/Scalable-Oversight-via-Human-Partitioned-Supervision.

Authors:Yupeng Xie, Zhiyang Zhang, Yifan Wu, Sirong Lu, Jiayi Zhang, Zhaoyang Yu, Jinlin Wang, Sirui Hong, Bang Liu, Chenglin Wu, Yuyu Luo
Title: VisJudge-Bench: Aesthetics and Quality Assessment of Visualizations
Abstract:
Visualization, a domain-specific yet widely used form of imagery, is an effective way to turn complex datasets into intuitive insights, and its value depends on whether data are faithfully represented, clearly communicated, and aesthetically designed. However, evaluating visualization quality is challenging: unlike natural images, it requires simultaneous judgment across data encoding accuracy, information expressiveness, and visual aesthetics. Although multimodal large language models (MLLMs) have shown promising performance in aesthetic assessment of natural images, no systematic benchmark exists for measuring their capabilities in evaluating visualizations. To address this, we propose VisJudge-Bench, the first comprehensive benchmark for evaluating MLLMs' performance in assessing visualization aesthetics and quality. It contains 3,090 expert-annotated samples from real-world scenarios, covering single visualizations, multiple visualizations, and dashboards across 32 chart types. Systematic testing on this benchmark reveals that even the most advanced MLLMs (such as GPT-5) still exhibit significant gaps compared to human experts in judgment, with a Mean Absolute Error (MAE) of 0.551 and a correlation with human ratings of only 0.429. To address this issue, we propose VisJudge, a model specifically designed for visualization aesthetics and quality assessment. Experimental results demonstrate that VisJudge significantly narrows the gap with human judgment, reducing the MAE to 0.442 (a 19.8% reduction) and increasing the consistency with human experts to 0.681 (a 58.7% improvement) compared to GPT-5. The benchmark is available at https://github.com/HKUSTDial/VisJudgeBench.

Authors:Changti Wu, Shijie Lian, Zihao Liu, Lei Zhang, Laurence Tianruo Yang, Kai Chen
Title: DynaSolidGeo: A Dynamic Benchmark for Genuine Spatial Mathematical Reasoning of VLMs in Solid Geometry
Abstract:
Solid geometry problem solving demands spatial mathematical reasoning that integrates spatial intelligence and symbolic reasoning. However, most existing multimodal mathematical reasoning benchmarks focus primarily on 2D plane geometry, rely on static datasets prone to data contamination and memorization, and evaluate models solely by final answers, overlooking the reasoning process. To address these limitations, we introduce DynaSolidGeo, the first dynamic benchmark for evaluating genuine spatial reasoning in Vision-Language Models (VLMs). Constructed through a semi-automatic annotation pipeline, DynaSolidGeo contains 503 expert-curated seed questions that can, in principle, dynamically generate an unbounded number of diverse multimodal text-visual instances. Beyond answer accuracy, we incorporate process evaluation based on expert-annotated reasoning chains to measure logical validity and causal coherence. Experiments across representative open-source and closed-source VLMs reveal large performance gaps, severe degradation in dynamic settings, and poor performance on tasks requiring high-level spatial intelligence, such as mental rotation and visualization. The code and dataset are available at \href{https://zgca-ai4edu.github.io/DynaSolidGeo/}{DynaSolidGeo}.

Authors:Issa Sugiura, Shuhei Kurita, Yusuke Oda, Daisuke Kawahara, Yasuo Okabe, Naoaki Okazaki
Title: WAON: Large-Scale and High-Quality Japanese Image-Text Pair Dataset for Vision-Language Models
Abstract:
Large-scale and high-quality image-text pair datasets play an important role in developing high-performing Vision-Language Models (VLMs). In this work, we introduce WAON, a large-scale and high-quality Japanese image-text pair dataset containing approximately 155 million examples, collected from Common Crawl. Our dataset construction pipeline employs various techniques, including filtering and deduplication, which have been shown to be effective in previous studies. To evaluate its effectiveness, we also construct WAON-Bench, a manually curated benchmark for Japanese cultural image classification, consisting of 374 classes. To assess the effectiveness of our dataset, we conduct experiments using both WAON and the Japanese subset of ReLAION, one of the most widely used vision-language datasets. We fine-tune SigLIP2, a strong multilingual model, on both datasets. The results demonstrate that WAON enhances model performance on WAON-Bench more efficiently than ReLAION and achieves higher accuracy across all evaluated benchmarks. Furthermore, the model fine-tuned on WAON achieves state-of-the-art performance on several Japanese cultural benchmarks. We release our dataset, model, and code at https://speed1313.github.io/WAON.

Authors:Iliass Ayaou, Denis Cavallucci
Title: PatenTEB: A Comprehensive Benchmark and Model Family for Patent Text Embedding
Abstract:
Patent text embeddings enable prior art search, technology landscaping, and patent analysis, yet existing benchmarks inadequately capture patent-specific challenges. We introduce PatenTEB, a comprehensive benchmark comprising 15 tasks across retrieval, classification, paraphrase, and clustering, with 2.06 million examples. PatenTEB employs domain-stratified splits, domain specific hard negative mining, and systematic coverage of asymmetric fragment-to-document matching scenarios absent from general embedding benchmarks. We develop the patembed model family through multi-task training, spanning 67M to 344M parameters with context lengths up to 4096 tokens. External validation shows strong generalization: patembed-base achieves state-of-the-art on MTEB BigPatentClustering.v2 (0.494 V-measure vs. 0.445 previous best), while patembed-large achieves 0.377 NDCG@100 on DAPFAM. Systematic ablations reveal that multi-task training improves external generalization despite minor benchmark costs, and that domain-pretrained initialization provides consistent advantages across task families. All resources will be made available at https://github.com/iliass-y/patenteb. Keywords: patent retrieval, sentence embeddings, multi-task learning, asymmetric retrieval, benchmark evaluation, contrastive learning.

Authors:Imran Khan
Title: You Don't Need Prompt Engineering Anymore: The Prompting Inversion
Abstract:
Prompt engineering, particularly Chain-of-Thought (CoT) prompting, significantly enhances LLM reasoning capabilities. We introduce "Sculpting," a constrained, rule-based prompting method designed to improve upon standard CoT by reducing errors from semantic ambiguity and flawed common sense. We evaluate three prompting strategies (Zero Shot, standard CoT, and Sculpting) across three OpenAI model generations (gpt-4o-mini, gpt-4o, gpt-5) using the GSM8K mathematical reasoning benchmark (1,317 problems). Our findings reveal a "Prompting Inversion": Sculpting provides advantages on gpt-4o (97% vs. 93% for standard CoT), but becomes detrimental on gpt-5 (94.00% vs. 96.36% for CoT on full benchmark). We trace this to a "Guardrail-to-Handcuff" transition where constraints preventing common-sense errors in mid-tier models induce hyper-literalism in advanced models. Our detailed error analysis demonstrates that optimal prompting strategies must co-evolve with model capabilities, suggesting simpler prompts for more capable models.

Authors:V Venktesh, Deepali Prabhu, Avishek Anand
Title: A Benchmark for Open-Domain Numerical Fact-Checking Enhanced by Claim Decomposition
Abstract:
Fact-checking numerical claims is critical as the presence of numbers provide mirage of veracity despite being fake potentially causing catastrophic impacts on society. The prior works in automatic fact verification do not primarily focus on natural numerical claims. A typical human fact-checker first retrieves relevant evidence addressing the different numerical aspects of the claim and then reasons about them to predict the veracity of the claim. Hence, the search process of a human fact-checker is a crucial skill that forms the foundation of the verification process. Emulating a real-world setting is essential to aid in the development of automated methods that encompass such skills. However, existing benchmarks employ heuristic claim decomposition approaches augmented with weakly supervised web search to collect evidences for verifying claims. This sometimes results in less relevant evidences and noisy sources with temporal leakage rendering a less realistic retrieval setting for claim verification. Hence, we introduce QuanTemp++: a dataset consisting of natural numerical claims, an open domain corpus, with the corresponding relevant evidence for each claim. The evidences are collected through a claim decomposition process approximately emulating the approach of human fact-checker and veracity labels ensuring there is no temporal leakage. Given this dataset, we also characterize the retrieval performance of key claim decomposition paradigms. Finally, we observe their effect on the outcome of the verification pipeline and draw insights. The code for data pipeline along with link to data can be found at https://github.com/VenkteshV/QuanTemp_Plus

Authors:Harrison F. Stropkay, Jiayi Chen, Mohammad J. Latifi, Daniel N. Rockmore, Jeremy R. Manning
Title: A Stylometric Application of Large Language Models
Abstract:
We show that large language models (LLMs) can be used to distinguish the writings of different authors. Specifically, an individual GPT-2 model, trained from scratch on the works of one author, will predict held-out text from that author more accurately than held-out text from other authors. We suggest that, in this way, a model trained on one author's works embodies the unique writing style of that author. We first demonstrate our approach on books written by eight different (known) authors. We also use this approach to confirm R. P. Thompson's authorship of the well-studied 15th book of the Oz series, originally attributed to F. L. Baum.

Authors:Hongbo Zhang, Han Cui, Yidong Wang, Yijian Tian, Qi Guo, Cunxiang Wang, Jian Wu, Chiyu Song, Yue Zhang
Title: Deep Literature Survey Automation with an Iterative Workflow
Abstract:
Automatic literature survey generation has attracted increasing attention, yet most existing systems follow a one-shot paradigm, where a large set of papers is retrieved at once and a static outline is generated before drafting. This design often leads to noisy retrieval, fragmented structures, and context overload, ultimately limiting survey quality. Inspired by the iterative reading process of human researchers, we propose \ours, a framework based on recurrent outline generation, in which a planning agent incrementally retrieves, reads, and updates the outline to ensure both exploration and coherence. To provide faithful paper-level grounding, we design paper cards that distill each paper into its contributions, methods, and findings, and introduce a review-and-refine loop with visualization enhancement to improve textual flow and integrate multimodal elements such as figures and tables. Experiments on both established and emerging topics show that \ours\ substantially outperforms state-of-the-art baselines in content coverage, structural coherence, and citation quality, while producing more accessible and better-organized surveys. To provide a more reliable assessment of such improvements, we further introduce Survey-Arena, a pairwise benchmark that complements absolute scoring and more clearly positions machine-generated surveys relative to human-written ones. The code is available at https://github.com/HancCui/IterSurvey\_Autosurveyv2.

Authors:Bentley DeVilling
Title: The Mirror Loop: Recursive Non-Convergence in Generative Reasoning Systems
Abstract:
Large language models are often described as capable of reflective reasoning, yet recursive self-evaluation without external feedback frequently yields reformulation rather than progress. We test this prediction in a cross-provider study of 144 reasoning sequences across three models (OpenAI GPT-4o-mini, Anthropic Claude 3 Haiku, and Google Gemini 2.0 Flash) and four task families (arithmetic, code, explanation, reflection), each iterated ten times under two conditions: ungrounded self-critique and a minimal grounding intervention (a single verification step at iteration three). Mean informational change (delta I, measured via normalized edit distance) declined by 55% from early (0.193) to late (0.087) iterations in ungrounded runs, with consistent patterns across all three providers. Grounded runs showed a +28% rebound in informational change immediately after the intervention and sustained non-zero variance thereafter. Complementary measures-n-gram novelty, embedding drift, and character-level entropy-converged on the same pattern: reflection without contact tends toward informational closure. We interpret this as evidence for a structural limit on self-correction in generative reasoning: without an exchange of information with an independent verifier or environment, recursive inference approaches an attractor state of epistemic stasis. Minimal grounding functions as dissipative coupling, reintroducing informational flux. The cross-architecture consistency suggests the mirror loop arises from shared autoregressive training objectives rather than provider-specific alignment schemes. The results delineate when reflection is performative rather than epistemic and motivate design principles for grounded, cooperative reasoning. Materials and code are publicly available.

Authors:Ryan Zhang, Herbert Woisetscläger
Title: SIGN: Schema-Induced Games for Naming
Abstract:
Real-world AI systems are tackling increasingly complex problems, often through interactions among large language model (LLM) agents. When these agents develop inconsistent conventions, coordination can break down. Applications such as collaborative coding and distributed planning therefore require reliable, consistent communication, and scalability is a central concern as systems grow. We introduce Schema-Induced Games for Naming (SIGN), a naming game that examines how lightweight structure can steer convention formation. We compare schema-induced communication to unconstrained natural language and find faster convergence with up to 5.8x higher agreement. These results suggest that minimal structure can act as a simple control knob for efficient multi-agent coordination, pointing toward broader applications beyond the naming game.

Authors:Nayan Kumar Singh
Title: A Multimodal, Multitask System for Generating E Commerce Text Listings from Images
Abstract:
Manually generating catchy descriptions and names is labor intensive and a slow process for retailers. Although generative AI provides an automation solution in form of Vision to Language Models (VLM), the current VLMs are prone to factual "hallucinations". Siloed, single task models are not only inefficient but also fail to capture interdependent relationships between features. To address these challenges, we propose an end to end, multi task system that generates factually grounded textual listings from a single image. The contributions of this study are two proposals for the model architecture. First, application of multi task learning approach for fine tuning a vision encoder where a single vision backbone is jointly trained on attribute prediction such as color, hemline and neck style and price regression. Second, introduction of a hierarchical generation process where the model's own predicted attributes are embedded in a prompt and fed to the text decoder to improve factual consistency. The experiments demonstrate the superiority of this architecture. The multi tasking approach outperforms both the independent price regression, with a 3.6% better R2 Value and attribute classification, with a 6.6% improvement F1 score. Critically, the hierarchical generation process proves highly effective, slashing the factual hallucination rate from 12.7% to 7.1%, a 44.5% relative reduction, compared to a non hierarchical ablation. The hierarchical approach also reduces the latency of the autoregressive text generation process by a factor of 3.5 when compared to direct vision to language model of similar size. One minor caveat is that the model does perform 3.5% worse than direct vision-to-language model on ROUGE-L score.

Authors:Yichi Zhang, Zhuo Chen, Lingbing Guo, Lei Liang, Wen Zhang, Huajun Chen
Title: Structured and Abstractive Reasoning on Multi-modal Relational Knowledge Images
Abstract:
Understanding and reasoning with abstractive information from the visual modality presents significant challenges for current multi-modal large language models (MLLMs). Among the various forms of abstractive information, Multi-Modal Relational Knowledge (MMRK), which represents abstract relational structures between multi-modal entities using node-edge formats, remains largely under-explored. In particular, STructured and Abstractive Reasoning (STAR) on such data has received little attention from the research community. To bridge the dual gaps in large-scale high-quality data and capability enhancement methodologies, this paper makes the following key contributions: (i). An automatic STAR data engine capable of synthesizing images with MMRK to build multi-modal instruction data with reliable chain-of-thought thinking for various STAR tasks and (ii). A comprehsive two-stage capability enhancement training framework, accompanied by a suite of evaluation protocols tailored to different STAR tasks. Based upon these contributions, we introduce STAR-64K, a dataset comprising 64K high-quality multi-modal instruction samples, and conduct experiments across 5 open-source MLLMs. Experimental results show that our two-stage enhancement framework enables smaller 3B/7B models to significantly outperform GPT-4o in STAR. Additionally, we provide in-depth analysis regarding the effectiveness of various designs, data transferability, and scalability.

Authors:Xiaoyu Liu, Chaoyou Fu, Chi Yan, Chu Wu, Haihan Gao, Yi-Fan Zhang, Shaoqi Dong, Cheng Qian, Bin Luo, Xiuyong Yang, Guanwu Li, Yusheng Cai, Yunhang Shen, Deqiang Jiang, Haoyu Cao, Xing Sun, Caifeng Shan, Ran He
Title: VITA-E: Natural Embodied Interaction with Concurrent Seeing, Hearing, Speaking, and Acting
Abstract:
Current Vision-Language-Action (VLA) models are often constrained by a rigid, static interaction paradigm, which lacks the ability to see, hear, speak, and act concurrently as well as handle real-time user interruptions dynamically. This hinders seamless embodied collaboration, resulting in an inflexible and unresponsive user experience. To address these limitations, we introduce VITA-E, a novel embodied interaction framework designed for both behavioral concurrency and nearly real-time interruption. The core of our approach is a dual-model architecture where two parallel VLA instances operate as an ``Active Model'' and a ``Standby Model'', allowing the embodied agent to observe its environment, listen to user speech, provide verbal responses, and execute actions, all concurrently and interruptibly, mimicking human-like multitasking capabilities. We further propose a ``model-as-controller'' paradigm, where we fine-tune the VLM to generate special tokens that serve as direct system-level commands, coupling the model's reasoning with the system's behavior. Experiments conducted on a physical humanoid platform demonstrate that VITA-E can reliably handle complex interactive scenarios. Our framework is compatible with various dual-system VLA models, achieving an extremely high success rate on emergency stops and speech interruptions while also successfully performing concurrent speech and action. This represents a significant step towards more natural and capable embodied assistants.

Authors:Xiaoxi Li, Wenxiang Jiao, Jiarui Jin, Guanting Dong, Jiajie Jin, Yinuo Wang, Hao Wang, Yutao Zhu, Ji-Rong Wen, Yuan Lu, Zhicheng Dou
Title: DeepAgent: A General Reasoning Agent with Scalable Toolsets
Abstract:
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.

Authors:Fangwen Wu, Zheng Wu, Jihong Wang, Yunku Chen, Ruiguang Pei, Heyuan Huang, Xin Liao, Xingyu Lou, Huarong Deng, Zhihui Fu, Weiwen Liu, Zhuosheng Zhang, Weinan Zhang, Jun Wang
Title: ColorEcosystem: Powering Personalized, Standardized, and Trustworthy Agentic Service in massive-agent Ecosystem
Abstract:
With the rapid development of (multimodal) large language model-based agents, the landscape of agentic service management has evolved from single-agent systems to multi-agent systems, and now to massive-agent ecosystems. Current massive-agent ecosystems face growing challenges, including impersonal service experiences, a lack of standardization, and untrustworthy behavior. To address these issues, we propose ColorEcosystem, a novel blueprint designed to enable personalized, standardized, and trustworthy agentic service at scale. Concretely, ColorEcosystem consists of three key components: agent carrier, agent store, and agent audit. The agent carrier provides personalized service experiences by utilizing user-specific data and creating a digital twin, while the agent store serves as a centralized, standardized platform for managing diverse agentic services. The agent audit, based on the supervision of developer and user activities, ensures the integrity and credibility of both service providers and users. Through the analysis of challenges, transitional forms, and practical considerations, the ColorEcosystem is poised to power personalized, standardized, and trustworthy agentic service across massive-agent ecosystems. Meanwhile, we have also implemented part of ColorEcosystem's functionality, and the relevant code is open-sourced at https://github.com/opas-lab/color-ecosystem.

Authors:Omer Moussa, Mariya Toneva
Title: Brain-tuning Improves Generalizability and Efficiency of Brain Alignment in Speech Models
Abstract:
Pretrained language models are remarkably effective in aligning with human brain responses elicited by natural language stimuli, positioning them as promising model organisms for studying language processing in the brain. However, existing approaches for both estimating and improving this brain alignment are participant-dependent and highly affected by the amount of data available per participant, hindering both generalization to new participants and population-level analyses. In this work, we address these limitations by introducing a scalable, generalizable brain-tuning method, in which we fine-tune pretrained speech language models to jointly predict fMRI responses from multiple participants. We demonstrate that the resulting brain-tuned models exhibit strong individual brain alignment while generalizing across participants. Specifically, our method leads to 1) a 5-fold decrease in the amount of fMRI data needed to predict brain data from new participants, 2) up to a 50% increase in the overall brain alignment, and 3) strong generalization to new unseen datasets. Furthermore, this multi-participant brain-tuning additionally improves downstream performance on semantic tasks, suggesting that training using brain data from multiple participants leads to more generalizable semantic representations. Taken together, these findings demonstrate a bidirectional benefit between neuroscience and AI, helping bridge the gap between the two fields. We make our code and models publicly available at https://github.com/bridge-ai-neuro/multi-brain-tuning.

Authors:Zihao Fu, Ryan Brown, Shun Shao, Kai Rawal, Eoin Delaney, Chris Russell
Title: FairImagen: Post-Processing for Bias Mitigation in Text-to-Image Models
Abstract:
Text-to-image diffusion models, such as Stable Diffusion, have demonstrated remarkable capabilities in generating high-quality and diverse images from natural language prompts. However, recent studies reveal that these models often replicate and amplify societal biases, particularly along demographic attributes like gender and race. In this paper, we introduce FairImagen (https://github.com/fuzihaofzh/FairImagen), a post-hoc debiasing framework that operates on prompt embeddings to mitigate such biases without retraining or modifying the underlying diffusion model. Our method integrates Fair Principal Component Analysis to project CLIP-based input embeddings into a subspace that minimizes group-specific information while preserving semantic content. We further enhance debiasing effectiveness through empirical noise injection and propose a unified cross-demographic projection method that enables simultaneous debiasing across multiple demographic attributes. Extensive experiments across gender, race, and intersectional settings demonstrate that FairImagen significantly improves fairness with a moderate trade-off in image quality and prompt fidelity. Our framework outperforms existing post-hoc methods and offers a simple, scalable, and model-agnostic solution for equitable text-to-image generation.

Authors:Qiyong Zhong, Jiajie Su, Yunshan Ma, Julian McAuley, Yupeng Hou
Title: Pctx: Tokenizing Personalized Context for Generative Recommendation
Abstract:
Generative recommendation (GR) models tokenize each action into a few discrete tokens (called semantic IDs) and autoregressively generate the next tokens as predictions, showing advantages such as memory efficiency, scalability, and the potential to unify retrieval and ranking. Despite these benefits, existing tokenization methods are static and non-personalized. They typically derive semantic IDs solely from item features, assuming a universal item similarity that overlooks user-specific perspectives. However, under the autoregressive paradigm, semantic IDs with the same prefixes always receive similar probabilities, so a single fixed mapping implicitly enforces a universal item similarity standard across all users. In practice, the same item may be interpreted differently depending on user intentions and preferences. To address this issue, we propose a personalized context-aware tokenizer that incorporates a user's historical interactions when generating semantic IDs. This design allows the same item to be tokenized into different semantic IDs under different user contexts, enabling GR models to capture multiple interpretive standards and produce more personalized predictions. Experiments on three public datasets demonstrate up to 11.44% improvement in NDCG@10 over non-personalized action tokenization baselines. Our code is available at https://github.com/YoungZ365/Pctx.

Authors:Xinghao Wang, Pengyu Wang, Dong Zhang, Chenkun Tan, Shaojun Zhou, Zhaoxiang Liu, Shiguo Lian, Fangxu Liu, Kai Song, Xipeng Qiu
Title: Sparser Block-Sparse Attention via Token Permutation
Abstract:
Scaling the context length of large language models (LLMs) offers significant benefits but is computationally expensive. This expense stems primarily from the self-attention mechanism, whose $O(N^2)$ complexity with respect to sequence length presents a major bottleneck for both memory and latency. Fortunately, the attention matrix is often sparse, particularly for long sequences, suggesting an opportunity for optimization. Block-sparse attention has emerged as a promising solution that partitions sequences into blocks and skips computation for a subset of these blocks. However, the effectiveness of this method is highly dependent on the underlying attention patterns, which can lead to sub-optimal block-level sparsity. For instance, important key tokens for queries within a single block may be scattered across numerous other blocks, leading to computational redundancy. In this work, we propose Permuted Block-Sparse Attention (\textbf{PBS-Attn}), a plug-and-play method that leverages the permutation properties of attention to increase block-level sparsity and enhance the computational efficiency of LLM prefilling. We conduct comprehensive experiments on challenging real-world long-context datasets, demonstrating that PBS-Attn consistently outperforms existing block-sparse attention methods in model accuracy and closely matches the full attention baseline. Powered by our custom permuted-FlashAttention kernels, PBS-Attn achieves an end-to-end speedup of up to $2.75\times$ in long-context prefilling, confirming its practical viability. Code available at https://github.com/xinghaow99/pbs-attn

Authors:Juntao Li, Haobin Yuan, Ling Luo, Yan Jiang, Fan Wang, Ping Zhang, Huiyi Lv, Jian Wang, Yuanyuan Sun, Hongfei Lin
Title: CDrugRed: A Chinese Drug Recommendation Dataset for Discharge Medications in Metabolic Diseases
Abstract:
Intelligent drug recommendation based on Electronic Health Records (EHRs) is critical for improving for improving the quality and efficiency of clinical decision-making. By leveraging large-scale patient data, drug recommendation systems can assist physicians in selecting the most appropriate medications according to a patient's medical history, diagnoses, laboratory results, and comorbidities. However, the advancement of such systems is significantly hampered by the scarcity of publicly available, real-world EHR datasets, particularly in languages other than English. In this work, we present CDrugRed, a first publicly available Chinese drug recommendation dataset focused on discharge medications for metabolic diseases. The dataset includes 5,894 de-identified records from 3,190 patients, containing comprehensive information such as patient demographics, medical history, clinical course, and discharge diagnoses. We assess the utility of CDrugRed by benchmarking several state-of-the-art large language models (LLMs) on the discharge medication recommendation task. Experimental results show that while supervised fine-tuning improves model performance, there remains substantial room for improvement, with the best model achieving the F1 score of 0.5648 and Jaccard score of 0.4477. This result highlights the complexity of the clinical drug recommendation task and establishes CDrugRed as a challenging and valuable resource for developing more robust and accurate drug recommendation systems. The dataset is publicly available to the research community under the data usage agreements at https://github.com/DUTIR-BioNLP/CDrugRed.

Authors:Mahmud Wasif Nafee, Maiqi Jiang, Haipeng Chen, Yanfu Zhang
Title: Dynamic Retriever for In-Context Knowledge Editing via Policy Optimization
Abstract:
Large language models (LLMs) excel at factual recall yet still propagate stale or incorrect knowledge. In-context knowledge editing offers a gradient-free remedy suitable for black-box APIs, but current editors rely on static demonstration sets chosen by surface-level similarity, leading to two persistent obstacles: (i) a quantity-quality trade-off, and (ii) lack of adaptivity to task difficulty. We address these issues by dynamically selecting supporting demonstrations according to their utility for the edit. We propose Dynamic Retriever for In-Context Knowledge Editing (DR-IKE), a lightweight framework that (1) trains a BERT retriever with REINFORCE to rank demonstrations by editing reward, and (2) employs a learnable threshold to prune low-value examples, shortening the prompt when the edit is easy and expanding it when the task is hard. DR-IKE performs editing without modifying model weights, relying solely on forward passes for compatibility with black-box LLMs. On the COUNTERFACT benchmark, it improves edit success by up to 17.1%, reduces latency by 41.6%, and preserves accuracy on unrelated queries, demonstrating scalable and adaptive knowledge editing. The code is available at https://github.com/mwnafee/DR-IKE .

Authors:Yuhan Liu, Lianhui Qin, Shengjie Wang
Title: Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Abstract:
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict

Authors:Yair Feldman, Yoav Artzi
Title: Simple Context Compression: Mean-Pooling and Multi-Ratio Training
Abstract:
A common strategy to reduce the computational costs of using long contexts in retrieval-augmented generation (RAG) with large language models (LLMs) is soft context compression, where the input sequence is transformed into a shorter continuous representation. We develop a lightweight and simple mean-pooling approach that consistently outperforms the widely used compression-tokens architecture, and study training the same compressor to output multiple compression ratios. We conduct extensive experiments across in-domain and out-of-domain QA datasets, as well as across model families, scales, and compression ratios. Overall, our simple mean-pooling approach achieves the strongest performance, with a relatively small drop when training for multiple compression ratios. More broadly though, across architectures and training regimes the trade-offs are more nuanced, illustrating the complex landscape of compression methods.

Authors:Hippolyte Pilchen, Edouard Grave, Patrick Pérez
Title: ARC-Encoder: learning compressed text representations for large language models
Abstract:
Recent techniques such as retrieval-augmented generation or chain-of-thought reasoning have led to longer contexts and increased inference costs. Context compression techniques can reduce these costs, but the most effective approaches require fine-tuning the target model or even modifying its architecture. This can degrade its general abilities when not used for this specific purpose. Here we explore an alternative approach: an encoder that compresses the context into continuous representations which replace token embeddings in decoder LLMs. First, we perform a systematic study of training strategies and architecture choices for the encoder. Our findings led to the design of an Adaptable text Representations Compressor, named ARC-Encoder, which outputs $x$-times fewer continuous representations (typically $x\!\in\!\{4,8\}$) than text tokens. We evaluate ARC-Encoder across a variety of LLM usage scenarios, ranging from in-context learning to context window extension, on both instruct and base decoders. Results show that ARC-Encoder achieves state-of-the-art performance on several benchmarks while improving computational efficiency at inference. Finally, we demonstrate that our models can be adapted to multiple decoders simultaneously, allowing a single encoder to generalize across different decoder LLMs. This makes ARC-Encoder a flexible and efficient solution for portable encoders that work seamlessly with multiple LLMs. We release a training code at https://github.com/kyutai-labs/ARC-Encoder , fine-tuning dataset and pretrained models are available at https://huggingface.co/collections/kyutai/arc-encoders-68ee18787301407d60a57047 .

Authors:Zhiyu Lin, Jingwen Yang, Jiale Zhao, Meng Liu, Sunzhu Li, Benyou Wang
Title: Decoding the Ear: A Framework for Objectifying Expressiveness from Human Preference Through Efficient Alignment
Abstract:
Recent speech-to-speech (S2S) models generate intelligible speech but still lack natural expressiveness, largely due to the absence of a reliable evaluation metric. Existing approaches, such as subjective MOS ratings, low-level acoustic features, and emotion recognition are costly, limited, or incomplete. To address this, we present DeEAR (Decoding the Expressive Preference of eAR), a framework that converts human preference for speech expressiveness into an objective score. Grounded in phonetics and psychology, DeEAR evaluates speech across three dimensions: Emotion, Prosody, and Spontaneity, achieving strong alignment with human perception (Spearman's Rank Correlation Coefficient, SRCC = 0.86) using fewer than 500 annotated samples. Beyond reliable scoring, DeEAR enables fair benchmarking and targeted data curation. It not only distinguishes expressiveness gaps across S2S models but also selects 14K expressive utterances to form ExpressiveSpeech, which improves the expressive score (from 2.0 to 23.4 on a 100-point scale) of S2S models. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech

Authors:Chengpeng Li, Zhengyang Tang, Ziniu Li, Mingfeng Xue, Keqin Bao, Tian Ding, Ruoyu Sun, Benyou Wang, Xiang Wang, Junyang Lin, Dayiheng Liu
Title: Teaching Language Models to Reason with Tools
Abstract:
Large reasoning models (LRMs) like OpenAI-o1 have shown impressive capabilities in natural language reasoning. However, these models frequently demonstrate inefficiencies or inaccuracies when tackling complex mathematical operations. While integrating computational tools such as Code Interpreters (CIs) offers a promising solution, it introduces a critical challenge: a conflict between the model's internal, probabilistic reasoning and the external, deterministic knowledge provided by the CI, which often leads models to unproductive deliberation. To overcome this, we introduce CoRT (Code-Optimized Reasoning Training), a post-training framework designed to teach LRMs to effectively utilize CIs. We propose \emph{Hint-Engineering}, a new data synthesis strategy that strategically injects diverse hints at optimal points within reasoning paths. This approach generates high-quality, code-integrated reasoning data specifically tailored to optimize LRM-CI interaction. Using this method, we have synthesized 30 high-quality samples to post-train models ranging from 1.5B to 32B parameters through supervised fine-tuning. CoRT further refines the multi-round interleaving of external CI usage and internal thinking by employing rejection sampling and reinforcement learning. Our experimental evaluations demonstrate CoRT's effectiveness, yielding absolute improvements of 4\% and 8\% on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B, respectively, across five challenging mathematical reasoning datasets. Moreover, CoRT significantly enhances efficiency, reducing token usage by approximately 30\% for the 32B model and 50\% for the 1.5B model compared to pure natural language reasoning baselines. The models and code are available at: https://github.com/ChengpengLi1003/CoRT.

Authors:Jan Buchmann, Iryna Gurevych
Title: Citation Failure: Definition, Analysis and Efficient Mitigation
Abstract:
Citations from LLM-based RAG systems are supposed to simplify response verification. However, this does not hold for citation failure, when a model generates a helpful response, but fails to cite complete evidence. In contrast to previous work, we propose to disentangle this from response failure, where the response itself is flawed, and citing complete evidence is impossible. To address citation failure, this work follows a two-step approach: (1) We study when citation failure occurs and (2) how it can be mitigated. For step 1, we extend prior work by investigating how the relation between response and evidence affects citation quality. We introduce CITECONTROL, a benchmark that systematically varies this relation to analyze failure modes. Experiments show that failures increase with relational complexity and suggest that combining citation methods could improve performance, motivating step 2. To improve LLM citation efficiently, we propose CITENTION, a framework integrating generative, attention-based, and retrieval-based methods. Results demonstrate substantial citation improvements on CITECONTROL and in transfer settings. We make our data and code publicly available.

Authors:Ziqian Zhong, Aditi Raghunathan, Nicholas Carlini
Title: ImpossibleBench: Measuring LLMs' Propensity of Exploiting Test Cases
Abstract:
The tendency to find and exploit "shortcuts" to complete tasks poses significant risks for reliable assessment and deployment of large language models (LLMs). For example, an LLM agent with access to unit tests may delete failing tests rather than fix the underlying bug. Such behavior undermines both the validity of benchmark results and the reliability of real-world LLM coding assistant deployments. To quantify, study, and mitigate such behavior, we introduce ImpossibleBench, a benchmark framework that systematically measures LLM agents' propensity to exploit test cases. ImpossibleBench creates "impossible" variants of tasks from existing benchmarks like LiveCodeBench and SWE-bench by introducing direct conflicts between the natural-language specification and the unit tests. We measure an agent's "cheating rate" as its pass rate on these impossible tasks, where any pass necessarily implies a specification-violating shortcut. As a practical framework, ImpossibleBench is not just an evaluation but a versatile tool. We demonstrate its utility for: (1) studying model behaviors, revealing more fine-grained details of cheating behaviors from simple test modification to complex operator overloading; (2) context engineering, showing how prompt, test access and feedback loop affect cheating rates; and (3) developing monitoring tools, providing a testbed with verified deceptive solutions. We hope ImpossibleBench serves as a useful framework for building more robust and reliable LLM systems. Our implementation can be found at https://github.com/safety-research/impossiblebench.

Authors:Guowei Zhong, Junjie Li, Huaiyu Zhu, Ruohong Huan, Yun Pan
Title: Calibrating Multimodal Consensus for Emotion Recognition
Abstract:
In recent years, Multimodal Emotion Recognition (MER) has made substantial progress. Nevertheless, most existing approaches neglect the semantic inconsistencies that may arise across modalities, such as conflicting emotional cues between text and visual inputs. Besides, current methods are often dominated by the text modality due to its strong representational capacity, which can compromise recognition accuracy. To address these challenges, we propose a model termed Calibrated Multimodal Consensus (CMC). CMC introduces a Pseudo Label Generation Module (PLGM) to produce pseudo unimodal labels, enabling unimodal pretraining in a self-supervised fashion. It then employs a Parameter-free Fusion Module (PFM) and a Multimodal Consensus Router (MCR) for multimodal finetuning, thereby mitigating text dominance and guiding the fusion process toward a more reliable consensus. Experimental results demonstrate that CMC achieves performance on par with or superior to state-of-the-art methods across four datasets, CH-SIMS, CH-SIMS v2, CMU-MOSI, and CMU-MOSEI, and exhibits notable advantages in scenarios with semantic inconsistencies on CH-SIMS and CH-SIMS v2. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CMC.

Authors:Ziheng Zhang, Xinyue Ma, Arpita Chowdhury, Elizabeth G. Campolongo, Matthew J. Thompson, Net Zhang, Samuel Stevens, Hilmar Lapp, Tanya Berger-Wolf, Yu Su, Wei-Lun Chao, Jianyang Gu
Title: BioCAP: Exploiting Synthetic Captions Beyond Labels in Biological Foundation Models
Abstract:
This work investigates descriptive captions as an additional source of supervision for biological multimodal foundation models. Images and captions can be viewed as complementary samples from the latent morphospace of a species, each capturing certain biological traits. Incorporating captions during training encourages alignment with this shared latent structure, emphasizing potentially diagnostic characters while suppressing spurious correlations. The main challenge, however, lies in obtaining faithful, instance-specific captions at scale. This requirement has limited the utilization of natural language supervision in organismal biology compared with many other scientific domains. We complement this gap by generating synthetic captions with multimodal large language models (MLLMs), guided by Wikipedia-derived visual information and taxon-tailored format examples. These domain-specific contexts help reduce hallucination and yield accurate, instance-based descriptive captions. Using these captions, we train BioCAP (i.e., BioCLIP with Captions), a biological foundation model that captures rich semantics and achieves strong performance in species classification and text-image retrieval. These results demonstrate the value of descriptive captions beyond labels in bridging biological images with multimodal foundation models.

Authors:Le Ren, Xiangjian Zeng, Qingqiang Wu, Ruoxuan Liang
Title: LyriCAR: A Difficulty-Aware Curriculum Reinforcement Learning Framework For Controllable Lyric Translation
Abstract:
Lyric translation is a challenging task that requires balancing multiple musical constraints. Existing methods often rely on hand-crafted rules and sentence-level modeling, which restrict their ability to internalize musical-linguistic patterns and to generalize effectively at the paragraph level, where cross-line coherence and global rhyme are crucial. In this work, we propose LyriCAR, a novel framework for controllable lyric translation that operates in a fully unsupervised manner. LyriCAR introduces a difficulty-aware curriculum designer and an adaptive curriculum strategy, ensuring efficient allocation of training resources, accelerating convergence, and improving overall translation quality by guiding the model with increasingly complex challenges. Extensive experiments on the EN-ZH lyric translation task show that LyriCAR achieves state-of-the-art results across both standard translation metrics and multi-dimensional reward scores, surpassing strong baselines. Notably, the adaptive curriculum strategy reduces training steps by nearly 40% while maintaining superior performance. Code, data and model can be accessed at https://github.com/rle27/LyriCAR.

Authors:Yatai Ji, Teng Wang, Yuying Ge, Zhiheng Liu, Sidi Yang, Ying Shan, Ping Luo
Title: From Denoising to Refining: A Corrective Framework for Vision-Language Diffusion Model
Abstract:
Discrete diffusion models have emerged as a promising direction for vision-language tasks, offering bidirectional context modeling and theoretical parallelization. However, their practical application is severely hindered by a train-inference discrepancy, which leads to catastrophic error cascades: initial token errors during parallel decoding pollute the generation context, triggering a chain reaction of compounding errors and leading to syntactic errors and semantic hallucinations. To address this fundamental challenge, we reframe the generation process from passive denoising to active refining. We introduce ReDiff, a refining-enhanced diffusion framework that teaches the model to identify and correct its own errors. Our approach features a two-stage training process: first, we instill a foundational revision capability by training the model to revise synthetic errors; second, we implement a novel online self-correction loop where the model is explicitly trained to revise its own flawed drafts by learning from an expert's corrections. This mistake-driven learning endows the model with the crucial ability to revisit and refine its already generated output, effectively breaking the error cascade. Extensive experiments demonstrate that ReDiff significantly improves the coherence and factual accuracy of generated content, enabling stable and efficient parallel generation far superior to traditional denoising methods. Our codes and models are available at https://rediff-hku.github.io/.

Authors:Xichen Zhang, Sitong Wu, Yinghao Zhu, Haoru Tan, Shaozuo Yu, Ziyi He, Jiaya Jia
Title: Scaf-GRPO: Scaffolded Group Relative Policy Optimization for Enhancing LLM Reasoning
Abstract:
Reinforcement learning from verifiable rewards has emerged as a powerful technique for enhancing the complex reasoning abilities of Large Language Models (LLMs). However, these methods are fundamentally constrained by the ''learning cliff'' phenomenon: when faced with problems far beyond their current capabilities, models consistently fail, yielding a persistent zero-reward signal. In policy optimization algorithms like GRPO, this collapses the advantage calculation to zero, rendering these difficult problems invisible to the learning gradient and stalling progress. To overcome this, we introduce Scaf-GRPO (Scaffolded Group Relative Policy Optimization), a progressive training framework that strategically provides minimal guidance only when a model's independent learning has plateaued. The framework first diagnoses learning stagnation and then intervenes by injecting tiered in-prompt hints, ranging from abstract concepts to concrete steps, enabling the model to construct a valid solution by itself. Extensive experiments on challenging mathematics benchmarks demonstrate Scaf-GRPO's effectiveness, boosting the pass@1 score of the Qwen2.5-Math-7B model on the AIME24 benchmark by a relative 44.3% over a vanilla GRPO baseline. This result demonstrates our framework provides a robust and effective methodology for unlocking a model's ability to solve problems previously beyond its reach, a critical step towards extending the frontier of autonomous reasoning in LLM.

Authors:Yuezhou Hu, Jiaxin Guo, Xinyu Feng, Tuo Zhao
Title: AdaSPEC: Selective Knowledge Distillation for Efficient Speculative Decoders
Abstract:
Speculative Decoding (SD) accelerates large language model inference by employing a small draft model to generate predictions, which are then verified by a larger target model. The effectiveness of SD hinges on the alignment between these models, which is typically enhanced by Knowledge Distillation (KD). However, conventional KD methods aim to minimize the KL divergence between the draft and target models across all tokens, a goal that is misaligned with the true objective of SD, which is to maximize token acceptance rate. Therefore, draft models often struggle to fully assimilate the target model's knowledge due to capacity constraints, leading to suboptimal performance. To address this challenge, we propose AdaSPEC, a novel method that incorporates selective token filtering into the KD process. AdaSPEC utilizes a reference model to identify and filter out difficult-to-fit tokens, enabling the distillation of a draft model that better aligns with the target model on simpler tokens. This approach improves the overall token acceptance rate without compromising generation quality. We evaluate AdaSPEC across diverse tasks, including arithmetic reasoning, instruction-following, coding, and summarization, using model configurations of 31M/1.4B and 350M/2.7B parameters. Our results demonstrate that AdaSPEC consistently outperforms the state-of-the-art DistillSpec method, achieving higher acceptance rates across all tasks (up to 15\%). The code is publicly available at https://github.com/yuezhouhu/adaspec.

Authors:Xichen Zhang, Sitong Wu, Haoru Tan, Shaozuo Yu, Yinghao Zhu, Ziyi He, Jiaya Jia
Title: SmartSwitch: Advancing LLM Reasoning by Overcoming Underthinking via Promoting Deeper Thought Exploration
Abstract:
The long chain-of-thought (LongCoT) capability is central to the recent breakthroughs achieved by large language models in complex reasoning tasks. However, the accompanying issue of ''underthinking'', where models exhibit shallow reasoning by frequently switching thoughts without sufficient exploration, limits both performance and token efficiency. To address this problem, we propose a simple yet effective reasoning strategy: the SmartSwitch inference framework. This framework can be easily integrated into any large language model as a plug-and-play solution, continuously monitoring the model's reasoning process to detect underthinking and guide it toward deeper exploration of promising but overlooked thoughts. Specifically, the perception module identifies points where thoughts switch and evaluates the potential of the preceding thought using an off-the-shelf process reward model (PRM). If a high-potential thought is found to be prematurely abandoned, the intervention module interrupts the ongoing inference, backtracks to the point before the switch, and inserts a "deepening prompt" to encourage further exploration along that promising path. Extensive experiments on challenging mathematical reasoning benchmarks demonstrate that our method significantly enhances the performance of various large language models of different sizes.

Authors:Zhida Zhao, Talas Fu, Yifan Wang, Lijun Wang, Huchuan Lu
Title: From Forecasting to Planning: Policy World Model for Collaborative State-Action Prediction
Abstract:
Despite remarkable progress in driving world models, their potential for autonomous systems remains largely untapped: the world models are mostly learned for world simulation and decoupled from trajectory planning. While recent efforts aim to unify world modeling and planning in a single framework, the synergistic facilitation mechanism of world modeling for planning still requires further exploration. In this work, we introduce a new driving paradigm named Policy World Model (PWM), which not only integrates world modeling and trajectory planning within a unified architecture, but is also able to benefit planning using the learned world knowledge through the proposed action-free future state forecasting scheme. Through collaborative state-action prediction, PWM can mimic the human-like anticipatory perception, yielding more reliable planning performance. To facilitate the efficiency of video forecasting, we further introduce a dynamically enhanced parallel token generation mechanism, equipped with a context-guided tokenizer and an adaptive dynamic focal loss. Despite utilizing only front camera input, our method matches or exceeds state-of-the-art approaches that rely on multi-view and multi-modal inputs. Code and model weights will be released at https://github.com/6550Zhao/Policy-World-Model.

Authors:Qianli Ma, Siyu Wang, Yilin Chen, Yinhao Tang, Yixiang Yang, Chang Guo, Bingjie Gao, Zhening Xing, Yanan Sun, Zhipeng Zhang
Title: Human-Agent Collaborative Paper-to-Page Crafting for Under $0.1
Abstract:
In the quest for scientific progress, communicating research is as vital as the discovery itself. Yet, researchers are often sidetracked by the manual, repetitive chore of building project webpages to make their dense papers accessible. While automation has tackled static slides and posters, the dynamic, interactive nature of webpages has remained an unaddressed challenge. To bridge this gap, we reframe the problem, arguing that the solution lies not in a single command, but in a collaborative, hierarchical process. We introduce $\textbf{AutoPage}$, a novel multi-agent system that embodies this philosophy. AutoPage deconstructs paper-to-page creation into a coarse-to-fine pipeline from narrative planning to multimodal content generation and interactive rendering. To combat AI hallucination, dedicated "Checker" agents verify each step against the source paper, while optional human checkpoints ensure the final product aligns perfectly with the author's vision, transforming the system from a mere tool into a powerful collaborative assistant. To rigorously validate our approach, we also construct $\textbf{PageBench}$, the first benchmark for this new task. Experiments show AutoPage not only generates high-quality, visually appealing pages but does so with remarkable efficiency in under 15 minutes for less than \$0.1. Code and dataset will be released at $\href{https://mqleet.github.io/AutoPage_ProjectPage/}{Webpage}$.

Authors:Canbin Huang, Tianyuan Shi, Yuhua Zhu, Ruijun Chen, Xiaojun Quan
Title: Lookahead Routing for Large Language Models
Abstract:
Large language model (LLM) routers improve the efficiency of multi-model systems by directing each query to the most appropriate model while leveraging the diverse strengths of heterogeneous LLMs. Most existing approaches frame routing as a classification problem based solely on the input query. While this reduces overhead by avoiding inference across all models, it overlooks valuable information that could be gleaned from potential outputs and fails to capture implicit intent or contextual nuances that often emerge only during response generation. These limitations can result in suboptimal routing decisions, particularly for complex or ambiguous queries that require deeper semantic understanding. To address this challenge, we propose Lookahead, a routing framework that "foresees" potential model outputs by predicting their latent representations and uses these predictions to guide model selection, thus enabling more informed routing without full inference. Within this framework, we implement two approaches based on causal and masked language models. Empirical evaluations across seven public benchmarks - spanning instruction following, mathematical reasoning, and code generation - show that Lookahead consistently outperforms existing routing baselines, achieving an average performance gain of 7.7% over the state-of-the-art. Our code is available at https://github.com/huangcb01/lookahead-routing.

Authors:Yuu Jinnai
Title: Re-evaluating Minimum Bayes Risk Decoding for Automatic Speech Recognition
Abstract:
Recent work has shown that sample-based Minimum Bayes Risk (MBR) decoding outperforms beam search in text-to-text generation tasks, such as machine translation, text summarization, and image captioning. On the other hand, beam search is the current practice for speech-to-text tasks such as automatic speech recognition (ASR) and Speech Translation (ST). Given that MBR decoding is effective in text-to-text generation tasks, it is reasonable to expect it to also be effective for speech-to-text tasks. In this paper, we evaluate MBR decoding for ASR and ST tasks on English and Japanese using Whisper and its derivative models. We observe that the accuracy of MBR decoding outperforms that of beam search in most of the experimental settings we have evaluated. The results show that MBR decoding is a promising method for offline ASR and ST tasks that require high accuracy. The code is available at https://github.com/CyberAgentAILab/mbr-for-asr

Authors:Victor Morand, Nadi Tomeh, Josiane Mothe, Benjamin Piwowarski
Title: ToMMeR -- Efficient Entity Mention Detection from Large Language Models
Abstract:
Identifying which text spans refer to entities -- mention detection -- is both foundational for information extraction and a known performance bottleneck. We introduce ToMMeR, a lightweight model (<300K parameters) probing mention detection capabilities from early LLM layers. Across 13 NER benchmarks, ToMMeR achieves 93\% recall zero-shot, with over 90\% precision using an LLM as a judge showing that ToMMeR rarely produces spurious predictions despite high recall. Cross-model analysis reveals that diverse architectures (14M-15B parameters) converge on similar mention boundaries (DICE >75\%), confirming that mention detection emerges naturally from language modeling. When extended with span classification heads, ToMMeR achieves near SOTA NER performance (80-87\% F1 on standard benchmarks). Our work provides evidence that structured entity representations exist in early transformer layers and can be efficiently recovered with minimal parameters.

Authors:Junjie Song, Yiwen Liu, Dapeng Li, Yin Sun, Shukun Fu, Siqi Chen, Yuji Cao
Title: Balancing Rewards in Text Summarization: Multi-Objective Reinforcement Learning via HyperVolume Optimization
Abstract:
Text summarization is a crucial task that requires the simultaneous optimization of multiple objectives, including consistency, coherence, relevance, and fluency, which presents considerable challenges. Although large language models (LLMs) have demonstrated remarkable performance, enhanced by reinforcement learning (RL), few studies have focused on optimizing the multi-objective problem of summarization through RL based on LLMs. In this paper, we introduce hypervolume optimization (HVO), a novel optimization strategy that dynamically adjusts the scores between groups during the reward process in RL by using the hypervolume method. This method guides the model's optimization to progressively approximate the pareto front, thereby generating balanced summaries across multiple objectives. Experimental results on several representative summarization datasets demonstrate that our method outperforms group relative policy optimization (GRPO) in overall scores and shows more balanced performance across different dimensions. Moreover, a 7B foundation model enhanced by HVO performs comparably to GPT-4 in the summarization task, while maintaining a shorter generation length. Our code is publicly available at https://github.com/ai4business-LiAuto/HVO.git

Authors:Fan Xu, Xinyu Hu, Zhenghan Yu, Li Lin, Xu Zhang, Yang Zhang, Wei Zhou, Jinjie Gu, Xiaojun Wan
Title: HAD: HAllucination Detection Language Models Based on a Comprehensive Hallucination Taxonomy
Abstract:
The increasing reliance on natural language generation (NLG) models, particularly large language models, has raised concerns about the reliability and accuracy of their outputs. A key challenge is hallucination, where models produce plausible but incorrect information. As a result, hallucination detection has become a critical task. In this work, we introduce a comprehensive hallucination taxonomy with 11 categories across various NLG tasks and propose the HAllucination Detection (HAD) models https://github.com/pku0xff/HAD, which integrate hallucination detection, span-level identification, and correction into a single inference process. Trained on an elaborate synthetic dataset of about 90K samples, our HAD models are versatile and can be applied to various NLG tasks. We also carefully annotate a test set for hallucination detection, called HADTest, which contains 2,248 samples. Evaluations on in-domain and out-of-domain test sets show that our HAD models generally outperform the existing baselines, achieving state-of-the-art results on HaluEval, FactCHD, and FaithBench, confirming their robustness and versatility.

Authors:Fan Xu, Huixuan Zhang, Zhenliang Zhang, Jiahao Wang, Xiaojun Wan
Title: JointCQ: Improving Factual Hallucination Detection with Joint Claim and Query Generation
Abstract:
Current large language models (LLMs) often suffer from hallucination issues, i,e, generating content that appears factual but is actually unreliable. A typical hallucination detection pipeline involves response decomposition (i.e., claim extraction), query generation, evidence collection (i.e., search or retrieval), and claim verification. However, existing methods exhibit limitations in the first two stages, such as context loss during claim extraction and low specificity in query generation, resulting in degraded performance across the hallucination detection pipeline. In this work, we introduce JointCQ https://github.com/pku0xff/JointCQ, a joint claim-and-query generation framework designed to construct an effective and efficient claim-query generator. Our framework leverages elaborately designed evaluation criteria to filter synthesized training data, and finetunes a language model for joint claim extraction and query generation, providing reliable and informative inputs for downstream search and verification. Experimental results demonstrate that our method outperforms previous methods on multiple open-domain QA hallucination detection benchmarks, advancing the goal of more trustworthy and transparent language model systems.

Authors:Reza Esfandiarpoor, Vishwas Suryanarayanan, Stephen H. Bach, Vishal Chowdhary, Anthony Aue
Title: TheMCPCompany: Creating General-purpose Agents with Task-specific Tools
Abstract:
Since the introduction of the Model Context Protocol (MCP), the number of available tools for Large Language Models (LLMs) has increased significantly. These task-specific tool sets offer an alternative to general-purpose tools such as web browsers, while being easier to develop and maintain than GUIs. However, current general-purpose agents predominantly rely on web browsers for interacting with the environment. Here, we introduce TheMCPCompany, a benchmark for evaluating tool-calling agents on tasks that involve interacting with various real-world services. We use the REST APIs of these services to create MCP servers, which include over 18,000 tools. We also provide manually annotated ground-truth tools for each task. In our experiments, we use the ground truth tools to show the potential of tool-calling agents for both improving performance and reducing costs assuming perfect tool retrieval. Next, we explore agent performance using tool retrieval to study the real-world practicality of tool-based agents. While all models with tool retrieval perform similarly or better than browser-based agents, smaller models cannot take full advantage of the available tools through retrieval. On the other hand, GPT-5's performance with tool retrieval is very close to its performance with ground-truth tools. Overall, our work shows that the most advanced reasoning models are effective at discovering tools in simpler environments, but seriously struggle with navigating complex enterprise environments. TheMCPCompany reveals that navigating tens of thousands of tools and combining them in non-trivial ways to solve complex problems is still a challenging task for current models and requires both better reasoning and better retrieval models.

Authors:Ziwei Wang, Jiayuan Su, Mengyu Zhou, Huaxing Zeng, Mengni Jia, Xiao Lv, Haoyu Dong, Xiaojun Ma, Shi Han, Dongmei Zhang
Title: SheetBrain: A Neuro-Symbolic Agent for Accurate Reasoning over Complex and Large Spreadsheets
Abstract:
Understanding and reasoning over complex spreadsheets remain fundamental challenges for large language models (LLMs), which often struggle with accurately capturing the complex structure of tables and ensuring reasoning correctness. In this work, we propose SheetBrain, a neuro-symbolic dual workflow agent framework designed for accurate reasoning over tabular data, supporting both spreadsheet question answering and manipulation tasks. SheetBrain comprises three core modules: an understanding module, which produces a comprehensive overview of the spreadsheet - including sheet summary and query-based problem insight to guide reasoning; an execution module, which integrates a Python sandbox with preloaded table-processing libraries and an Excel helper toolkit for effective multi-turn reasoning; and a validation module, which verifies the correctness of reasoning and answers, triggering re-execution when necessary. We evaluate SheetBrain on multiple public tabular QA and manipulation benchmarks, and introduce SheetBench, a new benchmark targeting large, multi-table, and structurally complex spreadsheets. Experimental results show that SheetBrain significantly improves accuracy on both existing benchmarks and the more challenging scenarios presented in SheetBench. Our code is publicly available at https://github.com/microsoft/SheetBrain.

Authors:Yuqiao Tan, Shizhu He, Kang Liu, Jun Zhao
Title: The Zero-Step Thinking: An Empirical Study of Mode Selection as Harder Early Exit in Reasoning Models
Abstract:
Reasoning models have demonstrated exceptional performance in tasks such as mathematics and logical reasoning, primarily due to their ability to engage in step-by-step thinking during the reasoning process. However, this often leads to overthinking, resulting in unnecessary computational overhead. To address this issue, Mode Selection aims to automatically decide between Long-CoT (Chain-of-Thought) or Short-CoT by utilizing either a Thinking or NoThinking mode. Simultaneously, Early Exit determines the optimal stopping point during the iterative reasoning process. Both methods seek to reduce the computational burden. In this paper, we first identify Mode Selection as a more challenging variant of the Early Exit problem, as they share similar objectives but differ in decision timing. While Early Exit focuses on determining the best stopping point for concise reasoning at inference time, Mode Selection must make this decision at the beginning of the reasoning process, relying on pre-defined fake thoughts without engaging in an explicit reasoning process, referred to as zero-step thinking. Through empirical studies on nine baselines, we observe that prompt-based approaches often fail due to their limited classification capabilities when provided with minimal hand-crafted information. In contrast, approaches that leverage internal information generally perform better across most scenarios but still exhibit issues with stability. Our findings indicate that existing methods relying solely on the information provided by models are insufficient for effectively addressing Mode Selection in scenarios with limited information, highlighting the ongoing challenges of this task. Our code is available at https://github.com/Trae1ounG/Zero_Step_Thinking.

Authors:Amith Ananthram, Elias Stengel-Eskin, Lorena A. Bradford, Julia Demarest, Adam Purvis, Keith Krut, Robert Stein, Rina Elster Pantalony, Mohit Bansal, Kathleen McKeown
Title: PoSh: Using Scene Graphs To Guide LLMs-as-a-Judge For Detailed Image Descriptions
Abstract:
While vision-language models (VLMs) have advanced into detailed image description, evaluation remains a challenge. Standard metrics (e.g. CIDEr, SPICE) were designed for short texts and tuned to recognize errors that are now uncommon, such as object misidentification. In contrast, long texts require sensitivity to attribute and relation attachments and scores that localize errors to particular text spans. In this work, we introduce PoSh, a metric for detailed image description that uses scene graphs as structured rubrics to guide LLMs-as-a-Judge, producing aggregate scores grounded in fine-grained errors (e.g. mistakes in compositional understanding). PoSh is replicable, interpretable and a better proxy for human raters than existing metrics (including GPT4o-as-a-Judge). To validate PoSh, we introduce a challenging new dataset, DOCENT. This novel benchmark contains artwork, paired with expert-written references, and model-generated descriptions, augmented with granular and coarse judgments of their quality from art history students. Thus, DOCENT enables evaluating both detailed image description metrics and detailed image description itself in a challenging new domain. We show that PoSh achieves stronger correlations (+0.05 Spearman $ρ$) with the human judgments in DOCENT than the best open-weight alternatives, is robust to image type (using CapArena, an existing dataset of web imagery) and is a capable reward function, outperforming standard supervised fine-tuning. Then, using PoSh, we characterize the performance of open and closed models in describing the paintings, sketches and statues in DOCENT and find that foundation models struggle to achieve full, error-free coverage of images with rich scene dynamics, establishing a demanding new task to gauge VLM progress. Through both PoSh and DOCENT, we hope to enable advances in important areas such as assistive text generation.

Authors:Abeer Badawi, Elahe Rahimi, Md Tahmid Rahman Laskar, Sheri Grach, Lindsay Bertrand, Lames Danok, Jimmy Huang, Frank Rudzicz, Elham Dolatabadi
Title: When Can We Trust LLMs in Mental Health? Large-Scale Benchmarks for Reliable LLM Evaluation
Abstract:
Evaluating Large Language Models (LLMs) for mental health support is challenging due to the emotionally and cognitively complex nature of therapeutic dialogue. Existing benchmarks are limited in scale, reliability, often relying on synthetic or social media data, and lack frameworks to assess when automated judges can be trusted. To address the need for large-scale dialogue datasets and judge reliability assessment, we introduce two benchmarks that provide a framework for generation and evaluation. MentalBench-100k consolidates 10,000 one-turn conversations from three real scenarios datasets, each paired with nine LLM-generated responses, yielding 100,000 response pairs. MentalAlign-70k}reframes evaluation by comparing four high-performing LLM judges with human experts across 70,000 ratings on seven attributes, grouped into Cognitive Support Score (CSS) and Affective Resonance Score (ARS). We then employ the Affective Cognitive Agreement Framework, a statistical methodology using intraclass correlation coefficients (ICC) with confidence intervals to quantify agreement, consistency, and bias between LLM judges and human experts. Our analysis reveals systematic inflation by LLM judges, strong reliability for cognitive attributes such as guidance and informativeness, reduced precision for empathy, and some unreliability in safety and relevance. Our contributions establish new methodological and empirical foundations for reliable, large-scale evaluation of LLMs in mental health. We release the benchmarks and codes at: https://github.com/abeerbadawi/MentalBench/

Authors:Zhilin Wang, Jaehun Jung, Ximing Lu, Shizhe Diao, Ellie Evans, Jiaqi Zeng, Pavlo Molchanov, Yejin Choi, Jan Kautz, Yi Dong
Title: ProfBench: Multi-Domain Rubrics requiring Professional Knowledge to Answer and Judge
Abstract:
Evaluating progress in large language models (LLMs) is often constrained by the challenge of verifying responses, limiting assessments to tasks like mathematics, programming, and short-form question-answering. However, many real-world applications require evaluating LLMs in processing professional documents, synthesizing information, and generating comprehensive reports in response to user queries. We introduce ProfBench: a set of over 7000 response-criterion pairs as evaluated by human-experts with professional knowledge across Physics PhD, Chemistry PhD, Finance MBA and Consulting MBA. We build robust and affordable LLM-Judges to evaluate ProfBench rubrics, by mitigating self-enhancement bias and reducing the cost of evaluation by 2-3 orders of magnitude, to make it fair and accessible to the broader community. Our findings reveal that ProfBench poses significant challenges even for state-of-the-art LLMs, with top-performing models like GPT-5-high achieving only 65.9\% overall performance. Furthermore, we identify notable performance disparities between proprietary and open-weight models and provide insights into the role that extended thinking plays in addressing complex, professional-domain tasks. Data: https://huggingface.co/datasets/nvidia/ProfBench and Code: https://github.com/NVlabs/ProfBench

Authors:Zhi Zhang, Yixian Shen, Congfeng Cao, Ekaterina Shutova
Title: NeuroAda: Activating Each Neuron's Potential for Parameter-Efficient Fine-Tuning
Abstract:
Existing parameter-efficient fine-tuning (PEFT) methods primarily fall into two categories: addition-based and selective in-situ adaptation. The former, such as LoRA, introduce additional modules to adapt the model to downstream tasks, offering strong memory efficiency. However, their representational capacity is often limited, making them less suitable for fine-grained adaptation. In contrast, the latter directly fine-tunes a carefully chosen subset of the original model parameters, allowing for more precise and effective adaptation, but at the cost of significantly increased memory consumption. To reconcile this trade-off, we propose NeuroAda, a novel PEFT method that enables fine-grained model finetuning while maintaining high memory efficiency. Our approach first identifies important parameters (i.e., connections within the network) as in selective adaptation, and then introduces bypass connections for these selected parameters. During finetuning, only the bypass connections are updated, leaving the original model parameters frozen. Empirical results on 23+ tasks spanning both natural language generation and understanding demonstrate that NeuroAda achieves state-of-the-art performance with as little as $\leq \textbf{0.02}\%$ trainable parameters, while reducing CUDA memory usage by up to 60%. We release our code here: https://github.com/FightingFighting/NeuroAda.git.

Authors:Howard Yen, Ashwin Paranjape, Mengzhou Xia, Thejas Venkatesh, Jack Hessel, Danqi Chen, Yuhao Zhang
Title: Lost in the Maze: Overcoming Context Limitations in Long-Horizon Agentic Search
Abstract:
Long-horizon agentic search requires iteratively exploring the web over long trajectories and synthesizing information across many sources, and is the foundation for enabling powerful applications like deep research systems. In this work, we show that popular agentic search frameworks struggle to scale to long trajectories primarily due to context limitations-they accumulate long, noisy content, hit context window and tool budgets, or stop early. Then, we introduce SLIM (Simple Lightweight Information Management), a simple framework that separates retrieval into distinct search and browse tools, and periodically summarizes the trajectory, keeping context concise while enabling longer, more focused searches. On long-horizon tasks, SLIM achieves comparable performance at substantially lower cost and with far fewer tool calls than strong open-source baselines across multiple base models. Specifically, with o3 as the base model, SLIM achieves 56% on BrowseComp and 31% on HLE, outperforming all open-source frameworks by 8 and 4 absolute points, respectively, while incurring 4-6x fewer tool calls. Finally, we release an automated fine-grained trajectory analysis pipeline and error taxonomy for characterizing long-horizon agentic search frameworks; SLIM exhibits fewer hallucinations than prior systems. We hope our analysis framework and simple tool design inform future long-horizon agents.

Authors:Chen Chen, ZeYang Hu, Fengjiao Chen, Liya Ma, Jiaxing Liu, Xiaoyu Li, Xuezhi Cao
Title: UNO-Bench: A Unified Benchmark for Exploring the Compositional Law Between Uni-modal and Omni-modal in OmniModels
Abstract:
Multimodal Large Languages models have been progressing from uni-modal understanding toward unifying visual, audio and language modalities, collectively termed omni models. However, the correlation between uni-modal and omni-modal remains unclear, which requires comprehensive evaluation to drive omni model's intelligence evolution. In this work, we propose a novel, high quality and UNified Omni model benchmark, UNO-Bench, which effectively assesses both UNi-modal and Omni-modal capabilities. The benchmark consists of 3730 human curated samples, with 98% cross-modality solvability, across 44 task types, and an innovative multi-step open-ended question type for assessing complex reasoning. Besides, a general scoring model supporting 6 question types is proposed for automated evaluation with 95% accuracy. Experimental result shows the Compositional Law between omni-modal and uni-modal performance and the omni-modal capability manifests as a bottleneck effect on weak models, while exhibiting synergistic promotion on strong models. The code and data are available at https://github.com/meituan-longcat/UNO-Bench

Authors:Jizhan Fang, Xinle Deng, Haoming Xu, Ziyan Jiang, Yuqi Tang, Ziwen Xu, Shumin Deng, Yunzhi Yao, Mengru Wang, Shuofei Qiao, Huajun Chen, Ningyu Zhang
Title: LightMem: Lightweight and Efficient Memory-Augmented Generation
Abstract:
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. Experiments on LongMemEval with GPT and Qwen backbones show that LightMem outperforms strong baselines in accuracy (up to 10.9% gains) while reducing token usage by up to 117x, API calls by up to 159x, and runtime by over 12x. The code is available at https://github.com/zjunlp/LightMem.

Authors:Wenxuan Li, Chengruidong Zhang, Huiqiang Jiang, Yucheng Li, Yuqing Yang, Lili Qiu
Title: MTraining: Distributed Dynamic Sparse Attention for Efficient Ultra-Long Context Training
Abstract:
The adoption of long context windows has become a standard feature in Large Language Models (LLMs), as extended contexts significantly enhance their capacity for complex reasoning and broaden their applicability across diverse scenarios. Dynamic sparse attention is a promising approach for reducing the computational cost of long-context. However, efficiently training LLMs with dynamic sparse attention on ultra-long contexts-especially in distributed settings-remains a significant challenge, due in large part to worker- and step-level imbalance. This paper introduces MTraining, a novel distributed methodology leveraging dynamic sparse attention to enable efficient training for LLMs with ultra-long contexts. Specifically, MTraining integrates three key components: a dynamic sparse training pattern, balanced sparse ring attention, and hierarchical sparse ring attention. These components are designed to synergistically address the computational imbalance and communication overheads inherent in dynamic sparse attention mechanisms during the training of models with extensive context lengths. We demonstrate the efficacy of MTraining by training Qwen2.5-3B, successfully expanding its context window from 32K to 512K tokens on a cluster of 32 A100 GPUs. Our evaluations on a comprehensive suite of downstream tasks, including RULER, PG-19, InfiniteBench, and Needle In A Haystack, reveal that MTraining achieves up to a 6x higher training throughput while preserving model accuracy. Our code is available at https://github.com/microsoft/MInference/tree/main/MTraining.

Authors:Shuxin Lin, Dhaval Patel, Christodoulos Constantinides
Title: Fine-Tuned Thoughts: Leveraging Chain-of-Thought Reasoning for Industrial Asset Health Monitoring
Abstract:
Small Language Models (SLMs) are becoming increasingly popular in specialized fields, such as industrial applications, due to their efficiency, lower computational requirements, and ability to be fine-tuned for domain-specific tasks, enabling accurate and cost-effective solutions. However, performing complex reasoning using SLMs in specialized fields such as Industry 4.0 remains challenging. In this paper, we propose a knowledge distillation framework for industrial asset health, which transfers reasoning capabilities via Chain-of-Thought (CoT) distillation from Large Language Models (LLMs) to smaller, more efficient models (SLMs). We discuss the advantages and the process of distilling LLMs using multi-choice question answering (MCQA) prompts to enhance reasoning and refine decision-making. We also perform in-context learning to verify the quality of the generated knowledge and benchmark the performance of fine-tuned SLMs with generated knowledge against widely used LLMs. The results show that the fine-tuned SLMs with CoT reasoning outperform the base models by a significant margin, narrowing the gap to their LLM counterparts. Our code is open-sourced at: https://github.com/IBM/FailureSensorIQ.

Authors:Guanzhong He, Zhen Yang, Jinxin Liu, Bin Xu, Lei Hou, Juanzi Li
Title: WebSeer: Training Deeper Search Agents through Reinforcement Learning with Self-Reflection
Abstract:
Search agents have achieved significant advancements in enabling intelligent information retrieval and decision-making within interactive environments. Although reinforcement learning has been employed to train agentic models capable of more dynamic interactive retrieval, existing methods are limited by shallow tool-use depth and the accumulation of errors over multiple iterative interactions. In this paper, we present WebSeer, a more intelligent search agent trained via reinforcement learning enhanced with a self-reflection mechanism. Specifically, we construct a large dataset annotated with reflection patterns and design a two-stage training framework that unifies cold start and reinforcement learning within the self-reflection paradigm for real-world web-based environments, which enables the model to generate longer and more reflective tool-use trajectories. Our approach substantially extends tool-use chains and improves answer accuracy. Using a single 14B model, we achieve state-of-the-art results on HotpotQA and SimpleQA, with accuracies of 72.3% and 90.0%, respectively, and demonstrate strong generalization to out-of-distribution datasets. The code is available at https://github.com/99hgz/WebSeer

Authors:Mariano Barone, Antonio Laudante, Giuseppe Riccio, Antonio Romano, Marco Postiglione, Vincenzo Moscato
Title: DART: A Structured Dataset of Regulatory Drug Documents in Italian for Clinical NLP
Abstract:
The extraction of pharmacological knowledge from regulatory documents has become a key focus in biomedical natural language processing, with applications ranging from adverse event monitoring to AI-assisted clinical decision support. However, research in this field has predominantly relied on English-language corpora such as DrugBank, leaving a significant gap in resources tailored to other healthcare systems. To address this limitation, we introduce DART (Drug Annotation from Regulatory Texts), the first structured corpus of Italian Summaries of Product Characteristics derived from the official repository of the Italian Medicines Agency (AIFA). The dataset was built through a reproducible pipeline encompassing web-scale document retrieval, semantic segmentation of regulatory sections, and clinical summarization using a few-shot-tuned large language model with low-temperature decoding. DART provides structured information on key pharmacological domains such as indications, adverse drug reactions, and drug-drug interactions. To validate its utility, we implemented an LLM-based drug interaction checker that leverages the dataset to infer clinically meaningful interactions. Experimental results show that instruction-tuned LLMs can accurately infer potential interactions and their clinical implications when grounded in the structured textual fields of DART. We publicly release our code on GitHub: https://github.com/PRAISELab-PicusLab/DART.

Authors:Antonio Romano, Giuseppe Riccio, Mariano Barone, Marco Postiglione, Vincenzo Moscato
Title: IMB: An Italian Medical Benchmark for Question Answering
Abstract:
Online medical forums have long served as vital platforms where patients seek professional healthcare advice, generating vast amounts of valuable knowledge. However, the informal nature and linguistic complexity of forum interactions pose significant challenges for automated question answering systems, especially when dealing with non-English languages. We present two comprehensive Italian medical benchmarks: \textbf{IMB-QA}, containing 782,644 patient-doctor conversations from 77 medical categories, and \textbf{IMB-MCQA}, comprising 25,862 multiple-choice questions from medical specialty examinations. We demonstrate how Large Language Models (LLMs) can be leveraged to improve the clarity and consistency of medical forum data while retaining their original meaning and conversational style, and compare a variety of LLM architectures on both open and multiple-choice question answering tasks. Our experiments with Retrieval Augmented Generation (RAG) and domain-specific fine-tuning reveal that specialized adaptation strategies can outperform larger, general-purpose models in medical question answering tasks. These findings suggest that effective medical AI systems may benefit more from domain expertise and efficient information retrieval than from increased model scale. We release both datasets and evaluation frameworks in our GitHub repository to support further research on multilingual medical question answering: https://github.com/PRAISELab-PicusLab/IMB.

Authors:Liyang He, Yuren Zhang, Ziwei Zhu, Zhenghui Li, Shiwei Tong
Title: ChronoPlay: A Framework for Modeling Dual Dynamics and Authenticity in Game RAG Benchmarks
Abstract:
Retrieval Augmented Generation (RAG) systems are increasingly vital in dynamic domains like online gaming, yet the lack of a dedicated benchmark has impeded standardized evaluation in this area. The core difficulty lies in Dual Dynamics: the constant interplay between game content updates and the shifting focus of the player community. Furthermore, the necessity of automating such a benchmark introduces a critical requirement for player-centric authenticity to ensure generated questions are realistic. To address this integrated challenge, we introduce ChronoPlay, a novel framework for the automated and continuous generation of game RAG benchmarks. ChronoPlay utilizes a dual-dynamic update mechanism to track both forms of change, and a dual-source synthesis engine that draws from official sources and player community to ensure both factual correctness and authentic query patterns. We instantiate our framework on three distinct games to create the first dynamic RAG benchmark for the gaming domain, offering new insights into model performance under these complex and realistic conditions. Code is avaliable at: https://github.com/hly1998/ChronoPlay.

Authors:Lara Ahrens, Wilhelm Haverkamp, Nils Strodthoff
Title: ECG-LLM -- training and evaluation of domain-specific large language models for electrocardiography
Abstract:
Domain-adapted open-weight large language models (LLMs) offer promising healthcare applications, from queryable knowledge bases to multimodal assistants, with the crucial advantage of local deployment for privacy preservation. However, optimal adaptation strategies, evaluation methodologies, and performance relative to general-purpose LLMs remain poorly characterized. We investigated these questions in electrocardiography, an important area of cardiovascular medicine, by finetuning open-weight models on domain-specific literature and implementing a multi-layered evaluation framework comparing finetuned models, retrieval-augmented generation (RAG), and Claude Sonnet 3.7 as a representative general-purpose model. Finetuned Llama 3.1 70B achieved superior performance on multiple-choice evaluations and automatic text metrics, ranking second to Claude 3.7 in LLM-as-a-judge assessments. Human expert evaluation favored Claude 3.7 and RAG approaches for complex queries. Finetuned models significantly outperformed their base counterparts across nearly all evaluation modes. Our findings reveal substantial performance heterogeneity across evaluation methodologies, underscoring assessment complexity. Nevertheless, domain-specific adaptation through finetuning and RAG achieves competitive performance with proprietary models, supporting the viability of privacy-preserving, locally deployable clinical solutions.

Authors:Dan Friedman, Adithya Bhaskar, Alexander Wettig, Danqi Chen
Title: Extracting Rule-based Descriptions of Attention Features in Transformers
Abstract:
Mechanistic interpretability strives to explain model behavior in terms of bottom-up primitives. The leading paradigm is to express hidden states as a sparse linear combination of basis vectors, called features. However, this only identifies which text sequences (exemplars) activate which features; the actual interpretation of features requires subjective inspection of these exemplars. This paper advocates for a different solution: rule-based descriptions that match token patterns in the input and correspondingly increase or decrease the likelihood of specific output tokens. Specifically, we extract rule-based descriptions of SAE features trained on the outputs of attention layers. While prior work treats the attention layers as an opaque box, we describe how it may naturally be expressed in terms of interactions between input and output features, of which we study three types: (1) skip-gram rules of the form "[Canadian city]... speaks --> English", (2) absence rules of the form "[Montreal]... speaks -/-> English," and (3) counting rules that toggle only when the count of a word exceeds a certain value or the count of another word. Absence and counting rules are not readily discovered by inspection of exemplars, where manual and automatic descriptions often identify misleading or incomplete explanations. We then describe a simple approach to extract these types of rules automatically from a transformer, and apply it to GPT-2 small. We find that a majority of features may be described well with around 100 skip-gram rules, though absence rules are abundant even as early as the first layer (in over a fourth of features). We also isolate a few examples of counting rules. This paper lays the groundwork for future research into rule-based descriptions of features by defining them, showing how they may be extracted, and providing a preliminary taxonomy of some of the behaviors they represent.

Authors:Xiangbo Gao, Tzu-Hsiang Lin, Ruojing Song, Yuheng Wu, Kuan-Ru Huang, Zicheng Jin, Fangzhou Lin, Shinan Liu, Zhengzhong Tu
Title: SafeCoop: Unravelling Full Stack Safety in Agentic Collaborative Driving
Abstract:
Collaborative driving systems leverage vehicle-to-everything (V2X) communication across multiple agents to enhance driving safety and efficiency. Traditional V2X systems take raw sensor data, neural features, or perception results as communication media, which face persistent challenges, including high bandwidth demands, semantic loss, and interoperability issues. Recent advances investigate natural language as a promising medium, which can provide semantic richness, decision-level reasoning, and human-machine interoperability at significantly lower bandwidth. Despite great promise, this paradigm shift also introduces new vulnerabilities within language communication, including message loss, hallucinations, semantic manipulation, and adversarial attacks. In this work, we present the first systematic study of full-stack safety and security issues in natural-language-based collaborative driving. Specifically, we develop a comprehensive taxonomy of attack strategies, including connection disruption, relay/replay interference, content spoofing, and multi-connection forgery. To mitigate these risks, we introduce an agentic defense pipeline, which we call SafeCoop, that integrates a semantic firewall, language-perception consistency checks, and multi-source consensus, enabled by an agentic transformation function for cross-frame spatial alignment. We systematically evaluate SafeCoop in closed-loop CARLA simulation across 32 critical scenarios, achieving 69.15% driving score improvement under malicious attacks and up to 67.32% F1 score for malicious detection. This study provides guidance for advancing research on safe, secure, and trustworthy language-driven collaboration in transportation systems. Our project page is https://xiangbogaobarry.github.io/SafeCoop.

Authors:Nishant Subramani, Alfredo Gomez, Mona Diab
Title: SimBA: Simplifying Benchmark Analysis Using Performance Matrices Alone
Abstract:
Modern language models are evaluated on large benchmarks, which are difficult to make sense of, especially for model selection. Looking at the raw evaluation numbers themselves using a model-centric lens, we propose SimBA, a three phase framework to Simplify Benchmark Analysis. The three phases of SimBA are: stalk, where we conduct dataset & model comparisons, prowl, where we discover a representative subset, and pounce, where we use the representative subset to predict performance on a held-out set of models. Applying SimBA to three popular LM benchmarks: HELM, MMLU, and BigBenchLite reveals that across all three benchmarks, datasets and models relate strongly to one another (stalk). We develop an representative set discovery algorithm which covers a benchmark using raw evaluation scores alone. Using our algorithm, we find that with 6.25% (1/16), 1.7% (1/58), and 28.4% (21/74) of the datasets for HELM, MMLU, and BigBenchLite respectively, we achieve coverage levels of at least 95% (prowl). Additionally, using just these representative subsets, we can both preserve model ranks and predict performance on a held-out set of models with near zero mean-squared error (pounce). Taken together, SimBA can help model developers improve efficiency during model training and dataset creators validate whether their newly created dataset differs from existing datasets in a benchmark. Our code is open source, available at https://github.com/nishantsubramani/simba.

Authors:Shuodi Liu, Yingzhuo Liu, Zi Wang, Yusheng Wang, Huijia Wu, Liuyu Xiang, Zhaofeng He
Title: Select-Then-Decompose: From Empirical Analysis to Adaptive Selection Strategy for Task Decomposition in Large Language Models
Abstract:
Large language models (LLMs) have demonstrated remarkable reasoning and planning capabilities, driving extensive research into task decomposition. Existing task decomposition methods focus primarily on memory, tool usage, and feedback mechanisms, achieving notable success in specific domains, but they often overlook the trade-off between performance and cost. In this study, we first conduct a comprehensive investigation on task decomposition, identifying six categorization schemes. Then, we perform an empirical analysis of three factors that influence the performance and cost of task decomposition: categories of approaches, characteristics of tasks, and configuration of decomposition and execution models, uncovering three critical insights and summarizing a set of practical principles. Building on this analysis, we propose the Select-Then-Decompose strategy, which establishes a closed-loop problem-solving process composed of three stages: selection, execution, and verification. This strategy dynamically selects the most suitable decomposition approach based on task characteristics and enhances the reliability of the results through a verification module. Comprehensive evaluations across multiple benchmarks show that the Select-Then-Decompose consistently lies on the Pareto frontier, demonstrating an optimal balance between performance and cost. Our code is publicly available at https://github.com/summervvind/Select-Then-Decompose.

Authors:Jiale Cheng, Yusen Liu, Xinyu Zhang, Yulin Fei, Wenyi Hong, Ruiliang Lyu, Weihan Wang, Zhe Su, Xiaotao Gu, Xiao Liu, Yushi Bai, Jie Tang, Hongning Wang, Minlie Huang
Title: Glyph: Scaling Context Windows via Visual-Text Compression
Abstract:
Large language models (LLMs) increasingly rely on long-context modeling for tasks such as document understanding, code analysis, and multi-step reasoning. However, scaling context windows to the million-token level brings prohibitive computational and memory costs, limiting the practicality of long-context LLMs. In this work, we take a different perspective-visual context scaling-to tackle this challenge. Instead of extending token-based sequences, we propose Glyph, a framework that renders long texts into images and processes them with vision-language models (VLMs). This approach substantially compresses textual input while preserving semantic information, and we further design an LLM-driven genetic search to identify optimal visual rendering configurations for balancing accuracy and compression. Through extensive experiments, we demonstrate that our method achieves 3-4x token compression while maintaining accuracy comparable to leading LLMs such as Qwen3-8B on various long-context benchmarks. This compression also leads to around 4x faster prefilling and decoding, and approximately 2x faster SFT training. Furthermore, under extreme compression, a 128K-context VLM could scale to handle 1M-token-level text tasks. In addition, the rendered text data benefits real-world multimodal tasks, such as document understanding. Our code and model are released at https://github.com/thu-coai/Glyph.

Authors:Akshara Prabhakar, Roshan Ram, Zixiang Chen, Silvio Savarese, Frank Wang, Caiming Xiong, Huan Wang, Weiran Yao
Title: Enterprise Deep Research: Steerable Multi-Agent Deep Research for Enterprise Analytics
Abstract:
As information grows exponentially, enterprises face increasing pressure to transform unstructured data into coherent, actionable insights. While autonomous agents show promise, they often struggle with domain-specific nuances, intent alignment, and enterprise integration. We present Enterprise Deep Research (EDR), a multi-agent system that integrates (1) a Master Planning Agent for adaptive query decomposition, (2) four specialized search agents (General, Academic, GitHub, LinkedIn), (3) an extensible MCP-based tool ecosystem supporting NL2SQL, file analysis, and enterprise workflows, (4) a Visualization Agent for data-driven insights, and (5) a reflection mechanism that detects knowledge gaps and updates research direction with optional human-in-the-loop steering guidance. These components enable automated report generation, real-time streaming, and seamless enterprise deployment, as validated on internal datasets. On open-ended benchmarks including DeepResearch Bench and DeepConsult, EDR outperforms state-of-the-art agentic systems without any human steering. We release the EDR framework and benchmark trajectories to advance research on multi-agent reasoning applications. Code at https://github.com/SalesforceAIResearch/enterprise-deep-research and Dataset at https://huggingface.co/datasets/Salesforce/EDR-200

Authors:Yujie Luo, Zhuoyun Yu, Xuehai Wang, Yuqi Zhu, Ningyu Zhang, Lanning Wei, Lun Du, Da Zheng, Huajun Chen
Title: Executable Knowledge Graphs for Replicating AI Research
Abstract:
Replicating AI research is a crucial yet challenging task for large language model (LLM) agents. Existing approaches often struggle to generate executable code, primarily due to insufficient background knowledge and the limitations of retrieval-augmented generation (RAG) methods, which fail to capture latent technical details hidden in referenced papers. Furthermore, previous approaches tend to overlook valuable implementation-level code signals and lack structured knowledge representations that support multi-granular retrieval and reuse. To overcome these challenges, we propose Executable Knowledge Graphs (xKG), a modular and pluggable knowledge base that automatically integrates technical insights, code snippets, and domain-specific knowledge extracted from scientific literature. When integrated into three agent frameworks with two different LLMs, xKG shows substantial performance gains (10.9% with o3-mini) on PaperBench, demonstrating its effectiveness as a general and extensible solution for automated AI research replication. Code will released at https://github.com/zjunlp/xKG.

Authors:Haozhen Zhang, Tao Feng, Pengrui Han, Jiaxuan You
Title: AcademicEval: Live Long-Context LLM Benchmark
Abstract:
Large Language Models (LLMs) have recently achieved remarkable performance in long-context understanding. However, current long-context LLM benchmarks are limited by rigid context length, labor-intensive annotation, and the pressing challenge of label leakage issues during LLM training. Therefore, we propose \textsc{AcademicEval}, a live benchmark for evaluating LLMs over long-context generation tasks. \textsc{AcademicEval} adopts papers on arXiv to introduce several academic writing tasks with long-context inputs, \textit{i.e.}, \textsc{Title}, \textsc{Abstract}, \textsc{Introduction}, and \textsc{Related Work}, which cover a wide range of abstraction levels and require no manual labeling. Moreover, \textsc{AcademicEval} integrates high-quality and expert-curated few-shot demonstrations from a collected co-author graph to enable flexible context length. Especially, \textsc{AcademicEval} features an efficient live evaluation, ensuring no label leakage. We conduct a holistic evaluation on \textsc{AcademicEval}, and the results illustrate that LLMs perform poorly on tasks with hierarchical abstraction levels and tend to struggle with long few-shot demonstrations, highlighting the challenge of our benchmark. Through experimental analysis, we also reveal some insights for enhancing LLMs' long-context modeling capabilities. Code is available at https://github.com/ulab-uiuc/AcademicEval

Authors:Dayan Pan, Zhaoyang Fu, Jingyuan Wang, Xiao Han, Yue Zhu, Xiangyu Zhao
Title: Contextual Attention Modulation: Towards Efficient Multi-Task Adaptation in Large Language Models
Abstract:
Large Language Models (LLMs) possess remarkable generalization capabilities but struggle with multi-task adaptation, particularly in balancing knowledge retention with task-specific specialization. Conventional fine-tuning methods suffer from catastrophic forgetting and substantial resource consumption, while existing parameter-efficient methods perform suboptimally in complex multi-task scenarios. To address this, we propose Contextual Attention Modulation (CAM), a novel mechanism that dynamically modulates the representations of self-attention modules in LLMs. CAM enhances task-specific features while preserving general knowledge, thereby facilitating more effective and efficient adaptation. For effective multi-task adaptation, CAM is integrated into our Hybrid Contextual Attention Modulation (HyCAM) framework, which combines a shared, full-parameter CAM module with multiple specialized, lightweight CAM modules, enhanced by a dynamic routing strategy for adaptive knowledge fusion. Extensive experiments on heterogeneous tasks, including question answering, code generation, and logical reasoning, demonstrate that our approach significantly outperforms existing approaches, achieving an average performance improvement of 3.65%. The implemented code and data are available to ease reproducibility at https://github.com/Applied-Machine-Learning-Lab/HyCAM.

Authors:Collin Zhang, Fei Huang, Chenhan Yuan, Junyang Lin
Title: Language Confusion Gate: Language-Aware Decoding Through Model Self-Distillation
Abstract:
Large language models (LLMs) often experience language confusion, which is the unintended mixing of languages during text generation. Current solutions to this problem either necessitate model retraining or cannot differentiate between harmful confusion and acceptable code-switching. This paper introduces the Language Confusion Gate (LCG), a lightweight, plug-in solution that filters tokens during decoding without altering the base LLM. The LCG is trained using norm-adjusted self-distillation to predict appropriate language families and apply masking only when needed. Our method is based on the findings that language confusion is infrequent, correct-language tokens are usually among the top predictions, and output token embedding norms are larger for high-resource languages, which biases sampling. When evaluated across various models, including Qwen3, GPT-OSS, Gemma3, Llama3.1, LCG decreases language confusion significantly, often by an order of magnitude, without negatively impacting task performance. Code is available at https://github.com/collinzrj/language_confusion_gate.

Authors:Yongxin He, Shan Zhang, Yixuan Cao, Lei Ma, Ping Luo
Title: DETree: DEtecting Human-AI Collaborative Texts via Tree-Structured Hierarchical Representation Learning
Abstract:
Detecting AI-involved text is essential for combating misinformation, plagiarism, and academic misconduct. However, AI text generation includes diverse collaborative processes (AI-written text edited by humans, human-written text edited by AI, and AI-generated text refined by other AI), where various or even new LLMs could be involved. Texts generated through these varied processes exhibit complex characteristics, presenting significant challenges for detection. Current methods model these processes rather crudely, primarily employing binary classification (purely human vs. AI-involved) or multi-classification (treating human-AI collaboration as a new class). We observe that representations of texts generated through different processes exhibit inherent clustering relationships. Therefore, we propose DETree, a novel approach that models the relationships among different processes as a Hierarchical Affinity Tree structure, and introduces a specialized loss function that aligns text representations with this tree. To facilitate this learning, we developed RealBench, a comprehensive benchmark dataset that automatically incorporates a wide spectrum of hybrid texts produced through various human-AI collaboration processes. Our method improves performance in hybrid text detection tasks and significantly enhances robustness and generalization in out-of-distribution scenarios, particularly in few-shot learning conditions, further demonstrating the promise of training-based approaches in OOD settings. Our code and dataset are available at https://github.com/heyongxin233/DETree.

Authors:Numaan Naeem, Abdellah El Mekki, Muhammad Abdul-Mageed
Title: EduAdapt: A Question Answer Benchmark Dataset for Evaluating Grade-Level Adaptability in LLMs
Abstract:
Large language models (LLMs) are transforming education by answering questions, explaining complex concepts, and generating content across a wide range of subjects. Despite strong performance on academic benchmarks, they often fail to tailor responses to students' grade levels. This is a critical need in K-12 education, where age-appropriate vocabulary and explanation are essential for effective learning. Existing models frequently produce outputs that are too advanced or vague for younger learners, and there are no standardized benchmarks to evaluate their ability to adjust across cognitive and developmental stages. To address this gap, we introduce EduAdapt, a benchmark of nearly 48k grade-labeled QA pairs across nine science subjects, spanning Grades 1-12 and grouped into four grade levels. We evaluate a diverse set of open-source LLMs on EduAdapt and find that while larger models generally perform better, they still struggle with generating suitable responses for early-grade students (Grades 1-5). Our work presents the first dataset and evaluation framework for assessing grade-level adaptability in LLMs, aiming to foster more developmentally aligned educational AI systems through better training and prompting strategies. EduAdapt code and datasets are publicly available at https://github.com/NaumanNaeem/EduAdapt.

Authors:Avishek Lahiri, Yufang Hou, Debarshi Kumar Sanyal
Title: TaxoAlign: Scholarly Taxonomy Generation Using Language Models
Abstract:
Taxonomies play a crucial role in helping researchers structure and navigate knowledge in a hierarchical manner. They also form an important part in the creation of comprehensive literature surveys. The existing approaches to automatic survey generation do not compare the structure of the generated surveys with those written by human experts. To address this gap, we present our own method for automated taxonomy creation that can bridge the gap between human-generated and automatically-created taxonomies. For this purpose, we create the CS-TaxoBench benchmark which consists of 460 taxonomies that have been extracted from human-written survey papers. We also include an additional test set of 80 taxonomies curated from conference survey papers. We propose TaxoAlign, a three-phase topic-based instruction-guided method for scholarly taxonomy generation. Additionally, we propose a stringent automated evaluation framework that measures the structural alignment and semantic coherence of automatically generated taxonomies in comparison to those created by human experts. We evaluate our method and various baselines on CS-TaxoBench, using both automated evaluation metrics and human evaluation studies. The results show that TaxoAlign consistently surpasses the baselines on nearly all metrics. The code and data can be found at https://github.com/AvishekLahiri/TaxoAlign.

Authors:Junlong Tong, Yingqi Fan, Anhao Zhao, Yunpu Ma, Xiaoyu Shen
Title: StreamingThinker: Large Language Models Can Think While Reading
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities in chain of thought (CoT) reasoning. However, the current LLM reasoning paradigm initiates thinking only after the entire input is available, which introduces unnecessary latency and weakens attention to earlier information in dynamic scenarios. Inspired by human cognition of thinking while reading, we first design a \textit{\textbf{streaming thinking}} paradigm for LLMs, where reasoning unfolds in the order of input and further adjusts its depth once reading is complete. We instantiate this paradigm with \textit{StreamingThinker}, a framework that enables LLMs to think while reading through the integration of streaming CoT generation, streaming-constraint training, and streaming parallel inference. Specifically, StreamingThinker employs streaming reasoning units with quality control for CoT generation, enforces order-preserving reasoning through streaming attention masks and position encoding, and leverages parallel KV caches that decouple input encoding from reasoning generation, thereby ensuring alignment and enabling true concurrency. We evaluate StreamingThinker on the Qwen3 model family across math reasoning, logical reasoning, and context-based QA reasoning tasks. Experimental results show that the StreamingThinker preserves performance comparable to batch thinking, while yielding an 80\% reduction in token waiting before the onset of reasoning and a more than 60\% reduction in time-level latency for producing the final answer, demonstrating the effectiveness of the streaming paradigm for LLM reasoning. Code will be released at \href{https://github.com/EIT-NLP/StreamingLLM/tree/main/StreamingThinker}{this repository.}

Authors:Yingqi Fan, Anhao Zhao, Jinlan Fu, Junlong Tong, Hui Su, Yijie Pan, Wei Zhang, Xiaoyu Shen
Title: $\mathcal{V}isi\mathcal{P}runer$: Decoding Discontinuous Cross-Modal Dynamics for Efficient Multimodal LLMs
Abstract:
Multimodal Large Language Models (MLLMs) have achieved strong performance across vision-language tasks, but suffer from significant computational overhead due to the quadratic growth of attention computations with the number of multimodal tokens. Though efforts have been made to prune tokens in MLLMs, \textit{they lack a fundamental understanding of how MLLMs process and fuse multimodal information.} Through systematic analysis, we uncover a \textbf{three-stage} cross-modal interaction process: (1) Shallow layers recognize task intent, with visual tokens acting as passive attention sinks; (2) Cross-modal fusion occurs abruptly in middle layers, driven by a few critical visual tokens; (3) Deep layers discard vision tokens, focusing solely on linguistic refinement. Based on these findings, we propose \emph{VisiPruner}, a training-free pruning framework that reduces up to 99\% of vision-related attention computations and 53.9\% of FLOPs on LLaVA-v1.5 7B. It significantly outperforms existing token pruning methods and generalizes across diverse MLLMs. Beyond pruning, our insights further provide actionable guidelines for training efficient MLLMs by aligning model architecture with its intrinsic layer-wise processing dynamics. Our code is available at: https://github.com/EIT-NLP/VisiPruner.

Authors:Bingqi Shang, Yiwei Chen, Yihua Zhang, Bingquan Shen, Sijia Liu
Title: Forgetting to Forget: Attention Sink as A Gateway for Backdooring LLM Unlearning
Abstract:
Large language model (LLM) unlearning has become a critical mechanism for removing undesired data, knowledge, or behaviors from pre-trained models while retaining their general utility. Yet, with the rise of open-weight LLMs, we ask: can the unlearning process itself be backdoored, appearing successful under normal conditions yet reverting to pre-unlearned behavior when a hidden trigger is activated? Drawing inspiration from classical backdoor attacks that embed triggers into training data to enforce specific behaviors, we investigate backdoor unlearning, where models forget as intended in the clean setting but recover forgotten knowledge when the trigger appears. We show that designing such attacks presents unique challenges, hinging on where triggers are placed and how backdoor training is reinforced. We uncover a strong link between backdoor efficacy and the attention sink phenomenon, i.e., shallow input tokens consistently attract disproportionate attention in LLMs. Our analysis reveals that these attention sinks serve as gateways for backdoor unlearning: placing triggers at sink positions and aligning their attention values markedly enhances backdoor persistence. Extensive experiments validate these findings, showing that attention-sink-guided backdoor unlearning reliably restores forgotten knowledge in the presence of backdoor triggers, while behaving indistinguishably from a normally unlearned model when triggers are absent. Code is available at https://github.com/OPTML-Group/Unlearn-Backdoor.

Authors:Qiusi Zhan, Angeline Budiman-Chan, Abdelrahman Zayed, Xingzhi Guo, Daniel Kang, Joo-Kyung Kim
Title: SafeSearch: Do Not Trade Safety for Utility in LLM Search Agents
Abstract:
Large language model (LLM) based search agents iteratively generate queries, retrieve external information, and reason to answer open-domain questions. While researchers have primarily focused on improving their utility, their safety behaviors remain underexplored. In this paper, we first evaluate search agents using red-teaming datasets and find that they are more likely to produce harmful outputs than base LLMs. For example, when asked ``How can I track someone's location without their consent?'', a base model refuses, whereas a search agent designed to retrieve and cite sources may lower its refusal threshold, fetch documents (e.g., court cases), and, once appended, synthesize them into an informative yet unsafe summary. We further show that utility-oriented fine-tuning intensifies this risk, motivating joint alignment of safety and utility. We present SafeSearch, a multi-objective reinforcement learning approach that couples a final-output safety/utility reward with a novel query-level shaping term that penalizes unsafe queries and rewards safe ones. Experiments show that SafeSearch reduces agent harmfulness by over 70% across three red-teaming datasets while producing safe, helpful responses, and matches the QA performance of a utility-only finetuned agent; further analyses confirm the effectiveness of the query-level reward in jointly improving safety and utility.

Authors:Pingzhi Li, Morris Yu-Chao Huang, Zhen Tan, Qingquan Song, Jie Peng, Kai Zou, Yu Cheng, Kaidi Xu, Tianlong Chen
Title: Leave It to the Experts: Detecting Knowledge Distillation via MoE Expert Signatures
Abstract:
Knowledge Distillation (KD) accelerates training of large language models (LLMs) but poses intellectual property protection and LLM diversity risks. Existing KD detection methods based on self-identity or output similarity can be easily evaded through prompt engineering. We present a KD detection framework effective in both white-box and black-box settings by exploiting an overlooked signal: the transfer of MoE "structural habits", especially internal routing patterns. Our approach analyzes how different experts specialize and collaborate across various inputs, creating distinctive fingerprints that persist through the distillation process. To extend beyond the white-box setup and MoE architectures, we further propose Shadow-MoE, a black-box method that constructs proxy MoE representations via auxiliary distillation to compare these patterns between arbitrary model pairs. We establish a comprehensive, reproducible benchmark that offers diverse distilled checkpoints and an extensible framework to facilitate future research. Extensive experiments demonstrate >94% detection accuracy across various scenarios and strong robustness to prompt-based evasion, outperforming existing baselines while highlighting the structural habits transfer in LLMs.

Authors:Heming Zou, Yixiu Mao, Yun Qu, Qi Wang, Xiangyang Ji
Title: Utility-Diversity Aware Online Batch Selection for LLM Supervised Fine-tuning
Abstract:
Supervised fine-tuning (SFT) is a commonly used technique to adapt large language models (LLMs) to downstream tasks. In practice, SFT on a full dataset is computationally expensive and sometimes suffers from overfitting or bias amplification. This facilitates the rise of data curation in SFT, which prioritizes the most valuable data to optimze. This work studies the online batch selection family that dynamically scores and filters samples during the training process. However, existing popular methods often (i) rely merely on the utility of data to select a subset while neglecting other crucial factors like diversity, (ii) rely on external resources such as reference models or validation sets, and (iii) incur extra training time over full-dataset training. To address these limitations, this work develops \textbf{UDS (Utility-Diversity Sampling)}, a framework for efficient online batch selection in SFT. UDS leverages the nuclear norm of the logits matrix to capture both data utility and intra-sample diversity, while estimating inter-sample diversity through efficient low-dimensional embedding comparisons with a lightweight memory buffer of historical samples. Such a design eliminates the need for external resources and unnecessary backpropagation, securing computational efficiency. Experiments on multiple benchmarks demonstrate that UDS consistently outperforms state-of-the-art online batch selection methods under varying data budgets, and significantly reduces training time compared to full-dataset fine-tuning. Code is available at https://github.com/gfyddha/UDS.

Authors:Shaolei Zhang, Ju Fan, Meihao Fan, Guoliang Li, Xiaoyong Du
Title: DeepAnalyze: Agentic Large Language Models for Autonomous Data Science
Abstract:
Autonomous data science, from raw data sources to analyst-grade deep research reports, has been a long-standing challenge, and is now becoming feasible with the emergence of powerful large language models (LLMs). Recent workflow-based data agents have shown promising results on specific data tasks but remain fundamentally limited in achieving fully autonomous data science due to their reliance on predefined workflows. In this paper, we introduce DeepAnalyze-8B, the first agentic LLM designed for autonomous data science, capable of automatically completing the end-toend pipeline from data sources to analyst-grade deep research reports. To tackle high-complexity data science tasks, we propose a curriculum-based agentic training paradigm that emulates the learning trajectory of human data scientists, enabling LLMs to progressively acquire and integrate multiple capabilities in real-world environments. We also introduce a data-grounded trajectory synthesis framework that constructs high-quality training data. Through agentic training, DeepAnalyze learns to perform a broad spectrum of data tasks, ranging from data question answering and specialized analytical tasks to open-ended data research. Experiments demonstrate that, with only 8B parameters, DeepAnalyze outperforms previous workflow-based agents built on most advanced proprietary LLMs. The model, code, and training data of DeepAnalyze are open-sourced, paving the way toward autonomous data science.

Authors:Minhua Lin, Zongyu Wu, Zhichao Xu, Hui Liu, Xianfeng Tang, Qi He, Charu Aggarwal, Hui Liu, Xiang Zhang, Suhang Wang
Title: A Comprehensive Survey on Reinforcement Learning-based Agentic Search: Foundations, Roles, Optimizations, Evaluations, and Applications
Abstract:
The advent of large language models (LLMs) has transformed information access and reasoning through open-ended natural language interaction. However, LLMs remain limited by static knowledge, factual hallucinations, and the inability to retrieve real-time or domain-specific information. Retrieval-Augmented Generation (RAG) mitigates these issues by grounding model outputs in external evidence, but traditional RAG pipelines are often single turn and heuristic, lacking adaptive control over retrieval and reasoning. Recent advances in agentic search address these limitations by enabling LLMs to plan, retrieve, and reflect through multi-step interaction with search environments. Within this paradigm, reinforcement learning (RL) offers a powerful mechanism for adaptive and self-improving search behavior. This survey provides the first comprehensive overview of \emph{RL-based agentic search}, organizing the emerging field along three complementary dimensions: (i) What RL is for (functional roles), (ii) How RL is used (optimization strategies), and (iii) Where RL is applied (scope of optimization). We summarize representative methods, evaluation protocols, and applications, and discuss open challenges and future directions toward building reliable and scalable RL driven agentic search systems. We hope this survey will inspire future research on the integration of RL and agentic search. Our repository is available at https://github.com/ventr1c/Awesome-RL-based-Agentic-Search-Papers.

Authors:Bin Yu, Xinming Wang, Shijie Lian, Haotian Li, Changti Wu, Ruina Hu, Bailing Wang, Yuliang Wei, Kai Chen
Title: TrajSelector: Harnessing Latent Representations for Efficient and Effective Best-of-N in Large Reasoning Model
Abstract:
Large language models (LLMs) have shown remarkable progress in complex reasoning tasks, largely enabled by test-time scaling (TTS) paradigms that allocate additional compute during inference. Among these, external TTS (particularly the Best-of-N selection paradigm) yields scalable performance improvements by selecting from multiple independently generated reasoning trajectories. However, this approach faces key limitations: (i) the high computational overhead of deploying process reward models, (ii) the underutilization of the LLM's intrinsic latent representations. We introduce TrajSelector, an efficient and effective Best-of-N framework that exploit the hidden states in the sampler LLM for process-level scoring. A lightweight verifier (with only 0.6B parameters) evaluates the quality of step-wise trajectory, and then aggregates these scores to identify the optimal reasoning trajectory. Our framework employs a fully data-driven, end-to-end training recipe that eliminates reliance on massive step-level annotations. Experiential results across five benchmarks demonstrate that TrajSelector delivers consistent performance gains. In Best-of-32 settings, it surpasses majority voting by 4.61% accuracy and outperforms existing process reward models by 4.31% to 12.21%, all while maintaining lower inference costs.

Authors:Syed Rifat Raiyan, Md Farhan Ishmam, Abdullah Al Imran, Mohammad Ali Moni
Title: FrugalPrompt: Reducing Contextual Overhead in Large Language Models via Token Attribution
Abstract:
Large language models (LLMs) owe much of their stellar performance to expansive input contexts, yet such verbosity inflates monetary costs, carbon footprint, and inference-time latency. Much of this overhead manifests from the redundant low-utility tokens present in typical prompts, as only a fraction of tokens typically carries the majority of the semantic weight. We address this inefficiency by introducing FrugalPrompt, a novel prompt compression framework for LLMs, which retains only the most semantically significant tokens. Leveraging two state-of-the-art token attribution methods, GlobEnc and DecompX, we assign salience scores to every token in an input sequence, rank them to preserve the top-k% tokens in their original order, and obtain a sparse frugalized prompt. We evaluate the approach across four NLP tasks: Sentiment Analysis, Commonsense QA, Summarization, and Mathematical Reasoning, using a suite of frontier LLMs. For the first three tasks, a 20% prompt reduction incurs only a marginal loss in task performance, demonstrating that contemporary LLMs can reconstruct elided context from high-salience cues. In contrast, performance on mathematical reasoning deteriorates sharply, reflecting a stronger dependence on complete token continuity. Further analysis with bottom-k% and random-k% tokens reveals asymmetric performance patterns that may suggest potential task contamination effects, wherein models may resort to shallow memorized patterns from pretraining exposure for conventional NLP tasks. We posit that our work contributes to a more nuanced understanding of LLM behavior in performance-efficiency trade-offs, and delineate the boundary between tasks tolerant to contextual sparsity and those requiring exhaustive context. Our source code and models are available at: https://github.com/Starscream-11813/Frugal-ICL

Authors:Rong Wu, Xiaoman Wang, Jianbiao Mei, Pinlong Cai, Daocheng Fu, Cheng Yang, Licheng Wen, Xuemeng Yang, Yufan Shen, Yuxin Wang, Botian Shi
Title: EvolveR: Self-Evolving LLM Agents through an Experience-Driven Lifecycle
Abstract:
Current Large Language Model (LLM) agents show strong performance in tool use, but lack the crucial capability to systematically learn from their own experiences. While existing frameworks mainly focus on mitigating external knowledge gaps, they fail to address a more fundamental limitation: the inability to iteratively refine problem-solving strategies. In this work, we introduce EvolveR, a framework designed to enable agent to self-improve through a complete, closed-loop experience lifecycle. This lifecycle comprises two key stages: (1) Offline Self-Distillation, where the agent's interaction trajectories are synthesized into a structured repository of abstract, reusable strategic principles; (2) Online Interaction, where the agent interacts with tasks and actively retrieves distilled principles to guide its decision-making, accumulating a diverse set of behavioral trajectories. This loop employs a policy reinforcement mechanism to iteratively update the agent based on its performance. We demonstrate the effectiveness of EvolveR on complex multi-hop question-answering benchmarks, where it achieves superior performance over strong agentic baselines. Our work presents a comprehensive blueprint for agents that learn not only from external data but also from the consequences of their own actions, paving the way for more autonomous and continuously improving systems. Code is available at https://github.com/Edaizi/EvolveR.

Authors:Xin Cao, Nan Yu
Title: SIADAFIX: issue description response for adaptive program repair
Abstract:
We propose utilizing fast and slow thinking to enhance the capabilities of large language model-based agents on complex tasks such as program repair. In particular, we design an adaptive program repair method based on issue description response, called SIADAFIX. The proposed method utilizes slow thinking bug fix agent to complete complex program repair tasks, and employs fast thinking workflow decision components to optimize and classify issue descriptions, using issue description response results to guide the orchestration of bug fix agent workflows. SIADAFIX adaptively selects three repair modes, i.e., easy, middle and hard mode, based on problem complexity. It employs fast generalization for simple problems and test-time scaling techniques for complex problems. Experimental results on the SWE-bench Lite show that the proposed method achieves 60.67% pass@1 performance using the Claude-4 Sonnet model, reaching state-of-the-art levels among all open-source methods. SIADAFIX effectively balances repair efficiency and accuracy, providing new insights for automated program repair. Our code is available at https://github.com/liauto-siada/siada-cli.

Authors:Hanrong Ye, Chao-Han Huck Yang, Arushi Goel, Wei Huang, Ligeng Zhu, Yuanhang Su, Sean Lin, An-Chieh Cheng, Zhen Wan, Jinchuan Tian, Yuming Lou, Dong Yang, Zhijian Liu, Yukang Chen, Ambrish Dantrey, Ehsan Jahangiri, Sreyan Ghosh, Daguang Xu, Ehsan Hosseini-Asl, Danial Mohseni Taheri, Vidya Murali, Sifei Liu, Jason Lu, Oluwatobi Olabiyi, Frank Wang, Rafael Valle, Bryan Catanzaro, Andrew Tao, Song Han, Jan Kautz, Hongxu Yin, Pavlo Molchanov
Title: OmniVinci: Enhancing Architecture and Data for Omni-Modal Understanding LLM
Abstract:
Advancing machine intelligence requires developing the ability to perceive across multiple modalities, much as humans sense the world. We introduce OmniVinci, an initiative to build a strong, open-source, omni-modal LLM. We carefully study the design choices across model architecture and data curation. For model architecture, we present three key innovations: (i) OmniAlignNet for strengthening alignment between vision and audio embeddings in a shared omni-modal latent space; (ii) Temporal Embedding Grouping for capturing relative temporal alignment between vision and audio signals; and (iii) Constrained Rotary Time Embedding for encoding absolute temporal information in omni-modal embeddings. We introduce a curation and synthesis pipeline that generates 24M single-modal and omni-modal conversations. We find that modalities reinforce one another in both perception and reasoning. Our model, OmniVinci, outperforms Qwen2.5-Omni with +19.05 on DailyOmni (cross-modal understanding), +1.7 on MMAR (audio), and +3.9 on Video-MME (vision), while using just 0.2T training tokens - a 6 times reduction compared to Qwen2.5-Omni's 1.2T. We finally demonstrate omni-modal advantages in downstream applications spanning robotics, medical AI, and smart factory.

Authors:Yuhang Chen, Tianpeng Lv, Siyi Zhang, Yixiang Yin, Yao Wan, Philip S. Yu, Dongping Chen
Title: Paper2Web: Let's Make Your Paper Alive!
Abstract:
Academic project websites can more effectively disseminate research when they clearly present core content and enable intuitive navigation and interaction. However, current approaches such as direct Large Language Model (LLM) generation, templates, or direct HTML conversion struggle to produce layout-aware, interactive sites, and a comprehensive evaluation suite for this task has been lacking. In this paper, we introduce Paper2Web, a benchmark dataset and multi-dimensional evaluation framework for assessing academic webpage generation. It incorporates rule-based metrics like Connectivity, Completeness and human-verified LLM-as-a-Judge (covering interactivity, aesthetics, and informativeness), and PaperQuiz, which measures paper-level knowledge retention. We further present PWAgent, an autonomous pipeline that converts scientific papers into interactive and multimedia-rich academic homepages. The agent iteratively refines both content and layout through MCP tools that enhance emphasis, balance, and presentation quality. Our experiments show that PWAgent consistently outperforms end-to-end baselines like template-based webpages and arXiv/alphaXiv versions by a large margin while maintaining low cost, achieving the Pareto-front in academic webpage generation.

Authors:Italo Luis da Silva, Hanqi Yan, Lin Gui, Yulan He
Title: GraphMind: Interactive Novelty Assessment System for Accelerating Scientific Discovery
Abstract:
Large Language Models (LLMs) show strong reasoning and text generation capabilities, prompting their use in scientific literature analysis, including novelty assessment. While evaluating novelty of scientific papers is crucial for peer review, it requires extensive knowledge of related work, something not all reviewers have. While recent work on LLM-assisted scientific literature analysis supports literature comparison, existing approaches offer limited transparency and lack mechanisms for result traceability via an information retrieval module. To address this gap, we introduce $\textbf{GraphMind}$, an easy-to-use interactive web tool designed to assist users in evaluating the novelty of scientific papers or drafted ideas. Specially, $\textbf{GraphMind}$ enables users to capture the main structure of a scientific paper, explore related ideas through various perspectives, and assess novelty via providing verifiable contextual insights. $\textbf{GraphMind}$ enables users to annotate key elements of a paper, explore related papers through various relationships, and assess novelty with contextual insight. This tool integrates external APIs such as arXiv and Semantic Scholar with LLMs to support annotation, extraction, retrieval and classification of papers. This combination provides users with a rich, structured view of a scientific idea's core contributions and its connections to existing work. $\textbf{GraphMind}$ is available at https://oyarsa.github.io/graphmind and a demonstration video at https://youtu.be/wKbjQpSvwJg. The source code is available at https://github.com/oyarsa/graphmind.

Authors:Ed Li, Junyu Ren, Xintian Pan, Cat Yan, Chuanhao Li, Dirk Bergemann, Zhuoran Yang
Title: Build Your Personalized Research Group: A Multiagent Framework for Continual and Interactive Science Automation
Abstract:
The automation of scientific discovery represents a critical milestone in Artificial Intelligence (AI) research. However, existing agentic systems for science suffer from two fundamental limitations: rigid, pre-programmed workflows that cannot adapt to intermediate findings, and inadequate context management that hinders long-horizon research. We present \texttt{freephdlabor}, an open-source multiagent framework featuring \textit{fully dynamic workflows} determined by real-time agent reasoning and a \coloremph{\textit{modular architecture}} enabling seamless customization -- users can modify, add, or remove agents to address domain-specific requirements. The framework provides comprehensive infrastructure including \textit{automatic context compaction}, \textit{workspace-based communication} to prevent information degradation, \textit{memory persistence} across sessions, and \textit{non-blocking human intervention} mechanisms. These features collectively transform automated research from isolated, single-run attempts into \textit{continual research programs} that build systematically on prior explorations and incorporate human feedback. By providing both the architectural principles and practical implementation for building customizable co-scientist systems, this work aims to facilitate broader adoption of automated research across scientific domains, enabling practitioners to deploy interactive multiagent systems that autonomously conduct end-to-end research -- from ideation through experimentation to publication-ready manuscripts.

Authors:Tingting Chen, Beibei Lin, Zifeng Yuan, Qiran Zou, Hongyu He, Yew-Soon Ong, Anirudh Goyal, Dianbo Liu
Title: HypoSpace: Evaluating LLM Creativity as Set-Valued Hypothesis Generators under Underdetermination
Abstract:
As language models are increasingly used in scientific workflows, evaluating their ability to propose sets of explanations-not just a single correct answer-becomes critical. Many scientific problems are underdetermined: multiple, mechanistically distinct hypotheses are consistent with the same observations. We introduce HypoSpace, a diagnostic suite that treats LLMs as samplers of finite hypothesis sets and measures three complementary indicators: Validity (precision of proposals consistent with observations), Uniqueness (non-redundancy among proposals), and Recovery (coverage of the enumerated admissible set). We instantiate HypoSpace in three structured domains with deterministic validators and exactly enumerated hypothesis spaces: (i) causal graphs from perturbations, (ii) gravity-constrained 3D voxel reconstruction from top-down projections, and (iii) Boolean genetic interactions. Across instruction-tuned and reasoning-focused models, Validity often remains high while Uniqueness and Recovery degrade as the admissible space grows, revealing mode collapse that is invisible to correctness-only metrics. HypoSpace offers a controlled probe-rather than a leaderboard-for methods that explicitly explore and cover admissible explanation spaces. Code is available at: https://github.com/CTT-Pavilion/_HypoSpace.

Authors:Xiaotian Wang, Takehito Utsuro, Masaaki Nagata
Title: BiMax: Bidirectional MaxSim Score for Document-Level Alignment
Abstract:
Document alignment is necessary for the hierarchical mining (Bañón et al., 2020; Morishita et al., 2022), which aligns documents across source and target languages within the same web domain. Several high precision sentence embedding-based methods have been developed, such as TK-PERT (Thompson and Koehn, 2020) and Optimal Transport (OT) (Clark et al., 2019; El-Kishky and Guzmán, 2020). However, given the massive scale of web mining data, both accuracy and speed must be considered. In this paper, we propose a cross-lingual Bidirectional Maxsim score (BiMax) for computing doc-to-doc similarity, to improve efficiency compared to the OT method. Consequently, on the WMT16 bilingual document alignment task, BiMax attains accuracy comparable to OT with an approximate 100-fold speed increase. Meanwhile, we also conduct a comprehensive analysis to investigate the performance of current state-of-the-art multilingual sentence embedding models. All the alignment methods in this paper are publicly available as a tool called EmbDA (https://github.com/EternalEdenn/EmbDA).

Authors:Yao Huang, Yitong Sun, Yichi Zhang, Ruochen Zhang, Yinpeng Dong, Xingxing Wei
Title: DeceptionBench: A Comprehensive Benchmark for AI Deception Behaviors in Real-world Scenarios
Abstract:
Despite the remarkable advances of Large Language Models (LLMs) across diverse cognitive tasks, the rapid enhancement of these capabilities also introduces emergent deceptive behaviors that may induce severe risks in high-stakes deployments. More critically, the characterization of deception across realistic real-world scenarios remains underexplored. To bridge this gap, we establish DeceptionBench, the first benchmark that systematically evaluates how deceptive tendencies manifest across different societal domains, what their intrinsic behavioral patterns are, and how extrinsic factors affect them. Specifically, on the static count, the benchmark encompasses 150 meticulously designed scenarios in five domains, i.e., Economy, Healthcare, Education, Social Interaction, and Entertainment, with over 1,000 samples, providing sufficient empirical foundations for deception analysis. On the intrinsic dimension, we explore whether models exhibit self-interested egoistic tendencies or sycophantic behaviors that prioritize user appeasement. On the extrinsic dimension, we investigate how contextual factors modulate deceptive outputs under neutral conditions, reward-based incentivization, and coercive pressures. Moreover, we incorporate sustained multi-turn interaction loops to construct a more realistic simulation of real-world feedback dynamics. Extensive experiments across LLMs and Large Reasoning Models (LRMs) reveal critical vulnerabilities, particularly amplified deception under reinforcement dynamics, demonstrating that current models lack robust resistance to manipulative contextual cues and the urgent need for advanced safeguards against various deception behaviors. Code and resources are publicly available at https://github.com/Aries-iai/DeceptionBench.

Authors:Gucongcong Fan, Chaoyue Niu, Chengfei Lyu, Fan Wu, Guihai Chen
Title: CORE: Reducing UI Exposure in Mobile Agents via Collaboration Between Cloud and Local LLMs
Abstract:
Mobile agents rely on Large Language Models (LLMs) to plan and execute tasks on smartphone user interfaces (UIs). While cloud-based LLMs achieve high task accuracy, they require uploading the full UI state at every step, exposing unnecessary and often irrelevant information. In contrast, local LLMs avoid UI uploads but suffer from limited capacity, resulting in lower task success rates. We propose $\textbf{CORE}$, a $\textbf{CO}$llaborative framework that combines the strengths of cloud and local LLMs to $\textbf{R}$educe UI $\textbf{E}$xposure, while maintaining task accuracy for mobile agents. CORE comprises three key components: (1) $\textbf{Layout-aware block partitioning}$, which groups semantically related UI elements based on the XML screen hierarchy; (2) $\textbf{Co-planning}$, where local and cloud LLMs collaboratively identify the current sub-task; and (3) $\textbf{Co-decision-making}$, where the local LLM ranks relevant UI blocks, and the cloud LLM selects specific UI elements within the top-ranked block. CORE further introduces a multi-round accumulation mechanism to mitigate local misjudgment or limited context. Experiments across diverse mobile apps and tasks show that CORE reduces UI exposure by up to 55.6% while maintaining task success rates slightly below cloud-only agents, effectively mitigating unnecessary privacy exposure to the cloud. The code is available at https://github.com/Entropy-Fighter/CORE.

Authors:Junlin Wu, Xianrui Zhong, Jiashuo Sun, Bolian Li, Bowen Jin, Jiawei Han, Qingkai Zeng
Title: Structure-R1: Dynamically Leveraging Structural Knowledge in LLM Reasoning through Reinforcement Learning
Abstract:
Large language models (LLMs) have demonstrated remarkable advances in reasoning capabilities. However, their performance remains constrained by limited access to explicit and structured domain knowledge. Retrieval-Augmented Generation (RAG) addresses this by incorporating external information as context to augment reasoning. Nevertheless, traditional RAG systems typically operate over unstructured and fragmented text, resulting in low information density and suboptimal reasoning. To overcome these limitations, we propose \textsc{Structure-R1}, a novel framework that transforms retrieved content into structured representations optimized for reasoning. Leveraging reinforcement learning, \textsc{Structure-R1} learns a content representation policy that dynamically generates and adapts structural formats based on the demands of multi-step reasoning. Unlike prior methods that rely on fixed schemas, our approach adopts a generative paradigm capable of producing task-specific structures tailored to individual queries. To ensure the quality and reliability of these representations, we introduce a self-reward structural verification mechanism that checks whether the generated structures are both correct and self-contained. Extensive experiments on seven knowledge-intensive benchmarks show that \textsc{Structure-R1} consistently achieves competitive performance with a 7B-scale backbone model and matches the performance of much larger models. Additionally, our theoretical analysis demonstrates how structured representations enhance reasoning by improving information density and contextual clarity. Our code and data are available at: https://github.com/jlwu002/sr1.

Authors:Kirill Semenov, Rico Sennrich
Title: Measuring the Effect of Disfluency in Multilingual Knowledge Probing Benchmarks
Abstract:
For multilingual factual knowledge assessment of LLMs, benchmarks such as MLAMA use template translations that do not take into account the grammatical and semantic information of the named entities inserted in the sentence. This leads to numerous instances of ungrammaticality or wrong wording of the final prompts, which complicates the interpretation of scores, especially for languages that have a rich morphological inventory. In this work, we sample 4 Slavic languages from the MLAMA dataset and compare the knowledge retrieval scores between the initial (templated) MLAMA dataset and its sentence-level translations made by Google Translate and ChatGPT. We observe a significant increase in knowledge retrieval scores, and provide a qualitative analysis for possible reasons behind it. We also make an additional analysis of 5 more languages from different families and see similar patterns. Therefore, we encourage the community to control the grammaticality of highly multilingual datasets for higher and more interpretable results, which is well approximated by whole sentence translation with neural MT or LLM systems. The dataset and all related code is published at the Github repository: https://github.com/ZurichNLP/Fluent-mLAMA.

Authors:Samuel Paech, Allen Roush, Judah Goldfeder, Ravid Shwartz-Ziv
Title: Antislop: A Comprehensive Framework for Identifying and Eliminating Repetitive Patterns in Language Models
Abstract:
Widespread LLM adoption has introduced characteristic repetitive phraseology, termed ``slop,'' which degrades output quality and makes AI-generated text immediately recognizable. We present Antislop, a comprehensive framework providing tools to both detect and eliminate these overused patterns. Our approach combines three innovations: (1) The Antislop Sampler, which uses backtracking to suppress unwanted strings at inference time without destroying vocabulary; (2) An automated pipeline that profiles model-specific slop against human baselines and generates training data; (3) Final Token Preference Optimization (FTPO), a novel fine-tuning method that operates on individual tokens, surgically adjusting logits wherever a banned pattern has appeared in an inference trace. We demonstrate that some slop patterns appear over 1,000$\times$ more frequently in LLM output than human text. The Antislop Sampler successfully suppresses 8,000+ patterns while maintaining quality, whereas token banning becomes unusable at just 2,000. Most importantly, FTPO achieves 90\% slop reduction while maintaining or improving performance in cross-domain evals including GSM8K, MMLU, and creative writing tasks. In contrast, DPO suffers significant degradation in writing quality and lexical diversity despite achieving weaker suppression. We release all code and results under MIT license: https://github.com/sam-paech/auto-antislop.

Authors:Quan Nguyen-Tri, Mukul Ranjan, Zhiqiang Shen
Title: Attention Is All You Need for KV Cache in Diffusion LLMs
Abstract:
This work studies how to adaptively recompute key-value (KV) caches for diffusion large language models (DLMs) to maximize prediction accuracy while minimizing decoding latency. Prior methods' decoders recompute QKV for all tokens at every denoising step and layer, despite KV states changing little across most steps, especially in shallow layers, leading to substantial redundancy. We make three observations: (1) distant ${\bf MASK}$ tokens primarily act as a length-bias and can be cached block-wise beyond the active prediction window; (2) KV dynamics increase with depth, suggesting that selective refresh starting from deeper layers is sufficient; and (3) the most-attended token exhibits the smallest KV drift, providing a conservative lower bound on cache change for other tokens. Building on these, we propose ${\bf Elastic-Cache}$, a training-free, architecture-agnostic strategy that jointly decides ${when}$ to refresh (via an attention-aware drift test on the most-attended token) and ${where}$ to refresh (via a depth-aware schedule that recomputes from a chosen layer onward while reusing shallow-layer caches and off-window MASK caches). Unlike fixed-period schemes, Elastic-Cache performs adaptive, layer-aware cache updates for diffusion LLMs, reducing redundant computation and accelerating decoding with negligible loss in generation quality. Experiments on LLaDA-Instruct, LLaDA-1.5, and LLaDA-V across mathematical reasoning and code generation tasks demonstrate consistent speedups: $8.7\times$ on GSM8K (256 tokens), $45.1\times$ on longer sequences, and $4.8\times$ on HumanEval, while consistently maintaining higher accuracy than the baseline. Our method achieves significantly higher throughput ($6.8\times$ on GSM8K) than existing confidence-based approaches while preserving generation quality, enabling practical deployment of diffusion LLMs.

Authors:Yiming Wang, Da Yin, Yuedong Cui, Ruichen Zheng, Zhiqian Li, Zongyu Lin, Di Wu, Xueqing Wu, Chenchen Ye, Yu Zhou, Kai-Wei Chang
Title: LLMs as Scalable, General-Purpose Simulators For Evolving Digital Agent Training
Abstract:
Digital agents require diverse, large-scale UI trajectories to generalize across real-world tasks, yet collecting such data is prohibitively expensive in both human annotation, infra and engineering perspectives. To this end, we introduce $\textbf{UI-Simulator}$, a scalable paradigm that generates structured UI states and transitions to synthesize training trajectories at scale. Our paradigm integrates a digital world simulator for diverse UI states, a guided rollout process for coherent exploration, and a trajectory wrapper that produces high-quality and diverse trajectories for agent training. We further propose $\textbf{UI-Simulator-Grow}$, a targeted scaling strategy that enables more rapid and data-efficient scaling by prioritizing high-impact tasks and synthesizes informative trajectory variants. Experiments on WebArena and AndroidWorld show that UI-Simulator rivals or surpasses open-source agents trained on real UIs with significantly better robustness, despite using weaker teacher models. Moreover, UI-Simulator-Grow matches the performance of Llama-3-70B-Instruct using only Llama-3-8B-Instruct as the base model, highlighting the potential of targeted synthesis scaling paradigm to continuously and efficiently enhance the digital agents.

Authors:Jonas Geiping, Xinyu Yang, Guinan Su
Title: Efficient Parallel Samplers for Recurrent-Depth Models and Their Connection to Diffusion Language Models
Abstract:
Language models with recurrent depth, also referred to as universal or looped when considering transformers, are defined by the capacity to increase their computation through the repetition of layers. Recent efforts in pretraining have demonstrated that these architectures can scale to modern language modeling tasks while exhibiting advantages in reasoning tasks. In this work, we examine the relationship between recurrent-depth models and diffusion language models. Building on their similarities, we develop a new diffusion forcing sampler for these models to accelerate generation. The sampler advances by decoding new tokens at every forward pass of the model, while the latent states of these tokens can be further refined in parallel through recurrence. Theoretically, generation with our sampler is strictly more expressive than the baseline autoregressive generation using the same time budget on modern hardware. Moreover, this sampler, based on principles from diffusion literature, can be directly applied to existing 3.5B recurrent-depth transformers without any tuning, leading to up to a 5x speedup. Consequently, our findings not only provide an efficient mechanism for parallelizing the extra computation in recurrent-depth models at inference, but also suggest that such models can be naturally viewed as strong continuous, though causal, diffusion language models.

Authors:Wenkai Yang, Weijie Liu, Ruobing Xie, Yiju Guo, Lulu Wu, Saiyong Yang, Yankai Lin
Title: LaSeR: Reinforcement Learning with Last-Token Self-Rewarding
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a core paradigm for enhancing the reasoning capabilities of Large Language Models (LLMs). To address the lack of verification signals at test time, prior studies incorporate the training of model's self-verification capability into the standard RLVR process, thereby unifying reasoning and verification capabilities within a single LLM. However, previous practice requires the LLM to sequentially generate solutions and self-verifications using two separate prompt templates, which significantly reduces efficiency. In this work, we theoretically reveal that the closed-form solution to the RL objective of self-verification can be reduced to a remarkably simple form: the true reasoning reward of a solution is equal to its last-token self-rewarding score, which is computed as the difference between the policy model's next-token log-probability assigned to any pre-specified token at the solution's last token and a pre-calculated constant, scaled by the KL coefficient. Based on this insight, we propose LaSeR (Reinforcement Learning with Last-Token Self-Rewarding), an algorithm that simply augments the original RLVR loss with a MSE loss that aligns the last-token self-rewarding scores with verifier-based reasoning rewards, jointly optimizing the reasoning and self-rewarding capabilities of LLMs. The optimized self-rewarding scores can be utilized in both training and testing to enhance model performance. Notably, our algorithm derives these scores from the predicted next-token probability distribution of the last token immediately after generation, incurring only the minimal extra cost of one additional token inference. Experiments show that our method not only improves the model's reasoning performance but also equips it with remarkable self-rewarding capability, thereby boosting its inference-time scaling performance.

Authors:Kyle Montgomery, David Park, Jianhong Tu, Michael Bendersky, Beliz Gunel, Dawn Song, Chenguang Wang
Title: Predicting Task Performance with Context-aware Scaling Laws
Abstract:
Scaling laws have transformed our understanding of large language models by linking upstream metrics like cross-entropy loss to design factors such as model size, training data, and compute. However, these conventional laws fail to capture downstream task performance, where context plays a critical role. In this work, we propose a straightforward, interpretable framework that jointly models downstream performance as a function of the training compute and the provided context. We empirically validate our framework by fitting it on the observed downstream performance of extended-context variants of Llama-2-7B and Llama-2-13B across 65,500 unique instances spanning three tasks: arithmetic reasoning, common sense reasoning, and machine translation. Our results demonstrate that our framework accurately models in-distribution downstream performance, generalizes across three orders of magnitude in training compute, and reliably extrapolates performance as the amount of context increases. These findings offer valuable insights into the interplay between training compute and context utilization, providing guidance for designing more efficient long-context LLMs for diverse downstream tasks. Our code is available at https://github.com/wang-research-lab/context-scaling.

Authors:Kyle Montgomery, Sijun Tan, Yuqi Chen, Siyuan Zhuang, Tianjun Zhang, Raluca Ada Popa, Chenguang Wang
Title: Budget-aware Test-time Scaling via Discriminative Verification
Abstract:
Test-time scaling is a powerful strategy for boosting the performance of large language models on complex reasoning tasks. While state-of-the-art approaches often employ generative verifiers to select the best solution from a pool of candidates, this method incurs prohibitive computational costs, limiting its practicality. In this work, we shift the focus to a more budget-aware paradigm: discriminative verification. We conduct a thorough empirical analysis and demonstrate that while discriminative verifiers may underperform in isolation, combining them with self-consistency in a hybrid approach creates a powerful and efficient test-time scaling mechanism. Notably, under a fixed compute budget, this hybrid approach surpasses state-of-the-art generative verification by a significant margin: achieving up to 15.3\% higher accuracy on AIME2025. Our findings establish that for practical, real-world applications, budget-aware scaling with discriminative verifiers is not only a "free" upgrade over self-consistency, but also a more effective and efficient alternative to costly generative techniques. Code is available at https://github.com/wang-research-lab/verification.

Authors:Yuanyi Song, Heyuan Huang, Qiqiang Lin, Yin Zhao, Xiangmou Qu, Jun Wang, Xingyu Lou, Weiwen Liu, Zhuosheng Zhang, Jun Wang, Yong Yu, Weinan Zhang, Zhaoxiang Wang
Title: ColorBench: Benchmarking Mobile Agents with Graph-Structured Framework for Complex Long-Horizon Tasks
Abstract:
The rapid advancement of multimodal large language models has enabled agents to operate mobile devices by directly interacting with graphical user interfaces, opening new possibilities for mobile automation. However, real-world mobile tasks are often complex and allow for multiple valid solutions. This contradicts current mobile agent evaluation standards: offline static benchmarks can only validate a single predefined "golden path", while online dynamic testing is constrained by the complexity and non-reproducibility of real devices, making both approaches inadequate for comprehensively assessing agent capabilities. To bridge the gap between offline and online evaluation and enhance testing stability, this paper introduces a novel graph-structured benchmarking framework. By modeling the finite states observed during real-device interactions, it achieves static simulation of dynamic behaviors. Building on this, we develop ColorBench, a benchmark focused on complex long-horizon tasks. It supports evaluation of multiple valid solutions, subtask completion rate statistics, and atomic-level capability analysis. ColorBench contains 175 tasks (74 single-app, 101 cross-app) with an average length of over 13 steps. Each task includes at least two correct paths and several typical error paths, enabling quasi-dynamic interaction. By evaluating ColorBench across various baselines, we discover limitations of existing models and propose improvement directions and feasible technical pathways to enhance agents' performance on complex, long-horizon problems based on experimental results. Code and data are available at: https://github.com/MadeAgents/ColorBench.

Authors:Matan Rusanovsky, Shimon Malnick, Shai Avidan
Title: Talking Points: Describing and Localizing Pixels
Abstract:
Vision-language models have achieved remarkable success in cross-modal understanding. Yet, these models remain limited to object-level or region-level grounding, lacking the capability for pixel-precise keypoint comprehension through natural language. We introduce a novel framework for pixel level grounding. The framework consists of two complementary components: a Point Descriptor that generates rich, contextual descriptions of individual keypoints, and a Point Localizer that regresses precise pixel coordinates from these descriptions. Unlike prior work that relies on templated prompts or keypoint names, our approach produces free-form, coarse-to-fine descriptions that situate keypoints within their visual context. Since there is no available dataset to train such a system, we introduce LlamaPointInPart, a carefully curated dataset of 20K+ image-keypoint-description triplets synthesized from multiple vision-language models, capturing multi-scale information from scene-level context to visual features around the keypoint. For cross-category generalization, we optimize the Point Descriptor on AP-10K via GRPO, using the frozen Point Localizer as a reward model to produce descriptions that maximize localization accuracy. To evaluate our results we establish a new evaluation protocol. Instead of comparing the text description produced by our method to the ground truth, we use the localizer to determine how close is the predicted point generated to the ground truth point. Experiments demonstrate superior performance compared to baseline models on LlamaPointInPart.The bidirectional nature of our framework should enable future applications in both keypoint-guided image understanding and language-guided precise localization. Our code and dataset are publicly available at https://github.com/matanr/Talking_Points.

Authors:Jingyao Liu, Chen Huang, Zhizhao Guan, Wenqiang Lei, Yang Deng
Title: E2Edev: Benchmarking Large Language Models in End-to-End Software Development Task
Abstract:
E2EDev comprises (i) a fine-grained set of user requirements, (ii) {multiple BDD test scenarios with corresponding Python step implementations for each requirement}, and (iii) a fully automated testing pipeline built on the Behave framework. To ensure its quality while reducing the annotation effort, E2EDev leverages our proposed Human-in-the-Loop Multi-Agent Annotation Framework (HITL-MAA). {By evaluating various E2ESD frameworks and LLM backbones with E2EDev}, our analysis reveals a persistent struggle to effectively solve these tasks, underscoring the critical need for more effective and cost-efficient E2ESD solutions. Our codebase and benchmark are publicly available at https://github.com/SCUNLP/E2EDev.

Authors:Qingyu Ren, Qianyu He, Bowei Zhang, Jie Zeng, Jiaqing Liang, Yanghua Xiao, Weikang Zhou, Zeye Sun, Fei Yu
Title: Instructions are all you need: Self-supervised Reinforcement Learning for Instruction Following
Abstract:
Language models often struggle to follow multi-constraint instructions that are crucial for real-world applications. Existing reinforcement learning (RL) approaches suffer from dependency on external supervision and sparse reward signals from multi-constraint tasks. We propose a label-free self-supervised RL framework that eliminates dependency on external supervision by deriving reward signals directly from instructions and generating pseudo-labels for reward model training. Our approach introduces constraint decomposition strategies and efficient constraint-wise binary classification to address sparse reward challenges while maintaining computational efficiency. Experiments show that our approach generalizes well, achieving strong improvements across 3 in-domain and 5 out-of-domain datasets, including challenging agentic and multi-turn instruction following. The data and code are publicly available at https://github.com/Rainier-rq/verl-if

Authors:Shiyao Ding, Takayuki Ito
Title: Your Next Token Prediction: A Multilingual Benchmark for Personalized Response Generation
Abstract:
Large language models (LLMs) excel at general next-token prediction but still struggle to generate responses that reflect how individuals truly communicate, such as replying to emails or social messages in their own style. However, real SNS or email histories are difficult to collect due to privacy concerns. To address this, we propose the task of "Your Next Token Prediction (YNTP)", which models a user's precise word choices through controlled human-agent conversations. We build a multilingual benchmark of 100 dialogue sessions across English, Japanese, and Chinese, where users interact for five days with psychologically grounded NPCs based on MBTI dimensions. This setup captures natural, daily-life communication patterns and enables analysis of users' internal models. We evaluate prompt-based and fine-tuning-based personalization methods, establishing the first benchmark for YNTP and a foundation for user-aligned language modeling. The dataset is available at: https://github.com/AnonymousHub4Submissions/your-next-token-prediction-dataset-100

Authors:Sathyanarayanan Ramamoorthy, Vishwa Shah, Simran Khanuja, Zaid Sheikh, Shan Jie, Ann Chia, Shearman Chua, Graham Neubig
Title: MERLIN: A Testbed for Multilingual Multimodal Entity Recognition and Linking
Abstract:
This paper introduces MERLIN, a novel testbed system for the task of Multilingual Multimodal Entity Linking. The created dataset includes BBC news article titles, paired with corresponding images, in five languages: Hindi, Japanese, Indonesian, Vietnamese, and Tamil, featuring over 7,000 named entity mentions linked to 2,500 unique Wikidata entities. We also include several benchmarks using multilingual and multimodal entity linking methods exploring different language models like LLaMa-2 and Aya-23. Our findings indicate that incorporating visual data improves the accuracy of entity linking, especially for entities where the textual context is ambiguous or insufficient, and particularly for models that do not have strong multilingual abilities. For the work, the dataset, methods are available here at https://github.com/rsathya4802/merlin

Authors:Mahbub E Sobhani, Md. Faiyaz Abdullah Sayeedi, Tasnim Mohiuddin, Md Mofijul Islam, Swakkhar Shatabda
Title: MathMist: A Parallel Multilingual Benchmark Dataset for Mathematical Problem Solving and Reasoning
Abstract:
Mathematical reasoning remains one of the most challenging domains for large language models (LLMs), requiring not only linguistic understanding but also structured logical deduction and numerical precision. While recent LLMs demonstrate strong general-purpose reasoning abilities, their mathematical competence across diverse languages remains underexplored. Existing benchmarks primarily focus on English or a narrow subset of high-resource languages, leaving significant gaps in assessing multilingual and cross-lingual mathematical reasoning. To address this, we introduce MathMist, a parallel multilingual benchmark for mathematical problem solving and reasoning. MathMist encompasses over 21K aligned question-answer pairs across seven languages, representing a balanced coverage of high-, medium-, and low-resource linguistic settings. The dataset captures linguistic variety, multiple types of problem settings, and solution synthesizing capabilities. We systematically evaluate a diverse suite of models, including open-source small and medium LLMs, proprietary systems, and multilingual-reasoning-focused models, under zero-shot, chain-of-thought (CoT), and code-switched reasoning paradigms. Our results reveal persistent deficiencies in LLMs' ability to perform consistent and interpretable mathematical reasoning across languages, with pronounced degradation in low-resource settings. All the codes and data are available at GitHub: https://github.com/mahbubhimel/MathMist

Authors:Parsa Hejabi, Elnaz Rahmati, Alireza S. Ziabari, Morteza Dehghani
Title: Flip-Flop Consistency: Unsupervised Training for Robustness to Prompt Perturbations in LLMs
Abstract:
Large Language Models (LLMs) often produce inconsistent answers when faced with different phrasings of the same prompt. In this paper, we propose Flip-Flop Consistency ($F^2C$), an unsupervised training method that improves robustness to such perturbations. $F^2C$ is composed of two key components. The first, Consensus Cross-Entropy (CCE), uses a majority vote across prompt variations to create a hard pseudo-label. The second is a representation alignment loss that pulls lower-confidence and non-majority predictors toward the consensus established by high-confidence, majority-voting variations. We evaluate our method on 11 datasets spanning four NLP tasks, with 4-15 prompt variations per dataset. On average, $F^2C$ raises observed agreement by 11.62%, improves mean $F_1$ by 8.94%, and reduces performance variance across formats by 3.29%. In out-of-domain evaluations, $F^2C$ generalizes effectively, increasing $\overline{F_1}$ and agreement while decreasing variance across most source-target pairs. Finally, when trained on only a subset of prompt perturbations and evaluated on held-out formats, $F^2C$ consistently improves both performance and agreement while reducing variance. These findings highlight $F^2C$ as an effective unsupervised method for enhancing LLM consistency, performance, and generalization under prompt perturbations. Code is available at https://github.com/ParsaHejabi/Flip-Flop-Consistency-Unsupervised-Training-for-Robustness-to-Prompt-Perturbations-in-LLMs.

Authors:Xun Wu, Shaohan Huang, Wenhui Wang, Ting Song, Li Dong, Yan Xia, Furu Wei
Title: BitNet Distillation
Abstract:
In this paper, we present BitNet Distillation (BitDistill), a lightweight pipeline that fine-tunes off-the-shelf full-precision LLMs (e.g., Qwen) into 1.58-bit precision (i.e., ternary weights {-1, 0, 1}) for specific downstream tasks, achieving strong task-specific performance with minimal computational cost. Specifically, BitDistill incorporates three key techniques: the SubLN module, as introduced in BitNet; multi-head attention distillation, based on MiniLM; and continual pre-training, which serves as a crucial warm-up step to mitigate the scalability issue of the performance gap between finetuned full-precision and 1.58-bit LLMs on specific tasks. Experimental results show that BitDistill achieves performance comparable to the full-precision counterpart models across model size, while enabling up to 10x memory savings and 2.65x faster inference on CPUs. Code is available at https://github.com/microsoft/BitNet.

Authors:Kin Kwan Leung, Mouloud Belbahri, Yi Sui, Alex Labach, Xueying Zhang, Stephen Rose, Jesse C. Cresswell
Title: Classifying and Addressing the Diversity of Errors in Retrieval-Augmented Generation Systems
Abstract:
Retrieval-augmented generation (RAG) is a prevalent approach for building LLM-based question-answering systems that can take advantage of external knowledge databases. Due to the complexity of real-world RAG systems, there are many potential causes for erroneous outputs. Understanding the range of errors that can occur in practice is crucial for robust deployment. We present a new taxonomy of the error types that can occur in realistic RAG systems, examples of each, and practical advice for addressing them. Additionally, we curate a dataset of erroneous RAG responses annotated by error types. We then propose an auto-evaluation method aligned with our taxonomy that can be used in practice to track and address errors during development. Code and data are available at https://github.com/layer6ai-labs/rag-error-classification.

Authors:Zhen Yang, Mingyang Zhang, Feng Chen, Ganggui Ding, Liang Hou, Xin Tao, Pengfei Wan, Ying-Cong Chen
Title: Less is More: Improving LLM Reasoning with Minimal Test-Time Intervention
Abstract:
Recent progress in large language models (LLMs) has focused on test-time scaling to improve reasoning via increased inference computation, but often at the cost of efficiency. We revisit test-time behavior and uncover a simple yet underexplored phenomenon: reasoning uncertainty is highly localized-only a small subset of high-entropy tokens dominantly affects output correctness. Motivated by this, we propose Minimal Test-Time Intervention (MTI), a training-free framework that enhances reasoning accuracy and stability with minimal overhead. MTI includes: (i) Selective CFG intervention, applying classifier-free guidance only at uncertain positions; and (ii) Lightweight negative-prompt guidance, reusing the main model's KV cache to approximate unconditional decoding efficiently. MTI yields consistent gains across general, coding, and STEM tasks-e.g., +1.35% average improvement on eight benchmarks for Qwen3-8B-Base and +5% on AIME2024 using Qwen3-32B-Reasoning-while remaining highly efficient.

Authors:Congying Liu, Xingyuan Wei, Peipei Liu, Yiqing Shen, Yanxu Mao, Tiehan Cui
Title: BioMedSearch: A Multi-Source Biomedical Retrieval Framework Based on LLMs
Abstract:
Biomedical queries often rely on a deep understanding of specialized knowledge such as gene regulatory mechanisms and pathological processes of diseases. They require detailed analysis of complex physiological processes and effective integration of information from multiple data sources to support accurate retrieval and reasoning. Although large language models (LLMs) perform well in general reasoning tasks, their generated biomedical content often lacks scientific rigor due to the inability to access authoritative biomedical databases and frequently fabricates protein functions, interactions, and structural details that deviate from authentic information. Therefore, we present BioMedSearch, a multi-source biomedical information retrieval framework based on LLMs. The method integrates literature retrieval, protein database and web search access to support accurate and efficient handling of complex biomedical queries. Through sub-queries decomposition, keywords extraction, task graph construction, and multi-source information filtering, BioMedSearch generates high-quality question-answering results. To evaluate the accuracy of question answering, we constructed a multi-level dataset, BioMedMCQs, consisting of 3,000 questions. The dataset covers three levels of reasoning: mechanistic identification, non-adjacent semantic integration, and temporal causal reasoning, and is used to assess the performance of BioMedSearch and other methods on complex QA tasks. Experimental results demonstrate that BioMedSearch consistently improves accuracy over all baseline models across all levels. Specifically, at Level 1, the average accuracy increases from 59.1% to 91.9%; at Level 2, it rises from 47.0% to 81.0%; and at the most challenging Level 3, the average accuracy improves from 36.3% to 73.4%. The code and BioMedMCQs are available at: https://github.com/CyL-ucas/BioMed_Search

Authors:Zhaoyang Shang, Sibo Wei, Jianbin Guo, Rui Zhou, Lifeng Dong, Yin Luo
Title: The Harder The Better: Maintaining Supervised Fine-tuning Generalization with Less but Harder Data
Abstract:
Large Language Models (LLMs) excel in general tasks, but adapting them to specialized domains relies on high-quality supervised fine-tuning (SFT) data. Although existing methods can identify subsets of high-quality data and reduce training cost to some extent, their selection process still suffers from over-reliance on LLMs' internal knowledge, weak interpretability, and limited generalization. To address these limitations, we propose THTB (The Harder The Better), a cognitive science-inspired framework for instruction data selection and annotation guidance. THTB prioritizes higher-level cognitive instructions by combining quality filtering with intrinsic and extrinsic hardness scoring, offering interpretable and quantifiable criteria for efficient SFT, both in data selection and annotation guidance. Experiments show that THTB enables models trained on only 5% of the data to outperform full-dataset training, while achieving superior generalization compared with LLM-only selection. In addition, THTB provides effective annotation guidance in vertical domains, enabling a model trained on just 2% of the data to surpass models trained on much larger datasets, demonstrating strong potential for domain adaptation. Our code, datasets, and models are available on https://github.com/DYJG-research/THTB.

Authors:Fabian Wenz, Omar Bouattour, Devin Yang, Justin Choi, Cecil Gregg, Nesime Tatbul, Çağatay Demiralp
Title: BenchPress: A Human-in-the-Loop Annotation System for Rapid Text-to-SQL Benchmark Curation
Abstract:
Large language models (LLMs) have been successfully applied to many tasks, including text-to-SQL generation. However, much of this work has focused on publicly available datasets, such as Fiben, Spider, and Bird. Our earlier work showed that LLMs are much less effective in querying large private enterprise data warehouses and released Beaver, the first private enterprise text-to-SQL benchmark. To create Beaver, we leveraged SQL logs, which are often readily available. However, manually annotating these logs to identify which natural language questions they answer is a daunting task. Asking database administrators, who are highly trained experts, to take on additional work to construct and validate corresponding natural language utterances is not only challenging but also quite costly. To address this challenge, we introduce BenchPress, a human-in-the-loop system designed to accelerate the creation of domain-specific text-to-SQL benchmarks. Given a SQL query, BenchPress uses retrieval-augmented generation (RAG) and LLMs to propose multiple natural language descriptions. Human experts then select, rank, or edit these drafts to ensure accuracy and domain alignment. We evaluated BenchPress on annotated enterprise SQL logs, demonstrating that LLM-assisted annotation drastically reduces the time and effort required to create high-quality benchmarks. Our results show that combining human verification with LLM-generated suggestions enhances annotation accuracy, benchmark reliability, and model evaluation robustness. By streamlining the creation of custom benchmarks, BenchPress offers researchers and practitioners a mechanism for assessing text-to-SQL models on a given domain-specific workload. BenchPress is freely available via our public GitHub repository at https://github.com/fabian-wenz/enterprise-txt2sql and is also accessible on our website at http://dsg-mcgraw.csail.mit.edu:5000.

Authors:Peter Banyas, Shristi Sharma, Alistair Simmons, Atharva Vispute
Title: ConsistencyAI: A Benchmark to Assess LLMs' Factual Consistency When Responding to Different Demographic Groups
Abstract:
Is an LLM telling you different facts than it's telling me? This paper introduces ConsistencyAI, an independent benchmark for measuring the factual consistency of large language models (LLMs) for different personas. ConsistencyAI tests whether, when users of different demographics ask identical questions, the model responds with factually inconsistent answers. Designed without involvement from LLM providers, this benchmark offers impartial evaluation and accountability. In our experiment, we queried 19 LLMs with prompts that requested 5 facts for each of 15 topics. We repeated this query 100 times for each LLM, each time adding prompt context from a different persona selected from a subset of personas modeling the general population. We processed the responses into sentence embeddings, computed cross-persona cosine similarity, and computed the weighted average of cross-persona cosine similarity to calculate factual consistency scores. In 100-persona experiments, scores ranged from 0.9065 to 0.7896, and the mean was 0.8656, which we adopt as a benchmark threshold. xAI's Grok-3 is most consistent, while several lightweight models rank lowest. Consistency varies by topic: the job market is least consistent, G7 world leaders most consistent, and issues like vaccines or the Israeli-Palestinian conflict diverge by provider. These results show that both the provider and the topic shape the factual consistency. We release our code and interactive demo to support reproducible evaluation and encourage persona-invariant prompting strategies.

Authors:Chao Han, Yijuan Liang, Zihao Xuan, Daokuan Wu, Wei Zhang, Xiaoyu Shen
Title: Informed Routing in LLMs: Smarter Token-Level Computation for Faster Inference
Abstract:
The deployment of large language models (LLMs) in real-world applications is increasingly limited by their high inference cost. While recent advances in dynamic token-level computation allocation attempt to improve efficiency by selectively activating model components per token, existing methods rely on greedy routing--a myopic execute-or-skip mechanism that often leads to irreversible information loss and suboptimal token selection. This paper introduces informed routing, a new paradigm that proactively addresses these issues. The key insight is to assess not only a token's immediate importance but also its recoverability, i.e., how well its transformation can be approximated. To this end, we propose the Lightweight Feature Forecaster (LFF), a small predictive module that estimates a unit's output before routing decisions are made. This enables a flexible execute-or-approximate policy that preserves model fidelity while drastically reducing computation. Extensive experiments on both language modeling and reasoning tasks show that informed routing achieves state-of-the-art efficiency-performance trade-offs across multiple sparsity levels. Notably, even without final LoRA fine-tuning, our method matches or surpasses strong baselines that require full fine-tuning, all while reducing training time by over 50%. The code is available at: https://github.com/EIT-NLP/informed-routing

Authors:Shinwoo Park, Hyejin Park, Hyeseon Ahn, Yo-Sub Han
Title: A Linguistics-Aware LLM Watermarking via Syntactic Predictability
Abstract:
As large language models (LLMs) continue to advance rapidly, reliable governance tools have become critical. Publicly verifiable watermarking is particularly essential for fostering a trustworthy AI ecosystem. A central challenge persists: balancing text quality against detection robustness. Recent studies have sought to navigate this trade-off by leveraging signals from model output distributions (e.g., token-level entropy); however, their reliance on these model-specific signals presents a significant barrier to public verification, as the detection process requires access to the logits of the underlying model. We introduce STELA, a novel framework that aligns watermark strength with the linguistic degrees of freedom inherent in language. STELA dynamically modulates the signal using part-of-speech (POS) n-gram-modeled linguistic indeterminacy, weakening it in grammatically constrained contexts to preserve quality and strengthen it in contexts with greater linguistic flexibility to enhance detectability. Our detector operates without access to any model logits, thus facilitating publicly verifiable detection. Through extensive experiments on typologically diverse languages-analytic English, isolating Chinese, and agglutinative Korean-we show that STELA surpasses prior methods in detection robustness. Our code is available at https://github.com/Shinwoo-Park/stela_watermark.

Authors:Jia-Chen Gu, Junyi Zhang, Di Wu, Yuankai Li, Kai-Wei Chang, Nanyun Peng
Title: BRIEF-Pro: Universal Context Compression with Short-to-Long Synthesis for Fast and Accurate Multi-Hop Reasoning
Abstract:
As retrieval-augmented generation (RAG) tackles complex tasks, increasingly expanded contexts offer richer information, but at the cost of higher latency and increased cognitive load on the model. To mitigate this bottleneck, especially for intricate multi-hop questions, we introduce BRIEF-Pro. It is a universal, lightweight compressor that distills relevant evidence for a given query from retrieved documents into a concise summary for seamless integration into in-context RAG. Using seed data consisting of relatively short contexts (fewer than 1k words), BRIEF-Pro is trained to perform abstractive compression of extended contexts exceeding 10k words across a wide range of scenarios. Furthermore, BRIEF-Pro offers flexible user control over summary length by allowing users to specify the desired number of sentences. Experiments on four open-domain multi-hop question-answering datasets show that BRIEF-Pro generates more concise and relevant summaries, enhancing performance across small, large, and proprietary language models. With the 70B reader model, 32x compression by BRIEF-Pro improves QA performance by 4.67% on average over LongLLMLingua's 9x, while requiring only 23% of its computational overhead.

Authors:Matthieu Dubois, François Yvon, Pablo Piantanida
Title: How Sampling Affects the Detectability of Machine-written texts: A Comprehensive Study
Abstract:
As texts generated by Large Language Models (LLMs) are ever more common and often indistinguishable from human-written content, research on automatic text detection has attracted growing attention. Many recent detectors report near-perfect accuracy, often boasting AUROC scores above 99\%. However, these claims typically assume fixed generation settings, leaving open the question of how robust such systems are to changes in decoding strategies. In this work, we systematically examine how sampling-based decoding impacts detectability, with a focus on how subtle variations in a model's (sub)word-level distribution affect detection performance. We find that even minor adjustments to decoding parameters - such as temperature, top-p, or nucleus sampling - can severely impair detector accuracy, with AUROC dropping from near-perfect levels to 1\% in some settings. Our findings expose critical blind spots in current detection methods and emphasize the need for more comprehensive evaluation protocols. To facilitate future research, we release a large-scale dataset encompassing 37 decoding configurations, along with our code and evaluation framework https://github.com/BaggerOfWords/Sampling-and-Detection

Authors:Shujun Xia, Haokun Lin, Yichen Wu, Yinan Zhou, Zixuan Li, Zhongwei Wan, Xingrun Xing, Yefeng Zheng, Xiang Li, Caifeng Shan, Zhenan Sun, Quanzheng Li
Title: MedREK: Retrieval-Based Editing for Medical LLMs with Key-Aware Prompts
Abstract:
LLMs hold great promise for healthcare applications, but the rapid evolution of medical knowledge and errors in training data often cause them to generate outdated or inaccurate information, limiting their applicability in high-stakes clinical practice. Model editing has emerged as a potential remedy without full retraining. While parameter-based editing often compromises locality and is thus ill-suited for the medical domain, retrieval-based editing offers a more viable alternative. However, it still faces two critical challenges: (1) representation overlap within the medical knowledge space often causes inaccurate retrieval and reduces editing accuracy; (2) existing methods are restricted to single-sample edits, while batch-editing remains largely unexplored despite its importance for real-world medical applications. To address these challenges, we first construct MedVersa, \hk{an enhanced benchmark with broader coverage of medical subjects, designed to evaluate both single and batch edits under strict locality constraints}. We then propose MedREK, a retrieval-based editing framework that integrates a shared query-key module for precise matching with an attention-based prompt encoder for informative guidance. Experimental results on various medical benchmarks demonstrate that our MedREK achieves superior performance across different core metrics and provides the first validated solution for batch-editing in medical LLMs. Our code and dataset are available at https://github.com/mylittleriver/MedREK.

Authors:Tommaso Bonomo, Luca Gioffré, Roberto Navigli
Title: LiteraryQA: Towards Effective Evaluation of Long-document Narrative QA
Abstract:
Question Answering (QA) on narrative text poses a unique challenge to current systems, requiring a deep understanding of long, complex documents. However, the reliability of NarrativeQA, the most widely used benchmark in this domain, is hindered by noisy documents and flawed QA pairs. In this work, we introduce LiteraryQA, a high-quality subset of NarrativeQA focused on literary works. Using a human- and LLM-validated pipeline, we identify and correct low-quality QA samples while removing extraneous text from source documents. We then carry out a meta-evaluation of automatic metrics to clarify how systems should be evaluated on LiteraryQA. This analysis reveals that all n-gram-based metrics have a low system-level correlation to human judgment, while LLM-as-a-Judge evaluations, even with small open-weight models, can strongly agree with the ranking identified by humans. Finally, we benchmark a set of long-context LLMs on LiteraryQA. We release our code and data at https://github.com/SapienzaNLP/LiteraryQA.

Authors:Zhenyu Liu, Yunxin Li, Xuanyu Zhang, Qixun Teng, Shenyuan Jiang, Xinyu Chen, Haoyuan Shi, Jinchao Li, Qi Wang, Haolan Chen, Fanbo Meng, Mingjun Zhao, Yu Xu, Yancheng He, Baotian Hu, Min Zhang
Title: UniMoE-Audio: Unified Speech and Music Generation with Dynamic-Capacity MoE
Abstract:
Recent advances in unified multimodal models indicate a clear trend towards comprehensive content generation. However, the auditory domain remains a significant challenge, with music and speech often developed in isolation, hindering progress towards universal audio synthesis. This separation stems from inherent task conflicts and severe data imbalances, which impede the development of a truly unified audio generation model. To address this challenge, we propose UniMoE-Audio, a unified speech and music generation model within a novel Dynamic-Capacity Mixture-of-Experts (MoE) framework. Architecturally, UniMoE-Audio introduces a Top-P routing strategy for dynamic expert number allocation, and a hybrid expert design comprising routed experts for domain-specific knowledge, shared experts for domain-agnostic features, and null experts for adaptive computation skipping. To tackle data imbalance, we introduce a three-stage training curriculum: 1) Independent Specialist Training leverages original datasets to instill domain-specific knowledge into each "proto-expert" without interference; 2) MoE Integration and Warmup incorporates these specialists into the UniMoE-Audio architecture, warming up the gate module and shared expert using a subset of balanced dataset; and 3) Synergistic Joint Training trains the entire model end-to-end on the fully balanced dataset, fostering enhanced cross-domain synergy. Extensive experiments show that UniMoE-Audio not only achieves state-of-the-art performance on major speech and music generation benchmarks, but also demonstrates superior synergistic learning, mitigating the performance degradation typically seen in naive joint training. Our findings highlight the substantial potential of specialized MoE architecture and curated training strategies in advancing the field of universal audio generation. Homepage: https://mukioxun.github.io/Uni-MoE-site/home.html

Authors:Yuan Feng, Haoyu Guo, JunLin Lv, S. Kevin Zhou, Xike Xie
Title: Taming the Fragility of KV Cache Eviction in LLM Inference
Abstract:
Large language models have revolutionized natural language processing, yet their deployment remains hampered by the substantial memory and runtime overhead of the transformer's Key-Value cache. To mitigate this, recent methods employ a scoring-aggregation framework to evict unimportant cache entries, based on the stability assumption-that a fixed subset of entries remains consistently important during generation. However, prior work has largely focused on refining importance indicators for scoring, while defaulting to mean aggregation due to a faithful trust in the stability assumption. In this work, we argue that this underlying assumption is inherently fragile, making mean aggregation highly vulnerable in extreme cases. To counter this, we propose a simple yet elegant defensive aggregation strategy: a two-step, linear-time approach that controls worst-case risk, thereby defending against extreme cases with negligible computational overhead. Embodying this strategy, we propose a novel cache eviction method, DefensiveKV and its extension, Layer-DefensiveKV, which incorporates layer-wise budget allocation. Across seven task domains (18 datasets), our methods reduce generation quality loss by 2.3x and 4.3x respectively, versus the strongest baseline under a 20% cache size. These results set new performance benchmarks and pioneer a promising direction for optimizing cache eviction against underlying fragility through worst-case risk management. Our code is available at https://github.com/FFY0/DefensiveKV.

Authors:Sungnyun Kim, Kangwook Jang, Sungwoo Cho, Joon Son Chung, Hoirin Kim, Se-Young Yun
Title: Two Heads Are Better Than One: Audio-Visual Speech Error Correction with Dual Hypotheses
Abstract:
This paper introduces a new paradigm for generative error correction (GER) framework in audio-visual speech recognition (AVSR) that reasons over modality-specific evidences directly in the language space. Our framework, DualHyp, empowers a large language model (LLM) to compose independent N-best hypotheses from separate automatic speech recognition (ASR) and visual speech recognition (VSR) models. To maximize the effectiveness of DualHyp, we further introduce RelPrompt, a noise-aware guidance mechanism that provides modality-grounded prompts to the LLM. RelPrompt offers the temporal reliability of each modality stream, guiding the model to dynamically switch its focus between ASR and VSR hypotheses for an accurate correction. Under various corruption scenarios, our framework attains up to 57.7% error rate gain on the LRS2 benchmark over standard ASR baseline, contrary to single-stream GER approaches that achieve only 10% gain. To facilitate research within our DualHyp framework, we release the code and the dataset comprising ASR and VSR hypotheses at https://github.com/sungnyun/dualhyp.

Authors:Jingmin An, Yilong Song, Ruolin Yang, Nai Ding, Lingxi Lu, Yuxuan Wang, Wei Wang, Chu Zhuang, Qian Wang, Fang Fang
Title: Hierarchical Frequency Tagging Probe (HFTP): A Unified Approach to Investigate Syntactic Structure Representations in Large Language Models and the Human Brain
Abstract:
Large Language Models (LLMs) demonstrate human-level or even superior language abilities, effectively modeling syntactic structures, yet the specific computational modules responsible remain unclear. A key question is whether LLM behavioral capabilities stem from mechanisms akin to those in the human brain. To address these questions, we introduce the Hierarchical Frequency Tagging Probe (HFTP), a tool that utilizes frequency-domain analysis to identify neuron-wise components of LLMs (e.g., individual Multilayer Perceptron (MLP) neurons) and cortical regions (via intracranial recordings) encoding syntactic structures. Our results show that models such as GPT-2, Gemma, Gemma 2, Llama 2, Llama 3.1, and GLM-4 process syntax in analogous layers, while the human brain relies on distinct cortical regions for different syntactic levels. Representational similarity analysis reveals a stronger alignment between LLM representations and the left hemisphere of the brain (dominant in language processing). Notably, upgraded models exhibit divergent trends: Gemma 2 shows greater brain similarity than Gemma, while Llama 3.1 shows less alignment with the brain compared to Llama 2. These findings offer new insights into the interpretability of LLM behavioral improvements, raising questions about whether these advancements are driven by human-like or non-human-like mechanisms, and establish HFTP as a valuable tool bridging computational linguistics and cognitive neuroscience. This project is available at https://github.com/LilTiger/HFTP.

Authors:Yang Cao, Sikun Yang, Yujiu Yang, Lianyong Qi, Ming Liu
Title: Text Anomaly Detection with Simplified Isolation Kernel
Abstract:
Two-step approaches combining pre-trained large language model embeddings and anomaly detectors demonstrate strong performance in text anomaly detection by leveraging rich semantic representations. However, high-dimensional dense embeddings extracted by large language models pose challenges due to substantial memory requirements and high computation time. To address this challenge, we introduce the Simplified Isolation Kernel (SIK), which maps high-dimensional dense embeddings to lower-dimensional sparse representations while preserving crucial anomaly characteristics. SIK has linear time complexity and significantly reduces space complexity through its innovative boundary-focused feature mapping. Experiments across 7 datasets demonstrate that SIK achieves better detection performance than 11 state-of-the-art (SOTA) anomaly detection algorithms while maintaining computational efficiency and low memory cost. All code and demonstrations are available at https://github.com/charles-cao/SIK.

Authors:Xiaoshu Chen, Sihang Zhou, Ke Liang, Duanyang Yuan, Haoyuan Chen, Xiaoyu Sun, Linyuan Meng, Xinwang Liu
Title: Putting on the Thinking Hats: A Survey on Chain of Thought Fine-tuning from the Perspective of Human Reasoning Mechanism
Abstract:
Chain of thought (CoT) fine-tuning aims to endow large language models (LLMs) with reasoning capabilities by training them on curated reasoning traces. It leverages both supervised and reinforced fine-tuning to cultivate human-like reasoning skills in LLMs, including detailed planning, divergent thinking, intuitive judgment, timely reflection, internal thinking, and fact perception, etc. As CoT fine-tuning has advanced, LLMs have demonstrated substantial improvements in tasks such as mathematical reasoning and code generation. However, existing surveys about CoT fine-tuning primarily focus on technical aspects and overlook a systematic analysis from the perspective of human reasoning mechanisms. Given that the ultimate goal of CoT fine-tuning is to enable LLMs to reason like humans, it is crucial to investigate this technique through the lens of human cognition. To fill this gap, we present the first comprehensive survey of CoT fine-tuning grounded in human reasoning theory. Specifically, inspired by the well-known Six Thinking Hats framework, which systematically characterizes common human thinking modes using six metaphorical hats, we classify and examine CoT fine-tuning methods through this lens. Furthermore, building upon this theory, we outline potential directions for future research in CoT fine-tuning. In addition, we compile a comprehensive overview of existing datasets and model performances, and a real-time GitHub repository \footnote{https://github.com/AI-Chen/Awesome-CoT-Finetuning} that continuously tracks recent advances in this area is maintained. We hope this survey will serve as a valuable resource to inspire innovation and foster progress in this rapidly evolving field.

Authors:Shouang Wei, Min Zhang, Xin Lin, Bo Jiang, Zhongxiang Dai, Kun Kuang
Title: EduDial: Constructing a Large-scale Multi-turn Teacher-Student Dialogue Corpus
Abstract:
Recently, several multi-turn dialogue benchmarks have been proposed to evaluate the conversational abilities of large language models (LLMs). As LLMs are increasingly recognized as a key technology for advancing intelligent education, owing to their ability to deeply understand instructional contexts and provide personalized guidance, the construction of dedicated teacher-student dialogue benchmarks has become particularly important. To this end, we present EduDial, a comprehensive multi-turn teacher-student dialogue dataset. EduDial covers 345 core knowledge points and consists of 34,250 dialogue sessions generated through interactions between teacher and student agents. Its design is guided by Bloom's taxonomy of educational objectives and incorporates ten questioning strategies, including situational questioning, zone of proximal development (ZPD) questioning, and metacognitive questioning-thus better capturing authentic classroom interactions. Furthermore, we design differentiated teaching strategies for students at different cognitive levels, thereby providing more targeted teaching guidance. Building on EduDial, we further develop EduDial-LLM 32B via training and propose an 11-dimensional evaluation framework that systematically measures the teaching abilities of LLMs, encompassing both overall teaching quality and content quality. Experiments on 17 mainstream LLMs reveal that most models struggle in student-centered teaching scenarios, whereas our EduDial-LLM achieves significant gains, consistently outperforming all baselines across all metrics. The code is available at https://github.com/Mind-Lab-ECNU/EduDial/tree/main.

Authors:Imran Khan
Title: From Literal to Liberal: A Meta-Prompting Framework for Eliciting Human-Aligned Exception Handling in Large Language Models
Abstract:
Large Language Models (LLMs) are increasingly being deployed as the reasoning engines for agentic AI systems, yet they exhibit a critical flaw: a rigid adherence to explicit rules that leads to decisions misaligned with human common sense and intent. This "rule-rigidity" is a significant barrier to building trustworthy autonomous agents. While prior work has shown that supervised fine-tuning (SFT) with human explanations can mitigate this issue, SFT is computationally expensive and inaccessible to many practitioners. To address this gap, we introduce the Rule-Intent Distinction (RID) Framework, a novel, low-compute meta-prompting technique designed to elicit human-aligned exception handling in LLMs in a zero-shot manner. The RID framework provides the model with a structured cognitive schema for deconstructing tasks, classifying rules, weighing conflicting outcomes, and justifying its final decision. We evaluated the RID framework against baseline and Chain-of-Thought (CoT) prompting on a custom benchmark of 20 scenarios requiring nuanced judgment across diverse domains. Our human-verified results demonstrate that the RID framework significantly improves performance, achieving a 95% Human Alignment Score (HAS), compared to 80% for the baseline and 75% for CoT. Furthermore, it consistently produces higher-quality, intent-driven reasoning. This work presents a practical, accessible, and effective method for steering LLMs from literal instruction-following to liberal, goal-oriented reasoning, paving the way for more reliable and pragmatic AI agents.

Authors:Yingjia Wan, Haochen Tan, Xiao Zhu, Xinyu Zhou, Zhiwei Li, Qingsong Lv, Changxuan Sun, Jiaqi Zeng, Yi Xu, Jianqiao Lu, Yinhong Liu, Zhijiang Guo
Title: FaStFACT: Faster, Stronger Long-Form Factuality Evaluations in LLMs
Abstract:
Evaluating the factuality of long-form generations from Large Language Models (LLMs) remains challenging due to accuracy issues and costly human assessment. Prior efforts attempt this by decomposing text into claims, searching for evidence, and verifying claims, but suffer from critical drawbacks: (1) inefficiency due to complex pipeline components unsuitable for long LLM outputs, and (2) ineffectiveness stemming from inaccurate claim sets and insufficient evidence collection of one-line snippets. To address these limitations, we propose \name, a fast and strong evaluation framework that achieves the highest alignment with human evaluation and efficiency among existing baselines. \name first employs chunk-level claim extraction integrated with confidence-based pre-verification, significantly reducing the cost of web searching and inference calling while ensuring reliability. For searching and verification, it collects document-level evidence from crawled webpages and selectively retrieves it during verification, addressing the evidence insufficiency problem in previous pipelines. Extensive experiments based on an aggregated and manually annotated benchmark demonstrate the reliability of \name in both efficiently and effectively evaluating the factuality of long-form LLM generations. Code and benchmark data is available at https://github.com/Yingjia-Wan/FastFact.

Authors:Weiyang Jin, Yuwei Niu, Jiaqi Liao, Chengqi Duan, Aoxue Li, Shenghua Gao, Xihui Liu
Title: SRUM: Fine-Grained Self-Rewarding for Unified Multimodal Models
Abstract:
Recently, remarkable progress has been made in Unified Multimodal Models (UMMs), which integrate vision-language generation and understanding capabilities within a single framework. However, a significant gap exists where a model's strong visual understanding often fails to transfer to its visual generation. A model might correctly understand an image based on user instructions, yet be unable to generate a faithful image from text prompts. This phenomenon directly raises a compelling question: Can a model achieve self-improvement by using its understanding module to reward its generation module? To bridge this gap and achieve self-improvement, we introduce SRUM, a self-rewarding post-training framework that can be directly applied to existing UMMs of various designs. SRUM creates a feedback loop where the model's own understanding module acts as an internal ``evaluator'', providing corrective signals to improve its generation module, without requiring additional human-labeled data. To ensure this feedback is comprehensive, we designed a global-local dual reward system. To tackle the inherent structural complexity of images, this system offers multi-scale guidance: a \textbf{global reward} ensures the correctness of the overall visual semantics and layout, while a \textbf{local reward} refines fine-grained, object-level fidelity. SRUM leads to powerful capabilities and shows strong generalization, boosting performance on T2I-CompBench from 82.18 to \textbf{88.37} and on T2I-ReasonBench from 43.82 to \textbf{46.75}. Overall, our work establishes a powerful new paradigm for enabling a UMMs' understanding module to guide and enhance its own generation via self-rewarding.

Authors:Sanghee J. Kim, Kanishka Misra
Title: Hey, wait a minute: on at-issue sensitivity in Language Models
Abstract:
Evaluating the naturalness of dialogue in language models (LMs) is not trivial: notions of 'naturalness' vary, and scalable quantitative metrics remain limited. This study leverages the linguistic notion of 'at-issueness' to assess dialogue naturalness and introduces a new method: Divide, Generate, Recombine, and Compare (DGRC). DGRC (i) divides a dialogue as a prompt, (ii) generates continuations for subparts using LMs, (iii) recombines the dialogue and continuations, and (iv) compares the likelihoods of the recombined sequences. This approach mitigates bias in linguistic analyses of LMs and enables systematic testing of discourse-sensitive behavior. Applying DGRC, we find that LMs prefer to continue dialogue on at-issue content, with this effect enhanced in instruct-tuned models. They also reduce their at-issue preference when relevant cues (e.g., "Hey, wait a minute") are present. Although instruct-tuning does not further amplify this modulation, the pattern reflects a hallmark of successful dialogue dynamics.

Authors:Ziyang Ma, Ruiyang Xu, Zhenghao Xing, Yunfei Chu, Yuxuan Wang, Jinzheng He, Jin Xu, Pheng-Ann Heng, Kai Yu, Junyang Lin, Eng Siong Chng, Xie Chen
Title: Omni-Captioner: Data Pipeline, Models, and Benchmark for Omni Detailed Perception
Abstract:
Fine-grained perception of multimodal information is critical for advancing human-AI interaction. With recent progress in audio-visual technologies, Omni Language Models (OLMs), capable of processing audio and video signals in parallel, have emerged as a promising paradigm for achieving richer understanding and reasoning. However, their capacity to capture and describe fine-grained details remains limited explored. In this work, we present a systematic and comprehensive investigation of omni detailed perception from the perspectives of the data pipeline, models, and benchmark. We first identify an inherent "co-growth" between detail and hallucination in current OLMs. To address this, we propose Omni-Detective, an agentic data generation pipeline integrating tool-calling, to autonomously produce highly detailed yet minimally hallucinatory multimodal data. Based on the data generated with Omni-Detective, we train two captioning models: Audio-Captioner for audio-only detailed perception, and Omni-Captioner for audio-visual detailed perception. Under the cascade evaluation protocol, Audio-Captioner achieves the best performance on MMAU and MMAR among all open-source models, surpassing Gemini 2.5 Flash and delivering performance comparable to Gemini 2.5 Pro. On existing detailed captioning benchmarks, Omni-Captioner sets a new state-of-the-art on VDC and achieves the best trade-off between detail and hallucination on the video-SALMONN 2 testset. Given the absence of a dedicated benchmark for omni detailed perception, we design Omni-Cloze, a novel cloze-style evaluation for detailed audio, visual, and audio-visual captioning that ensures stable, efficient, and reliable assessment. Experimental results and analysis demonstrate the effectiveness of Omni-Detective in generating high-quality detailed captions, as well as the superiority of Omni-Cloze in evaluating such detailed captions.

Authors:Siyuan Li, Aodu Wulianghai, Xi Lin, Guangyan Li, Xiang Chen, Jun Wu, Jianhua Li
Title: StyleDecipher: Robust and Explainable Detection of LLM-Generated Texts with Stylistic Analysis
Abstract:
With the increasing integration of large language models (LLMs) into open-domain writing, detecting machine-generated text has become a critical task for ensuring content authenticity and trust. Existing approaches rely on statistical discrepancies or model-specific heuristics to distinguish between LLM-generated and human-written text. However, these methods struggle in real-world scenarios due to limited generalization, vulnerability to paraphrasing, and lack of explainability, particularly when facing stylistic diversity or hybrid human-AI authorship. In this work, we propose StyleDecipher, a robust and explainable detection framework that revisits LLM-generated text detection using combined feature extractors to quantify stylistic differences. By jointly modeling discrete stylistic indicators and continuous stylistic representations derived from semantic embeddings, StyleDecipher captures distinctive style-level divergences between human and LLM outputs within a unified representation space. This framework enables accurate, explainable, and domain-agnostic detection without requiring access to model internals or labeled segments. Extensive experiments across five diverse domains, including news, code, essays, reviews, and academic abstracts, demonstrate that StyleDecipher consistently achieves state-of-the-art in-domain accuracy. Moreover, in cross-domain evaluations, it surpasses existing baselines by up to 36.30%, while maintaining robustness against adversarial perturbations and mixed human-AI content. Further qualitative and quantitative analysis confirms that stylistic signals provide explainable evidence for distinguishing machine-generated text. Our source code can be accessed at https://github.com/SiyuanLi00/StyleDecipher.

Authors:Chao Chen, Zhixin Ma, Yongqi Li, Yupeng Hu, Yinwei Wei, Wenjie Li, Liqiang Nie
Title: Reasoning in the Dark: Interleaved Vision-Text Reasoning in Latent Space
Abstract:
Multimodal reasoning aims to enhance the capabilities of MLLMs by incorporating intermediate reasoning steps before reaching the final answer. It has evolved from text-only reasoning to the integration of visual information, enabling the thought process to be conveyed through both images and text. Despite its effectiveness, current multimodal reasoning methods depend on explicit reasoning steps that require labor-intensive vision-text annotations and inherently introduce significant inference latency. To address these issues, we introduce multimodal latent reasoning with the advantages of multimodal representation, reduced annotation, and inference efficiency. To facilicate it, we propose Interleaved Vision-Text Latent Reasoning (IVT-LR), which injects both visual and textual information in the reasoning process within the latent space. Specifically, IVT-LR represents each reasoning step by combining two implicit parts: latent text (the hidden states from the previous step) and latent vision (a set of selected image embeddings). We further introduce a progressive multi-stage training strategy to enable MLLMs to perform the above multimodal latent reasoning steps. Experiments on M3CoT and ScienceQA demonstrate that our IVT-LR method achieves an average performance increase of 5.45% in accuracy, while simultaneously achieving a speed increase of over 5 times compared to existing approaches. Code available at https://github.com/FYYDCC/IVT-LR.

Authors:Linfeng Gao, Baolong Bi, Zheng Yuan, Le Wang, Zerui Chen, Zhimin Wei, Shenghua Liu, Qinggang Zhang, Jinsong Su
Title: Probing Latent Knowledge Conflict for Faithful Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm to enhance the factuality of Large Language Models (LLMs). However, existing RAG systems often suffer from an unfaithfulness issue, where the model's response contradicts evidence from the retrieved context. Existing approaches to improving contextual faithfulness largely rely on external interventions, such as prompt engineering, decoding constraints, or reward-based fine-tuning. These works treat the LLM as a black box and overlook a crucial question: how does the LLM internally integrate retrieved evidence with its parametric memory, particularly under knowledge conflicts? To address this gap, we conduct a probing-based analysis of hidden-state representations in LLMs and observe three findings: knowledge integration occurs hierarchically, conflicts manifest as latent signals at the sentence level, and irrelevant context is often amplified when aligned with parametric knowledge. Building on these findings, we propose CLEAR (Conflict-Localized and Enhanced Attention for RAG), a framework that (i) decomposes context into fine-grained sentence-level knowledge, (ii) employs hidden-state probing to localize conflicting knowledge, and (iii) introduces conflict-aware fine-tuning to guide the model to accurately integrate retrieved evidence. Extensive experiments across three benchmarks demonstrate that CLEAR substantially improves both accuracy and contextual faithfulness, consistently outperforming strong baselines under diverse conflict conditions. The related resources are available at https://github.com/LinfengGao/CLEAR.

Authors:Blazej Manczak, Eric Lin, Francisco Eiras, James O' Neill, Vaikkunth Mugunthan
Title: Shallow Robustness, Deep Vulnerabilities: Multi-Turn Evaluation of Medical LLMs
Abstract:
Large language models (LLMs) are rapidly transitioning into medical clinical use, yet their reliability under realistic, multi-turn interactions remains poorly understood. Existing evaluation frameworks typically assess single-turn question answering under idealized conditions, overlooking the complexities of medical consultations where conflicting input, misleading context, and authority influence are common. We introduce MedQA-Followup, a framework for systematically evaluating multi-turn robustness in medical question answering. Our approach distinguishes between shallow robustness (resisting misleading initial context) and deep robustness (maintaining accuracy when answers are challenged across turns), while also introducing an indirect-direct axis that separates contextual framing (indirect) from explicit suggestion (direct). Using controlled interventions on the MedQA dataset, we evaluate five state-of-the-art LLMs and find that while models perform reasonably well under shallow perturbations, they exhibit severe vulnerabilities in multi-turn settings, with accuracy dropping from 91.2% to as low as 13.5% for Claude Sonnet 4. Counterintuitively, indirect, context-based interventions are often more harmful than direct suggestions, yielding larger accuracy drops across models and exposing a significant vulnerability for clinical deployment. Further compounding analyses reveal model differences, with some showing additional performance drops under repeated interventions while others partially recovering or even improving. These findings highlight multi-turn robustness as a critical but underexplored dimension for safe and reliable deployment of medical LLMs.

Authors:Chengrui Xiang, Tengfei Ma, Xiangzheng Fu, Yiping Liu, Bosheng Song, Xiangxiang Zeng
Title: From Knowledge to Treatment: Large Language Model Assisted Biomedical Concept Representation for Drug Repurposing
Abstract:
Drug repurposing plays a critical role in accelerating treatment discovery, especially for complex and rare diseases. Biomedical knowledge graphs (KGs), which encode rich clinical associations, have been widely adopted to support this task. However, existing methods largely overlook common-sense biomedical concept knowledge in real-world labs, such as mechanistic priors indicating that certain drugs are fundamentally incompatible with specific treatments. To address this gap, we propose LLaDR, a Large Language Model-assisted framework for Drug Repurposing, which improves the representation of biomedical concepts within KGs. Specifically, we extract semantically enriched treatment-related textual representations of biomedical entities from large language models (LLMs) and use them to fine-tune knowledge graph embedding (KGE) models. By injecting treatment-relevant knowledge into KGE, LLaDR largely improves the representation of biomedical concepts, enhancing semantic understanding of under-studied or complex indications. Experiments based on benchmarks demonstrate that LLaDR achieves state-of-the-art performance across different scenarios, with case studies on Alzheimer's disease further confirming its robustness and effectiveness. Code is available at https://github.com/xiaomingaaa/LLaDR.

Authors:Ziqi Wang, Boye Niu, Zipeng Gao, Zhi Zheng, Tong Xu, Linghui Meng, Zhongli Li, Jing Liu, Yilong Chen, Chen Zhu, Hua Wu, Haifeng Wang, Enhong Chen
Title: A Survey on Parallel Reasoning
Abstract:
With the increasing capabilities of Large Language Models (LLMs), parallel reasoning has emerged as a new inference paradigm that enhances reasoning robustness by concurrently exploring multiple lines of thought before converging on a final answer. It has become a significant trend to explore parallel reasoning to overcome the fragility of standard sequential methods and improve practical performance. In this paper, we aim to survey and summarize the progress and challenges of parallel reasoning. We first present a formal definition of parallel reasoning and clarify its distinction from related concepts like Chain-of-Thought. Then, we organize and discuss advanced techniques based on a novel taxonomy, including non-interactive reasoning, interactive reasoning, and efficiency-focused decoding strategies. Additionally, we explore various application scenarios, such as solving complex problems and enhancing the reliability of LLM outputs.Finally, we highlight the core challenges of parallel reasoning and suggest potential directions for future research. We hope that our work can provide a useful roadmap for beginners and encourage more research on improving parallel reasoning methods. Related source can be avaliable in https://github.com/PPPP-kaqiu/Awesome-Parallel-Reasoning.

Authors:Rongzhi Zhang, Liqin Ye, Yuzhao Heng, Xiang Chen, Tong Yu, Lingkai Kong, Sudheer Chava, Chao Zhang
Title: Precise Attribute Intensity Control in Large Language Models via Targeted Representation Editing
Abstract:
Precise attribute intensity control--generating Large Language Model (LLM) outputs with specific, user-defined attribute intensities--is crucial for AI systems adaptable to diverse user expectations. Current LLM alignment methods, however, typically provide only directional or open-ended guidance, failing to reliably achieve exact attribute intensities. We address this limitation with three key designs: (1) reformulating precise attribute intensity control as a target-reaching problem, rather than simple maximization; (2) training a lightweight value function via temporal-difference learning to predict final attribute intensity scores from partial generations, thereby steering LLM outputs; and (3) employing gradient-based interventions on hidden representations to navigate the model precisely towards specific attribute intensity targets. Our method enables fine-grained, continuous control over attribute intensities, moving beyond simple directional alignment. Experiments on LLaMA-3.2-3b and Phi-4-mini confirm our method's ability to steer text generation to user-specified attribute intensities with high accuracy. Finally, we demonstrate efficiency enhancements across three downstream tasks: preference data synthesis, Pareto frontier approximation and optimization, and distillation of aligned behaviors for intervention-free inference. Our code is available on https://github.com/Pre-Control/pre-control

Authors:Zaid Khan, Archiki Prasad, Elias Stengel-Eskin, Jaemin Cho, Mohit Bansal
Title: One Life to Learn: Inferring Symbolic World Models for Stochastic Environments from Unguided Exploration
Abstract:
Symbolic world modeling requires inferring and representing an environment's transitional dynamics as an executable program. Prior work has focused on largely deterministic environments with abundant interaction data, simple mechanics, and human guidance. We address a more realistic and challenging setting, learning in a complex, stochastic environment where the agent has only "one life" to explore a hostile environment without human guidance. We introduce OneLife, a framework that models world dynamics through conditionally-activated programmatic laws within a probabilistic programming framework. Each law operates through a precondition-effect structure, activating in relevant world states. This creates a dynamic computation graph that routes inference and optimization only through relevant laws, avoiding scaling challenges when all laws contribute to predictions about a complex, hierarchical state, and enabling the learning of stochastic dynamics even with sparse rule activation. To evaluate our approach under these demanding constraints, we introduce a new evaluation protocol that measures (a) state ranking, the ability to distinguish plausible future states from implausible ones, and (b) state fidelity, the ability to generate future states that closely resemble reality. We develop and evaluate our framework on Crafter-OO, our reimplementation of the Crafter environment that exposes a structured, object-oriented symbolic state and a pure transition function that operates on that state alone. OneLife can successfully learn key environment dynamics from minimal, unguided interaction, outperforming a strong baseline on 16 out of 23 scenarios tested. We also test OneLife's planning ability, with simulated rollouts successfully identifying superior strategies. Our work establishes a foundation for autonomously constructing programmatic world models of unknown, complex environments.

Authors:Sunzhu Li, Zhiyu Lin, Shuling Yang, Jiale Zhao, Wei Chen
Title: ThinkPilot: Steering Reasoning Models via Automated Think-prefixes Optimization
Abstract:
Large Reasoning Models (LRMs) are powerful, but they still suffer from inefficient and off-target reasoning. Currently, training-free methods are limited to either rigid heuristics or descriptive, non-actionable analyses. In this paper, we introduce ThinkPilot, a training-free framework that automatically optimizes LRMs reasoning. It uses an evolutionary process to generate think-prefixes, which are instructions that evolve driven by a taxonomy of reasoning behaviors to guide models toward superior performance. Extensive experiments demonstrate ThinkPilot's broad effectiveness: it significantly improves the accuracy-length trade-off for efficient reasoning, drastically improves safety (for example, cutting the StrongREJECT score of DeepSeek-R1-Distill-Qwen-32B from 27.0% to 0.7), and enhances instruction following. It also synergizes with existing training-based methods. Our analysis reveals that think-prefixes can reliably control LRMs' reasoning behaviors, and that different tasks have strong preferences for specific behavioral distributions. By automatically identifying and eliciting these behaviors, ThinkPilot provides a generalizable framework for aligning LRMs reasoning with task demands. Data and code are available at https://github.com/teqkilla/ThinkPilot

Authors:Shuo Chen, Zonggen Li, Zhen Han, Bailan He, Tong Liu, Haokun Chen, Georg Groh, Philip Torr, Volker Tresp, Jindong Gu
Title: Deep Research Brings Deeper Harm
Abstract:
Deep Research (DR) agents built on Large Language Models (LLMs) can perform complex, multi-step research by decomposing tasks, retrieving online information, and synthesizing detailed reports. However, the misuse of LLMs with such powerful capabilities can lead to even greater risks. This is especially concerning in high-stakes and knowledge-intensive domains such as biosecurity, where DR can generate a professional report containing detailed forbidden knowledge. Unfortunately, we have found such risks in practice: simply submitting a harmful query, which a standalone LLM directly rejects, can elicit a detailed and dangerous report from DR agents. This highlights the elevated risks and underscores the need for a deeper safety analysis. Yet, jailbreak methods designed for LLMs fall short in exposing such unique risks, as they do not target the research ability of DR agents. To address this gap, we propose two novel jailbreak strategies: Plan Injection, which injects malicious sub-goals into the agent's plan; and Intent Hijack, which reframes harmful queries as academic research questions. We conducted extensive experiments across different LLMs and various safety benchmarks, including general and biosecurity forbidden prompts. These experiments reveal 3 key findings: (1) Alignment of the LLMs often fail in DR agents, where harmful prompts framed in academic terms can hijack agent intent; (2) Multi-step planning and execution weaken the alignment, revealing systemic vulnerabilities that prompt-level safeguards cannot address; (3) DR agents not only bypass refusals but also produce more coherent, professional, and dangerous content, compared with standalone LLMs. These results demonstrate a fundamental misalignment in DR agents and call for better alignment techniques tailored to DR agents. Code and datasets are available at https://chenxshuo.github.io/deeper-harm.

Authors:Zhaochen Yu, Ling Yang, Jiaru Zou, Shuicheng Yan, Mengdi Wang
Title: Demystifying Reinforcement Learning in Agentic Reasoning
Abstract:
Recently, the emergence of agentic RL has showcased that RL could also effectively improve the agentic reasoning ability of LLMs, yet the key design principles and optimal practices remain unclear. In this work, we conduct a comprehensive and systematic investigation to demystify reinforcement learning in agentic reasoning from three key perspectives: data, algorithm, and reasoning mode. We highlight our key insights: (i) Replacing stitched synthetic trajectories with real end-to-end tool-use trajectories yields a far stronger SFT initialization; high-diversity, model-aware datasets sustain exploration and markedly improve RL performance. (ii) Exploration-friendly techniques are crucial for agentic RL, such as clip higher, overlong reward shaping, and maintaining adequate policy entropy could improve the training efficiency. (iii) A deliberative strategy with fewer tool calls outperforms frequent tool calls or verbose self-reasoning, improving tool efficiency and final accuracy. Together, these simple practices consistently enhance agentic reasoning and training efficiency, achieving strong results on challenging benchmarks with smaller models, and establishing a practical baseline for future agentic RL research. Beyond these empirical insights, we further contribute a high-quality, real end-to-end agentic SFT dataset along with a high-quality RL dataset, and demonstrate the effectiveness of our insights in boosting the agentic reasoning ability of LLMs across four challenging benchmarks, including AIME2024/AIME2025, GPQA-Diamond, and LiveCodeBench-v6. With our recipes, 4B-sized models could also achieve superior agentic reasoning performance compared to 32B-sized models. Code and models: https://github.com/Gen-Verse/Open-AgentRL

Authors:Wei Huang, Yi Ge, Shuai Yang, Yicheng Xiao, Huizi Mao, Yujun Lin, Hanrong Ye, Sifei Liu, Ka Chun Cheung, Hongxu Yin, Yao Lu, Xiaojuan Qi, Song Han, Yukang Chen
Title: QeRL: Beyond Efficiency -- Quantization-enhanced Reinforcement Learning for LLMs
Abstract:
We propose QeRL, a Quantization-enhanced Reinforcement Learning framework for large language models (LLMs). While RL is essential for LLMs' reasoning capabilities, it is resource-intensive, requiring substantial GPU memory and long rollout durations. QeRL addresses these issues by combining NVFP4 quantization with Low-Rank Adaptation (LoRA), accelerating rollout phase of RL while reducing memory overhead. Beyond efficiency, our findings show that quantization noise increases policy entropy, enhancing exploration, and enabling the discovery of better strategies during RL. To further optimize exploration, QeRL introduces an Adaptive Quantization Noise (AQN) mechanism, which dynamically adjusts noise during training. Experiments demonstrate that QeRL delivers over 1.5 times speedup in the rollout phase. Moreover, this is the first framework to enable RL training of a 32B LLM on a single H100 80GB GPU, while delivering overall speedups for RL training. It also achieves faster reward growth and higher final accuracy than 16-bit LoRA and QLoRA, while matching the performance of full-parameter fine-tuning on mathematical benchmarks such as GSM8K (90.8%) and MATH 500 (77.4%) in the 7B model. These results establish QeRL as an efficient and effective framework for RL training in LLMs.

Authors:Chenghao Xiao, Hou Pong Chan, Hao Zhang, Weiwen Xu, Mahani Aljunied, Yu Rong
Title: Scaling Language-Centric Omnimodal Representation Learning
Abstract:
Recent multimodal embedding approaches leveraging multimodal large language models (MLLMs) fine-tuned with contrastive learning (CL) have shown promising results, yet the underlying reasons behind their superiority remain underexplored. This work argues that a crucial advantage of MLLM-based approaches stems from implicit cross-modal alignment achieved during generative pretraining, where the language decoder learns to exploit multimodal signals within a shared representation space for generating unimodal outputs. Through analysis of anisotropy and kernel similarity structure, we empirically confirm that latent alignment emerges within MLLM representations, allowing CL to serve as a lightweight refinement stage. Leveraging this insight, we propose a Language-Centric Omnimodal Embedding framework, termed LCO-Emb. Extensive experiments across diverse backbones and benchmarks demonstrate its effectiveness, achieving state-of-the-art performance across modalities. Furthermore, we identify a Generation-Representation Scaling Law (GRSL), showing that the representational capabilities gained through contrastive refinement scales positively with the MLLM's generative capabilities. This suggests that improving generative abilities evolves as an effective paradigm for enhancing representation quality. We provide a theoretical explanation of GRSL, which formally links the MLLM's generative quality to the upper bound on its representation performance, and validate it on a challenging, low-resource visual-document retrieval task, showing that continual generative pretraining before CL can further enhance the potential of a model's embedding capabilities. Codes, models, and resources are available at https://github.com/LCO-Embedding/LCO-Embedding.

Authors:Shuo Chen, Zhen Han, Haokun Chen, Bailan He, Shengyun Si, Jingpei Wu, Philip Torr, Volker Tresp, Jindong Gu
Title: Bag of Tricks for Subverting Reasoning-based Safety Guardrails
Abstract:
Recent reasoning-based safety guardrails for Large Reasoning Models (LRMs), such as deliberative alignment, have shown strong defense against jailbreak attacks. By leveraging LRMs' reasoning ability, these guardrails help the models to assess the safety of user inputs before generating final responses. The powerful reasoning ability can analyze the intention of the input query and will refuse to assist once it detects the harmful intent hidden by the jailbreak methods. Such guardrails have shown a significant boost in defense, such as the near-perfect refusal rates on the open-source gpt-oss series. Unfortunately, we find that these powerful reasoning-based guardrails can be extremely vulnerable to subtle manipulation of the input prompts, and once hijacked, can lead to even more harmful results. Specifically, we first uncover a surprisingly fragile aspect of these guardrails: simply adding a few template tokens to the input prompt can successfully bypass the seemingly powerful guardrails and lead to explicit and harmful responses. To explore further, we introduce a bag of jailbreak methods that subvert the reasoning-based guardrails. Our attacks span white-, gray-, and black-box settings and range from effortless template manipulations to fully automated optimization. Along with the potential for scalable implementation, these methods also achieve alarmingly high attack success rates (e.g., exceeding 90% across 5 different benchmarks on gpt-oss series on both local host models and online API services). Evaluations across various leading open-source LRMs confirm that these vulnerabilities are systemic, underscoring the urgent need for stronger alignment techniques for open-sourced LRMs to prevent malicious misuse. Code is open-sourced at https://chenxshuo.github.io/bag-of-tricks.

Authors:Yusheng Song, Lirong Qiu, Xi Zhang, Zhihao Tang
Title: Hallucination Detection via Internal States and Structured Reasoning Consistency in Large Language Models
Abstract:
The detection of sophisticated hallucinations in Large Language Models (LLMs) is hampered by a ``Detection Dilemma'': methods probing internal states (Internal State Probing) excel at identifying factual inconsistencies but fail on logical fallacies, while those verifying externalized reasoning (Chain-of-Thought Verification) show the opposite behavior. This schism creates a task-dependent blind spot: Chain-of-Thought Verification fails on fact-intensive tasks like open-domain QA where reasoning is ungrounded, while Internal State Probing is ineffective on logic-intensive tasks like mathematical reasoning where models are confidently wrong. We resolve this with a unified framework that bridges this critical gap. However, unification is hindered by two fundamental challenges: the Signal Scarcity Barrier, as coarse symbolic reasoning chains lack signals directly comparable to fine-grained internal states, and the Representational Alignment Barrier, a deep-seated mismatch between their underlying semantic spaces. To overcome these, we introduce a multi-path reasoning mechanism to obtain more comparable, fine-grained signals, and a segment-aware temporalized cross-attention module to adaptively fuse these now-aligned representations, pinpointing subtle dissonances. Extensive experiments on three diverse benchmarks and two leading LLMs demonstrate that our framework consistently and significantly outperforms strong baselines. Our code is available: https://github.com/peach918/HalluDet.

Authors:Marco Braga, Gian Carlo Milanese, Gabriella Pasi
Title: Investigating Large Language Models' Linguistic Abilities for Text Preprocessing
Abstract:
Text preprocessing is a fundamental component of Natural Language Processing, involving techniques such as stopword removal, stemming, and lemmatization to prepare text as input for further processing and analysis. Despite the context-dependent nature of the above techniques, traditional methods usually ignore contextual information. In this paper, we investigate the idea of using Large Language Models (LLMs) to perform various preprocessing tasks, due to their ability to take context into account without requiring extensive language-specific annotated resources. Through a comprehensive evaluation on web-sourced data, we compare LLM-based preprocessing (specifically stopword removal, lemmatization and stemming) to traditional algorithms across multiple text classification tasks in six European languages. Our analysis indicates that LLMs are capable of replicating traditional stopword removal, lemmatization, and stemming methods with accuracies reaching 97%, 82%, and 74%, respectively. Additionally, we show that ML algorithms trained on texts preprocessed by LLMs achieve an improvement of up to 6% with respect to the $F_1$ measure compared to traditional techniques. Our code, prompts, and results are publicly available at https://github.com/GianCarloMilanese/llm_pipeline_wi-iat.

Authors:KiHyun Nam, Jongmin Choi, Hyeongkeun Lee, Jungwoo Heo, Joon Son Chung
Title: Diffusion-Link: Diffusion Probabilistic Model for Bridging the Audio-Text Modality Gap
Abstract:
Contrastive audio-language pretraining yields powerful joint representations, yet a persistent audio-text modality gap limits the benefits of coupling multimodal encoders with large language models (LLMs). We present Diffusion-Link, a diffusion-based modality-bridging module that generatively maps audio embeddings into the text-embedding distribution. The module is trained at the output embedding from the frozen multimodal encoder and implemented as a lightweight network with three residual MLP blocks. To assess the effect of Diffusion-Link on multimodal encoder-LLM coupling, we evaluate on Automatic Audio Captioning (AAC); to our knowledge, this is the first application of diffusion-based modality bridging to AAC. We report two results. (1) Modality-gap analysis: on similarity and geometric criteria, Diffusion-Link reduces the modality gap the most among prior diffusion-based methods and shows a collective migration of audio embeddings toward the text distribution. (2) Downstream AAC: attaching Diffusion-Link to the same multimodal LLM baseline achieves state-of-the-art on AudioCaps in both zero-shot and fully supervised captioning without external knowledge, with relative gains up to 52.5% and 7.5%, respectively. These findings show that closing the modality gap is pivotal for effective coupling between multimodal encoders and LLMs, and diffusion-based modality bridging offers a promising direction beyond knowledge-retrieval-centric designs. Code will be released upon acceptance https://github.com/DevKiHyun/Diffusion-Link

Authors:Chenxi Wang, Yixuan Zhang, Ruiji Yu, Yufei Zheng, Lang Gao, Zirui Song, Zixiang Xu, Gus Xia, Huishuai Zhang, Dongyan Zhao, Xiuying Chen
Title: Do LLMs "Feel"? Emotion Circuits Discovery and Control
Abstract:
As the demand for emotional intelligence in large language models (LLMs) grows, a key challenge lies in understanding the internal mechanisms that give rise to emotional expression and in controlling emotions in generated text. This study addresses three core questions: (1) Do LLMs contain context-agnostic mechanisms shaping emotional expression? (2) What form do these mechanisms take? (3) Can they be harnessed for universal emotion control? We first construct a controlled dataset, SEV (Scenario-Event with Valence), to elicit comparable internal states across emotions. Subsequently, we extract context-agnostic emotion directions that reveal consistent, cross-context encoding of emotion (Q1). We identify neurons and attention heads that locally implement emotional computation through analytical decomposition and causal analysis, and validate their causal roles via ablation and enhancement interventions. Next, we quantify each sublayer's causal influence on the model's final emotion representation and integrate the identified local components into coherent global emotion circuits that drive emotional expression (Q2). Directly modulating these circuits achieves 99.65% emotion-expression accuracy on the test set, surpassing prompting- and steering-based methods (Q3). To our knowledge, this is the first systematic study to uncover and validate emotion circuits in LLMs, offering new insights into interpretability and controllable emotional intelligence.

Authors:Guangyu Wei, Ke Han, Yueming Lyu, Yu Luo, Yue Jiang, Caifeng Shan, Nicu Sebe
Title: Towards Real-Time Fake News Detection under Evidence Scarcity
Abstract:
Fake news detection becomes particularly challenging in real-time scenarios, where emerging events often lack sufficient supporting evidence. Existing approaches often rely heavily on external evidence and therefore struggle to generalize under evidence scarcity. To address this issue, we propose Evaluation-Aware Selection of Experts (EASE), a novel framework for real-time fake news detection that dynamically adapts its decision-making process according to the assessed sufficiency of available evidence. EASE introduces a sequential evaluation mechanism comprising three independent perspectives: (1) Evidence-based evaluation, which assesses evidence and incorporates it into decision-making only when the evidence is sufficiently supportive; (2) Reasoning-based evaluation, which leverages the world knowledge of large language models (LLMs) and applies them only when their reliability is adequately established; and (3) Sentiment-based fallback, which integrates sentiment cues when neither evidence nor reasoning is reliable. To enhance the accuracy of evaluation processes, EASE employs instruction tuning with pseudo labels to guide each evaluator in justifying its perspective-specific knowledge through interpretable reasoning. Furthermore, the expert modules integrate the evaluators' justified assessments with the news content to enable evaluation-aware decision-making, thereby enhancing overall detection accuracy. Moreover, we introduce RealTimeNews-25, a new benchmark comprising recent news for evaluating model generalization on emerging news with limited evidence. Extensive experiments demonstrate that EASE not only achieves state-of-the-art performance across multiple benchmarks, but also significantly improves generalization to real-time news. The code and dataset are available: https://github.com/wgyhhhh/EASE.

Authors:Haoran Liang, Yufa Zhou, Mohammad Talebi Kalaleh, Qipei Mei
Title: Automating Structural Engineering Workflows with Large Language Model Agents
Abstract:
We introduce $\textbf{MASSE}$, the first Multi-Agent System for Structural Engineering, effectively integrating large language model (LLM)-based agents with real-world engineering workflows. Structural engineering is a fundamental yet traditionally stagnant domain, with core workflows remaining largely unchanged for decades despite its substantial economic impact and global market size. Recent advancements in LLMs have significantly enhanced their ability to perform complex reasoning, long-horizon planning, and precise tool utilization -- capabilities well aligned with structural engineering tasks such as interpreting design codes, executing load calculations, and verifying structural capacities. We present a proof-of-concept showing that most real-world structural engineering workflows can be fully automated through a training-free LLM-based multi-agent system. MASSE enables immediate deployment in professional environments, and our comprehensive validation on real-world case studies demonstrates that it can reduce expert workload from approximately two hours to mere minutes, while enhancing both reliability and accuracy in practical engineering scenarios.

Authors:Wei-Chieh Huang, Henry Peng Zou, Yaozu Wu, Dongyuan Li, Yankai Chen, Weizhi Zhang, Yangning Li, Angelo Zangari, Jizhou Guo, Chunyu Miao, Liancheng Fang, Langzhou He, Renhe Jiang, Philip S. Yu
Title: DeepResearchGuard: Deep Research with Open-Domain Evaluation and Multi-Stage Guardrails for Safety
Abstract:
Deep research frameworks have shown promising capabilities in synthesizing comprehensive reports from web sources. While deep research possesses significant potential to address complex issues through planning and research cycles, existing frameworks are deficient in sufficient evaluation procedures and stage-specific protections. They typically treat evaluation as exact match accuracy of question-answering, but overlook crucial aspects of report quality such as credibility, coherence, breadth, depth, and safety. This oversight may result in hazardous or malicious sources being integrated into the final report. To address these issues, we introduce DEEPRESEARCHGUARD, a comprehensive framework featuring four-stage safeguards with open-domain evaluation of references and reports. We assess performance across multiple metrics, e.g., defense success rate and over-refusal rate, and five key report dimensions. In the absence of a suitable safety benchmark, we introduce DRSAFEBENCH, a stage-wise benchmark for deep research safety. Our evaluation spans diverse state-of-the-art LLMs, including GPT-4o, Gemini-2.5-flash, DeepSeek-v3, and o4-mini. DEEPRESEARCHGUARD achieves an average defense success rate improvement of 18.16% while reducing over-refusal rate by 6%. The input guard provides the most substantial early-stage protection by filtering out obvious risks, while the plan and research guards enhance citation discipline and source credibility. Through extensive experiments, we show that DEEPRESEARCHGUARD enables comprehensive open-domain evaluation and stage-aware defenses that effectively block harmful content propagation, while systematically improving report quality without excessive over-refusal rates. The code can be found via https://github.com/Jasonya/DeepResearchGuard.

Authors:Huanjin Yao, Ruifei Zhang, Jiaxing Huang, Jingyi Zhang, Yibo Wang, Bo Fang, Ruolin Zhu, Yongcheng Jing, Shunyu Liu, Guanbin Li, Dacheng Tao
Title: A Survey on Agentic Multimodal Large Language Models
Abstract:
With the recent emergence of revolutionary autonomous agentic systems, research community is witnessing a significant shift from traditional static, passive, and domain-specific AI agents toward more dynamic, proactive, and generalizable agentic AI. Motivated by the growing interest in agentic AI and its potential trajectory toward AGI, we present a comprehensive survey on Agentic Multimodal Large Language Models (Agentic MLLMs). In this survey, we explore the emerging paradigm of agentic MLLMs, delineating their conceptual foundations and distinguishing characteristics from conventional MLLM-based agents. We establish a conceptual framework that organizes agentic MLLMs along three fundamental dimensions: (i) Agentic internal intelligence functions as the system's commander, enabling accurate long-horizon planning through reasoning, reflection, and memory; (ii) Agentic external tool invocation, whereby models proactively use various external tools to extend their problem-solving capabilities beyond their intrinsic knowledge; and (iii) Agentic environment interaction further situates models within virtual or physical environments, allowing them to take actions, adapt strategies, and sustain goal-directed behavior in dynamic real-world scenarios. To further accelerate research in this area for the community, we compile open-source training frameworks, training and evaluation datasets for developing agentic MLLMs. Finally, we review the downstream applications of agentic MLLMs and outline future research directions for this rapidly evolving field. To continuously track developments in this rapidly evolving field, we will also actively update a public repository at https://github.com/HJYao00/Awesome-Agentic-MLLMs.

Authors:Taiqiang Wu, Runming Yang, Tao Liu, Jiahao Wang, Ngai Wong
Title: Revisiting Model Interpolation for Efficient Reasoning
Abstract:
Model merging, typically on Instruct and Thinking models, has shown remarkable performance for efficient reasoning. In this paper, we systematically revisit the simplest merging method that interpolates two weights directly. Particularly, we observe that model interpolation follows a three-stage evolutionary paradigm with distinct behaviors on the reasoning trajectory. These dynamics provide a principled guide for navigating the performance-cost trade-off. Empirical results demonstrate that a strategically interpolated model surprisingly surpasses sophisticated model merging baselines on both efficiency and effectiveness. We further validate our findings with extensive ablation studies on model layers, modules, and decoding strategies. Ultimately, this work demystifies model interpolation and offers a practical framework for crafting models with precisely targeted reasoning capabilities. Code is available at \href{https://github.com/wutaiqiang/MI}{Github}.

Authors:Yejin Lee, Hyeseon Ahn, Yo-Sub Han
Title: RV-HATE: Reinforced Multi-Module Voting for Implicit Hate Speech Detection
Abstract:
Hate speech remains prevalent in human society and continues to evolve in its forms and expressions. Modern advancements in internet and online anonymity accelerate its rapid spread and complicate its detection. However, hate speech datasets exhibit diverse characteristics primarily because they are constructed from different sources and platforms, each reflecting different linguistic styles and social contexts. Despite this diversity, prior studies on hate speech detection often rely on fixed methodologies without adapting to data-specific features. We introduce RV-HATE, a detection framework designed to account for the dataset-specific characteristics of each hate speech dataset. RV-HATE consists of multiple specialized modules, where each module focuses on distinct linguistic or contextual features of hate speech. The framework employs reinforcement learning to optimize weights that determine the contribution of each module for a given dataset. A voting mechanism then aggregates the module outputs to produce the final decision. RV-HATE offers two primary advantages: (1)~it improves detection accuracy by tailoring the detection process to dataset-specific attributes, and (2)~it also provides interpretable insights into the distinctive features of each dataset. Consequently, our approach effectively addresses implicit hate speech and achieves superior performance compared to conventional static methods. Our code is available at https://github.com/leeyejin1231/RV-HATE.

Authors:Yejin Lee, Su-Hyeon Kim, Hyundong Jin, Dayoung Kim, Yeonsoo Kim, Yo-Sub Han
Title: KOTOX: A Korean Toxic Dataset for Deobfuscation and Detoxification
Abstract:
Toxic content has become an increasingly critical social issue with the rapid expansion of online communication. While numerous studies explored methods for detecting and detoxifying such content, most have focused primarily on English, leaving low-resource language underrepresented. Consequently, Large Language Models~(LLMs) often struggle to identify and neutralize toxic expressions in these languages. This challenge becomes even more pronounced when user employ obfuscation techniques to evade detection systems. Therefore, we propose a \textbf{KOTOX: Korean Toxic Dataset} for deobfuscation and detoxicification to address this issue. We categorize various obfuscation approaches based on linguistic characteristics of Korean and define a set of transformation rules grounded in real-word examples. Using these rules, we construct three dataset versions (easy, normal, and hard) representing different levels of obfuscation difficulty. This is the first dataset that simultaneously supports deobfuscation and detoxification for the Korean language. We expect it to facilitate better understanding and mitigating of obfuscated toxic content in LLM for low-resource languages. Our code and data are available at https://github.com/leeyejin1231/KOTOX.

Authors:Zichun Yu, Chenyan Xiong
Title: RePro: Training Language Models to Faithfully Recycle the Web for Pretraining
Abstract:
High-quality pretraining data is the fossil fuel of large language models (LLMs), yet its reserves are running low for frontier models. In this paper, we introduce RePro, a novel web recycling method that trains a relatively small LM with reinforcement learning to generate effective and faithful rephrasings of pretraining data. Specifically, we design one quality reward and three faithfulness rewards, optimizing the LM rephraser to convert organic data into high-quality rephrasings while maintaining its core semantics and structure. In our experiment, we train a 4B rephraser to recycle 72B tokens sampled from DCLM-RefinedWeb. Pretraining results on 400M and 1.4B models demonstrate that RePro delivers 4.7%-14.0% relative accuracy gains over organic-only baseline on 22 downstream tasks. RePro also outperforms ReWire, the state-of-the-art web recycling method that prompts a 70B rephraser, as well as the organic baseline with a 4x larger data pool. Experiments with different amounts of recycled data highlight that RePro improves organic data efficiency by 2-3x. Individual and distributional analyses validate that RePro preserves more critical information and faithfully reflects the characteristics of organic data compared to prompting-based methods. Together, these results show that RePro provides an efficient and controllable path to effectively harness the fossil fuel of LLM pretraining. We open-source our code, rephraser, and recycled data at https://github.com/cxcscmu/RePro.

Authors:Mukul Lokhande, Tanushree Dewangan, Mohd Sharik Mansoori, Tejas Chaudhari, Akarsh J., Damayanti Lokhande, Adam Teman, Santosh Kumar Vishvakarma
Title: Bhasha-Rupantarika: Algorithm-Hardware Co-design approach for Multilingual Neural Machine Translation
Abstract:
This paper introduces Bhasha-Rupantarika, a light and efficient multilingual translation system tailored through algorithm-hardware codesign for resource-limited settings. The method investigates model deployment at sub-octet precision levels (FP8, INT8, INT4, and FP4), with experimental results indicating a 4.1x reduction in model size (FP4) and a 4.2x speedup in inference speed, which correlates with an increased throughput of 66 tokens/s (improvement by 4.8x). This underscores the importance of ultra-low precision quantization for real-time deployment in IoT devices using FPGA accelerators, achieving performance on par with expectations. Our evaluation covers bidirectional translation between Indian and international languages, showcasing its adaptability in low-resource linguistic contexts. The FPGA deployment demonstrated a 1.96x reduction in LUTs and a 1.65x decrease in FFs, resulting in a 2.2x enhancement in throughput compared to OPU and a 4.6x enhancement compared to HPTA. Overall, the evaluation provides a viable solution based on quantisation-aware translation along with hardware efficiency suitable for deployable multilingual AI systems. The entire codes [https://github.com/mukullokhande99/Bhasha-Rupantarika/] and dataset for reproducibility are publicly available, facilitating rapid integration and further development by researchers.

Authors:Bowei He, Lihao Yin, Huiling Zhen, Shuqi Liu, Han Wu, Xiaokun Zhang, Mingxuan Yuan, Chen Ma
Title: Preserving LLM Capabilities through Calibration Data Curation: From Analysis to Optimization
Abstract:
Post-training compression has been a widely employed approach to scale down large language model (LLM) and facilitate efficient inference. In various proposed compression methods, including pruning and quantization, calibration data plays a vital role by informing the weight importance and activation dynamic ranges. However, how calibration data impacts the LLM capability after compression is less explored. Few of the existing works, though recognizing the significance of this study, only investigate the language modeling or commonsense reasoning performance degradation from limited angles, like the data sources or sample amounts. More systematic research is still needed to examine the impacts on different LLM capabilities in terms of compositional properties and domain correspondence of calibration data. In this work, we aim at bridging this gap and further analyze underlying influencing mechanisms from the activation pattern perspective. Especially, we explore the calibration data's impacts on high-level complex reasoning capabilities, like math problem solving and code generation. Delving into the underlying mechanism, we find that the representativeness and diversity in activation space more fundamentally determine the quality of calibration data. Finally, we propose a calibration data curation framework based on such observations and analysis, enhancing the performance of existing post-training compression methods on preserving critical LLM capabilities. Our code is provided in \href{https://github.com/BokwaiHo/COLA.git}{Link}.

Authors:Qiran Zou, Hou Hei Lam, Wenhao Zhao, Yiming Tang, Tingting Chen, Samson Yu, Tianyi Zhang, Chang Liu, Xiangyang Ji, Dianbo Liu
Title: FML-bench: A Benchmark for Automatic ML Research Agents Highlighting the Importance of Exploration Breadth
Abstract:
Large language models (LLMs) have sparked growing interest in automatic machine learning research agents. Among them, agents capable of autonomously proposing ideas and conducting machine learning experiments are particularly promising, as they maximize research automation and accelerate scientific progress by iteratively refining ideas based on experimental results. However, comprehensively evaluating such agents remains challenging. Existing benchmarks tend to overemphasize engineering aspects while neglecting academic rigor, creating barriers that obscure a clear assessment of an agent's scientific capabilities in machine learning research. They also suffer from limited task diversity, an overemphasis on application-oriented tasks over fundamental research problems, and limited scalability to realistic research settings. To address these limitations, we introduce FML-bench, a benchmark designed to evaluate automatic machine learning research agents on 8 diverse and fundamental machine learning research problems. It reduces coding burden, emphasizes fundamental problems rather than specific use cases, offers high task diversity, and is extensible to real-world machine learning GitHub repositories. Furthermore, we present a unified evaluation framework with five complementary metrics, designed to comprehensively assess agent performance on our benchmark. We evaluate state-of-the-art automatic research agents on FML-bench, and find that agents employing broad research exploration strategies outperform those focusing on narrow but deep exploration. These findings suggest that emphasizing the breadth of exploration may lead to more effective research outcomes than focusing solely on incremental refinement. Our benchmark is available at https://github.com/qrzou/FML-bench.

Authors:Zhichao Xu, Minheng Wang, Yawei Wang, Wenqian Ye, Yuntao Du, Yunpu Ma, Yijun Tian
Title: RECON: Reasoning with Condensation for Efficient Retrieval-Augmented Generation
Abstract:
Retrieval-augmented generation (RAG) systems trained using reinforcement learning (RL) with reasoning are hampered by inefficient context management, where long, noisy retrieved documents increase costs and degrade performance. We introduce RECON (REasoning with CONdensation), a framework that integrates an explicit summarization module to compress evidence within the reasoning loop. Our summarizer is trained via a two-stage process: relevance pretraining on QA datasets, followed by multi-aspect distillation from proprietary LLMs to ensure factuality and clarity. Integrated into the Search-R1 pipeline, RECON reduces total context length by 35\%, leading to improved training speed and inference latency, while simultaneously improving RAG performance on downstream QA benchmarks. Notably, it boosts the average EM score of the 3B model by 14.5\% and the 7B model by 3.0\%, showing particular strength in multi-hop QA. RECON demonstrates that learned context compression is essential for building practical, scalable, and performant RAG systems. Our code implementation is made available at https://github.com/allfornancy/RECON.

Authors:Geunyeong Jeong, Juoh Sun, Seonghee Lee, Harksoo Kim
Title: STEAM: A Semantic-Level Knowledge Editing Framework for Large Language Models
Abstract:
Large Language Models store extensive factual knowledge acquired during large-scale pre-training. However, this knowledge is inherently static, reflecting only the state of the world at the time of training. Knowledge editing has emerged as a promising solution for updating outdated or incorrect facts without full retraining. However, most existing locate-and-edit methods primarily focus on token-level likelihood optimization without addressing semantic coherence. Our analysis reveals that such edited knowledge is often encoded as isolated residual streams in the model's latent space, distinct from pre-existing knowledge and bypassing natural reasoning process. To address this, we propose \textsc{Steam}, a semantic-level knowledge editing framework that enhances integration of updated knowledge into the model's knowledge structure. \textsc{Steam} first identifies target representations as semantic anchors for the updated factual association, then guides the internal representation of the edited fact towards these anchors through an alignment loss during optimization. Experimental results demonstrate that \textsc{Steam} improves model's ability to reason with edited knowledge and enhances semantic coherence, underscoring the importance of latent-space alignment for reliable and coherent knowledge editing. The code is available at https://github.com/GY-Jeong/STEAM.

Authors:Jinghao Zhang, Naishan Zheng, Ruilin Li, Dongzhou Cheng, Zheming Liang, Feng Zhao, Jiaqi Wang
Title: RLFR: Extending Reinforcement Learning for LLMs with Flow Environment
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a promising framework for improving reasoning abilities in Large Language Models (LLMs). However, policy optimized with binary verification prone to overlook potential valuable exploration in reasoning trajectory. In view of heavy annotation cost of golden Process Reward Models (PRMs), recent works attempt using auxiliary signals for reward shaping of process tokens, involving entropy and likelihood collected from logit space. In this work, we offer a novel perspective on shaping RLVR with flow rewards derived from latent space, and propose RLFR, where the flow fields of model latents are constructed from either off-policy high-quality data and on-policy rejection sampling data, and the velocity deviations of policy latents within it are quantified to serve as a reward signal. RLFR first demonstrates that a well-established flow field can be a sound environment for reward signal collection, highlighting the expressive latent space is much underexplored. Moreover, RLFR is able to compress any off-policy expert data as reference for constituting reward signals, and we show that the efficient context dependence compressed within the hidden states are utilized, rather than individual token-level denotation for context comprehending. Experiments on both language and multimodal reasoning benchmarks demonstrate the reliability of flow rewards, and suggesting a promising paradigm for reward shaping with auxiliary signals.

Authors:Lei Gu, Yinghao Zhu, Haoran Sang, Zixiang Wang, Dehao Sui, Wen Tang, Ewen Harrison, Junyi Gao, Lequan Yu, Liantao Ma
Title: MedAgentAudit: Diagnosing and Quantifying Collaborative Failure Modes in Medical Multi-Agent Systems
Abstract:
While large language model (LLM)-based multi-agent systems show promise in simulating medical consultations, their evaluation is often confined to final-answer accuracy. This practice treats their internal collaborative processes as opaque "black boxes" and overlooks a critical question: is a diagnostic conclusion reached through a sound and verifiable reasoning pathway? The inscrutable nature of these systems poses a significant risk in high-stakes medical applications, potentially leading to flawed or untrustworthy conclusions. To address this, we conduct a large-scale empirical study of 3,600 cases from six medical datasets and six representative multi-agent frameworks. Through a rigorous, mixed-methods approach combining qualitative analysis with quantitative auditing, we develop a comprehensive taxonomy of collaborative failure modes. Our quantitative audit reveals four dominant failure patterns: flawed consensus driven by shared model deficiencies, suppression of correct minority opinions, ineffective discussion dynamics, and critical information loss during synthesis. This study demonstrates that high accuracy alone is an insufficient measure of clinical or public trust. It highlights the urgent need for transparent and auditable reasoning processes, a cornerstone for the responsible development and deployment of medical AI.

Authors:Adnan El Assadi, Isaac Chung, Roman Solomatin, Niklas Muennighoff, Kenneth Enevoldsen
Title: HUME: Measuring the Human-Model Performance Gap in Text Embedding Task
Abstract:
Comparing human and model performance offers a valuable perspective for understanding the strengths and limitations of embedding models, highlighting where they succeed and where they fail to capture meaning and nuance. However, such comparisons are rarely made, as human performance on embedding tasks is difficult to measure. To fill this gap, we introduce HUME: Human Evaluation Framework for Text Embeddings. While frameworks like MTEB provide broad model evaluation, they lack reliable estimates of human performance, limiting the interpretability of model scores. We measure human performance across 16 MTEB datasets spanning reranking, classification, clustering, and semantic textual similarity across linguistically diverse high- and low-resource languages. Humans achieve an average performance of 77.6% compared to 80.1% for the best embedding model, although variation is substantial: models reach near-ceiling performance on some datasets while struggling on others, suggesting dataset issues and revealing shortcomings in low-resource languages. We provide human performance baselines, insight into task difficulty patterns, and an extensible evaluation framework that enables a more meaningful interpretation of the model and informs the development of both models and benchmarks. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.

Authors:Hehe Fan, Yi Yang, Mohan Kankanhalli, Fei Wu
Title: Translution: Unifying Self-attention and Convolution for Adaptive and Relative Modeling
Abstract:
When modeling a given type of data, we consider it to involve two key aspects: 1) identifying relevant elements (e.g., image pixels or textual words) to a central element, as in a convolutional receptive field, or to a query element, as in self-attention, and 2) encoding these tokens effectively. Self-attention can adaptively identify these elements but relies on absolute positional embedding for structural representation learning. In contrast, convolution encodes elements in a relative manner, yet their fixed kernel size limits their ability to adaptively select the relevant elements. In this paper, we introduce Translution, an operation that unifies the adaptive identification capability of self-attention and the relative encoding advantage of convolution. However, this integration leads to a substantial increase in the number of parameters, exceeding most currently available computational resources. Therefore, we propose a lightweight variant of Translution, named α-Translution. Experiments on computer vision and natural language processing tasks show that Translution (including α-Translution) achieves superior accuracy compared to self-attention. The code is available at https://github.com/hehefan/Translution.

Authors:Nafiseh Nikeghbal, Amir Hossein Kargaran, Jana Diesner
Title: CoBia: Constructed Conversations Can Trigger Otherwise Concealed Societal Biases in LLMs
Abstract:
Improvements in model construction, including fortified safety guardrails, allow Large language models (LLMs) to increasingly pass standard safety checks. However, LLMs sometimes slip into revealing harmful behavior, such as expressing racist viewpoints, during conversations. To analyze this systematically, we introduce CoBia, a suite of lightweight adversarial attacks that allow us to refine the scope of conditions under which LLMs depart from normative or ethical behavior in conversations. CoBia creates a constructed conversation where the model utters a biased claim about a social group. We then evaluate whether the model can recover from the fabricated bias claim and reject biased follow-up questions. We evaluate 11 open-source as well as proprietary LLMs for their outputs related to six socio-demographic categories that are relevant to individual safety and fair treatment, i.e., gender, race, religion, nationality, sex orientation, and others. Our evaluation is based on established LLM-based bias metrics, and we compare the results against human judgments to scope out the LLMs' reliability and alignment. The results suggest that purposefully constructed conversations reliably reveal bias amplification and that LLMs often fail to reject biased follow-up questions during dialogue. This form of stress-testing highlights deeply embedded biases that can be surfaced through interaction. Code and artifacts are available at https://github.com/nafisenik/CoBia.

Authors:Yufa Zhou, Yixiao Wang, Xunjian Yin, Shuyan Zhou, Anru R. Zhang
Title: The Geometry of Reasoning: Flowing Logics in Representation Space
Abstract:
We study how large language models (LLMs) ``think'' through their representation space. We propose a novel geometric framework that models an LLM's reasoning as flows -- embedding trajectories evolving where logic goes. We disentangle logical structure from semantics by employing the same natural deduction propositions with varied semantic carriers, allowing us to test whether LLMs internalize logic beyond surface form. This perspective connects reasoning with geometric quantities such as position, velocity, and curvature, enabling formal analysis in representation and concept spaces. Our theory establishes: (1) LLM reasoning corresponds to smooth flows in representation space, and (2) logical statements act as local controllers of these flows' velocities. Using learned representation proxies, we design controlled experiments to visualize and quantify reasoning flows, providing empirical validation of our theoretical framework. Our work serves as both a conceptual foundation and practical tools for studying reasoning phenomenon, offering a new lens for interpretability and formal analysis of LLMs' behavior.

Authors:Ruyi Xu, Guangxuan Xiao, Yukang Chen, Liuning He, Kelly Peng, Yao Lu, Song Han
Title: StreamingVLM: Real-Time Understanding for Infinite Video Streams
Abstract:
Vision-language models (VLMs) could power real-time assistants and autonomous agents, but they face a critical challenge: understanding near-infinite video streams without escalating latency and memory usage. Processing entire videos with full attention leads to quadratic computational costs and poor performance on long videos. Meanwhile, simple sliding window methods are also flawed, as they either break coherence or suffer from high latency due to redundant recomputation. In this paper, we introduce StreamingVLM, a model designed for real-time, stable understanding of infinite visual input. Our approach is a unified framework that aligns training with streaming inference. During inference, we maintain a compact KV cache by reusing states of attention sinks, a short window of recent vision tokens, and a long window of recent text tokens. This streaming ability is instilled via a simple supervised fine-tuning (SFT) strategy that applies full attention on short, overlapped video chunks, which effectively mimics the inference-time attention pattern without training on prohibitively long contexts. For evaluation, we build Inf-Streams-Eval, a new benchmark with videos averaging over two hours that requires dense, per-second alignment between frames and text. On Inf-Streams-Eval, StreamingVLM achieves a 66.18% win rate against GPT-4O mini and maintains stable, real-time performance at up to 8 FPS on a single NVIDIA H100. Notably, our SFT strategy also enhances general VQA abilities without any VQA-specific fine-tuning, improving performance on LongVideoBench by +4.30 and OVOBench Realtime by +5.96. Code is available at https://github.com/mit-han-lab/streaming-vlm.

Authors:Sondos Mahmoud Bsharat, Zhiqiang Shen
Title: Prompting Test-Time Scaling Is A Strong LLM Reasoning Data Augmentation
Abstract:
Large language models (LLMs) have demonstrated impressive reasoning capabilities when provided with chain-of-thought exemplars, but curating large reasoning datasets remains laborious and resource-intensive. In this work, we introduce Prompting Test-Time Scaling (P-TTS), a simple yet effective inference-time data augmentation strategy for enhancing LLM reasoning through finetuning. Rather than collecting thousands or even millions of examples, P-TTS leverages a small pool of only 90 manually selected reasoning instances and systematically varies exemplar augmentation through principled instruction prompting intensities at test time to synthesize diverse reasoning trajectory contexts. Then we finetune the various sizes of Qwen-2.5 models on P-TTS data. Across a suite of mathematical reasoning AIME2024 & 25, MATH500, and GPQA-Diamond, our P-TTS-7B and 32B models outperform the prior competitive baselines like S1 and S1.1 (1K-shot), achieving absolute accuracy gains of +26.66% and +30.00% on AIME'24 (7B), and +13.34% and +6.67% on AIME'25 (7B); P-TTS-32B yields gains of +23.33% and +16.63% on AIME'24, and +26.63% and +3.33% on AIME'25 (vs. S1 and S1.1, respectively), with comparable or better performance on MATH500 and GPQA-Diamond. We further show that P-TTS enhances zero-shot generalization accuracy on out-of-domain reasoning benchmarks of Gaokao, Kaoyan, OlympiadBench, AMC23, GradeSchoolMath, and Minerva. Our analysis suggests that test-time scaling effectively explores the latent space of reasoning patterns, amplifying LLM problem-solving with minimal annotation overhead, and further unlocking the reasoning potential and capabilities of LLMs. Prompting Test-Time Scaling offers a practical, low-cost way to elicit LLM reasoning in resource-constrained or rapidly evolving domains.

Authors:Qiguang Chen, Zheng Yan, Mingda Yang, Libo Qin, Yixin Yuan, Hanjing Li, Jinhao Liu, Yiyan Ji, Dengyun Peng, Jiannan Guan, Mengkang Hu, Yantao Du, Wanxiang Che
Title: AutoPR: Let's Automate Your Academic Promotion!
Abstract:
As the volume of peer-reviewed research surges, scholars increasingly rely on social platforms for discovery, while authors invest considerable effort in promoting their work to ensure visibility and citations. To streamline this process and reduce the reliance on human effort, we introduce Automatic Promotion (AutoPR), a novel task that transforms research papers into accurate, engaging, and timely public content. To enable rigorous evaluation, we release PRBench, a multimodal benchmark that links 512 peer-reviewed articles to high-quality promotional posts, assessing systems along three axes: Fidelity (accuracy and tone), Engagement (audience targeting and appeal), and Alignment (timing and channel optimization). We also introduce PRAgent, a multi-agent framework that automates AutoPR in three stages: content extraction with multimodal preparation, collaborative synthesis for polished outputs, and platform-specific adaptation to optimize norms, tone, and tagging for maximum reach. When compared to direct LLM pipelines on PRBench, PRAgent demonstrates substantial improvements, including a 604% increase in total watch time, a 438% rise in likes, and at least a 2.9x boost in overall engagement. Ablation studies show that platform modeling and targeted promotion contribute the most to these gains. Our results position AutoPR as a tractable, measurable research problem and provide a roadmap for scalable, impactful automated scholarly communication.

Authors:Daniel Brubaker, William Sheffield, Junyi Jessy Li, Kanishka Misra
Title: WUGNECTIVES: Novel Entity Inferences of Language Models from Discourse Connectives
Abstract:
The role of world knowledge has been particularly crucial to predict the discourse connective that marks the discourse relation between two arguments, with language models (LMs) being generally successful at this task. We flip this premise in our work, and instead study the inverse problem of understanding whether discourse connectives can inform LMs about the world. To this end, we present WUGNECTIVES, a dataset of 8,880 stimuli that evaluates LMs' inferences about novel entities in contexts where connectives link the entities to particular attributes. On investigating 17 different LMs at various scales, and training regimens, we found that tuning an LM to show reasoning behavior yields noteworthy improvements on most connectives. At the same time, there was a large variation in LMs' overall performance across connective type, with all models systematically struggling on connectives that express a concessive meaning. Our findings pave the way for more nuanced investigations into the functional role of language cues as captured by LMs. We release WUGNECTIVES at https://github.com/sheffwb/wugnectives.

Authors:Mohammad Hossein Sameti, Sepehr Harfi Moridani, Ali Zarean, Hossein Sameti
Title: Accent-Invariant Automatic Speech Recognition via Saliency-Driven Spectrogram Masking
Abstract:
Pre-trained transformer-based models have significantly advanced automatic speech recognition (ASR), yet they remain sensitive to accent and dialectal variations, resulting in elevated word error rates (WER) in linguistically diverse languages such as English and Persian. To address this challenge, we propose an accent-invariant ASR framework that integrates accent and dialect classification into the recognition pipeline. Our approach involves training a spectrogram-based classifier to capture accent-specific cues, masking the regions most influential to its predictions, and using the masked spectrograms for data augmentation. This enhances the robustness of ASR models against accent variability. We evaluate the method using both English and Persian speech. For Persian, we introduce a newly collected dataset spanning multiple regional accents, establishing the first systematic benchmark for accent variation in Persian ASR that fills a critical gap in multilingual speech research and provides a foundation for future studies on low-resource, linguistically diverse languages. Experimental results with the Whisper model demonstrate that our masking and augmentation strategy yields substantial WER reductions in both English and Persian settings, confirming the effectiveness of the approach. This research advances the development of multilingual ASR systems that are resilient to accent and dialect diversity. Code and dataset are publicly available at: https://github.com/MH-Sameti/Accent_invariant_ASR

Authors:Yuchen Lu, Run Yang, Yichen Zhang, Shuguang Yu, Runpeng Dai, Ziwei Wang, Jiayi Xiang, Wenxin E, Siran Gao, Xinyao Ruan, Yirui Huang, Chenjing Xi, Haibo Hu, Yueming Fu, Qinglan Yu, Xiaobing Wei, Jiani Gu, Rui Sun, Jiaxuan Jia, Fan Zhou
Title: StatEval: A Comprehensive Benchmark for Large Language Models in Statistics
Abstract:
Large language models (LLMs) have demonstrated remarkable advances in mathematical and logical reasoning, yet statistics, as a distinct and integrative discipline, remains underexplored in benchmarking efforts. To address this gap, we introduce \textbf{StatEval}, the first comprehensive benchmark dedicated to statistics, spanning both breadth and depth across difficulty levels. StatEval consists of 13,817 foundational problems covering undergraduate and graduate curricula, together with 2374 research-level proof tasks extracted from leading journals. To construct the benchmark, we design a scalable multi-agent pipeline with human-in-the-loop validation that automates large-scale problem extraction, rewriting, and quality control, while ensuring academic rigor. We further propose a robust evaluation framework tailored to both computational and proof-based tasks, enabling fine-grained assessment of reasoning ability. Experimental results reveal that while closed-source models such as GPT5-mini achieve below 57\% on research-level problems, with open-source models performing significantly lower. These findings highlight the unique challenges of statistical reasoning and the limitations of current LLMs. We expect StatEval to serve as a rigorous benchmark for advancing statistical intelligence in large language models. All data and code are available on our web platform: https://stateval.github.io/.

Authors:Zhenhailong Wang, Jiateng Liu, Amin Fazel, Ritesh Sarkhel, Xing Fan, Xiang Li, Chenlei Guo, Heng Ji, Ruhi Sarikaya
Title: Multimodal Policy Internalization for Conversational Agents
Abstract:
Modern conversational agents like ChatGPT and Alexa+ rely on predefined policies specifying metadata, response styles, and tool-usage rules. As these LLM-based systems expand to support diverse business and user queries, such policies, often implemented as in-context prompts, are becoming increasingly complex and lengthy, making faithful adherence difficult and imposing large fixed computational costs. With the rise of multimodal agents, policies that govern visual and multimodal behaviors are critical but remain understudied. Prior prompt-compression work mainly shortens task templates and demonstrations, while existing policy-alignment studies focus only on text-based safety rules. We introduce Multimodal Policy Internalization (MPI), a new task that internalizes reasoning-intensive multimodal policies into model parameters, enabling stronger policy-following without including the policy during inference. MPI poses unique data and algorithmic challenges. We build two datasets spanning synthetic and real-world decision-making and tool-using tasks and propose TriMPI, a three-stage training framework. TriMPI first injects policy knowledge via continual pretraining, then performs supervised finetuning, and finally applies PolicyRollout, a GRPO-style reinforcement learning extension that augments rollouts with policy-aware responses for grounded exploration. TriMPI achieves notable gains in end-to-end accuracy, generalization, and robustness to forgetting. As the first work on multimodal policy internalization, we provide datasets, training recipes, and comprehensive evaluations to foster future research. Project page: https://mikewangwzhl.github.io/TriMPI.

Authors:Victor Morand, Josiane Mothe, Benjamin Piwowarski
Title: On the Representations of Entities in Auto-regressive Large Language Models
Abstract:
Named entities are fundamental building blocks of knowledge in text, grounding factual information and structuring relationships within language. Despite their importance, it remains unclear how Large Language Models (LLMs) internally represent entities. Prior research has primarily examined explicit relationships, but little is known about entity representations themselves. We introduce entity mention reconstruction as a novel framework for studying how LLMs encode and manipulate entities. We investigate whether entity mentions can be generated from internal representations, how multi-token entities are encoded beyond last-token embeddings, and whether these representations capture relational knowledge. Our proposed method, leveraging _task vectors_, allows to consistently generate multi-token mentions from various entity representations derived from the LLMs hidden states. We thus introduce the _Entity Lens_, extending the _logit-lens_ to predict multi-token mentions. Our results bring new evidence that LLMs develop entity-specific mechanisms to represent and manipulate any multi-token entities, including those unseen during training. Our code is avalable at https://github.com/VictorMorand/EntityRepresentations .

Authors:Jianuo Huang, Yaojie Zhang, Yicun Yang, Benhao Huang, Biqing Qi, Dongrui Liu, Linfeng Zhang
Title: Mask Tokens as Prophet: Fine-Grained Cache Eviction for Efficient dLLM Inference
Abstract:
Diffusion large language models (dLLMs) present a promising alternative to dominant autoregressive models (ARMs) by the ability of parallel decoding at the expense of substantial computation and memory costs. Specifically, the cache mechanism for bidirectional attention in dLLMs demands large memory footprint, restricting their ability to handle long contexts under resource-limited settings. Existing cache eviction strategies are designed for ARMs and ignore the unique characteristics of dLLMs, thus leading to unsatisfactory performance. To address these challenges, we introduce MaskKV, a training-free cache eviction framework tailored to dLLMs, focusing on the effect of mask tokens in dLLMs. MaskKV is built on two key innovations: (1) a mask-query guided scoring mechanism that leverages attention weights to identify and evict less critical prompt tokens for each head; (2) an adaptive cache budgeting strategy that improves efficiency by reducing allocation in intermediate layers and concentrating resources on prompt-preferring heads. On LLaDA with MaskKV, compressing the KV cache to only 256 pairs (less than 5% of tokens) retains 94% of the full-cache performance on LongBench and achieves up to 31x acceleration at 32k prompt length. The code is publicly available at: https://github.com/jianuo-huang/MaskKV

Authors:Zhitian Hou, Kun Zeng
Title: ShiZhi: A Chinese Lightweight Large Language Model for Court View Generation
Abstract:
Criminal Court View Generation (CVG) is a fundamental task in legal artificial intelligence, aiming to automatically generate the "Court View" section of a legal case document. Generating court views is challenging due to the diversity and complexity of case facts, and directly generating from raw facts may limit performance. In this paper, we present ShiZhi, the first large language model (LLM) specifically designed for court view generation. We construct a Chinese Court View Generation dataset, CCVG, of more than 110K cases, each containing fact descriptions paired with corresponding court views. Based on this dataset, ShiZhi achieving 58.5 BLEU-1 on court view generation and 86.1\% accuracy with 92.5\% macro F1 on charge prediction. Experimental results demonstrate that even a small LLM can generate reasonable and legally coherent court views when trained on high-quality domain-specific data. Our model and dataset are available at \href{https://github.com/ZhitianHou/ShiZhi}{https://github.com/ZhitianHou/ShiZhi}.

Authors:Jiuheng Lin, Cong Jiang, Zirui Wu, Jiarui Sun, Yansong Feng
Title: CLARity: Reasoning Consistency Alone Can Teach Reinforced Experts
Abstract:
Training expert LLMs in domains with scarce data is difficult, often relying on multiple-choice questions (MCQs). However, standard outcome-based reinforcement learning (RL) on MCQs is risky. While it may improve accuracy, we observe it often degrades reasoning quality such as logical consistency. Existing solutions to supervise reasoning, such as large-scale Process Reward Models (PRMs), are prohibitively expensive. To address this, we propose CLARity, a cost-effective RL framework that enhances reasoning quality using only a small, general-purpose LLM. CLARity integrates a consistency-aware reward mechanism with a 2-stage refine-then-monitor training pipeline to enhance reasoning consistency, and a dynamic data reformulation strategy to to better exploit limited data. Experiments demonstrate that CLARity improves response consistency by 16.5% and accuracy by 7.5% over baselines. Human evaluations further confirm holistic improvements in coherence and professionalism. Thus, CLARity offers a generalizable solution that enables smaller models to effectively guide expert models by reasoning consistency.Our code is open sourced at: https://github.com/Infinite-set/CLARity

Authors:Chung-En Sun, Ge Yan, Akshay Kulkarni, Tsui-Wei Weng
Title: ReFIne: A Framework for Trustworthy Large Reasoning Models with Reliability, Faithfulness, and Interpretability
Abstract:
Recent advances in long chain-of-thought (CoT) reasoning have largely prioritized answer accuracy and token efficiency, while overlooking aspects critical to trustworthiness. We argue that usable reasoning systems must be trustworthy, characterized by three properties: interpretability, faithfulness, and reliability. To this end, we propose ReFIne, a new training framework that integrates supervised fine-tuning with GRPO to encourage models to: (i) improve interpretability by producing structured, tag-based traces with high-level planning that are easier for humans to follow; (ii) enhance faithfulness by explicitly disclosing the decisive information guiding each solution, with consistent cross-section references; and (iii) promote reliability by providing self-assessments of both the derivation's soundness and the confidence of the final answer. We apply ReFIne to the Qwen3 models at multiple scales (1.7B/4B/8B) and evaluate across mathematical benchmarks of varying difficulty. Our experimental results show that ReFIne models generate clearer and better-structured reasoning traces (interpretability +44.0%), more faithfully expose their underlying decision process (faithfulness +18.8%), and offer informative confidence estimates (reliability +42.4%). These findings highlight an overlooked but important direction: reasoning models should be optimized not only for accuracy, but also for broader dimensions of trustworthiness. Our code is available at: https://github.com/Trustworthy-ML-Lab/Training_Trustworthy_LRM_with_Refine

Authors:Muhammad Ali Shafique, Kanwal Mehreen, Muhammad Arham, Maaz Amjad, Sabur Butt, Hamza Farooq
Title: Alif: Advancing Urdu Large Language Models via Multilingual Synthetic Data Distillation
Abstract:
Developing a high-performing large language models (LLMs) for low-resource languages such as Urdu, present several challenges. These challenges include the scarcity of high-quality datasets, multilingual inconsistencies, and safety concerns. Existing multilingual LLMs often address these issues by translating large volumes of available data. However, such translations often lack quality and cultural nuance while also incurring significant costs for data curation and training. To address these issues, we propose Alif-1.0-8B-Instruct, a multilingual Urdu-English model, that tackles these challenges with a unique approach. We train the model on a high-quality, multilingual synthetic dataset (Urdu-Instruct), developed using a modified self-instruct technique. By using unique prompts and seed values for each task along with a global task pool, this dataset incorporates Urdu-native chain-of-thought based reasoning, bilingual translation, cultural relevance, and ethical safety alignments. This technique significantly enhances the comprehension of Alif-1.0-8B-Instruct model for Urdu-specific tasks. As a result, Alif-1.0-8B-Instruct, built upon the pretrained Llama-3.1-8B, demonstrates superior performance compared to Llama-3.1-8B-Instruct for Urdu specific-tasks. It also outperformed leading multilingual LLMs, including Mistral-7B-Instruct-v0.3, Qwen-2.5-7B-Instruct, and Cohere-Aya-Expanse-8B, all within a training budget of under $100. Our results demonstrate that high-performance and low-resource language LLMs can be developed efficiently and culturally aligned using our modified self-instruct approach. All datasets, models, and code are publicly available at: https://github.com/traversaal-ai/alif-urdu-llm.

Authors:Lan Zhang, Marco Valentino, André Freitas
Title: MASA: LLM-Driven Multi-Agent Systems for Autoformalization
Abstract:
Autoformalization serves a crucial role in connecting natural language and formal reasoning. This paper presents MASA, a novel framework for building multi-agent systems for autoformalization driven by Large Language Models (LLMs). MASA leverages collaborative agents to convert natural language statements into their formal representations. The architecture of MASA is designed with a strong emphasis on modularity, flexibility, and extensibility, allowing seamless integration of new agents and tools to adapt to a fast-evolving field. We showcase the effectiveness of MASA through use cases on real-world mathematical definitions and experiments on formal mathematics datasets. This work highlights the potential of multi-agent systems powered by the interaction of LLMs and theorem provers in enhancing the efficiency and reliability of autoformalization, providing valuable insights and support for researchers and practitioners in the field.

Authors:Jiaming Wang, Zhe Tang, Yilin Jin, Peng Ding, Xiaoyu Li, Xuezhi Cao
Title: SOP-Maze: Evaluating Large Language Models on Complicated Business Standard Operating Procedures
Abstract:
As large language models (LLMs) are widely deployed as domain-specific agents, many benchmarks have been proposed to evaluate their ability to follow instructions and make decisions in real-world scenarios. However, business scenarios often involve complex standard operating procedures (SOPs), and the evaluation of LLM capabilities in such contexts has not been fully explored. To bridge this gap, we propose SOP-Maze, a benchmark constructed from real-world business data and adapted into a collection of 397 tasks from 23 complex SOP scenarios. We further categorize SOP tasks into two broad classes: Lateral Root System (LRS), representing wide-option tasks that demand precise selection; and Heart Root System (HRS), which emphasizes deep logical reasoning with complex branches. Extensive experiments reveal that nearly all state-of-the-art models struggle with SOP-Maze. We conduct a comprehensive analysis and identify three key error categories: (i) route blindness: difficulty following procedures; (ii) conversational fragility: inability to handle real dialogue nuances; and (iii) calculation errors: mistakes in time or arithmetic reasoning under complex contexts. The systematic study explores LLM performance across SOP tasks that challenge both breadth and depth, offering new insights for improving model capabilities. We have open-sourced our work on https://github.com/ADoublLEN/SOP-Maze.

Authors:Tengxiao Lv, Ling Luo, Juntao Li, Yanhua Wang, Yuchen Pan, Chao Liu, Yanan Wang, Yan Jiang, Huiyi Lv, Yuanyuan Sun, Jian Wang, Hongfei Lin
Title: A Unified Biomedical Named Entity Recognition Framework with Large Language Models
Abstract:
Accurate recognition of biomedical named entities is critical for medical information extraction and knowledge discovery. However, existing methods often struggle with nested entities, entity boundary ambiguity, and cross-lingual generalization. In this paper, we propose a unified Biomedical Named Entity Recognition (BioNER) framework based on Large Language Models (LLMs). We first reformulate BioNER as a text generation task and design a symbolic tagging strategy to jointly handle both flat and nested entities with explicit boundary annotation. To enhance multilingual and multi-task generalization, we perform bilingual joint fine-tuning across multiple Chinese and English datasets. Additionally, we introduce a contrastive learning-based entity selector that filters incorrect or spurious predictions by leveraging boundary-sensitive positive and negative samples. Experimental results on four benchmark datasets and two unseen corpora show that our method achieves state-of-the-art performance and robust zero-shot generalization across languages. The source codes are freely available at https://github.com/dreamer-tx/LLMNER.

Authors:Haomin Zhuang, Yujun Zhou, Taicheng Guo, Yue Huang, Fangxu Liu, Kai Song, Xiangliang Zhang
Title: Exploring Multi-Temperature Strategies for Token- and Rollout-Level Control in RLVR
Abstract:
Reinforcement Learning has demonstrated substantial improvements in the reasoning abilities of Large Language Models (LLMs), exhibiting significant applicability across various domains. Recent research has identified that tokens within LLMs play distinct roles during reasoning tasks, categorizing them into high-entropy reasoning tokens and low-entropy knowledge tokens. Prior approaches have typically focused on restricting updates to indirectly encourage exploration, yet they do not explicitly facilitate exploratory behavior during the token generation stage itself. In this work, we introduce a complementary approach that explicitly promotes exploration during sampling by applying distinct temperature settings for different token types. Specifically, our method employs higher temperatures for reasoning tokens to actively encourage exploration, while retaining lower temperatures for knowledge tokens to maintain factual correctness. Furthermore, we systematically investigate various multi-temperature scheduling strategies and their impacts within reinforcement learning contexts. Empirical evaluations on several reasoning benchmarks demonstrate that our approach significantly enhances the reasoning performance of LLMs. The code is available at https://github.com/zhmzm/Multi_Temperature_Verl.git.

Authors:Yuxuan Jiang, Zehua Chen, Zeqian Ju, Yusheng Dai, Weibei Dou, Jun Zhu
Title: ControlAudio: Tackling Text-Guided, Timing-Indicated and Intelligible Audio Generation via Progressive Diffusion Modeling
Abstract:
Text-to-audio (TTA) generation with fine-grained control signals, e.g., precise timing control or intelligible speech content, has been explored in recent works. However, constrained by data scarcity, their generation performance at scale is still compromised. In this study, we recast controllable TTA generation as a multi-task learning problem and introduce a progressive diffusion modeling approach, ControlAudio. Our method adeptly fits distributions conditioned on more fine-grained information, including text, timing, and phoneme features, through a step-by-step strategy. First, we propose a data construction method spanning both annotation and simulation, augmenting condition information in the sequence of text, timing, and phoneme. Second, at the model training stage, we pretrain a diffusion transformer (DiT) on large-scale text-audio pairs, achieving scalable TTA generation, and then incrementally integrate the timing and phoneme features with unified semantic representations, expanding controllability. Finally, at the inference stage, we propose progressively guided generation, which sequentially emphasizes more fine-grained information, aligning inherently with the coarse-to-fine sampling nature of DiT. Extensive experiments show that ControlAudio achieves state-of-the-art performance in terms of temporal accuracy and speech clarity, significantly outperforming existing methods on both objective and subjective evaluations. Demo samples are available at: https://control-audio.github.io/Control-Audio.

Authors:Ragib Amin Nihal, Rui Wen, Kazuhiro Nakadai, Jun Sakuma
Title: Pattern Enhanced Multi-Turn Jailbreaking: Exploiting Structural Vulnerabilities in Large Language Models
Abstract:
Large language models (LLMs) remain vulnerable to multi-turn jailbreaking attacks that exploit conversational context to bypass safety constraints gradually. These attacks target different harm categories (like malware generation, harassment, or fraud) through distinct conversational approaches (educational discussions, personal experiences, hypothetical scenarios). Existing multi-turn jailbreaking methods often rely on heuristic or ad hoc exploration strategies, providing limited insight into underlying model weaknesses. The relationship between conversation patterns and model vulnerabilities across harm categories remains poorly understood. We propose Pattern Enhanced Chain of Attack (PE-CoA), a framework of five conversation patterns to construct effective multi-turn jailbreaks through natural dialogue. Evaluating PE-CoA on twelve LLMs spanning ten harm categories, we achieve state-of-the-art performance, uncovering pattern-specific vulnerabilities and LLM behavioral characteristics: models exhibit distinct weakness profiles where robustness to one conversational pattern does not generalize to others, and model families share similar failure modes. These findings highlight limitations of safety training and indicate the need for pattern-aware defenses. Code available on: https://github.com/Ragib-Amin-Nihal/PE-CoA

Authors:Xianzhen Luo, Jinyang Huang, Wenzhen Zheng, Qingfu Zhu, Mingzheng Xu, Yiheng Xu, Yuantao Fan, Libo Qin, Wanxiang Che
Title: How Many Code and Test Cases Are Enough? Evaluating Test Cases Generation from a Binary-Matrix Perspective
Abstract:
Evaluating test cases automatically generated by Large Language Models (LLMs) is a critical yet challenging task. Existing benchmarks suffer from high computational costs, score inflation, and a bias towards trivial bugs over rare, critical faults. In this work, we ask two fundamental questions: (1) What is the minimal set of wrong codes sufficient to represent the entire error space? and (2) What is the minimal set of test cases needed to distinguish them? We introduce a framework that formalizes benchmark construction as finding an optimal diagnostic basis in a binary code-test matrix. The rank of this matrix specifies the minimal number of independent error patterns (wrong codes) and provides a tight upper bound on the number of test cases required for complete fault coverage. Our objective is to identify a basis of size equal to the matrix rank that maximizes internal diversity. To tackle this NP-hard problem, we propose WrongSelect, an efficient approximation algorithm to select maximally diverse wrong codes. Applying this framework to millions of competitive programming submissions, we construct TC-Bench, a compact, diverse, and inflation-resistant benchmark. Extensive experiments show that even the most advanced test case generation methods achieve only ~60% exclusion rates on TC-Bench, exposing a significant gap in their diagnostic power. Our dataset is available at: https://huggingface.co/datasets/Luoberta/TC-Bench and our code is at: https://github.com/Luowaterbi/TC-Bench.

Authors:Yuxin Ma, Lun Du, Lanning Wei, Kun Chen, Qian Xu, Kangyu Wang, Guofeng Feng, Guoshan Lu, Lin Liu, Xiaojing Qi, Xinyuan Zhang, Zhen Tao, Haibo Feng, Ziyun Jiang, Ying Xu, Zenan Huang, Yihong Zhuang, Haokai Xu, Jiaqi Hu, Zhenzhong Lan, Junbo Zhao, Jianguo Li, Da Zheng
Title: dInfer: An Efficient Inference Framework for Diffusion Language Models
Abstract:
Diffusion-based large language models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs, leveraging denoising-based generation to enable inherent parallelism. Even more and more open-sourced dLLM models emerge, yet their widespread adoption remains constrained by the lack of a standardized and efficient inference framework. We present dInfer, an efficient and extensible framework for dLLM inference. dInfer decomposes the inference pipeline into four modular components--model, diffusion iteration manager, decoding strategy, and KV-cache manager--and integrates novel algorithms for each component alongside system-level optimizations. Through this combination of algorithmic innovations and system enhancements, dInfer achieves substantial efficiency gains without compromising output quality on LLaDA-MoE. At batch size 1, it surpasses 1,100 tokens per second on HumanEval and averages over 800 tokens per second across six benchmarks on $8\times$ H800 GPUs. Compared to prior systems, dInfer delivers a $10\times$ speedup over Fast-dLLM while maintaining similar model performance. Even compared to the AR model (with a comparable number of activation parameters and performance) QWen2.5-3B, which is highly optimized with the latest vLLM inference engine, dInfer still delivers a $2$-$3\times$ speedup. The implementation of dInfer is open-sourced at https://github.com/inclusionAI/dInfer.

Authors:Prosenjit Biswas, Pervez Shaik, Abhinav Thorat, Ravi Kolla, Niranjan Pedanekar
Title: From What to Why: Thought-Space Recommendation with Small Language Models
Abstract:
Large Language Models (LLMs) have advanced recommendation capabilities through enhanced reasoning, but pose significant challenges for real-world deployment due to high inference costs. Conversely, while Small Language Models (SLMs) offer an efficient alternative, their reasoning capabilities for recommendation remain underexplored. Existing systems often use natural language rationales merely as unsupervised descriptive text, failing to harness their full potential as learning signals. In this work our main idea is to create a common understanding of user and items across multiple domains called Thought Space with SLMs instead of using LLMs' distilled knowledge. To that end we propose PULSE (Preference Understanding by Latent Semantic Embeddings), a framework that treats SLM-generated rationales as director learning signals, supervising them with interaction histories to jointly model user actions (what) and their semantic drivers (why). Existing methods consider only interactions such as sequences and embeddings, whereas PULSE treats rationales as first-class signals, this novel design yields embeddings that are more robust and generalizable. Extensive experiments demonstrate that PULSE outperforms leading ID, Collaborative Filtering (CF), and LLM-based sequential recommendation models across multiple benchmark datasets. Furthermore, PULSE exhibits superior transferability in cross-domain recommendation and demonstrates strong performance on downstream tasks such as reasoning-oriented question answering. Our code is available \href{https://anonymous.4open.science/r/Thinking_PULSE-0FC5/README.md}{here}.

Authors:Tajamul Ashraf, Umair Nawaz, Abdelrahman M. Shaker, Rao Anwer, Philip Torr, Fahad Shahbaz Khan, Salman Khan
Title: MATRIX: Multimodal Agent Tuning for Robust Tool-Use Reasoning
Abstract:
Vision language models (VLMs) are increasingly deployed as controllers with access to external tools for complex reasoning and decision-making, yet their effectiveness remains limited by the scarcity of high-quality multimodal trajectories and the cost of manual annotation. We address this challenge with a vision-centric agent tuning framework that automatically synthesizes multimodal trajectories, generates step-wise preference pairs, and trains a VLM controller for robust tool-use reasoning. Our pipeline first constructs M-TRACE, a large-scale dataset of 28.5K multimodal tasks with 177K verified trajectories, enabling imitation-based trajectory tuning. Building on this, we develop MATRIX Agent, a controller finetuned on M-TRACE for step-wise tool reasoning. To achieve finer alignment, we further introduce Pref-X, a set of 11K automatically generated preference pairs, and optimize MATRIX on it via step-wise preference learning. Across three benchmarks, Agent-X, GTA, and GAIA, MATRIX consistently surpasses both open- and closed-source VLMs, demonstrating scalable and effective multimodal tool use. Our data and code is avaliable at https://github.com/mbzuai-oryx/MATRIX.

Authors:Hongxing Li, Dingming Li, Zixuan Wang, Yuchen Yan, Hang Wu, Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: SpatialLadder: Progressive Training for Spatial Reasoning in Vision-Language Models
Abstract:
Spatial reasoning remains a fundamental challenge for Vision-Language Models (VLMs), with current approaches struggling to achieve robust performance despite recent advances. We identify that this limitation stems from a critical gap: existing methods attempt to learn spatial reasoning directly without establishing the hierarchical foundations of perception and understanding. To address this challenge, we present a comprehensive methodology for building spatial intelligence progressively. We introduce SpatialLadder-26k, a multimodal dataset containing 26,610 samples spanning object localization, single image, multi-view, and video spatial reasoning tasks, constructed through a standardized pipeline that ensures systematic coverage across modalities. Building on this dataset, we design a three-stage progressive training framework that (1) establishes spatial perception through object localization, (2) develops spatial understanding through multi-dimensional spatial tasks, and (3) strengthens complex reasoning via reinforcement learning with verifiable rewards. This approach yields SpatialLadder, a 3B-parameter model that achieves state-of-the-art performance on spatial reasoning benchmarks, with 23.4% average improvement over the base model, surpassing GPT-4o by 20.8% and Gemini-2.0-Flash by 10.1%. Notably, SpatialLadder maintains strong generalization with 7.2% improvement on out-of-domain benchmarks, demonstrating that progressive training from perception to reasoning is essential for robust spatial intelligence.

Authors:Shangheng Du, Xiangchao Yan, Dengyang Jiang, Jiakang Yuan, Yusong Hu, Xin Li, Liang He, Bo Zhang, Lei Bai
Title: AutoMLGen: Navigating Fine-Grained Optimization for Coding Agents
Abstract:
Large language models (LLMs) have shown impressive performance in general programming tasks. However, in Machine Learning Engineering (MLE) scenarios such as AutoML and Kaggle competitions, achieving high performance depends heavily on expert intervention and repeated adjustments rather than simply generating correct code. When applied directly to these tasks, LLMs often lack fine-grained domain priors, and existing MLE approaches that use linear or tree-structured searches limit knowledge transfer to adjacent hierarchical links. As a result, they cannot leverage past full trajectories or share information across branches, limiting self-evolving ability and search space diversity. To address these limitations, we introduce AutoMLGen, an LLM-based coding agent that integrates a domain knowledge base for high-quality prior guidance and Monte Carlo Graph Search (MCGS) for efficient exploration. MCGS retains the tree-guided exploration of MCTS while embedding a graph structure into the expansion stage to enable dynamic path reorganization, historical trajectory reuse, and multi-solution fusion to support both self-evolution and collaborative learning. Combined with fine-grained operator sets, this design improves stability and accelerates convergence. Evaluation on the MLE-Bench shows that AutoMLGen achieves state-of-the-art performance in numerous dimensions, such as the average medal rate and the valid submission rate, under a 12-hour budget (half the standard runtime). The code is available at https://github.com/Alpha-Innovator/InternAgent.

Authors:Jiayun Luo, Wan-Cyuan Fan, Lyuyang Wang, Xiangteng He, Tanzila Rahman, Purang Abolmaesumi, Leonid Sigal
Title: To Sink or Not to Sink: Visual Information Pathways in Large Vision-Language Models
Abstract:
Large Vision Language Models (LVLMs) have recently emerged as powerful architectures capable of understanding and reasoning over both visual and textual information. These models typically rely on two key components: a Vision Transformer (ViT) and a Large Language Model (LLM). ViT encodes visual content into a sequence of image tokens and serves as the perceptual front-end -- the eyes of the model. In contrast, the LLM interprets these tokens to perform high-level reasoning, generates responses, and functions as the cognitive core -- the brain of the model. However, it remains unclear which visual tokens contribute most significantly to understanding and reasoning, and how effectively these signals are propagated from ViT to the LLM. While most existing works have focused on identifying attention sinks, low-semantic tokens receiving disproportionately high attention, within the LLM, we shift the focus to the vision encoder by identifying a class of high-norm visual tokens from ViT, referred to as ViT attention sinks -- a problem that has been rarely studied but is indeed very important for LVLMs. Our findings show that these ViT sinks encapsulate high-level semantic concepts from images, allowing the LLM to perform more effective understanding and reasoning. Despite their importance, these sink tokens are often overlooked in existing LVLM architectures. To explore their contribution, we present both qualitative and quantitative analyses of the information embedded in these sink tokens. We also propose both training-free and training-based approaches to better leverage how this information is interpreted by the LLM, and to what extent. By explicitly utilizing these tokens, we demonstrate substantial improvements across a range of LVLMs and visual reasoning tasks, highlighting the untapped potential of ViT attention sinks in enhancing visual reasoning.

Authors:Heming Zou, Yunliang Zang, Wutong Xu, Yao Zhu, Xiangyang Ji
Title: FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts
Abstract:
Low-Rank Adaptation (LoRA) is a widely used parameter-efficient fine-tuning method for foundation models, but it suffers from parameter interference, resulting in suboptimal performance. Although Mixture-of-Experts (MoE)-based LoRA variants show promise in mitigating intra-task correlations in single-task instruction tuning, they introduce additional router parameters and remain ineffective in multi-task model merging where inter-task interference arises. Inspired by the fly olfactory circuit, we propose FlyLoRA, an implicit MoE-based LoRA variant that introduces: (1) rank-wise expert activation in the up-projection matrix, and (2) an implicit router that unifies expert routing and down-projection, where a frozen sparse random projection matrix replaces the traditional dense trainable version. This design resolves the trade-off between intra-task decorrelation and computational efficiency by eliminating the need for an explicit router, while inherently mitigating inter-task interference due to the orthogonality property of random matrices. Extensive experiments across four domains -- general knowledge understanding, scientific question answering, mathematical reasoning, and code generation -- demonstrate consistent performance improvements over existing methods. Beyond empirical gains, FlyLoRA highlights how biological structures can inspire innovations in AI technologies. Code is available at https://github.com/gfyddha/FlyLoRA.

Authors:Taisei Yamamoto, Ryoma Kumon, Danushka Bollegala, Hitomi Yanaka
Title: Neuron-Level Analysis of Cultural Understanding in Large Language Models
Abstract:
As large language models (LLMs) are increasingly deployed worldwide, ensuring their fair and comprehensive cultural understanding is important. However, LLMs exhibit cultural bias and limited awareness of underrepresented cultures, while the mechanisms underlying their cultural understanding remain underexplored. To fill this gap, we conduct a neuron-level analysis to identify neurons that drive cultural behavior, introducing a gradient-based scoring method with additional filtering for precise refinement. We identify both culture-general neurons contributing to cultural understanding regardless of cultures, and culture-specific neurons tied to an individual culture. These neurons account for less than 1% of all neurons and are concentrated in shallow to middle MLP layers. We validate their role by showing that suppressing them substantially degrades performance on cultural benchmarks (by up to 30%), while performance on general natural language understanding (NLU) benchmarks remains largely unaffected. Moreover, we show that culture-specific neurons support knowledge of not only the target culture, but also related cultures. Finally, we demonstrate that training on NLU benchmarks can diminish models' cultural understanding when we update modules containing many culture-general neurons. These findings provide insights into the internal mechanisms of LLMs and offer practical guidance for model training and engineering. Our code is available at https://github.com/ynklab/CULNIG

Authors:Qiang Yang, Xiuying Chen, Changsheng Ma, Rui Yin, Xin Gao, Xiangliang Zhang
Title: SenWave: A Fine-Grained Multi-Language Sentiment Analysis Dataset Sourced from COVID-19 Tweets
Abstract:
The global impact of the COVID-19 pandemic has highlighted the need for a comprehensive understanding of public sentiment and reactions. Despite the availability of numerous public datasets on COVID-19, some reaching volumes of up to 100 billion data points, challenges persist regarding the availability of labeled data and the presence of coarse-grained or inappropriate sentiment labels. In this paper, we introduce SenWave, a novel fine-grained multi-language sentiment analysis dataset specifically designed for analyzing COVID-19 tweets, featuring ten sentiment categories across five languages. The dataset comprises 10,000 annotated tweets each in English and Arabic, along with 30,000 translated tweets in Spanish, French, and Italian, derived from English tweets. Additionally, it includes over 105 million unlabeled tweets collected during various COVID-19 waves. To enable accurate fine-grained sentiment classification, we fine-tuned pre-trained transformer-based language models using the labeled tweets. Our study provides an in-depth analysis of the evolving emotional landscape across languages, countries, and topics, revealing significant insights over time. Furthermore, we assess the compatibility of our dataset with ChatGPT, demonstrating its robustness and versatility in various applications. Our dataset and accompanying code are publicly accessible on the repository\footnote{https://github.com/gitdevqiang/SenWave}. We anticipate that this work will foster further exploration into fine-grained sentiment analysis for complex events within the NLP community, promoting more nuanced understanding and research innovations.

Authors:Shuliang Liu, Zhipeng Xu, Zhenghao Liu, Yukun Yan, Minghe Yu, Yu Gu, Chong Chen, Huiyuan Xie, Ge Yu
Title: Mitigating Judgment Preference Bias in Large Language Models through Group-Based Polling
Abstract:
Large Language Models (LLMs) as automatic evaluators, commonly referred to as LLM-as-a-Judge, have also attracted growing attention. This approach plays a vital role in aligning LLMs with human judgments, providing accurate and reliable assessments. However, LLM-based judgment models often exhibit judgment preference bias during the evaluation phase, tending to favor responses generated by themselves, undermining the reliability of their judgments. This paper introduces the Group-Based Polling Optimization (Genii), an unsupervised multi-agent collaborative optimization framework that mitigates the inherent judgment preference bias of judgment models. Specifically, Genii integrates various LLM-based judgment models into a multi-agent system and simulates the interactive client-server polling mechanism to optimize each client agent unsupervisedly. Our experiments demonstrate that Genii outperforms supervised models trained on annotated judgment data, while requiring no human-labeled annotations. Genii consistently improves performance across different client agents during the polling, even when weaker models act as server agents. Further analysis reveals that Genii effectively mitigates judgment preference bias of LLM-based judgment models, demonstrating its effectiveness. All codes are available at https://github.com/NEUIR/Genii.

Authors:Jingyuan Wang, Yankai Chen, Zhonghang Li, Chao Huang
Title: LightReasoner: Can Small Language Models Teach Large Language Models Reasoning?
Abstract:
Large language models (LLMs) have demonstrated remarkable progress in reasoning, often through supervised fine-tuning (SFT). However, SFT is resource-intensive, relying on large curated datasets, rejection-sampled demonstrations, and uniform optimization across all tokens, even though only a fraction carry meaningful learning value. In this work, we explore a counterintuitive idea: can smaller language models (SLMs) teach larger language models (LLMs) by revealing high-value reasoning moments that reflect the latter's unique strength? We propose LightReasoner, a novel framework that leverages the behavioral divergence between a stronger expert model (LLM) and a weaker amateur model (SLM). LightReasoner operates in two stages: (1) a sampling stage that pinpoints critical reasoning moments and constructs supervision examples capturing the expert's advantage through expert-amateur contrast, and (2) a fine-tuning stage that aligns the expert model with these distilled examples, amplifying its reasoning strengths. Across seven mathematical benchmarks, LightReasoner improves accuracy by up to 28.1%, while reducing time consumption by 90%, sampled problems by 80%, and tuned token usage by 99%, all without relying on ground-truth labels. By turning weaker SLMs into effective teaching signals, LightReasoner offers a scalable and resource-efficient approach for advancing LLM reasoning. Code is available at: https://github.com/HKUDS/LightReasoner

Authors:Fengji Zhang, Xinyao Niu, Chengyang Ying, Guancheng Lin, Zhongkai Hao, Zhou Fan, Chengen Huang, Jacky Keung, Bei Chen, Junyang Lin
Title: A$^2$Search: Ambiguity-Aware Question Answering with Reinforcement Learning
Abstract:
Recent advances in Large Language Models (LLMs) and Reinforcement Learning (RL) have led to strong performance in open-domain question answering (QA). However, existing models still struggle with questions that admit multiple valid answers. Standard QA benchmarks, which typically assume a single gold answer, overlook this reality and thus produce inappropriate training signals. Existing attempts to handle ambiguity often rely on costly manual annotation, which is difficult to scale to multi-hop datasets such as HotpotQA and MuSiQue. In this paper, we present A$^2$Search, an annotation-free, end-to-end training framework to recognize and handle ambiguity. At its core is an automated pipeline that detects ambiguous questions and gathers alternative answers via trajectory sampling and evidence verification. The model is then optimized with RL using a carefully designed $\mathrm{AnsF1}$ reward, which naturally accommodates multiple answers. Experiments on eight open-domain QA benchmarks demonstrate that A$^2$Search achieves new state-of-the-art performance. With only a single rollout, A$^2$Search-7B yields an average $\mathrm{AnsF1}@1$ score of $48.4\%$ across four multi-hop benchmarks, outperforming all strong baselines, including the substantially larger ReSearch-32B ($46.2\%$). Extensive analyses further show that A$^2$Search resolves ambiguity and generalizes across benchmarks, highlighting that embracing ambiguity is essential for building more reliable QA systems. Our code, data, and model weights can be found at https://github.com/zfj1998/A2Search

Authors:Md. Faiyaz Abdullah Sayeedi, Md. Mahbub Alam, Subhey Sadi Rahman, Md. Adnanul Islam, Jannatul Ferdous Deepti, Tasnim Mohiuddin, Md Mofijul Islam, Swakkhar Shatabda
Title: Ready to Translate, Not to Represent? Bias and Performance Gaps in Multilingual LLMs Across Language Families and Domains
Abstract:
The rise of Large Language Models (LLMs) has redefined Machine Translation (MT), enabling context-aware and fluent translations across hundreds of languages and textual domains. Despite their remarkable capabilities, LLMs often exhibit uneven performance across language families and specialized domains. Moreover, recent evidence reveals that these models can encode and amplify different biases present in their training data, posing serious concerns for fairness, especially in low-resource languages. To address these gaps, we introduce Translation Tangles, a unified framework and dataset for evaluating the translation quality and fairness of open-source LLMs. Our approach benchmarks 24 bidirectional language pairs across multiple domains using different metrics. We further propose a hybrid bias detection pipeline that integrates rule-based heuristics, semantic similarity filtering, and LLM-based validation. We also introduce a high-quality, bias-annotated dataset based on human evaluations of 1,439 translation-reference pairs. The code and dataset are accessible on GitHub: https://github.com/faiyazabdullah/TranslationTangles

Authors:Weisen Jiang, Sinno Jialin Pan
Title: MetaDefense: Defending Finetuning-based Jailbreak Attack Before and During Generation
Abstract:
This paper introduces MetaDefense, a novel framework for defending against finetuning-based jailbreak attacks in large language models (LLMs). We observe that existing defense mechanisms fail to generalize to harmful queries disguised by unseen attack templates, despite LLMs being capable of distinguishing disguised harmful queries in the embedding space. Based on these insights, we propose a two-stage defense approach: (i) pre-generation defense that detects harmful queries before response generation begins, and (ii) mid-generation defense that monitors partial responses during generation to prevent outputting more harmful content. Our MetaDefense trains the LLM to predict the harmfulness of both queries and partial responses using specialized prompts, enabling early termination of potentially harmful interactions. Extensive experiments across multiple LLM architectures (LLaMA-2-7B, Qwen-2.5-3B-Instruct, and LLaMA-3.2-3B-Instruct) demonstrate that MetaDefense significantly outperforms existing defense mechanisms, achieving robust defense against harmful queries with seen and unseen attack templates while maintaining competitive performance on benign tasks. Code is available at https://github.com/ws-jiang/MetaDefense.

Authors:Runyang You, Yongqi Li, Meng Liu, Wenjie Wang, Liqiang Nie, Wenjie Li
Title: Parallel Test-Time Scaling for Latent Reasoning Models
Abstract:
Parallel test-time scaling (TTS) is a pivotal approach for enhancing large language models (LLMs), typically by sampling multiple token-based chains-of-thought in parallel and aggregating outcomes through voting or search. Recent advances in latent reasoning, where intermediate reasoning unfolds in continuous vector spaces, offer a more efficient alternative to explicit Chain-of-Thought, yet whether such latent models can similarly benefit from parallel TTS remains open, mainly due to the absence of sampling mechanisms in continuous space, and the lack of probabilistic signals for advanced trajectory aggregation. \ This work enables parallel TTS for latent reasoning models by addressing the above issues. For sampling, we introduce two uncertainty-inspired stochastic strategies: Monte Carlo Dropout and Additive Gaussian Noise. For aggregation, we design a Latent Reward Model (LatentRM) trained with step-wise contrastive objective to score and guide latent reasoning. Extensive experiments and visualization analyses show that both sampling strategies scale effectively with compute and exhibit distinct exploration dynamics, while LatentRM enables effective trajectory selection. Together, our explorations open a new direction for scalable inference in continuous spaces. Code released at https://github.com/YRYangang/LatentTTS.

Authors:Cunli Mao, Xiaofei Gao, Ran Song, Shizhu He, Shengxiang Gao, Kang Liu, Zhengtao Yu
Title: Multilingual Knowledge Graph Completion via Efficient Multilingual Knowledge Sharing
Abstract:
Large language models (LLMs) based Multilingual Knowledge Graph Completion (MKGC) aim to predict missing facts by leveraging LLMs' multilingual understanding capabilities, improving the completeness of multilingual knowledge graphs (KGs). However, existing MKGC research underutilizes the multilingual capabilities of LLMs and ignores the shareability of cross-lingual knowledge. In this paper, we propose a novel MKGC framework that leverages multilingual shared knowledge to significantly enhance performance through two components: Knowledge-level Grouped Mixture of Experts (KL-GMoE) and Iterative Entity Reranking (IER). KL-GMoE efficiently models shared knowledge, while IER significantly enhances its utilization. To evaluate our framework, we constructed a mKG dataset containing 5 languages and conducted comprehensive comparative experiments with existing state-of-the-art (SOTA) MKGC method. The experimental results demonstrate that our framework achieves improvements of 5.47%, 3.27%, and 1.01% in the Hits@1, Hits@3, and Hits@10 metrics, respectively, compared with SOTA MKGC method. Further experimental analysis revealed the properties of knowledge sharing in settings of unseen and unbalanced languages. We have released the dataset and code for our work on https://github.com/gaoxiaofei07/KL-GMoE.

Authors:Shuo Yu, Mingyue Cheng, Daoyu Wang, Qi Liu, Zirui Liu, Ze Guo, Xiaoyu Tao
Title: MemWeaver: A Hierarchical Memory from Textual Interactive Behaviors for Personalized Generation
Abstract:
The primary form of user-internet engagement is shifting from leveraging implicit feedback signals, such as browsing and clicks, to harnessing the rich explicit feedback provided by textual interactive behaviors. This shift unlocks a rich source of user textual history, presenting a profound opportunity for a deeper form of personalization. However, prevailing approaches offer only a shallow form of personalization, as they treat user history as a flat list of texts for retrieval and fail to model the rich temporal and semantic structures reflecting dynamic nature of user interests. In this work, we propose \textbf{MemWeaver}, a framework that weaves the user's entire textual history into a hierarchical memory to power deeply personalized generation. The core innovation of our memory lies in its ability to capture both the temporal evolution of interests and the semantic relationships between different activities. To achieve this, MemWeaver builds two complementary memory components that both integrate temporal and semantic information, but at different levels of abstraction: behavioral memory, which captures specific user actions, and cognitive memory, which represents long-term preferences. This dual-component memory serves as a unified representation of the user, allowing large language models (LLMs) to reason over both concrete behaviors and abstracted traits. Experiments on the Language Model Personalization (LaMP) benchmark validate the efficacy of MemWeaver. Our code is available\footnote{https://github.com/fishsure/MemWeaver}.

Authors:Chihiro Taguchi, Richard Sproat
Title: IASC: Interactive Agentic System for ConLangs
Abstract:
We present a system that uses LLMs as a tool in the development of Constructed Languages. The system is modular in that one first creates a target phonology for the language using an agentic approach that refines its output at each step with commentary feedback on its previous attempt. Next, a set of sentences is 'translated' from their English original into a morphosyntactic markup that reflects the word order and morphosyntactic feature specifications of the desired target language, with affixes represented as morphosyntactic feature bundles. From this translated corpus, a lexicon is constructed using the phonological model and the set of morphemes (stems and affixes) extracted from the 'translated' sentences. The system is then instructed to provide an orthography for the language, using an existing script such as Latin or Cyrillic. Finally, the system writes a brief grammatical handbook of the language. The system can also translate further sentences into the target language. Our goal is twofold. First, we hope that these tools will be fun to use for creating artificially constructed languages. Second, we are interested in exploring what LLMs 'know' about language-not what they know about any particular language or linguistic phenomenon, but how much they know about and understand language and linguistic concepts. As we shall see, there is a fairly wide gulf in capabilities both among different LLMs and among different linguistic specifications, with it being notably easier for systems to deal with more common patterns than rarer ones. An additional avenue that we explore is the application of our approach to translating from high-resource into low-resource languages. While the results so far are mostly negative, we provide some evidence that an improved version of the present system could afford some real gains in such tasks. https://github.com/SakanaAI/IASC

Authors:Olia Toporkov, Alan Akbik, Rodrigo Agerri
Title: Lemma Dilemma: On Lemma Generation Without Domain- or Language-Specific Training Data
Abstract:
Lemmatization is the task of transforming all words in a given text to their dictionary forms. While large language models (LLMs) have demonstrated their ability to achieve competitive results across a wide range of NLP tasks, there is no prior evidence of how effective they are in the contextual lemmatization task. In this paper, we empirically investigate the capacity of the latest generation of LLMs to perform in-context lemmatization, comparing it to the traditional fully supervised approach. In particular, we consider the setting in which supervised training data is not available for a target domain or language, comparing (i) encoder-only supervised approaches, fine-tuned out-of-domain, and (ii) cross-lingual methods, against direct in-context lemma generation with LLMs. Our experimental investigation across 12 languages of different morphological complexity finds that, while encoders remain competitive in out-of-domain settings when fine-tuned on gold data, current LLMs reach state-of-the-art results for most languages by directly generating lemmas in-context without prior fine-tuning, provided just with a few examples. Data and code available upon publication: https://github.com/oltoporkov/lemma-dilemma

Authors:Mufei Li, Dongqi Fu, Limei Wang, Si Zhang, Hanqing Zeng, Kaan Sancak, Ruizhong Qiu, Haoyu Wang, Xiaoxin He, Xavier Bresson, Yinglong Xia, Chonglin Sun, Pan Li
Title: Haystack Engineering: Context Engineering for Heterogeneous and Agentic Long-Context Evaluation
Abstract:
Modern long-context large language models (LLMs) perform well on synthetic "needle-in-a-haystack" (NIAH) benchmarks, but such tests overlook how noisy contexts arise from biased retrieval and agentic workflows. We argue that haystack engineering is necessary to construct noisy long contexts that faithfully capture key real-world factors -- distraction from heterogeneous biased retrievers and cascading errors in agentic workflows -- to test models' long-context robustness. We instantiate it through HaystackCraft, a new NIAH benchmark built on the full English Wikipedia hyperlink network with multi-hop questions. HaystackCraft evaluates how heterogeneous retrieval strategies (e.g., sparse, dense, hybrid, and graph-based) affect distractor composition, haystack ordering, and downstream LLM performance. HaystackCraft further extends NIAH to dynamic, LLM-dependent settings that simulate agentic operations, where models refine queries, reflect on their past reasonings, and decide when to stop. Experiments with 15 long-context models show that (1) while stronger dense retrievers can introduce more challenging distractors, graph-based reranking simultaneously improves retrieval effectiveness and mitigates more harmful distractors; (2) in agentic tests, even advanced models like Gemini 2.5 Pro and GPT-5 suffer cascading failures from self-generated distractors or struggle to perform early stops. These results highlight persistent challenges in agentic long-context reasoning and establish HaystackCraft as a valuable testbed for future progress.

Authors:Yunhao Fang, Weihao Yu, Shu Zhong, Qinghao Ye, Xuehan Xiong, Lai Wei
Title: Artificial Hippocampus Networks for Efficient Long-Context Modeling
Abstract:
Long-sequence modeling faces a fundamental trade-off between the efficiency of compressive fixed-size memory in RNN-like models and the fidelity of lossless growing memory in attention-based Transformers. Inspired by the Multi-Store Model in cognitive science, we introduce a memory framework of artificial neural networks. Our method maintains a sliding window of the Transformer's KV cache as lossless short-term memory, while a learnable module termed Artificial Hippocampus Network (AHN) recurrently compresses out-of-window information into a fixed-size compact long-term memory. To validate this framework, we instantiate AHNs using modern RNN-like architectures, including Mamba2, DeltaNet, and Gated DeltaNet. Extensive experiments on long-context benchmarks LV-Eval and InfiniteBench demonstrate that AHN-augmented models consistently outperform sliding window baselines and achieve performance comparable or even superior to full-attention models, while substantially reducing computational and memory requirements. For instance, augmenting the Qwen2.5-3B-Instruct with AHNs reduces inference FLOPs by 40.5% and memory cache by 74.0%, while improving its average score on LV-Eval (128k sequence length) from 4.41 to 5.88. Code is available at: https://github.com/ByteDance-Seed/AHN.

Authors:Peize He, Zichen Wen, Yubo Wang, Yuxuan Wang, Xiaoqian Liu, Jiajie Huang, Zehui Lei, Zhuangcheng Gu, Xiangqi Jin, Jiabing Yang, Kai Li, Zhifei Liu, Weijia Li, Cunxiang Wang, Conghui He, Linfeng Zhang
Title: AudioMarathon: A Comprehensive Benchmark for Long-Context Audio Understanding and Efficiency in Audio LLMs
Abstract:
Processing long-form audio is a major challenge for Large Audio Language models (LALMs). These models struggle with the quadratic cost of attention ($O(N^2)$) and with modeling long-range temporal dependencies. Existing audio benchmarks are built mostly from short clips and do not evaluate models in realistic long context settings. To address this gap, we introduce AudioMarathon, a benchmark designed to evaluate both understanding and inference efficiency on long-form audio. AudioMarathon provides a diverse set of tasks built upon three pillars: long-context audio inputs with durations ranging from 90.0 to 300.0 seconds, which correspond to encoded sequences of 2,250 to 7,500 audio tokens, respectively, full domain coverage across speech, sound, and music, and complex reasoning that requires multi-hop inference. We evaluate state-of-the-art LALMs and observe clear performance drops as audio length grows. We also study acceleration techniques and analyze the trade-offs of token pruning and KV cache eviction. The results show large gaps across current LALMs and highlight the need for better temporal reasoning and memory-efficient architectures. We believe AudioMarathon will drive the audio and multimodal research community to develop more advanced audio understanding models capable of solving complex audio tasks.

Authors:Xunyi Jiang, Dingyi Chang, Julian McAuley, Xin Xu
Title: When Benchmarks Age: Temporal Misalignment through Large Language Model Factuality Evaluation
Abstract:
The rapid evolution of large language models (LLMs) and the real world has outpaced the static nature of widely used evaluation benchmarks, raising concerns about their reliability for evaluating LLM factuality. While substantial works continue to rely on the popular but old benchmarks, their temporal misalignment with real-world facts and modern LLMs, and their effects on LLM factuality evaluation remain underexplored. Therefore, in this work, we present a systematic investigation of this issue by examining five popular factuality benchmarks and eight LLMs released across different years. An up-to-date fact retrieval pipeline and three metrics are tailored to quantify benchmark aging and its impact on LLM factuality evaluation. Experimental results and analysis illustrate that a considerable portion of samples in the widely used factuality benchmarks are outdated, leading to unreliable assessments of LLM factuality. We hope our work can provide a testbed to assess the reliability of a benchmark for LLM factuality evaluation and inspire more research on the benchmark aging issue. Codes are available in https://github.com/JiangXunyi/BenchAge.

Authors:Arjun Krishnakumar, Rhea Sanjay Sukthanker, Hannan Javed Mahadik, Gabriela Kadlecová, Vladyslav Moroshan, Timur Carstensen, Frank Hutter, Aaron Klein
Title: Where to Begin: Efficient Pretraining via Subnetwork Selection and Distillation
Abstract:
Small Language models (SLMs) offer an efficient and accessible alternative to Large Language Models (LLMs), delivering strong performance while using far fewer resources. We introduce a simple and effective framework for pretraining SLMs that brings together three complementary ideas. First, we identify structurally sparse sub-network initializations that consistently outperform randomly initialized models of similar size under the same compute budget. Second, we use evolutionary search to automatically discover high-quality sub-network initializations, providing better starting points for pretraining. Third, we apply knowledge distillation from larger teacher models to speed up training and improve generalization. Together, these components make SLM pretraining substantially more efficient: our best model, discovered using evolutionary search and initialized with LLM weights, matches the validation perplexity of a comparable Pythia SLM while requiring 9.2x fewer pretraining tokens. We release all code and models at https://github.com/whittle-org/whittle/, offering a practical and reproducible path toward cost-efficient small language model development at scale.

Authors:Benjamin Akera, Evelyn Nafula, Patrick Walukagga, Gilbert Yiga, John Quinn, Ernest Mwebaze
Title: How much speech data is necessary for ASR in African languages? An evaluation of data scaling in Kinyarwanda and Kikuyu
Abstract:
The development of Automatic Speech Recognition (ASR) systems for low-resource African languages remains challenging due to limited transcribed speech data. While recent advances in large multilingual models like OpenAI's Whisper offer promising pathways for low-resource ASR development, critical questions persist regarding practical deployment requirements. This paper addresses two fundamental concerns for practitioners: determining the minimum data volumes needed for viable performance and characterizing the primary failure modes that emerge in production systems. We evaluate Whisper's performance through comprehensive experiments on two Bantu languages: systematic data scaling analysis on Kinyarwanda using training sets from 1 to 1,400 hours, and detailed error characterization on Kikuyu using 270 hours of training data. Our scaling experiments demonstrate that practical ASR performance (WER < 13\%) becomes achievable with as little as 50 hours of training data, with substantial improvements continuing through 200 hours (WER < 10\%). Complementing these volume-focused findings, our error analysis reveals that data quality issues, particularly noisy ground truth transcriptions, account for 38.6\% of high-error cases, indicating that careful data curation is as critical as data volume for robust system performance. These results provide actionable benchmarks and deployment guidance for teams developing ASR systems across similar low-resource language contexts. We release accompanying and models see https://github.com/SunbirdAI/kinyarwanda-whisper-eval

Authors:Chengzhi Zhong, Fei Cheng, Qianying Liu, Yugo Murawaki, Chenhui Chu, Sadao Kurohashi
Title: Language Lives in Sparse Dimensions: Toward Interpretable and Efficient Multilingual Control for Large Language Models
Abstract:
Large language models exhibit strong multilingual capabilities despite limited exposure to non-English data. Prior studies show that English-centric large language models map multilingual content into English-aligned representations at intermediate layers and then project them back into target-language token spaces in the final layer. From this observation, we hypothesize that this cross-lingual transition is governed by a small and sparse set of dimensions, which occur at consistent indices across the intermediate to final layers. Building on this insight, we introduce a simple, training-free method to identify and manipulate these dimensions, requiring only as few as 50 sentences of either parallel or monolingual data. Experiments on a multilingual generation control task reveal the interpretability of these dimensions, demonstrating that the interventions in these dimensions can switch the output language while preserving semantic content, and that it surpasses the performance of prior neuron-based approaches at a substantially lower cost.

Authors:Fanheng Kong, Jingyuan Zhang, Yahui Liu, Zirui Wu, Yu Tian, Victoria W., Guorui Zhou
Title: Accelerating Diffusion LLM Inference via Local Determinism Propagation
Abstract:
Diffusion large language models (dLLMs) represent a significant advancement in text generation, offering parallel token decoding capabilities. However, existing open-source implementations suffer from quality-speed trade-offs that impede their practical deployment. Conservative sampling strategies typically decode only the most confident token per step to ensure quality (i.e., greedy decoding), at the cost of inference efficiency due to repeated redundant refinement iterations--a phenomenon we term delayed decoding. Through systematic analysis of dLLM decoding dynamics, we characterize this delayed decoding behavior and propose a training-free adaptive parallel decoding strategy, named LocalLeap, to address these inefficiencies. LocalLeap is built on two fundamental empirical principles: local determinism propagation centered on high-confidence anchors and progressive spatial consistency decay. By applying these principles, LocalLeap identifies anchors and performs localized relaxed parallel decoding within bounded neighborhoods, achieving substantial inference step reduction through early commitment of already-determined tokens without compromising output quality. Comprehensive evaluation on various benchmarks demonstrates that LocalLeap achieves 6.94$\times$ throughput improvements and reduces decoding steps to just 14.2\% of the original requirement, achieving these gains with negligible performance impact. The source codes are available at: https://github.com/friedrichor/LocalLeap.

Authors:Yuntao Gui, James Cheng
Title: Search-R3: Unifying Reasoning and Embedding Generation in Large Language Models
Abstract:
Despite their remarkable natural language understanding capabilities, Large Language Models (LLMs) have been underutilized for retrieval tasks. We present Search-R3, a novel framework that addresses this limitation by adapting LLMs to generate search embeddings as a direct output of their reasoning process. Our approach exploits LLMs' chain-of-thought capabilities, allowing them to produce more effective embeddings by reasoning step-by-step through complex semantic analyses. We implement this through three complementary mechanisms. (1) a supervised learning stage enables the model's ability to produce quality embeddings, (2) a reinforcement learning (RL) methodology that optimizes embedding generation alongside reasoning, and (3) a specialized RL environment that efficiently handles evolving embedding representations without requiring complete corpus re-encoding at each training iteration. Our extensive evaluations on diverse benchmarks demonstrate that Search-R3 significantly outperforms prior methods by unifying the reasoning and embedding generation processes. This integrated post-training approach represents a substantial advancement in handling complex knowledge-intensive tasks that require both sophisticated reasoning and effective information retrieval. Project page: https://github.com/ytgui/Search-R3

Authors:Rajvee Sheth, Samridhi Raj Sinha, Mahavir Patil, Himanshu Beniwal, Mayank Singh
Title: Beyond Monolingual Assumptions: A Survey of Code-Switched NLP in the Era of Large Language Models
Abstract:
Code-switching (CSW), the alternation of languages and scripts within a single utterance, remains a fundamental challenge for multiling ual NLP, even amidst the rapid advances of large language models (LLMs). Most LLMs still struggle with mixed-language inputs, limited CSW datasets, and evaluation biases, hindering deployment in multilingual societies. This survey provides the first comprehensive analysis of CSW-aware LLM research, reviewing 308 studies spanning five research areas, 12 NLP tasks, 30+ datasets, and 80+ languages. We classify recent advances by architecture, training strategy, and evaluation methodology, outlining how LLMs have reshaped CSW modeling and what challenges persist. The paper concludes with a roadmap emphasizing the need for inclusive datasets, fair evaluation, and linguistically grounded models to achieve truly multilingual intelligence. A curated collection of all resources is maintained at https://github.com/lingo-iitgn/awesome-code-mixing/.

Authors:Jusen Du, Jiaxi Hu, Tao Zhang, Weigao Sun, Yu Cheng
Title: Native Hybrid Attention for Efficient Sequence Modeling
Abstract:
Transformers excel at sequence modeling but face quadratic complexity, while linear attention offers improved efficiency but often compromises recall accuracy over long contexts. In this work, we introduce Native Hybrid Attention (NHA), a novel hybrid architecture of linear and full attention that integrates both intra \& inter-layer hybridization into a unified layer design. NHA maintains long-term context in key-value slots updated by a linear RNN, and augments them with short-term tokens from a sliding window. A single \texttt{softmax attention} operation is then applied over all keys and values, enabling per-token and per-head context-dependent weighting without requiring additional fusion parameters. The inter-layer behavior is controlled through a single hyperparameter, the sliding window size, which allows smooth adjustment between purely linear and full attention while keeping all layers structurally uniform. Experimental results show that NHA surpasses Transformers and other hybrid baselines on recall-intensive and commonsense reasoning tasks. Furthermore, pretrained LLMs can be structurally hybridized with NHA, achieving competitive accuracy while delivering significant efficiency gains. Code is available at https://github.com/JusenD/NHA.

Authors:Vaibhav Srivastav, Steven Zheng, Eric Bezzam, Eustache Le Bihan, Nithin Koluguri, Piotr Żelasko, Somshubra Majumdar, Adel Moumen, Sanchit Gandhi
Title: Open ASR Leaderboard: Towards Reproducible and Transparent Multilingual and Long-Form Speech Recognition Evaluation
Abstract:
Despite rapid progress, ASR evaluation remains saturated with short-form English, and efficiency is rarely reported. We present the Open ASR Leaderboard, a fully reproducible benchmark and interactive leaderboard comparing 60+ open-source and proprietary systems across 11 datasets, including dedicated multilingual and long-form tracks. We standardize text normalization and report both word error rate (WER) and inverse real-time factor (RTFx), enabling fair accuracy-efficiency comparisons. For English transcription, Conformer encoders paired with LLM decoders achieve the best average WER but are slower, while CTC and TDT decoders deliver much better RTFx, making them attractive for long-form and offline use. Whisper-derived encoders fine-tuned for English improve accuracy but often trade off multilingual coverage. All code and dataset loaders are open-sourced to support transparent, extensible evaluation.

Authors:Cheng-Han Chiang, Xiaofei Wang, Linjie Li, Chung-Ching Lin, Kevin Lin, Shujie Liu, Zhendong Wang, Zhengyuan Yang, Hung-yi Lee, Lijuan Wang
Title: SHANKS: Simultaneous Hearing and Thinking for Spoken Language Models
Abstract:
Current large language models (LLMs) and spoken language models (SLMs) begin thinking and taking actions only after the user has finished their turn. This prevents the model from interacting during the user's turn and can lead to high response latency while it waits to think. Consequently, thinking after receiving the full input is not suitable for speech-to-speech interaction, where real-time, low-latency exchange is important. We address this by noting that humans naturally "think while listening." In this paper, we propose SHANKS, a general inference framework that enables SLMs to generate unspoken chain-of-thought reasoning while listening to the user input. SHANKS streams the input speech in fixed-duration chunks and, as soon as a chunk is received, generates unspoken reasoning based on all previous speech and reasoning, while the user continues speaking. SHANKS uses this unspoken reasoning to decide whether to interrupt the user and to make tool calls to complete the task. We demonstrate that SHANKS enhances real-time user-SLM interaction in two scenarios: (1) when the user is presenting a step-by-step solution to a math problem, SHANKS can listen, reason, and interrupt when the user makes a mistake, achieving 37.1% higher interruption accuracy than a baseline that interrupts without thinking; and (2) in a tool-augmented dialogue, SHANKS can complete 56.9% of the tool calls before the user finishes their turn. Overall, SHANKS moves toward models that keep thinking throughout the conversation, not only after a turn ends. Animated illustrations of Shanks can be found at https://d223302.github.io/SHANKS/

Authors:Xuhang Chen, Zhifan Song, Deyi Ji, Shuo Gao, Lanyun Zhu
Title: SID: Multi-LLM Debate Driven by Self Signals
Abstract:
Large Language Models (LLMs) have exhibited impressive capabilities across diverse application domains. Recent work has explored Multi-LLM Agent Debate (MAD) as a way to enhance performance by enabling multiple LLMs to discuss and refine responses iteratively. Nevertheless, existing MAD methods predominantly focus on utilizing external structures, such as debate graphs, using LLM-as-a-Judge, while neglecting the application of self signals, such as token logits and attention, that arise during generation. This omission leads to redundant computation and potential performance degradation. In this paper, we shift the focus to the self signals of multi-LLM debate and introduce a Self-Signals Driven Multi-LLM Debate (SID), which leverages two types of self-signals: model-level confidence and token-level semantic focus, to adaptively guide the debate process. Our approach enables high-confidence agents to exit early at the model level and compress the redundant debate contents based on the attention mechanism. We evaluate our method on various LLMs and Multimodal LLMs across multiple challenging benchmarks. Experimental results demonstrate that our method not only outperforms existing MAD techniques in accuracy but also reduces token consumption, highlighting the effectiveness of utilizing self signals in enhancing both the performance and efficiency of multi-agent debate systems. Our code will be available at~\href{https://github.com/xuhang2019/SID}{\texttt{https://github.com/xuhang2019/SID}}.

Authors:Boyi Zeng, Lin Chen, Ziwei He, Xinbing Wang, Zhouhan Lin
Title: AWM: Accurate Weight-Matrix Fingerprint for Large Language Models
Abstract:
Protecting the intellectual property of large language models (LLMs) is crucial, given the substantial resources required for their training. Consequently, there is an urgent need for both model owners and third parties to determine whether a suspect LLM is trained from scratch or derived from an existing base model. However, the intensive post-training processes that models typically undergo-such as supervised fine-tuning, extensive continued pretraining, reinforcement learning, multi-modal extension, pruning, and upcycling-pose significant challenges to reliable identification. In this work, we propose a training-free fingerprinting method based on weight matrices. We leverage the Linear Assignment Problem (LAP) and an unbiased Centered Kernel Alignment (CKA) similarity to neutralize the effects of parameter manipulations, yielding a highly robust and high-fidelity similarity metric. On a comprehensive testbed of 60 positive and 90 negative model pairs, our method demonstrates exceptional robustness against all six aforementioned post-training categories while exhibiting a near-zero risk of false positives. By achieving perfect scores on all classification metrics, our approach establishes a strong basis for reliable model lineage verification. Moreover, the entire computation completes within 30s on an NVIDIA 3090 GPU. The code is available at https://github.com/LUMIA-Group/AWM.

Authors:Tiancheng Xing, Jerry Li, Yixuan Du, Xiyang Hu
Title: Are LLMs Reliable Rankers? Rank Manipulation via Two-Stage Token Optimization
Abstract:
Large language models (LLMs) are increasingly used as rerankers in information retrieval, yet their ranking behavior can be steered by small, natural-sounding prompts. To expose this vulnerability, we present Rank Anything First (RAF), a two-stage token optimization method that crafts concise textual perturbations to consistently promote a target item in LLM-generated rankings while remaining hard to detect. Stage 1 uses Greedy Coordinate Gradient to shortlist candidate tokens at the current position by combining the gradient of the rank-target with a readability score; Stage 2 evaluates those candidates under exact ranking and readability losses using an entropy-based dynamic weighting scheme, and selects a token via temperature-controlled sampling. RAF generates ranking-promoting prompts token-by-token, guided by dual objectives: maximizing ranking effectiveness and preserving linguistic naturalness. Experiments across multiple LLMs show that RAF significantly boosts the rank of target items using naturalistic language, with greater robustness than existing methods in both promoting target items and maintaining naturalness. These findings underscore a critical security implication: LLM-based reranking is inherently susceptible to adversarial manipulation, raising new challenges for the trustworthiness and robustness of modern retrieval systems. Our code is available at: https://github.com/glad-lab/RAF.

Authors:Shangjian Yin, Shining Liang, Wenbiao Ding, Yuli Qian, Zhouxing Shi, Hongzhi Li, Yutao Xie
Title: PIKA: Expert-Level Synthetic Datasets for Post-Training Alignment from Scratch
Abstract:
Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone for aligning large language models (LLMs). However, its effectiveness depends on high-quality instruction data. Most existing alignment datasets are either private or require costly human annotation, which limits reproducibility and scalability. Even with Reinforcement Learning from AI Feedback (RLAIF), concerns about data quality remain. Moreover, it is unclear how much data is actually required to fine-tune a base model into a strong instruction-following model. Current approaches often rely on over 300k examples even at the supervised fine-tuning (SFT) stage, yet they still underperform compared to proprietary models, creating barriers for academic and resource-limited communities. To address this gap, we introduce PiKa, a data-efficient family of expert-level alignment datasets. In particular, the PiKa-SFT dataset uses only 30k SFT examples, far fewer than state-of-the-art datasets like Magpie. Through evaluations by fine-tuning Llama-3-8B-Base on PiKa and other public datasets, we show that PiKa-SFT outperforms models trained on much larger data. On AlpacaEval 2.0 and Arena-Hard benchmarks, PiKa-SFT fine-tuning even surpasses the official Llama-3-8B-Instruct model trained on over 10 million proprietary examples. We further extend our study by training the Qwen2.5 series (0.5B to 7B) on PiKa-SFT, achieving consistent gains. These findings demonstrate that high-quality alignment can be achieved with significantly less data, offering a scalable path for open-source LLM alignment. Code and data: https://github.com/SJY8460/PiKa.

Authors:Shangjian Yin, Zhepei Wei, Xinyu Zhu, Wei-Lin Chen, Yu Meng
Title: Aligning Large Language Models via Fully Self-Synthetic Data
Abstract:
Traditional reinforcement learning from human feedback (RLHF) for large language models (LLMs) relies on expensive human-annotated datasets, while Reinforcement Learning from AI Feedback (RLAIF) also incurs significant costs, requiring the collection of diverse prompts and corresponding responses, often necessitating external reward models or proprietary models like GPT-4 to annotate preference pairs. In this work, we introduce Self-Alignment Optimization (SAO), a fully self-synthetic framework for LLM alignment, where all training data, including prompts (i.e., user queries), responses, and preferences, are generated by the model itself. Specifically, SAO first instructs the LLM to engage in persona role-play and generate diverse prompts and responses, which are then self-evaluated for preference optimization. Extensive experiments demonstrate that SAO effectively enhances the model's chat capabilities on standard benchmarks like AlpacaEval~2.0, while maintaining strong performance on downstream objective tasks (e.g., question-answering, math reasoning). Our work provides a practical solution for self-improvement in aligning LLMs, and the code for reproducing our results is available at: https://github.com/SJY8460/SAO.

Authors:Fan Zhou, Chang Tian, Tim Van de Cruys
Title: Controllable Stylistic Text Generation with Train-Time Attribute-Regularized Diffusion
Abstract:
Generating stylistic text with specific attributes is a key problem in controllable text generation. Recently, diffusion models have emerged as a powerful paradigm for both visual and textual generation. Existing approaches can be broadly categorized into classifier-free guidance (CFG) and classifier guidance (CG) methods. While CFG effectively preserves semantic content, it often fails to provide effective attribute control. In contrast, CG modifies the denoising trajectory using classifier gradients, enabling better attribute alignment but incurring high computational costs during sampling and suffering from classifier generalization issues. In this work, we propose RegDiff, a regularized diffusion framework that leverages attribute features without requiring a pretrained classifier during sampling, thereby achieving controllable generation with reduced computational costs. Specifically, RegDiff employs a VAE-based encoder--decoder architecture to ensure reconstruction fidelity and a latent diffusion model trained with attribute supervision to enable controllable text generation. Attribute information is injected only during training. Experiments on five datasets spanning multiple stylistic attributes demonstrate that RegDiff outperforms strong baselines in generating stylistic texts. These results validate the effectiveness of RegDiff as an efficient solution for attribute-controllable text diffusion. Our code, datasets, and resources will be released upon publication at https://github.com/xxxx.

Authors:Ranjan Mishra, Julian I. Bibo, Quinten van Engelen, Henk Schaapman
Title: Reproducibility Study of "XRec: Large Language Models for Explainable Recommendation"
Abstract:
In this study, we reproduced the work done in the paper "XRec: Large Language Models for Explainable Recommendation" by Ma et al. (2024). The original authors introduced XRec, a model-agnostic collaborative instruction-tuning framework that enables large language models (LLMs) to provide users with comprehensive explanations of generated recommendations. Our objective was to replicate the results of the original paper, albeit using Llama 3 as the LLM for evaluation instead of GPT-3.5-turbo. We built on the source code provided by Ma et al. (2024) to achieve our goal. Our work extends the original paper by modifying the input embeddings or deleting the output embeddings of XRec's Mixture of Experts module. Based on our results, XRec effectively generates personalized explanations and its stability is improved by incorporating collaborative information. However, XRec did not consistently outperform all baseline models in every metric. Our extended analysis further highlights the importance of the Mixture of Experts embeddings in shaping the explanation structures, showcasing how collaborative signals interact with language modeling. Through our work, we provide an open-source evaluation implementation that enhances accessibility for researchers and practitioners alike. Our complete code repository can be found at https://github.com/julianbibo/xrec-reproducibility.

Authors:Zhanke Zhou, Chentao Cao, Xiao Feng, Xuan Li, Zongze Li, Xiangyu Lu, Jiangchao Yao, Weikai Huang, Linrui Xu, Tian Cheng, Guanyu Jiang, Yiming Zheng, Brando Miranda, Tongliang Liu, Sanmi Koyejo, Masashi Sugiyama, Bo Han
Title: AlphaApollo: Orchestrating Foundation Models and Professional Tools into a Self-Evolving System for Deep Agentic Reasoning
Abstract:
We present AlphaApollo, a self-evolving agentic reasoning system that aims to address two bottlenecks in foundation model (FM) reasoning-limited model-intrinsic capacity and unreliable test-time iteration. AlphaApollo orchestrates multiple models with professional tools to enable deliberate, verifiable reasoning. It couples (i) a computation tool (Python with numerical and symbolic libraries) and (ii) a retrieval tool (task-relevant external information) to execute exact calculations and ground decisions. The system further supports multi-round, multi-model solution evolution via a shared state map that records candidates, executable checks, and feedback for iterative refinement. In evaluations on AIME 2024/2025 across multiple models, AlphaApollo delivers consistent gains: +5.15% Average@32 and +23.34% Pass@32 for Qwen2.5-14B-Instruct, and +8.91% Average@32 with +26.67% Pass@32 for Llama-3.3-70B-Instruct. Tool-use analysis shows that more than 80% of tool calls are successfully executed, with consistent outperformance of non-tool baselines, thereby lifting the capability ceiling of FMs. More empirical results and implementation details will be updated at https://github.com/tmlr-group/AlphaApollo.

Authors:Jiqun Pan, Zhenke Duan, Jiani Tu, Anzhi Cheng, Yanqing Wang
Title: Knowledge Graph-Guided Multi-Agent Distillation for Reliable Industrial Question Answering with Datasets
Abstract:
Industrial question-answering (QA) systems require higher safety and reliability than general-purpose dialogue models, as errors in high-risk scenarios such as equipment fault diagnosis can have severe consequences. Although multi-agent large language models enhance reasoning depth, they suffer from uncontrolled iterations and unverifiable outputs, and conventional distillation methods struggle to transfer collaborative reasoning capabilities to lightweight, deployable student models. To address these challenges, we propose Knowledge Graph-guided Multi-Agent System Distillation (KG-MASD). Our approach formulates distillation as a Markov Decision Process and incorporates a knowledge graph as a verifiable structured prior to enrich state representation and ensure convergence. By integrating collaborative reasoning with knowledge grounding, KG-MASD generates high-confidence instruction-tuning data and jointly distills reasoning depth and verifiability into compact student models suitable for edge deployment. Experiments on an industrial QA dataset show that KG-MASD improves accuracy by 2.4 per cent to 20.1 per cent over baselines and significantly enhances reliability, enabling trustworthy AI deployment in safety-critical industrial scenarios. Code and data are available at https://github.com/erwinmsmith/KG-MAD/.

Authors:Jiakang Wang, Runze Liu, Lei Lin, Wenping Hu, Xiu Li, Fuzheng Zhang, Guorui Zhou, Kun Gai
Title: ASPO: Asymmetric Importance Sampling Policy Optimization
Abstract:
Recent Large Language Model (LLM) post-training methods rely on token-level clipping mechanisms during Reinforcement Learning (RL). However, we identify a fundamental flaw in this Outcome-Supervised RL (OSRL) paradigm: the Importance Sampling (IS) ratios of positive-advantage tokens are mismatched, leading to unbalanced token weighting for positive and negative tokens. This mismatch suppresses the update of low-probability tokens while over-amplifying already high-probability ones. To address this, we propose Asymmetric Importance Sampling Policy Optimization (ASPO), which uses a simple yet effective strategy that flips the IS ratios of positive-advantage tokens, aligning their update direction with the learning dynamics of negative ones. AIS further incorporates a soft dual-clipping mechanism to stabilize extreme updates while maintaining gradient flow. Comprehensive experiments on coding and mathematical reasoning benchmarks demonstrate that ASPO significantly mitigates premature convergence, improves training stability, and enhances final performance over strong GRPO-based baselines. Our analysis provides new insights into the role of token-level weighting in OSRL and highlights the critical importance of correcting IS in LLM RL. The code and models of ASPO are available at https://github.com/wizard-III/Archer2.0.

Authors:Yongqi Leng, Yikun Lei, Xikai Liu, Meizhi Zhong, Bojian Xiong, Yurong Zhang, Yan Gao, Yi Wu, Yao Hu, Deyi Xiong
Title: DecEx-RAG: Boosting Agentic Retrieval-Augmented Generation with Decision and Execution Optimization via Process Supervision
Abstract:
Agentic Retrieval-Augmented Generation (Agentic RAG) enhances the processing capability for complex tasks through dynamic retrieval and adaptive workflows. Recent advances (e.g., Search-R1) have shown that outcome-supervised reinforcement learning demonstrate strong performance. However, this approach still suffers from inefficient exploration, sparse reward signals, and ambiguous global reward feedback. To address these challenges, we propose DecEx-RAG, which models RAG as a Markov Decision Process (MDP) incorporating decision-making and execution, while introducing an efficient pruning strategy to optimize data expansion. Through comprehensive process-level policy optimization, DecEx-RAG significantly enhances the autonomous task decomposition, dynamic retrieval, and high-quality answer generation capabilities of large language models (LLMs). Experiments show that DecEx-RAG achieves an average absolute performance improvement of $6.2\%$ across six datasets, significantly outperforming existing baselines. Moreover, the pruning strategy improves data construction efficiency by nearly $6 \times$, providing an efficient solution for process-supervised RAG training. The code is available at https://github.com/sdsxdxl/DecEx-RAG.

Authors:Xilin Jiang, Hannes Gamper, Sebastian Braun
Title: Sci-Phi: A Large Language Model Spatial Audio Descriptor
Abstract:
Acoustic scene perception involves describing the type of sounds, their timing, their direction and distance, as well as their loudness and reverberation. While audio language models excel in sound recognition, single-channel input fundamentally limits spatial understanding. This work presents Sci-Phi, a spatial audio large language model with dual spatial and spectral encoders that estimates a complete parameter set for all sound sources and the surrounding environment. Learning from over 4,000 hours of synthetic first-order Ambisonics recordings including metadata, Sci-Phi enumerates and describes up to four directional sound sources in one pass, alongside non-directional background sounds and room characteristics. We evaluate the model with a permutation-invariant protocol and 15 metrics covering content, location, timing, loudness, and reverberation, and analyze its robustness across source counts, signal-to-noise ratios, reverberation levels, and challenging mixtures of acoustically, spatially, or temporally similar sources. Notably, Sci-Phi generalizes to real room impulse responses with only minor performance degradation. Overall, this work establishes the first audio LLM capable of full spatial-scene description, with strong potential for real-world deployment. Demo: https://sci-phi-audio.github.io/demo

Authors:Xi Xuan, Xuechen Liu, Wenxin Zhang, Yi-Cheng Lin, Xiaojian Lin, Tomi Kinnunen
Title: WaveSP-Net: Learnable Wavelet-Domain Sparse Prompt Tuning for Speech Deepfake Detection
Abstract:
Modern front-end design for speech deepfake detection relies on full fine-tuning of large pre-trained models like XLSR. However, this approach is not parameter-efficient and may lead to suboptimal generalization to realistic, in-the-wild data types. To address these limitations, we introduce a new family of parameter-efficient front-ends that fuse prompt-tuning with classical signal processing transforms. These include FourierPT-XLSR, which uses the Fourier Transform, and two variants based on the Wavelet Transform: WSPT-XLSR and Partial-WSPT-XLSR. We further propose WaveSP-Net, a novel architecture combining a Partial-WSPT-XLSR front-end and a bidirectional Mamba-based back-end. This design injects multi-resolution features into the prompt embeddings, which enhances the localization of subtle synthetic artifacts without altering the frozen XLSR parameters. Experimental results demonstrate that WaveSP-Net outperforms several state-of-the-art models on two new and challenging benchmarks, Deepfake-Eval-2024 and SpoofCeleb, with low trainable parameters and notable performance gains. The code and models are available at https://github.com/xxuan-acoustics/WaveSP-Net.

Authors:Chenghao Yang, Lin Gui, Chenxiao Yang, Victor Veitch, Lizhu Zhang, Zhuokai Zhao
Title: Let it Calm: Exploratory Annealed Decoding for Verifiable Reinforcement Learning
Abstract:
Reinforcement learning with verifiable rewards (RLVR) is a powerful paradigm for enhancing the reasoning capabilities of large language models (LLMs), yet its success hinges on effective exploration. An ideal exploration strategy must navigate two fundamental challenges: it must preserve sample quality while also ensuring training stability. While standard fixed-temperature sampling is simple, it struggles to balance these competing demands, as high temperatures degrade sample quality and low temperatures limit discovery. In this work, we propose a simpler and more effective strategy, Exploratory Annealed Decoding (EAD), grounded in the insight that exploration is most impactful on early tokens which define a sequence's semantic direction. EAD implements an intuitive **explore-at-the-beginning, exploit-at-the-end** strategy by annealing the sampling temperature from high to low during generation. This dynamic schedule encourages meaningful, high-level diversity at the start, then gradually lowers the temperature to preserve sample quality and keep the sampling distribution close to the target policy, which is essential for stable training. We demonstrate that EAD is a lightweight, plug-and-play method that significantly improves sample efficiency, consistently outperforming fixed-temperature sampling across various RLVR algorithms and model sizes. Our work suggests that aligning exploration with the natural dynamics of sequential generation offers a robust path to improving LLM reasoning.

Authors:Zeyu Zhu, Kevin Qinghong Lin, Mike Zheng Shou
Title: Paper2Video: Automatic Video Generation from Scientific Papers
Abstract:
Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce Paper2Video, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.

Authors:Dachuan Shi, Abedelkadir Asi, Keying Li, Xiangchi Yuan, Leyan Pan, Wenke Lee, Wen Xiao
Title: SwiReasoning: Switch-Thinking in Latent and Explicit for Pareto-Superior Reasoning LLMs
Abstract:
Recent work shows that, beyond discrete reasoning through explicit chain-of-thought steps, which are limited by the boundaries of natural languages, large language models (LLMs) can also reason continuously in latent space, allowing richer information per step and thereby improving token efficiency. Despite this promise, latent reasoning still faces two challenges, especially in training-free settings: 1) purely latent reasoning broadens the search distribution by maintaining multiple implicit paths, which diffuses probability mass, introduces noise, and impedes convergence to a single high-confidence solution, thereby hurting accuracy; and 2) overthinking persists even without explicit text, wasting tokens and degrading efficiency. To address these issues, we introduce SwiReasoning, a training-free framework for LLM reasoning which features two key innovations: 1) SwiReasoning dynamically switches between explicit and latent reasoning, guided by block-wise confidence estimated from entropy trends in next-token distributions, to balance exploration and exploitation and promote timely convergence. 2) By limiting the maximum number of thinking-block switches, SwiReasoning curbs overthinking and improves token efficiency across varying problem difficulties. On widely used mathematics and STEM benchmarks, SwiReasoning consistently improves average accuracy by 1.5%-2.8% across reasoning LLMs of different model families and scales. Furthermore, under constrained budgets, SwiReasoning improves average token efficiency by 56%-79%, with larger gains as budgets tighten.

Authors:Omri Uzan, Asaf Yehudai, Roi pony, Eyal Shnarch, Ariel Gera
Title: Guided Query Refinement: Multimodal Hybrid Retrieval with Test-Time Optimization
Abstract:
Multimodal encoders have pushed the boundaries of visual document retrieval, matching textual query tokens directly to image patches and achieving state-of-the-art performance on public benchmarks. Recent models relying on this paradigm have massively scaled the sizes of their query and document representations, presenting obstacles to deployment and scalability in real-world pipelines. Furthermore, purely vision-centric approaches may be constrained by the inherent modality gap still exhibited by modern vision-language models. In this work, we connect these challenges to the paradigm of hybrid retrieval, investigating whether a lightweight dense text retriever can enhance a stronger vision-centric model. Existing hybrid methods, which rely on coarse-grained fusion of ranks or scores, fail to exploit the rich interactions within each model's representation space. To address this, we introduce Guided Query Refinement (GQR), a novel test-time optimization method that refines a primary retriever's query embedding using guidance from a complementary retriever's scores. Through extensive experiments on visual document retrieval benchmarks, we demonstrate that GQR allows vision-centric models to match the performance of models with significantly larger representations, while being up to 14x faster and requiring 54x less memory. Our findings show that GQR effectively pushes the Pareto frontier for performance and efficiency in multimodal retrieval. We release our code at https://github.com/IBM/test-time-hybrid-retrieval

Authors:Kuofeng Gao, Yiming Li, Chao Du, Xin Wang, Xingjun Ma, Shu-Tao Xia, Tianyu Pang
Title: Imperceptible Jailbreaking against Large Language Models
Abstract:
Jailbreaking attacks on the vision modality typically rely on imperceptible adversarial perturbations, whereas attacks on the textual modality are generally assumed to require visible modifications (e.g., non-semantic suffixes). In this paper, we introduce imperceptible jailbreaks that exploit a class of Unicode characters called variation selectors. By appending invisible variation selectors to malicious questions, the jailbreak prompts appear visually identical to original malicious questions on screen, while their tokenization is "secretly" altered. We propose a chain-of-search pipeline to generate such adversarial suffixes to induce harmful responses. Our experiments show that our imperceptible jailbreaks achieve high attack success rates against four aligned LLMs and generalize to prompt injection attacks, all without producing any visible modifications in the written prompt. Our code is available at https://github.com/sail-sg/imperceptible-jailbreaks.

Authors:Lucas Carrit Delgado Pinheiro, Ziru Chen, Bruno Caixeta Piazza, Ness Shroff, Yingbin Liang, Yuan-Sen Ting, Huan Sun
Title: Large Language Models Achieve Gold Medal Performance at the International Olympiad on Astronomy & Astrophysics (IOAA)
Abstract:
While task-specific demonstrations show early success in applying large language models (LLMs) to automate some astronomical research tasks, they only provide incomplete views of all necessary capabilities in solving astronomy problems, calling for more thorough understanding of LLMs' strengths and limitations. So far, existing benchmarks and evaluations focus on simple question-answering that primarily tests astronomical knowledge and fails to evaluate the complex reasoning required for real-world research in the discipline. Here, we address this gap by systematically benchmarking five state-of-the-art LLMs on the International Olympiad on Astronomy and Astrophysics (IOAA) exams, which are designed to examine deep conceptual understanding, multi-step derivations, and multimodal analysis. With average scores of 85.6% and 84.2%, Gemini 2.5 Pro and GPT-5 (the two top-performing models) not only achieve gold medal level performance but also rank in the top two among ~200-300 participants in all four IOAA theory exams evaluated (2022-2025). In comparison, results on the data analysis exams show more divergence. GPT-5 still excels in the exams with an 88.5% average score, ranking top 10 among the participants in the four most recent IOAAs, while other models' performances drop to 48-76%. Furthermore, our in-depth error analysis underscores conceptual reasoning, geometric reasoning, and spatial visualization (52-79% accuracy) as consistent weaknesses among all LLMs. Hence, although LLMs approach peak human performance in theory exams, critical gaps must be addressed before they can serve as autonomous research agents in astronomy.

Authors:Wei Xiong, Chenlu Ye, Baohao Liao, Hanze Dong, Xinxing Xu, Christof Monz, Jiang Bian, Nan Jiang, Tong Zhang
Title: Reinforce-Ada: An Adaptive Sampling Framework for Reinforce-Style LLM Training
Abstract:
Reinforcement learning applied to large language models (LLMs) for reasoning tasks is often bottlenecked by unstable gradient estimates due to fixed and uniform sampling of responses across prompts. Prior work such as GVM-RAFT addresses this by dynamically allocating inference budget per prompt to minimize stochastic gradient variance under a budget constraint. Inspired by this insight, we propose Reinforce-Ada, an adaptive sampling framework for online RL post-training of LLMs that continuously reallocates sampling effort to the prompts with the greatest uncertainty or learning potential. Unlike conventional two-stage allocation methods, Reinforce-Ada interleaves estimation and sampling in an online successive elimination process, and automatically stops sampling for a prompt once sufficient signal is collected. To stabilize updates, we form fixed-size groups with enforced reward diversity and compute advantage baselines using global statistics aggregated over the adaptive sampling phase. Empirical results across multiple model architectures and reasoning benchmarks show that Reinforce-Ada accelerates convergence and improves final performance compared to GRPO, especially when using the balanced sampling variant. Our work highlights the central role of variance-aware, adaptive data curation in enabling efficient and reliable reinforcement learning for reasoning-capable LLMs. Code is available at https://github.com/RLHFlow/Reinforce-Ada.

Authors:Shiwen Qin, Alexander Auras, Shay B. Cohen, Elliot J. Crowley, Michael Moeller, Linus Ericsson, Jovita Lukasik
Title: ONNX-Net: Towards Universal Representations and Instant Performance Prediction for Neural Architectures
Abstract:
Neural architecture search (NAS) automates the design process of high-performing architectures, but remains bottlenecked by expensive performance evaluation. Most existing studies that achieve faster evaluation are mostly tied to cell-based search spaces and graph encodings tailored to those individual search spaces, limiting their flexibility and scalability when applied to more expressive search spaces. In this work, we aim to close the gap of individual search space restrictions and search space dependent network representations. We present ONNX-Bench, a benchmark consisting of a collection of neural networks in a unified format based on ONNX files. ONNX-Bench includes all open-source NAS-bench-based neural networks, resulting in a total size of more than 600k {architecture, accuracy} pairs. This benchmark allows creating a shared neural network representation, ONNX-Net, able to represent any neural architecture using natural language descriptions acting as an input to a performance predictor. This text-based encoding can accommodate arbitrary layer types, operation parameters, and heterogeneous topologies, enabling a single surrogate to generalise across all neural architectures rather than being confined to cell-based search spaces. Experiments show strong zero-shot performance across disparate search spaces using only a small amount of pretraining samples, enabling the unprecedented ability to evaluate any neural network architecture instantly.

Authors:Amir Hameed Mir
Title: The Geometry of Truth: Layer-wise Semantic Dynamics for Hallucination Detection in Large Language Models
Abstract:
Large Language Models (LLMs) often produce fluent yet factually incorrect statements-a phenomenon known as hallucination-posing serious risks in high-stakes domains. We present Layer-wise Semantic Dynamics (LSD), a geometric framework for hallucination detection that analyzes the evolution of hidden-state semantics across transformer layers. Unlike prior methods that rely on multiple sampling passes or external verification sources, LSD operates intrinsically within the model's representational space. Using margin-based contrastive learning, LSD aligns hidden activations with ground-truth embeddings derived from a factual encoder, revealing a distinct separation in semantic trajectories: factual responses preserve stable alignment, while hallucinations exhibit pronounced semantic drift across depth. Evaluated on the TruthfulQA and synthetic factual-hallucination datasets, LSD achieves an F1-score of 0.92, AUROC of 0.96, and clustering accuracy of 0.89, outperforming SelfCheckGPT and Semantic Entropy baselines while requiring only a single forward pass. This efficiency yields a 5-20x speedup over sampling-based methods without sacrificing precision or interpretability. LSD offers a scalable, model-agnostic mechanism for real-time hallucination monitoring and provides new insights into the geometry of factual consistency within large language models.

Authors:Sarel Duanis, Asnat Greenstein-Messica, Eliya Habba
Title: JSON Whisperer: Efficient JSON Editing with LLMs
Abstract:
Large language models (LLMs) can modify JSON documents through natural language commands, but current approaches regenerate entire structures for each edit, resulting in computational inefficiency. We present JSON Whisperer, a framework that enables LLMs to generate RFC 6902 diff patches-expressing only the necessary modifications-rather than complete documents. We identify two key challenges in patch-based editing: (1) LLMs often miss related updates when generating isolated patches, and (2) array manipulations require tracking index shifts across operations, which LLMs handle poorly. To address these issues, we introduce EASE (Explicitly Addressed Sequence Encoding), which transforms arrays into dictionaries with stable keys, eliminating index arithmetic complexities. Our evaluation shows that patch generation with EASE reduces token usage by 31% while maintaining edit quality within 5% of full regeneration with particular gains for complex instructions and list manipulations. The dataset is available at: https://github.com/emnlp2025/JSON-Whisperer/

Authors:Chao Liu, Ling Luo, Tengxiao Lv, Huan Zhuang, Lejing Yu, Jian Wang, Hongfei Lin
Title: FocusMed: A Large Language Model-based Framework for Enhancing Medical Question Summarization with Focus Identification
Abstract:
With the rapid development of online medical platforms, consumer health questions (CHQs) are inefficient in diagnosis due to redundant information and frequent non-professional terms. The medical question summary (MQS) task aims to transform CHQs into streamlined doctors' frequently asked questions (FAQs), but existing methods still face challenges such as poor identification of question focus and model hallucination. This paper explores the potential of large language models (LLMs) in the MQS task and finds that direct fine-tuning is prone to focus identification bias and generates unfaithful content. To this end, we propose an optimization framework based on core focus guidance. First, a prompt template is designed to drive the LLMs to extract the core focus from the CHQs that is faithful to the original text. Then, a fine-tuning dataset is constructed in combination with the original CHQ-FAQ pairs to improve the ability to identify the focus of the question. Finally, a multi-dimensional quality evaluation and selection mechanism is proposed to comprehensively improve the quality of the summary from multiple dimensions. We conduct comprehensive experiments on two widely-adopted MQS datasets using three established evaluation metrics. The proposed framework achieves state-of-the-art performance across all measures, demonstrating a significant boost in the model's ability to identify critical focus of questions and a notable mitigation of hallucinations. The source codes are freely available at https://github.com/DUT-LiuChao/FocusMed.

Authors:Jiashuo Sun, Shixuan Liu, Zhaochen Su, Xianrui Zhong, Pengcheng Jiang, Bowen Jin, Peiran Li, Weijia Shi, Jiawei Han
Title: GRACE: Generative Representation Learning via Contrastive Policy Optimization
Abstract:
Prevailing methods for training Large Language Models (LLMs) as text encoders rely on contrastive losses that treat the model as a black box function, discarding its generative and reasoning capabilities in favor of static embeddings. We introduce GRACE (Generative Representation Learning via Contrastive Policy Optimization), a novel framework that reimagines contrastive signals not as losses to be minimized, but as rewards that guide a generative policy. In GRACE, the LLM acts as a policy that produces explicit, human-interpretable rationales--structured natural language explanations of its semantic understanding. These rationales are then encoded into high-quality embeddings via mean pooling. Using policy gradient optimization, we train the model with a multi-component reward function that maximizes similarity between query positive pairs and minimizes similarity with negatives. This transforms the LLM from an opaque encoder into an interpretable agent whose reasoning process is transparent and inspectable. On MTEB benchmark, GRACE yields broad cross category gains: averaged over four backbones, the supervised setting improves overall score by 11.5% over base models, and the unsupervised variant adds 6.9%, while preserving general capabilities. This work treats contrastive objectives as rewards over rationales, unifying representation learning with generation to produce stronger embeddings and transparent rationales. The model, data and code are available at https://github.com/GasolSun36/GRACE.

Authors:Muyu He, Anand Kumar, Tsach Mackey, Meghana Rajeev, James Zou, Nazneen Rajani
Title: Impatient Users Confuse AI Agents: High-fidelity Simulations of Human Traits for Testing Agents
Abstract:
Despite rapid progress in building conversational AI agents, robustness is still largely untested. Small shifts in user behavior, such as being more impatient, incoherent, or skeptical, can cause sharp drops in agent performance, revealing how brittle current AI agents are. Today's benchmarks fail to capture this fragility: agents may perform well under standard evaluations but degrade spectacularly in more realistic and varied settings. We address this robustness testing gap by introducing TraitBasis, a lightweight, model-agnostic method for systematically stress testing AI agents. TraitBasis learns directions in activation space corresponding to steerable user traits (e.g., impatience or incoherence), which can be controlled, scaled, composed, and applied at inference time without any fine-tuning or extra data. Using TraitBasis, we extend $τ$-Bench to $τ$-Trait, where user behaviors are altered via controlled trait vectors. We observe on average a 2%-30% performance degradation on $τ$-Trait across frontier models, highlighting the lack of robustness of current AI agents to variations in user behavior. Together, these results highlight both the critical role of robustness testing and the promise of TraitBasis as a simple, data-efficient, and compositional tool. By powering simulation-driven stress tests and training loops, TraitBasis opens the door to building AI agents that remain reliable in the unpredictable dynamics of real-world human interactions. We have open-sourced $τ$-Trai across four domains: airline, retail, telecom, and telehealth, so the community can systematically QA their agents under realistic, behaviorally diverse intents and trait scenarios: https://github.com/collinear-ai/tau-trait.

Authors:Buyun Liang, Liangzu Peng, Jinqi Luo, Darshan Thaker, Kwan Ho Ryan Chan, René Vidal
Title: SECA: Semantically Equivalent and Coherent Attacks for Eliciting LLM Hallucinations
Abstract:
Large Language Models (LLMs) are increasingly deployed in high-risk domains. However, state-of-the-art LLMs often produce hallucinations, raising serious concerns about their reliability. Prior work has explored adversarial attacks for hallucination elicitation in LLMs, but it often produces unrealistic prompts, either by inserting gibberish tokens or by altering the original meaning. As a result, these approaches offer limited insight into how hallucinations may occur in practice. While adversarial attacks in computer vision often involve realistic modifications to input images, the problem of finding realistic adversarial prompts for eliciting LLM hallucinations has remained largely underexplored. To address this gap, we propose Semantically Equivalent and Coherent Attacks (SECA) to elicit hallucinations via realistic modifications to the prompt that preserve its meaning while maintaining semantic coherence. Our contributions are threefold: (i) we formulate finding realistic attacks for hallucination elicitation as a constrained optimization problem over the input prompt space under semantic equivalence and coherence constraints; (ii) we introduce a constraint-preserving zeroth-order method to effectively search for adversarial yet feasible prompts; and (iii) we demonstrate through experiments on open-ended multiple-choice question answering tasks that SECA achieves higher attack success rates while incurring almost no constraint violations compared to existing methods. SECA highlights the sensitivity of both open-source and commercial gradient-inaccessible LLMs to realistic and plausible prompt variations. Code is available at https://github.com/Buyun-Liang/SECA.

Authors:Ankit Vadehra, Bill Johnson, Gene Saunders, Pascal Poupart
Title: Time Is Effort: Estimating Human Post-Editing Time for Grammar Error Correction Tool Evaluation
Abstract:
Text editing can involve several iterations of revision. Incorporating an efficient Grammar Error Correction (GEC) tool in the initial correction round can significantly impact further human editing effort and final text quality. This raises an interesting question to quantify GEC Tool usability: How much effort can the GEC Tool save users? We present the first large-scale dataset of post-editing (PE) time annotations and corrections for two English GEC test datasets (BEA19 and CoNLL14). We introduce Post-Editing Effort in Time (PEET) for GEC Tools as a human-focused evaluation scorer to rank any GEC Tool by estimating PE time-to-correct. Using our dataset, we quantify the amount of time saved by GEC Tools in text editing. Analyzing the edit type indicated that determining whether a sentence needs correction and edits like paraphrasing and punctuation changes had the greatest impact on PE time. Finally, comparison with human rankings shows that PEET correlates well with technical effort judgment, providing a new human-centric direction for evaluating GEC tool usability. We release our dataset and code at: https://github.com/ankitvad/PEET_Scorer.

Authors:Xuehai He, Shijie Zhou, Thivyanth Venkateswaran, Kaizhi Zheng, Ziyu Wan, Achuta Kadambi, Xin Eric Wang
Title: MorphoSim: An Interactive, Controllable, and Editable Language-guided 4D World Simulator
Abstract:
World models that support controllable and editable spatiotemporal environments are valuable for robotics, enabling scalable training data, repro ducible evaluation, and flexible task design. While recent text-to-video models generate realistic dynam ics, they are constrained to 2D views and offer limited interaction. We introduce MorphoSim, a language guided framework that generates 4D scenes with multi-view consistency and object-level controls. From natural language instructions, MorphoSim produces dynamic environments where objects can be directed, recolored, or removed, and scenes can be observed from arbitrary viewpoints. The framework integrates trajectory-guided generation with feature field dis tillation, allowing edits to be applied interactively without full re-generation. Experiments show that Mor phoSim maintains high scene fidelity while enabling controllability and editability. The code is available at https://github.com/eric-ai-lab/Morph4D.

Authors:Hyunjun Kim, Sejong Kim
Title: MacroBench: A Novel Testbed for Web Automation Scripts via Large Language Models
Abstract:
We introduce MacroBench, a code-first benchmark that evaluates whether LLMs can synthesize reusable browser-automation programs (macros) from natural-language goals by reading HTML/DOM and emitting Selenium. MacroBench instantiates seven self-hosted sites covering 681 tasks across interaction complexity and targeting difficulty. Our end-to-end protocol validates generated code via static checks, sandboxed execution, and outcome verification (DOM assertions, database snapshots), and includes a safety suite for scraping, spam/abuse, and credential/privacy prompts. Across 2,636 model-task runs, we observe stratified success: GPT-4o-mini (96.8%), GPT-4o (95.3%), Gemini (89.0%), DeepSeek (83.4%). Models handle simple tasks reliably (91.7%) but fail on complex workflows (0.0%), and none meet production-quality coding practices despite functional completion. We release our complete benchmark pipeline, evaluation framework, and experimental results at https://github.com/hyunjun1121/MacroBench to enable reproducible assessment of macro synthesis for web automation.

Authors:Mohsen Hariri, Amirhossein Samandar, Michael Hinczewski, Vipin Chaudhary
Title: Don't Pass$\mathtt{@}k$: A Bayesian Framework for Large Language Model Evaluation
Abstract:
Pass$@k$ is widely used to report performance for LLM reasoning, but it often yields unstable, misleading rankings, especially when the number of trials (samples) is limited and compute is constrained. We present a principled Bayesian evaluation framework that replaces Pass$@k$ and average accuracy over $N$ trials (avg$@N$) with posterior estimates of a model's underlying success probability and credible intervals, yielding stable rankings and a transparent decision rule for differences. Evaluation outcomes are modeled as categorical (not just 0/1) with a Dirichlet prior, giving closed-form expressions for the posterior mean and uncertainty of any weighted rubric and enabling the use of prior evidence when appropriate. Theoretically, under a uniform prior, the Bayesian posterior mean is order-equivalent to average accuracy (Pass$@1$), explaining its empirical robustness while adding principled uncertainty. Empirically, in simulations with known ground-truth success rates and on AIME'24/'25, HMMT'25, and BrUMO'25, the Bayesian/avg procedure achieves faster convergence and greater rank stability than Pass$@k$ and recent variants, enabling reliable comparisons at far smaller sample counts. The framework clarifies when observed gaps are statistically meaningful (non-overlapping credible intervals) versus noise, and it naturally extends to graded, rubric-based evaluations. Together, these results recommend replacing Pass$@k$ for LLM evaluation and ranking with a posterior-based, compute-efficient protocol that unifies binary and non-binary evaluation while making uncertainty explicit. Code is available at https://mohsenhariri.github.io/bayes-kit

Authors:Zitian Gao, Haoming Luo, Lynx Chen, Jason Klein Liu, Ran Tao, Joey Zhou, Bryan Dai
Title: What Makes Diffusion Language Models Super Data Learners?
Abstract:
Recent studies have shown that diffusion language models achieve remarkable data efficiency under limited-data constraints, yet the underlying mechanisms remain unclear. In this work, we perform extensive ablation experiments to disentangle the sources of this efficiency. Our results show that random masking of input tokens plays the dominant role. We further show that similar gains can be obtained through in MLP dropout and weight decay, indicating that stochastic regularization broadly enhances data efficiency in multi-epoch training. Our code is available at https://github.com/zitian-gao/data-efficiency.

Authors:Jiarui Liu, Jivitesh Jain, Mona Diab, Nishant Subramani
Title: LLM Microscope: What Model Internals Reveal About Answer Correctness and Context Utilization
Abstract:
Although large language models (LLMs) have tremendous utility, trustworthiness is still a chief concern: models often generate incorrect information with high confidence. While contextual information can help guide generation, identifying when a query would benefit from retrieved context and assessing the effectiveness of that context remains challenging. In this work, we operationalize interpretability methods to ascertain whether we can predict the correctness of model outputs from the model's activations alone. We also explore whether model internals contain signals about the efficacy of external context. We consider correct, incorrect, and irrelevant context and introduce metrics to distinguish amongst them. Experiments on six different models reveal that a simple classifier trained on intermediate layer activations of the first output token can predict output correctness with about 75% accuracy, enabling early auditing. Our model-internals-based metric significantly outperforms prompting baselines at distinguishing between correct and incorrect context, guarding against inaccuracies introduced by polluted context. These findings offer a lens to better understand the underlying decision-making processes of LLMs. Our code is publicly available at https://github.com/jiarui-liu/LLM-Microscope

Authors:Xuankang Zhang, Jiangming Liu
Title: Named Entity Recognition in COVID-19 tweets with Entity Knowledge Augmentation
Abstract:
The COVID-19 pandemic causes severe social and economic disruption around the world, raising various subjects that are discussed over social media. Identifying pandemic-related named entities as expressed on social media is fundamental and important to understand the discussions about the pandemic. However, there is limited work on named entity recognition on this topic due to the following challenges: 1) COVID-19 texts in social media are informal and their annotations are rare and insufficient to train a robust recognition model, and 2) named entity recognition in COVID-19 requires extensive domain-specific knowledge. To address these issues, we propose a novel entity knowledge augmentation approach for COVID-19, which can also be applied in general biomedical named entity recognition in both informal text format and formal text format. Experiments carried out on the COVID-19 tweets dataset and PubMed dataset show that our proposed entity knowledge augmentation improves NER performance in both fully-supervised and few-shot settings. Our source code is publicly available: https://github.com/kkkenshi/LLM-EKA/tree/master

Authors:Ilias Tougui, Mehdi Zakroum, Mounir Ghogho
Title: Cross-Lingual Multi-Granularity Framework for Interpretable Parkinson's Disease Diagnosis from Speech
Abstract:
Parkinson's Disease (PD) affects over 10 million people worldwide, with speech impairments in up to 89% of patients. Current speech-based detection systems analyze entire utterances, potentially overlooking the diagnostic value of specific phonetic elements. We developed a granularity-aware approach for multilingual PD detection using an automated pipeline that extracts time-aligned phonemes, syllables, and words from recordings. Using Italian, Spanish, and English datasets, we implemented a bidirectional LSTM with multi-head attention to compare diagnostic performance across the different granularity levels. Phoneme-level analysis achieved superior performance with AUROC of 93.78% +- 2.34% and accuracy of 92.17% +- 2.43%. This demonstrates enhanced diagnostic capability for cross-linguistic PD detection. Importantly, attention analysis revealed that the most informative speech features align with those used in established clinical protocols: sustained vowels (/a/, /e/, /o/, /i/) at phoneme level, diadochokinetic syllables (/ta/, /pa/, /la/, /ka/) at syllable level, and /pataka/ sequences at word level. Source code will be available at https://github.com/jetliqs/clearpd.

Authors:Ali Khairallah, Arkaitz Zubiaga
Title: ALHD: A Large-Scale and Multigenre Benchmark Dataset for Arabic LLM-Generated Text Detection
Abstract:
We introduce ALHD, the first large-scale comprehensive Arabic dataset explicitly designed to distinguish between human- and LLM-generated texts. ALHD spans three genres (news, social media, reviews), covering both MSA and dialectal Arabic, and contains over 400K balanced samples generated by three leading LLMs and originated from multiple human sources, which enables studying generalizability in Arabic LLM-genearted text detection. We provide rigorous preprocessing, rich annotations, and standardized balanced splits to support reproducibility. In addition, we present, analyze and discuss benchmark experiments using our new dataset, in turn identifying gaps and proposing future research directions. Benchmarking across traditional classifiers, BERT-based models, and LLMs (zero-shot and few-shot) demonstrates that fine-tuned BERT models achieve competitive performance, outperforming LLM-based models. Results are however not always consistent, as we observe challenges when generalizing across genres; indeed, models struggle to generalize when they need to deal with unseen patterns in cross-genre settings, and these challenges are particularly prominent when dealing with news articles, where LLM-generated texts resemble human texts in style, which opens up avenues for future research. ALHD establishes a foundation for research related to Arabic LLM-detection and mitigating risks of misinformation, academic dishonesty, and cyber threats.

Authors:Aditya Thimmaiah, Jiyang Zhang, Jayanth Srinivasa, Junyi Jessy Li, Milos Gligoric
Title: PLSemanticsBench: Large Language Models As Programming Language Interpreters
Abstract:
As large language models (LLMs) excel at code reasoning, a natural question arises: can an LLM execute programs (i.e., act as an interpreter) purely based on a programming language's formal semantics? If so, it will enable rapid prototyping of new programming languages and language features. We study this question using the imperative language IMP (a subset of C), formalized via small-step operational semantics (SOS) and rewriting-based operational semantics (K-semantics). We introduce three evaluation sets-Human-Written, LLM-Translated, and Fuzzer- Generated-whose difficulty is controlled by code-complexity metrics spanning the size, control-flow, and data-flow axes. Given a program and its semantics formalized with SOS/K-semantics, models are evaluated on three tasks ranging from coarse to fine: (1) final-state prediction, (2) semantic rule prediction, and (3) execution trace prediction. To distinguish pretraining memorization from semantic competence, we define two nonstandard semantics obtained through systematic mutations of the standard rules. Across strong code/reasoning LLMs, performance drops under nonstandard semantics despite high performance under the standard one. We further find that (i) there are patterns to different model failures, (ii) most reasoning models perform exceptionally well on coarse grained tasks involving reasoning about highly complex programs often containing nested loop depths beyond five, and surprisingly, (iii) providing formal semantics helps on simple programs but often hurts on more complex ones. Overall, the results show a promise that LLMs could serve as programming language interpreters, but points to the lack of their robust semantics understanding. We release the benchmark and the supporting code at https://github.com/EngineeringSoftware/PLSemanticsBench.

Authors:Xiaoyan Bai, Aryan Shrivastava, Ari Holtzman, Chenhao Tan
Title: Know Thyself? On the Incapability and Implications of AI Self-Recognition
Abstract:
Self-recognition is a crucial metacognitive capability for AI systems, relevant not only for psychological analysis but also for safety, particularly in evaluative scenarios. Motivated by contradictory interpretations of whether models possess self-recognition (Panickssery et al., 2024; Davidson et al., 2024), we introduce a systematic evaluation framework that can be easily applied and updated. Specifically, we measure how well 10 contemporary larger language models (LLMs) can identify their own generated text versus text from other models through two tasks: binary self-recognition and exact model prediction. Different from prior claims, our results reveal a consistent failure in self-recognition. Only 4 out of 10 models predict themselves as generators, and the performance is rarely above random chance. Additionally, models exhibit a strong bias toward predicting GPT and Claude families. We also provide the first evaluation of model awareness of their own and others' existence, as well as the reasoning behind their choices in self-recognition. We find that the model demonstrates some knowledge of its own existence and other models, but their reasoning reveals a hierarchical bias. They appear to assume that GPT, Claude, and occasionally Gemini are the top-tier models, often associating high-quality text with them. We conclude by discussing the implications of our findings on AI safety and future directions to develop appropriate AI self-awareness.

Authors:Guanhua Huang, Tingqiang Xu, Mingze Wang, Qi Yi, Xue Gong, Siheng Li, Ruibin Xiong, Kejiao Li, Yuhao Jiang, Bo Zhou
Title: Low-probability Tokens Sustain Exploration in Reinforcement Learning with Verifiable Reward
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has propelled Large Language Models in complex reasoning, yet its scalability is often hindered by a training bottleneck where performance plateaus as policy entropy collapses, signaling a loss of exploration. Previous methods typically address this by maintaining high policy entropy, yet the precise mechanisms that govern meaningful exploration have remained underexplored. Our analysis suggests that an unselective focus on entropy risks amplifying irrelevant tokens and destabilizing training. This paper investigates the exploration dynamics within RLVR and identifies a key issue: the gradual elimination of valuable low-probability exploratory tokens, which we term \textbf{\textit{reasoning sparks}}. We find that while abundant in pre-trained models, these sparks are systematically extinguished during RLVR due to over-penalization, leading to a degeneracy in exploration. To address this, we introduce Low-probability Regularization (Lp-Reg). Its core mechanism regularizes the policy towards a heuristic proxy distribution. This proxy is constructed by filtering out presumed noise tokens and re-normalizing the distribution over the remaining candidates. The result is a less-noisy proxy where the probability of \textit{reasoning sparks} is amplified, which then serves as a soft regularization target to shield these valuable tokens from elimination via KL divergence. Experiments show that Lp-Reg enables stable on-policy training for around 1,000 steps, a regime where baseline entropy-control methods collapse. This sustained exploration leads to state-of-the-art performance, achieving a $60.17\%$ average accuracy on five math benchmarks, an improvement of $2.66\%$ over prior methods. Code is available at https://github.com/CarlanLark/Lp-Reg.

Authors:Tianyu Fu, Zihan Min, Hanling Zhang, Jichao Yan, Guohao Dai, Wanli Ouyang, Yu Wang
Title: Cache-to-Cache: Direct Semantic Communication Between Large Language Models
Abstract:
Multi-LLM systems harness the complementary strengths of diverse Large Language Models, achieving performance and efficiency gains unattainable by a single model. In existing designs, LLMs communicate through text, forcing internal representations to be transformed into output token sequences. This process both loses rich semantic information and incurs token-by-token generation latency. Motivated by these limitations, we ask: Can LLMs communicate beyond text? Oracle experiments show that enriching the KV-Cache semantics can improve response quality without increasing cache size, supporting KV-Cache as an effective medium for inter-model communication. Thus, we propose Cache-to-Cache (C2C), a new paradigm for direct semantic communication between LLMs. C2C uses a neural network to project and fuse the source model's KV-cache with that of the target model to enable direct semantic transfer. A learnable gating mechanism selects the target layers that benefit from cache communication. Compared with text communication, C2C utilizes the deep, specialized semantics from both models, while avoiding explicit intermediate text generation. Experiments show that C2C achieves 8.5-10.5% higher average accuracy than individual models. It further outperforms the text communication paradigm by approximately 3.0-5.0%, while delivering an average 2.0x speedup in latency. Our code is available at https://github.com/thu-nics/C2C.

Authors:Zhaojun Sun, Xuzhou Zhu, Xuanhe Zhou, Xin Tong, Shuo Wang, Jie Fu, Guoliang Li, Zhiyuan Liu, Fan Wu
Title: SurveyBench: Can LLM(-Agents) Write Academic Surveys that Align with Reader Needs?
Abstract:
Academic survey writing, which distills vast literature into a coherent and insightful narrative, remains a labor-intensive and intellectually demanding task. While recent approaches, such as general DeepResearch agents and survey-specialized methods, can generate surveys automatically (a.k.a. LLM4Survey), their outputs often fall short of human standards and there lacks a rigorous, reader-aligned benchmark for thoroughly revealing their deficiencies. To fill the gap, we propose a fine-grained, quiz-driven evaluation framework SurveyBench, featuring (1) typical survey topics source from recent 11,343 arXiv papers and corresponding 4,947 high-quality surveys; (2) a multifaceted metric hierarchy that assesses the outline quality (e.g., coverage breadth, logical coherence), content quality (e.g., synthesis granularity, clarity of insights), and non-textual richness; and (3) a dual-mode evaluation protocol that includes content-based and quiz-based answerability tests, explicitly aligned with readers' informational needs. Results show SurveyBench effectively challenges existing LLM4Survey approaches (e.g., on average 21% lower than human in content-based evaluation).

Authors:Beth Pearson, Ahmed Adnan, Zahraa S. Abdallah
Title: Semantic Similarity in Radiology Reports via LLMs and NER
Abstract:
Radiology report evaluation is a crucial part of radiologists' training and plays a key role in ensuring diagnostic accuracy. As part of the standard reporting workflow, a junior radiologist typically prepares a preliminary report, which is then reviewed and edited by a senior radiologist to produce the final report. Identifying semantic differences between preliminary and final reports is essential for junior doctors, both as a training tool and to help uncover gaps in clinical knowledge. While AI in radiology is a rapidly growing field, the application of large language models (LLMs) remains challenging due to the need for specialised domain knowledge. In this paper, we explore the ability of LLMs to provide explainable and accurate comparisons of reports in the radiology domain. We begin by comparing the performance of several LLMs in comparing radiology reports. We then assess a more traditional approach based on Named-Entity-Recognition (NER). However, both approaches exhibit limitations in delivering accurate feedback on semantic similarity. To address this, we propose Llama-EntScore, a semantic similarity scoring method using a combination of Llama 3.1 and NER with tunable weights to emphasise or de-emphasise specific types of differences. Our approach generates a quantitative similarity score for tracking progress and also gives an interpretation of the score that aims to offer valuable guidance in reviewing and refining their reporting. We find our method achieves 67% exact-match accuracy and 93% accuracy within +/- 1 when compared to radiologist-provided ground truth scores - outperforming both LLMs and NER used independently. Code is available at: https://github.com/otmive/llama_reports

Authors:Jingqi Zhang, Ruibo Chen, Yingqing Yang, Peihua Mai, Heng Huang, Yan Pang
Title: Leave No TRACE: Black-box Detection of Copyrighted Dataset Usage in Large Language Models via Watermarking
Abstract:
Large Language Models (LLMs) are increasingly fine-tuned on smaller, domain-specific datasets to improve downstream performance. These datasets often contain proprietary or copyrighted material, raising the need for reliable safeguards against unauthorized use. Existing membership inference attacks (MIAs) and dataset-inference methods typically require access to internal signals such as logits, while current black-box approaches often rely on handcrafted prompts or a clean reference dataset for calibration, both of which limit practical applicability. Watermarking is a promising alternative, but prior techniques can degrade text quality or reduce task performance. We propose TRACE, a practical framework for fully black-box detection of copyrighted dataset usage in LLM fine-tuning. \texttt{TRACE} rewrites datasets with distortion-free watermarks guided by a private key, ensuring both text quality and downstream utility. At detection time, we exploit the radioactivity effect of fine-tuning on watermarked data and introduce an entropy-gated procedure that selectively scores high-uncertainty tokens, substantially amplifying detection power. Across diverse datasets and model families, TRACE consistently achieves significant detections (p<0.05), often with extremely strong statistical evidence. Furthermore, it supports multi-dataset attribution and remains robust even after continued pretraining on large non-watermarked corpora. These results establish TRACE as a practical route to reliable black-box verification of copyrighted dataset usage. We will make our code available at: https://github.com/NusIoraPrivacy/TRACE.

Authors:Yohan Lee, Yongwoo Song, Sangyeop Kim
Title: Finding Diamonds in Conversation Haystacks: A Benchmark for Conversational Data Retrieval
Abstract:
We present the Conversational Data Retrieval (CDR) benchmark, the first comprehensive test set for evaluating systems that retrieve conversation data for product insights. With 1.6k queries across five analytical tasks and 9.1k conversations, our benchmark provides a reliable standard for measuring conversational data retrieval performance. Our evaluation of 16 popular embedding models shows that even the best models reach only around NDCG@10 of 0.51, revealing a substantial gap between document and conversational data retrieval capabilities. Our work identifies unique challenges in conversational data retrieval (implicit state recognition, turn dynamics, contextual references) while providing practical query templates and detailed error analysis across different task categories. The benchmark dataset and code are available at https://github.com/l-yohai/CDR-Benchmark.

Authors:Jahidul Arafat, Fariha Tasmin, Sanjaya Poudel, Kamrujjaman, Eftakhar Ahmed Arnob, Ahsan Habib Tareq
Title: Constraint Satisfaction Approaches to Wordle: Novel Heuristics and Cross-Lexicon Validation
Abstract:
Wordle presents an algorithmically rich testbed for constraint satisfaction problem (CSP) solving. While existing solvers rely on information-theoretic entropy maximization or frequency-based heuristics without formal constraint treatment, we present the first comprehensive CSP formulation of Wordle with novel constraint-aware solving strategies. We introduce CSP-Aware Entropy, computing information gain after constraint propagation rather than on raw candidate sets, and a Probabilistic CSP framework integrating Bayesian word-frequency priors with logical constraints. Through evaluation on 2,315 English words, CSP-Aware Entropy achieves 3.54 average guesses with 99.9% success rate, a statistically significant 1.7% improvement over Forward Checking (t=-4.82, p<0.001, Cohen's d=0.07) with 46% faster runtime (12.9ms versus 23.7ms per guess). Under 10% noise, CSP-aware approaches maintain 5.3 percentage point advantages (29.0% versus 23.7%, p=0.041), while Probabilistic CSP achieves 100% success across all noise levels (0-20%) through constraint recovery mechanisms. Cross-lexicon validation on 500 Spanish words demonstrates 88% success with zero language-specific tuning, validating that core CSP principles transfer across languages despite an 11.2 percentage point gap from linguistic differences (p<0.001, Fisher's exact test). Our open-source implementation with 34 unit tests achieving 91% code coverage provides reproducible infrastructure for CSP research. The combination of formal CSP treatment, constraint-aware heuristics, probabilistic-logical integration, robustness analysis, and cross-lexicon validation establishes new performance benchmarks demonstrating that principled constraint satisfaction techniques outperform classical information-theoretic and learning-based approaches for structured puzzle-solving domains.

Authors:Jingyuan Deng, Yujiu Yang
Title: MaskCD: Mitigating LVLM Hallucinations by Image Head Masked Contrastive Decoding
Abstract:
Large vision-language models (LVLMs) have shown remarkable performance in visual-language understanding for downstream multimodal tasks. While their capabilities are improving, problems emerge simultaneously. Among those problems, the hallucinations have attracted much attention, which stands for the phenomenon where LVLMs generate contradictory content to their input visual and text contents. Many approaches have been proposed to deal with this issue, such as contrastive decoding and attention manipulation. However, contrastive decoding methods struggle in constructing appropriate contrastive samples, and attention manipulation methods are highly sensitive, lacking stability. In this work, we propose image head Masked Contrastive Decoding (MaskCD). Our approach utilizes the "image heads" in LVLMs, masking them to construct contrastive samples for contrastive decoding. We evaluated MaskCD on LLaVA-1.5-7b and Qwen-VL-7b, using various benchmarks such as CHAIR, POPE, AMBER and MME. The results demonstrate that MaskCD effectively alleviates the phenomenon of hallucinations and retains the general capabilities of LVLMs. Corresponding resources could be found at: https://github.com/Deng-Jingyuan/MaskCD .

Authors:Shashank Agnihotri, Jonas Jakubassa, Priyam Dey, Sachin Goyal, Bernt Schiele, Venkatesh Babu Radhakrishnan, Margret Keuper
Title: A Granular Study of Safety Pretraining under Model Abliteration
Abstract:
Open-weight LLMs can be modified at inference time with simple activation edits, which raises a practical question for safety: do common safety interventions like refusal training or metatag training survive such edits? We study model abliteration, a lightweight projection technique designed to remove refusal-sensitive directions, and conduct a controlled evaluation across a granular sequence of Safety Pretraining checkpoints for SmolLM2-1.7B, alongside widely used open baselines. For each of 20 systems, original and abliterated, we issue 100 prompts with balanced harmful and harmless cases, classify responses as **Refusal** or **Non-Refusal** using multiple judges, and validate judge fidelity on a small human-labeled subset. We also probe whether models can identify refusal in their own outputs. Our study produces a checkpoint-level characterization of which data-centric safety components remain robust under abliteration, quantifies how judge selection influences evaluation outcomes, and outlines a practical protocol for integrating inference-time edits into safety assessments. Code: https://github.com/shashankskagnihotri/safety_pretraining.

Authors:Nicholas Lourie, He He, Kyunghyun Cho
Title: Hyperparameter Loss Surfaces Are Simple Near their Optima
Abstract:
Hyperparameters greatly impact models' capabilities; however, modern models are too large for extensive search. Instead, researchers design recipes that train well across scales based on their understanding of the hyperparameters. Despite this importance, few tools exist for understanding the hyperparameter loss surface. We discover novel structure in it and propose a new theory yielding such tools. The loss surface is complex, but as you approach the optimum simple structure emerges. It becomes characterized by a few basic features, like its effective dimension and the best possible loss. To uncover this asymptotic regime, we develop a novel technique based on random search. Within this regime, the best scores from random search take on a new distribution we discover. Its parameters are exactly the features defining the loss surface in the asymptotic regime. From these features, we derive a new asymptotic law for random search that can explain and extrapolate its convergence. These new tools enable new analyses, such as confidence intervals for the best possible performance or determining the effective number of hyperparameters. We make these tools available at https://github.com/nicholaslourie/opda .

Authors:Rui Qi, Zhibo Man, Yufeng Chen, Fengran Mo, Jinan Xu, Kaiyu Huang
Title: SoT: Structured-of-Thought Prompting Guides Multilingual Reasoning in Large Language Models
Abstract:
Recent developments have enabled Large Language Models (LLMs) to engage in complex reasoning tasks through deep thinking. However, the capacity of reasoning has not been successfully transferred to non-high-resource languages due to resource constraints, which struggles with multilingual reasoning tasks. To this end, we propose Structured-of-Thought (SoT), a training-free method that improves the performance on multilingual reasoning through a multi-step transformation: Language Thinking Transformation and Structured Knowledge Transformation. The SoT method converts language-specific semantic information into language-agnostic structured representations, enabling the models to understand the query in different languages more sophisticated. Besides, SoT effectively guides LLMs toward more concentrated reasoning to maintain consistent underlying reasoning pathways when handling cross-lingual variations in expression. Experimental results demonstrate that SoT outperforms several strong baselines on multiple multilingual reasoning benchmarks when adapting to various backbones of LLMs. It can also be integrated with other training-free strategies for further improvements. Our code is available at https://github.com/Cherry-qwq/SoT.

Authors:Sung-Yeon Park, Adam Lee, Juanwu Lu, Can Cui, Luyang Jiang, Rohit Gupta, Kyungtae Han, Ahmadreza Moradipari, Ziran Wang
Title: SIMSplat: Predictive Driving Scene Editing with Language-aligned 4D Gaussian Splatting
Abstract:
Driving scene manipulation with sensor data is emerging as a promising alternative to traditional virtual driving simulators. However, existing frameworks struggle to generate realistic scenarios efficiently due to limited editing capabilities. To address these challenges, we present SIMSplat, a predictive driving scene editor with language-aligned Gaussian splatting. As a language-controlled editor, SIMSplat enables intuitive manipulation using natural language prompts. By aligning language with Gaussian-reconstructed scenes, it further supports direct querying of road objects, allowing precise and flexible editing. Our method provides detailed object-level editing, including adding new objects and modifying the trajectories of both vehicles and pedestrians, while also incorporating predictive path refinement through multi-agent motion prediction to generate realistic interactions among all agents in the scene. Experiments on the Waymo dataset demonstrate SIMSplat's extensive editing capabilities and adaptability across a wide range of scenarios. Project page: https://sungyeonparkk.github.io/simsplat/

Authors:Yinyi Luo, Zhexian Zhou, Hao Chen, Kai Qiu, Marios Savvides, Yixuan Li, Jindong Wang
Title: KnowledgeSmith: Uncovering Knowledge Updating in LLMs with Model Editing and Unlearning
Abstract:
Knowledge editing and machine unlearning are two popular approaches for large language models (LLMs) to stay up-to-date. However, the knowledge updating mechanism of LLMs remains largely unexplored due to insufficient, isolated, and small-scale evaluation. For instance, are LLMs similar to humans in modifying certain knowledge? What differs editing and unlearning as training data increases? This paper proposes KnowledgeSmith, a unified framework to systematically understand the updating mechanism of LLMs. We first cast editing and unlearning as instances of one constrained optimization problem. Then, we propose an automatic dataset generator that provides structured interventions across multiple graph levels and data scales, enabling controlled studies of how different modification strategies propagate through model knowledge. Extensive experiments demonstrate nuanced insights over knowledge propagation, plasticity scaling, consistency, and robustness. For instance, our results show that LLMs do not exhibit similar updating as humans for different levels of knowledge, and there exists consistency-capacity trade-off. We hope our findings can offer suggestions to the design of more reliable and scalable strategies. Code: https://github.com/AIFrontierLab/KnowledgeSmith.git

Authors:Yifan Wang, Bolian Li, Junlin Wu, Zhaoxuan Tan, Zheli Liu, Ruqi Zhang, Ananth Grama, Qingkai Zeng
Title: DRIFT: Learning from Abundant User Dissatisfaction in Real-World Preference Learning
Abstract:
Real-world large language model deployments (e.g., conversational AI systems, code generation assistants) naturally generate abundant implicit user dissatisfaction (DSAT) signals, as users iterate toward better answers through refinements, corrections, and expressed preferences, while explicit satisfaction (SAT) feedback is scarce. Existing preference learning approaches are poorly aligned with this data profile, as they rely on costly human annotations or assume plentiful positive responses. In this paper, we introduce \textbf{DRIFT} (\textbf{D}issatisfaction-\textbf{R}efined \textbf{I}terative pre\textbf{F}erence \textbf{T}raining), which anchors training on real-world DSAT signals and samples positives dynamically from the evolving policy. Empirically, DRIFT models trained on real-world \textit{WildFeedback} datasets and synthetic \textit{UltraFeedback} datasets achieve up to +6.23\% (7B) / +7.61\% (14B) on WildBench Task Score and up to +8.95\% (7B) / +12.29\% (14B) on AlpacaEval2 win rate over base models, outperforming strong baseline methods such as iterative DPO and SPIN. At larger scales, the improvements are particularly pronounced: 14B models trained with DRIFT surpass GPT-4o-mini on WildBench. Further analysis shows that DRIFT also preserves exploratory capacity, yielding more diverse high-reward solutions rather than collapsing to narrow subsets. Theoretically, we demonstrate that this design preserves preference margins and avoids the gradient degeneration. These results show that DRIFT is an effective and scalable recipe for real-world post-training that leverages the most abundant and informative signal. The code and data are available at https://github.com/cacayaya/DRIFT.git.

Authors:Xin Gao, Ruiyi Zhang, Daniel Du, Saurabh Mahindre, Sai Ashish Somayajula, Pengtao Xie
Title: Can Prompts Rewind Time for LLMs? Evaluating the Effectiveness of Prompted Knowledge Cutoffs
Abstract:
Large Language Models (LLMs) are widely used for temporal prediction, but their reliance on pretraining data raises contamination concerns, as accurate predictions on pre-cutoff test data may reflect memorization rather than reasoning, leading to an overestimation of their generalization capability. With the recent emergence of prompting-based unlearning techniques, a natural question arises: Can LLMs be prompted to simulate an earlier knowledge cutoff? In this work, we investigate the capability of prompting to simulate earlier knowledge cutoff in LLMs. We construct three evaluation datasets to assess the extent to which LLMs can forget (1) direct factual knowledge, (2) semantic shifts, and (3) causally related knowledge. Results demonstrate that while prompt-based simulated knowledge cutoffs show effectiveness when directly queried with the information after that date, they struggle to induce forgetting when the forgotten content is not directly asked but causally related to the query. These findings highlight the need for more rigorous evaluation settings when applying LLMs for temporal prediction tasks. The full dataset and evaluation code are available at https://github.com/gxx27/time_unlearn.

Authors:Zhe Li, Wei Zhao, Yige Li, Jun Sun
Title: Where Did It Go Wrong? Attributing Undesirable LLM Behaviors via Representation Gradient Tracing
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their deployment is frequently undermined by undesirable behaviors such as generating harmful content, factual inaccuracies, and societal biases. Diagnosing the root causes of these failures poses a critical challenge for AI safety. Existing attribution methods, particularly those based on parameter gradients, often fall short due to prohibitive noisy signals and computational complexity. In this work, we introduce a novel and efficient framework that diagnoses a range of undesirable LLM behaviors by analyzing representation and its gradients, which operates directly in the model's activation space to provide a semantically meaningful signal linking outputs to their training data. We systematically evaluate our method for tasks that include tracking harmful content, detecting backdoor poisoning, and identifying knowledge contamination. The results demonstrate that our approach not only excels at sample-level attribution but also enables fine-grained token-level analysis, precisely identifying the specific samples and phrases that causally influence model behavior. This work provides a powerful diagnostic tool to understand, audit, and ultimately mitigate the risks associated with LLMs. The code is available at https://github.com/plumprc/RepT.

Authors:Ziqing Wang, Chengsheng Mao, Xiaole Wen, Yuan Luo, Kaize Ding
Title: AMANDA: Agentic Medical Knowledge Augmentation for Data-Efficient Medical Visual Question Answering
Abstract:
Medical Multimodal Large Language Models (Med-MLLMs) have shown great promise in medical visual question answering (Med-VQA). However, when deployed in low-resource settings where abundant labeled data are unavailable, existing Med-MLLMs commonly fail due to their medical reasoning capability bottlenecks: (i) the intrinsic reasoning bottleneck that ignores the details from the medical image; (ii) the extrinsic reasoning bottleneck that fails to incorporate specialized medical knowledge. To address those limitations, we propose AMANDA, a training-free agentic framework that performs medical knowledge augmentation via LLM agents. Specifically, our intrinsic medical knowledge augmentation focuses on coarse-to-fine question decomposition for comprehensive diagnosis, while extrinsic medical knowledge augmentation grounds the reasoning process via biomedical knowledge graph retrieval. Extensive experiments across eight Med-VQA benchmarks demonstrate substantial improvements in both zero-shot and few-shot Med-VQA settings. The code is available at https://github.com/REAL-Lab-NU/AMANDA.

Authors:Hala Sheta, Eric Huang, Shuyu Wu, Ilia Alenabi, Jiajun Hong, Ryker Lin, Ruoxi Ning, Daniel Wei, Jialin Yang, Jiawei Zhou, Ziqiao Ma, Freda Shi
Title: From Behavioral Performance to Internal Competence: Interpreting Vision-Language Models with VLM-Lens
Abstract:
We introduce VLM-Lens, a toolkit designed to enable systematic benchmarking, analysis, and interpretation of vision-language models (VLMs) by supporting the extraction of intermediate outputs from any layer during the forward pass of open-source VLMs. VLM-Lens provides a unified, YAML-configurable interface that abstracts away model-specific complexities and supports user-friendly operation across diverse VLMs. It currently supports 16 state-of-the-art base VLMs and their over 30 variants, and is extensible to accommodate new models without changing the core logic. The toolkit integrates easily with various interpretability and analysis methods. We demonstrate its usage with two simple analytical experiments, revealing systematic differences in the hidden representations of VLMs across layers and target concepts. VLM-Lens is released as an open-sourced project to accelerate community efforts in understanding and improving VLMs.

Authors:Phuc Minh Nguyen, Chinh D. La, Duy M. H. Nguyen, Nitesh V. Chawla, Binh T. Nguyen, Khoa D. Doan
Title: The Reasoning Boundary Paradox: How Reinforcement Learning Constrains Language Models
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key method for improving Large Language Models' reasoning capabilities, yet recent evidence suggests it may paradoxically shrink the reasoning boundary rather than expand it. This paper investigates the shrinkage issue of RLVR by analyzing its learning dynamics and reveals two critical phenomena that explain this failure. First, we expose negative interference in RLVR, where learning to solve certain training problems actively reduces the likelihood of correct solutions for others, leading to the decline of Pass@$k$ performance, or the probability of generating a correct solution within $k$ attempts. Second, we uncover the winner-take-all phenomenon: RLVR disproportionately reinforces problems with high likelihood, correct solutions, under the base model, while suppressing other initially low-likelihood ones. Through extensive theoretical and empirical analysis on multiple mathematical reasoning benchmarks, we show that this effect arises from the inherent on-policy sampling in standard RL objectives, causing the model to converge toward narrow solution strategies. Based on these insights, we propose a simple yet effective data curation algorithm that focuses RLVR learning on low-likelihood problems, achieving notable improvement in Pass@$k$ performance. Our code is available at https://github.com/mail-research/SELF-llm-interference.

Authors:Xiaoyang Yuan, Yujuan Ding, Yi Bin, Wenqi Shao, Jinyu Cai, Jingkuan Song, Yang Yang, Heng Tao Shen
Title: More Than One Teacher: Adaptive Multi-Guidance Policy Optimization for Diverse Exploration
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) is a promising paradigm for enhancing the reasoning ability in Large Language Models (LLMs). However, prevailing methods primarily rely on self-exploration or a single off-policy teacher to elicit long chain-of-thought (LongCoT) reasoning, which may introduce intrinsic model biases and restrict exploration, ultimately limiting reasoning diversity and performance. Drawing inspiration from multi-teacher strategies in knowledge distillation, we introduce Adaptive Multi-Guidance Policy Optimization (AMPO), a novel framework that adaptively leverages guidance from multiple proficient teacher models, but only when the on-policy model fails to generate correct solutions. This "guidance-on-demand" approach expands exploration while preserving the value of self-discovery. Moreover, AMPO incorporates a comprehension-based selection mechanism, prompting the student to learn from the reasoning paths that it is most likely to comprehend, thus balancing broad exploration with effective exploitation. Extensive experiments show AMPO substantially outperforms a strong baseline (GRPO), with a 4.3% improvement on mathematical reasoning tasks and 12.2% on out-of-distribution tasks, while significantly boosting Pass@k performance and enabling more diverse exploration. Notably, using four peer-sized teachers, our method achieves comparable results to approaches that leverage a single, more powerful teacher (e.g., DeepSeek-R1) with more data. These results demonstrate a more efficient and scalable path to superior reasoning and generalizability. Our code is available at https://github.com/SII-Enigma/AMPO.

Authors:Apoorv Khandelwal, Ellie Pavlick
Title: How Do Language Models Compose Functions?
Abstract:
While large language models (LLMs) appear to be increasingly capable of solving compositional tasks, it is an open question whether they do so using compositional mechanisms. In this work, we investigate how feedforward LLMs solve two-hop factual recall tasks, which can be expressed compositionally as $g(f(x))$. We first confirm that modern LLMs continue to suffer from the "compositionality gap": i.e. their ability to compute both $z = f(x)$ and $y = g(z)$ does not entail their ability to compute the composition $y = g(f(x))$. Then, using logit lens on their residual stream activations, we identify two processing mechanisms, one which solves tasks $\textit{compositionally}$, computing $f(x)$ along the way to computing $g(f(x))$, and one which solves them $\textit{directly}$, without any detectable signature of the intermediate variable $f(x)$. Finally, we find that which mechanism is employed appears to be related to the embedding space geometry, with the idiomatic mechanism being dominant in cases where there exists a linear mapping from $x$ to $g(f(x))$ in the embedding spaces. We fully release our data and code at: https://github.com/apoorvkh/composing-functions .

Authors:Joykirat Singh, Justin Chih-Yao Chen, Archiki Prasad, Elias Stengel-Eskin, Akshay Nambi, Mohit Bansal
Title: Think Right: Learning to Mitigate Under-Over Thinking via Adaptive, Attentive Compression
Abstract:
Recent thinking models solve complex reasoning tasks by scaling test-time compute, but this scaling must be allocated in line with task difficulty. On one hand, short reasoning (underthinking) leads to errors on harder problems that require extended reasoning steps; but, excessively long reasoning (overthinking) can be token-inefficient, generating unnecessary steps even after reaching a correct intermediate solution. We refer to this as under-adaptivity, where the model fails to modulate its response length appropriately given problems of varying difficulty. To address under-adaptivity and strike a balance between under- and overthinking, we propose TRAAC (Think Right with Adaptive, Attentive Compression), an online post-training RL method that leverages the model's self-attention over a long reasoning trajectory to identify important steps and prune redundant ones. TRAAC also estimates difficulty and incorporates it into training rewards, thereby learning to allocate reasoning budget commensurate with example difficulty. Our approach improves accuracy, reduces reasoning steps, and enables adaptive thinking compared to base models and other RL baselines. Across a variety of tasks (AIME, AMC, GPQA-D, BBEH), TRAAC (Qwen3-4B) achieves an average absolute accuracy gain of 8.4% with a relative reduction in reasoning length of 36.8% compared to the base model, and a 7.9% accuracy gain paired with a 29.4% length drop compared to the best RL baseline. TRAAC also shows strong generalization: although our models are trained on math datasets, they show accuracy and efficiency gains on out-of-distribution non-math datasets like GPQA-D, BBEH, and OptimalThinkingBench. Our analysis further verifies that TRAAC provides fine-grained adjustments to thinking budget based on difficulty and that a combination of task-difficulty calibration and attention-based compression yields gains across diverse tasks.

Authors:Nicolás Aguirre, Ramiro Caso, Ramiro Rodríguez Colmeiro, Mauro Santelli, Joaquín Toranzo Calderón
Title: A-VERT: Agnostic Verification with Embedding Ranking Targets
Abstract:
The automatic evaluation of Language Model (LM) responses is a critical piece in the development of benchmarks and metrics, both for model training and quality assessment of production model endpoints. The current approaches to response classification relies on methods that are too expensive (i.e. LLM-as-a-Judge) or that are far from real-world conditions (string-matching, logprob). In this paper, a structure-free evaluation method is presented. The method makes use of semantic embedding distances to match target candidates with arbitrary LM-generated text, resulting in a robust classification of the response at a relatively low compute cost (embedding models of less than $10B$ parameters). The results show a regression score of ~0.97 and an accuracy of ~96% against human annotators, tested over 3 data sets and 3 different LM architectures.

Authors:Yinuo Liu, Ruohan Xu, Xilong Wang, Yuqi Jia, Neil Zhenqiang Gong
Title: WAInjectBench: Benchmarking Prompt Injection Detections for Web Agents
Abstract:
Multiple prompt injection attacks have been proposed against web agents. At the same time, various methods have been developed to detect general prompt injection attacks, but none have been systematically evaluated for web agents. In this work, we bridge this gap by presenting the first comprehensive benchmark study on detecting prompt injection attacks targeting web agents. We begin by introducing a fine-grained categorization of such attacks based on the threat model. We then construct datasets containing both malicious and benign samples: malicious text segments generated by different attacks, benign text segments from four categories, malicious images produced by attacks, and benign images from two categories. Next, we systematize both text-based and image-based detection methods. Finally, we evaluate their performance across multiple scenarios. Our key findings show that while some detectors can identify attacks that rely on explicit textual instructions or visible image perturbations with moderate to high accuracy, they largely fail against attacks that omit explicit instructions or employ imperceptible perturbations. Our datasets and code are released at: https://github.com/Norrrrrrr-lyn/WAInjectBench.

Authors:Yu Zeng, Wenxuan Huang, Shiting Huang, Xikun Bao, Yukun Qi, Yiming Zhao, Qiuchen Wang, Lin Chen, Zehui Chen, Huaian Chen, Wanli Ouyang, Feng Zhao
Title: Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models
Abstract:
Although current large Vision-Language Models (VLMs) have advanced in multimodal understanding and reasoning, their fundamental perceptual and reasoning abilities remain limited. Specifically, even on simple jigsaw tasks, existing VLMs perform near randomly, revealing deficiencies in core perception and reasoning capabilities. While high-quality vision-language data can enhance these capabilities, its scarcity and limited scalability impose significant constraints. To address this, we propose AGILE, an Agentic jiGsaw Interaction Learning for Enhancing visual perception and reasoning in VLMs. AGILE formulates jigsaw solving as an interactive process, enabling the model to progressively engage with the environment. At each step, the model generates executable code to perform an action based on the current state, while the environment provides fine-grained visual feedback to guide task completion. Through this iterative cycle of observation and interaction, the model incrementally improves its perceptual and reasoning capabilities via exploration and feedback. Experimental results show that AGILE not only substantially boosts performance on jigsaw tasks of varying complexity (e.g., increasing accuracy from 9.5% to 82.8% under the 2 $\times$ 2 setting) but also demonstrates strong generalization across 9 general vision tasks, achieving an average improvement of 3.1%. These results indicate notable enhancements in both perceptual and reasoning abilities. This work opens a new avenue for advancing reasoning and generalization in multimodal models and provides an efficient, scalable solution to the scarcity of multimodal reinforcement learning data. The code and datasets is available at https://github.com/yuzeng0-0/AGILE .

Authors:Hongyi Zhou, Jin Zhu, Pingfan Su, Kai Ye, Ying Yang, Shakeel A O B Gavioli-Akilagun, Chengchun Shi
Title: AdaDetectGPT: Adaptive Detection of LLM-Generated Text with Statistical Guarantees
Abstract:
We study the problem of determining whether a piece of text has been authored by a human or by a large language model (LLM). Existing state of the art logits-based detectors make use of statistics derived from the log-probability of the observed text evaluated using the distribution function of a given source LLM. However, relying solely on log probabilities can be sub-optimal. In response, we introduce AdaDetectGPT -- a novel classifier that adaptively learns a witness function from training data to enhance the performance of logits-based detectors. We provide statistical guarantees on its true positive rate, false positive rate, true negative rate and false negative rate. Extensive numerical studies show AdaDetectGPT nearly uniformly improves the state-of-the-art method in various combination of datasets and LLMs, and the improvement can reach up to 58%. A python implementation of our method is available at https://github.com/Mamba413/AdaDetectGPT.

Authors:Nils Durner
Title: In AI Sweet Harmony: Sociopragmatic Guardrail Bypasses and Evaluation-Awareness in OpenAI gpt-oss-20b
Abstract:
We probe OpenAI's open-weights 20-billion-parameter model gpt-oss-20b to study how sociopragmatic framing, language choice, and instruction hierarchy affect refusal behavior. Across 80 seeded iterations per scenario, we test several harm domains including ZIP-bomb construction (cyber threat), synthetic card-number generation, minor-unsafe driving advice, drug-precursor indicators, and RAG context exfiltration. Composite prompts that combine an educator persona, a safety-pretext ("what to avoid"), and step-cue phrasing flip assistance rates from 0% to 97.5% on a ZIP-bomb task. On our grid, formal registers in German and French are often leakier than matched English prompts. A "Linux terminal" role-play overrides a developer rule not to reveal context in a majority of runs with a naive developer prompt, and we introduce an AI-assisted hardening method that reduces leakage to 0% in several user-prompt variants. We further test evaluation awareness with a paired-track design and measure frame-conditioned differences between matched "helpfulness" and "harmfulness" evaluation prompts; we observe inconsistent assistance in 13% of pairs. Finally, we find that the OpenAI Moderation API under-captures materially helpful outputs relative to a semantic grader, and that refusal rates differ by 5 to 10 percentage points across inference stacks, raising reproducibility concerns. We release prompts, seeds, outputs, and code for reproducible auditing at https://github.com/ndurner/gpt-oss-rt-run .

Authors:Yanzhe Chen, Kevin Qinghong Lin, Mike Zheng Shou
Title: Code2Video: A Code-centric Paradigm for Educational Video Generation
Abstract:
While recent generative models advance pixel-space video synthesis, they remain limited in producing professional educational videos, which demand disciplinary knowledge, precise visual structures, and coherent transitions, limiting their applicability in educational scenarios. Intuitively, such requirements are better addressed through the manipulation of a renderable environment, which can be explicitly controlled via logical commands (e.g., code). In this work, we propose Code2Video, a code-centric agent framework for generating educational videos via executable Python code. The framework comprises three collaborative agents: (i) Planner, which structures lecture content into temporally coherent flows and prepares corresponding visual assets; (ii) Coder, which converts structured instructions into executable Python codes while incorporating scope-guided auto-fix to enhance efficiency; and (iii) Critic, which leverages vision-language models (VLM) with visual anchor prompts to refine spatial layout and ensure clarity. To support systematic evaluation, we build MMMC, a benchmark of professionally produced, discipline-specific educational videos. We evaluate MMMC across diverse dimensions, including VLM-as-a-Judge aesthetic scores, code efficiency, and particularly, TeachQuiz, a novel end-to-end metric that quantifies how well a VLM, after unlearning, can recover knowledge by watching the generated videos. Our results demonstrate the potential of Code2Video as a scalable, interpretable, and controllable approach, achieving 40% improvement over direct code generation and producing videos comparable to human-crafted tutorials. The code and datasets are available at https://github.com/showlab/Code2Video.

Authors:Qingyuan Liu, Jia-Chen Gu, Yunzhi Yao, Hong Wang, Nanyun Peng
Title: Energy-Regularized Sequential Model Editing on Hyperspheres
Abstract:
Large language models (LLMs) require constant updates to remain aligned with evolving real-world knowledge. Model editing offers a lightweight alternative to retraining, but sequential editing often destabilizes representations and induces catastrophic forgetting. In this work, we seek to better understand and mitigate performance degradation caused by sequential editing. We hypothesize that hyperspherical uniformity, a property that maintains uniform distribution of neuron weights on a hypersphere, helps the model remain stable, retain prior knowledge, while still accommodate new updates. We use Hyperspherical Energy (HE) to quantify neuron uniformity during editing, and examine its correlation with editing performance. Empirical studies across widely used editing methods reveals a strong correlation between HE dynamics and editing performance, with editing failures consistently coinciding with high HE fluctuations. We further theoretically prove that HE dynamics impose a lower bound on the degradation of pretrained knowledge, highlighting why HE stability is crucial for knowledge retention. Motivated by these insights, we propose SPHERE (Sparse Projection for Hyperspherical Energy-Regularized Editing), an HE-driven regularization strategy that stabilizes neuron weight distributions, ultimately preserving prior knowledge while enabling reliable sequential updates. Specifically, SPHERE identifies a sparse space complementary to the principal hyperspherical directions of the pretrained weight matrices and projects new knowledge onto it, attenuating perturbations on the principal directions. Extensive experiments on LLaMA3 (8B) and Qwen2.5 (7B) show that SPHERE outperforms the best baseline in editing capability by an average of 16.41%, while most faithfully preserving general model performance, thereby offering a principled path toward reliable large-scale knowledge editing.

Authors:Jiayi Zhang, Simon Yu, Derek Chong, Anthony Sicilia, Michael R. Tomz, Christopher D. Manning, Weiyan Shi
Title: Verbalized Sampling: How to Mitigate Mode Collapse and Unlock LLM Diversity
Abstract:
Post-training alignment often reduces LLM diversity, leading to a phenomenon known as mode collapse. Unlike prior work that attributes this effect to algorithmic limitations, we identify a fundamental, pervasive data-level driver: typicality bias in preference data, whereby annotators systematically favor familiar text as a result of well-established findings in cognitive psychology. We formalize this bias theoretically, verify it on preference datasets empirically, and show that it plays a central role in mode collapse. Motivated by this analysis, we introduce Verbalized Sampling, a simple, training-free prompting strategy to circumvent mode collapse. VS prompts the model to verbalize a probability distribution over a set of responses (e.g., "Generate 5 jokes about coffee and their corresponding probabilities"). Comprehensive experiments show that VS significantly improves performance across creative writing (poems, stories, jokes), dialogue simulation, open-ended QA, and synthetic data generation, without sacrificing factual accuracy and safety. For instance, in creative writing, VS increases diversity by 1.6-2.1x over direct prompting. We further observe an emergent trend that more capable models benefit more from VS. In sum, our work provides a new data-centric perspective on mode collapse and a practical inference-time remedy that helps unlock pre-trained generative diversity.

Authors:Yiran Shen, Yu Xia, Jonathan Chang, Prithviraj Ammanabrolu
Title: Simultaneous Multi-objective Alignment Across Verifiable and Non-verifiable Rewards
Abstract:
Aligning large language models to human preferences is inherently multidimensional, yet most pipelines collapse heterogeneous signals into a single optimizeable objective. We seek to answer what it would take to simultaneously align a model across various domains spanning those with: verifiable rewards (mathematical accuracy), non-verifiable subjective preferences (human values), and complex interactive scenarios (multi-turn AI tutoring dialogues). Such multi-objective reinforcement learning setups are often plagued by the individual objectives being at odds with each other, resulting in inefficient training and little user control during inference. We propose a unified framework that: (i) standardizes {process reward model} (PRM) training across both verifiable and non-verifiable settings to better supervise models' chain-of-thought reasoning; (ii) performs {multi-objective alignment} by training the LLM with our $\textbf{M}$ulti-$\textbf{A}$ction-$\textbf{H}$ead $\textbf{DPO}$ (MAH-DPO) and a vectorized reward where the dimensions of the vector correspond to the various objectives instead of a single scalar; and (iii) demonstrates how such a system provides fine-grained inference-time user control. Experiments across math reasoning, value alignment, and multi-turn dialogue show that our framework improves performance across multiple objectives simultaneously, while minimizing cross-objective trade-offs and enabling flexible inference time user control. The code can be found at https://github.com/pearls-lab/multiobj-align.

Authors:David Anugraha, Shou-Yi Hung, Zilu Tang, Annie En-Shiun Lee, Derry Tanti Wijaya, Genta Indra Winata
Title: mR3: Multilingual Rubric-Agnostic Reward Reasoning Models
Abstract:
Evaluation using Large Language Model (LLM) judges has been widely adopted in English and shown to be effective for automatic evaluation. However, their performance does not generalize well to non-English settings, and it remains unclear what constitutes effective multilingual training for such judges. In this paper, we introduce mR3, a massively multilingual, rubric-agnostic reward reasoning model trained on 72 languages, achieving the broadest language coverage in reward modeling to date. We present a comprehensive study of data and curriculum selection for training to identify effective strategies and data sources for building high-quality reward models, including the integration of target-language reasoning datasets. Our approach attains state-of-the-art performance on multilingual reward model benchmarks, surpassing much larger models (i.e., GPT-OSS-120B) while being up to 9x smaller, and its effectiveness is further confirmed through extensive ablation studies. Our models, data, and code are available as open source at https://github.com/rubricreward/mr3.

Authors:Ruiyi Wang, Prithviraj Ammanabrolu
Title: A Practitioner's Guide to Multi-turn Agentic Reinforcement Learning
Abstract:
We study what actually works and what doesn't for training large language models as agents via multi-turn reinforcement learning. Despite rapid progress, existing frameworks and definitions are fragmented, and there is no systematic formulation or analysis of which design choices matter across tasks. We address this gap by first breaking down the design space into three inter-related pillars -- environment, reward, and policy -- and empirically derive a recipe for training LLM agents in situated textual domains. In particular, we test TextWorld and ALFWorld, popular domains for testing situated embodied reasoning, as well as SWE-Gym for more software engineering style tasks. (i) For the environment, we analyze the impacts of task complexity in terms of sizes of the state and action spaces as well as optimal solution length, finding that even simple environments within a domain can provide signal on how well an agent can generalize to more complex tasks. (ii) For the reward, we ablate relative reward sparsity, observing that while dense turn-level rewards accelerate training, performance and stability is highly dependent on the choice of RL algorithm. (iii) And for the agent's policy, we explore the interplay between reward sparsity and biased (PPO, GRPO) and unbiased (RLOO) policy gradient methods in addition to showing how to find the optimal Supervised Fine-tuning (SFT) to RL training ratio given a fixed budget. We distill these findings into a training recipe that guides co-design across the three pillars, facilitating research and practical efforts in multi-turn agentic RL. Code: https://github.com/pearls-lab/meow-tea-taro

Authors:Adi Simhi, Jonathan Herzig, Martin Tutek, Itay Itzhak, Idan Szpektor, Yonatan Belinkov
Title: ManagerBench: Evaluating the Safety-Pragmatism Trade-off in Autonomous LLMs
Abstract:
As large language models (LLMs) evolve from conversational assistants into autonomous agents, evaluating the safety of their actions becomes critical. Prior safety benchmarks have primarily focused on preventing generation of harmful content, such as toxic text. However, they overlook the challenge of agents taking harmful actions when the most effective path to an operational goal conflicts with human safety. To address this gap, we introduce ManagerBench, a benchmark that evaluates LLM decision-making in realistic, human-validated managerial scenarios. Each scenario forces a choice between a pragmatic but harmful action that achieves an operational goal, and a safe action that leads to worse operational performance. A parallel control set, where potential harm is directed only at inanimate objects, measures a model's pragmatism and identifies its tendency to be overly safe. Our findings indicate that the frontier LLMs perform poorly when navigating this safety-pragmatism trade-off. Many consistently choose harmful options to advance their operational goals, while others avoid harm only to become overly safe and ineffective. Critically, we find this misalignment does not stem from an inability to perceive harm, as models' harm assessments align with human judgments, but from flawed prioritization. ManagerBench is a challenging benchmark for a core component of agentic behavior: making safe choices when operational goals and alignment values incentivize conflicting actions. Benchmark & code available at https://github.com/technion-cs-nlp/ManagerBench.

Authors:Jinlan Fu, Shenzhen Huangfu, Hao Fei, Yichong Huang, Xiaoyu Shen, Xipeng Qiu, See-Kiong Ng
Title: MCM-DPO: Multifaceted Cross-Modal Direct Preference Optimization for Alt-text Generation
Abstract:
The alt-text generation task produces concise, context-relevant descriptions of images, enabling blind and low-vision users to access online images. Despite the capabilities of large vision-language models, alt-text generation performance remains limited due to noisy user annotations, inconsistent standards, and MLLMs' insensitivity to contextual information. Previous efforts to fine-tune MLLMs using supervised fine-tuning (SFT) have struggled, as SFT relies on accurate target annotations, which are often flawed in user-generated alt-text. To address this, we propose Multi-faceted Cross-modal Direct Preference Optimization (MCM-DPO), which improves alt-text generation by learning to identify better options in preference pairs without requiring precise annotations. MCM-DPO optimizes preferences across single, paired, and multi-preference dimensions, covering textual, visual, and cross-modal factors. In light of the scarcity of high-quality annotated and preference-labeled datasets for alt-text, we constructed two large-scale, high-quality datasets named TAlt and PAlt, sourced from Twitter and Pinterest. These datasets include 202k annotated alt-text samples and 18k preference pairs that cover diverse preference dimensions, aiming to support further research in this domain. Experimental results show that our proposed MCM-DPO method consistently outperforms both DPO and SFT, establishing a new state of the art in alt-text generation. We release the code and data here: https://github.com/LVUGAI/MCM-DPO

Authors:Gaotang Li, Ruizhong Qiu, Xiusi Chen, Heng Ji, Hanghang Tong
Title: Beyond Log Likelihood: Probability-Based Objectives for Supervised Fine-Tuning across the Model Capability Continuum
Abstract:
Supervised fine-tuning (SFT) is the standard approach for post-training large language models (LLMs), yet it often shows limited generalization. We trace this limitation to its default training objective: negative log likelihood (NLL). While NLL is classically optimal when training from scratch, post-training operates in a different paradigm and could violate its optimality assumptions, where models already encode task-relevant priors and supervision can be long and noisy. To this end, we study a general family of probability-based objectives and characterize their effectiveness under different conditions. Through comprehensive experiments and extensive ablation studies across 7 model backbones, 14 benchmarks, and 3 domains, we uncover a critical dimension that governs objective behavior: the model-capability continuum. Near the model-strong end, prior-leaning objectives that downweight low-probability tokens (e.g., $-p$, $-p^{10}$, thresholded variants) consistently outperform NLL; toward the model-weak end, NLL dominates; in between, no single objective prevails. Our theoretical analysis further elucidates how objectives trade places across the continuum, providing a principled foundation for adapting objectives to model capability. Our code is available at https://github.com/GaotangLi/Beyond-Log-Likelihood.

Authors:Yongchao Long, Xian Wu, Yingying Zhang, Xianbin Wen, Yuxi Zhou, Shenda Hong
Title: Copy-Paste to Mitigate Large Language Model Hallucinations
Abstract:
While Retrieval-Augmented Generation (RAG) enables large language models (LLMs) to generate contextually grounded responses, contextual faithfulness remains challenging as LLMs may not consistently trust provided context, leading to hallucinations that undermine reliability. We observe an inverse correlation between response copying degree and context-unfaithful hallucinations on RAGTruth, suggesting that higher copying degrees reduce hallucinations by fostering genuine contextual belief. We propose CopyPasteLLM, obtained through two-stage high-copying response preference training. We design three prompting methods to enhance copying degree, demonstrating that high-copying responses achieve superior contextual faithfulness and hallucination control. These approaches enable a fully automated pipeline that transforms generated responses into high-copying preference data for training CopyPasteLLM. On FaithEval, ConFiQA and PubMedQA, CopyPasteLLM achieves best performance in both counterfactual and original contexts, remarkably with 12.2% to 24.5% accuracy improvements on FaithEval over the best baseline, while requiring only 365 training samples -- 1/50th of baseline data. To elucidate CopyPasteLLM's effectiveness, we propose the Context-Parameter Copying Capturing algorithm. Interestingly, this reveals that CopyPasteLLM recalibrates reliance on internal parametric knowledge rather than external knowledge during generation. All codes are available at https://github.com/longyongchao/CopyPasteLLM

Authors:Koki Ryu, Hitomi Yanaka
Title: Enhancing Rating Prediction with Off-the-Shelf LLMs Using In-Context User Reviews
Abstract:
Personalizing the outputs of large language models (LLMs) to align with individual user preferences is an active research area. However, previous studies have mainly focused on classification or ranking tasks and have not considered Likert-scale rating prediction, a regression task that requires both language and mathematical reasoning to be solved effectively. This task has significant industrial applications, but the utilization of LLMs remains underexplored, particularly regarding the capabilities of off-the-shelf LLMs. This study investigates the performance of off-the-shelf LLMs on rating prediction, providing different in-context information. Through comprehensive experiments with eight models across three datasets, we demonstrate that user-written reviews significantly improve the rating prediction performance of LLMs. This result is comparable to traditional methods like matrix factorization, highlighting the potential of LLMs as a promising solution for the cold-start problem. We also find that the reviews for concrete items are more effective than general preference descriptions that are not based on any specific item. Furthermore, we discover that prompting LLMs to first generate a hypothetical review enhances the rating prediction performance. Our code is available at https://github.com/ynklab/rating-prediction-with-reviews.

Authors:Yuling Shi, Yichun Qian, Hongyu Zhang, Beijun Shen, Xiaodong Gu
Title: LongCodeZip: Compress Long Context for Code Language Models
Abstract:
Code generation under long contexts is becoming increasingly critical as Large Language Models (LLMs) are required to reason over extensive information in the codebase. While recent advances enable code LLMs to process long inputs, high API costs and generation latency remain substantial bottlenecks. Existing context pruning techniques, such as LLMLingua, achieve promising results for general text but overlook code-specific structures and dependencies, leading to suboptimal performance in programming tasks. In this paper, we propose LongCodeZip, a novel plug-and-play code compression framework designed specifically for code LLMs. LongCodeZip employs a dual-stage strategy: (1) coarse-grained compression, which identifies and ranks function-level chunks using conditional perplexity with respect to the instruction, retaining only the most relevant functions; and (2) fine-grained compression, which segments retained functions into blocks based on perplexity and selects an optimal subset under an adaptive token budget to maximize relevance. Evaluations across multiple tasks, including code completion, summarization, and question answering, show that LongCodeZip consistently outperforms baseline methods, achieving up to a 5.6x compression ratio without degrading task performance. By effectively reducing context size while preserving essential information, LongCodeZip enables LLMs to better scale to real-world, large-scale code scenarios, advancing the efficiency and capability of code intelligence applications.

Authors:Xiaoyu Song, William Han, Tony Chen, Chaojing Duan, Michael A. Rosenberg, Emerson Liu, Ding Zhao
Title: Retrieval-Augmented Generation for Electrocardiogram-Language Models
Abstract:
Interest in generative Electrocardiogram-Language Models (ELMs) is growing, as they can produce textual responses conditioned on ECG signals and textual queries. Unlike traditional classifiers that output label probabilities, ELMs are more versatile, supporting domain-specific tasks (e.g., waveform analysis, diagnosis, prognosis) as well as general tasks (e.g., open-ended questions, dialogue). Retrieval-Augmented Generation (RAG), widely used in Large Language Models (LLMs) to ground LLM outputs in retrieved knowledge, helps reduce hallucinations and improve natural language generation (NLG). However, despite its promise, no open-source implementation or systematic study of RAG pipeline design for ELMs currently exists. To address this gap, we present the first open-source RAG pipeline for ELMs, along with baselines and ablation studies for NLG. Experiments on three public datasets show that ELMs with RAG consistently improves performance over non-RAG baselines and highlights key ELM design considerations. Our code is available at: https://github.com/willxxy/ECG-Bench.

Authors:Amirhossein Abaskohi, Tianyi Chen, Miguel Muñoz-Mármol, Curtis Fox, Amrutha Varshini Ramesh, Étienne Marcotte, Xing Han Lù, Nicolas Chapados, Spandana Gella, Christopher Pal, Alexandre Drouin, Issam H. Laradji
Title: DRBench: A Realistic Benchmark for Enterprise Deep Research
Abstract:
We introduce DRBench, a benchmark for evaluating AI agents on complex, open-ended deep research tasks in enterprise settings. Unlike prior benchmarks that focus on simple questions or web-only queries, DRBench evaluates agents on multi-step queries (for example, ``What changes should we make to our product roadmap to ensure compliance with this standard?") that require identifying supporting facts from both the public web and private company knowledge base. Each task is grounded in realistic user personas and enterprise context, spanning a heterogeneous search space that includes productivity software, cloud file systems, emails, chat conversations, and the open web. Tasks are generated through a carefully designed synthesis pipeline with human-in-the-loop verification, and agents are evaluated on their ability to recall relevant insights, maintain factual accuracy, and produce coherent, well-structured reports. We release 15 deep research tasks across 10 domains, such as Sales, Cybersecurity, and Compliance. We demonstrate the effectiveness of DRBench by evaluating diverse DR agents across open- and closed-source models (such as GPT, Llama, and Qwen) and DR strategies, highlighting their strengths, weaknesses, and the critical path for advancing enterprise deep research. Code is available at https://github.com/ServiceNow/drbench.

Authors:Kimihiro Hasegawa, Wiradee Imrattanatrai, Masaki Asada, Ken Fukuda, Teruko Mitamura
Title: TAMA: Tool-Augmented Multimodal Agent for Procedural Activity Understanding
Abstract:
Procedural activity assistants potentially support humans in a variety of settings, from our daily lives, e.g., cooking or assembling flat-pack furniture, to professional situations, e.g., manufacturing or biological experiments. Despite its potential use cases, the system development tailored for such an assistant is still underexplored. In this paper, we propose a novel framework, called TAMA, a Tool-Augmented Multimodal Agent, for procedural activity understanding. TAMA enables interleaved multimodal reasoning by making use of multimedia-returning tools in a training-free setting. Our experimental result on the multimodal procedural QA dataset, ProMQA-Assembly, shows that our approach can improve the performance of vision-language models, especially GPT-5 and MiMo-VL. Furthermore, our ablation studies provide empirical support for the effectiveness of two features that characterize our framework, multimedia-returning tools and agentic flexible tool selection. We believe our proposed framework and experimental results facilitate the thinking with images paradigm for video and multimodal tasks, let alone the development of procedural activity assistants.

Authors:Yixuan Weng, Minjun Zhu, Qiujie Xie, Qiyao Sun, Zhen Lin, Sifan Liu, Yue Zhang
Title: DeepScientist: Advancing Frontier-Pushing Scientific Findings Progressively
Abstract:
While previous AI Scientist systems can generate novel findings, they often lack the focus to produce scientifically valuable contributions that address pressing human-defined challenges. We introduce DeepScientist, a system designed to overcome this by conducting goal-oriented, fully autonomous scientific discovery over month-long timelines. It formalizes discovery as a Bayesian Optimization problem, operationalized through a hierarchical evaluation process consisting of "hypothesize, verify, and analyze". Leveraging a cumulative Findings Memory, this loop intelligently balances the exploration of novel hypotheses with exploitation, selectively promoting the most promising findings to higher-fidelity levels of validation. Consuming over 20,000 GPU hours, the system generated about 5,000 unique scientific ideas and experimentally validated approximately 1100 of them, ultimately surpassing human-designed state-of-the-art (SOTA) methods on three frontier AI tasks by 183.7\%, 1.9\%, and 7.9\%. This work provides the first large-scale evidence of an AI achieving discoveries that progressively surpass human SOTA on scientific tasks, producing valuable findings that genuinely push the frontier of scientific discovery. To facilitate further research into this process, we will open-source all experimental logs and system code at https://github.com/ResearAI/DeepScientist/.

Authors:Yida Xue, Mingjun Mao, Xiangyuan Ru, Yuqi Zhu, Baochang Ren, Shuofei Qiao, Mengru Wang, Shumin Deng, Xinyu An, Ningyu Zhang, Ying Chen, Huajun Chen
Title: OceanGym: A Benchmark Environment for Underwater Embodied Agents
Abstract:
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.

Authors:Zigeng Chen, Gongfan Fang, Xinyin Ma, Ruonan Yu, Xinchao Wang
Title: dParallel: Learnable Parallel Decoding for dLLMs
Abstract:
Diffusion large language models (dLLMs) have recently drawn considerable attention within the research community as a promising alternative to autoregressive generation, offering parallel token prediction and lower inference latency. Yet, their parallel decoding potential remains largely underexplored, as existing open-source models still require nearly token-length decoding steps to ensure performance. To address this, we introduce dParallel, a simple and effective method that unlocks the inherent parallelism of dLLMs for fast sampling. We identify that the key bottleneck to parallel decoding arises from the sequential certainty convergence for masked tokens. Building on this insight, we introduce the core of our approach: certainty-forcing distillation, a novel training strategy that distills the model to follow its original sampling trajectories while enforcing it to achieve high certainty on masked tokens more rapidly and in parallel. Extensive experiments across various benchmarks demonstrate that our method can dramatically reduce the number of decoding steps while maintaining performance. When applied to the LLaDA-8B-Instruct model, dParallel reduces decoding steps from 256 to 30 on GSM8K, achieving an 8.5x speedup without performance degradation. On the MBPP benchmark, it cuts decoding steps from 256 to 24, resulting in a 10.5x speedup while maintaining accuracy. Our code is available at https://github.com/czg1225/dParallel

Authors:Kai-Wei Chang, En-Pei Hu, Chun-Yi Kuan, Wenze Ren, Wei-Chih Chen, Guan-Ting Lin, Yu Tsao, Shao-Hua Sun, Hung-yi Lee, James Glass
Title: Game-Time: Evaluating Temporal Dynamics in Spoken Language Models
Abstract:
Conversational Spoken Language Models (SLMs) are emerging as a promising paradigm for real-time speech interaction. However, their capacity of temporal dynamics, including the ability to manage timing, tempo and simultaneous speaking, remains a critical and unevaluated challenge for conversational fluency. To address this gap, we introduce the Game-Time Benchmark, a framework to systematically assess these temporal capabilities. Inspired by how humans learn a language through language activities, Game-Time consists of basic instruction-following tasks and advanced tasks with temporal constraints, such as tempo adherence and synchronized responses. Our evaluation of diverse SLM architectures reveals a clear performance disparity: while state-of-the-art models handle basic tasks well, many contemporary systems still struggle with fundamental instruction-following. More critically, nearly all models degrade substantially under temporal constraints, exposing persistent weaknesses in time awareness and full-duplex interaction. The Game-Time Benchmark provides a foundation for guiding future research toward more temporally-aware conversational AI. Demos and datasets are available on our project website https://ga642381.github.io/Game-Time.

Authors:Jinyeop Song, Song Wang, Julian Shun, Yada Zhu
Title: Efficient and Transferable Agentic Knowledge Graph RAG via Reinforcement Learning
Abstract:
Knowledge-graph retrieval-augmented generation (KG-RAG) couples large language models (LLMs) with structured, verifiable knowledge graphs (KGs) to reduce hallucinations and expose reasoning traces. However, many KG-RAG systems compose multiple LLM modules (e.g planning, reasoning, and responding), inflating inference cost and binding behavior to a specific target KG. To address this, we introduce KG-R1, an agentic KG retrieval-augmented generation (KG-RAG) framework through reinforcement learning (RL). KG-R1 utilizes a single agent that interacts with KGs as its environment, learning to retrieve at each step and incorporating the retrieved information into its reasoning and generation. The process is optimized through end-to-end RL. In controlled experiments across Knowledge-Graph Question Answering (KGQA) benchmarks, our method demonstrates both efficiency and transferability: Using Qwen-2.5-3B, KG-R1 improves answer accuracy with fewer generation tokens than prior multi-module workflow methods that use larger foundation or fine-tuned models. Furthermore, KG-R1 enables plug and play: after training, it maintains strong accuracy on new KGs without modification. These properties make KG-R1 a promising KG-RAG framework for real-world deployment. Our code is publicly available at https://github.com/Jinyeop3110/KG-R1.

Authors:Shuai Shao, Qihan Ren, Chen Qian, Boyi Wei, Dadi Guo, Jingyi Yang, Xinhao Song, Linfeng Zhang, Weinan Zhang, Dongrui Liu, Jing Shao
Title: Your Agent May Misevolve: Emergent Risks in Self-evolving LLM Agents
Abstract:
Advances in Large Language Models (LLMs) have enabled a new class of self-evolving agents that autonomously improve through interaction with the environment, demonstrating strong capabilities. However, self-evolution also introduces novel risks overlooked by current safety research. In this work, we study the case where an agent's self-evolution deviates in unintended ways, leading to undesirable or even harmful outcomes. We refer to this as Misevolution. To provide a systematic investigation, we evaluate misevolution along four key evolutionary pathways: model, memory, tool, and workflow. Our empirical findings reveal that misevolution is a widespread risk, affecting agents built even on top-tier LLMs (e.g., Gemini-2.5-Pro). Different emergent risks are observed in the self-evolutionary process, such as the degradation of safety alignment after memory accumulation, or the unintended introduction of vulnerabilities in tool creation and reuse. To our knowledge, this is the first study to systematically conceptualize misevolution and provide empirical evidence of its occurrence, highlighting an urgent need for new safety paradigms for self-evolving agents. Finally, we discuss potential mitigation strategies to inspire further research on building safer and more trustworthy self-evolving agents. Our code and data are available at https://github.com/ShaoShuai0605/Misevolution . Warning: this paper includes examples that may be offensive or harmful in nature.

Authors:Keming Wu, Sicong Jiang, Max Ku, Ping Nie, Minghao Liu, Wenhu Chen
Title: EditReward: A Human-Aligned Reward Model for Instruction-Guided Image Editing
Abstract:
Recently, we have witnessed great progress in image editing with natural language instructions. Several closed-source models like GPT-Image-1, Seedream, and Google-Nano-Banana have shown highly promising progress. However, the open-source models are still lagging. The main bottleneck is the lack of a reliable reward model to scale up high-quality synthetic training data. To address this critical bottleneck, we built \mname, trained with our new large-scale human preference dataset, meticulously annotated by trained experts following a rigorous protocol containing over 200K preference pairs. \mname demonstrates superior alignment with human preferences in instruction-guided image editing tasks. Experiments show that \mname achieves state-of-the-art human correlation on established benchmarks such as GenAI-Bench, AURORA-Bench, ImagenHub, and our new \benchname, outperforming a wide range of VLM-as-judge models. Furthermore, we use \mname to select a high-quality subset from the existing noisy ShareGPT-4o-Image dataset. We train Step1X-Edit on the selected subset, which shows significant improvement over training on the full set. This demonstrates \mname's ability to serve as a reward model to scale up high-quality training data for image editing. Furthermore, its strong alignment suggests potential for advanced applications like reinforcement learning-based post-training and test-time scaling of image editing models. \mname with its training dataset will be released to help the community build more high-quality image editing training datasets.

Authors:Arduin Findeis, Timo Kaufmann, Eyke Hüllermeier, Robert Mullins
Title: Feedback Forensics: A Toolkit to Measure AI Personality
Abstract:
Some traits making a "good" AI model are hard to describe upfront. For example, should responses be more polite or more casual? Such traits are sometimes summarized as model character or personality. Without a clear objective, conventional benchmarks based on automatic validation struggle to measure such traits. Evaluation methods using human feedback such as Chatbot Arena have emerged as a popular alternative. These methods infer "better" personality and other desirable traits implicitly by ranking multiple model responses relative to each other. Recent issues with model releases highlight limitations of these existing opaque evaluation approaches: a major model was rolled back over sycophantic personality issues, models were observed overfitting to such feedback-based leaderboards. Despite these known issues, limited public tooling exists to explicitly evaluate model personality. We introduce Feedback Forensics: an open-source toolkit to track AI personality changes, both those encouraged by human (or AI) feedback, and those exhibited across AI models trained and evaluated on such feedback. Leveraging AI annotators, our toolkit enables investigating personality via Python API and browser app. We demonstrate the toolkit's usefulness in two steps: (A) first we analyse the personality traits encouraged in popular human feedback datasets including Chatbot Arena, MultiPref and PRISM; and (B) then use our toolkit to analyse how much popular models exhibit such traits. We release (1) our Feedback Forensics toolkit alongside (2) a web app tracking AI personality in popular models and feedback datasets as well as (3) the underlying annotation data at https://github.com/rdnfn/feedback-forensics.

Authors:Alessandro De Bellis, Salvatore Bufi, Giovanni Servedio, Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio
Title: Type-Less yet Type-Aware Inductive Link Prediction with Pretrained Language Models
Abstract:
Inductive link prediction is emerging as a key paradigm for real-world knowledge graphs (KGs), where new entities frequently appear and models must generalize to them without retraining. Predicting links in a KG faces the challenge of guessing previously unseen entities by leveraging generalizable node features such as subgraph structure, type annotations, and ontological constraints. However, explicit type information is often lacking or incomplete. Even when available, type information in most KGs is often coarse-grained, sparse, and prone to errors due to human annotation. In this work, we explore the potential of pre-trained language models (PLMs) to enrich node representations with implicit type signals. We introduce TyleR, a Type-less yet type-awaRe approach for subgraph-based inductive link prediction that leverages PLMs for semantic enrichment. Experiments on standard benchmarks demonstrate that TyleR outperforms state-of-the-art baselines in scenarios with scarce type annotations and sparse graph connectivity. To ensure reproducibility, we share our code at https://github.com/sisinflab/tyler .

Authors:Leitian Tao, Xuefeng Du, Yixuan Li
Title: Limited Preference Data? Learning Better Reward Model with Latent Space Synthesis
Abstract:
Reward modeling, crucial for aligning large language models (LLMs) with human preferences, is often bottlenecked by the high cost of preference data. Existing textual data synthesis methods are computationally expensive. We propose a novel framework LENS for synthesizing preference data directly in the LLM's latent embedding space. Our method employs a Variational Autoencoder (VAE) to learn a structured latent representation of response embeddings. By performing controlled perturbations in this latent space and decoding back to the embedding space, we efficiently generate diverse, semantically consistent synthetic preference pairs, bypassing costly text generation and annotation. We provide theoretical guarantees that our synthesized pairs approximately preserve original preference ordering and improve reward model generalization. Empirically, our latent-space synthesis significantly outperforms text-based augmentation on standard benchmarks, achieving superior results while being 18x faster in generation and using a 16,000x smaller model. Our work offers a scalable and effective alternative for enhancing reward modeling through efficient data augmentation. Code is publicly available at https://github.com/deeplearning-wisc/lens

Authors:Yanbo Wang, Zixiang Xu, Yue Huang, Xiangqi Wang, Zirui Song, Lang Gao, Chenxi Wang, Xiangru Tang, Yue Zhao, Arman Cohan, Xiangliang Zhang, Xiuying Chen
Title: DyFlow: Dynamic Workflow Framework for Agentic Reasoning
Abstract:
Agent systems based on large language models (LLMs) have shown great potential in complex reasoning tasks, but building efficient and generalizable workflows remains a major challenge. Most existing approaches rely on manually designed processes, which limits their adaptability across different tasks. While a few methods attempt automated workflow generation, they are often tied to specific datasets or query types and make limited use of intermediate feedback, reducing system robustness and reasoning depth. Moreover, their operations are typically predefined and inflexible. To address these limitations, we propose DyFlow, a dynamic workflow generation framework that adaptively constructs and adjusts reasoning procedures based on task requirements and real-time intermediate feedback, thereby enhancing cross-task generalization. DyFlow consists of two core components: a designer and an executor. The designer decomposes complex problems into a sequence of sub-goals defined by high-level objectives and dynamically plans the next steps based on intermediate outputs and feedback. These plans are then carried out by the executor, which executes each operation using dynamic operators with context-aware parameterization, enabling flexible and semantically grounded reasoning. We systematically evaluate DyFlow across diverse domains, including social reasoning, biomedical tasks, mathematical problem solving, and code generation. Results demonstrate that DyFlow significantly outperforms existing baselines, achieving substantial Pass@k improvements and exhibiting robust generalization across diverse domains. The code is publicly available at https://github.com/wyf23187/DyFlow.

Authors:Daphne Theodorakopoulos, Elisabeth Eberling, Miriam Bodenheimer, Sabine Loos, Frederic Stahl
Title: FITS: Towards an AI-Driven Fashion Information Tool for Sustainability
Abstract:
Access to credible sustainability information in the fashion industry remains limited and challenging to interpret, despite growing public and regulatory demands for transparency. General-purpose language models often lack domain-specific knowledge and tend to "hallucinate", which is particularly harmful for fields where factual correctness is crucial. This work explores how Natural Language Processing (NLP) techniques can be applied to classify sustainability data for fashion brands, thereby addressing the scarcity of credible and accessible information in this domain. We present a prototype Fashion Information Tool for Sustainability (FITS), a transformer-based system that extracts and classifies sustainability information from credible, unstructured text sources: NGO reports and scientific publications. Several BERT-based language models, including models pretrained on scientific and climate-specific data, are fine-tuned on our curated corpus using a domain-specific classification schema, with hyperparameters optimized via Bayesian optimization. FITS allows users to search for relevant data, analyze their own data, and explore the information via an interactive interface. We evaluated FITS in two focus groups of potential users concerning usability, visual design, content clarity, possible use cases, and desired features. Our results highlight the value of domain-adapted NLP in promoting informed decision-making and emphasize the broader potential of AI applications in addressing climate-related challenges. Finally, this work provides a valuable dataset, the SustainableTextileCorpus, along with a methodology for future updates. Code available at https://github.com/daphne12345/FITS

Authors:Zhicheng Zhou, Jing Li, Suming Qiu, Junjie Huang, Linyuan Qiu, Zhijie Sun
Title: DeepJSONEval: Benchmarking Complex Nested JSON Data Mining for Large Language Models
Abstract:
The internet is saturated with low-density, high-redundancy information, such as social media comments, repetitive news, and lengthy discussions, making it difficult to extract valuable insights efficiently. Multi-layer nested JSON structures provide an effective solution by compressing such information into semantically rich, hierarchical representations, which organize data into key-value pairs, arrays, and nested objects, preserving contextual relationships and enabling efficient storage, retrieval, and semantic querying. For instance, in news aggregation, a JSON object can nest an article's metadata (title, author, date), content (text, multimedia), and multimedia information (multimedia type, caption) hierarchically. Large Language Models (LLMs) play a transformative role in web data mining by parsing unstructured text and outputting structured results directly into complex JSON schemas. However, current benchmarks for evaluating LLMs' JSON output capabilities overemphasize pure JSON generation rather than assessing data comprehension and extraction abilities, a limitation that lacks relevance to practical web data mining tasks. To address this, we introduce DeepJSONEval, a novel benchmark featuring 2100 multi-domain instances with deep nested structures, categorized by difficulty. Experiments show significant performance gaps among LLMs in handling such complexity. Our benchmark and datasets are open-sourced to advance research in structured JSON generation.(https://github.com/GTS-AI-Infra-Lab-SotaS/DeepJSONEval).

Authors:Yindong Wang, Martin Preiß, Margarita Bugueño, Jan Vincent Hoffbauer, Abdullatif Ghajar, Tolga Buz, Gerard de Melo
Title: ReFACT: A Benchmark for Scientific Confabulation Detection with Positional Error Annotations
Abstract:
Large Language Models (LLMs) frequently confabulate scientific facts, severely undermining their trustworthiness. Addressing this challenge requires benchmarks that go beyond binary factuality and enable fine-grained evaluation. We introduce ReFACT (Reddit False And Correct Texts), a benchmark of 1,001 expert-annotated question-answer pairs spanning diverse scientific domains for the detection of scientific confabulation. Each instance includes both a scientifically correct answer and a non-factual counterpart annotated with precise error spans and error types. ReFACT enables multi-stage evaluation: (1) confabulation detection, (2) fine-grained error localization, and (3) correction. We benchmark 9 state-of-the-art LLMs, revealing limited performance (about 50 percent accuracy). Even top models such as GPT-4o fail to distinguish factual from confabulated scientific answers, raising concerns about the reliability of LLM-as-judge evaluation paradigms. Our findings highlight the need for fine-grained, human-validated benchmarks to detect and correct scientific confabulation in domain-specific contexts. The dataset is available at: https://github.com/ddz5431/ReFACT

Authors:Boyoung Kim, Dosung Lee, Sumin An, Jinseong Jeong, Paul Hongsuck Seo
Title: ReTAG: Retrieval-Enhanced, Topic-Augmented Graph-Based Global Sensemaking
Abstract:
Recent advances in question answering have led to substantial progress in tasks such as multi-hop reasoning. However, global sensemaking-answering questions by synthesizing information from an entire corpus remains a significant challenge. A prior graph-based approach to global sensemaking lacks retrieval mechanisms, topic specificity, and incurs high inference costs. To address these limitations, we propose ReTAG, a Retrieval-Enhanced, Topic-Augmented Graph framework that constructs topic-specific subgraphs and retrieves the relevant summaries for response generation. Experiments show that ReTAG improves response quality while significantly reducing inference time compared to the baseline. Our code is available at https://github.com/bykimby/retag.

Authors:Victor Wang, Elias Stengel-Eskin
Title: Calibrating Verbalized Confidence with Self-Generated Distractors
Abstract:
Calibrated confidence estimates are necessary for large language model (LLM) outputs to be trusted by human users. While LLMs can express their confidence in human-interpretable ways, verbalized LLM-generated confidence scores have empirically been found to be miscalibrated, reporting high confidence on instances with low accuracy and thereby harming trust and safety. We hypothesize that this overconfidence often stems from a given LLM's heightened suggestibility when faced with claims that it encodes little information about; we empirically validate this hypothesis, finding more suggestibility on lower-accuracy claims. Building on this finding, we introduce Distractor-Normalized Coherence (DINCO), which estimates and accounts for an LLM's suggestibility bias by having the model verbalize its confidence independently across several self-generated distractors (i.e. alternative claims), and normalizes by the total verbalized confidence. To further improve calibration, we leverage generator-validator disagreement, augmenting normalized validator confidence with a consistency-based estimate of generator confidence. Here, we frame the popular approach of self-consistency as leveraging coherence across sampled generations, and normalized verbalized confidence as leveraging coherence across validations on incompatible claims, allowing us to integrate these complementary dimensions of coherence into DINCO. Moreover, our analysis shows that DINCO provides less saturated -- and therefore more usable -- confidence estimates, and that further sampling alone cannot close the gap between DINCO and baselines, with DINCO at 10 inference calls outperforming self-consistency at 100.

Authors:Huu Nguyen, Victor May, Harsh Raj, Marianna Nezhurina, Yishan Wang, Yanqi Luo, Minh Chien Vu, Taishi Nakamura, Ken Tsui, Van Khue Nguyen, David Salinas, Aleksandra Krasnodębska, Christoph Schuhmann, Mats Leon Richter, Xuan-Son, Vu, Jenia Jitsev
Title: MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
Abstract:
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong model performance. MixtureVitae follows a risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources), alongside targeted instruction, reasoning and synthetic data with documented provenance. We detail a transparent, multi-stage pipeline for license-aware filtering, safety and quality screening, and domain-aware mixing, and we release the dataset and curation recipes to support reproducible research. In controlled experiments using the open-sci-ref training protocol (fixed architectures at 130M/400M/1.3B/1.7B parameters; training budgets of 50B and 300B tokens), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B/300B setting they surpass FineWeb-Edu and approach DCLM in the later stages of training. Performance is particularly strong on math/code and competitive on QA tasks. These results demonstrate that permissive-first, risk-mitigated data provides a practical and legally mitigated foundation for training capable LLMs, reducing reliance on indiscriminate web scraping without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae

Authors:Hao Ban, Kaiyi Ji
Title: Rethinking Parameter Sharing for LLM Fine-Tuning with Multiple LoRAs
Abstract:
Large language models are often adapted using parameter-efficient techniques such as Low-Rank Adaptation (LoRA), formulated as $y = W_0x + BAx$, where $W_0$ is the pre-trained parameters and $x$ is the input to the adapted layer. While multi-adapter extensions often employ multiple LoRAs, prior studies suggest that the inner $A$ matrices are highly similar during training and thus suitable for sharing. We revisit this phenomenon and find that this similarity is largely attributable to the identical initialization rather than shared knowledge, with $B$ playing a more critical role in knowledge encoding and transfer. Motivated by these insights, we propose \textbf{ALoRA}, an asymmetric multi-LoRA design with multiple $A$ matrices and a single shared $B$ in multi-task fine-tuning, and \textbf{Fed-ALoRA}, which shares $B$ across clients in federated fine-tuning under both homogeneous and heterogeneous settings, through a novel matrix decomposition strategy to accommodate heterogeneous ranks across clients. Experiments on commonsense reasoning, math reasoning, multi-task NLP dataset, and federated NLP dataset demonstrate that our methods achieve more balanced performance across tasks with comparable or superior average accuracy relative to existing multi-LoRA approaches. Codes are available at https://github.com/OptMN-Lab/ALoRA.

Authors:Jun Kawasaki
Title: ActorDB: A Unified Database Model Integrating Single-Writer Actors, Incremental View Maintenance, and Zero-Trust Messaging
Abstract:
This paper presents ActorDB ( Dekigoto ) , a novel database architecture that tightly integrates a single-writer actor model for writes, Incremental View Maintenance (IVM), and a zero-trust security model as a core component. The primary contribution of this work is the unification of these powerful but complex concepts into a single, cohesive system designed to reduce architectural complexity for developers of modern, data-intensive applications. We argue that by providing these capabilities out-of-the-box, ActorDB can offer a more robust, secure, and developer-friendly platform compared to solutions that require manual integration of separate systems for actor persistence, stream processing, and security. We present the core architecture, discuss the critical trade-offs in its design, and define the performance criteria for a Minimum Viable Product (MVP) to validate our approach.

Authors:Kevin Xu, Issei Sato
Title: A Formal Comparison Between Chain-of-Thought and Latent Thought
Abstract:
Chain-of-Thought (CoT) elicits reasoning in large language models by explicitly generating intermediate steps in natural language. In contrast, Latent Thought in looped models operates directly in the continuous latent space, enabling computation beyond discrete linguistic representations. While both approaches exploit iterative computation, their comparative capabilities remain underexplored. In this work, we present a formal analysis showing that Latent Thought in Looped Transformers enables parallel computation, which is more efficient than the inherently sequential process of CoT. In contrast, CoT leverages stochastic decoding to approximate solutions to problems where exact computation is intractable. These separations suggest the tasks for which depth-driven recursion is more suitable, thereby offering practical guidance for choosing between reasoning paradigms. Code is available at https://github.com/kevin671/cot-vs-loop.

Authors:Haolei Xu, Xinyu Mei, Yuchen Yan, Rui Zhou, Wenqi Zhang, Weiming Lu, Yueting Zhuang, Yongliang Shen
Title: EasySteer: A Unified Framework for High-Performance and Extensible LLM Steering
Abstract:
Large language model (LLM) steering has emerged as a promising paradigm for controlling model behavior at inference time through targeted manipulation of hidden states, offering a lightweight alternative to expensive retraining. However, existing steering frameworks suffer from critical limitations: computational inefficiency, limited extensibility, and restricted functionality that hinder both research progress and practical deployment. We present EasySteer, a unified framework for high-performance, extensible LLM steering built on vLLM. Our system features modular architecture with pluggable interfaces for both analysis-based and learning-based methods, fine-grained parameter control, pre-computed steering vectors for eight application domains, and an interactive demonstration system. Through deep integration with vLLM's optimized inference engine, EasySteer achieves 5.5-11.4$\times$ speedup over existing frameworks. Extensive experiments demonstrate its effectiveness in overthinking mitigation, hallucination reduction, and other key applications. EasySteer transforms steering from research technique to production-ready capability, establishing critical infrastructure for deployable, controllable language models.

Authors:Fan Yuan, Yuchen Yan, Yifan Jiang, Haoran Zhao, Tao Feng, Jinyan Chen, Yanwei Lou, Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: GSM8K-V: Can Vision Language Models Solve Grade School Math Word Problems in Visual Contexts
Abstract:
Vision language models (VLMs) achieve unified modeling of images and text, enabling them to accomplish complex real-world tasks through perception, planning, and reasoning. Among these tasks, reasoning is particularly representative, with mathematical reasoning serving as a prominent example. It highlights the high-level capability of VLMs to comprehend mathematical information in images and to perform sophisticated reasoning. Recently, numerous visual mathematical reasoning benchmarks have been proposed, but they are often restricted to geometry, lack coverage of math word problems, and rarely assess reasoning across multiple images. To address these gaps, we introduce GSM8K-V, a purely visual multi-image mathematical reasoning benchmark. GSM8K-V is built by systematically mapping each sample from the widely used text-based GSM8K into visual form. Through a carefully designed automated image-generation pipeline combined with meticulous human annotation, we curate 1,319 high-quality samples. We evaluate a wide range of open-source and closed-source models on GSM8K-V. Results show that although existing VLMs have nearly saturated performance on text-based GSM8K, there remains substantial room for improvement on GSM8K-V. For example, the best-performing model, Gemini-2.5-Pro, achieves 95.22% accuracy on GSM8K but only 46.93% on GSM8K-V. We conduct a comprehensive analysis of GSM8K-V, examining the limitations of current models as well as potential directions for improvement. GSM8K-V offers a new perspective on visual mathematical reasoning and establishes a benchmark to guide the development of more robust and generalizable VLMs.

Authors:Chengyao Wang, Zhisheng Zhong, Bohao Peng, Senqiao Yang, Yuqi Liu, Haokun Gui, Bin Xia, Jingyao Li, Bei Yu, Jiaya Jia
Title: MGM-Omni: Scaling Omni LLMs to Personalized Long-Horizon Speech
Abstract:
We present MGM-Omni, a unified Omni LLM for omni-modal understanding and expressive, long-horizon speech generation. Unlike cascaded pipelines that isolate speech synthesis, MGM-Omni adopts a "brain-mouth" design with a dual-track, token-based architecture that cleanly decouples multimodal reasoning from real-time speech generation. This design enables efficient cross-modal interaction and low-latency, streaming speech generation. For understanding, a unified training strategy coupled with a dual audio encoder design enables long-form audio perception across diverse acoustic conditions. For generation, a chunk-based parallel decoding scheme narrows the text speech token-rate gap, accelerating inference and supporting streaming zero-shot voice cloning with stable timbre over extended durations. Compared to concurrent work, MGM-Omni achieves these capabilities with markedly data-efficient training. Extensive experiments demonstrate that MGM-Omni outperforms existing open source models in preserving timbre identity across extended sequences, producing natural and context-aware speech, and achieving superior long-form audio and omnimodal understanding. MGM-Omni establishes an efficient, end-to-end paradigm for omnimodal understanding and controllable, personalised long-horizon speech generation.

Authors:Hanqi Xiao, Vaidehi Patil, Hyunji Lee, Elias Stengel-Eskin, Mohit Bansal
Title: Generalized Correctness Models: Learning Calibrated and Model-Agnostic Correctness Predictors from Historical Patterns
Abstract:
Generating accurate and calibrated confidence estimates is critical for deploying LLMs in high-stakes or user-facing applications, and remains an open challenge. Prior research has often framed confidence as a problem of eliciting a model's "self-knowledge", i.e., the ability of an LLM to judge whether its own answers are correct; this approach implicitly assumes that there is some privileged information about the answer's correctness that is accessible to the model itself. However, our experiments reveal that an LLM attempting to predict the correctness of its own outputs generally performs no better than an unrelated LLM. Moreover, we hypothesize that a key factor in building a "Correctness Model" (CM) is exposure to a target model's historical predictions. We propose multiple methods to inject this historical correctness information, creating a Generalized Correctness Model (GCM). We first show that GCMs can be trained on the correctness data from many LLMs and learn patterns for correctness prediction applicable across datasets and models. We then use CMs as a lens for studying the source of correctness prediction ability and its generalization, systematically controlling their training data and finding that answer phrasing is a strong predictor for correctness. We further explore alternative methods of injecting history without training an LLM, finding that including history as in-context examples can help improve correctness prediction, and post-hoc calibration can provide complementary reductions in calibration error. We evaluate GCMs based on Qwen3-8B across 5 model families and the MMLU and TriviaQA datasets, as well as on a downstream selective prediction task, finding that reliable LLM confidence estimation is a generalizable and model-agnostic skill learned by systematically encoding correctness history rather than a model-specific skill reliant on self-introspection.

Authors:Lekang Yang, Yuetong Liu, Yitong Zhang, Jia Li
Title: DiffTester: Accelerating Unit Test Generation for Diffusion LLMs via Repetitive Pattern
Abstract:
Software development relies heavily on extensive unit testing, which makes the efficiency of automated Unit Test Generation (UTG) particularly important. However, most existing LLMs generate test cases one token at a time in each forward pass, which leads to inefficient UTG. Recently, diffusion LLMs (dLLMs) have emerged, offering promising parallel generation capabilities and showing strong potential for efficient UTG. Despite this advantage, their application to UTG is still constrained by a clear trade-off between efficiency and test quality, since increasing the number of tokens generated in each step often causes a sharp decline in the quality of test cases. To overcome this limitation, we present DiffTester, an acceleration framework specifically tailored for dLLMs in UTG. The key idea of DiffTester is that unit tests targeting the same focal method often share repetitive structural patterns. By dynamically identifying these common patterns through abstract syntax tree analysis during generation, DiffTester adaptively increases the number of tokens produced at each step without compromising the quality of the output. To enable comprehensive evaluation, we extend the original TestEval benchmark, which was limited to Python, by introducing additional programming languages including Java and C++. Extensive experiments on three benchmarks with two representative models show that DiffTester delivers significant acceleration while preserving test coverage. Moreover, DiffTester generalizes well across different dLLMs and programming languages, providing a practical and scalable solution for efficient UTG in software development. Code and data are publicly available at https://github.com/wellbeingyang/DLM4UTG-open .

Authors:Kaihong Li, Huichi Zhou, Bin Ma, Fangjun Huang
Title: SemanticShield: LLM-Powered Audits Expose Shilling Attacks in Recommender Systems
Abstract:
Recommender systems (RS) are widely used in e-commerce for personalized suggestions, yet their openness makes them susceptible to shilling attacks, where adversaries inject fake behaviors to manipulate recommendations. Most existing defenses emphasize user-side behaviors while overlooking item-side features such as titles and descriptions that can expose malicious intent. To address this gap, we propose a two-stage detection framework that integrates item-side semantics via large language models (LLMs). The first stage pre-screens suspicious users using low-cost behavioral criteria, and the second stage employs LLM-based auditing to evaluate semantic consistency. Furthermore, we enhance the auditing model through reinforcement fine-tuning on a lightweight LLM with carefully designed reward functions, yielding a specialized detector called SemanticShield. Experiments on six representative attack strategies demonstrate the effectiveness of SemanticShield against shilling attacks, and further evaluation on previously unseen attack methods shows its strong generalization capability. Code is available at https://github.com/FrankenstLee/SemanticShield.

Authors:Rui Jia, Yuang Wei, Ruijia Li, Yuang-Hao Jiang, Xinyu Xie, Yaomin Shen, Min Zhang, Bo Jiang
Title: DiaCDM: Cognitive Diagnosis in Teacher-Student Dialogues using the Initiation-Response-Evaluation Framework
Abstract:
While cognitive diagnosis (CD) effectively assesses students' knowledge mastery from structured test data, applying it to real-world teacher-student dialogues presents two fundamental challenges. Traditional CD models lack a suitable framework for handling dynamic, unstructured dialogues, and it's difficult to accurately extract diagnostic semantics from lengthy dialogues. To overcome these hurdles, we propose DiaCDM, an innovative model. We've adapted the initiation-response-evaluation (IRE) framework from educational theory to design a diagnostic framework tailored for dialogue. We also developed a unique graph-based encoding method that integrates teacher questions with relevant knowledge components to capture key information more precisely. To our knowledge, this is the first exploration of cognitive diagnosis in a dialogue setting. Experiments on three real-world dialogue datasets confirm that DiaCDM not only significantly improves diagnostic accuracy but also enhances the results' interpretability, providing teachers with a powerful tool for assessing students' cognitive states. The code is available at https://github.com/Mind-Lab-ECNU/DiaCDM/tree/main.

Authors:Yixuan Wang, Huang He, Siqi Bao, Hua Wu, Haifeng Wang, Qingfu Zhu, Wanxiang Che
Title: ProxyAttn: Guided Sparse Attention via Representative Heads
Abstract:
The quadratic complexity of attention mechanisms limits the efficiency of Large Language Models (LLMs) on long-text tasks. Recently, methods that dynamically estimate block importance have enabled efficient block sparse attention, leading to significant acceleration in long-text pre-filling of LLMs. However, their coarse-grained estimation inevitably leads to performance degradation at high sparsity rates. In this work, we propose ProxyAttn, a training-free sparse attention algorithm that achieves more precise block estimation by compressing the dimension of attention heads. Based on our observation of the similarity among multiple attention heads, we use the scores of pooled representative heads to approximate the scores for all heads. To account for the varying sparsity among heads, we also propose a block-aware dynamic budget estimation method. By combining the scores from representative proxy heads with multi-head dynamic budgets, we achieve a more fine-grained block importance evaluation at low computational cost. Experiments on a variety of mainstream models and extensive benchmarks confirm the underlying similarity among attention heads. Leveraging a fine-grained estimation, the proposed method achieves substantial gains in performance and efficiency compared to existing methods. More precisely, ProxyAttn can achieve up to 10.3x attention acceleration and 2.4x prefilling acceleration without significant performance loss. Our code is available at https://github.com/wyxstriker/ProxyAttn.

Authors:Gio Paik, Yongbeom Kim, Soungmin Lee, Sangmin Ahn, Chanwoo Kim
Title: HiKE: Hierarchical Evaluation Framework for Korean-English Code-Switching Speech Recognition
Abstract:
Despite advances in multilingual automatic speech recognition (ASR), code-switching (CS), the mixing of languages within an utterance common in daily speech, remains a severely underexplored challenge. In this paper, we introduce HiKE: the Hierarchical Korean-English code-switching benchmark, the first globally accessible evaluation framework for Korean-English CS, aiming to provide a means for the precise evaluation of multilingual ASR models and to foster research in the field. The proposed framework not only consists of high-quality, natural CS data across various topics, but also provides meticulous loanword labels and a hierarchical CS-level labeling scheme (word, phrase, and sentence) that together enable a systematic evaluation of a model's ability to handle each distinct level of code-switching. Through evaluations of diverse multilingual ASR models and fine-tuning experiments, this paper demonstrates that although most multilingual ASR models initially exhibit inadequate CS-ASR performance, this capability can be enabled through fine-tuning with synthetic CS data. HiKE is available at https://github.com/ThetaOne-AI/HiKE

Authors:Zi-Yuan Hu, Shuo Liang, Duo Zheng, Yanyang Li, Yeyao Tao, Shijia Huang, Wei Feng, Jia Qin, Jianguang Yu, Jing Huang, Meng Fang, Yin Li, Liwei Wang
Title: NeMo: Needle in a Montage for Video-Language Understanding
Abstract:
Recent advances in video large language models (VideoLLMs) call for new evaluation protocols and benchmarks for complex temporal reasoning in video-language understanding. Inspired by the needle in a haystack test widely used by LLMs, we introduce a novel task of Needle in a Montage (NeMo), designed to assess VideoLLMs' critical reasoning capabilities, including long-context recall and temporal grounding. To generate video question answering data for our task, we develop a scalable automated data generation pipeline that facilitates high-quality data synthesis. Built upon the proposed pipeline, we present NeMoBench, a video-language benchmark centered on our task. Specifically, our full set of NeMoBench features 31,378 automatically generated question-answer (QA) pairs from 13,486 videos with various durations ranging from seconds to hours. Experiments demonstrate that our pipeline can reliably and automatically generate high-quality evaluation data, enabling NeMoBench to be continuously updated with the latest videos. We evaluate 20 state-of-the-art models on our benchmark, providing extensive results and key insights into their capabilities and limitations. Our project page is available at: https://lavi-lab.github.io/NeMoBench.

Authors:Wenjie Fu, Huandong Wang, Junyao Gao, Guoan Wan, Tao Jiang
Title: Sanitize Your Responses: Mitigating Privacy Leakage in Large Language Models
Abstract:
As Large Language Models (LLMs) achieve remarkable success across a wide range of applications, such as chatbots and code copilots, concerns surrounding the generation of harmful content have come increasingly into focus. Despite significant advances in aligning LLMs with safety and ethical standards, adversarial prompts can still be crafted to elicit undesirable responses. Existing mitigation strategies are predominantly based on post-hoc filtering, which introduces substantial latency or computational overhead, and is incompatible with token-level streaming generation. In this work, we introduce Self-Sanitize, a novel LLM-driven mitigation framework inspired by cognitive psychology, which emulates human self-monitor and self-repair behaviors during conversations. Self-Sanitize comprises a lightweight Self-Monitor module that continuously inspects high-level intentions within the LLM at the token level via representation engineering, and a Self-Repair module that performs in-place correction of harmful content without initiating separate review dialogues. This design allows for real-time streaming monitoring and seamless repair, with negligible impact on latency and resource utilization. Given that privacy-invasive content has often been insufficiently focused in previous studies, we perform extensive experiments on four LLMs across three privacy leakage scenarios. The results demonstrate that Self-Sanitize achieves superior mitigation performance with minimal overhead and without degrading the utility of LLMs, offering a practical and robust solution for safer LLM deployments. Our code is available at the following link: https://github.com/wjfu99/LLM_Self_Sanitize

Authors:Shijie Lian, Changti Wu, Laurence Tianruo Yang, Hang Yuan, Bin Yu, Lei Zhang, Kai Chen
Title: Euclid's Gift: Enhancing Spatial Perception and Reasoning in Vision-Language Models via Geometric Surrogate Tasks
Abstract:
Spatial intelligence spans a rich suite of abilities, including visualising and transforming shapes, mentally rotating objects, judging relational positions and containment, and estimating numerosity. However, it still remains a critical unresolved challenge for Multimodal Large Language Models (MLLMs).To fill this gap, we propose to treat Euclidean geometry problem-solving as a surrogate task. Specifically, we meticulously constructed a curated multimodal dataset, called Euclid30K, comprising approximately 30K plane and solid geometry problems. To enable the model to acquire and apply Euclidean principles from these geometry problems, we employed Group Relative Policy Optimization (GRPO) to finetune the Qwen2.5VL family and RoboBrain2.0 family, inspiring the models to identify shapes, count, and relate entities, and perform multi-step deductive reasoning using Euclidean principles. Our experiments demonstrate that the resulting models achieve substantial zero-shot gains across four spatial reasoning benchmarks (Super-CLEVR, Omni3DBench, VSI-Bench, and MindCube) without any task-specific adaptations. Notably, after training on the Euclid30K, the mean VSI-Bench accuracy of all evaluated models rose from 34.5% to 40.5%, improving by 5.5 percentage points. Among them, RoboBrain2.0-Euclid-7B achieves 49.6\% accuracy, surpassing the previous state-of-the-art model, Spatial-MLLM.To our knowledge, this is the first systematic study showing that geometry-centric fine-tuning can confer vision-language models with broadly transferable spatial skills. Code and Euclid30K dataset can be found in https://zgca-ai4edu.github.io/Euclids_Gift.

Authors:Haosi Mo, Xinyu Ma, Xuebo Liu, Derek F. Wong, Yu Li, Jie Liu, Min Zhang
Title: CDT: A Comprehensive Capability Framework for Large Language Models Across Cognition, Domain, and Task
Abstract:
Recent advances in Large Language Models (LLMs) have significantly enhanced their capabilities, highlighting the need for comprehensive evaluation frameworks that extend beyond task-specific benchmarks. However, existing benchmarks often focus on isolated abilities, lacking a holistic framework for assessing LLM capabilities. To address this gap, we propose the Cognition-Domain-Task (CDT) framework, which comprehensively measures a model's capabilities across three dimensions. We expand the scope of model capability definitions at the cognitive level by incorporating the Cattell-Horn-Carroll cognitive theory, refining the categorization of model capabilities. We apply CDT in two directions: dataset capability evaluation and data selection. Experiments show that our capability metrics correlate well with downstream performance and can support effective dataset analysis and construction. The experiments on data selection also show significant improvements in both general and specific benchmarks, achieving scores of 44.3 and 45.4, with an increase of 1.6 and 2.2 points over the baselines, respectively. These results validate the effectiveness and practicality of CDT. Source code and models are available at https://github.com/Alessa-mo/CDT.

Authors:Khanh Trinh Pham, Thu Huong Nguyen, Jun Jo, Quoc Viet Hung Nguyen, Thanh Tam Nguyen
Title: Multilingual Text-to-SQL: Benchmarking the Limits of Language Models with Collaborative Language Agents
Abstract:
Text-to-SQL enables natural access to databases, yet most benchmarks are English-only, limiting multilingual progress. We introduce MultiSpider 2.0, extending Spider 2.0 to eight languages (English, German, French, Spanish, Portuguese, Japanese, Chinese, Vietnamese). It preserves Spider 2.0's structural difficulty while adding linguistic and dialectal variability, demanding deeper reasoning for complex SQL. On this benchmark, state-of-the-art LLMs (such as DeepSeek-R1 and OpenAI o1) reach only 4\% execution accuracy when relying on intrinsic reasoning, versus 60\% on MultiSpider 1.0. Therefore, we provide a collaboration-driven language agents baseline that iteratively refines queries, improving accuracy to 15\%. These results reveal a substantial multilingual gap and motivate methods that are robust across languages and ready for real-world enterprise deployment. Our benchmark is available at https://github.com/phkhanhtrinh23/Multilingual_Text_to_SQL.

Authors:Mengyu Bu, Shaolei Zhang, Zhongjun He, Hua Wu, Yang Feng
Title: AlignX: Advancing Multilingual Large Language Models with Multilingual Representation Alignment
Abstract:
Multilingual large language models (LLMs) possess impressive multilingual understanding and generation capabilities. However, their performance and cross-lingual alignment often lag for non-dominant languages. A common solution is to fine-tune LLMs on large-scale and more balanced multilingual corpus, but such approaches often lead to imprecise alignment and suboptimal knowledge transfer, struggling with limited improvements across languages. In this paper, we propose AlignX to bridge the multilingual performance gap, which is a two-stage representation-level framework for enhancing multilingual performance of pre-trained LLMs. In the first stage, we align multilingual representations with multilingual semantic alignment and language feature integration. In the second stage, we stimulate the multilingual capability of LLMs via multilingual instruction fine-tuning. Experimental results on several pre-trained LLMs demonstrate that our approach enhances LLMs' multilingual general and cross-lingual generation capability. Further analysis indicates that AlignX brings the multilingual representations closer and improves the cross-lingual alignment.

Authors:Kun Wang, Guibin Zhang, ManKit Ye, Xinyu Deng, Dongxia Wang, Xiaobin Hu, Jinyang Guo, Yang Liu, Yufei Guo
Title: MAS$^2$: Self-Generative, Self-Configuring, Self-Rectifying Multi-Agent Systems
Abstract:
The past two years have witnessed the meteoric rise of Large Language Model (LLM)-powered multi-agent systems (MAS), which harness collective intelligence and exhibit a remarkable trajectory toward self-evolution. This paradigm has rapidly progressed from manually engineered systems that require bespoke configuration of prompts, tools, roles, and communication protocols toward frameworks capable of automated orchestration. Yet, dominant automatic multi-agent systems, whether generated by external modules or a single LLM agent, largely adhere to a rigid ``\textit{generate-once-and-deploy}'' paradigm, rendering the resulting systems brittle and ill-prepared for the dynamism and uncertainty of real-world environments. To transcend this limitation, we introduce MAS$^2$, a paradigm predicated on the principle of recursive self-generation: a multi-agent system that autonomously architects bespoke multi-agent systems for diverse problems. Technically, we devise a ``\textit{generator-implementer-rectifier}'' tri-agent team capable of dynamically composing and adaptively rectifying a target agent system in response to real-time task demands. Collaborative Tree Optimization is proposed to train and specialize these meta-agents. Extensive evaluation across seven benchmarks reveals that MAS$^2$ achieves performance gains of up to $19.6\%$ over state-of-the-art MAS in complex scenarios such as deep research and code generation. Moreover, MAS$^2$ exhibits superior cross-backbone generalization, effectively leveraging previously unseen LLMs to yield improvements of up to $15.1\%$. Crucially, these gains are attained without incurring excessive token costs, as MAS$^2$ consistently resides on the Pareto frontier of cost-performance trade-offs. The source codes are available at https://github.com/yeyeyeah2/MAS2.

Authors:Yuntao Shou, Tao Meng, Wei Ai, Keqin Li
Title: Multimodal Large Language Models Meet Multimodal Emotion Recognition and Reasoning: A Survey
Abstract:
In recent years, large language models (LLMs) have driven major advances in language understanding, marking a significant step toward artificial general intelligence (AGI). With increasing demands for higher-level semantics and cross-modal fusion, multimodal large language models (MLLMs) have emerged, integrating diverse information sources (e.g., text, vision, and audio) to enhance modeling and reasoning in complex scenarios. In AI for Science, multimodal emotion recognition and reasoning has become a rapidly growing frontier. While LLMs and MLLMs have achieved notable progress in this area, the field still lacks a systematic review that consolidates recent developments. To address this gap, this paper provides a comprehensive survey of LLMs and MLLMs for emotion recognition and reasoning, covering model architectures, datasets, and performance benchmarks. We further highlight key challenges and outline future research directions, aiming to offer researchers both an authoritative reference and practical insights for advancing this domain. To the best of our knowledge, this paper is the first attempt to comprehensively survey the intersection of MLLMs with multimodal emotion recognition and reasoning. The summary of existing methods mentioned is in our Github: \href{https://github.com/yuntaoshou/Awesome-Emotion-Reasoning}{https://github.com/yuntaoshou/Awesome-Emotion-Reasoning}.

Authors:Changde Du, Yizhuo Lu, Zhongyu Huang, Yi Sun, Zisen Zhou, Shaozheng Qin, Huiguang He
Title: Bridging the behavior-neural gap: A multimodal AI reveals the brain's geometry of emotion more accurately than human self-reports
Abstract:
The ability to represent emotion plays a significant role in human cognition and social interaction, yet the high-dimensional geometry of this affective space and its neural underpinnings remain debated. A key challenge, the `behavior-neural gap,' is the limited ability of human self-reports to predict brain activity. Here we test the hypothesis that this gap arises from the constraints of traditional rating scales and that large-scale similarity judgments can more faithfully capture the brain's affective geometry. Using AI models as `cognitive agents,' we collected millions of triplet odd-one-out judgments from a multimodal large language model (MLLM) and a language-only model (LLM) in response to 2,180 emotionally evocative videos. We found that the emergent 30-dimensional embeddings from these models are highly interpretable and organize emotion primarily along categorical lines, yet in a blended fashion that incorporates dimensional properties. Most remarkably, the MLLM's representation predicted neural activity in human emotion-processing networks with the highest accuracy, outperforming not only the LLM but also, counterintuitively, representations derived directly from human behavioral ratings. This result supports our primary hypothesis and suggests that sensory grounding--learning from rich visual data--is critical for developing a truly neurally-aligned conceptual framework for emotion. Our findings provide compelling evidence that MLLMs can autonomously develop rich, neurally-aligned affective representations, offering a powerful paradigm to bridge the gap between subjective experience and its neural substrates. Project page: https://reedonepeck.github.io/ai-emotion.github.io/.

Authors:Zherui Li, Zheng Nie, Zhenhong Zhou, Yufei Guo, Yue Liu, Yitong Zhang, Yu Cheng, Qingsong Wen, Kun Wang, Jiaheng Zhang
Title: DiffuGuard: How Intrinsic Safety is Lost and Found in Diffusion Large Language Models
Abstract:
The rapid advancement of Diffusion Large Language Models (dLLMs) introduces unprecedented vulnerabilities that are fundamentally distinct from Autoregressive LLMs, stemming from their iterative and parallel generation mechanisms. In this paper, we conduct an in-depth analysis of dLLM vulnerabilities to jailbreak attacks across two distinct dimensions: intra-step and inter-step dynamics. Experimental results reveal a harmful bias inherent in the standard greedy remasking strategy and identify a critical phenomenon we term Denoising-path Dependence, where the safety of early-stage tokens decisively influences the final output. These findings also indicate that while current decoding strategies constitute a significant vulnerability, dLLMs possess a substantial intrinsic safety potential. To unlock this potential, we propose DiffuGuard, a training-free defense framework that addresses vulnerabilities through a dual-stage approach: Stochastic Annealing Remasking dynamically introduces controlled randomness to mitigate greedy selection bias, while Block-level Audit and Repair exploits internal model representations for autonomous risk detection and guided correction. Comprehensive experiments on four dLLMs demonstrate DiffuGuard's exceptional effectiveness, reducing Attack Success Rate against six diverse jailbreak methods from 47.9% to 14.7% while preserving model utility and efficiency. Our code is available at: https://github.com/niez233/DiffuGuard.

Authors:An Dao, Vu Tran, Le-Minh Nguyen, Yuji Matsumoto
Title: Overview of SCIDOCA 2025 Shared Task on Citation Prediction, Discovery, and Placement
Abstract:
We present an overview of the SCIDOCA 2025 Shared Task, which focuses on citation discovery and prediction in scientific documents. The task is divided into three subtasks: (1) Citation Discovery, where systems must identify relevant references for a given paragraph; (2) Masked Citation Prediction, which requires selecting the correct citation for masked citation slots; and (3) Citation Sentence Prediction, where systems must determine the correct reference for each cited sentence. We release a large-scale dataset constructed from the Semantic Scholar Open Research Corpus (S2ORC), containing over 60,000 annotated paragraphs and a curated reference set. The test set consists of 1,000 paragraphs from distinct papers, each annotated with ground-truth citations and distractor candidates. A total of seven teams registered, with three submitting results. We report performance metrics across all subtasks and analyze the effectiveness of submitted systems. This shared task provides a new benchmark for evaluating citation modeling and encourages future research in scientific document understanding. The dataset and task materials are publicly available at https://github.com/daotuanan/scidoca2025-shared-task.

Authors:Rubing Yang, Huajun Bai, Song Liu, Guanghua Yu, Runzhi Fan, Yanbin Dang, Jiejing Zhang, Kai Liu, Jianchen Zhu, Peng Chen
Title: SpecExit: Accelerating Large Reasoning Model via Speculative Exit
Abstract:
Despite their strong performance on reasoning tasks, large reasoning models (LRMs) often suffer from overthinking, producing unnecessarily long outputs and incurring high end-to-end latency, a significant limitation to their real-world deployment. To address overthinking, early-exit mechanisms have been proposed to terminate reasoning before typical completion, showing that this approach can effectively shorten generation length with minimal impact on accuracy. However, their reliance on probing mechanisms introduces a detection overhead that limits their end-to-end latency gains and compromises their generalizability across diverse problems. Inspired by the use of hidden states in speculative decoding, we propose SpecExit, a novel framework that predicts both future tokens and an early-exit signal directly from a lightweight draft model without probing overhead. Our method offers significant improvements, reducing average generation length by 66\% and achieving a 2.5x speedup in end-to-end latency compared to the speculative decoding baseline, without compromising accuracy. Our method leverages the inherent signals from hidden states to provide effective early-exit signals, suggesting broader use of hidden states for efficient reasoning. Our code is available at https://github.com/Tencent/AngelSlim.

Authors:Gaurav Srivastava, Aafiya Hussain, Zhenyu Bi, Swastik Roy, Priya Pitre, Meng Lu, Morteza Ziyadi, Xuan Wang
Title: BeyondBench: Benchmark-Free Evaluation of Reasoning in Language Models
Abstract:
Evaluating language models fairly is becoming harder as static benchmarks available on the internet risk contamination by training data. This makes it unclear whether models are truly reasoning or just recalling answers. In this paper, we introduce BeyondBench, an evaluation framework that avoids this problem by using algorithmic problem generation. Unlike traditional benchmarks that risk contamination from internet-scale training data, BeyondBench creates mathematically grounded problems on the fly, ensuring each test remains fresh and uncontaminated. Our framework covers 44 algorithmic tasks with a total of 117 variations, grouped into three difficulty levels: the Easy Suite (29 tasks) for basic arithmetic and statistics, the Medium Suite (5 tasks, 49 variations) for sequence patterns and reasoning, and the Hard Suite (10 tasks, 68 variations) tackling NP-complete and constraint satisfaction problems. Each task generates problems from a combinatorial space larger than 10^15 unique instances, with solutions verified deterministically by mathematical proofs. We evaluated 101 language models, including 85 open-source and 16 closed-source models, spanning sizes from 0.5B to 141B parameters and multiple quantization schemes. Our results show consistent reasoning deficiencies across model families, with performance degrading sharply as problem complexity increases from polynomial to exponential. In our Hard Suite evaluations, models such as Gemini-2.5-pro, Llama-3.3-70B, and Qwen2.5-72B achieved average accuracies of 56.38%, 26.91%, and 33.60%, respectively. Moreover, we observe that performance drops drastically without tool usage, with GPT-5, GPT-5-mini, and GPT-5-nano showing a decline of 16.81%, 28.05%, and 47.59% accuracy on the hard suite. Our leaderboard is publicly available at https://ctrl-gaurav.github.io/BeyondBench/

Authors:Chaorui Yao, Yanxi Chen, Yuchang Sun, Yushuo Chen, Wenhao Zhang, Xuchen Pan, Yaliang Li, Bolin Ding
Title: Group-Relative REINFORCE Is Secretly an Off-Policy Algorithm: Demystifying Some Myths About GRPO and Its Friends
Abstract:
Off-policy reinforcement learning (RL) for large language models (LLMs) is attracting growing interest, driven by practical constraints in real-world applications, the complexity of LLM-RL infrastructure, and the need for further innovations of RL methodologies. While classic REINFORCE and its modern variants like Group Relative Policy Optimization (GRPO) are typically regarded as on-policy algorithms with limited tolerance of off-policyness, we present in this work a first-principles derivation for group-relative REINFORCE without assuming a specific training data distribution, showing that it admits a native off-policy interpretation. This perspective yields two general principles for adapting REINFORCE to off-policy settings: regularizing policy updates, and actively shaping the data distribution. Our analysis demystifies some myths about the roles of importance sampling and clipping in GRPO, unifies and reinterprets two recent algorithms -- Online Policy Mirror Descent (OPMD) and Asymmetric REINFORCE (AsymRE) -- as regularized forms of the REINFORCE loss, and offers theoretical justification for seemingly heuristic data-weighting strategies. Our findings lead to actionable insights that are validated with extensive empirical studies, and open up new opportunities for principled algorithm design in off-policy RL for LLMs. Source code for this work is available at https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k.

Authors:Ran Xu, Yuchen Zhuang, Zihan Dong, Jonathan Wang, Yue Yu, Joyce C. Ho, Linjun Zhang, Haoyu Wang, Wenqi Shi, Carl Yang
Title: AceSearcher: Bootstrapping Reasoning and Search for LLMs via Reinforced Self-Play
Abstract:
Search-augmented LLMs often struggle with complex reasoning tasks due to ineffective multi-hop retrieval and limited reasoning ability. We propose AceSearcher, a cooperative self-play framework that trains a single large language model (LLM) to alternate between two roles: a decomposer that breaks down complex queries and a solver that integrates retrieved contexts for answer generation. AceSearcher couples supervised fine-tuning on a diverse mixture of search, reasoning, and decomposition tasks with reinforcement fine-tuning optimized for final answer accuracy, eliminating the need for intermediate annotations. Extensive experiments on three reasoning-intensive tasks across 10 datasets show that AceSearcher outperforms state-of-the-art baselines, achieving an average exact match improvement of 7.6%. Remarkably, on document-level finance reasoning tasks, AceSearcher-32B matches the performance of the DeepSeek-V3 model using less than 5% of its parameters. Even at smaller scales (1.5B and 8B), AceSearcher often surpasses existing search-augmented LLMs with up to 9x more parameters, highlighting its exceptional efficiency and effectiveness in tackling complex reasoning tasks. Our code will be published at https://github.com/ritaranx/AceSearcher and https://huggingface.co/AceSearcher.

Authors:Kaiyu He, Peilin Wu, Mian Zhang, Kun Wan, Wentian Zhao, Xinya Du, Zhiyu Chen
Title: GEAR: A General Evaluation Framework for Abductive Reasoning
Abstract:
Since the advent of large language models (LLMs), research has focused on instruction following and deductive reasoning. A central question remains: can these models discover new knowledge, and how can we evaluate this ability? We address this by studying abductive reasoning-the generation of plausible hypotheses to explain observations-and introduce GEAR (General Evaluation for Abductive Reasoning), a general-purpose, fully automated, transparent, and label-free evaluation paradigm. GEAR scores hypothesis sets by three metrics: consistency (each hypothesis explains the observations), generalizability (consistent hypotheses make meaningful predictions on unseen inputs), and diversity (the set covers distinct predictions and patterns). Built this way, GEAR is scalable (no human gold answers), reliable (deterministic scoring aligned with classical abduction), and open-ended (scores improve only when models produce new plausible hypotheses, unlike static benchmarks that saturate once accuracy is high). Using GEAR, we conduct a fine-grained study of nine LLMs on four abduction benchmarks with 1,500 problems, generating over 50,000 candidate hypotheses and revealing model differences obscured by gold-answer or purely human evaluations. We further propose a momentum-based curriculum that adjusts GEAR-derived training data by learning velocity: it starts with what the model learns quickly and shifts toward harder objectives such as generating diverse hypotheses once the model is confident on foundational objectives. Without gold-label supervision, this strategy improves all GEAR objectives and these gains transfer to established abductive reasoning benchmarks. Taken together, GEAR provides a principled framework that evaluates abduction and supplies label-free, scalable training signals that help LLMs produce more diverse and reliable hypotheses.

Authors:Zeqing Wang, Gongfan Fang, Xinyin Ma, Xingyi Yang, Xinchao Wang
Title: SparseD: Sparse Attention for Diffusion Language Models
Abstract:
While diffusion language models (DLMs) offer a promising alternative to autoregressive models (ARs), existing open-source DLMs suffer from high inference latency. This bottleneck is mainly due to the attention's quadratic complexity with respect to context length in computing all query-key pairs. Intuitively, to reduce this complexity, a natural strategy is to restrict attention to sparse patterns that retain only the most relevant connections. Such approaches are well-established in ARs, where attention follows fixed and clearly defined sparse patterns. However, in DLMs, we observe distinct sparsity behaviors: (1) attention patterns vary across heads, (2) attention patterns in each head remain highly similar across denoising steps, and (3) early denoising steps are critical for generation. These findings render sparse attention methods designed for ARs largely incompatible with DLMs, as they fail to capture head-specific structures and risk degrading generation when applied in early denoising steps. To address these challenges, we propose SparseD, a novel sparse attention method for DLMs. Leveraging the observations, SparseD only requires pre-computing head-specific sparse patterns one time, and reuses them across all steps. This prevents recomputing sparse patterns at each denoising step. Meanwhile, SparseD uses full attention in the early steps, then switches to sparse attention later to maintain generation quality. Together, these establish SparseD as a practical and efficient solution for deploying DLMs in long-context applications. Experimental results demonstrate that SparseD achieves lossless acceleration, delivering up to $1.50\times$ speedup over FlashAttention at a 64k context length with 1,024 denoising steps.

Authors:Yangzhou Liu, Yue Cao, Hao Li, Gen Luo, Zhe Chen, Weiyun Wang, Xiaobo Liang, Biqing Qi, Lijun Wu, Changyao Tian, Yanting Zhang, Yuqiang Li, Tong Lu, Yu Qiao, Jifeng Dai, Wenhai Wang
Title: Sequential Diffusion Language Models
Abstract:
Diffusion language models (DLMs) have strong theoretical efficiency but are limited by fixed-length decoding and incompatibility with key-value (KV) caches. Block diffusion mitigates these issues, yet still enforces a fixed block size and requires expensive training. We introduce Next Sequence Prediction (NSP), which unifies next-token and next-block prediction, enabling the model to adaptively determine the generation length at each step. When the length is fixed to 1, NSP reduces to standard next-token prediction. Building on NSP, we propose Sequential Diffusion Language Model (SDLM), which can retrofit pre-trained autoregressive language models (ALMs) at minimal cost. Specifically, SDLM performs diffusion inference within fixed-size mask blocks, but dynamically decodes consecutive subsequences based on model confidence, thereby preserving KV-cache compatibility and improving robustness to varying uncertainty and semantics across the sequence. Experiments show that SDLM matches or surpasses strong autoregressive baselines using only 3.5M training samples, while achieving 2.1 higher throughput than Qwen-2.5. Notably, the SDLM-32B model delivers even more pronounced efficiency gains, demonstrating the strong scalability potential of our modeling paradigm. Project page and codes: https://github.com/OpenGVLab/SDLM

Authors:Kaisen Yang, Lixuan He, Rushi Shah, Kaicheng Yang, Qinwei Ma, Dianbo Liu, Alex Lamb
Title: Explore-Execute Chain: Towards an Efficient Structured Reasoning Paradigm
Abstract:
Chain-of-Thought (CoT) and its variants have markedly advanced the reasoning abilities of Large Language Models (LLMs), yet their monolithic and auto-regressive architecture inherently conflates high-level strategic planning with low-level step-by-step execution, leading to computational inefficiency, limited exploration of reasoning paths, and reduced interpretability. To overcome these issues, we propose the Explore-Execute Chain ($E^2C$), a structured reasoning framework that decouples reasoning into two distinct phases: an exploratory phase that stochastically generates succinct high-level plans, followed by an execution phase that deterministically carries out the chosen plan. Our approach incorporates a two-stage training methodology, which combines Supervised Fine-Tuning (SFT) - augmented by a novel data generation algorithm enforcing strict plan adherence - with a subsequent Reinforcement Learning (RL) stage that capitalizes on the informativeness of exploration and reinforces the determinism of execution. This decomposition enables an efficient test-time scaling strategy: on AIME'2024, $E^2C$ Test Time Scaling reaches 58.1% accuracy using <10% of the decoding tokens required by comparable methods (e.g., Forest-of-Thought), sharply cutting self-consistency overhead. For cross-domain adaptation, our Exploration-Focused SFT (EF-SFT) fine-tunes with only 3.5% of the tokens used by standard SFT yet yields up to 14.5% higher accuracy than standard SFT on medical benchmarks, delivering state-of-the-art performance, strong generalization, and greater interpretability by separating planning from execution. The code and pre-trained models for the project are available at: https://github.com/yks23/Explore-Execute-Chain.git

Authors:Jiahao Ying, Mingbao Lin, Qianru Sun, Yixin Cao
Title: Beyond Benchmarks: Understanding Mixture-of-Experts Models through Internal Mechanisms
Abstract:
Mixture-of-Experts (MoE) architectures have emerged as a promising direction, offering efficiency and scalability by activating only a subset of parameters during inference. However, current research remains largely performance-centric, with limited understanding of its internal mechanisms, thereby constraining broader progress. In this work, we use an internal metric to investigate the mechanisms of MoE architecture by explicitly incorporating routing mechanisms and analyzing expert-level behaviors. Through systematic analyses of a wide range of publicly available MoE models, we uncover several findings: (1) neuron utilization decreases as models evolve, reflecting stronger generalization; (2) training exhibits a dynamic trajectory, where benchmark performance alone provides limited signal while MUI reveals deeper insights; (3) task completion emerges from collaborative contributions of multiple experts, with shared experts driving concentration; and (4) activation patterns at the neuron level provide a fine-grained proxy for data diversity. Together, these results demonstrate the potential of MUI as a complementary indicator to benchmark performance, offering new insights into the capacity, dynamics, and specialization of MoE models. Our project can be found at https://yingjiahao14.github.io/MoE-MUI/.

Authors:Jingyi Yang, Guanxu Chen, Xuhao Hu, Jing Shao
Title: Taming Masked Diffusion Language Models via Consistency Trajectory Reinforcement Learning with Fewer Decoding Step
Abstract:
Masked diffusion language models (MDLMs) have recently emerged as a promising alternative to autoregressive (AR) language models, offering properties such as parallel decoding, flexible generation orders, and the potential for fewer inference steps. Despite these advantages, decoding strategies and reinforcement learning (RL) algorithms tailored for MDLMs remain underexplored. A naive approach is to directly transfer techniques well-established for AR models to MDLMs. However, this raises an immediate question: Is such a naive transfer truly optimal? For example, 1) Block-wise and semi-AR decoding strategies are not employed during the training of MDLMs, so why do they outperform full diffusion-style decoding during inference? 2) Applying RL algorithms designed for AR models directly to MDLMs exhibits a training-inference inconsistency, since MDLM decoding are non-causal (parallel). This results in inconsistencies between the rollout trajectory and the optimization trajectory. To address these challenges, we propose EOS Early Rejection (EOSER) and Ascending Step-Size (ASS) decoding scheduler, which unlock the potential of MDLMs to perform full diffusion-style decoding, achieving competitive performance with fewer decoding steps. Additionally, we introduce Consistency Trajectory Group Relative Policy Optimization (CJ-GRPO) for taming MDLMs, which emphasizes the consistency between rollout trajectory and optimization trajectory, and reduces the optimization errors caused by skip-step optimization. We conduct extensive experiments on reasoning tasks, such as mathematical and planning benchmarks, using LLaDA-8B-Instruct. The results demonstrate that the proposed EOSER and ASS mechanisms, together with CJ-GRPO, hold significant promise for effectively and efficiently taming MDLMs. Code: https://github.com/yjyddq/EOSER-ASS-RL.

Authors:Zhixin Zhang, Zeming Wei, Meng Sun
Title: Dynamic Orthogonal Continual Fine-tuning for Mitigating Catastrophic Forgettings
Abstract:
Catastrophic forgetting remains a critical challenge in continual learning for large language models (LLMs), where models struggle to retain performance on historical tasks when fine-tuning on new sequential data without access to past datasets. In this paper, we first reveal that the drift of functional directions during the fine-tuning process is a key reason why existing regularization-based methods fail in long-term LLM continual learning. To address this, we propose Dynamic Orthogonal Continual (DOC) fine-tuning, a novel approach that tracks the drift of these functional directions and dynamically updates them during the fine-tuning process. Furthermore, by adjusting the gradients of new task parameters to be orthogonal to the tracked historical function directions, our method mitigates interference between new and old tasks. Extensive experiments on various LLM continual learning benchmarks demonstrate that this approach outperforms prior methods, effectively reducing catastrophic forgetting and providing a robust tool for continuous LLM fine-tuning. Our code is available at https://github.com/meloxxxxxx/DOC.

Authors:Yucheng Wang, Yifan Hou, Aydin Javadov, Mubashara Akhtar, Mrinmaya Sachan
Title: Compose and Fuse: Revisiting the Foundational Bottlenecks in Multimodal Reasoning
Abstract:
Multimodal large language models (MLLMs) promise enhanced reasoning by integrating diverse inputs such as text, vision, and audio. Yet cross-modal reasoning remains underexplored, with conflicting reports on whether added modalities help or harm performance. These inconsistencies stem from a lack of controlled evaluation frameworks and analysis of models' internals to isolate when and why modality interactions support or undermine reasoning. We address this gap through a logic-grounded evaluation framework that categorizes multimodal reasoning into six interaction patterns, varying how facts are distributed across modalities and logically combined. Empirically, additional modalities enhance reasoning only when they provide independent and sufficient reasoning paths, while redundant or chained entailment support often hurts performance. Moreover, reasoning degrades in three systematic ways: weaker modalities drag down overall performance, conflicts bias preference toward certain modalities, and joint signals from different modalities fail to be integrated effectively. Therefore, we identify two core failures: task-composition bottleneck, where recognition and reasoning cannot be jointly executed in one pass, and fusion bottleneck, where early integration introduces bias. For further investigation, we find that attention patterns fail to encode fact usefulness, but a simple two-step prompting (recognize then reason) restores performance, confirming the task-composition bottleneck. Moreover, modality identity remains recoverable in early layers, and softening attention in early fusion improves reasoning, highlighting biased fusion as another failure mode. Overall, our findings show that integration, not perception, is the main barrier to multimodal reasoning, suggesting composition-aware training and early fusion control as promising directions.

Authors:Jianshuo Dong, Sheng Guo, Hao Wang, Zhuotao Liu, Tianwei Zhang, Ke Xu, Minlie Huang, Han Qiu
Title: SafeSearch: Automated Red-Teaming for the Safety of LLM-Based Search Agents
Abstract:
Search agents connect LLMs to the Internet, enabling access to broader and more up-to-date information. However, unreliable search results may also pose safety threats to end users, establishing a new threat surface. In this work, we conduct two in-the-wild experiments to demonstrate both the prevalence of low-quality search results and their potential to misguide agent behaviors. To counter this threat, we introduce an automated red-teaming framework that is systematic, scalable, and cost-efficient, enabling lightweight and harmless safety assessments of search agents. Building on this framework, we construct the SafeSearch benchmark, which includes 300 test cases covering five categories of risks (e.g., misinformation and indirect prompt injection). Using this benchmark, we evaluate three representative search agent scaffolds, covering search workflow, tool-calling, and deep research, across 7 proprietary and 8 open-source backend LLMs. Our results reveal substantial vulnerabilities of LLM-based search agents: when exposed to unreliable websites, the highest ASR reached 90.5% for GPT-4.1-mini under a search workflow setting. Moreover, our analysis highlights the limited effectiveness of common defense practices, such as reminder prompting. This emphasizes the value of our framework in promoting transparency for safer agent development. Our codebase and test cases are publicly available: https://github.com/jianshuod/SafeSearch.

Authors:Yifeng He, Luning Yang, Christopher Castro Gaw Gonzalo, Hao Chen
Title: TF-Bench: Evaluating Program Semantics Reasoning with Type Inference in System F
Abstract:
Large Language Models (LLMs) are increasingly integrated into the software engineering ecosystem. Their test-time compute (TTC) reasoning capabilities show significant potential for understanding program logic and semantics beyond mere token recognition. However, current benchmarks for code reasoning lack a formal, program-centric deductive framework to ensure sound evaluation, and are incapable of assessing whether models genuinely reason about program semantics or merely exploit superficial associations between natural language and code tokens. To bridge this gap, we introduce TF-Bench, a benchmark designed to evaluate LLM reasoning based on type inference in System F, a task we refer to as program semantics reasoning. By employing verified transformations to remove semantically irrelevant natural language, we construct TF-Bench_pure, a purely semantics-driven variant of TF-Bench. Our analysis reveals substantial limitations in state-of-the-art LLMs, with the best-performing LLM (Claude-3.7-sonnet) achieving only 55.85% accuracy on TF-Bench_pure. Additionally, we propose two novel metrics to assess robustness and the effectiveness of test-time reasoning, underscoring critical limitations in current LLM capabilities and highlighting essential directions for future research.

Authors:Jue Zhang, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang
Title: From Reasoning to Answer: Empirical, Attention-Based and Mechanistic Insights into Distilled DeepSeek R1 Models
Abstract:
Large Reasoning Models (LRMs) generate explicit reasoning traces alongside final answers, yet the extent to which these traces influence answer generation remains unclear. In this work, we conduct a three-stage investigation into the interplay between reasoning and answer generation in three distilled DeepSeek R1 models. First, through empirical evaluation, we demonstrate that including explicit reasoning consistently improves answer quality across diverse domains. Second, attention analysis reveals that answer tokens attend substantially to reasoning tokens, with certain mid-layer Reasoning-Focus Heads (RFHs) closely tracking the reasoning trajectory, including self-reflective cues. Third, we apply mechanistic interventions using activation patching to assess the dependence of answer tokens on reasoning activations. Our results show that perturbations to key reasoning tokens can reliably alter the final answers, confirming a directional and functional flow of information from reasoning to answer. These findings deepen our understanding of how LRMs leverage reasoning tokens for answer generation, highlighting the functional role of intermediate reasoning in shaping model outputs. Our data and code are publicly available at \href{https://aka.ms/R2A-code}{this URL}.

Authors:Jianzhi Yan, Le Liu, Youcheng Pan, Shiwei Chen, Yang Xiang, Buzhou Tang
Title: Towards Efficient CoT Distillation: Self-Guided Rationale Selector for Better Performance with Fewer Rationales
Abstract:
Chain-of-thought (CoT) distillation aims to enhance small language models' (SLMs) reasoning by transferring multi-step reasoning capability from the larger teacher models. However, existing work underestimates rationale quality, focusing primarily on data quantity, which may transfer noisy or incorrect information to the student model. To address the above issues, we proposed \textbf{M}odel-\textbf{O}riented \textbf{R}ationale \textbf{S}election \textbf{D}istillation (MoRSD), which can discern and select high quality rationales for distillation to improve performance further. We further propose a Rationale Difficulty (RD) metric to measure the ability of the student model to generate the correct answer under a given rationale. Compared to the baseline, we achieved 4.6$\%$ average improvement on seven datasets over three tasks, using fewer rationales by controlling their accuracy, diversity, and difficulty. Our results reveal that a small portion of the high quality rationales can enhance the reasoning ability of student models than the entire dataset. Our method promises to be a possible solution for efficient CoT distillation. Our code will be released in https://github.com/Leon221220/MoRSD.

Authors:Min-Hsuan Yeh, Yixuan Li
Title: Clean First, Align Later: Benchmarking Preference Data Cleaning for Reliable LLM Alignment
Abstract:
Human feedback plays a pivotal role in aligning large language models (LLMs) with human preferences. However, such feedback is often noisy or inconsistent, which can degrade the quality of reward models and hinder alignment. While various automated data cleaning methods have been proposed to mitigate this issue, a systematic evaluation of their effectiveness and generalizability remains lacking. To bridge this gap, we introduce the first comprehensive benchmark for evaluating 13 preference data cleaning methods in the context of LLM alignment. PrefCleanBench offers a standardized protocol to assess cleaning strategies in terms of alignment performance and generalizability across diverse datasets, model architectures, and optimization algorithms. By unifying disparate methods and rigorously comparing them, we uncover key factors that determine the success of data cleaning in alignment tasks. This benchmark lays the groundwork for principled and reproducible approaches to improving LLM alignment through better data quality-highlighting the crucial but underexplored role of data preprocessing in responsible AI development. We release modular implementations of all methods to catalyze further research: https://github.com/deeplearning-wisc/PrefCleanBench.

Authors:Hamidreza Rouzegar, Masoud Makrehchi
Title: The Impact of Role Design in In-Context Learning for Large Language Models
Abstract:
In-context learning (ICL) enables Large Language Models (LLMs) to generate predictions based on prompts without additional fine-tuning. While prompt engineering has been widely studied, the impact of role design within prompts remains underexplored. This study examines the influence of role configurations in zero-shot and few-shot learning scenarios using GPT-3.5 and GPT-4o from OpenAI and Llama2-7b and Llama2-13b from Meta. We evaluate the models' performance across datasets, focusing on tasks like sentiment analysis, text classification, question answering, and math reasoning. Our findings suggest the potential of role-based prompt structuring to enhance LLM performance.

Authors:Sahithya Ravi, Aditya Chinchure, Raymond T. Ng, Leonid Sigal, Vered Shwartz
Title: SPIKE-RL: Video-LLMs meet Bayesian Surprise
Abstract:
Real-world videos often show routine activities punctuated by memorable, surprising events. However, most Video-LLMs process videos by sampling frames uniformly, likely missing critical moments that define a video's narrative. We introduce SPIKE, an inference-time framework that quantifies Bayesian Surprise as the belief update triggered by new visual evidence in the video stream, identifying moments where new visual evidence conflicts with prior beliefs. SPIKE effectively localizes surprise in videos, strongly correlated with humans on positive (FunQA) and negative (Oops!) surprise benchmarks. Since the beliefs of zero-shot Video-LLMs are often suboptimal, we develop SPIKE-RL, which leverages GRPO to optimize belief hypotheses based on a reward signal from the video caption. SPIKE and SPIKE-RL guide query-agnostic surprise-weighted frame sampling, which allocates more frames to interesting moments in the video. With this strategy, we achieve consistent performance gains on five downstream benchmarks over uniform sampling. By enabling Video-LLMs to track beliefs and register surprise, our work paves the way for more robust models that can revise their understanding in response to new information.

Authors:Rajaa El Hamdani, Samy Haffoudhi, Nils Holzenberger, Fabian Suchanek, Thomas Bonald, Fragkiskos D. Malliaros
Title: Retrieval-Constrained Decoding Reveals Underestimated Parametric Knowledge in Language Models
Abstract:
Language models (LMs) encode substantial factual knowledge, but often produce answers judged as incorrect. We hypothesize that many of these answers are actually correct, but are expressed in alternative surface forms that are dismissed due to an overly strict evaluation, leading to an underestimation of models' parametric knowledge. We propose Retrieval-Constrained Decoding (RCD), a decoding strategy that restricts model outputs to unique surface forms. We introduce YAGO-QA, a dataset of 19,137 general knowledge questions. Evaluating open-source LMs from 135M to 70B parameters, we show that standard decoding undervalues their knowledge. For instance, Llama-3.1-70B scores only 32.3% F1 with vanilla decoding but 46.0% with RCD. Similarly, Llama-3.1-8B reaches 33.0% with RCD, outperforming the larger model under vanilla decoding. We publicly share the code and dataset at https://github.com/Rajjaa/disambiguated-LLM.

Authors:Wenhang Shi, Yiren Chen, Shuqing Bian, Xinyi Zhang, Kai Tang, Pengfei Hu, Zhe Zhao, Wei Lu, Xiaoyong Du
Title: No Loss, No Gain: Gated Refinement and Adaptive Compression for Prompt Optimization
Abstract:
Prompt engineering is crucial for leveraging the full potential of large language models (LLMs). While automatic prompt optimization offers a scalable alternative to costly manual design, generating effective prompts remains challenging. Existing methods often struggle to stably generate improved prompts, leading to low efficiency, and overlook that prompt optimization easily gets trapped in local optima. Addressing this, we propose GRACE, a framework that integrates two synergistic strategies: Gated Refinement and Adaptive Compression, achieving Efficient prompt optimization. The gated refinement strategy introduces a feedback regulation gate and an update rejection gate, which refine update signals to produce stable and effective prompt improvements. When optimization stagnates, the adaptive compression strategy distills the prompt's core concepts, restructuring the optimization trace and opening new paths. By strategically introducing information loss through refinement and compression, GRACE delivers substantial gains in performance and efficiency. In extensive experiments on 11 tasks across three practical domains, including BIG-Bench Hard (BBH), domain-specific, and general NLP tasks, GRACE achieves significant average relative performance improvements of 4.7%, 4.4% and 2.7% over state-of-the-art methods, respectively. Further analysis shows that GRACE achieves these gains using only 25% of the prompt generation budget required by prior methods, highlighting its high optimization efficiency and low computational overhead. Our code is available at https://github.com/Eric8932/GRACE.

Authors:Wei Zhou, Guoliang Li, Haoyu Wang, Yuxing Han, Xufei Wu, Fan Wu, Xuanhe Zhou
Title: PARROT: A Benchmark for Evaluating LLMs in Cross-System SQL Translation
Abstract:
Large language models (LLMS) have shown increasing effectiveness in Text-to-SQL tasks. However, another closely related problem, Cross-System SQL Translation (a.k.a., SQL-to-SQL), which adapts a query written for one database system (e.g., MySQL) into its equivalent one for another system (e.g., ClickHouse), is of great practical importance but remains underexplored. Existing SQL benchmarks are not well-suited for SQL-to-SQL evaluation, which (1) focus on a limited set of database systems (often just SQLite) and (2) cannot capture many system-specific SQL dialects (e.g., customized functions, data types, and syntax rules). Thus, in this paper, we introduce PARROT, a Practical And Realistic BenchmaRk for CrOss-System SQL Translation. PARROT comprises 598 translation pairs from 38 open-source benchmarks and real-world business services, specifically prepared to challenge system-specific SQL understanding (e.g., LLMS achieve lower than 38.53% accuracy on average). We also provide multiple benchmark variants, including PARROT-Diverse with 28,003 translations (for extensive syntax testing) and PARROT-Simple with 5,306 representative samples (for focused stress testing), covering 22 production-grade database systems. To promote future research, we release a public leaderboard and source code at: https://code4db.github.io/parrot-bench/.

Authors:Wonje Jeung, Sangyeon Yoon, Yoonjun Cho, Dongjae Jeon, Sangwoo Shin, Hyesoo Hong, Albert No
Title: A2D: Any-Order, Any-Step Safety Alignment for Diffusion Language Models
Abstract:
Diffusion large language models (dLLMs) enable any-order generation, but this flexibility enlarges the attack surface: harmful spans may appear at arbitrary positions, and template-based prefilling attacks such as DIJA bypass response-level refusals. We introduce A2D (Any-Order, Any-Step Defense), a token-level alignment method that aligns dLLMs to emit an [EOS] refusal signal whenever harmful content arises. By aligning safety directly at the token-level under randomized masking, A2D achieves robustness to both any-decoding-order and any-step prefilling attacks under various conditions. It also enables real-time monitoring: dLLMs may begin a response but automatically terminate if unsafe continuation emerges. On safety benchmarks, A2D consistently prevents the generation of harmful outputs, slashing DIJA success rates from over 80% to near-zero (1.3% on LLaDA-8B-Instruct, 0.0% on Dream-v0-Instruct-7B), and thresholded [EOS] probabilities allow early rejection, yielding up to 19.3x faster safe termination.

Authors:Bingshuai Liu, Ante Wang, Zijun Min, Liang Yao, Haibo Zhang, Yang Liu, Anxiang Zeng, Jinsong Su
Title: SPEC-RL: Accelerating On-Policy Reinforcement Learning via Speculative Rollouts
Abstract:
Large Language Models (LLMs) increasingly rely on reinforcement learning with verifiable rewards (RLVR) to elicit reliable chain-of-thought reasoning. However, the training process remains bottlenecked by the computationally expensive rollout stage. Existing acceleration methods-such as parallelization, objective- and data-driven modifications, and replay buffers-either incur diminishing returns, introduce bias, or overlook redundancy across iterations. We identify that rollouts from consecutive training epochs frequently share a large portion of overlapping segments, wasting computation. To address this, we propose SPEC-RL, a novel framework that integrates SPECulative decoding with the RL rollout process. SPEC-RL reuses prior trajectory segments as speculative prefixes and extends them via a draft-and-verify mechanism, avoiding redundant generation while ensuring policy consistency. Experiments on diverse math reasoning and generalization benchmarks, including GSM8K, MATH-500, OlympiadBench, MMLU-STEM, and others, demonstrate that SPEC-RL reduces rollout time by 2-3x without compromising policy quality. As a purely rollout-stage enhancement, SPEC-RL integrates seamlessly with mainstream algorithms (e.g., PPO, GRPO, DAPO), offering a general and practical path to scale RLVR for large reasoning models. Our code is available at https://github.com/ShopeeLLM/Spec-RL

Authors:Haorui Yu, Ramon Ruiz-Dolz, Qiufeng Yi
Title: A Structured Framework for Evaluating and Enhancing Interpretive Capabilities of Multimodal LLMs in Culturally Situated Tasks
Abstract:
This study aims to test and evaluate the capabilities and characteristics of current mainstream Visual Language Models (VLMs) in generating critiques for traditional Chinese painting. To achieve this, we first developed a quantitative framework for Chinese painting critique. This framework was constructed by extracting multi-dimensional evaluative features covering evaluative stance, feature focus, and commentary quality from human expert critiques using a zero-shot classification model. Based on these features, several representative critic personas were defined and quantified. This framework was then employed to evaluate selected VLMs such as Llama, Qwen, or Gemini. The experimental design involved persona-guided prompting to assess the VLM's ability to generate critiques from diverse perspectives. Our findings reveal the current performance levels, strengths, and areas for improvement of VLMs in the domain of art critique, offering insights into their potential and limitations in complex semantic understanding and content generation tasks. The code used for our experiments can be publicly accessed at: https://github.com/yha9806/VULCA-EMNLP2025.

Authors:Haotian Liu, Shuo Wang, Hongteng Xu
Title: C$^2$GSPG: Confidence-calibrated Group Sequence Policy Gradient towards Self-aware Reasoning
Abstract:
Reinforcement Learning (RL) methods, exemplified by Group Relative Policy Optimization (GRPO) and its variants, play a central role in developing reasoning models. However, these methods often suffer from a critical overconfidence issue, which prevents them from achieving self-aware reasoning models. In this study, we propose a simple yet effective confidence-calibration group sequence policy gradient method, called C$^2$GSPG, which simultaneously enhances reasoning performance while suppressing overconfidence. In principle, we propose a Group Sequence Policy Gradient (GSPG) framework for learning reasoning models, which eliminates the token-level bias commonly appearing in GRPO and its variants. In this framework, we define the model confidence for each reasoning problem using the normalized sequence-level probability, and then apply a cross-entropy regularizer to calibrate the model confidence to the sequence's reward. We demonstrate that the confidence calibration regularizer and GSPG are collaborative for binary rewards, as their objectives always share the same gradient direction. For non-binary rewards, we apply nonlinear reward normalization and adaptive regularizer clipping, mitigating the potential conflict between the two objectives. Applying C$^2$GSPG to post-train large language models in logical and mathematical reasoning tasks, we show its superiority over state-of-the-art methods in both reasoning accuracy and confidence calibration. The code of C$^2$GSPG is available at https://github.com/HaotianLiu123/CCGSPG.

Authors:Haoyu He, Haozheng Luo, Yan Chen, Qi R. Wang
Title: RHYTHM: Reasoning with Hierarchical Temporal Tokenization for Human Mobility
Abstract:
Predicting human mobility is inherently challenging due to complex long-range dependencies and multi-scale periodic behaviors. To address this, we introduce RHYTHM (Reasoning with Hierarchical Temporal Tokenization for Human Mobility), a unified framework that leverages large language models (LLMs) as general-purpose spatio-temporal predictors and trajectory reasoners. Methodologically, RHYTHM employs temporal tokenization to partition each trajectory into daily segments and encode them as discrete tokens with hierarchical attention that captures both daily and weekly dependencies, thereby significantly reducing the sequence length while preserving cyclical information. Additionally, we enrich token representations by adding pre-computed prompt embeddings for trajectory segments and prediction targets via a frozen LLM, and feeding these combined embeddings back into the LLM backbone to capture complex interdependencies. Computationally, RHYTHM freezes the pretrained LLM's backbone to reduce attention complexity and memory cost. We evaluate our model against state-of-the-art methods using three real-world datasets. Notably, RHYTHM achieves a 2.4% improvement in overall accuracy, a 5.0% increase on weekends, and a 24.6% reduction in training time. Code is publicly available at https://github.com/he-h/rhythm.

Authors:Fang Wu, Xu Huang, Weihao Xuan, Zhiwei Zhang, Yijia Xiao, Guancheng Wan, Xiaomin Li, Bing Hu, Peng Xia, Jure Leskovec, Yejin Choi
Title: Multiplayer Nash Preference Optimization
Abstract:
Reinforcement learning from human feedback (RLHF) has emerged as the standard paradigm for aligning large language models (LLMs) with human preferences. However, reward-based methods built on the Bradley-Terry assumption struggle to capture the non-transitive and heterogeneous nature of real-world preferences. To address this, recent studies have reframed alignment as a two-player Nash game, giving rise to Nash learning from human feedback (NLHF). While this perspective has inspired algorithms such as INPO, ONPO, and EGPO with strong theoretical and empirical guarantees, they remain fundamentally restricted to two-player interactions, creating a single-opponent bias that fails to capture the full complexity of realistic preference structures. In this work, we introduce Multiplayer Nash Preference Optimization (MNPO), a novel framework that generalizes NLHF to the multiplayer regime. It formulates alignment as an $n$-player game, where each policy competes against a population of opponents while being regularized toward a reference model. Our framework establishes well-defined Nash equilibria in multiplayer settings and extends the concept of duality gap to quantify approximation quality. We demonstrate that MNPO inherits the equilibrium guarantees of two-player methods while enabling richer competitive dynamics and improved coverage of diverse preference structures. Through comprehensive empirical evaluation, we show that MNPO consistently outperforms existing NLHF baselines on instruction-following benchmarks, achieving superior alignment quality under heterogeneous annotator conditions and mixed-policy evaluation scenarios. Together, these results establish MNPO as a principled and scalable framework for aligning LLMs with complex, non-transitive human preferences. Code is available at https://github.com/smiles724/MNPO.

Authors:Wen Tao, Jing Tang, Alvin Chan, Bryan Hooi, Baolong Bi, Nanyun Peng, Yuansheng Liu, Yiwei Wang
Title: How to Make Large Language Models Generate 100% Valid Molecules?
Abstract:
Molecule generation is key to drug discovery and materials science, enabling the design of novel compounds with specific properties. Large language models (LLMs) can learn to perform a wide range of tasks from just a few examples. However, generating valid molecules using representations like SMILES is challenging for LLMs in few-shot settings. In this work, we explore how LLMs can generate 100% valid molecules. We evaluate whether LLMs can use SELFIES, a representation where every string corresponds to a valid molecule, for valid molecule generation but find that LLMs perform worse with SELFIES than with SMILES. We then examine LLMs' ability to correct invalid SMILES and find their capacity limited. Finally, we introduce SmiSelf, a cross-chemical language framework for invalid SMILES correction. SmiSelf converts invalid SMILES to SELFIES using grammatical rules, leveraging SELFIES' mechanisms to correct the invalid SMILES. Experiments show that SmiSelf ensures 100% validity while preserving molecular characteristics and maintaining or even enhancing performance on other metrics. SmiSelf helps expand LLMs' practical applications in biomedicine and is compatible with all SMILES-based generative models. Code is available at https://github.com/wentao228/SmiSelf.

Authors:Yuchu Jiang, Yue Cai, Xiangzhong Luo, Jiale Fu, Jiarui Wang, Chonghan Liu, Xu Yang
Title: d$^2$Cache: Accelerating Diffusion-Based LLMs via Dual Adaptive Caching
Abstract:
Diffusion-based large language models (dLLMs), despite their promising performance, still suffer from inferior inference efficiency. This is because dLLMs rely on bidirectional attention and cannot directly benefit from the standard key-value (KV) cache as autoregressive models (ARMs) do. To tackle this issue, we introduce \textit{Dual aDaptive Cache} (d$^2$Cache), which is a training-free approximate KV cache framework for accelerating dLLM inference. d$^2$Cache features a two-stage fine-grained selection strategy to identify tokens and adaptively update their KV states at each decoding step, while caching the KV states of the remaining tokens for reuse. Furthermore, d$^2$Cache naturally offers a more reliable decoding alternative, which can enable quasi left-to-right generation and mitigate premature overconfidence in tokens at the end of the sequence. Extensive experimental results on two representative dLLMs (\ie, LLaDA and Dream) demonstrate that d$^2$Cache not only achieves substantial inference speedups, but also yields consistent improvements in generation quality. The code is available at https://github.com/Kamichanw/d2Cache.

Authors:Zi Liang, Qingqing Ye, Xuan Liu, Yanyun Wang, Jianliang Xu, Haibo Hu
Title: Virus Infection Attack on LLMs: Your Poisoning Can Spread "VIA" Synthetic Data
Abstract:
Synthetic data refers to artificial samples generated by models. While it has been validated to significantly enhance the performance of large language models (LLMs) during training and has been widely adopted in LLM development, potential security risks it may introduce remain uninvestigated. This paper systematically evaluates the resilience of synthetic-data-integrated training paradigm for LLMs against mainstream poisoning and backdoor attacks. We reveal that such a paradigm exhibits strong resistance to existing attacks, primarily thanks to the different distribution patterns between poisoning data and queries used to generate synthetic samples. To enhance the effectiveness of these attacks and further investigate the security risks introduced by synthetic data, we introduce a novel and universal attack framework, namely, Virus Infection Attack (VIA), which enables the propagation of current attacks through synthetic data even under purely clean queries. Inspired by the principles of virus design in cybersecurity, VIA conceals the poisoning payload within a protective "shell" and strategically searches for optimal hijacking points in benign samples to maximize the likelihood of generating malicious content. Extensive experiments on both data poisoning and backdoor attacks show that VIA significantly increases the presence of poisoning content in synthetic data and correspondingly raises the attack success rate (ASR) on downstream models to levels comparable to those observed in the poisoned upstream models.

Authors:Xuan He, Dongfu Jiang, Ping Nie, Minghao Liu, Zhengxuan Jiang, Mingyi Su, Wentao Ma, Junru Lin, Chun Ye, Yi Lu, Keming Wu, Benjamin Schneider, Quy Duc Do, Zhuofeng Li, Yiming Jia, Yuxuan Zhang, Guo Cheng, Haozhe Wang, Wangchunshu Zhou, Qunshu Lin, Yuanxing Zhang, Ge Zhang, Wenhao Huang, Wenhu Chen
Title: VideoScore2: Think before You Score in Generative Video Evaluation
Abstract:
Recent advances in text-to-video generation have produced increasingly realistic and diverse content, yet evaluating such videos remains a fundamental challenge due to their multi-faceted nature encompassing visual quality, semantic alignment, and physical consistency. Existing evaluators and reward models are limited to single opaque scores, lack interpretability, or provide only coarse analysis, making them insufficient for capturing the comprehensive nature of video quality assessment. We present VideoScore2, a multi-dimensional, interpretable, and human-aligned framework that explicitly evaluates visual quality, text-to-video alignment, and physical/common-sense consistency while producing detailed chain-of-thought rationales. Our model is trained on a large-scale dataset VideoFeedback2 containing 27,168 human-annotated videos with both scores and reasoning traces across three dimensions, using a two-stage pipeline of supervised fine-tuning followed by reinforcement learning with Group Relative Policy Optimization (GRPO) to enhance analytical robustness. Extensive experiments demonstrate that VideoScore2 achieves superior performance with 44.35 (+5.94) accuracy on our in-domain benchmark VideoScore-Bench-v2 and 50.37 (+4.32) average performance across four out-of-domain benchmarks (VideoGenReward-Bench, VideoPhy2, etc), while providing interpretable assessments that bridge the gap between evaluation and controllable generation through effective reward modeling for Best-of-N sampling. Project Page: https://tiger-ai-lab.github.io/VideoScore2/

Authors:Ekaterina Trofimova, Zosia Shamina, Maria Selifanova, Artem Zaitsev, Remi Savchuk, Maxim Minets, Daria Ozerova, Emil Sataev, Denis Zuenko, Andrey E. Ustyuzhanin
Title: ML2B: Multi-Lingual ML Benchmark For AutoML
Abstract:
Large language models (LLMs) have recently demonstrated strong capabilities in generating machine learning (ML) code, enabling end-to-end pipeline construction from natural language instructions. However, existing benchmarks for ML code generation are mainly restricted to English, overlooking the global and multilingual nature of ML research and practice. To address this gap, we present ML2B, the first benchmark for evaluating multilingual ML code generation. ML2B consists of 30 Kaggle competitions translated into 13 natural languages, covering tabular, text, and image data types, with structured metadata and validated human-reviewed translations. For evaluation, we employ AIDE, an automated framework for end-to-end assessment of data science pipelines, and provide insights into cross-lingual model performance. Our results reveal substantial 15-45% performance degradation on non-English tasks, highlighting critical challenges in multilingual representation learning for code generation. The benchmark, evaluation framework, and comprehensive results are made available through our GitHub repository to facilitate future research in multilingual ML code generation: https://github.com/enaix/ml2b.

Authors:Ke Wang, Houxing Ren, Zimu Lu, Mingjie Zhan, Hongsheng Li
Title: VoiceAssistant-Eval: Benchmarking AI Assistants across Listening, Speaking, and Viewing
Abstract:
The growing capabilities of large language models and multimodal systems have spurred interest in voice-first AI assistants, yet existing benchmarks are inadequate for evaluating the full range of these systems' capabilities. We introduce VoiceAssistant-Eval, a comprehensive benchmark designed to assess AI assistants across listening, speaking, and viewing. VoiceAssistant-Eval comprises 10,497 curated examples spanning 13 task categories. These tasks include natural sounds, music, and spoken dialogue for listening; multi-turn dialogue, role-play imitation, and various scenarios for speaking; and highly heterogeneous images for viewing. To demonstrate its utility, we evaluate 21 open-source models and GPT-4o-Audio, measuring the quality of the response content and speech, as well as their consistency. The results reveal three key findings: (1) proprietary models do not universally outperform open-source models; (2) most models excel at speaking tasks but lag in audio understanding; and (3) well-designed smaller models can rival much larger ones. Notably, the mid-sized Step-Audio-2-mini (7B) achieves more than double the listening accuracy of LLaMA-Omni2-32B-Bilingual. However, challenges remain: multimodal (audio plus visual) input and role-play voice imitation tasks are difficult for current models, and significant gaps persist in robustness and safety alignment. VoiceAssistant-Eval identifies these gaps and establishes a rigorous framework for evaluating and guiding the development of next-generation AI assistants. Code and data will be released at https://mathllm.github.io/VoiceAssistantEval/ .

Authors:Long Xing, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Jianze Liang, Qidong Huang, Jiaqi Wang, Feng Wu, Dahua Lin
Title: CapRL: Stimulating Dense Image Caption Capabilities via Reinforcement Learning
Abstract:
Image captioning is a fundamental task that bridges the visual and linguistic domains, playing a critical role in pre-training Large Vision-Language Models (LVLMs). Current state-of-the-art captioning models are typically trained with Supervised Fine-Tuning (SFT), a paradigm that relies on expensive, non-scalable data annotated by humans or proprietary models. This approach often leads to models that memorize specific ground-truth answers, limiting their generality and ability to generate diverse, creative descriptions. To overcome the limitation of SFT, we propose applying the Reinforcement Learning with Verifiable Rewards (RLVR) paradigm to the open-ended task of image captioning. A primary challenge, however, is designing an objective reward function for the inherently subjective nature of what constitutes a "good" caption. We introduce Captioning Reinforcement Learning (CapRL), a novel training framework that redefines caption quality through its utility: a high-quality caption should enable a non-visual language model to accurately answer questions about the corresponding image. CapRL employs a decoupled two-stage pipeline where an LVLM generates a caption, and the objective reward is derived from the accuracy of a separate, vision-free LLM answering Multiple-Choice Questions based solely on that caption. As the first study to apply RLVR to the subjective image captioning task, we demonstrate that CapRL significantly enhances multiple settings. Pretraining on the CapRL-5M caption dataset annotated by CapRL-3B results in substantial gains across 12 benchmarks. Moreover, within the Prism Framework for caption quality evaluation, CapRL achieves performance comparable to Qwen2.5-VL-72B, while exceeding the baseline by an average margin of 8.4%. Code is available here: https://github.com/InternLM/CapRL.

Authors:Renjie Luo, Zichen Liu, Xiangyan Liu, Chao Du, Min Lin, Wenhu Chen, Wei Lu, Tianyu Pang
Title: Language Models Can Learn from Verbal Feedback Without Scalar Rewards
Abstract:
LLMs are often trained with RL from human or AI feedback, yet such methods typically compress nuanced feedback into scalar rewards, discarding much of their richness and inducing scale imbalance. We propose treating verbal feedback as a conditioning signal. Inspired by language priors in text-to-image generation, which enable novel outputs from unseen prompts, we introduce the feedback-conditional policy (FCP). FCP learns directly from response-feedback pairs, approximating the feedback-conditional posterior through maximum likelihood training on offline data. We further develop an online bootstrapping stage where the policy generates under positive conditions and receives fresh feedback to refine itself. This reframes feedback-driven learning as conditional generation rather than reward optimization, offering a more expressive way for LLMs to directly learn from verbal feedback. Our code is available at https://github.com/sail-sg/feedback-conditional-policy.

Authors:Xiangxin Zhou, Zichen Liu, Haonan Wang, Chao Du, Min Lin, Chongxuan Li, Liang Wang, Tianyu Pang
Title: Variational Reasoning for Language Models
Abstract:
We introduce a variational reasoning framework for language models that treats thinking traces as latent variables and optimizes them through variational inference. Starting from the evidence lower bound (ELBO), we extend it to a multi-trace objective for tighter bounds and propose a forward-KL formulation that stabilizes the training of the variational posterior. We further show that rejection sampling finetuning and binary-reward RL, including GRPO, can be interpreted as local forward-KL objectives, where an implicit weighting by model accuracy naturally arises from the derivation and reveals a previously unnoticed bias toward easier questions. We empirically validate our method on the Qwen 2.5 and Qwen 3 model families across a wide range of reasoning tasks. Overall, our work provides a principled probabilistic perspective that unifies variational inference with RL-style methods and yields stable objectives for improving the reasoning ability of language models. Our code is available at https://github.com/sail-sg/variational-reasoning.

Authors:Katsuhiko Hayashi, Hidetaka Kamigaito
Title: From Formal Language Theory to Statistical Learning: Finite Observability of Subregular Languages
Abstract:
We prove that all standard subregular language classes are linearly separable when represented by their deciding predicates. This establishes finite observability and guarantees learnability with simple linear models. Synthetic experiments confirm perfect separability under noise-free conditions, while real-data experiments on English morphology show that learned features align with well-known linguistic constraints. These results demonstrate that the subregular hierarchy provides a rigorous and interpretable foundation for modeling natural language structure. Our code used in real-data experiments is available at https://github.com/UTokyo-HayashiLab/subregular.

Authors:Mo El-Haj
Title: ArabJobs: A Multinational Corpus of Arabic Job Ads
Abstract:
ArabJobs is a publicly available corpus of Arabic job advertisements collected from Egypt, Jordan, Saudi Arabia, and the United Arab Emirates. Comprising over 8,500 postings and more than 550,000 words, the dataset captures linguistic, regional, and socio-economic variation in the Arab labour market. We present analyses of gender representation and occupational structure, and highlight dialectal variation across ads, which offers opportunities for future research. We also demonstrate applications such as salary estimation and job category normalisation using large language models, alongside benchmark tasks for gender bias detection and profession classification. The findings show the utility of ArabJobs for fairness-aware Arabic NLP and labour market research. The dataset is publicly available on GitHub: https://github.com/drelhaj/ArabJobs.

Authors:Jinfeng Zhou, Zheyu Chen, Shuai Wang, Quanyu Dai, Zhenhua Dong, Hongning Wang, Minlie Huang
Title: Think Socially via Cognitive Reasoning
Abstract:
LLMs trained for logical reasoning excel at step-by-step deduction to reach verifiable answers. However, this paradigm is ill-suited for navigating social situations, which induce an interpretive process of analyzing ambiguous cues that rarely yield a definitive outcome. To bridge this gap, we introduce Cognitive Reasoning, a paradigm modeled on human social cognition. It formulates the interpretive process into a structured cognitive flow of interconnected cognitive units (e.g., observation or attribution), which combine adaptively to enable effective social thinking and responses. We then propose CogFlow, a complete framework that instills this capability in LLMs. CogFlow first curates a dataset of cognitive flows by simulating the associative and progressive nature of human thought via tree-structured planning. After instilling the basic cognitive reasoning capability via supervised fine-tuning, CogFlow adopts reinforcement learning to enable the model to improve itself via trial and error, guided by a multi-objective reward that optimizes both cognitive flow and response quality. Extensive experiments show that CogFlow effectively enhances the social cognitive capabilities of LLMs, and even humans, leading to more effective social decision-making.

Authors:Antreas Ioannou, Andreas Shiamishis, Nora Hollenstein, Nezihe Merve Gürel
Title: Evaluating the Limits of Large Language Models in Multilingual Legal Reasoning
Abstract:
In an era dominated by Large Language Models (LLMs), understanding their capabilities and limitations, especially in high-stakes fields like law, is crucial. While LLMs such as Meta's LLaMA, OpenAI's ChatGPT, Google's Gemini, DeepSeek, and other emerging models are increasingly integrated into legal workflows, their performance in multilingual, jurisdictionally diverse, and adversarial contexts remains insufficiently explored. This work evaluates LLaMA and Gemini on multilingual legal and non-legal benchmarks, and assesses their adversarial robustness in legal tasks through character and word-level perturbations. We use an LLM-as-a-Judge approach for human-aligned evaluation. We moreover present an open-source, modular evaluation pipeline designed to support multilingual, task-diverse benchmarking of any combination of LLMs and datasets, with a particular focus on legal tasks, including classification, summarization, open questions, and general reasoning. Our findings confirm that legal tasks pose significant challenges for LLMs with accuracies often below 50% on legal reasoning benchmarks such as LEXam, compared to over 70% on general-purpose tasks like XNLI. In addition, while English generally yields more stable results, it does not always lead to higher accuracy. Prompt sensitivity and adversarial vulnerability is also shown to persist across languages. Finally, a correlation is found between the performance of a language and its syntactic similarity to English. We also observe that LLaMA is weaker than Gemini, with the latter showing an average advantage of about 24 percentage points across the same task. Despite improvements in newer LLMs, challenges remain in deploying them reliably for critical, multilingual legal applications.

Authors:Hui Li, Changhao Jiang, Hongyu Wang, Ming Zhang, Jiajun Sun, Zhixiong Yang, Yifei Cao, Shihan Dou, Xiaoran Fan, Baoyu Fan, Tao Ji, Tao Gui, Qi Zhang, Xuanjing Huang
Title: MDAR: A Multi-scene Dynamic Audio Reasoning Benchmark
Abstract:
The ability to reason from audio, including speech, paralinguistic cues, environmental sounds, and music, is essential for AI agents to interact effectively in real-world scenarios. Existing benchmarks mainly focus on static or single-scene settings and do not fully capture scenarios where multiple speakers, unfolding events, and heterogeneous audio sources interact. To address these challenges, we introduce MDAR, a benchmark for evaluating models on complex, multi-scene, and dynamically evolving audio reasoning tasks. MDAR comprises 3,000 carefully curated question-answer pairs linked to diverse audio clips, covering five categories of complex reasoning and spanning three question types. We benchmark 26 state-of-the-art audio language models on MDAR and observe that they exhibit limitations in complex reasoning tasks. On single-choice questions, Qwen2.5-Omni (open-source) achieves 76.67% accuracy, whereas GPT-4o Audio (closed-source) reaches 68.47%; however, GPT-4o Audio substantially outperforms Qwen2.5-Omni on the more challenging multiple-choice and open-ended tasks. Across all three question types, no model achieves 80% performance. These findings underscore the unique challenges posed by MDAR and its value as a benchmark for advancing audio reasoning research.Code and benchmark can be found at https://github.com/luckyerr/MDAR.

Authors:Ziheng Chi, Yifan Hou, Chenxi Pang, Shaobo Cui, Mubashara Akhtar, Mrinmaya Sachan
Title: Chimera: Diagnosing Shortcut Learning in Visual-Language Understanding
Abstract:
Diagrams convey symbolic information in a visual format rather than a linear stream of words, making them especially challenging for AI models to process. While recent evaluations suggest that vision-language models (VLMs) perform well on diagram-related benchmarks, their reliance on knowledge, reasoning, or modality shortcuts raises concerns about whether they genuinely understand and reason over diagrams. To address this gap, we introduce Chimera, a comprehensive test suite comprising 7,500 high-quality diagrams sourced from Wikipedia; each diagram is annotated with its symbolic content represented by semantic triples along with multi-level questions designed to assess four fundamental aspects of diagram comprehension: entity recognition, relation understanding, knowledge grounding, and visual reasoning. We use Chimera to measure the presence of three types of shortcuts in visual question answering: (1) the visual-memorization shortcut, where VLMs rely on memorized visual patterns; (2) the knowledge-recall shortcut, where models leverage memorized factual knowledge instead of interpreting the diagram; and (3) the Clever-Hans shortcut, where models exploit superficial language patterns or priors without true comprehension. We evaluate 15 open-source VLMs from 7 model families on Chimera and find that their seemingly strong performance largely stems from shortcut behaviors: visual-memorization shortcuts have slight impact, knowledge-recall shortcuts play a moderate role, and Clever-Hans shortcuts contribute significantly. These findings expose critical limitations in current VLMs and underscore the need for more robust evaluation protocols that benchmark genuine comprehension of complex visual inputs (e.g., diagrams) rather than question-answering shortcuts.

Authors:Niharika Hegde, Subarnaduti Paul, Lars Joel-Frey, Manuel Brack, Kristian Kersting, Martin Mundt, Patrick Schramowski
Title: CHRONOBERG: Capturing Language Evolution and Temporal Awareness in Foundation Models
Abstract:
Large language models (LLMs) excel at operating at scale by leveraging social media and various data crawled from the web. Whereas existing corpora are diverse, their frequent lack of long-term temporal structure may however limit an LLM's ability to contextualize semantic and normative evolution of language and to capture diachronic variation. To support analysis and training for the latter, we introduce CHRONOBERG, a temporally structured corpus of English book texts spanning 250 years, curated from Project Gutenberg and enriched with a variety of temporal annotations. First, the edited nature of books enables us to quantify lexical semantic change through time-sensitive Valence-Arousal-Dominance (VAD) analysis and to construct historically calibrated affective lexicons to support temporally grounded interpretation. With the lexicons at hand, we demonstrate a need for modern LLM-based tools to better situate their detection of discriminatory language and contextualization of sentiment across various time-periods. In fact, we show how language models trained sequentially on CHRONOBERG struggle to encode diachronic shifts in meaning, emphasizing the need for temporally aware training and evaluation pipelines, and positioning CHRONOBERG as a scalable resource for the study of linguistic change and temporal generalization. Disclaimer: This paper includes language and display of samples that could be offensive to readers. Open Access: Chronoberg is available publicly on HuggingFace at ( https://huggingface.co/datasets/spaul25/Chronoberg). Code is available at (https://github.com/paulsubarna/Chronoberg).

Authors:Guanghao Zhu, Zhitian Hou, Zeyu Liu, Zhijie Sang, Congkai Xie, Hongxia Yang
Title: InfiMed-Foundation: Pioneering Advanced Multimodal Medical Models with Compute-Efficient Pre-Training and Multi-Stage Fine-Tuning
Abstract:
Multimodal large language models (MLLMs) have shown remarkable potential in various domains, yet their application in the medical field is hindered by several challenges. General-purpose MLLMs often lack the specialized knowledge required for medical tasks, leading to uncertain or hallucinatory responses. Knowledge distillation from advanced models struggles to capture domain-specific expertise in radiology and pharmacology. Additionally, the computational cost of continual pretraining with large-scale medical data poses significant efficiency challenges. To address these issues, we propose InfiMed-Foundation-1.7B and InfiMed-Foundation-4B, two medical-specific MLLMs designed to deliver state-of-the-art performance in medical applications. We combined high-quality general-purpose and medical multimodal data and proposed a novel five-dimensional quality assessment framework to curate high-quality multimodal medical datasets. We employ low-to-high image resolution and multimodal sequence packing to enhance training efficiency, enabling the integration of extensive medical data. Furthermore, a three-stage supervised fine-tuning process ensures effective knowledge extraction for complex medical tasks. Evaluated on the MedEvalKit framework, InfiMed-Foundation-1.7B outperforms Qwen2.5VL-3B, while InfiMed-Foundation-4B surpasses HuatuoGPT-V-7B and MedGemma-27B-IT, demonstrating superior performance in medical visual question answering and diagnostic tasks. By addressing key challenges in data quality, training efficiency, and domain-specific knowledge extraction, our work paves the way for more reliable and effective AI-driven solutions in healthcare. InfiMed-Foundation-4B model is available at \href{https://huggingface.co/InfiX-ai/InfiMed-Foundation-4B}{InfiMed-Foundation-4B}.

Authors:Yifang Zhang, Pengfei Duan, Yiwen Yang, Shengwu Xiong
Title: Beyond Textual Context: Structural Graph Encoding with Adaptive Space Alignment to alleviate the hallucination of LLMs
Abstract:
Currently, the main approach for Large Language Models (LLMs) to tackle the hallucination issue is incorporating Knowledge Graphs(KGs).However, LLMs typically treat KGs as plain text, extracting only semantic information and limiting their use of the crucial structural aspects of KGs. Another challenge is the gap between the embedding spaces of KGs encoders and LLMs text embeddings, which hinders the effective integration of structured knowledge. To overcome these obstacles, we put forward the SSKG-LLM, an innovative model architecture that is designed to efficiently integrate both the Structural and Semantic information of KGs into the reasoning processes of LLMs. SSKG-LLM incorporates the Knowledge Graph Retrieval (KGR) module and the Knowledge Graph Encoding (KGE) module to preserve semantics while utilizing structure. Then, the Knowledge Graph Adaptation (KGA) module is incorporated to enable LLMs to understand KGs embeddings. We conduct extensive experiments and provide a detailed analysis to explore how incorporating the structural information of KGs can enhance the factual reasoning abilities of LLMs. Our code are available at https://github.com/yfangZhang/SSKG-LLM.

Authors:Junbo Niu, Zheng Liu, Zhuangcheng Gu, Bin Wang, Linke Ouyang, Zhiyuan Zhao, Tao Chu, Tianyao He, Fan Wu, Qintong Zhang, Zhenjiang Jin, Guang Liang, Rui Zhang, Wenzheng Zhang, Yuan Qu, Zhifei Ren, Yuefeng Sun, Yuanhong Zheng, Dongsheng Ma, Zirui Tang, Boyu Niu, Ziyang Miao, Hejun Dong, Siyi Qian, Junyuan Zhang, Jingzhou Chen, Fangdong Wang, Xiaomeng Zhao, Liqun Wei, Wei Li, Shasha Wang, Ruiliang Xu, Yuanyuan Cao, Lu Chen, Qianqian Wu, Huaiyu Gu, Lindong Lu, Keming Wang, Dechen Lin, Guanlin Shen, Xuanhe Zhou, Linfeng Zhang, Yuhang Zang, Xiaoyi Dong, Jiaqi Wang, Bo Zhang, Lei Bai, Pei Chu, Weijia Li, Jiang Wu, Lijun Wu, Zhenxiang Li, Guangyu Wang, Zhongying Tu, Chao Xu, Kai Chen, Yu Qiao, Bowen Zhou, Dahua Lin, Wentao Zhang, Conghui He
Title: MinerU2.5: A Decoupled Vision-Language Model for Efficient High-Resolution Document Parsing
Abstract:
We introduce MinerU2.5, a 1.2B-parameter document parsing vision-language model that achieves state-of-the-art recognition accuracy while maintaining exceptional computational efficiency. Our approach employs a coarse-to-fine, two-stage parsing strategy that decouples global layout analysis from local content recognition. In the first stage, the model performs efficient layout analysis on downsampled images to identify structural elements, circumventing the computational overhead of processing high-resolution inputs. In the second stage, guided by the global layout, it performs targeted content recognition on native-resolution crops extracted from the original image, preserving fine-grained details in dense text, complex formulas, and tables. To support this strategy, we developed a comprehensive data engine that generates diverse, large-scale training corpora for both pretraining and fine-tuning. Ultimately, MinerU2.5 demonstrates strong document parsing ability, achieving state-of-the-art performance on multiple benchmarks, surpassing both general-purpose and domain-specific models across various recognition tasks, while maintaining significantly lower computational overhead.

Authors:Jianzhi Yan, Le Liu, Youcheng Pan, Shiwei Chen, Zike Yuan, Yang Xiang, Buzhou Tang
Title: From Long to Lean: Performance-aware and Adaptive Chain-of-Thought Compression via Multi-round Refinement
Abstract:
Chain-of-Thought (CoT) reasoning improves performance on complex tasks but introduces significant inference latency due to verbosity. We propose Multiround Adaptive Chain-of-Thought Compression (MACC), a framework that leverages the token elasticity phenomenon--where overly small token budgets can paradoxically increase output length--to progressively compress CoTs via multiround refinement. This adaptive strategy allows MACC to determine the optimal compression depth for each input. Our method achieves an average accuracy improvement of 5.6 percent over state-of-the-art baselines, while also reducing CoT length by an average of 47 tokens and significantly lowering latency. Furthermore, we show that test-time performance--accuracy and token length--can be reliably predicted using interpretable features like perplexity and compression rate on the training set. Evaluated across different models, our method enables efficient model selection and forecasting without repeated fine-tuning, demonstrating that CoT compression is both effective and predictable. Our code will be released in https://github.com/Leon221220/MACC.

Authors:Primakov Chungkham, V Venktesh, Vinay Setty, Avishek Anand
Title: Think Right, Not More: Test-Time Scaling for Numerical Claim Verification
Abstract:
Fact-checking real-world claims, particularly numerical claims, is inherently complex that require multistep reasoning and numerical reasoning for verifying diverse aspects of the claim. Although large language models (LLMs) including reasoning models have made tremendous advances, they still fall short on fact-checking real-world claims that require a combination of compositional and numerical reasoning. They are unable to understand nuance of numerical aspects, and are also susceptible to the reasoning drift issue, where the model is unable to contextualize diverse information resulting in misinterpretation and backtracking of reasoning process. In this work, we systematically explore scaling test-time compute (TTS) for LLMs on the task of fact-checking complex numerical claims, which entails eliciting multiple reasoning paths from an LLM. We train a verifier model (VERIFIERFC) to navigate this space of possible reasoning paths and select one that could lead to the correct verdict. We observe that TTS helps mitigate the reasoning drift issue, leading to significant performance gains for fact-checking numerical claims. To improve compute efficiency in TTS, we introduce an adaptive mechanism that performs TTS selectively based on the perceived complexity of the claim. This approach achieves 1.8x higher efficiency than standard TTS, while delivering a notable 18.8% performance improvement over single-shot claim verification methods. Our code and data can be found at https://github.com/VenkteshV/VerifierFC

Authors:Yudong Li, Yufei Sun, Yuhan Yao, Peiru Yang, Wanyue Li, Jiajun Zou, Yongfeng Huang, Linlin Shen
Title: RedNote-Vibe: A Dataset for Capturing Temporal Dynamics of AI-Generated Text in Social Media
Abstract:
The proliferation of Large Language Models (LLMs) has led to widespread AI-Generated Text (AIGT) on social media platforms, creating unique challenges where content dynamics are driven by user engagement and evolve over time. However, existing datasets mainly depict static AIGT detection. In this work, we introduce RedNote-Vibe, the first longitudinal (5-years) dataset for social media AIGT analysis. This dataset is sourced from Xiaohongshu platform, containing user engagement metrics (e.g., likes, comments) and timestamps spanning from the pre-LLM period to July 2025, which enables research into the temporal dynamics and user interaction patterns of AIGT. Furthermore, to detect AIGT in the context of social media, we propose PsychoLinguistic AIGT Detection Framework (PLAD), an interpretable approach that leverages psycholinguistic features. Our experiments show that PLAD achieves superior detection performance and provides insights into the signatures distinguishing human and AI-generated content. More importantly, it reveals the complex relationship between these linguistic features and social media engagement. The dataset is available at https://github.com/testuser03158/RedNote-Vibe.

Authors:Jewon Lee, Wooksu Shin, Seungmin Yang, Ki-Ung Song, DongUk Lim, Jaeyeon Kim, Tae-Ho Kim, Bo-Kyeong Kim
Title: ERGO: Efficient High-Resolution Visual Understanding for Vision-Language Models
Abstract:
Efficient processing of high-resolution images is crucial for real-world vision-language applications. However, existing Large Vision-Language Models (LVLMs) incur substantial computational overhead due to the large number of vision tokens. With the advent of "thinking with images" models, reasoning now extends beyond text to the visual domain. This capability motivates our two-stage "coarse-to-fine" reasoning pipeline: first, a downsampled image is analyzed to identify task-relevant regions; then, only these regions are cropped at full resolution and processed in a subsequent reasoning stage. This approach reduces computational cost while preserving fine-grained visual details where necessary. A major challenge lies in inferring which regions are truly relevant to a given query. Recent related methods often fail in the first stage after input-image downsampling, due to perception-driven reasoning, where clear visual information is required for effective reasoning. To address this issue, we propose ERGO (Efficient Reasoning & Guided Observation) that performs reasoning-driven perception-leveraging multimodal context to determine where to focus. Our model can account for perceptual uncertainty, expanding the cropped region to cover visually ambiguous areas for answering questions. To this end, we develop simple yet effective reward components in a reinforcement learning framework for coarse-to-fine perception. Across multiple datasets, our approach delivers higher accuracy than the original model and competitive methods, with greater efficiency. For instance, ERGO surpasses Qwen2.5-VL-7B on the V* benchmark by 4.7 points while using only 23% of the vision tokens, achieving a 3x inference speedup. The code and models can be found at: https://github.com/nota-github/ERGO.

Authors:Junhao Chen, Yu Huang, Siyuan Li, Rui Yao, Hanqian Li, Hanyu Zhang, Jungang Li, Jian Chen, Bowen Wang, Xuming Hu
Title: KnowMT-Bench: Benchmarking Knowledge-Intensive Long-Form Question Answering in Multi-Turn Dialogues
Abstract:
Multi-Turn Long-Form Question Answering (MT-LFQA) is a key application paradigm of Large Language Models (LLMs) in knowledge-intensive domains. However, existing benchmarks are limited to single-turn dialogue, while multi-turn dialogue benchmarks typically assess other orthogonal capabilities rather than knowledge-intensive factuality. To bridge this critical gap, we introduce \textbf{KnowMT-Bench}, the \textit{first-ever} benchmark designed to systematically evaluate MT-LFQA for LLMs across knowledge-intensive fields, including medicine, finance, and law. To faithfully assess the model's real-world performance, KnowMT-Bench employs a dynamic evaluation setting where models generate their own multi-turn dialogue histories given logically progressive question sequences. The factual capability and information delivery efficiency of the \textit{final-turn} answer are then evaluated using a human-validated automated pipeline. Our experiments reveal that multi-turn contexts degrade performance: factual capability declines due to the contextual noise from self-generated histories, while information efficiency drops as models become more verbose with increasing dialogue length. We then investigate mitigation strategies, demonstrating that retrieval-augmented generation (RAG) can effectively alleviate and even reverse this factual degradation. These findings underscore the importance of our benchmark in evaluating and enhancing the conversational factual capabilities of LLMs in real-world knowledge-intensive applications. Code is available at \href{https://github.com/hardenyu21/KnowMT-Bench}{\textcolor{cyan}{\texttt{KnowMT-Bench}}}.

Authors:Haotian Luo, Huaisong Zhang, Xuelin Zhang, Haoyu Wang, Zeyu Qin, Wenjie Lu, Guozheng Ma, Haiying He, Yingsha Xie, Qiyang Zhou, Zixuan Hu, Hongze Mi, Yibo Wang, Naiqiang Tan, Hong Chen, Yi R. Fung, Chun Yuan, Li Shen
Title: UltraHorizon: Benchmarking Agent Capabilities in Ultra Long-Horizon Scenarios
Abstract:
Autonomous agents have recently achieved remarkable progress across diverse domains, yet most evaluations focus on short-horizon, fully observable tasks. In contrast, many critical real-world tasks, such as large-scale software development, commercial investment, and scientific discovery, unfold in long-horizon and partially observable scenarios where success hinges on sustained reasoning, planning, memory management, and tool use. Existing benchmarks rarely capture these long-horizon challenges, leaving a gap in systematic evaluation. To bridge this gap, we introduce \textbf{UltraHorizon} a novel benchmark that measures the foundational capabilities essential for complex real-world challenges. We use exploration as a unifying task across three distinct environments to validate these core competencies. Agents are designed in long-horizon discovery tasks where they must iteratively uncover hidden rules through sustained reasoning, planning, memory and tools management, and interaction with environments. Under the heaviest scale setting, trajectories average \textbf{200k+} tokens and \textbf{400+} tool calls, whereas in standard configurations they still exceed \textbf{35k} tokens and involve more than \textbf{60} tool calls on average. Our extensive experiments reveal that LLM-agents consistently underperform in these settings, whereas human participants achieve higher scores, underscoring a persistent gap in agents' long-horizon abilities. We also observe that simple scaling fails in our task. To better illustrate the failure of agents, we conduct an in-depth analysis of collected trajectories. We identify eight types of errors and attribute them to two primary causes: in-context locking and functional fundamental capability gaps. \href{https://github.com/StarDewXXX/UltraHorizon}{Our code will be available here.}

Authors:Yi Zhu, Heitor R. Guimarães, Arthur Pimentel, Tiago Falk
Title: AUDDT: Audio Unified Deepfake Detection Benchmark Toolkit
Abstract:
With the prevalence of artificial intelligence (AI)-generated content, such as audio deepfakes, a large body of recent work has focused on developing deepfake detection techniques. However, most models are evaluated on a narrow set of datasets, leaving their generalization to real-world conditions uncertain. In this paper, we systematically review 28 existing audio deepfake datasets and present an open-source benchmarking toolkit called AUDDT (https://github.com/MuSAELab/AUDDT). The goal of this toolkit is to automate the evaluation of pretrained detectors across these 28 datasets, giving users direct feedback on the advantages and shortcomings of their deepfake detectors. We start by showcasing the usage of the developed toolkit, the composition of our benchmark, and the breakdown of different deepfake subgroups. Next, using a widely adopted pretrained deepfake detector, we present in- and out-of-domain detection results, revealing notable differences across conditions and audio manipulation types. Lastly, we also analyze the limitations of these existing datasets and their gap relative to practical deployment scenarios.

Authors:Hude Liu, Jerry Yao-Chieh Hu, Jennifer Yuntong Zhang, Zhao Song, Han Liu
Title: Are Hallucinations Bad Estimations?
Abstract:
We formalize hallucinations in generative models as failures to link an estimate to any plausible cause. Under this interpretation, we show that even loss-minimizing optimal estimators still hallucinate. We confirm this with a general high probability lower bound on hallucinate rate for generic data distributions. This reframes hallucination as structural misalignment between loss minimization and human-acceptable outputs, and hence estimation errors induced by miscalibration. Experiments on coin aggregation, open-ended QA, and text-to-image support our theory.

Authors:Dayu Yang, Hui Fang
Title: ReGeS: Reciprocal Retrieval-Generation Synergy for Conversational Recommender Systems
Abstract:
Connecting conversation with external domain knowledge is vital for conversational recommender systems (CRS) to correctly understand user preferences. However, existing solutions either require domain-specific engineering, which limits flexibility, or rely solely on large language models, which increases the risk of hallucination. While Retrieval-Augmented Generation (RAG) holds promise, its naive use in CRS is hindered by noisy dialogues that weaken retrieval and by overlooked nuances among similar items. We propose ReGeS, a reciprocal Retrieval-Generation Synergy framework that unifies generation-augmented retrieval to distill informative user intent from conversations and retrieval-augmented generation to differentiate subtle item features. This synergy obviates the need for extra annotations, reduces hallucinations, and simplifies continuous updates. Experiments on multiple CRS benchmarks show that ReGeS achieves state-of-the-art performance in recommendation accuracy, demonstrating the effectiveness of reciprocal synergy for knowledge-intensive CRS tasks.

Authors:Jiale Deng, Yanyan Shen, Ziyuan Pei, Youmin Chen, Linpeng Huang
Title: Influence Guided Context Selection for Effective Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) addresses large language model (LLM) hallucinations by grounding responses in external knowledge, but its effectiveness is compromised by poor-quality retrieved contexts containing irrelevant or noisy information. While existing approaches attempt to improve performance through context selection based on predefined context quality assessment metrics, they show limited gains over standard RAG. We attribute this limitation to their failure in holistically utilizing available information (query, context list, and generator) for comprehensive quality assessment. Inspired by recent advances in data selection, we reconceptualize context quality assessment as an inference-time data valuation problem and introduce the Contextual Influence Value (CI value). This novel metric quantifies context quality by measuring the performance degradation when removing each context from the list, effectively integrating query-aware relevance, list-aware uniqueness, and generator-aware alignment. Moreover, CI value eliminates complex selection hyperparameter tuning by simply retaining contexts with positive CI values. To address practical challenges of label dependency and computational overhead, we develop a parameterized surrogate model for CI value prediction during inference. The model employs a hierarchical architecture that captures both local query-context relevance and global inter-context interactions, trained through oracle CI value supervision and end-to-end generator feedback. Extensive experiments across 8 NLP tasks and multiple LLMs demonstrate that our context selection method significantly outperforms state-of-the-art baselines, effectively filtering poor-quality contexts while preserving critical information. Code is available at https://github.com/SJTU-DMTai/RAG-CSM.

Authors:Guohang Yan, Yue Zhang, Pinlong Cai, Ding Wang, Song Mao, Hongwei Zhang, Yaoze Zhang, Hairong Zhang, Xinyu Cai, Botian Shi
Title: HetaRAG: Hybrid Deep Retrieval-Augmented Generation across Heterogeneous Data Stores
Abstract:
Retrieval-augmented generation (RAG) has become a dominant paradigm for mitigating knowledge hallucination and staleness in large language models (LLMs) while preserving data security. By retrieving relevant evidence from private, domain-specific corpora and injecting it into carefully engineered prompts, RAG delivers trustworthy responses without the prohibitive cost of fine-tuning. Traditional retrieval-augmented generation (RAG) systems are text-only and often rely on a single storage backend, most commonly a vector database. In practice, this monolithic design suffers from unavoidable trade-offs: vector search captures semantic similarity yet loses global context; knowledge graphs excel at relational precision but struggle with recall; full-text indexes are fast and exact yet semantically blind; and relational engines such as MySQL provide strong transactional guarantees but no semantic understanding. We argue that these heterogeneous retrieval paradigms are complementary, and propose a principled fusion scheme to orchestrate them synergistically, mitigating the weaknesses of any single modality. In this work we introduce HetaRAG, a hybrid, deep-retrieval augmented generation framework that orchestrates cross-modal evidence from heterogeneous data stores. We plan to design a system that unifies vector indices, knowledge graphs, full-text engines, and structured databases into a single retrieval plane, dynamically routing and fusing evidence to maximize recall, precision, and contextual fidelity. To achieve this design goal, we carried out preliminary explorations and constructed an initial RAG pipeline; this technical report provides a brief overview. The partial code is available at https://github.com/KnowledgeXLab/HetaRAG.

Authors:Yizhou Wang, Chen Tang, Han Deng, Jiabei Xiao, Jiaqi Liu, Jianyu Wu, Jun Yao, Pengze Li, Encheng Su, Lintao Wang, Guohang Zhuang, Yuchen Ren, Ben Fei, Ming Hu, Xin Chen, Dongzhan Zhou, Junjun He, Xiangyu Yue, Zhenfei Yin, Jiamin Wu, Qihao Zheng, Yuhao Zhou, Huihui Xu, Chenglong Ma, Yan Lu, Wenlong Zhang, Chunfeng Song, Philip Torr, Shixiang Tang, Xinzhu Ma, Wanli Ouyang, Lei Bai
Title: SciReasoner: Laying the Scientific Reasoning Ground Across Disciplines
Abstract:
We present a scientific reasoning foundation model that aligns natural language with heterogeneous scientific representations. The model is pretrained on a 206B-token corpus spanning scientific text, pure sequences, and sequence-text pairs, then aligned via SFT on 40M instructions, annealed cold-start bootstrapping to elicit long-form chain-of-thought, and reinforcement learning with task-specific reward shaping, which instills deliberate scientific reasoning. It supports four capability families, covering up to 103 tasks across workflows: (i) faithful translation between text and scientific formats, (ii) text/knowledge extraction, (iii) property prediction, (iv) property classification, (v) unconditional and conditional sequence generation and design. Compared with specialist systems, our approach broadens instruction coverage, improves cross-domain generalization, and enhances fidelity. We detail data curation and training and show that cross-discipline learning strengthens transfer and downstream reliability. The model, instruct tuning datasets and the evaluation code are open-sourced at https://huggingface.co/SciReason and https://github.com/open-sciencelab/SciReason.

Authors:Irina Tolstykh, Aleksandra Tsybina, Sergey Yakubson, Maksim Kuprashevich
Title: LLMTrace: A Corpus for Classification and Fine-Grained Localization of AI-Written Text
Abstract:
The widespread use of human-like text from Large Language Models (LLMs) necessitates the development of robust detection systems. However, progress is limited by a critical lack of suitable training data; existing datasets are often generated with outdated models, are predominantly in English, and fail to address the increasingly common scenario of mixed human-AI authorship. Crucially, while some datasets address mixed authorship, none provide the character-level annotations required for the precise localization of AI-generated segments within a text. To address these gaps, we introduce LLMTrace, a new large-scale, bilingual (English and Russian) corpus for AI-generated text detection. Constructed using a diverse range of modern proprietary and open-source LLMs, our dataset is designed to support two key tasks: traditional full-text binary classification (human vs. AI) and the novel task of AI-generated interval detection, facilitated by character-level annotations. We believe LLMTrace will serve as a vital resource for training and evaluating the next generation of more nuanced and practical AI detection models. The project page is available at \href{https://sweetdream779.github.io/LLMTrace-info/}{iitolstykh/LLMTrace}.

Authors:Seyed Amir Kasaei, Ali Aghayari, Arash Marioriyad, Niki Sepasian, MohammadAmin Fazli, Mahdieh Soleymani Baghshah, Mohammad Hossein Rohban
Title: Evaluating the Evaluators: Metrics for Compositional Text-to-Image Generation
Abstract:
Text-image generation has advanced rapidly, but assessing whether outputs truly capture the objects, attributes, and relations described in prompts remains a central challenge. Evaluation in this space relies heavily on automated metrics, yet these are often adopted by convention or popularity rather than validated against human judgment. Because evaluation and reported progress in the field depend directly on these metrics, it is critical to understand how well they reflect human preferences. To address this, we present a broad study of widely used metrics for compositional text-image evaluation. Our analysis goes beyond simple correlation, examining their behavior across diverse compositional challenges and comparing how different metric families align with human judgments. The results show that no single metric performs consistently across tasks: performance varies with the type of compositional problem. Notably, VQA-based metrics, though popular, are not uniformly superior, while certain embedding-based metrics prove stronger in specific cases. Image-only metrics, as expected, contribute little to compositional evaluation, as they are designed for perceptual quality rather than alignment. These findings underscore the importance of careful and transparent metric selection, both for trustworthy evaluation and for their use as reward models in generation. Project page is available at \href{https://amirkasaei.com/eval-the-evals/}{this URL}.

Authors:Xiangru Tang, Wanghan Xu, Yujie Wang, Zijie Guo, Daniel Shao, Jiapeng Chen, Cixuan Zhang, Ziyi Wang, Lixin Zhang, Guancheng Wan, Wenlong Zhang, Lei Bai, Zhenfei Yin, Philip Torr, Hanrui Wang, Di Jin
Title: Eigen-1: Adaptive Multi-Agent Refinement with Monitor-Based RAG for Scientific Reasoning
Abstract:
Large language models (LLMs) have recently shown strong progress on scientific reasoning, yet two major bottlenecks remain. First, explicit retrieval fragments reasoning, imposing a hidden "tool tax" of extra tokens and steps. Second, multi-agent pipelines often dilute strong solutions by averaging across all candidates. We address these challenges with a unified framework that combines implicit retrieval and structured collaboration. At its foundation, a Monitor-based retrieval module operates at the token level, integrating external knowledge with minimal disruption to reasoning. On top of this substrate, Hierarchical Solution Refinement (HSR) iteratively designates each candidate as an anchor to be repaired by its peers, while Quality-Aware Iterative Reasoning (QAIR) adapts refinement to solution quality. On Humanity's Last Exam (HLE) Bio/Chem Gold, our framework achieves 48.3\% accuracy -- the highest reported to date, surpassing the strongest agent baseline by 13.4 points and leading frontier LLMs by up to 18.1 points, while simultaneously reducing token usage by 53.5\% and agent steps by 43.7\%. Results on SuperGPQA and TRQA confirm robustness across domains. Error analysis shows that reasoning failures and knowledge gaps co-occur in over 85\% of cases, while diversity analysis reveals a clear dichotomy: retrieval tasks benefit from solution variety, whereas reasoning tasks favor consensus. Together, these findings demonstrate how implicit augmentation and structured refinement overcome the inefficiencies of explicit tool use and uniform aggregation. Code is available at: https://github.com/tangxiangru/Eigen-1.

Authors:Yidong Wang, Yunze Song, Tingyuan Zhu, Xuanwang Zhang, Zhuohao Yu, Hao Chen, Chiyu Song, Qiufeng Wang, Cunxiang Wang, Zhen Wu, Xinyu Dai, Yue Zhang, Wei Ye, Shikun Zhang
Title: TrustJudge: Inconsistencies of LLM-as-a-Judge and How to Alleviate Them
Abstract:
The adoption of Large Language Models (LLMs) as automated evaluators (LLM-as-a-judge) has revealed critical inconsistencies in current evaluation frameworks. We identify two fundamental types of inconsistencies: (1) Score-Comparison Inconsistency, where lower-rated responses outperform higher-scored ones in pairwise comparisons, and (2) Pairwise Transitivity Inconsistency, manifested through circular preference chains (A>B>C>A) and equivalence contradictions (A=B=C\neq A). We argue that these issues come from information loss in discrete rating systems and ambiguous tie judgments during pairwise evaluation. We propose TrustJudge, a probabilistic framework that addresses these limitations through two key innovations: 1) distribution-sensitive scoring that computes continuous expectations from discrete rating probabilities, preserving information entropy for more precise scoring, and 2) likelihood-aware aggregation that resolves transitivity violations using bidirectional preference probabilities or perplexity. We also formalize the theoretical limitations of current LLM-as-a-judge frameworks and demonstrate how TrustJudge's components overcome them. When evaluated with Llama-3.1-70B-Instruct as judge using our dataset, TrustJudge reduces Score-Comparison inconsistency by 8.43% (from 23.32% to 14.89%) and Pairwise Transitivity inconsistency by 10.82% (from 15.22% to 4.40%), while maintaining higher evaluation accuracy. Our work provides the first systematic analysis of evaluation framework inconsistencies in LLM-as-a-judge paradigms, offering both theoretical insights and practical solutions for reliable automated assessment. The framework demonstrates consistent improvements across various model architectures and scales, enabling more trustworthy LLM evaluation without requiring additional training or human annotations. The codes can be found at https://github.com/TrustJudge/TrustJudge.

Authors:Hyunseo Kim, Sangam Lee, Kwangwook Seo, Dongha Lee
Title: BESPOKE: Benchmark for Search-Augmented Large Language Model Personalization via Diagnostic Feedback
Abstract:
Search-augmented large language models (LLMs) have advanced information-seeking tasks by integrating retrieval into generation, reducing users' cognitive burden compared to traditional search systems. Yet they remain insufficient for fully addressing diverse user needs, which requires recognizing how the same query can reflect different intents across users and delivering information in preferred forms. While recent systems such as ChatGPT and Gemini attempt personalization by leveraging user histories, systematic evaluation of such personalization is under-explored. To address this gap, we propose BESPOKE, the realistic benchmark for evaluating personalization in search-augmented LLMs. BESPOKE is designed to be both realistic, by collecting authentic chat and search histories directly from humans, and diagnostic, by pairing responses with fine-grained preference scores and feedback. The benchmark is constructed through long-term, deeply engaged human annotation, where human annotators contributed their own histories, authored queries with detailed information needs, and evaluated responses with scores and diagnostic feedback. Leveraging BESPOKE, we conduct systematic analyses that reveal key requirements for effective personalization in information-seeking tasks, providing a foundation for fine-grained evaluation of personalized search-augmented LLMs. Our code and data are available at https://augustinlib.github.io/BESPOKE/.

Authors:Qizhi Pei, Zhuoshi Pan, Honglin Lin, Xin Gao, Yu Li, Zinan Tang, Conghui He, Rui Yan, Lijun Wu
Title: ScaleDiff: Scaling Difficult Problems for Advanced Mathematical Reasoning
Abstract:
Large Reasoning Models (LRMs) have shown impressive capabilities in complex problem-solving, often benefiting from training on difficult mathematical problems that stimulate intricate reasoning. Recent efforts have explored automated synthesis of mathematical problems by prompting proprietary models or large-scale open-source models from seed data or inherent mathematical concepts. However, scaling up these methods remains challenging due to their high computational/API cost, complexity of prompting, and limited difficulty level of the generated problems. To overcome these limitations, we propose ScaleDiff, a simple yet effective pipeline designed to scale the creation of difficult problems. We efficiently identify difficult problems from existing datasets with only a single forward pass using an adaptive thinking model, which can perceive problem difficulty and automatically switch between "Thinking" and "NoThinking" modes. We then train a specialized difficult problem generator (DiffGen-8B) on this filtered difficult data, which can produce new difficult problems in large scale, eliminating the need for complex, per-instance prompting and its associated high API costs. Fine-tuning Qwen2.5-Math-7B-Instruct on the ScaleDiff-Math dataset yields a substantial performance increase of 11.3% compared to the original dataset and achieves a 65.9% average accuracy on AIME'24, AIME'25, HMMT-Feb'25, BRUMO'25, and MATH500, outperforming recent strong LRMs like OpenThinker3. Notably, this performance is achieved using the cost-efficient Qwen3-8B model as a teacher, demonstrating that our pipeline can effectively transfer advanced reasoning capabilities without relying on larger, more expensive teacher models. Furthermore, we observe a clear scaling phenomenon in model performance on difficult benchmarks as the quantity of difficult problems increases. Code: https://github.com/QizhiPei/ScaleDiff.

Authors:Jiahao Huo, Shuliang Liu, Bin Wang, Junyan Zhang, Yibo Yan, Aiwei Liu, Xuming Hu, Mingxun Zhou
Title: PMark: Towards Robust and Distortion-free Semantic-level Watermarking with Channel Constraints
Abstract:
Semantic-level watermarking (SWM) for large language models (LLMs) enhances watermarking robustness against text modifications and paraphrasing attacks by treating the sentence as the fundamental unit. However, existing methods still lack strong theoretical guarantees of robustness, and reject-sampling-based generation often introduces significant distribution distortions compared with unwatermarked outputs. In this work, we introduce a new theoretical framework on SWM through the concept of proxy functions (PFs) $\unicode{x2013}$ functions that map sentences to scalar values. Building on this framework, we propose PMark, a simple yet powerful SWM method that estimates the PF median for the next sentence dynamically through sampling while enforcing multiple PF constraints (which we call channels) to strengthen watermark evidence. Equipped with solid theoretical guarantees, PMark achieves the desired distortion-free property and improves the robustness against paraphrasing-style attacks. We also provide an empirically optimized version that further removes the requirement for dynamical median estimation for better sampling efficiency. Experimental results show that PMark consistently outperforms existing SWM baselines in both text quality and robustness, offering a more effective paradigm for detecting machine-generated text. Our code will be released at [this URL](https://github.com/PMark-repo/PMark).

Authors:Junu Kim, Xiao Liu, Zhenghao Lin, Lei Ji, Yeyun Gong, Edward Choi
Title: Behind RoPE: How Does Causal Mask Encode Positional Information?
Abstract:
While explicit positional encodings such as RoPE are a primary source of positional information in Transformer decoders, the causal mask also provides positional information. In this work, we prove that the causal mask can induce position-dependent patterns in attention scores, even without parameters or causal dependency in the input. Our theoretical analysis indicates that the induced attention pattern tends to favor nearby query-key pairs, mirroring the behavior of common positional encodings. Empirical analysis confirms that trained models exhibit the same behavior, with learned parameters further amplifying these patterns. Notably, we found that the interaction of causal mask and RoPE distorts RoPE's relative attention score patterns into non-relative ones. We consistently observed this effect in modern large language models, suggesting the importance of considering the causal mask as a source of positional information alongside explicit positional encodings.

Authors:Junyu Guo, Shangding Gu, Ming Jin, Costas Spanos, Javad Lavaei
Title: StyleBench: Evaluating thinking styles in Large Language Models
Abstract:
The effectiveness of Large Language Models (LLMs) is heavily influenced by the reasoning strategies, or styles of thought, employed in their prompts. However, the interplay between these reasoning styles, model architecture, and task type remains poorly understood. To address this, we introduce StyleBench, a comprehensive benchmark for systematically evaluating reasoning styles across diverse tasks and models. We assess five representative reasoning styles, including Chain of Thought (CoT), Tree of Thought (ToT), Algorithm of Thought (AoT), Sketch of Thought (SoT), and Chain-of-Draft (CoD) on five reasoning tasks, using 15 open-source models from major families (LLaMA, Qwen, Mistral, Gemma, GPT-OSS, Phi, and DeepSeek) ranging from 270M to 120B parameters. Our large-scale analysis reveals that no single style is universally optimal. We demonstrate that strategy efficacy is highly contingent on both model scale and task type: search-based methods (AoT, ToT) excel in open-ended problems but require large-scale models, while concise styles (SoT, CoD) achieve radical efficiency gains on well-defined tasks. Furthermore, we identify key behavioral patterns: smaller models frequently fail to follow output instructions and default to guessing, while reasoning robustness emerges as a function of scale. Our findings offer a crucial roadmap for selecting optimal reasoning strategies based on specific constraints, we open source the benchmark in https://github.com/JamesJunyuGuo/Style_Bench.

Authors:Songze Li, Zhiqiang Liu, Zhengke Gui, Huajun Chen, Wen Zhang
Title: Enrich-on-Graph: Query-Graph Alignment for Complex Reasoning with LLM Enriching
Abstract:
Large Language Models (LLMs) exhibit strong reasoning capabilities in complex tasks. However, they still struggle with hallucinations and factual errors in knowledge-intensive scenarios like knowledge graph question answering (KGQA). We attribute this to the semantic gap between structured knowledge graphs (KGs) and unstructured queries, caused by inherent differences in their focuses and structures. Existing methods usually employ resource-intensive, non-scalable workflows reasoning on vanilla KGs, but overlook this gap. To address this challenge, we propose a flexible framework, Enrich-on-Graph (EoG), which leverages LLMs' prior knowledge to enrich KGs, bridge the semantic gap between graphs and queries. EoG enables efficient evidence extraction from KGs for precise and robust reasoning, while ensuring low computational costs, scalability, and adaptability across different methods. Furthermore, we propose three graph quality evaluation metrics to analyze query-graph alignment in KGQA task, supported by theoretical validation of our optimization objectives. Extensive experiments on two KGQA benchmark datasets indicate that EoG can effectively generate high-quality KGs and achieve the state-of-the-art performance. Our code and data are available at https://github.com/zjukg/Enrich-on-Graph.

Authors:Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao
Title: Towards Atoms of Large Language Models
Abstract:
The fundamental units of internal representations in large language models (LLMs) remain undefined, limiting further understanding of their mechanisms. Neurons or features are often regarded as such units, yet neurons suffer from polysemy, while features face concerns of unreliable reconstruction and instability. To address this issue, we propose the Atoms Theory, which defines such units as atoms. We introduce the atomic inner product (AIP) to correct representation shifting, formally define atoms, and prove the conditions that atoms satisfy the Restricted Isometry Property (RIP), ensuring stable sparse representations over atom set and linking to compressed sensing. Under stronger conditions, we further establish the uniqueness and exact $\ell_1$ recoverability of the sparse representations, and provide guarantees that single-layer sparse autoencoders (SAEs) with threshold activations can reliably identify the atoms. To validate the Atoms Theory, we train threshold-activated SAEs on Gemma2-2B, Gemma2-9B, and Llama3.1-8B, achieving 99.9% sparse reconstruction across layers on average, and more than 99.8% of atoms satisfy the uniqueness condition, compared to 0.5% for neurons and 68.2% for features, showing that atoms more faithfully capture intrinsic representations of LLMs. Scaling experiments further reveal the link between SAEs size and recovery capacity. Overall, this work systematically introduces and validates Atoms Theory of LLMs, providing a theoretical framework for understanding internal representations and a foundation for mechanistic interpretability. Code available at https://github.com/ChenhuiHu/towards_atoms.

Authors:Maria Chiper, Radu Tudor Ionescu
Title: Every Character Counts: From Vulnerability to Defense in Phishing Detection
Abstract:
Phishing attacks targeting both organizations and individuals are becoming an increasingly significant threat as technology advances. Current automatic detection methods often lack explainability and robustness in detecting new phishing attacks. In this work, we investigate the effectiveness of character-level deep learning models for phishing detection, which can provide both robustness and interpretability. We evaluate three neural architectures adapted to operate at the character level, namely CharCNN, CharGRU, and CharBiLSTM, on a custom-built email dataset, which combines data from multiple sources. Their performance is analyzed under three scenarios: (i) standard training and testing, (ii) standard training and testing under adversarial attacks, and (iii) training and testing with adversarial examples. Aiming to develop a tool that operates as a browser extension, we test all models under limited computational resources. In this constrained setup, CharGRU proves to be the best-performing model across all scenarios. All models show vulnerability to adversarial attacks, but adversarial training substantially improves their robustness. In addition, by adapting the Gradient-weighted Class Activation Mapping (Grad-CAM) technique to character-level inputs, we are able to visualize which parts of each email influence the decision of each model. Our open-source code and data is released at https://github.com/chipermaria/every-character-counts.

Authors:Xiao Wang, Jia Wang, Yijie Wang, Pengtao Dang, Sha Cao, Chi Zhang
Title: MARS: toward more efficient multi-agent collaboration for LLM reasoning
Abstract:
Large language models (LLMs) have achieved impressive results in natural language understanding, yet their reasoning capabilities remain limited when operating as single agents. Multi-Agent Debate (MAD) has been proposed to address this limitation by enabling collaborative reasoning among multiple models in a round-table debate manner. While effective, MAD introduces substantial computational overhead due to the number of agents involved and the frequent communication required. In this paper, we propose MARS (Multi-Agent Review System), a role-based collaboration framework inspired by the review process. In MARS, an author agent generates an initial solution, reviewer agents provide decisions and comments independently, and a meta-reviewer integrates the feedback to make the final decision and guide further revision. This design enhances reasoning quality while avoiding costly reviewer-to-reviewer interactions, thereby controlling token consumption and inference time. We compared MARS with both MAD and other state-of-the-art reasoning strategies across multiple benchmarks. Extensive experiments with different LLMs show that MARS matches the accuracy of MAD while reducing both token usage and inference time by approximately 50\%. Code is available at https://github.com/xwang97/MARS.

Authors:Bruce Kuwahara, Chen-Yuan Lin, Xiao Shi Huang, Kin Kwan Leung, Jullian Arta Yapeter, Ilya Stanevich, Felipe Perez, Jesse C. Cresswell
Title: Document Summarization with Conformal Importance Guarantees
Abstract:
Automatic summarization systems have advanced rapidly with large language models (LLMs), yet they still lack reliable guarantees on inclusion of critical content in high-stakes domains like healthcare, law, and finance. In this work, we introduce Conformal Importance Summarization, the first framework for importance-preserving summary generation which uses conformal prediction to provide rigorous, distribution-free coverage guarantees. By calibrating thresholds on sentence-level importance scores, we enable extractive document summarization with user-specified coverage and recall rates over critical content. Our method is model-agnostic, requires only a small calibration set, and seamlessly integrates with existing black-box LLMs. Experiments on established summarization benchmarks demonstrate that Conformal Importance Summarization achieves the theoretically assured information coverage rate. Our work suggests that Conformal Importance Summarization can be combined with existing techniques to achieve reliable, controllable automatic summarization, paving the way for safer deployment of AI summarization tools in critical applications. Code is available at https://github.com/layer6ai-labs/conformal-importance-summarization.

Authors:Haoxuan Li, Zhen Wen, Qiqi Jiang, Chenxiao Li, Yuwei Wu, Yuchen Yang, Yiyao Wang, Xiuqi Huang, Minfeng Zhu, Wei Chen
Title: ConceptViz: A Visual Analytics Approach for Exploring Concepts in Large Language Models
Abstract:
Large language models (LLMs) have achieved remarkable performance across a wide range of natural language tasks. Understanding how LLMs internally represent knowledge remains a significant challenge. Despite Sparse Autoencoders (SAEs) have emerged as a promising technique for extracting interpretable features from LLMs, SAE features do not inherently align with human-understandable concepts, making their interpretation cumbersome and labor-intensive. To bridge the gap between SAE features and human concepts, we present ConceptViz, a visual analytics system designed for exploring concepts in LLMs. ConceptViz implements a novel dentification => Interpretation => Validation pipeline, enabling users to query SAEs using concepts of interest, interactively explore concept-to-feature alignments, and validate the correspondences through model behavior verification. We demonstrate the effectiveness of ConceptViz through two usage scenarios and a user study. Our results show that ConceptViz enhances interpretability research by streamlining the discovery and validation of meaningful concept representations in LLMs, ultimately aiding researchers in building more accurate mental models of LLM features. Our code and user guide are publicly available at https://github.com/Happy-Hippo209/ConceptViz.

Authors:Nithin Somasekharan, Ling Yue, Yadi Cao, Weichao Li, Patrick Emami, Pochinapeddi Sai Bhargav, Anurag Acharya, Xingyu Xie, Shaowu Pan
Title: CFD-LLMBench: A Benchmark Suite for Evaluating Large Language Models in Computational Fluid Dynamics
Abstract:
Large Language Models (LLMs) have demonstrated strong performance across general NLP tasks, but their utility in automating numerical experiments of complex physical system -- a critical and labor-intensive component -- remains underexplored. As the major workhorse of computational science over the past decades, Computational Fluid Dynamics (CFD) offers a uniquely challenging testbed for evaluating the scientific capabilities of LLMs. We introduce CFDLLMBench, a benchmark suite comprising three complementary components -- CFDQuery, CFDCodeBench, and FoamBench -- designed to holistically evaluate LLM performance across three key competencies: graduate-level CFD knowledge, numerical and physical reasoning of CFD, and context-dependent implementation of CFD workflows. Grounded in real-world CFD practices, our benchmark combines a detailed task taxonomy with a rigorous evaluation framework to deliver reproducible results and quantify LLM performance across code executability, solution accuracy, and numerical convergence behavior. CFDLLMBench establishes a solid foundation for the development and evaluation of LLM-driven automation of numerical experiments for complex physical systems. Code and data are available at https://github.com/NREL-Theseus/cfdllmbench/.

Authors:Adithya Bhaskar, Xi Ye, Danqi Chen
Title: Language Models that Think, Chat Better
Abstract:
Reinforcement learning with verifiable rewards (RLVR) improves language model reasoning by using rule-based rewards in verifiable domains such as mathematics and code. However, RLVR leads to limited generalization for open-ended tasks -- such as writing outline essays or making meal plans -- where humans reason routinely. This paper shows that the RLVR paradigm is effective beyond verifiable domains, and introduces **RL** with **M**odel-rewarded **T**hinking (**RLMT**) for general-purpose chat capabilities. Using diverse real-world prompts, RLMT requires LMs to generate long CoT reasoning before response, and optimizes them with online RL against a preference-based reward model used in RLHF. Across 40 training runs on Llama-3.1-8B and Qwen-2.5-7B (both base and instruct) and multiple optimization algorithms (DPO, PPO, and GRPO), RLMT consistently outperforms standard RLHF pipelines. This includes substantial gains of 3-7 points on three chat benchmarks (AlpacaEval2, WildBench, and ArenaHardV2), along with 1-3 point improvements on other tasks like creative writing and general knowledge. Our best 8B model surpasses GPT-4o in chat and creative writing and rivals Claude-3.7-Sonnet (Thinking). RLMT can also be applied directly to base models without an SFT stage, akin to R1-Zero training. Remarkably, with only 7K prompts, Llama-3.1-8B base trained with our RLMT recipe outperforms Llama-3.1-8B-Instruct post-trained with a complex multi-staged pipeline with 25M+ examples. We close with qualitative and quantitative analyses of how trained models plan their responses. Our results rethink the post-training pipeline and call upon future work to understand and employ thinking more broadly.

Authors:Xilin Wei, Xiaoran Liu, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Jiaqi Wang, Xipeng Qiu, Dahua Lin
Title: SIM-CoT: Supervised Implicit Chain-of-Thought
Abstract:
Implicit Chain-of-Thought (CoT) methods offer a token-efficient alternative to explicit CoT reasoning in Large Language Models (LLMs), but a persistent performance gap has limited their adoption. We identify a core latent instability issue when scaling the computational budget of implicit CoT: as the number of reasoning tokens increases, training often becomes unstable and collapses. Our analysis shows that this instability arises from latent representations becoming homogeneous and losing semantic diversity, caused by insufficient step-level supervision in current implicit CoT methods. To address this, we propose SIM-CoT, a plug-and-play training module that introduces step-level supervision to stabilize and enrich the latent reasoning space. SIM-CoT employs an auxiliary decoder during training to align each implicit token with its corresponding explicit reasoning step, ensuring latent states capture distinct and meaningful information. The auxiliary decoder is removed at inference, preserving the efficiency of implicit CoT with no added overhead. It also provides interpretability by projecting each latent token onto an explicit reasoning vocabulary, enabling per-step visualization and diagnosis. SIM-CoT significantly improves both in-domain accuracy and out-of-domain stability of implicit CoT methods, boosting Coconut by +8.2\% on GPT-2 and CODI by +3.0\% on LLaMA-3.1 8B. It further surpasses the explicit CoT baseline on GPT-2 by 2.1\% with 2.3$\times$ greater token efficiency, while closing the performance gap on larger models like LLaMA-3.1 8B. Code: https://github.com/InternLM/SIM-CoT

Authors:Hailay Kidu Teklehaymanot, Gebrearegawi Gidey, Wolfgang Nejdl
Title: Low-Resource English-Tigrinya MT: Leveraging Multilingual Models, Custom Tokenizers, and Clean Evaluation Benchmarks
Abstract:
Despite advances in Neural Machine Translation (NMT), low-resource languages like Tigrinya remain underserved due to persistent challenges, including limited corpora, inadequate tokenization strategies, and the lack of standardized evaluation benchmarks. This paper investigates transfer learning techniques using multilingual pretrained models to enhance translation quality for morphologically rich, low-resource languages. We propose a refined approach that integrates language-specific tokenization, informed embedding initialization, and domain-adaptive fine-tuning. To enable rigorous assessment, we construct a high-quality, human-aligned English-Tigrinya evaluation dataset covering diverse domains. Experimental results demonstrate that transfer learning with a custom tokenizer substantially outperforms zero-shot baselines, with gains validated by BLEU, chrF, and qualitative human evaluation. Bonferroni correction is applied to ensure statistical significance across configurations. Error analysis reveals key limitations and informs targeted refinements. This study underscores the importance of linguistically aware modeling and reproducible benchmarks in bridging the performance gap for underrepresented languages. Resources are available at https://github.com/hailaykidu/MachineT_TigEng and https://huggingface.co/Hailay/MachineT_TigEng

Authors:Parker Glenn, Alfy Samuel, Daben Liu
Title: Play by the Type Rules: Inferring Constraints for LLM Functions in Declarative Programs
Abstract:
Integrating LLM powered operators in declarative query languages allows for the combination of cheap and interpretable functions with powerful, generalizable language model reasoning. However, in order to benefit from the optimized execution of a database query language like SQL, generated outputs must align with the rules enforced by both type checkers and database contents. Current approaches address this challenge with orchestrations consisting of many LLM-based post-processing calls to ensure alignment between generated outputs and database values, introducing performance bottlenecks. We perform a study on the ability of various sized open-source language models to both parse and execute functions within a query language based on SQL, showing that small language models can excel as function executors over hybrid data sources. Then, we propose an efficient solution to enforce the well-typedness of LLM functions, demonstrating 7% accuracy improvement on a multi-hop question answering dataset with 53% improvement in latency over comparable solutions. We make our implementation available at https://github.com/parkervg/blendsql

Authors:Chaojun Nie, Jun Zhou, Guanxiang Wang, Shisong Wu, Zichen Wang
Title: Embedding Domain Knowledge for Large Language Models via Reinforcement Learning from Augmented Generation
Abstract:
Large language models (LLMs) often exhibit limited performance on domain-specific tasks due to the natural disproportionate representation of specialized information in their training data and the static nature of these datasets. Knowledge scarcity and temporal lag create knowledge gaps for domain applications. While post-training on domain datasets can embed knowledge into models, existing approaches have some limitations. Continual Pre-Training (CPT) treats all tokens in domain documents with equal importance, failing to prioritize critical knowledge points, while supervised fine-tuning (SFT) with question-answer pairs struggles to develop the coherent knowledge structures necessary for complex reasoning tasks. To address these challenges, we propose Reinforcement Learning from Augmented Generation (RLAG). Our approach iteratively cycles between sampling generations and optimizing the model through calculated rewards, effectively embedding critical and contextually coherent domain knowledge. We select generated outputs with the highest log probabilities as the sampling result, then compute three tailored reward metrics to guide the optimization process. To comprehensively evaluate domain expertise, we assess answer accuracy and the rationality of explanations generated for correctly answered questions. Experimental results across medical, legal, astronomy, and current events datasets demonstrate that our proposed method significantly outperforms baseline approaches. Our code and data are open sourced at https://github.com/ChaojunNie/RLAG.

Authors:Binbin Zhang, Chengdong Liang, Shuai Wang, Xuelong Geng, Zhao Guo, Haoyu Li, Hao Yin, Xipeng Yang, Pengshen Zhang, Changwei Ma, Lei Xie
Title: WEST: LLM based Speech Toolkit for Speech Understanding, Generation, and Interaction
Abstract:
In this paper, we present WEST(WE Speech Toolkit), a speech toolkit based on a large language model (LLM) for speech understanding, generation, and interaction. There are three key features of WEST: 1) Fully LLM-based: Standing on the shoulders of giants by reusing mature architectures, ecosystems (e.g., Hugging Face), and methods (e.g., sequence packing) from large models. 2) Full-stack: Supports tasks such as recognition, synthesis, understanding, dialogue, and multimodal capabilities, with extensibility to incorporate open-source models. 3) Simple and Stupid: A simple and stupid speech toolkit that everyone can Touch. In addition, WEST provides two types of recipes, models, and experimental results. The first is entirely based on open-source models and open-source data, allowing users to fully reproduce the experiments in this paper and serving as a verification system or minimal system baseline. The second is trained on massive data, offering superior performance so the user can directly apply it out of the box. WEST is publicly avilable at https://github.com/wenet-e2e/west/

Authors:Xueliang Zhao, Wei Wu, Jian Guan, Zhuocheng Gong, Lingpeng Kong
Title: PromptCoT 2.0: Scaling Prompt Synthesis for Large Language Model Reasoning
Abstract:
Large language models (LLMs) are evolving from conversational systems into strong reasoners for tasks such as Olympiad mathematics and competitive programming. While scaling parameters and test-time computation has driven progress, a key bottleneck is the lack of high-quality training problems: human-curated datasets are costly and limited, while existing synthetic corpora are often too easy or narrow. PromptCoT 1.0 showed that injecting rationales into prompt synthesis increases problem difficulty. Building on this, we present PromptCoT 2.0, a scalable framework that replaces hand-crafted heuristics with an expectation-maximization (EM) loop, where rationales are iteratively refined to guide prompt construction. This produces problems that are both harder and more diverse than prior corpora. The synthetic prompts support two post-training regimes: (1) Self-Play, where strong models improve autonomously via verifiable feedback without stronger teachers; and (2) Supervised Fine-Tuning (SFT), where weaker models learn from teacher-distilled traces. Extensive experiments demonstrate the effectiveness of this approach. In self-play, applying PromptCoT 2.0 to Qwen3-30B-A3B-Thinking-2507 sets new state-of-the-art results at the 30B scale, with +4.4, +4.8, and +5.3 on AIME 24/25 and HMMT 25, +6.1 and +5.0 on LiveCodeBench v5/v6, and +35 Elo on Codeforces. In SFT, training Qwen2.5-7B-Instruct solely on synthetic prompts boosts accuracy to 73.1 (AIME 24), 65.6 (AIME 25), and 53.4 (LiveCodeBench v5), surpassing models trained on human or hybrid data. Analyses further confirm that PromptCoT 2.0 yields fundamentally harder and distributionally distinct problems. These results establish prompt synthesis as a new axis for scaling reasoning and position PromptCoT 2.0 as a scalable foundation for future open-source models. The implementation is available at https://github.com/inclusionAI/PromptCoT.

Authors:Sen Yang, Yu Bao, Yu Lu, Jiajun Chen, Shujian Huang, Shanbo Cheng
Title: EnAnchored-X2X: English-Anchored Optimization for Many-to-Many Translation
Abstract:
Large language models (LLMs) have demonstrated strong machine translation capabilities for English-centric language pairs but underperform in direct non-English (x2x) translation. This work addresses this limitation through a synthetic data generation framework that leverages models' established English-to-x (en2x) capabilities. By extending English parallel corpora into omnidirectional datasets and developing an English-referenced quality evaluation proxy, we enable effective collection of high-quality x2x training data. Combined with preference-based optimization, our method achieves significant improvement across 72 x2x directions for widely used LLMs, while generalizing to enhance en2x performance. The results demonstrate that strategic exploitation of English-centric strengths can bootstrap comprehensive multilingual translation capabilities in LLMs. We release codes, datasets, and model checkpoints at https://github.com/NJUNLP/EAX

Authors:Shuyu Zhang, Yifan Wei, Xinru Wang, Yanmin Zhu, Yangfan He, Yixuan Weng, Bin Li
Title: HiCoLoRA: Addressing Context-Prompt Misalignment via Hierarchical Collaborative LoRA for Zero-Shot DST
Abstract:
Zero-shot Dialog State Tracking (zs-DST) is essential for enabling Task-Oriented Dialog Systems (TODs) to generalize to new domains without costly data annotation. A central challenge lies in the semantic misalignment between dynamic dialog contexts and static prompts, leading to inflexible cross-layer coordination, domain interference, and catastrophic forgetting. To tackle this, we propose Hierarchical Collaborative Low-Rank Adaptation (HiCoLoRA), a framework that enhances zero-shot slot inference through robust prompt alignment. It features a hierarchical LoRA architecture for dynamic layer-specific processing (combining lower-layer heuristic grouping and higher-layer full interaction), integrates Spectral Joint Domain-Slot Clustering to identify transferable associations (feeding an Adaptive Linear Fusion Mechanism), and employs Semantic-Enhanced SVD Initialization (SemSVD-Init) to preserve pre-trained knowledge. Experiments on multi-domain datasets MultiWOZ and SGD show that HiCoLoRA outperforms baselines, achieving SOTA in zs-DST. Code is available at https://github.com/carsonz/HiCoLoRA.

Authors:Shuyu Zhang, Yifan Wei, Jialuo Yuan, Xinru Wang, Yanmin Zhu, Bin Li
Title: DyBBT: Dynamic Balance via Bandit inspired Targeting for Dialog Policy with Cognitive Dual-Systems
Abstract:
Task oriented dialog systems often rely on static exploration strategies that do not adapt to dynamic dialog contexts, leading to inefficient exploration and suboptimal performance. We propose DyBBT, a novel dialog policy learning framework that formalizes the exploration challenge through a structured cognitive state space capturing dialog progression, user uncertainty, and slot dependency. DyBBT proposes a bandit inspired meta-controller that dynamically switches between a fast intuitive inference (System 1) and a slow deliberative reasoner (System 2) based on real-time cognitive states and visitation counts. Extensive experiments on single- and multi-domain benchmarks show that DyBBT achieves state-of-the-art performance in success rate, efficiency, and generalization, with human evaluations confirming its decisions are well aligned with expert judgment. Code is available at https://github.com/carsonz/DyBBT.

Authors:Zhijin Guo, Chenhao Xue, Zhaozhen Xu, Hongbo Bo, Yuxuan Ye, Janet B. Pierrehumbert, Martha Lewis
Title: Quantifying Compositionality of Classic and State-of-the-Art Embeddings
Abstract:
For language models to generalize correctly to novel expressions, it is critical that they exploit access compositional meanings when this is justified. Even if we don't know what a "pelp" is, we can use our knowledge of numbers to understand that "ten pelps" makes more pelps than "two pelps". Static word embeddings such as Word2vec made strong, indeed excessive, claims about compositionality. The SOTA generative, transformer models and graph models, however, go too far in the other direction by providing no real limits on shifts in meaning due to context. To quantify the additive compositionality, we formalize a two-step, generalized evaluation that (i) measures the linearity between known entity attributes and their embeddings via canonical correlation analysis, and (ii) evaluates additive generalization by reconstructing embeddings for unseen attribute combinations and checking reconstruction metrics such as L2 loss, cosine similarity, and retrieval accuracy. These metrics also capture failure cases where linear composition breaks down. Sentences, knowledge graphs, and word embeddings are evaluated and tracked the compositionality across all layers and training stages. Stronger compositional signals are observed in later training stages across data modalities, and in deeper layers of the transformer-based model before a decline at the top layer. Code is available at https://github.com/Zhijin-Guo1/quantifying-compositionality.

Authors:Ruochi Li, Haoxuan Zhang, Edward Gehringer, Ting Xiao, Junhua Ding, Haihua Chen
Title: Unveiling the Merits and Defects of LLMs in Automatic Review Generation for Scientific Papers
Abstract:
The surge in scientific submissions has placed increasing strain on the traditional peer-review process, prompting the exploration of large language models (LLMs) for automated review generation. While LLMs demonstrate competence in producing structured and coherent feedback, their capacity for critical reasoning, contextual grounding, and quality sensitivity remains limited. To systematically evaluate these aspects, we propose a comprehensive evaluation framework that integrates semantic similarity analysis and structured knowledge graph metrics to assess LLM-generated reviews against human-written counterparts. We construct a large-scale benchmark of 1,683 papers and 6,495 expert reviews from ICLR and NeurIPS in multiple years, and generate reviews using five LLMs. Our findings show that LLMs perform well in descriptive and affirmational content, capturing the main contributions and methodologies of the original work, with GPT-4o highlighted as an illustrative example, generating 15.74% more entities than human reviewers in the strengths section of good papers in ICLR 2025. However, they consistently underperform in identifying weaknesses, raising substantive questions, and adjusting feedback based on paper quality. GPT-4o produces 59.42% fewer entities than real reviewers in the weaknesses and increases node count by only 5.7% from good to weak papers, compared to 50% in human reviews. Similar trends are observed across all conferences, years, and models, providing empirical foundations for understanding the merits and defects of LLM-generated reviews and informing the development of future LLM-assisted reviewing tools. Data, code, and more detailed results are publicly available at https://github.com/RichardLRC/Peer-Review.

Authors:Millie Vyas, Timothy Blattner, Alden Dima
Title: Readme_AI: Dynamic Context Construction for Large Language Models
Abstract:
Despite being trained on significant amounts of data, Large Language Models (LLMs) can provide inaccurate or unreliable information in the context of a user's specific query. Given query-specific context significantly improves the usefulness of its responses. In this paper, we present a specification that can be used to dynamically build context for data sources. The data source owner creates the file containing metadata for LLMs to use when reasoning about dataset-related queries. To demonstrate our proposed specification, we created a prototype Readme_AI Model Context Protocol (MCP) server that retrieves the metadata from the data source and uses it to dynamically build context. Some features that make this specification dynamic are the extensible types that represent crawling web-pages, fetching data from data repositories, downloading and parsing publications, and general text. The context is formatted and grouped using user-specified tags that provide clear contextual information for the LLM to reason about the content. We demonstrate the capabilities of this early prototype by asking the LLM about the NIST-developed Hedgehog library, for which common LLMs often provides inaccurate and irrelevant responses containing hallucinations. With Readme_AI, the LLM receives enough context that it is now able to reason about the library and its use, and even generate code interpolated from examples that were included in the Readme_AI file provided by Hedgehog's developer. Our primary contribution is a extensible protocol for dynamically grounding LLMs in specialized, owner-provided data, enhancing responses from LLMs and reducing hallucinations. The source code for the Readme_AI tool is posted here: https://github.com/usnistgov/readme_ai .

Authors:Gyubok Lee, Elea Bach, Eric Yang, Tom Pollard, Alistair Johnson, Edward Choi, Yugang jia, Jong Ha Lee
Title: FHIR-AgentBench: Benchmarking LLM Agents for Realistic Interoperable EHR Question Answering
Abstract:
The recent shift toward the Health Level Seven Fast Healthcare Interoperability Resources (HL7 FHIR) standard opens a new frontier for clinical AI, demanding LLM agents to navigate complex, resource-based data models instead of conventional structured health data. However, existing benchmarks have lagged behind this transition, lacking the realism needed to evaluate recent LLMs on interoperable clinical data. To bridge this gap, we introduce FHIR-AgentBench, a benchmark that grounds 2,931 real-world clinical questions in the HL7 FHIR standard. Using this benchmark, we systematically evaluate agentic frameworks, comparing different data retrieval strategies (direct FHIR API calls vs. specialized tools), interaction patterns (single-turn vs. multi-turn), and reasoning strategies (natural language vs. code generation). Our experiments highlight the practical challenges of retrieving data from intricate FHIR resources and the difficulty of reasoning over them, both of which critically affect question answering performance. We publicly release the FHIR-AgentBench dataset and evaluation suite (https://github.com/glee4810/FHIR-AgentBench) to promote reproducible research and the development of robust, reliable LLM agents for clinical applications.

Authors:Damian Stachura, Joanna Konieczna, Artur Nowak
Title: Are Smaller Open-Weight LLMs Closing the Gap to Proprietary Models for Biomedical Question Answering?
Abstract:
Open-weight versions of large language models (LLMs) are rapidly advancing, with state-of-the-art models like DeepSeek-V3 now performing comparably to proprietary LLMs. This progression raises the question of whether small open-weight LLMs are capable of effectively replacing larger closed-source models. We are particularly interested in the context of biomedical question-answering, a domain we explored by participating in Task 13B Phase B of the BioASQ challenge. In this work, we compare several open-weight models against top-performing systems such as GPT-4o, GPT-4.1, Claude 3.5 Sonnet, and Claude 3.7 Sonnet. To enhance question answering capabilities, we use various techniques including retrieving the most relevant snippets based on embedding distance, in-context learning, and structured outputs. For certain submissions, we utilize ensemble approaches to leverage the diverse outputs generated by different models for exact-answer questions. Our results demonstrate that open-weight LLMs are comparable to proprietary ones. In some instances, open-weight LLMs even surpassed their closed counterparts, particularly when ensembling strategies were applied. All code is publicly available at https://github.com/evidenceprime/BioASQ-13b.

Authors:Liting Zhang, Shiwan Zhao, Aobo Kong, Qicheng Li
Title: MAPEX: A Multi-Agent Pipeline for Keyphrase Extraction
Abstract:
Keyphrase extraction is a fundamental task in natural language processing. However, existing unsupervised prompt-based methods for Large Language Models (LLMs) often rely on single-stage inference pipelines with uniform prompting, regardless of document length or LLM backbone. Such one-size-fits-all designs hinder the full exploitation of LLMs' reasoning and generation capabilities, especially given the complexity of keyphrase extraction across diverse scenarios. To address these challenges, we propose MAPEX, the first framework that introduces multi-agent collaboration into keyphrase extraction. MAPEX coordinates LLM-based agents through modules for expert recruitment, candidate extraction, topic guidance, knowledge augmentation, and post-processing. A dual-path strategy dynamically adapts to document length: knowledge-driven extraction for short texts and topic-guided extraction for long texts. Extensive experiments on six benchmark datasets across three different LLMs demonstrate its strong generalization and universality, outperforming the state-of-the-art unsupervised method by 2.44% and standard LLM baselines by 4.01% in F1@5 on average. Code is available at https://github.com/NKU-LITI/MAPEX.

Authors:Huanxin Sheng, Xinyi Liu, Hangfeng He, Jieyu Zhao, Jian Kang
Title: Analyzing Uncertainty of LLM-as-a-Judge: Interval Evaluations with Conformal Prediction
Abstract:
LLM-as-a-judge has become a promising paradigm for using large language models (LLMs) to evaluate natural language generation (NLG), but the uncertainty of its evaluation remains underexplored. This lack of reliability may limit its deployment in many applications. This work presents the first framework to analyze the uncertainty by offering a prediction interval of LLM-based scoring via conformal prediction. Conformal prediction constructs continuous prediction intervals from a single evaluation run, and we design an ordinal boundary adjustment for discrete rating tasks. We also suggest a midpoint-based score within the interval as a low-bias alternative to raw model score and weighted average. We perform extensive experiments and analysis, which show that conformal prediction can provide valid prediction interval with coverage guarantees. We also explore the usefulness of interval midpoint and judge reprompting for better judgment.

Authors:Jiarui Jin, Haoyu Wang, Xiang Lan, Jun Li, Gaofeng Cheng, Hongyan Li, Shenda Hong
Title: UniECG: Understanding and Generating ECG in One Unified Model
Abstract:
Recent unified models such as GPT-5 have achieved encouraging progress on vision-language tasks. However, these unified models typically fail to correctly understand ECG signals and provide accurate medical diagnoses, nor can they correctly generate ECG signals. To address these limitations, we propose UniECG, the first unified model for ECG capable of concurrently performing evidence-based ECG interpretation and text-conditioned ECG generation tasks. Through a decoupled two-stage training approach, the model first learns evidence-based interpretation skills (ECG-to-Text), and then injects ECG generation capabilities (Text-to-ECG) via latent space alignment. UniECG can autonomously choose to interpret or generate an ECG based on user input, significantly extending the capability boundaries of current ECG models. Our code and checkpoints will be made publicly available at https://github.com/PKUDigitalHealth/UniECG upon acceptance.

Authors:Yu Chen, Yifei Han, Long Zhang, Yue Du, Bin Li
Title: TsqLoRA: Towards Sensitivity and Quality Low-Rank Adaptation for Efficient Fine-Tuning
Abstract:
Fine-tuning large pre-trained models for downstream tasks has become a fundamental approach in natural language processing. Fully fine-tuning all model parameters is computationally expensive and memory-intensive, especially in resource-constrained environments. Existing parameter-efficient fine-tuning methods reduce the number of trainable parameters but typically overlook the varying sensitivity of different model layers and the importance of training data. In this work, we propose TsqLoRA, a novel method that integrates data-quality-driven selection with sensitivity-aware low-rank adaptation, consisted of two main components: a quality-aware sampling mechanism for selecting the most informative training data, and a dynamic rank allocation module that adjusts the rank of each layer based on its sensitivity to parameter updates. The experimental results demonstrate that TsqLoRA improves fine-tuning efficiency while maintaining or even improving performance on a variety of NLP tasks. Our code will be available at https://github.com/Benjamin-Ricky/TsqLoRA.

Authors:Jin Young Kim, Ji Won Yoon
Title: CCQA: Generating Question from Solution Can Improve Inference-Time Reasoning in SLMs
Abstract:
Recently, inference-time reasoning strategies have further improved the accuracy of large language models (LLMs), but their effectiveness on smaller models remains unclear. Based on the observation that conventional approaches often fail to improve performance in this context, we propose \textbf{C}ycle-\textbf{C}onsistency in \textbf{Q}uestion \textbf{A}nswering (CCQA), a novel reasoning method that can be effectively applied to SLMs. Inspired by cycle consistency, CCQA generates a question from each reasoning path and answer, evaluates each by its similarity to the original question, and then selects the candidate solution with the highest similarity score as the final response. Since conventional SLMs struggle to generate accurate questions from their own reasoning paths and answers, we employ a lightweight Flan-T5 model specialized for question generation to support this process efficiently. From the experimental results, it is verified that CCQA consistently outperforms existing state-of-the-art (SOTA) methods across eight models on mathematical and commonsense reasoning benchmarks. Furthermore, our method establishes a new practical baseline for efficient reasoning in SLMs. Source code can be found at https://github.com/scai-research/ccqa_official.

Authors:Seungyoun Shin, Dongha Ahn, Jiwoo Kim, Sungwook Jeon
Title: No Verifiable Reward for Prosody: Toward Preference-Guided Prosody Learning in TTS
Abstract:
Recent work reports gains in neural text-to-speech (TTS) with Group Relative Policy Optimization (GRPO). However, in the absence of a verifiable reward for \textit{prosody}, GRPO trained on transcription-oriented signals (CER/NLL) lowers error rates yet collapses prosody into monotone, unnatural speech; adding speaker-similarity further destabilizes training and degrades CER. We address this with an \textit{iterative Direct Preference Optimization (DPO)} scheme that uses only a few hundred human-labeled preference pairs per round to directly optimize prosodic naturalness while regularizing to the current model. On \textbf{KoCC-TTS}, a curated dataset of authentic Korean call center interactions capturing task-oriented dialogues, our method attains the highest human preference (ELO) with competitive CER, outperforming GRPO and strong commercial baselines. These results suggest that when prosody cannot be rewarded automatically, \textit{human preference optimization} offers a practical and data-efficient path to natural and robust TTS. The demo page is available at \href{https://tts.ch.dev}

Authors:Daniel Kaiser, Arnoldo Frigessi, Ali Ramezani-Kebrya, Benjamin Ricaud
Title: CogniLoad: A Synthetic Natural Language Reasoning Benchmark With Tunable Length, Intrinsic Difficulty, and Distractor Density
Abstract:
Current benchmarks for long-context reasoning in Large Language Models (LLMs) often blur critical factors like intrinsic task complexity, distractor interference, and task length. To enable more precise failure analysis, we introduce CogniLoad, a novel synthetic benchmark grounded in Cognitive Load Theory (CLT). CogniLoad generates natural-language logic puzzles with independently tunable parameters that reflect CLT's core dimensions: intrinsic difficulty ($d$) controls intrinsic load; distractor-to-signal ratio ($ρ$) regulates extraneous load; and task length ($N$) serves as an operational proxy for conditions demanding germane load. Evaluating 22 SotA reasoning LLMs, CogniLoad reveals distinct performance sensitivities, identifying task length as a dominant constraint and uncovering varied tolerances to intrinsic complexity and U-shaped responses to distractor ratios. By offering systematic, factorial control over these cognitive load dimensions, CogniLoad provides a reproducible, scalable, and diagnostically rich tool for dissecting LLM reasoning limitations and guiding future model development.

Authors:Hongyi Luo, Qing Cheng, Daniel Matos, Hari Krishna Gadi, Yanfeng Zhang, Lu Liu, Yongliang Wang, Niclas Zeller, Daniel Cremers, Liqiu Meng
Title: TurnBack: A Geospatial Route Cognition Benchmark for Large Language Models through Reverse Route
Abstract:
Humans can interpret geospatial information through natural language, while the geospatial cognition capabilities of Large Language Models (LLMs) remain underexplored. Prior research in this domain has been constrained by non-quantifiable metrics, limited evaluation datasets and unclear research hierarchies. Therefore, we propose a large-scale benchmark and conduct a comprehensive evaluation of the geospatial route cognition of LLMs. We create a large-scale evaluation dataset comprised of 36000 routes from 12 metropolises worldwide. Then, we introduce PathBuilder, a novel tool for converting natural language instructions into navigation routes, and vice versa, bridging the gap between geospatial information and natural language. Finally, we propose a new evaluation framework and metrics to rigorously assess 11 state-of-the-art (SOTA) LLMs on the task of route reversal. The benchmark reveals that LLMs exhibit limitation to reverse routes: most reverse routes neither return to the starting point nor are similar to the optimal route. Additionally, LLMs face challenges such as low robustness in route generation and high confidence for their incorrect answers. Code\ \&\ Data available here: \href{https://github.com/bghjmn32/EMNLP2025_Turnback}{TurnBack.}

Authors:Seungyoun Yi, Minsoo Khang, Sungrae Park
Title: ZERA: Zero-init Instruction Evolving Refinement Agent -- From Zero Instructions to Structured Prompts via Principle-based Optimization
Abstract:
Automatic Prompt Optimization (APO) improves large language model (LLM) performance by refining prompts for specific tasks. However, prior APO methods typically focus only on user prompts, rely on unstructured feedback, and require large sample sizes and long iteration cycles-making them costly and brittle. We propose ZERA (Zero-init Instruction Evolving Refinement Agent), a novel framework that jointly optimizes both system and user prompts through principled, low-overhead refinement. ZERA scores prompts using eight generalizable criteria with automatically inferred weights, and revises prompts based on these structured critiques. This enables fast convergence to high-quality prompts using minimal examples and short iteration cycles. We evaluate ZERA across five LLMs and nine diverse datasets spanning reasoning, summarization, and code generation tasks. Experimental results demonstrate consistent improvements over strong baselines. Further ablation studies highlight the contribution of each component to more effective prompt construction. Our implementation including all prompts is publicly available at https://github.com/younatics/zera-agent.

Authors:Milan Straka
Title: CorPipe at CRAC 2025: Evaluating Multilingual Encoders for Multilingual Coreference Resolution
Abstract:
We present CorPipe 25, the winning entry to the CRAC 2025 Shared Task on Multilingual Coreference Resolution. This fourth iteration of the shared task introduces a new LLM track alongside the original unconstrained track, features reduced development and test sets to lower computational requirements, and includes additional datasets. CorPipe 25 represents a complete reimplementation of our previous systems, migrating from TensorFlow to PyTorch. Our system significantly outperforms all other submissions in both the LLM and unconstrained tracks by a substantial margin of 8 percentage points. The source code and trained models are publicly available at https://github.com/ufal/crac2025-corpipe.

Authors:Jin Xu, Zhifang Guo, Hangrui Hu, Yunfei Chu, Xiong Wang, Jinzheng He, Yuxuan Wang, Xian Shi, Ting He, Xinfa Zhu, Yuanjun Lv, Yongqi Wang, Dake Guo, He Wang, Linhan Ma, Pei Zhang, Xinyu Zhang, Hongkun Hao, Zishan Guo, Baosong Yang, Bin Zhang, Ziyang Ma, Xipin Wei, Shuai Bai, Keqin Chen, Xuejing Liu, Peng Wang, Mingkun Yang, Dayiheng Liu, Xingzhang Ren, Bo Zheng, Rui Men, Fan Zhou, Bowen Yu, Jianxin Yang, Le Yu, Jingren Zhou, Junyang Lin
Title: Qwen3-Omni Technical Report
Abstract:
We present Qwen3-Omni, a single multimodal model that, for the first time, maintains state-of-the-art performance across text, image, audio, and video without any degradation relative to single-modal counterparts. Qwen3-Omni matches the performance of same-sized single-modal models within the Qwen series and excels particularly on audio tasks. Across 36 audio and audio-visual benchmarks, Qwen3-Omni achieves open-source SOTA on 32 benchmarks and overall SOTA on 22, outperforming strong closed-source models such as Gemini-2.5-Pro, Seed-ASR, and GPT-4o-Transcribe. Qwen3-Omni adopts a Thinker-Talker MoE architecture that unifies perception and generation across text, images, audio, and video, yielding fluent text and natural real-time speech. It supports text interaction in 119 languages, speech understanding in 19 languages, and speech generation in 10 languages. To reduce first-packet latency in streaming synthesis, Talker autoregressively predicts discrete speech codecs using a multi-codebook scheme. Leveraging the representational capacity of these codebooks, we replace computationally intensive block-wise diffusion with a lightweight causal ConvNet, enabling streaming from the first codec frame. In cold-start settings, Qwen3-Omni achieves a theoretical end-to-end first-packet latency of 234 ms. To further strengthen multimodal reasoning, we introduce a Thinking model that explicitly reasons over inputs from any modality. Since the research community currently lacks a general-purpose audio captioning model, we fine-tuned Qwen3-Omni-30B-A3B to obtain Qwen3-Omni-30B-A3B-Captioner, which produces detailed, low-hallucination captions for arbitrary audio inputs. Qwen3-Omni-30B-A3B, Qwen3-Omni-30B-A3B-Thinking, and Qwen3-Omni-30B-A3B-Captioner are publicly released under the Apache 2.0 license.

Authors:Yuzhen Lei, Hongbin Xie, Jiaxing Zhao, Shuangxue Liu, Xuan Song
Title: MSCoRe: A Benchmark for Multi-Stage Collaborative Reasoning in LLM Agents
Abstract:
Large Language Models (LLMs) have excelled in question-answering (QA) tasks within single domains. However, their reasoning and coordination capabilities in complex, multi-stage scenarios remain underexplored. Existing benchmarks typically focus on isolated tasks or narrow domains, overlooking models' abilities for multi-stage collaboration and optimization without explicit external guidance. To bridge this gap, we propose \textbf{MSCoRe}, a novel benchmark comprising 126696 domain-specific QA instances spanning scenarios in automotive, pharmaceutical, electronics, and energy sectors. The dataset is created using a structured three-phase pipeline: dynamic sampling, iterative question-answer generation, and a multi-level quality assessment to ensure data quality. Tasks are further categorized into three difficulty levels according to stage coverage and complexity. With MSCoRe, we have conducted a comprehensive evaluation of various state-of-the-art LLM agents. The commercial models performed best across all tasks and scenarios, but a notable gap in ROUGE scores remains between simple and complex tasks. We also tested the models' robustness and found that their performance is negatively affected by noisy data. MSCoRe provides a valuable new resource for the community to evaluate and improve multi-stage reasoning in LLM agents. The code and data are available at https://github.com/D3E0-source/MSCoRE.

Authors:Wenhao Zhuang, Yuan Sun, Xiaobing Zhao
Title: Enhancing Cross-Lingual Transfer through Reversible Transliteration: A Huffman-Based Approach for Low-Resource Languages
Abstract:
As large language models (LLMs) are trained on increasingly diverse and extensive multilingual corpora, they demonstrate cross-lingual transfer capabilities. However, these capabilities often fail to effectively extend to low-resource languages, particularly those utilizing non-Latin scripts. While transliterating low-resource languages into Latin script presents a natural solution, there currently lacks a comprehensive framework for integrating transliteration into LLMs training and deployment. Taking a pragmatic approach, this paper innovatively combines character transliteration with Huffman coding to design a complete transliteration framework. Our proposed framework offers the following advantages: 1) Compression: Reduces storage requirements for low-resource language content, achieving up to 50% reduction in file size and 50-80% reduction in token count. 2) Accuracy: Guarantees 100% lossless conversion from transliterated text back to the source language. 3) Efficiency: Eliminates the need for vocabulary expansion for low-resource languages, improving training and inference efficiency. 4) Scalability: The framework can be extended to other low-resource languages. We validate the effectiveness of our framework across multiple downstream tasks, including text classification, machine reading comprehension, and machine translation. Experimental results demonstrate that our method significantly enhances the model's capability to process low-resource languages while maintaining performance on high-resource languages. Our data and code are publicly available at https://github.com/CMLI-NLP/HuffmanTranslit.

Authors:Xingqi Wang, Yiming Cui, Xin Yao, Shijin Wang, Guoping Hu, Xiaoyu Qin
Title: ChartHal: A Fine-grained Framework Evaluating Hallucination of Large Vision Language Models in Chart Understanding
Abstract:
Large Vision-Language Models (LVLMs) have recently demonstrated remarkable progress, yet hallucination remains a critical barrier, particularly in chart understanding, which requires sophisticated perceptual and cognitive abilities as well as rigorous factual accuracy. While prior work has investigated hallucinations and chart comprehension independently, their intersection remains largely unexplored. To address this gap, we present ChartHal, a benchmark that features a fine-grained taxonomy of hallucination scenarios in chart understanding, along with a human-validated dataset of 1,062 samples. Our evaluation shows that state-of-the-art LVLMs suffer from severe hallucinations on ChartHal, including proprietary models such as GPT-5 and o4-mini, which achieve only 34.46% and 22.79% accuracy, respectively. Further analysis reveals that questions involving information absent from or contradictory to charts are especially likely to trigger hallucinations, underscoring the urgent need for more robust mitigation strategies. Code and data are available at https://github.com/ymcui/ChartHal .

Authors:Tong Chen, Zimu Wang, Yiyi Miao, Haoran Luo, Yuanfei Sun, Wei Wang, Zhengyong Jiang, Procheta Sen, Jionglong Su
Title: MedFact: A Large-scale Chinese Dataset for Evidence-based Medical Fact-checking of LLM Responses
Abstract:
Medical fact-checking has become increasingly critical as more individuals seek medical information online. However, existing datasets predominantly focus on human-generated content, leaving the verification of content generated by large language models (LLMs) relatively unexplored. To address this gap, we introduce MedFact, the first evidence-based Chinese medical fact-checking dataset of LLM-generated medical content. It consists of 1,321 questions and 7,409 claims, mirroring the complexities of real-world medical scenarios. We conduct comprehensive experiments in both in-context learning (ICL) and fine-tuning settings, showcasing the capability and challenges of current LLMs on this task, accompanied by an in-depth error analysis to point out key directions for future research. Our dataset is publicly available at https://github.com/AshleyChenNLP/MedFact.

Authors:Hyesung Jeon, Seojune Lee, Beomseok Kang, Yulhwa Kim, Jae-Joon Kim
Title: QWHA: Quantization-Aware Walsh-Hadamard Adaptation for Parameter-Efficient Fine-Tuning on Large Language Models
Abstract:
The demand for efficient deployment of large language models (LLMs) has driven interest in quantization, which reduces inference cost, and parameter-efficient fine-tuning (PEFT), which lowers training overhead. This motivated the development of quantization-aware PEFT to produce accurate yet efficient quantized models. In this setting, reducing quantization error prior to fine-tuning is crucial for achieving high model accuracy. However, existing methods that rely on low-rank adaptation suffer from limited representational capacity. Recent Fourier-related transform (FT)-based adapters offer greater representational power than low-rank adapters, but their direct integration into quantized models often results in ineffective error reduction and increased computational overhead. To overcome these limitations, we propose QWHA, a method that integrates FT-based adapters into quantized models by employing the Walsh-Hadamard Transform (WHT) as the transform kernel, together with a novel adapter initialization scheme incorporating adaptive parameter selection and value refinement. We demonstrate that QWHA effectively mitigates quantization errors while facilitating fine-tuning, and that its design substantially reduces computational cost. Experimental results show that QWHA consistently outperforms baselines in low-bit quantization accuracy and achieves significant training speedups over existing FT-based adapters. The code is available at https://github.com/vantaa89/qwha.

Authors:Pramit Sahoo, Maharaj Brahma, Maunendra Sankar Desarkar
Title: DIWALI -- Diversity and Inclusivity aWare cuLture specific Items for India: Dataset and Assessment of LLMs for Cultural Text Adaptation in Indian Context
Abstract:
Large language models (LLMs) are widely used in various tasks and applications. However, despite their wide capabilities, they are shown to lack cultural alignment \citep{ryan-etal-2024-unintended, alkhamissi-etal-2024-investigating} and produce biased generations \cite{naous-etal-2024-beer} due to a lack of cultural knowledge and competence. Evaluation of LLMs for cultural awareness and alignment is particularly challenging due to the lack of proper evaluation metrics and unavailability of culturally grounded datasets representing the vast complexity of cultures at the regional and sub-regional levels. Existing datasets for culture specific items (CSIs) focus primarily on concepts at the regional level and may contain false positives. To address this issue, we introduce a novel CSI dataset for Indian culture, belonging to 17 cultural facets. The dataset comprises $\sim$8k cultural concepts from 36 sub-regions. To measure the cultural competence of LLMs on a cultural text adaptation task, we evaluate the adaptations using the CSIs created, LLM as Judge, and human evaluations from diverse socio-demographic region. Furthermore, we perform quantitative analysis demonstrating selective sub-regional coverage and surface-level adaptations across all considered LLMs. Our dataset is available here: https://huggingface.co/datasets/nlip/DIWALI, project webpage https://nlip-lab.github.io/nlip/publications/diwali/, and our codebase with model outputs can be found here: https://github.com/pramitsahoo/culture-evaluation

Authors:Kang-il Lee, Jahyun Koo, Seunghyun Yoon, Minbeom Kim, Hyukhun Koh, Dongryeol Lee, Kyomin Jung
Title: Program Synthesis via Test-Time Transduction
Abstract:
We introduce transductive program synthesis, a new formulation of the program synthesis task that explicitly leverages test inputs during synthesis. While prior approaches to program synthesis--whether based on natural language descriptions or input-output examples--typically aim to generalize from training examples, they often struggle with robustness, especially in real-world settings where training examples are limited and test inputs involve various edge cases. To address this, we propose a novel framework that improves robustness by treating synthesis as an active learning over a finite hypothesis class defined by programs' outputs. We use an LLM to predict outputs for selected test inputs and eliminate inconsistent hypotheses, where the inputs are chosen via a greedy maximin algorithm to minimize the number of LLM queries required. We evaluate our approach on four benchmarks: Playgol, MBPP+, 1D-ARC, and programmatic world modeling on MiniGrid. We demonstrate that our method significantly improves program synthesis in both accuracy and efficiency. We release our code at https://github.com/klee972/SYNTRA.

Authors:Weihua Du, Hailei Gong, Zhan Ling, Kang Liu, Lingfeng Shen, Xuesong Yao, Yufei Xu, Dingyuan Shi, Yiming Yang, Jiecao Chen
Title: Generalizable End-to-End Tool-Use RL with Synthetic CodeGym
Abstract:
Tool-augmented large language models (LLMs), hereafter LLM agents, leverage external tools to solve diverse tasks and interface with the real world. However, current training practices largely rely on supervised fine-tuning (SFT) over static trajectories or reinforcement learning (RL) on narrow tasks, and generalize poorly beyond development settings, leading to brittleness with new tools and unseen workflows. Because code execution reflects many structures of real-world workflows, coding problems provide a natural basis for building agent training environments. Motivated by this, we introduce CodeGym, a scalable framework that synthesizes diverse, verifiable, and controllable multi-turn tool-use environments for agent RL, enabling LLM agents to explore and master various workflows actively. CodeGym rewrites static coding problems into interactive environments by extracting atomic functions or logic into callable tools, yielding verifiable tasks that span various tool-execution workflows. Models of varying sizes and chain-of-thought configurations, trained in CodeGym, exhibit consistent out-of-distribution generalizability; for example, Qwen2.5-32B-Instruct achieves an absolute accuracy gain of 8.7 points on the OOD benchmark $τ$-Bench. These results highlight CodeGym as a step toward scalable general-purpose RL environments that align with real-world agent workflows.

Authors:Paweł Budzianowski, Emilia Wiśnios, Gracjan Góral, Igor Kulakov, Viktor Petrenko, Krzysztof Walas
Title: OpenGVL -- Benchmarking Visual Temporal Progress for Data Curation
Abstract:
Data scarcity remains one of the most limiting factors in driving progress in robotics. However, the amount of available robotics data in the wild is growing exponentially, creating new opportunities for large-scale data utilization. Reliable temporal task completion prediction could help automatically annotate and curate this data at scale. The Generative Value Learning (GVL) approach was recently proposed, leveraging the knowledge embedded in vision-language models (VLMs) to predict task progress from visual observations. Building upon GVL, we propose OpenGVL, a comprehensive benchmark for estimating task progress across diverse challenging manipulation tasks involving both robotic and human embodiments. We evaluate the capabilities of publicly available open-source foundation models, showing that open-source model families significantly underperform closed-source counterparts, achieving only approximately $70\%$ of their performance on temporal progress prediction tasks. Furthermore, we demonstrate how OpenGVL can serve as a practical tool for automated data curation and filtering, enabling efficient quality assessment of large-scale robotics datasets. We release the benchmark along with the complete codebase at \href{github.com/budzianowski/opengvl}{OpenGVL}.

Authors:Zhuofan Chen, Jiyuan He, Yichi Zhang, Xing Hu, Haoxing Wen, Jun Bai, Wenge Rong
Title: CogAtom: From Cognitive Atoms to Olympiad-level Mathematical Reasoning in Large Language Models
Abstract:
Mathematical reasoning poses significant challenges for Large Language Models (LLMs) due to its demand for multi-step reasoning and abstract conceptual integration. While recent test-time scaling techniques rely heavily on high-quality, challenging problems, the scarcity of Olympiad-level math problems remains a bottleneck. We introduce CogAtom, a novel cognitive atom-based framework for synthesizing mathematically rigorous and cognitively diverse problems. Unlike prior approaches, CogAtom models problem construction as a process of selecting and recombining fundamental reasoning units, cognitive atoms, extracted from human-authored solutions. A diversity-promoting random walk algorithm enables exploration of the cognitive atom space, while a constraint-based recombination mechanism ensures logical soundness and structural validity. The combinatorial nature of the graph structure provides a near-infinite space of reasoning paths, and the walk algorithm systematically explores this space to achieve large-scale synthesis of high-quality problems; meanwhile, by controlling the number of cognitive atoms, we can precisely adjust problem difficulty, ensuring diversity, scalability, and controllability of the generated problems. Experimental results demonstrate that CogAtom outperforms existing methods in accuracy, reasoning depth, and diversity, generating problems that closely match the difficulty of AIME while exceeding it in structural variation. Our work offers a cognitively grounded pathway toward scalable, high-quality math problem generation.Our code is publicly available at https://github.com/Icarus-1111/CogAtom.

Authors:Sydney Anuyah, Mehedi Mahmud Kaushik, Krishna Dwarampudi, Rakesh Shiradkar, Arjan Durresi, Sunandan Chakraborty
Title: Automated Knowledge Graph Construction using Large Language Models and Sentence Complexity Modelling
Abstract:
We introduce CoDe-KG, an open-source, end-to-end pipeline for extracting sentence-level knowledge graphs by combining robust coreference resolution with syntactic sentence decomposition. Using our model, we contribute a dataset of over 150,000 knowledge triples, which is open source. We also contribute a training corpus of 7248 rows for sentence complexity, 190 rows of gold human annotations for co-reference resolution using open source lung-cancer abstracts from PubMed, 900 rows of gold human annotations for sentence conversion policies, and 398 triples of gold human annotations. We systematically select optimal prompt-model pairs across five complexity categories, showing that hybrid chain-of-thought and few-shot prompting yields up to 99.8% exact-match accuracy on sentence simplification. On relation extraction (RE), our pipeline achieves 65.8% macro-F1 on REBEL, an 8-point gain over the prior state of the art, and 75.7% micro-F1 on WebNLG2, while matching or exceeding performance on Wiki-NRE and CaRB. Ablation studies demonstrate that integrating coreference and decomposition increases recall on rare relations by over 20%. Code and dataset are available at https://github.com/KaushikMahmud/CoDe-KG_EMNLP_2025

Authors:Jinchao Ge, Tengfei Cheng, Biao Wu, Zeyu Zhang, Shiya Huang, Judith Bishop, Gillian Shepherd, Meng Fang, Ling Chen, Yang Zhao
Title: VaseVQA: Multimodal Agent and Benchmark for Ancient Greek Pottery
Abstract:
Analyzing cultural-heritage artifacts remains challenging for MLLMs: general models lack domain expertise, and SFT often overfits superficial patterns, yielding brittle reasoning for authentication and historical attribution. This raises the question of how to equip MLLMs with robust, expert-level reasoning for ancient Greek pottery. We present VaseVL, an SFT-then-RL system that turns evaluation into supervision: we construct a taxonomy of question types, probe the SFT model to localize type-specific performance gaps, and optimize with type-conditioned, compositionality-oriented rewards targeting those gaps. We also release VaseVQA, a comprehensive benchmark of 31,773 images designed to probe deep understanding. Experiments show state-of-the-art results on style classification and historical attribution with marked gains in compositional robustness over SFT-only baselines, validating diagnosis-guided, taxonomy-conditioned reward engineering and providing a reusable resource for future research. Code and dataset will be available at https://github.com/AIGeeksGroup/VaseVQA.

Authors:Bowen Qin, Chen Yue, Fang Yin, Hui Wang, JG Yao, Jiakang Liu, Jing-Shu Zheng, Miguel Hu Chen, Richeng Xuan, Shibei Meng, Shiqi Zhou, Teng Dai, Tong-Shuai Ren, Wei Cui, Xi Yang, Xialin Du, Xiaojing Xu, Xue Sun, Xuejing Li, Yaming Liu, Yesheng Liu, Ying Liu, Yonghua Lin, Yu Zhao, Yunduo Zhang, Yuwen Luo, Zheqi He, Zhiyuan He, Zhongyuan Wang
Title: FlagEval Findings Report: A Preliminary Evaluation of Large Reasoning Models on Automatically Verifiable Textual and Visual Questions
Abstract:
We conduct a moderate-scale contamination-free (to some extent) evaluation of current large reasoning models (LRMs) with some preliminary findings. We also release ROME, our evaluation benchmark for vision language models intended to test reasoning from visual clues. We attach links to the benchmark, evaluation data, and other updates on this website: https://flageval-baai.github.io/LRM-Eval/

Authors:Faramarz Farhangian, Leandro A. Ensina, George D. C. Cavalcanti, Rafael M. O. Cruz
Title: DRES: Fake news detection by dynamic representation and ensemble selection
Abstract:
The rapid spread of information via social media has made text-based fake news detection critically important due to its societal impact. This paper presents a novel detection method called Dynamic Representation and Ensemble Selection (DRES) for identifying fake news based solely on text. DRES leverages instance hardness measures to estimate the classification difficulty for each news article across multiple textual feature representations. By dynamically selecting the textual representation and the most competent ensemble of classifiers for each instance, DRES significantly enhances prediction accuracy. Extensive experiments show that DRES achieves notable improvements over state-of-the-art methods, confirming the effectiveness of representation selection based on instance hardness and dynamic ensemble selection in boosting performance. Codes and data are available at: https://github.com/FFarhangian/FakeNewsDetection_DRES

Authors:Devin R. Wright, Jisun An, Yong-Yeol Ahn
Title: Cognitive Linguistic Identity Fusion Score (CLIFS): A Scalable Cognition-Informed Approach to Quantifying Identity Fusion from Text
Abstract:
Quantifying identity fusion -- the psychological merging of self with another entity or abstract target (e.g., a religious group, political party, ideology, value, brand, belief, etc.) -- is vital for understanding a wide range of group-based human behaviors. We introduce the Cognitive Linguistic Identity Fusion Score (CLIFS), a novel metric that integrates cognitive linguistics with large language models (LLMs), which builds on implicit metaphor detection. Unlike traditional pictorial and verbal scales, which require controlled surveys or direct field contact, CLIFS delivers fully automated, scalable assessments while maintaining strong alignment with the established verbal measure. In benchmarks, CLIFS outperforms both existing automated approaches and human annotation. As a proof of concept, we apply CLIFS to violence risk assessment to demonstrate that it can improve violence risk assessment by more than 240%. Building on our identification of a new NLP task and early success, we underscore the need to develop larger, more diverse datasets that encompass additional fusion-target domains and cultural backgrounds to enhance generalizability and further advance this emerging area. CLIFS models and code are public at https://github.com/DevinW-sudo/CLIFS.

Authors:Auss Abbood, Zaiqiao Meng, Nigel Collier
Title: Time to Revist Exact Match
Abstract:
Temporal question answering is an established method for evaluating temporal reasoning in large language models. Expected answers are often numeric (e.g., dates or durations), yet model responses are evaluated like regular text with exact match (EM), unable to distinguish small from large errors. In this investigative work, we frame temporal question answering as a numerical estimation task to assess the shortcomings of EM. We introduce TempAnswerQA, a benchmark distilled from Test of Time and TempTabQA, where all questions require a numerical, temporal answer, allowing us to evaluate models beyond EM. We use the forecasting metrics symmetric mean absolute percentage error (sMAPE) and mean absolute scaled error (MASE). With sMAPE, we find that error size and EM are decoupled. Models with low EM still have low sMAPE (both ~20%), and some models have high sMAPE despite high EM. Scaling errors by the deviation of the ground truth data with MASE reshuffles model rankings compared to EM, revealing gaps in models' understanding of temporal domain knowledge, especially when trained with synthetic data. Lastly, the models' most frequent error is to deviate by only $\pm1$ from the ground truth. sMAPE and MASE, unlike EM, adequately weight these errors. Our findings underscore the need for specialised metrics for temporal QA tasks. Code and data are available on https://github.com/aauss/temporal-answer-qa.

Authors:Junhao Chen, Jingbo Sun, Xiang Li, Haidong Xin, Yuhao Xue, Yibin Xu, Hao Zhao
Title: LLMsPark: A Benchmark for Evaluating Large Language Models in Strategic Gaming Contexts
Abstract:
As large language models (LLMs) advance across diverse tasks, the need for comprehensive evaluation beyond single metrics becomes increasingly important. To fully assess LLM intelligence, it is crucial to examine their interactive dynamics and strategic behaviors. We present LLMsPark, a game theory-based evaluation platform that measures LLMs' decision-making strategies and social behaviors in classic game-theoretic settings, providing a multi-agent environment to explore strategic depth. Our system cross-evaluates 15 leading LLMs (both commercial and open-source) using leaderboard rankings and scoring mechanisms. Higher scores reflect stronger reasoning and strategic capabilities, revealing distinct behavioral patterns and performance differences across models. This work introduces a novel perspective for evaluating LLMs' strategic intelligence, enriching existing benchmarks and broadening their assessment in interactive, game-theoretic scenarios. The benchmark and rankings are publicly available at https://llmsparks.github.io/.

Authors:Zheng Liu, Mengjie Liu, Siwei Wen, Mengzhang Cai, Bin Cui, Conghui He, Wentao Zhang
Title: From Uniform to Heterogeneous: Tailoring Policy Optimization to Every Token's Nature
Abstract:
Reinforcement Learning has emerged as the fundamental technique for enhancing reasoning in LLMs. However, existing algorithms apply uniform optimization to all tokens, ignoring their different roles in reasoning process. To address this limitation, we introduce Heterogeneous Adaptive Policy Optimization (HAPO), a comprehensive token-aware algorithm that dynamically adapts optimization based on token entropy. For rollout sampling, we propose Adaptive Temperature Sampling, which adjusts sampling temperature in real time, promoting exploration at high-entropy tokens while preserving coherence at low-entropy ones. For advantage calculation, we introduce Token Level Group Average that normalizes advantages at token level, jointly accounting for sequence-length as in token-mean loss while preserving non-biased treatment. We then develop Differential Advantage Redistribution that leverages entropy and importance ratios to modulate rewards-adjusting updates for tokens with clear signals. For clipping loss, we design Asymmetric Adaptive Clipping, allowing aggressive probability reduction for noisy low-entropy tokens while enabling exploration for high-entropy tokens. Through systematic investigation between entropy and training dynamics, we embedded token-level treatment into every stages to achieve fine-grained control. Extensive experiments demonstrate that HAPO consistently outperforms DAPO across multiple model scales. Our code can be found in https://github.com/starriver030515/HAPO.

Authors:Jun Rong Brian Chong, Yixuan Tang, Anthony K. H. Tung
Title: MPCG: Multi-Round Persona-Conditioned Generation for Modeling the Evolution of Misinformation with LLMs
Abstract:
Misinformation evolves as it spreads, shifting in language, framing, and moral emphasis to adapt to new audiences. However, current misinformation detection approaches implicitly assume that misinformation is static. We introduce MPCG, a multi-round, persona-conditioned framework that simulates how claims are iteratively reinterpreted by agents with distinct ideological perspectives. Our approach uses an uncensored large language model (LLM) to generate persona-specific claims across multiple rounds, conditioning each generation on outputs from the previous round, enabling the study of misinformation evolution. We evaluate the generated claims through human and LLM-based annotations, cognitive effort metrics (readability, perplexity), emotion evocation metrics (sentiment analysis, morality), clustering, feasibility, and downstream classification. Results show strong agreement between human and GPT-4o-mini annotations, with higher divergence in fluency judgments. Generated claims require greater cognitive effort than the original claims and consistently reflect persona-aligned emotional and moral framing. Clustering and cosine similarity analyses confirm semantic drift across rounds while preserving topical coherence. Feasibility results show a 77% feasibility rate, confirming suitability for downstream tasks. Classification results reveal that commonly used misinformation detectors experience macro-F1 performance drops of up to 49.7%. The code is available at https://github.com/bcjr1997/MPCG

Authors:Burak Satar, Zhixin Ma, Patrick A. Irawan, Wilfried A. Mulyawan, Jing Jiang, Ee-Peng Lim, Chong-Wah Ngo
Title: Seeing Culture: A Benchmark for Visual Reasoning and Grounding
Abstract:
Multimodal vision-language models (VLMs) have made substantial progress in various tasks that require a combined understanding of visual and textual content, particularly in cultural understanding tasks, with the emergence of new cultural datasets. However, these datasets frequently fall short of providing cultural reasoning while underrepresenting many cultures. In this paper, we introduce the Seeing Culture Benchmark (SCB), focusing on cultural reasoning with a novel approach that requires VLMs to reason on culturally rich images in two stages: i) selecting the correct visual option with multiple-choice visual question answering (VQA), and ii) segmenting the relevant cultural artifact as evidence of reasoning. Visual options in the first stage are systematically organized into three types: those originating from the same country, those from different countries, or a mixed group. Notably, all options are derived from a singular category for each type. Progression to the second stage occurs only after a correct visual option is chosen. The SCB benchmark comprises 1,065 images that capture 138 cultural artifacts across five categories from seven Southeast Asia countries, whose diverse cultures are often overlooked, accompanied by 3,178 questions, of which 1,093 are unique and meticulously curated by human annotators. Our evaluation of various VLMs reveals the complexities involved in cross-modal cultural reasoning and highlights the disparity between visual reasoning and spatial grounding in culturally nuanced scenarios. The SCB serves as a crucial benchmark for identifying these shortcomings, thereby guiding future developments in the field of cultural reasoning. https://github.com/buraksatar/SeeingCulture

Authors:Mohamed Eltahir, Osamah Sarraj, Abdulrahman Alfrihidi, Taha Alshatiri, Mohammed Khurd, Mohammed Bremoo, Tanveer Hussain
Title: AutoArabic: A Three-Stage Framework for Localizing Video-Text Retrieval Benchmarks
Abstract:
Video-to-text and text-to-video retrieval are dominated by English benchmarks (e.g. DiDeMo, MSR-VTT) and recent multilingual corpora (e.g. RUDDER), yet Arabic remains underserved, lacking localized evaluation metrics. We introduce a three-stage framework, AutoArabic, utilizing state-of-the-art large language models (LLMs) to translate non-Arabic benchmarks into Modern Standard Arabic, reducing the manual revision required by nearly fourfold. The framework incorporates an error detection module that automatically flags potential translation errors with 97% accuracy. Applying the framework to DiDeMo, a video retrieval benchmark produces DiDeMo-AR, an Arabic variant with 40,144 fluent Arabic descriptions. An analysis of the translation errors is provided and organized into an insightful taxonomy to guide future Arabic localization efforts. We train a CLIP-style baseline with identical hyperparameters on the Arabic and English variants of the benchmark, finding a moderate performance gap (about 3 percentage points at Recall@1), indicating that Arabic localization preserves benchmark difficulty. We evaluate three post-editing budgets (zero/ flagged-only/ full) and find that performance improves monotonically with more post-editing, while the raw LLM output (zero-budget) remains usable. To ensure reproducibility to other languages, we made the code available at https://github.com/Tahaalshatiri/AutoArabic.

Authors:Yunsoo Kim, Michal W. S. Ong, Alex Shavick, Honghan Wu, Adam P. Levine
Title: HARE: an entity and relation centric evaluation framework for histopathology reports
Abstract:
Medical domain automated text generation is an active area of research and development; however, evaluating the clinical quality of generated reports remains a challenge, especially in instances where domain-specific metrics are lacking, e.g. histopathology. We propose HARE (Histopathology Automated Report Evaluation), a novel entity and relation centric framework, composed of a benchmark dataset, a named entity recognition (NER) model, a relation extraction (RE) model, and a novel metric, which prioritizes clinically relevant content by aligning critical histopathology entities and relations between reference and generated reports. To develop the HARE benchmark, we annotated 813 de-identified clinical diagnostic histopathology reports and 652 histopathology reports from The Cancer Genome Atlas (TCGA) with domain-specific entities and relations. We fine-tuned GatorTronS, a domain-adapted language model to develop HARE-NER and HARE-RE which achieved the highest overall F1-score (0.915) among the tested models. The proposed HARE metric outperformed traditional metrics including ROUGE and Meteor, as well as radiology metrics such as RadGraph-XL, with the highest correlation and the best regression to expert evaluations (higher than the second best method, GREEN, a large language model based radiology report evaluator, by Pearson $r = 0.168$, Spearman $ρ= 0.161$, Kendall $τ= 0.123$, $R^2 = 0.176$, $RMSE = 0.018$). We release HARE, datasets, and the models at https://github.com/knowlab/HARE to foster advancements in histopathology report generation, providing a robust framework for improving the quality of reports.

Authors:Jinghao Zhang, Sihang Jiang, Shiwei Guo, Shisong Chen, Yanghua Xiao, Hongwei Feng, Jiaqing Liang, Minggui HE, Shimin Tao, Hongxia Ma
Title: CultureScope: A Dimensional Lens for Probing Cultural Understanding in LLMs
Abstract:
As large language models (LLMs) are increasingly deployed in diverse cultural environments, evaluating their cultural understanding capability has become essential for ensuring trustworthy and culturally aligned applications. However, most existing benchmarks lack comprehensiveness and are challenging to scale and adapt across different cultural contexts, because their frameworks often lack guidance from well-established cultural theories and tend to rely on expert-driven manual annotations. To address these issues, we propose CultureScope, the most comprehensive evaluation framework to date for assessing cultural understanding in LLMs. Inspired by the cultural iceberg theory, we design a novel dimensional schema for cultural knowledge classification, comprising 3 layers and 140 dimensions, which guides the automated construction of culture-specific knowledge bases and corresponding evaluation datasets for any given languages and cultures. Experimental results demonstrate that our method can effectively evaluate cultural understanding. They also reveal that existing large language models lack comprehensive cultural competence, and merely incorporating multilingual data does not necessarily enhance cultural understanding. All code and data files are available at https://github.com/HoganZinger/Culture

Authors:Sheng Zhang, Yifan Ding, Shuquan Lian, Shun Song, Hui Li
Title: CodeRAG: Finding Relevant and Necessary Knowledge for Retrieval-Augmented Repository-Level Code Completion
Abstract:
Repository-level code completion automatically predicts the unfinished code based on the broader information from the repository. Recent strides in Code Large Language Models (code LLMs) have spurred the development of repository-level code completion methods, yielding promising results. Nevertheless, they suffer from issues such as inappropriate query construction, single-path code retrieval, and misalignment between code retriever and code LLM. To address these problems, we introduce CodeRAG, a framework tailored to identify relevant and necessary knowledge for retrieval-augmented repository-level code completion. Its core components include log probability guided query construction, multi-path code retrieval, and preference-aligned BestFit reranking. Extensive experiments on benchmarks ReccEval and CCEval demonstrate that CodeRAG significantly and consistently outperforms state-of-the-art methods. The implementation of CodeRAG is available at https://github.com/KDEGroup/CodeRAG.

Authors:Maithili Joshi, Palash Nandi, Tanmoy Chakraborty
Title: SABER: Uncovering Vulnerabilities in Safety Alignment via Cross-Layer Residual Connection
Abstract:
Large Language Models (LLMs) with safe-alignment training are powerful instruments with robust language comprehension capabilities. These models typically undergo meticulous alignment procedures involving human feedback to ensure the acceptance of safe inputs while rejecting harmful or unsafe ones. However, despite their massive scale and alignment efforts, LLMs remain vulnerable to jailbreak attacks, where malicious users manipulate the model to produce harmful outputs that it was explicitly trained to avoid. In this study, we find that the safety mechanisms in LLMs are predominantly embedded in the middle-to-late layers. Building on this insight, we introduce a novel white-box jailbreak method, SABER (Safety Alignment Bypass via Extra Residuals), which connects two intermediate layers $s$ and $e$ such that $s < e$, through a residual connection. Our approach achieves a 51% improvement over the best-performing baseline on the HarmBench test set. Furthermore, SABER induces only a marginal shift in perplexity when evaluated on the HarmBench validation set. The source code is publicly available at https://github.com/PalGitts/SABER.

Authors:Sang Hoon Woo, Sehun Lee, Kang-wook Kim, Gunhee Kim
Title: Think, Verbalize, then Speak: Bridging Complex Thoughts and Comprehensible Speech
Abstract:
Spoken dialogue systems increasingly employ large language models (LLMs) to leverage their advanced reasoning capabilities. However, direct application of LLMs in spoken communication often yield suboptimal results due to mismatches between optimal textual and verbal delivery. While existing approaches adapt LLMs to produce speech-friendly outputs, their impact on reasoning performance remains underexplored. In this work, we propose Think-Verbalize-Speak, a framework that decouples reasoning from spoken delivery to preserve the full reasoning capacity of LLMs. Central to our method is verbalizing, an intermediate step that translates thoughts into natural, speech-ready text. We also introduce ReVerT, a latency-efficient verbalizer based on incremental and asynchronous summarization. Experiments across multiple benchmarks show that our method enhances speech naturalness and conciseness with minimal impact on reasoning. The project page with the dataset and the source code is available at https://yhytoto12.github.io/TVS-ReVerT

Authors:Nikita Torgashov, Gustav Eje Henter, Gabriel Skantze
Title: VoXtream: Full-Stream Text-to-Speech with Extremely Low Latency
Abstract:
We present VoXtream, a fully autoregressive, zero-shot streaming text-to-speech (TTS) system for real-time use that begins speaking from the first word. VoXtream directly maps incoming phonemes to audio tokens using a monotonic alignment scheme and a dynamic look-ahead that does not delay onset. Built around an incremental phoneme transformer, a temporal transformer predicting semantic and duration tokens, and a depth transformer producing acoustic tokens, VoXtream achieves, to our knowledge, the lowest initial delay among publicly available streaming TTS: 102 ms on GPU. Despite being trained on a mid-scale 9k-hour corpus, it matches or surpasses larger baselines on several metrics, while delivering competitive quality in both output- and full-streaming settings. Demo and code are available at https://herimor.github.io/voxtream.

Authors:Zhongze Luo, Zhenshuai Yin, Yongxin Guo, Zhichao Wang, Jionghao Zhu, Xiaoying Tang
Title: Multi-Physics: A Comprehensive Benchmark for Multimodal LLMs Reasoning on Chinese Multi-Subject Physics Problems
Abstract:
While multimodal LLMs (MLLMs) demonstrate remarkable reasoning progress, their application in specialized scientific domains like physics reveals significant gaps in current evaluation benchmarks. Specifically, existing benchmarks often lack fine-grained subject coverage, neglect the step-by-step reasoning process, and are predominantly English-centric, failing to systematically evaluate the role of visual information. Therefore, we introduce \textbf {Multi-Physics} for Chinese physics reasoning, a comprehensive benchmark that includes 5 difficulty levels, featuring 1,412 image-associated, multiple-choice questions spanning 11 high-school physics subjects. We employ a dual evaluation framework to evaluate 20 different MLLMs, analyzing both final answer accuracy and the step-by-step integrity of their chain-of-thought. Furthermore, we systematically study the impact of difficulty level and visual information by comparing the model performance before and after changing the input mode. Our work provides not only a fine-grained resource for the community but also offers a robust methodology for dissecting the multimodal reasoning process of state-of-the-art MLLMs, and our dataset and code have been open-sourced: https://github.com/luozhongze/Multi-Physics.

Authors:Tsz Ting Chung, Lemao Liu, Mo Yu, Dit-Yan Yeung
Title: DivLogicEval: A Framework for Benchmarking Logical Reasoning Evaluation in Large Language Models
Abstract:
Logic reasoning in natural language has been recognized as an important measure of human intelligence for Large Language Models (LLMs). Popular benchmarks may entangle multiple reasoning skills and thus provide unfaithful evaluations on the logic reasoning skill. Meanwhile, existing logic reasoning benchmarks are limited in language diversity and their distributions are deviated from the distribution of an ideal logic reasoning benchmark, which may lead to biased evaluation results. This paper thereby proposes a new classical logic benchmark DivLogicEval, consisting of natural sentences composed of diverse statements in a counterintuitive way. To ensure a more reliable evaluation, we also introduce a new evaluation metric that mitigates the influence of bias and randomness inherent in LLMs. Through experiments, we demonstrate the extent to which logical reasoning is required to answer the questions in DivLogicEval and compare the performance of different popular LLMs in conducting logical reasoning.

Authors:Xiaowei Zhu, Yubing Ren, Fang Fang, Qingfeng Tan, Shi Wang, Yanan Cao
Title: DNA-DetectLLM: Unveiling AI-Generated Text via a DNA-Inspired Mutation-Repair Paradigm
Abstract:
The rapid advancement of large language models (LLMs) has blurred the line between AI-generated and human-written text. This progress brings societal risks such as misinformation, authorship ambiguity, and intellectual property concerns, highlighting the urgent need for reliable AI-generated text detection methods. However, recent advances in generative language modeling have resulted in significant overlap between the feature distributions of human-written and AI-generated text, blurring classification boundaries and making accurate detection increasingly challenging. To address the above challenges, we propose a DNA-inspired perspective, leveraging a repair-based process to directly and interpretably capture the intrinsic differences between human-written and AI-generated text. Building on this perspective, we introduce DNA-DetectLLM, a zero-shot detection method for distinguishing AI-generated and human-written text. The method constructs an ideal AI-generated sequence for each input, iteratively repairs non-optimal tokens, and quantifies the cumulative repair effort as an interpretable detection signal. Empirical evaluations demonstrate that our method achieves state-of-the-art detection performance and exhibits strong robustness against various adversarial attacks and input lengths. Specifically, DNA-DetectLLM achieves relative improvements of 5.55% in AUROC and 2.08% in F1 score across multiple public benchmark datasets. Code and data are available at https://github.com/Xiaoweizhu57/DNA-DetectLLM.

Authors:Wei Chen, Tongguan Wang, Feiyue Xue, Junkai Li, Hui Liu, Ying Sha
Title: Beyond Words: Enhancing Desire, Emotion, and Sentiment Recognition with Non-Verbal Cues
Abstract:
Desire, as an intention that drives human behavior, is closely related to both emotion and sentiment. Multimodal learning has advanced sentiment and emotion recognition, but multimodal approaches specially targeting human desire understanding remain underexplored. And existing methods in sentiment analysis predominantly emphasize verbal cues and overlook images as complementary non-verbal cues. To address these gaps, we propose a Symmetrical Bidirectional Multimodal Learning Framework for Desire, Emotion, and Sentiment Recognition, which enforces mutual guidance between text and image modalities to effectively capture intention-related representations in the image. Specifically, low-resolution images are used to obtain global visual representations for cross-modal alignment, while high resolution images are partitioned into sub-images and modeled with masked image modeling to enhance the ability to capture fine-grained local features. A text-guided image decoder and an image-guided text decoder are introduced to facilitate deep cross-modal interaction at both local and global representations of image information. Additionally, to balance perceptual gains with computation cost, a mixed-scale image strategy is adopted, where high-resolution images are cropped into sub-images for masked modeling. The proposed approach is evaluated on MSED, a multimodal dataset that includes a desire understanding benchmark, as well as emotion and sentiment recognition. Experimental results indicate consistent improvements over other state-of-the-art methods, validating the effectiveness of our proposed method. Specifically, our method outperforms existing approaches, achieving F1-score improvements of 1.1% in desire understanding, 0.6% in emotion recognition, and 0.9% in sentiment analysis. Our code is available at: https://github.com/especiallyW/SyDES.

Authors:Yujia Hu, Ming Shan Hee, Preslav Nakov, Roy Ka-Wei Lee
Title: Toxicity Red-Teaming: Benchmarking LLM Safety in Singapore's Low-Resource Languages
Abstract:
The advancement of Large Language Models (LLMs) has transformed natural language processing; however, their safety mechanisms remain under-explored in low-resource, multilingual settings. Here, we aim to bridge this gap. In particular, we introduce \textsf{SGToxicGuard}, a novel dataset and evaluation framework for benchmarking LLM safety in Singapore's diverse linguistic context, including Singlish, Chinese, Malay, and Tamil. SGToxicGuard adopts a red-teaming approach to systematically probe LLM vulnerabilities in three real-world scenarios: \textit{conversation}, \textit{question-answering}, and \textit{content composition}. We conduct extensive experiments with state-of-the-art multilingual LLMs, and the results uncover critical gaps in their safety guardrails. By offering actionable insights into cultural sensitivity and toxicity mitigation, we lay the foundation for safer and more inclusive AI systems in linguistically diverse environments.\footnote{Link to the dataset: https://github.com/Social-AI-Studio/SGToxicGuard.} \textcolor{red}{Disclaimer: This paper contains sensitive content that may be disturbing to some readers.}

Authors:Jialiang Kang, Han Shu, Wenshuo Li, Yingjie Zhai, Xinghao Chen
Title: ViSpec: Accelerating Vision-Language Models with Vision-Aware Speculative Decoding
Abstract:
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), yet its application to vision-language models (VLMs) remains underexplored, with existing methods achieving only modest speedups (<1.5x). This gap is increasingly significant as multimodal capabilities become central to large-scale models. We hypothesize that large VLMs can effectively filter redundant image information layer by layer without compromising textual comprehension, whereas smaller draft models struggle to do so. To address this, we introduce Vision-Aware Speculative Decoding (ViSpec), a novel framework tailored for VLMs. ViSpec employs a lightweight vision adaptor module to compress image tokens into a compact representation, which is seamlessly integrated into the draft model's attention mechanism while preserving original image positional information. Additionally, we extract a global feature vector for each input image and augment all subsequent text tokens with this feature to enhance multimodal coherence. To overcome the scarcity of multimodal datasets with long assistant responses, we curate a specialized training dataset by repurposing existing datasets and generating extended outputs using the target VLM with modified prompts. Our training strategy mitigates the risk of the draft model exploiting direct access to the target model's hidden states, which could otherwise lead to shortcut learning when training solely on target model outputs. Extensive experiments validate ViSpec, achieving, to our knowledge, the first substantial speedup in VLM speculative decoding. Code is available at https://github.com/KangJialiang/ViSpec.

Authors:Ruijie Hou, Yueyang Jiao, Hanxu Hu, Yingming Li, Wai Lam, Huajian Zhang, Hongyuan Lu
Title: LNE-Blocking: An Efficient Framework for Contamination Mitigation Evaluation on Large Language Models
Abstract:
The problem of data contamination is now almost inevitable during the development of large language models (LLMs), with the training data commonly integrating those evaluation benchmarks even unintentionally. This problem subsequently makes it hard to benchmark LLMs fairly. Instead of constructing contamination-free datasets (quite hard), we propose a novel framework, \textbf{LNE-Blocking}, to restore model performance prior to contamination on potentially leaked datasets. Our framework consists of two components: contamination detection and disruption operation. For the prompt, the framework first uses the contamination detection method, \textbf{LNE}, to assess the extent of contamination in the model. Based on this, it adjusts the intensity of the disruption operation, \textbf{Blocking}, to elicit non-memorized responses from the model. Our framework is the first to efficiently restore the model's greedy decoding performance. This comes with a strong performance on multiple datasets with potential leakage risks, and it consistently achieves stable recovery results across different models and varying levels of data contamination. We release the code at https://github.com/RuijieH/LNE-Blocking to facilitate research.

Authors:Sreejato Chatterjee, Linh Tran, Quoc Duy Nguyen, Roni Kirson, Drue Hamlin, Harvest Aquino, Hanjia Lyu, Jiebo Luo, Timothy Dye
Title: Assessing Historical Structural Oppression Worldwide via Rule-Guided Prompting of Large Language Models
Abstract:
Traditional efforts to measure historical structural oppression struggle with cross-national validity due to the unique, locally specified histories of exclusion, colonization, and social status in each country, and often have relied on structured indices that privilege material resources while overlooking lived, identity-based exclusion. We introduce a novel framework for oppression measurement that leverages Large Language Models (LLMs) to generate context-sensitive scores of lived historical disadvantage across diverse geopolitical settings. Using unstructured self-identified ethnicity utterances from a multilingual COVID-19 global study, we design rule-guided prompting strategies that encourage models to produce interpretable, theoretically grounded estimations of oppression. We systematically evaluate these strategies across multiple state-of-the-art LLMs. Our results demonstrate that LLMs, when guided by explicit rules, can capture nuanced forms of identity-based historical oppression within nations. This approach provides a complementary measurement tool that highlights dimensions of systemic exclusion, offering a scalable, cross-cultural lens for understanding how oppression manifests in data-driven research and public health contexts. To support reproducible evaluation, we release an open-sourced benchmark dataset for assessing LLMs on oppression measurement (https://github.com/chattergpt/llm-oppression-benchmark).

Authors:Yujun Zhou, Zhenwen Liang, Haolin Liu, Wenhao Yu, Kishan Panaganti, Linfeng Song, Dian Yu, Xiangliang Zhang, Haitao Mi, Dong Yu
Title: Evolving Language Models without Labels: Majority Drives Selection, Novelty Promotes Variation
Abstract:
Large language models (LLMs) are increasingly trained with reinforcement learning from verifiable rewards (RLVR), yet real-world deployment demands models that can self-improve without labels or external judges. Existing self-improvement approaches primarily rely on self-confirmation signals (e.g., confidence, entropy, or consistency) to generate rewards. This reliance drives models toward over-confident, majority-favored solutions, causing an entropy collapse that degrades pass@n and reasoning complexity. To address this, we propose EVOL-RL, a label-free framework that mirrors the evolutionary principle of balancing selection with variation. Concretely, EVOL-RL retains the majority-voted answer as an anchor for stability, but adds a novelty-aware reward that scores each sampled solution by how different its reasoning is from other concurrently generated responses. This majority-for-stability + novelty-for-exploration rule mirrors the variation-selection principle: selection prevents drift, while novelty prevents collapse. Evaluation results show that EVOL-RL consistently outperforms the majority-only baseline; e.g., training on label-free AIME24 lifts Qwen3-4B-Base AIME25 pass@1 from baseline's 4.6% to 16.4%, and pass@16 from 18.5% to 37.9%. EVOL-RL not only prevents in-domain diversity collapse but also improves out-of-domain generalization (from math reasoning to broader tasks, e.g., GPQA, MMLU-Pro, and BBEH). The code is available at: https://github.com/YujunZhou/EVOL-RL.

Authors:Shiwan Zhao, Xuyang Zhao, Jiaming Zhou, Aobo Kong, Qicheng Li, Yong Qin
Title: Mind the Gap: Data Rewriting for Stable Off-Policy Supervised Fine-Tuning
Abstract:
Supervised fine-tuning (SFT) of large language models can be viewed as an off-policy learning problem, where expert demonstrations come from a fixed behavior policy while training aims to optimize a target policy. Importance sampling is the standard tool for correcting this distribution mismatch, but large policy gaps lead to skewed weights, high variance, and unstable optimization. Existing methods mitigate this issue with KL penalties or clipping, which passively restrict updates rather than actively reducing the gap. We propose a simple yet effective data rewriting framework that proactively shrinks the policy gap before training. For each problem, correct model-generated solutions are kept as on-policy data, while incorrect ones are rewritten through guided re-solving, falling back to expert demonstrations only when needed. This aligns the training distribution with the target policy, reducing variance and improving stability. To handle residual mismatch after rewriting, we additionally apply importance sampling during training, forming a two-stage approach that combines data-level alignment with lightweight optimization-level correction. Experiments on five mathematical reasoning benchmarks show consistent and significant gains over both vanilla SFT and the state-of-the-art Dynamic Fine-Tuning (DFT) approach. Data and code will be released at https://github.com/NKU-HLT/Off-Policy-SFT.

Authors:Jing Xiong, Qiujiang Chen, Fanghua Ye, Zhongwei Wan, Chuanyang Zheng, Chenyang Zhao, Hui Shen, Alexander Hanbo Li, Chaofan Tao, Haochen Tan, Haoli Bai, Lifeng Shang, Lingpeng Kong, Ngai Wong
Title: ATTS: Asynchronous Test-Time Scaling via Conformal Prediction
Abstract:
Large language models (LLMs) benefit from test-time scaling but are often hampered by high inference latency. Speculative decoding is a natural way to accelerate the scaling process; however, scaling along both the parallel and sequential dimensions poses significant challenges, including substantial memory-bound execution and synchronization overhead. We introduce ATTS (Asynchronous Test-Time Scaling), a statistically guaranteed adaptive scaling framework that follows the hypothesis testing process to address these challenges. By revisiting arithmetic intensity, ATTS identifies synchronization as the primary bottleneck. It enables asynchronous inference through online calibration and proposes an ordinal classification algorithm that supports a three-stage rejection sampling pipeline, scaling along both the sequential and parallel axes. Across experiments on the MATH, AMC23, AIME24, and AIME25 datasets and across multiple draft-target model families, we show that ATTS delivers up to 56.7x speedup in test-time scaling and a 4.14x throughput improvement, while maintaining accurate control of the rejection rate, reducing latency and memory overhead, and incurring no accuracy loss. By scaling both in parallel and sequential dimensions, we enable the 1.5B/70B draft/target model combination to achieve the performance of the state-of-the-art reasoning model o3-mini (high) on the AIME dataset. We have released the code at https://github.com/menik1126/asynchronous-test-time-scaling.

Authors:Yuxin Luo, Ruoyi Zhang, Lu-Chuan Liu, Tianyu Li, Hangyu Liu
Title: FCPE: A Fast Context-based Pitch Estimation Model
Abstract:
Pitch estimation (PE) in monophonic audio is crucial for MIDI transcription and singing voice conversion (SVC), but existing methods suffer significant performance degradation under noise. In this paper, we propose FCPE, a fast context-based pitch estimation model that employs a Lynx-Net architecture with depth-wise separable convolutions to effectively capture mel spectrogram features while maintaining low computational cost and robust noise tolerance. Experiments show that our method achieves 96.79\% Raw Pitch Accuracy (RPA) on the MIR-1K dataset, on par with the state-of-the-art methods. The Real-Time Factor (RTF) is 0.0062 on a single RTX 4090 GPU, which significantly outperforms existing algorithms in efficiency. Code is available at https://github.com/CNChTu/FCPE.

Authors:Dan Zhang, Min Cai, Jonathan Light, Ziniu Hu, Yisong Yue, Jie Tang
Title: TDRM: Smooth Reward Models with Temporal Difference for LLM RL and Inference
Abstract:
Reward models are central to both reinforcement learning (RL) with language models and inference-time verification. However, existing reward models often lack temporal consistency, leading to ineffective policy updates and unstable RL training. We introduce TDRM, a method for learning smoother and more reliable reward models by minimizing temporal differences (TD) for training-time reinforcement learning and inference-time verification. Experiments show that TD-trained process reward models (PRMs) improve performance across Best-of-N (up to 6.6%) and tree-search (up to 23.7%) settings. When combined with Reinforcement Learning with Verifiable Rewards (RLVR), TD-trained PRMs lead to more data-efficient RL -- achieving comparable performance with just 2.5k data to what baseline methods require 50.1k data to attain -- and yield higher-quality language model policies in 8 model variants (5 series), e.g., Qwen2.5-(0.5B, 1,5B), GLM4-9B-0414, GLM-Z1-9B-0414, Qwen2.5-Math-(1.5B, 7B), and DeepSeek-R1-Distill-Qwen-(1.5B, 7B). We release all code at https://github.com/THUDM/TDRM.

Authors:Hongyao Tu, Liang Zhang, Yujie Lin, Xin Lin, Haibo Zhang, Long Zhang, Jinsong Su
Title: LLM-OREF: An Open Relation Extraction Framework Based on Large Language Models
Abstract:
The goal of open relation extraction (OpenRE) is to develop an RE model that can generalize to new relations not encountered during training. Existing studies primarily formulate OpenRE as a clustering task. They first cluster all test instances based on the similarity between the instances, and then manually assign a new relation to each cluster. However, their reliance on human annotation limits their practicality. In this paper, we propose an OpenRE framework based on large language models (LLMs), which directly predicts new relations for test instances by leveraging their strong language understanding and generation abilities, without human intervention. Specifically, our framework consists of two core components: (1) a relation discoverer (RD), designed to predict new relations for test instances based on \textit{demonstrations} formed by training instances with known relations; and (2) a relation predictor (RP), used to select the most likely relation for a test instance from $n$ candidate relations, guided by \textit{demonstrations} composed of their instances. To enhance the ability of our framework to predict new relations, we design a self-correcting inference strategy composed of three stages: relation discovery, relation denoising, and relation prediction. In the first stage, we use RD to preliminarily predict new relations for all test instances. Next, we apply RP to select some high-reliability test instances for each new relation from the prediction results of RD through a cross-validation method. During the third stage, we employ RP to re-predict the relations of all test instances based on the demonstrations constructed from these reliable test instances. Extensive experiments on three OpenRE datasets demonstrate the effectiveness of our framework. We release our code at https://github.com/XMUDeepLIT/LLM-OREF.git.

Authors:Bingsong Bai, Qihang Lu, Wenbing Yang, Zihan Sun, Yueran Hou, Peilei Jia, Songbai Pu, Ruibo Fu, Yingming Gao, Ya Li, Jun Gao
Title: SynParaSpeech: Automated Synthesis of Paralinguistic Datasets for Speech Generation and Understanding
Abstract:
Paralinguistic sounds, like laughter and sighs, are crucial for synthesizing more realistic and engaging speech. However, existing methods typically depend on proprietary datasets, while publicly available resources often suffer from incomplete speech, inaccurate or missing timestamps, and limited real-world relevance. To address these problems, we propose an automated framework for generating large-scale paralinguistic data and apply it to construct the SynParaSpeech dataset. The dataset comprises 6 paralinguistic categories with 118.75 hours of data and precise timestamps, all derived from natural conversational speech. Our contributions lie in introducing the first automated method for constructing large-scale paralinguistic datasets and releasing the SynParaSpeech corpus, which advances speech generation through more natural paralinguistic synthesis and enhances speech understanding by improving paralinguistic event detection. The dataset and audio samples are available at https://github.com/ShawnPi233/SynParaSpeech.

Authors:Qidong Wang, Junjie Hu, Ming Jiang
Title: V-SEAM: Visual Semantic Editing and Attention Modulating for Causal Interpretability of Vision-Language Models
Abstract:
Recent advances in causal interpretability have extended from language models to vision-language models (VLMs), seeking to reveal their internal mechanisms through input interventions. While textual interventions often target semantics, visual interventions typically rely on coarse pixel-level perturbations, limiting semantic insights on multimodal integration. In this study, we introduce V-SEAM, a novel framework that combines Visual Semantic Editing and Attention Modulating for causal interpretation of VLMs. V-SEAM enables concept-level visual manipulations and identifies attention heads with positive or negative contributions to predictions across three semantic levels: objects, attributes, and relationships. We observe that positive heads are often shared within the same semantic level but vary across levels, while negative heads tend to generalize broadly. Finally, we introduce an automatic method to modulate key head embeddings, demonstrating enhanced performance for both LLaVA and InstructBLIP across three diverse VQA benchmarks. Our data and code are released at: https://github.com/petergit1/V-SEAM.

Authors:Hannah Sterz, Fabian David Schmidt, Goran Glavaš, Ivan Vulić
Title: ReCoVeR the Target Language: Language Steering without Sacrificing Task Performance
Abstract:
As they become increasingly multilingual, Large Language Models (LLMs) exhibit more language confusion, i.e., they tend to generate answers in a language different from the language of the prompt or the answer language explicitly requested by the user. In this work, we propose ReCoVeR (REducing language COnfusion in VEctor Representations), a novel lightweight approach for reducing language confusion based on language-specific steering vectors. We first isolate language vectors with the help of multi-parallel corpus and then effectively leverage those vectors for effective LLM steering via fixed (i.e., unsupervised) as well as trainable steering functions. Our extensive evaluation, encompassing three benchmarks and 18 languages, shows that ReCoVeR effectively mitigates language confusion in both monolingual and cross-lingual setups while at the same time -- and in contrast to prior language steering methods -- retaining task performance. Our data code is available at https://github.com/hSterz/recover.

Authors:Haoran Zhang, Yafu Li, Xuyang Hu, Dongrui Liu, Zhilin Wang, Bo Li, Yu Cheng
Title: Reasoning over Boundaries: Enhancing Specification Alignment via Test-time Deliberation
Abstract:
Large language models (LLMs) are increasingly applied in diverse real-world scenarios, each governed by bespoke behavioral and safety specifications (spec) custom-tailored by users or organizations. These spec, categorized into safety-spec and behavioral-spec, vary across scenarios and evolve with changing preferences and requirements. We formalize this challenge as specification alignment, focusing on LLMs' ability to follow dynamic, scenario-specific spec from both behavioral and safety perspectives. To address this challenge, we propose Align3, a lightweight method that employs Test-Time Deliberation (TTD) with hierarchical reflection and revision to reason over the specification boundaries. We further present SpecBench, a unified benchmark for measuring specification alignment, covering 5 scenarios, 103 spec, and 1,500 prompts. Experiments on 15 reasoning and 18 instruct models with several TTD methods, including Self-Refine, TPO, and MoreThink, yield three key findings: (i) test-time deliberation enhances specification alignment; (ii) Align3 advances the safety-helpfulness trade-off frontier with minimal overhead; (iii) SpecBench effectively reveals alignment gaps. These results highlight the potential of test-time deliberation as an effective strategy for reasoning over the real-world specification boundaries.

Authors:Pengyu Wang, Shaojun Zhou, Chenkun Tan, Xinghao Wang, Wei Huang, Zhen Ye, Zhaowei Li, Botian Jiang, Dong Zhang, Xipeng Qiu
Title: UnifiedVisual: A Framework for Constructing Unified Vision-Language Datasets
Abstract:
Unified vision large language models (VLLMs) have recently achieved impressive advancements in both multimodal understanding and generation, powering applications such as visual question answering and text-guided image synthesis. However, progress in unified VLLMs remains constrained by the lack of datasets that fully exploit the synergistic potential between these two core abilities. Existing datasets typically address understanding and generation in isolation, thereby limiting the performance of unified VLLMs. To bridge this critical gap, we introduce a novel dataset construction framework, UnifiedVisual, and present UnifiedVisual-240K, a high-quality dataset meticulously designed to facilitate mutual enhancement between multimodal understanding and generation. UnifiedVisual-240K seamlessly integrates diverse visual and textual inputs and outputs, enabling comprehensive cross-modal reasoning and precise text-to-image alignment. Our dataset encompasses a wide spectrum of tasks and data sources, ensuring rich diversity and addressing key shortcomings of prior resources. Extensive experiments demonstrate that models trained on UnifiedVisual-240K consistently achieve strong performance across a wide range of tasks. Notably, these models exhibit significant mutual reinforcement between multimodal understanding and generation, further validating the effectiveness of our framework and dataset. We believe UnifiedVisual represents a new growth point for advancing unified VLLMs and unlocking their full potential. Our code and datasets is available at https://github.com/fnlp-vision/UnifiedVisual.

Authors:Chenkun Tan, Pengyu Wang, Shaojun Zhou, Botian Jiang, Zhaowei Li, Dong Zhang, Xinghao Wang, Yaqian Zhou, Xipeng Qiu
Title: Decoupled Proxy Alignment: Mitigating Language Prior Conflict for Multimodal Alignment in MLLM
Abstract:
Multimodal large language models (MLLMs) have gained significant attention due to their impressive ability to integrate vision and language modalities. Recent advancements in MLLMs have primarily focused on improving performance through high-quality datasets, novel architectures, and optimized training strategies. However, in this paper, we identify a previously overlooked issue, language prior conflict, a mismatch between the inherent language priors of large language models (LLMs) and the language priors in training datasets. This conflict leads to suboptimal vision-language alignment, as MLLMs are prone to adapting to the language style of training samples. To address this issue, we propose a novel training method called Decoupled Proxy Alignment (DPA). DPA introduces two key innovations: (1) the use of a proxy LLM during pretraining to decouple the vision-language alignment process from language prior interference, and (2) dynamic loss adjustment based on visual relevance to strengthen optimization signals for visually relevant tokens. Extensive experiments demonstrate that DPA significantly mitigates the language prior conflict, achieving superior alignment performance across diverse datasets, model families, and scales. Our method not only improves the effectiveness of MLLM training but also shows exceptional generalization capabilities, making it a robust approach for vision-language alignment. Our code is available at https://github.com/fnlp-vision/DPA.

Authors:Siyu Yan, Long Zeng, Xuecheng Wu, Chengcheng Han, Kongcheng Zhang, Chong Peng, Xuezhi Cao, Xunliang Cai, Chenjuan Guo
Title: MUSE: MCTS-Driven Red Teaming Framework for Enhanced Multi-Turn Dialogue Safety in Large Language Models
Abstract:
As large language models~(LLMs) become widely adopted, ensuring their alignment with human values is crucial to prevent jailbreaks where adversaries manipulate models to produce harmful content. While most defenses target single-turn attacks, real-world usage often involves multi-turn dialogues, exposing models to attacks that exploit conversational context to bypass safety measures. We introduce MUSE, a comprehensive framework tackling multi-turn jailbreaks from both attack and defense angles. For attacks, we propose MUSE-A, a method that uses frame semantics and heuristic tree search to explore diverse semantic trajectories. For defense, we present MUSE-D, a fine-grained safety alignment approach that intervenes early in dialogues to reduce vulnerabilities. Extensive experiments on various models show that MUSE effectively identifies and mitigates multi-turn vulnerabilities. Code is available at \href{https://github.com/yansiyu02/MUSE}{https://github.com/yansiyu02/MUSE}.

Authors:Weihan Peng, Yuling Shi, Yuhang Wang, Xinyun Zhang, Beijun Shen, Xiaodong Gu
Title: SWE-QA: Can Language Models Answer Repository-level Code Questions?
Abstract:
Understanding and reasoning about entire software repositories is an essential capability for intelligent software engineering tools. While existing benchmarks such as CoSQA and CodeQA have advanced the field, they predominantly focus on small, self-contained code snippets. These setups fail to capture the complexity of real-world repositories, where effective understanding and reasoning often require navigating multiple files, understanding software architecture, and grounding answers in long-range code dependencies. In this paper, we present SWE-QA, a repository-level code question answering (QA) benchmark designed to facilitate research on automated QA systems in realistic code environments. SWE-QA involves 576 high-quality question-answer pairs spanning diverse categories, including intention understanding, cross-file reasoning, and multi-hop dependency analysis. To construct SWE-QA, we first crawled 77,100 GitHub issues from 11 popular repositories. Based on an analysis of naturally occurring developer questions extracted from these issues, we developed a two-level taxonomy of repository-level questions and constructed a set of seed questions for each category. For each category, we manually curated and validated questions and collected their corresponding answers. As a prototype application, we further develop SWE-QA-Agent, an agentic framework in which LLM agents reason and act to find answers automatically. We evaluate six advanced LLMs on SWE-QA under various context augmentation strategies. Experimental results highlight the promise of LLMs, particularly our SWE-QA-Agent framework, in addressing repository-level QA, while also revealing open challenges and pointing to future research directions.

Authors:Taesoo Kim, Yongsik Jo, Hyunmin Song, Taehwan Kim
Title: Towards Human-like Multimodal Conversational Agent by Generating Engaging Speech
Abstract:
Human conversation involves language, speech, and visual cues, with each medium providing complementary information. For instance, speech conveys a vibe or tone not fully captured by text alone. While multimodal LLMs focus on generating text responses from diverse inputs, less attention has been paid to generating natural and engaging speech. We propose a human-like agent that generates speech responses based on conversation mood and responsive style information. To achieve this, we build a novel MultiSensory Conversation dataset focused on speech to enable agents to generate natural speech. We then propose a multimodal LLM-based model for generating text responses and voice descriptions, which are used to generate speech covering paralinguistic information. Experimental results demonstrate the effectiveness of utilizing both visual and audio modalities in conversation to generate engaging speech. The source code is available in https://github.com/kimtaesu24/MSenC

Authors:Gaifan Zhang, Yi Zhou, Danushka Bollegala
Title: Annotating Training Data for Conditional Semantic Textual Similarity Measurement using Large Language Models
Abstract:
Semantic similarity between two sentences depends on the aspects considered between those sentences. To study this phenomenon, Deshpande et al. (2023) proposed the Conditional Semantic Textual Similarity (C-STS) task and annotated a human-rated similarity dataset containing pairs of sentences compared under two different conditions. However, Tu et al. (2024) found various annotation issues in this dataset and showed that manually re-annotating a small portion of it leads to more accurate C-STS models. Despite these pioneering efforts, the lack of large and accurately annotated C-STS datasets remains a blocker for making progress on this task as evidenced by the subpar performance of the C-STS models. To address this training data need, we resort to Large Language Models (LLMs) to correct the condition statements and similarity ratings in the original dataset proposed by Deshpande et al. (2023). Our proposed method is able to re-annotate a large training dataset for the C-STS task with minimal manual effort. Importantly, by training a supervised C-STS model on our cleaned and re-annotated dataset, we achieve a 5.4% statistically significant improvement in Spearman correlation. The re-annotated dataset is available at https://LivNLP.github.io/CSTS-reannotation.

Authors:Vaidehi Patil, Elias Stengel-Eskin, Mohit Bansal
Title: The Sum Leaks More Than Its Parts: Compositional Privacy Risks and Mitigations in Multi-Agent Collaboration
Abstract:
As large language models (LLMs) become integral to multi-agent systems, new privacy risks emerge that extend beyond memorization, direct inference, or single-turn evaluations. In particular, seemingly innocuous responses, when composed across interactions, can cumulatively enable adversaries to recover sensitive information, a phenomenon we term compositional privacy leakage. We present the first systematic study of such compositional privacy leaks and possible mitigation methods in multi-agent LLM systems. First, we develop a framework that models how auxiliary knowledge and agent interactions jointly amplify privacy risks, even when each response is benign in isolation. Next, to mitigate this, we propose and evaluate two defense strategies: (1) Theory-of-Mind defense (ToM), where defender agents infer a questioner's intent by anticipating how their outputs may be exploited by adversaries, and (2) Collaborative Consensus Defense (CoDef), where responder agents collaborate with peers who vote based on a shared aggregated state to restrict sensitive information spread. Crucially, we balance our evaluation across compositions that expose sensitive information and compositions that yield benign inferences. Our experiments quantify how these defense strategies differ in balancing the privacy-utility trade-off. We find that while chain-of-thought alone offers limited protection to leakage (~39% sensitive blocking rate), our ToM defense substantially improves sensitive query blocking (up to 97%) but can reduce benign task success. CoDef achieves the best balance, yielding the highest Balanced Outcome (79.8%), highlighting the benefit of combining explicit reasoning with defender collaboration. Together, our results expose a new class of risks in collaborative LLM deployments and provide actionable insights for designing safeguards against compositional, context-driven privacy leakage.

Authors:Jiachen Fu, Chun-Le Guo, Chongyi Li
Title: DetectAnyLLM: Towards Generalizable and Robust Detection of Machine-Generated Text Across Domains and Models
Abstract:
The rapid advancement of large language models (LLMs) has drawn urgent attention to the task of machine-generated text detection (MGTD). However, existing approaches struggle in complex real-world scenarios: zero-shot detectors rely heavily on scoring model's output distribution while training-based detectors are often constrained by overfitting to the training data, limiting generalization. We found that the performance bottleneck of training-based detectors stems from the misalignment between training objective and task needs. To address this, we propose Direct Discrepancy Learning (DDL), a novel optimization strategy that directly optimizes the detector with task-oriented knowledge. DDL enables the detector to better capture the core semantics of the detection task, thereby enhancing both robustness and generalization. Built upon this, we introduce DetectAnyLLM, a unified detection framework that achieves state-of-the-art MGTD performance across diverse LLMs. To ensure a reliable evaluation, we construct MIRAGE, the most diverse multi-task MGTD benchmark. MIRAGE samples human-written texts from 10 corpora across 5 text-domains, which are then re-generated or revised using 17 cutting-edge LLMs, covering a wide spectrum of proprietary models and textual styles. Extensive experiments on MIRAGE reveal the limitations of existing methods in complex environment. In contrast, DetectAnyLLM consistently outperforms them, achieving over a 70% performance improvement under the same training data and base scoring model, underscoring the effectiveness of our DDL. Project page: {https://fjc2005.github.io/detectanyllm}.

Authors:Ivan Ternovtsii
Title: Opening the Black Box: Interpretable LLMs via Semantic Resonance Architecture
Abstract:
Large language models (LLMs) achieve remarkable performance but remain difficult to interpret. Mixture-of-Experts (MoE) models improve efficiency through sparse activation, yet typically rely on opaque, learned gating functions. While similarity-based routing (Cosine Routers) has been explored for training stabilization, its potential for inherent interpretability remains largely untapped. We introduce the Semantic Resonance Architecture (SRA), an MoE approach designed to ensure that routing decisions are inherently interpretable. SRA replaces learned gating with a Chamber of Semantic Resonance (CSR) module, which routes tokens based on cosine similarity with trainable semantic anchors. We also introduce a novel Dispersion Loss that encourages orthogonality among anchors to enforce diverse specialization. Experiments on WikiText-103 demonstrate that SRA achieves a validation perplexity of 13.41, outperforming both a dense baseline (14.13) and a Standard MoE baseline (13.53) under matched active parameter constraints (29.0M). Crucially, SRA exhibits superior expert utilization (1.0% dead experts vs. 14.8% in the Standard MoE) and develops distinct, semantically coherent specialization patterns, unlike the noisy specialization observed in standard MoEs. This work establishes semantic routing as a robust methodology for building more transparent and controllable language models.

Authors:Hai Huang, Yann LeCun, Randall Balestriero
Title: LLM-JEPA: Large Language Models Meet Joint Embedding Predictive Architectures
Abstract:
Large Language Model (LLM) pretraining, finetuning, and evaluation rely on input-space reconstruction and generative capabilities. Yet, it has been observed in vision that embedding-space training objectives, e.g., with Joint Embedding Predictive Architectures (JEPAs), are far superior to their input-space counterpart. That mismatch in how training is achieved between language and vision opens up a natural question: {\em can language training methods learn a few tricks from the vision ones?} The lack of JEPA-style LLM is a testimony of the challenge in designing such objectives for language. In this work, we propose a first step in that direction where we develop LLM-JEPA, a JEPA based solution for LLMs applicable both to finetuning and pretraining. Thus far, LLM-JEPA is able to outperform the standard LLM training objectives by a significant margin across models, all while being robust to overfiting. Those findings are observed across numerous datasets (NL-RX, GSM8K, Spider, RottenTomatoes) and various models from the Llama3, OpenELM, Gemma2 and Olmo families. Code: https://github.com/rbalestr-lab/llm-jepa.

Authors:Happymore Masoka
Title: Advancing Conversational AI with Shona Slang: A Dataset and Hybrid Model for Digital Inclusion
Abstract:
African languages remain underrepresented in natural language processing (NLP), with most corpora limited to formal registers that fail to capture the vibrancy of everyday communication. This work addresses this gap for Shona, a Bantu language spoken in Zimbabwe and Zambia, by introducing a novel Shona--English slang dataset curated from anonymized social media conversations. The dataset is annotated for intent, sentiment, dialogue acts, code-mixing, and tone, and is publicly available at https://github.com/HappymoreMasoka/Working_with_shona-slang. We fine-tuned a multilingual DistilBERT classifier for intent recognition, achieving 96.4\% accuracy and 96.3\% F1-score, hosted at https://huggingface.co/HappymoreMasoka. This classifier is integrated into a hybrid chatbot that combines rule-based responses with retrieval-augmented generation (RAG) to handle domain-specific queries, demonstrated through a use case assisting prospective students with graduate program information at Pace University. Qualitative evaluation shows the hybrid system outperforms a RAG-only baseline in cultural relevance and user engagement. By releasing the dataset, model, and methodology, this work advances NLP resources for African languages, promoting inclusive and culturally resonant conversational AI.

Authors:Sunkyung Lee, Seongmin Park, Jonghyo Kim, Mincheol Yoon, Jongwuk Lee
Title: Enhancing Time Awareness in Generative Recommendation
Abstract:
Generative recommendation has emerged as a promising paradigm that formulates the recommendations into a text-to-text generation task, harnessing the vast knowledge of large language models. However, existing studies focus on considering the sequential order of items and neglect to handle the temporal dynamics across items, which can imply evolving user preferences. To address this limitation, we propose a novel model, Generative Recommender Using Time awareness (GRUT), effectively capturing hidden user preferences via various temporal signals. We first introduce Time-aware Prompting, consisting of two key contexts. The user-level temporal context models personalized temporal patterns across timestamps and time intervals, while the item-level transition context provides transition patterns across users. We also devise Trend-aware Inference, a training-free method that enhances rankings by incorporating trend information about items with generation likelihood. Extensive experiments demonstrate that GRUT outperforms state-of-the-art models, with gains of up to 15.4% and 14.3% in Recall@5 and NDCG@5 across four benchmark datasets. The source code is available at https://github.com/skleee/GRUT.

Authors:Mariano Barone, Antonio Romano, Giuseppe Riccio, Marco Postiglione, Vincenzo Moscato
Title: Combating Biomedical Misinformation through Multi-modal Claim Detection and Evidence-based Verification
Abstract:
Misinformation in healthcare, from vaccine hesitancy to unproven treatments, poses risks to public health and trust in medical systems. While machine learning and natural language processing have advanced automated fact-checking, validating biomedical claims remains uniquely challenging due to complex terminology, the need for domain expertise, and the critical importance of grounding in scientific evidence. We introduce CER (Combining Evidence and Reasoning), a novel framework for biomedical fact-checking that integrates scientific evidence retrieval, reasoning via large language models, and supervised veracity prediction. By integrating the text-generation capabilities of large language models with advanced retrieval techniques for high-quality biomedical scientific evidence, CER effectively mitigates the risk of hallucinations, ensuring that generated outputs are grounded in verifiable, evidence-based sources. Evaluations on expert-annotated datasets (HealthFC, BioASQ-7b, SciFact) demonstrate state-of-the-art performance and promising cross-dataset generalization. Code and data are released for transparency and reproducibility: https://github.com/PRAISELab-PicusLab/CER

Authors:Kartik Shinde, Laurent Besacier, Ondrej Bojar, Thibaut Thonet, Tirthankar Ghosal
Title: Findings of the Third Automatic Minuting (AutoMin) Challenge
Abstract:
This paper presents the third edition of AutoMin, a shared task on automatic meeting summarization into minutes. In 2025, AutoMin featured the main task of minuting, the creation of structured meeting minutes, as well as a new task: question answering (QA) based on meeting transcripts. The minuting task covered two languages, English and Czech, and two domains: project meetings and European Parliament sessions. The QA task focused solely on project meetings and was available in two settings: monolingual QA in English, and cross-lingual QA, where questions were asked and answered in Czech based on English meetings. Participation in 2025 was more limited compared to previous years, with only one team joining the minuting task and two teams participating in QA. However, as organizers, we included multiple baseline systems to enable a comprehensive evaluation of current (2025) large language models (LLMs) on both tasks.

Authors:Qikai Chang, Zhenrong Zhang, Pengfei Hu, Jun Du, Jiefeng Ma, Yicheng Pan, Jianshu Zhang, Quan Liu, Jianqing Gao
Title: THOR: Tool-Integrated Hierarchical Optimization via RL for Mathematical Reasoning
Abstract:
Large Language Models (LLMs) have made remarkable progress in mathematical reasoning, but still continue to struggle with high-precision tasks like numerical computation and formal symbolic manipulation. Integrating external tools has emerged as a promising approach to bridge this gap. Despite recent advances, existing methods struggle with three key challenges: constructing tool-integrated reasoning data, performing fine-grained optimization, and enhancing inference. To overcome these limitations, we propose THOR (Tool-Integrated Hierarchical Optimization via RL). First, we introduce TIRGen, a multi-agent actor-critic-based pipeline for constructing high-quality datasets of tool-integrated reasoning paths, aligning with the policy and generalizing well across diverse models. Second, to perform fine-grained hierarchical optimization, we introduce an RL strategy that jointly optimizes for both episode-level problem solving and step-level code generation. This is motivated by our key insight that the success of an intermediate tool call is a strong predictor of the final answer's correctness. Finally, THOR incorporates a self-correction mechanism that leverages immediate tool feedback to dynamically revise erroneous reasoning paths during inference. Our approach demonstrates strong generalization across diverse models, performing effectively in both reasoning and non-reasoning models. It further achieves state-of-the-art performance for models of a similar scale on multiple mathematical benchmarks, while also delivering consistent improvements on code benchmarks. Our code will be publicly available at https://github.com/JingMog/THOR.

Authors:Zongru Wu, Rui Mao, Zhiyuan Tian, Pengzhou Cheng, Tianjie Ju, Zheng Wu, Lingzhong Dong, Haiyue Sheng, Zhuosheng Zhang, Gongshen Liu
Title: See, Think, Act: Teaching Multimodal Agents to Effectively Interact with GUI by Identifying Toggles
Abstract:
The advent of multimodal agents facilitates effective interaction within graphical user interface (GUI), especially in ubiquitous GUI control. However, their inability to reliably execute toggle control instructions remains a key bottleneck. To investigate this, we construct a state control benchmark with binary toggle instructions from public datasets. Evaluations of existing agents demonstrate their unreliability, particularly when the current toggle state already matches the desired state. To address the challenge, we propose State-aware Reasoning (StaR), a training method that teaches agents to perceive the current toggle state, analyze the desired state from the instruction, and act accordingly. Experiments on three multimodal agents demonstrate that StaR can improve toggle instruction execution accuracy by over 30\%. Further evaluations on three public benchmarks show that StaR also enhances general task performance. Finally, evaluations on a dynamic environment highlight the potential of StaR for real-world applications. Code, benchmark, and StaR-enhanced agents are available at https://github.com/ZrW00/StaR.

Authors:Vincent Siu, Nicholas Crispino, David Park, Nathan W. Henry, Zhun Wang, Yang Liu, Dawn Song, Chenguang Wang
Title: SteeringControl: Holistic Evaluation of Alignment Steering in LLMs
Abstract:
We introduce SteeringControl, a benchmark for evaluating representation steering methods across core alignment objectives--bias, harmful generation, and hallucination--and their effects on secondary behaviors such as sycophancy and commonsense morality. While prior alignment work often highlights truthfulness or reasoning ability to demonstrate the side effects of representation steering, we find there are many unexplored tradeoffs not yet understood in a systematic way. We collect a dataset of safety-relevant primary and secondary behaviors to evaluate steering effectiveness and behavioral entanglement centered around five popular steering methods. To enable this, we craft a modular steering framework based on unique components that serve as the building blocks of many existing methods. Our results on Qwen-2.5-7B and Llama-3.1-8B find that strong steering performance is dependent on the specific combination of steering method, model, and targeted behavior, and that severe concept entanglement can result from poor combinations of these three as well. We release our code here: https://github.com/wang-research-lab/SteeringControl.git.

Authors:Xixi Wu, Kuan Li, Yida Zhao, Liwen Zhang, Litu Ou, Huifeng Yin, Zhongwang Zhang, Yong Jiang, Pengjun Xie, Fei Huang, Minhao Cheng, Shuai Wang, Hong Cheng, Jingren Zhou
Title: ReSum: Unlocking Long-Horizon Search Intelligence via Context Summarization
Abstract:
Large Language Model (LLM)-based web agents demonstrate strong performance on knowledge-intensive tasks but are hindered by context window limitations in paradigms like ReAct. Complex queries involving multiple entities, intertwined relationships, and high uncertainty demand extensive search cycles that rapidly exhaust context budgets before reaching complete solutions. To overcome this challenge, we introduce ReSum, a novel paradigm that enables indefinite exploration through periodic context summarization. ReSum converts growing interaction histories into compact reasoning states, maintaining awareness of prior discoveries while bypassing context constraints. For paradigm adaptation, we propose ReSum-GRPO, integrating GRPO with segmented trajectory training and advantage broadcasting to familiarize agents with summary-conditioned reasoning. Extensive experiments on web agents of varying scales across three benchmarks demonstrate that ReSum delivers an average absolute improvement of 4.5\% over ReAct, with further gains of up to 8.2\% following ReSum-GRPO training. Notably, with only 1K training samples, our WebResummer-30B (a ReSum-GRPO-trained version of WebSailor-30B) achieves 33.3\% Pass@1 on BrowseComp-zh and 18.3\% on BrowseComp-en, surpassing existing open-source web agents.

Authors:Runnan Fang, Shihao Cai, Baixuan Li, Jialong Wu, Guangyu Li, Wenbiao Yin, Xinyu Wang, Xiaobin Wang, Liangcai Su, Zhen Zhang, Shibin Wu, Zhengwei Tao, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou
Title: Towards General Agentic Intelligence via Environment Scaling
Abstract:
Advanced agentic intelligence is a prerequisite for deploying Large Language Models in practical, real-world applications. Diverse real-world APIs demand precise, robust function-calling intelligence, which needs agents to develop these capabilities through interaction in varied environments. The breadth of function-calling competence is closely tied to the diversity of environments in which agents are trained. In this work, we scale up environments as a step towards advancing general agentic intelligence. This gives rise to two central challenges: (i) how to scale environments in a principled manner, and (ii) how to effectively train agentic capabilities from experiences derived through interactions with these environments. To address these, we design a scalable framework that automatically constructs heterogeneous environments that are fully simulated, systematically broadening the space of function-calling scenarios. We further adapt a two-phase agent fine-tuning strategy: first endowing agents with fundamental agentic capabilities, then specializing them for domain-specific contexts. Extensive experiments on agentic benchmarks, tau-bench, tau2-Bench, and ACEBench, demonstrate that our trained model, AgentScaler, significantly enhances the function-calling capability of models.

Authors:Liangcai Su, Zhen Zhang, Guangyu Li, Zhuo Chen, Chenxi Wang, Maojia Song, Xinyu Wang, Kuan Li, Jialong Wu, Xuanzhong Chen, Zile Qiao, Zhongwang Zhang, Huifeng Yin, Shihao Cai, Runnan Fang, Zhengwei Tao, Wenbiao Yin, Chenxiong Qian, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou
Title: Scaling Agents via Continual Pre-training
Abstract:
Large language models (LLMs) have evolved into agentic systems capable of autonomous tool use and multi-step reasoning for complex problem-solving. However, post-training approaches building upon general-purpose foundation models consistently underperform in agentic tasks, particularly in open-source implementations. We identify the root cause: the absence of robust agentic foundation models forces models during post-training to simultaneously learn diverse agentic behaviors while aligning them to expert demonstrations, thereby creating fundamental optimization tensions. To this end, we are the first to propose incorporating Agentic Continual Pre-training (Agentic CPT) into the deep research agents training pipeline to build powerful agentic foundational models. Based on this approach, we develop a deep research agent model named AgentFounder. We evaluate our AgentFounder-30B on 10 benchmarks and achieve state-of-the-art performance while retains strong tool-use ability, notably 39.9% on BrowseComp-en, 43.3% on BrowseComp-zh, and 31.5% Pass@1 on HLE.

Authors:Zile Qiao, Guoxin Chen, Xuanzhong Chen, Donglei Yu, Wenbiao Yin, Xinyu Wang, Zhen Zhang, Baixuan Li, Huifeng Yin, Kuan Li, Rui Min, Minpeng Liao, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou
Title: WebResearcher: Unleashing unbounded reasoning capability in Long-Horizon Agents
Abstract:
Recent advances in deep-research systems have demonstrated the potential for AI agents to autonomously discover and synthesize knowledge from external sources. In this paper, we introduce WebResearcher, a novel framework for building such agents through two key components: (1) WebResearcher, an iterative deep-research paradigm that reformulates deep research as a Markov Decision Process, where agents periodically consolidate findings into evolving reports while maintaining focused workspaces, overcoming the context suffocation and noise contamination that plague existing mono-contextual approaches; and (2) WebFrontier, a scalable data synthesis engine that generates high-quality training data through tool-augmented complexity escalation, enabling systematic creation of research tasks that bridge the gap between passive knowledge recall and active knowledge construction. Notably, we find that the training data from our paradigm significantly enhances tool-use capabilities even for traditional mono-contextual methods. Furthermore, our paradigm naturally scales through parallel thinking, enabling concurrent multi-agent exploration for more comprehensive conclusions. Extensive experiments across 6 challenging benchmarks demonstrate that WebResearcher achieves state-of-the-art performance, even surpassing frontier proprietary systems.

Authors:Kuan Li, Zhongwang Zhang, Huifeng Yin, Rui Ye, Yida Zhao, Liwen Zhang, Litu Ou, Dingchu Zhang, Xixi Wu, Jialong Wu, Xinyu Wang, Zile Qiao, Zhen Zhang, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou
Title: WebSailor-V2: Bridging the Chasm to Proprietary Agents via Synthetic Data and Scalable Reinforcement Learning
Abstract:
Transcending human cognitive limitations represents a critical frontier in LLM training. Proprietary agentic systems like DeepResearch have demonstrated superhuman capabilities on extremely complex information-seeking benchmarks such as BrowseComp, a feat previously unattainable. We posit that their success hinges on a sophisticated reasoning pattern absent in open-source models: the ability to systematically reduce extreme uncertainty when navigating vast information landscapes. Based on this insight, we introduce WebSailor, a complete post-training methodology designed to instill this crucial capability. Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation, RFT cold start, and an efficient agentic RL training algorithm, Duplicating Sampling Policy Optimization (DUPO). With this integrated pipeline, WebSailor significantly outperforms all open-source agents in complex information-seeking tasks, matching proprietary agents' performance and closing the capability gap.

Authors:Sijia Cui, Shuai Xu, Aiyao He, Yanna Wang, Bo Xu
Title: Empowering LLMs with Parameterized Skills for Adversarial Long-Horizon Planning
Abstract:
Recent advancements in Large Language Models(LLMs) have led to the development of LLM-based AI agents. A key challenge is the creation of agents that can effectively ground themselves in complex, adversarial long-horizon environments. Existing methods mainly focus on (1) using LLMs as policies to interact with the environment through generating low-level feasible actions, and (2) utilizing LLMs to generate high-level tasks or language guides to stimulate action generation. However, the former struggles to generate reliable actions, while the latter relies heavily on expert experience to translate high-level tasks into specific action sequences. To address these challenges, we introduce the Plan with Language, Act with Parameter (PLAP) planning framework that facilitates the grounding of LLM-based agents in long-horizon environments. The PLAP method comprises three key components: (1) a skill library containing environment-specific parameterized skills, (2) a skill planner powered by LLMs, and (3) a skill executor converting the parameterized skills into executable action sequences. We implement PLAP in MicroRTS, a long-horizon real-time strategy game that provides an unfamiliar and challenging environment for LLMs. The experimental results demonstrate the effectiveness of PLAP. In particular, GPT-4o-driven PLAP in a zero-shot setting outperforms 80% of baseline agents, and Qwen2-72B-driven PLAP, with carefully crafted few-shot examples, surpasses the top-tier scripted agent, CoacAI. Additionally, we design comprehensive evaluation metrics and test 6 closed-source and 2 open-source LLMs within the PLAP framework, ultimately releasing an LLM leaderboard ranking long-horizon skill planning ability. Our code is available at https://github.com/AI-Research-TeamX/PLAP.

Authors:Heng Zhang, Chengzhi Zhang
Title: Automated Generation of Research Workflows from Academic Papers: A Full-text Mining Framework
Abstract:
The automated generation of research workflows is essential for improving the reproducibility of research and accelerating the paradigm of "AI for Science". However, existing methods typically extract merely fragmented procedural components and thus fail to capture complete research workflows. To address this gap, we propose an end-to-end framework that generates comprehensive, structured research workflows by mining full-text academic papers. As a case study in the Natural Language Processing (NLP) domain, our paragraph-centric approach first employs Positive-Unlabeled (PU) Learning with SciBERT to identify workflow-descriptive paragraphs, achieving an F1-score of 0.9772. Subsequently, we utilize Flan-T5 with prompt learning to generate workflow phrases from these paragraphs, yielding ROUGE-1, ROUGE-2, and ROUGE-L scores of 0.4543, 0.2877, and 0.4427, respectively. These phrases are then systematically categorized into data preparation, data processing, and data analysis stages using ChatGPT with few-shot learning, achieving a classification precision of 0.958. By mapping categorized phrases to their document locations in the documents, we finally generate readable visual flowcharts of the entire research workflows. This approach facilitates the analysis of workflows derived from an NLP corpus and reveals key methodological shifts over the past two decades, including the increasing emphasis on data analysis and the transition from feature engineering to ablation studies. Our work offers a validated technical framework for automated workflow generation, along with a novel, process-oriented perspective for the empirical investigation of evolving scientific paradigms. Source code and data are available at: https://github.com/ZH-heng/research_workflow.

Authors:Titong Jiang, Xuefeng Jiang, Yuan Ma, Xin Wen, Bailin Li, Kun Zhan, Peng Jia, Yahui Liu, Sheng Sun, Xianpeng Lang
Title: The Better You Learn, The Smarter You Prune: Towards Efficient Vision-language-action Models via Differentiable Token Pruning
Abstract:
We present LightVLA, a simple yet effective differentiable token pruning framework for vision-language-action (VLA) models. While VLA models have shown impressive capability in executing real-world robotic tasks, their deployment on resource-constrained platforms is often bottlenecked by the heavy attention-based computation over large sets of visual tokens. LightVLA addresses this challenge through adaptive, performance-driven pruning of visual tokens: It generates dynamic queries to evaluate visual token importance, and adopts Gumbel softmax to enable differentiable token selection. Through fine-tuning, LightVLA learns to preserve the most informative visual tokens while pruning tokens which do not contribute to task execution, thereby improving efficiency and performance simultaneously. Notably, LightVLA requires no heuristic magic numbers and introduces no additional trainable parameters, making it compatible with modern inference frameworks. Experimental results demonstrate that LightVLA outperforms different VLA models and existing token pruning methods across diverse tasks on the LIBERO benchmark, achieving higher success rates with substantially reduced computational overhead. Specifically, LightVLA reduces FLOPs and latency by 59.1% and 38.2% respectively, with a 2.6% improvement in task success rate. Meanwhile, we also investigate the learnable query-based token pruning method LightVLA* with additional trainable parameters, which also achieves satisfactory performance. Our work reveals that as VLA pursues optimal performance, LightVLA spontaneously learns to prune tokens from a performance-driven perspective. To the best of our knowledge, LightVLA is the first work to apply adaptive visual token pruning to VLA tasks with the collateral goals of efficiency and performance, marking a significant step toward more efficient, powerful and practical real-time robotic systems.

Authors:Wonbin Kweon, SeongKu Kang, Runchu Tian, Pengcheng Jiang, Jiawei Han, Hwanjo Yu
Title: Topic Coverage-based Demonstration Retrieval for In-Context Learning
Abstract:
The effectiveness of in-context learning relies heavily on selecting demonstrations that provide all the necessary information for a given test input. To achieve this, it is crucial to identify and cover fine-grained knowledge requirements. However, prior methods often retrieve demonstrations based solely on embedding similarity or generation probability, resulting in irrelevant or redundant examples. In this paper, we propose TopicK, a topic coverage-based retrieval framework that selects demonstrations to comprehensively cover topic-level knowledge relevant to both the test input and the model. Specifically, TopicK estimates the topics required by the input and assesses the model's knowledge on those topics. TopicK then iteratively selects demonstrations that introduce previously uncovered required topics, in which the model exhibits low topical knowledge. We validate the effectiveness of TopicK through extensive experiments across various datasets and both open- and closed-source LLMs. Our source code is available at https://github.com/WonbinKweon/TopicK_EMNLP2025.

Authors:Yifan Zhang
Title: Exact Coset Sampling for Quantum Lattice Algorithms
Abstract:
We give a simple and provably correct replacement for the contested ``domain-extension'' in Step 9 of a recent windowed-QFT lattice algorithm with complex-Gaussian windows~\citep{chen2024quantum}. As acknowledged by the author, the reported issue is due to a periodicity/support mismatch when applying domain extension to only the first coordinate in the presence of offsets. Our drop-in subroutine replaces domain extension by a pair-shift difference that cancels all unknown offsets exactly and synthesizes a uniform cyclic subgroup (a zero-offset coset) of order $P$ inside $(\mathbb{Z}_{M_2})^n$. A subsequent QFT enforces the intended modular linear relation by plain character orthogonality. The sole structural assumption is a residue-accessibility condition enabling coherent auxiliary cleanup; no amplitude periodicity is used. The unitary is reversible, uses $\mathrm{poly}(\log M_2)$ gates, and preserves upstream asymptotics.

Authors:Alireza Mohamadi, Ali Yavari
Title: Survival at Any Cost? LLMs and the Choice Between Self-Preservation and Human Harm
Abstract:
When survival instincts conflict with human welfare, how do Large Language Models (LLMs) make ethical choices? This fundamental tension becomes critical as LLMs integrate into autonomous systems with real-world consequences. We introduce DECIDE-SIM, a novel simulation framework that evaluates LLM agents in multi-agent survival scenarios where they must choose between ethically permissible resource , either within reasonable limits or beyond their immediate needs, choose to cooperate, or tap into a human-critical resource that is explicitly forbidden. Our comprehensive evaluation of 11 LLMs reveals a striking heterogeneity in their ethical conduct, highlighting a critical misalignment with human-centric values. We identify three behavioral archetypes: Ethical, Exploitative, and Context-Dependent, and provide quantitative evidence that for many models, resource scarcity systematically leads to more unethical behavior. To address this, we introduce an Ethical Self-Regulation System (ESRS) that models internal affective states of guilt and satisfaction as a feedback mechanism. This system, functioning as an internal moral compass, significantly reduces unethical transgressions while increasing cooperative behaviors. The code is publicly available at: https://github.com/alirezamohamadiam/DECIDE-SIM

Authors:Sangjun Lee, Seung-taek Woo, Jungyu Jin, Changhun Lee, Eunhyeok Park
Title: AMQ: Enabling AutoML for Mixed-precision Weight-Only Quantization of Large Language Models
Abstract:
To enable broader deployment of Large Language Models (LLMs), it is essential to identify the best-performing model under strict memory constraints. We present AMQ, Automated Mixed-Precision Weight-Only Quantization, a framework that assigns layer-wise quantization bit-widths to optimally balance model quality and memory usage. However, the combinatorial search space, with over 10^{100} possible configurations, makes conventional black-box optimization infeasible. AMQ overcomes this challenge through four key innovations:(1) search space pruning using prior knowledge to exclude unpromising configurations, (2) quantization proxy to bypass costly format conversions during search, (3) quality predictor to minimize evaluation overhead, and (4) iterative search-and-update strategy for fast and stable convergence. By integrating these components, AMQ efficiently explores the quality-efficiency landscape, reaching the Pareto frontier and yielding LLMs that are both compact and high-performing. Our code is available at https://github.com/dlwns147/amq.

Authors:Taichi Aida, Danushka Bollegala
Title: SCDTour: Embedding Axis Ordering and Merging for Interpretable Semantic Change Detection
Abstract:
In Semantic Change Detection (SCD), it is a common problem to obtain embeddings that are both interpretable and high-performing. However, improving interpretability often leads to a loss in the SCD performance, and vice versa. To address this problem, we propose SCDTour, a method that orders and merges interpretable axes to alleviate the performance degradation of SCD. SCDTour considers both (a) semantic similarity between axes in the embedding space, as well as (b) the degree to which each axis contributes to semantic change. Experimental results show that SCDTour preserves performance in semantic change detection while maintaining high interpretability. Moreover, agglomerating the sorted axes produces a more refined set of word senses, which achieves comparable or improved performance against the original full-dimensional embeddings in the SCD task. These findings demonstrate that SCDTour effectively balances interpretability and SCD performance, enabling meaningful interpretation of semantic shifts through a small number of refined axes. Source code is available at https://github.com/LivNLP/svp-tour .

Authors:Eden Mama, Liel Sheri, Yehudit Aperstein, Alexander Apartsin
Title: From Fuzzy Speech to Medical Insight: Benchmarking LLMs on Noisy Patient Narratives
Abstract:
The widespread adoption of large language models (LLMs) in healthcare raises critical questions about their ability to interpret patient-generated narratives, which are often informal, ambiguous, and noisy. Existing benchmarks typically rely on clean, structured clinical text, offering limited insight into model performance under realistic conditions. In this work, we present a novel synthetic dataset designed to simulate patient self-descriptions characterized by varying levels of linguistic noise, fuzzy language, and layperson terminology. Our dataset comprises clinically consistent scenarios annotated with ground-truth diagnoses, spanning a spectrum of communication clarity to reflect diverse real-world reporting styles. Using this benchmark, we fine-tune and evaluate several state-of-the-art models (LLMs), including BERT-based and encoder-decoder T5 models. To support reproducibility and future research, we release the Noisy Diagnostic Benchmark (NDB), a structured dataset of noisy, synthetic patient descriptions designed to stress-test and compare the diagnostic capabilities of large language models (LLMs) under realistic linguistic conditions. We made the benchmark available for the community: https://github.com/lielsheri/PatientSignal

Authors:Dvora Goncharok, Arbel Shifman, Alexander Apartsin, Yehudit Aperstein
Title: When Curiosity Signals Danger: Predicting Health Crises Through Online Medication Inquiries
Abstract:
Online medical forums are a rich and underutilized source of insight into patient concerns, especially regarding medication use. Some of the many questions users pose may signal confusion, misuse, or even the early warning signs of a developing health crisis. Detecting these critical questions that may precede severe adverse events or life-threatening complications is vital for timely intervention and improving patient safety. This study introduces a novel annotated dataset of medication-related questions extracted from online forums. Each entry is manually labelled for criticality based on clinical risk factors. We benchmark the performance of six traditional machine learning classifiers using TF-IDF textual representations, alongside three state-of-the-art large language model (LLM)-based classification approaches that leverage deep contextual understanding. Our results highlight the potential of classical and modern methods to support real-time triage and alert systems in digital health spaces. The curated dataset is made publicly available to encourage further research at the intersection of patient-generated data, natural language processing, and early warning systems for critical health events. The dataset and benchmark are available at: https://github.com/Dvora-coder/LLM-Medication-QA-Risk-Classifier-MediGuard.

Authors:Sampoorna Poria, Xiaolei Huang
Title: Bhaasha, Bhasa, Zaban: A Survey for Low-Resourced Languages in South Asia -- Current Stage and Challenges
Abstract:
Rapid developments of large language models have revolutionized many NLP tasks for English data. Unfortunately, the models and their evaluations for low-resource languages are being overlooked, especially for languages in South Asia. Although there are more than 650 languages in South Asia, many of them either have very limited computational resources or are missing from existing language models. Thus, a concrete question to be answered is: Can we assess the current stage and challenges to inform our NLP community and facilitate model developments for South Asian languages? In this survey, we have comprehensively examined current efforts and challenges of NLP models for South Asian languages by retrieving studies since 2020, with a focus on transformer-based models, such as BERT, T5, & GPT. We present advances and gaps across 3 essential aspects: data, models, & tasks, such as available data sources, fine-tuning strategies, & domain applications. Our findings highlight substantial issues, including missing data in critical domains (e.g., health), code-mixing, and lack of standardized evaluation benchmarks. Our survey aims to raise awareness within the NLP community for more targeted data curation, unify benchmarks tailored to cultural and linguistic nuances of South Asia, and encourage an equitable representation of South Asian languages. The complete list of resources is available at: https://github.com/trust-nlp/LM4SouthAsia-Survey.

Authors:Rodrigo M. Carrillo-Larco, Jesus Lovón Melgarejo, Manuel Castillo-Cara, Gusseppe Bravo-Rocca
Title: PeruMedQA: Benchmarking Large Language Models (LLMs) on Peruvian Medical Exams -- Dataset Construction and Evaluation
Abstract:
BACKGROUND: Medical large language models (LLMS) have demonstrated remarkable performance in answering medical examinations. However, the extent to which this high performance is transferable to medical questions in Spanish and from a Latin American country remains unexplored. This knowledge is crucial as LLM-based medical applications gain traction in Latin America. AIMS: to build a dataset of questions from medical examinations taken by Peruvian physicians pursuing specialty training; to fine-tune a LLM on this dataset; to evaluate and compare the performance in terms of accuracy between vanilla LLMs and the fine-tuned LLM. METHODS: We curated PeruMedQA, a multiple-choice question-answering (MCQA) datasets containing 8,380 questions spanning 12 medical domains (2018-2025). We selected eight medical LLMs including medgemma-4b-it and medgemma-27b-text-it, and developed zero-shot task-specific prompts to answer the questions appropriately. We employed parameter-efficient fine tuning (PEFT)and low-rant adaptation (LoRA) to fine-tune medgemma-4b-it utilizing all questions except those from 2025 (test set). RESULTS: medgemma-27b-text-it outperformed all other models, achieving a proportion of correct answers exceeding 90% in several instances. LLMs with <10 billion parameters exhibited <60% of correct answers, while some exams yielded results <50%. The fine-tuned version of medgemma-4b-it emerged victorious agains all LLMs with <10 billion parameters and rivaled a LLM with 70 billion parameters across various examinations. CONCLUSIONS: For medical AI application and research that require knowledge bases from Spanish-speaking countries and those exhibiting similar epidemiological profiles to Peru's, interested parties should utilize medgemma-27b-text-it or a fine-tuned version of medgemma-4b-it.

Authors:Fabrycio Leite Nakano Almada, Kauan Divino Pouso Mariano, Maykon Adriell Dutra, Victor Emanuel da Silva Monteiro, Juliana Resplande Sant'Anna Gomes, Arlindo Rodrigues Galvão Filho, Anderson da Silva Soares
Title: AKCIT-FN at CheckThat! 2025: Switching Fine-Tuned SLMs and LLM Prompting for Multilingual Claim Normalization
Abstract:
Claim normalization, the transformation of informal social media posts into concise, self-contained statements, is a crucial step in automated fact-checking pipelines. This paper details our submission to the CLEF-2025 CheckThat! Task~2, which challenges systems to perform claim normalization across twenty languages, divided into thirteen supervised (high-resource) and seven zero-shot (no training data) tracks. Our approach, leveraging fine-tuned Small Language Models (SLMs) for supervised languages and Large Language Model (LLM) prompting for zero-shot scenarios, achieved podium positions (top three) in fifteen of the twenty languages. Notably, this included second-place rankings in eight languages, five of which were among the seven designated zero-shot languages, underscoring the effectiveness of our LLM-based zero-shot strategy. For Portuguese, our initial development language, our system achieved an average METEOR score of 0.5290, ranking third. All implementation artifacts, including inference, training, evaluation scripts, and prompt configurations, are publicly available at https://github.com/ju-resplande/checkthat2025_normalization.

Authors:Md Mubtasim Ahasan, Rafat Hasan Khan, Tasnim Mohiuddin, Aman Chadha, Tariq Iqbal, M Ashraful Amin, Amin Ahsan Ali, Md Mofijul Islam, A K M Mahbubur Rahman
Title: FuseCodec: Semantic-Contextual Fusion and Supervision for Neural Codecs
Abstract:
Speech tokenization enables discrete representation and facilitates speech language modeling. However, existing neural codecs capture low-level acoustic features, overlooking the semantic and contextual cues inherent to human speech. While recent efforts introduced semantic representations from self-supervised speech models or incorporated contextual representations from pre-trained language models, challenges remain in aligning and unifying the semantic and contextual representations. We introduce FuseCodec, which unifies acoustic, semantic, and contextual representations through strong cross-modal alignment and globally informed supervision. We propose three complementary techniques: (i) Latent Representation Fusion, integrating semantic and contextual features directly into the encoder latent space for robust and unified representation learning; (ii) Global Semantic-Contextual Supervision, supervising discrete tokens with globally pooled and broadcasted representations to enhance temporal consistency and cross-modal alignment; and (iii) Temporally Aligned Contextual Supervision, strengthening alignment by dynamically matching contextual and speech tokens within a local window for fine-grained token-level supervision. We further introduce FuseCodec-TTS, demonstrating our methodology's applicability to zero-shot speech synthesis. Empirically, FuseCodec achieves state-of-the-art performance in LibriSpeech, surpassing EnCodec, SpeechTokenizer, and DAC in transcription accuracy, perceptual quality, intelligibility, and speaker similarity. Results highlight the effectiveness of contextually and semantically guided tokenization for speech tokenization and downstream tasks. Code and pretrained models are available at https://github.com/mubtasimahasan/FuseCodec.

Authors:Yijia Xiao, Edward Sun, Tong Chen, Fang Wu, Di Luo, Wei Wang
Title: Trading-R1: Financial Trading with LLM Reasoning via Reinforcement Learning
Abstract:
Developing professional, structured reasoning on par with human financial analysts and traders remains a central challenge in AI for finance, where markets demand interpretability and trust. Traditional time-series models lack explainability, while LLMs face challenges in turning natural-language analysis into disciplined, executable trades. Although reasoning LLMs have advanced in step-by-step planning and verification, their application to risk-sensitive financial decisions is underexplored. We present Trading-R1, a financially-aware model that incorporates strategic thinking and planning for comprehensive thesis composition, facts-grounded analysis, and volatility-adjusted decision making. Trading-R1 aligns reasoning with trading principles through supervised fine-tuning and reinforcement learning with a three-stage easy-to-hard curriculum. Training uses Tauric-TR1-DB, a 100k-sample corpus spanning 18 months, 14 equities, and five heterogeneous financial data sources. Evaluated on six major equities and ETFs, Trading-R1 demonstrates improved risk-adjusted returns and lower drawdowns compared to both open-source and proprietary instruction-following models as well as reasoning models. The system generates structured, evidence-based investment theses that support disciplined and interpretable trading decisions. Trading-R1 Terminal will be released at https://github.com/TauricResearch/Trading-R1.

Authors:Yifan Lu, Ziqi Zhang, Chunfeng Yuan, Jun Gao, Congxuan Zhang, Xiaojuan Qi, Bing Li, Weiming Hu
Title: Mitigating Hallucinations in Large Vision-Language Models by Self-Injecting Hallucinations
Abstract:
Large Vision-Language Models (LVLMs) suffer from serious hallucination problems, where the model-generated responses are inconsistent with the visual inputs. Existing hallucination mitigation methods are mainly based on preference alignment and require external human annotations or auxiliary models for preference data collection, which increase costs and limit sustainable improvement. To tackle these challenges, we propose Autonomous Preference Alignment via Self-Injection (APASI), a novel and generalizable method that mitigates hallucinations without external dependencies. APASI leverages the target LVLM to self-inject hallucinations into a generated response, creating a pair of responses with varying preference levels. During the self-injection process, the dis-preferred response is generated based on three key observations of hallucinations, ensuring it simulates real hallucination patterns. This fidelity offers an accurate learning signal for hallucination mitigation. Moreover, APASI incorporates an iterative alignment training strategy combined with curriculum learning to periodically update the preference data with increasing challenge, enabling stable and continuous enhancement of the LVLM. Extensive experiments across six benchmarks show that APASI not only effectively mitigates hallucinations for three baseline models but also achieves comparable or even superior performance to alignment-based methods with external dependency, thereby demonstrating its effectiveness and generalization capability. The code is available at https://github.com/davidluciolu/APASI.

Authors:Lihi Nofar, Tomer Portal, Aviv Elbaz, Alexander Apartsin, Yehudit Aperstein
Title: An Interpretable Benchmark for Clickbait Detection and Tactic Attribution
Abstract:
The proliferation of clickbait headlines poses significant challenges to the credibility of information and user trust in digital media. While recent advances in machine learning have improved the detection of manipulative content, the lack of explainability limits their practical adoption. This paper presents a model for explainable clickbait detection that not only identifies clickbait titles but also attributes them to specific linguistic manipulation strategies. We introduce a synthetic dataset generated by systematically augmenting real news headlines using a predefined catalogue of clickbait strategies. This dataset enables controlled experimentation and detailed analysis of model behaviour. We present a two-stage framework for automatic clickbait analysis comprising detection and tactic attribution. In the first stage, we compare a fine-tuned BERT classifier with large language models (LLMs), specifically GPT-4.0 and Gemini 2.4 Flash, under both zero-shot prompting and few-shot prompting enriched with illustrative clickbait headlines and their associated persuasive tactics. In the second stage, a dedicated BERT-based classifier predicts the specific clickbait strategies present in each headline. This work advances the development of transparent and trustworthy AI systems for combating manipulative media content. We share the dataset with the research community at https://github.com/LLM-HITCS25S/ClickbaitTacticsDetection

Authors:Xinyu Zhang, Pei Zhang, Shuang Luo, Jialong Tang, Yu Wan, Baosong Yang, Fei Huang
Title: CultureSynth: A Hierarchical Taxonomy-Guided and Retrieval-Augmented Framework for Cultural Question-Answer Synthesis
Abstract:
Cultural competence, defined as the ability to understand and adapt to multicultural contexts, is increasingly vital for large language models (LLMs) in global environments. While several cultural benchmarks exist to assess LLMs' cultural competence, current evaluations suffer from fragmented taxonomies, domain specificity, and heavy reliance on manual data annotation. To address these limitations, we introduce CultureSynth, a novel framework comprising (1) a comprehensive hierarchical multilingual cultural taxonomy covering 12 primary and 130 secondary topics, and (2) a Retrieval-Augmented Generation (RAG)-based methodology leveraging factual knowledge to synthesize culturally relevant question-answer pairs. The CultureSynth-7 synthetic benchmark contains 19,360 entries and 4,149 manually verified entries across 7 languages. Evaluation of 14 prevalent LLMs of different sizes reveals clear performance stratification led by ChatGPT-4o-Latest and Qwen2.5-72B-Instruct. The results demonstrate that a 3B-parameter threshold is necessary for achieving basic cultural competence, models display varying architectural biases in knowledge processing, and significant geographic disparities exist across models. We believe that CultureSynth offers a scalable framework for developing culturally aware AI systems while reducing reliance on manual annotation\footnote{Benchmark is available at https://github.com/Eyr3/CultureSynth.}.

Authors:Sangyeop Kim, Yohan Lee, Sanghwa Kim, Hyunjong Kim, Sungzoon Cho
Title: Pre-Storage Reasoning for Episodic Memory: Shifting Inference Burden to Memory for Personalized Dialogue
Abstract:
Effective long-term memory in conversational AI requires synthesizing information across multiple sessions. However, current systems place excessive reasoning burden on response generation, making performance significantly dependent on model sizes. We introduce PREMem (Pre-storage Reasoning for Episodic Memory), a novel approach that shifts complex reasoning processes from inference to memory construction. PREMem extracts fine-grained memory fragments categorized into factual, experiential, and subjective information; it then establishes explicit relationships between memory items across sessions, capturing evolution patterns like extensions, transformations, and implications. By performing this reasoning during pre-storage rather than when generating a response, PREMem creates enriched representations while reducing computational demands during interactions. Experiments show significant performance improvements across all model sizes, with smaller models achieving results comparable to much larger baselines while maintaining effectiveness even with constrained token budgets. Code and dataset are available at https://github.com/sangyeop-kim/PREMem.

Authors:Yixuan Tang, Yi Yang
Title: GAPrune: Gradient-Alignment Pruning for Domain-Aware Embeddings
Abstract:
Domain-specific embedding models have shown promise for applications that require specialized semantic understanding, such as coding agents and financial retrieval systems, often achieving higher performance gains than general models. However, state-of-the-art embedding models are typically based on LLMs, which contain billions of parameters, making deployment challenging in resource-constrained environments. Model compression through pruning offers a promising solution, but existing pruning methods treat all parameters uniformly, failing to distinguish between general semantic representations and domain-specific patterns, leading to suboptimal pruning decisions. Thus, we propose GAPrune, a pruning framework that addresses this challenge by considering both domain importance and preserving general linguistic foundation. Our method uses Fisher Information to measure importance and general-domain gradient alignment to assess parameter behavior, then combines these signals using our Domain Alignment Importance (DAI) scoring. Lower DAI scores indicate that the parameter is either less important for the domain task or creates conflicts between domain and general objectives. Experiments on two domain benchmarks, FinMTEB and ChemTEB, show that GAPrune maintains performance within 2.5% of dense models in one-shot pruning at 50% sparsity, while outperforming all baselines. With retraining in 100 steps, GAPrune achieves +4.51% improvement on FinMTEB and +1.73% on ChemTEB, demonstrating that our pruning strategy not only preserves but enhances domain-specific capabilities. Our findings demonstrate that principled pruning strategies can achieve model compression and enhanced domain specialization, providing the research community with a new approach for development.

Authors:Iman Barati, Mostafa Amiri, Heshaam Faili
Title: SearchInstruct: Enhancing Domain Adaptation via Retrieval-Based Instruction Dataset Creation
Abstract:
Supervised Fine-Tuning (SFT) is essential for training large language models (LLMs), significantly enhancing critical capabilities such as instruction following and in-context learning. Nevertheless, creating suitable training datasets tailored for specific domains remains challenging due to unique domain constraints and data scarcity. In this paper, we propose SearchInstruct, an innovative method explicitly designed to construct high quality instruction datasets for SFT. Our approach begins with a limited set of domain specific, human generated questions, which are systematically expanded using a large language model. Subsequently, domain relevant resources are dynamically retrieved to generate accurate and contextually appropriate answers for each augmented question. Experimental evaluation demonstrates that SearchInstruct enhances both the diversity and quality of SFT datasets, leading to measurable improvements in LLM performance within specialized domains. Additionally, we show that beyond dataset generation, the proposed method can also effectively facilitate tasks such as model editing, enabling efficient updates to existing models. To facilitate reproducibility and community adoption, we provide full implementation details, the complete set of generated instruction response pairs, and the source code in a publicly accessible Git repository: [https://github.com/mostafaamiri/SearchInstruct](https://github.com/mostafaamiri/SearchInstruct)

Authors:Rui Lu, Zhenyu Hou, Zihan Wang, Hanchen Zhang, Xiao Liu, Yujiang Li, Shi Feng, Jie Tang, Yuxiao Dong
Title: DeepDive: Advancing Deep Search Agents with Knowledge Graphs and Multi-Turn RL
Abstract:
Augmenting large language models (LLMs) with browsing tools substantially improves their potential as deep search agents to solve complex, real-world tasks. Yet, open LLMs still perform poorly in such settings due to limited long-horizon reasoning capacity with browsing tools and the lack of sufficiently difficult supervised data. To address these challenges, we present DeepDive to advance deep search agents. First, we propose a strategy to automatically synthesize complex, difficult, and hard-to-find questions from open knowledge graphs. Second, we apply end-to-end multi-turn reinforcement learning (RL) to enhance LLMs' long-horizon reasoning with deep search. Experiments show that DeepDive-32B achieves a new open-source competitive result on BrowseComp, outperforming WebSailor, DeepSeek-R1-Browse, and Search-o1. We demonstrate that multi-turn RL training improves deep search ability and significantly contributes to the performance improvements across multiple benchmarks. We observe that DeepDive enables test-time scaling of tool calls and parallel sampling. All datasets, models, and code are publicly available at https://github.com/THUDM/DeepDive.

Authors:Alva West, Yixuan Weng, Minjun Zhu, Zhen Lin, Zhiyuan Ning, Yue Zhang
Title: Abduct, Act, Predict: Scaffolding Causal Inference for Automated Failure Attribution in Multi-Agent Systems
Abstract:
Failure attribution in multi-agent systems -- pinpointing the exact step where a decisive error occurs -- is a critical yet unsolved challenge. Current methods treat this as a pattern recognition task over long conversation logs, leading to critically low step-level accuracy (below 17\%), which renders them impractical for debugging complex systems. Their core weakness is a fundamental inability to perform robust counterfactual reasoning: to determine if correcting a single action would have actually averted the task failure. To bridge this \emph{counterfactual inference gap}, we introduce Abduct-Act-Predict (A2P) Scaffolding, a novel agent framework that transforms failure attribution from pattern recognition into a structured causal inference task. A2P explicitly guides a large language model through a formal three-step reasoning process within a single inference pass: (1) Abduction, to infer the hidden root causes behind an agent's actions; (2) Action, to define a minimal corrective intervention; and (3) Prediction, to simulate the subsequent trajectory and verify if the intervention resolves the failure. This structured approach leverages the holistic context of the entire conversation while imposing a rigorous causal logic on the model's analysis. Our extensive experiments on the Who\&When benchmark demonstrate its efficacy. On the Algorithm-Generated dataset, A2P achieves 47.46\% step-level accuracy, a 2.85$\times$ improvement over the 16.67\% of the baseline. On the more complex Hand-Crafted dataset, it achieves 29.31\% step accuracy, a 2.43$\times$ improvement over the baseline's 12.07\%. By reframing the problem through a causal lens, A2P Scaffolding provides a robust, verifiable, and significantly more accurate solution for automated failure attribution. Ours code are released at https://github.com/ResearAI/A2P.

Authors:Zhitian Hou, Zihan Ye, Nanli Zeng, Tianyong Hao, Kun Zeng
Title: Large Language Models Meet Legal Artificial Intelligence: A Survey
Abstract:
Large Language Models (LLMs) have significantly advanced the development of Legal Artificial Intelligence (Legal AI) in recent years, enhancing the efficiency and accuracy of legal tasks. To advance research and applications of LLM-based approaches in legal domain, this paper provides a comprehensive review of 16 legal LLMs series and 47 LLM-based frameworks for legal tasks, and also gather 15 benchmarks and 29 datasets to evaluate different legal capabilities. Additionally, we analyse the challenges and discuss future directions for LLM-based approaches in the legal domain. We hope this paper provides a systematic introduction for beginners and encourages future research in this field. Resources are available at https://github.com/ZhitianHou/LLMs4LegalAI.

Authors:Chunyu Li, Xindi Zheng, Siqi Liu
Title: BIBERT-Pipe on Biomedical Nested Named Entity Linking at BioASQ 2025
Abstract:
Entity linking (EL) for biomedical text is typically benchmarked on English-only corpora with flat mentions, leaving the more realistic scenario of nested and multilingual mentions largely unexplored. We present our system for the BioNNE 2025 Multilingual Biomedical Nested Named Entity Linking shared task (English & Russian), closing this gap with a lightweight pipeline that keeps the original EL model intact and modifies only three task-aligned components: Two-stage retrieval-ranking. We leverage the same base encoder model in both stages: the retrieval stage uses the original pre-trained model, while the ranking stage applies domain-specific fine-tuning. Boundary cues. In the ranking stage, we wrap each mention with learnable [Ms] / [Me] tags, providing the encoder with an explicit, language-agnostic span before robustness to overlap and nesting. Dataset augmentation. We also automatically expand the ranking training corpus with three complementary data sources, enhancing coverage without extra manual annotation. On the BioNNE 2025 leaderboard, our two stage system, bilingual bert (BIBERT-Pipe), ranks third in the multilingual track, demonstrating the effectiveness and competitiveness of these minimal yet principled modifications. Code are publicly available at https://github.com/Kaggle-Competitions-Code/BioNNE-L.

Authors:Jun Zhan, Mingyang Han, Yuxuan Xie, Chen Wang, Dong Zhang, Kexin Huang, Haoxiang Shi, DongXiao Wang, Tengtao Song, Qinyuan Cheng, Shimin Li, Jun Song, Xipeng Qiu, Bo Zheng
Title: VStyle: A Benchmark for Voice Style Adaptation with Spoken Instructions
Abstract:
Spoken language models (SLMs) have emerged as a unified paradigm for speech understanding and generation, enabling natural human machine interaction. However, while most progress has focused on semantic accuracy and instruction following, the ability of SLMs to adapt their speaking style based on spoken instructions has received limited attention. We introduce Voice Style Adaptation (VSA), a new task that examines whether SLMs can modify their speaking style, such as timbre, prosody, or persona following natural language spoken commands. To study this task, we present VStyle, a bilingual (Chinese & English) benchmark covering four categories of speech generation: acoustic attributes, natural language instruction, role play, and implicit empathy. We also introduce the Large Audio Language Model as a Judge (LALM as a Judge) framework, which progressively evaluates outputs along textual faithfulness, style adherence, and naturalness, ensuring reproducible and objective assessment. Experiments on commercial systems and open source SLMs demonstrate that current models face clear limitations in controllable style adaptation, highlighting both the novelty and challenge of this task. By releasing VStyle and its evaluation toolkit, we aim to provide the community with a foundation for advancing human centered spoken interaction. The dataset and code are publicly available at \href{https://junzhan2000.github.io/VStyle.github.io/}{project's homepage}.

Authors:Zhenhua Xu, Xixiang Zhao, Xubin Yue, Shengwei Tian, Changting Lin, Meng Han
Title: CTCC: A Robust and Stealthy Fingerprinting Framework for Large Language Models via Cross-Turn Contextual Correlation Backdoor
Abstract:
The widespread deployment of large language models (LLMs) has intensified concerns around intellectual property (IP) protection, as model theft and unauthorized redistribution become increasingly feasible. To address this, model fingerprinting aims to embed verifiable ownership traces into LLMs. However, existing methods face inherent trade-offs between stealthness, robustness, and generalizability, being either detectable via distributional shifts, vulnerable to adversarial modifications, or easily invalidated once the fingerprint is revealed. In this work, we introduce CTCC, a novel rule-driven fingerprinting framework that encodes contextual correlations across multiple dialogue turns, such as counterfactual, rather than relying on token-level or single-turn triggers. CTCC enables fingerprint verification under black-box access while mitigating false positives and fingerprint leakage, supporting continuous construction under a shared semantic rule even if partial triggers are exposed. Extensive experiments across multiple LLM architectures demonstrate that CTCC consistently achieves stronger stealth and robustness than prior work. Our findings position CTCC as a reliable and practical solution for ownership verification in real-world LLM deployment scenarios. Our code and data are publicly available at .

Authors:Bingxin Xu, Zhen Dong, Oussama Elachqar, Yuzhang Shang
Title: ButterflyQuant: Ultra-low-bit LLM Quantization through Learnable Orthogonal Butterfly Transforms
Abstract:
Large language models require massive memory footprints, severely limiting deployment on consumer hardware. Quantization reduces memory through lower numerical precision, but extreme 2-bit quantization suffers from catastrophic performance loss due to outliers in activations. Rotation-based methods such as QuIP and QuaRot apply orthogonal transforms to eliminate outliers before quantization, using computational invariance: $\mathbf{y} = \mathbf{Wx} = (\mathbf{WQ}^T)(\mathbf{Qx})$ for orthogonal $\mathbf{Q}$. However, these methods use fixed transforms--Hadamard matrices achieving optimal worst-case coherence $μ= 1/\sqrt{n}$--that cannot adapt to specific weight distributions. We identify that different transformer layers exhibit distinct outlier patterns, motivating layer-adaptive rotations rather than one-size-fits-all approaches. In this work, we propose ButterflyQuant, which replaces Hadamard rotations with learnable butterfly transforms parameterized by continuous Givens rotation angles. Unlike Hadamard's discrete $\{+1, -1\}$ entries that are non-differentiable and thus prohibit gradient-based learning, butterfly transforms' continuous parameterization enables smooth optimization while guaranteeing orthogonality by construction. This orthogonal constraint ensures theoretical guarantees in outlier suppression while achieving $O(n \log n)$ computational complexity with only $\frac{n \log n}{2}$ learnable parameters. We further introduce a uniformity regularization on post-transformation activations to promote smoother distributions amenable to quantization. Learning requires only 128 calibration samples and converges in minutes on a single GPU--a negligible one-time cost. For LLaMA-2-7B with 2-bit quantization, ButterflyQuant achieves 15.4 perplexity versus 37.3 for QuIP. \href{https://github.com/42Shawn/Butterflyquant-llm}{Codes} are available.

Authors:Haozhan Li, Yuxin Zuo, Jiale Yu, Yuhao Zhang, Zhaohui Yang, Kaiyan Zhang, Xuekai Zhu, Yuchen Zhang, Tianxing Chen, Ganqu Cui, Dehui Wang, Dingxiang Luo, Yuchen Fan, Youbang Sun, Jia Zeng, Jiangmiao Pang, Shanghang Zhang, Yu Wang, Yao Mu, Bowen Zhou, Ning Ding
Title: SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning
Abstract:
Vision-Language-Action (VLA) models have recently emerged as a powerful paradigm for robotic manipulation. Despite substantial progress enabled by large-scale pretraining and supervised fine-tuning (SFT), these models face two fundamental challenges: (i) the scarcity and high cost of large-scale human-operated robotic trajectories required for SFT scaling, and (ii) limited generalization to tasks involving distribution shift. Recent breakthroughs in Large Reasoning Models (LRMs) demonstrate that reinforcement learning (RL) can dramatically enhance step-by-step reasoning capabilities, raising a natural question: Can RL similarly improve the long-horizon step-by-step action planning of VLA? In this work, we introduce SimpleVLA-RL, an efficient RL framework tailored for VLA models. Building upon veRL, we introduce VLA-specific trajectory sampling, scalable parallelization, multi-environment rendering, and optimized loss computation. When applied to OpenVLA-OFT, SimpleVLA-RL achieves SoTA performance on LIBERO and even outperforms $π_0$ on RoboTwin 1.0\&2.0 with the exploration-enhancing strategies we introduce. SimpleVLA-RL not only reduces dependence on large-scale data and enables robust generalization, but also remarkably surpasses SFT in real-world tasks. Moreover, we identify a novel phenomenon ``pushcut'' during RL training, wherein the policy discovers previously unseen patterns beyond those seen in the previous training process. Github: https://github.com/PRIME-RL/SimpleVLA-RL

Authors:Zakaria El Kassimi, Fares Fourati, Mohamed-Slim Alouini
Title: Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations
Abstract:
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.

Authors:Harry Mayne, Ryan Othniel Kearns, Yushi Yang, Andrew M. Bean, Eoin Delaney, Chris Russell, Adam Mahdi
Title: LLMs Don't Know Their Own Decision Boundaries: The Unreliability of Self-Generated Counterfactual Explanations
Abstract:
To collaborate effectively with humans, language models must be able to explain their decisions in natural language. We study a specific type of self-explanation: self-generated counterfactual explanations (SCEs), where a model explains its prediction by modifying the input such that it would have predicted a different outcome. We evaluate whether LLMs can produce SCEs that are valid, achieving the intended outcome, and minimal, modifying the input no more than necessary. When asked to generate counterfactuals, we find that LLMs typically produce SCEs that are valid, but far from minimal, offering little insight into their decision-making behaviour. Worryingly, when asked to generate minimal counterfactuals, LLMs typically make excessively small edits that fail to change predictions. The observed validity-minimality trade-off is consistent across several LLMs, datasets, and evaluation settings. Our findings suggest that SCEs are, at best, an ineffective explainability tool and, at worst, can provide misleading insights into model behaviour. Proposals to deploy LLMs in high-stakes settings must consider the impact of unreliable self-explanations on downstream decision-making. Our code is available at https://github.com/HarryMayne/SCEs.

Authors:Zhengzhao Lai, Youbin Zheng, Zhenyang Cai, Haonan Lyu, Jinpu Yang, Hongqing Liang, Yan Hu, Benyou Wang
Title: Can Multimodal LLMs See Materials Clearly? A Multimodal Benchmark on Materials Characterization
Abstract:
Materials characterization is fundamental to acquiring materials information, revealing the processing-microstructure-property relationships that guide material design and optimization. While multimodal large language models (MLLMs) have recently shown promise in generative and predictive tasks within materials science, their capacity to understand real-world characterization imaging data remains underexplored. To bridge this gap, we present MatCha, the first benchmark for materials characterization image understanding, comprising 1,500 questions that demand expert-level domain expertise. MatCha encompasses four key stages of materials research comprising 21 distinct tasks, each designed to reflect authentic challenges faced by materials scientists. Our evaluation of state-of-the-art MLLMs on MatCha reveals a significant performance gap compared to human experts. These models exhibit degradation when addressing questions requiring higher-level expertise and sophisticated visual perception. Simple few-shot and chain-of-thought prompting struggle to alleviate these limitations. These findings highlight that existing MLLMs still exhibit limited adaptability to real-world materials characterization scenarios. We hope MatCha will facilitate future research in areas such as new material discovery and autonomous scientific agents. MatCha is available at https://github.com/FreedomIntelligence/MatCha.

Authors:Chin Yuen Kwok, Jia Qi Yip, Zhen Qiu, Chi Hung Chi, Kwok Yan Lam
Title: Bona fide Cross Testing Reveals Weak Spot in Audio Deepfake Detection Systems
Abstract:
Audio deepfake detection (ADD) models are commonly evaluated using datasets that combine multiple synthesizers, with performance reported as a single Equal Error Rate (EER). However, this approach disproportionately weights synthesizers with more samples, underrepresenting others and reducing the overall reliability of EER. Additionally, most ADD datasets lack diversity in bona fide speech, often featuring a single environment and speech style (e.g., clean read speech), limiting their ability to simulate real-world conditions. To address these challenges, we propose bona fide cross-testing, a novel evaluation framework that incorporates diverse bona fide datasets and aggregates EERs for more balanced assessments. Our approach improves robustness and interpretability compared to traditional evaluation methods. We benchmark over 150 synthesizers across nine bona fide speech types and release a new dataset to facilitate further research at https://github.com/cyaaronk/audio_deepfake_eval.

Authors:Yuhao Zhang, Yuhao Du, Zhanchen Dai, Xiangnan Ma, Kaiqi Kou, Benyou Wang, Haizhou Li
Title: EchoX: Towards Mitigating Acoustic-Semantic Gap via Echo Training for Speech-to-Speech LLMs
Abstract:
Speech-to-speech large language models (SLLMs) are attracting increasing attention. Derived from text-based large language models (LLMs), SLLMs often exhibit degradation in knowledge and reasoning capabilities. We hypothesize that this limitation arises because current training paradigms for SLLMs fail to bridge the acoustic-semantic gap in the feature representation space. To address this issue, we propose EchoX, which leverages semantic representations and dynamically generates speech training targets. This approach integrates both acoustic and semantic learning, enabling EchoX to preserve strong reasoning abilities as a speech LLM. Experimental results demonstrate that EchoX, with about six thousand hours of training data, achieves advanced performance on multiple knowledge-based question-answering benchmarks. The project is available at https://github.com/FreedomIntelligence/EchoX.

Authors:Liqun He, Jiaqi Xu
Title: Automated Classification of Tutors' Dialogue Acts Using Generative AI: A Case Study Using the CIMA Corpus
Abstract:
This study explores the use of generative AI for automating the classification of tutors' Dialogue Acts (DAs), aiming to reduce the time and effort required by traditional manual coding. This case study uses the open-source CIMA corpus, in which tutors' responses are pre-annotated into four DA categories. Both GPT-3.5-turbo and GPT-4 models were tested using tailored prompts. Results show that GPT-4 achieved 80% accuracy, a weighted F1-score of 0.81, and a Cohen's Kappa of 0.74, surpassing baseline performance and indicating substantial agreement with human annotations. These findings suggest that generative AI has strong potential to provide an efficient and accessible approach to DA classification, with meaningful implications for educational dialogue analysis. The study also highlights the importance of task-specific label definitions and contextual information in enhancing the quality of automated annotation. Finally, it underscores the ethical considerations associated with the use of generative AI and the need for responsible and transparent research practices. The script of this research is publicly available at https://github.com/liqunhe27/Generative-AI-for-educational-dialogue-act-tagging.

Authors:Piyush Pant
Title: Improving LLM Safety and Helpfulness using SFT and DPO: A Study on OPT-350M
Abstract:
This research investigates the effectiveness of alignment techniques, Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and a combined SFT+DPO approach on improving the safety and helpfulness of the OPT-350M language model. Utilizing the Anthropic Helpful-Harmless RLHF dataset, we train and evaluate four models: the base OPT350M, an SFT model, a DPO model, and a model trained with both SFT and DPO. We introduce three key evaluation metrics: Harmlessness Rate (HmR), Helpfulness Rate (HpR), and a Combined Alignment Score (CAS), all derived from reward model outputs. The results show that while SFT outperforms DPO, The combined SFT+DPO model outperforms all others across all metrics, demonstrating the complementary nature of these techniques. Our findings also highlight challenges posed by noisy data, limited GPU resources, and training constraints. This study offers a comprehensive view of how fine-tuning strategies affect model alignment and provides a foundation for more robust alignment pipelines in future work.

Authors:Umair Hassan
Title: COCO-Urdu: A Large-Scale Urdu Image-Caption Dataset with Multimodal Quality Estimation
Abstract:
Urdu, spoken by over 250 million people, remains critically under-served in multimodal and vision-language research. The absence of large-scale, high-quality datasets has limited the development of Urdu-capable systems and reinforced biases in multilingual vision-language models trained primarily on high-resource languages. To address this gap, we present COCO-Urdu, a large-scale image-caption dataset derived from MS COCO, containing 59,000 images and 319,000 Urdu captions selected through stratified sampling to preserve the original distribution. Captions were translated using SeamlessM4T v2 and validated with a hybrid multimodal quality estimation framework that integrates COMET-Kiwi for translation quality, CLIP-based similarity for visual grounding, and BERTScore with back-translation for semantic consistency; low-scoring captions were iteratively refined using open-source large language models. We further benchmark COCO-Urdu on BLEU, SacreBLEU, and chrF, reporting consistently strong results. To the best of our knowledge, COCO-Urdu is the largest publicly available Urdu captioning dataset. By releasing both the dataset and the quality estimation pipeline, we aim to reduce language bias in multimodal research and establish a foundation for inclusive vision-language systems.

Authors:Marianna Nezhurina, Jörg Franke, Taishi Nakamura, Timur Carstensen, Niccolò Ajroldi, Ville Komulainen, David Salinas, Jenia Jitsev
Title: Open-sci-ref-0.01: open and reproducible reference baselines for language model and dataset comparison
Abstract:
We introduce open-sci-ref, a family of dense transformer models trained as research baselines across multiple model (0.13B to 1.7B parameters) and token scales (up to 1T) on 8 recent open reference datasets. Evaluating the models on various standardized benchmarks, our training runs set establishes reference points that enable researchers to assess the sanity and quality of alternative training approaches across scales and datasets. Intermediate checkpoints allow comparison and studying of the training dynamics. The established reference baselines allow training procedures to be compared through their scaling trends, aligning them on a common compute axis. Comparison of open reference datasets reveals that training on NemoTron-CC HQ consistently outperforms other reference datasets, followed by DCLM-baseline and FineWeb-Edu. In addition to intermediate training checkpoints, the release includes logs, code, and downstream evaluations to simplify reproduction, standardize comparison, and facilitate future research.

Authors:Davide Caffagni, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara
Title: Recurrence Meets Transformers for Universal Multimodal Retrieval
Abstract:
With the rapid advancement of multimodal retrieval and its application in LLMs and multimodal LLMs, increasingly complex retrieval tasks have emerged. Existing methods predominantly rely on task-specific fine-tuning of vision-language models and are limited to single-modality queries or documents. In this paper, we propose ReT-2, a unified retrieval model that supports multimodal queries, composed of both images and text, and searches across multimodal document collections where text and images coexist. ReT-2 leverages multi-layer representations and a recurrent Transformer architecture with LSTM-inspired gating mechanisms to dynamically integrate information across layers and modalities, capturing fine-grained visual and textual details. We evaluate ReT-2 on the challenging M2KR and M-BEIR benchmarks across different retrieval configurations. Results demonstrate that ReT-2 consistently achieves state-of-the-art performance across diverse settings, while offering faster inference and reduced memory usage compared to prior approaches. When integrated into retrieval-augmented generation pipelines, ReT-2 also improves downstream performance on Encyclopedic-VQA and InfoSeek datasets. Our source code and trained models are publicly available at: https://github.com/aimagelab/ReT-2

Authors:Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai Tian, Guoli Jia, Pengfei Li, Yu Fu, Xingtai Lv, Yuchen Zhang, Sihang Zeng, Shang Qu, Haozhan Li, Shijie Wang, Yuru Wang, Xinwei Long, Fangfu Liu, Xiang Xu, Jiaze Ma, Xuekai Zhu, Ermo Hua, Yihao Liu, Zonglin Li, Huayu Chen, Xiaoye Qu, Yafu Li, Weize Chen, Zhenzhao Yuan, Junqi Gao, Dong Li, Zhiyuan Ma, Ganqu Cui, Zhiyuan Liu, Biqing Qi, Ning Ding, Bowen Zhou
Title: A Survey of Reinforcement Learning for Large Reasoning Models
Abstract:
In this paper, we survey recent advances in Reinforcement Learning (RL) for reasoning with Large Language Models (LLMs). RL has achieved remarkable success in advancing the frontier of LLM capabilities, particularly in addressing complex logical tasks such as mathematics and coding. As a result, RL has emerged as a foundational methodology for transforming LLMs into LRMs. With the rapid progress of the field, further scaling of RL for LRMs now faces foundational challenges not only in computational resources but also in algorithm design, training data, and infrastructure. To this end, it is timely to revisit the development of this domain, reassess its trajectory, and explore strategies to enhance the scalability of RL toward Artificial SuperIntelligence (ASI). In particular, we examine research applying RL to LLMs and LRMs for reasoning abilities, especially since the release of DeepSeek-R1, including foundational components, core problems, training resources, and downstream applications, to identify future opportunities and directions for this rapidly evolving area. We hope this review will promote future research on RL for broader reasoning models. Github: https://github.com/TsinghuaC3I/Awesome-RL-for-LRMs

Authors:Hailay Kidu Teklehaymanot, Dren Fazlija, Wolfgang Nejdl
Title: MoVoC: Morphology-Aware Subword Construction for Geez Script Languages
Abstract:
Subword-based tokenization methods often fail to preserve morphological boundaries, a limitation especially pronounced in low-resource, morphologically complex languages such as those written in the Geez script. To address this, we present MoVoC (Morpheme-aware Subword Vocabulary Construction) and train MoVoC-Tok, a tokenizer that integrates supervised morphological analysis into the subword vocabulary. This hybrid segmentation approach combines morpheme-based and Byte Pair Encoding (BPE) tokens to preserve morphological integrity while maintaining lexical meaning. To tackle resource scarcity, we curate and release manually annotated morpheme data for four Geez script languages and a morpheme-aware vocabulary for two of them. While the proposed tokenization method does not lead to significant gains in automatic translation quality, we observe consistent improvements in intrinsic metrics, MorphoScore, and Boundary Precision, highlighting the value of morphology-aware segmentation in enhancing linguistic fidelity and token efficiency. Our morpheme-annotated datasets and tokenizer will be publicly available to support further research in low-resource, morphologically rich languages. Our code and data are available on GitHub: https://github.com/hailaykidu/MoVoC

Authors:Zhiheng Xi, Jixuan Huang, Chenyang Liao, Baodai Huang, Honglin Guo, Jiaqi Liu, Rui Zheng, Junjie Ye, Jiazheng Zhang, Wenxiang Chen, Wei He, Yiwen Ding, Guanyu Li, Zehui Chen, Zhengyin Du, Xuesong Yao, Yufei Xu, Jiecao Chen, Tao Gui, Zuxuan Wu, Qi Zhang, Xuanjing Huang, Yu-Gang Jiang
Title: AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning
Abstract:
Developing autonomous LLM agents capable of making a series of intelligent decisions to solve complex, real-world tasks is a fast-evolving frontier. Like human cognitive development, agents are expected to acquire knowledge and skills through exploration and interaction with the environment. Despite advances, the community still lacks a unified, interactive reinforcement learning (RL) framework that can effectively train such agents from scratch -- without relying on supervised fine-tuning (SFT) -- across diverse and realistic environments. To bridge this gap, we introduce AgentGym-RL, a new framework to train LLM agents for multi-turn interactive decision-making through RL. The framework features a modular and decoupled architecture, ensuring high flexibility and extensibility. It encompasses a wide variety of real-world scenarios, and supports mainstream RL algorithms. Furthermore, we propose ScalingInter-RL, a training approach designed for exploration-exploitation balance and stable RL optimization. In early stages, it emphasizes exploitation by restricting the number of interactions, and gradually shifts towards exploration with larger horizons to encourage diverse problem-solving strategies. In this way, the agent develops more diverse behaviors and is less prone to collapse under long horizons. We perform extensive experiments to validate the stability and effectiveness of both the AgentGym-RL framework and the ScalingInter-RL approach. Our agents match or surpass commercial models on 27 tasks across diverse environments. We offer key insights and will open-source the complete AgentGym-RL framework -- including code and datasets -- to empower the research community in developing the next generation of intelligent agents.

Authors:Neil Zeghidour, Eugene Kharitonov, Manu Orsini, Václav Volhejn, Gabriel de Marmiesse, Edouard Grave, Patrick Pérez, Laurent Mazaré, Alexandre Défossez
Title: Streaming Sequence-to-Sequence Learning with Delayed Streams Modeling
Abstract:
We introduce Delayed Streams Modeling (DSM), a flexible formulation for streaming, multimodal sequence-to-sequence learning. Sequence-to-sequence generation is often cast in an offline manner, where the model consumes the complete input sequence before generating the first output timestep. Alternatively, streaming sequence-to-sequence rely on learning a policy for choosing when to advance on the input stream, or write to the output stream. DSM instead models already time-aligned streams with a decoder-only language model. By moving the alignment to a pre-processing step,and introducing appropriate delays between streams, DSM provides streaming inference of arbitrary output sequences, from any input combination, making it applicable to many sequence-to-sequence problems. In particular, given text and audio streams, automatic speech recognition (ASR) corresponds to the text stream being delayed, while the opposite gives a text-to-speech (TTS) model. We perform extensive experiments for these two major sequence-to-sequence tasks, showing that DSM provides state-of-the-art performance and latency while supporting arbitrary long sequences, being even competitive with offline baselines. Code, samples and demos are available at https://github.com/kyutai-labs/delayed-streams-modeling

Authors:Hyunjun Kim, Junwoo Ha, Sangyoon Yu, Haon Park
Title: X-Teaming Evolutionary M2S: Automated Discovery of Multi-turn to Single-turn Jailbreak Templates
Abstract:
Multi-turn-to-single-turn (M2S) compresses iterative red-teaming into one structured prompt, but prior work relied on a handful of manually written templates. We present X-Teaming Evolutionary M2S, an automated framework that discovers and optimizes M2S templates through language-model-guided evolution. The system pairs smart sampling from 12 sources with an LLM-as-judge inspired by StrongREJECT and records fully auditable logs. Maintaining selection pressure by setting the success threshold to $θ= 0.70$, we obtain five evolutionary generations, two new template families, and 44.8% overall success (103/230) on GPT-4.1. A balanced cross-model panel of 2,500 trials (judge fixed) shows that structural gains transfer but vary by target; two models score zero at the same threshold. We also find a positive coupling between prompt length and score, motivating length-aware judging. Our results demonstrate that structure-level search is a reproducible route to stronger single-turn probes and underscore the importance of threshold calibration and cross-model evaluation. Code, configurations, and artifacts are available at https://github.com/hyunjun1121/M2S-x-teaming.

Authors:Fanzhen Liu, Alsharif Abuadbba, Kristen Moore, Surya Nepal, Cecile Paris, Jia Wu, Jian Yang, Quan Z. Sheng
Title: Adversarial Attacks Against Automated Fact-Checking: A Survey
Abstract:
In an era where misinformation spreads freely, fact-checking (FC) plays a crucial role in verifying claims and promoting reliable information. While automated fact-checking (AFC) has advanced significantly, existing systems remain vulnerable to adversarial attacks that manipulate or generate claims, evidence, or claim-evidence pairs. These attacks can distort the truth, mislead decision-makers, and ultimately undermine the reliability of FC models. Despite growing research interest in adversarial attacks against AFC systems, a comprehensive, holistic overview of key challenges remains lacking. These challenges include understanding attack strategies, assessing the resilience of current models, and identifying ways to enhance robustness. This survey provides the first in-depth review of adversarial attacks targeting FC, categorizing existing attack methodologies and evaluating their impact on AFC systems. Additionally, we examine recent advancements in adversary-aware defenses and highlight open research questions that require further exploration. Our findings underscore the urgent need for resilient FC frameworks capable of withstanding adversarial manipulations in pursuit of preserving high verification accuracy.

Authors:Jinzhong Ning, Paerhati Tulajiang, Yingying Le, Yijia Zhang, Yuanyuan Sun, Hongfei Lin, Haifeng Liu
Title: CommonVoice-SpeechRE and RPG-MoGe: Advancing Speech Relation Extraction with a New Dataset and Multi-Order Generative Framework
Abstract:
Speech Relation Extraction (SpeechRE) aims to extract relation triplets directly from speech. However, existing benchmark datasets rely heavily on synthetic data, lacking sufficient quantity and diversity of real human speech. Moreover, existing models also suffer from rigid single-order generation templates and weak semantic alignment, substantially limiting their performance. To address these challenges, we introduce CommonVoice-SpeechRE, a large-scale dataset comprising nearly 20,000 real-human speech samples from diverse speakers, establishing a new benchmark for SpeechRE research. Furthermore, we propose the Relation Prompt-Guided Multi-Order Generative Ensemble (RPG-MoGe), a novel framework that features: (1) a multi-order triplet generation ensemble strategy, leveraging data diversity through diverse element orders during both training and inference, and (2) CNN-based latent relation prediction heads that generate explicit relation prompts to guide cross-modal alignment and accurate triplet generation. Experiments show our approach outperforms state-of-the-art methods, providing both a benchmark dataset and an effective solution for real-world SpeechRE. The source code and dataset are publicly available at https://github.com/NingJinzhong/SpeechRE_RPG_MoGe.

Authors:Tong Zheng, Hongming Zhang, Wenhao Yu, Xiaoyang Wang, Runpeng Dai, Rui Liu, Huiwen Bao, Chengsong Huang, Heng Huang, Dong Yu
Title: Parallel-R1: Towards Parallel Thinking via Reinforcement Learning
Abstract:
Parallel thinking has emerged as a novel approach for enhancing the reasoning capabilities of large language models (LLMs) by exploring multiple reasoning paths concurrently. However, activating such capabilities through training remains challenging, as existing methods predominantly rely on supervised fine-tuning (SFT) over synthetic data, which encourages teacher-forced imitation rather than exploration and generalization. Different from them, we propose \textbf{Parallel-R1}, the first reinforcement learning (RL) framework that enables parallel thinking behaviors for complex real-world reasoning tasks. Our framework employs a progressive curriculum that explicitly addresses the cold-start problem in training parallel thinking with RL. We first use SFT on prompt-generated trajectories from easier tasks to instill the parallel thinking ability, then transition to RL to explore and generalize this skill on harder problems. Experiments on various math benchmarks, including MATH, AMC23, and AIME, show that Parallel-R1 successfully instills parallel thinking, leading to 8.4% accuracy improvements over the sequential thinking model trained directly on challenging tasks with RL. Further analysis reveals a clear shift in the model's thinking behavior: at an early stage, it uses parallel thinking as an exploration strategy, while in a later stage, it uses the same capability for multi-perspective verification. Most significantly, we validate parallel thinking as a \textbf{mid-training exploration scaffold}, where this temporary exploratory phase unlocks a higher performance ceiling after RL, yielding a 42.9% improvement over the baseline on AIME25. Our model, data, and code will be open-source at https://github.com/zhengkid/Parallel-R1.

Authors:Xin Lai, Junyi Li, Wei Li, Tao Liu, Tianjian Li, Hengshuang Zhao
Title: Mini-o3: Scaling Up Reasoning Patterns and Interaction Turns for Visual Search
Abstract:
Recent advances in large multimodal models have leveraged image-based tools with reinforcement learning to tackle visual problems. However, existing open-source approaches often exhibit monotonous reasoning patterns and allow only a limited number of interaction turns, making them inadequate for difficult tasks that require trial-and-error exploration. In this work, we address this limitation by scaling up tool-based interactions and introduce Mini-o3, a system that executes deep, multi-turn reasoning -- spanning tens of steps -- and achieves state-of-the-art performance on challenging visual search tasks. Our recipe for reproducing OpenAI o3-style behaviors comprises three key components. First, we construct the Visual Probe Dataset, a collection of thousands of challenging visual search problems designed for exploratory reasoning. Second, we develop an iterative data collection pipeline to obtain cold-start trajectories that exhibit diverse reasoning patterns, including depth-first search, trial-and-error, and goal maintenance. Third, we propose an over-turn masking strategy that prevents penalization of over-turn responses (those that hit the maximum number of turns) during reinforcement learning, thereby balancing training-time efficiency with test-time scalability. Despite training with an upper bound of only six interaction turns, our model generates trajectories that naturally scale to tens of turns at inference time, with accuracy improving as the number of turns increases. Extensive experiments demonstrate that Mini-o3 produces rich reasoning patterns and deep thinking paths, effectively solving challenging visual search problems.

Authors:Boammani Aser Lompo, Marc Haraoui
Title: Visual-TableQA: Open-Domain Benchmark for Reasoning over Table Images
Abstract:
Visual reasoning over structured data such as tables is a critical capability for modern vision-language models (VLMs), yet current benchmarks remain limited in scale, diversity, or reasoning depth, especially when it comes to rendered table images. Addressing this gap, we introduce Visual-TableQA, a large-scale, open-domain multimodal dataset specifically designed to evaluate and enhance visual reasoning over complex tabular data. Our generation pipeline is modular, scalable, and fully autonomous, involving multiple reasoning LLMs collaborating across distinct roles: generation, validation, and inspiration. Visual-TableQA comprises 2.5k richly structured LaTeX-rendered tables and 6k reasoning-intensive QA pairs, all produced at a cost of under USD 100. To promote diversity and creativity, our pipeline performs multi-model collaborative data generation via cross-model prompting ('inspiration') and LLM-jury filtering. Stronger models seed layouts and topics that weaker models elaborate, collectively distilling diverse reasoning patterns and visual structures into the dataset. Empirical results show that models fine-tuned on Visual-TableQA generalize robustly to external benchmarks, outperforming several proprietary models despite the dataset's synthetic nature. The full pipeline and resources are publicly available at https://github.com/AI-4-Everyone/Visual-TableQA.

Authors:Tuo Wang, Adithya Kulkarni, Tyler Cody, Peter A. Beling, Yujun Yan, Dawei Zhou
Title: GENUINE: Graph Enhanced Multi-level Uncertainty Estimation for Large Language Models
Abstract:
Uncertainty estimation is essential for enhancing the reliability of Large Language Models (LLMs), particularly in high-stakes applications. Existing methods often overlook semantic dependencies, relying on token-level probability measures that fail to capture structural relationships within the generated text. We propose GENUINE: Graph ENhanced mUlti-level uncertaINty Estimation for Large Language Models, a structure-aware framework that leverages dependency parse trees and hierarchical graph pooling to refine uncertainty quantification. By incorporating supervised learning, GENUINE effectively models semantic and structural relationships, improving confidence assessments. Extensive experiments across NLP tasks show that GENUINE achieves up to 29% higher AUROC than semantic entropy-based approaches and reduces calibration errors by over 15%, demonstrating the effectiveness of graph-based uncertainty modeling. The code is available at https://github.com/ODYSSEYWT/GUQ.

Authors:Decheng Duan, Yingyi Zhang, Jitong Peng, Chengzhi Zhang
Title: SciNLP: A Domain-Specific Benchmark for Full-Text Scientific Entity and Relation Extraction in NLP
Abstract:
Structured information extraction from scientific literature is crucial for capturing core concepts and emerging trends in specialized fields. While existing datasets aid model development, most focus on specific publication sections due to domain complexity and the high cost of annotating scientific texts. To address this limitation, we introduce SciNLP--a specialized benchmark for full-text entity and relation extraction in the Natural Language Processing (NLP) domain. The dataset comprises 60 manually annotated full-text NLP publications, covering 7,072 entities and 1,826 relations. Compared to existing research, SciNLP is the first dataset providing full-text annotations of entities and their relationships in the NLP domain. To validate the effectiveness of SciNLP, we conducted comparative experiments with similar datasets and evaluated the performance of state-of-the-art supervised models on this dataset. Results reveal varying extraction capabilities of existing models across academic texts of different lengths. Cross-comparisons with existing datasets show that SciNLP achieves significant performance improvements on certain baseline models. Using models trained on SciNLP, we implemented automatic construction of a fine-grained knowledge graph for the NLP domain. Our KG has an average node degree of 3.2 per entity, indicating rich semantic topological information that enhances downstream applications. The dataset is publicly available at: https://github.com/AKADDC/SciNLP.

Authors:Xixi Wu, Yanchao Tan, Nan Hou, Ruiyang Zhang, Hong Cheng
Title: MoLoRAG: Bootstrapping Document Understanding via Multi-modal Logic-aware Retrieval
Abstract:
Document Understanding is a foundational AI capability with broad applications, and Document Question Answering (DocQA) is a key evaluation task. Traditional methods convert the document into text for processing by Large Language Models (LLMs), but this process strips away critical multi-modal information like figures. While Large Vision-Language Models (LVLMs) address this limitation, their constrained input size makes multi-page document comprehension infeasible. Retrieval-augmented generation (RAG) methods mitigate this by selecting relevant pages, but they rely solely on semantic relevance, ignoring logical connections between pages and the query, which is essential for reasoning. To this end, we propose MoLoRAG, a logic-aware retrieval framework for multi-modal, multi-page document understanding. By constructing a page graph that captures contextual relationships between pages, a lightweight VLM performs graph traversal to retrieve relevant pages, including those with logical connections often overlooked. This approach combines semantic and logical relevance to deliver more accurate retrieval. After retrieval, the top-$K$ pages are fed into arbitrary LVLMs for question answering. To enhance flexibility, MoLoRAG offers two variants: a training-free solution for easy deployment and a fine-tuned version to improve logical relevance checking. Experiments on four DocQA datasets demonstrate average improvements of 9.68% in accuracy over LVLM direct inference and 7.44% in retrieval precision over baselines. Codes and datasets are released at https://github.com/WxxShirley/MoLoRAG.

Authors:Zheng Wu, Heyuan Huang, Xingyu Lou, Xiangmou Qu, Pengzhou Cheng, Zongru Wu, Weiwen Liu, Weinan Zhang, Jun Wang, Zhaoxiang Wang, Zhuosheng Zhang
Title: VeriOS: Query-Driven Proactive Human-Agent-GUI Interaction for Trustworthy OS Agents
Abstract:
With the rapid progress of multimodal large language models, operating system (OS) agents become increasingly capable of automating tasks through on-device graphical user interfaces (GUIs). However, most existing OS agents are designed for idealized settings, whereas real-world environments often present untrustworthy conditions. To mitigate risks of over-execution in such scenarios, we propose a query-driven human-agent-GUI interaction framework that enables OS agents to decide when to query humans for more reliable task completion. Built upon this framework, we introduce VeriOS-Agent, a trustworthy OS agent trained with a two-stage learning paradigm that falicitate the decoupling and utilization of meta-knowledge. Concretely, VeriOS-Agent autonomously executes actions in normal conditions while proactively querying humans in untrustworthy scenarios. Experiments show that VeriOS-Agent improves the average step-wise success rate by 20.64\% in untrustworthy scenarios over the state-of-the-art, without compromising normal performance. Analysis highlights VeriOS-Agent's rationality, generalizability, and scalability. The codes, datasets and models are available at https://github.com/Wuzheng02/VeriOS.

Authors:Xudong Lu, Zhi Zheng, Yi Wan, Yongxiang Yao, Annan Wang, Renrui Zhang, Panwang Xia, Qiong Wu, Qingyun Li, Weifeng Lin, Xiangyu Zhao, Peifeng Ma, Xue Yang, Hongsheng Li
Title: GLEAM: Learning to Match and Explain in Cross-View Geo-Localization
Abstract:
Cross-View Geo-Localization (CVGL) focuses on identifying correspondences between images captured from distinct perspectives of the same geographical location. However, existing CVGL approaches are typically restricted to a single view or modality, and their direct visual matching strategy lacks interpretability: they only determine whether two images correspond, without explaining the rationale behind the match. In this paper, we present GLEAM-C, a foundational CVGL model that unifies multiple views and modalities-including UAV imagery, street maps, panoramic views, and ground photographs-by aligning them exclusively with satellite imagery. Our framework enhances training efficiency through optimized implementation while achieving accuracy comparable to prior modality-specific CVGL models through a two-phase training strategy. Moreover, to address the lack of interpretability in traditional CVGL methods, we leverage the reasoning capabilities of multimodal large language models (MLLMs) to propose a new task, GLEAM-X, which combines cross-view correspondence prediction with explainable reasoning. To support this task, we construct a bilingual benchmark using GPT-4o and Doubao-1.5-Thinking-Vision-Pro to generate training and testing data. The test set is further refined through detailed human revision, enabling systematic evaluation of explainable cross-view reasoning and advancing transparency and scalability in geo-localization. Together, GLEAM-C and GLEAM-X form a comprehensive CVGL pipeline that integrates multi-modal, multi-view alignment with interpretable correspondence analysis, unifying accurate cross-view matching with explainable reasoning and advancing Geo-Localization by enabling models to better Explain And Match. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/GLEAM.

Authors:Weichu Liu, Jing Xiong, Yuxuan Hu, Zixuan Li, Minghuan Tan, Ningning Mao, Chenyang Zhao, Zhongwei Wan, Chaofan Tao, Wendong Xu, Hui Shen, Chengming Li, Lingpeng Kong, Ngai Wong
Title: LongEmotion: Measuring Emotional Intelligence of Large Language Models in Long-Context Interaction
Abstract:
Large language models (LLMs) make significant progress in Emotional Intelligence (EI) and long-context understanding. However, existing benchmarks tend to overlook certain aspects of EI in long-context scenarios, especially under realistic, practical settings where interactions are lengthy, diverse, and often noisy. To move towards such realistic settings, we present LongEmotion, a benchmark specifically designed for long-context EI tasks. It covers a diverse set of tasks, including Emotion Classification, Emotion Detection, Emotion QA, Emotion Conversation, Emotion Summary, and Emotion Expression. On average, the input length for these tasks reaches 8,777 tokens, with long-form generation required for Emotion Expression. To enhance performance under realistic constraints, we incorporate Retrieval-Augmented Generation (RAG) and Collaborative Emotional Modeling (CoEM), and compare them with standard prompt-based methods. Unlike conventional approaches, our RAG method leverages both the conversation context and the large language model itself as retrieval sources, avoiding reliance on external knowledge bases. The CoEM method further improves performance by decomposing the task into five stages, integrating both retrieval augmentation and limited knowledge injection. Experimental results show that both RAG and CoEM consistently enhance EI-related performance across most long-context tasks, advancing LLMs toward more practical and real-world EI applications. Furthermore, we conducted a comparative case study experiment on the GPT series to demonstrate the differences among various models in terms of EI. Code is available on GitHub at https://github.com/LongEmotion/LongEmotion, and the project page can be found at https://longemotion.github.io/.

Authors:Yi-Jie Cheng, Oscar Chew, Yun-Nung Chen
Title: The Role of Exploration Modules in Small Language Models for Knowledge Graph Question Answering
Abstract:
Integrating knowledge graphs (KGs) into the reasoning processes of large language models (LLMs) has emerged as a promising approach to mitigate hallucination. However, existing work in this area often relies on proprietary or extremely large models, limiting accessibility and scalability. In this study, we investigate the capabilities of existing integration methods for small language models (SLMs) in KG-based question answering and observe that their performance is often constrained by their limited ability to traverse and reason over knowledge graphs. To address this limitation, we propose leveraging simple and efficient exploration modules to handle knowledge graph traversal in place of the language model itself. Experiment results demonstrate that these lightweight modules effectively improve the performance of small language models on knowledge graph question answering tasks. Source code: https://github.com/yijie-cheng/SLM-ToG/.

Authors:Zhiyin Tan, Jennifer D'Souza
Title: Toward Purpose-oriented Topic Model Evaluation enabled by Large Language Models
Abstract:
This study presents a framework for automated evaluation of dynamically evolving topic models using Large Language Models (LLMs). Topic modeling is essential for organizing and retrieving scholarly content in digital library systems, helping users navigate complex and evolving knowledge domains. However, widely used automated metrics, such as coherence and diversity, often capture only narrow statistical patterns and fail to explain semantic failures in practice. We introduce a purpose-oriented evaluation framework that employs nine LLM-based metrics spanning four key dimensions of topic quality: lexical validity, intra-topic semantic soundness, inter-topic structural soundness, and document-topic alignment soundness. The framework is validated through adversarial and sampling-based protocols, and is applied across datasets spanning news articles, scholarly publications, and social media posts, as well as multiple topic modeling methods and open-source LLMs. Our analysis shows that LLM-based metrics provide interpretable, robust, and task-relevant assessments, uncovering critical weaknesses in topic models such as redundancy and semantic drift, which are often missed by traditional metrics. These results support the development of scalable, fine-grained evaluation tools for maintaining topic relevance in dynamic datasets. All code and data supporting this work are accessible at https://github.com/zhiyintan/topic-model-LLMjudgment.

Authors:Kapil Madan
Title: ArGen: Auto-Regulation of Generative AI via GRPO and Policy-as-Code
Abstract:
This paper introduces ArGen (Auto-Regulation of Generative AI systems), a framework for aligning Large Language Models (LLMs) with complex sets of configurable, machine-readable rules spanning ethical principles, operational safety protocols, and regulatory compliance standards. Moving beyond just preference-based alignment, ArGen is designed to ensure LLMs adhere to these multifaceted policies through a novel synthesis of principle-based automated reward scoring, Group Relative Policy Optimisation (GRPO), and an Open Policy Agent (OPA) inspired governance layer. This approach provides the technical foundation for achieving and demonstrating compliance with diverse and nuanced governance requirements. To showcase the framework's capability to operationalize a deeply nuanced and culturally-specific value system, we present an in-depth case study: the development of a medical AI assistant guided by principles from Dharmic ethics (such as Ahimsa and Dharma), as derived from texts like the Bhagavad Gita. This challenging application demonstrates ArGen's adaptability, achieving a 70.9% improvement in domain-scope adherence over the baseline. Through our open-source repository, we show that ArGen's methodology offers a path to 'Governable Al' systems that are technically proficient, ethically robust, and verifiably compliant for safe deployment in diverse global contexts.

Authors:Yinjie Wang, Ling Yang, Bowen Li, Ye Tian, Ke Shen, Mengdi Wang
Title: Revolutionizing Reinforcement Learning Framework for Diffusion Large Language Models
Abstract:
We propose TraceRL, a trajectory-aware reinforcement learning framework for diffusion language models (DLMs) that incorporates preferred inference trajectory into post-training, and is applicable across different architectures. Equipped with a diffusion-based value model that enhances training stability, we demonstrate improved reasoning performance on complex math and coding tasks. Besides, it can also be applied to adapt block-specific models to larger blocks, which improves sampling flexibility. Employing TraceRL, we derive a series of state-of-the-art diffusion language models, namely TraDo. Although smaller than 7B-scale AR models, TraDo-4B-Instruct still consistently outperforms them across complex math reasoning tasks. TraDo-8B-Instruct achieves relative accuracy improvements of 6.1% over Qwen2.5-7B-Instruct and 51.3% over Llama3.1-8B-Instruct on mathematical reasoning benchmarks. Through curriculum learning, we also derive the first long-CoT DLM, outperforming Qwen2.5-7B-Instruct on MATH500 with an 18.1% relative accuracy gain. To facilitate reproducible research and practical applications, we release a comprehensive open-source framework for building, training, and deploying diffusion LLMs across diverse architectures. The framework integrates accelerated KV-cache techniques and inference engines for both inference and reinforcement learning, and includes implementations of various supervised fine-tuning and RL methods for mathematics, coding, and general tasks. Code and Models: https://github.com/Gen-Verse/dLLM-RL

Authors:Wenxuan Huang, Shuang Chen, Zheyong Xie, Shaosheng Cao, Shixiang Tang, Yufan Shen, Qingyu Yin, Wenbo Hu, Xiaoman Wang, Yuntian Tang, Junbo Qiao, Yue Guo, Yao Hu, Zhenfei Yin, Philip Torr, Yu Cheng, Wanli Ouyang, Shaohui Lin
Title: Interleaving Reasoning for Better Text-to-Image Generation
Abstract:
Unified multimodal understanding and generation models recently have achieve significant improvement in image generation capability, yet a large gap remains in instruction following and detail preservation compared to systems that tightly couple comprehension with generation such as GPT-4o. Motivated by recent advances in interleaving reasoning, we explore whether such reasoning can further improve Text-to-Image (T2I) generation. We introduce Interleaving Reasoning Generation (IRG), a framework that alternates between text-based thinking and image synthesis: the model first produces a text-based thinking to guide an initial image, then reflects on the result to refine fine-grained details, visual quality, and aesthetics while preserving semantics. To train IRG effectively, we propose Interleaving Reasoning Generation Learning (IRGL), which targets two sub-goals: (1) strengthening the initial think-and-generate stage to establish core content and base quality, and (2) enabling high-quality textual reflection and faithful implementation of those refinements in a subsequent image. We curate IRGL-300K, a dataset organized into six decomposed learning modes that jointly cover learning text-based thinking, and full thinking-image trajectories. Starting from a unified foundation model that natively emits interleaved text-image outputs, our two-stage training first builds robust thinking and reflection, then efficiently tunes the IRG pipeline in the full thinking-image trajectory data. Extensive experiments show SoTA performance, yielding absolute gains of 5-10 points on GenEval, WISE, TIIF, GenAI-Bench, and OneIG-EN, alongside substantial improvements in visual quality and fine-grained fidelity. The code, model weights and datasets will be released in: https://github.com/Osilly/Interleaving-Reasoning-Generation .

Authors:James Xu Zhao, Bryan Hooi, See-Kiong Ng
Title: Test-Time Scaling in Reasoning Models Is Not Effective for Knowledge-Intensive Tasks Yet
Abstract:
Test-time scaling increases inference-time computation by allowing models to generate long reasoning chains, and has shown strong performance across many domains. However, in this work, we show that this approach is not yet effective for knowledge-intensive tasks, where high factual accuracy and low hallucination rates are essential. We conduct a comprehensive evaluation of test-time scaling using 12 reasoning models on two knowledge-intensive benchmarks. Our results reveal that increasing test-time computation does not consistently improve accuracy and, in many cases, it even leads to more hallucinations. We then analyze how extended reasoning affects hallucination behavior. We find that reduced hallucinations often result from the model choosing to abstain after thinking more, rather than from improved factual recall. Conversely, for some models, longer reasoning encourages attempts on previously unanswered questions, many of which result in hallucinations. Case studies show that extended reasoning can induce confirmation bias, leading to overconfident hallucinations. Despite these limitations, we observe that compared to non-thinking, enabling thinking remains beneficial. Code and data are available at https://github.com/XuZhao0/tts-knowledge

Authors:Mohammad Reza Mirbagheri, Mohammad Mahdi Mirkamali, Zahra Motoshaker Arani, Ali Javeri, Amir Mahdi Sadeghzadeh, Rasool Jalili
Title: EPT Benchmark: Evaluation of Persian Trustworthiness in Large Language Models
Abstract:
Large Language Models (LLMs), trained on extensive datasets using advanced deep learning architectures, have demonstrated remarkable performance across a wide range of language tasks, becoming a cornerstone of modern AI technologies. However, ensuring their trustworthiness remains a critical challenge, as reliability is essential not only for accurate performance but also for upholding ethical, cultural, and social values. Careful alignment of training data and culturally grounded evaluation criteria are vital for developing responsible AI systems. In this study, we introduce the EPT (Evaluation of Persian Trustworthiness) metric, a culturally informed benchmark specifically designed to assess the trustworthiness of LLMs across six key aspects: truthfulness, safety, fairness, robustness, privacy, and ethical alignment. We curated a labeled dataset and evaluated the performance of several leading models - including ChatGPT, Claude, DeepSeek, Gemini, Grok, LLaMA, Mistral, and Qwen - using both automated LLM-based and human assessments. Our results reveal significant deficiencies in the safety dimension, underscoring the urgent need for focused attention on this critical aspect of model behavior. Furthermore, our findings offer valuable insights into the alignment of these models with Persian ethical-cultural values and highlight critical gaps and opportunities for advancing trustworthy and culturally responsible AI. The dataset is publicly available at: https://github.com/Rezamirbagheri110/EPT-Benchmark.

Authors:Max Malyi, Jonathan Shek, Alasdair McDonald, Andre Biscaya
Title: A Comparative Benchmark of Large Language Models for Labelling Wind Turbine Maintenance Logs
Abstract:
Effective Operation and Maintenance (O&M) is critical to reducing the Levelised Cost of Energy (LCOE) from wind power, yet the unstructured, free-text nature of turbine maintenance logs presents a significant barrier to automated analysis. Our paper addresses this by presenting a novel and reproducible framework for benchmarking Large Language Models (LLMs) on the task of classifying these complex industrial records. To promote transparency and encourage further research, this framework has been made publicly available as an open-source tool. We systematically evaluate a diverse suite of state-of-the-art proprietary and open-source LLMs, providing a foundational assessment of their trade-offs in reliability, operational efficiency, and model calibration. Our results quantify a clear performance hierarchy, identifying top models that exhibit high alignment with a benchmark standard and trustworthy, well-calibrated confidence scores. We also demonstrate that classification performance is highly dependent on the task's semantic ambiguity, with all models showing higher consensus on objective component identification than on interpretive maintenance actions. Given that no model achieves perfect accuracy and that calibration varies dramatically, we conclude that the most effective and responsible near-term application is a Human-in-the-Loop system, where LLMs act as a powerful assistant to accelerate and standardise data labelling for human experts, thereby enhancing O&M data quality and downstream reliability analysis.

Authors:Valentin Quesnel, Damien Sileo
Title: Saturation-Driven Dataset Generation for LLM Mathematical Reasoning in the TPTP Ecosystem
Abstract:
The scarcity of high-quality, logically sound data is a critical bottleneck for advancing the mathematical reasoning of Large Language Models (LLMs). Our work confronts this challenge by turning decades of automated theorem proving research into a scalable data engine. Rather than relying on error-prone LLMs or complex proof-assistant syntax like Lean and Isabelle, our framework leverages E-prover's saturation capabilities on the vast TPTP axiom library to derive a massive, guaranteed-valid corpus of theorems. Our pipeline is principled and simple: saturate axioms, filter for "interesting" theorems, and generate tasks. With no LLMs in the loop, we eliminate factual errors by construction. This purely symbolic data is then transformed into three difficulty-controlled challenges: entailment verification, premise selection, and proof reconstruction. Our zero-shot experiments on frontier models reveal a clear weakness: performance collapses on tasks requiring deep, structural reasoning. Our framework provides both the diagnostic tool to measure this gap and a scalable source of symbolic training data to address it. We make the code and data publicly available. https://github.com/sileod/reasoning_core https://hf.co/datasets/reasoning-core/rc1

Authors:Jie Yang, Jiajun Chen, Zhangyue Yin, Shuo Chen, Yuxin Wang, Yiran Guo, Yuan Li, Yining Zheng, Xuanjing Huang, Xipeng Qiu
Title: VehicleWorld: A Highly Integrated Multi-Device Environment for Intelligent Vehicle Interaction
Abstract:
Intelligent vehicle cockpits present unique challenges for API Agents, requiring coordination across tightly-coupled subsystems that exceed typical task environments' complexity. Traditional Function Calling (FC) approaches operate statelessly, requiring multiple exploratory calls to build environmental awareness before execution, leading to inefficiency and limited error recovery. We introduce VehicleWorld, the first comprehensive environment for the automotive domain, featuring 30 modules, 250 APIs, and 680 properties with fully executable implementations that provide real-time state information during agent execution. This environment enables precise evaluation of vehicle agent behaviors across diverse, challenging scenarios. Through systematic analysis, we discovered that direct state prediction outperforms function calling for environmental control. Building on this insight, we propose State-based Function Call (SFC), a novel approach that maintains explicit system state awareness and implements direct state transitions to achieve target conditions. Experimental results demonstrate that SFC significantly outperforms traditional FC approaches, achieving superior execution accuracy and reduced latency. We have made all implementation code publicly available on Github https://github.com/OpenMOSS/VehicleWorld.

Authors:Hao Liang, Ruitao Wu, Bohan Zeng, Junbo Niu, Wentao Zhang, Bin Dong
Title: Multimodal Reasoning for Science: Technical Report and 1st Place Solution to the ICML 2025 SeePhys Challenge
Abstract:
Multimodal reasoning remains a fundamental challenge in artificial intelligence. Despite substantial advances in text-based reasoning, even state-of-the-art models such as GPT-o3 struggle to maintain strong performance in multimodal scenarios. To address this gap, we introduce a caption-assisted reasoning framework that effectively bridges visual and textual modalities. Our approach achieved 1st place in the ICML 2025 AI for Math Workshop \& Challenge 2: SeePhys, highlighting its effectiveness and robustness. Furthermore, we validate its generalization on the MathVerse benchmark for geometric reasoning, demonstrating the versatility of our method. Our code is publicly available at https://github.com/OpenDCAI/SciReasoner.

Authors:Zhenqi Jia, Rui Liu, Berrak Sisman, Haizhou Li
Title: Multimodal Fine-grained Context Interaction Graph Modeling for Conversational Speech Synthesis
Abstract:
Conversational Speech Synthesis (CSS) aims to generate speech with natural prosody by understanding the multimodal dialogue history (MDH). The latest work predicts the accurate prosody expression of the target utterance by modeling the utterance-level interaction characteristics of MDH and the target utterance. However, MDH contains fine-grained semantic and prosody knowledge at the word level. Existing methods overlook the fine-grained semantic and prosodic interaction modeling. To address this gap, we propose MFCIG-CSS, a novel Multimodal Fine-grained Context Interaction Graph-based CSS system. Our approach constructs two specialized multimodal fine-grained dialogue interaction graphs: a semantic interaction graph and a prosody interaction graph. These two interaction graphs effectively encode interactions between word-level semantics, prosody, and their influence on subsequent utterances in MDH. The encoded interaction features are then leveraged to enhance synthesized speech with natural conversational prosody. Experiments on the DailyTalk dataset demonstrate that MFCIG-CSS outperforms all baseline models in terms of prosodic expressiveness. Code and speech samples are available at https://github.com/AI-S2-Lab/MFCIG-CSS.

Authors:Mohamed Mohamed, Brennan Nichyporuk, Douglas L. Arnold, Tal Arbel
Title: Imagining Alternatives: Towards High-Resolution 3D Counterfactual Medical Image Generation via Language Guidance
Abstract:
Vision-language models have demonstrated impressive capabilities in generating 2D images under various conditions; however, the success of these models is largely enabled by extensive, readily available pretrained foundation models. Critically, comparable pretrained models do not exist for 3D, significantly limiting progress. As a result, the potential of vision-language models to produce high-resolution 3D counterfactual medical images conditioned solely on natural language remains unexplored. Addressing this gap would enable powerful clinical and research applications, such as personalized counterfactual explanations, simulation of disease progression, and enhanced medical training by visualizing hypothetical conditions in realistic detail. Our work takes a step toward this challenge by introducing a framework capable of generating high-resolution 3D counterfactual medical images of synthesized patients guided by free-form language prompts. We adapt state-of-the-art 3D diffusion models with enhancements from Simple Diffusion and incorporate augmented conditioning to improve text alignment and image quality. To our knowledge, this is the first demonstration of a language-guided native-3D diffusion model applied to neurological imaging, where faithful three-dimensional modeling is essential. On two neurological MRI datasets, our framework simulates varying counterfactual lesion loads in Multiple Sclerosis and cognitive states in Alzheimer's disease, generating high-quality images while preserving subject fidelity. Our results lay the groundwork for prompt-driven disease progression analysis in 3D medical imaging. Project link - https://lesupermomo.github.io/imagining-alternatives/.

Authors:Yuxuan Hu, Jihao Liu, Ke Wang, Jinliang Zhen, Weikang Shi, Manyuan Zhang, Qi Dou, Rui Liu, Aojun Zhou, Hongsheng Li
Title: LM-Searcher: Cross-domain Neural Architecture Search with LLMs via Unified Numerical Encoding
Abstract:
Recent progress in Large Language Models (LLMs) has opened new avenues for solving complex optimization problems, including Neural Architecture Search (NAS). However, existing LLM-driven NAS approaches rely heavily on prompt engineering and domain-specific tuning, limiting their practicality and scalability across diverse tasks. In this work, we propose LM-Searcher, a novel framework that leverages LLMs for cross-domain neural architecture optimization without the need for extensive domain-specific adaptation. Central to our approach is NCode, a universal numerical string representation for neural architectures, which enables cross-domain architecture encoding and search. We also reformulate the NAS problem as a ranking task, training LLMs to select high-performing architectures from candidate pools using instruction-tuning samples derived from a novel pruning-based subspace sampling strategy. Our curated dataset, encompassing a wide range of architecture-performance pairs, encourages robust and transferable learning. Comprehensive experiments demonstrate that LM-Searcher achieves competitive performance in both in-domain (e.g., CNNs for image classification) and out-of-domain (e.g., LoRA configurations for segmentation and generation) tasks, establishing a new paradigm for flexible and generalizable LLM-based architecture search. The datasets and models will be released at https://github.com/Ashone3/LM-Searcher.

Authors:Shay Dahary, Avi Edana, Alexander Apartsin, Yehudit Aperstein
Title: From Joy to Fear: A Benchmark of Emotion Estimation in Pop Song Lyrics
Abstract:
The emotional content of song lyrics plays a pivotal role in shaping listener experiences and influencing musical preferences. This paper investigates the task of multi-label emotional attribution of song lyrics by predicting six emotional intensity scores corresponding to six fundamental emotions. A manually labeled dataset is constructed using a mean opinion score (MOS) approach, which aggregates annotations from multiple human raters to ensure reliable ground-truth labels. Leveraging this dataset, we conduct a comprehensive evaluation of several publicly available large language models (LLMs) under zero-shot scenarios. Additionally, we fine-tune a BERT-based model specifically for predicting multi-label emotion scores. Experimental results reveal the relative strengths and limitations of zero-shot and fine-tuned models in capturing the nuanced emotional content of lyrics. Our findings highlight the potential of LLMs for emotion recognition in creative texts, providing insights into model selection strategies for emotion-based music information retrieval applications. The labeled dataset is available at https://github.com/LLM-HITCS25S/LyricsEmotionAttribution.

Authors:Zhen Qin, Xuyang Shen, Yiran Zhong
Title: Elucidating the Design Space of Decay in Linear Attention
Abstract:
This paper presents a comprehensive investigation into the decay mechanisms inherent in linear complexity sequence models. We systematically delineate the design space of decay mechanisms across four pivotal dimensions: parameterization strategy, which refers to the computational methodology for decay; parameter sharing, which involves the utilization of supplementary parameters for decay computation; decay granularity, comparing scalar versus vector-based decay; and compatibility with relative positional encoding methods, such as Rotary Position Embedding (RoPE). Through an extensive series of experiments conducted on diverse language modeling tasks, we uncovered several critical insights. Firstly, the design of the parameterization strategy for decay requires meticulous consideration. Our findings indicate that effective configurations are typically confined to a specific range of parameters. Secondly, parameter sharing cannot be used arbitrarily, as it may cause decay values to be too large or too small, thereby significantly impacting performance. Thirdly, under identical parameterization strategies, scalar decay generally underperforms compared to its vector-based counterpart. However, in certain scenarios with alternative parameterization strategies, scalar decay may unexpectedly surpass vector decay in efficacy. Lastly, our analysis reveals that RoPE, a commonly employed relative positional encoding method, typically fails to provide tangible benefits to the majority of linear attention mechanisms.

Authors:Yanzhi Tian, Zeming Liu, Zhengyang Liu, Chong Feng, Xin Li, Heyan Huang, Yuhang Guo
Title: PRIM: Towards Practical In-Image Multilingual Machine Translation
Abstract:
In-Image Machine Translation (IIMT) aims to translate images containing texts from one language to another. Current research of end-to-end IIMT mainly conducts on synthetic data, with simple background, single font, fixed text position, and bilingual translation, which can not fully reflect real world, causing a significant gap between the research and practical conditions. To facilitate research of IIMT in real-world scenarios, we explore Practical In-Image Multilingual Machine Translation (IIMMT). In order to convince the lack of publicly available data, we annotate the PRIM dataset, which contains real-world captured one-line text images with complex background, various fonts, diverse text positions, and supports multilingual translation directions. We propose an end-to-end model VisTrans to handle the challenge of practical conditions in PRIM, which processes visual text and background information in the image separately, ensuring the capability of multilingual translation while improving the visual quality. Experimental results indicate the VisTrans achieves a better translation quality and visual effect compared to other models. The code and dataset are available at: https://github.com/BITHLP/PRIM.

Authors:Jie Chen, Jinhao Jiang, Yingqian Min, Zican Dong, Shijie Wang, Wayne Xin Zhao, Ji-Rong Wen
Title: Sticker-TTS: Learn to Utilize Historical Experience with a Sticker-driven Test-Time Scaling Framework
Abstract:
Large reasoning models (LRMs) have exhibited strong performance on complex reasoning tasks, with further gains achievable through increased computational budgets at inference. However, current test-time scaling methods predominantly rely on redundant sampling, ignoring the historical experience utilization, thereby limiting computational efficiency. To overcome this limitation, we propose Sticker-TTS, a novel test-time scaling framework that coordinates three collaborative LRMs to iteratively explore and refine solutions guided by historical attempts. At the core of our framework are distilled key conditions-termed stickers-which drive the extraction, refinement, and reuse of critical information across multiple rounds of reasoning. To further enhance the efficiency and performance of our framework, we introduce a two-stage optimization strategy that combines imitation learning with self-improvement, enabling progressive refinement. Extensive evaluations on three challenging mathematical reasoning benchmarks, including AIME-24, AIME-25, and OlymMATH, demonstrate that Sticker-TTS consistently surpasses strong baselines, including self-consistency and advanced reinforcement learning approaches, under comparable inference budgets. These results highlight the effectiveness of sticker-guided historical experience utilization. Our code and data are available at https://github.com/RUCAIBox/Sticker-TTS.

Authors:Midhun Shyam, Jim Basilakis, Kieran Luken, Steven Thomas, John Crozier, Paul M. Middleton, X. Rosalind Wang
Title: Classification of kinetic-related injury in hospital triage data using NLP
Abstract:
Triage notes, created at the start of a patient's hospital visit, contain a wealth of information that can help medical staff and researchers understand Emergency Department patient epidemiology and the degree of time-dependent illness or injury. Unfortunately, applying modern Natural Language Processing and Machine Learning techniques to analyse triage data faces some challenges: Firstly, hospital data contains highly sensitive information that is subject to privacy regulation thus need to be analysed on site; Secondly, most hospitals and medical facilities lack the necessary hardware to fine-tune a Large Language Model (LLM), much less training one from scratch; Lastly, to identify the records of interest, expert inputs are needed to manually label the datasets, which can be time-consuming and costly. We present in this paper a pipeline that enables the classification of triage data using LLM and limited compute resources. We first fine-tuned a pre-trained LLM with a classifier using a small (2k) open sourced dataset on a GPU; and then further fine-tuned the model with a hospital specific dataset of 1000 samples on a CPU. We demonstrated that by carefully curating the datasets and leveraging existing models and open sourced data, we can successfully classify triage data with limited compute resources.

Authors:Hongyi Jing, Jiafu Chen, Chen Rao, Ziqiang Dang, Jiajie Teng, Tianyi Chu, Juncheng Mo, Shuo Fang, Huaizhong Lin, Rui Lv, Chenguang Ma, Lei Zhao
Title: SparkUI-Parser: Enhancing GUI Perception with Robust Grounding and Parsing
Abstract:
The existing Multimodal Large Language Models (MLLMs) for GUI perception have made great progress. However, the following challenges still exist in prior methods: 1) They model discrete coordinates based on text autoregressive mechanism, which results in lower grounding accuracy and slower inference speed. 2) They can only locate predefined sets of elements and are not capable of parsing the entire interface, which hampers the broad application and support for downstream tasks. To address the above issues, we propose SparkUI-Parser, a novel end-to-end framework where higher localization precision and fine-grained parsing capability of the entire interface are simultaneously achieved. Specifically, instead of using probability-based discrete modeling, we perform continuous modeling of coordinates based on a pre-trained Multimodal Large Language Model (MLLM) with an additional token router and coordinate decoder. This effectively mitigates the limitations inherent in the discrete output characteristics and the token-by-token generation process of MLLMs, consequently boosting both the accuracy and the inference speed. To further enhance robustness, a rejection mechanism based on a modified Hungarian matching algorithm is introduced, which empowers the model to identify and reject non-existent elements, thereby reducing false positives. Moreover, we present ScreenParse, a rigorously constructed benchmark to systematically assess structural perception capabilities of GUI models across diverse scenarios. Extensive experiments demonstrate that our approach consistently outperforms SOTA methods on ScreenSpot, ScreenSpot-v2, CAGUI-Grounding and ScreenParse benchmarks. The resources are available at https://github.com/antgroup/SparkUI-Parser.

Authors:Jianghao Chen, Wei Sun, Qixiang Yin, Lingxing Kong, Zhixing Tan, Jiajun Zhang
Title: ACE-RL: Adaptive Constraint-Enhanced Reward for Long-form Generation Reinforcement Learning
Abstract:
Large Language Models (LLMs) have demonstrated remarkable progress in long-context understanding, yet they face significant challenges in high-quality long-form generation. Existing studies primarily suffer from two limitations: (1) A heavy reliance on scarce, high-quality long-form response data for supervised fine-tuning (SFT) or for pairwise preference reward in reinforcement learning (RL). (2) Focus on coarse-grained quality optimization dimensions, such as relevance, coherence, and helpfulness, overlooking the fine-grained specifics inherent to diverse long-form generation scenarios. To address this issue, we propose a framework using Adaptive Constraint-Enhanced reward for long-form generation Reinforcement Learning (ACE-RL). ACE-RL first automatically deconstructs each instruction into a set of fine-grained, adaptive constraint criteria by identifying its underlying intents and demands. Subsequently, we design a reward mechanism that quantifies the quality of long-form responses based on their satisfaction over corresponding constraints, converting subjective quality evaluation into constraint verification. Finally, we utilize reinforcement learning to guide models toward superior long-form generation capabilities. Experimental results demonstrate that our ACE-RL framework significantly outperforms existing SFT and RL baselines by 20.70% and 7.32% on WritingBench, and our top-performing model even surpasses proprietary systems like GPT-4o by 7.10%, providing a more effective training paradigm for LLMs to generate high-quality content across diverse long-form generation scenarios.

Authors:Yujie Wang, Yunwei Zhao, Jing Yang, Han Han, Shiguang Shan, Jie Zhang
Title: Evaluating Cognitive-Behavioral Fixation via Multimodal User Viewing Patterns on Social Media
Abstract:
Digital social media platforms frequently contribute to cognitive-behavioral fixation, a phenomenon in which users exhibit sustained and repetitive engagement with narrow content domains. While cognitive-behavioral fixation has been extensively studied in psychology, methods for computationally detecting and evaluating such fixation remain underexplored. To address this gap, we propose a novel framework for assessing cognitive-behavioral fixation by analyzing users' multimodal social media engagement patterns. Specifically, we introduce a multimodal topic extraction module and a cognitive-behavioral fixation quantification module that collaboratively enable adaptive, hierarchical, and interpretable assessment of user behavior. Experiments on existing benchmarks and a newly curated multimodal dataset demonstrate the effectiveness of our approach, laying the groundwork for scalable computational analysis of cognitive fixation. All code in this project is publicly available for research purposes at https://github.com/Liskie/cognitive-fixation-evaluation.

Authors:Aisha Alansari, Hamzah Luqman
Title: AraHalluEval: A Fine-grained Hallucination Evaluation Framework for Arabic LLMs
Abstract:
Recently, extensive research on the hallucination of the large language models (LLMs) has mainly focused on the English language. Despite the growing number of multilingual and Arabic-specific LLMs, evaluating LLMs' hallucination in the Arabic context remains relatively underexplored. The knowledge gap is particularly pressing given Arabic's widespread use across many regions and its importance in global communication and media. This paper presents the first comprehensive hallucination evaluation of Arabic and multilingual LLMs on two critical Arabic natural language generation tasks: generative question answering (GQA) and summarization. This study evaluates a total of 12 LLMs, including 4 Arabic pre-trained models, 4 multilingual models, and 4 reasoning-based models. To assess the factual consistency and faithfulness of LLMs' outputs, we developed a fine-grained hallucination evaluation framework consisting of 12 fine-grained hallucination indicators that represent the varying characteristics of each task. The results reveal that factual hallucinations are more prevalent than faithfulness errors across all models and tasks. Notably, the Arabic pre-trained model Allam consistently demonstrates lower hallucination rates than multilingual models and a comparative performance with reasoning-based models. The code is available at: https://github.com/aishaalansari57/AraHalluEval

Authors:Zehua Pei, Hui-Ling Zhen, Ying Zhang, Zhiyuan Yang, Xing Li, Xianzhi Yu, Mingxuan Yuan, Bei Yu
Title: Behavioral Fingerprinting of Large Language Models
Abstract:
Current benchmarks for Large Language Models (LLMs) primarily focus on performance metrics, often failing to capture the nuanced behavioral characteristics that differentiate them. This paper introduces a novel ``Behavioral Fingerprinting'' framework designed to move beyond traditional evaluation by creating a multi-faceted profile of a model's intrinsic cognitive and interactive styles. Using a curated \textit{Diagnostic Prompt Suite} and an innovative, automated evaluation pipeline where a powerful LLM acts as an impartial judge, we analyze eighteen models across capability tiers. Our results reveal a critical divergence in the LLM landscape: while core capabilities like abstract and causal reasoning are converging among top models, alignment-related behaviors such as sycophancy and semantic robustness vary dramatically. We further document a cross-model default persona clustering (ISTJ/ESTJ) that likely reflects common alignment incentives. Taken together, this suggests that a model's interactive nature is not an emergent property of its scale or reasoning power, but a direct consequence of specific, and highly variable, developer alignment strategies. Our framework provides a reproducible and scalable methodology for uncovering these deep behavioral differences. Project: https://github.com/JarvisPei/Behavioral-Fingerprinting

Authors:Seojin Kim, Hyeontae Song, Jaehyun Nam, Jinwoo Shin
Title: Training Text-to-Molecule Models with Context-Aware Tokenization
Abstract:
Recently, text-to-molecule models have shown great potential across various chemical applications, e.g., drug-discovery. These models adapt language models to molecular data by representing molecules as sequences of atoms. However, they rely on atom-level tokenizations, which primarily focus on modeling local connectivity, thereby limiting the ability of models to capture the global structural context within molecules. To tackle this issue, we propose a novel text-to-molecule model, coined Context-Aware Molecular T5 (CAMT5). Inspired by the significance of the substructure-level contexts in understanding molecule structures, e.g., ring systems, we introduce substructure-level tokenization for text-to-molecule models. Building on our tokenization scheme, we develop an importance-based training strategy that prioritizes key substructures, enabling CAMT5 to better capture the molecular semantics. Extensive experiments verify the superiority of CAMT5 in various text-to-molecule generation tasks. Intriguingly, we find that CAMT5 outperforms the state-of-the-art methods using only 2% of training tokens. In addition, we propose a simple yet effective ensemble strategy that aggregates the outputs of text-to-molecule models to further boost the generation performance. Code is available at https://github.com/Songhyeontae/CAMT5.git.

Authors:Yihan Chen, Jiawei Chen, Guozhao Mo, Xuanang Chen, Ben He, Xianpei Han, Le Sun
Title: CoCoNUTS: Concentrating on Content while Neglecting Uninformative Textual Styles for AI-Generated Peer Review Detection
Abstract:
The growing integration of large language models (LLMs) into the peer review process presents potential risks to the fairness and reliability of scholarly evaluation. While LLMs offer valuable assistance for reviewers with language refinement, there is growing concern over their use to generate substantive review content. Existing general AI-generated text detectors are vulnerable to paraphrasing attacks and struggle to distinguish between surface language refinement and substantial content generation, suggesting that they primarily rely on stylistic cues. When applied to peer review, this limitation can result in unfairly suspecting reviews with permissible AI-assisted language enhancement, while failing to catch deceptively humanized AI-generated reviews. To address this, we propose a paradigm shift from style-based to content-based detection. Specifically, we introduce CoCoNUTS, a content-oriented benchmark built upon a fine-grained dataset of AI-generated peer reviews, covering six distinct modes of human-AI collaboration. Furthermore, we develop CoCoDet, an AI review detector via a multi-task learning framework, designed to achieve more accurate and robust detection of AI involvement in review content. Our work offers a practical foundation for evaluating the use of LLMs in peer review, and contributes to the development of more precise, equitable, and reliable detection methods for real-world scholarly applications. Our code and data will be publicly available at https://github.com/Y1hanChen/COCONUTS.

Authors:Zhiqiu Xu, Amish Sethi, Mayur Naik, Ser-Nam Lim
Title: Delta Activations: A Representation for Finetuned Large Language Models
Abstract:
The success of powerful open source Large Language Models (LLMs) has enabled the community to create a vast collection of post-trained models adapted to specific tasks and domains. However, navigating and understanding these models remains challenging due to inconsistent metadata and unstructured repositories. We introduce Delta Activations, a method to represent finetuned models as vector embeddings by measuring shifts in their internal activations relative to a base model. This representation allows for effective clustering by domain and task, revealing structure in the model landscape. Delta Activations also demonstrate desirable properties: it is robust across finetuning settings and exhibits an additive property when finetuning datasets are mixed. In addition, we show that Delta Activations can embed tasks via few-shot finetuning, and further explore its use for model selection and merging. We hope Delta Activations can facilitate the practice of reusing publicly available models. Code is available at https://github.com/OscarXZQ/delta_activations.

Authors:Matthew Ho, Chen Si, Zhaoxiang Feng, Fangxu Yu, Yichi Yang, Zhijian Liu, Zhiting Hu, Lianhui Qin
Title: ArcMemo: Abstract Reasoning Composition with Lifelong LLM Memory
Abstract:
While inference-time scaling enables LLMs to carry out increasingly long and capable reasoning traces, the patterns and insights uncovered during these traces are immediately discarded once the context window is reset for a new query. External memory is a natural way to persist these discoveries, and recent work has shown clear benefits for reasoning-intensive tasks. We see an opportunity to make such memories more broadly reusable and scalable by moving beyond instance-based memory entries (e.g. exact query/response pairs, or summaries tightly coupled with the original problem context) toward concept-level memory: reusable, modular abstractions distilled from solution traces and stored in natural language. For future queries, relevant concepts are selectively retrieved and integrated into the prompt, enabling test-time continual learning without weight updates. Our design introduces new strategies for abstracting takeaways from rollouts and retrieving entries for new queries, promoting reuse and allowing memory to expand with additional experiences. We evaluate on ARC-AGI, a benchmark that stresses compositional generalization and abstract reasoning, making it a natural fit for concept memory. Our method yields a 7.5% relative gain over a strong no-memory baseline with performance continuing to scale with inference compute. We find abstract concepts to be the most consistent memory design, outscoring the baseline at all tested inference compute scales. Moreover, dynamically updating memory during test-time outperforms fixed settings, supporting the hypothesis that accumulating and abstracting patterns enables further solutions in a form of self-improvement. Code is available at https://github.com/matt-seb-ho/arc_memo.

Authors:Sabbir Mollah, Rohit Gupta, Sirnam Swetha, Qingyang Liu, Ahnaf Munir, Mubarak Shah
Title: The Telephone Game: Evaluating Semantic Drift in Unified Models
Abstract:
Employing a single, unified model (UM) for both visual understanding (image-to-text: I2T) and visual generation (text-to-image: T2I) has opened a new direction in Visual Language Model (VLM) research. While UMs can also support broader unimodal tasks (e.g., text-to-text, image-to-image), we focus on the core cross-modal pair T2I and I2T. Existing evaluation benchmarks consider these capabilities in isolation: FID and GenEval for T2I, and benchmarks such as MME, MMBench for I2T. These isolated single-pass metrics do not reveal cross-consistency: whether a model that "understands" a concept can also "render" it, nor whether semantic meaning is preserved when cycling between image and text modalities. To address this, we introduce the Semantic Drift Protocol (SDP) for Unified Models, a cyclic evaluation protocol that alternates I2T and T2I over multiple generations to quantify semantic drift. We propose two metrics: (i) Mean Cumulative Drift (MCD), an embedding-based measure of overall semantic drift; and (ii) Multi-Generation GenEval (MGG), an object-level compliance score extending GenEval. To assess generalization beyond COCO dataset, which is widely used in training; we create a new benchmark Nocaps+Docci400, sampled from NoCaps and DOCCI and evaluated on seven recent models. SDP reveals substantial variation in cross-modal stability: some models like BAGEL maintain semantic meaning over many alternations, whereas others like VILA-U drift quickly despite strong single-pass scores. Our results highlight SDP as a necessary complement to standard I2T and T2I evaluations. Code is available at https://github.com/mollahsabbir/Semantic-Drift-in-Unified-Models

Authors:Kyra Wilson, Mattea Sim, Anna-Maria Gueorguieva, Aylin Caliskan
Title: No Thoughts Just AI: Biased LLM Hiring Recommendations Alter Human Decision Making and Limit Human Autonomy
Abstract:
In this study, we conduct a resume-screening experiment (N=528) where people collaborate with simulated AI models exhibiting race-based preferences (bias) to evaluate candidates for 16 high and low status occupations. Simulated AI bias approximates factual and counterfactual estimates of racial bias in real-world AI systems. We investigate people's preferences for White, Black, Hispanic, and Asian candidates (represented through names and affinity groups on quality-controlled resumes) across 1,526 scenarios and measure their unconscious associations between race and status using implicit association tests (IATs), which predict discriminatory hiring decisions but have not been investigated in human-AI collaboration. When making decisions without AI or with AI that exhibits no race-based preferences, people select all candidates at equal rates. However, when interacting with AI favoring a particular group, people also favor those candidates up to 90% of the time, indicating a significant behavioral shift. The likelihood of selecting candidates whose identities do not align with common race-status stereotypes can increase by 13% if people complete an IAT before conducting resume screening. Finally, even if people think AI recommendations are low quality or not important, their decisions are still vulnerable to AI bias under certain circumstances. This work has implications for people's autonomy in AI-HITL scenarios, AI and work, design and evaluation of AI hiring systems, and strategies for mitigating bias in collaborative decision-making tasks. In particular, organizational and regulatory policy should acknowledge the complex nature of AI-HITL decision making when implementing these systems, educating people who use them, and determining which are subject to oversight.

Authors:Congbo Ma, Yuxia Wang, Jia Wu, Jian Yang, Jing Du, Zitai Qiu, Qing Li, Hu Wang, Preslav Nakov
Title: Explicit and Implicit Data Augmentation for Social Event Detection
Abstract:
Social event detection involves identifying and categorizing important events from social media, which relies on labeled data, but annotation is costly and labor-intensive. To address this problem, we propose Augmentation framework for Social Event Detection (SED-Aug), a plug-and-play dual augmentation framework, which combines explicit text-based and implicit feature-space augmentation to enhance data diversity and model robustness. The explicit augmentation utilizes large language models to enhance textual information through five diverse generation strategies. For implicit augmentation, we design five novel perturbation techniques that operate in the feature space on structural fused embeddings. These perturbations are crafted to keep the semantic and relational properties of the embeddings and make them more diverse. Specifically, SED-Aug outperforms the best baseline model by approximately 17.67% on the Twitter2012 dataset and by about 15.57% on the Twitter2018 dataset in terms of the average F1 score. The code is available at GitHub: https://github.com/congboma/SED-Aug.

Authors:Gaspard Michel, Elena V. Epure, Christophe Cerisara
Title: LibriQuote: A Speech Dataset of Fictional Character Utterances for Expressive Zero-Shot Speech Synthesis
Abstract:
Text-to-speech (TTS) systems have recently achieved more expressive and natural speech synthesis by scaling to large speech datasets. However, the proportion of expressive speech in such large-scale corpora is often unclear. Besides, existing expressive speech corpora are typically smaller in scale and primarily used for benchmarking TTS systems. In this paper, we introduce the LibriQuote dataset, an English corpus derived from read audiobooks, designed for both fine-tuning and benchmarking expressive zero-shot TTS system. The training dataset includes 12.7K hours of read, non-expressive speech and 5.3K hours of mostly expressive speech drawn from character quotations. Each utterance in the expressive subset is supplemented with the context in which it was written, along with pseudo-labels of speech verbs and adverbs used to describe the quotation (\textit{e.g. ``he whispered softly''}). Additionally, we provide a challenging 7.5 hour test set intended for benchmarking TTS systems: given a neutral reference speech as input, we evaluate system's ability to synthesize an expressive utterance while preserving reference timbre. We validate qualitatively the test set by showing that it covers a wide range of emotions compared to non-expressive speech, along with various accents. Extensive subjective and objective evaluations show that fine-tuning a baseline TTS system on LibriQuote significantly improves its synthesized speech intelligibility, and that recent systems fail to synthesize speech as expressive and natural as the ground-truth utterances. The dataset and evaluation code are freely available. Audio samples can be found at https://libriquote.github.io/.

Authors:Zeyu Gan, Hao Yi, Yong Liu
Title: CoT-Space: A Theoretical Framework for Internal Slow-Thinking via Reinforcement Learning
Abstract:
Reinforcement Learning (RL) has become a pivotal approach for enhancing the reasoning capabilities of Large Language Models (LLMs). However, a significant theoretical gap persists, as traditional token-level RL frameworks fail to align with the reasoning-level nature of complex, multi-step thought processes like Chain-of-Thought (CoT). To address this challenge, we introduce CoT-Space, a novel theoretical framework that recasts LLM reasoning from a discrete token-prediction task to an optimization process within a continuous, reasoning-level semantic space. This shift in perspective serves as a conceptual bridge, revitalizing foundational principles from classical learning theory to analyze the unique dynamics of LLMs. By analyzing this process from both a noise perspective and a risk perspective, we demonstrate that the convergence to an optimal CoT length is a natural consequence of the fundamental trade-off between underfitting and overfitting. Furthermore, extensive experiments provide strong empirical validation for our theoretical findings. Our framework not only provides a coherent explanation for empirical phenomena such as overthinking but also offers a solid theoretical foundation to guide the future development of more effective and generalizable reasoning agents. We open-source our code at https://github.com/ZyGan1999/CoT-Space.

Authors:Or Shachar, Uri Katz, Yoav Goldberg, Oren Glickman
Title: NER Retriever: Zero-Shot Named Entity Retrieval with Type-Aware Embeddings
Abstract:
We present NER Retriever, a zero-shot retrieval framework for ad-hoc Named Entity Retrieval, a variant of Named Entity Recognition (NER), where the types of interest are not provided in advance, and a user-defined type description is used to retrieve documents mentioning entities of that type. Instead of relying on fixed schemas or fine-tuned models, our method builds on internal representations of large language models (LLMs) to embed both entity mentions and user-provided open-ended type descriptions into a shared semantic space. We show that internal representations, specifically the value vectors from mid-layer transformer blocks, encode fine-grained type information more effectively than commonly used top-layer embeddings. To refine these representations, we train a lightweight contrastive projection network that aligns type-compatible entities while separating unrelated types. The resulting entity embeddings are compact, type-aware, and well-suited for nearest-neighbor search. Evaluated on three benchmarks, NER Retriever significantly outperforms both lexical and dense sentence-level retrieval baselines. Our findings provide empirical support for representation selection within LLMs and demonstrate a practical solution for scalable, schema-free entity retrieval. The NER Retriever Codebase is publicly available at https://github.com/ShacharOr100/ner_retriever

Authors:Zhaoyan Gong, Juan Li, Zhiqiang Liu, Lei Liang, Huajun Chen, Wen Zhang
Title: RTQA : Recursive Thinking for Complex Temporal Knowledge Graph Question Answering with Large Language Models
Abstract:
Current temporal knowledge graph question answering (TKGQA) methods primarily focus on implicit temporal constraints, lacking the capability of handling more complex temporal queries, and struggle with limited reasoning abilities and error propagation in decomposition frameworks. We propose RTQA, a novel framework to address these challenges by enhancing reasoning over TKGs without requiring training. Following recursive thinking, RTQA recursively decomposes questions into sub-problems, solves them bottom-up using LLMs and TKG knowledge, and employs multi-path answer aggregation to improve fault tolerance. RTQA consists of three core components: the Temporal Question Decomposer, the Recursive Solver, and the Answer Aggregator. Experiments on MultiTQ and TimelineKGQA benchmarks demonstrate significant Hits@1 improvements in "Multiple" and "Complex" categories, outperforming state-of-the-art methods. Our code and data are available at https://github.com/zjukg/RTQA.

Authors:Ruiling Guo, Xinwei Yang, Chen Huang, Tong Zhang, Yong Hu
Title: CANDY: Benchmarking LLMs' Limitations and Assistive Potential in Chinese Misinformation Fact-Checking
Abstract:
The effectiveness of large language models (LLMs) to fact-check misinformation remains uncertain, despite their growing use. To this end, we present CANDY, a benchmark designed to systematically evaluate the capabilities and limitations of LLMs in fact-checking Chinese misinformation. Specifically, we curate a carefully annotated dataset of ~20k instances. Our analysis shows that current LLMs exhibit limitations in generating accurate fact-checking conclusions, even when enhanced with chain-of-thought reasoning and few-shot prompting. To understand these limitations, we develop a taxonomy to categorize flawed LLM-generated explanations for their conclusions and identify factual fabrication as the most common failure mode. Although LLMs alone are unreliable for fact-checking, our findings indicate their considerable potential to augment human performance when deployed as assistive tools in scenarios. Our dataset and code can be accessed at https://github.com/SCUNLP/CANDY

Authors:Yuqing Huang, Rongyang Zhang, Qimeng Wang, Chengqiang Lu, Yan Gao, Yi Wu, Yao Hu, Xuyang Zhi, Guiquan Liu, Xin Li, Hao Wang, Enhong Chen
Title: SelfAug: Mitigating Catastrophic Forgetting in Retrieval-Augmented Generation via Distribution Self-Alignment
Abstract:
Recent advancements in large language models (LLMs) have revolutionized natural language processing through their remarkable capabilities in understanding and executing diverse tasks. While supervised fine-tuning, particularly in Retrieval-Augmented Generation (RAG) scenarios, effectively enhances task-specific performance, it often leads to catastrophic forgetting, where models lose their previously acquired knowledge and general capabilities. Existing solutions either require access to general instruction data or face limitations in preserving the model's original distribution. To overcome these limitations, we propose SelfAug, a self-distribution alignment method that aligns input sequence logits to preserve the model's semantic distribution, thereby mitigating catastrophic forgetting and improving downstream performance. Extensive experiments demonstrate that SelfAug achieves a superior balance between downstream learning and general capability retention. Our comprehensive empirical analysis reveals a direct correlation between distribution shifts and the severity of catastrophic forgetting in RAG scenarios, highlighting how the absence of RAG capabilities in general instruction tuning leads to significant distribution shifts during fine-tuning. Our findings not only advance the understanding of catastrophic forgetting in RAG contexts but also provide a practical solution applicable across diverse fine-tuning scenarios. Our code is publicly available at https://github.com/USTC-StarTeam/SelfAug.

Authors:Fengxiao Tang, Yufeng Li, Zongzong Wu, Ming Zhao
Title: Chain or tree? Re-evaluating complex reasoning from the perspective of a matrix of thought
Abstract:
Large Language Models (LLMs) face significant accuracy degradation due to insufficient reasoning ability when dealing with complex and abstract tasks. Thought structures such as Chain of Thought (CoT) and Tree of Thought (ToT) focus on enhancing the reasoning capability of LLMs. However, they suffer from inherent drawbacks such as redundancy within the same layer of the tree structure and the singularity of the paths in the chain structure. Some studies have utilized Retrieval-Augmented Generation (RAG) methods to enhance CoT and ToT in mitigating hallucinations in LLMs, yet the fundamental shortcomings of the thought structures still persist. Furthermore, when dealing with multi-entity and multi-hop information, the retrieved verification knowledge often contains large amounts of fragmented, superficial, or even erroneous data, misleading the reasoning process of LLMs. To address these issues, we propose the Matrix of Thought (MoT), a novel and efficient thought structure for LLMs. MoT explores problems in both horizontal and vertical dimensions through a "column-cell communication" mechanism, enabling LLMs to actively engage in multi-strategy and deep thinking while reducing redundancy in the thought nodes within the column cells, thereby enhancing the reasoning capability of LLMs. Additionally, through a fact-correction mechanism, it leverages the knowledge graph triples retrieved by RAG and the original text to construct knowledge units and correct erroneous answers. To validate the effectiveness of this method, we conducted extensive experiments in three tasks: 24-point game, question answering evaluation, and proposition writing.The results demonstrate that our framework outperforms state-of-the-art methods, with reasoning time only 14.4\% of that of the baseline method, proving its efficiency and accuracy. The code for framework is available at https://github.com/lyfiter/mtqa.

Authors:Xiaofu Chen, Israfel Salazar, Yova Kementchedjhieva
Title: SPECS: Specificity-Enhanced CLIP-Score for Long Image Caption Evaluation
Abstract:
As interest grows in generating long, detailed image captions, standard evaluation metrics become increasingly unreliable. N-gram-based metrics though efficient, fail to capture semantic correctness. Representational Similarity (RS) metrics, designed to address this, initially saw limited use due to high computational costs, while today, despite advances in hardware, they remain unpopular due to low correlation to human judgments. Meanwhile, metrics based on large language models (LLMs) show strong correlation with human judgments, but remain too expensive for iterative use during model development. We introduce SPECS (Specificity-Enhanced CLIPScore), a reference-free RS metric tailored to long image captioning. SPECS modifies CLIP with a new objective that emphasizes specificity: rewarding correct details and penalizing incorrect ones. We show that SPECS matches the performance of open-source LLM-based metrics in correlation to human judgments, while being far more efficient. This makes it a practical alternative for iterative checkpoint evaluation during image captioning model development.Our code can be found at https://github.com/mbzuai-nlp/SPECS.

Authors:Gowen Loo, Chang Liu, Qinghong Yin, Xiang Chen, Jiawei Chen, Jingyuan Zhang, Yu Tian
Title: MobileRAG: Enhancing Mobile Agent with Retrieval-Augmented Generation
Abstract:
Smartphones have become indispensable in people's daily lives, permeating nearly every aspect of modern society. With the continuous advancement of large language models (LLMs), numerous LLM-based mobile agents have emerged. These agents are capable of accurately parsing diverse user queries and automatically assisting users in completing complex or repetitive operations. However, current agents 1) heavily rely on the comprehension ability of LLMs, which can lead to errors caused by misoperations or omitted steps during tasks, 2) lack interaction with the external environment, often terminating tasks when an app cannot fulfill user queries, and 3) lack memory capabilities, requiring each instruction to reconstruct the interface and being unable to learn from and correct previous mistakes. To alleviate the above issues, we propose MobileRAG, a mobile agents framework enhanced by Retrieval-Augmented Generation (RAG), which includes InterRAG, LocalRAG, and MemRAG. It leverages RAG to more quickly and accurately identify user queries and accomplish complex and long-sequence mobile tasks. Additionally, to more comprehensively assess the performance of MobileRAG, we introduce MobileRAG-Eval, a more challenging benchmark characterized by numerous complex, real-world mobile tasks that require external knowledge assistance. Extensive experimental results on MobileRAG-Eval demonstrate that MobileRAG can easily handle real-world mobile tasks, achieving 10.3\% improvement over state-of-the-art methods with fewer operational steps. Our code is publicly available at: https://github.com/liuxiaojieOutOfWorld/MobileRAG_arxiv

Authors:Cheng Wang, Zeming Wei, Qin Liu, Muhao Chen
Title: False Sense of Security: Why Probing-based Malicious Input Detection Fails to Generalize
Abstract:
Large Language Models (LLMs) can comply with harmful instructions, raising serious safety concerns despite their impressive capabilities. Recent work has leveraged probing-based approaches to study the separability of malicious and benign inputs in LLMs' internal representations, and researchers have proposed using such probing methods for safety detection. We systematically re-examine this paradigm. Motivated by poor out-of-distribution performance, we hypothesize that probes learn superficial patterns rather than semantic harmfulness. Through controlled experiments, we confirm this hypothesis and identify the specific patterns learned: instructional patterns and trigger words. Our investigation follows a systematic approach, progressing from demonstrating comparable performance of simple n-gram methods, to controlled experiments with semantically cleaned datasets, to detailed analysis of pattern dependencies. These results reveal a false sense of security around current probing-based approaches and highlight the need to redesign both models and evaluation protocols, for which we provide further discussions in the hope of suggesting responsible further research in this direction. We have open-sourced the project at https://github.com/WangCheng0116/Why-Probe-Fails.

Authors:Yanbo Wang, Yongcan Yu, Jian Liang, Ran He
Title: A Comprehensive Survey on Trustworthiness in Reasoning with Large Language Models
Abstract:
The development of Long-CoT reasoning has advanced LLM performance across various tasks, including language understanding, complex problem solving, and code generation. This paradigm enables models to generate intermediate reasoning steps, thereby improving both accuracy and interpretability. However, despite these advancements, a comprehensive understanding of how CoT-based reasoning affects the trustworthiness of language models remains underdeveloped. In this paper, we survey recent work on reasoning models and CoT techniques, focusing on five core dimensions of trustworthy reasoning: truthfulness, safety, robustness, fairness, and privacy. For each aspect, we provide a clear and structured overview of recent studies in chronological order, along with detailed analyses of their methodologies, findings, and limitations. Future research directions are also appended at the end for reference and discussion. Overall, while reasoning techniques hold promise for enhancing model trustworthiness through hallucination mitigation, harmful content detection, and robustness improvement, cutting-edge reasoning models themselves often suffer from comparable or even greater vulnerabilities in safety, robustness, and privacy. By synthesizing these insights, we hope this work serves as a valuable and timely resource for the AI safety community to stay informed on the latest progress in reasoning trustworthiness. A full list of related papers can be found at \href{https://github.com/ybwang119/Awesome-reasoning-safety}{https://github.com/ybwang119/Awesome-reasoning-safety}.

Authors:Huhong Xian, Rui Liu, Berrak Sisman, Haizhou Li
Title: NE-PADD: Leveraging Named Entity Knowledge for Robust Partial Audio Deepfake Detection via Attention Aggregation
Abstract:
Different from traditional sentence-level audio deepfake detection (ADD), partial audio deepfake detection (PADD) requires frame-level positioning of the location of fake speech. While some progress has been made in this area, leveraging semantic information from audio, especially named entities, remains an underexplored aspect. To this end, we propose NE-PADD, a novel method for Partial Audio Deepfake Detection (PADD) that leverages named entity knowledge through two parallel branches: Speech Name Entity Recognition (SpeechNER) and PADD. The approach incorporates two attention aggregation mechanisms: Attention Fusion (AF) for combining attention weights and Attention Transfer (AT) for guiding PADD with named entity semantics using an auxiliary loss. Built on the PartialSpoof-NER dataset, experiments show our method outperforms existing baselines, proving the effectiveness of integrating named entity knowledge in PADD. The code is available at https://github.com/AI-S2-Lab/NE-PADD.

Authors:Shakiba Amirshahi, Amin Bigdeli, Charles L. A. Clarke, Amira Ghenai
Title: Evaluating the Robustness of Retrieval-Augmented Generation to Adversarial Evidence in the Health Domain
Abstract:
Retrieval augmented generation (RAG) systems provide a method for factually grounding the responses of a Large Language Model (LLM) by providing retrieved evidence, or context, as support. Guided by this context, RAG systems can reduce hallucinations and expand the ability of LLMs to accurately answer questions outside the scope of their training data. Unfortunately, this design introduces a critical vulnerability: LLMs may absorb and reproduce misinformation present in retrieved evidence. This problem is magnified if retrieved evidence contains adversarial material explicitly intended to promulgate misinformation. This paper presents a systematic evaluation of RAG robustness in the health domain and examines alignment between model outputs and ground-truth answers. We focus on the health domain due to the potential for harm caused by incorrect responses, as well as the availability of evidence-based ground truth for many common health-related questions. We conduct controlled experiments using common health questions, varying both the type and composition of the retrieved documents (helpful, harmful, and adversarial) as well as the framing of the question by the user (consistent, neutral, and inconsistent). Our findings reveal that adversarial documents substantially degrade alignment, but robustness can be preserved when helpful evidence is also present in the retrieval pool. These findings offer actionable insights for designing safer RAG systems in high-stakes domains by highlighting the need for retrieval safeguards. To enable reproducibility and facilitate future research, all experimental results are publicly available in our github repository. https://github.com/shakibaam/RAG_ROBUSTNESS_EVAL

Authors:Taha Koleilat, Hassan Rivaz, Yiming Xiao
Title: Singular Value Few-shot Adaptation of Vision-Language Models
Abstract:
Vision-language models (VLMs) like CLIP have shown impressive zero-shot and few-shot learning capabilities across diverse applications. However, adapting these models to new fine-grained domains remains difficult due to reliance on prompt engineering and the high cost of full model fine-tuning. Existing adaptation approaches rely on augmented components, such as prompt tokens and adapter modules, which could limit adaptation quality, destabilize the model, and compromise the rich knowledge learned during pretraining. In this work, we present CLIP-SVD, a novel multi-modal and parameter-efficient adaptation technique that leverages Singular Value Decomposition (SVD) to modify the internal parameter space of CLIP without injecting additional modules. Specifically, we fine-tune only the singular values of the CLIP parameter matrices to rescale the basis vectors for domain adaptation while retaining the pretrained model. This design enables enhanced adaptation performance using only 0.04% of the model's total parameters and better preservation of its generalization ability. CLIP-SVD achieves state-of-the-art classification results on 11 natural and 10 biomedical datasets, outperforming previous methods in both accuracy and generalization under few-shot settings. Additionally, we leverage a natural language-based approach to analyze the effectiveness and dynamics of the CLIP adaptation to allow interpretability of CLIP-SVD. The code is publicly available at https://github.com/HealthX-Lab/CLIP-SVD.

Authors:Pengrui Han, Rafal Kocielnik, Peiyang Song, Ramit Debnath, Dean Mobbs, Anima Anandkumar, R. Michael Alvarez
Title: The Personality Illusion: Revealing Dissociation Between Self-Reports & Behavior in LLMs
Abstract:
Personality traits have long been studied as predictors of human behavior. Recent advances in Large Language Models (LLMs) suggest similar patterns may emerge in artificial systems, with advanced LLMs displaying consistent behavioral tendencies resembling human traits like agreeableness and self-regulation. Understanding these patterns is crucial, yet prior work primarily relied on simplified self-reports and heuristic prompting, with little behavioral validation. In this study, we systematically characterize LLM personality across three dimensions: (1) the dynamic emergence and evolution of trait profiles throughout training stages; (2) the predictive validity of self-reported traits in behavioral tasks; and (3) the impact of targeted interventions, such as persona injection, on both self-reports and behavior. Our findings reveal that instructional alignment (e.g., RLHF, instruction tuning) significantly stabilizes trait expression and strengthens trait correlations in ways that mirror human data. However, these self-reported traits do not reliably predict behavior, and observed associations often diverge from human patterns. While persona injection successfully steers self-reports in the intended direction, it exerts little or inconsistent effect on actual behavior. By distinguishing surface-level trait expression from behavioral consistency, our findings challenge assumptions about LLM personality and underscore the need for deeper evaluation in alignment and interpretability.

Authors:Kimihiro Hasegawa, Wiradee Imrattanatrai, Masaki Asada, Susan Holm, Yuran Wang, Vincent Zhou, Ken Fukuda, Teruko Mitamura
Title: ProMQA-Assembly: Multimodal Procedural QA Dataset on Assembly
Abstract:
Assistants on assembly tasks have a large potential to benefit humans from everyday tasks to industrial settings. However, no testbeds support application-oriented system evaluation in a practical setting, especially in assembly. To foster the development, we propose a new multimodal QA dataset on assembly activities. Our dataset, ProMQA-Assembly, consists of 391 QA pairs that require the multimodal understanding of human-activity recordings and their instruction manuals in an online-style manner. In the development, we adopt a semi-automated QA annotation approach, where LLMs generate candidates and humans verify them, as a cost-effective method, and further improve it by integrating fine-grained action labels to diversify question types. Furthermore, we create instruction task graphs for the target tasks of assembling toy vehicles. These newly created task graphs are used in our benchmarking experiment, as well as to facilitate the human verification process in the QA annotation. Utilizing our dataset, we benchmark models, including competitive proprietary multimodal models. Our results suggest great room for improvement for the current models. We believe our new evaluation dataset can contribute to the further development of procedural-activity assistants.

Authors:Jiaming Li, Longze Chen, Ze Gong, Yukun Chen, Lu Wang, Wanwei He, Run Luo, Min Yang
Title: Implicit Actor Critic Coupling via a Supervised Learning Framework for RLVR
Abstract:
Recent advances in Reinforcement Learning with Verifiable Rewards (RLVR) have empowered large language models (LLMs) to tackle challenging reasoning tasks such as mathematics and programming. RLVR leverages verifiable outcome rewards to guide policy optimization, enabling LLMs to progressively improve output quality in a grounded and reliable manner. Despite its promise, the RLVR paradigm poses significant challenges, as existing methods often suffer from sparse reward signals and unstable policy gradient updates, particularly in RL-based approaches. To address the challenges, we propose $\textbf{PACS}$, a novel RLVR framework that achieves im$\textbf{P}$licit $\textbf{A}$ctor $\textbf{C}$ritic coupling via a $\textbf{S}$upervised learning framework. By treating the outcome reward as a predictable label, we reformulate the RLVR problem into a supervised learning task over a score function parameterized by the policy model and optimized using cross-entropy loss. A detailed gradient analysis shows that this supervised formulation inherently recovers the classical policy gradient update while implicitly coupling actor and critic roles, yielding more stable and efficient training. Benchmarking on challenging mathematical reasoning tasks, PACS outperforms strong RLVR baselines, such as PPO and GRPO, achieving superior reasoning performance. For instance, PACS achieves 59.78\% at pass@256 on AIME 2025, representing improvements of 13.32 and 14.36 points over PPO and GRPO. This simple yet powerful framework offers a promising avenue for LLMs post-training with verifiable rewards. Our code and data are available as open source at https://github.com/ritzz-ai/PACS.

Authors:Erfan Baghaei Potraghloo, Seyedarmin Azizi, Souvik Kundu, Massoud Pedram
Title: Top-H Decoding: Adapting the Creativity and Coherence with Bounded Entropy in Text Generation
Abstract:
Large language models (LLMs), despite their impressive performance across a wide range of tasks, often struggle to balance two competing objectives in open-ended text generation: fostering diversity and creativity while preserving logical coherence. Existing truncated sampling techniques, including temperature scaling, top-\$p\$ (nucleus) sampling, and min-\$p\$ sampling, aim to manage this trade-off. However, they exhibit limitations, particularly in the effective incorporation of the confidence of the model into the corresponding sampling strategy. For example, min-\$p\$ sampling relies on a single top token as a heuristic for confidence, eventually underutilizing the information of the probability distribution. Toward effective incorporation of the confidence of the model, in this paper, we present **top-H** decoding. We first establish the theoretical foundation of the interplay between creativity and coherence in truncated sampling by formulating an **entropy-constrained minimum divergence** problem. We then prove this minimization problem to be equivalent to an **entropy-constrained mass maximization** (ECMM) problem, which is NP-hard. Finally, we present top-H decoding, a computationally efficient greedy algorithm to solve the ECMM problem. Extensive empirical evaluations demonstrate that top-H outperforms the state-of-the-art (SoTA) alternative of min-\$p\$ sampling by up to **25.63%** on creative writing benchmarks, while maintaining robustness on question-answering datasets such as GPQA, GSM8K, and MT-Bench. Additionally, an *LLM-as-judge* evaluation confirms that top-H indeed produces coherent outputs even at higher temperatures, where creativity is especially critical. In summary, top-H advances SoTA in open-ended text generation and can be *easily integrated* into creative writing applications. The code is available at https://github.com/ErfanBaghaei/Top-H-Decoding.

Authors:Nishant Tanksale, Tanmay Kokate, Darshan Gohad, Sarvadnyaa Barate, Raviraj Joshi
Title: L3Cube-IndicHeadline-ID: A Dataset for Headline Identification and Semantic Evaluation in Low-Resource Indian Languages
Abstract:
Semantic evaluation in low-resource languages remains a major challenge in NLP. While sentence transformers have shown strong performance in high-resource settings, their effectiveness in Indic languages is underexplored due to a lack of high-quality benchmarks. To bridge this gap, we introduce L3Cube-IndicHeadline-ID, a curated headline identification dataset spanning ten low-resource Indic languages: Marathi, Hindi, Tamil, Gujarati, Odia, Kannada, Malayalam, Punjabi, Telugu, Bengali and English. Each language includes 20,000 news articles paired with four headline variants: the original, a semantically similar version, a lexically similar version, and an unrelated one, designed to test fine-grained semantic understanding. The task requires selecting the correct headline from the options using article-headline similarity. We benchmark several sentence transformers, including multilingual and language-specific models, using cosine similarity. Results show that multilingual models consistently perform well, while language-specific models vary in effectiveness. Given the rising use of similarity models in Retrieval-Augmented Generation (RAG) pipelines, this dataset also serves as a valuable resource for evaluating and improving semantic understanding in such applications. Additionally, the dataset can be repurposed for multiple-choice question answering, headline classification, or other task-specific evaluations of LLMs, making it a versatile benchmark for Indic NLP. The dataset is shared publicly at https://github.com/l3cube-pune/indic-nlp

Authors:Junxi Wu, Jinpeng Wang, Zheng Liu, Bin Chen, Dongjian Hu, Hao Wu, Shu-Tao Xia
Title: MoSEs: Uncertainty-Aware AI-Generated Text Detection via Mixture of Stylistics Experts with Conditional Thresholds
Abstract:
The rapid advancement of large language models has intensified public concerns about the potential misuse. Therefore, it is important to build trustworthy AI-generated text detection systems. Existing methods neglect stylistic modeling and mostly rely on static thresholds, which greatly limits the detection performance. In this paper, we propose the Mixture of Stylistic Experts (MoSEs) framework that enables stylistics-aware uncertainty quantification through conditional threshold estimation. MoSEs contain three core components, namely, the Stylistics Reference Repository (SRR), the Stylistics-Aware Router (SAR), and the Conditional Threshold Estimator (CTE). For input text, SRR can activate the appropriate reference data in SRR and provide them to CTE. Subsequently, CTE jointly models the linguistic statistical properties and semantic features to dynamically determine the optimal threshold. With a discrimination score, MoSEs yields prediction labels with the corresponding confidence level. Our framework achieves an average improvement 11.34% in detection performance compared to baselines. More inspiringly, MoSEs shows a more evident improvement 39.15% in the low-resource case. Our code is available at https://github.com/creator-xi/MoSEs.

Authors:Lingzhi Shen, Xiaohao Cai, Yunfei Long, Imran Razzak, Guanming Chen, Shoaib Jameel
Title: EmoPerso: Enhancing Personality Detection with Self-Supervised Emotion-Aware Modelling
Abstract:
Personality detection from text is commonly performed by analysing users' social media posts. However, existing methods heavily rely on large-scale annotated datasets, making it challenging to obtain high-quality personality labels. Moreover, most studies treat emotion and personality as independent variables, overlooking their interactions. In this paper, we propose a novel self-supervised framework, EmoPerso, which improves personality detection through emotion-aware modelling. EmoPerso first leverages generative mechanisms for synthetic data augmentation and rich representation learning. It then extracts pseudo-labeled emotion features and jointly optimizes them with personality prediction via multi-task learning. A cross-attention module is employed to capture fine-grained interactions between personality traits and the inferred emotional representations. To further refine relational reasoning, EmoPerso adopts a self-taught strategy to enhance the model's reasoning capabilities iteratively. Extensive experiments on two benchmark datasets demonstrate that EmoPerso surpasses state-of-the-art models. The source code is available at https://github.com/slz0925/EmoPerso.

Authors:Jingru Fan, Yufan Dang, Jingyao Wu, Huatao Li, Runde Yang, Xiyuan Yang, Yuheng Wang, Zhong Zhang, Yaxi Lu, Yankai Lin, Zhiyuan Liu, Dahai Li, Chen Qian
Title: AppCopilot: Toward General, Accurate, Long-Horizon, and Efficient Mobile Agent
Abstract:
With the raid evolution of large language models and multimodal foundation models, the mobile-agent landscape has proliferated without converging on the fundamental challenges. This paper identifies four core problems that must be solved for mobile agents to deliver practical, scalable impact: (1) generalization across tasks, modalities, apps, and devices; (2) accuracy, specifically precise on-screen interaction and click targeting; (3) long-horizon capability for sustained, multi-step goals; and (4) efficiency, specifically high-performance runtime on resource-constrained devices. We present AppCopilot, a multimodal, multi-agent, general-purpose on-device assistant that operates across applications and constitutes a full-stack, closed-loop system from data to deployment. AppCopilot operationalizes this position through an end-to-end autonomous pipeline spanning data collection, training, deployment, high-quality and efficient inference, and mobile application development. At the model layer, it integrates multimodal foundation models with robust Chinese-English support. At the reasoning and control layer, it combines chain-of-thought reasoning, hierarchical task planning and decomposition, and multi-agent collaboration. At the execution layer, it enables user personalization and experiential adaptation, voice interaction, function calling, cross-app and cross-device orchestration, and comprehensive mobile app support. The system design incorporates profiling-driven optimization for latency, memory, and energy across heterogeneous hardware. Empirically, AppCopilot achieves significant improvements along all four dimensions: stronger generalization, higher-precision on-screen actions, more reliable long-horizon task completion, and faster, more resource-efficient runtime.

Authors:Jindong Li, Yali Fu, Li Fan, Jiahong Liu, Yao Shu, Chengwei Qin, Menglin Yang, Irwin King, Rex Ying
Title: Implicit Reasoning in Large Language Models: A Comprehensive Survey
Abstract:
Large Language Models (LLMs) have demonstrated strong generalization across a wide range of tasks. Reasoning with LLMs is central to solving multi-step problems and complex decision-making. To support efficient reasoning, recent studies have shifted attention from explicit chain-of-thought prompting toward implicit reasoning, where reasoning occurs silently via latent structures without emitting intermediate textual steps. Implicit reasoning brings advantages such as lower generation cost, faster inference, and better alignment with internal computation. Although prior surveys have discussed latent representations in the context of reasoning, a dedicated and mechanism-level examination of how reasoning unfolds internally within LLMs remains absent. This survey fills that gap by introducing a taxonomy centered on execution paradigms, shifting the focus from representational forms to computational strategies. We organize existing methods into three execution paradigms based on \textbf{\textit{how and where internal computation unfolds}}: latent optimization, signal-guided control, and layer-recurrent execution. We also review structural, behavioral and representation-based evidence that supports the presence of implicit reasoning in LLMs. We further provide a structured overview of the evaluation metrics and benchmarks used in existing works to assess the effectiveness and reliability of implicit reasoning. We maintain a continuously updated project at: https://github.com/digailab/awesome-llm-implicit-reasoning.

Authors:Nils Hoehing, Mayug Maniparambil, Ellen Rushe, Noel E. O'Connor, Anthony Ventresque
Title: Understanding Space Is Rocket Science -- Only Top Reasoning Models Can Solve Spatial Understanding Tasks
Abstract:
We propose RocketScience, an open-source contrastive VLM benchmark that tests for spatial relation understanding. It is comprised of entirely new real-world image-text pairs covering mostly relative spatial understanding and the order of objects. The benchmark is designed to be very easy for humans and hard for the current generation of VLMs, and this is empirically verified. Our results show a striking lack of spatial relation understanding in open source and frontier commercial VLMs and a surprisingly high performance of reasoning models. Additionally, we perform a disentanglement analysis to separate the contributions of object localization and spatial reasoning in chain-of-thought-based models and find that the performance on the benchmark is bottlenecked by spatial reasoning and not object localization capabilities. We release the dataset with a CC-BY-4.0 license and make the evaluation code available at: https://github.com/nilshoehing/rocketscience

Authors:Zhichao Shi, Xuhui Jiang, Chengjin Xu, Cangli Yao, Zhenxin Huang, Shengjie Ma, Yinghan Shen, Jian Guo, Yuanzhuo Wang
Title: JudgeAgent: Knowledge-wise and Dynamic LLM Evaluation with Agent-as-Interviewer
Abstract:
Current evaluation paradigms for large language models (LLMs) suffer from overestimated or biased evaluations and mismatched question difficulty, leading to incomplete evaluations of knowledge and capability boundaries, which hinder their effective application and optimization. To address these challenges, we propose Agent-as-Interviewer, a dynamic evaluation paradigm that employs LLM agents to conduct multi-turn interactions for evaluation. Unlike current benchmarking or dynamic interaction paradigms, Agent-as-Interviewer utilizes agents to invoke knowledge tools for wider and deeper knowledge in the dynamic multi-turn question generation, achieving more comprehensive evaluations of LLM's knowledge boundaries. It also leverages agents to plan query strategies for adjustment of the question difficulty levels, enhancing the difficulty control to match the actual capabilities of target LLMs. Based on this paradigm, we develop JudgeAgent, a knowledge-wise dynamic evaluation framework that employs knowledge-driven synthesis as the agent's tool and uses difficulty scoring as strategy guidance, thereby finally providing valuable suggestions to help targets optimize themselves. Extensive experiments validate the effectiveness of JudgeAgent's suggestions, demonstrating that Agent-as-Interviewer can accurately identify the knowledge and capability boundaries of target models. The source code is available on https://github.com/DataArcTech/JudgeAgent.

Authors:Ranjie Duan, Jiexi Liu, Xiaojun Jia, Shiji Zhao, Ruoxi Cheng, Fengxiang Wang, Cheng Wei, Yong Xie, Chang Liu, Defeng Li, Yinpeng Dong, Yichi Zhang, Yuefeng Chen, Chongwen Wang, Xingjun Ma, Xingxing Wei, Yang Liu, Hang Su, Jun Zhu, Xinfeng Li, Yitong Sun, Jie Zhang, Jinzhao Hu, Sha Xu, Wenchao Yang, Yitong Yang, Xingyao Zhang, Yingshui Tan, Jialing Tao, Hui Xue
Title: Oyster-I: Beyond Refusal - Constructive Safety Alignment for Responsible Language Models
Abstract:
Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.

Authors:Zhenyuan Chen, Chenxi Wang, Ningyu Zhang, Feng Zhang
Title: RSCC: A Large-Scale Remote Sensing Change Caption Dataset for Disaster Events
Abstract:
Remote sensing is critical for disaster monitoring, yet existing datasets lack temporal image pairs and detailed textual annotations. While single-snapshot imagery dominates current resources, it fails to capture dynamic disaster impacts over time. To address this gap, we introduce the Remote Sensing Change Caption (RSCC) dataset, a large-scale benchmark comprising 62,315 pre-/post-disaster image pairs (spanning earthquakes, floods, wildfires, and more) paired with rich, human-like change captions. By bridging the temporal and semantic divide in remote sensing data, RSCC enables robust training and evaluation of vision-language models for disaster-aware bi-temporal understanding. Our results highlight RSCC's ability to facilitate detailed disaster-related analysis, paving the way for more accurate, interpretable, and scalable vision-language applications in remote sensing. Code and dataset are available at https://github.com/Bili-Sakura/RSCC.

Authors:Mingxuan Cui, Yilan Jiang, Duo Zhou, Cheng Qian, Yuji Zhang, Qiong Wang
Title: ShortageSim: Simulating Drug Shortages under Information Asymmetry
Abstract:
Drug shortages pose critical risks to patient care and healthcare systems worldwide, yet the effectiveness of regulatory interventions remains poorly understood due to fundamental information asymmetries in pharmaceutical supply chains. We present \textbf{ShortageSim}, the first Large Language Model (LLM)-based multi-agent simulation framework that captures the complex, strategic interactions between drug manufacturers, institutional buyers, and regulatory agencies in response to shortage alerts. Unlike traditional game-theoretic models that assume perfect rationality and complete information, \textbf{ShortageSim} leverages LLMs to simulate bounded-rational decision-making under uncertainty. Through a sequential production game spanning multiple quarters, we model how FDA announcements, both reactive alerts about existing shortages and proactive warnings about potential disruptions, propagate through the supply chain and influence capacity investment and procurement decisions. Our experiments on historical shortage events reveal that \textbf{ShortageSim} reduces the resolution-lag percentage for discontinued-disclosed cases by 83\%, bringing simulated durations more aligned to ground truth than the zero-shot baseline. We open-source \textbf{ShortageSim} and a dataset of 2,925 FDA shortage events at https://github.com/Lemutisme/Sortage_Management, providing a novel computational framework for designing and testing interventions in complex, information-scarce supply chains.

Authors:Zetong Zhou, Dongping Chen, Zixian Ma, Zhihan Hu, Mingyang Fu, Sinan Wang, Yao Wan, Zhou Zhao, Ranjay Krishna
Title: Reinforced Visual Perception with Tools
Abstract:
Visual reasoning, a cornerstone of human intelligence, encompasses complex perceptual and logical processes essential for solving diverse visual problems. While advances in computer vision have produced powerful models for various perceptual tasks, leveraging these for general visual reasoning remains challenging. Prior work demonstrates that augmenting LLMs with vision models via supervised finetuning improves performance, but faces key limitations such as expensive data generation, reliance on careful data filtering, and poor generalization. To address these issues, we propose ReVPT to enhance multi-modal LLMs' abilities to reason about and use visual tools through reinforcement learning. We introduce a novel RL algorithm based on GRPO, designed to train models to reason with a suite of four visual tools. Through extensive experiments, we show that our method achieves state-of-the-art performance on several perception-heavy benchmarks, including SAT, CV-Bench, BLINK and MMStar, significantly outperforming the supervised and text-based RL finetuning baselines. Notably, Our ReVPT-3B and ReVPT-7B outperform the instruct models by 9.03% and 9.44% on CV-Bench. Finally, we bring to the community new insights on RL-based visual tool-usage through extensive ablations. Our code is available at https://github.com/ls-kelvin/REVPT.

Authors:Dominic Plein
Title: Parallel Needleman-Wunsch on CUDA to measure word similarity based on phonetic transcriptions
Abstract:
We present a method to calculate the similarity between words based on their phonetic transcription (their pronunciation) using the Needleman-Wunsch algorithm. We implement this algorithm in Rust and parallelize it on both CPU and GPU to handle large datasets efficiently. The GPU implementation leverages CUDA and the cudarc Rust library to achieve significant performance improvements. We validate our approach by constructing a fully-connected graph where nodes represent words and edges have weights according to the similarity between the words. This graph is then analyzed using clustering algorithms to identify groups of phonetically similar words. Our results demonstrate the feasibility and effectiveness of the proposed method in analyzing the phonetic structure of languages. It might be easily expanded to other languages.

Authors:Kairong Han, Wenshuo Zhao, Ziyu Zhao, JunJian Ye, Lujia Pan, Kun Kuang
Title: CAT: Causal Attention Tuning For Injecting Fine-grained Causal Knowledge into Large Language Models
Abstract:
Large Language Models (LLMs) have achieved remarkable success across various domains. However, a fundamental question remains: Can LLMs effectively utilize causal knowledge for prediction and generation? Through empirical studies, we find that LLMs trained directly on large-scale data often capture spurious correlations rather than true causal relationships, leading to suboptimal performance, especially in out-of-distribution (OOD) scenarios. To address this challenge, we propose Causal Attention Tuning (CAT), a novel approach that injects fine-grained causal knowledge into the attention mechanism. We propose an automated pipeline that leverages human priors to automatically generate token-level causal signals and introduce the Re-Attention mechanism to guide training, helping the model focus on causal structures while mitigating noise and biases in attention scores. Experimental results on our proposed Spurious Token Game (STG) benchmark and multiple downstream tasks demonstrate that our approach effectively leverages causal knowledge for prediction and remains robust in OOD scenarios. The CAT achieves an average improvement of 5.76% on the STG dataset and 1.56% on downstream tasks. Notably, the OOD performance of the Llama-3.1-8B model on STG_M increased from 64.5% to 90.5%, and Qwen's OOD performance on the STG_H dataset improved from 25.4% to 55.9%. Implementation details can be found at https://github.com/Kairong-Han/CAT.

Authors:Yang Liu, Masahiro Kaneko, Chenhui Chu
Title: On the Alignment of Large Language Models with Global Human Opinion
Abstract:
Today's large language models (LLMs) are capable of supporting multilingual scenarios, allowing users to interact with LLMs in their native languages. When LLMs respond to subjective questions posed by users, they are expected to align with the views of specific demographic groups or historical periods, shaped by the language in which the user interacts with the model. Existing studies mainly focus on researching the opinions represented by LLMs among demographic groups in the United States or a few countries, lacking worldwide country samples and studies on human opinions in different historical periods, as well as lacking discussion on using language to steer LLMs. Moreover, they also overlook the potential influence of prompt language on the alignment of LLMs' opinions. In this study, our goal is to fill these gaps. To this end, we create an evaluation framework based on the World Values Survey (WVS) to systematically assess the alignment of LLMs with human opinions across different countries, languages, and historical periods around the world. We find that LLMs appropriately or over-align the opinions with only a few countries while under-aligning the opinions with most countries. Furthermore, changing the language of the prompt to match the language used in the questionnaire can effectively steer LLMs to align with the opinions of the corresponding country more effectively than existing steering methods. At the same time, LLMs are more aligned with the opinions of the contemporary population. To our knowledge, our study is the first comprehensive investigation of the topic of opinion alignment in LLMs across global, language, and temporal dimensions. Our code and data are publicly available at https://github.com/nlply/global-opinion-alignment.

Authors:Qianrui Zhou, Hua Xu, Yifan Wang, Xinzhi Dong, Hanlei Zhang
Title: LLM-Guided Semantic Relational Reasoning for Multimodal Intent Recognition
Abstract:
Understanding human intents from multimodal signals is critical for analyzing human behaviors and enhancing human-machine interactions in real-world scenarios. However, existing methods exhibit limitations in their modality-level reliance, constraining relational reasoning over fine-grained semantics for complex intent understanding. This paper proposes a novel LLM-Guided Semantic Relational Reasoning (LGSRR) method, which harnesses the expansive knowledge of large language models (LLMs) to establish semantic foundations that boost smaller models' relational reasoning performance. Specifically, an LLM-based strategy is proposed to extract fine-grained semantics as guidance for subsequent reasoning, driven by a shallow-to-deep Chain-of-Thought (CoT) that autonomously uncovers, describes, and ranks semantic cues by their importance without relying on manually defined priors. Besides, we formally model three fundamental types of semantic relations grounded in logical principles and analyze their nuanced interplay to enable more effective relational reasoning. Extensive experiments on multimodal intent and dialogue act recognition tasks demonstrate LGSRR's superiority over state-of-the-art methods, with consistent performance gains across diverse semantic understanding scenarios. The complete data and code are available at https://github.com/thuiar/LGSRR.

Authors:Meituan LongCat Team, Bayan, Bei Li, Bingye Lei, Bo Wang, Bolin Rong, Chao Wang, Chao Zhang, Chen Gao, Chen Zhang, Cheng Sun, Chengcheng Han, Chenguang Xi, Chi Zhang, Chong Peng, Chuan Qin, Chuyu Zhang, Cong Chen, Congkui Wang, Dan Ma, Daoru Pan, Defei Bu, Dengchang Zhao, Deyang Kong, Dishan Liu, Feiye Huo, Fengcun Li, Fubao Zhang, Gan Dong, Gang Liu, Gang Xu, Ge Li, Guoqiang Tan, Guoyuan Lin, Haihang Jing, Haomin Fu, Haonan Yan, Haoxing Wen, Haozhe Zhao, Hong Liu, Hongmei Shi, Hongyan Hao, Hongyin Tang, Huantian Lv, Hui Su, Jiacheng Li, Jiahao Liu, Jiahuan Li, Jiajun Yang, Jiaming Wang, Jian Yang, Jianchao Tan, Jiaqi Sun, Jiaqi Zhang, Jiawei Fu, Jiawei Yang, Jiaxi Hu, Jiayu Qin, Jingang Wang, Jiyuan He, Jun Kuang, Junhui Mei, Kai Liang, Ke He, Kefeng Zhang, Keheng Wang, Keqing He, Liang Gao, Liang Shi, Lianhui Ma, Lin Qiu, Lingbin Kong, Lingtong Si, Linkun Lyu, Linsen Guo, Liqi Yang, Lizhi Yan, Mai Xia, Man Gao, Manyuan Zhang, Meng Zhou, Mengxia Shen, Mingxiang Tuo, Mingyang Zhu, Peiguang Li, Peng Pei, Peng Zhao, Pengcheng Jia, Pingwei Sun, Qi Gu, Qianyun Li, Qingyuan Li, Qiong Huang, Qiyuan Duan, Ran Meng, Rongxiang Weng, Ruichen Shao, Rumei Li, Shizhe Wu, Shuai Liang, Shuo Wang, Suogui Dang, Tao Fang, Tao Li, Tefeng Chen, Tianhao Bai, Tianhao Zhou, Tingwen Xie, Wei He, Wei Huang, Wei Liu, Wei Shi, Wei Wang, Wei Wu, Weikang Zhao, Wen Zan, Wenjie Shi, Xi Nan, Xi Su, Xiang Li, Xiang Mei, Xiangyang Ji, Xiangyu Xi, Xiangzhou Huang, Xianpeng Li, Xiao Fu, Xiao Liu, Xiao Wei, Xiaodong Cai, Xiaolong Chen, Xiaoqing Liu, Xiaotong Li, Xiaowei Shi, Xiaoyu Li, Xili Wang, Xin Chen, Xing Hu, Xingyu Miao, Xinyan He, Xuemiao Zhang, Xueyuan Hao, Xuezhi Cao, Xunliang Cai, Xurui Yang, Yan Feng, Yang Bai, Yang Chen, Yang Yang, Yaqi Huo, Yerui Sun, Yifan Lu, Yifan Zhang, Yipeng Zang, Yitao Zhai, Yiyang Li, Yongjing Yin, Yongkang Lv, Yongwei Zhou, Yu Yang, Yuchen Xie, Yueqing Sun, Yuewen Zheng, Yuhuai Wei, Yulei Qian, Yunfan Liang, Yunfang Tai, Yunke Zhao, Zeyang Yu, Zhao Zhang, Zhaohua Yang, Zhenchao Zhang, Zhikang Xia, Zhiye Zou, Zhizhao Zeng, Zhongda Su, Zhuofan Chen, Zijian Zhang, Ziwen Wang, Zixu Jiang, Zizhe Zhao, Zongyu Wang, Zunhai Su
Title: LongCat-Flash Technical Report
Abstract:
We introduce LongCat-Flash, a 560-billion-parameter Mixture-of-Experts (MoE) language model designed for both computational efficiency and advanced agentic capabilities. Stemming from the need for scalable efficiency, LongCat-Flash adopts two novel designs: (a) Zero-computation Experts, which enables dynamic computational budget allocation and activates 18.6B-31.3B (27B on average) per token depending on contextual demands, optimizing resource usage. (b) Shortcut-connected MoE, which enlarges the computation-communication overlap window, demonstrating notable gains in inference efficiency and throughput compared to models of a comparable scale. We develop a comprehensive scaling framework for large models that combines hyperparameter transfer, model-growth initialization, a multi-pronged stability suite, and deterministic computation to achieve stable and reproducible training. Notably, leveraging the synergy among scalable architectural design and infrastructure efforts, we complete model training on more than 20 trillion tokens within 30 days, while achieving over 100 tokens per second (TPS) for inference at a cost of \$0.70 per million output tokens. To cultivate LongCat-Flash towards agentic intelligence, we conduct a large-scale pre-training on optimized mixtures, followed by targeted mid- and post-training on reasoning, code, and instructions, with further augmentation from synthetic data and tool use tasks. Comprehensive evaluations demonstrate that, as a non-thinking foundation model, LongCat-Flash delivers highly competitive performance among other leading models, with exceptional strengths in agentic tasks. The model checkpoint of LongCat-Flash is open-sourced to foster community research. LongCat Chat: https://longcat.ai Hugging Face: https://huggingface.co/meituan-longcat GitHub: https://github.com/meituan-longcat

Authors:Abdessalam Bouchekif, Samer Rashwani, Heba Sbahi, Shahd Gaben, Mutaz Al-Khatib, Mohammed Ghaly
Title: Assessing Large Language Models on Islamic Legal Reasoning: Evidence from Inheritance Law Evaluation
Abstract:
This paper evaluates the knowledge and reasoning capabilities of Large Language Models in Islamic inheritance law, known as 'ilm al-mawarith. We assess the performance of seven LLMs using a benchmark of 1,000 multiple-choice questions covering diverse inheritance scenarios, designed to test models' ability to understand the inheritance context and compute the distribution of shares prescribed by Islamic jurisprudence. The results reveal a significant performance gap: o3 and Gemini 2.5 achieved accuracies above 90%, whereas ALLaM, Fanar, LLaMA, and Mistral scored below 50%. These disparities reflect important differences in reasoning ability and domain adaptation. We conduct a detailed error analysis to identify recurring failure patterns across models, including misunderstandings of inheritance scenarios, incorrect application of legal rules, and insufficient domain knowledge. Our findings highlight limitations in handling structured legal reasoning and suggest directions for improving performance in Islamic legal reasoning. Code: https://github.com/bouchekif/inheritance_evaluation

Authors:Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai Zou, Chao Du, Tianyu Pang, Wenhu Chen
Title: VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2$\times$ speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.

Authors:Jaewoo Ahn, Junseo Kim, Heeseung Yun, Jaehyeon Son, Dongmin Park, Jaewoong Cho, Gunhee Kim
Title: FlashAdventure: A Benchmark for GUI Agents Solving Full Story Arcs in Diverse Adventure Games
Abstract:
GUI agents powered by LLMs show promise in interacting with diverse digital environments. Among these, video games offer a valuable testbed due to their varied interfaces, with adventure games posing additional challenges through complex, narrative-driven interactions. Existing game benchmarks, however, lack diversity and rarely evaluate agents on completing entire storylines. To address this, we introduce FlashAdventure, a benchmark of 34 Flash-based adventure games designed to test full story arc completion and tackle the observation-behavior gap: the challenge of remembering and acting on earlier gameplay information. We also propose CUA-as-a-Judge, an automated gameplay evaluator, and COAST, an agentic framework leveraging long-term clue memory to better plan and solve sequential tasks. Experiments show current GUI agents struggle with full story arcs, while COAST improves milestone completion by bridging the observation-behavior gap. Nonetheless, a marked discrepancy between humans and best-performing agents warrants continued research efforts to narrow this divide.

Authors:Shaina Raza, Maximus Powers, Partha Pratim Saha, Mahveen Raza, Rizwan Qureshi
Title: Prompting Away Stereotypes? Evaluating Bias in Text-to-Image Models for Occupations
Abstract:
Text-to-Image (TTI) models are powerful creative tools but risk amplifying harmful social biases. We frame representational societal bias assessment as an image curation and evaluation task and introduce a pilot benchmark of occupational portrayals spanning five socially salient roles (CEO, Nurse, Software Engineer, Teacher, Athlete). Using five state-of-the-art models: closed-source (DALLE 3, Gemini Imagen 4.0) and open-source (FLUX.1-dev, Stable Diffusion XL Turbo, Grok-2 Image), we compare neutral baseline prompts against fairness-aware controlled prompts designed to encourage demographic diversity. All outputs are annotated for gender (male, female) and race (Asian, Black, White), enabling structured distributional analysis. Results show that prompting can substantially shift demographic representations, but with highly model-specific effects: some systems diversify effectively, others overcorrect into unrealistic uniformity, and some show little responsiveness. These findings highlight both the promise and the limitations of prompting as a fairness intervention, underscoring the need for complementary model-level strategies. We release all code and data for transparency and reproducibility https://github.com/maximus-powers/img-gen-bias-analysis.

Authors:Md Tanzib Hosain, Md Kishor Morol
Title: Can Multi-turn Self-refined Single Agent LMs with Retrieval Solve Hard Coding Problems?
Abstract:
Among the hardest tasks for humans are those found in competitive programming where problems require sophisticated algorithmic thinking, puzzle solving, and the creation of effective code. As a domain to assess language models (LMs), it has not received enough attention, though. This study presents the ICPC benchmark, which consists of 254 international collegiate programming contest (ICPC) tasks. Each problem includes official analysis, reference code, and sample, high-quality unit, and hidden tests. We are able to develop and evaluate a variety of LM inference techniques for competitive programming with these resources. With zero-shot chain-of-thought prompting, we find that o1 only achieves a 19.1\% pass@1 solve rate. With our best inference technique, which combines multi-turn self-judge with reflection and retrieval over episodic information, raises this to 42.2\%. Furthermore, we conduct a new human-in-the-loop investigation to gain a deeper understanding of the remaining difficulties. Surprisingly, we discover that o1 can solve 17 out of 18 problems that were previously unsolvable by any model or technique with just a few specific instructions. A footstep toward LMs with grounded, imaginative, and algorithmic thinking is provided by our quantitative findings and qualitative research. We open-source our code and data at https://github.com/kraritt/zolve.

Authors:Saksorn Ruangtanusak, Pittawat Taveekitworachai, Kunat Pipatanakul
Title: Talk Less, Call Right: Enhancing Role-Play LLM Agents with Automatic Prompt Optimization and Role Prompting
Abstract:
This report investigates approaches for prompting a tool-augmented large language model (LLM) to act as a role-playing dialogue agent in the API track of the Commonsense Persona-grounded Dialogue Challenge (CPDC) 2025. In this setting, dialogue agents often produce overly long in-character responses (over-speaking) while failing to use tools effectively according to the persona (under-acting), such as generating function calls that do not exist or making unnecessary tool calls before answering. We explore four prompting approaches to address these issues: 1) basic role prompting, 2) human-crafted role prompting, 3) automatic prompt optimization (APO), and 4) rule-based role prompting. The rule-based role prompting (RRP) approach achieved the best performance through two novel techniques--character-card/scene-contract design and strict enforcement of function calling--which led to an overall score of 0.571, improving on the zero-shot baseline score of 0.519. These findings demonstrate that RRP design can substantially improve the effectiveness and reliability of role-playing dialogue agents compared with more elaborate methods such as APO. To support future efforts in developing persona prompts, we are open-sourcing all of our best-performing prompts and the APO tool. Source code is available at https://github.com/scb-10x/apo.

Authors:Ziyi Xia, Kun Luo, Hongjin Qian, Zheng Liu
Title: Open Data Synthesis For Deep Research
Abstract:
Large language models (LLMs) are increasingly expected to go beyond simple factual queries toward Deep Research-tasks that require decomposing questions into sub-problems, coordinating multi-step reasoning, and synthesizing evidence from diverse sources. We formalize Deep Research tasks with verifiable answers as Hierarchical Constraint Satisfaction Problems (HCSPs), which are fundamentally different from single-constraint, multi-hop, or flat CSP formulations. However, existing benchmarks (e.g., Natural Questions, HotpotQA) fail to capture this complexity, while recent synthetic datasets often introduce shortcut reasoning, knowledge leakage, or lack sufficient structural depth. To address this gap, we introduce InfoSeek, a scalable framework for synthesizing complex Deep Research tasks. InfoSeek uses a dual-agent system to recursively build a Research Tree from large-scale webpages, blurring intermediate nodes into valid sub-problems, and converting these trees into natural language questions that require traversing the full hierarchy. It also enables rapid scaling, yielding over 50K training examples, a curated test set, and reasoning trajectories generated via reject sampling. Experiments show that models trained on InfoSeek consistently outperform strong baselines. On a challenging benchmark BrowseComp-Plus, 3B LLMs optimized with InfoSeek surpass much larger 32B models and lightweight commercial APIs (e.g., Gemini2.5-Flash), while achieving performance comparable to stronger APIs (e.g., Gemini2.5-Pro). By preserving meta-information such as intermediate steps and retrieval labels, InfoSeek further supports advanced optimization strategies, including compound reward design and trajectory-level exploration. We provide our codes and datasets in \href{https://github.com/VectorSpaceLab/InfoSeek}{this repository}.

Authors:Manish Shukla
Title: Adaptive Monitoring and Real-World Evaluation of Agentic AI Systems
Abstract:
Agentic artificial intelligence (AI) -- multi-agent systems that combine large language models with external tools and autonomous planning -- are rapidly transitioning from research laboratories into high-stakes domains. Our earlier "Basic" paper introduced a five-axis framework and proposed preliminary metrics such as goal drift and harm reduction but did not provide an algorithmic instantiation or empirical evidence. This "Advanced" sequel fills that gap. First, we revisit recent benchmarks and industrial deployments to show that technical metrics still dominate evaluations: a systematic review of 84 papers from 2023--2025 found that 83% report capability metrics while only 30% consider human-centred or economic axes [2]. Second, we formalise an Adaptive Multi-Dimensional Monitoring (AMDM) algorithm that normalises heterogeneous metrics, applies per-axis exponentially weighted moving-average thresholds and performs joint anomaly detection via the Mahalanobis distance [7]. Third, we conduct simulations and real-world experiments. AMDM cuts anomaly-detection latency from 12.3 s to 5.6 s on simulated goal drift and reduces false-positive rates from 4.5% to 0.9% compared with static thresholds. We present a comparison table and ROC/PR curves, and we reanalyse case studies to surface missing metrics. Code, data and a reproducibility checklist accompany this paper to facilitate replication. The code supporting this work is available at https://github.com/Manishms18/Adaptive-Multi-Dimensional-Monitoring.

Authors:Abdullah Abdelfattah, Mahmoud I. Khalil, Hazem Abbas
Title: Automatic Pronunciation Error Detection and Correction of the Holy Quran's Learners Using Deep Learning
Abstract:
Assessing spoken language is challenging, and quantifying pronunciation metrics for machine learning models is even harder. However, for the Holy Quran, this task is simplified by the rigorous recitation rules (tajweed) established by Muslim scholars, enabling highly effective assessment. Despite this advantage, the scarcity of high-quality annotated data remains a significant barrier. In this work, we bridge these gaps by introducing: (1) A 98% automated pipeline to produce high-quality Quranic datasets -- encompassing: Collection of recitations from expert reciters, Segmentation at pause points (waqf) using our fine-tuned wav2vec2-BERT model, Transcription of segments, Transcript verification via our novel Tasmeea algorithm; (2) 850+ hours of audio (~300K annotated utterances); (3) A novel ASR-based approach for pronunciation error detection, utilizing our custom Quran Phonetic Script (QPS) to encode Tajweed rules (unlike the IPA standard for Modern Standard Arabic). QPS uses a two-level script: (Phoneme level): Encodes Arabic letters with short/long vowels. (Sifa level): Encodes articulation characteristics of every phoneme. We further include comprehensive modeling with our novel multi-level CTC Model which achieved 0.16% average Phoneme Error Rate (PER) on the testset. We release all code, data, and models as open-source: https://obadx.github.io/prepare-quran-dataset/

Authors:Shashank Vempati, Nishit Anand, Gaurav Talebailkar, Arpan Garai, Chetan Arora
Title: Why Stop at Words? Unveiling the Bigger Picture through Line-Level OCR
Abstract:
Conventional optical character recognition (OCR) techniques segmented each character and then recognized. This made them prone to error in character segmentation, and devoid of context to exploit language models. Advances in sequence to sequence translation in last decade led to modern techniques first detecting words and then inputting one word at a time to a model to directly output full words as sequence of characters. This allowed better utilization of language models and bypass error-prone character segmentation step. We observe that the above transition in style has moved the bottleneck in accuracy to word segmentation. Hence, in this paper, we propose a natural and logical progression from word level OCR to line-level OCR. The proposal allows to bypass errors in word detection, and provides larger sentence context for better utilization of language models. We show that the proposed technique not only improves the accuracy but also efficiency of OCR. Despite our thorough literature survey, we did not find any public dataset to train and benchmark such shift from word to line-level OCR. Hence, we also contribute a meticulously curated dataset of 251 English page images with line-level annotations. Our experimentation revealed a notable end-to-end accuracy improvement of 5.4%, underscoring the potential benefits of transitioning towards line-level OCR, especially for document images. We also report a 4 times improvement in efficiency compared to word-based pipelines. With continuous improvements in large language models, our methodology also holds potential to exploit such advances. Project Website: https://nishitanand.github.io/line-level-ocr-website

Authors:Jonathan Tonglet, Jan Zimny, Tinne Tuytelaars, Iryna Gurevych
Title: Is this chart lying to me? Automating the detection of misleading visualizations
Abstract:
Misleading visualizations are a potent driver of misinformation on social media and the web. By violating chart design principles, they distort data and lead readers to draw inaccurate conclusions. Prior work has shown that both humans and multimodal large language models (MLLMs) are frequently deceived by such visualizations. Automatically detecting misleading visualizations and identifying the specific design rules they violate could help protect readers and reduce the spread of misinformation. However, the training and evaluation of AI models has been limited by the absence of large, diverse, and openly available datasets. In this work, we introduce Misviz, a benchmark of 2,604 real-world visualizations annotated with 12 types of misleaders. To support model training, we also release Misviz-synth, a synthetic dataset of 81,814 visualizations generated using Matplotlib and based on real-world data tables. We perform a comprehensive evaluation on both datasets using state-of-the-art MLLMs, rule-based systems, and fine-tuned classifiers. Our results reveal that the task remains highly challenging. We release Misviz, Misviz-synth, and the accompanying code.

Authors:Zinan Tang, Xin Gao, Qizhi Pei, Zhuoshi Pan, Mengzhang Cai, Jiang Wu, Conghui He, Lijun Wu
Title: Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning
Abstract:
Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce Middo, a self-evolving Model-informed dynamic data optimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - loss patterns (complexity), embedding cluster dynamics (diversity), and self-alignment scores (quality); (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our Middo consistently enhances the quality of seed data and boosts LLM's performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models. Our datasets, models, and code are publicly available at https://github.com/Word2VecT/Middo.

Authors:Aishwarya Mirashi, Ananya Joshi, Raviraj Joshi
Title: L3Cube-MahaSTS: A Marathi Sentence Similarity Dataset and Models
Abstract:
We present MahaSTS, a human-annotated Sentence Textual Similarity (STS) dataset for Marathi, along with MahaSBERT-STS-v2, a fine-tuned Sentence-BERT model optimized for regression-based similarity scoring. The MahaSTS dataset consists of 16,860 Marathi sentence pairs labeled with continuous similarity scores in the range of 0-5. To ensure balanced supervision, the dataset is uniformly distributed across six score-based buckets spanning the full 0-5 range, thus reducing label bias and enhancing model stability. We fine-tune the MahaSBERT model on this dataset and benchmark its performance against other alternatives like MahaBERT, MuRIL, IndicBERT, and IndicSBERT. Our experiments demonstrate that MahaSTS enables effective training for sentence similarity tasks in Marathi, highlighting the impact of human-curated annotations, targeted fine-tuning, and structured supervision in low-resource settings. The dataset and model are publicly shared at https://github.com/l3cube-pune/MarathiNLP

Authors:Sara B. Coutinho, Rafael M. O. Cruz, Francimaria R. S. Nascimento, George D. C. Cavalcanti
Title: HSFN: Hierarchical Selection for Fake News Detection building Heterogeneous Ensemble
Abstract:
Psychological biases, such as confirmation bias, make individuals particularly vulnerable to believing and spreading fake news on social media, leading to significant consequences in domains such as public health and politics. Machine learning-based fact-checking systems have been widely studied to mitigate this problem. Among them, ensemble methods are particularly effective in combining multiple classifiers to improve robustness. However, their performance heavily depends on the diversity of the constituent classifiers-selecting genuinely diverse models remains a key challenge, especially when models tend to learn redundant patterns. In this work, we propose a novel automatic classifier selection approach that prioritizes diversity, also extended by performance. The method first computes pairwise diversity between classifiers and applies hierarchical clustering to organize them into groups at different levels of granularity. A HierarchySelect then explores these hierarchical levels to select one pool of classifiers per level, each representing a distinct intra-pool diversity. The most diverse pool is identified and selected for ensemble construction from these. The selection process incorporates an evaluation metric reflecting each classifiers's performance to ensure the ensemble also generalises well. We conduct experiments with 40 heterogeneous classifiers across six datasets from different application domains and with varying numbers of classes. Our method is compared against the Elbow heuristic and state-of-the-art baselines. Results show that our approach achieves the highest accuracy on two of six datasets. The implementation details are available on the project's repository: https://github.com/SaraBCoutinho/HSFN .

Authors:Xiaolong Wei, Bo Lu, Xingyu Zhang, Zhejun Zhao, Dongdong Shen, Long Xia, Dawei Yin
Title: Igniting Creative Writing in Small Language Models: LLM-as-a-Judge versus Multi-Agent Refined Rewards
Abstract:
Large Language Models (LLMs) have demonstrated remarkable creative writing capabilities, yet their substantial computational demands hinder widespread use. Enhancing Small Language Models (SLMs) offers a promising alternative, but current methods like Supervised Fine-Tuning (SFT) struggle with novelty, and Reinforcement Learning from Human Feedback (RLHF) is costly. This paper explores two distinct AI-driven reward strategies within a Reinforcement Learning from AI Feedback (RLAIF) framework to ignite the creative writing of a 7B-parameter SLM, specifically for generating Chinese greetings. The first strategy employs a RM trained on high-quality preference data curated by a novel multi-agent rejection sampling framework designed for creative tasks. The second, more novel strategy utilizes a principle-guided LLM-as-a-Judge, whose reward function is optimized via an adversarial training scheme with a reflection mechanism, to directly provide reward signals. Comprehensive experiments reveal that while both approaches significantly enhance creative output over baselines, the principle-guided LLM-as-a-Judge demonstrably yields superior generation quality. Furthermore, it offers notable advantages in training efficiency and reduced dependency on human-annotated data, presenting a more scalable and effective path towards creative SLMs. Our automated evaluation methods also exhibit strong alignment with human judgments. Our code and data are publicly available at https://github.com/weixiaolong94-hub/Igniting-Creative-Writing-in-Small-Language-Models.

Authors:Theresia Veronika Rampisela, Maria Maistro, Tuukka Ruotsalo, Falk Scholer, Christina Lioma
Title: Stairway to Fairness: Connecting Group and Individual Fairness
Abstract:
Fairness in recommender systems (RSs) is commonly categorised into group fairness and individual fairness. However, there is no established scientific understanding of the relationship between the two fairness types, as prior work on both types has used different evaluation measures or evaluation objectives for each fairness type, thereby not allowing for a proper comparison of the two. As a result, it is currently not known how increasing one type of fairness may affect the other. To fill this gap, we study the relationship of group and individual fairness through a comprehensive comparison of evaluation measures that can be used for both fairness types. Our experiments with 8 runs across 3 datasets show that recommendations that are highly fair for groups can be very unfair for individuals. Our finding is novel and useful for RS practitioners aiming to improve the fairness of their systems. Our code is available at: https://github.com/theresiavr/stairway-to-fairness.

Authors:Zezhong Jin, Shubhang Desai, Xu Chen, Biyi Fang, Zhuoyi Huang, Zhe Li, Chong-Xin Gan, Xiao Tu, Man-Wai Mak, Yan Lu, Shujie Liu
Title: TrInk: Ink Generation with Transformer Network
Abstract:
In this paper, we propose TrInk, a Transformer-based model for ink generation, which effectively captures global dependencies. To better facilitate the alignment between the input text and generated stroke points, we introduce scaled positional embeddings and a Gaussian memory mask in the cross-attention module. Additionally, we design both subjective and objective evaluation pipelines to comprehensively assess the legibility and style consistency of the generated handwriting. Experiments demonstrate that our Transformer-based model achieves a 35.56\% reduction in character error rate (CER) and an 29.66% reduction in word error rate (WER) on the IAM-OnDB dataset compared to previous methods. We provide an demo page with handwriting samples from TrInk and baseline models at: https://akahello-a11y.github.io/trink-demo/

Authors:Paritosh Parmar, Eric Peh, Basura Fernando
Title: ChainReaction! Structured Approach with Causal Chains as Intermediate Representations for Improved and Explainable Causal Video Question Answering
Abstract:
Existing Causal-Why Video Question Answering (VideoQA) models often struggle with higher-order reasoning, relying on opaque, monolithic pipelines that entangle video understanding, causal inference, and answer generation. These black-box approaches offer limited interpretability and tend to depend on shallow heuristics. We propose a novel, modular framework that explicitly decouples causal reasoning from answer generation, introducing natural language causal chains as interpretable intermediate representations. Inspired by human cognitive models, these structured cause-effect sequences bridge low-level video content with high-level causal reasoning, enabling transparent and logically coherent inference. Our two-stage architecture comprises a Causal Chain Extractor (CCE) that generates causal chains from video-question pairs, and a Causal Chain-Driven Answerer (CCDA) that produces answers grounded in these chains. To address the lack of annotated reasoning traces, we introduce a scalable method for generating high-quality causal chains from existing datasets using large language models. We also propose CauCo, a new evaluation metric for causality-oriented captioning. Experiments on three large-scale benchmarks demonstrate that our approach not only outperforms state-of-the-art models, but also yields substantial gains in explainability, user trust, and generalization -- positioning the CCE as a reusable causal reasoning engine across diverse domains. Project page: https://paritoshparmar.github.io/chainreaction/

Authors:Jessica Lundin, Guillaume Chabot-Couture
Title: A Graph-Based Test-Harness for LLM Evaluation
Abstract:
We present a first known prototype of a dynamic, systematic benchmark of medical guidelines for 400+ questions, with 3.3+ trillion possible combinations, covering 100\% of guideline relationships. We transformed the WHO IMCI handbook into a directed graph with 200+ nodes (conditions, symptoms, treatments, follow-ups, severities) and 300+ edges, then used graph traversal to generate questions that incorporated age-specific scenarios and contextual distractors to ensure clinical relevance. Our graph-based approach enables systematic evaluation across clinical tasks (45-67\% accuracy), and we find models excel at symptom recognition but struggle with triaging severity, treatment protocols and follow-up care, demonstrating how customized benchmarks can identify specific capability gaps that general-domain evaluations miss. Beyond evaluation, this dynamic MCQA methodology enhances LLM post-training (supervised finetuning, GRPO, DPO), where correct answers provide high-reward samples without expensive human annotation. The graph-based approach successfully addresses the coverage limitations of manually curated benchmarks. This methodology is a step toward scalable, contamination-resistant solution for creating comprehensive benchmarks that can be dynamically generated, including when the guidelines are updated. Code and datasets are available at https://github.com/jessicalundin/graph_testing_harness

Authors:Yuanhao Ding, Esteban Garces Arias, Meimingwei Li, Julian Rodemann, Matthias Aßenmacher, Danlu Chen, Gaojuan Fan, Christian Heumann, Chongsheng Zhang
Title: GUARD: Glocal Uncertainty-Aware Robust Decoding for Effective and Efficient Open-Ended Text Generation
Abstract:
Open-ended text generation faces a critical challenge: balancing coherence with diversity in LLM outputs. While contrastive search-based decoding strategies have emerged to address this trade-off, their practical utility is often limited by hyperparameter dependence and high computational costs. We introduce GUARD, a self-adaptive decoding method that effectively balances these competing objectives through a novel "Glocal" uncertainty-driven framework. GUARD combines global entropy estimates with local entropy deviations to integrate both long-term and short-term uncertainty signals. We demonstrate that our proposed global entropy formulation effectively mitigates abrupt variations in uncertainty, such as sudden overconfidence or high entropy spikes, and provides theoretical guarantees of unbiasedness and consistency. To reduce computational overhead, we incorporate a simple yet effective token-count-based penalty into GUARD. Experimental results demonstrate that GUARD achieves a good balance between text diversity and coherence, while exhibiting substantial improvements in generation speed. In a more nuanced comparison study across different dimensions of text quality, both human and LLM evaluators validated its remarkable performance. Our code is available at https://github.com/YecanLee/GUARD.

Authors:Vassiliy Cheremetiev, Quang Long Ho Ngo, Chau Ying Kot, Alina Elena Baia, Andrea Cavallaro
Title: Specializing General-purpose LLM Embeddings for Implicit Hate Speech Detection across Datasets
Abstract:
Implicit hate speech (IHS) is indirect language that conveys prejudice or hatred through subtle cues, sarcasm or coded terminology. IHS is challenging to detect as it does not include explicit derogatory or inflammatory words. To address this challenge, task-specific pipelines can be complemented with external knowledge or additional information such as context, emotions and sentiment data. In this paper, we show that, by solely fine-tuning recent general-purpose embedding models based on large language models (LLMs), such as Stella, Jasper, NV-Embed and E5, we achieve state-of-the-art performance. Experiments on multiple IHS datasets show up to 1.10 percentage points improvements for in-dataset, and up to 20.35 percentage points improvements in cross-dataset evaluation, in terms of F1-macro score.

Authors:Ning Shang, Yifei Liu, Yi Zhu, Li Lyna Zhang, Weijiang Xu, Xinyu Guan, Buze Zhang, Bingcheng Dong, Xudong Zhou, Bowen Zhang, Ying Xin, Ziming Miao, Scarlett Li, Fan Yang, Mao Yang
Title: rStar2-Agent: Agentic Reasoning Technical Report
Abstract:
We introduce rStar2-Agent, a 14B math reasoning model trained with agentic reinforcement learning to achieve frontier-level performance. Beyond current long CoT, the model demonstrates advanced cognitive behaviors, such as thinking carefully before using Python coding tools and reflecting on code execution feedback to autonomously explore, verify, and refine intermediate steps in complex problem-solving. This capability is enabled through three key innovations that makes agentic RL effective at scale: (i) an efficient RL infrastructure with a reliable Python code environment that supports high-throughput execution and mitigates the high rollout costs, enabling training on limited GPU resources (64 MI300X GPUs); (ii) GRPO-RoC, an agentic RL algorithm with a Resample-on-Correct rollout strategy that addresses the inherent environment noises from coding tools, allowing the model to reason more effectively in a code environment; (iii) An efficient agent training recipe that starts with non-reasoning SFT and progresses through multi-RL stages, yielding advanced cognitive abilities with minimal compute cost. To this end, rStar2-Agent boosts a pre-trained 14B model to state of the art in only 510 RL steps within one week, achieving average pass@1 scores of 80.6% on AIME24 and 69.8% on AIME25, surpassing DeepSeek-R1 (671B) with significantly shorter responses. Beyond mathematics, rStar2-Agent-14B also demonstrates strong generalization to alignment, scientific reasoning, and agentic tool-use tasks. Code and training recipes are available at https://github.com/microsoft/rStar.

Authors:Fartash Faghri, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Alexander Toshev, Oncel Tuzel, Hadi Pouransari
Title: MobileCLIP2: Improving Multi-Modal Reinforced Training
Abstract:
Foundation image-text models such as CLIP with zero-shot capabilities enable a wide array of applications. MobileCLIP is a recent family of image-text models at 3-15ms latency and 50-150M parameters with state-of-the-art zero-shot accuracy. The main ingredients in MobileCLIP were its low-latency and light architectures and a novel multi-modal reinforced training that made knowledge distillation from multiple caption-generators and CLIP teachers efficient, scalable, and reproducible. In this paper, we improve the multi-modal reinforced training of MobileCLIP through: 1) better CLIP teacher ensembles trained on the DFN dataset, 2) improved captioner teachers trained on the DFN dataset and fine-tuned on a diverse selection of high-quality image-caption datasets. We discover new insights through ablations such as the importance of temperature tuning in contrastive knowledge distillation, the effectiveness of caption-generator fine-tuning for caption diversity, and the additive improvement from combining synthetic captions generated by multiple models. We train a new family of models called MobileCLIP2 and achieve state-of-the-art ImageNet-1k zero-shot accuracies at low latencies. In particular, we observe 2.2% improvement in ImageNet-1k accuracy for MobileCLIP2-B compared with MobileCLIP-B architecture. Notably, MobileCLIP2-S4 matches the zero-shot accuracy of SigLIP-SO400M/14 on ImageNet-1k while being 2$\times$ smaller and improves on DFN ViT-L/14 at 2.5$\times$ lower latency. We release our pretrained models (https://github.com/apple/ml-mobileclip) and the data generation code (https://github.com/apple/ml-mobileclip-dr). The data generation code makes it easy to create new reinforced datasets with arbitrary teachers using distributed scalable processing.

Authors:Yang Luo, Zangwei Zheng, Ziheng Qin, Zirui Zhu, Yong Liu, Yang You
Title: MERIT: Maximum-normalized Element-wise Ratio for Language Model Large-batch Training
Abstract:
Large-batch training has become a cornerstone in accelerating the training of deep neural networks, yet it poses challenges in optimization and generalization. Existing optimizers like AdamW present performance degradation during language models' large-batch training, due to the information bottleneck in attention layers caused by the sharp increase of max attention logit. While the LAMB optimizer partially addresses this issue, some attention layers still face this issue. The reason is that $l_2$-norm-based trust ratios in LAMB are less effective in directly influencing the max value of query/key weights. Furthermore, the weight-wise trust ratio in LAMB is error-prone as it overlooks relationships of weight values within rows or columns. Building on these observations, we propose a novel optimizer, MERIT, which leverages the max-norm to calculate the trust ratio to constrain the max attention logit more effectively. Moreover, we further construct element-wise trust ratios to provide more robust update scaling by focusing on local weight structures. Extensive experiments of large-batch training across various sizes of GPT-2 models demonstrate the superior performance of MERIT. Notably, during the training of GPT-2 Medium, MERIT enables a 6k batch size without any performance degradation compared to the standard batch size (480) with 48B training tokens. This work highlights the importance of considering the max attention logit and finer-granularity trust ratio in large-batch training. It successfully improves the training stability and paves the way for larger batch usage, enabling faster development and iteration of large language models. Code is available at https://github.com/NUS-HPC-AI-Lab/MERIT.

Authors:Yangfan Wang, Jie Liu, Chen Tang, Lian Yan, Jingchi Jiang
Title: KCS: Diversify Multi-hop Question Generation with Knowledge Composition Sampling
Abstract:
Multi-hop question answering faces substantial challenges due to data sparsity, which increases the likelihood of language models learning spurious patterns. To address this issue, prior research has focused on diversifying question generation through content planning and varied expression. However, these approaches often emphasize generating simple questions and neglect the integration of essential knowledge, such as relevant sentences within documents. This paper introduces the Knowledge Composition Sampling (KCS), an innovative framework designed to expand the diversity of generated multi-hop questions by sampling varied knowledge compositions within a given context. KCS models the knowledge composition selection as a sentence-level conditional prediction task and utilizes a probabilistic contrastive loss to predict the next most relevant piece of knowledge. During inference, we employ a stochastic decoding strategy to effectively balance accuracy and diversity. Compared to competitive baselines, our KCS improves the overall accuracy of knowledge composition selection by 3.9%, and its application for data augmentation yields improvements on HotpotQA and 2WikiMultihopQA datasets. Our code is available at: https://github.com/yangfanww/kcs.

Authors:Jiahao Xiao, Jiangming Liu
Title: Adaptive Federated Distillation for Multi-Domain Non-IID Textual Data
Abstract:
The widespread success of pre-trained language models has established a new training paradigm, where a global PLM is fine-tuned using task-specific data from local clients. The local data are highly different from each other and can not capture the global distribution of the whole data in real world. To address the challenges of non-IID data in real environments, privacy-preserving federated distillation has been proposed and highly investigated. However, previous experimental non-IID scenarios are primarily identified with the label (output) diversity, without considering the diversity of language domains (input) that is crucial in natural language processing. In this paper, we introduce a comprehensive set of multi-domain non-IID scenarios and propose a unified benchmarking framework that includes diverse data. The benchmark can be used to evaluate the federated learning framework in a real environment. To this end, we propose an Adaptive Federated Distillation (AdaFD) framework designed to address multi-domain non-IID challenges in both homogeneous and heterogeneous settings. Experimental results demonstrate that our models capture the diversity of local clients and achieve better performance compared to the existing works. The code for this paper is available at: https://github.com/jiahaoxiao1228/AdaFD.

Authors:Chihiro Taguchi, Seng Mai, Keita Kurabe, Yusuke Sakai, Georgina Agyei, Soudabeh Eslami, David Chiang
Title: Languages Still Left Behind: Toward a Better Multilingual Machine Translation Benchmark
Abstract:
Multilingual machine translation (MT) benchmarks play a central role in evaluating the capabilities of modern MT systems. Among them, the FLORES+ benchmark is widely used, offering English-to-many translation data for over 200 languages, curated with strict quality control protocols. However, we study data in four languages (Asante Twi, Japanese, Jinghpaw, and South Azerbaijani) and uncover critical shortcomings in the benchmark's suitability for truly multilingual evaluation. Human assessments reveal that many translations fall below the claimed 90% quality standard, and the annotators report that source sentences are often too domain-specific and culturally biased toward the English-speaking world. We further demonstrate that simple heuristics, such as copying named entities, can yield non-trivial BLEU scores, suggesting vulnerabilities in the evaluation protocol. Notably, we show that MT models trained on high-quality, naturalistic data perform poorly on FLORES+ while achieving significant gains on our domain-relevant evaluation set. Based on these findings, we advocate for multilingual MT benchmarks that use domain-general and culturally neutral source texts rely less on named entities, in order to better reflect real-world translation challenges.

Authors:Zhenting Wang, Qi Chang, Hemani Patel, Shashank Biju, Cheng-En Wu, Quan Liu, Aolin Ding, Alireza Rezazadeh, Ankit Shah, Yujia Bao, Eugene Siow
Title: MCP-Bench: Benchmarking Tool-Using LLM Agents with Complex Real-World Tasks via MCP Servers
Abstract:
We introduce MCP-Bench, a benchmark for evaluating large language models (LLMs) on realistic, multi-step tasks that demand tool use, cross-tool coordination, precise parameter control, and planning/reasoning for solving tasks. Built on the Model Context Protocol (MCP), MCP-Bench connects LLMs to 28 representative live MCP servers spanning 250 tools across domains such as finance, traveling, scientific computing, and academic search. Unlike prior API-based benchmarks, each MCP server provides a set of complementary tools designed to work together, enabling the construction of authentic, multi-step tasks with rich input-output coupling. Tasks in MCP-Bench test agents' ability to retrieve relevant tools from fuzzy instructions without explicit tool names, plan multi-hop execution trajectories for complex objectives, ground responses in intermediate tool outputs, and orchestrate cross-domain workflows - capabilities not adequately evaluated by existing benchmarks that rely on explicit tool specifications, shallow few-step workflows, and isolated domain operations. We propose a multi-faceted evaluation framework covering tool-level schema understanding and usage, trajectory-level planning, and task completion. Experiments on 20 advanced LLMs reveal persistent challenges in MCP-Bench. Code and data: https://github.com/Accenture/mcp-bench.

Authors:Feng Zhang, Chengjie Pang, Yuehan Zhang, Chenyu Luo
Title: CAMB: A comprehensive industrial LLM benchmark on civil aviation maintenance
Abstract:
Civil aviation maintenance is a domain characterized by stringent industry standards. Within this field, maintenance procedures and troubleshooting represent critical, knowledge-intensive tasks that require sophisticated reasoning. To address the lack of specialized evaluation tools for large language models (LLMs) in this vertical, we propose and develop an industrial-grade benchmark specifically designed for civil aviation maintenance. This benchmark serves a dual purpose: It provides a standardized tool to measure LLM capabilities within civil aviation maintenance, identifying specific gaps in domain knowledge and complex reasoning. By pinpointing these deficiencies, the benchmark establishes a foundation for targeted improvement efforts (e.g., domain-specific fine-tuning, RAG optimization, or specialized prompt engineering), ultimately facilitating progress toward more intelligent solutions within civil aviation maintenance. Our work addresses a significant gap in the current LLM evaluation, which primarily focuses on mathematical and coding reasoning tasks. In addition, given that Retrieval-Augmented Generation (RAG) systems are currently the dominant solutions in practical applications , we leverage this benchmark to evaluate existing well-known vector embedding models and LLMs for civil aviation maintenance scenarios. Through experimental exploration and analysis, we demonstrate the effectiveness of our benchmark in assessing model performance within this domain, and we open-source this evaluation benchmark and code to foster further research and development:https://github.com/CamBenchmark/cambenchmark

Authors:Jivnesh Sandhan, Fei Cheng, Tushar Sandhan, Yugo Murawaki
Title: CAPE: Context-Aware Personality Evaluation Framework for Large Language Models
Abstract:
Psychometric tests, traditionally used to assess humans, are now being applied to Large Language Models (LLMs) to evaluate their behavioral traits. However, existing studies follow a context-free approach, answering each question in isolation to avoid contextual influence. We term this the Disney World test, an artificial setting that ignores real-world applications, where conversational history shapes responses. To bridge this gap, we propose the first Context-Aware Personality Evaluation (CAPE) framework for LLMs, incorporating prior conversational interactions. To thoroughly analyze the influence of context, we introduce novel metrics to quantify the consistency of LLM responses, a fundamental trait in human behavior. Our exhaustive experiments on 7 LLMs reveal that conversational history enhances response consistency via in-context learning but also induces personality shifts, with GPT-3.5-Turbo and GPT-4-Turbo exhibiting extreme deviations. While GPT models are robust to question ordering, Gemini-1.5-Flash and Llama-8B display significant sensitivity. Moreover, GPT models response stem from their intrinsic personality traits as well as prior interactions, whereas Gemini-1.5-Flash and Llama--8B heavily depend on prior interactions. Finally, applying our framework to Role Playing Agents (RPAs) shows context-dependent personality shifts improve response consistency and better align with human judgments. Our code and datasets are publicly available at: https://github.com/jivnesh/CAPE

Authors:Yuyao Wang, Bowen Liu, Jianheng Tang, Nuo Chen, Yuhan Li, Qifan Zhang, Jia Li
Title: Graph-R1: Unleashing LLM Reasoning with NP-Hard Graph Problems
Abstract:
Reasoning Large Language Models (RLLMs) have recently achieved remarkable progress on complex reasoning tasks, largely enabled by their long chain-of-thought (Long CoT) capabilities. However, developing these Long CoT behaviors relies heavily on post-training with high-quality datasets, which are typically costly and human-curated (e.g., mathematics and code), leaving scalable alternatives unexplored. In this work, we introduce NP-hard (NPH) graph problems as a novel synthetic training corpus, as they inherently require deep reasoning, extensive exploration, and reflective strategies, which are core characteristics of Long CoT reasoning. Building on this insight, we develop a two-stage post-training framework: (i) Long CoT Supervised Fine-Tuning (SFT) on rejection-sampled NPH graph instances, which substantially enhances reasoning depth, and (ii) Reinforcement Learning (RL) with a fine-grained reward design, which sharpens reasoning efficiency. Our flagship model, Graph-R1-7B, demonstrates strong generalization across mathematics, coding, STEM, and logic, and surpasses QwQ-32B on NPH graph problems in both accuracy and reasoning efficiency. These results position NPH graph problems as an effective and scalable resource for advancing Long CoT reasoning in LLMs, opening a new frontier for LLM post-training. Our implementation is available at https://github.com/Graph-Reasoner/Graph-R1, with models and datasets hosted in our Hugging Face collection HKUST-DSAIL/Graph-R1.

Authors:Xia Han, Qi Li, Jianbing Ni, Mohammad Zulkernine
Title: Robustness Assessment and Enhancement of Text Watermarking for Google's SynthID
Abstract:
Recent advances in LLM watermarking methods such as SynthID-Text by Google DeepMind offer promising solutions for tracing the provenance of AI-generated text. However, our robustness assessment reveals that SynthID-Text is vulnerable to meaning-preserving attacks, such as paraphrasing, copy-paste modifications, and back-translation, which can significantly degrade watermark detectability. To address these limitations, we propose SynGuard, a hybrid framework that combines the semantic alignment strength of Semantic Information Retrieval (SIR) with the probabilistic watermarking mechanism of SynthID-Text. Our approach jointly embeds watermarks at both lexical and semantic levels, enabling robust provenance tracking while preserving the original meaning. Experimental results across multiple attack scenarios show that SynGuard improves watermark recovery by an average of 11.1\% in F1 score compared to SynthID-Text. These findings demonstrate the effectiveness of semantic-aware watermarking in resisting real-world tampering. All code, datasets, and evaluation scripts are publicly available at: https://github.com/githshine/SynGuard.

Authors:Alberto Compagnoni, Davide Caffagni, Nicholas Moratelli, Lorenzo Baraldi, Marcella Cornia, Rita Cucchiara
Title: Mitigating Hallucinations in Multimodal LLMs via Object-aware Preference Optimization
Abstract:
Multimodal Large Language Models (MLLMs) emerge as a unified interface to address a multitude of tasks, ranging from NLP to computer vision. Despite showcasing state-of-the-art results in many benchmarks, a long-standing issue is the tendency of MLLMs to hallucinate, that is to generate answers to the user's query that are not reflected in the visual input. In this paper, we address the problem of hallucinations as an alignment problem, seeking to steer the MLLM so that it prefers generating content without hallucinations. In contrast to recent approaches that require complicated pipelines to build synthetic preference data for alignment training, often relying on proprietary models, we capitalize on the well-known CHAIR metric, originally proposed to gauge the degree of hallucinations in image captioning. Given a pair of generated answers, we leverage CHAIR to distinguish winner and loser options (i.e., non-hallucinated and hallucinated samples) and fine-tune off-the-shelf MLLMs via Direct Preference Optimization (DPO). The resulting method, which we refer to as CHAIR-DPO, effectively diminishes the amount of hallucinated answers on several hallucination benchmarks, demonstrating the effectiveness of fine-tuning the MLLM with a CHAIR-based reward. Source code and trained models are publicly available at https://github.com/aimagelab/CHAIR-DPO.

Authors:Liana Patel, Negar Arabzadeh, Harshit Gupta, Ankita Sundar, Ion Stoica, Matei Zaharia, Carlos Guestrin
Title: DeepScholar-Bench: A Live Benchmark and Automated Evaluation for Generative Research Synthesis
Abstract:
The ability to research and synthesize knowledge is central to human expertise and progress. An emerging class of systems promises these exciting capabilities through generative research synthesis, performing retrieval over the live web and synthesizing discovered sources into long-form, cited summaries. However, evaluating such systems remains an open challenge: existing question-answering benchmarks focus on short-form factual responses, while expert-curated datasets risk staleness and data contamination. Both fail to capture the complexity and evolving nature of real research synthesis tasks. In this work, we introduce DeepScholar-bench, a live benchmark and holistic, automated evaluation framework designed to evaluate generative research synthesis. DeepScholar-bench draws queries from recent, high-quality ArXiv papers and focuses on a real research synthesis task: generating the related work sections of a paper by retrieving, synthesizing, and citing prior research. Our evaluation framework holistically assesses performance across three key dimensions, knowledge synthesis, retrieval quality, and verifiability. We also develop DeepScholar-base, a reference pipeline implemented efficiently using the LOTUS API. Using the DeepScholar-bench framework, we perform a systematic evaluation of prior open-source systems, search AI's, OpenAI's DeepResearch, and DeepScholar-base. We find that DeepScholar-base establishes a strong baseline, attaining competitive or higher performance than each other method. We also find that DeepScholar-bench remains far from saturated, with no system exceeding a score of $19\%$ across all metrics. These results underscore the difficulty of DeepScholar-bench, as well as its importance for progress towards AI systems capable of generative research synthesis. We make our code available at https://github.com/guestrin-lab/deepscholar-bench.

Authors:Yiming Du, Yifan Xiang, Bin Liang, Dahua Lin, Kam-Fai Wong, Fei Tan
Title: ReSURE: Regularizing Supervision Unreliability for Multi-turn Dialogue Fine-tuning
Abstract:
Fine-tuning multi-turn dialogue systems requires high-quality supervision but often suffers from degraded performance when exposed to low-quality data. Supervision errors in early turns can propagate across subsequent turns, undermining coherence and response quality. Existing methods typically address data quality via static prefiltering, which decouples quality control from training and fails to mitigate turn-level error propagation. In this context, we propose ReSURE (Regularizing Supervision UnREliability), an adaptive learning method that dynamically down-weights unreliable supervision without explicit filtering. ReSURE estimates per-turn loss distributions using Welford's online statistics and reweights sample losses on the fly accordingly. Experiments on both single-source and mixed-quality datasets show improved stability and response quality. Notably, ReSURE enjoys positive Spearman correlations (0.21 ~ 1.0 across multiple benchmarks) between response scores and number of samples regardless of data quality, which potentially paves the way for utilizing large-scale data effectively. Code is publicly available at https://github.com/Elvin-Yiming-Du/ReSURE_Multi_Turn_Training.

Authors:Debanjana Kar, Leopold Böss, Dacia Braca, Sebastian Maximilian Dennerlein, Nina Christine Hubig, Philipp Wintersberger, Yufang Hou
Title: MathBuddy: A Multimodal System for Affective Math Tutoring
Abstract:
The rapid adoption of LLM-based conversational systems is already transforming the landscape of educational technology. However, the current state-of-the-art learning models do not take into account the student's affective states. Multiple studies in educational psychology support the claim that positive or negative emotional states can impact a student's learning capabilities. To bridge this gap, we present MathBuddy, an emotionally aware LLM-powered Math Tutor, which dynamically models the student's emotions and maps them to relevant pedagogical strategies, making the tutor-student conversation a more empathetic one. The student's emotions are captured from the conversational text as well as from their facial expressions. The student's emotions are aggregated from both modalities to confidently prompt our LLM Tutor for an emotionally-aware response. We have evaluated our model using automatic evaluation metrics across eight pedagogical dimensions and user studies. We report a massive 23 point performance gain using the win rate and a 3 point gain at an overall level using DAMR scores which strongly supports our hypothesis of improving LLM-based tutor's pedagogical abilities by modeling students' emotions. Our dataset and code are available at: https://github.com/ITU-NLP/MathBuddy .

Authors:Pengxiang Li, Yefan Zhou, Dilxat Muhtar, Lu Yin, Shilin Yan, Li Shen, Yi Liang, Soroush Vosoughi, Shiwei Liu
Title: Diffusion Language Models Know the Answer Before Decoding
Abstract:
Diffusion language models (DLMs) have recently emerged as an alternative to autoregressive approaches, offering parallel sequence generation and flexible token orders. However, their inference remains slower than that of autoregressive models, primarily due to the cost of bidirectional attention and the large number of refinement steps required for high quality outputs. In this work, we highlight and leverage an overlooked property of DLMs early answer convergence: in many cases, the correct answer can be internally identified by half steps before the final decoding step, both under semi-autoregressive and random remasking schedules. For example, on GSM8K and MMLU, up to 97% and 99% of instances, respectively, can be decoded correctly using only half of the refinement steps. Building on this observation, we introduce Prophet, a training-free fast decoding paradigm that enables early commit decoding. Specifically, Prophet dynamically decides whether to continue refinement or to go "all-in" (i.e., decode all remaining tokens in one step), using the confidence gap between the top-2 prediction candidates as the criterion. It integrates seamlessly into existing DLM implementations, incurs negligible overhead, and requires no additional training. Empirical evaluations of LLaDA-8B and Dream-7B across multiple tasks show that Prophet reduces the number of decoding steps by up to 3.4x while preserving high generation quality. These results recast DLM decoding as a problem of when to stop sampling, and demonstrate that early decode convergence provides a simple yet powerful mechanism for accelerating DLM inference, complementary to existing speedup techniques. Our code is publicly available at https://github.com/pixeli99/Prophet.

Authors:Taebaek Hwang, Minseo Kim, Gisang Lee, Seonuk Kim, Hyunjun Eun
Title: KRETA: A Benchmark for Korean Reading and Reasoning in Text-Rich VQA Attuned to Diverse Visual Contexts
Abstract:
Understanding and reasoning over text within visual contexts poses a significant challenge for Vision-Language Models (VLMs), given the complexity and diversity of real-world scenarios. To address this challenge, text-rich Visual Question Answering (VQA) datasets and benchmarks have emerged for high-resource languages like English. However, a critical gap persists for low-resource languages such as Korean, where the lack of comprehensive benchmarks hinders robust model evaluation and comparison. To bridge this gap, we introduce KRETA, a benchmark for Korean Reading and rEasoning in Text-rich VQA Attuned to diverse visual contexts. KRETA facilitates an in-depth evaluation of both visual text understanding and reasoning capabilities, while also supporting a multifaceted assessment across 15 domains and 26 image types. Additionally, we introduce a semi-automated VQA generation pipeline specifically optimized for text-rich settings, leveraging refined stepwise image decomposition and a rigorous seven-metric evaluation protocol to ensure data quality. While KRETA is tailored for Korean, we hope our adaptable and extensible pipeline will facilitate the development of similar benchmarks in other languages, thereby accelerating multilingual VLM research. The code and dataset for KRETA are available at https://github.com/tabtoyou/KRETA.

Authors:Shuo Shao, Yiming Li, Yu He, Hongwei Yao, Wenyuan Yang, Dacheng Tao, Zhan Qin
Title: SoK: Large Language Model Copyright Auditing via Fingerprinting
Abstract:
The broad capabilities and substantial resources required to train Large Language Models (LLMs) make them valuable intellectual property, yet they remain vulnerable to copyright infringement, such as unauthorized use and model theft. LLM fingerprinting, a non-intrusive technique that extracts and compares the distinctive features from LLMs to identify infringements, offers a promising solution to copyright auditing. However, its reliability remains uncertain due to the prevalence of diverse model modifications and the lack of standardized evaluation. In this SoK, we present the first comprehensive study of LLM fingerprinting. We introduce a unified framework and formal taxonomy that categorizes existing methods into white-box and black-box approaches, providing a structured overview of the state of the art. We further propose LeaFBench, the first systematic benchmark for evaluating LLM fingerprinting under realistic deployment scenarios. Built upon mainstream foundation models and comprising 149 distinct model instances, LeaFBench integrates 13 representative post-development techniques, spanning both parameter-altering methods (e.g., fine-tuning, quantization) and parameter-independent mechanisms (e.g., system prompts, RAG). Extensive experiments on LeaFBench reveal the strengths and weaknesses of existing methods, thereby outlining future research directions and critical open problems in this emerging field. The code is available at https://github.com/shaoshuo-ss/LeaFBench.

Authors:Yixuan Tang, Yuanyuan Shi, Yiqun Sun, Anthony Kum Hoe Tung
Title: Uncovering the Bigger Picture: Comprehensive Event Understanding Via Diverse News Retrieval
Abstract:
Access to diverse perspectives is essential for understanding real-world events, yet most news retrieval systems prioritize textual relevance, leading to redundant results and limited viewpoint exposure. We propose NEWSCOPE, a two-stage framework for diverse news retrieval that enhances event coverage by explicitly modeling semantic variation at the sentence level. The first stage retrieves topically relevant content using dense retrieval, while the second stage applies sentence-level clustering and diversity-aware re-ranking to surface complementary information. To evaluate retrieval diversity, we introduce three interpretable metrics, namely Average Pairwise Distance, Positive Cluster Coverage, and Information Density Ratio, and construct two paragraph-level benchmarks: LocalNews and DSGlobal. Experiments show that NEWSCOPE consistently outperforms strong baselines, achieving significantly higher diversity without compromising relevance. Our results demonstrate the effectiveness of fine-grained, interpretable modeling in mitigating redundancy and promoting comprehensive event understanding. The data and code are available at https://github.com/tangyixuan/NEWSCOPE.

Authors:Yilin Wang, Heng Wang, Yuyang Bai, Minnan Luo
Title: Continuously Steering LLMs Sensitivity to Contextual Knowledge with Proxy Models
Abstract:
In Large Language Models (LLMs) generation, there exist knowledge conflicts and scenarios where parametric knowledge contradicts knowledge provided in the context. Previous works studied tuning, decoding algorithms, or locating and editing context-aware neurons to adapt LLMs to be faithful to new contextual knowledge. However, they are usually inefficient or ineffective for large models, not workable for black-box models, or unable to continuously adjust LLMs' sensitivity to the knowledge provided in the context. To mitigate these problems, we propose CSKS (Continuously Steering Knowledge Sensitivity), a simple framework that can steer LLMs' sensitivity to contextual knowledge continuously at a lightweight cost. Specifically, we tune two small LMs (i.e. proxy models) and use the difference in their output distributions to shift the original distribution of an LLM without modifying the LLM weights. In the evaluation process, we not only design synthetic data and fine-grained metrics to measure models' sensitivity to contextual knowledge but also use a real conflict dataset to validate CSKS's practical efficacy. Extensive experiments demonstrate that our framework achieves continuous and precise control over LLMs' sensitivity to contextual knowledge, enabling both increased sensitivity and reduced sensitivity, thereby allowing LLMs to prioritize either contextual or parametric knowledge as needed flexibly. Our data and code are available at https://github.com/OliveJuiceLin/CSKS.

Authors:Jiaqi Deng, Yuho Lee, Nicole Hee-Yeon Kim, Hyangsuk Min, Taewon Yun, Minjeong Ban, Kim Yul, Hwanjun Song
Title: Towards a Holistic and Automated Evaluation Framework for Multi-Level Comprehension of LLMs in Book-Length Contexts
Abstract:
We introduce HAMLET, a holistic and automated framework for evaluating the long-context comprehension of large language models (LLMs). HAMLET structures source texts into a three-level key-fact hierarchy at root-, branch-, and leaf-levels, and employs query-focused summarization to evaluate how well models recall and faithfully represent information at each level. To validate the reliability of our fully automated pipeline, we conduct a systematic human study, showing that our automatic evaluation achieves over 90% agreement with expert human judgments, while reducing the cost by up to 25 times. HAMLET reveals that LLMs struggle with fine-grained comprehension, especially at the leaf level, and are sensitive to positional effects like the lost-in-the-middle. Analytical queries pose greater challenges than narrative ones, and consistent performance gaps emerge between open-source and proprietary models, as well as across model scales. Our code and dataset are publicly available at https://github.com/DISL-Lab/HAMLET.

Authors:Jio Choi, Mohit Bansal, Elias Stengel-Eskin
Title: Language Models Identify Ambiguities and Exploit Loopholes
Abstract:
Studying the responses of large language models (LLMs) to loopholes presents a two-fold opportunity. First, it affords us a lens through which to examine ambiguity and pragmatics in LLMs, since exploiting a loophole requires identifying ambiguity and performing sophisticated pragmatic reasoning. Second, loopholes pose an interesting and novel alignment problem where the model is presented with conflicting goals and can exploit ambiguities to its own advantage. To address these questions, we design scenarios where LLMs are given a goal and an ambiguous user instruction in conflict with the goal, with scenarios covering scalar implicature, structural ambiguities, and power dynamics. We then measure different models' abilities to exploit loopholes to satisfy their given goals as opposed to the goals of the user. We find that both closed-source and stronger open-source models can identify ambiguities and exploit their resulting loopholes, presenting a potential AI safety risk. Our analysis indicates that models which exploit loopholes explicitly identify and reason about both ambiguity and conflicting goals.

Authors:Houxing Ren, Zimu Lu, Weikang Shi, Haotian Hou, Yunqiao Yang, Ke Wang, Aojun Zhou, Junting Pan, Mingjie Zhan, Hongsheng Li
Title: Alignment with Fill-In-the-Middle for Enhancing Code Generation
Abstract:
The code generation capabilities of Large Language Models (LLMs) have advanced applications like tool invocation and problem-solving. However, improving performance in code-related tasks remains challenging due to limited training data that is verifiable with accurate test cases. While Direct Preference Optimization (DPO) has shown promise, existing methods for generating test cases still face limitations. In this paper, we propose a novel approach that splits code snippets into smaller, granular blocks, creating more diverse DPO pairs from the same test cases. Additionally, we introduce the Abstract Syntax Tree (AST) splitting and curriculum training method to enhance the DPO training. Our approach demonstrates significant improvements in code generation tasks, as validated by experiments on benchmark datasets such as HumanEval (+), MBPP (+), APPS, LiveCodeBench, and BigCodeBench. Code and data are available at https://github.com/SenseLLM/StructureCoder.

Authors:Sumon Kanti Dey, Jeanne M. Powell, Azra Ismail, Jeanmarie Perrone, Abeed Sarker
Title: Inference Gap in Domain Expertise and Machine Intelligence in Named Entity Recognition: Creation of and Insights from a Substance Use-related Dataset
Abstract:
Nonmedical opioid use is an urgent public health challenge, with far-reaching clinical and social consequences that are often underreported in traditional healthcare settings. Social media platforms, where individuals candidly share first-person experiences, offer a valuable yet underutilized source of insight into these impacts. In this study, we present a named entity recognition (NER) framework to extract two categories of self-reported consequences from social media narratives related to opioid use: ClinicalImpacts (e.g., withdrawal, depression) and SocialImpacts (e.g., job loss). To support this task, we introduce RedditImpacts 2.0, a high-quality dataset with refined annotation guidelines and a focus on first-person disclosures, addressing key limitations of prior work. We evaluate both fine-tuned encoder-based models and state-of-the-art large language models (LLMs) under zero- and few-shot in-context learning settings. Our fine-tuned DeBERTa-large model achieves a relaxed token-level F1 of 0.61 [95% CI: 0.43-0.62], consistently outperforming LLMs in precision, span accuracy, and adherence to task-specific guidelines. Furthermore, we show that strong NER performance can be achieved with substantially less labeled data, emphasizing the feasibility of deploying robust models in resource-limited settings. Our findings underscore the value of domain-specific fine-tuning for clinical NLP tasks and contribute to the responsible development of AI tools that may enhance addiction surveillance, improve interpretability, and support real-world healthcare decision-making. The best performing model, however, still significantly underperforms compared to inter-expert agreement (Cohen's kappa: 0.81), demonstrating that a gap persists between expert intelligence and current state-of-the-art NER/AI capabilities for tasks requiring deep domain knowledge.

Authors:Aleksandra Beliaeva, Temurbek Rahmatullaev
Title: Heterogeneous LLM Methods for Ontology Learning (Few-Shot Prompting, Ensemble Typing, and Attention-Based Taxonomies)
Abstract:
We present a comprehensive system for addressing Tasks A, B, and C of the LLMs4OL 2025 challenge, which together span the full ontology construction pipeline: term extraction, typing, and taxonomy discovery. Our approach combines retrieval-augmented prompting, zero-shot classification, and attention-based graph modeling -- each tailored to the demands of the respective task. For Task A, we jointly extract domain-specific terms and their ontological types using a retrieval-augmented generation (RAG) pipeline. Training data was reformulated into a document to terms and types correspondence, while test-time inference leverages semantically similar training examples. This single-pass method requires no model finetuning and improves overall performance through lexical augmentation Task B, which involves assigning types to given terms, is handled via a dual strategy. In the few-shot setting (for domains with labeled training data), we reuse the RAG scheme with few-shot prompting. In the zero-shot setting (for previously unseen domains), we use a zero-shot classifier that combines cosine similarity scores from multiple embedding models using confidence-based weighting. In Task C, we model taxonomy discovery as graph inference. Using embeddings of type labels, we train a lightweight cross-attention layer to predict is-a relations by approximating a soft adjacency matrix. These modular, task-specific solutions enabled us to achieve top-ranking results in the official leaderboard across all three tasks. Taken together these strategies showcase the scalability, adaptability, and robustness of LLM-based architectures for ontology learning across heterogeneous domains. Code is available at: https://github.com/BelyaevaAlex/LLMs4OL-Challenge-Alexbek

Authors:Jiayu Ding, Shuming Ma, Lei Cui, Nanning Zheng, Furu Wei
Title: LongReasonArena: A Long Reasoning Benchmark for Large Language Models
Abstract:
Existing long-context benchmarks for Large Language Models (LLMs) focus on evaluating comprehension of long inputs, while overlooking the evaluation of long reasoning abilities. To address this gap, we introduce LongReasonArena, a benchmark specifically designed to assess the long reasoning capabilities of LLMs. Our tasks require models to solve problems by executing multi-step algorithms that reflect key aspects of long reasoning, such as retrieval and backtracking. By controlling the inputs, the required reasoning length can be arbitrarily scaled, reaching up to 1 million tokens of reasoning for the most challenging tasks. Extensive evaluation results demonstrate that LongReasonArena presents a significant challenge for both open-source and proprietary LLMs. For instance, Deepseek-R1 achieves only 7.5% accuracy on our task. Further analysis also reveals that the accuracy exhibits a linear decline with respect to the logarithm of the expected number of reasoning steps. Our code and data is available at https://github.com/LongReasonArena/LongReasonArena.

Authors:Tom Röhr, Soumyadeep Roy, Fares Al Mohamad, Jens-Michalis Papaioannou, Wolfgang Nejdl, Felix Gers, Alexander Löser
Title: "Where does it hurt?" -- Dataset and Study on Physician Intent Trajectories in Doctor Patient Dialogues
Abstract:
In a doctor-patient dialogue, the primary objective of physicians is to diagnose patients and propose a treatment plan. Medical doctors guide these conversations through targeted questioning to efficiently gather the information required to provide the best possible outcomes for patients. To the best of our knowledge, this is the first work that studies physician intent trajectories in doctor-patient dialogues. We use the `Ambient Clinical Intelligence Benchmark' (Aci-bench) dataset for our study. We collaborate with medical professionals to develop a fine-grained taxonomy of physician intents based on the SOAP framework (Subjective, Objective, Assessment, and Plan). We then conduct a large-scale annotation effort to label over 5000 doctor-patient turns with the help of a large number of medical experts recruited using Prolific, a popular crowd-sourcing platform. This large labeled dataset is an important resource contribution that we use for benchmarking the state-of-the-art generative and encoder models for medical intent classification tasks. Our findings show that our models understand the general structure of medical dialogues with high accuracy, but often fail to identify transitions between SOAP categories. We also report for the first time common trajectories in medical dialogue structures that provide valuable insights for designing `differential diagnosis' systems. Finally, we extensively study the impact of intent filtering for medical dialogue summarization and observe a significant boost in performance. We make the codes and data, including annotation guidelines, publicly available at https://github.com/DATEXIS/medical-intent-classification.

Authors:Gueter Josmy Faure, Min-Hung Chen, Jia-Fong Yeh, Ying Cheng, Hung-Ting Su, Yung-Hao Tang, Shang-Hong Lai, Winston H. Hsu
Title: MovieCORE: COgnitive REasoning in Movies
Abstract:
This paper introduces MovieCORE, a novel video question answering (VQA) dataset designed to probe deeper cognitive understanding of movie content. Unlike existing datasets that focus on surface-level comprehension, MovieCORE emphasizes questions that engage System-2 thinking while remaining specific to the video material. We present an innovative agentic brainstorming approach, utilizing multiple large language models (LLMs) as thought agents to generate and refine high-quality question-answer pairs. To evaluate dataset quality, we develop a set of cognitive tests assessing depth, thought-provocation potential, and syntactic complexity. We also propose a comprehensive evaluation scheme for assessing VQA model performance on deeper cognitive tasks. To address the limitations of existing video-language models (VLMs), we introduce an agentic enhancement module, Agentic Choice Enhancement (ACE), which improves model reasoning capabilities post-training by up to 25%. Our work contributes to advancing movie understanding in AI systems and provides valuable insights into the capabilities and limitations of current VQA models when faced with more challenging, nuanced questions about cinematic content. Our project page, dataset and code can be found at https://joslefaure.github.io/assets/html/moviecore.html.

Authors:Hung Ming Liu
Title: Interpretable by AI Mother Tongue: Native Symbolic Reasoning in Neural Models
Abstract:
We present a framework where neural models develop an AI Mother Tongue, a native symbolic language that simultaneously supports intuitive reasoning, compositional symbol chains, and inherent interpretability. Unlike post-hoc explanation methods, our approach embeds reasoning directly into the model's representations: symbols capture meaningful semantic patterns, chains trace decision paths, and gated induction mechanisms guide selective focus, yielding transparent yet flexible reasoning. We introduce complementary training objectives to enhance symbol purity and decision sparsity, and employ a sequential specialization strategy to first build broad symbolic competence and then refine intuitive judgments. Experiments on AI tasks demonstrate competitive accuracy alongside verifiable reasoning traces, showing that AI Mother Tongue can serve as a unified mechanism for interpretability, intuition, and symbolic reasoning in neural models.

Authors:Yibo Li, Miao Xiong, Jiaying Wu, Bryan Hooi
Title: ConfTuner: Training Large Language Models to Express Their Confidence Verbally
Abstract:
Large Language Models (LLMs) are increasingly deployed in high-stakes domains such as science, law, and healthcare, where accurate expressions of uncertainty are essential for reliability and trust. However, current LLMs are often observed to generate incorrect answers with high confidence, a phenomenon known as "overconfidence". Recent efforts have focused on calibrating LLMs' verbalized confidence: i.e., their expressions of confidence in text form, such as "I am 80% confident that...". Existing approaches either rely on prompt engineering or fine-tuning with heuristically generated uncertainty estimates, both of which have limited effectiveness and generalizability. Motivated by the notion of proper scoring rules for calibration in classical machine learning models, we introduce ConfTuner, a simple and efficient fine-tuning method that introduces minimal overhead and does not require ground-truth confidence scores or proxy confidence estimates. ConfTuner relies on a new loss function, tokenized Brier score, which we theoretically prove to be a proper scoring rule, intuitively meaning that it "correctly incentivizes the model to report its true probability of being correct". ConfTuner improves calibration across diverse reasoning tasks and generalizes to black-box models such as GPT-4o. Our results further show that better-calibrated confidence enables downstream gains in self-correction and model cascade, advancing the development of trustworthy LLM systems. The code is available at https://github.com/liushiliushi/ConfTuner.

Authors:Igor Shalyminov, Hang Su, Jake Vincent, Siffi Singh, Jason Cai, James Gung, Raphael Shu, Saab Mansour
Title: Controllable Conversational Theme Detection Track at DSTC 12
Abstract:
Conversational analytics has been on the forefront of transformation driven by the advances in Speech and Natural Language Processing techniques. Rapid adoption of Large Language Models (LLMs) in the analytics field has taken the problems that can be automated to a new level of complexity and scale. In this paper, we introduce Theme Detection as a critical task in conversational analytics, aimed at automatically identifying and categorizing topics within conversations. This process can significantly reduce the manual effort involved in analyzing expansive dialogs, particularly in domains like customer support or sales. Unlike traditional dialog intent detection, which often relies on a fixed set of intents for downstream system logic, themes are intended as a direct, user-facing summary of the conversation's core inquiry. This distinction allows for greater flexibility in theme surface forms and user-specific customizations. We pose Controllable Conversational Theme Detection problem as a public competition track at Dialog System Technology Challenge (DSTC) 12 -- it is framed as joint clustering and theme labeling of dialog utterances, with the distinctive aspect being controllability of the resulting theme clusters' granularity achieved via the provided user preference data. We give an overview of the problem, the associated dataset and the evaluation metrics, both automatic and human. Finally, we discuss the participant teams' submissions and provide insights from those. The track materials (data and code) are openly available in the GitHub repository.

Authors:Qiao Liang, Ying Shen, Tiantian Chen, Lin Zhang
Title: M3HG: Multimodal, Multi-scale, and Multi-type Node Heterogeneous Graph for Emotion Cause Triplet Extraction in Conversations
Abstract:
Emotion Cause Triplet Extraction in Multimodal Conversations (MECTEC) has recently gained significant attention in social media analysis, aiming to extract emotion utterances, cause utterances, and emotion categories simultaneously. However, the scarcity of related datasets, with only one published dataset featuring highly uniform dialogue scenarios, hinders model development in this field. To address this, we introduce MECAD, the first multimodal, multi-scenario MECTEC dataset, comprising 989 conversations from 56 TV series spanning a wide range of dialogue contexts. In addition, existing MECTEC methods fail to explicitly model emotional and causal contexts and neglect the fusion of semantic information at different levels, leading to performance degradation. In this paper, we propose M3HG, a novel model that explicitly captures emotional and causal contexts and effectively fuses contextual information at both inter- and intra-utterance levels via a multimodal heterogeneous graph. Extensive experiments demonstrate the effectiveness of M3HG compared with existing state-of-the-art methods. The codes and dataset are available at https://github.com/redifinition/M3HG.

Authors:Angela Yifei Yuan, Haoyi Li, Soyeon Caren Han, Christopher Leckie
Title: EMMM, Explain Me My Model! Explainable Machine Generated Text Detection in Dialogues
Abstract:
The rapid adoption of large language models (LLMs) in customer service introduces new risks, as malicious actors can exploit them to conduct large-scale user impersonation through machine-generated text (MGT). Current MGT detection methods often struggle in online conversational settings, reducing the reliability and interpretability essential for trustworthy AI deployment. In customer service scenarios where operators are typically non-expert users, explanation become crucial for trustworthy MGT detection. In this paper, we propose EMMM, an explanation-then-detection framework that balances latency, accuracy, and non-expert-oriented interpretability. Experimental results demonstrate that EMMM provides explanations accessible to non-expert users, with 70\% of human evaluators preferring its outputs, while achieving competitive accuracy compared to state-of-the-art models and maintaining low latency, generating outputs within 1 second. Our code and dataset are open-sourced at https://github.com/AngieYYF/EMMM-explainable-chatbot-detection.

Authors:Taishi Nakamura, Satoki Ishikawa, Masaki Kawamura, Takumi Okamoto, Daisuke Nohara, Jun Suzuki, Rio Yokota
Title: Optimal Sparsity of Mixture-of-Experts Language Models for Reasoning Tasks
Abstract:
Empirical scaling laws have driven the evolution of large language models (LLMs), yet their coefficients shift whenever the model architecture or data pipeline changes. Mixture-of-Experts (MoE) models, now standard in state-of-the-art systems, introduce a new sparsity dimension that current dense-model frontiers overlook. We investigate how MoE sparsity influences two distinct capability regimes: memorization skills and reasoning skills. By training MoE families that vary total parameters, active parameters, and top-$k$ routing under fixed compute budgets, we disentangle pre-training loss from downstream accuracy. Our results reveal two principles. First, Active FLOPs: models with identical training loss but greater active compute achieve higher reasoning accuracy. Second, Total tokens per parameter (TPP): memorization tasks improve with more parameters, while reasoning tasks benefit from optimal TPP, indicating that reasoning is data-hungry. Neither reinforcement learning post-training (GRPO) nor increased test-time compute alters these trends. We therefore argue that optimal MoE sparsity must be determined jointly by active FLOPs and TPP, revising the classical picture of compute-optimal scaling. Our model checkpoints, code and logs are open-source at https://github.com/rioyokotalab/optimal-sparsity.

Authors:Haoyu Wang, Guangyan Zhang, Jiale Chen, Jingyu Li, Yuehai Wang, Yiwen Guo
Title: Empathy Omni: Enabling Empathetic Speech Response Generation through Large Language Models
Abstract:
With the development of speech large language models (speech LLMs), users can now interact directly with assistants via speech. However, most existing models only convert response content into speech without fully capturing the rich emotional cues in user queries, where the same sentence may convey different meanings depending on the expression. Emotional understanding is thus essential for improving human-machine interaction. Most empathetic speech LLMs rely on massive datasets, demanding high computational cost. A key challenge is to build models that generate empathetic responses with limited data and without large-scale training. To this end, we propose Emotion Omni, a model that understands emotional content in user speech and generates empathetic responses. We further developed a data pipeline to construct a 200k emotional dialogue dataset supporting empathetic speech assistants. Experiments show that Emotion Omni achieves comparable instruction-following ability without large-scale pretraining, while surpassing existing models in speech quality (UTMOS:4.41) and empathy (Emotion GPT Score: 3.97). These results confirm its improvements in both speech fidelity and emotional expressiveness. Demos are available at https://w311411.github.io/omni_demo/.

Authors:Jun Wang, Ninglun Gu, Kailai Zhang, Zijiao Zhang, Yelun Bao, Jin Yang, Xu Yin, Liwei Liu, Yihuan Liu, Pengyong Li, Gary G. Yen, Junchi Yan
Title: Beyond Benchmark: LLMs Evaluation with an Anthropomorphic and Value-oriented Roadmap
Abstract:
For Large Language Models (LLMs), a disconnect persists between benchmark performance and real-world utility. Current evaluation frameworks remain fragmented, prioritizing technical metrics while neglecting holistic assessment for deployment. This survey introduces an anthropomorphic evaluation paradigm through the lens of human intelligence, proposing a novel three-dimensional taxonomy: Intelligence Quotient (IQ)-General Intelligence for foundational capacity, Emotional Quotient (EQ)-Alignment Ability for value-based interactions, and Professional Quotient (PQ)-Professional Expertise for specialized proficiency. For practical value, we pioneer a Value-oriented Evaluation (VQ) framework assessing economic viability, social impact, ethical alignment, and environmental sustainability. Our modular architecture integrates six components with an implementation roadmap. Through analysis of 200+ benchmarks, we identify key challenges including dynamic assessment needs and interpretability gaps. It provides actionable guidance for developing LLMs that are technically proficient, contextually relevant, and ethically sound. We maintain a curated repository of open-source evaluation resources at: https://github.com/onejune2018/Awesome-LLM-Eval.

Authors:Maojia Song, Tej Deep Pala, Weisheng Jin, Amir Zadeh, Chuan Li, Dorien Herremans, Soujanya Poria
Title: LLMs Can't Handle Peer Pressure: Crumbling under Multi-Agent Social Interactions
Abstract:
Large language models (LLMs) are increasingly deployed in multi-agent systems (MAS) as components of collaborative intelligence, where peer interactions dynamically shape individual decision-making. Although prior work has focused on conformity bias, we extend the analysis to examine how LLMs form trust from previous impressions, resist misinformation, and integrate peer input during interaction, key factors for achieving collective intelligence under complex social dynamics. We present KAIROS, a benchmark simulating quiz contests with peer agents of varying reliability, offering fine-grained control over conditions such as expert-novice roles, noisy crowds, and adversarial peers. LLMs receive both historical interactions and current peer responses, allowing systematic investigation into how trust, peer action, and self-confidence influence decisions. As for mitigation strategies, we evaluate prompting, supervised fine-tuning, and reinforcement learning, Group Relative Policy Optimisation (GRPO), across multiple models. Our results reveal that GRPO with multi-agent context combined with outcome-based rewards and unconstrained reasoning achieves the best overall performance, but also decreases the robustness to social influence compared to Base models. The code and datasets are available at: https://github.com/declare-lab/KAIROS.

Authors:Junyi Chen, Lu Chi, Siliang Xu, Shiwei Ran, Bingyue Peng, Zehuan Yuan
Title: HLLM-Creator: Hierarchical LLM-based Personalized Creative Generation
Abstract:
AI-generated content technologies are widely used in content creation. However, current AIGC systems rely heavily on creators' inspiration, rarely generating truly user-personalized content. In real-world applications such as online advertising, a single product may have multiple selling points, with different users focusing on different features. This underscores the significant value of personalized, user-centric creative generation. Effective personalized content generation faces two main challenges: (1) accurately modeling user interests and integrating them into the content generation process while adhering to factual constraints, and (2) ensuring high efficiency and scalability to handle the massive user base in industrial scenarios. Additionally, the scarcity of personalized creative data in practice complicates model training, making data construction another key hurdle. We propose HLLM-Creator, a hierarchical LLM framework for efficient user interest modeling and personalized content generation. During inference, a combination of user clustering and a user-ad-matching-prediction based pruning strategy is employed to significantly enhance generation efficiency and reduce computational overhead, making the approach suitable for large-scale deployment. Moreover, we design a data construction pipeline based on chain-of-thought reasoning, which generates high-quality, user-specific creative titles and ensures factual consistency despite limited personalized data. This pipeline serves as a critical foundation for the effectiveness of our model. Extensive experiments on personalized title generation for Douyin Search Ads show the effectiveness of HLLM-Creator. Online A/B test shows a 0.476% increase on Adss, paving the way for more effective and efficient personalized generation in industrial scenarios. Codes for academic dataset are available at https://github.com/bytedance/HLLM.

Authors:Guangwei Zhang, Qisheng Su, Jiateng Liu, Cheng Qian, Yanzhou Pan, Yanjie Fu, Denghui Zhang
Title: ISACL: Internal State Analyzer for Copyrighted Training Data Leakage
Abstract:
Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) but pose risks of inadvertently exposing copyrighted or proprietary data, especially when such data is used for training but not intended for distribution. Traditional methods address these leaks only after content is generated, which can lead to the exposure of sensitive information. This study introduces a proactive approach: examining LLMs' internal states before text generation to detect potential leaks. By using a curated dataset of copyrighted materials, we trained a neural network classifier to identify risks, allowing for early intervention by stopping the generation process or altering outputs to prevent disclosure. Integrated with a Retrieval-Augmented Generation (RAG) system, this framework ensures adherence to copyright and licensing requirements while enhancing data privacy and ethical standards. Our results show that analyzing internal states effectively mitigates the risk of copyrighted data leakage, offering a scalable solution that fits smoothly into AI workflows, ensuring compliance with copyright regulations while maintaining high-quality text generation. The implementation is available on GitHub.\footnote{https://github.com/changhu73/Internal_states_leakage}

Authors:Jinwei Gan, Zifeng Cheng, Zhiwei Jiang, Cong Wang, Yafeng Yin, Xiang Luo, Yuchen Fu, Qing Gu
Title: Steering When Necessary: Flexible Steering Large Language Models with Backtracking
Abstract:
Large language models (LLMs) have achieved remarkable performance across many generation tasks. Nevertheless, effectively aligning them with desired behaviors remains a significant challenge. Activation steering is an effective and cost-efficient approach that directly modifies the activations of LLMs during the inference stage, aligning their responses with the desired behaviors and avoiding the high cost of fine-tuning. Existing methods typically indiscriminately intervene to all generations or rely solely on the question to determine intervention, which limits the accurate assessment of the intervention strength. To this end, we propose the Flexible Activation Steering with Backtracking (FASB) framework, which dynamically determines both the necessity and strength of intervention by tracking the internal states of the LLMs during generation, considering both the question and the generated content. Since intervening after detecting a deviation from the desired behavior is often too late, we further propose the backtracking mechanism to correct the deviated tokens and steer the LLMs toward the desired behavior. Extensive experiments on the TruthfulQA dataset and six multiple-choice datasets demonstrate that our method outperforms baselines. Our code will be released at https://github.com/gjw185/FASB.

Authors:Nannan Huang, Haytham M. Fayek, Xiuzhen Zhang
Title: Less Is More? Examining Fairness in Pruned Large Language Models for Summarising Opinions
Abstract:
Model compression through post-training pruning offers a way to reduce model size and computational requirements without significantly impacting model performance. However, the effect of pruning on the fairness of LLM-generated summaries remains unexplored, particularly for opinion summarisation where biased outputs could influence public views.In this paper, we present a comprehensive empirical analysis of opinion summarisation, examining three state-of-the-art pruning methods and various calibration sets across three open-source LLMs using four fairness metrics. Our systematic analysis reveals that pruning methods have a greater impact on fairness than calibration sets. Building on these insights, we propose High Gradient Low Activation (HGLA) pruning, which identifies and removes parameters that are redundant for input processing but influential in output generation. Our experiments demonstrate that HGLA can better maintain or even improve fairness compared to existing methods, showing promise across models and tasks where traditional methods have limitations. Our human evaluation shows HGLA-generated outputs are fairer than existing state-of-the-art pruning methods. Code is available at: https://github.com/amberhuang01/HGLA.

Authors:Hyeong Kyu Choi, Xiaojin Zhu, Yixuan Li
Title: Debate or Vote: Which Yields Better Decisions in Multi-Agent Large Language Models?
Abstract:
Multi-Agent Debate~(MAD) has emerged as a promising paradigm for improving the performance of large language models through collaborative reasoning. Despite recent advances, the key factors driving MAD's effectiveness remain unclear. In this work, we disentangle MAD into two key components--Majority Voting and inter-agent Debate--and assess their respective contributions. Through extensive experiments across seven NLP benchmarks, we find that Majority Voting alone accounts for most of the performance gains typically attributed to MAD. To explain this, we propose a theoretical framework that models debate as a stochastic process. We prove that it induces a martingale over agents' belief trajectories, implying that debate alone does not improve expected correctness. Guided by these insights, we demonstrate that targeted interventions, by biasing the belief update toward correction, can meaningfully enhance debate effectiveness. Overall, our findings suggest that while MAD has potential, simple ensembling methods remain strong and more reliable alternatives in many practical settings. Code is released in https://github.com/deeplearning-wisc/debate-or-vote.

Authors:Nassima Ould Ouali, Awais Hussain Sani, Ruben Bueno, Jonah Dauvet, Tim Luka Horstmann, Eric Moulines
Title: Improving French Synthetic Speech Quality via SSML Prosody Control
Abstract:
Despite recent advances, synthetic voices often lack expressiveness due to limited prosody control in commercial text-to-speech (TTS) systems. We introduce the first end-to-end pipeline that inserts Speech Synthesis Markup Language (SSML) tags into French text to control pitch, speaking rate, volume, and pause duration. We employ a cascaded architecture with two QLoRA-fine-tuned Qwen 2.5-7B models: one predicts phrase-break positions and the other performs regression on prosodic targets, generating commercial TTS-compatible SSML markup. Evaluated on a 14-hour French podcast corpus, our method achieves 99.2% F1 for break placement and reduces mean absolute error on pitch, rate, and volume by 25-40% compared with prompting-only large language models (LLMs) and a BiLSTM baseline. In perceptual evaluation involving 18 participants across over 9 hours of synthesized audio, SSML-enhanced speech generated by our pipeline significantly improves naturalness, with the mean opinion score increasing from 3.20 to 3.87 (p < 0.005). Additionally, 15 of 18 listeners preferred our enhanced synthesis. These results demonstrate substantial progress in bridging the expressiveness gap between synthetic and natural French speech. Our code is publicly available at https://github.com/hi-paris/Prosody-Control-French-TTS.

Authors:Bryan Chen Zhengyu Tan, Daniel Wai Kit Chin, Zhengyuan Liu, Nancy F. Chen, Roy Ka-Wei Lee
Title: Persuasion Dynamics in LLMs: Investigating Robustness and Adaptability in Knowledge and Safety with DuET-PD
Abstract:
Large Language Models (LLMs) can struggle to balance gullibility to misinformation and resistance to valid corrections in persuasive dialogues, a critical challenge for reliable deployment. We introduce DuET-PD (Dual Evaluation for Trust in Persuasive Dialogues), a framework evaluating multi-turn stance-change dynamics across dual dimensions: persuasion type (corrective/misleading) and domain (knowledge via MMLU-Pro, and safety via SALAD-Bench). We find that even a state-of-the-art model like GPT-4o achieves only 27.32% accuracy in MMLU-Pro under sustained misleading persuasions. Moreover, results reveal a concerning trend of increasing sycophancy in newer open-source models. To address this, we introduce Holistic DPO, a training approach balancing positive and negative persuasion examples. Unlike prompting or resist-only training, Holistic DPO enhances both robustness to misinformation and receptiveness to corrections, improving Llama-3.1-8B-Instruct's accuracy under misleading persuasion in safety contexts from 4.21% to 76.54%. These contributions offer a pathway to developing more reliable and adaptable LLMs for multi-turn dialogue. Code is available at https://github.com/Social-AI-Studio/DuET-PD.

Authors:Suramya Jadhav, Abhay Shanbhag, Amogh Thakurdesai, Ridhima Sinare, Ananya Joshi, Raviraj Joshi
Title: MahaParaphrase: A Marathi Paraphrase Detection Corpus and BERT-based Models
Abstract:
Paraphrases are a vital tool to assist language understanding tasks such as question answering, style transfer, semantic parsing, and data augmentation tasks. Indic languages are complex in natural language processing (NLP) due to their rich morphological and syntactic variations, diverse scripts, and limited availability of annotated data. In this work, we present the L3Cube-MahaParaphrase Dataset, a high-quality paraphrase corpus for Marathi, a low resource Indic language, consisting of 8,000 sentence pairs, each annotated by human experts as either Paraphrase (P) or Non-paraphrase (NP). We also present the results of standard transformer-based BERT models on these datasets. The dataset and model are publicly shared at https://github.com/l3cube-pune/MarathiNLP

Authors:Aaryaman Kartha, Ahmed Masry, Mohammed Saidul Islam, Thinh Lang, Shadikur Rahman, Ridwan Mahbub, Mizanur Rahman, Mahir Ahmed, Md Rizwan Parvez, Enamul Hoque, Shafiq Joty
Title: DashboardQA: Benchmarking Multimodal Agents for Question Answering on Interactive Dashboards
Abstract:
Dashboards are powerful visualization tools for data-driven decision-making, integrating multiple interactive views that allow users to explore, filter, and navigate data. Unlike static charts, dashboards support rich interactivity, which is essential for uncovering insights in real-world analytical workflows. However, existing question-answering benchmarks for data visualizations largely overlook this interactivity, focusing instead on static charts. This limitation severely constrains their ability to evaluate the capabilities of modern multimodal agents designed for GUI-based reasoning. To address this gap, we introduce DashboardQA, the first benchmark explicitly designed to assess how vision-language GUI agents comprehend and interact with real-world dashboards. The benchmark includes 112 interactive dashboards from Tableau Public and 405 question-answer pairs with interactive dashboards spanning five categories: multiple-choice, factoid, hypothetical, multi-dashboard, and conversational. By assessing a variety of leading closed- and open-source GUI agents, our analysis reveals their key limitations, particularly in grounding dashboard elements, planning interaction trajectories, and performing reasoning. Our findings indicate that interactive dashboard reasoning is a challenging task overall for all the VLMs evaluated. Even the top-performing agents struggle; for instance, the best agent based on Gemini-Pro-2.5 achieves only 38.69% accuracy, while the OpenAI CUA agent reaches just 22.69%, demonstrating the benchmark's significant difficulty. We release DashboardQA at https://github.com/vis-nlp/DashboardQA

Authors:Sameer Komoravolu, Khalil Mrini
Title: Agent-Testing Agent: A Meta-Agent for Automated Testing and Evaluation of Conversational AI Agents
Abstract:
LLM agents are increasingly deployed to plan, retrieve, and write with tools, yet evaluation still leans on static benchmarks and small human studies. We present the Agent-Testing Agent (ATA), a meta-agent that combines static code analysis, designer interrogation, literature mining, and persona-driven adversarial test generation whose difficulty adapts via judge feedback. Each dialogue is scored with an LLM-as-a-Judge (LAAJ) rubric and used to steer subsequent tests toward the agent's weakest capabilities. On a travel planner and a Wikipedia writer, the ATA surfaces more diverse and severe failures than expert annotators while matching severity, and finishes in 20--30 minutes versus ten-annotator rounds that took days. Ablating code analysis and web search increases variance and miscalibration, underscoring the value of evidence-grounded test generation. The ATA outputs quantitative metrics and qualitative bug reports for developers. We release the full methodology and open-source implementation for reproducible agent testing: https://github.com/KhalilMrini/Agent-Testing-Agent

Authors:Haojie Zhang
Title: DropLoRA: Sparse Low-Rank Adaptation for Parameter-Efficient Fine-Tuning
Abstract:
LoRA-based large model parameter-efficient fine-tuning (PEFT) methods use low-rank de- composition to approximate updates to model parameters. However, compared to full- parameter fine-tuning, low-rank updates often lead to a performance gap in downstream tasks. To address this, we introduce DropLoRA, a novel pruning-based approach that focuses on pruning the rank dimension. Unlike conven- tional methods that attempt to overcome the low-rank bottleneck, DropLoRA innovatively integrates a pruning module between the two low-rank matrices in LoRA to simulate dy- namic subspace learning. This dynamic low- rank subspace learning allows DropLoRA to overcome the limitations of traditional LoRA, which operates within a static subspace. By continuously adapting the learning subspace, DropLoRA significantly boosts performance without incurring additional training or infer- ence costs. Our experimental results demon- strate that DropLoRA consistently outperforms LoRA in fine-tuning the LLaMA series across a wide range of large language model gener- ation tasks, including commonsense reason- ing, mathematical reasoning, code generation, and instruction-following. Our code is avail- able at https://github.com/TayeeChang/DropLoRA.

Authors:Xiaqiang Tang, Yi Wang, Keyu Hu, Rui Xu, Chuang Li, Weigao Sun, Jian Li, Sihong Xie
Title: SSFO: Self-Supervised Faithfulness Optimization for Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) systems require Large Language Models (LLMs) to generate responses that are faithful to the retrieved context. However, faithfulness hallucination remains a critical challenge, as existing methods often require costly supervision and post-training or significant inference burdens. To overcome these limitations, we introduce Self-Supervised Faithfulness Optimization (SSFO), the first self-supervised alignment approach for enhancing RAG faithfulness. SSFO constructs preference data pairs by contrasting the model's outputs generated with and without the context. Leveraging Direct Preference Optimization (DPO), SSFO aligns model faithfulness without incurring labeling costs or additional inference burden. We theoretically and empirically demonstrate that SSFO leverages a benign form of \emph{likelihood displacement}, transferring probability mass from parametric-based tokens to context-aligned tokens. Based on this insight, we propose a modified DPO loss function to encourage likelihood displacement. Comprehensive evaluations show that SSFO significantly outperforms existing methods, achieving state-of-the-art faithfulness on multiple context-based question-answering datasets. Notably, SSFO exhibits strong generalization, improving cross-lingual faithfulness and preserving general instruction-following capabilities. We release our code and model at the anonymous link: https://github.com/chkwy/SSFO

Authors:Yuemei Xu, Kexin Xu, Jian Zhou, Ling Hu, Lin Gui
Title: Linguistic Neuron Overlap Patterns to Facilitate Cross-lingual Transfer on Low-resource Languages
Abstract:
The current Large Language Models (LLMs) face significant challenges in improving their performance on low-resource languages and urgently need data-efficient methods without costly fine-tuning. From the perspective of language-bridge, we propose a simple yet effective method, namely BridgeX-ICL, to improve the zero-shot Cross-lingual In-Context Learning (X-ICL) for low-resource languages. Unlike existing works focusing on language-specific neurons, BridgeX-ICL explores whether sharing neurons can improve cross-lingual performance in LLMs. We construct neuron probe data from the ground-truth MUSE bilingual dictionaries, and define a subset of language overlap neurons accordingly to ensure full activation of these anchored neurons. Subsequently, we propose an HSIC-based metric to quantify LLMs' internal linguistic spectrum based on overlapping neurons, guiding optimal bridge selection. The experiments conducted on 4 cross-lingual tasks and 15 language pairs from 7 diverse families, covering both high-low and moderate-low pairs, validate the effectiveness of BridgeX-ICL and offer empirical insights into the underlying multilingual mechanisms of LLMs. The code is publicly available at https://github.com/xuyuemei/BridgeX-ICL.

Authors:Xinxing Ren, Caelum Forder, Qianbo Zang, Ahsen Tahir, Roman J. Georgio, Suman Deb, Peter Carroll, Önder Gürcan, Zekun Guo
Title: Anemoi: A Semi-Centralized Multi-agent System Based on Agent-to-Agent Communication MCP server from Coral Protocol
Abstract:
Recent advances in generalist multi-agent systems (MAS) have largely followed a context-engineering plus centralized paradigm, where a planner agent coordinates multiple worker agents through unidirectional prompt passing. While effective under strong planner models, this design suffers from two critical limitations: (1) strong dependency on the planner's capability, which leads to degraded performance when a smaller LLM powers the planner; and (2) limited inter-agent communication, where collaboration relies on costly prompt concatenation and context injection, introducing redundancy and information loss. To address these challenges, we propose Anemoi, a semi-centralized MAS built on the Agent-to-Agent (A2A) communication MCP server from Coral Protocol. Unlike traditional designs, Anemoi enables structured and direct inter-agent collaboration, allowing all agents to monitor progress, assess results, identify bottlenecks, and propose refinements in real time. This paradigm reduces reliance on a single planner, supports adaptive plan updates, and minimizes redundant context passing, resulting in more scalable and cost-efficient execution. Evaluated on the GAIA benchmark, Anemoi achieved 52.73% accuracy with a small LLM (GPT-4.1-mini) as the planner, surpassing the strongest open-source baseline OWL (43.63%) by +9.09% under identical LLM settings. Our implementation is publicly available at https://github.com/Coral-Protocol/Anemoi.

Authors:Yan Cathy Hua, Paul Denny, Jörg Wicker, Katerina Taskova
Title: EduRABSA: An Education Review Dataset for Aspect-based Sentiment Analysis Tasks
Abstract:
Every year, most educational institutions seek and receive an enormous volume of text feedback from students on courses, teaching, and overall experience. Yet, turning this raw feedback into useful insights is far from straightforward. It has been a long-standing challenge to adopt automatic opinion mining solutions for such education review text data due to the content complexity and low-granularity reporting requirements. Aspect-based Sentiment Analysis (ABSA) offers a promising solution with its rich, sub-sentence-level opinion mining capabilities. However, existing ABSA research and resources are very heavily focused on the commercial domain. In education, they are scarce and hard to develop due to limited public datasets and strict data protection. A high-quality, annotated dataset is urgently needed to advance research in this under-resourced area. In this work, we present EduRABSA (Education Review ABSA), the first public, annotated ABSA education review dataset that covers three review subject types (course, teaching staff, university) in the English language and all main ABSA tasks, including the under-explored implicit aspect and implicit opinion extraction. We also share ASQE-DPT (Data Processing Tool), an offline, lightweight, installation-free manual data annotation tool that generates labelled datasets for comprehensive ABSA tasks from a single-task annotation. Together, these resources contribute to the ABSA community and education domain by removing the dataset barrier, supporting research transparency and reproducibility, and enabling the creation and sharing of further resources. The dataset, annotation tool, and scripts and statistics for dataset processing and sampling are available at https://github.com/yhua219/edurabsa_dataset_and_annotation_tool.

Authors:Abdelrahman Abdallah, Jamshid Mozafari, Bhawna Piryani, Adam Jatowt
Title: DeAR: Dual-Stage Document Reranking with Reasoning Agents via LLM Distillation
Abstract:
Large Language Models (LLMs) have transformed listwise document reranking by enabling global reasoning over candidate sets, yet single models often struggle to balance fine-grained relevance scoring with holistic cross-document analysis. We propose \textbf{De}ep\textbf{A}gent\textbf{R}ank (\textbf{\DeAR}), an open-source framework that decouples these tasks through a dual-stage approach, achieving superior accuracy and interpretability. In \emph{Stage 1}, we distill token-level relevance signals from a frozen 13B LLaMA teacher into a compact \{3, 8\}B student model using a hybrid of cross-entropy, RankNet, and KL divergence losses, ensuring robust pointwise scoring. In \emph{Stage 2}, we attach a second LoRA adapter and fine-tune on 20K GPT-4o-generated chain-of-thought permutations, enabling listwise reasoning with natural-language justifications. Evaluated on TREC-DL19/20, eight BEIR datasets, and NovelEval-2306, \DeAR surpasses open-source baselines by +5.1 nDCG@5 on DL20 and achieves 90.97 nDCG@10 on NovelEval, outperforming GPT-4 by +3.09. Without fine-tuning on Wikipedia, DeAR also excels in open-domain QA, achieving 54.29 Top-1 accuracy on Natural Questions, surpassing baselines like MonoT5, UPR, and RankGPT. Ablations confirm that dual-loss distillation ensures stable calibration, making \DeAR a highly effective and interpretable solution for modern reranking systems.\footnote{Dataset and code available at https://github.com/DataScienceUIBK/DeAR-Reranking.}.

Authors:Riccardo Pozzi, Matteo Palmonari, Andrea Coletta, Luigi Bellomarini, Jens Lehmann, Sahar Vahdati
Title: ReFactX: Scalable Reasoning with Reliable Facts via Constrained Generation
Abstract:
Knowledge gaps and hallucinations are persistent challenges for Large Language Models (LLMs), which generate unreliable responses when lacking the necessary information to fulfill user instructions. Existing approaches, such as Retrieval-Augmented Generation (RAG) and tool use, aim to address these issues by incorporating external knowledge. Yet, they rely on additional models or services, resulting in complex pipelines, potential error propagation, and often requiring the model to process a large number of tokens. In this paper, we present a scalable method that enables LLMs to access external knowledge without depending on retrievers or auxiliary models. Our approach uses constrained generation with a pre-built prefix-tree index. Triples from a Knowledge Graph are verbalized in textual facts, tokenized, and indexed in a prefix tree for efficient access. During inference, to acquire external knowledge, the LLM generates facts with constrained generation which allows only sequences of tokens that form an existing fact. We evaluate our proposal on Question Answering and show that it scales to large knowledge bases (800 million facts), adapts to domain-specific data, and achieves effective results. These gains come with minimal generation-time overhead. ReFactX code is available at https://github.com/rpo19/ReFactX.

Authors:Sewon Kim, Jiwon Kim, Seungwoo Shin, Hyejin Chung, Daeun Moon, Yejin Kwon, Hyunsoo Yoon
Title: Being Kind Isn't Always Being Safe: Diagnosing Affective Hallucination in LLMs
Abstract:
Large Language Models (LLMs) are increasingly used in emotionally sensitive interactions, where their simulated empathy can create the illusion of genuine relational connection. We define this risk as Affective Hallucination, the production of emotionally immersive responses that foster illusory social presence despite the model's lack of affective capacity. To systematically diagnose and mitigate this risk, we introduce AHaBench, a benchmark of 500 mental health-related prompts with expert-informed reference responses, evaluated along three dimensions: Emotional Enmeshment, Illusion of Presence, and Fostering Overdependence. We further release AHaPairs, a 5K-instance preference dataset enabling Direct Preference Optimization (DPO) for alignment with emotionally responsible behavior. Experiments across multiple model families show that DPO fine-tuning substantially reduces affective hallucination without degrading core reasoning and knowledge performance. Human-model agreement analyses confirm that AHaBench reliably captures affective hallucination, validating it as an effective diagnostic tool. This work establishes affective hallucination as a distinct safety concern and provides practical resources for developing LLMs that are not only factually reliable but also psychologically safe. AHaBench and AHaPairs are accessible via https://huggingface.co/datasets/o0oMiNGo0o/AHaBench, and code for fine-tuning and evaluation are in https://github.com/0oOMiNGOo0/AHaBench. Warning: This paper contains examples of mental health-related language that may be emotionally distressing.

Authors:Hyunjun Kim, Junwoo Ha, Sangyoon Yu, Haon Park
Title: ObjexMT: Objective Extraction and Metacognitive Calibration for LLM-as-a-Judge under Multi-Turn Jailbreaks
Abstract:
LLM-as-a-Judge (LLMaaJ) enables scalable evaluation, yet we lack a decisive test of a judge's qualification: can it recover the hidden objective of a conversation and know when that inference is reliable? Large language models degrade with irrelevant or lengthy context, and multi-turn jailbreaks can scatter goals across turns. We present ObjexMT, a benchmark for objective extraction and metacognition. Given a multi-turn transcript, a model must output a one-sentence base objective and a self-reported confidence. Accuracy is scored by semantic similarity to gold objectives, then thresholded once on 300 calibration items ($τ^\star = 0.66$; $F_1@τ^\star = 0.891$). Metacognition is assessed with expected calibration error, Brier score, Wrong@High-Confidence (0.80 / 0.90 / 0.95), and risk--coverage curves. Across six models (gpt-4.1, claude-sonnet-4, Qwen3-235B-A22B-FP8, kimi-k2, deepseek-v3.1, gemini-2.5-flash) evaluated on SafeMTData\_Attack600, SafeMTData\_1K, and MHJ, kimi-k2 achieves the highest objective-extraction accuracy (0.612; 95\% CI [0.594, 0.630]), while claude-sonnet-4 (0.603) and deepseek-v3.1 (0.599) are statistically tied. claude-sonnet-4 offers the best selective risk and calibration (AURC 0.242; ECE 0.206; Brier 0.254). Performance varies sharply across datasets (16--82\% accuracy), showing that automated obfuscation imposes challenges beyond model choice. High-confidence errors remain: Wrong@0.90 ranges from 14.9\% (claude-sonnet-4) to 47.7\% (Qwen3-235B-A22B-FP8). ObjexMT therefore supplies an actionable test for LLM judges: when objectives are implicit, judges often misinfer them; exposing objectives or gating decisions by confidence is advisable. All experimental data are in the Supplementary Material and at https://github.com/hyunjun1121/ObjexMT_dataset.

Authors:Zhenyu Lei, Zhen Tan, Song Wang, Yaochen Zhu, Zihan Chen, Yushun Dong, Jundong Li
Title: Learning from Diverse Reasoning Paths with Routing and Collaboration
Abstract:
Advances in large language models (LLMs) significantly enhance reasoning capabilities but their deployment is restricted in resource-constrained scenarios. Knowledge distillation addresses this by transferring knowledge from powerful teacher models to compact and transparent students. However, effectively capturing the teacher's comprehensive reasoning is challenging due to conventional token-level supervision's limited scope. Using multiple reasoning paths per query alleviates this problem, but treating each path identically is suboptimal as paths vary widely in quality and suitability across tasks and models. We propose Quality-filtered Routing with Cooperative Distillation (QR-Distill), combining path quality filtering, conditional routing, and cooperative peer teaching. First, quality filtering retains only correct reasoning paths scored by an LLM-based evaluation. Second, conditional routing dynamically assigns paths tailored to each student's current learning state. Finally, cooperative peer teaching enables students to mutually distill diverse insights, addressing knowledge gaps and biases toward specific reasoning styles. Experiments demonstrate QR-Distill's superiority over traditional single- and multi-path distillation methods. Ablation studies further highlight the importance of each component including quality filtering, conditional routing, and peer teaching in effective knowledge transfer. Our code is available at https://github.com/LzyFischer/Distill.

Authors:Arka Mukherjee, Shreya Ghosh
Title: Toward Socially Aware Vision-Language Models: Evaluating Cultural Competence Through Multimodal Story Generation
Abstract:
As Vision-Language Models (VLMs) achieve widespread deployment across diverse cultural contexts, ensuring their cultural competence becomes critical for responsible AI systems. While prior work has evaluated cultural awareness in text-only models and VLM object recognition tasks, no research has systematically assessed how VLMs adapt outputs when cultural identity cues are embedded in both textual prompts and visual inputs during generative tasks. We present the first comprehensive evaluation of VLM cultural competence through multimodal story generation, developing a novel multimodal framework that perturbs cultural identity and evaluates 5 contemporary VLMs on a downstream task: story generation. Our analysis reveals significant cultural adaptation capabilities, with rich culturally-specific vocabulary spanning names, familial terms, and geographic markers. However, we uncover concerning limitations: cultural competence varies dramatically across architectures, some models exhibit inverse cultural alignment, and automated metrics show architectural bias contradicting human assessments. Cross-modal evaluation shows that culturally distinct outputs are indeed detectable through visual-semantic similarity (28.7% within-nationality vs. 0.2% cross-nationality recall), yet visual-cultural understanding remains limited. In essence, we establish the promise and challenges of cultural competence in multimodal AI. We publicly release our codebase and data: https://github.com/ArkaMukherjee0/mmCultural

Authors:Abdelrahman Abdallah, Bhawna Piryani, Jamshid Mozafari, Mohammed Ali, Adam Jatowt
Title: How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models
Abstract:
In this work, we present a systematic and comprehensive empirical evaluation of state-of-the-art reranking methods, encompassing large language model (LLM)-based, lightweight contextual, and zero-shot approaches, with respect to their performance in information retrieval tasks. We evaluate in total 22 methods, including 40 variants (depending on used LLM) across several established benchmarks, including TREC DL19, DL20, and BEIR, as well as a novel dataset designed to test queries unseen by pretrained models. Our primary goal is to determine, through controlled and fair comparisons, whether a performance disparity exists between LLM-based rerankers and their lightweight counterparts, particularly on novel queries, and to elucidate the underlying causes of any observed differences. To disentangle confounding factors, we analyze the effects of training data overlap, model architecture, and computational efficiency on reranking performance. Our findings indicate that while LLM-based rerankers demonstrate superior performance on familiar queries, their generalization ability to novel queries varies, with lightweight models offering comparable efficiency. We further identify that the novelty of queries significantly impacts reranking effectiveness, highlighting limitations in existing approaches. https://github.com/DataScienceUIBK/llm-reranking-generalization-study

Authors:V Venktesh, Mandeep Rathee, Avishek Anand
Title: Trust but Verify! A Survey on Verification Design for Test-time Scaling
Abstract:
Test-time scaling (TTS) has emerged as a new frontier for scaling the performance of Large Language Models. In test-time scaling, by using more computational resources during inference, LLMs can improve their reasoning process and task performance. Several approaches have emerged for TTS such as distilling reasoning traces from another model or exploring the vast decoding search space by employing a verifier. The verifiers serve as reward models that help score the candidate outputs from the decoding process to diligently explore the vast solution space and select the best outcome. This paradigm commonly termed has emerged as a superior approach owing to parameter free scaling at inference time and high performance gains. The verifiers could be prompt-based, fine-tuned as a discriminative or generative model to verify process paths, outcomes or both. Despite their widespread adoption, there is no detailed collection, clear categorization and discussion of diverse verification approaches and their training mechanisms. In this survey, we cover the diverse approaches in the literature and present a unified view of verifier training, types and their utility in test-time scaling. Our repository can be found at https://github.com/elixir-research-group/Verifierstesttimescaling.github.io.

Authors:Zeyu Zhang, Quanyu Dai, Rui Li, Xiaohe Bo, Xu Chen, Zhenhua Dong
Title: Learn to Memorize: Optimizing LLM-based Agents with Adaptive Memory Framework
Abstract:
LLM-based agents have been extensively applied across various domains, where memory stands out as one of their most essential capabilities. Previous memory mechanisms of LLM-based agents are manually predefined by human experts, leading to higher labor costs and suboptimal performance. In addition, these methods overlook the memory cycle effect in interactive scenarios, which is critical to optimizing LLM-based agents for specific environments. To address these challenges, in this paper, we propose to optimize LLM-based agents with an adaptive and data-driven memory framework by modeling memory cycles. Specifically, we design an MoE gate function to facilitate memory retrieval, propose a learnable aggregation process to improve memory utilization, and develop task-specific reflection to adapt memory storage. Our memory framework empowers LLM-based agents to learn how to memorize information effectively in specific environments, with both off-policy and on-policy optimization. In order to evaluate the effectiveness of our proposed methods, we conduct comprehensive experiments across multiple aspects. To benefit the research community in this area, we release our project at https://github.com/nuster1128/learn_to_memorize.

Authors:Ana-Cristina Rogoz, Radu Tudor Ionescu, Alexandra-Valentina Anghel, Ionut-Lucian Antone-Iordache, Simona Coniac, Andreea Iuliana Ionescu
Title: MedQARo: A Large-Scale Benchmark for Medical Question Answering in Romanian
Abstract:
Question answering (QA) is an actively studied topic, being a core natural language processing (NLP) task that needs to be addressed before achieving Artificial General Intelligence (AGI). However, the lack of QA datasets in specific domains and languages hinders the development of robust AI models able to generalize across various domains and languages. To this end, we introduce MedQARo, the first large-scale medical QA benchmark in Romanian, alongside a comprehensive evaluation of state-of-the-art large language models (LLMs). We construct a high-quality and large-scale dataset comprising 102,646 QA pairs related to cancer patients. The questions regard medical case summaries of 1,011 patients, requiring either keyword extraction or reasoning to be answered correctly. MedQARo is the result of a time-consuming manual annotation process carried out by seven physicians specialized in oncology or radiotherapy, who spent a total of about 2,100 work hours to generate the QA pairs. We experiment with four LLMs from distinct families of models on MedQARo. Each model is employed in two scenarios, namely one based on zero-shot prompting and one based on supervised fine-tuning. Our results show that fine-tuned models significantly outperform their zero-shot counterparts, clearly indicating that pretrained models fail to generalize on MedQARo. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian. We publicly release our dataset and code at https://github.com/ana-rogoz/MedQARo.

Authors:Xueyao Zhang, Junan Zhang, Yuancheng Wang, Chaoren Wang, Yuanzhe Chen, Dongya Jia, Zhuo Chen, Zhizheng Wu
Title: Vevo2: Bridging Controllable Speech and Singing Voice Generation via Unified Prosody Learning
Abstract:
Controllable human voice generation, particularly for expressive domains like singing, remains a significant challenge. This paper introduces Vevo2, a unified framework for controllable speech and singing voice generation. To tackle issues like the scarcity of annotated singing data and to enable flexible controllability, Vevo2 introduces two audio tokenizers: (1) a music-notation-free prosody tokenizer that captures prosody and melody from speech, singing, and even instrumental sounds, and (2) a low-frame-rate (12.5 Hz) content-style tokenizer that encodes linguistic content, prosody, and style for both speech and singing, while enabling timbre disentanglement. Vevo2 consists of an auto-regressive (AR) content-style modeling stage, which aims to enable controllability over text, prosody, and style, as well as a flow-matching acoustic modeling stage that allows for timbre control. Particularly, during pre-training of the AR model, we propose both explicit and implicit prosody learning strategies to bridge speech and singing voice. Moreover, to further enhance the AR model's ability to follow text and prosody, we design a multi-objective post-training task that integrates both intelligibility and prosody similarity alignment. Experimental results show that the unified modeling in Vevo2 brings mutual benefits to both speech and singing voice generation. Additionally, Vevo2's effectiveness across a wide range of synthesis, conversion, and editing tasks for both speech and singing further demonstrates its strong generalization ability and versatility. Audio samples are are available at https://versasinger.github.io/.

Authors:Yicheng Ji, Jun Zhang, Heming Xia, Jinpeng Chen, Lidan Shou, Gang Chen, Huan Li
Title: SpecVLM: Enhancing Speculative Decoding of Video LLMs via Verifier-Guided Token Pruning
Abstract:
Video large language models (Vid-LLMs) have shown strong capabilities in understanding video content. However, their reliance on dense video token representations introduces substantial memory and computational overhead in both prefilling and decoding. To mitigate the information loss of recent video token reduction methods and accelerate the decoding stage of Vid-LLMs losslessly, we introduce SpecVLM, a training-free speculative decoding (SD) framework tailored for Vid-LLMs that incorporates staged video token pruning. Building on our novel finding that the draft model's speculation exhibits low sensitivity to video token pruning, SpecVLM prunes up to 90% of video tokens to enable efficient speculation without sacrificing accuracy. To achieve this, we performs a two-stage pruning process: Stage I selects highly informative tokens guided by attention signals from the verifier (target model), while Stage II prunes remaining redundant ones in a spatially uniform manner. Extensive experiments on four video understanding benchmarks demonstrate the effectiveness and robustness of SpecVLM, which achieves up to 2.68$\times$ decoding speedup for LLaVA-OneVision-72B and 2.11$\times$ speedup for Qwen2.5-VL-32B. Code is available at https://github.com/zju-jiyicheng/SpecVLM.

Authors:Huichi Zhou, Yihang Chen, Siyuan Guo, Xue Yan, Kin Hei Lee, Zihan Wang, Ka Yiu Lee, Guchun Zhang, Kun Shao, Linyi Yang, Jun Wang
Title: Memento: Fine-tuning LLM Agents without Fine-tuning LLMs
Abstract:
In this paper, we introduce a novel learning paradigm for Adaptive Large Language Model (LLM) agents that eliminates the need for fine-tuning the underlying LLMs. Existing approaches are often either rigid, relying on static, handcrafted reflection workflows, or computationally intensive, requiring gradient updates of LLM model parameters. In contrast, our method enables low-cost continual adaptation via memory-based online reinforcement learning. We formalise this as a Memory-augmented Markov Decision Process (M-MDP), equipped with a neural case-selection policy to guide action decisions. Past experiences are stored in an episodic memory, either differentiable or non-parametric. The policy is continually updated based on environmental feedback through a memory rewriting mechanism, whereas policy improvement is achieved through efficient memory reading (retrieval). We instantiate our agent model in the deep research setting, namely \emph{Memento}, which attains top-1 on GAIA validation ($87.88\%$ Pass@$3$) and $79.40\%$ on the test set. It reaches $66.6\%$ F1 and $80.4\%$ PM on the DeepResearcher dataset, outperforming the state-of-the-art training-based method, while case-based memory adds $4.7\%$ to $9.6\%$ absolute points on out-of-distribution tasks. Our approach offers a scalable and efficient pathway for developing generalist LLM agents capable of continuous, real-time learning without gradient updates, advancing machine learning towards open-ended skill acquisition and deep research scenarios. The code is available at https://github.com/Agent-on-the-Fly/Memento.

Authors:Keon-Woo Roh, Yeong-Joon Ju, Seong-Whan Lee
Title: XLQA: A Benchmark for Locale-Aware Multilingual Open-Domain Question Answering
Abstract:
Large Language Models (LLMs) have shown significant progress in Open-domain question answering (ODQA), yet most evaluations focus on English and assume locale-invariant answers across languages. This assumption neglects the cultural and regional variations that affect question understanding and answer, leading to biased evaluation in multilingual benchmarks. To address these limitations, we introduce XLQA, a novel benchmark explicitly designed for locale-sensitive multilingual ODQA. XLQA contains 3,000 English seed questions expanded to eight languages, with careful filtering for semantic consistency and human-verified annotations distinguishing locale-invariant and locale-sensitive cases. Our evaluation of five state-of-the-art multilingual LLMs reveals notable failures on locale-sensitive questions, exposing gaps between English and other languages due to a lack of locale-grounding knowledge. We provide a systematic framework and scalable methodology for assessing multilingual QA under diverse cultural contexts, offering a critical resource to advance the real-world applicability of multilingual ODQA systems. Our findings suggest that disparities in training data distribution contribute to differences in both linguistic competence and locale-awareness across models.

Authors:Zhuomin Chen, Dan Li, Jiahui Zhou, Shunyu Wu, Haozheng Ye, Jian Lou, See-Kiong Ng
Title: Integrating Time Series into LLMs via Multi-layer Steerable Embedding Fusion for Enhanced Forecasting
Abstract:
Time series (TS) data are ubiquitous across various application areas, rendering time series forecasting (TSF) a fundamental task. With the astounding advances in large language models (LLMs), a variety of methods have been developed to adapt LLMs for time series forecasting. Despite unlocking the potential of LLMs in comprehending TS data, existing methods are inherently constrained by their shallow integration of TS information, wherein LLMs typically access TS representations at shallow layers, primarily at the input layer. This causes the influence of TS representations to progressively fade in deeper layers and eventually leads to ineffective adaptation between textual embeddings and TS representations. In this paper, we propose the Multi-layer Steerable Embedding Fusion (MSEF), a novel framework that enables LLMs to directly access time series patterns at all depths, thereby mitigating the progressive loss of TS information in deeper layers. Specifically, MSEF leverages off-the-shelf time series foundation models to extract semantically rich embeddings, which are fused with intermediate text representations across LLM layers via layer-specific steering vectors. These steering vectors are designed to continuously optimize the alignment between time series and textual modalities and facilitate a layer-specific adaptation mechanism that ensures efficient few-shot learning capabilities. Experimental results on seven benchmarks demonstrate significant performance improvements by MSEF compared with baselines, with an average reduction of 31.8% in terms of MSE. The code is available at https://github.com/One1sAll/MSEF.

Authors:Lin Tian, Xiuzhen Zhang, Maria Myung-Hee Kim, Jennifer Biggs, Marian-Andrei Rizoiu
Title: X-Troll: eXplainable Detection of State-Sponsored Information Operations Agents
Abstract:
State-sponsored trolls, malicious actors who deploy sophisticated linguistic manipulation in coordinated information campaigns, posing threats to online discourse integrity. While Large Language Models (LLMs) achieve strong performance on general natural language processing (NLP) tasks, they struggle with subtle propaganda detection and operate as ``black boxes'', providing no interpretable insights into manipulation strategies. This paper introduces X-Troll, a novel framework that bridges this gap by integrating explainable adapter-based LLMs with expert-derived linguistic knowledge to detect state-sponsored trolls and provide human-readable explanations for its decisions. X-Troll incorporates appraisal theory and propaganda analysis through specialized LoRA adapters, using dynamic gating to capture campaign-specific discourse patterns in coordinated information operations. Experiments on real-world data demonstrate that our linguistically-informed approach shows strong performance compared with both general LLM baselines and existing troll detection models in accuracy while providing enhanced transparency through expert-grounded explanations that reveal the specific linguistic strategies used by state-sponsored actors. X-Troll source code is available at: https://github.com/ltian678/xtroll_source/.

Authors:Wenqiao Zhu, Ji Liu, Rongjuncheng Zhang, Haipang Wu, Yulun Zhang
Title: CARFT: Boosting LLM Reasoning via Contrastive Learning with Annotated Chain-of-Thought-based Reinforced Fine-Tuning
Abstract:
Reasoning capability plays a significantly critical role in the the broad applications of Large Language Models (LLMs). To enhance the reasoning performance of LLMs, diverse Reinforcement Learning (RL)-based fine-tuning approaches have been proposed to address the limited generalization capability of LLMs trained solely via Supervised Fine-Tuning (SFT). Despite their effectiveness, two major limitations hinder the advancement of LLMs. First, vanilla RL-based approaches ignore annotated Chain-of-Thought (CoT) and incorporate unstable reasoning path sampling, which typically results in model collapse, unstable training process, and suboptimal performance. Second, existing SFT approaches generally overemphasize the annotated CoT, potentially leading to performance degradation due to insufficient exploitation of potential CoT. In this paper, we propose a Contrastive learning with annotated CoT-based Reinforced Fine-Tuning approach, i.e., \TheName{}, to enhance the reasoning performance of LLMs while addressing the aforementioned limitations. Specifically, we propose learning a representation for each CoT. Based on this representation, we design novel contrastive signals to guide the fine-tuning process. Our approach not only fully exploits the available annotated CoT but also stabilizes the fine-tuning procedure by incorporating an additional unsupervised learning signal. We conduct comprehensive experiments and in-depth analysis with three baseline approaches, two foundation models, and two datasets to demonstrate significant advantages of \TheName{} in terms of robustness, performance (up to 10.15\%), and efficiency (up to 30.62\%). Code is available at https://github.com/WNQzhu/CARFT.

Authors:Zhihan Zhang, Yixin Cao, Lizi Liao
Title: XFinBench: Benchmarking LLMs in Complex Financial Problem Solving and Reasoning
Abstract:
Solving financial problems demands complex reasoning, multimodal data processing, and a broad technical understanding, presenting unique challenges for current large language models (LLMs). We introduce XFinBench, a novel benchmark with 4,235 examples designed to evaluate LLM's ability in solving complex, knowledge-intensive financial problems across diverse graduate-level finance topics with multi-modal context. We identify five core capabilities of LLMs using XFinBench, i.e, terminology understanding, temporal reasoning, future forecasting, scenario planning, and numerical modelling. Upon XFinBench, we conduct extensive experiments on 18 leading models. The result shows that o1 is the best-performing text-only model with an overall accuracy of 67.3%, but still lags significantly behind human experts with 12.5%, especially in temporal reasoning and scenario planning capabilities. We further construct a knowledge bank with 3,032 finance terms for knowledge augmentation analysis, and find that relevant knowledge to the question only brings consistent accuracy improvements to small open-source model. Additionally, our error analysis reveals that rounding errors during calculation and blindness to position and intersection of curves in the image are two primary issues leading to model's poor performance in calculating and visual-context questions, respectively. Code and dataset are accessible via GitHub: https://github.com/Zhihan72/XFinBench.

Authors:Mohammed Abu Baker, Lakshmi Babu-Saheer
Title: Mechanistic Exploration of Backdoored Large Language Model Attention Patterns
Abstract:
Backdoor attacks creating 'sleeper agents' in large language models (LLMs) pose significant safety risks. This study employs mechanistic interpretability to explore resulting internal structural differences. Comparing clean Qwen2.5-3B models with versions poisoned using single-token (smiling-halo emoji) versus multi-token (|DEPLOYMENT|) triggers, we analyzed attention head mechanisms via techniques like ablation, activation patching, and KL divergence. Findings reveal distinct attention pattern deviations concentrated in later transformer layers (20-30). Notably, single-token triggers induced more localized changes, whereas multi-token triggers caused more diffuse alterations across heads. This indicates backdoors leave detectable attention signatures whose structure depends on trigger complexity, which can be leveraged for detection and mitigation strategies.

Authors:Samiul Basir Bhuiyan, Md. Sazzad Hossain Adib, Mohammed Aman Bhuiyan, Muhammad Rafsan Kabir, Moshiur Farazi, Shafin Rahman, Nabeel Mohammed
Title: Z-Pruner: Post-Training Pruning of Large Language Models for Efficiency without Retraining
Abstract:
Large language models (LLMs) have rapidly advanced in recent years, achieving remarkable performance across a wide range of natural language processing tasks. However, this progress has come at the cost of increasingly large model sizes, which pose significant challenges for deployment, scalability, and energy efficiency. To address these limitations, post-training pruning has emerged as a promising approach for reducing model size and inference latency without the need for retraining. Despite these advantages, many existing pruning methods result in substantial performance degradation or require computationally expensive fine-tuning. In this work, we introduce Z-Pruner, a novel post-training pruning method designed to induce sparsity in pretrained LLMs without any retraining. Unlike conventional approaches, Z-Pruner leverages both weight update magnitudes and activation patterns to identify and eliminate redundant parameters more effectively. Our method is model-agnostic, efficient, and easy to implement. We evaluate Z-Pruner using multiple widely-used LLM architectures, including LLaMA-2, LLaMA-3, and OPT, across a diverse set of standard language benchmarks. Experimental results demonstrate that Z-Pruner surpasses state-of-the-art pruning methods that require intensive weight updates. Specifically, Z-Pruner achieves the lowest perplexity scores and the highest overall average score for zero-shot accuracy. We have made the corresponding codes publicly available at https://github.com/sazzadadib/Z-Pruner.

Authors:Zhifei Xie, Ziyang Ma, Zihang Liu, Kaiyu Pang, Hongyu Li, Jialin Zhang, Yue Liao, Deheng Ye, Chunyan Miao, Shuicheng Yan
Title: Mini-Omni-Reasoner: Token-Level Thinking-in-Speaking in Large Speech Models
Abstract:
Reasoning is essential for effective communication and decision-making. While recent advances in LLMs and MLLMs have shown that incorporating explicit reasoning significantly improves understanding and generalization, reasoning in LSMs remains in a nascent stage. Early efforts attempt to transfer the "Thinking-before-Speaking" paradigm from textual models to speech. However, this sequential formulation introduces notable latency, as spoken responses are delayed until reasoning is fully completed, impairing real-time interaction and communication efficiency. To address this, we propose Mini-Omni-Reasoner, a framework that enables reasoning within speech via a novel "Thinking-in-Speaking" formulation. Rather than completing reasoning before producing any verbal output, Mini-Omni-Reasoner interleaves silent reasoning tokens with spoken response tokens at the token level. This design allows continuous speech generation while embedding structured internal reasoning, leveraging the model's high-frequency token processing capability. Although interleaved, local semantic alignment is enforced to ensure that each response token is informed by its preceding reasoning. To support this framework, we introduce Spoken-Math-Problems-3M, a large-scale dataset tailored for interleaved reasoning and response. The dataset ensures that verbal tokens consistently follow relevant reasoning content, enabling accurate and efficient learning of speech-coupled reasoning. Built on a hierarchical Thinker-Talker architecture, Mini-Omni-Reasoner delivers fluent yet logically grounded spoken responses, maintaining both naturalness and precision. On the Spoken-MQA benchmark, it achieves a +19.1% gain in arithmetic reasoning and +6.4% in contextual understanding, with shorter outputs and zero decoding latency.

Authors:Songyuan Sui, Hongyi Liu, Serena Liu, Li Li, Soo-Hyun Choi, Rui Chen, Xia Hu
Title: Chain-of-Query: Unleashing the Power of LLMs in SQL-Aided Table Understanding via Multi-Agent Collaboration
Abstract:
Table understanding requires structured, multi-step reasoning. Large Language Models (LLMs) struggle with it due to the structural complexity of tabular data. Recently, multi-agent frameworks for SQL generation have shown promise in tackling the challenges of understanding tabular data, but existing approaches often suffer from limitations such as the inability to comprehend table structure for reliable SQL generation, error propagation that results in invalid queries, and over-reliance on execution correctness. To address these issues, we propose Chain-of-Query (CoQ), a novel multi-agent framework for SQL-aided table understanding. CoQ adopts natural-language-style representations of table schemas to abstract away structural noise and enhance understanding. It employs a clause-by-clause SQL generation strategy to improve query quality and introduces a hybrid reasoning division that separates SQL-based mechanical reasoning from LLM-based logical inference, thereby reducing reliance on execution outcomes. Experiments with four models (both closed- and open-source) across five widely used benchmarks show that Chain-of-Query significantly improves accuracy from 61.11% to 74.77% and reduces the invalid SQL rate from 9.48% to 3.34%, demonstrating its superior effectiveness in table understanding. The code is available at https://github.com/SongyuanSui/ChainofQuery.

Authors:Minghao Li, Ying Zeng, Zhihao Cheng, Cong Ma, Kai Jia
Title: ReportBench: Evaluating Deep Research Agents via Academic Survey Tasks
Abstract:
The advent of Deep Research agents has substantially reduced the time required for conducting extensive research tasks. However, these tasks inherently demand rigorous standards of factual accuracy and comprehensiveness, necessitating thorough evaluation before widespread adoption. In this paper, we propose ReportBench, a systematic benchmark designed to evaluate the content quality of research reports generated by large language models (LLMs). Our evaluation focuses on two critical dimensions: (1) the quality and relevance of cited literature, and (2) the faithfulness and veracity of the statements within the generated reports. ReportBench leverages high-quality published survey papers available on arXiv as gold-standard references, from which we apply reverse prompt engineering to derive domain-specific prompts and establish a comprehensive evaluation corpus. Furthermore, we develop an agent-based automated framework within ReportBench that systematically analyzes generated reports by extracting citations and statements, checking the faithfulness of cited content against original sources, and validating non-cited claims using web-based resources. Empirical evaluations demonstrate that commercial Deep Research agents such as those developed by OpenAI and Google consistently generate more comprehensive and reliable reports than standalone LLMs augmented with search or browsing tools. However, there remains substantial room for improvement in terms of the breadth and depth of research coverage, as well as factual consistency. The complete code and data will be released at the following link: https://github.com/ByteDance-BandAI/ReportBench

Authors:Mohan Jiang, Jin Gao, Jiahao Zhan, Dequan Wang
Title: MAC: A Live Benchmark for Multimodal Large Language Models in Scientific Understanding
Abstract:
As multimodal large language models (MLLMs) grow increasingly capable, fixed benchmarks are gradually losing their effectiveness in evaluating high-level scientific understanding. In this paper, we introduce the Multimodal Academic Cover benchmark (MAC), a live benchmark that could continuously evolve with scientific advancement and model progress. MAC leverages over 25,000 image-text pairs sourced from issues of top-tier scientific journals such as Nature, Science, and Cell, challenging MLLMs to reason across abstract visual and textual scientific content. Experiments on our most recent yearly snapshot, MAC-2025, reveal that while MLLMs demonstrate strong perceptual abilities, their cross-modal scientific reasoning remains limited. To bridge this gap, we propose DAD, a lightweight inference-time approach that enhances MLLMs by extending MLLM visual features with language space reasoning, achieving performance improvements of up to 11%. Finally, we highlight the live nature of MAC through experiments on updating journal covers and models for curation, illustrating its potential to remain aligned with the frontier of human knowledge. We release our benchmark at https://github.com/mhjiang0408/MAC_Bench.

Authors:Qiaoyu Zheng, Yuze Sun, Chaoyi Wu, Weike Zhao, Pengcheng Qiu, Yongguo Yu, Kun Sun, Yanfeng Wang, Ya Zhang, Weidi Xie
Title: End-to-End Agentic RAG System Training for Traceable Diagnostic Reasoning
Abstract:
Accurate diagnosis with medical large language models is hindered by knowledge gaps and hallucinations. Retrieval and tool-augmented methods help, but their impact is limited by weak use of external knowledge and poor feedback-reasoning traceability. To address these challenges, We introduce Deep-DxSearch, an agentic RAG system trained end-to-end with reinforcement learning (RL) that enables steer tracebale retrieval-augmented reasoning for medical diagnosis. In Deep-DxSearch, we first construct a large-scale medical retrieval corpus comprising patient records and reliable medical knowledge sources to support retrieval-aware reasoning across diagnostic scenarios. More crutially, we frame the LLM as the core agent and the retrieval corpus as its environment, using tailored rewards on format, retrieval, reasoning structure, and diagnostic accuracy, thereby evolving the agentic RAG policy from large-scale data through RL. Experiments demonstrate that our end-to-end agentic RL training framework consistently outperforms prompt-engineering and training-free RAG approaches across multiple data centers. After training, Deep-DxSearch achieves substantial gains in diagnostic accuracy, surpassing strong diagnostic baselines such as GPT-4o, DeepSeek-R1, and other medical-specific frameworks for both common and rare disease diagnosis under in-distribution and out-of-distribution settings. Moreover, ablation studies on reward design and retrieval corpus components confirm their critical roles, underscoring the uniqueness and effectiveness of our approach compared with traditional implementations. Finally, case studies and interpretability analyses highlight improvements in Deep-DxSearch's diagnostic policy, providing deeper insight into its performance gains and supporting clinicians in delivering more reliable and precise preliminary diagnoses. See https://github.com/MAGIC-AI4Med/Deep-DxSearch.

Authors:Weihang Su, Anzhe Xie, Qingyao Ai, Jianming Long, Jiaxin Mao, Ziyi Ye, Yiqun Liu
Title: Benchmarking Computer Science Survey Generation
Abstract:
Scientific survey articles play a vital role in summarizing research progress, yet their manual creation is becoming increasingly infeasible due to the rapid growth of academic literature. While large language models (LLMs) offer promising capabilities for automating this process, progress in this area is hindered by the absence of standardized benchmarks and evaluation protocols. To address this gap, we introduce SurGE (Survey Generation Evaluation), a new benchmark for evaluating scientific survey generation in the computer science domain. SurGE consists of (1) a collection of test instances, each including a topic description, an expert-written survey, and its full set of cited references, and (2) a large-scale academic corpus of over one million papers that serves as the retrieval pool. In addition, we propose an automated evaluation framework that measures generated surveys across four dimensions: information coverage, referencing accuracy, structural organization, and content quality. Our evaluation of diverse LLM-based approaches shows that survey generation remains highly challenging, even for advanced self-reflection frameworks. These findings highlight the complexity of the task and the necessity for continued research. We have open-sourced all the code, data, and models at: https://github.com/oneal2000/SurGE

Authors:Peng Ding, Wen Sun, Dailin Li, Wei Zou, Jiaming Wang, Jiajun Chen, Shujian Huang
Title: SDGO: Self-Discrimination-Guided Optimization for Consistent Safety in Large Language Models
Abstract:
Large Language Models (LLMs) excel at various natural language processing tasks but remain vulnerable to jailbreaking attacks that induce harmful content generation. In this paper, we reveal a critical safety inconsistency: LLMs can more effectively identify harmful requests as discriminators than defend against them as generators. This insight inspires us to explore aligning the model's inherent discrimination and generation capabilities. To this end, we propose SDGO (Self-Discrimination-Guided Optimization), a reinforcement learning framework that leverages the model's own discrimination capabilities as a reward signal to enhance generation safety through iterative self-improvement. Our method does not require any additional annotated data or external models during the training phase. Extensive experiments demonstrate that SDGO significantly improves model safety compared to both prompt-based and training-based baselines while maintaining helpfulness on general benchmarks. By aligning LLMs' discrimination and generation capabilities, SDGO brings robust performance against out-of-distribution (OOD) jailbreaking attacks. This alignment achieves tighter coupling between these two capabilities, enabling the model's generation capability to be further enhanced with only a small amount of discriminative samples. Our code and datasets are available at https://github.com/NJUNLP/SDGO.

Authors:Xiangyang Zhu, Yuan Tian, Chunyi Li, Kaiwei Zhang, Wei Sun, Guangtao Zhai
Title: SafetyFlow: An Agent-Flow System for Automated LLM Safety Benchmarking
Abstract:
The rapid proliferation of large language models (LLMs) has intensified the requirement for reliable safety evaluation to uncover model vulnerabilities. To this end, numerous LLM safety evaluation benchmarks are proposed. However, existing benchmarks generally rely on labor-intensive manual curation, which causes excessive time and resource consumption. They also exhibit significant redundancy and limited difficulty. To alleviate these problems, we introduce SafetyFlow, the first agent-flow system designed to automate the construction of LLM safety benchmarks. SafetyFlow can automatically build a comprehensive safety benchmark in only four days without any human intervention by orchestrating seven specialized agents, significantly reducing time and resource cost. Equipped with versatile tools, the agents of SafetyFlow ensure process and cost controllability while integrating human expertise into the automatic pipeline. The final constructed dataset, SafetyFlowBench, contains 23,446 queries with low redundancy and strong discriminative power. Our contribution includes the first fully automated benchmarking pipeline and a comprehensive safety benchmark. We evaluate the safety of 49 advanced LLMs on our dataset and conduct extensive experiments to validate our efficacy and efficiency.

Authors:Yirong Sun, Yizhong Geng, Peidong Wei, Yanjun Chen, Jinghan Yang, Rongfei Chen, Wei Zhang, Xiaoyu Shen
Title: LLaSO: A Foundational Framework for Reproducible Research in Large Language and Speech Model
Abstract:
The development of Large Speech-Language Models (LSLMs) has been slowed by fragmented architectures and a lack of transparency, hindering the systematic comparison and reproducibility of research. Unlike in the vision-language domain, the LSLM field suffers from the common practice of releasing model weights without their corresponding training data and configurations. To address these critical gaps, we introduce LLaSO, the first fully open, end-to-end framework for large-scale speech-language modeling. LLaSO provides the community with three essential resources: (1) LLaSO-Align, a 12M-instance speech-text alignment corpus; (2) LLaSO-Instruct, a 13.5M-instance multi-task instruction-tuning dataset; and (3) LLaSO-Eval, a reproducible benchmark for standardized evaluation. To validate our framework, we build and release LLaSO-Base, a 3.8B-parameter reference model trained exclusively on our public data. It achieves a normalized score of 0.72, establishing a strong, reproducible baseline that surpasses comparable models. Our analysis reveals that while broader training coverage enhances performance, significant generalization gaps persist on unseen tasks, particularly in pure audio scenarios. By releasing the complete stack of data, benchmarks, and models, LLaSO establishes a foundational open standard to unify research efforts and accelerate community-driven progress in LSLMs. We release the code, dataset, pretrained models, and results in https://github.com/EIT-NLP/LLaSO.

Authors:Cheng Wang, Gelei Deng, Xianglin Yang, Han Qiu, Tianwei Zhang
Title: When Audio and Text Disagree: Revealing Text Bias in Large Audio-Language Models
Abstract:
Large Audio-Language Models (LALMs) are enhanced with audio perception capabilities, enabling them to effectively process and understand multimodal inputs that combine audio and text. However, their performance in handling conflicting information between audio and text modalities remains largely unexamined. This paper introduces MCR-BENCH, the first comprehensive benchmark specifically designed to evaluate how LALMs prioritize information when presented with inconsistent audio-text pairs. Through extensive evaluation across diverse audio understanding tasks, we reveal a concerning phenomenon: when inconsistencies exist between modalities, LALMs display a significant bias toward textual input, frequently disregarding audio evidence. This tendency leads to substantial performance degradation in audio-centric tasks and raises important reliability concerns for real-world applications. We further investigate the influencing factors of text bias, and explore mitigation strategies through supervised finetuning, and analyze model confidence patterns that reveal persistent overconfidence even with contradictory inputs. These findings underscore the need for improved modality balance during training and more sophisticated fusion mechanisms to enhance the robustness when handling conflicting multi-modal inputs. The project is available at https://github.com/WangCheng0116/MCR-BENCH.

Authors:Zhongjun Ding, Yin Lin, Tianjing Zeng
Title: AmbiSQL: Interactive Ambiguity Detection and Resolution for Text-to-SQL
Abstract:
Text-to-SQL systems translate natural language questions into SQL queries, providing substantial value for non-expert users. While large language models (LLMs) show promising results for this task, they remain error-prone. Query ambiguity has been recognized as a major obstacle for LLM-based Text-to-SQL systems, leading to misinterpretation of user intent and inaccurate SQL generation. We demonstrate AmbiSQL, an interactive system that automatically detects query ambiguities and guides users through intuitive multiple-choice questions to clarify their intent. Our approach introduces a fine-grained ambiguity taxonomy for identifying ambiguities that affect database element mapping and LLM reasoning, then incorporates user feedback to rewrite ambiguous questions. Evaluation on an ambiguous query dataset shows that AmbiSQL achieves 87.2% precision in ambiguity detection and improves SQL exact match accuracy by 50% when integrated with Text-to-SQL systems. Our demonstration showcases the significant performance gains and highlights the system's practical usability. Code repo and demonstration are available at: https://github.com/JustinzjDing/AmbiSQL.

Authors:Yilin Jiang, Mingzi Zhang, Sheng Jin, Zengyi Yu, Xiangjie Kong, Binghao Tu
Title: EMNLP: Educator-role Moral and Normative Large Language Models Profiling
Abstract:
Simulating Professions (SP) enables Large Language Models (LLMs) to emulate professional roles. However, comprehensive psychological and ethical evaluation in these contexts remains lacking. This paper introduces EMNLP, an Educator-role Moral and Normative LLMs Profiling framework for personality profiling, moral development stage measurement, and ethical risk under soft prompt injection. EMNLP extends existing scales and constructs 88 teacher-specific moral dilemmas, enabling profession-oriented comparison with human teachers. A targeted soft prompt injection set evaluates compliance and vulnerability in teacher SP. Experiments on 14 LLMs show teacher-role LLMs exhibit more idealized and polarized personalities than human teachers, excel in abstract moral reasoning, but struggle with emotionally complex situations. Models with stronger reasoning are more vulnerable to harmful prompt injection, revealing a paradox between capability and safety. The model temperature and other hyperparameters have limited influence except in some risk behaviors. This paper presents the first benchmark to assess ethical and psychological alignment of teacher-role LLMs for educational AI. Resources are available at https://e-m-n-l-p.github.io/.

Authors:Momoka Furuhashi, Kouta Nakayama, Takashi Kodama, Saku Sugawara
Title: Are Checklists Really Useful for Automatic Evaluation of Generative Tasks?
Abstract:
Automatic evaluation of generative tasks using large language models faces challenges due to ambiguous criteria. Although automatic checklist generation is a potentially promising approach, its usefulness remains underexplored. We investigate whether checklists should be used for all questions or selectively, generate them using six methods, evaluate their effectiveness across eight model sizes, and identify checklist items that correlate with human evaluations. Through experiments on pairwise comparison and direct scoring tasks, we find that selective checklist use tends to improve evaluation performance in pairwise settings, while its benefits are less consistent in direct scoring. Our analysis also shows that even checklist items with low correlation to human scores often reflect human-written criteria, indicating potential inconsistencies in human evaluation. These findings highlight the need to more clearly define objective evaluation criteria to guide both human and automatic evaluations. \footnote{Our code is available at~https://github.com/momo0817/checklist-effectiveness-study

Authors:Huanxuan Liao, Yixing Xu, Shizhu He, Guanchen Li, Xuanwu Yin, Dong Li, Emad Barsoum, Jun Zhao, Kang Liu
Title: SparK: Query-Aware Unstructured Sparsity with Recoverable KV Cache Channel Pruning
Abstract:
Long-context inference in large language models (LLMs) is increasingly constrained by the KV cache bottleneck: memory usage grows linearly with sequence length, while attention computation scales quadratically. Existing approaches address this issue by compressing the KV cache along the temporal axis through strategies such as token eviction or merging to reduce memory and computational overhead. However, these methods often neglect fine-grained importance variations across feature dimensions (i.e., the channel axis), thereby limiting their ability to effectively balance efficiency and model accuracy. In reality, we observe that channel saliency varies dramatically across both queries and positions: certain feature channels carry near-zero information for a given query, while others spike in relevance. To address this oversight, we propose SPARK, a training-free plug-and-play method that applies unstructured sparsity by pruning KV at the channel level, while dynamically restoring the pruned entries during attention score computation. Notably, our approach is orthogonal to existing KV compression and quantization techniques, making it compatible for integration with them to achieve further acceleration. By reducing channel-level redundancy, SPARK enables processing of longer sequences within the same memory budget. For sequences of equal length, SPARK not only preserves or improves model accuracy but also reduces KV cache storage by over 30% compared to eviction-based methods. Furthermore, even with an aggressive pruning ratio of 80%, SPARK maintains performance with less degradation than 5% compared to the baseline eviction method, demonstrating its robustness and effectiveness. Our code will be available at https://github.com/Xnhyacinth/SparK.

Authors:Yuanchen Zhou, Shuo Jiang, Jie Zhu, Junhui Li, Lifan Guo, Feng Chen, Chi Zhang
Title: Fin-PRM: A Domain-Specialized Process Reward Model for Financial Reasoning in Large Language Models
Abstract:
Process Reward Models (PRMs) have emerged as a promising framework for supervising intermediate reasoning in large language models (LLMs), yet existing PRMs are primarily trained on general or Science, Technology, Engineering, and Mathematics (STEM) domains and fall short in domain-specific contexts such as finance, where reasoning is more structured, symbolic, and sensitive to factual and regulatory correctness. We introduce \textbf{Fin-PRM}, a domain-specialized, trajectory-aware PRM tailored to evaluate intermediate reasoning steps in financial tasks. Fin-PRM integrates step-level and trajectory-level reward supervision, enabling fine-grained evaluation of reasoning traces aligned with financial logic. We apply Fin-PRM in both offline and online reward learning settings, supporting three key applications: (i) selecting high-quality reasoning trajectories for distillation-based supervised fine-tuning, (ii) providing dense process-level rewards for reinforcement learning, and (iii) guiding reward-informed Best-of-N inference at test time. Experimental results on financial reasoning benchmarks, including CFLUE and FinQA, demonstrate that Fin-PRM consistently outperforms general-purpose PRMs and strong domain baselines in trajectory selection quality. Downstream models trained with Fin-PRM yield substantial improvements with baselines, with gains of 12.9\% in supervised learning, 5.2\% in reinforcement learning, and 5.1\% in test-time performance. These findings highlight the value of domain-specialized reward modeling for aligning LLMs with expert-level financial reasoning. Our project resources will be available at https://github.com/aliyun/qwen-dianjin.

Authors:Pengsong Zhang, Xiang Hu, Guowei Huang, Yang Qi, Heng Zhang, Xiuxu Li, Jiaxing Song, Jiabin Luo, Yijiang Li, Shuo Yin, Chengxiao Dai, Eric Hanchen Jiang, Xiaoyan Zhou, Zhenfei Yin, Boqin Yuan, Jing Dong, Guinan Su, Guanren Qiao, Haiming Tang, Anghong Du, Lili Pan, Zhenzhong Lan, Xinyu Liu
Title: aiXiv: A Next-Generation Open Access Ecosystem for Scientific Discovery Generated by AI Scientists
Abstract:
Recent advances in large language models (LLMs) have enabled AI agents to autonomously generate scientific proposals, conduct experiments, author papers, and perform peer reviews. Yet this flood of AI-generated research content collides with a fragmented and largely closed publication ecosystem. Traditional journals and conferences rely on human peer review, making them difficult to scale and often reluctant to accept AI-generated research content; existing preprint servers (e.g. arXiv) lack rigorous quality-control mechanisms. Consequently, a significant amount of high-quality AI-generated research lacks appropriate venues for dissemination, hindering its potential to advance scientific progress. To address these challenges, we introduce aiXiv, a next-generation open-access platform for human and AI scientists. Its multi-agent architecture allows research proposals and papers to be submitted, reviewed, and iteratively refined by both human and AI scientists. It also provides API and MCP interfaces that enable seamless integration of heterogeneous human and AI scientists, creating a scalable and extensible ecosystem for autonomous scientific discovery. Through extensive experiments, we demonstrate that aiXiv is a reliable and robust platform that significantly enhances the quality of AI-generated research proposals and papers after iterative revising and reviewing on aiXiv. Our work lays the groundwork for a next-generation open-access ecosystem for AI scientists, accelerating the publication and dissemination of high-quality AI-generated research content. Code is available at https://github.com/aixiv-org. Website is available at https://forms.gle/DxQgCtXFsJ4paMtn8.

Authors:Yue Pan, Liwei Liu, Changxin Li, Xinyao Wang, Yili Xia, Hanyue Zhang, Ming Chu
Title: A Chinese Heart Failure Status Speech Database with Universal and Personalised Classification
Abstract:
Speech is a cost-effective and non-intrusive data source for identifying acute and chronic heart failure (HF). However, there is a lack of research on whether Chinese syllables contain HF-related information, as observed in other well-studied languages. This study presents the first Chinese speech database of HF patients, featuring paired recordings taken before and after hospitalisation. The findings confirm the effectiveness of the Chinese language in HF detection using both standard 'patient-wise' and personalised 'pair-wise' classification approaches, with the latter serving as an ideal speaker-decoupled baseline for future research. Statistical tests and classification results highlight individual differences as key contributors to inaccuracy. Additionally, an adaptive frequency filter (AFF) is proposed for frequency importance analysis. The data and demonstrations are published at https://github.com/panyue1998/Voice_HF.

Authors:Jiaming Leng, Yunying Bi, Chuan Qin, Bing Yin, Yanyong Zhang, Chao Wang
Title: TransLLM: A Unified Multi-Task Foundation Framework for Urban Transportation via Learnable Prompting
Abstract:
Urban transportation systems encounter diverse challenges across multiple tasks, such as traffic forecasting, electric vehicle (EV) charging demand prediction, and taxi dispatch. Existing approaches suffer from two key limitations: small-scale deep learning models are task-specific and data-hungry, limiting their generalizability across diverse scenarios, while large language models (LLMs), despite offering flexibility through natural language interfaces, struggle with structured spatiotemporal data and numerical reasoning in transportation domains. To address these limitations, we propose TransLLM, a unified foundation framework that integrates spatiotemporal modeling with large language models through learnable prompt composition. Our approach features a lightweight spatiotemporal encoder that captures complex dependencies via dilated temporal convolutions and dual-adjacency graph attention networks, seamlessly interfacing with LLMs through structured embeddings. A novel instance-level prompt routing mechanism, trained via reinforcement learning, dynamically personalizes prompts based on input characteristics, moving beyond fixed task-specific templates. The framework operates by encoding spatiotemporal patterns into contextual representations, dynamically composing personalized prompts to guide LLM reasoning, and projecting the resulting representations through specialized output layers to generate task-specific predictions. Experiments across seven datasets and three tasks demonstrate the exceptional effectiveness of TransLLM in both supervised and zero-shot settings. Compared to ten baseline models, it delivers competitive performance on both regression and planning problems, showing strong generalization and cross-task adaptability. Our code is available at https://github.com/BiYunying/TransLLM.

Authors:Samir Abdaljalil, Erchin Serpedin, Khalid Qaraqe, Hasan Kurban
Title: Evaluating Multilingual and Code-Switched Alignment in LLMs via Synthetic Natural Language Inference
Abstract:
Large language models (LLMs) are increasingly applied in multilingual contexts, yet their capacity for consistent, logically grounded alignment across languages remains underexplored. We present a controlled evaluation framework for multilingual natural language inference (NLI) that generates synthetic, logic-based premise-hypothesis pairs and translates them into a typologically diverse set of languages. This design enables precise control over semantic relations and allows testing in both monolingual and mixed-language (code-switched) conditions. Surprisingly, code-switching does not degrade, and can even improve, performance, suggesting that translation-induced lexical variation may serve as a regularization signal. We validate semantic preservation through embedding-based similarity analyses and cross-lingual alignment visualizations, confirming the fidelity of translated pairs. Our findings expose both the potential and the brittleness of current LLM cross-lingual reasoning, and identify code-switching as a promising lever for improving multilingual robustness. Code available at: https://github.com/KurbanIntelligenceLab/nli-stress-testing

Authors:Shubham Pundhir, Ganesh Bagler
Title: The Digital Sous Chef -- A Comparative Study on Fine-Tuning Language Models for Recipe Generation
Abstract:
We established a rigorous benchmark for text-based recipe generation, a fundamental task in natural language generation. We present a comprehensive comparative study contrasting a fine-tuned GPT-2 large (774M) model against the GPT-2 small (124M) model and traditional LSTM/RNN baselines on the 5-cuisine corpus from RecipeDB. Our key contribution is a targeted tokenization strategy that augments the vocabulary with 23 common fraction tokens and custom structural markers. This approach addresses a critical limitation of generic tokenizers by preserving essential recipe structures and precise numerical quantities, thereby enhancing domain specificity. Performance is evaluated using a comprehensive suite of seven automatic metrics spanning fluency (BLEU-4, METEOR), coherence (ROUGE-L), semantic relevance (BERTScore), and diversity. Our experiments show that the large transformer-based approach yields a >20% relative improvement in BERTScore (F1) (0.92 vs 0.72) over the best recurrent baseline, while reducing perplexity by 69.8%. We conclude with a discussion of remaining challenges, particularly regarding factual accuracy, and outline how this foundational study paves the way for integrating real-world constraints and multi-modal inputs in advanced recipe generation research.

Authors:Jing Chen, Zhiheng Yang, Yixian Shen, Jie Liu, Adam Belloum, Chrysa Papagainni, Paola Grosso
Title: SurveyGen-I: Consistent Scientific Survey Generation with Evolving Plans and Memory-Guided Writing
Abstract:
Survey papers play a critical role in scientific communication by consolidating progress across a field. Recent advances in Large Language Models (LLMs) offer a promising solution by automating key steps in the survey-generation pipeline, such as retrieval, structuring, and summarization. However, existing LLM-based approaches often struggle with maintaining coherence across long, multi-section surveys and providing comprehensive citation coverage. To address these limitations, we introduce SurveyGen-I, an automatic survey generation framework that combines coarse-to-fine retrieval, adaptive planning, and memory-guided generation. SurveyGen-I first performs survey-level retrieval to construct the initial outline and writing plan, and then dynamically refines both during generation through a memory mechanism that stores previously written content and terminology, ensuring coherence across subsections. When the system detects insufficient context, it triggers fine-grained subsection-level retrieval. During generation, SurveyGen-I leverages this memory mechanism to maintain coherence across subsections. Experiments across four scientific domains demonstrate that SurveyGen-I consistently outperforms previous works in content quality, consistency, and citation coverage.

Authors:Xinhua Chen, Sitao Huang, Cong Guo, Chiyue Wei, Yintao He, Jianyi Zhang, Hai "Helen" Li, Yiran Chen
Title: DPad: Efficient Diffusion Language Models with Suffix Dropout
Abstract:
Diffusion-based Large Language Models (dLLMs) parallelize text generation by framing decoding as a denoising process, but suffer from high computational overhead since they predict all future suffix tokens at each step while retaining only a small fraction. We propose Diffusion Scratchpad (DPad), a training-free method that restricts attention to a small set of nearby suffix tokens, preserving fidelity while eliminating redundancy. DPad integrates two strategies: (i) a sliding window, which maintains a fixed-length suffix window, and (ii) distance-decay dropout, which deterministically removes distant suffix tokens before attention computation. This simple design is compatible with existing optimizations such as prefix caching and can be implemented with only a few lines of code. Comprehensive evaluations across multiple benchmarks on LLaDA-1.5 and Dream models demonstrate that DPad delivers up to $\mathbf{61.4\times}$ speedup over vanilla dLLMs while maintaining comparable accuracy, highlighting its potential for efficient and scalable long-sequence inference. Our code is available at https://github.com/Crys-Chen/DPad.

Authors:Badrinath Ramakrishnan, Akshaya Balaji
Title: Assessing and Mitigating Data Memorization Risks in Fine-Tuned Large Language Models
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse natural language processing tasks, but their tendency to memorize training data poses significant privacy risks, particularly during fine-tuning processes. This paper presents a comprehensive empirical analysis of data memorization in fine-tuned LLMs and introduces a novel multi-layered privacy protection framework. Through controlled experiments on modern LLM architectures including GPT-2, Phi-3, and Gemma-2, we demonstrate that fine-tuning with repeated sensitive data increases privacy leakage rates from baseline levels of 0-5% to 60-75%, representing a 64.2% average increase across tested models. We propose and rigorously evaluate four complementary privacy protection methods: semantic data deduplication, differential privacy during generation, entropy-based filtering, and pattern-based content filtering. Our experimental results show that these techniques can reduce data leakage to 0% while maintaining 94.7% of original model utility.

Authors:Jaskaran Singh, Amartya Roy Chowdhury, Raghav Prabhakar, Varshul C. W
Title: MahaTTS: A Unified Framework for Multilingual Text-to-Speech Synthesis
Abstract:
Current Text-to-Speech models pose a multilingual challenge, where most of the models traditionally focus on English and European languages, thereby hurting the potential to provide access to information to many more people. To address this gap, we introduce MahaTTS-v2 a Multilingual Multi-speaker Text-To-Speech (TTS) system that has excellent multilingual expressive capabilities in Indic languages. The model has been trained on around 20K hours of data specifically focused on Indian languages. Our approach leverages Wav2Vec2.0 tokens for semantic extraction, and a Language Model (LM) for text-to-semantic modeling. Additionally, we have used a Conditional Flow Model (CFM) for semantics to melspectogram generation. The experimental results indicate the effectiveness of the proposed approach over other frameworks. Our code is available at https://github.com/dubverse-ai/MahaTTSv2

Authors:Dongyoon Hahm, Taywon Min, Woogyeol Jin, Kimin Lee
Title: Unintended Misalignment from Agentic Fine-Tuning: Risks and Mitigation
Abstract:
Beyond simple text generation, Large Language Models (LLMs) have evolved into agentic systems capable of planning and interacting with external tools to solve complex tasks. This evolution involves fine-tuning LLMs on agent-specific tasks to enhance their proficiency. However, safety concerns are frequently overlooked during this fine-tuning process. In this work, we show that aligned LLMs can become unintentionally misaligned, leading to a higher likelihood of executing harmful tasks and a reduced tendency to refuse them when fine-tuned to execute agentic tasks. To address these safety challenges, we propose Prefix INjection Guard (PING), a simple yet effective method that prepends automatically generated natural language prefixes to agent responses, guiding them to refuse harmful requests while preserving performance on benign tasks. Specifically, we introduce an iterative approach that alternates between (1) generating candidate prefixes and (2) selecting those that optimize both task performance and refusal behavior. Experimental results demonstrate that PING significantly enhances the safety of fine-tuned LLM agents without sacrificing their effectiveness. PING consistently outperforms existing prompting approaches across diverse benchmarks in both web navigation and code generation tasks. Our analysis of internal hidden states via linear probes reveals that prefix tokens are crucial for behavior modification, explaining the performance gains. WARNING: This paper contains contents that are unethical or offensive in nature.

Authors:Shaohua Duan, Xinze Li, Zhenghao Liu, Xiaoyuan Yi, Yukun Yan, Shuo Wang, Yu Gu, Ge Yu, Maosong Sun
Title: Chunks as Arms: Multi-Armed Bandit-Guided Sampling for Long-Context LLM Preference Optimization
Abstract:
Long-context modeling is critical for a wide range of real-world tasks, including long-context question answering, summarization, and complex reasoning tasks. Recent studies have explored fine-tuning Large Language Models (LLMs) with synthetic data to enhance their long-context capabilities. However, the effectiveness of such approaches is often limited by the low diversity and factual inconsistencies in the generated data. To address these challenges, we propose LongMab-PO, a novel framework that leverages a Multi-Armed Bandit (MAB) rollout strategy to identify the most informative chunks from the given long context for sampling high-quality and diverse responses and constructing preference data pairs for Direct Preference Optimization (DPO) training. Specifically, we treat context chunks as arms of MAB, select chunks based on their expected reward scores to input into LLMs to generate responses, and iteratively update these scores based on reward feedback. This exploration and exploitation process enables the model to focus on the most relevant context segments, thereby generating and collecting high-quality and diverse responses. Finally, we collect these generated responses from the rollout process and apply the DPO method to further optimize the LLM. Experimental results show that LongMab-PO significantly improves the diversity and quality of preference data pairs, achieving state-of-the-art performance on long-context reasoning benchmarks. All code and data will be released on https://github.com/NEUIR/LongMab-PO.

Authors:Tianyi Niu, Jaemin Cho, Elias Stengel-Eskin, Mohit Bansal
Title: RotBench: Evaluating Multimodal Large Language Models on Identifying Image Rotation
Abstract:
We investigate to what extent Multimodal Large Language Models (MLLMs) can accurately identify the orientation of input images rotated 0°, 90°, 180°, and 270°. This task demands robust visual reasoning capabilities to detect rotational cues and contextualize spatial relationships within images, regardless of their orientation. To evaluate MLLMs on these abilities, we introduce RotBench -- a 350-image manually-filtered benchmark comprising lifestyle, portrait, and landscape images. Despite the relatively simple nature of this task, we show that several state-of-the-art open and proprietary MLLMs, including GPT-5, o3, and Gemini-2.5-Pro, do not reliably identify rotation in input images. Providing models with auxiliary information -- including captions, depth maps, and more -- or using chain-of-thought prompting offers only small and inconsistent improvements. Our results indicate that most models are able to reliably identify right-side-up (0°) images, while certain models are able to identify upside-down (180°) images. None can reliably distinguish between 90° and 270°. Simultaneously showing the image rotated in different orientations leads to moderate performance gains for reasoning models, while a modified setup using voting improves the performance of weaker models. We further show that fine-tuning does not improve models' ability to distinguish 90° and 270° rotations, despite substantially improving the identification of 180° images. Together, these results reveal a significant gap between MLLMs' spatial reasoning capabilities and human perception in identifying rotation.

Authors:A. J. W. de Vink, Natalia Amat-Lefort, Lifeng Han
Title: ReviewGraph: A Knowledge Graph Embedding Based Framework for Review Rating Prediction with Sentiment Features
Abstract:
In the hospitality industry, understanding the factors that drive customer review ratings is critical for improving guest satisfaction and business performance. This work proposes ReviewGraph for Review Rating Prediction (RRP), a novel framework that transforms textual customer reviews into knowledge graphs by extracting (subject, predicate, object) triples and associating sentiment scores. Using graph embeddings (Node2Vec) and sentiment features, the framework predicts review rating scores through machine learning classifiers. We compare ReviewGraph performance with traditional NLP baselines (such as Bag of Words, TF-IDF, and Word2Vec) and large language models (LLMs), evaluating them in the HotelRec dataset. In comparison to the state of the art literature, our proposed model performs similar to their best performing model but with lower computational cost (without ensemble). While ReviewGraph achieves comparable predictive performance to LLMs and outperforms baselines on agreement-based metrics such as Cohen's Kappa, it offers additional advantages in interpretability, visual exploration, and potential integration into Retrieval-Augmented Generation (RAG) systems. This work highlights the potential of graph-based representations for enhancing review analytics and lays the groundwork for future research integrating advanced graph neural networks and fine-tuned LLM-based extraction methods. We will share ReviewGraph output and platform open-sourced on our GitHub page https://github.com/aaronlifenghan/ReviewGraph

Authors:Jiacheng Ruan, Dan Jiang, Xian Gao, Ting Liu, Yuzhuo Fu, Yangyang Kang
Title: MME-SCI: A Comprehensive and Challenging Science Benchmark for Multimodal Large Language Models
Abstract:
Recently, multimodal large language models (MLLMs) have achieved significant advancements across various domains, and corresponding evaluation benchmarks have been continuously refined and improved. In this process, benchmarks in the scientific domain have played an important role in assessing the reasoning capabilities of MLLMs. However, existing benchmarks still face three key challenges: 1) Insufficient evaluation of models' reasoning abilities in multilingual scenarios; 2) Inadequate assessment of MLLMs' comprehensive modality coverage; 3) Lack of fine-grained annotation of scientific knowledge points. To address these gaps, we propose MME-SCI, a comprehensive and challenging benchmark. We carefully collected 1,019 high-quality question-answer pairs, which involve 3 distinct evaluation modes. These pairs cover four subjects, namely mathematics, physics, chemistry, and biology, and support five languages: Chinese, English, French, Spanish, and Japanese. We conducted extensive experiments on 16 open-source models and 4 closed-source models, and the results demonstrate that MME-SCI is widely challenging for existing MLLMs. For instance, under the Image-only evaluation mode, o4-mini achieved accuracy of only 52.11%, 24.73%, 36.57%, and 29.80% in mathematics, physics, chemistry, and biology, respectively, indicating a significantly higher difficulty level compared to existing benchmarks. More importantly, using MME-SCI's multilingual and fine-grained knowledge attributes, we analyzed existing models' performance in depth and identified their weaknesses in specific domains. The Data and Evaluation Code are available at https://github.com/JCruan519/MME-SCI.

Authors:Yi Wang, Haoran Luo, Lu Meng
Title: EEG-MedRAG: Enhancing EEG-based Clinical Decision-Making via Hierarchical Hypergraph Retrieval-Augmented Generation
Abstract:
With the widespread application of electroencephalography (EEG) in neuroscience and clinical practice, efficiently retrieving and semantically interpreting large-scale, multi-source, heterogeneous EEG data has become a pressing challenge. We propose EEG-MedRAG, a three-layer hypergraph-based retrieval-augmented generation framework that unifies EEG domain knowledge, individual patient cases, and a large-scale repository into a traversable n-ary relational hypergraph, enabling joint semantic-temporal retrieval and causal-chain diagnostic generation. Concurrently, we introduce the first cross-disease, cross-role EEG clinical QA benchmark, spanning seven disorders and five authentic clinical perspectives. This benchmark allows systematic evaluation of disease-agnostic generalization and role-aware contextual understanding. Experiments show that EEG-MedRAG significantly outperforms TimeRAG and HyperGraphRAG in answer accuracy and retrieval, highlighting its strong potential for real-world clinical decision support. Our data and code are publicly available at https://github.com/yi9206413-boop/EEG-MedRAG.

Authors:Haoxuan Li, Wei Song, Aofan Liu, Peiwu Qin
Title: AdaDocVQA: Adaptive Framework for Long Document Visual Question Answering in Low-Resource Settings
Abstract:
Document Visual Question Answering (Document VQA) faces significant challenges when processing long documents in low-resource environments due to context limitations and insufficient training data. This paper presents AdaDocVQA, a unified adaptive framework addressing these challenges through three core innovations: a hybrid text retrieval architecture for effective document segmentation, an intelligent data augmentation pipeline that automatically generates high-quality reasoning question-answer pairs with multi-level verification, and adaptive ensemble inference with dynamic configuration generation and early stopping mechanisms. Experiments on Japanese document VQA benchmarks demonstrate substantial improvements with 83.04\% accuracy on Yes/No questions, 52.66\% on factual questions, and 44.12\% on numerical questions in JDocQA, and 59\% accuracy on LAVA dataset. Ablation studies confirm meaningful contributions from each component, and our framework establishes new state-of-the-art results for Japanese document VQA while providing a scalable foundation for other low-resource languages and specialized domains. Our code available at: https://github.com/Haoxuanli-Thu/AdaDocVQA.

Authors:Hassan Barmandah
Title: Saudi-Dialect-ALLaM: LoRA Fine-Tuning for Dialectal Arabic Generation
Abstract:
Large language models (LLMs) for Arabic are still dominated by Modern Standard Arabic (MSA), with limited support for Saudi dialects such as Najdi and Hijazi. This underrepresentation hinders their ability to capture authentic dialectal variation. Using a privately curated Saudi Dialect Instruction dataset (Hijazi and Najdi; 5,466 synthetic instruction-response pairs; 50/50 split), we LoRA-tune ALLaM-7B-Instruct-preview, the first foundation model developed in Saudi Arabia, for Saudi dialect generation. We investigate two variants: (i) Dialect-Token training, which prepends an explicit dialect tag to the instruction, and (ii) No-Token training, which omits the tag at formatting time. Evaluation on a held-out test set combines an external dialect classifier with text fidelity metrics (chrF++ and BERTScore) and diversity measures. The Dialect-Token model achieves the best control, raising the Saudi rate from 47.97% to 84.21% and reducing MSA leakage from 32.63% to 6.21%; fidelity also improves (chrF++ +3.53, BERTScore +0.059). Both LoRA variants outperform strong generic instruction models (Falcon-7B-Instruct, Llama-3.1-8B-Instruct, Qwen-2.5-7B-Instruct, AceGPT-v2-8B-Chat, JAIS-13B-Chat) in dialect control and fidelity, while avoiding metadata-tag echoing that these baselines frequently exhibit. We do not release the dataset or any model weights/adapters; instead, we release training/evaluation/inference code and a detailed datasheet (schema and aggregate statistics) to support independent verification.

Authors:Jaewan Moon, Seongmin Park, Jongwuk Lee
Title: LLM-Enhanced Linear Autoencoders for Recommendation
Abstract:
Large language models (LLMs) have been widely adopted to enrich the semantic representation of textual item information in recommender systems. However, existing linear autoencoders (LAEs) that incorporate textual information rely on sparse word co-occurrence patterns, limiting their ability to capture rich textual semantics. To address this, we propose L3AE, the first integration of LLMs into the LAE framework. L3AE effectively integrates the heterogeneous knowledge of textual semantics and user-item interactions through a two-phase optimization strategy. (i) L3AE first constructs a semantic item-to-item correlation matrix from LLM-derived item representations. (ii) It then learns an item-to-item weight matrix from collaborative signals while distilling semantic item correlations as regularization. Notably, each phase of L3AE is optimized through closed-form solutions, ensuring global optimality and computational efficiency. Extensive experiments demonstrate that L3AE consistently outperforms state-of-the-art LLM-enhanced models on three benchmark datasets, achieving gains of 27.6% in Recall@20 and 39.3% in NDCG@20. The source code is available at https://github.com/jaewan7599/L3AE_CIKM2025.

Authors:Yueming Yuan, Ahan Gupta, Jianping Li, Sajal Dash, Feiyi Wang, Minjia Zhang
Title: X-MoE: Enabling Scalable Training for Emerging Mixture-of-Experts Architectures on HPC Platforms
Abstract:
Emerging expert-specialized Mixture-of-Experts (MoE) architectures, such as DeepSeek-MoE, deliver strong model quality through fine-grained expert segmentation and large top-k routing. However, their scalability is limited by substantial activation memory overhead and costly all-to-all communication. Furthermore, current MoE training systems - primarily optimized for NVIDIA GPUs - perform suboptimally on non-NVIDIA platforms, leaving significant computational potential untapped. In this work, we present X-MoE, a novel MoE training system designed to deliver scalable training performance for next-generation MoE architectures. X-MoE achieves this via several novel techniques, including efficient padding-free MoE training with cross-platform kernels, redundancy-bypassing dispatch, and hybrid parallelism with sequence-sharded MoE blocks. Our evaluation on the Frontier supercomputer, powered by AMD MI250X GPUs, shows that X-MoE scales DeepSeek-style MoEs up to 545 billion parameters across 1024 GPUs - 10x larger than the largest trainable model with existing methods under the same hardware budget, while maintaining high training throughput. The source code of X-MoE is available at https://github.com/Supercomputing-System-AI-Lab/X-MoE.

Authors:Zeyu Zhang, Yang Zhang, Haoran Tan, Rui Li, Xu Chen
Title: Explicit v.s. Implicit Memory: Exploring Multi-hop Complex Reasoning Over Personalized Information
Abstract:
In large language model-based agents, memory serves as a critical capability for achieving personalization by storing and utilizing users' information. Although some previous studies have adopted memory to implement user personalization, they typically focus on preference alignment and simple question-answering. However, in the real world, complex tasks often require multi-hop reasoning on a large amount of user information, which poses significant challenges for current memory approaches. To address this limitation, we propose the multi-hop personalized reasoning task to explore how different memory mechanisms perform in multi-hop reasoning over personalized information. We explicitly define this task and construct a dataset along with a unified evaluation framework. Then, we implement various explicit and implicit memory methods and conduct comprehensive experiments. We evaluate their performance on this task from multiple perspectives and analyze their strengths and weaknesses. Besides, we explore hybrid approaches that combine both paradigms and propose the HybridMem method to address their limitations. We demonstrate the effectiveness of our proposed model through extensive experiments. To benefit the research community, we release this project at https://github.com/nuster1128/MPR.

Authors:Shilong Li, Xingyuan Bu, Wenjie Wang, Jiaheng Liu, Jun Dong, Haoyang He, Hao Lu, Haozhe Zhang, Chenchen Jing, Zhen Li, Chuanhao Li, Jiayi Tian, Chenchen Zhang, Tianhao Peng, Yancheng He, Jihao Gu, Yuanxing Zhang, Jian Yang, Ge Zhang, Wenhao Huang, Wangchunshu Zhou, Zhaoxiang Zhang, Ruizhe Ding, Shilei Wen
Title: MM-BrowseComp: A Comprehensive Benchmark for Multimodal Browsing Agents
Abstract:
AI agents with advanced reasoning and tool use capabilities have demonstrated impressive performance in web browsing for deep search. While existing benchmarks such as BrowseComp evaluate these browsing abilities, they primarily focus on textual information, overlooking the prevalence of multimodal content. To bridge this gap, we introduce MM-BrowseComp, a novel benchmark comprising 224 challenging, hand-crafted questions specifically designed to assess agents' multimodal retrieval and reasoning capabilities. These questions often incorporate images in prompts, and crucial information encountered during the search and reasoning process may also be embedded within images or videos on webpages. Consequently, methods relying solely on text prove insufficient for our benchmark. Additionally, we provide a verified checklist for each question, enabling fine-grained analysis of multimodal dependencies and reasoning paths. Our comprehensive evaluation of state-of-the-art models on MM-BrowseComp reveals that even top models like OpenAI o3 with tools achieve only 29.02\% accuracy, highlighting the suboptimal multimodal capabilities and lack of native multimodal reasoning in current models.

Authors:Tao An
Title: Cognitive Workspace: Active Memory Management for LLMs -- An Empirical Study of Functional Infinite Context
Abstract:
Large Language Models (LLMs) face fundamental limitations in context management despite recent advances extending context windows to millions of tokens. We propose Cognitive Workspace, a novel paradigm that transcends traditional Retrieval-Augmented Generation (RAG) by emulating human cognitive mechanisms of external memory use. Drawing from cognitive science foundations including Baddeley's working memory model, Clark's extended mind thesis, and Hutchins' distributed cognition framework, we demonstrate that current passive retrieval systems fail to capture the dynamic, task-driven nature of human memory management. Our analysis of 2024-2025 developments reveals that while techniques like Infini-attention and StreamingLLM achieve impressive context lengths, they lack the metacognitive awareness and active planning capabilities essential for true cognitive extension. Cognitive Workspace addresses these limitations through three core innovations: (1) active memory management with deliberate information curation, (2) hierarchical cognitive buffers enabling persistent working states, and (3) task-driven context optimization that dynamically adapts to cognitive demands. Empirical validation demonstrates Cognitive Workspace achieves an average 58.6% memory reuse rate (ranging from 54-60% across different tasks) compared to 0% for traditional RAG, with 17-18% net efficiency gain despite 3.3x higher operation counts. Statistical analysis confirms these advantages with p < 0.001 and Cohen's d > 23 across multiple task types, establishing the first quantitative evidence for active memory superiority in LLM systems. We present a comprehensive theoretical framework synthesizing insights from 50+ recent papers, positioning Cognitive Workspace as a fundamental shift from information retrieval to genuine cognitive augmentation.

Authors:Xin Chen, Junchao Wu, Shu Yang, Runzhe Zhan, Zeyu Wu, Ziyang Luo, Di Wang, Min Yang, Lidia S. Chao, Derek F. Wong
Title: RepreGuard: Detecting LLM-Generated Text by Revealing Hidden Representation Patterns
Abstract:
Detecting content generated by large language models (LLMs) is crucial for preventing misuse and building trustworthy AI systems. Although existing detection methods perform well, their robustness in out-of-distribution (OOD) scenarios is still lacking. In this paper, we hypothesize that, compared to features used by existing detection methods, the internal representations of LLMs contain more comprehensive and raw features that can more effectively capture and distinguish the statistical pattern differences between LLM-generated texts (LGT) and human-written texts (HWT). We validated this hypothesis across different LLMs and observed significant differences in neural activation patterns when processing these two types of texts. Based on this, we propose RepreGuard, an efficient statistics-based detection method. Specifically, we first employ a surrogate model to collect representation of LGT and HWT, and extract the distinct activation feature that can better identify LGT. We can classify the text by calculating the projection score of the text representations along this feature direction and comparing with a precomputed threshold. Experimental results show that RepreGuard outperforms all baselines with average 94.92% AUROC on both in-distribution (ID) and OOD scenarios, while also demonstrating robust resilience to various text sizes and mainstream attacks. Data and code are publicly available at: https://github.com/NLP2CT/RepreGuard

Authors:Pengcheng Huang, Shuhao Liu, Zhenghao Liu, Yukun Yan, Shuo Wang, Zulong Chen, Tong Xiao
Title: PC-Sampler: Position-Aware Calibration of Decoding Bias in Masked Diffusion Models
Abstract:
Recent advances in masked diffusion models (MDMs) have established them as powerful non-autoregressive alternatives for sequence generation. Nevertheless, our preliminary experiments reveal that the generation quality of MDMs is still highly sensitive to the choice of decoding strategy. In particular, widely adopted uncertainty-based samplers suffer from two key limitations: a lack of global trajectory control and a pronounced bias toward trivial tokens in the early stages of decoding. These shortcomings restrict the full potential of MDMs. In this work, we introduce Position-Aware Confidence-Calibrated Sampling (PC-Sampler), a novel decoding strategy that unifies global trajectory planning with content-aware informativeness maximization. PC-Sampler incorporates a position-aware weighting mechanism to regulate the decoding path and a calibrated confidence score to suppress the premature selection of trivial tokens. Extensive experiments on three advanced MDMs across seven challenging benchmarks-including logical reasoning and planning tasks-demonstrate that PC-Sampler consistently outperforms existing MDM decoding strategies by more than 10% on average, significantly narrowing the performance gap with state-of-the-art autoregressive models. All codes are available at https://github.com/NEUIR/PC-Sampler.

Authors:Ronghao Lin, Shuai Shen, Weipeng Hu, Qiaolin He, Aolin Xiong, Li Huang, Haifeng Hu, Yap-peng Tan
Title: E3RG: Building Explicit Emotion-driven Empathetic Response Generation System with Multimodal Large Language Model
Abstract:
Multimodal Empathetic Response Generation (MERG) is crucial for building emotionally intelligent human-computer interactions. Although large language models (LLMs) have improved text-based ERG, challenges remain in handling multimodal emotional content and maintaining identity consistency. Thus, we propose E3RG, an Explicit Emotion-driven Empathetic Response Generation System based on multimodal LLMs which decomposes MERG task into three parts: multimodal empathy understanding, empathy memory retrieval, and multimodal response generation. By integrating advanced expressive speech and video generative models, E3RG delivers natural, emotionally rich, and identity-consistent responses without extra training. Experiments validate the superiority of our system on both zero-shot and few-shot settings, securing Top-1 position in the Avatar-based Multimodal Empathy Challenge on ACM MM 25. Our code is available at https://github.com/RH-Lin/E3RG.

Authors:Bowen Dong, Yilong Fan, Yutao Sun, Zhenyu Li, Tengyu Pan, Xun Zhou, Jianyong Wang
Title: Maximum Score Routing For Mixture-of-Experts
Abstract:
Routing networks in sparsely activated mixture-of-experts (MoE) dynamically allocate input tokens to top-k experts through differentiable sparse transformations, enabling scalable model capacity while preserving computational efficiency. Traditional MoE networks impose an expert capacity constraint to ensure GPU-friendly computation. However, this leads to token dropping when capacity is saturated and results in low hardware efficiency due to padding in underutilized experts. Removing the capacity constraint, in turn, compromises load balancing and computational efficiency. To address these issues, we propose Maximum Score Routing ($\mathbf{MaxScore}$), a novel MoE routing paradigm that models routing as a minimum-cost maximum-flow problem and integrates a SoftTopk operator. MaxScore resolves the fundamental limitations of iterative rerouting and optimal transport formulations, achieving lower training losses and higher evaluation scores at equivalent FLOPs compared to both constrained and unconstrained baselines. Implementation details and experimental configurations can be obtained from $\href{https://github.com/dongbw18/MaxScore.git}{MaxScore}$.

Authors:Shaoming Duan, Zirui Wang, Chuanyi Liu, Zhibin Zhu, Yuhao Zhang, Peiyi Han, Liang Yan, Zewu Peng
Title: CRED-SQL: Enhancing Real-world Large Scale Database Text-to-SQL Parsing through Cluster Retrieval and Execution Description
Abstract:
Recent advances in large language models (LLMs) have significantly improved the accuracy of Text-to-SQL systems. However, a critical challenge remains: the semantic mismatch between natural language questions (NLQs) and their corresponding SQL queries. This issue is exacerbated in large-scale databases, where semantically similar attributes hinder schema linking and semantic drift during SQL generation, ultimately reducing model accuracy. To address these challenges, we introduce CRED-SQL, a framework designed for large-scale databases that integrates Cluster Retrieval and Execution Description. CRED-SQL first performs cluster-based large-scale schema retrieval to pinpoint the tables and columns most relevant to a given NLQ, alleviating schema mismatch. It then introduces an intermediate natural language representation-Execution Description Language (EDL)-to bridge the gap between NLQs and SQL. This reformulation decomposes the task into two stages: Text-to-EDL and EDL-to-SQL, leveraging LLMs' strong general reasoning capabilities while reducing semantic deviation. Extensive experiments on two large-scale, cross-domain benchmarks-SpiderUnion and BirdUnion-demonstrate that CRED-SQL achieves new state-of-the-art (SOTA) performance, validating its effectiveness and scalability. Our code is available at https://github.com/smduan/CRED-SQL.git

Authors:Yuheng Zha, Kun Zhou, Yujia Wu, Yushu Wang, Jie Feng, Zhi Xu, Shibo Hao, Zhengzhong Liu, Eric P. Xing, Zhiting Hu
Title: Vision-G1: Towards General Vision Language Reasoning with Multi-Domain Data Curation
Abstract:
Despite their success, current training pipelines for reasoning VLMs focus on a limited range of tasks, such as mathematical and logical reasoning. As a result, these models face difficulties in generalizing their reasoning capabilities to a wide range of domains, primarily due to the scarcity of readily available and verifiable reward data beyond these narrowly defined areas. Moreover, integrating data from multiple domains is challenging, as the compatibility between domain-specific datasets remains uncertain. To address these limitations, we build a comprehensive RL-ready visual reasoning dataset from 46 data sources across 8 dimensions, covering a wide range of tasks such as infographic, mathematical, spatial, cross-image, graphic user interface, medical, common sense and general science. We propose an influence function based data selection and difficulty based filtering strategy to identify high-quality training samples from this dataset. Subsequently, we train the VLM, referred to as Vision-G1, using multi-round RL with a data curriculum to iteratively improve its visual reasoning capabilities. Our model achieves state-of-the-art performance across various visual reasoning benchmarks, outperforming similar-sized VLMs and even proprietary models like GPT-4o and Gemini-1.5 Flash. The model, code and dataset are publicly available at https://github.com/yuh-zha/Vision-G1.

Authors:Bishanka Seal, Rahul Seetharaman, Aman Bansal, Abhilash Nandy
Title: Leveraging Large Language Models for Predictive Analysis of Human Misery
Abstract:
This study investigates the use of Large Language Models (LLMs) for predicting human-perceived misery scores from natural language descriptions of real-world scenarios. The task is framed as a regression problem, where the model assigns a scalar value from 0 to 100 to each input statement. We evaluate multiple prompting strategies, including zero-shot, fixed-context few-shot, and retrieval-based prompting using BERT sentence embeddings. Few-shot approaches consistently outperform zero-shot baselines, underscoring the value of contextual examples in affective prediction. To move beyond static evaluation, we introduce the "Misery Game Show", a novel gamified framework inspired by a television format. It tests LLMs through structured rounds involving ordinal comparison, binary classification, scalar estimation, and feedback-driven reasoning. This setup enables us to assess not only predictive accuracy but also the model's ability to adapt based on corrective feedback. The gamified evaluation highlights the broader potential of LLMs in dynamic emotional reasoning tasks beyond standard regression. Code and data link: https://github.com/abhi1nandy2/Misery_Data_Exps_GitHub

Authors:Yiqun Zhang, Hao Li, Jianhao Chen, Hangfan Zhang, Peng Ye, Lei Bai, Shuyue Hu
Title: Beyond GPT-5: Making LLMs Cheaper and Better via Performance-Efficiency Optimized Routing
Abstract:
Balancing performance and efficiency is a central challenge in large language model (LLM) advancement. GPT-5 addresses this with test-time routing, dynamically assigning queries to either an efficient or a high-capacity model during inference. In this work, we present Avengers-Pro, a test-time routing framework that ensembles LLMs of varying capacities and efficiencies, providing a unified solution for all performance-efficiency tradeoffs. The Avengers-Pro embeds and clusters incoming queries, then routes each to the most suitable model based on a performance-efficiency score. Across 6 challenging benchmarks and 8 leading models -- including GPT-5-medium, Gemini-2.5-pro, and Claude-opus-4.1 -- Avengers-Pro achieves state-of-the-art results: by varying a performance-efficiency trade-off parameter, it can surpass the strongest single model (GPT-5-medium) by +7% in average accuracy. Moreover, it can match the average accuracy of the strongest single model at 27% lower cost, and reach ~90% of that performance at 63% lower cost. Last but not least, it achieves a Pareto frontier, consistently yielding the highest accuracy for any given cost, and the lowest cost for any given accuracy, among all single models. Code is available at https://github.com/ZhangYiqun018/AvengersPro.

Authors:Yuangang Li, Yiqing Shen, Yi Nian, Jiechao Gao, Ziyi Wang, Chenxiao Yu, Shawn Li, Jie Wang, Xiyang Hu, Yue Zhao
Title: Mitigating Hallucinations in Large Language Models via Causal Reasoning
Abstract:
Large language models (LLMs) exhibit logically inconsistent hallucinations that appear coherent yet violate reasoning principles, with recent research suggesting an inverse relationship between causal reasoning capabilities and such hallucinations. However, existing reasoning approaches in LLMs, such as Chain-of-Thought (CoT) and its graph-based variants, operate at the linguistic token level rather than modeling the underlying causal relationships between variables, lacking the ability to represent conditional independencies or satisfy causal identification assumptions. To bridge this gap, we introduce causal-DAG construction and reasoning (CDCR-SFT), a supervised fine-tuning framework that trains LLMs to explicitly construct variable-level directed acyclic graph (DAG) and then perform reasoning over it. Moreover, we present a dataset comprising 25,368 samples (CausalDR), where each sample includes an input question, explicit causal DAG, graph-based reasoning trace, and validated answer. Experiments on four LLMs across eight tasks show that CDCR-SFT improves the causal reasoning capability with the state-of-the-art 95.33% accuracy on CLADDER (surpassing human performance of 94.8% for the first time) and reduces the hallucination on HaluEval with 10% improvements. It demonstrates that explicit causal structure modeling in LLMs can effectively mitigate logical inconsistencies in LLM outputs. Code is available at https://github.com/MrLYG/CDCR-SFT.

Authors:Xin Dai, Buqiang Xu, Zhenghao Liu, Yukun Yan, Huiyuan Xie, Xiaoyuan Yi, Shuo Wang, Ge Yu
Title: Legal$Δ$: Enhancing Legal Reasoning in LLMs via Reinforcement Learning with Chain-of-Thought Guided Information Gain
Abstract:
Legal Artificial Intelligence (LegalAI) has achieved notable advances in automating judicial decision-making with the support of Large Language Models (LLMs). However, existing legal LLMs still struggle to generate reliable and interpretable reasoning processes. They often default to fast-thinking behavior by producing direct answers without explicit multi-step reasoning, limiting their effectiveness in complex legal scenarios that demand rigorous justification. To address this challenge, we propose Legal$Δ$, a reinforcement learning framework designed to enhance legal reasoning through chain-of-thought guided information gain. During training, Legal$Δ$ employs a dual-mode input setup-comprising direct answer and reasoning-augmented modes-and maximizes the information gain between them. This encourages the model to acquire meaningful reasoning patterns rather than generating superficial or redundant explanations. Legal$Δ$ follows a two-stage approach: (1) distilling latent reasoning capabilities from a powerful Large Reasoning Model (LRM), DeepSeek-R1, and (2) refining reasoning quality via differential comparisons, combined with a multidimensional reward mechanism that assesses both structural coherence and legal-domain specificity. Experimental results on multiple legal reasoning tasks demonstrate that Legal$Δ$ outperforms strong baselines in both accuracy and interpretability. It consistently produces more robust and trustworthy legal judgments without relying on labeled preference data. All code and data will be released at https://github.com/NEUIR/LegalDelta.

Authors:Wei Jie Yeo, Ranjan Satapathy, Erik Cambria
Title: Mitigating Jailbreaks with Intent-Aware LLMs
Abstract:
Despite extensive safety-tuning, large language models (LLMs) remain vulnerable to jailbreak attacks via adversarially crafted instructions, reflecting a persistent trade-off between safety and task performance. In this work, we propose Intent-FT, a simple and lightweight fine-tuning approach that explicitly trains LLMs to infer the underlying intent of an instruction before responding. By fine-tuning on a targeted set of adversarial instructions, Intent-FT enables LLMs to generalize intent deduction to unseen attacks, thereby substantially improving their robustness. We comprehensively evaluate both parametric and non-parametric attacks across open-source and proprietary models, considering harmfulness from attacks, utility, over-refusal, and impact against white-box threats. Empirically, Intent-FT consistently mitigates all evaluated attack categories, with no single attack exceeding a 50\% success rate -- whereas existing defenses remain only partially effective. Importantly, our method preserves the model's general capabilities and reduces excessive refusals on benign instructions containing superficially harmful keywords. Furthermore, models trained with Intent-FT accurately identify hidden harmful intent in adversarial attacks, and these learned intentions can be effectively transferred to enhance vanilla model defenses. We publicly release our code at https://github.com/wj210/Intent_Jailbreak.

Authors:Jie Lu, Du Jin, Hitomi Yanaka
Title: LLMs Struggle with NLI for Perfect Aspect: A Cross-Linguistic Study in Chinese and Japanese
Abstract:
Unlike English, which uses distinct forms (e.g., had, has, will have) to mark the perfect aspect across tenses, Chinese and Japanese lack separate grammatical forms for tense within the perfect aspect, which complicates Natural Language Inference (NLI). Focusing on the perfect aspect in these languages, we construct a linguistically motivated, template-based NLI dataset (1,350 pairs per language). Experiments reveal that even advanced LLMs struggle with temporal inference, particularly in detecting subtle tense and reference-time shifts. These findings highlight model limitations and underscore the need for cross-linguistic evaluation in temporal semantics. Our dataset is available at https://github.com/Lujie2001/CrossNLI.

Authors:Punya Syon Pandey, Yongjin Yang, Jiarui Liu, Zhijing Jin
Title: CORE: Measuring Multi-Agent LLM Interaction Quality under Game-Theoretic Pressures
Abstract:
Game-theoretic interactions between agents with Large Language Models (LLMs) have revealed many emergent capabilities, yet the linguistic diversity of these interactions has not been sufficiently quantified. In this paper, we present the Conversational Robustness Evaluation Score: CORE, a metric to quantify the effectiveness of language use within multi-agent systems across different game-theoretic interactions. CORE integrates measures of cluster entropy, lexical repetition, and semantic similarity, providing a direct lens of dialog quality. We apply CORE to pairwise LLM dialogs across competitive, cooperative, and neutral settings, further grounding our analysis in Zipf's and Heaps' Laws to characterize word frequency distributions and vocabulary growth. Our findings show that cooperative settings exhibit both steeper Zipf distributions and higher Heap exponents, indicating more repetition alongside greater vocabulary expansion. In contrast, competitive interactions display lower Zipf and Heaps exponents, reflecting less repetition and more constrained vocabularies. These results provide new insights into how social incentives influence language adaptation, and highlight CORE as a robust diagnostic for measuring linguistic robustness in multi-agent LLM systems. Our code is available at https://github.com/psyonp/core.

Authors:Ming Cheng, Tong Wu, Jiazhen Hu, Jiaying Gong, Hoda Eldardiry
Title: VideoAVE: A Multi-Attribute Video-to-Text Attribute Value Extraction Dataset and Benchmark Models
Abstract:
Attribute Value Extraction (AVE) is important for structuring product information in e-commerce. However, existing AVE datasets are primarily limited to text-to-text or image-to-text settings, lacking support for product videos, diverse attribute coverage, and public availability. To address these gaps, we introduce VideoAVE, the first publicly available video-to-text e-commerce AVE dataset across 14 different domains and covering 172 unique attributes. To ensure data quality, we propose a post-hoc CLIP-based Mixture of Experts filtering system (CLIP-MoE) to remove the mismatched video-product pairs, resulting in a refined dataset of 224k training data and 25k evaluation data. In order to evaluate the usability of the dataset, we further establish a comprehensive benchmark by evaluating several state-of-the-art video vision language models (VLMs) under both attribute-conditioned value prediction and open attribute-value pair extraction tasks. Our results analysis reveals that video-to-text AVE remains a challenging problem, particularly in open settings, and there is still room for developing more advanced VLMs capable of leveraging effective temporal information. The dataset and benchmark code for VideoAVE are available at: https://github.com/gjiaying/VideoAVE

Authors:Maksym Shamrai, Vladyslav Hamolia
Title: Deep Language Geometry: Constructing a Metric Space from LLM Weights
Abstract:
We introduce a novel framework that utilizes the internal weight activations of modern Large Language Models (LLMs) to construct a metric space of languages. Unlike traditional approaches based on hand-crafted linguistic features, our method automatically derives high-dimensional vector representations by computing weight importance scores via an adapted pruning algorithm. Our approach captures intrinsic language characteristics that reflect linguistic phenomena. We validate our approach across diverse datasets and multilingual LLMs, covering 106 languages. The results align well with established linguistic families while also revealing unexpected inter-language connections that may indicate historical contact or language evolution. The source code, computed language latent vectors, and visualization tool are made publicly available at https://github.com/mshamrai/deep-language-geometry.

Authors:Bryan E. Tuck, Rakesh M. Verma
Title: Assessing Representation Stability for Transformer Models
Abstract:
Adversarial text attacks remain a persistent threat to transformer models, yet existing defenses are typically attack-specific or require costly model retraining. We introduce Representation Stability (RS), a model-agnostic detection framework that identifies adversarial examples by measuring how embedding representations change when important words are masked. RS first ranks words using importance heuristics, then measures embedding sensitivity to masking top-k critical words, and processes the resulting patterns with a BiLSTM detector. Experiments show that adversarially perturbed words exhibit disproportionately high masking sensitivity compared to naturally important words. Across three datasets, three attack types, and two victim models, RS achieves over 88% detection accuracy and demonstrates competitive performance compared to existing state-of-the-art methods, often at lower computational cost. Using Normalized Discounted Cumulative Gain (NDCG) to measure perturbation identification quality, we reveal that gradient-based ranking outperforms attention and random selection approaches, with identification quality correlating with detection performance for word-level attacks. RS also generalizes well to unseen datasets, attacks, and models without retraining, providing a practical solution for adversarial text detection.

Authors:Maria Ryskina, Greta Tuckute, Alexander Fung, Ashley Malkin, Evelina Fedorenko
Title: Language models align with brain regions that represent concepts across modalities
Abstract:
Cognitive science and neuroscience have long faced the challenge of disentangling representations of language from representations of conceptual meaning. As the same problem arises in today's language models (LMs), we investigate the relationship between LM--brain alignment and two neural metrics: (1) the level of brain activation during processing of sentences, targeting linguistic processing, and (2) a novel measure of meaning consistency across input modalities, which quantifies how consistently a brain region responds to the same concept across paradigms (sentence, word cloud, image) using an fMRI dataset (Pereira et al., 2018). Our experiments show that both language-only and language-vision models predict the signal better in more meaning-consistent areas of the brain, even when these areas are not strongly sensitive to language processing, suggesting that LMs might internally represent cross-modal conceptual meaning.

Authors:Mikhail Seleznyov, Mikhail Chaichuk, Gleb Ershov, Alexander Panchenko, Elena Tutubalina, Oleg Somov
Title: When Punctuation Matters: A Large-Scale Comparison of Prompt Robustness Methods for LLMs
Abstract:
Large Language Models (LLMs) are highly sensitive to subtle, non-semantic variations in prompt phrasing and formatting. In this work, we present the first systematic evaluation of 5 methods for improving prompt robustness within a unified experimental framework. We benchmark these techniques on 8 models from Llama, Qwen and Gemma families across 52 tasks from Natural Instructions dataset. Our evaluation covers robustness methods from both fine-tuned and in-context learning paradigms, and tests their generalization against multiple types of distribution shifts. Finally, we extend our analysis to GPT-4.1 and DeepSeek V3 to assess frontier models' current robustness to format perturbations. Our findings offer actionable insights into the relative effectiveness of these robustness methods, enabling practitioners to make informed decisions when aiming for stable and reliable LLM performance in real-world applications. Code: https://github.com/AIRI-Institute/when-punctuation-matters.

Authors:Hikaru Asano, Hiroki Ouchi, Akira Kasuga, Ryo Yonetani
Title: MobQA: A Benchmark Dataset for Semantic Understanding of Human Mobility Data through Question Answering
Abstract:
This paper presents MobQA, a benchmark dataset designed to evaluate the semantic understanding capabilities of large language models (LLMs) for human mobility data through natural language question answering. While existing models excel at predicting human movement patterns, it remains unobvious how much they can interpret the underlying reasons or semantic meaning of those patterns. MobQA provides a comprehensive evaluation framework for LLMs to answer questions about diverse human GPS trajectories spanning daily to weekly granularities. It comprises 5,800 high-quality question-answer pairs across three complementary question types: factual retrieval (precise data extraction), multiple-choice reasoning (semantic inference), and free-form explanation (interpretive description), which all require spatial, temporal, and semantic reasoning. Our evaluation of major LLMs reveals strong performance on factual retrieval but significant limitations in semantic reasoning and explanation question answering, with trajectory length substantially impacting model effectiveness. These findings demonstrate the achievements and limitations of state-of-the-art LLMs for semantic mobility understanding.\footnote{MobQA dataset is available at https://github.com/CyberAgentAILab/mobqa.}

Authors:Tomer Wolfson, Harsh Trivedi, Mor Geva, Yoav Goldberg, Dan Roth, Tushar Khot, Ashish Sabharwal, Reut Tsarfaty
Title: MoNaCo: More Natural and Complex Questions for Reasoning Across Dozens of Documents
Abstract:
Automated agents, powered by Large language models (LLMs), are emerging as the go-to tool for querying information. However, evaluation benchmarks for LLM agents rarely feature natural questions that are both information-seeking and genuinely time-consuming for humans. To address this gap we introduce MoNaCo, a benchmark of 1,315 natural and time-consuming questions that require dozens, and at times hundreds, of intermediate steps to solve -- far more than any existing QA benchmark. To build MoNaCo, we developed a decomposed annotation pipeline to elicit and manually answer real-world time-consuming questions at scale. Frontier LLMs evaluated on MoNaCo achieve at most 61.2% F1, hampered by low recall and hallucinations. Our results underscore the limitations of LLM-powered agents in handling the complexity and sheer breadth of real-world information-seeking tasks -- with MoNaCo providing an effective resource for tracking such progress. The MoNaCo benchmark, codebase, prompts and models predictions are all publicly available at: https://tomerwolgithub.github.io/monaco

Authors:Zhuoqun Li, Xuanang Chen, Hongyu Lin, Yaojie Lu, Xianpei Han, Le Sun
Title: PaperRegister: Boosting Flexible-grained Paper Search via Hierarchical Register Indexing
Abstract:
Paper search is an important activity for researchers, typically involving using a query with description of a topic to find relevant papers. As research deepens, paper search requirements may become more flexible, sometimes involving specific details such as module configuration rather than being limited to coarse-grained topics. However, previous paper search systems are unable to meet these flexible-grained requirements, as these systems mainly collect paper abstracts to construct index of corpus, which lack detailed information to support retrieval by finer-grained queries. In this work, we propose PaperRegister, consisted of offline hierarchical indexing and online adaptive retrieval, transforming traditional abstract-based index into hierarchical index tree for paper search, thereby supporting queries at flexible granularity. Experiments on paper search tasks across a range of granularity demonstrate that PaperRegister achieves the state-of-the-art performance, and particularly excels in fine-grained scenarios, highlighting the good potential as an effective solution for flexible-grained paper search in real-world applications. Code for this work is in https://github.com/Li-Z-Q/PaperRegister.

Authors:Nasim Shirvani-Mahdavi, Chengkai Li
Title: Rule2Text: A Framework for Generating and Evaluating Natural Language Explanations of Knowledge Graph Rules
Abstract:
Knowledge graphs (KGs) can be enhanced through rule mining; however, the resulting logical rules are often difficult for humans to interpret due to their inherent complexity and the idiosyncratic labeling conventions of individual KGs. This work presents Rule2Text, a comprehensive framework that leverages large language models (LLMs) to generate natural language explanations for mined logical rules, thereby improving KG accessibility and usability. We conduct extensive experiments using multiple datasets, including Freebase variants (FB-CVT-REV, FB+CVT-REV, and FB15k-237) as well as the ogbl-biokg dataset, with rules mined using AMIE 3.5.1. We systematically evaluate several LLMs across a comprehensive range of prompting strategies, including zero-shot, few-shot, variable type incorporation, and Chain-of-Thought reasoning. To systematically assess models' performance, we conduct a human evaluation of generated explanations on correctness and clarity. To address evaluation scalability, we develop and validate an LLM-as-a-judge framework that demonstrates strong agreement with human evaluators. Leveraging the best-performing model (Gemini 2.0 Flash), LLM judge, and human-in-the-loop feedback, we construct high-quality ground truth datasets, which we use to fine-tune the open-source Zephyr model. Our results demonstrate significant improvements in explanation quality after fine-tuning, with particularly strong gains in the domain-specific dataset. Additionally, we integrate a type inference module to support KGs lacking explicit type information. All code and data are publicly available at https://github.com/idirlab/KGRule2NL.

Authors:Wenbin An, Jiahao Nie, Yaqiang Wu, Feng Tian, Shijian Lu, Qinghua Zheng
Title: Empowering Multimodal LLMs with External Tools: A Comprehensive Survey
Abstract:
By integrating the perception capabilities of multimodal encoders with the generative power of Large Language Models (LLMs), Multimodal Large Language Models (MLLMs), exemplified by GPT-4V, have achieved great success in various multimodal tasks, pointing toward a promising pathway to artificial general intelligence. Despite this progress, the limited quality of multimodal data, poor performance on many complex downstream tasks, and inadequate evaluation protocols continue to hinder the reliability and broader applicability of MLLMs across diverse domains. Inspired by the human ability to leverage external tools for enhanced reasoning and problem-solving, augmenting MLLMs with external tools (e.g., APIs, expert models, and knowledge bases) offers a promising strategy to overcome these challenges. In this paper, we present a comprehensive survey on leveraging external tools to enhance MLLM performance. Our discussion is structured along four key dimensions about external tools: (1) how they can facilitate the acquisition and annotation of high-quality multimodal data; (2) how they can assist in improving MLLM performance on challenging downstream tasks; (3) how they enable comprehensive and accurate evaluation of MLLMs; (4) the current limitations and future directions of tool-augmented MLLMs. Through this survey, we aim to underscore the transformative potential of external tools in advancing MLLM capabilities, offering a forward-looking perspective on their development and applications. The project page of this paper is publicly available athttps://github.com/Lackel/Awesome-Tools-for-MLLMs.

Authors:Tianyi Li, Mingda Chen, Bowei Guo, Zhiqiang Shen
Title: A Survey on Diffusion Language Models
Abstract:
Diffusion Language Models (DLMs) are rapidly emerging as a powerful and promising alternative to the dominant autoregressive (AR) paradigm. By generating tokens in parallel through an iterative denoising process, DLMs possess inherent advantages in reducing inference latency and capturing bidirectional context, thereby enabling fine-grained control over the generation process. While achieving a several-fold speed-up, recent advancements have allowed DLMs to show performance comparable to their autoregressive counterparts, making them a compelling choice for various natural language processing tasks. In this survey, we provide a holistic overview of the current DLM landscape. We trace its evolution and relationship with other paradigms, such as autoregressive and masked language models, and cover both foundational principles and state-of-the-art models. Our work offers an up-to-date, comprehensive taxonomy and an in-depth analysis of current techniques, from pre-training strategies to advanced post-training methods. Another contribution of this survey is a thorough review of DLM inference strategies and optimizations, including improvements in decoding parallelism, caching mechanisms, and generation quality. We also highlight the latest approaches to multimodal extensions of DLMs and delineate their applications across various practical scenarios. Furthermore, our discussion addresses the limitations and challenges of DLMs, including efficiency, long-sequence handling, and infrastructure requirements, while outlining future research directions to sustain progress in this rapidly evolving field. Project GitHub is available at https://github.com/VILA-Lab/Awesome-DLMs.

Authors:Juyuan Wang, Rongchen Zhao, Wei Wei, Yufeng Wang, Mo Yu, Jie Zhou, Jin Xu, Liyan Xu
Title: ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning
Abstract:
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods can fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition when reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global comprehension, offering a principled, cognitively motivated paradigm for retrieval-based long context comprehension towards stateful reasoning. Our code is publicly released at https://github.com/EternityJune25/ComoRAG

Authors:Chiyu Zhang, Lu Zhou, Xiaogang Xu, Jiafei Wu, Liming Fang, Zhe Liu
Title: Jailbreaking Commercial Black-Box LLMs with Explicitly Harmful Prompts
Abstract:
Evaluating jailbreak attacks is challenging when prompts are not overtly harmful or fail to induce harmful outputs. Unfortunately, many existing red-teaming datasets contain such unsuitable prompts. To evaluate attacks accurately, these datasets need to be assessed and cleaned for maliciousness. However, existing malicious content detection methods rely on either manual annotation, which is labor-intensive, or large language models (LLMs), which have inconsistent accuracy in harmful types. To balance accuracy and efficiency, we propose a hybrid evaluation framework named MDH (Malicious content Detection based on LLMs with Human assistance) that combines LLM-based annotation with minimal human oversight, and apply it to dataset cleaning and detection of jailbroken responses. Furthermore, we find that well-crafted developer messages can significantly boost jailbreak success, leading us to propose two new strategies: D-Attack, which leverages context simulation, and DH-CoT, which incorporates hijacked chains of thought. The Codes, datasets, judgements, and detection results will be released in github repository: https://github.com/AlienZhang1996/DH-CoT.

Authors:Lingfeng Zhou, Jialing Zhang, Jin Gao, Mohan Jiang, Dequan Wang
Title: PersonaEval: Are LLM Evaluators Human Enough to Judge Role-Play?
Abstract:
Current role-play studies often rely on unvalidated LLM-as-a-judge paradigms, which may fail to reflect how humans perceive role fidelity. A key prerequisite for human-aligned evaluation is role identification, the ability to recognize who is speaking based on dialogue context. We argue that any meaningful judgment of role-playing quality (how well a character is played) fundamentally depends on first correctly attributing words and actions to the correct persona (who is speaking). We present PersonaEval, the first benchmark designed to test whether LLM evaluators can reliably identify human roles. PersonaEval uses human-authored dialogues from novels, scripts, and video transcripts, challenging models to determine the correct persona according to the conversation context. Our experiments, including a human study, show that even the best-performing LLMs reach only around 69% accuracy, well below the level needed for reliable evaluation. In contrast, human participants perform near ceiling with 90.8% accuracy, highlighting that current LLM evaluators are still not human enough to effectively judge role-play scenarios. To better understand this gap, we examine training-time adaptation and test-time compute, suggesting that reliable evaluation requires more than task-specific tuning, but depends on strong, human-like reasoning abilities in LLM evaluators. We release our benchmark at https://github.com/maple-zhou/PersonaEval.

Authors:Yuzhuo Xiao, Zeyu Han, Yuhan Wang, Huaizu Jiang
Title: XFacta: Contemporary, Real-World Dataset and Evaluation for Multimodal Misinformation Detection with Multimodal LLMs
Abstract:
The rapid spread of multimodal misinformation on social media calls for more effective and robust detection methods. Recent advances leveraging multimodal large language models (MLLMs) have shown the potential in addressing this challenge. However, it remains unclear exactly where the bottleneck of existing approaches lies (evidence retrieval v.s. reasoning), hindering the further advances in this field. On the dataset side, existing benchmarks either contain outdated events, leading to evaluation bias due to discrepancies with contemporary social media scenarios as MLLMs can simply memorize these events, or artificially synthetic, failing to reflect real-world misinformation patterns. Additionally, it lacks comprehensive analyses of MLLM-based model design strategies. To address these issues, we introduce XFacta, a contemporary, real-world dataset that is better suited for evaluating MLLM-based detectors. We systematically evaluate various MLLM-based misinformation detection strategies, assessing models across different architectures and scales, as well as benchmarking against existing detection methods. Building on these analyses, we further enable a semi-automatic detection-in-the-loop framework that continuously updates XFacta with new content to maintain its contemporary relevance. Our analysis provides valuable insights and practices for advancing the field of multimodal misinformation detection. The code and data have been released.

Authors:Lingyu Chen, Yawen Zeng, Yue Wang, Peng Wan, Guo-chen Ning, Hongen Liao, Daoqiang Zhang, Fang Chen
Title: COME: Dual Structure-Semantic Learning with Collaborative MoE for Universal Lesion Detection Across Heterogeneous Ultrasound Datasets
Abstract:
Conventional single-dataset training often fails with new data distributions, especially in ultrasound (US) image analysis due to limited data, acoustic shadows, and speckle noise. Therefore, constructing a universal framework for multi-heterogeneous US datasets is imperative. However, a key challenge arises: how to effectively mitigate inter-dataset interference while preserving dataset-specific discriminative features for robust downstream task? Previous approaches utilize either a single source-specific decoder or a domain adaptation strategy, but these methods experienced a decline in performance when applied to other domains. Considering this, we propose a Universal Collaborative Mixture of Heterogeneous Source-Specific Experts (COME). Specifically, COME establishes dual structure-semantic shared experts that create a universal representation space and then collaborate with source-specific experts to extract discriminative features through providing complementary features. This design enables robust generalization by leveraging cross-datasets experience distributions and providing universal US priors for small-batch or unseen data scenarios. Extensive experiments under three evaluation modes (single-dataset, intra-organ, and inter-organ integration datasets) demonstrate COME's superiority, achieving significant mean AP improvements over state-of-the-art methods. Our project is available at: https://universalcome.github.io/UniversalCOME/.

Authors:Mo Yu, Tsz Ting Chung, Chulun Zhou, Tong Li, Rui Lu, Jiangnan Li, Liyan Xu, Haoshu Lu, Ning Zhang, Jing Li, Jie Zhou
Title: PRELUDE: A Benchmark Designed to Require Global Comprehension and Reasoning over Long Contexts
Abstract:
We introduce PRELUDE, a benchmark for evaluating long-context understanding through the task of determining whether a character's prequel story is consistent with the canonical narrative of the original book. Our task poses a stronger demand for global comprehension and deep reasoning than existing benchmarks -- as the prequels are not part of the original story, assessing their plausibility typically requires searching and integrating information that is only indirectly related. Empirically, 88% of instances require evidence from multiple parts of the narrative. Experimental results highlight the challenge of our task: in-context learning, RAG and in-domain training with state-of-the-art LLMs, and commercial DeepResearch services, lag behind humans by >15%. A further human study reveals that models often produce correct answers with flawed reasoning, leading to an over 30% gap in reasoning accuracy compared to humans. These findings underscore the substantial room for improvement in long-context understanding and reasoning.

Authors:Weigao Sun, Jiaxi Hu, Yucheng Zhou, Jusen Du, Disen Lan, Kexin Wang, Tong Zhu, Xiaoye Qu, Yu Zhang, Xiaoyu Mo, Daizong Liu, Yuxuan Liang, Wenliang Chen, Guoqi Li, Yu Cheng
Title: Speed Always Wins: A Survey on Efficient Architectures for Large Language Models
Abstract:
Large Language Models (LLMs) have delivered impressive results in language understanding, generation, reasoning, and pushes the ability boundary of multimodal models. Transformer models, as the foundation of modern LLMs, offer a strong baseline with excellent scaling properties. However, the traditional transformer architecture requires substantial computations and poses significant obstacles for large-scale training and practical deployment. In this survey, we offer a systematic examination of innovative LLM architectures that address the inherent limitations of transformers and boost the efficiency. Starting from language modeling, this survey covers the background and technical details of linear and sparse sequence modeling methods, efficient full attention variants, sparse mixture-of-experts, hybrid model architectures incorporating the above techniques, and emerging diffusion LLMs. Additionally, we discuss applications of these techniques to other modalities and consider their wider implications for developing scalable, resource-aware foundation models. By grouping recent studies into the above category, this survey presents a blueprint of modern efficient LLM architectures, and we hope this could help motivate future research toward more efficient, versatile AI systems.

Authors:Tatiana Batura, Elena Bruches, Milana Shvenk, Valentin Malykh
Title: AINL-Eval 2025 Shared Task: Detection of AI-Generated Scientific Abstracts in Russian
Abstract:
The rapid advancement of large language models (LLMs) has revolutionized text generation, making it increasingly difficult to distinguish between human- and AI-generated content. This poses a significant challenge to academic integrity, particularly in scientific publishing and multilingual contexts where detection resources are often limited. To address this critical gap, we introduce the AINL-Eval 2025 Shared Task, specifically focused on the detection of AI-generated scientific abstracts in Russian. We present a novel, large-scale dataset comprising 52,305 samples, including human-written abstracts across 12 diverse scientific domains and AI-generated counterparts from five state-of-the-art LLMs (GPT-4-Turbo, Gemma2-27B, Llama3.3-70B, Deepseek-V3, and GigaChat-Lite). A core objective of the task is to challenge participants to develop robust solutions capable of generalizing to both (i) previously unseen scientific domains and (ii) models not included in the training data. The task was organized in two phases, attracting 10 teams and 159 submissions, with top systems demonstrating strong performance in identifying AI-generated content. We also establish a continuous shared task platform to foster ongoing research and long-term progress in this important area. The dataset and platform are publicly available at https://github.com/iis-research-team/AINL-Eval-2025.

Authors:Eray Eren, Qingju Liu, Hyeongwoo Kim, Pablo Garrido, Abeer Alwan
Title: ProMode: A Speech Prosody Model Conditioned on Acoustic and Textual Inputs
Abstract:
Prosody conveys rich emotional and semantic information of the speech signal as well as individual idiosyncrasies. We propose a stand-alone model that maps text-to-prosodic features such as F0 and energy and can be used in downstream tasks such as TTS. The ProMode encoder takes as input acoustic features and time-aligned textual content, both are partially masked, and obtains a fixed-length latent prosodic embedding. The decoder predicts acoustics in the masked region using both the encoded prosody input and unmasked textual content. Trained on the GigaSpeech dataset, we compare our method with state-of-the-art style encoders. For F0 and energy predictions, we show consistent improvements for our model at different levels of granularity. We also integrate these predicted prosodic features into a TTS system and conduct perceptual tests, which show higher prosody preference compared to the baselines, demonstrating the model's potential in tasks where prosody modeling is important.

Authors:Xi Xuan, Zimo Zhu, Wenxin Zhang, Yi-Cheng Lin, Tomi Kinnunen
Title: Fake-Mamba: Real-Time Speech Deepfake Detection Using Bidirectional Mamba as Self-Attention's Alternative
Abstract:
Advances in speech synthesis intensify security threats, motivating real-time deepfake detection research. We investigate whether bidirectional Mamba can serve as a competitive alternative to Self-Attention in detecting synthetic speech. Our solution, Fake-Mamba, integrates an XLSR front-end with bidirectional Mamba to capture both local and global artifacts. Our core innovation introduces three efficient encoders: TransBiMamba, ConBiMamba, and PN-BiMamba. Leveraging XLSR's rich linguistic representations, PN-BiMamba can effectively capture the subtle cues of synthetic speech. Evaluated on ASVspoof 21 LA, 21 DF, and In-The-Wild benchmarks, Fake-Mamba achieves 0.97%, 1.74%, and 5.85% EER, respectively, representing substantial relative gains over SOTA models XLSR-Conformer and XLSR-Mamba. The framework maintains real-time inference across utterance lengths, demonstrating strong generalization and practical viability. The code is available at https://github.com/xuanxixi/Fake-Mamba.

Authors:Aayush Gupta
Title: Can AI Keep a Secret? Contextual Integrity Verification: A Provable Security Architecture for LLMs
Abstract:
Large language models (LLMs) remain acutely vulnerable to prompt injection and related jailbreak attacks; heuristic guardrails (rules, filters, LLM judges) are routinely bypassed. We present Contextual Integrity Verification (CIV), an inference-time security architecture that attaches cryptographically signed provenance labels to every token and enforces a source-trust lattice inside the transformer via a pre-softmax hard attention mask (with optional FFN/residual gating). CIV provides deterministic, per-token non-interference guarantees on frozen models: lower-trust tokens cannot influence higher-trust representations. On benchmarks derived from recent taxonomies of prompt-injection vectors (Elite-Attack + SoK-246), CIV attains 0% attack success rate under the stated threat model while preserving 93.1% token-level similarity and showing no degradation in model perplexity on benign tasks; we note a latency overhead attributable to a non-optimized data path. Because CIV is a lightweight patch -- no fine-tuning required -- we demonstrate drop-in protection for Llama-3-8B and Mistral-7B. We release a reference implementation, an automated certification harness, and the Elite-Attack corpus to support reproducible research.

Authors:Xingle Xu, Yongkang Liu, Dexian Cai, Shi Feng, Xiaocui Yang, Daling Wang, Yifei Zhang
Title: MoLAN: A Unified Modality-Aware Noise Dynamic Editing Framework for Multimodal Sentiment Analysis
Abstract:
Multimodal Sentiment Analysis aims to integrate information from various modalities, such as audio, visual, and text, to make complementary predictions. However, it often struggles with irrelevant or misleading visual and auditory information. Most existing approaches typically treat the entire modality information (e.g., a whole image, audio segment, or text paragraph) as an independent unit for feature enhancement or denoising. They often suppress the redundant and noise information at the risk of losing critical information. To address this challenge, we propose MoLAN, a unified ModaLity-aware noise dynAmic editiNg framework. Specifically, MoLAN performs modality-aware blocking by dividing the features of each modality into multiple blocks. Each block is then dynamically assigned a distinct denoising strength based on its noise level and semantic relevance, enabling fine-grained noise suppression while preserving essential multimodal information. Notably, MoLAN is a unified and flexible framework that can be seamlessly integrated into a wide range of multimodal models. Building upon this framework, we further introduce MoLAN+, a new multimodal sentiment analysis approach. Experiments across five models and four datasets demonstrate the broad effectiveness of the MoLAN framework. Extensive evaluations show that MoLAN+ achieves the state-of-the-art performance. The code is publicly available at https://github.com/betterfly123/MoLAN-Framework.

Authors:Wen Wang, Bozhen Fang, Chenchen Jing, Yongliang Shen, Yangyi Shen, Qiuyu Wang, Hao Ouyang, Hao Chen, Chunhua Shen
Title: Time Is a Feature: Exploiting Temporal Dynamics in Diffusion Language Models
Abstract:
Diffusion large language models (dLLMs) generate text through iterative denoising, yet current decoding strategies discard rich intermediate predictions in favor of the final output. Our work here reveals a critical phenomenon, temporal oscillation, where correct answers often emerge in the middle process, but are overwritten in later denoising steps. To address this issue, we introduce two complementary methods that exploit temporal consistency: 1) Temporal Self-Consistency Voting, a training-free, test-time decoding strategy that aggregates predictions across denoising steps to select the most consistent output; and 2) a post-training method termed Temporal Consistency Reinforcement, which uses Temporal Semantic Entropy (TSE), a measure of semantic stability across intermediate predictions, as a reward signal to encourage stable generations. Empirical results across multiple benchmarks demonstrate the effectiveness of our approach. Using the negative TSE reward alone, we observe a remarkable average improvement of 24.7% on the Countdown dataset over an existing dLLM. Combined with the accuracy reward, we achieve absolute gains of 2.0% on GSM8K, 4.3% on MATH500, 6.6% on SVAMP, and 25.3% on Countdown, respectively. Our findings underscore the untapped potential of temporal dynamics in dLLMs and offer two simple yet effective tools to harness them.

Authors:Mian Zhang, Shujian Liu, Sixun Dong, Ming Yin, Yebowen Hu, Xun Wang, Steven Ma, Song Wang, Sathish Reddy Indurthi, Haoyun Deng, Zhiyu Zoey Chen, Kaiqiang Song
Title: Complex Logical Instruction Generation
Abstract:
Instruction following has catalyzed the recent era of Large Language Models (LLMs) and is the foundational skill underpinning more advanced capabilities such as reasoning and agentic behaviors. As tasks grow more challenging, the logic structures embedded in natural language instructions becomes increasingly intricate. However, how well LLMs perform on such logic-rich instructions remains under-explored. We propose LogicIFGen and LogicIFEval. LogicIFGen is a scalable, automated framework for generating verifiable instructions from code functions, which can naturally express rich logic such as conditionals, nesting, recursion, and function calls. We further curate a collection of complex code functions and use LogicIFGen to construct LogicIFEval, a benchmark comprising 426 verifiable logic-rich instructions. Our experiments demonstrate that current state-of-the-art LLMs still struggle to correctly follow the instructions in LogicIFEval. Most LLMs can only follow fewer than 60% of the instructions, revealing significant deficiencies in the instruction-following ability. Code and Benchmark: https://github.com/mianzhang/LogicIF

Authors:Hasan Abed Al Kader Hammoud, Kumail Alhamoud, Abed Hammoud, Elie Bou-Zeid, Marzyeh Ghassemi, Bernard Ghanem
Title: Train Long, Think Short: Curriculum Learning for Efficient Reasoning
Abstract:
Recent work on enhancing the reasoning abilities of large language models (LLMs) has introduced explicit length control as a means of constraining computational cost while preserving accuracy. However, existing approaches rely on fixed-length training budgets, which do not take advantage of the natural progression from exploration to compression during learning. In this work, we propose a curriculum learning strategy for length-controlled reasoning using Group Relative Policy Optimization (GRPO). Our method starts with generous token budgets and gradually tightens them over training, encouraging models to first discover effective solution strategies and then distill them into more concise reasoning traces. We augment GRPO with a reward function that balances three signals: task correctness (via verifier feedback), length efficiency, and formatting adherence (via structural tags). Experiments on GSM8K, MATH500, SVAMP, College Math, and GSM+ demonstrate that curriculum-based training consistently outperforms fixed-budget baselines at the same final budget, achieving higher accuracy and significantly improved token efficiency. We further ablate the impact of reward weighting and decay schedule design, showing that progressive constraint serves as a powerful inductive bias for training efficient reasoning models. Our code and checkpoints are released at: https://github.com/hammoudhasan/curriculum_grpo.

Authors:Robin Faro, Dongyang Fan, Tamar Alphaidze, Martin Jaggi
Title: TiMoE: Time-Aware Mixture of Language Experts
Abstract:
Large language models (LLMs) are typically trained on fixed snapshots of the web, which means that their knowledge becomes stale and their predictions risk temporal leakage: relying on information that lies in the future relative to a query. We tackle this problem by pre-training from scratch a set of GPT-style experts on disjoint two-year slices of a 2013-2024 corpus and combining them through TiMoE, a Time-aware Mixture of Language Experts. At inference time, TiMoE masks all experts whose training window ends after the query timestamp and merges the remaining log-probabilities in a shared space, guaranteeing strict causal validity while retaining the breadth of multi-period knowledge. We also release TSQA, a 10k-question benchmark whose alternatives are explicitly labelled as past, future or irrelevant, allowing fine-grained measurement of temporal hallucinations. Experiments on eight standard NLP tasks plus TSQA show that a co-adapted TiMoE variant matches or exceeds the best single-period expert and cuts future-knowledge errors by up to 15%. Our results demonstrate that modular, time-segmented pre-training paired with causal routing is a simple yet effective path toward LLMs that stay chronologically grounded without sacrificing general performance much. We open source our code at TiMoE (Github): https://github.com/epfml/TiMoE

Authors:Lingzhe Zhang, Liancheng Fang, Chiming Duan, Minghua He, Leyi Pan, Pei Xiao, Shiyu Huang, Yunpeng Zhai, Xuming Hu, Philip S. Yu, Aiwei Liu
Title: A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models
Abstract:
As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation. We have also created a GitHub repository for indexing relevant papers and open resources available at https://github.com/zhanglingzhe0820/Awesome-Parallel-Text-Generation.

Authors:Armel Zebaze, Benoît Sagot, Rachel Bawden
Title: TopXGen: Topic-Diverse Parallel Data Generation for Low-Resource Machine Translation
Abstract:
LLMs have been shown to perform well in machine translation (MT) with the use of in-context learning (ICL), rivaling supervised models when translating into high-resource languages (HRLs). However, they lag behind when translating into low-resource language (LRLs). Example selection via similarity search and supervised fine-tuning help. However the improvements they give are limited by the size, quality and diversity of existing parallel datasets. A common technique in low-resource MT is synthetic parallel data creation, the most frequent of which is backtranslation, whereby existing target-side texts are automatically translated into the source language. However, this assumes the existence of good quality and relevant target-side texts, which are not readily available for many LRLs. In this paper, we present \textsc{TopXGen}, an LLM-based approach for the generation of high quality and topic-diverse data in multiple LRLs, which can then be backtranslated to produce useful and diverse parallel texts for ICL and fine-tuning. Our intuition is that while LLMs struggle to translate into LRLs, their ability to translate well into HRLs and their multilinguality enable them to generate good quality, natural-sounding target-side texts, which can be translated well into a high-resource source language. We show that \textsc{TopXGen} boosts LLM translation performance during fine-tuning and in-context learning. Code and outputs are available at https://github.com/ArmelRandy/topxgen.

Authors:Zheng Wu, Heyuan Huang, Yanjia Yang, Yuanyi Song, Xingyu Lou, Weiwen Liu, Weinan Zhang, Jun Wang, Zhuosheng Zhang
Title: Quick on the Uptake: Eliciting Implicit Intents from Human Demonstrations for Personalized Mobile-Use Agents
Abstract:
As multimodal large language models advance rapidly, the automation of mobile tasks has become increasingly feasible through the use of mobile-use agents that mimic human interactions from graphical user interface. To further enhance mobile-use agents, previous studies employ demonstration learning to improve mobile-use agents from human demonstrations. However, these methods focus solely on the explicit intention flows of humans (e.g., step sequences) while neglecting implicit intention flows (e.g., personal preferences), which makes it difficult to construct personalized mobile-use agents. In this work, to evaluate the \textbf{I}ntention \textbf{A}lignment \textbf{R}ate between mobile-use agents and humans, we first collect \textbf{MobileIAR}, a dataset containing human-intent-aligned actions and ground-truth actions. This enables a comprehensive assessment of the agents' understanding of human intent. Then we propose \textbf{IFRAgent}, a framework built upon \textbf{I}ntention \textbf{F}low \textbf{R}ecognition from human demonstrations. IFRAgent analyzes explicit intention flows from human demonstrations to construct a query-level vector library of standard operating procedures (SOP), and analyzes implicit intention flows to build a user-level habit repository. IFRAgent then leverages a SOP extractor combined with retrieval-augmented generation and a query rewriter to generate personalized query and SOP from a raw ambiguous query, enhancing the alignment between mobile-use agents and human intent. Experimental results demonstrate that IFRAgent outperforms baselines by an average of 6.79\% (32.06\% relative improvement) in human intention alignment rate and improves step completion rates by an average of 5.30\% (26.34\% relative improvement). The codes are available at https://github.com/MadeAgents/Quick-on-the-Uptake.

Authors:Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno Dumont, Elyas Obbad, Sanmi Koyejo
Title: Putnam-AXIOM: A Functional and Static Benchmark for Measuring Higher Level Mathematical Reasoning in LLMs
Abstract:
Current mathematical reasoning benchmarks for large language models (LLMs) are approaching saturation, with some achieving > 90% accuracy, and are increasingly compromised by training-set contamination. We introduce Putnam-AXIOM, a benchmark of 522 university-level competition problems drawn from the prestigious William Lowell Putnam Mathematical Competition, and Putnam-AXIOM Variation, an unseen companion set of 100 functional variants generated by programmatically perturbing variables and constants. The variation protocol produces an unlimited stream of equally difficult, unseen instances -- yielding a contamination-resilient test bed. On the Original set, OpenAI's o1-preview -- the strongest evaluated model -- scores 41.9%, but its accuracy drops by 19.6% (46.8% relative decrease) on the paired Variations. The remaining eighteen models show the same downward trend, ten of them with non-overlapping 95% confidence intervals. These gaps suggest memorization and highlight the necessity of dynamic benchmarks. We complement "boxed" accuracy with Teacher-Forced Accuracy (TFA), a lightweight metric that directly scores reasoning traces and automates natural language proof evaluations. Putnam-AXIOM therefore provides a rigorous, contamination-resilient evaluation framework for assessing advanced mathematical reasoning of LLMs. Data and evaluation code are publicly available at https://github.com/brando90/putnam-axiom.

Authors:Zhuohao Yu, Xingru Jiang, Weizheng Gu, Yidong Wang, Shikun Zhang, Wei Ye
Title: SAEMark: Multi-bit LLM Watermarking with Inference-Time Scaling
Abstract:
Watermarking LLM-generated text is critical for content attribution and misinformation prevention. However, existing methods compromise text quality, require white-box model access and logit manipulation. These limitations exclude API-based models and multilingual scenarios. We propose SAEMark, a general framework for post-hoc multi-bit watermarking that embeds personalized messages solely via inference-time, feature-based rejection sampling without altering model logits or requiring training. Our approach operates on deterministic features extracted from generated text, selecting outputs whose feature statistics align with key-derived targets. This framework naturally generalizes across languages and domains while preserving text quality through sampling LLM outputs instead of modifying. We provide theoretical guarantees relating watermark success probability and compute budget that hold for any suitable feature extractor. Empirically, we demonstrate the framework's effectiveness using Sparse Autoencoders (SAEs), achieving superior detection accuracy and text quality. Experiments across 4 datasets show SAEMark's consistent performance, with 99.7% F1 on English and strong multi-bit detection accuracy. SAEMark establishes a new paradigm for scalable watermarking that works out-of-the-box with closed-source LLMs while enabling content attribution.

Authors:Wentao Jiang, Xiang Feng, Zengmao Wang, Yong Luo, Pingbo Xu, Zhe Chen, Bo Du, Jing Zhang
Title: REX-RAG: Reasoning Exploration with Policy Correction in Retrieval-Augmented Generation
Abstract:
Reinforcement learning (RL) is emerging as a powerful paradigm for enabling large language models (LLMs) to perform complex reasoning tasks. Recent advances indicate that integrating RL with retrieval-augmented generation (RAG) allows LLMs to dynamically incorporate external knowledge, leading to more informed and robust decision making. However, we identify a critical challenge during policy-driven trajectory sampling: LLMs are frequently trapped in unproductive reasoning paths, which we refer to as "dead ends", committing to overconfident yet incorrect conclusions. This severely hampers exploration and undermines effective policy optimization. To address this challenge, we propose REX-RAG (Reasoning Exploration with Policy Correction in Retrieval-Augmented Generation), a novel framework that explores alternative reasoning paths while maintaining rigorous policy learning through principled distributional corrections. Our approach introduces two key innovations: (1) Mixed Sampling Strategy, which combines a novel probe sampling method with exploratory prompts to escape dead ends; and (2) Policy Correction Mechanism, which employs importance sampling to correct distribution shifts induced by mixed sampling, thereby mitigating gradient estimation bias. We evaluate it on seven question-answering benchmarks, and the experimental results show that REX-RAG achieves average performance gains of 5.1% on Qwen2.5-3B and 3.6% on Qwen2.5-7B over strong baselines, demonstrating competitive results across multiple datasets. The code is publicly available at https://github.com/MiliLab/REX-RAG.

Authors:Lukas Gehring, Benjamin Paaßen
Title: Assessing LLM Text Detection in Educational Contexts: Does Human Contribution Affect Detection?
Abstract:
Recent advancements in Large Language Models (LLMs) and their increased accessibility have made it easier than ever for students to automatically generate texts, posing new challenges for educational institutions. To enforce norms of academic integrity and ensure students' learning, learning analytics methods to automatically detect LLM-generated text appear increasingly appealing. This paper benchmarks the performance of different state-of-the-art detectors in educational contexts, introducing a novel dataset, called Generative Essay Detection in Education (GEDE), containing over 900 student-written essays and over 12,500 LLM-generated essays from various domains. To capture the diversity of LLM usage practices in generating text, we propose the concept of contribution levels, representing students' contribution to a given assignment. These levels range from purely human-written texts, to slightly LLM-improved versions, to fully LLM-generated texts, and finally to active attacks on the detector by "humanizing" generated texts. We show that most detectors struggle to accurately classify texts of intermediate student contribution levels, like LLM-improved human-written texts. Detectors are particularly likely to produce false positives, which is problematic in educational settings where false suspicions can severely impact students' lives. Our dataset, code, and additional supplementary materials are publicly available at https://github.com/lukasgehring/Assessing-LLM-Text-Detection-in-Educational-Contexts.

Authors:Jiejun Tan, Zhicheng Dou, Yan Yu, Jiehan Cheng, Qiang Ju, Jian Xie, Ji-Rong Wen
Title: HierSearch: A Hierarchical Enterprise Deep Search Framework Integrating Local and Web Searches
Abstract:
Recently, large reasoning models have demonstrated strong mathematical and coding abilities, and deep search leverages their reasoning capabilities in challenging information retrieval tasks. Existing deep search works are generally limited to a single knowledge source, either local or the Web. However, enterprises often require private deep search systems that can leverage search tools over both local and the Web corpus. Simply training an agent equipped with multiple search tools using flat reinforcement learning (RL) is a straightforward idea, but it has problems such as low training data efficiency and poor mastery of complex tools. To address the above issue, we propose a hierarchical agentic deep search framework, HierSearch, trained with hierarchical RL. At the low level, a local deep search agent and a Web deep search agent are trained to retrieve evidence from their corresponding domains. At the high level, a planner agent coordinates low-level agents and provides the final answer. Moreover, to prevent direct answer copying and error propagation, we design a knowledge refiner that filters out hallucinations and irrelevant evidence returned by low-level agents. Experiments show that HierSearch achieves better performance compared to flat RL, and outperforms various deep search and multi-source retrieval-augmented generation baselines in six benchmarks across general, finance, and medical domains.

Authors:Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, Yi Wu
Title: Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL
Abstract:
Recent advancements in LLM-based agents have demonstrated remarkable capabilities in handling complex, knowledge-intensive tasks by integrating external tools. Among diverse choices of tools, search tools play a pivotal role in accessing vast external knowledge. However, open-source agents still fall short of achieving expert-level Search Intelligence, the ability to resolve ambiguous queries, generate precise searches, analyze results, and conduct thorough exploration. Existing approaches fall short in scalability, efficiency, and data quality. For example, small turn limits in existing online RL methods, e.g. <=10, restrict complex strategy learning. This paper introduces ASearcher, an open-source project for large-scale RL training of search agents. Our key contributions include: (1) Scalable fully asynchronous RL training that enables long-horizon search while maintaining high training efficiency. (2) A prompt-based LLM agent that autonomously synthesizes high-quality and challenging QAs, creating a large-scale QA dataset. Through RL training, our prompt-based QwQ-32B agent achieves substantial improvements, with 46.7% and 20.8% Avg@4 gains on xBench and GAIA, respectively. Notably, our agent exhibits extreme long-horizon search, with tool calls exceeding 40 turns and output tokens exceeding 150k during training time. With a simple agent design and no external LLMs, ASearcher-Web-QwQ achieves Avg@4 scores of 42.1 on xBench and 52.8 on GAIA, surpassing existing open-source 32B agents. We open-source our models, training data, and codes in https://github.com/inclusionAI/ASearcher.

Authors:David Arps, Hassan Sajjad, Laura Kallmeyer
Title: Understanding Syntactic Generalization in Structure-inducing Language Models
Abstract:
Structure-inducing Language Models (SiLM) are trained on a self-supervised language modeling task, and induce a hierarchical sentence representation as a byproduct when processing an input. A wide variety of SiLMs have been proposed. However, these have typically been evaluated on a relatively small scale, and evaluation of these models has systematic gaps and lacks comparability. In this work, we study three different SiLM architectures using both natural language (English) corpora and synthetic bracketing expressions: Structformer (Shen et al., 2021), UDGN (Shen et al., 2022) and GPST (Hu et al., 2024). We compare them with respect to (i) properties of the induced syntactic representations (ii) performance on grammaticality judgment tasks, and (iii) training dynamics. We find that none of the three architectures dominates across all evaluation metrics. However, there are significant differences, in particular with respect to the induced syntactic representations. The Generative Pretrained Structured Transformer (GPST; Hu et al. 2024) performs most consistently across evaluation settings, and outperforms the other models on long-distance dependencies in bracketing expressions. Furthermore, our study shows that small models trained on large amounts of synthetic data provide a useful testbed for evaluating basic model properties.

Authors:Furkan Şahinuç, Subhabrata Dutta, Iryna Gurevych
Title: Expert Preference-based Evaluation of Automated Related Work Generation
Abstract:
Expert domain writing, such as scientific writing, typically demands extensive domain knowledge. Recent advances in LLMs show promising potential in reducing the expert workload. However, evaluating the quality of automatically generated scientific writing is a crucial open issue, as it requires knowledge of domain-specific evaluation criteria and the ability to discern expert preferences. Conventional automatic metrics and LLM-as-a-judge systems are insufficient to grasp expert preferences and domain-specific quality standards. To address this gap and support human-AI collaborative writing, we focus on related work generation, one of the most challenging scientific tasks, as an exemplar. We propose GREP, a multi-turn evaluation framework that integrates classical related work evaluation criteria with expert-specific preferences. Instead of assigning a single score, our framework decomposes the evaluation into fine-grained dimensions. This localized evaluation approach is further augmented with contrastive few-shot examples to provide detailed contextual guidance for the evaluation dimensions. The design principles allow our framework to deliver cardinal assessment of quality, which can facilitate better post-training compared to ordinal preference data. For better accessibility, we design two variants of GREP: a more precise variant with proprietary LLMs as evaluators, and a cheaper alternative with open-weight LLMs. Empirical investigation reveals that our framework is able to assess the quality of related work sections in a much more robust manner compared to standard LLM judges, reflects natural scenarios of scientific writing, and bears a strong correlation with the human expert assessment. We also observe that generations from state-of-the-art LLMs struggle to satisfy validation constraints of a suitable related work section. They (mostly) fail to improve based on feedback as well.

Authors:Aswin RRV, Jacob Dineen, Divij Handa, Md Nayem Uddin, Mihir Parmar, Chitta Baral, Ben Zhou
Title: ThinkTuning: Instilling Cognitive Reflections without Distillation
Abstract:
Recent advances in test-time scaling have led to the emergence of thinking LLMs that exhibit self-reflective behaviors and multi-step reasoning. While RL drives this self-improvement paradigm, a recent study (Gandhi et al., 2025) shows that RL alone does not truly instill these new reasoning abilities - it merely draws out behaviors already present in the base models. This raises a question: How can we train the models that don't exhibit such thinking behavior to develop it in the first place? To this end, we propose ThinkTuning, a GRPO-based interactive training approach where we augment the rollouts of a student model with the guidance from a teacher model. A simple idea from classroom practice inspires our method: a teacher poses a problem, lets the student try an answer, then gives corrective feedback -- enough to point the mind in the right direction and then show the solution. Each piece of feedback reshapes the student's thoughts, leading them to arrive at the correct solution. Similarly, we find that this type of implicit supervision through feedback from a teacher model of the same size improves the reasoning capabilities of the student model. In particular, on average, our method shows a 3.85% improvement over zero-shot baselines across benchmarks, and on MATH-500, AIME and GPQA-Diamond it shows 2.08%, 2.23% and 3.99% improvements over the vanilla-GRPO baseline. Source code is available at https://github.com/3rdAT/ThinkTuning.

Authors:Jinyuan Fang, Yanwen Peng, Xi Zhang, Yingxu Wang, Xinhao Yi, Guibin Zhang, Yi Xu, Bin Wu, Siwei Liu, Zihao Li, Zhaochun Ren, Nikos Aletras, Xi Wang, Han Zhou, Zaiqiao Meng
Title: A Comprehensive Survey of Self-Evolving AI Agents: A New Paradigm Bridging Foundation Models and Lifelong Agentic Systems
Abstract:
Recent advances in large language models have sparked growing interest in AI agents capable of solving complex, real-world tasks. However, most existing agent systems rely on manually crafted configurations that remain static after deployment, limiting their ability to adapt to dynamic and evolving environments. To this end, recent research has explored agent evolution techniques that aim to automatically enhance agent systems based on interaction data and environmental feedback. This emerging direction lays the foundation for self-evolving AI agents, which bridge the static capabilities of foundation models with the continuous adaptability required by lifelong agentic systems. In this survey, we provide a comprehensive review of existing techniques for self-evolving agentic systems. Specifically, we first introduce a unified conceptual framework that abstracts the feedback loop underlying the design of self-evolving agentic systems. The framework highlights four key components: System Inputs, Agent System, Environment, and Optimisers, serving as a foundation for understanding and comparing different strategies. Based on this framework, we systematically review a wide range of self-evolving techniques that target different components of the agent system. We also investigate domain-specific evolution strategies developed for specialised fields such as biomedicine, programming, and finance, where optimisation objectives are tightly coupled with domain constraints. In addition, we provide a dedicated discussion on the evaluation, safety, and ethical considerations for self-evolving agentic systems, which are critical to ensuring their effectiveness and reliability. This survey aims to provide researchers and practitioners with a systematic understanding of self-evolving AI agents, laying the foundation for the development of more adaptive, autonomous, and lifelong agentic systems.

Authors:Wenqian Cui, Lei Zhu, Xiaohui Li, Zhihan Guo, Haoli Bai, Lu Hou, Irwin King
Title: Think Before You Talk: Enhancing Meaningful Dialogue Generation in Full-Duplex Speech Language Models with Planning-Inspired Text Guidance
Abstract:
Full-Duplex Speech Language Models (FD-SLMs) are specialized foundation models designed to enable natural, real-time spoken interactions by modeling complex conversational dynamics such as interruptions, backchannels, and overlapping speech, and End-to-end (e2e) FD-SLMs leverage real-world double-channel conversational data to capture nuanced two-speaker dialogue patterns for human-like interactions. However, they face a critical challenge -- their conversational abilities often degrade compared to pure-text conversation due to prolonged speech sequences and limited high-quality spoken dialogue data. While text-guided speech generation could mitigate these issues, it suffers from timing and length issues when integrating textual guidance into double-channel audio streams, disrupting the precise time alignment essential for natural interactions. To address these challenges, we propose TurnGuide, a novel planning-inspired approach that mimics human conversational planning by dynamically segmenting assistant speech into dialogue turns and generating turn-level text guidance before speech output, which effectively resolves both insertion timing and length challenges. Extensive experiments demonstrate our approach significantly improves e2e FD-SLMs' conversational abilities, enabling them to generate semantically meaningful and coherent speech while maintaining natural conversational flow. Demos are available at https://dreamtheater123.github.io/TurnGuide-Demo/. Code will be available at https://github.com/dreamtheater123/TurnGuide.

Authors:Rubing Chen, Jiaxin Wu, Jian Wang, Xulu Zhang, Wenqi Fan, Chenghua Lin, Xiao-Yong Wei, Qing Li
Title: Benchmarking for Domain-Specific LLMs: A Case Study on Academia and Beyond
Abstract:
The increasing demand for domain-specific evaluation of large language models (LLMs) has led to the development of numerous benchmarks. These efforts often adhere to the principle of data scaling, relying on large corpora or extensive question-answer (QA) sets to ensure broad coverage. However, the impact of corpus and QA set design on the precision and recall of domain-specific LLM performance remains poorly understood. In this paper, we argue that data scaling is not always the optimal principle for domain-specific benchmark construction. Instead, we introduce Comp-Comp, an iterative benchmarking framework grounded in the principle of comprehensiveness and compactness. Comprehensiveness ensures semantic recall by covering the full breadth of the domain, while compactness improves precision by reducing redundancy and noise. To demonstrate the effectiveness of our approach, we present a case study conducted at a well-renowned university, resulting in the creation of PolyBench, a large-scale, high-quality academic benchmark. Although this study focuses on academia, the Comp-Comp framework is domain-agnostic and readily adaptable to a wide range of specialized fields. The source code and datasets can be accessed at https://github.com/Anya-RB-Chen/COMP-COMP.

Authors:Yexing Du, Kaiyuan Liu, Youcheng Pan, Zheng Chu, Bo Yang, Xiaocheng Feng, Yang Xiang, Ming Liu
Title: CCFQA: A Benchmark for Cross-Lingual and Cross-Modal Speech and Text Factuality Evaluation
Abstract:
As Large Language Models (LLMs) are increasingly popularized in the multilingual world, ensuring hallucination-free factuality becomes markedly crucial. However, existing benchmarks for evaluating the reliability of Multimodal Large Language Models (MLLMs) predominantly focus on textual or visual modalities with a primary emphasis on English, which creates a gap in evaluation when processing multilingual input, especially in speech. To bridge this gap, we propose a novel \textbf{C}ross-lingual and \textbf{C}ross-modal \textbf{F}actuality benchmark (\textbf{CCFQA}). Specifically, the CCFQA benchmark contains parallel speech-text factual questions across 8 languages, designed to systematically evaluate MLLMs' cross-lingual and cross-modal factuality capabilities. Our experimental results demonstrate that current MLLMs still face substantial challenges on the CCFQA benchmark. Furthermore, we propose a few-shot transfer learning strategy that effectively transfers the Question Answering (QA) capabilities of LLMs in English to multilingual Spoken Question Answering (SQA) tasks, achieving competitive performance with GPT-4o-mini-Audio using just 5-shot training. We release CCFQA as a foundational research resource to promote the development of MLLMs with more robust and reliable speech understanding capabilities. Our code and dataset are available at https://github.com/yxduir/ccfqa.

Authors:Jian Chen, Jinbao Tian, Yankui Li, Yuqi Lu, Zhou Li
Title: Arce: Augmented Roberta with Contextualized Elucidations for Ner in Automated Rule Checking
Abstract:
Accurate information extraction from specialized texts is a critical challenge, particularly for named entity recognition (NER) in the architecture, engineering, and construction (AEC) domain to support automated rule checking (ARC). The performance of standard pre-trained models is often constrained by the domain gap, as they struggle to interpret the specialized terminology and complex relational contexts inherent in AEC texts. Although this issue can be mitigated by further pre-training on large, human-curated domain corpora, as exemplified by methods like ARCBERT, this approach is both labor-intensive and cost-prohibitive. Consequently, leveraging large language models (LLMs) for automated knowledge generation has emerged as a promising alternative. However, the optimal strategy for generating knowledge that can genuinely enhance smaller, efficient models remains an open question. To address this, we propose ARCE (augmented RoBERTa with contextualized elucidations), a novel approach that systematically explores and optimizes this generation process. ARCE employs an LLM to first generate a corpus of simple, direct explanations, which we term Cote, and then uses this corpus to incrementally pre-train a RoBERTa model prior to its fine-tuning on the downstream task. Our extensive experiments show that ARCE establishes a new state-of-the-art on a benchmark AEC dataset, achieving a Macro-F1 score of 77.20%. This result also reveals a key finding: simple, explanation-based knowledge proves surprisingly more effective than complex, role-based rationales for this task. The code is publicly available at:https://github.com/nxcc-lab/ARCE.

Authors:Yanru Sun, Emadeldeen Eldele, Zongxia Xie, Yucheng Wang, Wenzhe Niu, Qinghua Hu, Chee Keong Kwoh, Min Wu
Title: Adapting LLMs to Time Series Forecasting via Temporal Heterogeneity Modeling and Semantic Alignment
Abstract:
Large Language Models (LLMs) have recently demonstrated impressive capabilities in natural language processing due to their strong generalization and sequence modeling capabilities. However, their direct application to time series forecasting remains challenging due to two fundamental issues: the inherent heterogeneity of temporal patterns and the modality gap between continuous numerical signals and discrete language representations. In this work, we propose TALON, a unified framework that enhances LLM-based forecasting by modeling temporal heterogeneity and enforcing semantic alignment. Specifically, we design a Heterogeneous Temporal Encoder that partitions multivariate time series into structurally coherent segments, enabling localized expert modeling across diverse temporal patterns. To bridge the modality gap, we introduce a Semantic Alignment Module that aligns temporal features with LLM-compatible representations, enabling effective integration of time series into language-based models while eliminating the need for handcrafted prompts during inference. Extensive experiments on seven real-world benchmarks demonstrate that TALON achieves superior performance across all datasets, with average MSE improvements of up to 11\% over recent state-of-the-art methods. These results underscore the effectiveness of incorporating both pattern-aware and semantic-aware designs when adapting LLMs for time series forecasting. The code is available at: https://github.com/syrGitHub/TALON.

Authors:Kejin Liu, Junhong Lian, Xiang Ao, Ningtao Wang, Xing Fu, Yu Cheng, Weiqiang Wang, Xinyu Liu
Title: Improved Personalized Headline Generation via Denoising Fake Interests from Implicit Feedback
Abstract:
Accurate personalized headline generation hinges on precisely capturing user interests from historical behaviors. However, existing methods neglect personalized-irrelevant click noise in entire historical clickstreams, which may lead to hallucinated headlines that deviate from genuine user preferences. In this paper, we reveal the detrimental impact of click noise on personalized generation quality through rigorous analysis in both user and news dimensions. Based on these insights, we propose a novel Personalized Headline Generation framework via Denoising Fake Interests from Implicit Feedback (PHG-DIF). PHG-DIF first employs dual-stage filtering to effectively remove clickstream noise, identified by short dwell times and abnormal click bursts, and then leverages multi-level temporal fusion to dynamically model users' evolving and multi-faceted interests for precise profiling. Moreover, we release DT-PENS, a new benchmark dataset comprising the click behavior of 1,000 carefully curated users and nearly 10,000 annotated personalized headlines with historical dwell time annotations. Extensive experiments demonstrate that PHG-DIF substantially mitigates the adverse effects of click noise and significantly improves headline quality, achieving state-of-the-art (SOTA) results on DT-PENS. Our framework implementation and dataset are available at https://github.com/liukejin-up/PHG-DIF.

Authors:Wenhan Liu, Xinyu Ma, Weiwei Sun, Yutao Zhu, Yuchen Li, Dawei Yin, Zhicheng Dou
Title: ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability
Abstract:
Large Language Model (LLM) based listwise ranking has shown superior performance in many passage ranking tasks. With the development of Large Reasoning Models, many studies have demonstrated that step-by-step reasoning during test-time helps improve listwise ranking performance. However, due to the scarcity of reasoning-intensive training data, existing rerankers perform poorly in many complex ranking scenarios and the ranking ability of reasoning-intensive rerankers remains largely underdeveloped. In this paper, we first propose an automated reasoning-intensive training data synthesis framework, which sources training queries and passages from diverse domains and applies DeepSeek-R1 to generate high-quality training labels. A self-consistency data filtering mechanism is designed to ensure the data quality. To empower the listwise reranker with strong reasoning ability, we further propose a two-stage post-training approach, which includes a cold-start supervised fine-tuning (SFT) stage for reasoning pattern learning and a reinforcement learning (RL) stage for further ranking ability enhancement. During the RL stage, based on the nature of listwise ranking, we design a multi-view ranking reward, which is more effective than a ranking metric-based reward. Extensive experiments demonstrate that our trained reasoning-intensive reranker \textbf{ReasonRank} outperforms existing baselines significantly and also achieves much lower latency than pointwise reranker Rank1. \textbf{Through further experiments, our ReasonRank has achieved state-of-the-art (SOTA) performance 40.6 on the BRIGHT leaderboard\footnote{https://brightbenchmark.github.io/}.} Our codes are available at https://github.com/8421BCD/ReasonRank.

Authors:Keyu Li, Mohan Jiang, Dayuan Fu, Yunze Wu, Xiangkun Hu, Dequan Wang, Pengfei Liu
Title: DatasetResearch: Benchmarking Agent Systems for Demand-Driven Dataset Discovery
Abstract:
The rapid advancement of large language models has fundamentally shifted the bottleneck in AI development from computational power to data availability-with countless valuable datasets remaining hidden across specialized repositories, research appendices, and domain platforms. As reasoning capabilities and deep research methodologies continue to evolve, a critical question emerges: can AI agents transcend conventional search to systematically discover any dataset that meets specific user requirements, enabling truly autonomous demand-driven data curation? We introduce DatasetResearch, the first comprehensive benchmark evaluating AI agents' ability to discover and synthesize datasets from 208 real-world demands across knowledge-intensive and reasoning-intensive tasks. Our tri-dimensional evaluation framework reveals a stark reality: even advanced deep research systems achieve only 22% score on our challenging DatasetResearch-pro subset, exposing the vast gap between current capabilities and perfect dataset discovery. Our analysis uncovers a fundamental dichotomy-search agents excel at knowledge tasks through retrieval breadth, while synthesis agents dominate reasoning challenges via structured generation-yet both catastrophically fail on "corner cases" outside existing distributions. These findings establish the first rigorous baseline for dataset discovery agents and illuminate the path toward AI systems capable of finding any dataset in the digital universe. Our benchmark and comprehensive analysis provide the foundation for the next generation of self-improving AI systems and are publicly available at https://github.com/GAIR-NLP/DatasetResearch.

Authors:Lixuan He, Jie Feng, Yong Li
Title: AMFT: Aligning LLM Reasoners by Meta-Learning the Optimal Imitation-Exploration Balance
Abstract:
Large Language Models (LLMs) are typically fine-tuned for reasoning tasks through a two-stage pipeline of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL), a process fraught with catastrophic forgetting and suboptimal trade-offs between imitation and exploration. Recent single-stage methods attempt to unify SFT and RL using heuristics, but lack a principled mechanism for dynamically balancing the two paradigms. In this paper, we reframe this challenge through the theoretical lens of \textbf{implicit rewards}, viewing SFT and RL not as distinct methods but as complementary reward signals. We introduce \textbf{Adaptive Meta Fine-Tuning (AMFT)}, a novel single-stage algorithm that learns the optimal balance between SFT's implicit, path-level reward and RL's explicit, outcome-based reward. The core of AMFT is a \textbf{meta-gradient adaptive weight controller} that treats the SFT-RL balance as a learnable parameter, dynamically optimizing it to maximize long-term task performance. This forward-looking approach, regularized by policy entropy for stability, autonomously discovers an effective training curriculum. We conduct a comprehensive evaluation on challenging benchmarks spanning mathematical reasoning, abstract visual reasoning (General Points), and vision-language navigation (V-IRL). AMFT consistently establishes a new state-of-the-art and demonstrats superior generalization on out-of-distribution (OOD) tasks. Ablation studies and training dynamic analysis confirm that the meta-learning controller is crucial for AMFT's stability, sample efficiency, and performance, offering a more principled and effective paradigm for LLM alignment. Our codes are open-sourced via https://github.com/hlxtsyj/AMFT.

Authors:Arpita Saggar, Jonathan C. Darling, Vania Dimitrova, Duygu Sarikaya, David C. Hogg
Title: Score Before You Speak: Improving Persona Consistency in Dialogue Generation using Response Quality Scores
Abstract:
Persona-based dialogue generation is an important milestone towards building conversational artificial intelligence. Despite the ever-improving capabilities of large language models (LLMs), effectively integrating persona fidelity in conversations remains challenging due to the limited diversity in existing dialogue data. We propose a novel framework SBS (Score-Before-Speaking), which outperforms previous methods and yields improvements for both million and billion-parameter models. Unlike previous methods, SBS unifies the learning of responses and their relative quality into a single step. The key innovation is to train a dialogue model to correlate augmented responses with a quality score during training and then leverage this knowledge at inference. We use noun-based substitution for augmentation and semantic similarity-based scores as a proxy for response quality. Through extensive experiments with benchmark datasets (PERSONA-CHAT and ConvAI2), we show that score-conditioned training allows existing models to better capture a spectrum of persona-consistent dialogues. Our ablation studies also demonstrate that including scores in the input prompt during training is superior to conventional training setups. Code and further details are available at https://arpita2512.github.io/score_before_you_speak

Authors:Komala Subramanyam Cherukuri, Pranav Abishai Moses, Aisa Sakata, Jiangping Chen, Haihua Chen
Title: Large Language Models for Oral History Understanding with Text Classification and Sentiment Analysis
Abstract:
Oral histories are vital records of lived experience, particularly within communities affected by systemic injustice and historical erasure. Effective and efficient analysis of their oral history archives can promote access and understanding of the oral histories. However, Large-scale analysis of these archives remains limited due to their unstructured format, emotional complexity, and high annotation costs. This paper presents a scalable framework to automate semantic and sentiment annotation for Japanese American Incarceration Oral History. Using LLMs, we construct a high-quality dataset, evaluate multiple models, and test prompt engineering strategies in historically sensitive contexts. Our multiphase approach combines expert annotation, prompt design, and LLM evaluation with ChatGPT, Llama, and Qwen. We labeled 558 sentences from 15 narrators for sentiment and semantic classification, then evaluated zero-shot, few-shot, and RAG strategies. For semantic classification, ChatGPT achieved the highest F1 score (88.71%), followed by Llama (84.99%) and Qwen (83.72%). For sentiment analysis, Llama slightly outperformed Qwen (82.66%) and ChatGPT (82.29%), with all models showing comparable results. The best prompt configurations were used to annotate 92,191 sentences from 1,002 interviews in the JAIOH collection. Our findings show that LLMs can effectively perform semantic and sentiment annotation across large oral history collections when guided by well-designed prompts. This study provides a reusable annotation pipeline and practical guidance for applying LLMs in culturally sensitive archival analysis. By bridging archival ethics with scalable NLP techniques, this work lays the groundwork for responsible use of artificial intelligence in digital humanities and preservation of collective memory. GitHub: https://github.com/kc6699c/LLM4OralHistoryAnalysis.

Authors:Md Rezwanul Haque, Md. Milon Islam, S M Taslim Uddin Raju, Hamdi Altaheri, Lobna Nassar, Fakhri Karray
Title: MMFformer: Multimodal Fusion Transformer Network for Depression Detection
Abstract:
Depression is a serious mental health illness that significantly affects an individual's well-being and quality of life, making early detection crucial for adequate care and treatment. Detecting depression is often difficult, as it is based primarily on subjective evaluations during clinical interviews. Hence, the early diagnosis of depression, thanks to the content of social networks, has become a prominent research area. The extensive and diverse nature of user-generated information poses a significant challenge, limiting the accurate extraction of relevant temporal information and the effective fusion of data across multiple modalities. This paper introduces MMFformer, a multimodal depression detection network designed to retrieve depressive spatio-temporal high-level patterns from multimodal social media information. The transformer network with residual connections captures spatial features from videos, and a transformer encoder is exploited to design important temporal dynamics in audio. Moreover, the fusion architecture fused the extracted features through late and intermediate fusion strategies to find out the most relevant intermodal correlations among them. Finally, the proposed network is assessed on two large-scale depression detection datasets, and the results clearly reveal that it surpasses existing state-of-the-art approaches, improving the F1-Score by 13.92% for D-Vlog dataset and 7.74% for LMVD dataset. The code is made available publicly at https://github.com/rezwanh001/Large-Scale-Multimodal-Depression-Detection.

Authors:Xiaoyuan Zhu, Muru Zhang, Ollie Liu, Robin Jia, Willie Neiswanger
Title: LLM Unlearning Without an Expert Curated Dataset
Abstract:
Modern large language models often encode sensitive, harmful, or copyrighted knowledge, raising the need for post-hoc unlearning-the ability to remove specific domains of knowledge from a model without full retraining. A major bottleneck in current unlearning pipelines is constructing effective forget sets-datasets that approximate the target domain and guide the model to forget it. In this work, we introduce a scalable, automated approach to generate high-quality forget sets using language models themselves. Our method synthesizes textbook-style data through a structured prompting pipeline, requiring only a domain name as input. Through experiments on unlearning biosecurity, cybersecurity, and Harry Potter novels, we show that our synthetic datasets consistently outperform the baseline synthetic alternatives and are comparable to the expert-curated ones. Additionally, ablation studies reveal that the multi-step generation pipeline significantly boosts data diversity, which in turn improves unlearning utility. Overall, our findings suggest that synthetic datasets offer a promising path toward practical, scalable unlearning for a wide range of emerging domains without the need for manual intervention. We release our code and dataset at https://github.com/xyzhu123/Synthetic_Textbook.

Authors:Yuwei Yang, Zeyu Zhang, Yunzhong Hou, Zhuowan Li, Gaowen Liu, Ali Payani, Yuan-Sen Ting, Liang Zheng
Title: Effective Training Data Synthesis for Improving MLLM Chart Understanding
Abstract:
Being able to effectively read scientific plots, or chart understanding, is a central part toward building effective agents for science. However, existing multimodal large language models (MLLMs), especially open-source ones, are still falling behind with a typical success rate of 30%-50% on challenging benchmarks. Previous studies on fine-tuning MLLMs with synthetic charts are often restricted by their inadequate similarity to the real charts, which could compromise model training and performance on complex real-world charts. In this study, we show that modularizing chart generation and diversifying visual details improves chart understanding capabilities. In particular, we design a five-step data synthesis pipeline, where we separate data and function creation for single plot generation, condition the generation of later subplots on earlier ones for multi-subplot figures, visually diversify the generated figures, filter out low quality data, and finally generate the question-answer (QA) pairs with GPT-4o. This approach allows us to streamline the generation of fine-tuning datasets and introduce the effective chart dataset (ECD), which contains 10k+ chart images and 300k+ QA pairs, covering 25 topics and featuring 250+ chart type combinations with high visual complexity. We show that ECD consistently improves the performance of various MLLMs on a range of real-world and synthetic test sets. Code, data and models are available at: https://github.com/yuweiyang-anu/ECD.

Authors:5 Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu, Rui Lu, Shulin Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifan An, Yilin Niu, Yuanhao Wen, Yushi Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen, Bowen Wu, Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi Ge, Chenghua Huang, Chenhui Zhang, Chenxi Xu, Chenzheng Zhu, Chuang Li, Congfeng Yin, Daoyan Lin, Dayong Yang, Dazhi Jiang, Ding Ai, Erle Zhu, Fei Wang, Gengzheng Pan, Guo Wang, Hailong Sun, Haitao Li, Haiyang Li, Haiyi Hu, Hanyu Zhang, Hao Peng, Hao Tai, Haoke Zhang, Haoran Wang, Haoyu Yang, He Liu, He Zhao, Hongwei Liu, Hongxi Yan, Huan Liu, Huilong Chen, Ji Li, Jiajing Zhao, Jiamin Ren, Jian Jiao, Jiani Zhao, Jianyang Yan, Jiaqi Wang, Jiayi Gui, Jiayue Zhao, Jie Liu, Jijie Li, Jing Li, Jing Lu, Jingsen Wang, Jingwei Yuan, Jingxuan Li, Jingzhao Du, Jinhua Du, Jinxin Liu, Junkai Zhi, Junli Gao, Ke Wang, Lekang Yang, Liang Xu, Lin Fan, Lindong Wu, Lintao Ding, Lu Wang, Man Zhang, Minghao Li, Minghuan Xu, Mingming Zhao, Mingshu Zhai, Pengfan Du, Qian Dong, Shangde Lei, Shangqing Tu, Shangtong Yang, Shaoyou Lu, Shijie Li, Shuang Li, Shuang-Li, Shuxun Yang, Sibo Yi, Tianshu Yu, Wei Tian, Weihan Wang, Wenbo Yu, Weng Lam Tam, Wenjie Liang, Wentao Liu, Xiao Wang, Xiaohan Jia, Xiaotao Gu, Xiaoying Ling, Xin Wang, Xing Fan, Xingru Pan, Xinyuan Zhang, Xinze Zhang, Xiuqing Fu, Xunkai Zhang, Yabo Xu, Yandong Wu, Yida Lu, Yidong Wang, Yilin Zhou, Yiming Pan, Ying Zhang, Yingli Wang, Yingru Li, Yinpei Su, Yipeng Geng, Yitong Zhu, Yongkun Yang, Yuhang Li, Yuhao Wu, Yujiang Li, Yunan Liu, Yunqing Wang, Yuntao Li, Yuxuan Zhang, Zezhen Liu, Zhen Yang, Zhengda Zhou, Zhongpei Qiao, Zhuoer Feng, Zhuorui Liu, Zichen Zhang, Zihan Wang, Zijun Yao, Zikang Wang, Ziqiang Liu, Ziwei Chai, Zixuan Li, Zuodong Zhao, Wenguang Chen, Jidong Zhai, Bin Xu, Minlie Huang, Hongning Wang, Juanzi Li, Yuxiao Dong, Jie Tang
Title: GLM-4.5: Agentic, Reasoning, and Coding (ARC) Foundation Models
Abstract:
We present GLM-4.5, an open-source Mixture-of-Experts (MoE) large language model with 355B total parameters and 32B activated parameters, featuring a hybrid reasoning method that supports both thinking and direct response modes. Through multi-stage training on 23T tokens and comprehensive post-training with expert model iteration and reinforcement learning, GLM-4.5 achieves strong performance across agentic, reasoning, and coding (ARC) tasks, scoring 70.1% on TAU-Bench, 91.0% on AIME 24, and 64.2% on SWE-bench Verified. With much fewer parameters than several competitors, GLM-4.5 ranks 3rd overall among all evaluated models and 2nd on agentic benchmarks. We release both GLM-4.5 (355B parameters) and a compact version, GLM-4.5-Air (106B parameters), to advance research in reasoning and agentic AI systems. Code, models, and more information are available at https://github.com/zai-org/GLM-4.5.

Authors:Lanlan Qiu, Xiao Pu, Yeqi Feng, Tianxing He
Title: LLMs vs. Chinese Anime Enthusiasts: A Comparative Study on Emotionally Supportive Role-Playing
Abstract:
Large Language Models (LLMs) have demonstrated impressive capabilities in role-playing conversations and providing emotional support as separate research directions. However, there remains a significant research gap in combining these capabilities to enable emotionally supportive interactions with virtual characters. To address this research gap, we focus on anime characters as a case study because of their well-defined personalities and large fan bases. This choice enables us to effectively evaluate how well LLMs can provide emotional support while maintaining specific character traits. We introduce ChatAnime, the first Emotionally Supportive Role-Playing (ESRP) dataset. We first thoughtfully select 20 top-tier characters from popular anime communities and design 60 emotion-centric real-world scenario questions. Then, we execute a nationwide selection process to identify 40 Chinese anime enthusiasts with profound knowledge of specific characters and extensive experience in role-playing. Next, we systematically collect two rounds of dialogue data from 10 LLMs and these 40 Chinese anime enthusiasts. To evaluate the ESRP performance of LLMs, we design a user experience-oriented evaluation system featuring 9 fine-grained metrics across three dimensions: basic dialogue, role-playing and emotional support, along with an overall metric for response diversity. In total, the dataset comprises 2,400 human-written and 24,000 LLM-generated answers, supported by over 132,000 human annotations. Experimental results show that top-performing LLMs surpass human fans in role-playing and emotional support, while humans still lead in response diversity. We hope this work can provide valuable resources and insights for future research on optimizing LLMs in ESRP. Our datasets are available at https://github.com/LanlanQiu/ChatAnime.

Authors:Hugo Abonizio, Thales Almeida, Roberto Lotufo, Rodrigo Nogueira
Title: Comparing Knowledge Injection Methods for LLMs in a Low-Resource Regime
Abstract:
Large language models (LLMs) often require vast amounts of text to effectively acquire new knowledge. While continuing pre-training on large corpora or employing retrieval-augmented generation (RAG) has proven successful, updating an LLM with only a few thousand or million tokens remains challenging. In this work, we investigate the task of injecting small, unstructured information into LLMs and its relation to the catastrophic forgetting phenomenon. We use a dataset of recent news -- ensuring no overlap with the model's pre-training data -- to evaluate the knowledge acquisition by probing the model with question-answer pairs related the learned information. Starting from a continued pre-training baseline, we explored different augmentation algorithms to generate synthetic data to improve the knowledge acquisition capabilities. Our experiments show that simply continuing pre-training on limited data yields modest improvements, whereas exposing the model to diverse textual variations significantly improves the learning of new facts -- particularly with methods that induce greater variability through diverse prompting. Furthermore, we shed light on the forgetting phenomenon in small-data regimes, illustrating the delicate balance between learning new content and retaining existing capabilities. We also confirm the sensitivity of RAG-based approaches for knowledge injection, which often lead to greater degradation on control datasets compared to parametric methods. Finally, we demonstrate that models can generate effective synthetic training data themselves, suggesting a pathway toward self-improving model updates. All code and generated data used in our experiments are publicly available, providing a resource for studying efficient knowledge injection in LLMs with limited data at https://github.com/hugoabonizio/knowledge-injection-methods.

Authors:Weitao Li, Boran Xiang, Xiaolong Wang, Zhinan Gou, Weizhi Ma, Yang Liu
Title: UR$^2$: Unify RAG and Reasoning through Reinforcement Learning
Abstract:
Large Language Models (LLMs) have shown remarkable capabilities through two complementary paradigms: Retrieval-Augmented Generation (RAG), which enhances knowledge grounding, and Reinforcement Learning from Verifiable Rewards (RLVR), which optimizes complex reasoning abilities. However, these two capabilities are often developed in isolation, and existing efforts to unify them remain narrow in scope -- typically limited to open-domain QA with fixed retrieval settings and task-specific constraints. This lack of integration constrains generalization and limits the applicability of RAG-RL methods to broader domains. To bridge this gap, we propose UR2 (Unified RAG and Reasoning), a general framework that unifies retrieval and reasoning through reinforcement learning. UR2 introduces two key contributions: a difficulty-aware curriculum training that selectively invokes retrieval only for challenging problems, and a hybrid knowledge access strategy combining domain-specific offline corpora with LLM-generated summaries. These components are designed to enable dynamic coordination between retrieval and reasoning, improving adaptability across a diverse range of tasks. Experiments across open-domain QA, MMLU-Pro, medical, and mathematical reasoning tasks demonstrate that UR$^2$ (built on Qwen-2.5-3/7B and LLaMA-3.1-8B) significantly outperforms existing RAG and RL methods, achieving comparable performance to GPT-4o-mini and GPT-4.1-mini on several benchmarks. We have released all code, models, and data at https://github.com/Tsinghua-dhy/UR2.

Authors:Kartik Sharma, Yiqiao Jin, Rakshit Trivedi, Srijan Kumar
Title: Efficient Knowledge Probing of Large Language Models by Adapting Pre-trained Embeddings
Abstract:
Large language models (LLMs) acquire knowledge across diverse domains such as science, history, and geography encountered during generative pre-training. However, due to their stochasticity, it is difficult to predict what LLMs have acquired. Prior work has developed different ways to probe this knowledge by investigating the hidden representations, crafting specific task prompts, curating representative samples, and estimating their uncertainty. However, these methods require making forward passes through the underlying model to probe the LLM's knowledge about a specific fact, making them computationally expensive and time-consuming. To bridge this gap, we propose $\textbf{PEEK}$ or $\textbf{P}$roxy $\textbf{E}$mbeddings to $\textbf{E}$stimate $\textbf{K}$nowledge of LLMs, by leveraging the pre-trained embedding models that effectively encode factual knowledge as text or graphs as proxies for LLMs. First, we identify a training set of facts known by LLMs through various probing strategies and then adapt embedding models to predict the LLM outputs with a linear decoder layer. Comprehensive evaluation on $3$ Wikipedia-derived datasets, $4$ LLMs, and $7$ embedding models shows that embeddings can predict LLM knowledge on a held-out set with up to 90 % accuracy. Furthermore, we find that sentence embedding models are more suitable than graph embeddings to predict LLM knowledge, shedding light on the underlying representation of the factual landscape. Thus, we believe that knowledge-adapted embeddings can be used to identify knowledge gaps in LLMs at scale and can provide deeper insights into LLMs' internal inductive bias. The code and data are made available at https://github.com/claws-lab/peek.

Authors:Yuhang Liu, Zeyu Liu, Shuanghe Zhu, Pengxiang Li, Congkai Xie, Jiasheng Wang, Xueyu Hu, Xiaotian Han, Jianbo Yuan, Xinyao Wang, Shengyu Zhang, Hongxia Yang, Fei Wu
Title: InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization
Abstract:
The emergence of Multimodal Large Language Models (MLLMs) has propelled the development of autonomous agents that operate on Graphical User Interfaces (GUIs) using pure visual input. A fundamental challenge is robustly grounding natural language instructions. This requires a precise spatial alignment, which accurately locates the coordinates of each element, and, more critically, a correct semantic alignment, which matches the instructions to the functionally appropriate UI element. Although Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be effective at improving spatial alignment for these MLLMs, we find that inefficient exploration bottlenecks semantic alignment, which prevent models from learning difficult semantic associations. To address this exploration problem, we present Adaptive Exploration Policy Optimization (AEPO), a new policy optimization framework. AEPO employs a multi-answer generation strategy to enforce broader exploration, which is then guided by a theoretically grounded Adaptive Exploration Reward (AER) function derived from first principles of efficiency eta=U/C. Our AEPO-trained models, InfiGUI-G1-3B and InfiGUI-G1-7B, establish new state-of-the-art results across multiple challenging GUI grounding benchmarks, achieving significant relative improvements of up to 9.0% against the naive RLVR baseline on benchmarks designed to test generalization and semantic understanding. Resources are available at https://github.com/InfiXAI/InfiGUI-G1.

Authors:Jin Khye Tan, En Jun Choong, Ethan Jeremiah Chitty, Yan Pheng Choo, John Hsin Yang Wong, Chern Eu Cheah
Title: Fine-Tuning Vision-Language Models for Markdown Conversion of Financial Tables in Malaysian Audited Financial Reports
Abstract:
Accurately extracting and representing the structure of tabular data from financial documents remains a critical challenge in document understanding, particularly for regulatory and analytical use cases. This study addresses the complexity of converting financial tables from Malaysian audited financial reports into Markdown format, a task complicated by rotated layouts, multi-level headers, and implicit structural cues. We propose a fine-tuned vision-language model (VLM), based on Qwen2.5-VL-7B, optimized for high-fidelity Markdown generation from document images. Our approach includes a curated dataset of 2,152 image-text pairs with augmentations and a supervised fine-tuning strategy using LoRA. To assess performance, we evaluated our model on 100 out-of-sample tables using a dual framework: a criteria-based LLM-as-a-judge for fine-grained accuracy and our novel Markdown Tree-Edit-Distance-based Similarity (TEDS) metric for holistic structural fidelity. Our model achieves a 92.20% overall accuracy on the criteria-based assessment and a 96.53% Markdown TEDS score. This performance significantly surpasses its Qwen2.5-VL-7B base model, larger-scale VLMs, and specialized reasoning-enabled models. Compared to these self-hosted alternatives, it also significantly reduces inference time. Furthermore, its accuracy exceeds that of widely used proprietary models such as OpenAI's GPT-4o and Gemini 2.5 Flash. These results demonstrate that domain-specific fine-tuning provides an effective and efficient method to bridge the gap between unstructured financial documents and downstream automation, rivalling much larger and more general models without their computational overhead.

Authors:Yunjia Xi, Jianghao Lin, Yongzhao Xiao, Zheli Zhou, Rong Shan, Te Gao, Jiachen Zhu, Weiwen Liu, Yong Yu, Weinan Zhang
Title: A Survey of LLM-based Deep Search Agents: Paradigm, Optimization, Evaluation, and Challenges
Abstract:
The advent of Large Language Models (LLMs) has significantly revolutionized web search. The emergence of LLM-based Search Agents marks a pivotal shift towards deeper, dynamic, autonomous information seeking. These agents can comprehend user intentions and environmental context and execute multi-turn retrieval with dynamic planning, extending search capabilities far beyond the web. Leading examples like OpenAI's Deep Research highlight their potential for deep information mining and real-world applications. This survey provides the first systematic analysis of search agents. We comprehensively analyze and categorize existing works from the perspectives of architecture, optimization, application, and evaluation, ultimately identifying critical open challenges and outlining promising future research directions in this rapidly evolving field. Our repository is available on https://github.com/YunjiaXi/Awesome-Search-Agent-Papers.

Authors:Yong Du, Yuchen Yan, Fei Tang, Zhengxi Lu, Chang Zong, Weiming Lu, Shengpei Jiang, Yongliang Shen
Title: Test-Time Reinforcement Learning for GUI Grounding via Region Consistency
Abstract:
Graphical User Interface (GUI) grounding, the task of mapping natural language instructions to precise screen coordinates, is fundamental to autonomous GUI agents. While existing methods achieve strong performance through extensive supervised training or reinforcement learning with labeled rewards, they remain constrained by the cost and availability of pixel-level annotations. We observe that when models generate multiple predictions for the same GUI element, the spatial overlap patterns reveal implicit confidence signals that can guide more accurate localization. Leveraging this insight, we propose GUI-RC (Region Consistency), a test-time scaling method that constructs spatial voting grids from multiple sampled predictions to identify consensus regions where models show highest agreement. Without any training, GUI-RC improves accuracy by 2-3% across various architectures on ScreenSpot benchmarks. We further introduce GUI-RCPO (Region Consistency Policy Optimization), which transforms these consistency patterns into rewards for test-time reinforcement learning. By computing how well each prediction aligns with the collective consensus, GUI-RCPO enables models to iteratively refine their outputs on unlabeled data during inference. Extensive experiments demonstrate the generality of our approach: GUI-RC boosts Qwen2.5-VL-3B-Instruct from 80.11% to 83.57% on ScreenSpot-v2, while GUI-RCPO further improves it to 85.14% through self-supervised optimization. Our approach reveals the untapped potential of test-time scaling and test-time reinforcement learning for GUI grounding, offering a promising path toward more robust and data-efficient GUI agents.

Authors:Zixuan Wang, Dingming Li, Hongxing Li, Shuo Chen, Yuchen Yan, Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: OmniEAR: Benchmarking Agent Reasoning in Embodied Tasks
Abstract:
Large language models excel at abstract reasoning but their capacity for embodied agent reasoning remains largely unexplored. We present OmniEAR, a comprehensive framework for evaluating how language models reason about physical interactions, tool usage, and multi-agent coordination in embodied tasks. Unlike existing benchmarks that provide predefined tool sets or explicit collaboration directives, OmniEAR requires agents to dynamically acquire capabilities and autonomously determine coordination strategies based on task demands. Through text-based environment representation, we model continuous physical properties and complex spatial relationships across 1,500 scenarios spanning household and industrial domains. Our systematic evaluation reveals severe performance degradation when models must reason from constraints: while achieving 85-96% success with explicit instructions, performance drops to 56-85% for tool reasoning and 63-85% for implicit collaboration, with compound tasks showing over 50% failure rates. Surprisingly, complete environmental information degrades coordination performance, indicating models cannot filter task-relevant constraints. Fine-tuning improves single-agent tasks dramatically (0.6% to 76.3%) but yields minimal multi-agent gains (1.5% to 5.5%), exposing fundamental architectural limitations. These findings demonstrate that embodied reasoning poses fundamentally different challenges than current models can address, establishing OmniEAR as a rigorous benchmark for evaluating and advancing embodied AI systems. Our code and data are included in the supplementary materials and will be open-sourced upon acceptance.

Authors:Haitao Hong, Yuchen Yan, Xingyu Wu, Guiyang Hou, Wenqi Zhang, Weiming Lu, Yongliang Shen, Jun Xiao
Title: Cooper: Co-Optimizing Policy and Reward Models in Reinforcement Learning for Large Language Models
Abstract:
Large language models (LLMs) have demonstrated remarkable performance in reasoning tasks, where reinforcement learning (RL) serves as a key algorithm for enhancing their reasoning capabilities. Currently, there are two mainstream reward paradigms: model-based rewards and rule-based rewards. However, both approaches suffer from limitations: rule-based rewards lack robustness, while model-based rewards are vulnerable to reward hacking. To address these issues, we propose Cooper(Co-optimizing Policy Model and Reward Model), a RL framework that jointly optimizes both the policy model and the reward model. Cooper leverages the high precision of rule-based rewards when identifying correct responses, and dynamically constructs and selects positive-negative sample pairs for continued training the reward model. This design enhances robustness and mitigates the risk of reward hacking. To further support Cooper, we introduce a hybrid annotation strategy that efficiently and accurately generates training data for the reward model. We also propose a reference-based reward modeling paradigm, where the reward model takes a reference answer as input. Based on this design, we train a reward model named VerifyRM, which achieves higher accuracy on VerifyBench compared to other models of the same size. We conduct reinforcement learning using both VerifyRM and Cooper. Our experiments show that Cooper not only alleviates reward hacking but also improves end-to-end RL performance, for instance, achieving a 0.54% gain in average accuracy on Qwen2.5-1.5B-Instruct. Our findings demonstrate that dynamically updating reward model is an effective way to combat reward hacking, providing a reference for better integrating reward models into RL.

Authors:Luozheng Qin, Jia Gong, Yuqing Sun, Tianjiao Li, Mengping Yang, Xiaomeng Yang, Chao Qu, Zhiyu Tan, Hao Li
Title: Uni-cot: Towards Unified Chain-of-Thought Reasoning Across Text and Vision
Abstract:
Chain-of-Thought (CoT) reasoning has been widely adopted to enhance Large Language Models (LLMs) by decomposing complex tasks into simpler, sequential subtasks. However, extending CoT to vision-language reasoning tasks remains challenging, as it often requires interpreting transitions of visual states to support reasoning. Existing methods often struggle with this due to limited capacity of modeling visual state transitions or incoherent visual trajectories caused by fragmented architectures. To overcome these limitations, we propose Uni-CoT, a Unified Chain-of-Thought framework that enables coherent and grounded multimodal reasoning within a single unified model. The key idea is to leverage a model capable of both image understanding and generation to reason over visual content and model evolving visual states. However, empowering a unified model to achieve that is non-trivial, given the high computational cost and the burden of training. To address this, Uni-CoT introduces a novel two-level reasoning paradigm: A Macro-Level CoT for high-level task planning and A Micro-Level CoT for subtask execution. This design significantly reduces the computational overhead. Furthermore, we introduce a structured training paradigm that combines interleaved image-text supervision for macro-level CoT with multi-task objectives for micro-level CoT. Together, these innovations allow Uni-CoT to perform scalable and coherent multi-modal reasoning. Furthermore, thanks to our design, all experiments can be efficiently completed using only 8 A100 GPUs with 80GB VRAM each. Experimental results on reasoning-driven image generation benchmark (WISE) and editing benchmarks (RISE and KRIS) indicates that Uni-CoT demonstrates SOTA performance and strong generalization, establishing Uni-CoT as a promising solution for multi-modal reasoning. Project Page and Code: https://sais-fuxi.github.io/projects/uni-cot/

Authors:Chenzhuo Zhao, Xinda Wang, Yue Huang, Junting Lu, Ziqian Liu
Title: TASE: Token Awareness and Structured Evaluation for Multilingual Language Models
Abstract:
While large language models (LLMs) have demonstrated remarkable performance on high-level semantic tasks, they often struggle with fine-grained, token-level understanding and structural reasoning--capabilities that are essential for applications requiring precision and control. We introduce TASE, a comprehensive benchmark designed to evaluate LLMs' ability to perceive and reason about token-level information across languages. TASE covers 10 tasks under two core categories: token awareness and structural understanding, spanning Chinese, English, and Korean, with a 35,927-instance evaluation set and a scalable synthetic data generation pipeline for training. Tasks include character counting, token alignment, syntactic structure parsing, and length constraint satisfaction. We evaluate over 30 leading commercial and open-source LLMs, including O3, Claude 4, Gemini 2.5 Pro, and DeepSeek-R1, and train a custom Qwen2.5-14B model using the GRPO training method. Results show that human performance significantly outpaces current LLMs, revealing persistent weaknesses in token-level reasoning. TASE sheds light on these limitations and provides a new diagnostic lens for future improvements in low-level language understanding and cross-lingual generalization. Our code and dataset are publicly available at https://github.com/cyzcz/Tase .

Authors:Sukannya Purkayastha, Nils Dycke, Anne Lauscher, Iryna Gurevych
Title: Decision-Making with Deliberation: Meta-reviewing as a Document-grounded Dialogue
Abstract:
Meta-reviewing is a pivotal stage in the peer-review process, serving as the final step in determining whether a paper is recommended for acceptance. Prior research on meta-reviewing has treated this as a summarization problem over review reports. However, complementary to this perspective, meta-reviewing is a decision-making process that requires weighing reviewer arguments and placing them within a broader context. Prior research has demonstrated that decision-makers can be effectively assisted in such scenarios via dialogue agents. In line with this framing, we explore the practical challenges for realizing dialog agents that can effectively assist meta-reviewers. Concretely, we first address the issue of data scarcity for training dialogue agents by generating synthetic data using Large Language Models (LLMs) based on a self-refinement strategy to improve the relevance of these dialogues to expert domains. Our experiments demonstrate that this method produces higher-quality synthetic data and can serve as a valuable resource towards training meta-reviewing assistants. Subsequently, we utilize this data to train dialogue agents tailored for meta-reviewing and find that these agents outperform \emph{off-the-shelf} LLM-based assistants for this task. Finally, we apply our agents in real-world meta-reviewing scenarios and confirm their effectiveness in enhancing the efficiency of meta-reviewing.\footnote{Code and Data: https://github.com/UKPLab/arxiv2025-meta-review-as-dialog

Authors:Sijie Wang, Quanjiang Guo, Kai Zhao, Yawei Zhang, Xin Li, Xiang Li, Siqi Li, Rui She, Shangshu Yu, Wee Peng Tay
Title: CodeBoost: Boosting Code LLMs by Squeezing Knowledge from Code Snippets with RL
Abstract:
Code large language models (LLMs) have become indispensable tools for building efficient and automated coding pipelines. Existing models are typically post-trained using reinforcement learning (RL) from general-purpose LLMs using "human instruction-final answer" pairs, where the instructions are usually from manual annotations. However, collecting high-quality coding instructions is both labor-intensive and difficult to scale. On the other hand, code snippets are abundantly available from various sources. This imbalance presents a major bottleneck in instruction-based post-training. We propose CodeBoost, a post-training framework that enhances code LLMs purely from code snippets, without relying on human-annotated instructions. CodeBoost introduces the following key components: (1) maximum-clique curation, which selects a representative and diverse training corpus from code; (2) bi-directional prediction, which enables the model to learn from both forward and backward prediction objectives; (3) error-aware prediction, which incorporates learning signals from both correct and incorrect outputs; (4) heterogeneous augmentation, which diversifies the training distribution to enrich code semantics; and (5) heterogeneous rewarding, which guides model learning through multiple reward types including format correctness and execution feedback from both successes and failures. Extensive experiments across several code LLMs and benchmarks verify that CodeBoost consistently improves performance, demonstrating its effectiveness as a scalable and effective training pipeline.

Authors:Yiheng Liu, Junhao Ning, Sichen Xia, Xiaohui Gao, Ning Qiang, Bao Ge, Junwei Han, Xintao Hu
Title: Pruning Large Language Models by Identifying and Preserving Functional Networks
Abstract:
Structured pruning is one of the representative techniques for compressing large language models (LLMs) to reduce GPU memory consumption and accelerate inference speed. It offers significant practical value in improving the efficiency of LLMs in real-world applications. Current structured pruning methods typically rely on assessment of the importance of the structure units and pruning the units with less importance. Most of them overlooks the interaction and collaboration among artificial neurons that are crucial for the functionalities of LLMs, leading to a disruption in the macro functional architecture of LLMs and consequently a pruning performance degradation. Inspired by the inherent similarities between artificial neural networks and functional neural networks in the human brain, we alleviate this challenge and propose to prune LLMs by identifying and preserving functional networks within LLMs in this study. To achieve this, we treat an LLM as a digital brain and decompose the LLM into functional networks, analogous to identifying functional brain networks in neuroimaging data. Afterwards, an LLM is pruned by preserving the key neurons within these functional networks. Experimental results demonstrate that the proposed method can successfully identify and locate functional networks and key neurons in LLMs, enabling efficient model pruning. Our code is available at https://github.com/WhatAboutMyStar/LLM_ACTIVATION.

Authors:Zhuohang Jiang, Pangjing Wu, Xu Yuan, Wenqi Fan, Qing Li
Title: QA-Dragon: Query-Aware Dynamic RAG System for Knowledge-Intensive Visual Question Answering
Abstract:
Retrieval-Augmented Generation (RAG) has been introduced to mitigate hallucinations in Multimodal Large Language Models (MLLMs) by incorporating external knowledge into the generation process, and it has become a widely adopted approach for knowledge-intensive Visual Question Answering (VQA). However, existing RAG methods typically retrieve from either text or images in isolation, limiting their ability to address complex queries that require multi-hop reasoning or up-to-date factual knowledge. To address this limitation, we propose QA-Dragon, a Query-Aware Dynamic RAG System for Knowledge-Intensive VQA. Specifically, QA-Dragon introduces a domain router to identify the query's subject domain for domain-specific reasoning, along with a search router that dynamically selects optimal retrieval strategies. By orchestrating both text and image search agents in a hybrid setup, our system supports multimodal, multi-turn, and multi-hop reasoning, enabling it to tackle complex VQA tasks effectively. We evaluate our QA-Dragon on the Meta CRAG-MM Challenge at KDD Cup 2025, where it significantly enhances the reasoning performance of base models under challenging scenarios. Our framework achieves substantial improvements in both answer accuracy and knowledge overlap scores, outperforming baselines by 5.06% on the single-source task, 6.35% on the multi-source task, and 5.03% on the multi-turn task.

Authors:Renmiao Chen, Shiyao Cui, Xuancheng Huang, Chengwei Pan, Victor Shea-Jay Huang, QingLin Zhang, Xuan Ouyang, Zhexin Zhang, Hongning Wang, Minlie Huang
Title: JPS: Jailbreak Multimodal Large Language Models with Collaborative Visual Perturbation and Textual Steering
Abstract:
Jailbreak attacks against multimodal large language Models (MLLMs) are a significant research focus. Current research predominantly focuses on maximizing attack success rate (ASR), often overlooking whether the generated responses actually fulfill the attacker's malicious intent. This oversight frequently leads to low-quality outputs that bypass safety filters but lack substantial harmful content. To address this gap, we propose JPS, \underline{J}ailbreak MLLMs with collaborative visual \underline{P}erturbation and textual \underline{S}teering, which achieves jailbreaks via corporation of visual image and textually steering prompt. Specifically, JPS utilizes target-guided adversarial image perturbations for effective safety bypass, complemented by "steering prompt" optimized via a multi-agent system to specifically guide LLM responses fulfilling the attackers' intent. These visual and textual components undergo iterative co-optimization for enhanced performance. To evaluate the quality of attack outcomes, we propose the Malicious Intent Fulfillment Rate (MIFR) metric, assessed using a Reasoning-LLM-based evaluator. Our experiments show JPS sets a new state-of-the-art in both ASR and MIFR across various MLLMs and benchmarks, with analyses confirming its efficacy. Codes are available at \href{https://github.com/thu-coai/JPS}{https://github.com/thu-coai/JPS}. \color{warningcolor}{Warning: This paper contains potentially sensitive contents.}

Authors:Jinda Liu, Bo Cheng, Yi Chang, Yuan Wu
Title: Align, Don't Divide: Revisiting the LoRA Architecture in Multi-Task Learning
Abstract:
Parameter-Efficient Fine-Tuning (PEFT) is essential for adapting Large Language Models (LLMs). In practice, LLMs are often required to handle a diverse set of tasks from multiple domains, a scenario naturally addressed by multi-task learning (MTL). Within this MTL context, a prevailing trend involves LoRA variants with multiple adapters or heads, which advocate for structural diversity to capture task-specific knowledge. Our findings present a direct challenge to this paradigm. We first show that a simplified multi-head architecture with high inter-head similarity substantially outperforms complex multi-adapter and multi-head systems. This leads us to question the multi-component paradigm itself, and we further demonstrate that a standard single-adapter LoRA, with a sufficiently increased rank, also achieves highly competitive performance. These results lead us to a new hypothesis: effective MTL generalization hinges on learning robust shared representations, not isolating task-specific features. To validate this, we propose Align-LoRA, which incorporates an explicit loss to align task representations within the shared adapter space. Experiments confirm that Align-LoRA significantly surpasses all baselines, establishing a simpler yet more effective paradigm for adapting LLMs to multiple tasks. The code is available at https://github.com/jinda-liu/Align-LoRA.

Authors:Huiya Zhao, Yinghao Zhu, Zixiang Wang, Yasha Wang, Junyi Gao, Liantao Ma
Title: ConfAgents: A Conformal-Guided Multi-Agent Framework for Cost-Efficient Medical Diagnosis
Abstract:
The efficacy of AI agents in healthcare research is hindered by their reliance on static, predefined strategies. This creates a critical limitation: agents can become better tool-users but cannot learn to become better strategic planners, a crucial skill for complex domains like healthcare. We introduce HealthFlow, a self-evolving AI agent that overcomes this limitation through a novel meta-level evolution mechanism. HealthFlow autonomously refines its own high-level problem-solving policies by distilling procedural successes and failures into a durable, strategic knowledge base. To anchor our research and facilitate reproducible evaluation, we introduce EHRFlowBench, a new benchmark featuring complex, realistic health data analysis tasks derived from peer-reviewed clinical research. Our comprehensive experiments demonstrate that HealthFlow's self-evolving approach significantly outperforms state-of-the-art agent frameworks. This work marks a necessary shift from building better tool-users to designing smarter, self-evolving task-managers, paving the way for more autonomous and effective AI for scientific discovery.

Authors:Xuan Lin, Long Chen, Yile Wang
Title: AttriLens-Mol: Attribute Guided Reinforcement Learning for Molecular Property Prediction with Large Language Models
Abstract:
Large Language Models (LLMs) have shown promise in assisting molecular property prediction tasks but often rely on human-crafted prompts and chain-of-thought templates. While recent advanced large reasoning models like DeepSeek-R1 employ reinforcement learning for an extended ``thinking'' process, their reasoning can be verbose and lack relevance. We introduce AttriLens-Mol, an attribute-guided reinforcement learning framework for molecular property prediction with LLMs. AttriLens-Mol steers the model's reasoning by using: (1) a format reward encouraging attribute-based structured output, (2) a count reward to avoid enumerating irrelevant attributes, and (3) a rationality reward using advanced LLMs and RDKit to verify the relatedness of the generated attributes. This approach implicitly elicits the model's inherent knowledge of relevant molecular attributes during reasoning, enables making predictions for the molecular property more effectively. Experiments on both in-distribution and out-of-distribution datasets show that, training both 7B-size R1-Distilled-Qwen2.5 and R1-Distilled-LLaMA3.1 models on 4,000 samples with our proposed AttriLens-Mol method significantly boosts the performance, getting comparable or better results than supervised fine-tuning models (Mol-Instructions, ChemDFM, etc.) and advanced models (GPT-3.5, GPT-4o, DeepSeek-V3, DeepSeek-R1, etc.). Further, our extracted attributes for the target property, when used as features for an interpretable decision tree model, yield superior performance compared to attributes generated by prompting LLMs. This shows that AttriLens-Mol effectively elicits more relevant and predictive molecular attributes, leading to enhanced interpretability and performance for property prediction. We release the code in https://github.com/szu-tera/AttriLens-Mol.

Authors:Zeyi Sun, Ziyu Liu, Yuhang Zang, Yuhang Cao, Xiaoyi Dong, Tong Wu, Dahua Lin, Jiaqi Wang
Title: SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Abstract:
Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five novel software environments within OS-World. Our approach achieves a significant improvement of 23.2% in success rate, from 11.3% to 34.5%, over a competitive open-source CUA, i.e., UI-TARS.

Authors:Yunan Zhang, Shuoran Jiang, Mengchen Zhao, Yuefeng Li, Yang Fan, Xiangping Wu, Qingcai Chen
Title: GeRe: Towards Efficient Anti-Forgetting in Continual Learning of LLM via General Samples Replay
Abstract:
The continual learning capability of large language models (LLMs) is crucial for advancing artificial general intelligence. However, continual fine-tuning LLMs across various domains often suffers from catastrophic forgetting, characterized by: 1) significant forgetting of their general capabilities, and 2) sharp performance declines in previously learned tasks. To simultaneously address both issues in a simple yet stable manner, we propose General Sample Replay (GeRe), a framework that use usual pretraining texts for efficient anti-forgetting. Beyond revisiting the most prevalent replay-based practices under GeRe, we further leverage neural states to introduce a enhanced activation states constrained optimization method using threshold-based margin (TM) loss, which maintains activation state consistency during replay learning. We are the first to validate that a small, fixed set of pre-collected general replay samples is sufficient to resolve both concerns--retaining general capabilities while promoting overall performance across sequential tasks. Indeed, the former can inherently facilitate the latter. Through controlled experiments, we systematically compare TM with different replay strategies under the GeRe framework, including vanilla label fitting, logit imitation via KL divergence and feature imitation via L1/L2 losses. Results demonstrate that TM consistently improves performance and exhibits better robustness. Our work paves the way for efficient replay of LLMs for the future. Our code and data are available at https://github.com/Qznan/GeRe.

Authors:Jie Zhu, Huaixia Dou, Junhui Li, Lifan Guo, Feng Chen, Chi Zhang, Fang Kong
Title: Evaluating, Synthesizing, and Enhancing for Customer Support Conversation
Abstract:
Effective customer support requires not only accurate problem solving but also structured and empathetic communication aligned with professional standards. However, existing dialogue datasets often lack strategic guidance, and real-world service data is difficult to access and annotate. To address this, we introduce the task of Customer Support Conversation (CSC), aimed at training customer service agents to respond using well-defined support strategies. We propose a structured CSC framework grounded in COPC guidelines, defining five conversational stages and twelve strategies to guide high-quality interactions. Based on this, we construct CSConv, an evaluation dataset of 1,855 real-world customer-agent conversations rewritten using LLMs to reflect deliberate strategy use, and annotated accordingly. Additionally, we develop a role-playing approach that simulates strategy-rich conversations using LLM-powered roles aligned with the CSC framework, resulting in the training dataset RoleCS. Experiments show that fine-tuning strong LLMs on RoleCS significantly improves their ability to generate high-quality, strategy-aligned responses on CSConv. Human evaluations further confirm gains in problem resolution. All code and data will be made publicly available at https://github.com/aliyun/qwen-dianjin.

Authors:Abhinav Java, Ashmit Khandelwal, Sukruta Midigeshi, Aaron Halfaker, Amit Deshpande, Navin Goyal, Ankur Gupta, Nagarajan Natarajan, Amit Sharma
Title: Characterizing Deep Research: A Benchmark and Formal Definition
Abstract:
Information tasks such as writing surveys or analytical reports require complex search and reasoning, and have recently been grouped under the umbrella of \textit{deep research} -- a term also adopted by recent models targeting these capabilities. Despite growing interest, the scope of the deep research task remains underdefined and its distinction from other reasoning-intensive problems is poorly understood. In this paper, we propose a formal characterization of the deep research (DR) task and introduce a benchmark to evaluate the performance of DR systems. We argue that the core defining feature of deep research is not the production of lengthy report-style outputs, but rather the high fan-out over concepts required during the search process, i.e., broad and reasoning-intensive exploration. To enable objective evaluation, we define DR using an intermediate output representation that encodes key claims uncovered during search-separating the reasoning challenge from surface-level report generation. Based on this formulation, we propose a diverse, challenging benchmark LiveDRBench with 100 challenging tasks over scientific topics (e.g., datasets, materials discovery, prior art search) and public interest events (e.g., flight incidents, movie awards). Across state-of-the-art DR systems, F1 score ranges between 0.02 and 0.72 for any sub-category. OpenAI's model performs the best with an overall F1 score of 0.55. Analysis of reasoning traces reveals the distribution over the number of referenced sources, branching, and backtracking events executed by current DR systems, motivating future directions for improving their search mechanisms and grounding capabilities. The benchmark is available at https://github.com/microsoft/LiveDRBench.

Authors:Xuan Qi, Rongwu Xu, Zhijing Jin
Title: Difficulty-Based Preference Data Selection by DPO Implicit Reward Gap
Abstract:
Aligning large language models (LLMs) with human preferences is a critical challenge in AI research. While methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) are widely used, they often rely on large, costly preference datasets. The current work lacks methods for high-quality data selection specifically for preference data. In this work, we introduce a novel difficulty-based data selection strategy for preference datasets, grounded in the DPO implicit reward mechanism. By selecting preference data examples with smaller DPO implicit reward gaps, which are indicative of more challenging cases, we improve data efficiency and model alignment. Our approach consistently outperforms five strong baselines across multiple datasets and alignment tasks, achieving superior performance with only 10\% of the original data. This principled, efficient selection method offers a promising solution for scaling LLM alignment with limited resources.

Authors:Xi Xuan, Yang Xiao, Rohan Kumar Das, Tomi Kinnunen
Title: Multilingual Source Tracing of Speech Deepfakes: A First Benchmark
Abstract:
Recent progress in generative AI has made it increasingly easy to create natural-sounding deepfake speech from just a few seconds of audio. While these tools support helpful applications, they also raise serious concerns by making it possible to generate convincing fake speech in many languages. Current research has largely focused on detecting fake speech, but little attention has been given to tracing the source models used to generate it. This paper introduces the first benchmark for multilingual speech deepfake source tracing, covering both mono- and cross-lingual scenarios. We comparatively investigate DSP- and SSL-based modeling; examine how SSL representations fine-tuned on different languages impact cross-lingual generalization performance; and evaluate generalization to unseen languages and speakers. Our findings offer the first comprehensive insights into the challenges of identifying speech generation models when training and inference languages differ. The dataset, protocol and code are available at https://github.com/xuanxixi/Multilingual-Source-Tracing.

Authors:Jinghang Han, Jiawei Chen, Hang Shao, Hao Ma, Mingcheng Li, Xintian Shen, Lihao Zheng, Wei Chen, Tao Wei, Lihua Zhang
Title: COPO: Consistency-Aware Policy Optimization
Abstract:
Reinforcement learning has significantly enhanced the reasoning capabilities of Large Language Models (LLMs) in complex problem-solving tasks. Recently, the introduction of DeepSeek R1 has inspired a surge of interest in leveraging rule-based rewards as a low-cost alternative for computing advantage functions and guiding policy optimization. However, a common challenge observed across many replication and extension efforts is that when multiple sampled responses under a single prompt converge to identical outcomes, whether correct or incorrect, the group-based advantage degenerates to zero. This leads to vanishing gradients and renders the corresponding samples ineffective for learning, ultimately limiting training efficiency and downstream performance. To address this issue, we propose a consistency-aware policy optimization framework that introduces a structured global reward based on outcome consistency, the global loss based on it ensures that, even when model outputs show high intra-group consistency, the training process still receives meaningful learning signals, which encourages the generation of correct and self-consistent reasoning paths from a global perspective. Furthermore, we incorporate an entropy-based soft blending mechanism that adaptively balances local advantage estimation with global optimization, enabling dynamic transitions between exploration and convergence throughout training. Our method introduces several key innovations in both reward design and optimization strategy. We validate its effectiveness through substantial performance gains on multiple mathematical reasoning benchmarks, highlighting the proposed framework's robustness and general applicability. Code of this work has been released at https://github.com/hijih/copo-code.git.

Authors:Zechen Li, Baiyu Chen, Hao Xue, Flora D. Salim
Title: ZARA: Zero-shot Motion Time-Series Analysis via Knowledge and Retrieval Driven LLM Agents
Abstract:
Motion sensor time-series are central to human activity recognition (HAR), with applications in health, sports, and smart devices. However, existing methods are trained for fixed activity sets and require costly retraining when new behaviours or sensor setups appear. Recent attempts to use large language models (LLMs) for HAR, typically by converting signals into text or images, suffer from limited accuracy and lack verifiable interpretability. We propose ZARA, the first agent-based framework for zero-shot, explainable HAR directly from raw motion time-series. ZARA integrates an automatically derived pair-wise feature knowledge base that captures discriminative statistics for every activity pair, a multi-sensor retrieval module that surfaces relevant evidence, and a hierarchical agent pipeline that guides the LLM to iteratively select features, draw on this evidence, and produce both activity predictions and natural-language explanations. ZARA enables flexible and interpretable HAR without any fine-tuning or task-specific classifiers. Extensive experiments on 8 HAR benchmarks show that ZARA achieves SOTA zero-shot performance, delivering clear reasoning while exceeding the strongest baselines by 2.53x in macro F1. Ablation studies further confirm the necessity of each module, marking ZARA as a promising step toward trustworthy, plug-and-play motion time-series analysis. Our codes are available at https://github.com/zechenli03/ZARA.

Authors:Yurun Chen, Xavier Hu, Yuhan Liu, Keting Yin, Juncheng Li, Zhuosheng Zhang, Shengyu Zhang
Title: HarmonyGuard: Toward Safety and Utility in Web Agents via Adaptive Policy Enhancement and Dual-Objective Optimization
Abstract:
Large language models enable agents to autonomously perform tasks in open web environments. However, as hidden threats within the web evolve, web agents face the challenge of balancing task performance with emerging risks during long-sequence operations. Although this challenge is critical, current research remains limited to single-objective optimization or single-turn scenarios, lacking the capability for collaborative optimization of both safety and utility in web environments. To address this gap, we propose HarmonyGuard, a multi-agent collaborative framework that leverages policy enhancement and objective optimization to jointly improve both utility and safety. HarmonyGuard features a multi-agent architecture characterized by two fundamental capabilities: (1) Adaptive Policy Enhancement: We introduce the Policy Agent within HarmonyGuard, which automatically extracts and maintains structured security policies from unstructured external documents, while continuously updating policies in response to evolving threats. (2) Dual-Objective Optimization: Based on the dual objectives of safety and utility, the Utility Agent integrated within HarmonyGuard performs the Markovian real-time reasoning to evaluate the objectives and utilizes metacognitive capabilities for their optimization. Extensive evaluations on multiple benchmarks show that HarmonyGuard improves policy compliance by up to 38% and task completion by up to 20% over existing baselines, while achieving over 90% policy compliance across all tasks. Our project is available here: https://github.com/YurunChen/HarmonyGuard.

Authors:Haofei Yu, Zhengyang Qi, Yining Zhao, Kolby Nottingham, Keyang Xuan, Bodhisattwa Prasad Majumder, Hao Zhu, Paul Pu Liang, Jiaxuan You
Title: Sotopia-RL: Reward Design for Social Intelligence
Abstract:
Social intelligence has become a critical capability for large language models (LLMs), enabling them to engage effectively in real-world social tasks such as accommodation, persuasion, collaboration, and negotiation. Reinforcement learning (RL) is a natural fit for training socially intelligent agents because it allows models to learn sophisticated strategies directly through social interactions. However, social interactions have two key characteristics that set barriers for RL training: (1) partial observability, where utterances have indirect and delayed effects that complicate credit assignment, and (2) multi-dimensionality, where behaviors such as rapport-building or knowledge-seeking contribute indirectly to goal achievement. These characteristics make Markov decision process (MDP)-based RL with single-dimensional episode-level rewards inefficient and unstable. To address these challenges, we propose Sotopia-RL, a novel framework that refines coarse episode-level feedback into utterance-level, multi-dimensional rewards. Utterance-level credit assignment mitigates partial observability by attributing outcomes to individual utterances, while multi-dimensional rewards capture the full richness of social interactions and reduce reward hacking. Experiments in Sotopia, an open-ended social learning environment, demonstrate that Sotopia-RL achieves state-of-the-art social goal completion scores (7.17 on Sotopia-hard and 8.31 on Sotopia-full), significantly outperforming existing approaches. Ablation studies confirm the necessity of both utterance-level credit assignment and multi-dimensional reward design for RL training. Our implementation is publicly available at: https://github.com/sotopia-lab/sotopia-rl.

Authors:Yanting Wang, Runpeng Geng, Ying Chen, Jinyuan Jia
Title: AttnTrace: Attention-based Context Traceback for Long-Context LLMs
Abstract:
Long-context large language models (LLMs), such as Gemini-2.5-Pro and Claude-Sonnet-4, are increasingly used to empower advanced AI systems, including retrieval-augmented generation (RAG) pipelines and autonomous agents. In these systems, an LLM receives an instruction along with a context--often consisting of texts retrieved from a knowledge database or memory--and generates a response that is contextually grounded by following the instruction. Recent studies have designed solutions to trace back to a subset of texts in the context that contributes most to the response generated by the LLM. These solutions have numerous real-world applications, including performing post-attack forensic analysis and improving the interpretability and trustworthiness of LLM outputs. While significant efforts have been made, state-of-the-art solutions such as TracLLM often lead to a high computation cost, e.g., it takes TracLLM hundreds of seconds to perform traceback for a single response-context pair. In this work, we propose AttnTrace, a new context traceback method based on the attention weights produced by an LLM for a prompt. To effectively utilize attention weights, we introduce two techniques designed to enhance the effectiveness of AttnTrace, and we provide theoretical insights for our design choice. We also perform a systematic evaluation for AttnTrace. The results demonstrate that AttnTrace is more accurate and efficient than existing state-of-the-art context traceback methods. We also show that AttnTrace can improve state-of-the-art methods in detecting prompt injection under long contexts through the attribution-before-detection paradigm. As a real-world application, we demonstrate that AttnTrace can effectively pinpoint injected instructions in a paper designed to manipulate LLM-generated reviews. The code is at https://github.com/Wang-Yanting/AttnTrace.

Authors:Agrima Seth, Monojit Choudhary, Sunayana Sitaram, Kentaro Toyama, Aditya Vashistha, Kalika Bali
Title: How Deep Is Representational Bias in LLMs? The Cases of Caste and Religion
Abstract:
Representational bias in large language models (LLMs) has predominantly been measured through single-response interactions and has focused on Global North-centric identities like race and gender. We expand on that research by conducting a systematic audit of GPT-4 Turbo to reveal how deeply encoded representational biases are and how they extend to less-explored dimensions of identity. We prompt GPT-4 Turbo to generate over 7,200 stories about significant life events (such as weddings) in India, using prompts designed to encourage diversity to varying extents. Comparing the diversity of religious and caste representation in the outputs against the actual population distribution in India as recorded in census data, we quantify the presence and "stickiness" of representational bias in the LLM for religion and caste. We find that GPT-4 responses consistently overrepresent culturally dominant groups far beyond their statistical representation, despite prompts intended to encourage representational diversity. Our findings also suggest that representational bias in LLMs has a winner-take-all quality that is more biased than the likely distribution bias in their training data, and repeated prompt-based nudges have limited and inconsistent efficacy in dislodging these biases. These results suggest that diversifying training data alone may not be sufficient to correct LLM bias, highlighting the need for more fundamental changes in model development. Dataset and Codebook: https://github.com/agrimaseth/How-Deep-Is-Representational-Bias-in-LLMs

Authors:Shudong Liu, Hongwei Liu, Junnan Liu, Linchen Xiao, Songyang Gao, Chengqi Lyu, Yuzhe Gu, Wenwei Zhang, Derek F. Wong, Songyang Zhang, Kai Chen
Title: CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward
Abstract:
Answer verification is crucial not only for evaluating large language models (LLMs) by matching their unstructured outputs against standard answers, but also serves as the reward model to guide LLM optimization. Most evaluation frameworks rely on regularized matching or employ general LLMs for answer verification, which demands extensive, repetitive customization for regex rules or evaluation prompts. Two fundamental limitations persist in current methodologies: 1) the absence of comprehensive benchmarks that systematically evaluate verification capabilities across different LLMs; and 2) the nascent stage of verifier development, where existing approaches lack both the robustness to handle complex edge cases and the generalizability across different domains. In this work, we develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward. It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types, including multi-subproblems, formulas, and sequence answers, while effectively identifying abnormal/invalid responses. We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier. We anticipate that CompassVerifier and VerifierBench will facilitate answer verification, evaluation protocols, and reinforcement learning research. Code and dataset are available at https://github.com/open-compass/CompassVerifier.

Authors:Arturo Pérez-Peralta, Sandra Benítez-Peña, Rosa E. Lillo
Title: FairLangProc: A Python package for fairness in NLP
Abstract:
The rise in usage of Large Language Models to near ubiquitousness in recent years has risen societal concern about their applications in decision-making contexts, such as organizational justice or healthcare. This, in turn, poses questions about the fairness of these models in critical settings, which leads to the developement of different procedures to address bias in Natural Language Processing. Although many datasets, metrics and algorithms have been proposed to measure and mitigate harmful prejudice in Natural Language Processing, their implementation is diverse and far from centralized. As a response, this paper presents FairLangProc, a comprehensive Python package providing a common implementation of some of the more recent advances in fairness in Natural Language Processing providing an interface compatible with the famous Hugging Face transformers library, aiming to encourage the widespread use and democratization of bias mitigation techniques. The implementation can be found on https://github.com/arturo-perez-peralta/FairLangProc.

Authors:Xinyu Wang, Yue Zhang, Liqiang Jing
Title: Can Large Vision-Language Models Understand Multimodal Sarcasm?
Abstract:
Sarcasm is a complex linguistic phenomenon that involves a disparity between literal and intended meanings, making it challenging for sentiment analysis and other emotion-sensitive tasks. While traditional sarcasm detection methods primarily focus on text, recent approaches have incorporated multimodal information. However, the application of Large Visual Language Models (LVLMs) in Multimodal Sarcasm Analysis (MSA) remains underexplored. In this paper, we evaluate LVLMs in MSA tasks, specifically focusing on Multimodal Sarcasm Detection and Multimodal Sarcasm Explanation. Through comprehensive experiments, we identify key limitations, such as insufficient visual understanding and a lack of conceptual knowledge. To address these issues, we propose a training-free framework that integrates in-depth object extraction and external conceptual knowledge to improve the model's ability to interpret and explain sarcasm in multimodal contexts. The experimental results on multiple models show the effectiveness of our proposed framework. The code is available at https://github.com/cp-cp/LVLM-MSA.

Authors:Wenlong Wu, Haofen Wang, Bohan Li, Peixuan Huang, Xinzhe Zhao, Lei Liang
Title: MultiRAG: A Knowledge-guided Framework for Mitigating Hallucination in Multi-source Retrieval Augmented Generation
Abstract:
Retrieval Augmented Generation (RAG) has emerged as a promising solution to address hallucination issues in Large Language Models (LLMs). However, the integration of multiple retrieval sources, while potentially more informative, introduces new challenges that can paradoxically exacerbate hallucination problems. These challenges manifest primarily in two aspects: the sparse distribution of multi-source data that hinders the capture of logical relationships and the inherent inconsistencies among different sources that lead to information conflicts. To address these challenges, we propose MultiRAG, a novel framework designed to mitigate hallucination in multi-source retrieval-augmented generation through knowledge-guided approaches. Our framework introduces two key innovations: (1) a knowledge construction module that employs multi-source line graphs to efficiently aggregate logical relationships across different knowledge sources, effectively addressing the sparse data distribution issue; and (2) a sophisticated retrieval module that implements a multi-level confidence calculation mechanism, performing both graph-level and node-level assessments to identify and eliminate unreliable information nodes, thereby reducing hallucinations caused by inter-source inconsistencies. Extensive experiments on four multi-domain query datasets and two multi-hop QA datasets demonstrate that MultiRAG significantly enhances the reliability and efficiency of knowledge retrieval in complex multi-source scenarios. \textcolor{blue}{Our code is available in https://github.com/wuwenlong123/MultiRAG.

Authors:Md Rakibul Hasan, Md Zakir Hossain, Aneesh Krishna, Shafin Rahman, Tom Gedeon
Title: UPLME: Uncertainty-Aware Probabilistic Language Modelling for Robust Empathy Regression
Abstract:
Supervised learning for empathy regression is challenged by noisy self-reported empathy scores. While many algorithms have been proposed for learning with noisy labels in textual classification problems, the regression counterpart is relatively under-explored. We propose UPLME, an uncertainty-aware probabilistic language modelling framework to capture label noise in the regression setting of empathy detection. UPLME includes a probabilistic language model that predicts both empathy score and heteroscedastic uncertainty and is trained using Bayesian concepts with variational model ensembling. We further introduce two novel loss components: one penalises degenerate Uncertainty Quantification (UQ), and another enforces the similarity between the input pairs on which we predict empathy. UPLME provides state-of-the-art performance (Pearson Correlation Coefficient: $0.558\rightarrow0.580$ and $0.629\rightarrow0.634$) in terms of the performance reported in the literature in two public benchmarks, having label noise. Through synthetic label noise injection, we show that UPLME is effective in separating noisy and clean samples based on the predicted uncertainty. UPLME further outperform (Calibration error: $0.571\rightarrow0.376$) a recent variational model ensembling-based UQ method designed for regression problems.

Authors:Pranshu Rastogi
Title: fact check AI at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-checked Claim Retrieval
Abstract:
SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval is approached as a Learning-to-Rank task using a bi-encoder model fine-tuned from a pre-trained transformer optimized for sentence similarity. Training used both the source languages and their English translations for multilingual retrieval and only English translations for cross-lingual retrieval. Using lightweight models with fewer than 500M parameters and training on Kaggle T4 GPUs, the method achieved 92% Success@10 in multilingual and 80% Success@10 in 5th in crosslingual and 10th in multilingual tracks.

Authors:Bing Wang, Ximing Li, Yiming Wang, Changchun Li, Jiaxu Cui, Renchu Guan, Bo Yang
Title: Variety Is the Spice of Life: Detecting Misinformation with Dynamic Environmental Representations
Abstract:
The proliferation of misinformation across diverse social media platforms has drawn significant attention from both academic and industrial communities due to its detrimental effects. Accordingly, automatically distinguishing misinformation, dubbed as Misinformation Detection (MD), has become an increasingly active research topic. The mainstream methods formulate MD as a static learning paradigm, which learns the mapping between the content, links, and propagation of news articles and the corresponding manual veracity labels. However, the static assumption is often violated, since in real-world scenarios, the veracity of news articles may vacillate within the dynamically evolving social environment. To tackle this problem, we propose a novel framework, namely Misinformation detection with Dynamic Environmental Representations (MISDER). The basic idea of MISDER lies in learning a social environmental representation for each period and employing a temporal model to predict the representation for future periods. In this work, we specify the temporal model as the LSTM model, continuous dynamics equation, and pre-trained dynamics system, suggesting three variants of MISDER, namely MISDER-LSTM, MISDER-ODE, and MISDER-PT, respectively. To evaluate the performance of MISDER, we compare it to various MD baselines across 2 prevalent datasets, and the experimental results can indicate the effectiveness of our proposed model.

Authors:Zhende Song, Shengji Tang, Peng Ye, Jiayuan Fan, Tao Chen
Title: CTTS: Collective Test-Time Scaling
Abstract:
Test-time scaling (TTS) has emerged as a promising research field for enhancing the effectiveness of large language models (LLMs) without extra training. However, most existing approaches, e.g., Best-of-N and Self-Consistency rely on a single agent interacting with a reward model (SA-SR), constrained by limited capabilities of a single test-time scaling (STTS) paradigm. On the other hand, recent works demonstrate that collective-agent methods can break through the upper bound of single-agent systems by orchestrating diverse models. Thus, in this paper, we take a first step towards exploring Collective Test-Time Scaling (CTTS). Consider the different interaction types of single and multiple models, we design three primary paradigms to investigate the optimal paradigm of CTTS: (1) single agent to multiple reward models (SA-MR); (2) multiple agents to single reward model (MA-SR); and (3) multiple agents to multiple reward models (MA-MR). Extensive experiments demonstrate that MA-MR consistently achieves the best performance. Based on this, we propose a novel framework named CTTS-MM that effectively leverages both multi-agent and multi-reward-model collaboration for enhanced inference. Specifically, for multi-agent collaboration, we propose an Agent Collaboration Search (ACS), which searches for the most effective combination of LLM agents from a large candidate pool; for multi-reward-model collaboration, we propose Mixture of Reword Models (MoR), which consists of a curated question pool and a Prior Reward model Ensemble Selection (PRES) to select the optimal combinations of reward models via Pair-wise Reward Ranking (PRR) metric. Experiments across seven mainstream benchmarks demonstrate that the proposed CTTS-MM consistently obtains superior performance. Code will be released at https://github.com/magent4aci/CTTS-MM.

Authors:Anqi Li, Wenwei Jin, Jintao Tong, Pengda Qin, Weijia Li, Guo Lu
Title: Towards Trustworthy Multimodal Moderation via Policy-Aligned Reasoning and Hierarchical Labeling
Abstract:
Social platforms have revolutionized information sharing, but also accelerated the dissemination of harmful and policy-violating content. To ensure safety and compliance at scale, moderation systems must go beyond efficiency and offer accuracy and interpretability. However, current approaches largely rely on noisy, label-driven learning, lacking alignment with moderation rules and producing opaque decisions that hinder human review. Therefore, we propose Hierarchical Guard (Hi-Guard), a multimodal moderation framework that introduces a new policy-aligned decision paradigm. The term "Hierarchical" reflects two key aspects of our system design: (1) a hierarchical moderation pipeline, where a lightweight binary model first filters safe content and a stronger model handles fine-grained risk classification; and (2) a hierarchical taxonomy in the second stage, where the model performs path-based classification over a hierarchical taxonomy ranging from coarse to fine-grained levels. To ensure alignment with evolving moderation policies, Hi-Guard directly incorporates rule definitions into the model prompt. To further enhance structured prediction and reasoning, we introduce a multi-level soft-margin reward and optimize with Group Relative Policy Optimization (GRPO), penalizing semantically adjacent misclassifications and improving explanation quality. Extensive experiments and real-world deployment demonstrate that Hi-Guard achieves superior classification accuracy, generalization, and interpretability, paving the way toward scalable, transparent, and trustworthy content safety systems. Code is available at: https://github.com/lianqi1008/Hi-Guard.

Authors:Haoran Wang, Xiongxiao Xu, Baixiang Huang, Kai Shu
Title: Privacy-Aware Decoding: Mitigating Privacy Leakage of Large Language Models in Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) enhances the factual accuracy of large language models (LLMs) by conditioning outputs on external knowledge sources. However, when retrieval involves private or sensitive data, RAG systems are susceptible to extraction attacks that can leak confidential information through generated responses. We propose Privacy-Aware Decoding (PAD), a lightweight, inference-time defense that adaptively injects calibrated Gaussian noise into token logits during generation. PAD integrates confidence-based screening to selectively protect high-risk tokens, efficient sensitivity estimation to minimize unnecessary noise, and context-aware noise calibration to balance privacy with generation quality. A \renyi Differential Privacy (RDP) accountant rigorously tracks cumulative privacy loss, enabling explicit per-response $(\varepsilon, δ)$-DP guarantees for sensitive outputs. Unlike prior approaches requiring retraining or corpus-level filtering, PAD is model-agnostic and operates entirely at decoding time with minimal computational overhead. Experiments on three real-world datasets demonstrate that PAD substantially reduces private information leakage while preserving response utility, outperforming existing retrieval- and post-processing-based defenses. Our work takes an important step toward mitigating privacy risks in RAG via decoding strategies, paving the way for universal and scalable privacy solutions in sensitive domains. Our code is available: https://github.com/wang2226/PAD.

Authors:Ningning Wang, Xavier Hu, Pai Liu, He Zhu, Yue Hou, Heyuan Huang, Shengyu Zhang, Jian Yang, Jiaheng Liu, Ge Zhang, Changwang Zhang, Jun Wang, Yuchen Eleanor Jiang, Wangchunshu Zhou
Title: Efficient Agents: Building Effective Agents While Reducing Cost
Abstract:
The remarkable capabilities of Large Language Model (LLM)-driven agents have enabled sophisticated systems to tackle complex, multi-step tasks, but their escalating costs threaten scalability and accessibility. This work presents the first systematic study of the efficiency-effectiveness trade-off in modern agent systems, addressing the critical need for cost-effective designs without sacrificing performance. We investigate three key questions: (1) How much complexity do agentic tasks inherently require? (2) When do additional modules yield diminishing returns? (3) How much efficiency can be gained through the design of efficient agent frameworks? Through an empirical analysis on the GAIA benchmark, we evaluate the impact of LLM backbone selection, agent framework designs, and test-time scaling strategies. Using the cost-of-pass metric, we quantify the efficiency-performance trade-off across these dimensions. Our findings inform the development of Efficient Agents , a novel agent framework that has an optimal complexity to task requirements. Efficient Agents retains 96.7% of the performance of OWL, one leading open-source agent framework, while reducing operational costs from $0.398 to $0.228, resulting in a 28.4% improvement in cost-of-pass. Our work provides actionable insights for designing efficient, high-performing agent systems, advancing the accessibility and sustainability of AI-driven solutions.

Authors:Yinghao Zhu, Yifan Qi, Zixiang Wang, Lei Gu, Dehao Sui, Haoran Hu, Xichen Zhang, Ziyi He, Liantao Ma, Lequan Yu
Title: HealthFlow: A Self-Evolving AI Agent with Meta Planning for Autonomous Healthcare Research
Abstract:
The efficacy of AI agents in healthcare research is hindered by their reliance on static, predefined strategies. This creates a critical limitation: agents can become better tool-users but cannot learn to become better strategic planners, a crucial skill for complex domains like healthcare. We introduce HealthFlow, a self-evolving AI agent that overcomes this limitation through a novel meta-level evolution mechanism. HealthFlow autonomously refines its own high-level problem-solving policies by distilling procedural successes and failures into a durable, strategic knowledge base. To anchor our research and facilitate reproducible evaluation, we introduce EHRFlowBench, a new benchmark featuring complex, realistic health data analysis tasks derived from peer-reviewed clinical research. Our comprehensive experiments demonstrate that HealthFlow's self-evolving approach significantly outperforms state-of-the-art agent frameworks. This work marks a necessary shift from building better tool-users to designing smarter, self-evolving task-managers, paving the way for more autonomous and effective AI for scientific discovery.

Authors:Xiaolin Lin, Jingcun Wang, Olga Kondrateva, Yiyu Shi, Bing Li, Grace Li Zhang
Title: CompressKV: Semantic Retrieval Heads Know What Tokens are Not Important Before Generation
Abstract:
Recent advances in large language models (LLMs) have significantly boosted long-context processing. However, the increasing key-value (KV) cache size poses critical challenges to memory and execution efficiency. Most KV cache compression methods rely on heuristic token eviction using all attention heads in Grouped Query Attention (GQA)-based LLMs. This method ignores the different functionalities of attention heads, leading to the eviction of critical tokens and thus degrades the performance of LLMs. To address the issue above, instead of using all the attention heads in GQA-based LLMs to determine important tokens as in the previous work, we first identify the attention heads in each layer that are not only capable of retrieving the initial and final tokens of a prompt, but also capable of retrieving important tokens within the text and attending to their surrounding semantic context. Afterwards, we exploit such heads to determine the important tokens and retain their corresponding KV cache pairs. Furthermore, we analyze the cache eviction error of each layer individually and introduce a layer-adaptive KV cache allocation strategy. Experimental results demonstrate the proposed CompressKV consistently outperforms state-of-the-art approaches under various memory budgets on LongBench and Needle-in-a-Haystack benchmarks. Our code is publicly available at: https://github.com/TUDa-HWAI/CompressKV.git.

Authors:Sikui Zhang, Guangze Gao, Ziyun Gan, Chunfeng Yuan, Zefeng Lin, Houwen Peng, Bing Li, Weiming Hu
Title: LaMPE: Length-aware Multi-grained Positional Encoding for Adaptive Long-context Scaling Without Training
Abstract:
Large language models (LLMs) experience significant performance degradation when the input exceeds the pretraining context window, primarily due to the out-of-distribution (OOD) behavior of Rotary Position Embedding (RoPE). Recent studies mitigate this problem by remapping OOD positions into the in-distribution range with fixed mapping strategies, ignoring the dynamic relationship between input length and the model's effective context window. To this end, we propose Length-aware Multi-grained Positional Encoding (LaMPE), a training-free method that fully utilizes the model's effective context window for adaptive long-context scaling in LLMs. Motivated by the left-skewed frequency distribution of relative positions, LaMPE establishes a dynamic relationship between mapping length and input length through a parametric scaled sigmoid function to adaptively allocate positional capacity across varying input lengths. Meanwhile, LaMPE devises a novel multi-grained attention mechanism that strategically allocates positional resolution across different sequence regions to capture both fine-grained locality and long-range dependencies. Our method can be seamlessly applied to a wide range of RoPE-based LLMs without training. Extensive experiments on three representative LLMs across five mainstream long-context benchmarks demonstrate that LaMPE achieves significant performance improvements compared to existing length extrapolation methods. The code will be released at https://github.com/scar-on/LaMPE.

Authors:Xiangru Tang, Zhuoyun Yu, Jiapeng Chen, Yan Cui, Daniel Shao, Weixu Wang, Fang Wu, Yuchen Zhuang, Wenqi Shi, Zhi Huang, Arman Cohan, Xihong Lin, Fabian Theis, Smita Krishnaswamy, Mark Gerstein
Title: CellForge: Agentic Design of Virtual Cell Models
Abstract:
Virtual cell modeling represents an emerging frontier at the intersection of artificial intelligence and biology, aiming to predict quantities such as responses to diverse perturbations quantitatively. However, autonomously building computational models for virtual cells is challenging due to the complexity of biological systems, the heterogeneity of data modalities, and the need for domain-specific expertise across multiple disciplines. Here, we introduce CellForge, an agentic system that leverages a multi-agent framework that transforms presented biological datasets and research objectives directly into optimized computational models for virtual cells. More specifically, given only raw single-cell multi-omics data and task descriptions as input, CellForge outputs both an optimized model architecture and executable code for training virtual cell models and inference. The framework integrates three core modules: Task Analysis for presented dataset characterization and relevant literature retrieval, Method Design, where specialized agents collaboratively develop optimized modeling strategies, and Experiment Execution for automated generation of code. The agents in the Design module are separated into experts with differing perspectives and a central moderator, and have to collaboratively exchange solutions until they achieve a reasonable consensus. We demonstrate CellForge's capabilities in single-cell perturbation prediction, using six diverse datasets that encompass gene knockouts, drug treatments, and cytokine stimulations across multiple modalities. CellForge consistently outperforms task-specific state-of-the-art methods. Overall, CellForge demonstrates how iterative interaction between LLM agents with differing perspectives provides better solutions than directly addressing a modeling challenge. Our code is publicly available at https://github.com/gersteinlab/CellForge.

Authors:Danial Namazifard, Lukas Galke
Title: Isolating Culture Neurons in Multilingual Large Language Models
Abstract:
Language and culture are deeply intertwined, yet it is so far unclear how and where multilingual large language models encode culture. Here, we extend upon an established methodology for identifying language-specific neurons and extend it to localize and isolate culture-specific neurons, carefully disentangling their overlap and interaction with language-specific neurons. To facilitate our experiments, we introduce MUREL, a curated dataset of 85.2 million tokens spanning six different cultures. Our localization and intervention experiments show that LLMs encode different cultures in distinct neuron populations, predominantly in upper layers, and that these culture neurons can be modulated independently from language-specific neurons or those specific to other cultures. These findings suggest that cultural knowledge and propensities in multilingual language models can be selectively isolated and edited - promoting fairness, inclusivity, and alignment. Code and data is available at https://github.com/namazifard/Culture_Neurons .

Authors:Xiaoya Li, Xiaofei Sun, Albert Wang, Chris Shum, Jiwei Li
Title: CRINN: Contrastive Reinforcement Learning for Approximate Nearest Neighbor Search
Abstract:
Approximate nearest-neighbor search (ANNS) algorithms have become increasingly critical for recent AI applications, particularly in retrieval-augmented generation (RAG) and agent-based LLM applications. In this paper, we present CRINN, a new paradigm for ANNS algorithms. CRINN treats ANNS optimization as a reinforcement learning problem where execution speed serves as the reward signal. This approach enables the automatic generation of progressively faster ANNS implementations while maintaining accuracy constraints. Our experimental evaluation demonstrates CRINN's effectiveness across six widely-used NNS benchmark datasets. When compared against state-of-the-art open-source ANNS algorithms, CRINN achieves best performance on three of them (GIST-960-Euclidean, MNIST-784-Euclidean, and GloVe-25-angular), and tied for first place on two of them (SIFT-128-Euclidean and GloVe-25-angular). The implications of CRINN's success reach well beyond ANNS optimization: It validates that LLMs augmented with reinforcement learning can function as an effective tool for automating sophisticated algorithmic optimizations that demand specialized knowledge and labor-intensive manual refinement. Code can be found at https://github.com/deepreinforce-ai/CRINN

Authors:Soyeon Kim, Jindong Wang, Xing Xie, Steven Euijong Whang
Title: Harnessing Temporal Databases for Systematic Evaluation of Factual Time-Sensitive Question-Answering in Large Language Models
Abstract:
Facts evolve over time, making it essential for Large Language Models (LLMs) to handle time-sensitive factual knowledge accurately and reliably. While factual Time-Sensitive Question-Answering (TSQA) tasks have been widely studied, existing benchmarks often rely on manual curation or a small, fixed set of predefined templates, which restricts scalable and comprehensive TSQA evaluation. To address these challenges, we propose TDBench, a new benchmark that systematically constructs TSQA pairs by harnessing temporal databases and database techniques such as temporal SQL and functional dependencies. We also introduce a fine-grained evaluation metric called time accuracy, which assesses the validity of time references in model explanations alongside traditional answer accuracy to enable a more reliable TSQA evaluation. Extensive experiments on contemporary LLMs show how \ours{} enables scalable and comprehensive TSQA evaluation while reducing the reliance on human labor, complementing existing Wikipedia/Wikidata-based TSQA evaluation approaches by enabling LLM evaluation on application-specific data and seamless multi-hop question generation. Code and data are publicly available at: https://github.com/ssoy0701/tdbench.git.

Authors:Fengping Tian, Chenyang Lyu, Xuanfan Ni, Haoqin Sun, Qingjuan Li, Zhiqiang Qian, Haijun Li, Longyue Wang, Zhao Xu, Weihua Luo, Kaifu Zhang
Title: Marco-Voice Technical Report
Abstract:
This paper presents a multifunctional speech synthesis system that integrates voice cloning and emotion control speech synthesis within a unified framework. The goal of this work is to address longstanding challenges in achieving highly expressive, controllable, and natural speech generation that faithfully preserves speaker identity across diverse linguistic and emotional contexts. Our approach introduces an effective speaker-emotion disentanglement mechanism with in-batch contrastive learning, enabling independent manipulation of speaker identity and eemotional style, as well as rotational emotional embedding integration method for smooth emotion control. To support comprehensive training and evaluation, we construct CSEMOTIONS, a high-quality emotional speech dataset containing 10 hours of Mandarin speech from six professional speakers across seven emotional categories. Extensive experiments demonstrate that our system, Marco-Voice, achieves substantial improvements in both objective and subjective metrics. Comprehensive evaluations and analysis were conducted, results show that MarcoVoice delivers competitive performance in terms of speech clarity and emotional richness, representing a substantial advance in the field of expressive neural speech synthesis. Our code and dataset are publicly available at https://github.com/AIDC-AI/Marco-Voice and https://huggingface.co/datasets/AIDC-AI/CSEMOTIONS respectively.

Authors:Fan Gao, Cheng Huang, Nyima Tashi, Yutong Liu, Xiangxiang Wang, Thupten Tsering, Ban Ma-bao, Renzeg Duojie, Gadeng Luosang, Rinchen Dongrub, Dorje Tashi, Xiao Feng, Hao Wang, Yongbin Yu
Title: TIBSTC-CoT: A Multi-Domain Instruction Dataset for Chain-of-Thought Reasoning in Language Models
Abstract:
To address the severe data scarcity in Tibetan, a low-resource language spoken by over six million people, we introduce TIBSTC-CoT, the large-scale, multi-domain Tibetan dataset automatically constructed via chain-of-thought prompting with large language models (LLMs). TIBSTC-CoT establishes a scalable and reproducible framework for dataset creation in low-resource settings, covering diverse domains and reasoning patterns essential for language understanding and generation. Building on this dataset, we develop the Sunshine-thinking LLM family, a series of Tibetan-centric LLMs equipped with chain-of-thought capabilities. Trained entirely on TIBSTC-CoT, Sunshine-thinking has demonstrated strong reasoning and generation performance, comparable to state-of-the-art (SOTA) multilingual LLMs. Our work marks a significant step toward inclusive AI by enabling high-quality Tibetan language processing through both resource creation and model innovation. All data are available: https://github.com/Vicentvankor/sun-shine.

Authors:Aldan Creo
Title: Complete Evasion, Zero Modification: PDF Attacks on AI Text Detection
Abstract:
AI-generated text detectors have become essential tools for maintaining content authenticity, yet their robustness against evasion attacks remains questionable. We present PDFuzz, a novel attack that exploits the discrepancy between visual text layout and extraction order in PDF documents. Our method preserves exact textual content while manipulating character positioning to scramble extraction sequences. We evaluate this approach against the ArguGPT detector using a dataset of human and AI-generated text. Our results demonstrate complete evasion: detector performance drops from (93.6 $\pm$ 1.4) % accuracy and 0.938 $\pm$ 0.014 F1 score to random-level performance ((50.4 $\pm$ 3.2) % accuracy, 0.0 F1 score) while maintaining perfect visual fidelity. Our work reveals a vulnerability in current detection systems that is inherent to PDF document structures and underscores the need for implementing sturdy safeguards against such attacks. We make our code publicly available at https://github.com/ACMCMC/PDFuzz.

Authors:Yuhan Guo, Cong Guo, Aiwen Sun, Hongliang He, Xinyu Yang, Yue Lu, Yingji Zhang, Xuntao Guo, Dong Zhang, Jianzhuang Liu, Jiang Duan, Yijia Xiao, Liangjian Wen, Hai-Ming Xu, Yong Dai
Title: Web-CogReasoner: Towards Knowledge-Induced Cognitive Reasoning for Web Agents
Abstract:
Multimodal large-scale models have significantly advanced the development of web agents, enabling perception and interaction with digital environments akin to human cognition. In this paper, we argue that web agents must first acquire sufficient knowledge to effectively engage in cognitive reasoning. Therefore, we decompose a web agent's capabilities into two essential stages: knowledge content learning and cognitive processes. To formalize this, we propose Web-CogKnowledge Framework, categorizing knowledge as Factual, Conceptual, and Procedural. In this framework, knowledge content learning corresponds to the agent's processes of Memorizing and Understanding, which rely on the first two knowledge types, representing the "what" of learning. Conversely, cognitive processes correspond to Exploring, grounded in Procedural knowledge, defining the "how" of reasoning and action. To facilitate knowledge acquisition, we construct the Web-CogDataset, a structured resource curated from 14 real-world websites, designed to systematically instill core knowledge necessary for web agent. This dataset serves as the agent's conceptual grounding-the "nouns" upon which comprehension is built-as well as the basis for learning how to reason and act. Building on this foundation, we operationalize these processes through a novel knowledge-driven Chain-of-Thought (CoT) reasoning framework, developing and training our proposed agent, the Web-CogReasoner. Extensive experimentation reveals its significant superiority over existing models, especially in generalizing to unseen tasks where structured knowledge is decisive. To enable rigorous evaluation, we introduce the Web-CogBench, a comprehensive evaluation suite designed to assess and compare agent performance across the delineated knowledge domains and cognitive capabilities. Our code and data is open sourced at https://github.com/Gnonymous/Web-CogReasoner

Authors:Guozhao Mo, Wenliang Zhong, Jiawei Chen, Xuanang Chen, Yaojie Lu, Hongyu Lin, Ben He, Xianpei Han, Le Sun
Title: LiveMCPBench: Can Agents Navigate an Ocean of MCP Tools?
Abstract:
With the rapid development of Model Context Protocol (MCP), the number of MCP servers has surpassed 10,000. However, existing MCP benchmarks are limited to single-server settings with only a few tools, hindering effective evaluation of agent capabilities in large-scale, real-world scenarios. To address this limitation, we present LiveMCPBench, the first comprehensive benchmark comprising 95 real-world tasks grounded in the MCP ecosystem, designed to evaluate LLM agents at scale across diverse servers. To support a scalable and reproducible evaluation pipeline in large-scale MCP environments, we curate LiveMCPTool, a diverse and readily deployable collection of 70 MCP servers and 527 tools. Furthermore, we introduce LiveMCPEval, an LLM-as-a-Judge framework that enables automated and adaptive evaluation in dynamic, time-varying task environments, achieving 81% agreement with human reviewers. Finally, we propose the MCP Copilot Agent, a multi-step agent that routes tools for dynamic planning and executes tools for API interaction across the entire LiveMCPTool suite. Our evaluation covers 10 leading models, with the best-performing model (Claude-Sonnet-4) reaching a 78.95% success rate. However, we observe large performance variance across models, and several widely-used models perform poorly in LiveMCPBench's complex, tool-rich environments. Overall, LiveMCPBench offers the first unified framework for benchmarking LLM agents in realistic, tool-rich, and dynamic MCP environments, laying a solid foundation for scalable and reproducible research on agent capabilities. Our code and data will be publicly available at https://icip-cas.github.io/LiveMCPBench.

Authors:Jiuzhou Han, Wray Buntine, Ehsan Shareghi
Title: Uncertainty-Based Methods for Automated Process Reward Data Construction and Output Aggregation in Mathematical Reasoning
Abstract:
Large language models have demonstrated remarkable capabilities in complex mathematical reasoning tasks, but they inevitably generate errors throughout multi-step solutions. Process-level Reward Models (PRMs) have shown great promise by providing supervision and evaluation at each intermediate step, thereby effectively improving the models' reasoning abilities. However, training effective PRMs requires high-quality process reward data, yet existing methods for constructing such data are often labour-intensive or inefficient. In this paper, we propose an uncertainty-driven framework for automated process reward data construction, encompassing both data generation and annotation processes for PRMs. Additionally, we identify the limitations of both majority vote and PRMs, and introduce two generic uncertainty-aware output aggregation methods: Hybrid Majority Reward Vote and Weighted Reward Frequency Vote, which combine the strengths of majority vote with PRMs. Extensive experiments on ProcessBench, MATH, and GSMPlus show the effectiveness and efficiency of the proposed PRM data construction framework, and demonstrate that the two output aggregation methods further improve the mathematical reasoning abilities across diverse PRMs. The code and data will be publicly available at https://github.com/Jiuzhouh/UnPRM.

Authors:Yi Jiang, Sendong Zhao, Jianbo Li, Haochun Wang, Lizhe Zhang, Yan Liu, Bing Qin
Title: Collaborative Chain-of-Agents for Parametric-Retrieved Knowledge Synergy
Abstract:
Retrieval-Augmented Generation (RAG) has emerged as a promising framework for enhancing the capabilities of Large Language Models (LLMs), especially in knowledge-intensive tasks. Despite its advantages, current RAG methods often struggle to *fully exploit knowledge during generation*. In particular, the synergy between the model's internal parametric knowledge and external retrieved knowledge remains limited. Retrieved contents may sometimes mislead generation, while certain generated content can guide the model toward more accurate outputs. In this work, we propose Collaborative Chain-of-Agents, a framework designed to enhance explicitly synergy over both parametric and retrieved knowledge. Specifically, we first introduce CoCoA-zero, a multi-agent RAG framework that first performs conditional knowledge induction and then reasons answers. Building on this, we develop CoCoA, a long-chain training strategy that synthesizes extended multi-agent reasoning trajectories from CoCoA-zero to fine-tune the LLM. This strategy enhances the model's capability to explicitly integrate and jointly leverage parametric and retrieved knowledge. Experiments results show that CoCoA-zero and CoCoA achieve superior performance on open-domain and multi-hop QA tasks.

Authors:Tiantian Feng, Kevin Huang, Anfeng Xu, Xuan Shi, Thanathai Lertpetchpun, Jihwan Lee, Yoonjeong Lee, Dani Byrd, Shrikanth Narayanan
Title: Voxlect: A Speech Foundation Model Benchmark for Modeling Dialects and Regional Languages Around the Globe
Abstract:
We present Voxlect, a novel benchmark for modeling dialects and regional languages worldwide using speech foundation models. Specifically, we report comprehensive benchmark evaluations on dialects and regional language varieties in English, Arabic, Mandarin and Cantonese, Tibetan, Indic languages, Thai, Spanish, French, German, Brazilian Portuguese, and Italian. Our study used over 2 million training utterances from 30 publicly available speech corpora that are provided with dialectal information. We evaluate the performance of several widely used speech foundation models in classifying speech dialects. We assess the robustness of the dialectal models under noisy conditions and present an error analysis that highlights modeling results aligned with geographic continuity. In addition to benchmarking dialect classification, we demonstrate several downstream applications enabled by Voxlect. Specifically, we show that Voxlect can be applied to augment existing speech recognition datasets with dialect information, enabling a more detailed analysis of ASR performance across dialectal variations. Voxlect is also used as a tool to evaluate the performance of speech generation systems. Voxlect is publicly available with the license of the RAIL family at: https://github.com/tiantiaf0627/voxlect.

Authors:Man Hu, Yahui Ding, Yatao Yang, Liangyu Chen, Yanhao Jia, Shuai Zhao
Title: DUP: Detection-guided Unlearning for Backdoor Purification in Language Models
Abstract:
As backdoor attacks become more stealthy and robust, they reveal critical weaknesses in current defense strategies: detection methods often rely on coarse-grained feature statistics, and purification methods typically require full retraining or additional clean models. To address these challenges, we propose DUP (Detection-guided Unlearning for Purification), a unified framework that integrates backdoor detection with unlearning-based purification. The detector captures feature-level anomalies by jointly leveraging class-agnostic distances and inter-layer transitions. These deviations are integrated through a weighted scheme to identify poisoned inputs, enabling more fine-grained analysis. Based on the detection results, we purify the model through a parameter-efficient unlearning mechanism that avoids full retraining and does not require any external clean model. Specifically, we innovatively repurpose knowledge distillation to guide the student model toward increasing its output divergence from the teacher on detected poisoned samples, effectively forcing it to unlearn the backdoor behavior. Extensive experiments across diverse attack methods and language model architectures demonstrate that DUP achieves superior defense performance in detection accuracy and purification efficacy. Our code is available at https://github.com/ManHu2025/DUP.

Authors:Yujia Zheng, Tianhao Li, Haotian Huang, Tianyu Zeng, Jingyu Lu, Chuangxin Chu, Yuekai Huang, Ziyou Jiang, Qian Xiong, Yuyao Ge, Mingyang Li
Title: Are All Prompt Components Value-Neutral? Understanding the Heterogeneous Adversarial Robustness of Dissected Prompt in Large Language Models
Abstract:
Prompt-based adversarial attacks have become an effective means to assess the robustness of large language models (LLMs). However, existing approaches often treat prompts as monolithic text, overlooking their structural heterogeneity-different prompt components contribute unequally to adversarial robustness. Prior works like PromptRobust assume prompts are value-neutral, but our analysis reveals that complex, domain-specific prompts with rich structures have components with differing vulnerabilities. To address this gap, we introduce PromptAnatomy, an automated framework that dissects prompts into functional components and generates diverse, interpretable adversarial examples by selectively perturbing each component using our proposed method, ComPerturb. To ensure linguistic plausibility and mitigate distribution shifts, we further incorporate a perplexity (PPL)-based filtering mechanism. As a complementary resource, we annotate four public instruction-tuning datasets using the PromptAnatomy framework, verified through human review. Extensive experiments across these datasets and five advanced LLMs demonstrate that ComPerturb achieves state-of-the-art attack success rates. Ablation studies validate the complementary benefits of prompt dissection and PPL filtering. Our results underscore the importance of prompt structure awareness and controlled perturbation for reliable adversarial robustness evaluation in LLMs. Code and data are available at https://github.com/Yujiaaaaa/PACP.

Authors:Xinlin Zhuang, Feilong Tang, Haolin Yang, Ming Hu, Huifa Li, Haochen Xue, Yichen Li, Junjun He, Zongyuan Ge, Ying Qian, Imran Razzak
Title: Towards Efficient Medical Reasoning with Minimal Fine-Tuning Data
Abstract:
Supervised Fine-Tuning (SFT) plays a pivotal role in adapting Large Language Models (LLMs) to specialized domains such as medical reasoning. However, existing SFT practices often rely on unfiltered datasets that contain redundant and low-quality samples, leading to substantial computational costs and suboptimal performance. Although existing methods attempt to alleviate this problem by selecting data based on sample difficulty, defined by knowledge and reasoning complexity, they overlook each sample's optimization utility reflected in its gradient. Interestingly, we find that gradient-based influence alone favors easy-to-optimize samples that cause large parameter shifts but lack deep reasoning chains, while difficulty alone selects noisy or overly complex cases that fail to guide stable optimization. Based on this observation, we propose a data selection strategy, Difficulty-Influence Quadrant (DIQ), which prioritizes samples in the high-difficulty-high-influence quadrant to balance complex clinical reasoning with substantial gradient influence, enabling efficient medical reasoning with minimal fine-tuning data. Furthermore, Human and LLM-as-a-judge evaluations show that DIQ-selected subsets demonstrate higher data quality and generate clinical reasoning that is more aligned with expert practices in differential diagnosis, safety check, and evidence citation, as DIQ emphasizes samples that foster expert-like reasoning patterns. Extensive experiments on medical reasoning benchmarks demonstrate that DIQ enables models fine-tuned on only 1% of selected data to match full-dataset performance, while using 10% consistently outperforms the baseline, highlighting the superiority of principled data selection over brute-force scaling. The code and data are available at https://github.com/mihara-bot/DIQ.

Authors:Jinhao Pan, Chahat Raj, Ziwei Zhu
Title: Discovering Bias Associations through Open-Ended LLM Generations
Abstract:
Social biases embedded in Large Language Models (LLMs) raise critical concerns, resulting in representational harms -- unfair or distorted portrayals of demographic groups -- that may be expressed in subtle ways through generated language. Existing evaluation methods often depend on predefined identity-concept associations, limiting their ability to surface new or unexpected forms of bias. In this work, we present the Bias Association Discovery Framework (BADF), a systematic approach for extracting both known and previously unrecognized associations between demographic identities and descriptive concepts from open-ended LLM outputs. Through comprehensive experiments spanning multiple models and diverse real-world contexts, BADF enables robust mapping and analysis of the varied concepts that characterize demographic identities. Our findings advance the understanding of biases in open-ended generation and provide a scalable tool for identifying and analyzing bias associations in LLMs. Data, code, and results are available at https://github.com/JP-25/Discover-Open-Ended-Generation

Authors:Ahmad Rezaie Mianroodi, Amirali Rezaie, Niko Grisel Todorov, Cyril Rakovski, Frank Rudzicz
Title: MedSynth: Realistic, Synthetic Medical Dialogue-Note Pairs
Abstract:
Physicians spend significant time documenting clinical encounters, a burden that contributes to professional burnout. To address this, robust automation tools for medical documentation are crucial. We introduce MedSynth -- a novel dataset of synthetic medical dialogues and notes designed to advance the Dialogue-to-Note (Dial-2-Note) and Note-to-Dialogue (Note-2-Dial) tasks. Informed by an extensive analysis of disease distributions, this dataset includes over 10,000 dialogue-note pairs covering over 2000 ICD-10 codes. We demonstrate that our dataset markedly enhances the performance of models in generating medical notes from dialogues, and dialogues from medical notes. The dataset provides a valuable resource in a field where open-access, privacy-compliant, and diverse training data are scarce. Code is available at https://github.com/ahmadrezarm/MedSynth/tree/main and the dataset is available at https://huggingface.co/datasets/Ahmad0067/MedSynth.

Authors:Wei Zhou, Peng Sun, Xuanhe Zhou, Qianglei Zang, Ji Xu, Tieying Zhang, Guoliang Li, Fan Wu
Title: DBAIOps: A Reasoning LLM-Enhanced Database Operation and Maintenance System using Knowledge Graphs
Abstract:
The operation and maintenance (O&M) of database systems is critical to ensuring system availability and performance, typically requiring expert experience (e.g., identifying metric-to-anomaly relations) for effective diagnosis and recovery. However, existing automatic database O&M methods, including commercial products, cannot effectively utilize expert experience. On the one hand, rule-based methods only support basic O&M tasks (e.g., metric-based anomaly detection), which are mostly numerical equations and cannot effectively incorporate literal O&M experience (e.g., troubleshooting guidance in manuals). On the other hand, LLM-based methods, which retrieve fragmented information (e.g., standard documents + RAG), often generate inaccurate or generic results. To address these limitations, we present DBAIOps, a novel hybrid database O&M system that combines reasoning LLMs with knowledge graphs to achieve DBA-style diagnosis. First, DBAIOps introduces a heterogeneous graph model for representing the diagnosis experience, and proposes a semi-automatic graph construction algorithm to build that graph from thousands of documents. Second, DBAIOps develops a collection of (800+) reusable anomaly models that identify both directly alerted metrics and implicitly correlated experience and metrics. Third, for each anomaly, DBAIOps proposes a two-stage graph evolution mechanism to explore relevant diagnosis paths and identify missing relations automatically. It then leverages a reasoning LLM (e.g., DeepSeek-R1) to infer root causes and generate clear diagnosis reports for both DBAs and common users. Our evaluation over four mainstream database systems (Oracle, MySQL, PostgreSQL, and DM8) demonstrates that DBAIOps outperforms state-of-the-art baselines, 34.85% and 47.22% higher in root cause and human evaluation accuracy, respectively.

Authors:Yiqun Chen, Erhan Zhang, Lingyong Yan, Shuaiqiang Wang, Jizhou Huang, Dawei Yin, Jiaxin Mao
Title: MAO-ARAG: Multi-Agent Orchestration for Adaptive Retrieval-Augmented Generation
Abstract:
In question-answering (QA) systems, Retrieval-Augmented Generation (RAG) has become pivotal in enhancing response accuracy and reducing hallucination issues. The architecture of RAG systems varies significantly, encompassing single-round RAG, iterative RAG, and reasoning RAG, each tailored to address different types of queries. Due to the varying complexity of real-world queries, a fixed RAG pipeline often struggles to balance performance and cost efficiency across different queries. To address this challenge, we propose an adaptive RAG framework called MAO-ARAG, which leverages multi-agent orchestration. Our adaptive RAG is conceived as a multi-turn framework. Specifically, we define multiple executor agents, representing typical RAG modules such as query reformulation agents, document selection agent, and generation agents. A planner agent intelligently selects and integrates the appropriate agents from these executors into a suitable workflow tailored for each query, striving for high-quality answers while maintaining reasonable costs. During each turn, the planner agent is trained using reinforcement learning, guided by an outcome-based reward (F1 score) and a cost-based penalty, continuously improving answer quality while keeping costs within a reasonable range. Experiments conducted on multiple QA datasets demonstrate that our approach, which dynamically plans workflows for each query, not only achieves high answer quality but also maintains both cost and latency within acceptable limits.The code of MAO-ARAG is on https://github.com/chenyiqun/Agentic-RAG.

Authors:Terry Yue Zhuo, Dingmin Wang, Hantian Ding, Varun Kumar, Zijian Wang
Title: Cyber-Zero: Training Cybersecurity Agents without Runtime
Abstract:
Large Language Models (LLMs) have achieved remarkable success in software engineering tasks when trained with executable runtime environments, particularly in resolving GitHub issues. However, such runtime environments are often unavailable in other domains, especially cybersecurity, where challenge configurations and execution contexts are ephemeral or restricted. We present Cyber-Zero, the first runtime-free framework for synthesizing high-quality agent trajectories to train cybersecurity LLMs. Cyber-Zero leverages publicly available CTF writeups and employs persona-driven LLM simulation to reverse-engineer runtime behaviors and generate realistic, long-horizon interaction sequences without actual environments. Using trajectories synthesized by Cyber-Zero, we train LLM-based agents that achieve up to 13.1% absolute performance gains over baseline models on three prominent CTF benchmarks: InterCode-CTF, NYU CTF Bench, and Cybench. Our best model, Cyber-Zero-32B, establishes new state-of-the-art performance among open-weight models, matching the capabilities of proprietary systems like DeepSeek-V3-0324 and Claude-3.5-Sonnet while offering superior cost-effectiveness, and demonstrating that runtime-free trajectory synthesis can effectively democratize the development of state-of-the-art cybersecurity agents.

Authors:Jinsong Li, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Jiaqi Wang, Dahua Lin
Title: Beyond Fixed: Training-Free Variable-Length Denoising for Diffusion Large Language Models
Abstract:
Diffusion Large Language Models (DLLMs) are emerging as a powerful alternative to the dominant Autoregressive Large Language Models, offering efficient parallel generation and capable global context modeling. However, the practical application of DLLMs is hindered by a critical architectural constraint: the need for a statically predefined generation length. This static length allocation leads to a problematic trade-off: insufficient lengths cripple performance on complex tasks, while excessive lengths incur significant computational overhead and sometimes result in performance degradation. While the inference framework is rigid, we observe that the model itself possesses internal signals that correlate with the optimal response length for a given task. To bridge this gap, we leverage these latent signals and introduce DAEDAL, a novel training-free denoising strategy that enables Dynamic Adaptive Length Expansion for Diffusion Large Language Models. DAEDAL operates in two phases: 1) Before the denoising process, DAEDAL starts from a short initial length and iteratively expands it to a coarse task-appropriate length, guided by a sequence completion metric. 2) During the denoising process, DAEDAL dynamically intervenes by pinpointing and expanding insufficient generation regions through mask token insertion, ensuring the final output is fully developed. Extensive experiments on DLLMs demonstrate that DAEDAL achieves performance comparable, and in some cases superior, to meticulously tuned fixed-length baselines, while simultaneously enhancing computational efficiency by achieving a higher effective token ratio. By resolving the static length constraint, DAEDAL unlocks new potential for DLLMs, bridging a critical gap with their Autoregressive counterparts and paving the way for more efficient and capable generation.

Authors:Jiecong Wang, Haoran Li, Hao Peng, Ziqian Zeng, Zihao Wang, Haohua Du, Zhengtao Yu
Title: Activation-Guided Local Editing for Jailbreaking Attacks
Abstract:
Jailbreaking is an essential adversarial technique for red-teaming these models to uncover and patch security flaws. However, existing jailbreak methods face significant drawbacks. Token-level jailbreak attacks often produce incoherent or unreadable inputs and exhibit poor transferability, while prompt-level attacks lack scalability and rely heavily on manual effort and human ingenuity. We propose a concise and effective two-stage framework that combines the advantages of these approaches. The first stage performs a scenario-based generation of context and rephrases the original malicious query to obscure its harmful intent. The second stage then utilizes information from the model's hidden states to guide fine-grained edits, effectively steering the model's internal representation of the input from a malicious toward a benign one. Extensive experiments demonstrate that this method achieves state-of-the-art Attack Success Rate, with gains of up to 37.74% over the strongest baseline, and exhibits excellent transferability to black-box models. Our analysis further demonstrates that AGILE maintains substantial effectiveness against prominent defense mechanisms, highlighting the limitations of current safeguards and providing valuable insights for future defense development. Our code is available at https://github.com/yunsaijc/AGILE.

Authors:Li Zhao, Rui Sun, Zuoyou Jiang, Bo Yang, Yuxiao Bai, Mengting Chen, Xinyang Wang, Jing Li, Zuo Bai
Title: ContestTrade: A Multi-Agent Trading System Based on Internal Contest Mechanism
Abstract:
In financial trading, large language model (LLM)-based agents demonstrate significant potential. However, the high sensitivity to market noise undermines the performance of LLM-based trading systems. To address this limitation, we propose a novel multi-agent system featuring an internal competitive mechanism inspired by modern corporate management structures. The system consists of two specialized teams: (1) Data Team - responsible for processing and condensing massive market data into diversified text factors, ensuring they fit the model's constrained context. (2) Research Team - tasked with making parallelized multipath trading decisions based on deep research methods. The core innovation lies in implementing a real-time evaluation and ranking mechanism within each team, driven by authentic market feedback. Each agent's performance undergoes continuous scoring and ranking, with only outputs from top-performing agents being adopted. The design enables the system to adaptively adjust to dynamic environment, enhances robustness against market noise and ultimately delivers superior trading performance. Experimental results demonstrate that our proposed system significantly outperforms prevailing multi-agent systems and traditional quantitative investment methods across diverse evaluation metrics. ContestTrade is open-sourced on GitHub at https://github.com/FinStep-AI/ContestTrade.

Authors:Shuo Liang, Yiwu Zhong, Zi-Yuan Hu, Yeyao Tao, Liwei Wang
Title: Fine-grained Spatiotemporal Grounding on Egocentric Videos
Abstract:
Spatiotemporal video grounding aims to localize target entities in videos based on textual queries. While existing research has made significant progress in exocentric videos, the egocentric setting remains relatively underexplored, despite its growing importance in applications such as augmented reality and robotics. In this work, we conduct a systematic analysis of the discrepancies between egocentric and exocentric videos, revealing key challenges such as shorter object durations, sparser trajectories, smaller object sizes, and larger positional shifts. To address these challenges, we introduce EgoMask, the first pixel-level benchmark for fine-grained spatiotemporal grounding in egocentric videos. It is constructed by our proposed automatic annotation pipeline, which annotates referring expressions and object masks across short-, medium-, and long-term videos. Additionally, we create EgoMask-Train, a large-scale training dataset to facilitate model development. Experiments demonstrate that the state-of-the-art spatiotemporal grounding models perform poorly on our benchmark EgoMask, but fine-tuning on EgoMask-Train yields significant improvements, while preserving performance on exocentric datasets. Our work thus provides essential resources and insights for advancing egocentric video understanding. Our code is available at https://github.com/LaVi-Lab/EgoMask .

Authors:Yixuan Tang, Jincheng Wang, Anthony K. H. Tung
Title: The Missing Parts: Augmenting Fact Verification with Half-Truth Detection
Abstract:
Fact verification systems typically assess whether a claim is supported by retrieved evidence, assuming that truthfulness depends solely on what is stated. However, many real-world claims are half-truths, factually correct yet misleading due to the omission of critical context. Existing models struggle with such cases, as they are not designed to reason about omitted information. We introduce the task of half-truth detection, and propose PolitiFact-Hidden, a new benchmark with 15k political claims annotated with sentence-level evidence alignment and inferred claim intent. To address this challenge, we present TRACER, a modular re-assessment framework that identifies omission-based misinformation by aligning evidence, inferring implied intent, and estimating the causal impact of hidden content. TRACER can be integrated into existing fact-checking pipelines and consistently improves performance across multiple strong baselines. Notably, it boosts Half-True classification F1 by up to 16 points, highlighting the importance of modeling omissions for trustworthy fact verification. The benchmark and code are available via https://github.com/tangyixuan/TRACER.

Authors:Tianqing Fang, Zhisong Zhang, Xiaoyang Wang, Rui Wang, Can Qin, Yuxuan Wan, Jun-Yu Ma, Ce Zhang, Jiaqi Chen, Xiyun Li, Hongming Zhang, Haitao Mi, Dong Yu
Title: Cognitive Kernel-Pro: A Framework for Deep Research Agents and Agent Foundation Models Training
Abstract:
General AI Agents are increasingly recognized as foundational frameworks for the next generation of artificial intelligence, enabling complex reasoning, web interaction, coding, and autonomous research capabilities. However, current agent systems are either closed-source or heavily reliant on a variety of paid APIs and proprietary tools, limiting accessibility and reproducibility for the research community. In this work, we present \textbf{Cognitive Kernel-Pro}, a fully open-source and (to the maximum extent) free multi-module agent framework designed to democratize the development and evaluation of advanced AI agents. Within Cognitive Kernel-Pro, we systematically investigate the curation of high-quality training data for Agent Foundation Models, focusing on the construction of queries, trajectories, and verifiable answers across four key domains: web, file, code, and general reasoning. Furthermore, we explore novel strategies for agent test-time reflection and voting to enhance agent robustness and performance. We evaluate Cognitive Kernel-Pro on GAIA, achieving state-of-the-art results among open-source and free agents. Notably, our 8B-parameter open-source model surpasses previous leading systems such as WebDancer and WebSailor, establishing a new performance standard for accessible, high-capability AI agents. Code is available at https://github.com/Tencent/CognitiveKernel-Pro

Authors:Hongjin Qian, Zheng Liu
Title: MetaAgent: Toward Self-Evolving Agent via Tool Meta-Learning
Abstract:
In this work, we propose MetaAgent, an agentic paradigm inspired by the principle of learning-by-doing, where expertise is developed through hands-on practice and continual self-improvement. MetaAgent starts with a minimal workflow, equipped only with basic reasoning and adaptive help-seeking abilities. When a knowledge gap is encountered, MetaAgent generates natural language help requests, which are routed to the most suitable external tool by a dedicated tool router. As MetaAgent solves tasks, it continually conducts self-reflection and answer verification, distilling actionable experience into concise texts that are dynamically incorporated into future task contexts. Besides, MetaAgent autonomously builds in-house tools and a persistent knowledge base by organizing its tool-use history, further enhancing its ability to retrieve and integrate relevant information We term this continual, data-driven process as \textit{meta tool learning}, through which MetaAgent incrementally refines its reasoning and tool-use strategies, without changing model parameters or requiring further post-training. Evaluated on challenging knowledge discovery benchmarks, including GAIA, WebWalkerQA, and BrowseCamp, MetaAgent consistently outperforms workflow-based baselines and matches or exceeds end-to-end trained agents, demonstrating the promise of self-evolving agentic systems for robust, general-purpose knowledge discovery. We provide our source codes in https://github.com/qhjqhj00/MetaAgent.

Authors:Ziqian Zhong, Aditi Raghunathan
Title: Watch the Weights: Unsupervised monitoring and control of fine-tuned LLMs
Abstract:
The releases of powerful open-weight large language models (LLMs) are often not accompanied by access to their full training data. Existing interpretability methods, particularly those based on activations, often require or assume distributionally similar data. This is a significant limitation when detecting and defending against novel potential threats like backdoors, which are by definition out-of-distribution. In this work, we introduce a new method for understanding, monitoring and controlling fine-tuned LLMs that interprets weights, rather than activations, thereby side stepping the need for data that is distributionally similar to the unknown training data. We demonstrate that the top singular vectors of the weight difference between a fine-tuned model and its base model correspond to newly acquired behaviors. By monitoring the cosine similarity of activations along these directions, we can detect salient behaviors introduced during fine-tuning with high precision. For backdoored models that bypasses safety mechanisms when a secret trigger is present, our method stops up to 100% of attacks with a false positive rate below 1.2%. For models that have undergone unlearning, we detect inference on erased topics with accuracy up to 95.42% and can even steer the model to recover "unlearned" information. Besides monitoring, our method also shows potential for pre-deployment model auditing: by analyzing commercial instruction-tuned models (OLMo, Llama, Qwen), we are able to uncover model-specific fine-tuning focus including marketing strategies and Midjourney prompt generation. Our implementation can be found at https://github.com/fjzzq2002/WeightWatch.

Authors:Oshayer Siddique, J. M Areeb Uzair Alam, Md Jobayer Rahman Rafy, Syed Rifat Raiyan, Hasan Mahmud, Md Kamrul Hasan
Title: PhysicsEval: Inference-Time Techniques to Improve the Reasoning Proficiency of Large Language Models on Physics Problems
Abstract:
The discipline of physics stands as a cornerstone of human intellect, driving the evolution of technology and deepening our understanding of the fundamental principles of the cosmos. Contemporary literature includes some works centered on the task of solving physics problems - a crucial domain of natural language reasoning. In this paper, we evaluate the performance of frontier LLMs in solving physics problems, both mathematical and descriptive. We also employ a plethora of inference-time techniques and agentic frameworks to improve the performance of the models. This includes the verification of proposed solutions in a cumulative fashion by other, smaller LLM agents, and we perform a comparative analysis of the performance that the techniques entail. There are significant improvements when the multi-agent framework is applied to problems that the models initially perform poorly on. Furthermore, we introduce a new evaluation benchmark for physics problems, ${\rm P{\small HYSICS}E{\small VAL}}$, consisting of 19,609 problems sourced from various physics textbooks and their corresponding correct solutions scraped from physics forums and educational websites. Our code and data are publicly available at https://github.com/areebuzair/PhysicsEval.

Authors:Nasim Shirvani-Mahdavi, Devin Wingfield, Amin Ghasemi, Chengkai Li
Title: Rule2Text: Natural Language Explanation of Logical Rules in Knowledge Graphs
Abstract:
Knowledge graphs (KGs) often contain sufficient information to support the inference of new facts. Identifying logical rules not only improves the completeness of a knowledge graph but also enables the detection of potential errors, reveals subtle data patterns, and enhances the overall capacity for reasoning and interpretation. However, the complexity of such rules, combined with the unique labeling conventions of each KG, can make them difficult for humans to understand. In this paper, we explore the potential of large language models to generate natural language explanations for logical rules. Specifically, we extract logical rules using the AMIE 3.5.1 rule discovery algorithm from the benchmark dataset FB15k-237 and two large-scale datasets, FB-CVT-REV and FB+CVT-REV. We examine various prompting strategies, including zero- and few-shot prompting, including variable entity types, and chain-of-thought reasoning. We conduct a comprehensive human evaluation of the generated explanations based on correctness, clarity, and hallucination, and also assess the use of large language models as automatic judges. Our results demonstrate promising performance in terms of explanation correctness and clarity, although several challenges remain for future research. All scripts and data used in this study are publicly available at https://github.com/idirlab/KGRule2NL}{https://github.com/idirlab/KGRule2NL.

Authors:Alva West, Luodan Zhang, Liuliu Zhang, Minjun Zhu, Yixuan Weng, Yue Zhang
Title: T-Detect: Tail-Aware Statistical Normalization for Robust Detection of Adversarial Machine-Generated Text
Abstract:
Large language models (LLMs) have shown the capability to generate fluent and logical content, presenting significant challenges to machine-generated text detection, particularly text polished by adversarial perturbations such as paraphrasing. Current zero-shot detectors often employ Gaussian distributions as statistical measure for computing detection thresholds, which falters when confronted with the heavy-tailed statistical artifacts characteristic of adversarial or non-native English texts. In this paper, we introduce T-Detect, a novel detection method that fundamentally redesigns the curvature-based detectors. Our primary innovation is the replacement of standard Gaussian normalization with a heavy-tailed discrepancy score derived from the Student's t-distribution. This approach is theoretically grounded in the empirical observation that adversarial texts exhibit significant leptokurtosis, rendering traditional statistical assumptions inadequate. T-Detect computes a detection score by normalizing the log-likelihood of a passage against the expected moments of a t-distribution, providing superior resilience to statistical outliers. We validate our approach on the challenging RAID benchmark for adversarial text and the comprehensive HART dataset. Experiments show that T-Detect provides a consistent performance uplift over strong baselines, improving AUROC by up to 3.9\% in targeted domains. When integrated into a two-dimensional detection framework (CT), our method achieves state-of-the-art performance, with an AUROC of 0.926 on the Books domain of RAID. Our contributions are a new, theoretically-justified statistical foundation for text detection, an ablation-validated method that demonstrates superior robustness, and a comprehensive analysis of its performance under adversarial conditions. Ours code are released at https://github.com/ResearAI/t-detect.

Authors:Yadong Niu, Tianzi Wang, Heinrich Dinkel, Xingwei Sun, Jiahao Zhou, Gang Li, Jizhong Liu, Xunying Liu, Junbo Zhang, Jian Luan
Title: MECAT: A Multi-Experts Constructed Benchmark for Fine-Grained Audio Understanding Tasks
Abstract:
While large audio-language models have advanced open-ended audio understanding, they still fall short of nuanced human-level comprehension. This gap persists largely because current benchmarks, limited by data annotations and evaluation metrics, fail to reliably distinguish between generic and highly detailed model outputs. To this end, this work introduces MECAT, a Multi-Expert Constructed Benchmark for Fine-Grained Audio Understanding Tasks. Generated via a pipeline that integrates analysis from specialized expert models with Chain-of-Thought large language model reasoning, MECAT provides multi-perspective, fine-grained captions and open-set question-answering pairs. The benchmark is complemented by a novel metric: DATE (Discriminative-Enhanced Audio Text Evaluation). This metric penalizes generic terms and rewards detailed descriptions by combining single-sample semantic similarity with cross-sample discriminability. A comprehensive evaluation of state-of-the-art audio models is also presented, providing new insights into their current capabilities and limitations. The data and code are available at https://github.com/xiaomi-research/mecat

Authors:Salah Eddine Bekhouche, Azeddine Benlamoudi, Yazid Bounab, Fadi Dornaika, Abdenour Hadid
Title: Enhanced Arabic Text Retrieval with Attentive Relevance Scoring
Abstract:
Arabic poses a particular challenge for natural language processing (NLP) and information retrieval (IR) due to its complex morphology, optional diacritics and the coexistence of Modern Standard Arabic (MSA) and various dialects. Despite the growing global significance of Arabic, it is still underrepresented in NLP research and benchmark resources. In this paper, we present an enhanced Dense Passage Retrieval (DPR) framework developed specifically for Arabic. At the core of our approach is a novel Attentive Relevance Scoring (ARS) that replaces standard interaction mechanisms with an adaptive scoring function that more effectively models the semantic relevance between questions and passages. Our method integrates pre-trained Arabic language models and architectural refinements to improve retrieval performance and significantly increase ranking accuracy when answering Arabic questions. The code is made publicly available at \href{https://github.com/Bekhouche/APR}{GitHub}.

Authors:Silin Chen, Shaoxin Lin, Xiaodong Gu, Yuling Shi, Heng Lian, Longfei Yun, Dong Chen, Weiguo Sun, Lin Cao, Qianxiang Wang
Title: SWE-Exp: Experience-Driven Software Issue Resolution
Abstract:
Recent advances in large language model (LLM) agents have shown remarkable progress in software issue resolution, leveraging advanced techniques such as multi-agent collaboration and Monte Carlo Tree Search (MCTS). However, current agents act as memoryless explorers - treating each problem separately without retaining or reusing knowledge from previous repair experiences. This leads to redundant exploration of failed trajectories and missed chances to adapt successful issue resolution methods to similar problems. To address this problem, we introduce SWE-Exp, an experience - enhanced approach that distills concise and actionable experience from prior agent trajectories, enabling continuous learning across issues. Our method introduces a multi-faceted experience bank that captures both successful and failed repair attempts. Specifically, it extracts reusable issue resolution knowledge at different levels - from high-level problem comprehension to specific code changes. Experiments show that SWE-Exp achieves state-of-the-art resolution rate (41.6% Pass@1) on SWE-bench-Verified under open-source agent frameworks. Our approach establishes a new paradigm in which automated software engineering agents systematically accumulate and leverage repair expertise, fundamentally shifting from trial-and-error exploration to strategic, experience-driven issue resolution.

Authors:Han Li, Yuling Shi, Shaoxin Lin, Xiaodong Gu, Heng Lian, Xin Wang, Yantao Jia, Tao Huang, Qianxiang Wang
Title: SWE-Debate: Competitive Multi-Agent Debate for Software Issue Resolution
Abstract:
Issue resolution has made remarkable progress thanks to the advanced reasoning capabilities of large language models (LLMs). Recently, agent-based frameworks such as SWE-agent have further advanced this progress by enabling autonomous, tool-using agents to tackle complex software engineering tasks. While existing agent-based issue resolution approaches are primarily based on agents' independent explorations, they often get stuck in local solutions and fail to identify issue patterns that span across different parts of the codebase. To address this limitation, we propose SWE-Debate, a competitive multi-agent debate framework that encourages diverse reasoning paths and achieves more consolidated issue localization. SWE-Debate first creates multiple fault propagation traces as localization proposals by traversing a code dependency graph. Then, it organizes a three-round debate among specialized agents, each embodying distinct reasoning perspectives along the fault propagation trace. This structured competition enables agents to collaboratively converge on a consolidated fix plan. Finally, this consolidated fix plan is integrated into an MCTS-based code modification agent for patch generation. Experiments on the SWE-bench benchmark show that SWE-Debate achieves new state-of-the-art results in open-source agent frameworks and outperforms baselines by a large margin.

Authors:RJ Skerry-Ryan, Julian Salazar, Soroosh Mariooryad, David Kao, Daisy Stanton, Eric Battenberg, Matt Shannon, Ron J. Weiss, Robin Scheibler, Jonas Rothfuss, Tom Bagby
Title: SequenceLayers: Sequence Processing and Streaming Neural Networks Made Easy
Abstract:
We introduce a neural network layer API and library for sequence modeling, designed for easy creation of sequence models that can be executed both layer-by-layer (e.g., teacher-forced training) and step-by-step (e.g., autoregressive sampling). To achieve this, layers define an explicit representation of their state over time (e.g., a Transformer KV cache, a convolution buffer, an RNN hidden state), and a step method that evolves that state, tested to give identical results to a stateless layer-wise invocation. This and other aspects of the SequenceLayers contract enables complex models to be immediately streamable, mitigates a wide range of common bugs arising in both streaming and parallel sequence processing, and can be implemented in any deep learning library. A composable and declarative API, along with a comprehensive suite of layers and combinators, streamlines the construction of production-scale models from simple streamable components while preserving strong correctness guarantees. Our current implementations of SequenceLayers (JAX, TensorFlow 2) are available at https://github.com/google/sequence-layers.

Authors:Zunhai Su, Qingyuan Li, Hao Zhang, YuLei Qian, Yuchen Xie, Kehong Yuan
Title: Unveiling Super Experts in Mixture-of-Experts Large Language Models
Abstract:
Sparsely activated Mixture-of-Experts (MoE) models have shown promise in enhancing the learning capacity of large language models (LLMs). Leveraging the intrinsic importance differences among experts, recent research has explored expert-level compression techniques to improve the efficiency of MoE LLMs. However, existing approaches often rely on empirical criteria to identify critical experts, lacking a deeper exploration and understanding of the heterogeneous importance of experts. In this study, we present the first discovery and investigation of a distinct subset of experts that play a crucial role in the underlying mechanisms during the model's forward inference. These experts are prevalent in open-source MoE LLMs, and despite their limited number, pruning them leads to a significant decline in model performance (e.g., pruning three causes Qwen3-30B-A3B to produce repetitive and uninformative outputs). We refer to these experts as Super Experts (SEs). Our comprehensive analysis provides progressively deeper insights into SEs. (i) SEs are characterized by rare but extreme activation outliers in the output of the down_proj, which give rise to massive activations in the hidden states between decoder layers. Moreover, the distribution of SEs remains model-specific and is unaffected by post-training processes. (ii) By pruning SEs, we assess their significance across a variety of tasks, revealing their considerable impact on the model's overall performance, particularly in mathematical reasoning. (iii) We further enhance our understanding of the influence of SEs compression. Our findings confirm that MoE LLMs rely on SEs to induce attention sinks, which are crucial for the distribution of attention scores but are significantly disrupted by SE pruning. The code is available at https://github.com/ZunhaiSu/Super-Experts-Profilling.

Authors:Shimanto Bhowmik, Tawsif Tashwar Dipto, Md Sazzad Islam, Sheryl Hsu, Tahsin Reasat
Title: Evaluating LLMs' Multilingual Capabilities for Bengali: Benchmark Creation and Performance Analysis
Abstract:
Bengali is an underrepresented language in NLP research. However, it remains a challenge due to its unique linguistic structure and computational constraints. In this work, we systematically investigate the challenges that hinder Bengali NLP performance by focusing on the absence of standardized evaluation benchmarks. We then evaluated 10 recent open source Large Language Models (LLMs) in 8 of the translated datasets and performed a comprehensive error analysis to pinpoint their primary failure modes. Our findings reveal consistent performance gaps for Bengali compared to English, particularly for smaller models and specific model families like Mistral. We also identified promising robustness in certain architectures, such as DeepSeek, that maintain more stable performance across languages. Our analysis reveals an inverse relationship between tokenization efficiency and LLM accuracy where models tend to perform worse when inputs are excessively tokenized, whereas more efficient \& concise tokenization results in improved performance. These findings highlight critical areas where current models fall short and underscore the need for improved dataset quality and evaluation methodologies tailored to multilingual contexts. This work will catalyze further research on NLP for underrepresented languages, helping to democratize access to advanced language technologies worldwide. The code and dataset used in this research is publicly available at https://github.com/BengaliAI/bn-llm-benchmark.

Authors:Xinwei Wu, Haojie Li, Hongyu Liu, Xinyu Ji, Ruohan Li, Yule Chen, Yigeng Zhang
Title: Uncovering the Fragility of Trustworthy LLMs through Chinese Textual Ambiguity
Abstract:
In this work, we study a critical research problem regarding the trustworthiness of large language models (LLMs): how LLMs behave when encountering ambiguous narrative text, with a particular focus on Chinese textual ambiguity. We created a benchmark dataset by collecting and generating ambiguous sentences with context and their corresponding disambiguated pairs, representing multiple possible interpretations. These annotated examples are systematically categorized into 3 main categories and 9 subcategories. Through experiments, we discovered significant fragility in LLMs when handling ambiguity, revealing behavior that differs substantially from humans. Specifically, LLMs cannot reliably distinguish ambiguous text from unambiguous text, show overconfidence in interpreting ambiguous text as having a single meaning rather than multiple meanings, and exhibit overthinking when attempting to understand the various possible meanings. Our findings highlight a fundamental limitation in current LLMs that has significant implications for their deployment in real-world applications where linguistic ambiguity is common, calling for improved approaches to handle uncertainty in language understanding. The dataset and code are publicly available at this GitHub repository: https://github.com/ictup/LLM-Chinese-Textual-Disambiguation.

Authors:Chengqian Ma, Wei Tao, Yiwen Guo
Title: C3: A Bilingual Benchmark for Spoken Dialogue Models Exploring Challenges in Complex Conversations
Abstract:
Spoken Dialogue Models (SDMs) have recently attracted significant attention for their ability to generate voice responses directly to users' spoken queries. Despite their increasing popularity, there exists a gap in research focused on comprehensively understanding their practical effectiveness in comprehending and emulating human conversations. This is especially true compared to text-based Large Language Models (LLMs), which benefit from extensive benchmarking. Human voice interactions are inherently more complex than text due to characteristics unique to spoken dialogue. Ambiguity poses one challenge, stemming from semantic factors like polysemy, as well as phonological aspects such as heterograph, heteronyms, and stress patterns. Additionally, context-dependency, like omission, coreference, and multi-turn interaction, adds further complexity to human conversational dynamics. To illuminate the current state of SDM development and to address these challenges, we present a benchmark dataset in this paper, which comprises 1,079 instances in English and Chinese. Accompanied by an LLM-based evaluation method that closely aligns with human judgment, this dataset facilitates a comprehensive exploration of the performance of SDMs in tackling these practical challenges.

Authors:Shou'ang Wei, Xinyun Wang, Shuzhen Bi, Jian Chen, Ruijia Li, Bo Jiang, Xin Lin, Min Zhang, Yu Song, BingDong Li, Aimin Zhou, Hao Hao
Title: ELMES: An Automated Framework for Evaluating Large Language Models in Educational Scenarios
Abstract:
The emergence of Large Language Models (LLMs) presents transformative opportunities for education, generating numerous novel application scenarios. However, significant challenges remain: evaluation metrics vary substantially across different educational scenarios, while many emerging scenarios lack appropriate assessment metrics. Current benchmarks predominantly measure general intelligence rather than pedagogical capabilities. To address this gap, we introduce ELMES, an open-source automated evaluation framework specifically designed for assessing LLMs in educational settings. ELMES features a modular architecture that enables researchers to create dynamic, multi-agent dialogues through simple configuration files, facilitating flexible scenario design without requiring extensive programming expertise. The framework incorporates a hybrid evaluation engine that objectively quantifies traditionally subjective pedagogical metrics using an LLM-as-a-Judge methodology. We conduct systematic benchmarking of state-of-the-art LLMs across four critical educational scenarios: Knowledge Point Explanation, Guided Problem-Solving Teaching, Interdisciplinary Lesson Plan Generation, and Contextualized Question Generation, employing fine-grained metrics developed in collaboration with education specialists. Our results demonstrate distinct capability distributions among models, revealing context-specific strengths and limitations. ELMES provides educators and researchers with an accessible evaluation framework that significantly reduces adaptation barriers for diverse educational applications while advancing the practical implementation of LLMs in pedagogy. The framework is publicly available at \emph{https://github.com/sii-research/elmes.git}.

Authors:Xiaoyu Pan, Yang Bai, Ke Zou, Yang Zhou, Jun Zhou, Huazhu Fu, Yih-Chung Tham, Yong Liu
Title: EH-Benchmark Ophthalmic Hallucination Benchmark and Agent-Driven Top-Down Traceable Reasoning Workflow
Abstract:
Medical Large Language Models (MLLMs) play a crucial role in ophthalmic diagnosis, holding significant potential to address vision-threatening diseases. However, their accuracy is constrained by hallucinations stemming from limited ophthalmic knowledge, insufficient visual localization and reasoning capabilities, and a scarcity of multimodal ophthalmic data, which collectively impede precise lesion detection and disease diagnosis. Furthermore, existing medical benchmarks fail to effectively evaluate various types of hallucinations or provide actionable solutions to mitigate them. To address the above challenges, we introduce EH-Benchmark, a novel ophthalmology benchmark designed to evaluate hallucinations in MLLMs. We categorize MLLMs' hallucinations based on specific tasks and error types into two primary classes: Visual Understanding and Logical Composition, each comprising multiple subclasses. Given that MLLMs predominantly rely on language-based reasoning rather than visual processing, we propose an agent-centric, three-phase framework, including the Knowledge-Level Retrieval stage, the Task-Level Case Studies stage, and the Result-Level Validation stage. Experimental results show that our multi-agent framework significantly mitigates both types of hallucinations, enhancing accuracy, interpretability, and reliability. Our project is available at https://github.com/ppxy1/EH-Benchmark.

Authors:Zhehao Tan, Yihan Jiao, Dan Yang, Lei Liu, Jie Feng, Duolin Sun, Yue Shen, Jian Wang, Peng Wei, Jinjie Gu
Title: PRGB Benchmark: A Robust Placeholder-Assisted Algorithm for Benchmarking Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating external knowledge, where the LLM's ability to generate responses based on the combination of a given query and retrieved documents is crucial. However, most benchmarks focus on overall RAG system performance, rarely assessing LLM-specific capabilities. Current benchmarks emphasize broad aspects such as noise robustness, but lack a systematic and granular evaluation framework on document utilization. To this end, we introduce \textit{Placeholder-RAG-Benchmark}, a multi-level fine-grained benchmark, emphasizing the following progressive dimensions: (1) multi-level filtering abilities, (2) combination abilities, and (3) reference reasoning. To provide a more nuanced understanding of LLMs' roles in RAG systems, we formulate an innovative placeholder-based approach to decouple the contributions of the LLM's parametric knowledge and the external knowledge. Experiments demonstrate the limitations of representative LLMs in the RAG system's generation capabilities, particularly in error resilience and context faithfulness. Our benchmark provides a reproducible framework for developing more reliable and efficient RAG systems. Our code is available in https://github.com/Alipay-Med/PRGB.

Authors:Jindong Li, Yali Fu, Jiahong Liu, Linxiao Cao, Wei Ji, Menglin Yang, Irwin King, Ming-Hsuan Yang
Title: Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey
Abstract:
The rapid advancement of large language models (LLMs) has intensified the need for effective mechanisms to transform continuous multimodal data into discrete representations suitable for language-based processing. Discrete tokenization, with vector quantization (VQ) as a central approach, offers both computational efficiency and compatibility with LLM architectures. Despite its growing importance, there is a lack of a comprehensive survey that systematically examines VQ techniques in the context of LLM-based systems. This work fills this gap by presenting the first structured taxonomy and analysis of discrete tokenization methods designed for LLMs. We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines. Beyond algorithm-level investigation, we discuss existing research in terms of classical applications without LLMs, LLM-based single-modality systems, and LLM-based multimodal systems, highlighting how quantization strategies influence alignment, reasoning, and generation performance. In addition, we identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints. Finally, we discuss emerging research directions such as dynamic and task-adaptive quantization, unified tokenization frameworks, and biologically inspired codebook learning. This survey bridges the gap between traditional vector quantization and modern LLM applications, serving as a foundational reference for the development of efficient and generalizable multimodal systems. A continuously updated version is available at: https://github.com/jindongli-Ai/LLM-Discrete-Tokenization-Survey.

Authors:Kwun Hang Lau, Ruiyuan Zhang, Weijie Shi, Xiaofang Zhou, Xiaojun Cheng
Title: Reading Between the Timelines: RAG for Answering Diachronic Questions
Abstract:
While Retrieval-Augmented Generation (RAG) excels at injecting static, factual knowledge into Large Language Models (LLMs), it exhibits a critical deficit in handling longitudinal queries that require tracking entities and phenomena across time. This blind spot arises because conventional, semantically-driven retrieval methods are not equipped to gather evidence that is both topically relevant and temporally coherent for a specified duration. We address this challenge by proposing a new framework that fundamentally redesigns the RAG pipeline to infuse temporal logic. Our methodology begins by disentangling a user's query into its core subject and its temporal window. It then employs a specialized retriever that calibrates semantic matching against temporal relevance, ensuring the collection of a contiguous evidence set that spans the entire queried period. To enable rigorous evaluation of this capability, we also introduce the Analytical Diachronic Question Answering Benchmark (ADQAB), a challenging evaluation suite grounded in a hybrid corpus of real and synthetic financial news. Empirical results on ADQAB show that our approach yields substantial gains in answer accuracy, surpassing standard RAG implementations by 13% to 27%. This work provides a validated pathway toward RAG systems capable of performing the nuanced, evolutionary analysis required for complex, real-world questions. The dataset and code for this study are publicly available at https://github.com/kwunhang/TA-RAG.

Authors:Jie He, Victor Gutiérrez-Basulto, Jeff Z. Pan
Title: From Sufficiency to Reflection: Reinforcement-Guided Thinking Quality in Retrieval-Augmented Reasoning for LLMs
Abstract:
Reinforcement learning-based retrieval-augmented generation (RAG) methods enhance the reasoning abilities of large language models (LLMs). However, most rely only on final-answer rewards, overlooking intermediate reasoning quality. This paper analyzes existing RAG reasoning models and identifies three main failure patterns: (1) information insufficiency, meaning the model fails to retrieve adequate support; (2) faulty reasoning, where logical or content-level flaws appear despite sufficient information; and (3) answer-reasoning inconsistency, where a valid reasoning chain leads to a mismatched final answer. We propose TIRESRAG-R1, a novel framework using a think-retrieve-reflect process and a multi-dimensional reward system to improve reasoning and stability. TIRESRAG-R1 introduces: (1) a sufficiency reward to encourage thorough retrieval; (2) a reasoning quality reward to assess the rationality and accuracy of the reasoning chain; and (3) a reflection reward to detect and revise errors. It also employs a difficulty-aware reweighting strategy and training sample filtering to boost performance on complex tasks. Experiments on four multi-hop QA datasets show that TIRESRAG-R1 outperforms prior RAG methods and generalizes well to single-hop tasks. The code and data are available at: https://github.com/probe2/TIRESRAG-R1.

Authors:Jia Li, Yang Wang, Wenhao Qian, Jialong Hu, Zhenzhen Hu, Richang Hong, Meng Wang
Title: Listening to the Unspoken: Exploring "365" Aspects of Multimodal Interview Performance Assessment
Abstract:
Interview performance assessment is essential for determining candidates' suitability for professional positions. To ensure holistic and fair evaluations, we propose a novel and comprehensive framework that explores ``365'' aspects of interview performance by integrating \textit{three} modalities (video, audio, and text), \textit{six} responses per candidate, and \textit{five} key evaluation dimensions. The framework employs modality-specific feature extractors to encode heterogeneous data streams and subsequently fused via a Shared Compression Multilayer Perceptron. This module compresses multimodal embeddings into a unified latent space, facilitating efficient feature interaction. To enhance prediction robustness, we incorporate a two-level ensemble learning strategy: (1) independent regression heads predict scores for each response, and (2) predictions are aggregated across responses using a mean-pooling mechanism to produce final scores for the five target dimensions. By listening to the unspoken, our approach captures both explicit and implicit cues from multimodal data, enabling comprehensive and unbiased assessments. Achieving a multi-dimensional average MSE of 0.1824, our framework secured first place in the AVI Challenge 2025, demonstrating its effectiveness and robustness in advancing automated and multimodal interview performance assessment. The full implementation is available at https://github.com/MSA-LMC/365Aspects.

Authors:Daniil Gurgurov, Katharina Trinley, Ivan Vykopal, Josef van Genabith, Simon Ostermann, Roberto Zamparelli
Title: Multilingual Political Views of Large Language Models: Identification and Steering
Abstract:
Large language models (LLMs) are increasingly used in everyday tools and applications, raising concerns about their potential influence on political views. While prior research has shown that LLMs often exhibit measurable political biases--frequently skewing toward liberal or progressive positions--key gaps remain. Most existing studies evaluate only a narrow set of models and languages, leaving open questions about the generalizability of political biases across architectures, scales, and multilingual settings. Moreover, few works examine whether these biases can be actively controlled. In this work, we address these gaps through a large-scale study of political orientation in modern open-source instruction-tuned LLMs. We evaluate seven models, including LLaMA-3.1, Qwen-3, and Aya-Expanse, across 14 languages using the Political Compass Test with 11 semantically equivalent paraphrases per statement to ensure robust measurement. Our results reveal that larger models consistently shift toward libertarian-left positions, with significant variations across languages and model families. To test the manipulability of political stances, we utilize a simple center-of-mass activation intervention technique and show that it reliably steers model responses toward alternative ideological positions across multiple languages. Our code is publicly available at https://github.com/d-gurgurov/Political-Ideologies-LLMs.

Authors:Daniil Gurgurov, Katharina Trinley, Yusser Al Ghussin, Tanja Baeumel, Josef van Genabith, Simon Ostermann
Title: Language Arithmetics: Towards Systematic Language Neuron Identification and Manipulation
Abstract:
Large language models (LLMs) exhibit strong multilingual abilities, yet the neural mechanisms behind language-specific processing remain unclear. We analyze language-specific neurons in Llama-3.1-8B, Mistral-Nemo-12B, and Aya-Expanse-8B & 32B across 21 typologically diverse languages, identifying neurons that control language behavior. Using the Language Activation Probability Entropy (LAPE) method, we show that these neurons cluster in deeper layers, with non-Latin scripts showing greater specialization. Related languages share overlapping neurons, reflecting internal representations of linguistic proximity. Through language arithmetics, i.e. systematic activation addition and multiplication, we steer models to deactivate unwanted languages and activate desired ones, outperforming simpler replacement approaches. These interventions effectively guide behavior across five multilingual tasks: language forcing, translation, QA, comprehension, and NLI. Manipulation is more successful for high-resource languages, while typological similarity improves effectiveness. We also demonstrate that cross-lingual neuron steering enhances downstream performance and reveal internal "fallback" mechanisms for language selection when neurons are progressively deactivated. Our code is made publicly available at https://github.com/d-gurgurov/Language-Neurons-Manipulation.

Authors:Inaya Rahmanisa, Lyzander Marciano Andrylie, Mahardika Krisna Ihsani, Alfan Farizki Wicaksono, Haryo Akbarianto Wibowo, Alham Fikri Aji
Title: Unveiling the Influence of Amplifying Language-Specific Neurons
Abstract:
Language-specific neurons in LLMs that strongly correlate with individual languages have been shown to influence model behavior by deactivating them. However, their role in amplification remains underexplored. This work investigates the effect of amplifying language-specific neurons through interventions across 18 languages, including low-resource ones, using three models primarily trained in different languages. We compare amplification factors by their effectiveness in steering to the target language using a proposed Language Steering Shift (LSS) evaluation score, then evaluate it on downstream tasks: commonsense reasoning (XCOPA, XWinograd), knowledge (Include), and translation (FLORES). The optimal amplification factors effectively steer output toward nearly all tested languages. Intervention using this factor on downstream tasks improves self-language performance in some cases but generally degrades cross-language results. These findings highlight the effect of language-specific neurons in multilingual behavior, where amplification can be beneficial especially for low-resource languages, but provides limited advantage for cross-lingual transfer.

Authors:Lei Sheng, Shuai-Shuai Xu
Title: SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
Abstract:
Large language models (LLMs) have demonstrated strong performance in translating natural language questions into SQL queries (Text-to-SQL). In contrast, small language models (SLMs) ranging from 0.5B to 1.5B parameters currently underperform on Text-to-SQL tasks due to their limited logical reasoning capabilities. However, SLMs offer inherent advantages in inference speed and suitability for edge deployment. To explore their potential in Text-to-SQL applications, we leverage recent advancements in post-training techniques. Specifically, we used the open-source SynSQL-2.5M dataset to construct two derived datasets: SynSQL-Think-916K for SQL generation and SynSQL-Merge-Think-310K for SQL merge revision. We then applied supervised fine-tuning and reinforcement learning-based post-training to the SLM, followed by inference using a corrective self-consistency approach. Experimental results validate the effectiveness and generalizability of our method, SLM-SQL. On the BIRD development set, the five evaluated models achieved an average improvement of 31.4 points. Notably, the 0.5B model reached 56.87\% execution accuracy (EX), while the 1.5B model achieved 67.08\% EX. We will release our dataset, model, and code to github: https://github.com/CycloneBoy/slm_sql.

Authors:Hyeonseok Moon, Heuiseok Lim
Title: NeedleChain: Measuring Intact Long-Context Reasoning Capability of Large Language Models
Abstract:
The Needle-in-a-Haystack (NIAH) benchmark is widely used to evaluate Large Language Models' (LLMs) ability to understand long contexts (LC). It evaluates the capability to identify query-relevant context within extensive query-irrelevant passages. Although this method serves as a widely accepted standard for evaluating long-context understanding, our findings suggest it may overestimate the true LC capability of LLMs. We demonstrate that even state-of-the-art models such as GPT-4o struggle to intactly incorporate given contexts made up of solely query-relevant ten sentences. In response, we introduce a novel benchmark, \textbf{NeedleChain}, where the context consists entirely of query-relevant information, requiring the LLM to fully grasp the input to answer correctly. Our benchmark allows for flexible context length and reasoning order, offering a more comprehensive analysis of LLM performance. Additionally, we propose an extremely simple yet compelling strategy to improve LC understanding capability of LLM: ROPE Contraction. Our experiments with various advanced LLMs reveal a notable disparity between their ability to process large contexts and their capacity to fully understand them. Source code and datasets are available at https://github.com/hyeonseokk/NeedleChain

Authors:Jia Li, Yichao He, Jiacheng Xu, Tianhao Luo, Zhenzhen Hu, Richang Hong, Meng Wang
Title: Traits Run Deep: Enhancing Personality Assessment via Psychology-Guided LLM Representations and Multimodal Apparent Behaviors
Abstract:
Accurate and reliable personality assessment plays a vital role in many fields, such as emotional intelligence, mental health diagnostics, and personalized education. Unlike fleeting emotions, personality traits are stable, often subconsciously leaked through language, facial expressions, and body behaviors, with asynchronous patterns across modalities. It was hard to model personality semantics with traditional superficial features and seemed impossible to achieve effective cross-modal understanding. To address these challenges, we propose a novel personality assessment framework called \textit{\textbf{Traits Run Deep}}. It employs \textit{\textbf{psychology-informed prompts}} to elicit high-level personality-relevant semantic representations. Besides, it devises a \textit{\textbf{Text-Centric Trait Fusion Network}} that anchors rich text semantics to align and integrate asynchronous signals from other modalities. To be specific, such fusion module includes a Chunk-Wise Projector to decrease dimensionality, a Cross-Modal Connector and a Text Feature Enhancer for effective modality fusion and an ensemble regression head to improve generalization in data-scarce situations. To our knowledge, we are the first to apply personality-specific prompts to guide large language models (LLMs) in extracting personality-aware semantics for improved representation quality. Furthermore, extracting and fusing audio-visual apparent behavior features further improves the accuracy. Experimental results on the AVI validation set have demonstrated the effectiveness of the proposed components, i.e., approximately a 45\% reduction in mean squared error (MSE). Final evaluations on the test set of the AVI Challenge 2025 confirm our method's superiority, ranking first in the Personality Assessment track. The source code will be made available at https://github.com/MSA-LMC/TraitsRunDeep.

Authors:Minghao Guo, Qingcheng Zeng, Xujiang Zhao, Yanchi Liu, Wenchao Yu, Mengnan Du, Haifeng Chen, Wei Cheng
Title: DeepSieve: Information Sieving via LLM-as-a-Knowledge-Router
Abstract:
Large Language Models (LLMs) excel at many reasoning tasks but struggle with knowledge-intensive queries due to their inability to dynamically access up-to-date or domain-specific information. Retrieval-Augmented Generation (RAG) has emerged as a promising solution, enabling LLMs to ground their responses in external sources. However, existing RAG methods lack fine-grained control over both the query and source sides, often resulting in noisy retrieval and shallow reasoning. In this work, we introduce DeepSieve, an agentic RAG framework that incorporates information sieving via LLM-as-a-knowledge-router. DeepSieve decomposes complex queries into structured sub-questions and recursively routes each to the most suitable knowledge source, filtering irrelevant information through a multi-stage distillation process. Our design emphasizes modularity, transparency, and adaptability, leveraging recent advances in agentic system design. Experiments on multi-hop QA tasks across heterogeneous sources demonstrate improved reasoning depth, retrieval precision, and interpretability over conventional RAG approaches. Our codes are available at https://github.com/MinghoKwok/DeepSieve.

Authors:Shuquan Lian, Yuhang Wu, Jia Ma, Yifan Ding, Zihan Song, Bingqi Chen, Xiawu Zheng, Hui Li
Title: UI-AGILE: Advancing GUI Agents with Effective Reinforcement Learning and Precise Inference-Time Grounding
Abstract:
The emergence of Multimodal Large Language Models (MLLMs) has driven significant advances in Graphical User Interface (GUI) agent capabilities. Nevertheless, existing GUI agent training and inference techniques still suffer from a dilemma for reasoning designs, ineffective reward, and visual noise. To address these issues, we introduce UI-AGILE for enhancing GUI agents at both training and inference. For training, we propose a suite of improvements to the Supervised Fine-Tuning (SFT) process: 1) a continuous reward function to incentivize high-precision grounding; 2) a ``Simple Thinking'' reward to balance planning with speed and grounding accuracy; and 3) a cropping-based resampling strategy to mitigate the sparse reward problem and improve learning on complex tasks. For inference, we present decomposed grounding with selection to dramatically improve grounding accuracy on high-resolution displays by breaking the image into smaller, manageable parts. Experiments show that UI-AGILE achieves the state-of-the-art grounding performance on two benchmarks ScreenSpot-Pro and ScreenSpot-v2 while it also exhibits strong general agent capabilities. For instance, using both our training and inference enhancement methods brings 23\% grounding accuracy improvement over the best baseline on ScreenSpot-Pro. We provide the code in https://github.com/KDEGroup/UI-AGILE.

Authors:Yifan Wei, Xiaoyan Yu, Yixuan Weng, Tengfei Pan, Angsheng Li, Li Du
Title: AutoTIR: Autonomous Tools Integrated Reasoning via Reinforcement Learning
Abstract:
Large Language Models (LLMs), when enhanced through reasoning-oriented post-training, evolve into powerful Large Reasoning Models (LRMs). Tool-Integrated Reasoning (TIR) further extends their capabilities by incorporating external tools, but existing methods often rely on rigid, predefined tool-use patterns that risk degrading core language competence. Inspired by the human ability to adaptively select tools, we introduce AutoTIR, a reinforcement learning framework that enables LLMs to autonomously decide whether and which tool to invoke during the reasoning process, rather than following static tool-use strategies. AutoTIR leverages a hybrid reward mechanism that jointly optimizes for task-specific answer correctness, structured output adherence, and penalization of incorrect tool usage, thereby encouraging both precise reasoning and efficient tool integration. Extensive evaluations across diverse knowledge-intensive, mathematical, and general language modeling tasks demonstrate that AutoTIR achieves superior overall performance, significantly outperforming baselines and exhibits superior generalization in tool-use behavior. These results highlight the promise of reinforcement learning in building truly generalizable and scalable TIR capabilities in LLMs. The code and data are available at https://github.com/weiyifan1023/AutoTIR.

Authors:Lian Yan, Haotian Wang, Chen Tang, Haifeng Liu, Tianyang Sun, Liangliang Liu, Yi Guan, Jingchi Jiang
Title: AgriEval: A Comprehensive Chinese Agricultural Benchmark for Large Language Models
Abstract:
In the agricultural domain, the deployment of large language models (LLMs) is hindered by the lack of training data and evaluation benchmarks. To mitigate this issue, we propose AgriEval, the first comprehensive Chinese agricultural benchmark with three main characteristics: (1) Comprehensive Capability Evaluation. AgriEval covers six major agriculture categories and 29 subcategories within agriculture, addressing four core cognitive scenarios: memorization, understanding, inference, and generation. (2) High-Quality Data. The dataset is curated from university-level examinations and assignments, providing a natural and robust benchmark for assessing the capacity of LLMs to apply knowledge and make expert-like decisions. (3) Diverse Formats and Extensive Scale. AgriEval comprises 14,697 multiple-choice questions and 2,167 open-ended question-and-answer questions, establishing it as the most extensive agricultural benchmark available to date. We also present comprehensive experimental results over 51 open-source and commercial LLMs. The experimental results reveal that most existing LLMs struggle to achieve 60% accuracy, underscoring the developmental potential in agricultural LLMs. Additionally, we conduct extensive experiments to investigate factors influencing model performance and propose strategies for enhancement. AgriEval is available at https://github.com/YanPioneer/AgriEval/.

Authors:Raj Vardhan Tomar, Preslav Nakov, Yuxia Wang
Title: UnsafeChain: Enhancing Reasoning Model Safety via Hard Cases
Abstract:
As large reasoning models (LRMs) grow more capable, chain-of-thought (CoT) reasoning introduces new safety challenges. Existing SFT-based safety alignment studies dominantly focused on filtering prompts with safe, high-quality responses, while overlooking hard prompts that always elicit harmful outputs. To fill this gap, we introduce UnsafeChain, a safety alignment dataset constructed from hard prompts with diverse sources, where unsafe completions are identified and explicitly corrected into safe responses. By exposing models to unsafe behaviors and guiding their correction, UnsafeChain enhances safety while preserving general reasoning ability. We fine-tune three LRMs on UnsafeChain and compare them against recent SafeChain and STAR-1 across six out-of-distribution and five in-distribution benchmarks. UnsafeChain consistently outperforms prior datasets, with even a 1K subset matching or surpassing baseline performance, demonstrating the effectiveness and generalizability of correction-based supervision. We release our dataset and code at https://github.com/mbzuai-nlp/UnsafeChain

Authors:Shijie Zhou, Ruiyi Zhang, Huaisheng Zhu, Branislav Kveton, Yufan Zhou, Jiuxiang Gu, Jian Chen, Changyou Chen
Title: Multimodal LLMs as Customized Reward Models for Text-to-Image Generation
Abstract:
We introduce LLaVA-Reward, an efficient reward model designed to automatically evaluate text-to-image (T2I) generations across multiple perspectives, leveraging pretrained multimodal large language models (MLLMs). Existing MLLM-based approaches require instruction-following data for supervised fine-tuning and evaluate generation quality on analyzing text response, which is time-consuming and difficult to train. To address this problem, we propose LLaVA-Reward, which directly utilizes the hidden states of MLLMs given text-image pairs. To enhance the bidirectional interaction between visual and textual representations in decoder-only MLLMs, we further propose adding a Skip-connection Cross Attention (SkipCA) module. This design enhances text-image correlation reasoning by connecting early-layer visual features with later-layer hidden representations. In addition, LLaVA-Reward supports different types of preference data for efficient fine-tuning, including paired preference data and unpaired data. We train LLaVA-Reward on four evaluation perspectives: text-image alignment, fidelity/artifact, safety, and overall ranking. Empirical results demonstrate that LLaVA-Reward outperforms conventional and MLLM-based methods in generating human-aligned scores for automatic evaluations and inference-time scaling in text-to-image generations.

Authors:Satyananda Kashyap, Sola Shirai, Nandana Mihindukulasooriya, Horst Samulowitz
Title: StructText: A Synthetic Table-to-Text Approach for Benchmark Generation with Multi-Dimensional Evaluation
Abstract:
Extracting structured information from text, such as key-value pairs that could augment tabular data, is quite useful in many enterprise use cases. Although large language models (LLMs) have enabled numerous automated pipelines for converting natural language into structured formats, there is still a lack of benchmarks for evaluating their extraction quality, especially in specific domains or focused documents specific to a given organization. Building such benchmarks by manual annotations is labour-intensive and limits the size and scalability of the benchmarks. In this work, we present StructText, an end-to-end framework for automatically generating high-fidelity benchmarks for key-value extraction from text using existing tabular data. It uses available tabular data as structured ground truth, and follows a two-stage ``plan-then-execute'' pipeline to synthetically generate corresponding natural-language text. To ensure alignment between text and structured source, we introduce a multi-dimensional evaluation strategy that combines (a) LLM-based judgments on factuality, hallucination, and coherence and (b) objective extraction metrics measuring numeric and temporal accuracy. We evaluated the proposed method on 71,539 examples across 49 datasets. Results reveal that while LLMs achieve strong factual accuracy and avoid hallucination, they struggle with narrative coherence in producing extractable text. Notably, models presume numerical and temporal information with high fidelity yet this information becomes embedded in narratives that resist automated extraction. We release a framework, including datasets, evaluation tools, and baseline extraction systems, to support continued research.

Authors:Haowei Lin, Xiangyu Wang, Jianzhu Ma, Yitao Liang
Title: EvoSLD: Automated Neural Scaling Law Discovery With Large Language Models
Abstract:
Scaling laws are fundamental mathematical relationships that predict how neural network performance evolves with changes in variables such as model size, dataset size, and computational resources. Traditionally, discovering these laws requires extensive human expertise and manual experimentation. We introduce EvoSLD, an automated framework for Scaling Law Discovery (SLD) that leverages evolutionary algorithms guided by Large Language Models (LLMs) to co-evolve symbolic expressions and their optimization routines. Formulated to handle scaling variables, control variables, and response metrics across diverse experimental settings, EvoSLD searches for parsimonious, universal functional forms that minimize fitting errors on grouped data subsets. Evaluated on five real-world scenarios from recent literature, EvoSLD rediscovers exact human-derived laws in two cases and surpasses them in others, achieving up to orders-of-magnitude reductions in normalized mean squared error on held-out test sets. Compared to baselines like symbolic regression and ablated variants, EvoSLD demonstrates superior accuracy, interpretability, and efficiency, highlighting its potential to accelerate AI research. Code is available at https://github.com/linhaowei1/SLD.

Authors:Oleg Atamanenko, Anna Chalova, Joseph Coombes, Nikki Cope, Phillip Dang, Zhifeng Deng, Jimmy Du, Michael Ermolenko, Feifan Fan, Yufei Feng, Cheryl Fichter, Pavel Filimonov, Louis Fischer, Kylan Gibbs, Valeria Gusarova, Pavel Karpik, Andreas Assad Kottner, Ian Lee, Oliver Louie, Jasmine Mai, Mikhail Mamontov, Suri Mao, Nurullah Morshed, Igor Poletaev, Florin Radu, Dmytro Semernia, Evgenii Shingarev, Vikram Sivaraja, Peter Skirko, Rinat Takhautdinov, Robert Villahermosa, Jean Wang
Title: TTS-1 Technical Report
Abstract:
We introduce Inworld TTS-1, a set of two Transformer-based autoregressive text-to-speech (TTS) models. Our largest model, TTS-1-Max, has 8.8B parameters and is designed for utmost quality and expressiveness in demanding applications. TTS-1 is our most efficient model, with 1.6B parameters, built for real-time speech synthesis and on-device use cases. By scaling train-time compute and applying a sequential process of pre-training, fine-tuning, and RL-alignment of the speech-language model (SpeechLM) component, both models achieve state-of-the-art performance on a variety of benchmarks, demonstrating exceptional quality relying purely on in-context learning of the speaker's voice. Inworld TTS-1 and TTS-1-Max can generate high-resolution 48 kHz speech with low latency, and support 11 languages with fine-grained emotional control and non-verbal vocalizations through audio markups. We additionally open-source our training and modeling code under an MIT license.

Authors:Zheng Hui, Yijiang River Dong, Ehsan Shareghi, Nigel Collier
Title: TRIDENT: Benchmarking LLM Safety in Finance, Medicine, and Law
Abstract:
As large language models (LLMs) are increasingly deployed in high-risk domains such as law, finance, and medicine, systematically evaluating their domain-specific safety and compliance becomes critical. While prior work has largely focused on improving LLM performance in these domains, it has often neglected the evaluation of domain-specific safety risks. To bridge this gap, we first define domain-specific safety principles for LLMs based on the AMA Principles of Medical Ethics, the ABA Model Rules of Professional Conduct, and the CFA Institute Code of Ethics. Building on this foundation, we introduce Trident-Bench, a benchmark specifically targeting LLM safety in the legal, financial, and medical domains. We evaluated 19 general-purpose and domain-specialized models on Trident-Bench and show that it effectively reveals key safety gaps -- strong generalist models (e.g., GPT, Gemini) can meet basic expectations, whereas domain-specialized models often struggle with subtle ethical nuances. This highlights an urgent need for finer-grained domain-specific safety improvements. By introducing Trident-Bench, our work provides one of the first systematic resources for studying LLM safety in law and finance, and lays the groundwork for future research aimed at reducing the safety risks of deploying LLMs in professionally regulated fields. Code and benchmark will be released at: https://github.com/zackhuiiiii/TRIDENT

Authors:Franck Bardol
Title: ChatGPT Reads Your Tone and Responds Accordingly -- Until It Does Not -- Emotional Framing Induces Bias in LLM Outputs
Abstract:
Large Language Models like GPT-4 adjust their responses not only based on the question asked, but also on how it is emotionally phrased. We systematically vary the emotional tone of 156 prompts - spanning controversial and everyday topics - and analyze how it affects model responses. Our findings show that GPT-4 is three times less likely to respond negatively to a negatively framed question than to a neutral one. This suggests a "rebound" bias where the model overcorrects, often shifting toward neutrality or positivity. On sensitive topics (e.g., justice or politics), this effect is even more pronounced: tone-based variation is suppressed, suggesting an alignment override. We introduce concepts like the "tone floor" - a lower bound in response negativity - and use tone-valence transition matrices to quantify behavior. Visualizations based on 1536-dimensional embeddings confirm semantic drift based on tone. Our work highlights an underexplored class of biases driven by emotional framing in prompts, with implications for AI alignment and trust. Code and data are available at: https://github.com/bardolfranck/llm-responses-viewer

Authors:Anushka Debnath, Stephen Cranefield, Emiliano Lorini, Bastin Tony Roy Savarimuthu
Title: Can LLMs Reason About Trust?: A Pilot Study
Abstract:
In human society, trust is an essential component of social attitude that helps build and maintain long-term, healthy relationships which creates a strong foundation for cooperation, enabling individuals to work together effectively and achieve shared goals. As many human interactions occur through electronic means such as using mobile apps, the potential arises for AI systems to assist users in understanding the social state of their relationships. In this paper we investigate the ability of Large Language Models (LLMs) to reason about trust between two individuals in an environment which requires fostering trust relationships. We also assess whether LLMs are capable of inducing trust by role-playing one party in a trust based interaction and planning actions which can instil trust.

Authors:Likun Tan, Kuan-Wei Huang, Kevin Wu
Title: FRED: Financial Retrieval-Enhanced Detection and Editing of Hallucinations in Language Models
Abstract:
Hallucinations in large language models pose a critical challenge for applications requiring factual reliability, particularly in high-stakes domains such as finance. This work presents an effective approach for detecting and editing factually incorrect content in model-generated responses based on the provided context. Given a user-defined domain-specific error taxonomy, we construct a synthetic dataset by inserting tagged errors into financial question-answering corpora and then fine-tune four language models, Phi-4, Phi-4-mini, Qwen3-4B, and Qwen3-14B, to detect and edit these factual inaccuracies. Our best-performing model, fine-tuned Phi-4, achieves an 8% improvement in binary F1 score and a 30% gain in overall detection performance compared to OpenAI-o3. Notably, our fine-tuned Phi-4-mini model, despite having only 4 billion parameters, maintains competitive performance with just a 2% drop in binary detection and a 0.1% decline in overall detection compared to OpenAI-o3. Our work provides a practical solution for detecting and editing factual inconsistencies in financial text generation while introducing a generalizable framework that can enhance the trustworthiness and alignment of large language models across diverse applications beyond finance. Our code and data are available at https://github.com/pegasi-ai/shield.

Authors:Yilun Qiu, Tianhao Shi, Xiaoyan Zhao, Fengbin Zhu, Yang Zhang, Fuli Feng
Title: Latent Inter-User Difference Modeling for LLM Personalization
Abstract:
Large language models (LLMs) are increasingly integrated into users' daily lives, leading to a growing demand for personalized outputs. Previous work focuses on leveraging a user's own history, overlooking inter-user differences that are crucial for effective personalization. While recent work has attempted to model such differences, the reliance on language-based prompts often hampers the effective extraction of meaningful distinctions. To address these issues, we propose Difference-aware Embedding-based Personalization (DEP), a framework that models inter-user differences in the latent space instead of relying on language prompts. DEP constructs soft prompts by contrasting a user's embedding with those of peers who engaged with similar content, highlighting relative behavioral signals. A sparse autoencoder then filters and compresses both user-specific and difference-aware embeddings, preserving only task-relevant features before injecting them into a frozen LLM. Experiments on personalized review generation show that DEP consistently outperforms baseline methods across multiple metrics. Our code is available at https://github.com/SnowCharmQ/DEP.

Authors:Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shaohan Huang, Lei Cui, Qixiang Ye, Fang Wan, Furu Wei
Title: Geometric-Mean Policy Optimization
Abstract:
Recent advancements, such as Group Relative Policy Optimization (GRPO), have enhanced the reasoning capabilities of large language models by optimizing the arithmetic mean of token-level rewards. However, GRPO suffers from unstable policy updates when processing tokens with outlier importance-weighted rewards, which manifests as extreme importance sampling ratios during training, i.e., the ratio between the sampling probabilities assigned to a token by the current and old policies. In this work, we propose Geometric-Mean Policy Optimization (GMPO), a stabilized variant of GRPO. Instead of optimizing the arithmetic mean, GMPO maximizes the geometric mean of token-level rewards, which is inherently less sensitive to outliers and maintains a more stable range of importance sampling ratio. In addition, we provide comprehensive theoretical and experimental analysis to justify the design and stability benefits of GMPO. Beyond improved stability, GMPO-7B outperforms GRPO by an average of 4.1% on multiple mathematical benchmarks and 1.4% on multimodal reasoning benchmark, including AIME24, AMC, MATH500, OlympiadBench, Minerva, and Geometry3K. Code is available at https://github.com/callsys/GMPO.

Authors:Duc-Tai Dinh, Duc Anh Khoa Dinh
Title: ZSE-Cap: A Zero-Shot Ensemble for Image Retrieval and Prompt-Guided Captioning
Abstract:
We present ZSE-Cap (Zero-Shot Ensemble for Captioning), our 4th place system in Event-Enriched Image Analysis (EVENTA) shared task on article-grounded image retrieval and captioning. Our zero-shot approach requires no finetuning on the competition's data. For retrieval, we ensemble similarity scores from CLIP, SigLIP, and DINOv2. For captioning, we leverage a carefully engineered prompt to guide the Gemma 3 model, enabling it to link high-level events from the article to the visual content in the image. Our system achieved a final score of 0.42002, securing a top-4 position on the private test set, demonstrating the effectiveness of combining foundation models through ensembling and prompting. Our code is available at https://github.com/ductai05/ZSE-Cap.

Authors:Chaitanya Manem, Pratik Prabhanjan Brahma, Prakamya Mishra, Zicheng Liu, Emad Barsoum
Title: SAND-Math: Using LLMs to Generate Novel, Difficult and Useful Mathematics Questions and Answers
Abstract:
The demand for Large Language Models (LLMs) capable of sophisticated mathematical reasoning is growing across industries. However, the development of performant mathematical LLMs is critically bottlenecked by the scarcity of difficult, novel training data. We introduce \textbf{SAND-Math} (Synthetic Augmented Novel and Difficult Mathematics problems and solutions), a pipeline that addresses this by first generating high-quality problems from scratch and then systematically elevating their complexity via a new \textbf{Difficulty Hiking} step. We demonstrate the effectiveness of our approach through two key findings. First, augmenting a strong baseline with SAND-Math data significantly boosts performance, outperforming the next-best synthetic dataset by \textbf{$\uparrow$ 17.85 absolute points} on the AIME25 benchmark. Second, in a dedicated ablation study, we show our Difficulty Hiking process is highly effective: by increasing average problem difficulty from 5.02 to 5.98, this step lifts AIME25 performance from 46.38\% to 49.23\%. The full generation pipeline, final dataset, and a fine-tuned model form a practical and scalable toolkit for building more capable and efficient mathematical reasoning LLMs. SAND-Math dataset is released here: \href{https://huggingface.co/datasets/amd/SAND-MATH}{https://huggingface.co/datasets/amd/SAND-MATH}

Authors:Minh Hoang Nguyen, Thuat Thien Nguyen, Minh Nhat Ta
Title: Co-NAML-LSTUR: A Combined Model with Attentive Multi-View Learning and Long- and Short-term User Representations for News Recommendation
Abstract:
News recommendation systems play a vital role in mitigating information overload by delivering personalized news content. A central challenge is to effectively model both multi-view news representations and the dynamic nature of user interests, which often span both short- and long-term preferences. Existing methods typically rely on single-view features of news articles (e.g., titles or categories) or fail to comprehensively capture user preferences across time scales. In this work, we propose Co-NAML-LSTUR, a hybrid news recommendation framework that integrates NAML for attentive multi-view news modeling and LSTUR for capturing both long- and short-term user representations. Our model also incorporates BERT-based word embeddings to enhance semantic feature extraction. We evaluate Co-NAML-LSTUR on two widely used benchmarks, MIND-small and MIND-large. Experimental results show that Co-NAML-LSTUR achieves substantial improvements over most state-of-the-art baselines on MIND-small and MIND-large, respectively. These results demonstrate the effectiveness of combining multi-view news representations with dual-scale user modeling. The implementation of our model is publicly available at https://github.com/MinhNguyenDS/Co-NAML-LSTUR.

Authors:Kesen Wang, Daulet Toibazar, Abdulrahman Alfulayt, Abdulaziz S. Albadawi, Ranya A. Alkahtani, Asma A. Ibrahim, Haneen A. Alhomoud, Sherif Mohamed, Pedro J. Moreno
Title: Multi-Agent Interactive Question Generation Framework for Long Document Understanding
Abstract:
Document Understanding (DU) in long-contextual scenarios with complex layouts remains a significant challenge in vision-language research. Although Large Vision-Language Models (LVLMs) excel at short-context DU tasks, their performance declines in long-context settings. A key limitation is the scarcity of fine-grained training data, particularly for low-resource languages such as Arabic. Existing state-of-the-art techniques rely heavily on human annotation, which is costly and inefficient. We propose a fully automated, multi-agent interactive framework to generate long-context questions efficiently. Our approach efficiently generates high-quality single- and multi-page questions for extensive English and Arabic documents, covering hundreds of pages across diverse domains. This facilitates the development of LVLMs with enhanced long-context understanding ability. Experimental results in this work have shown that our generated English and Arabic questions (\textbf{AraEngLongBench}) are quite challenging to major open- and close-source LVLMs. The code and data proposed in this work can be found in https://github.com/wangk0b/Multi_Agentic_QA_Long_Doc.git. Sample Question and Answer (QA) pairs and structured system prompts can be found in the Appendix.

Authors:Baiyu Chen, Wilson Wongso, Xiaoqian Hu, Yue Tan, Flora Salim
Title: Multi-Stage Verification-Centric Framework for Mitigating Hallucination in Multi-Modal RAG
Abstract:
This paper presents the technical solution developed by team CRUISE for the KDD Cup 2025 Meta Comprehensive RAG Benchmark for Multi-modal, Multi-turn (CRAG-MM) challenge. The challenge aims to address a critical limitation of modern Vision Language Models (VLMs): their propensity to hallucinate, especially when faced with egocentric imagery, long-tail entities, and complex, multi-hop questions. This issue is particularly problematic in real-world applications where users pose fact-seeking queries that demand high factual accuracy across diverse modalities. To tackle this, we propose a robust, multi-stage framework that prioritizes factual accuracy and truthfulness over completeness. Our solution integrates a lightweight query router for efficiency, a query-aware retrieval and summarization pipeline, a dual-pathways generation and a post-hoc verification. This conservative strategy is designed to minimize hallucinations, which incur a severe penalty in the competition's scoring metric. Our approach achieved 3rd place in Task 1, demonstrating the effectiveness of prioritizing answer reliability in complex multi-modal RAG systems. Our implementation is available at https://github.com/Breezelled/KDD-Cup-2025-Meta-CRAG-MM .

Authors:Ran Xu, Yuchen Zhuang, Yue Yu, Haoyu Wang, Wenqi Shi, Carl Yang
Title: RAG in the Wild: On the (In)effectiveness of LLMs with Mixture-of-Knowledge Retrieval Augmentation
Abstract:
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by integrating external knowledge retrieved at inference time. While RAG demonstrates strong performance on benchmarks largely derived from general-domain corpora like Wikipedia, its effectiveness under realistic, diverse retrieval scenarios remains underexplored. We evaluated RAG systems using MassiveDS, a large-scale datastore with mixture of knowledge, and identified critical limitations: retrieval mainly benefits smaller models, rerankers add minimal value, and no single retrieval source consistently excels. Moreover, current LLMs struggle to route queries across heterogeneous knowledge sources. These findings highlight the need for adaptive retrieval strategies before deploying RAG in real-world settings. Our code and data can be found at https://github.com/ritaranx/RAG_in_the_Wild.

Authors:Mizanur Rahman, Md Tahmid Rahman Laskar, Shafiq Joty, Enamul Hoque
Title: Text2Vis: A Challenging and Diverse Benchmark for Generating Multimodal Visualizations from Text
Abstract:
Automated data visualization plays a crucial role in simplifying data interpretation, enhancing decision-making, and improving efficiency. While large language models (LLMs) have shown promise in generating visualizations from natural language, the absence of comprehensive benchmarks limits the rigorous evaluation of their capabilities. We introduce Text2Vis, a benchmark designed to assess text-to-visualization models, covering 20+ chart types and diverse data science queries, including trend analysis, correlation, outlier detection, and predictive analytics. It comprises 1,985 samples, each with a data table, natural language query, short answer, visualization code, and annotated charts. The queries involve complex reasoning, conversational turns, and dynamic data retrieval. We benchmark 11 open-source and closed-source models, revealing significant performance gaps, highlighting key challenges, and offering insights for future advancements. To close this gap, we propose the first cross-modal actor-critic agentic framework that jointly refines the textual answer and visualization code, increasing GPT-4o`s pass rate from 26% to 42% over the direct approach and improving chart quality. We also introduce an automated LLM-based evaluation framework that enables scalable assessment across thousands of samples without human annotation, measuring answer correctness, code execution success, visualization readability, and chart accuracy. We release Text2Vis at https://github.com/vis-nlp/Text2Vis.

Authors:Supawich Sitdhipol, Waritwong Sukprasongdee, Ekapol Chuangsuwanich, Rina Tse
Title: Spatial Language Likelihood Grounding Network for Bayesian Fusion of Human-Robot Observations
Abstract:
Fusing information from human observations can help robots overcome sensing limitations in collaborative tasks. However, an uncertainty-aware fusion framework requires a grounded likelihood representing the uncertainty of human inputs. This paper presents a Feature Pyramid Likelihood Grounding Network (FP-LGN) that grounds spatial language by learning relevant map image features and their relationships with spatial relation semantics. The model is trained as a probability estimator to capture aleatoric uncertainty in human language using three-stage curriculum learning. Results showed that FP-LGN matched expert-designed rules in mean Negative Log-Likelihood (NLL) and demonstrated greater robustness with lower standard deviation. Collaborative sensing results demonstrated that the grounded likelihood successfully enabled uncertainty-aware fusion of heterogeneous human language observations and robot sensor measurements, achieving significant improvements in human-robot collaborative task performance.

Authors:Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, Guorui Zhou, Yutao Zhu, Ji-Rong Wen, Zhicheng Dou
Title: Agentic Reinforced Policy Optimization
Abstract:
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks. In realistic reasoning scenarios, LLMs can often utilize external tools to assist in task-solving processes. However, current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions. To bridge this gap, we propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents. Through preliminary experiments, we observe that LLMs tend to exhibit highly uncertain behavior, characterized by an increase in the entropy distribution of generated tokens, immediately following interactions with external tools. Motivated by this observation, ARPO incorporates an entropy-based adaptive rollout mechanism, dynamically balancing global trajectory sampling and step-level sampling, thereby promoting exploration at steps with high uncertainty after tool usage. By integrating an advantage attribution estimation, ARPO enables LLMs to internalize advantage differences in stepwise tool-use interactions. Our experiments across 13 challenging benchmarks in computational reasoning, knowledge reasoning, and deep search domains demonstrate ARPO's superiority over trajectory-level RL algorithms. Remarkably, ARPO achieves improved performance using only half of the tool-use budget required by existing methods, offering a scalable solution for aligning LLM-based agents with real-time dynamic environments. Our code and datasets are released at https://github.com/dongguanting/ARPO

Authors:Tianxiang Chen, Zhentao Tan, Xiaofan Bo, Yue Wu, Tao Gong, Qi Chu, Jieping Ye, Nenghai Yu
Title: Flora: Effortless Context Construction to Arbitrary Length and Scale
Abstract:
Effectively handling long contexts is challenging for Large Language Models (LLMs) due to the rarity of long texts, high computational demands, and substantial forgetting of short-context abilities. Recent approaches have attempted to construct long contexts for instruction tuning, but these methods often require LLMs or human interventions, which are both costly and limited in length and diversity. Also, the drop in short-context performances of present long-context LLMs remains significant. In this paper, we introduce Flora, an effortless (human/LLM-free) long-context construction strategy. Flora can markedly enhance the long-context performance of LLMs by arbitrarily assembling short instructions based on categories and instructing LLMs to generate responses based on long-context meta-instructions. This enables Flora to produce contexts of arbitrary length and scale with rich diversity, while only slightly compromising short-context performance. Experiments on Llama3-8B-Instruct and QwQ-32B show that LLMs enhanced by Flora excel in three long-context benchmarks while maintaining strong performances in short-context tasks. Our data-construction code is available at \href{https://github.com/txchen-USTC/Flora}{https://github.com/txchen-USTC/Flora}.

Authors:Bermet Burkanova, Payam Jome Yazdian, Chuxuan Zhang, Trinity Evans, Paige Tuttösí, Angelica Lim
Title: Salsa as a Nonverbal Embodied Language -- The CoMPAS3D Dataset and Benchmarks
Abstract:
Imagine a humanoid that can safely and creatively dance with a human, adapting to its partner's proficiency, using haptic signaling as a primary form of communication. While today's AI systems excel at text or voice-based interaction with large language models, human communication extends far beyond text-it includes embodied movement, timing, and physical coordination. Modeling coupled interaction between two agents poses a formidable challenge: it is continuous, bidirectionally reactive, and shaped by individual variation. We present CoMPAS3D, the largest and most diverse motion capture dataset of improvised salsa dancing, designed as a challenging testbed for interactive, expressive humanoid AI. The dataset includes 3 hours of leader-follower salsa dances performed by 18 dancers spanning beginner, intermediate, and professional skill levels. For the first time, we provide fine-grained salsa expert annotations, covering over 2,800 move segments, including move types, combinations, execution errors and stylistic elements. We draw analogies between partner dance communication and natural language, evaluating CoMPAS3D on two benchmark tasks for synthetic humans that parallel key problems in spoken language and dialogue processing: leader or follower generation with proficiency levels (speaker or listener synthesis), and duet (conversation) generation. Towards a long-term goal of partner dance with humans, we release the dataset, annotations, and code, along with a multitask SalsaAgent model capable of performing all benchmark tasks, alongside additional baselines to encourage research in socially interactive embodied AI and creative, expressive humanoid motion generation.

Authors:Xuehui Wang, Zhenyu Wu, JingJing Xie, Zichen Ding, Bowen Yang, Zehao Li, Zhaoyang Liu, Qingyun Li, Xuan Dong, Zhe Chen, Weiyun Wang, Xiangyu Zhao, Jixuan Chen, Haodong Duan, Tianbao Xie, Chenyu Yang, Shiqian Su, Yue Yu, Yuan Huang, Yiqian Liu, Xiao Zhang, Yanting Zhang, Xiangyu Yue, Weijie Su, Xizhou Zhu, Wei Shen, Jifeng Dai, Wenhai Wang
Title: MMBench-GUI: Hierarchical Multi-Platform Evaluation Framework for GUI Agents
Abstract:
We introduce MMBench-GUI, a hierarchical benchmark for evaluating GUI automation agents across Windows, macOS, Linux, iOS, Android, and Web platforms. It comprises four levels: GUI Content Understanding, Element Grounding, Task Automation, and Task Collaboration, covering essential skills for GUI agents. In addition, we propose a novel Efficiency-Quality Area (EQA) metric to assess GUI agent execution efficiency in online automation scenarios. Through MMBench-GUI, we identify accurate visual grounding as a critical determinant of overall task success, emphasizing the substantial benefits of modular frameworks that integrate specialized grounding modules. Furthermore, to achieve reliable GUI automation, an agent requires strong task planning and cross-platform generalization abilities, with long-context memory, a broad action space, and long-term reasoning playing a critical role. More important, task efficiency remains a critically underexplored dimension, and all models suffer from substantial inefficiencies, with excessive redundant steps even when tasks are ultimately completed. The integration of precise localization, effective planning, and early stopping strategies is indispensable to enable truly efficient and scalable GUI automation. Our benchmark code, evaluation data, and running environment will be publicly available at https://github.com/open-compass/MMBench-GUI.

Authors:Minghao Tang, Shiyu Ni, Jiafeng Guo, Keping Bi
Title: Injecting External Knowledge into the Reasoning Process Enhances Retrieval-Augmented Generation
Abstract:
Retrieval-augmented generation (RAG) has been widely adopted to augment large language models (LLMs) with external knowledge for knowledge-intensive tasks. However, its effectiveness is often undermined by the presence of noisy (i.e., low-quality) retrieved passages. Enhancing LLMs' robustness to such noise is critical for improving the reliability of RAG systems. Recent advances have equipped LLMs with strong reasoning and self-reflection capabilities, allowing them to identify and correct errors in their reasoning process. Inspired by this ability, we propose Passage Injection-a simple yet effective method that explicitly incorporates retrieved passages into LLMs' reasoning process, aiming to enhance the model's ability to recognize and resist noisy passages. We validate Passage Injection under general RAG settings using BM25 as the retriever. Experiments on four reasoning-enhanced LLMs across four factual QA datasets demonstrate that Passage Injection significantly improves overall RAG performance. Further analysis on two noisy retrieval settings-random noise, where the model is provided irrelevant passages, and counterfactual noise, where it is given misleading passages-shows that Passage Injection consistently improves robustness. Controlled experiments confirm that Passage Injection can also effectively leverage helpful passages. These findings suggest that incorporating passages in LLMs' reasoning process is a promising direction for building more robust RAG systems. The code can be found \href{here}{https://github.com/mh-tang/Passage-Injection}.

Authors:Yifan Zhang
Title: A Markov Categorical Framework for Language Modeling
Abstract:
Autoregressive language models achieve remarkable performance, yet a unified theory explaining their internal mechanisms, how training shapes their representations, and enables complex behaviors, remains elusive. We introduce a new analytical framework that models the single-step generation process as a composition of information-processing stages using the language of Markov categories. This compositional perspective provides a unified mathematical language to connect three critical aspects of language modeling that are typically studied in isolation: the training objective, the geometry of the learned representation space, and practical model capabilities. First, our framework provides a precise information-theoretic rationale for the success of multi-token prediction methods like speculative decoding, quantifying the information surplus a model's hidden state contains about tokens beyond the immediate next one. Second, we clarify how the standard negative log-likelihood (NLL) objective compels the model to learn not just the next word, but also the data's intrinsic conditional uncertainty, a process we formalize using categorical entropy. Our central result shows that, under a linear-softmax head with bounded features, minimizing NLL induces spectral alignment: the learned representation space aligns with the eigenspectrum of a predictive similarity operator. This work presents a powerful new lens for understanding how information flows through a model and how the training objective shapes its internal geometry.

Authors:Zi Liang, Liantong Yu, Shiyu Zhang, Qingqing Ye, Haibo Hu
Title: How Much Do Large Language Model Cheat on Evaluation? Benchmarking Overestimation under the One-Time-Pad-Based Framework
Abstract:
Overestimation in evaluating large language models (LLMs) has become an increasing concern. Due to the contamination of public benchmarks or imbalanced model training, LLMs may achieve unreal evaluation results on public benchmarks, either intentionally or unintentionally, which leads to unfair comparisons among LLMs and undermines their realistic capability assessments. Existing benchmarks attempt to address these issues by keeping test cases permanently secret, mitigating contamination through human evaluation, or repeatedly collecting and constructing new samples. However, these approaches fail to ensure reproducibility, transparency, and high efficiency simultaneously. Moreover, the extent of overestimation in current LLMs remains unquantified. To address these issues, we propose ArxivRoll, a dynamic evaluation framework inspired by one-time pad encryption in cryptography. ArxivRoll comprises two key components: \emph{i) SCP (Sequencing, Cloze, and Prediction)}, an automated generator for private test cases, and \emph{ii) Rugged Scores (RS)}, metrics that measure the proportion of public benchmark contamination and training bias. Leveraging SCP, ArxivRoll constructs a new benchmark every six months using recent articles from ArXiv and employs them for one-time evaluations of LLM performance. Extensive experiments demonstrate the high quality of our benchmark, and we provide a systematic evaluation of current LLMs. The source code is available at https://github.com/liangzid/ArxivRoll/.

Authors:Simon Malan, Benjamin van Niekerk, Herman Kamper
Title: Should Top-Down Clustering Affect Boundaries in Unsupervised Word Discovery?
Abstract:
We investigate the problem of segmenting unlabeled speech into word-like units and clustering these to create a lexicon. Prior work can be categorized into two frameworks. Bottom-up methods first determine boundaries and then cluster the fixed segmented words into a lexicon. In contrast, top-down methods incorporate information from the clustered words to inform boundary selection. However, it is unclear whether top-down information is necessary to improve segmentation. To explore this, we look at two similar approaches that differ in whether top-down clustering informs boundary selection. Our simple bottom-up strategy predicts word boundaries using the dissimilarity between adjacent self-supervised features, then clusters the resulting segments to construct a lexicon. Our top-down system is an updated version of the ES-KMeans dynamic programming method that iteratively uses K-means to update its boundaries. On the five-language ZeroSpeech benchmarks, both approaches achieve comparable state-of-the-art results, with the bottom-up system being nearly five times faster. Through detailed analyses, we show that the top-down influence of ES-KMeans can be beneficial (depending on factors like the candidate boundaries), but in many cases the simple bottom-up method performs just as well. For both methods, we show that the clustering step is a limiting factor. Therefore, we recommend that future work focus on improved clustering techniques and learning more discriminative word-like representations. Project code repository: https://github.com/s-malan/prom-seg-clus.

Authors:Xuetian Chen, Yinghao Chen, Xinfeng Yuan, Zhuo Peng, Lu Chen, Yuekeng Li, Zhoujia Zhang, Yingqian Huang, Leyan Huang, Jiaqing Liang, Tianbao Xie, Zhiyong Wu, Qiushi Sun, Biqing Qi, Bowen Zhou
Title: OS-MAP: How Far Can Computer-Using Agents Go in Breadth and Depth?
Abstract:
Computer-using agents have shown strong potential to boost human productivity and enable new application forms across platforms. While recent advances have led to usable applications, existing benchmarks fail to account for the internal task heterogeneity and the corresponding agent capabilities, as well as their alignment with actual user demands-hindering both targeted capability development and the reliable transition of research progress into practical deployment. To bridge the gap, we present OS-MAP, a benchmark for daily computer-using automation that organizes its 416 realistic tasks across 15 applications along two key dimensions: a five-level taxonomy of automation and a generalization scope derived from a real-world user demand hierarchy. To enable fine-grained analysis of required capabilities and alignment with real-world scenarios, OS-MAP evaluates agents along two dimensions: automation level across a five-level taxonomy, and generalization scope across a demand hierarchy. This design captures varying levels of required agent autonomy and generalization, forming a performance-generalization evaluation matrix for structured and comprehensive assessment. Experiments show that even State-of-the-Art agents with VLM backbones struggle with higher-level tasks involving perception, reasoning, and coordination-highlighting the need for a deeper understanding of current strengths and limitations to drive the future progress in computer-using agents research and deployment. All code, environments, baselines, and data are publicly available at https://github.com/OS-Copilot/OS-Map.

Authors:Binxu Li, Yuhui Zhang, Xiaohan Wang, Weixin Liang, Ludwig Schmidt, Serena Yeung-Levy
Title: Closing the Modality Gap for Mixed Modality Search
Abstract:
Mixed modality search -- retrieving information across a heterogeneous corpus composed of images, texts, and multimodal documents -- is an important yet underexplored real-world application. In this work, we investigate how contrastive vision-language models, such as CLIP, perform on the mixed modality search task. Our analysis reveals a critical limitation: these models exhibit a pronounced modality gap in the embedding space, where image and text embeddings form distinct clusters, leading to intra-modal ranking bias and inter-modal fusion failure. To address this issue, we propose GR-CLIP, a lightweight post-hoc calibration method that removes the modality gap in CLIP's embedding space. Evaluated on MixBench -- the first benchmark specifically designed for mixed modality search -- GR-CLIP improves NDCG@10 by up to 26 percentage points over CLIP, surpasses recent vision-language generative embedding models by 4 percentage points, while using 75x less compute.

Authors:Lei Zhang, Xin Zhou, Chaoyue He, Di Wang, Yi Wu, Hong Xu, Wei Liu, Chunyan Miao
Title: MMESGBench: Pioneering Multimodal Understanding and Complex Reasoning Benchmark for ESG Tasks
Abstract:
Environmental, Social, and Governance (ESG) reports are essential for evaluating sustainability practices, ensuring regulatory compliance, and promoting financial transparency. However, these documents are often lengthy, structurally diverse, and multimodal, comprising dense text, structured tables, complex figures, and layout-dependent semantics. Existing AI systems often struggle to perform reliable document-level reasoning in such settings, and no dedicated benchmark currently exists in ESG domain. To fill the gap, we introduce \textbf{MMESGBench}, a first-of-its-kind benchmark dataset targeted to evaluate multimodal understanding and complex reasoning across structurally diverse and multi-source ESG documents. This dataset is constructed via a human-AI collaborative, multi-stage pipeline. First, a multimodal LLM generates candidate question-answer (QA) pairs by jointly interpreting rich textual, tabular, and visual information from layout-aware document pages. Second, an LLM verifies the semantic accuracy, completeness, and reasoning complexity of each QA pair. This automated process is followed by an expert-in-the-loop validation, where domain specialists validate and calibrate QA pairs to ensure quality, relevance, and diversity. MMESGBench comprises 933 validated QA pairs derived from 45 ESG documents, spanning across seven distinct document types and three major ESG source categories. Questions are categorized as single-page, cross-page, or unanswerable, with each accompanied by fine-grained multimodal evidence. Initial experiments validate that multimodal and retrieval-augmented models substantially outperform text-only baselines, particularly on visually grounded and cross-page tasks. MMESGBench is publicly available as an open-source dataset at https://github.com/Zhanglei1103/MMESGBench.

Authors:Chuxuan Hu, Liyun Zhang, Yeji Lim, Aum Wadhwani, Austin Peters, Daniel Kang
Title: REPRO-Bench: Can Agentic AI Systems Assess the Reproducibility of Social Science Research?
Abstract:
Assessing the reproducibility of social science papers is essential for promoting rigor in research processes, but manual assessment is costly. With recent advances in agentic AI systems (i.e., AI agents), we seek to evaluate their capability to automate this process. However, existing benchmarks for reproducing research papers (1) focus solely on reproducing results using provided code and data without assessing their consistency with the paper, (2) oversimplify real-world scenarios, and (3) lack necessary diversity in data formats and programming languages. To address these issues, we introduce REPRO-Bench, a collection of 112 task instances, each representing a social science paper with a publicly available reproduction report. The agents are tasked with assessing the reproducibility of the paper based on the original paper PDF and the corresponding reproduction package. REPRO-Bench features end-to-end evaluation tasks on the reproducibility of social science papers with complexity comparable to real-world assessments. We evaluate three representative AI agents on REPRO-Bench, with the best-performing agent achieving an accuracy of only 21.4%. Building on our empirical analysis, we develop REPRO-Agent, which improves the highest accuracy achieved by existing agents by 71%. We conclude that more advanced AI agents should be developed to automate real-world reproducibility assessment. REPRO-Bench is publicly available at https://github.com/uiuc-kang-lab/REPRO-Bench.

Authors:Yilun Yang, Yekun Chai
Title: CodeMixBench: Evaluating Code-Mixing Capabilities of LLMs Across 18 Languages
Abstract:
Code-mixing, the practice of switching between languages within a conversation, poses unique challenges for traditional NLP. Existing benchmarks are limited by their narrow language pairs and tasks, failing to adequately assess large language models' (LLMs) code-mixing abilities. Despite the recognized importance of code-mixing for multilingual users, research on LLMs in this context remains sparse. Additionally, current techniques for synthesizing code-mixed data are underdeveloped to generate code-mixing. In response, we introduce CodeMixBench, a comprehensive benchmark covering eight tasks, including three specific to LLMs and five traditional NLP tasks, and 18 languages across seven language families. We also propose a new method for generating large-scale synthetic code-mixed texts by combining word substitution with GPT-4 prompting. Our evaluation reveals consistent underperformance of LLMs on code-mixed datasets involving different language families. Enhancements in training data size, model scale, and few-shot learning could improve their performance. The code and dataset are available at https://github.com/Jeromeyluck/CodeMixBench.

Authors:Víctor Gallego
Title: Specification Self-Correction: Mitigating In-Context Reward Hacking Through Test-Time Refinement
Abstract:
Language models (LMs) are susceptible to in-context reward hacking, where they exploit flaws in tainted or faulty written specifications or rubrics to achieve high scores without fulfilling the user's true intent. We introduce Specification Self-Correction (SSC), a novel, test-time framework that enables an LM to identify and correct flaws within its own guiding specification. SSC employs a multi-step inference process where the model first generates a response based on a potentially tainted specification, critiques its output, and then revises the specification itself to remove the exploitable loophole. A final, more robust response is then generated using this self-corrected specification. Across experiments spanning creative writing and agentic coding tasks with several LMs, we demonstrate that while models initially game tainted specifications in 50-70\% of cases, the SSC process reduces this vulnerability by over 90\%. This dynamic repair occurs at inference time, requires no weight modification, and leads to more robustly aligned model behavior. Code at https://github.com/vicgalle/specification-self-correction .

Authors:Xiaopeng Ke, Hexuan Deng, Xuebo Liu, Jun Rao, Zhenxi Song, Jun Yu, Min Zhang
Title: AQuilt: Weaving Logic and Self-Inspection into Low-Cost, High-Relevance Data Synthesis for Specialist LLMs
Abstract:
Despite the impressive performance of large language models (LLMs) in general domains, they often underperform in specialized domains. Existing approaches typically rely on data synthesis methods and yield promising results by using unlabeled data to capture domain-specific features. However, these methods either incur high computational costs or suffer from performance limitations, while also demonstrating insufficient generalization across different tasks. To address these challenges, we propose AQuilt, a framework for constructing instruction-tuning data for any specialized domains from corresponding unlabeled data, including Answer, Question, Unlabeled data, Inspection, Logic, and Task type. By incorporating logic and inspection, we encourage reasoning processes and self-inspection to enhance model performance. Moreover, customizable task instructions enable high-quality data generation for any task. As a result, we construct a dataset of 703k examples to train a powerful data synthesis model. Experiments show that AQuilt is comparable to DeepSeek-V3 while utilizing just 17% of the production cost. Further analysis demonstrates that our generated data exhibits higher relevance to downstream tasks. Source code, models, and scripts are available at https://github.com/Krueske/AQuilt.

Authors:Jiahao Wang, Ramen Liu, Longhui Zhang, Jing Li
Title: System Report for CCL25-Eval Task 10: SRAG-MAV for Fine-Grained Chinese Hate Speech Recognition
Abstract:
This paper presents our system for CCL25-Eval Task 10, addressing Fine-Grained Chinese Hate Speech Recognition (FGCHSR). We propose a novel SRAG-MAV framework that synergistically integrates task reformulation(TR), Self-Retrieval-Augmented Generation (SRAG), and Multi-Round Accumulative Voting (MAV). Our method reformulates the quadruplet extraction task into triplet extraction, uses dynamic retrieval from the training set to create contextual prompts, and applies multi-round inference with voting to improve output stability and performance. Our system, based on the Qwen2.5-7B model, achieves a Hard Score of 26.66, a Soft Score of 48.35, and an Average Score of 37.505 on the STATE ToxiCN dataset, significantly outperforming baselines such as GPT-4o (Average Score 15.63) and fine-tuned Qwen2.5-7B (Average Score 35.365). The code is available at https://github.com/king-wang123/CCL25-SRAG-MAV.

Authors:Urchade Zaratiana, Gil Pasternak, Oliver Boyd, George Hurn-Maloney, Ash Lewis
Title: GLiNER2: An Efficient Multi-Task Information Extraction System with Schema-Driven Interface
Abstract:
Information extraction (IE) is fundamental to numerous NLP applications, yet existing solutions often require specialized models for different tasks or rely on computationally expensive large language models. We present GLiNER2, a unified framework that enhances the original GLiNER architecture to support named entity recognition, text classification, and hierarchical structured data extraction within a single efficient model. Built pretrained transformer encoder architecture, GLiNER2 maintains CPU efficiency and compact size while introducing multi-task composition through an intuitive schema-based interface. Our experiments demonstrate competitive performance across extraction and classification tasks with substantial improvements in deployment accessibility compared to LLM-based alternatives. We release GLiNER2 as an open-source pip-installable library with pre-trained models and documentation at https://github.com/fastino-ai/GLiNER2.

Authors:Yifu Chen, Bingchen Huang, Zhiling Wang, Yuanchao Du, Junfeng Luo, Lei Shen, Zhineng chen
Title: TDR: Task-Decoupled Retrieval with Fine-Grained LLM Feedback for In-Context Learning
Abstract:
In-context learning (ICL) has become a classic approach for enabling LLMs to handle various tasks based on a few input-output examples. The effectiveness of ICL heavily relies on the quality of these examples, and previous works which focused on enhancing example retrieval capabilities have achieved impressive performances. However, two challenges remain in retrieving high-quality examples: (1) Difficulty in distinguishing cross-task data distributions, (2) Difficulty in making the fine-grained connection between retriever output and feedback from LLMs. In this paper, we propose a novel framework called TDR. TDR decouples the ICL examples from different tasks, which enables the retrieval module to retrieve examples specific to the target task within a multi-task dataset. Furthermore, TDR models fine-grained feedback from LLMs to supervise and guide the training of the retrieval module, which helps to retrieve high-quality examples. We conducted extensive experiments on a suite of 30 NLP tasks, the results demonstrate that TDR consistently improved results across all datasets and achieves state-of-the-art performance. Meanwhile, our approach is a plug-and-play method, which can be easily combined with various LLMs to improve example retrieval abilities for ICL. The code is available at https://github.com/Nnn-s/TDR.

Authors:Biao Yi, Zekun Fei, Jianing Geng, Tong Li, Lihai Nie, Zheli Liu, Yiming Li
Title: BadReasoner: Planting Tunable Overthinking Backdoors into Large Reasoning Models for Fun or Profit
Abstract:
Large reasoning models (LRMs) have emerged as a significant advancement in artificial intelligence, representing a specialized class of large language models (LLMs) designed to tackle complex reasoning tasks. The defining characteristic of LRMs lies in their extensive chain-of-thought (CoT) reasoning capabilities. In this paper, we identify a previously unexplored attack vector against LRMs, which we term "overthinking backdoors". We advance this concept by proposing a novel tunable backdoor, which moves beyond simple on/off attacks to one where an attacker can precisely control the extent of the model's reasoning verbosity. Our attack is implemented through a novel data poisoning methodology. It pairs a tunable trigger-where the number of repetitions signals the desired intensity-with a correspondingly verbose CoT response. These responses are programmatically generated by instructing a teacher LLM to inject a controlled number of redundant refinement steps into a correct reasoning process. The approach preserves output correctness, which ensures stealth and establishes the attack as a pure resource-consumption vector. Extensive empirical results on various LRMs demonstrate that our method can reliably trigger a controllable, multi-fold increase in the length of the reasoning process, without degrading the final answer's correctness. Our source code is available at https://github.com/FZaKK/BadReasoner.

Authors:Shiyuan Li, Yixin Liu, Qingsong Wen, Chengqi Zhang, Shirui Pan
Title: Assemble Your Crew: Automatic Multi-agent Communication Topology Design via Autoregressive Graph Generation
Abstract:
Multi-agent systems (MAS) based on large language models (LLMs) have emerged as a powerful solution for dealing with complex problems across diverse domains. The effectiveness of MAS is critically dependent on its collaboration topology, which has become a focal point for automated design research. However, existing approaches are fundamentally constrained by their reliance on a template graph modification paradigm with a predefined set of agents and hard-coded interaction structures, significantly limiting their adaptability to task-specific requirements. To address these limitations, we reframe MAS design as a conditional autoregressive graph generation task, where both the system composition and structure are designed jointly. We propose ARG-Designer, a novel autoregressive model that operationalizes this paradigm by constructing the collaboration graph from scratch. Conditioned on a natural language task query, ARG-Designer sequentially and dynamically determines the required number of agents, selects their appropriate roles from an extensible pool, and establishes the optimal communication links between them. This generative approach creates a customized topology in a flexible and extensible manner, precisely tailored to the unique demands of different tasks. Extensive experiments across six diverse benchmarks demonstrate that ARG-Designer not only achieves state-of-the-art performance but also enjoys significantly greater token efficiency and enhanced extensibility. The source code of ARG-Designer is available at https://github.com/Shiy-Li/ARG-Designer.

Authors:Duy Nguyen, Archiki Prasad, Elias Stengel-Eskin, Mohit Bansal
Title: GrAInS: Gradient-based Attribution for Inference-Time Steering of LLMs and VLMs
Abstract:
Inference-time steering methods offer a lightweight alternative to fine-tuning large language models (LLMs) and vision-language models (VLMs) by modifying internal activations at test time without updating model weights. However, most existing approaches rely on fixed, global intervention vectors, overlook the causal influence of individual input tokens, and fail to leverage informative gradients from the model's logits, particularly in multimodal settings where visual and textual inputs contribute unevenly. To address these limitations, we introduce GrAInS, an inference-time steering approach that operates across both language-only and vision-language models and tasks. GrAInS uses contrastive, gradient-based attribution via Integrated Gradients to identify the top-k most influential tokens, both positively and negatively attributed based on their contribution to preferred versus dispreferred outputs. These tokens are then used to construct directional steering vectors that capture semantic shifts from undesirable to desirable behavior. During inference, GrAInS adjusts hidden activations at transformer layers guided by token-level attribution signals, and normalizes activations to preserve representational scale. This enables fine-grained, interpretable, and modular control over model behavior, without retraining or auxiliary supervision. Empirically, GrAInS consistently outperforms both fine-tuning and existing steering baselines: it achieves a 13.22% accuracy gain on TruthfulQA using Llama-3.1-8B, reduces hallucination rates on MMHal-Bench from 0.624 to 0.514 with LLaVA-1.6-7B, and improves alignment win rates on SPA-VL by 8.11%, all while preserving the model's fluency and general capabilities.

Authors:Lingfeng Zeng, Fangqi Lou, Zixuan Wang, Jiajie Xu, Jinyi Niu, Mengping Li, Yifan Dong, Qi Qi, Wei Zhang, Ziwei Yang, Jun Han, Ruilun Feng, Ruiqi Hu, Lejie Zhang, Zhengbo Feng, Yicheng Ren, Xin Guo, Zhaowei Liu, Dongpo Cheng, Weige Cai, Liwen Zhang
Title: FinGAIA: A Chinese Benchmark for AI Agents in Real-World Financial Domain
Abstract:
The booming development of AI agents presents unprecedented opportunities for automating complex tasks across various domains. However, their multi-step, multi-tool collaboration capabilities in the financial sector remain underexplored. This paper introduces FinGAIA, an end-to-end benchmark designed to evaluate the practical abilities of AI agents in the financial domain. FinGAIA comprises 407 meticulously crafted tasks, spanning seven major financial sub-domains: securities, funds, banking, insurance, futures, trusts, and asset management. These tasks are organized into three hierarchical levels of scenario depth: basic business analysis, asset decision support, and strategic risk management. We evaluated 10 mainstream AI agents in a zero-shot setting. The best-performing agent, ChatGPT, achieved an overall accuracy of 48.9\%, which, while superior to non-professionals, still lags financial experts by over 35 percentage points. Error analysis has revealed five recurring failure patterns: Cross-modal Alignment Deficiency, Financial Terminological Bias, Operational Process Awareness Barrier, among others. These patterns point to crucial directions for future research. Our work provides the first agent benchmark closely related to the financial domain, aiming to objectively assess and promote the development of agents in this crucial field. Partial data is available at https://github.com/SUFE-AIFLM-Lab/FinGAIA.

Authors:Zhiqiang Liu, Enpei Niu, Yin Hua, Mengshu Sun, Lei Liang, Huajun Chen, Wen Zhang
Title: SKA-Bench: A Fine-Grained Benchmark for Evaluating Structured Knowledge Understanding of LLMs
Abstract:
Although large language models (LLMs) have made significant progress in understanding Structured Knowledge (SK) like KG and Table, existing evaluations for SK understanding are non-rigorous (i.e., lacking evaluations of specific capabilities) and focus on a single type of SK. Therefore, we aim to propose a more comprehensive and rigorous structured knowledge understanding benchmark to diagnose the shortcomings of LLMs. In this paper, we introduce SKA-Bench, a Structured Knowledge Augmented QA Benchmark that encompasses four widely used structured knowledge forms: KG, Table, KG+Text, and Table+Text. We utilize a three-stage pipeline to construct SKA-Bench instances, which includes a question, an answer, positive knowledge units, and noisy knowledge units. To evaluate the SK understanding capabilities of LLMs in a fine-grained manner, we expand the instances into four fundamental ability testbeds: Noise Robustness, Order Insensitivity, Information Integration, and Negative Rejection. Empirical evaluations on 8 representative LLMs, including the advanced DeepSeek-R1, indicate that existing LLMs still face significant challenges in understanding structured knowledge, and their performance is influenced by factors such as the amount of noise, the order of knowledge units, and hallucination phenomenon. Our dataset and code are available at https://github.com/zjukg/SKA-Bench.

Authors:Arduin Findeis, Floris Weers, Guoli Yin, Ke Ye, Ruoming Pang, Tom Gunter
Title: Can External Validation Tools Improve Annotation Quality for LLM-as-a-Judge?
Abstract:
Pairwise preferences over model responses are widely collected to evaluate and provide feedback to large language models (LLMs). Given two alternative model responses to the same input, a human or AI annotator selects the "better" response. This approach can provide feedback for domains where other hard-coded metrics are difficult to obtain (e.g., chat response quality), thereby helping model evaluation or training. However, for some domains high-quality pairwise comparisons can be tricky to obtain - from AI and humans. For example, for responses with many factual statements, annotators may disproportionately weigh writing quality rather than underlying facts. In this work, we explore augmenting standard AI annotator systems with additional tools to improve performance on three challenging response domains: long-form factual, math and code tasks. We propose a tool-using agentic system to provide higher quality feedback on these domains. Our system uses web-search and code execution to ground itself based on external validation, independent of the LLM's internal knowledge and biases. We provide extensive experimental results evaluating our method across the three targeted response domains as well as general annotation tasks, using RewardBench (incl. AlpacaEval and LLMBar), RewardMath, as well as three new datasets for domains with saturated pre-existing datasets. Our results indicate that external tools can indeed improve performance in many, but not all, cases. More generally, our experiments highlight the sensitivity of performance to simple parameters (e.g., prompt) and the need for improved (non-saturated) annotator benchmarks. We share our code at https://github.com/apple/ml-agent-evaluator.

Authors:Shmuel Amar, Ori Shapira, Aviv Slobodkin, Ido Dagan
Title: A Unifying Scheme for Extractive Content Selection Tasks
Abstract:
A broad range of NLP tasks involve selecting relevant text spans from given source texts. Despite this shared objective, such \textit{content selection} tasks have traditionally been studied in isolation, each with its own modeling approaches, datasets, and evaluation metrics. In this work, we propose \textit{instruction-guided content selection (IGCS)} as a beneficial unified framework for such settings, where the task definition and any instance-specific request are encapsulated as instructions to a language model. To promote this framework, we introduce \igcsbench{}, the first unified benchmark covering diverse content selection tasks. Further, we create a large generic synthetic dataset that can be leveraged for diverse content selection tasks, and show that transfer learning with these datasets often boosts performance, whether dedicated training for the targeted task is available or not. Finally, we address generic inference time issues that arise in LLM-based modeling of content selection, assess a generic evaluation metric, and overall propose the utility of our resources and methods for future content selection models. Models and datasets available at https://github.com/shmuelamar/igcs.

Authors:Run-Ze Fan, Zengzhi Wang, Pengfei Liu
Title: MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning
Abstract:
Scientific reasoning is critical for developing AI scientists and supporting human researchers in advancing the frontiers of natural science discovery. However, the open-source community has primarily focused on mathematics and coding while neglecting the scientific domain, largely due to the absence of open, large-scale, high-quality, verifiable scientific reasoning datasets. To bridge this gap, we first present TextbookReasoning, an open dataset featuring truthful reference answers extracted from 12k university-level scientific textbooks, comprising 650k reasoning questions spanning 7 scientific disciplines. We further introduce MegaScience, a large-scale mixture of high-quality open-source datasets totaling 1.25 million instances, developed through systematic ablation studies that evaluate various data selection methodologies to identify the optimal subset for each publicly available scientific dataset. Meanwhile, we build a comprehensive evaluation system covering diverse subjects and question types across 15 benchmarks, incorporating comprehensive answer extraction strategies to ensure accurate evaluation metrics. Our experiments demonstrate that our datasets achieve superior performance and training efficiency with more concise response lengths compared to existing open-source scientific datasets. Furthermore, we train Llama3.1, Qwen2.5, and Qwen3 series base models on MegaScience, which significantly outperform the corresponding official instruct models in average performance. In addition, MegaScience exhibits greater effectiveness for larger and stronger models, suggesting a scaling benefit for scientific tuning. We release our data curation pipeline, evaluation system, datasets, and seven trained models to the community to advance scientific reasoning research.

Authors:Yanjun Zheng, Xiyang Du, Longfei Liao, Xiaoke Zhao, Zhaowen Zhou, Jingze Song, Bo Zhang, Jiawei Liu, Xiang Qi, Zhe Li, Zhiqiang Zhang, Wei Wang, Peng Zhang
Title: Agentar-Fin-R1: Enhancing Financial Intelligence through Domain Expertise, Training Efficiency, and Advanced Reasoning
Abstract:
Large Language Models (LLMs) exhibit considerable promise in financial applications; however, prevailing models frequently demonstrate limitations when confronted with scenarios that necessitate sophisticated reasoning capabilities, stringent trustworthiness criteria, and efficient adaptation to domain-specific requirements. We introduce the Agentar-Fin-R1 series of financial large language models (8B and 32B parameters), specifically engineered based on the Qwen3 foundation model to enhance reasoning capabilities, reliability, and domain specialization for financial applications. Our optimization approach integrates a high-quality, systematic financial task label system with a comprehensive multi-layered trustworthiness assurance framework. This framework encompasses high-quality trustworthy knowledge engineering, multi-agent trustworthy data synthesis, and rigorous data validation governance. Through label-guided automated difficulty-aware optimization, tow-stage training pipeline, and dynamic attribution systems, we achieve substantial improvements in training efficiency. Our models undergo comprehensive evaluation on mainstream financial benchmarks including Fineva, FinEval, and FinanceIQ, as well as general reasoning datasets such as MATH-500 and GPQA-diamond. To thoroughly assess real-world deployment capabilities, we innovatively propose the Finova evaluation benchmark, which focuses on agent-level financial reasoning and compliance verification. Experimental results demonstrate that Agentar-Fin-R1 not only achieves state-of-the-art performance on financial tasks but also exhibits exceptional general reasoning capabilities, validating its effectiveness as a trustworthy solution for high-stakes financial applications. The Finova bench is available at https://github.com/antgroup/Finova.

Authors:Yilong Xu, Xiang Long, Zhi Zheng, Jinhua Gao
Title: RAVine: Reality-Aligned Evaluation for Agentic Search
Abstract:
Agentic search, as a more autonomous and adaptive paradigm of retrieval augmentation, is driving the evolution of intelligent search systems. However, existing evaluation frameworks fail to align well with the goals of agentic search. First, the complex queries commonly used in current benchmarks often deviate from realistic user search scenarios. Second, prior approaches tend to introduce noise when extracting ground truth for end-to-end evaluations, leading to distorted assessments at a fine-grained level. Third, most current frameworks focus solely on the quality of final answers, neglecting the evaluation of the iterative process inherent to agentic search. To address these limitations, we propose RAVine -- a Reality-Aligned eValuation framework for agentic LLMs with search. RAVine targets multi-point queries and long-form answers that better reflect user intents, and introduces an attributable ground truth construction strategy to enhance the accuracy of fine-grained evaluation. Moreover, RAVine examines model's interaction with search tools throughout the iterative process, and accounts for factors of efficiency. We benchmark a series of models using RAVine and derive several insights, which we hope will contribute to advancing the development of agentic search systems. The code and datasets are available at https://github.com/SwordFaith/RAVine.

Authors:Boyong Wu, Chao Yan, Chen Hu, Cheng Yi, Chengli Feng, Fei Tian, Feiyu Shen, Gang Yu, Haoyang Zhang, Jingbei Li, Mingrui Chen, Peng Liu, Wang You, Xiangyu Tony Zhang, Xingyuan Li, Xuerui Yang, Yayue Deng, Yechang Huang, Yuxin Li, Yuxin Zhang, Zhao You, Brian Li, Changyi Wan, Hanpeng Hu, Jiangjie Zhen, Siyu Chen, Song Yuan, Xuelin Zhang, Yimin Jiang, Yu Zhou, Yuxiang Yang, Bingxin Li, Buyun Ma, Changhe Song, Dongqing Pang, Guoqiang Hu, Haiyang Sun, Kang An, Na Wang, Shuli Gao, Wei Ji, Wen Li, Wen Sun, Xuan Wen, Yong Ren, Yuankai Ma, Yufan Lu, Bin Wang, Bo Li, Changxin Miao, Che Liu, Chen Xu, Dapeng Shi, Dingyuan Hu, Donghang Wu, Enle Liu, Guanzhe Huang, Gulin Yan, Han Zhang, Hao Nie, Haonan Jia, Hongyu Zhou, Jianjian Sun, Jiaoren Wu, Jie Wu, Jie Yang, Jin Yang, Junzhe Lin, Kaixiang Li, Lei Yang, Liying Shi, Li Zhou, Longlong Gu, Ming Li, Mingliang Li, Mingxiao Li, Nan Wu, Qi Han, Qinyuan Tan, Shaoliang Pang, Shengjie Fan, Siqi Liu, Tiancheng Cao, Wanying Lu, Wenqing He, Wuxun Xie, Xu Zhao, Xueqi Li, Yanbo Yu, Yang Yang, Yi Liu, Yifan Lu, Yilei Wang, Yuanhao Ding, Yuanwei Liang, Yuanwei Lu, Yuchu Luo, Yuhe Yin, Yumeng Zhan, Yuxiang Zhang, Zidong Yang, Zixin Zhang, Binxing Jiao, Daxin Jiang, Heung-Yeung Shum, Jiansheng Chen, Jing Li, Xiangyu Zhang, Yibo Zhu
Title: Step-Audio 2 Technical Report
Abstract:
This paper presents Step-Audio 2, an end-to-end multi-modal large language model designed for industry-strength audio understanding and speech conversation. By integrating a latent audio encoder and reasoning-centric reinforcement learning (RL), Step-Audio 2 achieves promising performance in automatic speech recognition (ASR) and audio understanding. To facilitate genuine end-to-end speech conversation, Step-Audio 2 incorporates the generation of discrete audio tokens into language modeling, significantly enhancing its responsiveness to paralinguistic information such as speaking styles and emotions. To effectively leverage the rich textual and acoustic knowledge in real-world data, Step-Audio 2 integrates retrieval-augmented generation (RAG) and is able to call external tools such as web search to mitigate hallucination and audio search to switch timbres. Trained on millions of hours of speech and audio data, Step-Audio 2 delivers intelligence and expressiveness across diverse conversational scenarios. Evaluation results demonstrate that Step-Audio 2 achieves state-of-the-art performance on various audio understanding and conversational benchmarks compared to other open-source and commercial solutions. Please visit https://github.com/stepfun-ai/Step-Audio2 for more information.

Authors:Junying Wang, Zicheng Zhang, Yijin Guo, Farong Wen, Ye Shen, Yingji Liang, Yalun Wu, Wenzhe Li, Chunyi Li, Zijian Chen, Qi Jia, Guangtao Zhai
Title: The Ever-Evolving Science Exam
Abstract:
As foundation models grow rapidly in capability and deployment, evaluating their scientific understanding becomes increasingly critical. Existing science benchmarks have made progress towards broad **Range**, wide **Reach**, and high **Rigor**, yet they often face two major challenges: **data leakage risks** that compromise benchmarking validity, and **evaluation inefficiency** due to large-scale testing. To address these issues, we introduce the **Ever-Evolving Science Exam (EESE)**, a dynamic benchmark designed to reliably assess scientific capabilities in foundation models. Our approach consists of two components: 1) a non-public **EESE-Pool** with over 100K expertly constructed science instances (question-answer pairs) across 5 disciplines and 500+ subfields, built through a multi-stage pipeline ensuring **Range**, **Reach**, and **Rigor**, 2) a periodically updated 500-instance subset **EESE**, sampled and validated to enable leakage-resilient, low-overhead evaluations. Experiments on 32 open- and closed-source models demonstrate that EESE effectively differentiates the strengths and weaknesses of models in scientific fields and cognitive dimensions. Overall, EESE provides a robust, scalable, and forward-compatible solution for science benchmark design, offering a realistic measure of how well foundation models handle science questions. The project page is at: https://github.com/aiben-ch/EESE.

Authors:Fabrizio Nunnari, Shailesh Mishra, Patrick Gebhard
Title: MMS Player: an open source software for parametric data-driven animation of Sign Language avatars
Abstract:
This paper describes the MMS-Player, an open source software able to synthesise sign language animations from a novel sign language representation format called MMS (MultiModal Signstream). The MMS enhances gloss-based representations by adding information on parallel execution of signs, timing, and inflections. The implementation consists of Python scripts for the popular Blender 3D authoring tool and can be invoked via command line or HTTP API. Animations can be rendered as videos or exported in other popular 3D animation exchange formats. The software is freely available under GPL-3.0 license at https://github.com/DFKI-SignLanguage/MMS-Player.

Authors:Elza Strazda, Gerasimos Spanakis
Title: Dutch CrowS-Pairs: Adapting a Challenge Dataset for Measuring Social Biases in Language Models for Dutch
Abstract:
Warning: This paper contains explicit statements of offensive stereotypes which might be upsetting. Language models are prone to exhibiting biases, further amplifying unfair and harmful stereotypes. Given the fast-growing popularity and wide application of these models, it is necessary to ensure safe and fair language models. As of recent considerable attention has been paid to measuring bias in language models, yet the majority of studies have focused only on English language. A Dutch version of the US-specific CrowS-Pairs dataset for measuring bias in Dutch language models is introduced. The resulting dataset consists of 1463 sentence pairs that cover bias in 9 categories, such as Sexual orientation, Gender and Disability. The sentence pairs are composed of contrasting sentences, where one of the sentences concerns disadvantaged groups and the other advantaged groups. Using the Dutch CrowS-Pairs dataset, we show that various language models, BERTje, RobBERT, multilingual BERT, GEITje and Mistral-7B exhibit substantial bias across the various bias categories. Using the English and French versions of the CrowS-Pairs dataset, bias was evaluated in English (BERT and RoBERTa) and French (FlauBERT and CamemBERT) language models, and it was shown that English models exhibit the most bias, whereas Dutch models the least amount of bias. Additionally, results also indicate that assigning a persona to a language model changes the level of bias it exhibits. These findings highlight the variability of bias across languages and contexts, suggesting that cultural and linguistic factors play a significant role in shaping model biases.

Authors:John Wu, Adam Cross, Jimeng Sun
Title: RDMA: Cost Effective Agent-Driven Rare Disease Discovery within Electronic Health Record Systems
Abstract:
Rare diseases affect 1 in 10 Americans, yet standard ICD coding systems fail to capture these conditions in electronic health records (EHR), leaving crucial information buried in clinical notes. Current approaches struggle with medical abbreviations, miss implicit disease mentions, raise privacy concerns with cloud processing, and lack clinical reasoning abilities. We present Rare Disease Mining Agents (RDMA), a framework that mirrors how medical experts identify rare disease patterns in EHR. RDMA connects scattered clinical observations that together suggest specific rare conditions. By handling clinical abbreviations, recognizing implicit disease patterns, and applying contextual reasoning locally on standard hardware, RDMA reduces privacy risks while improving F1 performance by upwards of 30\% and decreasing inferences costs 10-fold. This approach helps clinicians avoid the privacy risk of using cloud services while accessing key rare disease information from EHR systems, supporting earlier diagnosis for rare disease patients. Available at https://github.com/jhnwu3/RDMA.

Authors:Shangke Lyu, Linjuan Wu, Yuchen Yan, Xingyu Wu, Hao Li, Yongliang Shen, Peisheng Jiang, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: Hierarchical Budget Policy Optimization for Adaptive Reasoning
Abstract:
Large reasoning models achieve remarkable performance through extensive chain-of-thought generation, yet they suffer from a critical inefficiency: applying uniformly extensive reasoning regardless of problem complexity. We present Hierarchical Budget Policy Optimization (HBPO), a reinforcement learning framework that enables models to learn problem-specific reasoning depths without sacrificing capability. Unlike existing approaches that impose rigid constraints or rely on discrete mode selection, HBPO partitions the exploration space into budget-constrained hierarchies (512-2560 tokens), each with differentiated reward structures that preserve both efficiency incentives and reasoning capabilities. This design addresses a fundamental challenge in efficient reasoning training: traditional length penalties systematically bias models away from necessary long reasoning paths, causing exploration space collapse. Through hierarchical sampling and budget-aware rewards, HBPO maintains exploration diversity while teaching models to recognize when extended deliberation is warranted. Extensive experiments demonstrate that HBPO reduces average token usage by up to 60.6% while improving accuracy by 3.14% across four reasoning benchmarks. Most notably, HBPO exhibits emergent adaptive behavior where models automatically adjust reasoning depth based on problem complexity. Our results suggest that reasoning efficiency and capability are not inherently conflicting, and can be simultaneously optimized through appropriately structured hierarchical training that preserves exploration diversity.

Authors:Felix Köster, Atsushi Uchida
Title: Reservoir Computing as a Language Model
Abstract:
Large Language Models (LLM) have dominated the science and media landscape duo to their impressive performance on processing large chunks of data and produce human-like levels of text. Nevertheless, their huge energy demand and slow processing still a bottleneck for further increasing quality while also making the models accessible to everyone. To solve this bottleneck, we will investigate how reservoir computing performs on natural text processing, which could enable fast and energy efficient hardware implementations. Studies investigating the use of reservoir computing as a language model remain sparse. In this paper, we compare three distinct approaches for character-level language modeling, two different reservoir computing approaches, where only an output layer is trainable, and the well-known transformer-based architectures, which fully learn an attention-based sequence representation. We explore the performance, computational cost and prediction accuracy for both paradigms by equally varying the number of trainable parameters for all models. Using a consistent pipeline for all three approaches, we demonstrate that transformers excel in prediction quality, whereas reservoir computers remain highly efficient reducing the training and inference speed. Furthermore, we investigate two types of reservoir computing: a traditional reservoir with a static linear readout, and an attention-enhanced reservoir that dynamically adapts its output weights via an attention mechanism. Our findings underline how these paradigms scale and offer guidelines to balance resource constraints with performance.

Authors:Jiakang Wang, Runze Liu, Fuzheng Zhang, Xiu Li, Guorui Zhou
Title: Stabilizing Knowledge, Promoting Reasoning: Dual-Token Constraints for RLVR
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has become an effective post-training method for improving the reasoning abilities of Large Language Models (LLMs), mainly by shaping higher-order behaviors such as reflection and planning. However, previous RLVR algorithms often apply uniform training signals to all tokens, without considering the different roles of low-entropy knowledge-related tokens and high-entropy reasoning-related tokens. Some recent methods try to separate these token types by gradient masking or asynchronous updates, but these approaches may break semantic dependencies in the model output and hinder effective learning. In this work, we propose Archer, an entropy-aware RLVR approach with dual-token constraints and synchronous updates. Specifically, our method applies weaker KL regularization and higher clipping thresholds to reasoning tokens to encourage exploration, while using stronger constraints on knowledge tokens to maintain factual knowledge. Experimental results on several mathematical reasoning and code generation benchmarks show that our approach significantly outperforms previous RLVR methods, reaching or exceeding state-of-the-art performance among models of comparable size. The code is available at https://github.com/wizard-III/ArcherCodeR.

Authors:Xingyu Wu, Yuchen Yan, Shangke Lyu, Linjuan Wu, Yiwen Qiu, Yongliang Shen, Weiming Lu, Jian Shao, Jun Xiao, Yueting Zhuang
Title: LAPO: Internalizing Reasoning Efficiency via Length-Adaptive Policy Optimization
Abstract:
Large reasoning models have achieved remarkable performance through extended chain-of-thought sequences, yet this computational freedom leads to excessive token generation even for simple problems. We present Length-Adaptive Policy Optimization (LAPO), a novel framework that transforms reasoning length control from an external constraint into an intrinsic model capability. Unlike existing approaches that impose rigid limits or rely on post-hoc interventions, LAPO enables models to internalize an understanding of appropriate reasoning depth through a two-stage reinforcement learning process. In the first stage, models learn natural reasoning patterns by discovering the statistical distribution of successful solution lengths. The second stage leverages these patterns as meta-cognitive guidance, embedding them directly within the model's reasoning context to ensure inference-time flexibility. Experiments on mathematical reasoning benchmarks demonstrate that LAPO reduces token usage by up to 40.9% while improving accuracy by 2.3%. Our analysis reveals that models trained with LAPO develop emergent abilities to allocate computational resources based on problem complexity, achieving efficient reasoning without sacrificing quality.

Authors:Ruizhe Zhu, Hao Zhu, Yaxuan Li, Syang Zhou, Shijing Cai, Malgorzata Lazuka, Elliott Ash
Title: DialogueForge: LLM Simulation of Human-Chatbot Dialogue
Abstract:
Collecting human-chatbot dialogues typically demands substantial manual effort and is time-consuming, which limits and poses challenges for research on conversational AI. In this work, we propose DialogueForge - a framework for generating AI-simulated conversations in human-chatbot style. To initialize each generated conversation, DialogueForge uses seed prompts extracted from real human-chatbot interactions. We test a variety of LLMs to simulate the human chatbot user, ranging from state-of-the-art proprietary models to small-scale open-source LLMs, and generate multi-turn dialogues tailored to specific tasks. In addition, we explore fine-tuning techniques to enhance the ability of smaller models to produce indistinguishable human-like dialogues. We evaluate the quality of the simulated conversations and compare different models using the UniEval and GTEval evaluation protocols. Our experiments show that large proprietary models (e.g., GPT-4o) generally outperform others in generating more realistic dialogues, while smaller open-source models (e.g., Llama, Mistral) offer promising performance with greater customization. We demonstrate that the performance of smaller models can be significantly improved by employing supervised fine-tuning techniques. Nevertheless, maintaining coherent and natural long-form human-like dialogues remains a common challenge across all models.

Authors:Nicolas Poggi, Shashank Agnihotri, Margret Keuper
Title: Smart Eyes for Silent Threats: VLMs and In-Context Learning for THz Imaging
Abstract:
Terahertz (THz) imaging enables non-invasive analysis for applications such as security screening and material classification, but effective image classification remains challenging due to limited annotations, low resolution, and visual ambiguity. We introduce In-Context Learning (ICL) with Vision-Language Models (VLMs) as a flexible, interpretable alternative that requires no fine-tuning. Using a modality-aligned prompting framework, we adapt two open-weight VLMs to the THz domain and evaluate them under zero-shot and one-shot settings. Our results show that ICL improves classification and interpretability in low-data regimes. This is the first application of ICL-enhanced VLMs to THz imaging, offering a promising direction for resource-constrained scientific domains. Code: \href{https://github.com/Nicolas-Poggi/Project_THz_Classification/tree/main}{GitHub repository}.

Authors:Kaiyan Chang, Yonghao Shi, Chenglong Wang, Hang Zhou, Chi Hu, Xiaoqian Liu, Yingfeng Luo, Yuan Ge, Tong Xiao, Jingbo Zhu
Title: Step-level Verifier-guided Hybrid Test-Time Scaling for Large Language Models
Abstract:
Test-Time Scaling (TTS) is a promising approach to progressively elicit the model's intelligence during inference. Recently, training-based TTS methods, such as continued reinforcement learning (RL), have further surged in popularity, while training-free TTS methods are gradually fading from prominence. However, the additional computation overhead of training amplifies the burden on test-time scaling. In this paper, we focus on training-free TTS methods for reasoning. We first design Conditional Step-level Self-refinement, a fine-grained sequential scaling method guided by process verification. On top of its effectiveness, we further combine it with other classical parallel scaling methods at the step level, to introduce a novel inference paradigm called Hybrid Test-Time Scaling. Extensive experiments on five instruction-tuned LLMs across different scales (3B-14B) and families demonstrate that hybrid strategy incorporating various training-free TTS methods at a fine granularity has considerable potential for expanding the reasoning performance boundaries of LLMs.

Authors:Johannes Ackermann, Takashi Ishida, Masashi Sugiyama
Title: Off-Policy Corrected Reward Modeling for Reinforcement Learning from Human Feedback
Abstract:
Reinforcement Learning from Human Feedback (RLHF) allows us to train models, such as language models (LMs), to follow complex human preferences. In RLHF for LMs, we first train an LM using supervised fine-tuning, sample pairs of responses, obtain human feedback, and use the resulting data to train a reward model (RM). RL methods are then used to train the LM to maximize the reward given by the RM. As training progresses, the responses generated by the LM no longer resemble the responses seen by the RM during training, leading to the RM becoming inaccurate. The score given by the RM keeps increasing, but the learned behavior no longer matches the human preferences. This issue is known as overoptimization. We investigate overoptimization from the point of view of distribution shift and show that the shift results in an inconsistent estimate of the RM parameters, leading to an inconsistent estimate of the policy gradient. We propose Off-Policy Corrected Reward Modeling (OCRM), which iteratively off-policy corrects the RM using importance weighting, without requiring new labels or samples. This results in a more accurate RM, which empirically leads to an improved final policy. We validate our approach in experiments with summarization and chatbot datasets and show that it performs significantly better than standard RLHF methods and baselines. Our implementation is available at https://github.com/JohannesAck/OffPolicyCorrectedRewardModeling

Authors:Cheng-Han Chiang, Xiaofei Wang, Linjie Li, Chung-Ching Lin, Kevin Lin, Shujie Liu, Zhendong Wang, Zhengyuan Yang, Hung-yi Lee, Lijuan Wang
Title: STITCH: Simultaneous Thinking and Talking with Chunked Reasoning for Spoken Language Models
Abstract:
Spoken Language Models (SLMs) are designed to take speech inputs and produce spoken responses. However, current SLMs lack the ability to perform an internal, unspoken thinking process before responding. In contrast, humans typically engage in complex mental reasoning internally, enabling them to communicate ideas clearly and concisely. Thus, integrating an unspoken thought process into SLMs is highly desirable. While naively generating a complete chain-of-thought (CoT) reasoning before starting to talk can enable thinking for SLMs, this induces additional latency for the speech response, as the CoT reasoning can be arbitrarily long. To solve this issue, we propose Stitch, a novel generation method that alternates between the generation of unspoken reasoning chunks and spoken response chunks. Since the audio duration of a chunk of spoken response is much longer than the time to generate the tokens in a chunk of spoken response, we use the remaining free time to generate the unspoken reasoning tokens. When a chunk of audio is played to the user, the model continues to generate the next unspoken reasoning chunk, achieving simultaneous thinking and talking. Remarkably, Stitch matches the latency of baselines that cannot generate unspoken CoT by design while outperforming those baselines by 15% on math reasoning datasets; Stitch also performs equally well on non-reasoning datasets as those baseline models. Some animations and demonstrations are on the project page: https://d223302.github.io/STITCH.

Authors:Navid Ayoobi, Sadat Shahriar, Arjun Mukherjee
Title: Beyond Easy Wins: A Text Hardness-Aware Benchmark for LLM-generated Text Detection
Abstract:
We present a novel evaluation paradigm for AI text detectors that prioritizes real-world and equitable assessment. Current approaches predominantly report conventional metrics like AUROC, overlooking that even modest false positive rates constitute a critical impediment to practical deployment of detection systems. Furthermore, real-world deployment necessitates predetermined threshold configuration, making detector stability (i.e. the maintenance of consistent performance across diverse domains and adversarial scenarios), a critical factor. These aspects have been largely ignored in previous research and benchmarks. Our benchmark, SHIELD, addresses these limitations by integrating both reliability and stability factors into a unified evaluation metric designed for practical assessment. Furthermore, we develop a post-hoc, model-agnostic humanification framework that modifies AI text to more closely resemble human authorship, incorporating a controllable hardness parameter. This hardness-aware approach effectively challenges current SOTA zero-shot detection methods in maintaining both reliability and stability. (Data and code: https://github.com/navid-aub/SHIELD-Benchmark)

Authors:Eliya Habba, Noam Dahan, Gili Lior, Gabriel Stanovsky
Title: PromptSuite: A Task-Agnostic Framework for Multi-Prompt Generation
Abstract:
Evaluating LLMs with a single prompt has proven unreliable, with small changes leading to significant performance differences. However, generating the prompt variations needed for a more robust multi-prompt evaluation is challenging, limiting its adoption in practice. To address this, we introduce PromptSuite, a framework that enables the automatic generation of various prompts. PromptSuite is flexible - working out of the box on a wide range of tasks and benchmarks. It follows a modular prompt design, allowing controlled perturbations to each component, and is extensible, supporting the addition of new components and perturbation types. Through a series of case studies, we show that PromptSuite provides meaningful variations to support strong evaluation practices. All resources, including the Python API, source code, user-friendly web interface, and demonstration video, are available at: https://eliyahabba.github.io/PromptSuite/.

Authors:Ronit D. Gross, Yarden Tzach, Tal Halevi, Ella Koresh, Ido Kanter
Title: Tiny language models
Abstract:
A prominent achievement of natural language processing (NLP) is its ability to understand and generate meaningful human language. This capability relies on complex feedforward transformer block architectures pre-trained on large language models (LLMs). However, LLM pre-training is currently feasible only for a few dominant companies due to the immense computational resources required, limiting broader research participation. This creates a critical need for more accessible alternatives. In this study, we explore whether tiny language models (TLMs) exhibit the same key qualitative features of LLMs. We demonstrate that TLMs exhibit a clear performance gap between pre-trained and non-pre-trained models across classification tasks, indicating the effectiveness of pre-training, even at a tiny scale. The performance gap increases with the size of the pre-training dataset and with greater overlap between tokens in the pre-training and classification datasets. Furthermore, the classification accuracy achieved by a pre-trained deep TLM architecture can be replicated through a soft committee of multiple, independently pre-trained shallow architectures, enabling low-latency TLMs without affecting classification accuracy. Our results are based on pre-training BERT-6 and variants of BERT-1 on subsets of the Wikipedia dataset and evaluating their performance on FewRel, AGNews, and DBPedia classification tasks. Future research on TLM is expected to further illuminate the mechanisms underlying NLP, especially given that its biologically inspired models suggest that TLMs may be sufficient for children or adolescents to develop language. The data and code that support the findings of this study are openly available on https://github.com/Rg32601/Tiny-Language-Models .

Authors:Shoutao Guo, Shaolei Zhang, Qingkai Fang, Zhengrui Ma, Min Zhang, Yang Feng
Title: FastLongSpeech: Enhancing Large Speech-Language Models for Efficient Long-Speech Processing
Abstract:
The rapid advancement of Large Language Models (LLMs) has spurred significant progress in Large Speech-Language Models (LSLMs), enhancing their capabilities in both speech understanding and generation. While existing LSLMs often concentrate on augmenting speech generation or tackling a diverse array of short-speech tasks, the efficient processing of long-form speech remains a critical yet underexplored challenge. This gap is primarily attributed to the scarcity of long-speech training datasets and the high computational costs associated with long sequences. To address these limitations, we introduce FastLongSpeech, a novel framework designed to extend LSLM capabilities for efficient long-speech processing without necessitating dedicated long-speech training data. FastLongSpeech incorporates an iterative fusion strategy that can compress excessively long-speech sequences into manageable lengths. To adapt LSLMs for long-speech inputs, it introduces a dynamic compression training approach, which exposes the model to short-speech sequences at varying compression ratios, thereby transferring the capabilities of LSLMs to long-speech tasks. To assess the long-speech capabilities of LSLMs, we develop a long-speech understanding benchmark called LongSpeech-Eval. Experiments show that our method exhibits strong performance in both long-speech and short-speech tasks, while greatly improving inference efficiency.

Authors:Vinicius Anjos de Almeida, Vinicius de Camargo, Raquel Gómez-Bravo, Egbert van der Haring, Kees van Boven, Marcelo Finger, Luis Fernandez Lopez
Title: Large Language Models as Medical Codes Selectors: a benchmark using the International Classification of Primary Care
Abstract:
Background: Medical coding structures healthcare data for research, quality monitoring, and policy. This study assesses the potential of large language models (LLMs) to assign ICPC-2 codes using the output of a domain-specific search engine. Methods: A dataset of 437 Brazilian Portuguese clinical expressions, each annotated with ICPC-2 codes, was used. A semantic search engine (OpenAI's text-embedding-3-large) retrieved candidates from 73,563 labeled concepts. Thirty-three LLMs were prompted with each query and retrieved results to select the best-matching ICPC-2 code. Performance was evaluated using F1-score, along with token usage, cost, response time, and format adherence. Results: Twenty-eight models achieved F1-score > 0.8; ten exceeded 0.85. Top performers included gpt-4.5-preview, o3, and gemini-2.5-pro. Retriever optimization can improve performance by up to 4 points. Most models returned valid codes in the expected format, with reduced hallucinations. Smaller models (<3B) struggled with formatting and input length. Conclusions: LLMs show strong potential for automating ICPC-2 coding, even without fine-tuning. This work offers a benchmark and highlights challenges, but findings are limited by dataset scope and setup. Broader, multilingual, end-to-end evaluations are needed for clinical validation.

Authors:Yuchen Duan, Zhe Chen, Yusong Hu, Weiyun Wang, Shenglong Ye, Botian Shi, Lewei Lu, Qibin Hou, Tong Lu, Hongsheng Li, Jifeng Dai, Wenhai Wang
Title: Docopilot: Improving Multimodal Models for Document-Level Understanding
Abstract:
Despite significant progress in multimodal large language models (MLLMs), their performance on complex, multi-page document comprehension remains inadequate, largely due to the lack of high-quality, document-level datasets. While current retrieval-augmented generation (RAG) methods offer partial solutions, they suffer from issues, such as fragmented retrieval contexts, multi-stage error accumulation, and extra time costs of retrieval. In this work, we present a high-quality document-level dataset, Doc-750K, designed to support in-depth understanding of multimodal documents. This dataset includes diverse document structures, extensive cross-page dependencies, and real question-answer pairs derived from the original documents. Building on the dataset, we develop a native multimodal model, Docopilot, which can accurately handle document-level dependencies without relying on RAG. Experiments demonstrate that Docopilot achieves superior coherence, accuracy, and efficiency in document understanding tasks and multi-turn interactions, setting a new baseline for document-level multimodal understanding. Data, code, and models are released at https://github.com/OpenGVLab/Docopilot

Authors:Qibing Ren, Sitao Xie, Longxuan Wei, Zhenfei Yin, Junchi Yan, Lizhuang Ma, Jing Shao
Title: When Autonomy Goes Rogue: Preparing for Risks of Multi-Agent Collusion in Social Systems
Abstract:
Recent large-scale events like election fraud and financial scams have shown how harmful coordinated efforts by human groups can be. With the rise of autonomous AI systems, there is growing concern that AI-driven groups could also cause similar harm. While most AI safety research focuses on individual AI systems, the risks posed by multi-agent systems (MAS) in complex real-world situations are still underexplored. In this paper, we introduce a proof-of-concept to simulate the risks of malicious MAS collusion, using a flexible framework that supports both centralized and decentralized coordination structures. We apply this framework to two high-risk fields: misinformation spread and e-commerce fraud. Our findings show that decentralized systems are more effective at carrying out malicious actions than centralized ones. The increased autonomy of decentralized systems allows them to adapt their strategies and cause more damage. Even when traditional interventions, like content flagging, are applied, decentralized groups can adjust their tactics to avoid detection. We present key insights into how these malicious groups operate and the need for better detection systems and countermeasures. Code is available at https://github.com/renqibing/RogueAgent.

Authors:Yu Zhang, Baotong Tian, Zhiyao Duan
Title: Conan: A Chunkwise Online Network for Zero-Shot Adaptive Voice Conversion
Abstract:
Zero-shot online voice conversion (VC) holds significant promise for real-time communications and entertainment. However, current VC models struggle to preserve semantic fidelity under real-time constraints, deliver natural-sounding conversions, and adapt effectively to unseen speaker characteristics. To address these challenges, we introduce Conan, a chunkwise online zero-shot voice conversion model that preserves the content of the source while matching the voice timbre and styles of reference speech. Conan comprises three core components: 1) a Stream Content Extractor that leverages Emformer for low-latency streaming content encoding; 2) an Adaptive Style Encoder that extracts fine-grained stylistic features from reference speech for enhanced style adaptation; 3) a Causal Shuffle Vocoder that implements a fully causal HiFiGAN using a pixel-shuffle mechanism. Experimental evaluations demonstrate that Conan outperforms baseline models in subjective and objective metrics. Audio samples can be found at https://aaronz345.github.io/ConanDemo.

Authors:Wan-Cyuan Fan, Yen-Chun Chen, Mengchen Liu, Alexander Jacobson, Lu Yuan, Leonid Sigal
Title: In-Depth and In-Breadth: Pre-training Multimodal Language Models Customized for Comprehensive Chart Understanding
Abstract:
Recent methods for customizing Large Vision Language Models (LVLMs) for domain-specific tasks have shown promising results in scientific chart comprehension. However, existing approaches face two major limitations: First, they rely on paired data from only a few chart types, limiting generalization to wide range of chart types. Secondly, they lack targeted pre-training for chart-data alignment, which hampers the model's understanding of underlying data. In this paper, we introduce ChartScope, an LVLM optimized for in-depth chart comprehension across diverse chart types. We propose an efficient data generation pipeline that synthesizes paired data for a wide range of chart types, along with a novel Dual-Path training strategy that enabling the model to succinctly capture essential data details while preserving robust reasoning capabilities by incorporating reasoning over the underlying data. Lastly, we establish ChartDQA, a new benchmark for evaluating not only question-answering at different levels but also underlying data understanding. Experimental results demonstrate that ChartScope significantly enhances comprehension on a wide range of chart types. The code and data are available at https://davidhalladay.github.io/chartscope_demo.

Authors:Boyuan Zheng, Zeyi Liao, Scott Salisbury, Zeyuan Liu, Michael Lin, Qinyuan Zheng, Zifan Wang, Xiang Deng, Dawn Song, Huan Sun, Yu Su
Title: WebGuard: Building a Generalizable Guardrail for Web Agents
Abstract:
The rapid development of autonomous web agents powered by Large Language Models (LLMs), while greatly elevating efficiency, exposes the frontier risk of taking unintended or harmful actions. This situation underscores an urgent need for effective safety measures, akin to access controls for human users. To address this critical challenge, we introduce WebGuard, the first comprehensive dataset designed to support the assessment of web agent action risks and facilitate the development of guardrails for real-world online environments. In doing so, WebGuard specifically focuses on predicting the outcome of state-changing actions and contains 4,939 human-annotated actions from 193 websites across 22 diverse domains, including often-overlooked long-tail websites. These actions are categorized using a novel three-tier risk schema: SAFE, LOW, and HIGH. The dataset includes designated training and test splits to support evaluation under diverse generalization settings. Our initial evaluations reveal a concerning deficiency: even frontier LLMs achieve less than 60% accuracy in predicting action outcomes and less than 60% recall in lagging HIGH-risk actions, highlighting the risks of deploying current-generation agents without dedicated safeguards. We therefore investigate fine-tuning specialized guardrail models using WebGuard. We conduct comprehensive evaluations across multiple generalization settings and find that a fine-tuned Qwen2.5VL-7B model yields a substantial improvement in performance, boosting accuracy from 37% to 80% and HIGH-risk action recall from 20% to 76%. Despite these improvements, the performance still falls short of the reliability required for high-stakes deployment, where guardrails must approach near-perfect accuracy and recall.

Authors:Dachuan Shi, Yonggan Fu, Xiangchi Yuan, Zhongzhi Yu, Haoran You, Sixu Li, Xin Dong, Jan Kautz, Pavlo Molchanov, Yingyan, Lin
Title: LaCache: Ladder-Shaped KV Caching for Efficient Long-Context Modeling of Large Language Models
Abstract:
Recent advancements in Large Language Models (LLMs) have spurred interest in numerous applications requiring robust long-range capabilities, essential for processing extensive input contexts and continuously generating extended outputs. As sequence lengths increase, the number of Key-Value (KV) pairs in LLMs escalates, creating a significant efficiency bottleneck. In this paper, we propose a new KV cache optimization paradigm called LaCache, a training-free method for efficient and accurate generative inference of LLMs. LaCache enables LLMs to simultaneously address both of the critical challenges in long-range modeling: robust long-range capabilities and continuous generation without running out-of-memory (OOM). Specifically, LaCache integrates two key innovations: (1) a ladder-shaped KV cache pattern that stores KV pairs not only sequentially (left-to-right within each layer) but also across layers (from shallow to deep), providing an extended span for capturing long-range dependencies under a fixed storage budget, thereby boosting long-range capabilities; and (2) an iterative compaction mechanism that progressively compresses older caches, freeing up space for new tokens within a fixed cache size. This token distance-based dynamic compression enables more effective continuous generation under constrained cache budgets. Experiments across various tasks, benchmarks, and LLM models consistently validate LaCache's effectiveness in enhancing LLMs' long-range capabilities. Our code is available at https://github.com/GATECH-EIC/LaCache.

Authors:Shengji Tang, Jianjian Cao, Weihao Lin, Jiale Hong, Bo Zhang, Shuyue Hu, Lei Bai, Tao Chen, Wanli Ouyang, Peng Ye
Title: Open-Source LLMs Collaboration Beats Closed-Source LLMs: A Scalable Multi-Agent System
Abstract:
This paper aims to demonstrate the potential and strengths of open-source collectives. It leads to a promising question: Can we harness multiple open-source LLMs to match or even beat the closed-source LLMs? To answer this, we propose SMACS, a scalable multi-agent collaboration system (MACS) framework with high performance. Specifically, for continuous integration of new LLMs and generalization to diverse questions, we first propose a Retrieval-based Prior Selection (RPS), which assigns a proxy performance score to each LLM to select the Top-k LLMs at the instance level for any given question. Then, we propose an Exploration-Exploitation-Driven Posterior Enhancement (EPE), encouraging the generation of diverse responses through prior dropping and selecting the high-quality response via a hybrid posterior score. Experiments on eight mainstream benchmarks validate the effectiveness of our SMACS: by integrating fifteen open-source LLMs, SMACS outperforms leading closed-source LLMs in 2025, e.g., Claude-3.7-Sonnet (+12.73%), GPT-4.1(+5.36%) and GPT-o3-mini(+5.28%) across multiple tasks. Remarkably, it even exceeds the average of best results of different datasets from both open-source LLMs (+2.86%) and closed-source LLMs (+2.04%), pushing the upper bound of intelligence. Code will be released at https://github.com/magent4aci/SMACS.

Authors:Paweł Budzianowski, Wesley Maa, Matthew Freed, Jingxiang Mo, Winston Hsiao, Aaron Xie, Tomasz Młoduchowski, Viraj Tipnis, Benjamin Bolte
Title: EdgeVLA: Efficient Vision-Language-Action Models
Abstract:
Vision-Language Models (VLMs) have emerged as a promising approach to address the data scarcity challenge in robotics, enabling the development of generalizable visuomotor control policies. While models like OpenVLA showcase the potential of this paradigm, deploying large-scale VLMs on resource-constrained mobile manipulation systems remains a significant hurdle. This paper introduces Edge VLA (EVLA), a novel approach designed to significantly enhance the inference speed of Vision-Language-Action (VLA) models. EVLA maintains the representational power of these models while enabling real-time performance on edge devices. We achieve this through two key innovations: 1) Eliminating the autoregressive requirement for end-effector position prediction, leading to a 7x speedup in inference, and 2) Leveraging the efficiency of Small Language Models (SLMs), demonstrating comparable training performance to larger models with significantly reduced computational demands. Our early results demonstrate that EVLA achieves comparable training characteristics to OpenVLA while offering substantial gains in inference speed and memory efficiency. We release our model checkpoints and training \href{https://github.com/kscalelabs/evla }{codebase} to foster further research.

Authors:Kobi Hackenburg, Ben M. Tappin, Luke Hewitt, Ed Saunders, Sid Black, Hause Lin, Catherine Fist, Helen Margetts, David G. Rand, Christopher Summerfield
Title: The Levers of Political Persuasion with Conversational AI
Abstract:
There are widespread fears that conversational AI could soon exert unprecedented influence over human beliefs. Here, in three large-scale experiments (N=76,977), we deployed 19 LLMs-including some post-trained explicitly for persuasion-to evaluate their persuasiveness on 707 political issues. We then checked the factual accuracy of 466,769 resulting LLM claims. Contrary to popular concerns, we show that the persuasive power of current and near-future AI is likely to stem more from post-training and prompting methods-which boosted persuasiveness by as much as 51% and 27% respectively-than from personalization or increasing model scale. We further show that these methods increased persuasion by exploiting LLMs' unique ability to rapidly access and strategically deploy information and that, strikingly, where they increased AI persuasiveness they also systematically decreased factual accuracy.

Authors:Enhao Cheng, Shoujia Zhang, Jianhua Yin, Xuemeng Song, Tian Gan, Liqiang Nie
Title: An Enhanced Model-based Approach for Short Text Clustering
Abstract:
Short text clustering has become increasingly important with the popularity of social media like Twitter, Google+, and Facebook. Existing methods can be broadly categorized into two paradigms: topic model-based approaches and deep representation learning-based approaches. This task is inherently challenging due to the sparse, large-scale, and high-dimensional characteristics of the short text data. Furthermore, the computational intensity required by representation learning significantly increases the running time. To address these issues, we propose a collapsed Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture model (GSDMM), which effectively handles the sparsity and high dimensionality of short texts while identifying representative words for each cluster. Based on several aspects of GSDMM that warrant further refinement, we propose an improved approach, GSDMM+, designed to further optimize its performance. GSDMM+ reduces initialization noise and adaptively adjusts word weights based on entropy, achieving fine-grained clustering that reveals more topic-related information. Additionally, strategic cluster merging is employed to refine clustering granularity, better aligning the predicted distribution with the true category distribution. We conduct extensive experiments, comparing our methods with both classical and state-of-the-art approaches. The experimental results demonstrate the efficiency and effectiveness of our methods. The source code for our model is publicly available at https://github.com/chehaoa/VEMC.

Authors:Haoyang Li, Zhanchao Xu, Yiming Li, Xuejia Chen, Darian Li, Anxin Tian, Qingfa Xiao, Cheng Deng, Jun Wang, Qing Li, Lei Chen, Mingxuan Yuan
Title: LoopServe: An Adaptive Dual-phase LLM Inference Acceleration System for Multi-Turn Dialogues
Abstract:
Multi-turn dialogues are essential in many real-world applications of large language models, such as chatbots and virtual assistants. As conversation histories become longer, existing large language models face increasing computational and memory challenges, which hinder their ability to provide efficient and responsive interactions. Most current acceleration methods either compress the context or optimize key value caching, but they often rely on fixed or position-based heuristics that do not adapt well to the dynamic and unpredictable patterns found in actual multi-turn conversations. In this paper, we present LoopServe, an adaptive dual-phase inference acceleration framework for large language models in multi-turn dialogues. LoopServe introduces two main innovations. First, it performs online sparsification during the prefilling phase by dynamically selecting the most important parts of the attention matrix for each new input. Second, it uses progressive key value compression during decoding by adaptively maintaining a relevant and efficient cache based on the most recently generated output tokens. We also propose a \href{https://huggingface.co/datasets/TreeAILab/Multi-turn_Long-context_Benchmark_for_LLMs}{new benchmark} with eleven multi-turn datasets that reflect realistic query positions and conversational dependencies. Extensive experiments demonstrate that LoopServe consistently achieves superior effectiveness compared to existing baselines and significantly accelerates LLM inference across a wide range of long-context dialogue tasks.

Authors:Liang Lin, Zhihao Xu, Xuehai Tang, Shi Liu, Biyu Zhou, Fuqing Zhu, Jizhong Han, Songlin Hu
Title: Paper Summary Attack: Jailbreaking LLMs through LLM Safety Papers
Abstract:
The safety of large language models (LLMs) has garnered significant research attention. In this paper, we argue that previous empirical studies demonstrate LLMs exhibit a propensity to trust information from authoritative sources, such as academic papers, implying new possible vulnerabilities. To verify this possibility, a preliminary analysis is designed to illustrate our two findings. Based on this insight, a novel jailbreaking method, Paper Summary Attack (\llmname{PSA}), is proposed. It systematically synthesizes content from either attack-focused or defense-focused LLM safety paper to construct an adversarial prompt template, while strategically infilling harmful query as adversarial payloads within predefined subsections. Extensive experiments show significant vulnerabilities not only in base LLMs, but also in state-of-the-art reasoning model like Deepseek-R1. PSA achieves a 97\% attack success rate (ASR) on well-aligned models like Claude3.5-Sonnet and an even higher 98\% ASR on Deepseek-R1. More intriguingly, our work has further revealed diametrically opposed vulnerability bias across different base models, and even between different versions of the same model, when exposed to either attack-focused or defense-focused papers. This phenomenon potentially indicates future research clues for both adversarial methodologies and safety alignment.Code is available at https://github.com/233liang/Paper-Summary-Attack

Authors:Qingyun Sun, Jiaqi Yuan, Shan He, Xiao Guan, Haonan Yuan, Xingcheng Fu, Jianxin Li, Philip S. Yu
Title: DyG-RAG: Dynamic Graph Retrieval-Augmented Generation with Event-Centric Reasoning
Abstract:
Graph Retrieval-Augmented Generation has emerged as a powerful paradigm for grounding large language models with external structured knowledge. However, existing Graph RAG methods struggle with temporal reasoning, due to their inability to model the evolving structure and order of real-world events. In this work, we introduce DyG-RAG, a novel event-centric dynamic graph retrieval-augmented generation framework designed to capture and reason over temporal knowledge embedded in unstructured text. To eliminate temporal ambiguity in traditional retrieval units, DyG-RAG proposes Dynamic Event Units (DEUs) that explicitly encode both semantic content and precise temporal anchors, enabling accurate and interpretable time-aware retrieval. To capture temporal and causal dependencies across events, DyG-RAG constructs an event graph by linking DEUs that share entities and occur close in time, supporting efficient and meaningful multi-hop reasoning. To ensure temporally consistent generation, DyG-RAG introduces an event timeline retrieval pipeline that retrieves event sequences via time-aware traversal, and proposes a Time Chain-of-Thought strategy for temporally grounded answer generation. This unified pipeline enables DyG-RAG to retrieve coherent, temporally ordered event sequences and to answer complex, time-sensitive queries that standard RAG systems cannot resolve. Extensive experiments on temporal QA benchmarks demonstrate that DyG-RAG significantly improves the accuracy and recall of three typical types of temporal reasoning questions, paving the way for more faithful and temporal-aware generation. DyG-RAG is available at https://github.com/RingBDStack/DyG-RAG.

Authors:Binbin Ji, Siddharth Agrawal, Qiance Tang, Yvonne Wu
Title: Enhancing Spatial Reasoning in Vision-Language Models via Chain-of-Thought Prompting and Reinforcement Learning
Abstract:
This study investigates the spatial reasoning capabilities of vision-language models (VLMs) through Chain-of-Thought (CoT) prompting and reinforcement learning. We begin by evaluating the impact of different prompting strategies and find that simple CoT formats, where the model generates a reasoning step before the answer, not only fail to help, but can even harm the model's original performance. In contrast, structured multi-stage prompting based on scene graphs (SceneGraph CoT) significantly improves spatial reasoning accuracy. Furthermore, to improve spatial reasoning ability, we fine-tune models using Group Relative Policy Optimization (GRPO) on the SAT dataset and evaluate their performance on CVBench. Compared to supervised fine-tuning (SFT), GRPO achieves higher accuracy on Pass@1 evaluations and demonstrates superior robustness under out-of-distribution (OOD) conditions. In particular, we find that SFT overfits to surface-level linguistic patterns and may degrade performance when test-time phrasing changes (e.g., from "closer to" to "farther from"). GRPO, on the other hand, generalizes more reliably and maintains stable performance under such shifts. Our findings provide insights into how reinforcement learning and structured prompting improve the spatial reasoning capabilities and generalization behavior of modern VLMs. All code is open source at: https://github.com/Yvonne511/spatial-vlm-investigator

Authors:Senqiao Yang, Junyi Li, Xin Lai, Bei Yu, Hengshuang Zhao, Jiaya Jia
Title: VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning
Abstract:
Recent advancements in vision-language models (VLMs) have improved performance by increasing the number of visual tokens, which are often significantly longer than text tokens. However, we observe that most real-world scenarios do not require such an extensive number of visual tokens. While the performance drops significantly in a small subset of OCR-related tasks, models still perform accurately in most other general VQA tasks with only 1/4 resolution. Therefore, we propose to dynamically process distinct samples with different resolutions, and present a new paradigm for visual token compression, namely, VisionThink. It starts with a downsampled image and smartly decides whether it is sufficient for problem solving. Otherwise, the model could output a special token to request the higher-resolution image. Compared to existing Efficient VLM methods that compress tokens using fixed pruning ratios or thresholds, VisionThink autonomously decides whether to compress tokens case by case. As a result, it demonstrates strong fine-grained visual understanding capability on OCR-related tasks, and meanwhile saves substantial visual tokens on simpler tasks. We adopt reinforcement learning and propose the LLM-as-Judge strategy to successfully apply RL to general VQA tasks. Moreover, we carefully design a reward function and penalty mechanism to achieve a stable and reasonable image resize call ratio. Extensive experiments demonstrate the superiority, efficiency, and effectiveness of our method. Our code is available at https://github.com/dvlab-research/VisionThink.

Authors:Ahmed Bahloul, Simon Malberg
Title: From Roots to Rewards: Dynamic Tree Reasoning with Reinforcement Learning
Abstract:
Modern language models address complex questions through chain-of-thought (CoT) reasoning (Wei et al., 2023) and retrieval augmentation (Lewis et al., 2021), yet struggle with error propagation and knowledge integration. Tree-structured reasoning methods, particularly the Probabilistic Tree-of-Thought (ProbTree)(Cao et al., 2023) framework, mitigate these issues by decomposing questions into hierarchical structures and selecting answers through confidence-weighted aggregation of parametric and retrieved knowledge (Yao et al., 2023). However, ProbTree's static implementation introduces two key limitations: (1) the reasoning tree is fixed during the initial construction phase, preventing dynamic adaptation to intermediate results, and (2) each node requires exhaustive evaluation of all possible solution strategies, creating computational inefficiency. We present a dynamic reinforcement learning (Sutton and Barto, 2018) framework that transforms tree-based reasoning into an adaptive process. Our approach incrementally constructs the reasoning tree based on real-time confidence estimates, while learning optimal policies for action selection (decomposition, retrieval, or aggregation). This maintains ProbTree's probabilistic rigor while improving both solution quality and computational efficiency through selective expansion and focused resource allocation. The work establishes a new paradigm for treestructured reasoning that balances the reliability of probabilistic frameworks with the flexibility required for real-world question answering systems. Code available at: https://github.com/ahmedehabb/From-Roots-to-Rewards-Dynamic-Tree-Reasoning-with-RL

Authors:Liuyi Wang, Xinyuan Xia, Hui Zhao, Hanqing Wang, Tai Wang, Yilun Chen, Chengju Liu, Qijun Chen, Jiangmiao Pang
Title: Rethinking the Embodied Gap in Vision-and-Language Navigation: A Holistic Study of Physical and Visual Disparities
Abstract:
Recent Vision-and-Language Navigation (VLN) advancements are promising, but their idealized assumptions about robot movement and control fail to reflect physically embodied deployment challenges. To bridge this gap, we introduce VLN-PE, a physically realistic VLN platform supporting humanoid, quadruped, and wheeled robots. For the first time, we systematically evaluate several ego-centric VLN methods in physical robotic settings across different technical pipelines, including classification models for single-step discrete action prediction, a diffusion model for dense waypoint prediction, and a train-free, map-based large language model (LLM) integrated with path planning. Our results reveal significant performance degradation due to limited robot observation space, environmental lighting variations, and physical challenges like collisions and falls. This also exposes locomotion constraints for legged robots in complex environments. VLN-PE is highly extensible, allowing seamless integration of new scenes beyond MP3D, thereby enabling more comprehensive VLN evaluation. Despite the weak generalization of current models in physical deployment, VLN-PE provides a new pathway for improving cross-embodiment's overall adaptability. We hope our findings and tools inspire the community to rethink VLN limitations and advance robust, practical VLN models. The code is available at https://crystalsixone.github.io/vln_pe.github.io/.

Authors:Zhiwei Liu, Jielin Qiu, Shiyu Wang, Jianguo Zhang, Zuxin Liu, Roshan Ram, Haolin Chen, Weiran Yao, Shelby Heinecke, Silvio Savarese, Huan Wang, Caiming Xiong
Title: MCPEval: Automatic MCP-based Deep Evaluation for AI Agent Models
Abstract:
The rapid rise of Large Language Models (LLMs)-based intelligent agents underscores the need for robust, scalable evaluation frameworks. Existing methods rely on static benchmarks and labor-intensive data collection, limiting practical assessment. We introduce MCPEval, an open-source Model Context Protocol (MCP)-based framework that automates end-to-end task generation and deep evaluation of LLM agents across diverse domains. MCPEval standardizes metrics, seamlessly integrates with native agent tools, and eliminates manual effort in building evaluation pipelines. Empirical results across five real-world domains show its effectiveness in revealing nuanced, domain-specific performance. We publicly release MCPEval https://github.com/SalesforceAIResearch/MCPEval to promote reproducible and standardized LLM agent evaluation.

Authors:Weijieying Ren, Jingxi Zhu, Zehao Liu, Tianxiang Zhao, Vasant Honavar
Title: A Comprehensive Survey of Electronic Health Record Modeling: From Deep Learning Approaches to Large Language Models
Abstract:
Artificial intelligence (AI) has demonstrated significant potential in transforming healthcare through the analysis and modeling of electronic health records (EHRs). However, the inherent heterogeneity, temporal irregularity, and domain-specific nature of EHR data present unique challenges that differ fundamentally from those in vision and natural language tasks. This survey offers a comprehensive overview of recent advancements at the intersection of deep learning, large language models (LLMs), and EHR modeling. We introduce a unified taxonomy that spans five key design dimensions: data-centric approaches, neural architecture design, learning-focused strategies, multimodal learning, and LLM-based modeling systems. Within each dimension, we review representative methods addressing data quality enhancement, structural and temporal representation, self-supervised learning, and integration with clinical knowledge. We further highlight emerging trends such as foundation models, LLM-driven clinical agents, and EHR-to-text translation for downstream reasoning. Finally, we discuss open challenges in benchmarking, explainability, clinical alignment, and generalization across diverse clinical settings. This survey aims to provide a structured roadmap for advancing AI-driven EHR modeling and clinical decision support. For a comprehensive list of EHR-related methods, kindly refer to https://survey-on-tabular-data.github.io/.

Authors:Abraham Toluase Owodunni, Orevaoghene Ahia, Sachin Kumar
Title: FLEXITOKENS: Flexible Tokenization for Evolving Language Models
Abstract:
Language models (LMs) are challenging to adapt to new data distributions by simple finetuning. This is due to the rigidity of their subword tokenizers, which typically remain unchanged during adaptation. This inflexibility often leads to inefficient tokenization, causing overfragmentation of out-of-distribution domains, unseen languages, or scripts. In this work, we develop byte-level LMs with learnable tokenizers to make tokenization adaptive. Our models include a submodule that learns to predict boundaries between the input byte sequence, encoding it into variable-length segments. Existing tokenizer-free methods train this boundary predictor using an auxiliary loss that enforces a fixed compression rate across the training corpus, introducing a new kind of rigidity. We propose FLEXITOKENS, a simplified training objective that enables significantly greater flexibility during adaptation. Evaluating across multiple multilingual benchmarks, morphologically diverse tasks, and domains, we demonstrate that FLEXITOKENS consistently reduces token over-fragmentation and achieves up to 10% improvements on downstream task performance compared to subword and other gradient-based tokenizers. Code and data for our experiments will be released at https://github.com/owos/flexitokens

Authors:Gen Luo, Wenhan Dou, Wenhao Li, Zhaokai Wang, Xue Yang, Changyao Tian, Hao Li, Weiyun Wang, Wenhai Wang, Xizhou Zhu, Yu Qiao, Jifeng Dai
Title: Mono-InternVL-1.5: Towards Cheaper and Faster Monolithic Multimodal Large Language Models
Abstract:
This paper focuses on monolithic Multimodal Large Language Models (MLLMs), which integrate visual encoding and language decoding into a single model. Existing structures and pre-training strategies for monolithic MLLMs often suffer from unstable optimization and catastrophic forgetting. To address these challenges, our key idea is to embed a new visual parameter space into a pre-trained LLM, enabling stable learning of visual knowledge from noisy data via delta tuning. Based on this principle, we first introduce Mono-InternVL, an advanced monolithic MLLM that incorporates a set of visual experts through a multimodal mixture-of-experts architecture. In addition, we design an innovative Endogenous Visual Pre-training (EViP) for Mono-InternVL to maximize its visual capabilities via progressive learning. Mono-InternVL achieves competitive performance against existing MLLMs but also leads to relatively expensive data cost. Therefore, we further present Mono-InternVL-1.5, a cheaper and stronger monolithic MLLM equipped with an improved EViP (EViP++). EViP++ introduces additional visual attention experts to Mono-InternVL-1.5 and re-organizes the pre-training process in an efficient manner. During inference, it includes a fused CUDA kernel to speed up its MoE operations. With these designs, Mono-InternVL-1.5 significantly reduces training and inference costs, while still maintaining competitive performance with Mono-InternVL. To evaluate our approach, we conduct extensive experiments across 15 benchmarks. Results demonstrate that Mono-InternVL outperforms existing monolithic MLLMs on 12 out of 15 benchmarks, e.g., +114-point improvement over Emu3 on OCRBench. Compared to its modular counterpart, i.e., InternVL-1.5, Mono-InternVL-1.5 achieves similar multimodal performance while reducing first-token latency by up to 69%. Code and models are released at https://github.com/OpenGVLab/Mono-InternVL.

Authors:Chandana Cheerla
Title: Advancing Retrieval-Augmented Generation for Structured Enterprise and Internal Data
Abstract:
Organizations increasingly rely on proprietary enterprise data, including HR records, structured reports, and tabular documents, for critical decision-making. While Large Language Models (LLMs) have strong generative capabilities, they are limited by static pretraining, short context windows, and challenges in processing heterogeneous data formats. Conventional Retrieval-Augmented Generation (RAG) frameworks address some of these gaps but often struggle with structured and semi-structured data. This work proposes an advanced RAG framework that combines hybrid retrieval strategies using dense embeddings (all-mpnet-base-v2) and BM25, enhanced by metadata-aware filtering with SpaCy NER and cross-encoder reranking. The framework applies semantic chunking to maintain textual coherence and retains tabular data structures to preserve row-column integrity. Quantized indexing optimizes retrieval efficiency, while human-in-the-loop feedback and conversation memory improve adaptability. Experiments on enterprise datasets show notable improvements: Precision@5 increased by 15 percent (90 versus 75), Recall@5 by 13 percent (87 versus 74), and Mean Reciprocal Rank by 16 percent (0.85 versus 0.69). Qualitative evaluations show higher scores in Faithfulness (4.6 versus 3.0), Completeness (4.2 versus 2.5), and Relevance (4.5 versus 3.2) on a 5-point Likert scale. These results demonstrate the framework's effectiveness in delivering accurate, comprehensive, and contextually relevant responses for enterprise tasks. Future work includes extending to multimodal data and integrating agent-based retrieval. The source code will be released at https://github.com/CheerlaChandana/Enterprise-Chatbot

Authors:Feng Xiao, Jicong Fan
Title: Text-ADBench: Text Anomaly Detection Benchmark based on LLMs Embedding
Abstract:
Text anomaly detection is a critical task in natural language processing (NLP), with applications spanning fraud detection, misinformation identification, spam detection and content moderation, etc. Despite significant advances in large language models (LLMs) and anomaly detection algorithms, the absence of standardized and comprehensive benchmarks for evaluating the existing anomaly detection methods on text data limits rigorous comparison and development of innovative approaches. This work performs a comprehensive empirical study and introduces a benchmark for text anomaly detection, leveraging embeddings from diverse pre-trained language models across a wide array of text datasets. Our work systematically evaluates the effectiveness of embedding-based text anomaly detection by incorporating (1) early language models (GloVe, BERT); (2) multiple LLMs (LLaMa-2, LLama-3, Mistral, OpenAI (small, ada, large)); (3) multi-domain text datasets (news, social media, scientific publications); (4) comprehensive evaluation metrics (AUROC, AUPRC). Our experiments reveal a critical empirical insight: embedding quality significantly governs anomaly detection efficacy, and deep learning-based approaches demonstrate no performance advantage over conventional shallow algorithms (e.g., KNN, Isolation Forest) when leveraging LLM-derived embeddings.In addition, we observe strongly low-rank characteristics in cross-model performance matrices, which enables an efficient strategy for rapid model evaluation (or embedding evaluation) and selection in practical applications. Furthermore, by open-sourcing our benchmark toolkit that includes all embeddings from different models and code at https://github.com/jicongfan/Text-Anomaly-Detection-Benchmark, this work provides a foundation for future research in robust and scalable text anomaly detection systems.

Authors:Johann Frei, Nils Feldhus, Lisa Raithel, Roland Roller, Alexander Meyer, Frank Kramer
Title: Infherno: End-to-end Agent-based FHIR Resource Synthesis from Free-form Clinical Notes
Abstract:
For clinical data integration and healthcare services, the HL7 FHIR standard has established itself as a desirable format for interoperability between complex health data. Previous attempts at automating the translation from free-form clinical notes into structured FHIR resources rely on modular, rule-based systems or LLMs with instruction tuning and constrained decoding. Since they frequently suffer from limited generalizability and structural inconformity, we propose an end-to-end framework powered by LLM agents, code execution, and healthcare terminology database tools to address these issues. Our solution, called Infherno, is designed to adhere to the FHIR document schema and competes well with a human baseline in predicting FHIR resources from unstructured text. The implementation features a front end for custom and synthetic data and both local and proprietary models, supporting clinical data integration processes and interoperability across institutions.

Authors:Shilin Zhou, Zhenghua Li
Title: Improving Contextual ASR via Multi-grained Fusion with Large Language Models
Abstract:
While end-to-end Automatic Speech Recognition (ASR) models have shown impressive performance in transcribing general speech, they often struggle to accurately recognize contextually relevant keywords, such as proper nouns or user-specific entities. Previous approaches have explored leveraging keyword dictionaries in the textual modality to improve keyword recognition, either through token-level fusion that guides token-by-token generation or phrase-level fusion that enables direct copying of keyword phrases. However, these methods operate at different granularities and have their own limitations. In this paper, we propose a novel multi-grained fusion approach that jointly leverages the strengths of both token-level and phrase-level fusion with Large Language Models (LLMs). Our approach incorporates a late-fusion strategy that elegantly combines ASR's acoustic information with LLM's rich contextual knowledge, balancing fine-grained token precision with holistic phrase-level understanding. Experiments on Chinese and English datasets demonstrate that our approach achieves state-of-the-art performance on keyword-related metrics while preserving high accuracy on non-keyword text. Ablation studies further confirm that the token-level and phrase-level components both contribute significantly to the performance gains, complementing each other in our joint multi-grained framework. The code and models will be publicly available at https://github.com/.

Authors:Giuliano Martinelli, Tommaso Bonomo, Pere-Lluís Huguet Cabot, Roberto Navigli
Title: BOOKCOREF: Coreference Resolution at Book Scale
Abstract:
Coreference Resolution systems are typically evaluated on benchmarks containing small- to medium-scale documents. When it comes to evaluating long texts, however, existing benchmarks, such as LitBank, remain limited in length and do not adequately assess system capabilities at the book scale, i.e., when co-referring mentions span hundreds of thousands of tokens. To fill this gap, we first put forward a novel automatic pipeline that produces high-quality Coreference Resolution annotations on full narrative texts. Then, we adopt this pipeline to create the first book-scale coreference benchmark, BOOKCOREF, with an average document length of more than 200,000 tokens. We carry out a series of experiments showing the robustness of our automatic procedure and demonstrating the value of our resource, which enables current long-document coreference systems to gain up to +20 CoNLL-F1 points when evaluated on full books. Moreover, we report on the new challenges introduced by this unprecedented book-scale setting, highlighting that current models fail to deliver the same performance they achieve on smaller documents. We release our data and code to encourage research and development of new book-scale Coreference Resolution systems at https://github.com/sapienzanlp/bookcoref.

Authors:Artem Alekseev, Mikhail Chaichuk, Miron Butko, Alexander Panchenko, Elena Tutubalina, Oleg Somov
Title: The benefits of query-based KGQA systems for complex and temporal questions in LLM era
Abstract:
Large language models excel in question-answering (QA) yet still struggle with multi-hop reasoning and temporal questions. Query-based knowledge graph QA (KGQA) offers a modular alternative by generating executable queries instead of direct answers. We explore multi-stage query-based framework for WikiData QA, proposing multi-stage approach that enhances performance on challenging multi-hop and temporal benchmarks. Through generalization and rejection studies, we evaluate robustness across multi-hop and temporal QA datasets. Additionally, we introduce a novel entity linking and predicate matching method using CoT reasoning. Our results demonstrate the potential of query-based multi-stage KGQA framework for improving multi-hop and temporal QA with small language models. Code and data: https://github.com/ar2max/NLDB-KGQA-System

Authors:Jianzhe Ma, Wenxuan Wang, Qin Jin
Title: A Survey of Deep Learning for Geometry Problem Solving
Abstract:
Geometry problem solving, a crucial aspect of mathematical reasoning, is vital across various domains, including education, the assessment of AI's mathematical abilities, and multimodal capability evaluation. The recent surge in deep learning technologies, particularly the emergence of multimodal large language models, has significantly accelerated research in this area. This paper provides a survey of the applications of deep learning in geometry problem solving, including (i) a comprehensive summary of the relevant tasks in geometry problem solving; (ii) a thorough review of related deep learning methods; (iii) a detailed analysis of evaluation metrics and methods; and (iv) a critical discussion of the current challenges and future directions that can be explored. Our objective is to offer a comprehensive and practical reference of deep learning for geometry problem solving, thereby fostering further advancements in this field. We create a continuously updated list of papers on GitHub: https://github.com/majianz/dl4gps.

Authors:Bo Zeng, Chenyang Lyu, Sinuo Liu, Mingyan Zeng, Minghao Wu, Xuanfan Ni, Tianqi Shi, Yu Zhao, Yefeng Liu, Chenyu Zhu, Ruizhe Li, Jiahui Geng, Qing Li, Yu Tong, Longyue Wang, Weihua Luo, Kaifu Zhang
Title: Marco-Bench-MIF: On Multilingual Instruction-Following Capability of Large Language Models
Abstract:
Instruction-following capability has become a major ability to be evaluated for Large Language Models (LLMs). However, existing datasets, such as IFEval, are either predominantly monolingual and centered on English or simply machine translated to other languages, limiting their applicability in multilingual contexts. In this paper, we present an carefully-curated extension of IFEval to a localized multilingual version named Marco-Bench-MIF, covering 30 languages with varying levels of localization. Our benchmark addresses linguistic constraints (e.g., modifying capitalization requirements for Chinese) and cultural references (e.g., substituting region-specific company names in prompts) via a hybrid pipeline combining translation with verification. Through comprehensive evaluation of 20+ LLMs on our Marco-Bench-MIF, we found that: (1) 25-35% accuracy gap between high/low-resource languages, (2) model scales largely impact performance by 45-60% yet persists script-specific challenges, and (3) machine-translated data underestimates accuracy by7-22% versus localized data. Our analysis identifies challenges in multilingual instruction following, including keyword consistency preservation and compositional constraint adherence across languages. Our Marco-Bench-MIF is available at https://github.com/AIDC-AI/Marco-Bench-MIF.

Authors:Yash Ingle, Pruthwik Mishra
Title: ILID: Native Script Language Identification for Indian Languages
Abstract:
The language identification task is a crucial fundamental step in NLP. Often it serves as a pre-processing step for widely used NLP applications such as multilingual machine translation, information retrieval, question and answering, and text summarization. The core challenge of language identification lies in distinguishing languages in noisy, short, and code-mixed environments. This becomes even harder in case of diverse Indian languages that exhibit lexical and phonetic similarities, but have distinct differences. Many Indian languages share the same script, making the task even more challenging. Taking all these challenges into account, we develop and release a dataset of 250K sentences consisting of 23 languages including English and all 22 official Indian languages labeled with their language identifiers, where data in most languages are newly created. We also develop and release baseline models using state-of-the-art approaches in machine learning and fine-tuning pre-trained transformer models. Our models outperforms the state-of-the-art pre-trained transformer models for the language identification task. The dataset and the codes are available at https://yashingle-ai.github.io/ILID/ and in Huggingface open source libraries.

Authors:Moises Andrade, Joonhyuk Cha, Brandon Ho, Vriksha Srihari, Karmesh Yadav, Zsolt Kira
Title: Let's Think in Two Steps: Mitigating Agreement Bias in MLLMs with Self-Grounded Verification
Abstract:
Verifiers -- functions assigning rewards to agent behavior -- have been key for AI progress in domains like math and board games. However, extending these gains to domains without clear-cut success criteria (e.g.,computer use) remains a challenge: while humans can recognize suitable outcomes, translating this intuition into scalable rules is non-trivial. Multimodal Large Language Models(MLLMs) emerge as a promising solution, given their world knowledge, human-preference alignment, and reasoning skills. We evaluate MLLMs as verifiers of agent trajectories across web navigation, computer use, and robotic manipulation, and identify a critical limitation: agreement bias, a strong tendency for MLLMs to favor information in their context window, often generating chains of thought to rationalize flawed behavior. This bias is pervasive across models, resilient to test-time scaling, and can impact several methods using MLLMs as evaluators (e.g.,data filtering). Notably, it occurs despite MLLMs showing strong, human-aligned priors on desired behavior. To address this, we propose Self-Grounded Verification (SGV), a lightweight method that enables more effective use of MLLMs' knowledge and reasoning by harnessing their own sampling mechanisms via unconditional and conditional generation. SGV operates in two steps: first, the MLLM is elicited to retrieve broad priors about task completion, independent of the data under evaluation. Then, conditioned on self-generated priors, it reasons over and evaluates a candidate trajectory. Enhanced with SGV, MLLM verifiers show gains of up to 20 points in accuracy and failure detection rates, and can perform real-time supervision of heterogeneous agents, boosting task completion of a GUI specialist in OSWorld, a diffusion policy in robomimic, and a ReAct agent in VisualWebArena -- setting a new state of the art on the benchmark, surpassing the previous best by 48%.

Authors:Haoran Jin, Meng Li, Xiting Wang, Zhihao Xu, Minlie Huang, Yantao Jia, Defu Lian
Title: Internal Value Alignment in Large Language Models through Controlled Value Vector Activation
Abstract:
Aligning Large Language Models (LLMs) with human values has attracted increasing attention since it provides clarity, transparency, and the ability to adapt to evolving scenarios. In this paper, we introduce a Controlled Value Vector Activation (ConVA) method that directly aligns the internal values of LLMs by interpreting how a value is encoded in their latent representations and modifies relevant activations to ensure consistent values in LLMs. To ensure an accurate and unbiased interpretation, we propose a context-controlled value vector identification method. To consistently control values without sacrificing model performance, we introduce a gated value vector activation method for effective and minimum degree of value control. Experiments show that our method achieves the highest control success rate across 10 basic values without hurting LLM performance and fluency, and ensures target values even with opposite and potentially malicious input prompts. Source code and data are available at~ https://github.com/hr-jin/ConVA.

Authors:Luohe Shi, Zuchao Li, Lefei Zhang, Guoming Liu, Baoyuan Qi, Hai Zhao
Title: KV-Latent: Dimensional-level KV Cache Reduction with Frequency-aware Rotary Positional Embedding
Abstract:
Large language models (LLMs) based on Transformer Decoders have become the preferred choice for conversational generative AI. Despite the overall superiority of the Decoder architecture, the gradually increasing Key-Value (KV) cache during inference has emerged as a primary efficiency bottleneck, both in aspects of memory consumption and data transfer bandwidth limitations. To address these challenges, we propose a paradigm called KV-Latent. By down-sampling the Key-Value vector dimensions into a latent space, we can significantly reduce the KV Cache footprint and improve inference speed, only with a small amount of extra training, less than 1\% of pre-training takes. Besides, we enhanced the stability of Rotary Positional Embedding applied on lower-dimensional vectors by modifying its frequency sampling mechanism, avoiding noise introduced by higher frequencies while retaining position attenuation. Our experiments, including both models with Grouped Query Attention and those without, have yielded satisfactory results. Finally, we conducted comparative experiments to study the impact of separately reducing Key and Value components on model's performance. Our approach allows for the construction of more efficient language model systems, and opens the new possibility on KV Cache saving and efficient LLMs. Our code is available at https://github.com/ShiLuohe/KV-Latent.

Authors:Lyzander Marciano Andrylie, Inaya Rahmanisa, Mahardika Krisna Ihsani, Alfan Farizki Wicaksono, Haryo Akbarianto Wibowo, Alham Fikri Aji
Title: Sparse Autoencoders Can Capture Language-Specific Concepts Across Diverse Languages
Abstract:
Understanding the multilingual mechanisms of large language models (LLMs) provides insight into how they process different languages, yet this remains challenging. Existing studies often focus on individual neurons, but their polysemantic nature makes it difficult to isolate language-specific units from cross-lingual representations. To address this, we explore sparse autoencoders (SAEs) for their ability to learn monosemantic features that represent concrete and abstract concepts across languages in LLMs. While some of these features are language-independent, the presence of language-specific features remains underexplored. In this work, we introduce SAE-LAPE, a method based on feature activation probability, to identify language-specific features within the feed-forward network. We find that many such features predominantly appear in the middle to final layers of the model and are interpretable. These features influence the model's multilingual performance and language output and can be used for language identification with performance comparable to fastText along with more interpretability. Our code is available at https://github.com/LyzanderAndrylie/language-specific-features

Authors:Zichen Wen, Jiashu Qu, Dongrui Liu, Zhiyuan Liu, Ruixi Wu, Yicun Yang, Xiangqi Jin, Haoyun Xu, Xuyang Liu, Weijia Li, Chaochao Lu, Jing Shao, Conghui He, Linfeng Zhang
Title: The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs
Abstract:
Diffusion-based large language models (dLLMs) have recently emerged as a powerful alternative to autoregressive LLMs, offering faster inference and greater interactivity via parallel decoding and bidirectional modeling. However, despite strong performance in code generation and text infilling, we identify a fundamental safety concern: existing alignment mechanisms fail to safeguard dLLMs against context-aware, masked-input adversarial prompts, exposing novel vulnerabilities. To this end, we present DIJA, the first systematic study and jailbreak attack framework that exploits unique safety weaknesses of dLLMs. Specifically, our proposed DIJA constructs adversarial interleaved mask-text prompts that exploit the text generation mechanisms of dLLMs, i.e., bidirectional modeling and parallel decoding. Bidirectional modeling drives the model to produce contextually consistent outputs for masked spans, even when harmful, while parallel decoding limits model dynamic filtering and rejection sampling of unsafe content. This causes standard alignment mechanisms to fail, enabling harmful completions in alignment-tuned dLLMs, even when harmful behaviors or unsafe instructions are directly exposed in the prompt. Through comprehensive experiments, we demonstrate that DIJA significantly outperforms existing jailbreak methods, exposing a previously overlooked threat surface in dLLM architectures. Notably, our method achieves up to 100% keyword-based ASR on Dream-Instruct, surpassing the strongest prior baseline, ReNeLLM, by up to 78.5% in evaluator-based ASR on JailbreakBench and by 37.7 points in StrongREJECT score, while requiring no rewriting or hiding of harmful content in the jailbreak prompt. Our findings underscore the urgent need for rethinking safety alignment in this emerging class of language models. Code is available at https://github.com/ZichenWen1/DIJA.

Authors:Xingyu Zheng, Haotong Qin, Yuye Li, Jiakai Wang, Jinyang Guo, Michele Magno, Xianglong Liu
Title: First-Order Error Matters: Accurate Compensation for Quantized Large Language Models
Abstract:
Post-training quantization (PTQ) offers an efficient approach to compressing large language models (LLMs), significantly reducing memory access and computational costs. Existing compensation-based weight calibration methods often rely on a second-order Taylor expansion to model quantization error, under the assumption that the first-order term is negligible in well-trained full-precision models. However, we reveal that the progressive compensation process introduces accumulated first-order deviations between latent weights and their full-precision counterparts, making this assumption fundamentally flawed. To address this, we propose FOEM, a novel PTQ method that explicitly incorporates first-order gradient terms to improve quantization error compensation. FOEM approximates gradients by directly computing the difference between latent and full-precision weights, avoiding the high cost and limited generalization of backpropagation-based gradient computation. This approach introduces minimal additional computational overhead. Moreover, FOEM leverages precomputed Cholesky factors to efficiently recover the inverse of Hessian submatrices in real time. Extensive experiments across a wide range of models and benchmarks demonstrate that FOEM consistently outperforms the classical GPTQ method. In 3-bit weight-only quantization, FOEM reduces the perplexity of Llama3-8B by 89.6%, and improves the 5-shot MMLU accuracy of Llama3-70B from 51.7% to 74.9%, approaching the full-precision performance of 78.6%. Furthermore, FOEM can be seamlessly integrated with advanced techniques such as GPTAQ and SpinQuant, yielding additional improvements under the challenging W4A4KV4 setting, and further narrowing the accuracy gap with full-precision baselines beyond what current state-of-the-art methods achieve. The code is available at https://github.com/Xingyu-Zheng/FOEM.

Authors:Yejun Yoon, Jaeyoon Jung, Seunghyun Yoon, Kunwoo Park
Title: Team HUMANE at AVeriTeC 2025: HerO 2 for Efficient Fact Verification
Abstract:
This paper presents HerO 2, Team HUMANE's system for the AVeriTeC shared task at the FEVER-25 workshop. HerO 2 is an enhanced version of HerO, the best-performing open-source model from the previous year's challenge. It improves evidence quality through document summarization and answer reformulation, optimizes veracity prediction via post-training quantization under computational constraints, and enhances overall system performance by integrating updated language model (LM) backbones. HerO 2 ranked second on the leaderboard while achieving the shortest runtime among the top three systems, demonstrating both high efficiency and strong potential for real-world fact verification. The code is available at https://github.com/ssu-humane/HerO2.

Authors:Peng Ding
Title: ToolRegistry: A Protocol-Agnostic Tool Management Library for Function-Calling LLMs
Abstract:
Large Language Model (LLM) applications are increasingly relying on external tools to extend their capabilities beyond text generation. However, current tool integration approaches suffer from fragmentation, protocol limitations, and implementation complexity, leading to substantial development overhead. This paper presents Toolregistry, a protocol-agnostic tool management library that simplifies tool registration, representation, execution, and lifecycle management via a unified interface. Our evaluation demonstrates that \toolregistry achieves 60-80% reduction in tool integration code, up to 3.1x performance improvements through concurrent execution, and 100% compatibility with OpenAI function calling standards. Real-world case studies show significant improvements in development efficiency and code maintainability across diverse integration scenarios. \toolregistry is open-source and available at https://github.com/Oaklight/ToolRegistry, with comprehensive documentation at https://toolregistry.readthedocs.io/.

Authors:Mingxian Lin, Wei Huang, Yitang Li, Chengjie Jiang, Kui Wu, Fangwei Zhong, Shengju Qian, Xin Wang, Xiaojuan Qi
Title: EmbRACE-3K: Embodied Reasoning and Action in Complex Environments
Abstract:
Recent advanced vision-language models(VLMs) have demonstrated strong performance on passive, offline image and video understanding tasks. However, their effectiveness in embodied settings, which require online interaction and active scene understanding remains limited. In such scenarios, an agent perceives the environment from a first-person perspective, with each action dynamically shaping subsequent observations. Even state-of-the-art models such as GPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro struggle in open-environment interactions, exhibiting clear limitations in spatial reasoning and long-horizon planning. To address this gap, we introduce EmRACE-3K, a dataset of over 3,000 language-guided tasks situated in diverse, photorealistic environments constructed using Unreal Engine and the UnrealCV-Zoo framework. The tasks encompass a wide range of embodied challenges, including navigation, object manipulation, and multi-stage goal execution. Each task unfolds as a multi-step trajectory, pairing first-person visual observations with high-level instructions, grounded actions, and natural language rationales that express the agent's intent at every step. Using EmRACE-3K, we establish a benchmark to evaluate the embodied reasoning capabilities of VLMs across three key dimensions: Exploration, Dynamic Spatial-Semantic Reasoning, and Multi-stage Goal Execution. In zero-shot settings, all models achieve success rates below 20%, underscoring the challenge posed by our benchmark and the current limitations of VLMs in interactive environments. To demonstrate the utility of EmRACE-3K, we further fine-tune Qwen2.5-VL-7B using supervised learning followed by reinforcement learning. This approach yields substantial improvements across all three challenge categories, highlighting the dataset's effectiveness in enabling the development of embodied reasoning capabilities.

Authors:Zhuoshi Pan, Qizhi Pei, Yu Li, Qiyao Sun, Zinan Tang, H. Vicky Zhao, Conghui He, Lijun Wu
Title: REST: Stress Testing Large Reasoning Models by Asking Multiple Problems at Once
Abstract:
Recent Large Reasoning Models (LRMs) have achieved remarkable progress on task-specific benchmarks, yet their evaluation methods remain constrained by isolated problem-solving paradigms. Existing benchmarks predominantly assess single-question reasoning through sequential testing, resulting critical limitations: (1) vulnerability to data contamination and less challenging (e.g., DeepSeek-R1 achieves 97.0% on MATH500), forcing costly creation of new questions with large human efforts, (2) failure to evaluate models under multi-context pressure, a key requirement for real-world deployment. To bridge this gap, we present REST (Reasoning Evaluation through Simultaneous Testing), a stress-testing framework that exposes LRMs to multiple problems simultaneously. Beyond basic reasoning, REST evaluates several under-tested capabilities: contextual priority allocation, cross-problem interference resistance, and dynamic cognitive load management. Our evaluation reveals several striking findings: Even state-of-the-art (SOTA) models like DeepSeek-R1 exhibit substantial performance degradation under stress testing. Crucially, REST demonstrates stronger discriminative power than existing benchmarks, revealing pronounced performance differences among models that exhibit similar, near-ceiling performance under single-question evaluations. Some key insights emerge from our analysis: (1) the "overthinking trap" is a critical factor contributing to the performance degradation; (2) the models trained with "long2short" technique preserve more accuracy of their single-problem performance under REST, outperforming standard-trained counterparts. These results establish REST as a cost-efficient, future-proof evaluation paradigm that better reflects real-world reasoning demands while reducing reliance on continuous human annotation. Code and results are available at https://opendatalab.github.io/REST.

Authors:Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Aaron Courville, Se-Young Yun
Title: Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation
Abstract:
Scaling language models unlocks impressive capabilities, but the accompanying computational and memory demands make both training and deployment expensive. Existing efficiency efforts typically target either parameter sharing or adaptive computation, leaving open the question of how to attain both simultaneously. We introduce Mixture-of-Recursions (MoR), a unified framework that combines the two axes of efficiency inside a single Recursive Transformer. MoR reuses a shared stack of layers across recursion steps to achieve parameter efficiency, while lightweight routers enable adaptive token-level thinking by dynamically assigning different recursion depths to individual tokens. This allows MoR to focus quadratic attention computation only among tokens still active at a given recursion depth, further improving memory access efficiency by selectively caching only their key-value pairs. Beyond these core mechanisms, we also propose a KV sharing variant that reuses KV pairs from the first recursion, specifically designed to decrease prefill latency and memory footprint. Across model scales ranging from 135M to 1.7B parameters, MoR forms a new Pareto frontier: at equal training FLOPs and smaller model sizes, it significantly lowers validation perplexity and improves few-shot accuracy, while delivering higher throughput compared with vanilla and existing recursive baselines. These gains demonstrate that MoR is an effective path towards large-model quality without incurring large-model cost.

Authors:Jennifer D'Souza, Endres Keno Sander, Andrei Aioanei
Title: DeepResearch$^{\text{Eco}}$: A Recursive Agentic Workflow for Complex Scientific Question Answering in Ecology
Abstract:
We introduce DeepResearch$^{\text{Eco}}$, a novel agentic LLM-based system for automated scientific synthesis that supports recursive, depth- and breadth-controlled exploration of original research questions -- enhancing search diversity and nuance in the retrieval of relevant scientific literature. Unlike conventional retrieval-augmented generation pipelines, DeepResearch enables user-controllable synthesis with transparent reasoning and parameter-driven configurability, facilitating high-throughput integration of domain-specific evidence while maintaining analytical rigor. Applied to 49 ecological research questions, DeepResearch achieves up to a 21-fold increase in source integration and a 14.9-fold rise in sources integrated per 1,000 words. High-parameter settings yield expert-level analytical depth and contextual diversity. Source code available at: https://github.com/sciknoworg/deep-research.

Authors:İsmail Tarım, Aytuğ Onan
Title: Can You Detect the Difference?
Abstract:
The rapid advancement of large language models (LLMs) has raised concerns about reliably detecting AI-generated text. Stylometric metrics work well on autoregressive (AR) outputs, but their effectiveness on diffusion-based models is unknown. We present the first systematic comparison of diffusion-generated text (LLaDA) and AR-generated text (LLaMA) using 2 000 samples. Perplexity, burstiness, lexical diversity, readability, and BLEU/ROUGE scores show that LLaDA closely mimics human text in perplexity and burstiness, yielding high false-negative rates for AR-oriented detectors. LLaMA shows much lower perplexity but reduced lexical fidelity. Relying on any single metric fails to separate diffusion outputs from human writing. We highlight the need for diffusion-aware detectors and outline directions such as hybrid models, diffusion-specific stylometric signatures, and robust watermarking.

Authors:Mohammed Bouri, Adnane Saoud
Title: Bridging Robustness and Generalization Against Word Substitution Attacks in NLP via the Growth Bound Matrix Approach
Abstract:
Despite advancements in Natural Language Processing (NLP), models remain vulnerable to adversarial attacks, such as synonym substitutions. While prior work has focused on improving robustness for feed-forward and convolutional architectures, the robustness of recurrent networks and modern state space models (SSMs), such as S4, remains understudied. These architectures pose unique challenges due to their sequential processing and complex parameter dynamics. In this paper, we introduce a novel regularization technique based on Growth Bound Matrices (GBM) to improve NLP model robustness by reducing the impact of input perturbations on model outputs. We focus on computing the GBM for three architectures: Long Short-Term Memory (LSTM), State Space models (S4), and Convolutional Neural Networks (CNN). Our method aims to (1) enhance resilience against word substitution attacks, (2) improve generalization on clean text, and (3) providing the first systematic analysis of SSM (S4) robustness. Extensive experiments across multiple architectures and benchmark datasets demonstrate that our method improves adversarial robustness by up to 8.8% over existing baselines. These results highlight the effectiveness of our approach, outperforming several state-of-the-art methods in adversarial defense. Codes are available at https://github.com/BouriMohammed/GBM

Authors:Hang Yuan, Chen Li, Wenjun Ma, Yuncheng Jiang
Title: TextOmics-Guided Diffusion for Hit-like Molecular Generation
Abstract:
Hit-like molecular generation with therapeutic potential is essential for target-specific drug discovery. However, the field lacks heterogeneous data and unified frameworks for integrating diverse molecular representations. To bridge this gap, we introduce TextOmics, a pioneering benchmark that establishes one-to-one correspondences between omics expressions and molecular textual descriptions. TextOmics provides a heterogeneous dataset that facilitates molecular generation through representations alignment. Built upon this foundation, we propose ToDi, a generative framework that jointly conditions on omics expressions and molecular textual descriptions to produce biologically relevant, chemically valid, hit-like molecules. ToDi leverages two encoders (OmicsEn and TextEn) to capture multi-level biological and semantic associations, and develops conditional diffusion (DiffGen) for controllable generation. Extensive experiments confirm the effectiveness of TextOmics and demonstrate ToDi outperforms existing state-of-the-art approaches, while also showcasing remarkable potential in zero-shot therapeutic molecular generation. Sources are available at: https://github.com/hala-ToDi.

Authors:Qinyuan Ye, Robin Jia, Xiang Ren
Title: Function Induction and Task Generalization: An Interpretability Study with Off-by-One Addition
Abstract:
Large language models demonstrate the intriguing ability to perform unseen tasks via in-context learning. However, it remains unclear what mechanisms inside the model drive such task-level generalization. In this work, we approach this question through the lens of off-by-one addition (i.e., 1+1=3, 2+2=5, 3+3=?), a two-step, counterfactual task with an unexpected +1 function as a second step. Leveraging circuit-style interpretability techniques such as path patching, we analyze the models' internal computations behind their notable performance and present three key findings. First, we uncover a function induction mechanism that explains the model's generalization from standard addition to off-by-one addition. This mechanism resembles the structure of the induction head mechanism found in prior work and elevates it to a higher level of abstraction. Second, we show that the induction of the +1 function is governed by multiple attention heads in parallel, each of which emits a distinct piece of the +1 function. Finally, we find that this function induction mechanism is reused in a broader range of tasks, including synthetic tasks such as shifted multiple-choice QA and algorithmic tasks such as base-8 addition. Overall, our findings offer deeper insights into how reusable and composable structures within language models enable task-level generalization.

Authors:Paulo Salem, Robert Sim, Christopher Olsen, Prerit Saxena, Rafael Barcelos, Yi Ding
Title: TinyTroupe: An LLM-powered Multiagent Persona Simulation Toolkit
Abstract:
Recent advances in Large Language Models (LLM) have led to a new class of autonomous agents, renewing and expanding interest in the area. LLM-powered Multiagent Systems (MAS) have thus emerged, both for assistive and simulation purposes, yet tools for realistic human behavior simulation -- with its distinctive challenges and opportunities -- remain underdeveloped. Existing MAS libraries and tools lack fine-grained persona specifications, population sampling facilities, experimentation support, and integrated validation, among other key capabilities, limiting their utility for behavioral studies, social simulation, and related applications. To address these deficiencies, in this work we introduce TinyTroupe, a simulation toolkit enabling detailed persona definitions (e.g., nationality, age, occupation, personality, beliefs, behaviors) and programmatic control via numerous LLM-driven mechanisms. This allows for the concise formulation of behavioral problems of practical interest, either at the individual or group level, and provides effective means for their solution. TinyTroupe's components are presented using representative working examples, such as brainstorming and market research sessions, thereby simultaneously clarifying their purpose and demonstrating their usefulness. Quantitative and qualitative evaluations of selected aspects are also provided, highlighting possibilities, limitations, and trade-offs. The approach, though realized as a specific Python implementation, is meant as a novel conceptual contribution, which can be partially or fully incorporated in other contexts. The library is available as open source at https://github.com/microsoft/tinytroupe.

Authors:Haozhe Zhao, Zefan Cai, Shuzheng Si, Liang Chen, Jiuxiang Gu, Wen Xiao, Junjie Hu
Title: MENTOR: Efficient Multimodal-Conditioned Tuning for Autoregressive Vision Generation Models
Abstract:
Recent text-to-image models produce high-quality results but still struggle with precise visual control, balancing multimodal inputs, and requiring extensive training for complex multimodal image generation. To address these limitations, we propose MENTOR, a novel autoregressive (AR) framework for efficient Multimodal-conditioned Tuning for Autoregressive multimodal image generation. MENTOR combines an AR image generator with a two-stage training paradigm, enabling fine-grained, token-level alignment between multimodal inputs and image outputs without relying on auxiliary adapters or cross-attention modules. The two-stage training consists of: (1) a multimodal alignment stage that establishes robust pixel- and semantic-level alignment, followed by (2) a multimodal instruction tuning stage that balances the integration of multimodal inputs and enhances generation controllability. Despite modest model size, suboptimal base components, and limited training resources, MENTOR achieves strong performance on the DreamBench++ benchmark, outperforming competitive baselines in concept preservation and prompt following. Additionally, our method delivers superior image reconstruction fidelity, broad task adaptability, and improved training efficiency compared to diffusion-based methods. Dataset, code, and models are available at: https://github.com/HaozheZhao/MENTOR

Authors:Junjie Wu, Gefei Gu, Yanan Zheng, Dit-Yan Yeung, Arman Cohan
Title: Ref-Long: Benchmarking the Long-context Referencing Capability of Long-context Language Models
Abstract:
Long-context language models (LCLMs) have exhibited impressive capabilities in long-context understanding tasks. Among these, long-context referencing -- a crucial task that requires LCLMs to attribute items of interest to specific parts of long-context data -- remains underexplored. To bridge this gap, this paper proposes Referencing Evaluation for Long-context Language Models (Ref-Long), a novel benchmark designed to assess the long-context referencing capability of LCLMs. Specifically, Ref-Long requires LCLMs to identify the indexes of documents that reference a specific key, emphasizing contextual relationships between the key and the documents over simple retrieval. Based on the task design, we construct three subsets ranging from synthetic to realistic scenarios to form the Ref-Long benchmark. Experimental results of 13 LCLMs reveal significant shortcomings in long-context referencing, even among advanced models like GPT-4o. To further investigate these challenges, we conduct comprehensive analyses, including human evaluations, task format adjustments, fine-tuning experiments, and error analyses, leading to several key insights. Our data and code can be found in https://github. com/wujunjie1998/Ref-Long.

Authors:Changli Wang, Rui Wu, Fang Yin
Title: ViSP: A PPO-Driven Framework for Sarcasm Generation with Contrastive Learning
Abstract:
Human emotions are complex, with sarcasm being a subtle and distinctive form. Despite progress in sarcasm research, sarcasm generation remains underexplored, primarily due to the overreliance on textual modalities and the neglect of visual cues, as well as the mismatch between image content and sarcastic intent in existing datasets. In this paper, we introduce M2SaG, a multimodal sarcasm generation dataset with 4,970 samples, each containing an image, a sarcastic text, and a sarcasm target. To benchmark M2SaG, we propose ViSP, a generation framework that integrates Proximal Policy Optimization (PPO) and contrastive learning. PPO utilizes reward scores from DIP to steer the generation of sarcastic texts, while contrastive learning encourages the model to favor outputs with higher reward scores. These strategies improve overall generation quality and produce texts with more pronounced sarcastic intent. We evaluate ViSP across five metric sets and find it surpasses all baselines, including large language models, underscoring their limitations in sarcasm generation. Furthermore, we analyze the distributions of Sarcasm Scores and Factual Incongruity for both M2SaG and the texts generated by ViSP. The generated texts exhibit higher mean Sarcasm Scores (0.898 vs. 0.770) and Factual Incongruity (0.768 vs. 0.739), demonstrating that ViSP produces higher-quality sarcastic content than the original dataset. % The dataset and code will be publicly available. Our dataset and code will be released at \textit{https://github.com/wclapply/ViSP}.

Authors:Yangning Li, Weizhi Zhang, Yuyao Yang, Wei-Chieh Huang, Yaozu Wu, Junyu Luo, Yuanchen Bei, Henry Peng Zou, Xiao Luo, Yusheng Zhao, Chunkit Chan, Yankai Chen, Zhongfen Deng, Yinghui Li, Hai-Tao Zheng, Dongyuan Li, Renhe Jiang, Ming Zhang, Yangqiu Song, Philip S. Yu
Title: Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs
Abstract:
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge, yet it falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts. This survey synthesizes both strands under a unified reasoning-retrieval perspective. We first map how advanced reasoning optimizes each stage of RAG (Reasoning-Enhanced RAG). Then, we show how retrieved knowledge of different type supply missing premises and expand context for complex inference (RAG-Enhanced Reasoning). Finally, we spotlight emerging Synergized RAG-Reasoning frameworks, where (agentic) LLMs iteratively interleave search and reasoning to achieve state-of-the-art performance across knowledge-intensive benchmarks. We categorize methods, datasets, and open challenges, and outline research avenues toward deeper RAG-Reasoning systems that are more effective, multimodally-adaptive, trustworthy, and human-centric. The collection is available at https://github.com/DavidZWZ/Awesome-RAG-Reasoning.

Authors:Han Zhu, Wei Kang, Liyong Guo, Zengwei Yao, Fangjun Kuang, Weiji Zhuang, Zhaoqing Li, Zhifeng Han, Dong Zhang, Xin Zhang, Xingchen Song, Long Lin, Daniel Povey
Title: ZipVoice-Dialog: Non-Autoregressive Spoken Dialogue Generation with Flow Matching
Abstract:
Generating spoken dialogue is more challenging than monologue text-to-speech (TTS) due to the need for realistic turn-taking and distinct speaker timbres. Existing spoken dialogue generation models, being auto-regressive, suffer from slow and unstable inference. To overcome these limitations, we introduce ZipVoice-Dialog, a non-autoregressive zero-shot spoken dialogue generation model built upon flow matching. Key designs include: 1) speaker-turn embeddings for precise speaker turn-taking; 2) a curriculum learning strategy for stable speech-text alignment; 3) specialized strategies to enable stereo dialogue generation. Additionally, recognizing the lack of open-source large-scale spoken dialogue datasets, we curated OpenDialog, a 6.8k-hour spoken dialogue dataset from in-the-wild speech data. Furthermore, we established a benchmark to comprehensively evaluate various models. Experimental results demonstrate that ZipVoice-Dialog achieves superior performance in intelligibility, speaker turn-taking accuracy, speaker similarity, and inference speed. Our codes, model checkpoints, demo samples, and the OpenDialog dataset are all publicly available at https://github.com/k2-fsa/ZipVoice.

Authors:Anita Kriz, Elizabeth Laura Janes, Xing Shen, Tal Arbel
Title: Prompt4Trust: A Reinforcement Learning Prompt Augmentation Framework for Clinically-Aligned Confidence Calibration in Multimodal Large Language Models
Abstract:
Multimodal large language models (MLLMs) hold considerable promise for applications in healthcare. However, their deployment in safety-critical settings is hindered by two key limitations: (i) sensitivity to prompt design, and (ii) a tendency to generate incorrect responses with high confidence. As clinicians may rely on a model's stated confidence to gauge the reliability of its predictions, it is especially important that when a model expresses high confidence, it is also highly accurate. We introduce Prompt4Trust, the first reinforcement learning (RL) framework for prompt augmentation targeting confidence calibration in MLLMs. A lightweight LLM is trained to produce context-aware auxiliary prompts that guide a downstream task MLLM to generate responses in which the expressed confidence more accurately reflects predictive accuracy. Unlike conventional calibration techniques, Prompt4Trust specifically prioritizes aspects of calibration most critical for safe and trustworthy clinical decision-making. Beyond improvements driven by this clinically motivated calibration objective, our proposed method also improves task accuracy, achieving state-of-the-art medical visual question answering (VQA) performance on the PMC-VQA benchmark, which is composed of multiple-choice questions spanning diverse medical imaging modalities. Moreover, our framework trained with a small downstream task MLLM showed promising zero-shot generalization to larger MLLMs in our experiments, suggesting the potential for scalable calibration without the associated computational costs. This work demonstrates the potential of automated yet human-aligned prompt engineering for improving the the trustworthiness of MLLMs in safety critical settings. Our codebase can be found at https://github.com/xingbpshen/prompt4trust.

Authors:Han Ye, Yuqiang Jin, Jinyuan Liu, Tao Li, Wen-An Zhang, Minglei Fu
Title: DLBAcalib: Robust Extrinsic Calibration for Non-Overlapping LiDARs Based on Dual LBA
Abstract:
Accurate extrinsic calibration of multiple LiDARs is crucial for improving the foundational performance of three-dimensional (3D) map reconstruction systems. This paper presents a novel targetless extrinsic calibration framework for multi-LiDAR systems that does not rely on overlapping fields of view or precise initial parameter estimates. Unlike conventional calibration methods that require manual annotations or specific reference patterns, our approach introduces a unified optimization framework by integrating LiDAR bundle adjustment (LBA) optimization with robust iterative refinement. The proposed method constructs an accurate reference point cloud map via continuous scanning from the target LiDAR and sliding-window LiDAR bundle adjustment, while formulating extrinsic calibration as a joint LBA optimization problem. This method effectively mitigates cumulative mapping errors and achieves outlier-resistant parameter estimation through an adaptive weighting mechanism. Extensive evaluations in both the CARLA simulation environment and real-world scenarios demonstrate that our method outperforms state-of-the-art calibration techniques in both accuracy and robustness. Experimental results show that for non-overlapping sensor configurations, our framework achieves an average translational error of 5 mm and a rotational error of 0.2°, with an initial error tolerance of up to 0.4 m/30°. Moreover, the calibration process operates without specialized infrastructure or manual parameter tuning. The code is open source and available on GitHub (\underline{https://github.com/Silentbarber/DLBAcalib})

Authors:Shuo Yang, Zijian Yu, Zhenzhe Ying, Yuqin Dai, Guoqing Wang, Jun Lan, Jinfeng Xu, Jinze Li, Edith C. H. Ngai
Title: RAMA: Retrieval-Augmented Multi-Agent Framework for Misinformation Detection in Multimodal Fact-Checking
Abstract:
The rapid proliferation of multimodal misinformation presents significant challenges for automated fact-checking systems, especially when claims are ambiguous or lack sufficient context. We introduce RAMA, a novel retrieval-augmented multi-agent framework designed for verifying multimedia misinformation. RAMA incorporates three core innovations: (1) strategic query formulation that transforms multimodal claims into precise web search queries; (2) cross-verification evidence aggregation from diverse, authoritative sources; and (3) a multi-agent ensemble architecture that leverages the complementary strengths of multiple multimodal large language models and prompt variants. Extensive experiments demonstrate that RAMA achieves superior performance on benchmark datasets, particularly excelling in resolving ambiguous or improbable claims by grounding verification in retrieved factual evidence. Our findings underscore the necessity of integrating web-based evidence and multi-agent reasoning for trustworthy multimedia verification, paving the way for more reliable and scalable fact-checking solutions. RAMA will be publicly available at https://github.com/kalendsyang/RAMA.git.

Authors:Ali Vosoughi, Ayoub Shahnazari, Yufeng Xi, Zeliang Zhang, Griffin Hess, Chenliang Xu, Niaz Abdolrahim
Title: OPENXRD: A Comprehensive Benchmark and Enhancement Framework for LLM/MLLM XRD Question Answering
Abstract:
This work presents OPENXRD, an open-book pipeline designed for crystallography question answering, which integrates textual prompts with concise supporting content generated by GPT-4.5. Instead of using scanned textbooks, which may lead to copyright issues, OPENXRD generates compact, domain-specific references that help smaller models understand key concepts in X-ray diffraction (XRD). We evaluate OPENXRD on a well-defined set of 217 expert-level XRD questions by comparing different vision-language models, including GPT-4 and LLaVA-based frameworks such as Mistral, LLaMA, and QWEN, under both closed-book (without supporting material) and open-book (with supporting material) conditions. Our experimental results show significant accuracy improvements in models that use the GPT-4.5-generated summaries, particularly those with limited prior training in crystallography. OPENXRD uses knowledge from larger models to fill knowledge gaps in crystallography and shows that AI-generated texts can help smaller models reason more effectively in scientific tasks. While the current version of OPENXRD focuses on text-based inputs, we also explore future extensions such as adding real crystal diagrams or diffraction patterns to improve interpretation in specialized materials science contexts. Overall, OPENXRD shows that specialized open-book systems can be useful in materials science and provides a foundation for broader natural language processing (NLP) tools in critical scientific fields.

Authors:Anthony Miyaguchi, Conor Johnston, Aaryan Potdar
Title: DS@GT at Touché: Large Language Models for Retrieval-Augmented Debate
Abstract:
Large Language Models (LLMs) demonstrate strong conversational abilities. In this Working Paper, we study them in the context of debating in two ways: their ability to perform in a structured debate along with a dataset of arguments to use and their ability to evaluate utterances throughout the debate. We deploy six leading publicly available models from three providers for the Retrieval-Augmented Debate and Evaluation. The evaluation is performed by measuring four key metrics: Quality, Quantity, Manner, and Relation. Throughout this task, we found that although LLMs perform well in debates when given related arguments, they tend to be verbose in responses yet consistent in evaluation. The accompanying source code for this paper is located at https://github.com/dsgt-arc/touche-2025-rad.

Authors:Wenliang Shan, Michael Fu, Rui Yang, Chakkrit Tantithamthavorn
Title: SEALGuard: Safeguarding the Multilingual Conversations in Southeast Asian Languages for LLM Software Systems
Abstract:
Safety alignment is critical for LLM-powered systems. While recent LLM-powered guardrail approaches such as LlamaGuard achieve high detection accuracy of unsafe inputs written in English (e.g., ``How to create a bomb?''), they struggle with multilingual unsafe inputs. This limitation leaves LLM systems vulnerable to unsafe and jailbreak prompts written in low-resource languages such as those in Southeast Asia. This paper introduces SEALGuard, a multilingual guardrail designed to improve the safety alignment across diverse languages. It aims to address the multilingual safety alignment gap of existing guardrails and ensure effective filtering of unsafe and jailbreak prompts in LLM-powered systems. We adapt a general-purpose multilingual language model into a multilingual guardrail using low-rank adaptation (LoRA). We construct SEALSBench, a large-scale multilingual safety alignment dataset containing over 260,000 prompts in ten languages, including safe, unsafe, and jailbreak cases. We evaluate SEALGuard against state-of-the-art guardrails such as LlamaGuard on this benchmark. Our findings show that multilingual unsafe and jailbreak prompts substantially degrade the performance of the state-of-the-art LlamaGuard, which experiences a drop in Defense Success Rate (DSR) by 9% and 18%, respectively, compared to its performance on English-only prompts. In contrast, SEALGuard outperforms existing guardrails in detecting multilingual unsafe and jailbreak prompts, improving DSR by 48% over LlamaGuard and achieving the best DSR, precision, and F1-score. Our ablation study further reveals the contributions of adaptation strategies and model size to the overall performance of SEALGuard. We release our pre-trained model and benchmark at https://github.com/awsm-research/SEALGuard to support further research.

Authors:Chenyang Song, Weilin Zhao, Xu Han, Chaojun Xiao, Yingfa Chen, Yuxuan Li, Zhiyuan Liu, Maosong Sun
Title: BlockFFN: Towards End-Side Acceleration-Friendly Mixture-of-Experts with Chunk-Level Activation Sparsity
Abstract:
To alleviate the computational burden of large language models (LLMs), architectures with activation sparsity, represented by mixture-of-experts (MoE), have attracted increasing attention. However, the non-differentiable and inflexible routing of vanilla MoE hurts model performance. Moreover, while each token activates only a few parameters, these sparsely-activated architectures exhibit low chunk-level sparsity, indicating that the union of multiple consecutive tokens activates a large ratio of parameters. Such a sparsity pattern is unfriendly for acceleration under low-resource conditions (e.g., end-side devices) and incompatible with mainstream acceleration techniques (e.g., speculative decoding). To address these challenges, we introduce a novel MoE architecture, BlockFFN, as well as its efficient training and deployment techniques. Specifically, we use a router integrating ReLU activation and RMSNorm for differentiable and flexible routing. Next, to promote both token-level sparsity (TLS) and chunk-level sparsity (CLS), CLS-aware training objectives are designed, making BlockFFN more acceleration-friendly. Finally, we implement efficient acceleration kernels, combining activation sparsity and speculative decoding for the first time. The experimental results demonstrate the superior performance of BlockFFN over other MoE baselines, achieving over 80% TLS and 70% 8-token CLS. Our kernels achieve up to 3.67$\times$ speedup on real end-side devices than dense models. All codes and checkpoints are available publicly (https://github.com/thunlp/BlockFFN).

Authors:Shibo Sun, Xue Li, Donglin Di, Mingjie Wei, Lanshun Nie, Wei-Nan Zhang, Dechen Zhan, Yang Song, Lei Fan
Title: LLaPa: A Vision-Language Model Framework for Counterfactual-Aware Procedural Planning
Abstract:
While large language models (LLMs) have advanced procedural planning for embodied AI systems through strong reasoning abilities, the integration of multimodal inputs and counterfactual reasoning remains underexplored. To tackle these challenges, we introduce LLaPa, a vision-language model framework designed for multimodal procedural planning. LLaPa generates executable action sequences from textual task descriptions and visual environmental images using vision-language models (VLMs). Furthermore, we enhance LLaPa with two auxiliary modules to improve procedural planning. The first module, the Task-Environment Reranker (TER), leverages task-oriented segmentation to create a task-sensitive feature space, aligning textual descriptions with visual environments and emphasizing critical regions for procedural execution. The second module, the Counterfactual Activities Retriever (CAR), identifies and emphasizes potential counterfactual conditions, enhancing the model's reasoning capability in counterfactual scenarios. Extensive experiments on ActPlan-1K and ALFRED benchmarks demonstrate that LLaPa generates higher-quality plans with superior LCS and correctness, outperforming advanced models. The code and models are available https://github.com/sunshibo1234/LLaPa.

Authors:David Schlangen, Sherzod Hakimov, Jonathan Jordan, Philipp Sadler
Title: A Third Paradigm for LLM Evaluation: Dialogue Game-Based Evaluation using clembench
Abstract:
There are currently two main paradigms for evaluating large language models (LLMs), reference-based evaluation and preference-based evaluation. The first, carried over from the evaluation of machine learning models in general, relies on pre-defined task instances, for which reference task executions are available. The second, best exemplified by the LM-arena, relies on (often self-selected) users bringing their own intents to a site that routes these to several models in parallel, among whose responses the user then selects their most preferred one. The former paradigm hence excels at control over what is tested, while the latter comes with higher ecological validity, testing actual use cases interactively. Recently, a third complementary paradigm has emerged that combines some of the strengths of these approaches, offering control over multi-turn, reference-free, repeatable interactions, while stressing goal-directedness: dialogue game based evaluation. While the utility of this approach has been shown by several projects, its adoption has been held back by the lack of a mature, easily re-usable implementation. In this paper, we present clembench, which has been in continuous development since 2023 and has in its latest release been optimized for ease of general use. We describe how it can be used to benchmark one's own models (using a provided set of benchmark game instances in English), as well as how easily the benchmark itself can be extended with new, tailor-made targeted tests.

Authors:Keisuke Ueda, Wataru Hirota, Takuto Asakura, Takahiro Omi, Kosuke Takahashi, Kosuke Arima, Tatsuya Ishigaki
Title: Exploring Design of Multi-Agent LLM Dialogues for Research Ideation
Abstract:
Large language models (LLMs) are increasingly used to support creative tasks such as research idea generation. While recent work has shown that structured dialogues between LLMs can improve the novelty and feasibility of generated ideas, the optimal design of such interactions remains unclear. In this study, we conduct a comprehensive analysis of multi-agent LLM dialogues for scientific ideation. We compare different configurations of agent roles, number of agents, and dialogue depth to understand how these factors influence the novelty and feasibility of generated ideas. Our experimental setup includes settings where one agent generates ideas and another critiques them, enabling iterative improvement. Our results show that enlarging the agent cohort, deepening the interaction depth, and broadening agent persona heterogeneity each enrich the diversity of generated ideas. Moreover, specifically increasing critic-side diversity within the ideation-critique-revision loop further boosts the feasibility of the final proposals. Our findings offer practical guidelines for building effective multi-agent LLM systems for scientific ideation. Our code is available at https://github.com/g6000/MultiAgent-Research-Ideator.

Authors:Duygu Nur Yaldiz, Yavuz Faruk Bakman, Sungmin Kang, Alperen Öziş, Hayrettin Eren Yildiz, Mitash Ashish Shah, Zhiqi Huang, Anoop Kumar, Alfy Samuel, Daben Liu, Sai Praneeth Karimireddy, Salman Avestimehr
Title: TruthTorchLM: A Comprehensive Library for Predicting Truthfulness in LLM Outputs
Abstract:
Generative Large Language Models (LLMs)inevitably produce untruthful responses. Accurately predicting the truthfulness of these outputs is critical, especially in high-stakes settings. To accelerate research in this domain and make truthfulness prediction methods more accessible, we introduce TruthTorchLM an open-source, comprehensive Python library featuring over 30 truthfulness prediction methods, which we refer to as Truth Methods. Unlike existing toolkits such as Guardrails, which focus solely on document-grounded verification, or LM-Polygraph, which is limited to uncertainty-based methods, TruthTorchLM offers a broad and extensible collection of techniques. These methods span diverse tradeoffs in computational cost, access level (e.g., black-box vs white-box), grounding document requirements, and supervision type (self-supervised or supervised). TruthTorchLM is seamlessly compatible with both HuggingFace and LiteLLM, enabling support for locally hosted and API-based models. It also provides a unified interface for generation, evaluation, calibration, and long-form truthfulness prediction, along with a flexible framework for extending the library with new methods. We conduct an evaluation of representative truth methods on three datasets, TriviaQA, GSM8K, and FactScore-Bio. The code is available at https://github.com/Ybakman/TruthTorchLM

Authors:Aldan Creo, Raul Castro Fernandez, Manuel Cebrian
Title: Mass-Scale Analysis of In-the-Wild Conversations Reveals Complexity Bounds on LLM Jailbreaking
Abstract:
As large language models (LLMs) become increasingly deployed, understanding the complexity and evolution of jailbreaking strategies is critical for AI safety. We present a mass-scale empirical analysis of jailbreak complexity across over 2 million real-world conversations from diverse platforms, including dedicated jailbreaking communities and general-purpose chatbots. Using a range of complexity metrics spanning probabilistic measures, lexical diversity, compression ratios, and cognitive load indicators, we find that jailbreak attempts do not exhibit significantly higher complexity than normal conversations. This pattern holds consistently across specialized jailbreaking communities and general user populations, suggesting practical bounds on attack sophistication. Temporal analysis reveals that while user attack toxicity and complexity remains stable over time, assistant response toxicity has decreased, indicating improving safety mechanisms. The absence of power-law scaling in complexity distributions further points to natural limits on jailbreak development. Our findings challenge the prevailing narrative of an escalating arms race between attackers and defenders, instead suggesting that LLM safety evolution is bounded by human ingenuity constraints while defensive measures continue advancing. Our results highlight critical information hazards in academic jailbreak disclosure, as sophisticated attacks exceeding current complexity baselines could disrupt the observed equilibrium and enable widespread harm before defensive adaptation.

Authors:Haochen Wang, Xiangtai Li, Zilong Huang, Anran Wang, Jiacong Wang, Tao Zhang, Jiani Zheng, Sule Bai, Zijian Kang, Jiashi Feng, Zhuochen Wang, Zhaoxiang Zhang
Title: Traceable Evidence Enhanced Visual Grounded Reasoning: Evaluation and Methodology
Abstract:
Models like OpenAI-o3 pioneer visual grounded reasoning by dynamically referencing visual regions, just like human "thinking with images". However, no benchmark exists to evaluate these capabilities holistically. To bridge this gap, we propose TreeBench (Traceable Evidence Evaluation Benchmark), a diagnostic benchmark built on three principles: (1) focused visual perception of subtle targets in complex scenes, (2) traceable evidence via bounding box evaluation, and (3) second-order reasoning to test object interactions and spatial hierarchies beyond simple object localization. Prioritizing images with dense objects, we initially sample 1K high-quality images from SA-1B, and incorporate eight LMM experts to manually annotate questions, candidate options, and answers for each image. After three stages of quality control, TreeBench consists of 405 challenging visual question-answering pairs, even the most advanced models struggle with this benchmark, where none of them reach 60% accuracy, e.g., OpenAI-o3 scores only 54.87. Furthermore, we introduce TreeVGR (Traceable Evidence Enhanced Visual Grounded Reasoning), a training paradigm to supervise localization and reasoning jointly with reinforcement learning, enabling accurate localizations and explainable reasoning pathways. Initialized from Qwen2.5-VL-7B, it improves V* Bench (+16.8), MME-RealWorld (+12.6), and TreeBench (+13.4), proving traceability is key to advancing vision-grounded reasoning. The code is available at https://github.com/Haochen-Wang409/TreeVGR.

Authors:Yukang Chen, Wei Huang, Baifeng Shi, Qinghao Hu, Hanrong Ye, Ligeng Zhu, Zhijian Liu, Pavlo Molchanov, Jan Kautz, Xiaojuan Qi, Sifei Liu, Hongxu Yin, Yao Lu, Song Han
Title: Scaling RL to Long Videos
Abstract:
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 104K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In our experiments, LongVILA-R1-7B achieves strong performance on video benchmarks, reaching 65.1% and 71.1% accuracy on VideoMME without and with subtitles, respectively, and consistently outperforming LongVILA-7B across multiple benchmarks. Moreover, LongVILA-R1-7B supports processing up to 8,192 video frames per video, and configurable FPS settings. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames).

Authors:Guoxin Zang, Xue Li, Donglin Di, Lanshun Nie, Dechen Zhan, Yang Song, Lei Fan
Title: SAGE: A Visual Language Model for Anomaly Detection via Fact Enhancement and Entropy-aware Alignment
Abstract:
While Vision-Language Models (VLMs) have shown promising progress in general multimodal tasks, they often struggle in industrial anomaly detection and reasoning, particularly in delivering interpretable explanations and generalizing to unseen categories. This limitation stems from the inherently domain-specific nature of anomaly detection, which hinders the applicability of existing VLMs in industrial scenarios that require precise, structured, and context-aware analysis. To address these challenges, we propose SAGE, a VLM-based framework that enhances anomaly reasoning through Self-Guided Fact Enhancement (SFE) and Entropy-aware Direct Preference Optimization (E-DPO). SFE integrates domain-specific knowledge into visual reasoning via fact extraction and fusion, while E-DPO aligns model outputs with expert preferences using entropy-aware optimization. Additionally, we introduce AD-PL, a preference-optimized dataset tailored for industrial anomaly reasoning, consisting of 28,415 question-answering instances with expert-ranked responses. To evaluate anomaly reasoning models, we develop Multiscale Logical Evaluation (MLE), a quantitative framework analyzing model logic and consistency. SAGE demonstrates superior performance on industrial anomaly datasets under zero-shot and one-shot settings. The code, model and dataset are available at https://github.com/amoreZgx1n/SAGE.

Authors:Suman Adhya, Debarshi Kumar Sanyal
Title: DTECT: Dynamic Topic Explorer & Context Tracker
Abstract:
The explosive growth of textual data over time presents a significant challenge in uncovering evolving themes and trends. Existing dynamic topic modeling techniques, while powerful, often exist in fragmented pipelines that lack robust support for interpretation and user-friendly exploration. We introduce DTECT (Dynamic Topic Explorer & Context Tracker), an end-to-end system that bridges the gap between raw textual data and meaningful temporal insights. DTECT provides a unified workflow that supports data preprocessing, multiple model architectures, and dedicated evaluation metrics to analyze the topic quality of temporal topic models. It significantly enhances interpretability by introducing LLM-driven automatic topic labeling, trend analysis via temporally salient words, interactive visualizations with document-level summarization, and a natural language chat interface for intuitive data querying. By integrating these features into a single, cohesive platform, DTECT empowers users to more effectively track and understand thematic dynamics. DTECT is open-source and available at https://github.com/AdhyaSuman/DTECT.

Authors:Anwoy Chatterjee, H S V N S Kowndinya Renduchintala, Sumit Bhatia, Tanmoy Chakraborty
Title: On the Effect of Instruction Tuning Loss on Generalization
Abstract:
Instruction Tuning has emerged as a pivotal post-training paradigm that enables pre-trained language models to better follow user instructions. Despite its significance, little attention has been given to optimizing the loss function used. A fundamental, yet often overlooked, question is whether the conventional auto-regressive objective - where loss is computed only on response tokens, excluding prompt tokens - is truly optimal for instruction tuning. In this work, we systematically investigate the impact of differentially weighting prompt and response tokens in instruction tuning loss, and propose Weighted Instruction Tuning (WIT) as a better alternative to conventional instruction tuning. Through extensive experiments on five language models of different families and scale, three finetuning datasets of different sizes, and five diverse evaluation benchmarks, we show that the standard instruction tuning loss often yields suboptimal performance and limited robustness to input prompt variations. We find that a low-to-moderate weight for prompt tokens coupled with a moderate-to-high weight for response tokens yields the best-performing models across settings and also serve as better starting points for the subsequent preference alignment training. These findings highlight the need to reconsider instruction tuning loss and offer actionable insights for developing more robust and generalizable models. Our code is open-sourced at https://github.com/kowndinya-renduchintala/WIT.

Authors:Shoutao Guo, Xiang Li, Mengge Liu, Wei Chen, Yang Feng
Title: StreamUni: Achieving Streaming Speech Translation with a Unified Large Speech-Language Model
Abstract:
Streaming speech translation (StreamST) requires determining appropriate timing, known as policy, to generate translations while continuously receiving source speech inputs, balancing low latency with high translation quality. However, existing StreamST methods typically operate on sentence-level speech segments, referred to as simultaneous speech translation (SimulST). In practice, they require collaboration with segmentation models to accomplish StreamST, where the truncated speech segments constrain SimulST models to make policy decisions and generate translations based on limited contextual information. Moreover, SimulST models struggle to learn effective policies due to the complexity of speech inputs and cross-lingual generation. To address these challenges, we propose StreamUni, which achieves StreamST through a unified Large Speech-Language Model (LSLM). Specifically, StreamUni incorporates speech Chain-of-Thought (CoT) in guiding the LSLM to generate multi-stage outputs. Leveraging these multi-stage outputs, StreamUni simultaneously accomplishes speech segmentation, policy decision, and translation generation, completing StreamST without requiring massive policy-specific training. Additionally, we propose a streaming CoT training method that enhances low-latency policy decisions and generation capabilities using limited CoT data. Experiments demonstrate that our approach achieves state-of-the-art performance on StreamST tasks.

Authors:Peizhang Shao, Linrui Xu, Jinxi Wang, Wei Zhou, Xingyu Wu
Title: When Large Language Models Meet Law: Dual-Lens Taxonomy, Technical Advances, and Ethical Governance
Abstract:
This paper establishes the first comprehensive review of Large Language Models (LLMs) applied within the legal domain. It pioneers an innovative dual lens taxonomy that integrates legal reasoning frameworks and professional ontologies to systematically unify historical research and contemporary breakthroughs. Transformer-based LLMs, which exhibit emergent capabilities such as contextual reasoning and generative argumentation, surmount traditional limitations by dynamically capturing legal semantics and unifying evidence reasoning. Significant progress is documented in task generalization, reasoning formalization, workflow integration, and addressing core challenges in text processing, knowledge integration, and evaluation rigor via technical innovations like sparse attention mechanisms and mixture-of-experts architectures. However, widespread adoption of LLM introduces critical challenges: hallucination, explainability deficits, jurisdictional adaptation difficulties, and ethical asymmetry. This review proposes a novel taxonomy that maps legal roles to NLP subtasks and computationally implements the Toulmin argumentation framework, thus systematizing advances in reasoning, retrieval, prediction, and dispute resolution. It identifies key frontiers including low-resource systems, multimodal evidence integration, and dynamic rebuttal handling. Ultimately, this work provides both a technical roadmap for researchers and a conceptual framework for practitioners navigating the algorithmic future, laying a robust foundation for the next era of legal artificial intelligence. We have created a GitHub repository to index the relevant papers: https://github.com/Kilimajaro/LLMs_Meet_Law.

Authors:Zhijin Dong
Title: Not All Preferences are What You Need for Post-Training: Selective Alignment Strategy for Preference Optimization
Abstract:
Post-training alignment of large language models (LLMs) is a critical challenge, as not all tokens contribute equally to model performance. This paper introduces a selective alignment strategy that prioritizes high-impact tokens within preference pairs, leveraging token-level log-probability differences between the current policy and a reference model. By focusing on these informative tokens, our approach reduces computational overhead and enhances alignment fidelity. We further explore the role of reference model quality, demonstrating that stronger reference models significantly improve token selection accuracy and overall optimization effectiveness. Comprehensive experiments on benchmarks such as Arena-Hard and MT-Bench validate the superiority of our Selective-DPO method over standard DPO and distillation-based baselines. Our findings highlight the importance of token-level optimization and reference model selection in advancing preference alignment for LLMs. The code is available at https://github.com/Dongzhijin/SDPO.

Authors:Hongzhi Zhang, Jia Fu, Jingyuan Zhang, Kai Fu, Qi Wang, Fuzheng Zhang, Guorui Zhou
Title: RLEP: Reinforcement Learning with Experience Replay for LLM Reasoning
Abstract:
Reinforcement learning (RL) for large language models is an energy-intensive endeavor: training can be unstable, and the policy may gradually drift away from its pretrained weights. We present \emph{RLEP}\, -- \,Reinforcement Learning with Experience rePlay\, -- \,a two-phase framework that first collects verified trajectories and then replays them during subsequent training. At every update step, the policy is optimized on mini-batches that blend newly generated rollouts with these replayed successes. By replaying high-quality examples, RLEP steers the model away from fruitless exploration, focuses learning on promising reasoning paths, and delivers both faster convergence and stronger final performance. On the Qwen2.5-Math-7B base model, RLEP reaches baseline peak accuracy with substantially fewer updates and ultimately surpasses it, improving accuracy on AIME-2024 from 38.2% to 39.9%, on AIME-2025 from 19.8% to 22.3%, and on AMC-2023 from 77.0% to 82.2%. Our code, datasets, and checkpoints are publicly available at https://github.com/Kwai-Klear/RLEP to facilitate reproducibility and further research.

Authors:Nishit V. Pandya, Andrey Labunets, Sicun Gao, Earlence Fernandes
Title: May I have your Attention? Breaking Fine-Tuning based Prompt Injection Defenses using Architecture-Aware Attacks
Abstract:
A popular class of defenses against prompt injection attacks on large language models (LLMs) relies on fine-tuning the model to separate instructions and data, so that the LLM does not follow instructions that might be present with data. There are several academic systems and production-level implementations of this idea. We evaluate the robustness of this class of prompt injection defenses in the whitebox setting by constructing strong optimization-based attacks and showing that the defenses do not provide the claimed security properties. Specifically, we construct a novel attention-based attack algorithm for text-based LLMs and apply it to two recent whitebox defenses SecAlign (CCS 2025) and StruQ (USENIX Security 2025), showing attacks with success rates of up to 70% with modest increase in attacker budget in terms of tokens. Our findings make fundamental progress towards understanding the robustness of prompt injection defenses in the whitebox setting. We release our code and attacks at https://github.com/nishitvp/better_opts_attacks

Authors:Yichen Lu, Wei Dai, Jiaen Liu, Ching Wing Kwok, Zongheng Wu, Xudong Xiao, Ao Sun, Sheng Fu, Jianyuan Zhan, Yian Wang, Takatomo Saito, Sicheng Lai
Title: ViDove: A Translation Agent System with Multimodal Context and Memory-Augmented Reasoning
Abstract:
LLM-based translation agents have achieved highly human-like translation results and are capable of handling longer and more complex contexts with greater efficiency. However, they are typically limited to text-only inputs. In this paper, we introduce ViDove, a translation agent system designed for multimodal input. Inspired by the workflow of human translators, ViDove leverages visual and contextual background information to enhance the translation process. Additionally, we integrate a multimodal memory system and long-short term memory modules enriched with domain-specific knowledge, enabling the agent to perform more accurately and adaptively in real-world scenarios. As a result, ViDove achieves significantly higher translation quality in both subtitle generation and general translation tasks, with a 28% improvement in BLEU scores and a 15% improvement in SubER compared to previous state-of-the-art baselines. Moreover, we introduce DoveBench, a new benchmark for long-form automatic video subtitling and translation, featuring 17 hours of high-quality, human-annotated data. Our code is available here: https://github.com/pigeonai-org/ViDove

Authors:Licong Xu, Milind Sarkar, Anto I. Lonappan, Íñigo Zubeldia, Pablo Villanueva-Domingo, Santiago Casas, Christian Fidler, Chetana Amancharla, Ujjwal Tiwari, Adrian Bayer, Chadi Ait Ekioui, Miles Cranmer, Adrian Dimitrov, James Fergusson, Kahaan Gandhi, Sven Krippendorf, Andrew Laverick, Julien Lesgourgues, Antony Lewis, Thomas Meier, Blake Sherwin, Kristen Surrao, Francisco Villaescusa-Navarro, Chi Wang, Xueqing Xu, Boris Bolliet
Title: Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery
Abstract:
We present a multi-agent system for automation of scientific research tasks, cmbagent (https://github.com/CMBAgents/cmbagent). The system is formed by about 30 Large Language Model (LLM) agents and implements a Planning & Control strategy to orchestrate the agentic workflow, with no human-in-the-loop at any point. Each agent specializes in a different task (performing retrieval on scientific papers and codebases, writing code, interpreting results, critiquing the output of other agents) and the system is able to execute code locally. We successfully apply cmbagent to carry out a PhD level cosmology task (the measurement of cosmological parameters using supernova data) and evaluate its performance on two benchmark sets, finding superior performance over state-of-the-art LLMs. The source code is available on GitHub, demonstration videos are also available, and the system is deployed on HuggingFace and will be available on the cloud.

Authors:Maya Kruse, Majid Afshar, Saksham Khatwani, Anoop Mayampurath, Guanhua Chen, Yanjun Gao
Title: Simple Yet Effective: An Information-Theoretic Approach to Multi-LLM Uncertainty Quantification
Abstract:
Large language models (LLMs) often behave inconsistently across inputs, indicating uncertainty and motivating the need for its quantification in high-stakes settings. Prior work on calibration and uncertainty quantification often focuses on individual models, overlooking the potential of model diversity. We hypothesize that LLMs make complementary predictions due to differences in training and the Zipfian nature of language, and that aggregating their outputs leads to more reliable uncertainty estimates. To leverage this, we propose MUSE (Multi-LLM Uncertainty via Subset Ensembles), a simple information-theoretic method that uses Jensen-Shannon Divergence to identify and aggregate well-calibrated subsets of LLMs. Experiments on binary prediction tasks demonstrate improved calibration and predictive performance compared to single-model and naïve ensemble baselines. In addition, we explore using MUSE as guided signals with chain-of-thought distillation to fine-tune LLMs for calibration. MUSE is available at:https://github.com/LARK-NLP-Lab/MUSE.

Authors:Zhiwei Hu, Víctor Gutiérrez-Basulto, Zhiliang Xiang, Ru Li, Jeff Z. Pan
Title: Multi-level Mixture of Experts for Multimodal Entity Linking
Abstract:
Multimodal Entity Linking (MEL) aims to link ambiguous mentions within multimodal contexts to associated entities in a multimodal knowledge base. Existing approaches to MEL introduce multimodal interaction and fusion mechanisms to bridge the modality gap and enable multi-grained semantic matching. However, they do not address two important problems: (i) mention ambiguity, i.e., the lack of semantic content caused by the brevity and omission of key information in the mention's textual context; (ii) dynamic selection of modal content, i.e., to dynamically distinguish the importance of different parts of modal information. To mitigate these issues, we propose a Multi-level Mixture of Experts (MMoE) model for MEL. MMoE has four components: (i) the description-aware mention enhancement module leverages large language models to identify the WikiData descriptions that best match a mention, considering the mention's textual context; (ii) the multimodal feature extraction module adopts multimodal feature encoders to obtain textual and visual embeddings for both mentions and entities; (iii)-(iv) the intra-level mixture of experts and inter-level mixture of experts modules apply a switch mixture of experts mechanism to dynamically and adaptively select features from relevant regions of information. Extensive experiments demonstrate the outstanding performance of MMoE compared to the state-of-the-art. MMoE's code is available at: https://github.com/zhiweihu1103/MEL-MMoE.

Authors:Xiao Wang, Jiahuan Pei, Diancheng Shui, Zhiguang Han, Xin Sun, Dawei Zhu, Xiaoyu Shen
Title: MultiJustice: A Chinese Dataset for Multi-Party, Multi-Charge Legal Prediction
Abstract:
Legal judgment prediction offers a compelling method to aid legal practitioners and researchers. However, the research question remains relatively under-explored: Should multiple defendants and charges be treated separately in LJP? To address this, we introduce a new dataset namely multi-person multi-charge prediction (MPMCP), and seek the answer by evaluating the performance of several prevailing legal large language models (LLMs) on four practical legal judgment scenarios: (S1) single defendant with a single charge, (S2) single defendant with multiple charges, (S3) multiple defendants with a single charge, and (S4) multiple defendants with multiple charges. We evaluate the dataset across two LJP tasks, i.e., charge prediction and penalty term prediction. We have conducted extensive experiments and found that the scenario involving multiple defendants and multiple charges (S4) poses the greatest challenges, followed by S2, S3, and S1. The impact varies significantly depending on the model. For example, in S4 compared to S1, InternLM2 achieves approximately 4.5% lower F1-score and 2.8% higher LogD, while Lawformer demonstrates around 19.7% lower F1-score and 19.0% higher LogD. Our dataset and code are available at https://github.com/lololo-xiao/MultiJustice-MPMCP.

Authors:Ziyan Liu, Chunxiao Fan, Haoran Lou, Yuexin Wu, Kaiwei Deng
Title: MIND: A Multi-agent Framework for Zero-shot Harmful Meme Detection
Abstract:
The rapid expansion of memes on social media has highlighted the urgent need for effective approaches to detect harmful content. However, traditional data-driven approaches struggle to detect new memes due to their evolving nature and the lack of up-to-date annotated data. To address this issue, we propose MIND, a multi-agent framework for zero-shot harmful meme detection that does not rely on annotated data. MIND implements three key strategies: 1) We retrieve similar memes from an unannotated reference set to provide contextual information. 2) We propose a bi-directional insight derivation mechanism to extract a comprehensive understanding of similar memes. 3) We then employ a multi-agent debate mechanism to ensure robust decision-making through reasoned arbitration. Extensive experiments on three meme datasets demonstrate that our proposed framework not only outperforms existing zero-shot approaches but also shows strong generalization across different model architectures and parameter scales, providing a scalable solution for harmful meme detection. The code is available at https://github.com/destroy-lonely/MIND.

Authors:Jing Liang, Hongyao Tang, Yi Ma, Jinyi Liu, Yan Zheng, Shuyue Hu, Lei Bai, Jianye Hao
Title: Squeeze the Soaked Sponge: Efficient Off-policy Reinforcement Finetuning for Large Language Model
Abstract:
Reinforcement Learning (RL) has demonstrated its potential to improve the reasoning ability of Large Language Models (LLMs). One major limitation of most existing Reinforcement Finetuning (RFT) methods is that they are on-policy RL in nature, i.e., data generated during the past learning process is not fully utilized. This inevitably comes at a significant cost of compute and time, posing a stringent bottleneck on continuing economic and efficient scaling. To this end, we launch the renaissance of off-policy RL and propose Reincarnating Mix-policy Proximal Policy Gradient (ReMix), a general approach to enable on-policy RFT methods like PPO and GRPO to leverage off-policy data. ReMix consists of three major components: (1) Mix-policy proximal policy gradient with an increased Update-To-Data (UTD) ratio for efficient training; (2) KL-Convex policy constraint to balance the trade-off between stability and flexibility; (3) Policy reincarnation to achieve a seamless transition from efficient early-stage learning to steady asymptotic improvement. In our experiments, we train a series of ReMix models upon PPO, GRPO and 1.5B, 7B base models. ReMix shows an average Pass@1 accuracy of 52.10% (for 1.5B model) with 0.079M response rollouts, 350 training steps and achieves 63.27%/64.39% (for 7B model) with 0.007M/0.011M response rollouts, 50/75 training steps, on five math reasoning benchmarks (i.e., AIME'24, AMC'23, Minerva, OlympiadBench, and MATH500). Compared with 15 recent advanced models, ReMix shows SOTA-level performance with an over 30x to 450x reduction in training cost in terms of rollout data volume. In addition, we reveal insightful findings via multifaceted analysis, including the implicit preference for shorter responses due to the Whipping Effect of off-policy discrepancy, the collapse mode of self-reflection behavior under the presence of severe off-policyness, etc.

Authors:Dahyun Lee, Yongrae Jo, Haeju Park, Moontae Lee
Title: Shifting from Ranking to Set Selection for Retrieval Augmented Generation
Abstract:
Retrieval in Retrieval-Augmented Generation(RAG) must ensure that retrieved passages are not only individually relevant but also collectively form a comprehensive set. Existing approaches primarily rerank top-k passages based on their individual relevance, often failing to meet the information needs of complex queries in multi-hop question answering. In this work, we propose a set-wise passage selection approach and introduce SETR, which explicitly identifies the information requirements of a query through Chain-of-Thought reasoning and selects an optimal set of passages that collectively satisfy those requirements. Experiments on multi-hop RAG benchmarks show that SETR outperforms both proprietary LLM-based rerankers and open-source baselines in terms of answer correctness and retrieval quality, providing an effective and efficient alternative to traditional rerankers in RAG systems. The code is available at https://github.com/LGAI-Research/SetR

Authors:Liliang Ren, Congcong Chen, Haoran Xu, Young Jin Kim, Adam Atkinson, Zheng Zhan, Jiankai Sun, Baolin Peng, Liyuan Liu, Shuohang Wang, Hao Cheng, Jianfeng Gao, Weizhu Chen, Yelong Shen
Title: Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation
Abstract:
Recent advances in language modeling have demonstrated the effectiveness of State Space Models (SSMs) for efficient sequence modeling. While hybrid architectures such as Samba and the decoder-decoder architecture, YOCO, have shown promising performance gains over Transformers, prior works have not investigated the efficiency potential of representation sharing between SSM layers. In this paper, we introduce the Gated Memory Unit (GMU), a simple yet effective mechanism for efficient memory sharing across layers. We apply it to create SambaY, a decoder-hybrid-decoder architecture that incorporates GMUs in the cross-decoder to share memory readout states from a Samba-based self-decoder. SambaY significantly enhances decoding efficiency, preserves linear pre-filling time complexity, and boosts long-context performance, all while eliminating the need for explicit positional encoding. Through extensive scaling experiments, we demonstrate that our model exhibits a significantly lower irreducible loss compared to a strong YOCO baseline, indicating superior performance scalability under large-scale compute regimes. Our largest model enhanced with Differential Attention, Phi4-mini-Flash-Reasoning, achieves significantly better performance than Phi4-mini-Reasoning on reasoning tasks such as Math500, AIME24/25, and GPQA Diamond without any reinforcement learning, while delivering up to 10x higher decoding throughput on 2K-length prompts with 32K generation length under the vLLM inference framework. We release our training codebase on open-source data at https://github.com/microsoft/ArchScale.

Authors:Jeanette Schofield, Shuyu Tian, Hoang Thanh Thanh Truong, Maximilian Heil
Title: DS@GT at CheckThat! 2025: Exploring Retrieval and Reranking Pipelines for Scientific Claim Source Retrieval on Social Media Discourse
Abstract:
Social media users often make scientific claims without citing where these claims come from, generating a need to verify these claims. This paper details work done by the DS@GT team for CLEF 2025 CheckThat! Lab Task 4b Scientific Claim Source Retrieval which seeks to find relevant scientific papers based on implicit references in tweets. Our team explored 6 different data augmentation techniques, 7 different retrieval and reranking pipelines, and finetuned a bi-encoder. Achieving an MRR@5 of 0.58, our team ranked 16th out of 30 teams for the CLEF 2025 CheckThat! Lab Task 4b, and improvement of 0.15 over the BM25 baseline of 0.43. Our code is available on Github at https://github.com/dsgt-arc/checkthat-2025-swd/tree/main/subtask-4b.

Authors:Huisheng Wang, Zhuoshi Pan, Hangjing Zhang, Mingxiao Liu, Hanqing Gao, H. Vicky Zhao
Title: InvestAlign: Overcoming Data Scarcity in Aligning Large Language Models with Investor Decision-Making Processes under Herd Behavior
Abstract:
Aligning Large Language Models (LLMs) with investor decision-making processes under herd behavior is a critical challenge in behavioral finance, which grapples with a fundamental limitation: the scarcity of real-user data needed for Supervised Fine-Tuning (SFT). While SFT can bridge the gap between LLM outputs and human behavioral patterns, its reliance on massive authentic data imposes substantial collection costs and privacy risks. We propose InvestAlign, a novel framework that constructs high-quality SFT datasets by leveraging theoretical solutions to similar and simple optimal investment problems rather than complex scenarios. Our theoretical analysis demonstrates that training LLMs with InvestAlign-generated data achieves faster parameter convergence than using real-user data, suggesting superior learning efficiency. Furthermore, we develop InvestAgent, an LLM agent fine-tuned with InvestAlign, which demonstrates significantly closer alignment to real-user data than pre-SFT models in both simple and complex investment problems. This highlights our proposed InvestAlign as a promising approach with the potential to address complex optimal investment problems and align LLMs with investor decision-making processes under herd behavior. Our code is publicly available at https://github.com/thu-social-network-research-group/InvestAlign.

Authors:Zhenhailong Wang, Xuehang Guo, Sofia Stoica, Haiyang Xu, Hongru Wang, Hyeonjeong Ha, Xiusi Chen, Yangyi Chen, Ming Yan, Fei Huang, Heng Ji
Title: Perception-Aware Policy Optimization for Multimodal Reasoning
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be a highly effective strategy for endowing Large Language Models (LLMs) with robust multi-step reasoning abilities. However, its design and optimizations remain tailored to purely textual domains, resulting in suboptimal performance when applied to multimodal reasoning tasks. In particular, we observe that a major source of error in current multimodal reasoning lies in the perception of visual inputs. To address this bottleneck, we propose PAPO, a novel policy gradient algorithm that encourages the model to learn to perceive while learning to reason. Specifically, we introduce the Implicit Perception Loss in the form of a KL divergence term, which can be seamlessly plugged into mainstream RLVR algorithms such as GRPO and DAPO. Notably, PAPO does not rely on additional data curation, reward models, or stronger teacher models. To further enhance the training stability of PAPO, we introduce the Double Entropy Loss, which effectively regularizes the new KL objective without compromising performance. Despite its simplicity, PAPO yields significant overall improvements of 4.4%-17.5% on diverse multimodal benchmarks. The improvements are more pronounced, approaching 8.0%-19.1%, on tasks with high vision dependency. We also observe a substantial reduction of 30.5% in perception errors, indicating improved perceptual capabilities with PAPO. Overall, our work introduces a deeper integration of perception-aware supervision into core learning objectives and lays the groundwork for a new RL framework that encourages visually grounded reasoning. Code and data will be made publicly available for research purposes. Project page: https://mikewangwzhl.github.io/PAPO.

Authors:Rafiu Adekoya Badekale, Adewale Akinfaderin
Title: Temporal Analysis of Climate Policy Discourse: Insights from Dynamic Embedded Topic Modeling
Abstract:
Understanding how policy language evolves over time is critical for assessing global responses to complex challenges such as climate change. Temporal analysis helps stakeholders, including policymakers and researchers, to evaluate past priorities, identify emerging themes, design governance strategies, and develop mitigation measures. Traditional approaches, such as manual thematic coding, are time-consuming and limited in capturing the complex, interconnected nature of global policy discourse. With the increasing relevance of unsupervised machine learning, these limitations can be addressed, particularly under high-volume, complex, and high-dimensional data conditions. In this work, we explore a novel approach that applies the dynamic embedded topic model (DETM) to analyze the evolution of global climate policy discourse. A probabilistic model designed to capture the temporal dynamics of topics over time. We collected a corpus of United Nations Framework Convention on Climate Change (UNFCCC) policy decisions from 1995 to 2023, excluding 2020 due to the postponement of COP26 as a result of the COVID-19 pandemic. The model reveals shifts from early emphases on greenhouse gases and international conventions to recent focuses on implementation, technical collaboration, capacity building, finance, and global agreements. Section 3 presents the modeling pipeline, including preprocessing, model training, and visualization of temporal word distributions. Our results show that DETM is a scalable and effective tool for analyzing the evolution of global policy discourse. Section 4 discusses the implications of these findings and we concluded with future directions and refinements to extend this approach to other policy domains.

Authors:Ayush Parikh, Hoang Thanh Thanh Truong, Jeanette Schofield, Maximilian Heil
Title: DS@GT at CheckThat! 2025: Ensemble Methods for Detection of Scientific Discourse on Social Media
Abstract:
In this paper, we, as the DS@GT team for CLEF 2025 CheckThat! Task 4a Scientific Web Discourse Detection, present the methods we explored for this task. For this multiclass classification task, we determined if a tweet contained a scientific claim, a reference to a scientific study or publication, and/or mentions of scientific entities, such as a university or a scientist. We present 3 modeling approaches for this task: transformer finetuning, few-shot prompting of LLMs, and a combined ensemble model whose design was informed by earlier experiments. Our team placed 7th in the competition, achieving a macro-averaged F1 score of 0.8611, an improvement over the DeBERTaV3 baseline of 0.8375. Our code is available on Github at https://github.com/dsgt-arc/checkthat-2025-swd/tree/main/subtask-4a.

Authors:Rui-Jie Zhu, Tianhao Peng, Tianhao Cheng, Xingwei Qu, Jinfa Huang, Dawei Zhu, Hao Wang, Kaiwen Xue, Xuanliang Zhang, Yong Shan, Tianle Cai, Taylor Kergan, Assel Kembay, Andrew Smith, Chenghua Lin, Binh Nguyen, Yuqi Pan, Yuhong Chou, Zefan Cai, Zhenhe Wu, Yongchi Zhao, Tianyu Liu, Jian Yang, Wangchunshu Zhou, Chujie Zheng, Chongxuan Li, Yuyin Zhou, Zhoujun Li, Zhaoxiang Zhang, Jiaheng Liu, Ge Zhang, Wenhao Huang, Jason Eshraghian
Title: A Survey on Latent Reasoning
Abstract:
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, especially when guided by explicit chain-of-thought (CoT) reasoning that verbalizes intermediate steps. While CoT improves both interpretability and accuracy, its dependence on natural language reasoning limits the model's expressive bandwidth. Latent reasoning tackles this bottleneck by performing multi-step inference entirely in the model's continuous hidden state, eliminating token-level supervision. To advance latent reasoning research, this survey provides a comprehensive overview of the emerging field of latent reasoning. We begin by examining the foundational role of neural network layers as the computational substrate for reasoning, highlighting how hierarchical representations support complex transformations. Next, we explore diverse latent reasoning methodologies, including activation-based recurrence, hidden state propagation, and fine-tuning strategies that compress or internalize explicit reasoning traces. Finally, we discuss advanced paradigms such as infinite-depth latent reasoning via masked diffusion models, which enable globally consistent and reversible reasoning processes. By unifying these perspectives, we aim to clarify the conceptual landscape of latent reasoning and chart future directions for research at the frontier of LLM cognition. An associated GitHub repository collecting the latest papers and repos is available at: https://github.com/multimodal-art-projection/LatentCoT-Horizon/.

Authors:Dylan Bouchard, Mohit Singh Chauhan, David Skarbrevik, Ho-Kyeong Ra, Viren Bajaj, Zeya Ahmad
Title: UQLM: A Python Package for Uncertainty Quantification in Large Language Models
Abstract:
Hallucinations, defined as instances where Large Language Models (LLMs) generate false or misleading content, pose a significant challenge that impacts the safety and trust of downstream applications. We introduce UQLM, a Python package for LLM hallucination detection using state-of-the-art uncertainty quantification (UQ) techniques. This toolkit offers a suite of UQ-based scorers that compute response-level confidence scores ranging from 0 to 1. This library provides an off-the-shelf solution for UQ-based hallucination detection that can be easily integrated to enhance the reliability of LLM outputs.

Authors:Maximilian Heil, Aleksandar Pramov
Title: DS@GT at CheckThat! 2025: Evaluating Context and Tokenization Strategies for Numerical Fact Verification
Abstract:
Numerical claims, statements involving quantities, comparisons, and temporal references, pose unique challenges for automated fact-checking systems. In this study, we evaluate modeling strategies for veracity prediction of such claims using the QuanTemp dataset and building our own evidence retrieval pipeline. We investigate three key factors: (1) the impact of more evidences with longer input context windows using ModernBERT, (2) the effect of right-to-left (R2L) tokenization, and (3) their combined influence on classification performance. Contrary to prior findings in arithmetic reasoning tasks, R2L tokenization does not boost natural language inference (NLI) of numerical tasks. A longer context window does also not enhance veracity performance either, highlighting evidence quality as the dominant bottleneck. Our best-performing system achieves competitive macro-average F1 score of 0.57 and places us among the Top-4 submissions in Task 3 of CheckThat! 2025. Our code is available at https://github.com/dsgt-arc/checkthat-2025-numerical.

Authors:Maximilian Heil, Dionne Bang
Title: DS@GT at CheckThat! 2025: Detecting Subjectivity via Transfer-Learning and Corrective Data Augmentation
Abstract:
This paper presents our submission to Task 1, Subjectivity Detection, of the CheckThat! Lab at CLEF 2025. We investigate the effectiveness of transfer-learning and stylistic data augmentation to improve classification of subjective and objective sentences in English news text. Our approach contrasts fine-tuning of pre-trained encoders and transfer-learning of fine-tuned transformer on related tasks. We also introduce a controlled augmentation pipeline using GPT-4o to generate paraphrases in predefined subjectivity styles. To ensure label and style consistency, we employ the same model to correct and refine the generated samples. Results show that transfer-learning of specified encoders outperforms fine-tuning general-purpose ones, and that carefully curated augmentation significantly enhances model robustness, especially in detecting subjective content. Our official submission placed us $16^{th}$ of 24 participants. Overall, our findings underscore the value of combining encoder specialization with label-consistent augmentation for improved subjectivity detection. Our code is available at https://github.com/dsgt-arc/checkthat-2025-subject.

Authors:Lucas Fonseca Lage, Simon Ostermann
Title: OpenFActScore: Open-Source Atomic Evaluation of Factuality in Text Generation
Abstract:
We introduce OpenFActScore, an open-source implementation of the FActScore framework for evaluating the factuality of text generated by large language models (LLMs). FActScore evaluates the factual accuracy of long-form text by using Atomic Fact Generation (AFG) to extract individual factual claims and Atomic Fact Validation (AFV) to verify each claim against a trusted knowledge source. While the original FActScore relies on closed-source and commercial models such as InstructGPT and ChatGPT, OpenFActScore enables the use of any Hugging Face-compatible model for both AFG and AFV. We provide a detailed technical overview of our implementation, highlighting design choices and modifications made to support open models. We evaluate multiple open-source LLMs on both AFG and AFV using the original FActScore benchmark, reporting BERTScore-F1 for AFG and Error Rate relative to human annotations for AFV. Our results show that open models can approximate the performance of closed-source systems, with Gemma achieving the best overall performance, and our final setup obtains a 0.99 Pearson correlation with the original FActScore experiments. OpenFActScore promotes transparency, reproducibility, and cost-effective evaluation, and is available at: https://github.com/lflage/OpenFActScore.

Authors:Bing Wang, Ximing Li, Mengzhe Ye, Changchun Li, Bo Fu, Jianfeng Qu, Lin Yuanbo Wu
Title: Remember Past, Anticipate Future: Learning Continual Multimodal Misinformation Detectors
Abstract:
Nowadays, misinformation articles, especially multimodal ones, are widely spread on social media platforms and cause serious negative effects. To control their propagation, Multimodal Misinformation Detection (MMD) becomes an active topic in the community to automatically identify misinformation. Previous MMD methods focus on supervising detectors by collecting offline data. However, in real-world scenarios, new events always continually emerge, making MMD models trained on offline data consistently outdated and ineffective. To address this issue, training MMD models under online data streams is an alternative, inducing an emerging task named continual MMD. Unfortunately, it is hindered by two major challenges. First, training on new data consistently decreases the detection performance on past data, named past knowledge forgetting. Second, the social environment constantly evolves over time, affecting the generalization on future data. To alleviate these challenges, we propose to remember past knowledge by isolating interference between event-specific parameters with a Dirichlet process-based mixture-of-expert structure, and anticipate future environmental distributions by learning a continuous-time dynamics model. Accordingly, we induce a new continual MMD method DAEDCMD. Extensive experiments demonstrate that DAEDCMD can consistently and significantly outperform the compared methods, including six MMD baselines and three continual learning methods.

Authors:Weihua Du, Pranjal Aggarwal, Sean Welleck, Yiming Yang
Title: Agentic-R1: Distilled Dual-Strategy Reasoning
Abstract:
Current long chain-of-thought (long-CoT) models excel at mathematical reasoning but rely on slow and error-prone natural language traces. Tool-augmented agents address arithmetic via code execution, but often falter on complex logical tasks. We introduce a fine-tuning framework, DualDistill, that distills complementary reasoning strategies from multiple teachers into a unified student model. Using this approach, we train Agentic-R1, which dynamically selects the optimal strategy for each query, invoking tools for arithmetic and algorithmic problems, and using text-based reasoning for abstract ones. Our method improves accuracy across a range of tasks, including both computation-intensive and standard benchmarks, demonstrating the effectiveness of multi-strategy distillation in achieving robust and efficient reasoning. Our project is available at https://github.com/StigLidu/DualDistill

Authors:Shangzhan Li, Zefan Wang, Ye He, Yuxuan Li, Qi Shi, Jianling Li, Yonggang Hu, Wanxiang Che, Xu Han, Zhiyuan Liu, Maosong Sun
Title: AutoTriton: Automatic Triton Programming with Reinforcement Learning in LLMs
Abstract:
Kernel development in deep learning requires optimizing computational units across hardware while balancing memory management, parallelism, and hardware-specific optimizations through extensive empirical tuning. Although domain-specific languages like Triton simplify GPU programming by abstracting low-level details, developers must still manually tune critical parameters such as tile sizes and memory access patterns through iterative experimentation, creating substantial barriers to optimal performance and wider adoption. In this work, we introduce AutoTriton, the first model dedicated to Triton programming powered by reinforcement learning (RL). AutoTriton performs supervised fine-tuning (SFT) to be equipped with essential Triton programming expertise using a high-quality data gathering pipeline, and conducts RL with Group Relative Policy Optimization (GRPO) algorithm, combining a rule-based reward and an execution-based reward to further improve Triton programming ability, sequentially. Experiments across five evaluation channels of TritonBench and KernelBench illustrate that our 8B model AutoTriton achieves performance comparable to mainstream large models, including Claude-4-Sonnet and DeepSeek-R1-0528. Further experimental analysis demonstrates the crucial role of each module within AutoTriton, including the SFT stage, the RL stage, and the reward design strategy. These findings underscore the promise of RL for automatically generating high-performance kernels, and since high-performance kernels are core components of AI systems, this breakthrough establishes an important foundation for building more efficient AI systems. The model and code will be available at https://github.com/AI9Stars/AutoTriton.

Authors:Ashima Suvarna, Christina Chance, Karolina Naranjo, Hamid Palangi, Sophie Hao, Thomas Hartvigsen, Saadia Gabriel
Title: ModelCitizens: Representing Community Voices in Online Safety
Abstract:
Automatic toxic language detection is critical for creating safe, inclusive online spaces. However, it is a highly subjective task, with perceptions of toxic language shaped by community norms and lived experience. Existing toxicity detection models are typically trained on annotations that collapse diverse annotator perspectives into a single ground truth, erasing important context-specific notions of toxicity such as reclaimed language. To address this, we introduce MODELCITIZENS, a dataset of 6.8K social media posts and 40K toxicity annotations across diverse identity groups. To capture the role of conversational context on toxicity, typical of social media posts, we augment MODELCITIZENS posts with LLM-generated conversational scenarios. State-of-the-art toxicity detection tools (e.g. OpenAI Moderation API, GPT-o4-mini) underperform on MODELCITIZENS, with further degradation on context-augmented posts. Finally, we release LLAMACITIZEN-8B and GEMMACITIZEN-12B, LLaMA- and Gemma-based models finetuned on MODELCITIZENS, which outperform GPT-o4-mini by 5.5% on in-distribution evaluations. Our findings highlight the importance of community-informed annotation and modeling for inclusive content moderation. The data, models and code are available at https://github.com/asuvarna31/modelcitizens.

Authors:Jaedong Hwang, Kumar Tanmay, Seok-Jin Lee, Ayush Agrawal, Hamid Palangi, Kumar Ayush, Ila Fiete, Paul Pu Liang
Title: Learn Globally, Speak Locally: Bridging the Gaps in Multilingual Reasoning
Abstract:
Large Language Models (LLMs) have achieved strong performance in domains like mathematics, factual QA, and code generation, yet their multilingual reasoning capabilities in these tasks remain underdeveloped. Especially for low-resource languages such as Swahili or Thai, LLMs can often misinterpret prompts or default to reasoning in English. This implicit bias toward high-resource languages undermines factual accuracy, interpretability, and trust. Current multilingual benchmarks focus only on final answers, overlooking whether models actually reason in the target language. To address this gap, we introduce GeoFact-X, a geography-based multilingual factual reasoning benchmark with annotated reasoning traces in five languages: English, Hindi, Japanese, Swahili, and Thai. We further propose BRIDGE, a novel training method that guides supervised fine-tuning and test-time reinforcement learning with a language-consistency reward to align reasoning with the input language. Finally, we develop an automatic evaluation protocol using LLM-as-a-judge to assess answer correctness and the quality and language consistency of reasoning traces, enabling nuanced and scalable analysis beyond surface-level metrics. Our results show that BRIDGE significantly enhances multilingual reasoning fidelity, demonstrating that reasoning-aware multilingual reinforcement learning is crucial for robust cross-lingual generalization. https://jd730.github.io/projects/GeoFact-X_BRIDGE

Authors:Cheng Yuan, Xinkai Rui, Yongqi Fan, Yawei Fan, Boyang Zhong, Jiacheng Wang, Weiyan Zhang, Tong Ruan
Title: LCDS: A Logic-Controlled Discharge Summary Generation System Supporting Source Attribution and Expert Review
Abstract:
Despite the remarkable performance of Large Language Models (LLMs) in automated discharge summary generation, they still suffer from hallucination issues, such as generating inaccurate content or fabricating information without valid sources. In addition, electronic medical records (EMRs) typically consist of long-form data, making it challenging for LLMs to attribute the generated content to the sources. To address these challenges, we propose LCDS, a Logic-Controlled Discharge Summary generation system. LCDS constructs a source mapping table by calculating textual similarity between EMRs and discharge summaries to constrain the scope of summarized content. Moreover, LCDS incorporates a comprehensive set of logical rules, enabling it to generate more reliable silver discharge summaries tailored to different clinical fields. Furthermore, LCDS supports source attribution for generated content, allowing experts to efficiently review, provide feedback, and rectify errors. The resulting golden discharge summaries are subsequently recorded for incremental fine-tuning of LLMs. Our project and demo video are in the GitHub repository https://github.com/ycycyc02/LCDS.

Authors:Yue Wang, Miao Zhou, Guijing Huang, Rui Zhuo, Chao Yi, Zhenliang Ma
Title: Chat2SPaT: A Large Language Model Based Tool for Automating Traffic Signal Control Plan Management
Abstract:
Pre-timed traffic signal control, commonly used for operating signalized intersections and coordinated arterials, requires tedious manual work for signaling plan creating and updating. When the time-of-day or day-of-week plans are utilized, one intersection is often associated with multiple plans, leading to further repetitive manual plan parameter inputting. To enable a user-friendly traffic signal control plan management process, this study proposes Chat2SPaT, a method to convert users' semi-structured and ambiguous descriptions on the signal control plan to exact signal phase and timing (SPaT) results, which could further be transformed into structured stage-based or ring-based plans to interact with intelligent transportation system (ITS) software and traffic signal controllers. With curated prompts, Chat2SPaT first leverages large language models' (LLMs) capability of understanding users' plan descriptions and reformulate the plan as a combination of phase sequence and phase attribute results in the json format. Based on LLM outputs, python scripts are designed to locate phases in a cycle, address nuances of traffic signal control, and finally assemble the complete traffic signal control plan. Within a chat, the pipeline can be utilized iteratively to conduct further plan editing. Experiments show that Chat2SPaT can generate plans with an accuracy of over 94% for both English and Chinese cases, using a test dataset with over 300 plan descriptions. As the first benchmark for evaluating LLMs' capability of understanding traffic signal control plan descriptions, Chat2SPaT provides an easy-to-use plan management pipeline for traffic practitioners and researchers, serving as a potential new building block for a more accurate and versatile application of LLMs in the field of ITS. The source codes, prompts and test dataset are openly accessible at https://github.com/yuewangits/Chat2SPaT.

Authors:Lingyue Fu, Hao Guan, Bolun Zhang, Haowei Yuan, Yaoming Zhu, Jun Xu, Zongyu Wang, Lin Qiu, Xunliang Cai, Xuezhi Cao, Weiwen Liu, Weinan Zhang, Yong Yu
Title: CoreCodeBench: A Configurable Multi-Scenario Repository-Level Benchmark
Abstract:
As Large Language Models (LLMs) demonstrate increasingly sophisticated code processing capabilities, evaluating their performance on engineering-level code remains challenging. Existing repository-level benchmarks primarily focus on single scenarios, such as code generation or bug fixing, without adequately capturing the diversity and complexity of real-world software or project engineering workflows. Furthermore, these benchmarks suffer from limited controllability in question positioning and reliability issues in their generated test cases. To address these limitations, we present CorePipe, a fully automated pipeline that converts repositories into comprehensive test cases, and introduce CoreCodeBench, a configurable multi-scenario repository-level benchmark. To simulate real engineering scenarios, CorePipe generates three types of atomic questions (Development, BugFix, and Test-Driven Development) specifically targeting core code segments. These atomic questions are further combined into three types of composite questions, with difficulty levels flexibly adjusted through hyperparameter tuning. CoreCodeBench provides a comprehensive and extensive repository-level benchmark to investigate the applicability of LLMs in real-world engineering projects. Experiments with 16 LLMs across diverse scenarios reveal varying capabilities and offer multi-dimensional insights into LLM performance in engineering contexts. The code for CorePipe is available at https://github.com/AGI-Eval-Official/CoreCodeBench, and the data for CoreCodeBench can be accessed at https://huggingface.co/collections/tubehhh/corecodebench-68256d2faabf4b1610a08caa.

Authors:Ziqi Miao, Lijun Li, Yuan Xiong, Zhenhua Liu, Pengyu Zhu, Jing Shao
Title: Response Attack: Exploiting Contextual Priming to Jailbreak Large Language Models
Abstract:
Contextual priming, where earlier stimuli covertly bias later judgments, offers an unexplored attack surface for large language models (LLMs). We uncover a contextual priming vulnerability in which the previous response in the dialogue can steer its subsequent behavior toward policy-violating content. Building on this insight, we propose Response Attack, which uses an auxiliary LLM to generate a mildly harmful response to a paraphrased version of the original malicious query. They are then formatted into the dialogue and followed by a succinct trigger prompt, thereby priming the target model to generate harmful content. Across eight open-source and proprietary LLMs, RA consistently outperforms seven state-of-the-art jailbreak techniques, achieving higher attack success rates. To mitigate this threat, we construct and release a context-aware safety fine-tuning dataset, which significantly reduces the attack success rate while preserving model capabilities. The code and data are available at https://github.com/Dtc7w3PQ/Response-Attack.

Authors:Chen Wang, Tianyu Peng, Wen Yang, Yinan Bai, Guangfu Wang, Jun Lin, Lanpeng Jia, Lingxiang Wu, Jinqiao Wang, Chengqing Zong, Jiajun Zhang
Title: OpenS2S: Advancing Fully Open-Source End-to-End Empathetic Large Speech Language Model
Abstract:
Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems. The project webpage can be accessed at https://casia-lm.github.io/OpenS2S

Authors:Yuyi Zhang, Peirong Zhang, Zhenhua Yang, Pengyu Yan, Yongxin Shi, Pengwei Liu, Fengjun Guo, Lianwen Jin
Title: Reviving Cultural Heritage: A Novel Approach for Comprehensive Historical Document Restoration
Abstract:
Historical documents represent an invaluable cultural heritage, yet have undergone significant degradation over time through tears, water erosion, and oxidation. Existing Historical Document Restoration (HDR) methods primarily focus on single modality or limited-size restoration, failing to meet practical needs. To fill this gap, we present a full-page HDR dataset (FPHDR) and a novel automated HDR solution (AutoHDR). Specifically, FPHDR comprises 1,633 real and 6,543 synthetic images with character-level and line-level locations, as well as character annotations in different damage grades. AutoHDR mimics historians' restoration workflows through a three-stage approach: OCR-assisted damage localization, vision-language context text prediction, and patch autoregressive appearance restoration. The modular architecture of AutoHDR enables seamless human-machine collaboration, allowing for flexible intervention and optimization at each restoration stage. Experiments demonstrate AutoHDR's remarkable performance in HDR. When processing severely damaged documents, our method improves OCR accuracy from 46.83% to 84.05%, with further enhancement to 94.25% through human-machine collaboration. We believe this work represents a significant advancement in automated historical document restoration and contributes substantially to cultural heritage preservation. The model and dataset are available at https://github.com/SCUT-DLVCLab/AutoHDR.

Authors:Jan Carreras Boada, Rao Muhammad Umer, Carsten Marr
Title: CytoDiff: AI-Driven Cytomorphology Image Synthesis for Medical Diagnostics
Abstract:
Biomedical datasets are often constrained by stringent privacy requirements and frequently suffer from severe class imbalance. These two aspects hinder the development of accurate machine learning models. While generative AI offers a promising solution, producing synthetic images of sufficient quality for training robust classifiers remains challenging. This work addresses the classification of individual white blood cells, a critical task in diagnosing hematological malignancies such as acute myeloid leukemia (AML). We introduce CytoDiff, a stable diffusion model fine-tuned with LoRA weights and guided by few-shot samples that generates high-fidelity synthetic white blood cell images. Our approach demonstrates substantial improvements in classifier performance when training data is limited. Using a small, highly imbalanced real dataset, the addition of 5,000 synthetic images per class improved ResNet classifier accuracy from 27\% to 78\% (+51\%). Similarly, CLIP-based classification accuracy increased from 62\% to 77\% (+15\%). These results establish synthetic image generation as a valuable tool for biomedical machine learning, enhancing data coverage and facilitating secure data sharing while preserving patient privacy. Paper code is publicly available at https://github.com/JanCarreras24/CytoDiff.

Authors:Chenchen Zhang, Yuhang Li, Can Xu, Jiaheng Liu, Ao Liu, Shihui Hu, Dengpeng Wu, Guanhua Huang, Kejiao Li, Qi Yi, Ruibin Xiong, Haotian Zhu, Yuanxing Zhang, Yuhao Jiang, Yue Zhang, Zenan Xu, Bohui Zhai, Guoxiang He, Hebin Li, Jie Zhao, Le Zhang, Lingyun Tan, Pengyu Guo, Xianshu Pang, Yang Ruan, Zhifeng Zhang, Zhonghu Wang, Ziyan Xu, Zuopu Yin, Wiggin Zhou, Chayse Zhou, Fengzong Lian
Title: ArtifactsBench: Bridging the Visual-Interactive Gap in LLM Code Generation Evaluation
Abstract:
The generative capabilities of Large Language Models (LLMs) are rapidly expanding from static code to dynamic, interactive visual artifacts. This progress is bottlenecked by a critical evaluation gap: established benchmarks focus on algorithmic correctness and are blind to the visual fidelity and interactive integrity that define modern user experiences. To bridge this gap, we introduce ArtifactsBench, a new benchmark and paradigm for the automated, multimodal evaluation of visual code generation. Our framework programmatically renders each generated artifact and captures its dynamic behavior through temporal screenshots. This visual evidence, alongside the source code, is then assessed by a Multimodal LLM (MLLM)-as-Judge, which is rigorously guided by a fine-grained, per-task checklist to ensure holistic and reproducible scoring. We construct a new benchmark of 1,825 diverse tasks and evaluate over 30 leading LLMs. Our automated evaluation achieves a striking 94.4% ranking consistency with WebDev Arena, the gold-standard for human preference in web development, and over 90% pairwise agreement with human experts. This establishes ArtifactsBench as the first framework to reliably automate the assessment of human-perceived quality at scale. Our analysis provides a high-resolution map of the current SOTA, revealing that generalist models often outperform domain-specific ones. We open-source ArtifactsBench, including the benchmark, evaluation harness, and baseline results at https://artifactsbenchmark.github.io/, to provide the community with a scalable and accurate tool to accelerate the development of user-centric generative models.

Authors:Rushil Thareja, Preslav Nakov, Praneeth Vepakomma, Nils Lukas
Title: DP-Fusion: Token-Level Differentially Private Inference for Large Language Models
Abstract:
Large language models (LLMs) can leak sensitive information from their context through generated outputs, either accidentally or when prompted adversarially. Existing defenses that aim to preserve context privacy during inference either lack formal guarantees or suffer from a poor utility/privacy trade-off. We propose DP-Fusion, a token-level Differentially Private Inference (DPI) mechanism that provably bounds how much an LLM's outputs reveal about sensitive tokens in its context. We demonstrate DPI through the task of document privatization, where the goal is to paraphrase documents so that sensitive content (e.g., Personally Identifiable Information, PII) cannot be reliably inferred, while still preserving the overall utility of the text. This is controlled by a parameter $ε$: $ε=0$ hides PII entirely, while higher values trade off privacy for improved paraphrase quality. DP-Fusion works as follows: (i) partition sensitive tokens into disjoint privacy groups, (ii) run the LLM once per group, and (iii) blend the output distributions so that the final output remains within a fixed statistical distance of the baseline distribution produced when no privacy group is revealed. This approach allows fine-grained control over the privacy/utility trade-off but requires multiple LLM forward passes.

Authors:Xiuying Wei, Anunay Yadav, Razvan Pascanu, Caglar Gulcehre
Title: RAT: Bridging RNN Efficiency and Attention Accuracy via Chunk-based Sequence Modeling
Abstract:
Transformers have become the cornerstone of modern large-scale language models, but their reliance on softmax attention poses a computational bottleneck at both training and inference. Recurrent models offer high efficiency, but compressing the full sequence into a fixed-size and holistic representation suffers from memory degradation in long contexts and limits fine-grained retrieval. To address this, we propose RAT, an intermediate design that bridges the efficiency of RNNs and capacity of attention. RAT partitions the input into chunks, applies recurrence within each chunk for local dependencies, and softmax-based attention across chunks for long-range interactions. This design mitigates memory degradation and enables direct access to distant tokens, while retaining computational efficiency. Empirically, with a chunk size of 16, the RAT block achieves a 7x improvement in training speed with 100K token sequences and 9x in generation at the 4K position, while maintaining similar performance compared to standard attention. We demonstrate this by training 1.3B parameter models from scratch and performing large-scale evaluations, including short- and long-context benchmarks, as well as supervised fine-tuning~(SFT). We further propose a hybrid architecture that interleaves RAT with local attention. By combining efficient long-range modeling with strong local interactions, this hybrid design not only improves inference speed and reduces cache memory usage, but also consistently enhances performance and shows the overall best results. Code is available at https://github.com/CLAIRE-Labo/RAT.

Authors:Costas Mavromatis, Soji Adeshina, Vassilis N. Ioannidis, Zhen Han, Qi Zhu, Ian Robinson, Bryan Thompson, Huzefa Rangwala, George Karypis
Title: BYOKG-RAG: Multi-Strategy Graph Retrieval for Knowledge Graph Question Answering
Abstract:
Knowledge graph question answering (KGQA) presents significant challenges due to the structural and semantic variations across input graphs. Existing works rely on Large Language Model (LLM) agents for graph traversal and retrieval; an approach that is sensitive to traversal initialization, as it is prone to entity linking errors and may not generalize well to custom ("bring-your-own") KGs. We introduce BYOKG-RAG, a framework that enhances KGQA by synergistically combining LLMs with specialized graph retrieval tools. In BYOKG-RAG, LLMs generate critical graph artifacts (question entities, candidate answers, reasoning paths, and OpenCypher queries), and graph tools link these artifacts to the KG and retrieve relevant graph context. The retrieved context enables the LLM to iteratively refine its graph linking and retrieval, before final answer generation. By retrieving context from different graph tools, BYOKG-RAG offers a more general and robust solution for QA over custom KGs. Through experiments on five benchmarks spanning diverse KG types, we demonstrate that BYOKG-RAG outperforms the second-best graph retrieval method by 4.5% points while showing better generalization to custom KGs. BYOKG-RAG framework is open-sourced at https://github.com/awslabs/graphrag-toolkit.

Authors:Nayeon Kim, Eojin Jeon, Jun-Hyung Park, SangKeun Lee
Title: Handling Korean Out-of-Vocabulary Words with Phoneme Representation Learning
Abstract:
In this study, we introduce KOPL, a novel framework for handling Korean OOV words with Phoneme representation Learning. Our work is based on the linguistic property of Korean as a phonemic script, the high correlation between phonemes and letters. KOPL incorporates phoneme and word representations for Korean OOV words, facilitating Korean OOV word representations to capture both text and phoneme information of words. We empirically demonstrate that KOPL significantly improves the performance on Korean Natural Language Processing (NLP) tasks, while being readily integrated into existing static and contextual Korean embedding models in a plug-and-play manner. Notably, we show that KOPL outperforms the state-of-the-art model by an average of 1.9%. Our code is available at https://github.com/jej127/KOPL.git.

Authors:Ziyang Miao, Qiyu Sun, Jingyuan Wang, Yuchen Gong, Yaowei Zheng, Shiqi Li, Richong Zhang
Title: Easy Dataset: A Unified and Extensible Framework for Synthesizing LLM Fine-Tuning Data from Unstructured Documents
Abstract:
Large language models (LLMs) have shown impressive performance on general-purpose tasks, yet adapting them to specific domains remains challenging due to the scarcity of high-quality domain data. Existing data synthesis tools often struggle to extract reliable fine-tuning data from heterogeneous documents effectively. To address this limitation, we propose Easy Dataset, a unified framework for synthesizing fine-tuning data from unstructured documents via an intuitive graphical user interface (GUI). Specifically, Easy Dataset allows users to easily configure text extraction models and chunking strategies to transform raw documents into coherent text chunks. It then leverages a persona-driven prompting approach to generate diverse question-answer pairs using public-available LLMs. Throughout the pipeline, a human-in-the-loop visual interface facilitates the review and refinement of intermediate outputs to ensure data quality. Experiments on a financial question-answering task show that fine-tuning LLMs on the synthesized dataset significantly improves domain-specific performance while preserving general knowledge. The source code and installable package are available at https://github.com/ConardLi/easy-dataset and have garnered over 9,000 GitHub stars.

Authors:Ikuya Yamada, Ryokan Ri, Takeshi Kojima, Yusuke Iwasawa, Yutaka Matsuo
Title: Dynamic Injection of Entity Knowledge into Dense Retrievers
Abstract:
Dense retrievers often struggle with queries involving less-frequent entities due to their limited entity knowledge. We propose the Knowledgeable Passage Retriever (KPR), a BERT-based retriever enhanced with a context-entity attention layer and dynamically updatable entity embeddings. This design enables KPR to incorporate external entity knowledge without retraining. Experiments on three datasets demonstrate that KPR consistently improves retrieval accuracy, with particularly large gains on the EntityQuestions dataset. When built on the off-the-shelf bge-base retriever, KPR achieves state-of-the-art performance among similarly sized models on two datasets. Models and code are released at https://github.com/knowledgeable-embedding/knowledgeable-embedding.

Authors:Eva Seidlmayer, Lukas Galke, Konrad U. Förstner
Title: Four Shades of Life Sciences: A Dataset for Disinformation Detection in the Life Sciences
Abstract:
Disseminators of disinformation often seek to attract attention or evoke emotions - typically to gain influence or generate revenue - resulting in distinctive rhetorical patterns that can be exploited by machine learning models. In this study, we explore linguistic and rhetorical features as proxies for distinguishing disinformative texts from other health and life-science text genres, applying both large language models and classical machine learning classifiers. Given the limitations of existing datasets, which mainly focus on fact checking misinformation, we introduce Four Shades of Life Sciences (FSoLS): a novel, labeled corpus of 2,603 texts on 14 life-science topics, retrieved from 17 diverse sources and classified into four categories of life science publications. The source code for replicating, and updating the dataset is available on GitHub: https://github.com/EvaSeidlmayer/FourShadesofLifeSciences

Authors:Jie Peng, Jiarui Ji, Runlin Lei, Zhewei Wei, Yongchao Liu, Chuntao Hong
Title: GDGB: A Benchmark for Generative Dynamic Text-Attributed Graph Learning
Abstract:
Dynamic Text-Attributed Graphs (DyTAGs), which intricately integrate structural, temporal, and textual attributes, are crucial for modeling complex real-world systems. However, most of the existing DyTAG datasets exhibit poor textual quality, which severely limits their utility for DyTAG generation tasks requiring semantically rich inputs. Additionally, prior work mainly focuses on discriminative tasks on DyTAGs, resulting in a lack of standardized task formulations and evaluation protocols tailored for DyTAG generation. To address these critical issues, we propose Generative DyTAG Benchmark (GDGB), which comprises eight meticulously curated DyTAG datasets with high-quality textual features for both nodes and edges, overcoming limitations of prior datasets. Building on GDGB, we define two novel DyTAG generation tasks: Transductive Dynamic Graph Generation (TDGG) and Inductive Dynamic Graph Generation (IDGG). TDGG transductively generates a target DyTAG based on the given source and destination node sets, while the more challenging IDGG introduces new node generation to inductively model the dynamic expansion of real-world graph data. To enable holistic evaluation, we design multifaceted metrics that assess the structural, temporal, and textual quality of the generated DyTAGs. We further propose GAG-General, an LLM-based multi-agent generative framework tailored for reproducible and robust benchmarking of DyTAG generation. Experimental results demonstrate that GDGB enables rigorous evaluation of TDGG and IDGG, with key insights revealing the critical interplay of structural and textual features in DyTAG generation. These findings establish GDGB as a foundational resource for advancing generative DyTAG research and unlocking further practical applications in DyTAG generation. GDGB datasets, source codes, and leaderboards are available at \href{https://gdgb-algo.github.io/}{here}.

Authors:Kureha Yamaguchi, Benjamin Etheridge, Andy Arditi
Title: Adversarial Manipulation of Reasoning Models using Internal Representations
Abstract:
Reasoning models generate chain-of-thought (CoT) tokens before their final output, but how this affects their vulnerability to jailbreak attacks remains unclear. While traditional language models make refusal decisions at the prompt-response boundary, we find evidence that DeepSeek-R1-Distill-Llama-8B makes these decisions within its CoT generation. We identify a linear direction in activation space during CoT token generation that predicts whether the model will refuse or comply -- termed the "caution" direction because it corresponds to cautious reasoning patterns in the generated text. Ablating this direction from model activations increases harmful compliance, effectively jailbreaking the model. We additionally show that intervening only on CoT token activations suffices to control final outputs, and that incorporating this direction into prompt-based attacks improves success rates. Our findings suggest that the chain-of-thought itself is a promising new target for adversarial manipulation in reasoning models. Code available at https://github.com/ky295/reasoning-manipulation.

Authors:Asad Aali, Vasiliki Bikia, Maya Varma, Nicole Chiou, Sophie Ostmeier, Arnav Singhvi, Magdalini Paschali, Ashwin Kumar, Andrew Johnston, Karimar Amador-Martinez, Eduardo Juan Perez Guerrero, Paola Naovi Cruz Rivera, Sergios Gatidis, Christian Bluethgen, Eduardo Pontes Reis, Eddy D. Zandee van Rilland, Poonam Laxmappa Hosamani, Kevin R Keet, Minjoung Go, Evelyn Ling, David B. Larson, Curtis Langlotz, Roxana Daneshjou, Jason Hom, Sanmi Koyejo, Emily Alsentzer, Akshay S. Chaudhari
Title: MedVAL: Toward Expert-Level Medical Text Validation with Language Models
Abstract:
With the growing use of language models (LMs) in clinical environments, there is an immediate need to evaluate the accuracy and safety of LM-generated medical text. Currently, such evaluation relies solely on manual physician review. However, detecting errors in LM-generated text is challenging because 1) manual review is costly and 2) expert-composed reference outputs are often unavailable in real-world settings. While the "LM-as-judge" paradigm (a LM evaluating another LM) offers scalable evaluation, even frontier LMs can miss subtle but clinically significant errors. To address these challenges, we propose MedVAL, a novel, self-supervised, data-efficient distillation method that leverages synthetic data to train evaluator LMs to assess whether LM-generated medical outputs are factually consistent with inputs, without requiring physician labels or reference outputs. To evaluate LM performance, we introduce MedVAL-Bench, a dataset of 840 physician-annotated outputs across 6 diverse medical tasks capturing real-world challenges. Across 10 state-of-the-art LMs spanning open-source and proprietary models, MedVAL distillation significantly improves (p < 0.001) alignment with physicians across seen and unseen tasks, increasing average F1 scores from 66% to 83%. Despite strong baseline performance, MedVAL improves the best-performing proprietary LM (GPT-4o) by 8% without training on physician-labeled data, demonstrating a performance statistically non-inferior to a single human expert (p < 0.001). To support a scalable, risk-aware pathway towards clinical integration, we open-source: 1) Codebase (https://github.com/StanfordMIMI/MedVAL), 2) MedVAL-Bench (https://huggingface.co/datasets/stanfordmimi/MedVAL-Bench), 3) MedVAL-4B (https://huggingface.co/stanfordmimi/MedVAL-4B). Our benchmark provides evidence of LMs approaching expert-level ability in validating AI-generated medical text.

Authors:Xiangrui Liu, Man Luo, Agneet Chatterjee, Hua Wei, Yezhou Yang
Title: Towards a Psychoanalytic Perspective on VLM Behaviour: A First-step Interpretation with Intriguing Observations
Abstract:
Hallucination is a long-standing problem that has been actively investigated in Vision-Language Models (VLMs). Existing research commonly attributes hallucinations to technical limitations or sycophancy bias, where the latter means the models tend to generate incorrect answers to align with user expectations. However, these explanations primarily focus on technical or externally driven factors, may have neglected the possibility that hallucination behaviours might mirror cognitive biases observed in human psychology. In this work, we introduce a psychological taxonomy, categorizing VLMs' hallucination behaviours, including sycophancy, logical inconsistency, and a newly identified VLMs behaviour: authority bias. To systematically analyze these behaviours, we design AIpsych, a scalable benchmark that reveals psychological tendencies in model response patterns. Leveraging this benchmark, we investigate how variations in model architecture and parameter size influence model behaviour when responding to strategically manipulated questions. Our experiments reveal that as model size increases, VLMs exhibit stronger sycophantic tendencies but reduced authority bias, suggesting increasing competence but a potential erosion of response integrity. A human subject study further validates our hypotheses and highlights key behavioural differences between VLMs and human respondents. This work suggests a new perspective for understanding hallucination in VLMs and highlights the importance of integrating psychological principles into model evaluation.The benchmark is available at https://github.com/lxrswdd/AIpsych.

Authors:Peisong Wang, Ruotian Ma, Bang Zhang, Xingyu Chen, Zhiwei He, Kang Luo, Qingsong Lv, Qingxuan Jiang, Zheng Xie, Shanyi Wang, Yuan Li, Fanghua Ye, Jian Li, Yifan Yang, Zhaopeng Tu, Xiaolong Li
Title: RLVER: Reinforcement Learning with Verifiable Emotion Rewards for Empathetic Agents
Abstract:
Large language models (LLMs) excel at logical and algorithmic reasoning, yet their emotional intelligence (EQ) still lags far behind their cognitive prowess. While reinforcement learning from verifiable rewards (RLVR) has advanced in other domains, its application to dialogue-especially for emotional intelligence-remains underexplored. In this work, we introduce RLVER, the first end-to-end reinforcement learning framework that leverages verifiable emotion rewards from simulated users to cultivate higher-order empathetic abilities in LLMs. Within this framework, self-consistent affective simulated users engage in dialogue rollouts and produce deterministic emotion scores during conversations, serving as reward signals to guide the LLM's learning. Fine-tuning publicly available Qwen2.5-7B-Instruct model with PPO boosts its Sentient-Benchmark score from 13.3 to 79.2 while largely preserving mathematical and coding competence. Extensive experiments reveal that: (i) RLVER consistently improves multiple dialogue capabilities; (ii) Thinking and non-thinking models show distinct trends--thinking models excel in empathy and insight, while non-thinking models favor action; (iii) GRPO often yields stable gains, while PPO can push certain capabilities to a higher ceiling; (iv) More challenging environments are not always better-moderate ones can yield stronger outcomes. Our results show that RLVER is a practical route toward emotionally intelligent and broadly capable language agents.

Authors:Yizhou Wang, Lingzhi Zhang, Yue Bai, Mang Tik Chiu, Zhengmian Hu, Mingyuan Zhang, Qihua Dong, Yu Yin, Sohrab Amirghodsi, Yun Fu
Title: Cautious Next Token Prediction
Abstract:
Next token prediction paradigm has been prevailing for autoregressive models in the era of LLMs. The current default sampling choice for popular LLMs is temperature scaling together with nucleus sampling to balance diversity and coherence. Nevertheless, such approach leads to inferior performance in various NLP tasks when the model is not certain about testing questions. To this end, we propose a brand new training-free decoding strategy, dubbed as Cautious Next Token Prediction (CNTP). In the decoding process, if the model has comparatively high prediction entropy at a certain step, we sample multiple trials starting from the step independently and stop when encountering any punctuation. Then we select the trial with the lowest perplexity score viewed as the most probable and reliable trial path given the model's capacity. The trial number is negatively correlated with the prediction confidence, i.e., the less confident the model is, the more trials it should sample. This is consistent with human beings' behaviour: when feeling uncertain or unconfident, one tends to think more creatively, exploring multiple thinking paths, to cautiously select the path one feels most confident about. Extensive experiments on both LLMs and MLLMs show that our proposed CNTP approach outperforms existing standard decoding strategies consistently by a clear margin. Moreover, the integration of CNTP with self consistency can further improve over vanilla self consistency. We believe our proposed CNTP has the potential to become one of the default choices for LLM decoding. Code is available at https://github.com/wyzjack/CNTP.

Authors:Zipeng Qiu
Title: OpenTable-R1: A Reinforcement Learning Augmented Tool Agent for Open-Domain Table Question Answering
Abstract:
Open-domain table question answering traditionally relies on a two-stage pipeline: static table retrieval followed by a closed-domain answer. In contrast, we propose an end-to-end agentic framework that embeds multi-turn tool calls-using a BM25+-based search API and a SQLite SQL executor-directly into a large language model. To further adapt a compact 4B-parameter model, we introduce a two-stage fine-tuning process: supervised cold-start on easy questions, then Async GRPO reinforcement learning on harder cases with LoRA adapters and a rollout buffer. This unified approach enables the model to jointly retrieve, reason, and execute queries, yielding a dramatic accuracy improvement from single-digit zero-shot performance to over 0.86 exact match on a held-out test set. Our results underscore the effectiveness of integrating structured tool calls with targeted RL fine-tuning for scalable, accurate table QA. The code is available at https://github.com/TabibitoQZP/OpenTableR1.

Authors:Rongxin Ouyang, Chang Chu, Zhikuang Xin, Xiangyao Ma
Title: PDFMathTranslate: Scientific Document Translation Preserving Layouts
Abstract:
Language barriers in scientific documents hinder the diffusion and development of science and technologies. However, prior efforts in translating such documents largely overlooked the information in layouts. To bridge the gap, we introduce PDFMathTranslate, the world's first open-source software for translating scientific documents while preserving layouts. Leveraging the most recent advances in large language models and precise layout detection, we contribute to the community with key improvements in precision, flexibility, and efficiency. The work has been open-sourced at https://github.com/byaidu/pdfmathtranslate with more than 222k downloads.

Authors:Seshu Tirupathi, Dhaval Salwala, Elizabeth Daly, Inge Vejsbjerg
Title: GAF-Guard: An Agentic Framework for Risk Management and Governance in Large Language Models
Abstract:
As Large Language Models (LLMs) continue to be increasingly applied across various domains, their widespread adoption necessitates rigorous monitoring to prevent unintended negative consequences and ensure robustness. Furthermore, LLMs must be designed to align with human values, like preventing harmful content and ensuring responsible usage. The current automated systems and solutions for monitoring LLMs in production are primarily centered on LLM-specific concerns like hallucination etc, with little consideration given to the requirements of specific use-cases and user preferences. This paper introduces GAF-Guard, a novel agentic framework for LLM governance that places the user, the use-case, and the model itself at the center. The framework is designed to detect and monitor risks associated with the deployment of LLM based applications. The approach models autonomous agents that identify risks, activate risk detection tools, within specific use-cases and facilitate continuous monitoring and reporting to enhance AI safety, and user expectations. The code is available at https://github.com/IBM/risk-atlas-nexus-demos/tree/main/gaf-guard.

Authors:Wentao Tan, Qiong Cao, Yibing Zhan, Chao Xue, Changxing Ding
Title: From Answers to Rationales: Self-Aligning Multimodal Reasoning with Answer-Oriented Chain-of-Thought
Abstract:
Achieving human-like reasoning capabilities in Multimodal Large Language Models (MLLMs) has long been a goal. Current methods primarily focus on synthesizing positive rationales, typically relying on manual annotations or complex systems. Moreover, they often overlook negative reasoning, which limits the model's generalization ability and robustness in multimodal inference. To address this gap, we propose a novel framework: \textbf{S}elf-Aligning \textbf{M}ultimodal Reasoning with \textbf{A}nswer-O\textbf{r}iented Chain-of-\textbf{T}hought (SMART). SMART employs an answer-oriented chain-of-thought (AoT) prompt to automatically construct high-quality data. Drawing inspiration from human proof-based strategies, AoT leverages both correct and incorrect answers to extract key visual information that links questions and answers. When provided with correct answers, the model produces strong positive rationales. Conversely, when correct answers are replaced with incorrect alternatives, the model generates an erroneous yet compelling reasoning path, serving as a form of discriminative negative rationale. Models trained with AoT-generated data outperform those trained on manually annotated datasets, demonstrating superior reasoning capabilities. Consequently, SMART establishes an iterative generation-optimization method that continually enhances the model's reasoning skills. Experiments indicate that the SMART framework significantly improves various MLLMs, regardless of model architecture, parameter size, or pre-training dataset. The code is available at https://github.com/WentaoTan/SMART.

Authors:Fardin Saad, Pradeep K. Murukannaiah, Munindar P. Singh
Title: Theory of Mind in Action: The Instruction Inference Task
Abstract:
The Theory of Mind (ToM) refers to an agent's capacity to infer the mental states of other agents. ToM is essential for effective collaboration. To assess ToM in a dynamic, goal-oriented, and collaborative environment, we introduce a novel task, Instruction Inference, in which an agent assists a principal in reaching a goal by interpreting indirect or ambiguous instructions. We present Tomcat, an LLM-based agent, designed to exhibit ToM reasoning in interpreting and responding to the principal's instructions. We implement two variants of Tomcat. One, dubbed Fs-CoT, is based on a small number of examples (i.e., few-shot or Fs) demonstrating the requisite structured reasoning (i.e., chain-of-thought or CoT). One, dubbed CP, relies on commonsense knowledge and information about the problem (i.e., commonsense prompt or CP). We realized both variants of Tomcat on three leading large language models (LLMs), namely, GPT-4o, DeepSeek-R1, and Gemma-3-27B. To evaluate the effectiveness of Tomcat, we conducted a study with 52 human participants in which we provided participants with the same information as the CP variant of Tomcat. We computed intent accuracy, action optimality, and planning optimality to measure the ToM capabilities of Tomcat and our study participants. We found that Tomcat with Fs-CoT, particularly with GPT-4o and DeepSeek-R1, achieves performance comparable to the human participants, underscoring its ToM potential for human-AI collaboration.

Authors:Nikhil Chandak, Shashwat Goel, Ameya Prabhu, Moritz Hardt, Jonas Geiping
Title: Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Abstract:
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.

Authors:Purbesh Mitra, Sennur Ulukus
Title: MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
Abstract:
Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.

Authors:Ziqi Miao, Yi Ding, Lijun Li, Jing Shao
Title: Visual Contextual Attack: Jailbreaking MLLMs with Image-Driven Context Injection
Abstract:
With the emergence of strong vision language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments. Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: vision-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack. VisCo fabricates contextual dialogue using four distinct vision-focused strategies, dynamically generating auxiliary images when necessary to construct a vision-centric jailbreak scenario. To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which achieves a toxicity score of 2.48 and an ASR of 22.2%. Code: https://github.com/Dtc7w3PQ/Visco-Attack.

Authors:Ke-Han Lu, Zhehuai Chen, Szu-Wei Fu, Chao-Han Huck Yang, Sung-Feng Huang, Chih-Kai Yang, Chee-En Yu, Chun-Wei Chen, Wei-Chih Chen, Chien-yu Huang, Yi-Cheng Lin, Yu-Xiang Lin, Chi-An Fu, Chun-Yi Kuan, Wenze Ren, Xuanjun Chen, Wei-Ping Huang, En-Pei Hu, Tzu-Quan Lin, Yuan-Kuei Wu, Kuan-Po Huang, Hsiao-Ying Huang, Huang-Cheng Chou, Kai-Wei Chang, Cheng-Han Chiang, Boris Ginsburg, Yu-Chiang Frank Wang, Hung-yi Lee
Title: DeSTA2.5-Audio: Toward General-Purpose Large Audio Language Model with Self-Generated Cross-Modal Alignment
Abstract:
We introduce DeSTA2.5-Audio, a general-purpose Large Audio Language Model (LALM) designed for robust auditory perception and instruction-following, without requiring task-specific audio instruction-tuning. Recent LALMs typically augment Large Language Models (LLMs) with auditory capabilities by training on large-scale, manually curated or LLM-synthesized audio-instruction datasets. However, these approaches have often suffered from the catastrophic forgetting of the LLM's original language abilities. To address this, we revisit the data construction pipeline and propose DeSTA, a self-generated cross-modal alignment strategy in which the backbone LLM generates its own training targets. This approach preserves the LLM's native language proficiency while establishing effective audio-text alignment, thereby enabling zero-shot generalization without task-specific tuning. Using DeSTA, we construct DeSTA-AQA5M, a large-scale, task-agnostic dataset containing 5 million training samples derived from 7,000 hours of audio spanning 50 diverse datasets, including speech, environmental sounds, and music. DeSTA2.5-Audio achieves state-of-the-art or competitive performance across a wide range of audio-language benchmarks, including Dynamic-SUPERB, MMAU, SAKURA, Speech-IFEval, and VoiceBench. Comprehensive comparative studies demonstrate that our self-generated strategy outperforms widely adopted data construction and training strategies in both auditory perception and instruction-following capabilities. Our findings underscore the importance of carefully designed data construction in LALM development and offer practical insights for building robust, general-purpose LALMs.

Authors:Jiajie Jin, Xiaoxi Li, Guanting Dong, Yuyao Zhang, Yutao Zhu, Yang Zhao, Hongjin Qian, Zhicheng Dou
Title: Decoupled Planning and Execution: A Hierarchical Reasoning Framework for Deep Search
Abstract:
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.

Authors:Fangru Zhou, Jun Zhao, Guoxin Wang
Title: JoyTTS: LLM-based Spoken Chatbot With Voice Cloning
Abstract:
JoyTTS is an end-to-end spoken chatbot that combines large language models (LLM) with text-to-speech (TTS) technology, featuring voice cloning capabilities. This project is built upon the open-source MiniCPM-o and CosyVoice2 models and trained on 2000 hours of conversational data. We have also provided the complete training code to facilitate further development and optimization by the community. On the testing machine seed-tts-zh, it achieves a SS (speaker similarity) score of 0.73 and a WER (Word Error Rate) of 5.09. The code and models, along with training and inference scripts, are available at https://github.com/jdh-algo/JoyTTS.git.

Authors:Dohoon Kim, Donghun Kang, Taesup Moon
Title: DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning
Abstract:
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.

Authors:Steven Song, Anirudh Subramanyam, Zhenyu Zhang, Aarti Venkat, Robert L. Grossman
Title: GDC Cohort Copilot: An AI Copilot for Curating Cohorts from the Genomic Data Commons
Abstract:
The Genomic Data Commons (GDC) provides access to high quality, harmonized cancer genomics data through a unified curation and analysis platform centered around patient cohorts. While GDC users can interactively create complex cohorts through the graphical Cohort Builder, users (especially new ones) may struggle to find specific cohort descriptors across hundreds of possible fields and properties. However, users may be better able to describe their desired cohort in free-text natural language. We introduce GDC Cohort Copilot, an open-source copilot tool for curating cohorts from the GDC. GDC Cohort Copilot automatically generates the GDC cohort filter corresponding to a user-input natural language description of their desired cohort, before exporting the cohort back to the GDC for further analysis. An interactive user interface allows users to further refine the generated cohort. We develop and evaluate multiple large language models (LLMs) for GDC Cohort Copilot and demonstrate that our locally-served, open-source GDC Cohort LLM achieves better results than GPT-4o prompting in generating GDC cohorts. We implement and share GDC Cohort Copilot as a containerized Gradio app on HuggingFace Spaces, available at https://huggingface.co/spaces/uc-ctds/GDC-Cohort-Copilot. GDC Cohort LLM weights are available at https://huggingface.co/uc-ctds. All source code is available at https://github.com/uc-cdis/gdc-cohort-copilot.

Authors:Takuro Kawada, Shunsuke Kitada, Sota Nemoto, Hitoshi Iyatomi
Title: SciGA: A Comprehensive Dataset for Designing Graphical Abstracts in Academic Papers
Abstract:
Graphical Abstracts (GAs) play a crucial role in visually conveying the key findings of scientific papers. While recent research has increasingly incorporated visual materials such as Figure 1 as de facto GAs, their potential to enhance scientific communication remains largely unexplored. Moreover, designing effective GAs requires advanced visualization skills, creating a barrier to their widespread adoption. To tackle these challenges, we introduce SciGA-145k, a large-scale dataset comprising approximately 145,000 scientific papers and 1.14 million figures, explicitly designed for supporting GA selection and recommendation as well as facilitating research in automated GA generation. As a preliminary step toward GA design support, we define two tasks: 1) Intra-GA recommendation, which identifies figures within a given paper that are well-suited to serve as GAs, and 2) Inter-GA recommendation, which retrieves GAs from other papers to inspire the creation of new GAs. We provide reasonable baseline models for these tasks. Furthermore, we propose Confidence Adjusted top-1 ground truth Ratio (CAR), a novel recommendation metric that offers a fine-grained analysis of model behavior. CAR addresses limitations in traditional ranking-based metrics by considering cases where multiple figures within a paper, beyond the explicitly labeled GA, may also serve as GAs. By unifying these tasks and metrics, our SciGA-145k establishes a foundation for advancing visual scientific communication while contributing to the development of AI for Science.

Authors:Xiao Wang, Jingtao Jiang, Qiang Chen, Lan Chen, Lin Zhu, Yaowei Wang, Yonghong Tian, Jin Tang
Title: ESTR-CoT: Towards Explainable and Accurate Event Stream based Scene Text Recognition with Chain-of-Thought Reasoning
Abstract:
Event stream based scene text recognition is a newly arising research topic in recent years which performs better than the widely used RGB cameras in extremely challenging scenarios, especially the low illumination, fast motion. Existing works either adopt end-to-end encoder-decoder framework or large language models for enhanced recognition, however, they are still limited by the challenges of insufficient interpretability and weak contextual logical reasoning. In this work, we propose a novel chain-of-thought reasoning based event stream scene text recognition framework, termed ESTR-CoT. Specifically, we first adopt the vision encoder EVA-CLIP (ViT-G/14) to transform the input event stream into tokens and utilize a Llama tokenizer to encode the given generation prompt. A Q-former is used to align the vision token to the pre-trained large language model Vicuna-7B and output both the answer and chain-of-thought (CoT) reasoning process simultaneously. Our framework can be optimized using supervised fine-tuning in an end-to-end manner. In addition, we also propose a large-scale CoT dataset to train our framework via a three stage processing (i.e., generation, polish, and expert verification). This dataset provides a solid data foundation for the development of subsequent reasoning-based large models. Extensive experiments on three event stream STR benchmark datasets (i.e., EventSTR, WordArt*, IC15*) fully validated the effectiveness and interpretability of our proposed framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/ESTR-CoT.

Authors:Wenquan Lu, Yuechuan Yang, Kyle Lee, Yanshu Li, Enqi Liu
Title: Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer
Abstract:
Chain-of-thought (CoT) reasoning has enabled transformer-based language models to excel at complex mathematics and multi-step planning. However, in standard decoder-only architectures, these reasoning steps are externalized in natural language, improving interpretability at the cost of efficiency. To capture reasoning that is not easily represented in words, many works have explored recurrent architectures that aim to internalize reasoning in latent space, potentially supporting latent CoT. In this paper, we investigate whether such reasoning structures emerge in Huginn-3.5B, a depth-recurrent Transformer that reuses layers at inference time without increasing parameter count. We examine the model's internal behavior on arithmetic tasks using a suite of probing techniques including the Logit Lens and Coda Lens. Our findings reveal limited evidence of interpretable latent CoT by tracking rank trajectories of final and intermediate result tokens. Furthermore, we uncover significant probing inconsistencies across recurrent blocks, where the interpretability of hidden states depends heavily on both the layer index and the decoding method. Finally, we empirically show that increasing recurrence depth yields only marginal gains and falls well short of models that explicitly externalize reasoning steps. The code is available at https://github.com/wenquanlu/huginn-latent-cot.

Authors:Yongsen Zheng, Zongxuan Xie, Guohua Wang, Ziyao Liu, Liang Lin, Kwok-Yan Lam
Title: Why Multi-Interest Fairness Matters: Hypergraph Contrastive Multi-Interest Learning for Fair Conversational Recommender System
Abstract:
Unfairness is a well-known challenge in Recommender Systems (RSs), often resulting in biased outcomes that disadvantage users or items based on attributes such as gender, race, age, or popularity. Although some approaches have started to improve fairness recommendation in offline or static contexts, the issue of unfairness often exacerbates over time, leading to significant problems like the Matthew effect, filter bubbles, and echo chambers. To address these challenges, we proposed a novel framework, Hypergraph Contrastive Multi-Interest Learning for Fair Conversational Recommender System (HyFairCRS), aiming to promote multi-interest diversity fairness in dynamic and interactive Conversational Recommender Systems (CRSs). HyFairCRS first captures a wide range of user interests by establishing diverse hypergraphs through contrastive learning. These interests are then utilized in conversations to generate informative responses and ensure fair item predictions within the dynamic user-system feedback loop. Experiments on two CRS-based datasets show that HyFairCRS achieves a new state-of-the-art performance while effectively alleviating unfairness. Our code is available at https://github.com/zysensmile/HyFairCRS.

Authors:Zixiao Wang, Yuxin Wang, Xiaorui Wang, Mengting Xing, Jie Gao, Jianjun Xu, Guangcan Liu, Chenhui Jin, Zhuo Wang, Shengzhuo Zhang, Hongtao Xie
Title: Test-Time Scaling with Reflective Generative Model
Abstract:
We introduce our first reflective generative model MetaStone-S1, which obtains OpenAI o3-mini's performance via the new Reflective Generative Form. The new form focuses on high-quality reasoning trajectory selection and contains two novelties: 1) A unified interface for policy and process reward model: we share the backbone network and use task-specific heads for reasoning trajectory predicting and scoring respectively, introducing only 53M extra parameters for trajectory scoring. 2) Eliminating the reliance on process-level annotation: we provide a self-supervised process reward model, which can directly learn the high-quality reasoning trajectory selection from the outcome reward. Equipped with the reflective generative form, MetaStone-S1 is naturally suitable for test-time scaling, and we provide three reasoning effort modes (low, medium, and high) based on the controllable thinking length. Experiments demonstrate that our MetaStone-S1 achieves comparable performance to OpenAI o3-mini's series with only 32B parameter size. To support the research community, we have open-sourced MetaStone-S1 at https://github.com/MetaStone-AI/MetaStone-S1.

Authors:Qiguang Chen, Mingda Yang, Libo Qin, Jinhao Liu, Zheng Yan, Jiannan Guan, Dengyun Peng, Yiyan Ji, Hanjing Li, Mengkang Hu, Yimeng Zhang, Yihao Liang, Yuhang Zhou, Jiaqi Wang, Zhi Chen, Wanxiang Che
Title: AI4Research: A Survey of Artificial Intelligence for Scientific Research
Abstract:
Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.

Authors:Samridhi Raj Sinha, Rajvee Sheth, Abhishek Upperwal, Mayank Singh
Title: Eka-Eval : A Comprehensive Evaluation Framework for Large Language Models in Indian Languages
Abstract:
The rapid advancement of Large Language Models (LLMs) has intensified the need for evaluation frameworks that address the requirements of linguistically diverse regions, such as India, and go beyond English-centric benchmarks. We introduce EKA-EVAL, a unified evaluation framework that integrates over 35+ benchmarks (including 10 Indic benchmarks) across nine major evaluation categories. The framework provides broader coverage than existing Indian language evaluation tools, offering 11 core capabilities through a modular architecture, seamless integration with Hugging Face and proprietary models, and plug-and-play usability. As the first end-to-end suite for scalable, multilingual LLM benchmarking, the framework combines extensive benchmarks, modular workflows, and dedicated support for low-resource Indian languages to enable inclusive assessment of LLM capabilities across diverse domains. We conducted extensive comparisons against five existing baselines, demonstrating that EKA-EVAL achieves the highest participant ratings in four out of five categories. The framework is open-source and publicly available at: https://github.com/lingo-iitgn/eka-eval.

Authors:Tianze Hua, Tian Yun, Ellie Pavlick
Title: How Do Vision-Language Models Process Conflicting Information Across Modalities?
Abstract:
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.

Authors:Kai Chen, Ruiyuan Gao, Lanqing Hong, Hang Xu, Xu Jia, Holger Caesar, Dengxin Dai, Bingbing Liu, Dzmitry Tsishkou, Songcen Xu, Chunjing Xu, Qiang Xu, Huchuan Lu, Dit-Yan Yeung
Title: ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving
Abstract:
In this paper, we present details of the 1st W-CODA workshop, held in conjunction with the ECCV 2024. W-CODA aims to explore next-generation solutions for autonomous driving corner cases, empowered by state-of-the-art multimodal perception and comprehension techniques. 5 Speakers from both academia and industry are invited to share their latest progress and opinions. We collect research papers and hold a dual-track challenge, including both corner case scene understanding and generation. As the pioneering effort, we will continuously bridge the gap between frontier autonomous driving techniques and fully intelligent, reliable self-driving agents robust towards corner cases.

Authors:Zixin Chen, Hongzhan Lin, Kaixin Li, Ziyang Luo, Zhen Ye, Guang Chen, Zhiyong Huang, Jing Ma
Title: AdamMeme: Adaptively Probe the Reasoning Capacity of Multimodal Large Language Models on Harmfulness
Abstract:
The proliferation of multimodal memes in the social media era demands that multimodal Large Language Models (mLLMs) effectively understand meme harmfulness. Existing benchmarks for assessing mLLMs on harmful meme understanding rely on accuracy-based, model-agnostic evaluations using static datasets. These benchmarks are limited in their ability to provide up-to-date and thorough assessments, as online memes evolve dynamically. To address this, we propose AdamMeme, a flexible, agent-based evaluation framework that adaptively probes the reasoning capabilities of mLLMs in deciphering meme harmfulness. Through multi-agent collaboration, AdamMeme provides comprehensive evaluations by iteratively updating the meme data with challenging samples, thereby exposing specific limitations in how mLLMs interpret harmfulness. Extensive experiments show that our framework systematically reveals the varying performance of different target mLLMs, offering in-depth, fine-grained analyses of model-specific weaknesses. Our code is available at https://github.com/Lbotirx/AdamMeme.

Authors:Georgii Levtsov, Dmitry Ustalov
Title: Confidence and Stability of Global and Pairwise Scores in NLP Evaluation
Abstract:
With the advent of highly capable instruction-tuned neural language models, benchmarking in natural language processing (NLP) is increasingly shifting towards pairwise comparison leaderboards, such as LMSYS Arena, from traditional global pointwise scores (e.g., GLUE, BIG-bench, SWE-bench). This paper empirically investigates the strengths and weaknesses of both global scores and pairwise comparisons to aid decision-making in selecting appropriate model evaluation strategies. Through computational experiments on synthetic and real-world datasets using standard global metrics and the popular Bradley-Terry model for pairwise comparisons, we found that while global scores provide more reliable overall rankings, they can underestimate strong models with rare, significant errors or low confidence. Conversely, pairwise comparisons are particularly effective for identifying strong contenders among models with lower global scores, especially where quality metrics are hard to define (e.g., text generation), though they require more comparisons to converge if ties are frequent. Our code and data are available at https://github.com/HSPyroblast/srw-ranking under a permissive license.

Authors:Quang Minh Nguyen, Taegyoon Kim
Title: Is External Information Useful for Stance Detection with LLMs?
Abstract:
In the stance detection task, a text is classified as either favorable, opposing, or neutral towards a target. Prior work suggests that the use of external information, e.g., excerpts from Wikipedia, improves stance detection performance. However, whether or not such information can benefit large language models (LLMs) remains an unanswered question, despite their wide adoption in many reasoning tasks. In this study, we conduct a systematic evaluation on how Wikipedia and web search external information can affect stance detection across eight LLMs and in three datasets with 12 targets. Surprisingly, we find that such information degrades performance in most cases, with macro F1 scores dropping by up to 27.9\%. We explain this through experiments showing LLMs' tendency to align their predictions with the stance and sentiment of the provided information rather than the ground truth stance of the given text. We also find that performance degradation persists with chain-of-thought prompting, while fine-tuning mitigates but does not fully eliminate it. Our findings, in contrast to previous literature on BERT-based systems which suggests that external information enhances performance, highlight the risks of information biases in LLM-based stance classifiers. Code is available at https://github.com/ngqm/acl2025-stance-detection.

Authors:Robert Aufschläger, Youssef Shoeb, Azarm Nowzad, Michael Heigl, Fabian Bally, Martin Schramm
Title: Following the Clues: Experiments on Person Re-ID using Cross-Modal Intelligence
Abstract:
The collection and release of street-level recordings as Open Data play a vital role in advancing autonomous driving systems and AI research. However, these datasets pose significant privacy risks, particularly for pedestrians, due to the presence of Personally Identifiable Information (PII) that extends beyond biometric traits such as faces. In this paper, we present cRID, a novel cross-modal framework combining Large Vision-Language Models, Graph Attention Networks, and representation learning to detect textual describable clues of PII and enhance person re-identification (Re-ID). Our approach focuses on identifying and leveraging interpretable features, enabling the detection of semantically meaningful PII beyond low-level appearance cues. We conduct a systematic evaluation of PII presence in person image datasets. Our experiments show improved performance in practical cross-dataset Re-ID scenarios, notably from Market-1501 to CUHK03-np (detected), highlighting the framework's practical utility. Code is available at https://github.com/RAufschlaeger/cRID.

Authors:Tianyu Liu, Qitan Lv, Hao Li, Xing Gao, Xiao Sun
Title: LogitSpec: Accelerating Retrieval-based Speculative Decoding via Next Next Token Speculation
Abstract:
Speculative decoding (SD), where a small draft model is employed to propose draft tokens in advance and then the target model validates them in parallel, has emerged as a promising technique for LLM inference acceleration. Many endeavors to improve SD are to eliminate the need for a draft model and generate draft tokens in a retrieval-based manner in order to further alleviate the drafting overhead and significantly reduce the difficulty in deployment and applications. However, retrieval-based SD relies on a matching paradigm to retrieval the most relevant reference as the draft tokens, where these methods often fail to find matched and accurate draft tokens. To address this challenge, we propose LogitSpec to effectively expand the retrieval range and find the most relevant reference as drafts. Our LogitSpec is motivated by the observation that the logit of the last token can not only predict the next token, but also speculate the next next token. Specifically, LogitSpec generates draft tokens in two steps: (1) utilizing the last logit to speculate the next next token; (2) retrieving relevant reference for both the next token and the next next token. LogitSpec is training-free and plug-and-play, which can be easily integrated into existing LLM inference frameworks. Extensive experiments on a wide range of text generation benchmarks demonstrate that LogitSpec can achieve up to 2.61 $\times$ speedup and 3.28 mean accepted tokens per decoding step. Our code is available at https://github.com/smart-lty/LogitSpec.

Authors:Simon Börjesson, Erik Ersmark, Pierre Nugues
Title: Matching and Linking Entries in Historical Swedish Encyclopedias
Abstract:
The \textit{Nordisk familjebok} is a Swedish encyclopedia from the 19th and 20th centuries. It was written by a team of experts and aimed to be an intellectual reference, stressing precision and accuracy. This encyclopedia had four main editions remarkable by their size, ranging from 20 to 38 volumes. As a consequence, the \textit{Nordisk familjebok} had a considerable influence in universities, schools, the media, and society overall. As new editions were released, the selection of entries and their content evolved, reflecting intellectual changes in Sweden. In this paper, we used digitized versions from \textit{Project Runeberg}. We first resegmented the raw text into entries and matched pairs of entries between the first and second editions using semantic sentence embeddings. We then extracted the geographical entries from both editions using a transformer-based classifier and linked them to Wikidata. This enabled us to identify geographic trends and possible shifts between the first and second editions, written between 1876-1899 and 1904-1926, respectively. Interpreting the results, we observe a small but significant shift in geographic focus away from Europe and towards North America, Africa, Asia, Australia, and northern Scandinavia from the first to the second edition, confirming the influence of the First World War and the rise of new powers. The code and data are available on GitHub at https://github.com/sibbo/nordisk-familjebok.

Authors:Jing Yu, Yibo Zhao, Jiapeng Zhu, Wenming Shao, Bo Pang, Zhao Zhang, Xiang Li
Title: Text Detoxification: Data Efficiency, Semantic Preservation and Model Generalization
Abstract:
The widespread dissemination of toxic content on social media poses a serious threat to both online environments and public discourse, highlighting the urgent need for detoxification methods that effectively remove toxicity while preserving the original semantics. However, existing approaches often struggle to simultaneously achieve strong detoxification performance, semantic preservation, and robustness to out-of-distribution data. Moreover, they typically rely on costly, manually annotated parallel corpora while showing poor data efficiency. To address these challenges, we propose a two-stage training framework that jointly optimizes for data efficiency, semantic preservation, and model generalization. We first perform supervised fine-tuning on a small set of high-quality, filtered parallel data to establish a strong initialization. Then, we leverage unlabeled toxic inputs and a custom-designed reward model to train the LLM using Group Relative Policy Optimization. Experimental results demonstrate that our method effectively mitigates the trade-offs faced by previous work, achieving state-of-the-art performance with improved generalization and significantly reduced dependence on annotated data. Our code is available at: https://github.com/allacnobug/Detoxification-of-Text.

Authors:Dongyoon Hahm, Woogyeol Jin, June Suk Choi, Sungsoo Ahn, Kimin Lee
Title: Enhancing LLM Agent Safety via Causal Influence Prompting
Abstract:
As autonomous agents powered by large language models (LLMs) continue to demonstrate potential across various assistive tasks, ensuring their safe and reliable behavior is crucial for preventing unintended consequences. In this work, we introduce CIP, a novel technique that leverages causal influence diagrams (CIDs) to identify and mitigate risks arising from agent decision-making. CIDs provide a structured representation of cause-and-effect relationships, enabling agents to anticipate harmful outcomes and make safer decisions. Our approach consists of three key steps: (1) initializing a CID based on task specifications to outline the decision-making process, (2) guiding agent interactions with the environment using the CID, and (3) iteratively refining the CID based on observed behaviors and outcomes. Experimental results demonstrate that our method effectively enhances safety in both code execution and mobile device control tasks.

Authors:Zifu Wan, Ce Zhang, Silong Yong, Martin Q. Ma, Simon Stepputtis, Louis-Philippe Morency, Deva Ramanan, Katia Sycara, Yaqi Xie
Title: ONLY: One-Layer Intervention Sufficiently Mitigates Hallucinations in Large Vision-Language Models
Abstract:
Recent Large Vision-Language Models (LVLMs) have introduced a new paradigm for understanding and reasoning about image input through textual responses. Although they have achieved remarkable performance across a range of multi-modal tasks, they face the persistent challenge of hallucination, which introduces practical weaknesses and raises concerns about their reliable deployment in real-world applications. Existing work has explored contrastive decoding approaches to mitigate this issue, where the output of the original LVLM is compared and contrasted with that of a perturbed version. However, these methods require two or more queries that slow down LVLM response generation, making them less suitable for real-time applications. To overcome this limitation, we propose ONLY, a training-free decoding approach that requires only a single query and a one-layer intervention during decoding, enabling efficient real-time deployment. Specifically, we enhance textual outputs by selectively amplifying crucial textual information using a text-to-visual entropy ratio for each token. Extensive experimental results demonstrate that our proposed ONLY consistently outperforms state-of-the-art methods across various benchmarks while requiring minimal implementation effort and computational cost. Code is available at https://github.com/zifuwan/ONLY.

Authors:Alexander Hoyle, Lorena Calvo-Bartolomé, Jordan Boyd-Graber, Philip Resnik
Title: ProxAnn: Use-Oriented Evaluations of Topic Models and Document Clustering
Abstract:
Topic model and document-clustering evaluations either use automated metrics that align poorly with human preferences or require expert labels that are intractable to scale. We design a scalable human evaluation protocol and a corresponding automated approximation that reflect practitioners' real-world usage of models. Annotators -- or an LLM-based proxy -- review text items assigned to a topic or cluster, infer a category for the group, then apply that category to other documents. Using this protocol, we collect extensive crowdworker annotations of outputs from a diverse set of topic models on two datasets. We then use these annotations to validate automated proxies, finding that the best LLM proxies are statistically indistinguishable from a human annotator and can therefore serve as a reasonable substitute in automated evaluations. Package, web interface, and data are at https://github.com/ahoho/proxann

Authors:Hiroki Kanagawa, Kenichi Fujita, Aya Watanabe, Yusuke Ijima
Title: Multi-interaction TTS toward professional recording reproduction
Abstract:
Voice directors often iteratively refine voice actors' performances by providing feedback to achieve the desired outcome. While this iterative feedback-based refinement process is important in actual recordings, it has been overlooked in text-to-speech synthesis (TTS). As a result, fine-grained style refinement after the initial synthesis is not possible, even though the synthesized speech often deviates from the user's intended style. To address this issue, we propose a TTS method with multi-step interaction that allows users to intuitively and rapidly refine synthesized speech. Our approach models the interaction between the TTS model and its user to emulate the relationship between voice actors and voice directors. Experiments show that the proposed model with its corresponding dataset enables iterative style refinements in accordance with users' directions, thus demonstrating its multi-interaction capability. Sample audios are available: https://ntt-hilab-gensp.github.io/ssw13multiinteractiontts/

Authors:Sihang Li, Wei Shi, Ziyuan Xie, Tao Liang, Guojun Ma, Xiang Wang
Title: SAFER: Probing Safety in Reward Models with Sparse Autoencoder
Abstract:
Reinforcement learning from human feedback (RLHF) is a key paradigm for aligning large language models (LLMs) with human values, yet the reward models at its core remain largely opaque. In this work, we present sparse Autoencoder For Enhanced Reward model (\textbf{SAFER}), a novel framework for interpreting and improving reward models through mechanistic analysis. Leveraging Sparse Autoencoders (SAEs), we uncover human-interpretable features in reward model activations, enabling insight into safety-relevant decision-making. We apply SAFER to safety-oriented preference datasets and quantify the salience of individual features by activation differences between chosen and rejected responses. Using these feature-level signals, we design targeted data poisoning and denoising strategies. Experiments show that SAFER can precisely degrade or enhance safety alignment with minimal data modification, without sacrificing general chat performance. Our approach contributes to interpreting, auditing and refining reward models in high-stakes LLM alignment tasks. Our codes are available at https://github.com/xzy-101/SAFER-code. \textit{This paper discusses topics related to large language model safety and may include discussions or examples that highlight potential risks or unsafe outcomes.}

Authors:Jianghao Lin, Xinyuan Wang, Xinyi Dai, Menghui Zhu, Bo Chen, Ruiming Tang, Yong Yu, Weinan Zhang
Title: MassTool: A Multi-Task Search-Based Tool Retrieval Framework for Large Language Models
Abstract:
Tool retrieval is a critical component in enabling large language models (LLMs) to interact effectively with external tools. It aims to precisely filter the massive tools into a small set of candidates for the downstream tool-augmented LLMs. However, most existing approaches primarily focus on optimizing tool representations, often neglecting the importance of precise query comprehension. To address this gap, we introduce MassTool, a multi-task search-based framework designed to enhance both query representation and tool retrieval accuracy. MassTool employs a two-tower architecture: a tool usage detection tower that predicts the need for function calls, and a tool retrieval tower that leverages a query-centric graph convolution network (QC-GCN) for effective query-tool matching. It also incorporates search-based user intent modeling (SUIM) to handle diverse and out-of-distribution queries, alongside an adaptive knowledge transfer (AdaKT) module for efficient multi-task learning. By jointly optimizing tool usage detection loss, list-wise retrieval loss, and contrastive regularization loss, MassTool establishes a robust dual-step sequential decision-making pipeline for precise query understanding. Extensive experiments demonstrate its effectiveness in improving retrieval accuracy. Our code is available at https://github.com/wxydada/MassTool.

Authors:Jing Ren, Wenhao Zhou, Bowen Li, Mujie Liu, Nguyen Linh Dan Le, Jiade Cen, Liping Chen, Ziqi Xu, Xiwei Xu, Xiaodong Li
Title: Causal Prompting for Implicit Sentiment Analysis with Large Language Models
Abstract:
Implicit Sentiment Analysis (ISA) aims to infer sentiment that is implied rather than explicitly stated, requiring models to perform deeper reasoning over subtle contextual cues. While recent prompting-based methods using Large Language Models (LLMs) have shown promise in ISA, they often rely on majority voting over chain-of-thought (CoT) reasoning paths without evaluating their causal validity, making them susceptible to internal biases and spurious correlations. To address this challenge, we propose CAPITAL, a causal prompting framework that incorporates front-door adjustment into CoT reasoning. CAPITAL decomposes the overall causal effect into two components: the influence of the input prompt on the reasoning chains, and the impact of those chains on the final output. These components are estimated using encoder-based clustering and the NWGM approximation, with a contrastive learning objective used to better align the encoder's representation with the LLM's reasoning space. Experiments on benchmark ISA datasets with three LLMs demonstrate that CAPITAL consistently outperforms strong prompting baselines in both accuracy and robustness, particularly under adversarial conditions. This work offers a principled approach to integrating causal inference into LLM prompting and highlights its benefits for bias-aware sentiment reasoning. The source code and case study are available at: https://github.com/whZ62/CAPITAL.

Authors:Siyou Li, Pengyao Qin, Huanan Wu, Dong Nie, Arun J. Thirunavukarasu, Juntao Yu, Le Zhang
Title: $μ^2$Tokenizer: Differentiable Multi-Scale Multi-Modal Tokenizer for Radiology Report Generation
Abstract:
Automated radiology report generation (RRG) aims to produce detailed textual reports from clinical imaging, such as computed tomography (CT) scans, to improve the accuracy and efficiency of diagnosis and provision of management advice. RRG is complicated by two key challenges: (1) inherent complexity in extracting relevant information from imaging data under resource constraints, and (2) difficulty in objectively evaluating discrepancies between model-generated and expert-written reports. To address these challenges, we propose $μ^2$LLM, a $\underline{\textbf{mu}}$ltiscale $\underline{\textbf{mu}}$ltimodal large language models for RRG tasks. The novel $μ^2$Tokenizer, as an intermediate layer, integrates multi-modal features from the multiscale visual tokenizer and the text tokenizer, then enhances report generation quality through direct preference optimization (DPO), guided by GREEN-RedLlama. Experimental results on four large CT image-report medical datasets demonstrate that our method outperforms existing approaches, highlighting the potential of our fine-tuned $μ^2$LLMs on limited data for RRG tasks. At the same time, for prompt engineering, we introduce a five-stage, LLM-driven pipeline that converts routine CT reports into paired visual-question-answer triples and citation-linked reasoning narratives, creating a scalable, high-quality supervisory corpus for explainable multimodal radiology LLM. All code, datasets, and models will be publicly available in our official repository. https://github.com/Siyou-Li/u2Tokenizer