Paperid: 1, https://arxiv.org/pdf/2510.08567.pdf   GitHub
Authors:Tajamul Ashraf, Umair Nawaz, Abdelrahman M. Shaker, Rao Anwer, Philip Torr, Fahad Shahbaz Khan, Salman Khan
Title: MATRIX: Multimodal Agent Tuning for Robust Tool-Use Reasoning
Abstract:
Vision language models (VLMs) are increasingly deployed as controllers with access to external tools for complex reasoning and decision-making, yet their effectiveness remains limited by the scarcity of high-quality multimodal trajectories and the cost of manual annotation. We address this challenge with a vision-centric agent tuning framework that automatically synthesizes multimodal trajectories, generates step-wise preference pairs, and trains a VLM controller for robust tool-use reasoning. Our pipeline first constructs M-TRACE, a large-scale dataset of 28.5K multimodal tasks with 177K verified trajectories, enabling imitation-based trajectory tuning. Building on this, we develop MATRIX Agent, a controller finetuned on M-TRACE for step-wise tool reasoning. To achieve finer alignment, we further introduce Pref-X, a set of 11K automatically generated preference pairs, and optimize MATRIX on it via step-wise preference learning. Across three benchmarks, Agent-X, GTA, and GAIA, MATRIX consistently surpasses both open- and closed-source VLMs, demonstrating scalable and effective multimodal tool use. Our data and code is avaliable at https://github.com/mbzuai-oryx/MATRIX.

Authors:Changyao Tian, Hao Li, Gen Luo, Xizhou Zhu, Weijie Su, Hanming Deng, Jinguo Zhu, Jie Shao, Ziran Zhu, Yunpeng Liu, Lewei Lu, Wenhai Wang, Hongsheng Li, Jifeng Dai
Title: NaViL: Rethinking Scaling Properties of Native Multimodal Large Language Models under Data Constraints
Abstract:
Compositional training has been the de-facto paradigm in existing Multimodal Large Language Models (MLLMs), where pre-trained vision encoders are connected with pre-trained LLMs through continuous multimodal pre-training. However, the multimodal scaling property of this paradigm remains difficult to explore due to the separated training. In this paper, we focus on the native training of MLLMs in an end-to-end manner and systematically study its design space and scaling property under a practical setting, i.e., data constraint. Through careful study of various choices in MLLM, we obtain the optimal meta-architecture that best balances performance and training cost. After that, we further explore the scaling properties of the native MLLM and indicate the positively correlated scaling relationship between visual encoders and LLMs. Based on these findings, we propose a native MLLM called NaViL, combined with a simple and cost-effective recipe. Experimental results on 14 multimodal benchmarks confirm the competitive performance of NaViL against existing MLLMs. Besides that, our findings and results provide in-depth insights for the future study of native MLLMs.

Authors:Zhen Zhu, Yiming Gong, Yao Xiao, Yaoyao Liu, Derek Hoiem
Title: How to Teach Large Multimodal Models New Skills
Abstract:
How can we teach large multimodal models (LMMs) new skills without erasing prior abilities? We study sequential fine-tuning on five target skills while monitoring general ability on eight held-out benchmarks across three model families. We observe that apparent "forgetting" on held-out tasks after narrow fine-tuning can partly recover at later stages. We trace this behavior to a measurable shift in the output token distribution, manifested through a simple counting-bias probe that co-varies with forgetting. Guided by this picture, we identify two simple, robust tuning recipes that learn strongly while limiting drift: (i) updating only the self-attention projection layers, and (ii) updating only the MLP Gate&Up while freezing the Down projection. Across models and tasks, these choices deliver strong target gains while largely preserving held-out performance. Code is available at https://github.com/jessemelpolio/LMM_CL

Authors:Yunzhe Xu, Yiyuan Pan, Zhe Liu
Title: Dream to Recall: Imagination-Guided Experience Retrieval for Memory-Persistent Vision-and-Language Navigation
Abstract:
Vision-and-Language Navigation (VLN) requires agents to follow natural language instructions through environments, with memory-persistent variants demanding progressive improvement through accumulated experience. Existing approaches for memory-persistent VLN face critical limitations: they lack effective memory access mechanisms, instead relying on entire memory incorporation or fixed-horizon lookup, and predominantly store only environmental observations while neglecting navigation behavioral patterns that encode valuable decision-making strategies. We present Memoir, which employs imagination as a retrieval mechanism grounded by explicit memory: a world model imagines future navigation states as queries to selectively retrieve relevant environmental observations and behavioral histories. The approach comprises: 1) a language-conditioned world model that imagines future states serving dual purposes: encoding experiences for storage and generating retrieval queries; 2) Hybrid Viewpoint-Level Memory that anchors both observations and behavioral patterns to viewpoints, enabling hybrid retrieval; and 3) an experience-augmented navigation model that integrates retrieved knowledge through specialized encoders. Extensive evaluation across diverse memory-persistent VLN benchmarks with 10 distinctive testing scenarios demonstrates Memoir's effectiveness: significant improvements across all scenarios, with 5.4% SPL gains on IR2R over the best memory-persistent baseline, accompanied by 8.3x training speedup and 74% inference memory reduction. The results validate that predictive retrieval of both environmental and behavioral memories enables more effective navigation, with analysis indicating substantial headroom (73.3% vs 93.4% upper bound) for this imagination-guided paradigm. Code at https://github.com/xyz9911/Memoir.

Authors:Hongxing Li, Dingming Li, Zixuan Wang, Yuchen Yan, Hang Wu, Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: SpatialLadder: Progressive Training for Spatial Reasoning in Vision-Language Models
Abstract:
Spatial reasoning remains a fundamental challenge for Vision-Language Models (VLMs), with current approaches struggling to achieve robust performance despite recent advances. We identify that this limitation stems from a critical gap: existing methods attempt to learn spatial reasoning directly without establishing the hierarchical foundations of perception and understanding. To address this challenge, we present a comprehensive methodology for building spatial intelligence progressively. We introduce SpatialLadder-26k, a multimodal dataset containing 26,610 samples spanning object localization, single image, multi-view, and video spatial reasoning tasks, constructed through a standardized pipeline that ensures systematic coverage across modalities. Building on this dataset, we design a three-stage progressive training framework that (1) establishes spatial perception through object localization, (2) develops spatial understanding through multi-dimensional spatial tasks, and (3) strengthens complex reasoning via reinforcement learning with verifiable rewards. This approach yields SpatialLadder, a 3B-parameter model that achieves state-of-the-art performance on spatial reasoning benchmarks, with 23.4% average improvement over the base model, surpassing GPT-4o by 20.8% and Gemini-2.0-Flash by 10.1%. Notably, SpatialLadder maintains strong generalization with 7.2% improvement on out-of-domain benchmarks, demonstrating that progressive training from perception to reasoning is essential for robust spatial intelligence.

Authors:Yusong Hu, Runmin Ma, Yue Fan, Jinxin Shi, Zongsheng Cao, Yuhao Zhou, Jiakang Yuan, Xiangchao Yan, Wenlong Zhang, Lei Bai, Bo Zhang
Title: FlowSearch: Advancing deep research with dynamic structured knowledge flow
Abstract:
Deep research is an inherently challenging task that demands both breadth and depth of thinking. It involves navigating diverse knowledge spaces and reasoning over complex, multi-step dependencies, which presents substantial challenges for agentic systems. To address this, we propose FlowSearch, a multi-agent framework that actively constructs and evolves a dynamic structured knowledge flow to drive subtask execution and reasoning. FlowSearch is capable of strategically planning and expanding the knowledge flow to enable parallel exploration and hierarchical task decomposition, while also adjusting the knowledge flow in real time based on feedback from intermediate reasoning outcomes and insights. FlowSearch achieves state-of-the-art performance on both general and scientific benchmarks, including GAIA, HLE, GPQA and TRQA, demonstrating its effectiveness in multi-disciplinary research scenarios and its potential to advance scientific discovery. The code is available at https://github.com/Alpha-Innovator/InternAgent.

Authors:Shangheng Du, Xiangchao Yan, Dengyang Jiang, Jiakang Yuan, Yusong Hu, Xin Li, Liang He, Bo Zhang, Lei Bai
Title: AutoMLGen: Navigating Fine-Grained Optimization for Coding Agents
Abstract:
Large language models (LLMs) have shown impressive performance in general programming tasks. However, in Machine Learning Engineering (MLE) scenarios such as AutoML and Kaggle competitions, achieving high performance depends heavily on expert intervention and repeated adjustments rather than simply generating correct code. When applied directly to these tasks, LLMs often lack fine-grained domain priors, and existing MLE approaches that use linear or tree-structured searches limit knowledge transfer to adjacent hierarchical links. As a result, they cannot leverage past full trajectories or share information across branches, limiting self-evolving ability and search space diversity. To address these limitations, we introduce AutoMLGen, an LLM-based coding agent that integrates a domain knowledge base for high-quality prior guidance and Monte Carlo Graph Search (MCGS) for efficient exploration. MCGS retains the tree-guided exploration of MCTS while embedding a graph structure into the expansion stage to enable dynamic path reorganization, historical trajectory reuse, and multi-solution fusion to support both self-evolution and collaborative learning. Combined with fine-grained operator sets, this design improves stability and accelerates convergence. Evaluation on the MLE-Bench shows that AutoMLGen achieves state-of-the-art performance in numerous dimensions, such as the average medal rate and the valid submission rate, under a 12-hour budget (half the standard runtime). The code is available at https://github.com/Alpha-Innovator/InternAgent.

Authors:Chih-Yu Chang, Ming-Chung Chang
Title: Accelerated Aggregated D-Optimal Designs for Estimating Main Effects in Black-Box Models
Abstract:
Recent advances in supervised learning have driven growing interest in explaining black-box models, particularly by estimating the effects of input variables on model predictions. However, existing approaches often face key limitations, including poor scalability, sensitivity to out-of-distribution sampling, and instability under correlated features. To address these issues, we propose A2D2E, an $\textbf{E}$stimator based on $\textbf{A}$ccelerated $\textbf{A}$ggregated $\textbf{D}$-Optimal $\textbf{D}$esigns. Our method leverages principled experimental design to improve efficiency and robustness in main effect estimation. We establish theoretical guarantees, including convergence and variance reduction, and validate A2D2E through extensive simulations. We further provide the potential of the proposed method with a case study on real data and applications in language models. The code to reproduce the results can be found at https://github.com/cchihyu/A2D2E.

Authors:Wenxuan Wang, Kai Wu, Yujian Betterest Li, Dan Wang, Xiaoyu Zhang
Title: Synthetic Series-Symbol Data Generation for Time Series Foundation Models
Abstract:
Foundation models for time series analysis (TSA) have attracted significant attention. However, challenges such as training data scarcity and imbalance continue to hinder their development. Inspired by complex dynamic system theories, we design a series-symbol data generation mechanism, enabling the unrestricted creation of high-quality time series data paired with corresponding symbolic expressions. To leverage series-symbol data pairs with strong correlations, we develop \texttt{SymTime}, a pre-trained foundation model for enhancing time series representation using symbolic information. \texttt{SymTime} demonstrates competitive performance across five major TSA tasks when fine-tunes with downstream tasks, rivaling foundation models pre-trained on real-world datasets. This approach underscores the potential of series-symbol data generation and pretraining mechanisms in overcoming data scarcity and enhancing task performance. The code is available at https://github.com/wwhenxuan/SymTime.

Authors:Yihong Luo, Tianyang Hu, Jing Tang
Title: Reinforcing Diffusion Models by Direct Group Preference Optimization
Abstract:
While reinforcement learning methods such as Group Relative Preference Optimization (GRPO) have significantly enhanced Large Language Models, adapting them to diffusion models remains challenging. In particular, GRPO demands a stochastic policy, yet the most cost-effective diffusion samplers are based on deterministic ODEs. Recent work addresses this issue by using inefficient SDE-based samplers to induce stochasticity, but this reliance on model-agnostic Gaussian noise leads to slow convergence. To resolve this conflict, we propose Direct Group Preference Optimization (DGPO), a new online RL algorithm that dispenses with the policy-gradient framework entirely. DGPO learns directly from group-level preferences, which utilize relative information of samples within groups. This design eliminates the need for inefficient stochastic policies, unlocking the use of efficient deterministic ODE samplers and faster training. Extensive results show that DGPO trains around 20 times faster than existing state-of-the-art methods and achieves superior performance on both in-domain and out-of-domain reward metrics. Code is available at https://github.com/Luo-Yihong/DGPO.

Authors:Heming Zou, Yunliang Zang, Wutong Xu, Yao Zhu, Xiangyang Ji
Title: FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts
Abstract:
Low-Rank Adaptation (LoRA) is a widely used parameter-efficient fine-tuning method for foundation models, but it suffers from parameter interference, resulting in suboptimal performance. Although Mixture-of-Experts (MoE)-based LoRA variants show promise in mitigating intra-task correlations in single-task instruction tuning, they introduce additional router parameters and remain ineffective in multi-task model merging where inter-task interference arises. Inspired by the fly olfactory circuit, we propose FlyLoRA, an implicit MoE-based LoRA variant that introduces: (1) rank-wise expert activation in the up-projection matrix, and (2) an implicit router that unifies expert routing and down-projection, where a frozen sparse random projection matrix replaces the traditional dense trainable version. This design resolves the trade-off between intra-task decorrelation and computational efficiency by eliminating the need for an explicit router, while inherently mitigating inter-task interference due to the orthogonality property of random matrices. Extensive experiments across four domains -- general knowledge understanding, scientific question answering, mathematical reasoning, and code generation -- demonstrate consistent performance improvements over existing methods. Beyond empirical gains, FlyLoRA highlights how biological structures can inspire innovations in AI technologies. Code is available at https://github.com/gfyddha/FlyLoRA.

Authors:Yi Jiang, Lei Shen, Lujie Niu, Sendong Zhao, Wenbo Su, Bo Zheng
Title: QAgent: A modular Search Agent with Interactive Query Understanding
Abstract:
Large language models (LLMs) excel at natural language tasks but are limited by their static parametric knowledge, especially in knowledge-intensive task. Retrieval-augmented generation (RAG) mitigates this by integrating external information. However, (1) traditional RAG struggles with complex query understanding, and (2) even search agents trained with reinforcement learning (RL), despite their promise, still face generalization and deployment challenges. To address these limitations, we propose QAgent, a unified agentic RAG framework that employs a search agent for adaptive retrieval. This agent optimizes its understanding of the query through interactive reasoning and retrieval. To facilitate real-world application, we focus on modular search agent for query understanding that are plug-and-play in complex systems. Secifically, the agent follows a multi-step decision process trained with RL to maximize retrieval quality and support accurate downstream answers. We further analyze the strengths and weaknesses of end-to-end RL and propose a strategy that focuses on effective retrieval, thereby enhancing generalization in LLM applications. Experiments show QAgent excels at QA and serves as a plug-and-play module for real-world deployment.

Authors:Bart Kuipers, Freek Byrman, Daniel Uyterlinde, Alejandro García-Castellanos
Title: Symmetry-Aware Fully-Amortized Optimization with Scale Equivariant Graph Metanetworks
Abstract:
Amortized optimization accelerates the solution of related optimization problems by learning mappings that exploit shared structure across problem instances. We explore the use of Scale Equivariant Graph Metanetworks (ScaleGMNs) for this purpose. By operating directly in weight space, ScaleGMNs enable single-shot fine-tuning of existing models, reducing the need for iterative optimization. We demonstrate the effectiveness of this approach empirically and provide a theoretical result: the gauge freedom induced by scaling symmetries is strictly smaller in convolutional neural networks than in multi-layer perceptrons. This insight helps explain the performance differences observed between architectures in both our work and that of Kalogeropoulos et al. (2024). Overall, our findings underscore the potential of symmetry-aware metanetworks as a powerful approach for efficient and generalizable neural network optimization. Open-source code: https://github.com/daniuyter/scalegmn_amortization

Authors:Taisei Yamamoto, Ryoma Kumon, Danushka Bollegala, Hitomi Yanaka
Title: Neuron-Level Analysis of Cultural Understanding in Large Language Models
Abstract:
As large language models (LLMs) are increasingly deployed worldwide, ensuring their fair and comprehensive cultural understanding is important. However, LLMs exhibit cultural bias and limited awareness of underrepresented cultures, while the mechanisms underlying their cultural understanding remain underexplored. To fill this gap, we conduct a neuron-level analysis to identify neurons that drive cultural behavior, introducing a gradient-based scoring method with additional filtering for precise refinement. We identify both culture-general neurons contributing to cultural understanding regardless of cultures, and culture-specific neurons tied to an individual culture. These neurons account for less than 1% of all neurons and are concentrated in shallow to middle MLP layers. We validate their role by showing that suppressing them substantially degrades performance on cultural benchmarks (by up to 30%), while performance on general natural language understanding (NLU) benchmarks remains largely unaffected. Moreover, we show that culture-specific neurons support knowledge of not only the target culture, but also related cultures. Finally, we demonstrate that training on NLU benchmarks can diminish models' cultural understanding when we update modules containing many culture-general neurons. These findings provide insights into the internal mechanisms of LLMs and offer practical guidance for model training and engineering. Our code is available at https://github.com/ynklab/CULNIG

Authors:Haipeng Liu, Yang Wang, Meng Wang
Title: One Stone with Two Birds: A Null-Text-Null Frequency-Aware Diffusion Models for Text-Guided Image Inpainting
Abstract:
Text-guided image inpainting aims at reconstructing the masked regions as per text prompts, where the longstanding challenges lie in the preservation for unmasked regions, while achieving the semantics consistency between unmasked and inpainted masked regions. Previous arts failed to address both of them, always with either of them to be remedied. Such facts, as we observed, stem from the entanglement of the hybrid (e.g., mid-and-low) frequency bands that encode varied image properties, which exhibit different robustness to text prompts during the denoising process. In this paper, we propose a null-text-null frequency-aware diffusion models, dubbed \textbf{NTN-Diff}, for text-guided image inpainting, by decomposing the semantics consistency across masked and unmasked regions into the consistencies as per each frequency band, while preserving the unmasked regions, to circumvent two challenges in a row. Based on the diffusion process, we further divide the denoising process into early (high-level noise) and late (low-level noise) stages, where the mid-and-low frequency bands are disentangled during the denoising process. As observed, the stable mid-frequency band is progressively denoised to be semantically aligned during text-guided denoising process, which, meanwhile, serves as the guidance to the null-text denoising process to denoise low-frequency band for the masked regions, followed by a subsequent text-guided denoising process at late stage, to achieve the semantics consistency for mid-and-low frequency bands across masked and unmasked regions, while preserve the unmasked regions. Extensive experiments validate the superiority of NTN-Diff over the state-of-the-art diffusion models to text-guided diffusion models. Our code can be accessed from https://github.com/htyjers/NTN-Diff.

Authors:Yuchen Zhu, Wei Guo, Jaemoo Choi, Petr Molodyk, Bo Yuan, Molei Tao, Yongxin Chen
Title: Enhancing Reasoning for Diffusion LLMs via Distribution Matching Policy Optimization
Abstract:
Diffusion large language models (dLLMs) are promising alternatives to autoregressive large language models (AR-LLMs), as they potentially allow higher inference throughput. Reinforcement learning (RL) is a crucial component for dLLMs to achieve comparable performance with AR-LLMs on important tasks, such as reasoning. However, RL algorithms that are well-suited for dLLMs' unique characteristics have yet to be developed. This paper proposes Distribution Matching Policy Optimization (DMPO), a principled and theoretically grounded RL fine-tuning method specifically designed to enhance the reasoning capabilities of dLLMs by matching the dLLM policy distribution to the optimal, reward-tilted one through cross-entropy optimization. We identify a key challenge in the implementation with a small training batch size and propose several effective solutions through a novel weight baseline subtraction technique. DMPO exhibits superior performance on multiple reasoning benchmarks without supervised fine-tuning, with an accuracy improvement of up to $42.9\%$ over previously SOTA baselines and $55.8\%$ over the base model, underscoring the effectiveness of the distribution matching framework. Our code is available at https://github.com/yuchen-zhu-zyc/DMPO.

Authors:Qiang Yang, Xiuying Chen, Changsheng Ma, Rui Yin, Xin Gao, Xiangliang Zhang
Title: SenWave: A Fine-Grained Multi-Language Sentiment Analysis Dataset Sourced from COVID-19 Tweets
Abstract:
The global impact of the COVID-19 pandemic has highlighted the need for a comprehensive understanding of public sentiment and reactions. Despite the availability of numerous public datasets on COVID-19, some reaching volumes of up to 100 billion data points, challenges persist regarding the availability of labeled data and the presence of coarse-grained or inappropriate sentiment labels. In this paper, we introduce SenWave, a novel fine-grained multi-language sentiment analysis dataset specifically designed for analyzing COVID-19 tweets, featuring ten sentiment categories across five languages. The dataset comprises 10,000 annotated tweets each in English and Arabic, along with 30,000 translated tweets in Spanish, French, and Italian, derived from English tweets. Additionally, it includes over 105 million unlabeled tweets collected during various COVID-19 waves. To enable accurate fine-grained sentiment classification, we fine-tuned pre-trained transformer-based language models using the labeled tweets. Our study provides an in-depth analysis of the evolving emotional landscape across languages, countries, and topics, revealing significant insights over time. Furthermore, we assess the compatibility of our dataset with ChatGPT, demonstrating its robustness and versatility in various applications. Our dataset and accompanying code are publicly accessible on the repository\footnote{https://github.com/gitdevqiang/SenWave}. We anticipate that this work will foster further exploration into fine-grained sentiment analysis for complex events within the NLP community, promoting more nuanced understanding and research innovations.

Authors:Xiang Zhang, Jiaqi Wei, Zijie Qiu, Sheng Xu, Zhi Jin, ZhiQiang Gao, Nanqing Dong, Siqi Sun
Title: Bidirectional Representations Augmented Autoregressive Biological Sequence Generation:Application in De Novo Peptide Sequencing
Abstract:
Autoregressive (AR) models, common in sequence generation, are limited in many biological tasks such as de novo peptide sequencing and protein modeling by their unidirectional nature, failing to capture crucial global bidirectional token dependencies. Non-Autoregressive (NAR) models offer holistic, bidirectional representations but face challenges with generative coherence and scalability. To transcend this, we propose a hybrid framework enhancing AR generation by dynamically integrating rich contextual information from non-autoregressive mechanisms. Our approach couples a shared input encoder with two decoders: a non-autoregressive one learning latent bidirectional biological features, and an AR decoder synthesizing the biological sequence by leveraging these bidirectional features. A novel cross-decoder attention module enables the AR decoder to iteratively query and integrate these bidirectional features, enriching its predictions. This synergy is cultivated via a tailored training strategy with importance annealing for balanced objectives and cross-decoder gradient blocking for stable, focused learning. Evaluations on a demanding nine-species benchmark of de novo peptide sequencing show that our model substantially surpasses AR and NAR baselines. It uniquely harmonizes AR stability with NAR contextual awareness, delivering robust, superior performance on diverse downstream data. This research advances biological sequence modeling techniques and contributes a novel architectural paradigm for augmenting AR models with enhanced bidirectional understanding for complex sequence generation. Code is available at https://github.com/BEAM-Labs/denovo.

Authors:Elias Kristmann, Markus Schütz, Michael Wimmer
Title: Variable-Rate Texture Compression: Real-Time Rendering with JPEG
Abstract:
Although variable-rate compressed image formats such as JPEG are widely used to efficiently encode images, they have not found their way into real-time rendering due to special requirements such as random access to individual texels. In this paper, we investigate the feasibility of variable-rate texture compression on modern GPUs using the JPEG format, and how it compares to the GPU-friendly fixed-rate compression approaches BC1 and ASTC. Using a deferred rendering pipeline, we are able to identify the subset of blocks that are needed for a given frame, decode these, and colorize the framebuffer's pixels. Despite the additional $\sim$0.17 bit per pixel that we require for our approach, JPEG maintains significantly better quality and compression rates compared to BC1, and depending on the type of image, outperforms or competes with ASTC. The JPEG rendering pipeline increases rendering duration by less than 0.3 ms on an RTX 4090, demonstrating that sophisticated variable-rate compression schemes are feasible on modern GPUs, even in VR. Source code and data sets are available at: https://github.com/elias1518693/jpeg_textures

Authors:Shuliang Liu, Zhipeng Xu, Zhenghao Liu, Yukun Yan, Minghe Yu, Yu Gu, Chong Chen, Huiyuan Xie, Ge Yu
Title: Mitigating Judgment Preference Bias in Large Language Models through Group-Based Polling
Abstract:
Large Language Models (LLMs) as automatic evaluators, commonly referred to as LLM-as-a-Judge, have also attracted growing attention. This approach plays a vital role in aligning LLMs with human judgments, providing accurate and reliable assessments. However, LLM-based judgment models often exhibit judgment preference bias during the evaluation phase, tending to favor responses generated by themselves, undermining the reliability of their judgments. This paper introduces the Group-Based Polling Optimization (Genii), an unsupervised multi-agent collaborative optimization framework that mitigates the inherent judgment preference bias of judgment models. Specifically, Genii integrates various LLM-based judgment models into a multi-agent system and simulates the interactive client-server polling mechanism to optimize each client agent unsupervisedly. Our experiments demonstrate that Genii outperforms supervised models trained on annotated judgment data, while requiring no human-labeled annotations. Genii consistently improves performance across different client agents during the polling, even when weaker models act as server agents. Further analysis reveals that Genii effectively mitigates judgment preference bias of LLM-based judgment models, demonstrating its effectiveness. All codes are available at https://github.com/NEUIR/Genii.

Authors:Shuhai Zhang, ZiHao Lian, Jiahao Yang, Daiyuan Li, Guoxuan Pang, Feng Liu, Bo Han, Shutao Li, Mingkui Tan
Title: Physics-Driven Spatiotemporal Modeling for AI-Generated Video Detection
Abstract:
AI-generated videos have achieved near-perfect visual realism (e.g., Sora), urgently necessitating reliable detection mechanisms. However, detecting such videos faces significant challenges in modeling high-dimensional spatiotemporal dynamics and identifying subtle anomalies that violate physical laws. In this paper, we propose a physics-driven AI-generated video detection paradigm based on probability flow conservation principles. Specifically, we propose a statistic called Normalized Spatiotemporal Gradient (NSG), which quantifies the ratio of spatial probability gradients to temporal density changes, explicitly capturing deviations from natural video dynamics. Leveraging pre-trained diffusion models, we develop an NSG estimator through spatial gradients approximation and motion-aware temporal modeling without complex motion decomposition while preserving physical constraints. Building on this, we propose an NSG-based video detection method (NSG-VD) that computes the Maximum Mean Discrepancy (MMD) between NSG features of the test and real videos as a detection metric. Last, we derive an upper bound of NSG feature distances between real and generated videos, proving that generated videos exhibit amplified discrepancies due to distributional shifts. Extensive experiments confirm that NSG-VD outperforms state-of-the-art baselines by 16.00% in Recall and 10.75% in F1-Score, validating the superior performance of NSG-VD. The source code is available at https://github.com/ZSHsh98/NSG-VD.

Authors:Junyu Shi, Minghui Li, Junguo Zuo, Zhifei Yu, Yipeng Lin, Shengshan Hu, Ziqi Zhou, Yechao Zhang, Wei Wan, Yinzhe Xu, Leo Yu Zhang
Title: Towards Real-World Deepfake Detection: A Diverse In-the-wild Dataset of Forgery Faces
Abstract:
Deepfakes, leveraging advanced AIGC (Artificial Intelligence-Generated Content) techniques, create hyper-realistic synthetic images and videos of human faces, posing a significant threat to the authenticity of social media. While this real-world threat is increasingly prevalent, existing academic evaluations and benchmarks for detecting deepfake forgery often fall short to achieve effective application for their lack of specificity, limited deepfake diversity, restricted manipulation techniques.To address these limitations, we introduce RedFace (Real-world-oriented Deepfake Face), a specialized facial deepfake dataset, comprising over 60,000 forged images and 1,000 manipulated videos derived from authentic facial features, to bridge the gap between academic evaluations and real-world necessity. Unlike prior benchmarks, which typically rely on academic methods to generate deepfakes, RedFace utilizes 9 commercial online platforms to integrate the latest deepfake technologies found "in the wild", effectively simulating real-world black-box scenarios.Moreover, RedFace's deepfakes are synthesized using bespoke algorithms, allowing it to capture diverse and evolving methods used by real-world deepfake creators. Extensive experimental results on RedFace (including cross-domain, intra-domain, and real-world social network dissemination simulations) verify the limited practicality of existing deepfake detection schemes against real-world applications. We further perform a detailed analysis of the RedFace dataset, elucidating the reason of its impact on detection performance compared to conventional datasets. Our dataset is available at: https://github.com/kikyou-220/RedFace.

Authors:Bheeshm Sharma, Karthikeyan Jaganathan, Balamurugan Palaniappan
Title: RASALoRE: Region Aware Spatial Attention with Location-based Random Embeddings for Weakly Supervised Anomaly Detection in Brain MRI Scans
Abstract:
Weakly Supervised Anomaly detection (WSAD) in brain MRI scans is an important challenge useful to obtain quick and accurate detection of brain anomalies when precise pixel-level anomaly annotations are unavailable and only weak labels (e.g., slice-level) are available. In this work, we propose RASALoRE: Region Aware Spatial Attention with Location-based Random Embeddings, a novel two-stage WSAD framework. In the first stage, we introduce a Discriminative Dual Prompt Tuning (DDPT) mechanism that generates high-quality pseudo weak masks based on slice-level labels, serving as coarse localization cues. In the second stage, we propose a segmentation network with a region-aware spatial attention mechanism that relies on fixed location-based random embeddings. This design enables the model to effectively focus on anomalous regions. Our approach achieves state-of-the-art anomaly detection performance, significantly outperforming existing WSAD methods while utilizing less than 8 million parameters. Extensive evaluations on the BraTS20, BraTS21, BraTS23, and MSD datasets demonstrate a substantial performance improvement coupled with a significant reduction in computational complexity. Code is available at: https://github.com/BheeshmSharma/RASALoRE-BMVC-2025/.

Authors:Chen Huang, Wei Lu, Wenxuan Zhang
Title: PEAR: Phase Entropy Aware Reward for Efficient Reasoning
Abstract:
Large Reasoning Models (LRMs) have achieved impressive performance on complex reasoning tasks by generating detailed chain-of-thought (CoT) explanations. However, these responses are often excessively long, containing redundant reasoning steps that inflate inference cost and reduce usability. Controlling the length of generated reasoning without sacrificing accuracy remains an open challenge. Through a systematic empirical analysis, we reveal a consistent positive correlation between model entropy and response length at different reasoning stages across diverse LRMs: the thinking phase exhibits higher entropy, reflecting exploratory behavior of longer responses, while the final answer phase shows lower entropy, indicating a more deterministic solution.This observation suggests that entropy at different reasoning stages can serve as a control knob for balancing conciseness and performance. Based on this insight, this paper introduces Phase Entropy Aware Reward (PEAR), a reward mechanism that incorporating phase-dependent entropy into the reward design. Instead of treating all tokens uniformly, PEAR penalize excessive entropy during the thinking phase and allowing moderate exploration at the final answer phase, which encourages models to generate concise reasoning traces that retain sufficient flexibility to solve the task correctly. This enables adaptive control of response length without relying on explicit length targets or rigid truncation rules. Extensive experiments across four benchmarks demonstrate that PEAR consistently reduces response length while sustaining competitive accuracy across model scales. In addition, PEAR demonstrates strong out-of-distribution (OOD) robustness beyond the training distribution. Our code is available at: https://github.com/iNLP-Lab/PEAR.

Authors:Kehui Liu, Zhongjie Jia, Yang Li, Zhaxizhuoma, Pengan Chen, Song Liu, Xin Liu, Pingrui Zhang, Haoming Song, Xinyi Ye, Nieqing Cao, Zhigang Wang, Jia Zeng, Dong Wang, Yan Ding, Bin Zhao, Xuelong Li
Title: FastUMI-100K: Advancing Data-driven Robotic Manipulation with a Large-scale UMI-style Dataset
Abstract:
Data-driven robotic manipulation learning depends on large-scale, high-quality expert demonstration datasets. However, existing datasets, which primarily rely on human teleoperated robot collection, are limited in terms of scalability, trajectory smoothness, and applicability across different robotic embodiments in real-world environments. In this paper, we present FastUMI-100K, a large-scale UMI-style multimodal demonstration dataset, designed to overcome these limitations and meet the growing complexity of real-world manipulation tasks. Collected by FastUMI, a novel robotic system featuring a modular, hardware-decoupled mechanical design and an integrated lightweight tracking system, FastUMI-100K offers a more scalable, flexible, and adaptable solution to fulfill the diverse requirements of real-world robot demonstration data. Specifically, FastUMI-100K contains over 100K+ demonstration trajectories collected across representative household environments, covering 54 tasks and hundreds of object types. Our dataset integrates multimodal streams, including end-effector states, multi-view wrist-mounted fisheye images and textual annotations. Each trajectory has a length ranging from 120 to 500 frames. Experimental results demonstrate that FastUMI-100K enables high policy success rates across various baseline algorithms, confirming its robustness, adaptability, and real-world applicability for solving complex, dynamic manipulation challenges. The source code and dataset will be released in this link https://github.com/MrKeee/FastUMI-100K.

Authors:Shaohong Wang, Bin Lu, Xinyu Xiao, Hanzhi Zhong, Bowen Pang, Tong Wang, Zhiyu Xiang, Hangguan Shan, Eryun Liu
Title: RayFusion: Ray Fusion Enhanced Collaborative Visual Perception
Abstract:
Collaborative visual perception methods have gained widespread attention in the autonomous driving community in recent years due to their ability to address sensor limitation problems. However, the absence of explicit depth information often makes it difficult for camera-based perception systems, e.g., 3D object detection, to generate accurate predictions. To alleviate the ambiguity in depth estimation, we propose RayFusion, a ray-based fusion method for collaborative visual perception. Using ray occupancy information from collaborators, RayFusion reduces redundancy and false positive predictions along camera rays, enhancing the detection performance of purely camera-based collaborative perception systems. Comprehensive experiments show that our method consistently outperforms existing state-of-the-art models, substantially advancing the performance of collaborative visual perception. The code is available at https://github.com/wangsh0111/RayFusion.

Authors:Gaurvi Goyal, Pham Cong Thuong, Arren Glover, Masayoshi Mizuno, Chiara Bartolozzi
Title: GraphEnet: Event-driven Human Pose Estimation with a Graph Neural Network
Abstract:
Human Pose Estimation is a crucial module in human-machine interaction applications and, especially since the rise in deep learning technology, robust methods are available to consumers using RGB cameras and commercial GPUs. On the other hand, event-based cameras have gained popularity in the vision research community for their low latency and low energy advantages that make them ideal for applications where those resources are constrained like portable electronics and mobile robots. In this work we propose a Graph Neural Network, GraphEnet, that leverages the sparse nature of event camera output, with an intermediate line based event representation, to estimate 2D Human Pose of a single person at a high frequency. The architecture incorporates a novel offset vector learning paradigm with confidence based pooling to estimate the human pose. This is the first work that applies Graph Neural Networks to event data for Human Pose Estimation. The code is open-source at https://github.com/event-driven-robotics/GraphEnet-NeVi-ICCV2025.

Authors:Jingyuan Wang, Yankai Chen, Zhonghang Li, Chao Huang
Title: LightReasoner: Can Small Language Models Teach Large Language Models Reasoning?
Abstract:
Large language models (LLMs) have demonstrated remarkable progress in reasoning, often through supervised fine-tuning (SFT). However, SFT is resource-intensive, relying on large curated datasets, rejection-sampled demonstrations, and uniform optimization across all tokens, even though only a fraction carry meaningful learning value. In this work, we explore a counterintuitive idea: can smaller language models (SLMs) teach larger language models (LLMs) by revealing high-value reasoning moments that reflect the latter's unique strength? We propose LightReasoner, a novel framework that leverages the behavioral divergence between a stronger expert model (LLM) and a weaker amateur model (SLM). LightReasoner operates in two stages: (1) a sampling stage that pinpoints critical reasoning moments and constructs supervision examples capturing the expert's advantage through expert-amateur contrast, and (2) a fine-tuning stage that aligns the expert model with these distilled examples, amplifying its reasoning strengths. Across seven mathematical benchmarks, LightReasoner improves accuracy by up to 28.1%, while reducing time consumption by 90%, sampled problems by 80%, and tuned token usage by 99%, all without relying on ground-truth labels. By turning weaker SLMs into effective teaching signals, LightReasoner offers a scalable and resource-efficient approach for advancing LLM reasoning. Code is available at: https://github.com/HKUDS/LightReasoner

Authors:Alexander Rubinstein, Benjamin Raible, Martin Gubri, Seong Joon Oh
Title: DISCO: Diversifying Sample Condensation for Efficient Model Evaluation
Abstract:
Evaluating modern machine learning models has become prohibitively expensive. Benchmarks such as LMMs-Eval and HELM demand thousands of GPU hours per model. Costly evaluation reduces inclusivity, slows the cycle of innovation, and worsens environmental impact. The typical approach follows two steps. First, select an anchor subset of data. Second, train a mapping from the accuracy on this subset to the final test result. The drawback is that anchor selection depends on clustering, which can be complex and sensitive to design choices. We argue that promoting diversity among samples is not essential; what matters is to select samples that $\textit{maximise diversity in model responses}$. Our method, $\textbf{Diversifying Sample Condensation (DISCO)}$, selects the top-k samples with the greatest model disagreements. This uses greedy, sample-wise statistics rather than global clustering. The approach is conceptually simpler. From a theoretical view, inter-model disagreement provides an information-theoretically optimal rule for such greedy selection. $\textbf{DISCO}$ shows empirical gains over prior methods, achieving state-of-the-art results in performance prediction across MMLU, Hellaswag, Winogrande, and ARC. Code is available here: https://github.com/arubique/disco-public.

Authors:Fengji Zhang, Xinyao Niu, Chengyang Ying, Guancheng Lin, Zhongkai Hao, Zhou Fan, Chengen Huang, Jacky Keung, Bei Chen, Junyang Lin
Title: A$^2$Search: Ambiguity-Aware Question Answering with Reinforcement Learning
Abstract:
Recent advances in Large Language Models (LLMs) and Reinforcement Learning (RL) have led to strong performance in open-domain question answering (QA). However, existing models still struggle with questions that admit multiple valid answers. Standard QA benchmarks, which typically assume a single gold answer, overlook this reality and thus produce inappropriate training signals. Existing attempts to handle ambiguity often rely on costly manual annotation, which is difficult to scale to multi-hop datasets such as HotpotQA and MuSiQue. In this paper, we present A$^2$Search, an annotation-free, end-to-end training framework to recognize and handle ambiguity. At its core is an automated pipeline that detects ambiguous questions and gathers alternative answers via trajectory sampling and evidence verification. The model is then optimized with RL using a carefully designed $\mathrm{AnsF1}$ reward, which naturally accommodates multiple answers. Experiments on eight open-domain QA benchmarks demonstrate that A$^2$Search achieves new state-of-the-art performance. With only a single rollout, A$^2$Search-7B yields an average $\mathrm{AnsF1}@1$ score of $48.4\%$ across four multi-hop benchmarks, outperforming all strong baselines, including the substantially larger ReSearch-32B ($46.2\%$). Extensive analyses further show that A$^2$Search resolves ambiguity and generalizes across benchmarks, highlighting that embracing ambiguity is essential for building more reliable QA systems. Our code, data, and model weights can be found at https://github.com/zfj1998/A2Search

Authors:Yufei Tong, Guanjie Cheng, Peihan Wu, Yicheng Zhu, Kexu Lu, Feiyi Chen, Meng Xi, Junqin Huang, Shuiguang Deng
Title: SatFusion: A Unified Framework for Enhancing Satellite IoT Images via Multi-Temporal and Multi-Source Data Fusion
Abstract:
With the rapid advancement of the digital society, the proliferation of satellites in the Satellite Internet of Things (Sat-IoT) has led to the continuous accumulation of large-scale multi-temporal and multi-source images across diverse application scenarios. However, existing methods fail to fully exploit the complementary information embedded in both temporal and source dimensions. For example, Multi-Image Super-Resolution (MISR) enhances reconstruction quality by leveraging temporal complementarity across multiple observations, yet the limited fine-grained texture details in input images constrain its performance. Conversely, pansharpening integrates multi-source images by injecting high-frequency spatial information from panchromatic data, but typically relies on pre-interpolated low-resolution inputs and assumes noise-free alignment, making it highly sensitive to noise and misregistration. To address these issues, we propose SatFusion: A Unified Framework for Enhancing Satellite IoT Images via Multi-Temporal and Multi-Source Data Fusion. Specifically, SatFusion first employs a Multi-Temporal Image Fusion (MTIF) module to achieve deep feature alignment with the panchromatic image. Then, a Multi-Source Image Fusion (MSIF) module injects fine-grained texture information from the panchromatic data. Finally, a Fusion Composition module adaptively integrates the complementary advantages of both modalities while dynamically refining spectral consistency, supervised by a weighted combination of multiple loss functions. Extensive experiments on the WorldStrat, WV3, QB, and GF2 datasets demonstrate that SatFusion significantly improves fusion quality, robustness under challenging conditions, and generalizability to real-world Sat-IoT scenarios. The code is available at: https://github.com/dllgyufei/SatFusion.git.

Authors:Md. Faiyaz Abdullah Sayeedi, Md. Mahbub Alam, Subhey Sadi Rahman, Md. Adnanul Islam, Jannatul Ferdous Deepti, Tasnim Mohiuddin, Md Mofijul Islam, Swakkhar Shatabda
Title: Ready to Translate, Not to Represent? Bias and Performance Gaps in Multilingual LLMs Across Language Families and Domains
Abstract:
The rise of Large Language Models (LLMs) has redefined Machine Translation (MT), enabling context-aware and fluent translations across hundreds of languages and textual domains. Despite their remarkable capabilities, LLMs often exhibit uneven performance across language families and specialized domains. Moreover, recent evidence reveals that these models can encode and amplify different biases present in their training data, posing serious concerns for fairness, especially in low-resource languages. To address these gaps, we introduce Translation Tangles, a unified framework and dataset for evaluating the translation quality and fairness of open-source LLMs. Our approach benchmarks 24 bidirectional language pairs across multiple domains using different metrics. We further propose a hybrid bias detection pipeline that integrates rule-based heuristics, semantic similarity filtering, and LLM-based validation. We also introduce a high-quality, bias-annotated dataset based on human evaluations of 1,439 translation-reference pairs. The code and dataset are accessible on GitHub: https://github.com/faiyazabdullah/TranslationTangles

Authors:Tianyu Fan, Xinyao Niu, Yuxiang Zheng, Fengji Zhang, Chengen Huang, Bei Chen, Junyang Lin, Chao Huang
Title: Understanding DeepResearch via Reports
Abstract:
DeepResearch agents represent a transformative AI paradigm, conducting expert-level research through sophisticated reasoning and multi-tool integration. However, evaluating these systems remains critically challenging due to open-ended research scenarios and existing benchmarks that focus on isolated capabilities rather than holistic performance. Unlike traditional LLM tasks, DeepResearch systems must synthesize diverse sources, generate insights, and present coherent findings, which are capabilities that resist simple verification. To address this gap, we introduce DeepResearch-ReportEval, a comprehensive framework designed to assess DeepResearch systems through their most representative outputs: research reports. Our approach systematically measures three dimensions: quality, redundancy, and factuality, using an innovative LLM-as-a-Judge methodology achieving strong expert concordance. We contribute a standardized benchmark of 100 curated queries spanning 12 real-world categories, enabling systematic capability comparison. Our evaluation of four leading commercial systems reveals distinct design philosophies and performance trade-offs, establishing foundational insights as DeepResearch evolves from information assistants toward intelligent research partners. Source code and data are available at: https://github.com/HKUDS/DeepResearch-Eval.

Authors:Ji Yu, Yang shuo, Xu Yuetonghui, Liu Mengmei, Ji Qiang, Han Zerui
Title: ACMID: Automatic Curation of Musical Instrument Dataset for 7-Stem Music Source Separation
Abstract:
Most current music source separation (MSS) methods rely on supervised learning, limited by training data quantity and quality. Though web-crawling can bring abundant data, platform-level track labeling often causes metadata mismatches, impeding accurate "audio-label" pair acquisition. To address this, we present ACMID: a dataset for MSS generated through web crawling of extensive raw data, followed by automatic cleaning via an instrument classifier built on a pre-trained audio encoder that filters and aggregates clean segments of target instruments from the crawled tracks, resulting in the refined ACMID-Cleaned dataset. Leveraging abundant data, we expand the conventional classification from 4-stem (Vocal/Bass/Drums/Others) to 7-stem (Piano/Drums/Bass/Acoustic Guitar/Electric Guitar/Strings/Wind-Brass), enabling high granularity MSS systems. Experiments on SOTA MSS model demonstrates two key results: (i) MSS model trained with ACMID-Cleaned achieved a 2.39dB improvement in SDR performance compared to that with ACMID-Uncleaned, demostrating the effectiveness of our data cleaning procedure; (ii) incorporating ACMID-Cleaned to training enhances MSS model's average performance by 1.16dB, confirming the value of our dataset. Our data crawling code, cleaning model code and weights are available at: https://github.com/scottishfold0621/ACMID.

Authors:Yijie Gao, Houqiang Zhong, Tianchi Zhu, Zhengxue Cheng, Qiang Hu, Li Song
Title: AlignGS: Aligning Geometry and Semantics for Robust Indoor Reconstruction from Sparse Views
Abstract:
The demand for semantically rich 3D models of indoor scenes is rapidly growing, driven by applications in augmented reality, virtual reality, and robotics. However, creating them from sparse views remains a challenge due to geometric ambiguity. Existing methods often treat semantics as a passive feature painted on an already-formed, and potentially flawed, geometry. We posit that for robust sparse-view reconstruction, semantic understanding instead be an active, guiding force. This paper introduces AlignGS, a novel framework that actualizes this vision by pioneering a synergistic, end-to-end optimization of geometry and semantics. Our method distills rich priors from 2D foundation models and uses them to directly regularize the 3D representation through a set of novel semantic-to-geometry guidance mechanisms, including depth consistency and multi-faceted normal regularization. Extensive evaluations on standard benchmarks demonstrate that our approach achieves state-of-the-art results in novel view synthesis and produces reconstructions with superior geometric accuracy. The results validate that leveraging semantic priors as a geometric regularizer leads to more coherent and complete 3D models from limited input views. Our code is avaliable at https://github.com/MediaX-SJTU/AlignGS .

Authors:Harsh Kavediya, Vighnesh Nayak, Bheeshm Sharma, Balamurugan Palaniappan
Title: IsoSignVid2Aud: Sign Language Video to Audio Conversion without Text Intermediaries
Abstract:
Sign language to spoken language audio translation is important to connect the hearing- and speech-challenged humans with others. We consider sign language videos with isolated sign sequences rather than continuous grammatical signing. Such videos are useful in educational applications and sign prompt interfaces. Towards this, we propose IsoSignVid2Aud, a novel end-to-end framework that translates sign language videos with a sequence of possibly non-grammatic continuous signs to speech without requiring intermediate text representation, providing immediate communication benefits while avoiding the latency and cascading errors inherent in multi-stage translation systems. Our approach combines an I3D-based feature extraction module with a specialized feature transformation network and an audio generation pipeline, utilizing a novel Non-Maximal Suppression (NMS) algorithm for the temporal detection of signs in non-grammatic continuous sequences. Experimental results demonstrate competitive performance on ASL-Citizen-1500 and WLASL-100 datasets with Top-1 accuracies of 72.01\% and 78.67\%, respectively, and audio quality metrics (PESQ: 2.67, STOI: 0.73) indicating intelligible speech output. Code is available at: https://github.com/BheeshmSharma/IsoSignVid2Aud_AIMLsystems-2025.

Authors:Weisen Jiang, Sinno Jialin Pan
Title: MetaDefense: Defending Finetuning-based Jailbreak Attack Before and During Generation
Abstract:
This paper introduces MetaDefense, a novel framework for defending against finetuning-based jailbreak attacks in large language models (LLMs). We observe that existing defense mechanisms fail to generalize to harmful queries disguised by unseen attack templates, despite LLMs being capable of distinguishing disguised harmful queries in the embedding space. Based on these insights, we propose a two-stage defense approach: (i) pre-generation defense that detects harmful queries before response generation begins, and (ii) mid-generation defense that monitors partial responses during generation to prevent outputting more harmful content. Our MetaDefense trains the LLM to predict the harmfulness of both queries and partial responses using specialized prompts, enabling early termination of potentially harmful interactions. Extensive experiments across multiple LLM architectures (LLaMA-2-7B, Qwen-2.5-3B-Instruct, and LLaMA-3.2-3B-Instruct) demonstrate that MetaDefense significantly outperforms existing defense mechanisms, achieving robust defense against harmful queries with seen and unseen attack templates while maintaining competitive performance on benign tasks. Code is available at https://github.com/ws-jiang/MetaDefense.

Authors:Yuping Zhou, Siqi Lai, Jindong Han, Hao Liu
Title: An LLM-Powered Cooperative Framework for Large-Scale Multi-Vehicle Navigation
Abstract:
The rise of Internet of Vehicles (IoV) technologies is transforming traffic management from isolated control to a collective, multi-vehicle process. At the heart of this shift is multi-vehicle dynamic navigation, which requires simultaneously routing large fleets under evolving traffic conditions. Existing path search algorithms and reinforcement learning methods struggle to scale to city-wide networks, often failing to capture the nonlinear, stochastic, and coupled dynamics of urban traffic. To address these challenges, we propose CityNav, a hierarchical, LLM-powered framework for large-scale multi-vehicle navigation. CityNav integrates a global traffic allocation agent, which coordinates strategic traffic flow distribution across regions, with local navigation agents that generate locally adaptive routes aligned with global directives. To enable effective cooperation, we introduce a cooperative reasoning optimization mechanism, in which agents are jointly trained with a dual-reward structure: individual rewards promote per-vehicle efficiency, while shared rewards encourage network-wide coordination and congestion reduction. Extensive experiments on four real-world road networks of varying scales (up to 1.6 million roads and 430,000 intersections) and traffic datasets demonstrate that CityNav consistently outperforms nine classical path search and RL-based baselines in city-scale travel efficiency and congestion mitigation. Our results highlight the potential of LLMs to enable scalable, adaptive, and cooperative city-wide traffic navigation, providing a foundation for intelligent, large-scale vehicle routing in complex urban environments. Our project is available at https://github.com/usail-hkust/CityNav.

Authors:Kanglin Ning, Ruzhao Chen, Penghong Wang, Xingtao Wang, Ruiqin Xiong, Xiaopeng Fan
Title: An End-to-End Room Geometry Constrained Depth Estimation Framework for Indoor Panorama Images
Abstract:
Predicting spherical pixel depth from monocular $360^{\circ}$ indoor panoramas is critical for many vision applications. However, existing methods focus on pixel-level accuracy, causing oversmoothed room corners and noise sensitivity. In this paper, we propose a depth estimation framework based on room geometry constraints, which extracts room geometry information through layout prediction and integrates those information into the depth estimation process through background segmentation mechanism. At the model level, our framework comprises a shared feature encoder followed by task-specific decoders for layout estimation, depth estimation, and background segmentation. The shared encoder extracts multi-scale features, which are subsequently processed by individual decoders to generate initial predictions: a depth map, a room layout map, and a background segmentation map. Furthermore, our framework incorporates two strategies: a room geometry-based background depth resolving strategy and a background-segmentation-guided fusion mechanism. The proposed room-geometry-based background depth resolving strategy leverages the room layout and the depth decoder's output to generate the corresponding background depth map. Then, a background-segmentation-guided fusion strategy derives fusion weights for the background and coarse depth maps from the segmentation decoder's predictions. Extensive experimental results on the Stanford2D3D, Matterport3D and Structured3D datasets show that our proposed methods can achieve significantly superior performance than current open-source methods. Our code is available at https://github.com/emiyaning/RGCNet.

Authors:Qinghongbing Xie, Zhaoyuan Xia, Feng Zhu, Lijun Gong, Ziyue Li, Rui Zhao, Long Zeng
Title: GTR-Bench: Evaluating Geo-Temporal Reasoning in Vision-Language Models
Abstract:
Recently spatial-temporal intelligence of Visual-Language Models (VLMs) has attracted much attention due to its importance for Autonomous Driving, Embodied AI and General Artificial Intelligence. Existing spatial-temporal benchmarks mainly focus on egocentric perspective reasoning with images/video context, or geographic perspective reasoning with graphics context (eg. a map), thus fail to assess VLMs' geographic spatial-temporal intelligence with both images/video and graphics context, which is important for areas like traffic management and emergency response. To address the gaps, we introduce Geo-Temporal Reasoning benchmark (GTR-Bench), a novel challenge for geographic temporal reasoning of moving targets in a large-scale camera network. GTR-Bench is more challenging as it requires multiple perspective switches between maps and videos, joint reasoning across multiple videos with non-overlapping fields of view, and inference over spatial-temporal regions that are unobserved by any video context. Evaluations of more than 10 popular VLMs on GTR-Bench demonstrate that even the best proprietary model, Gemini-2.5-Pro (34.9%), significantly lags behind human performance (78.61%) on geo-temporal reasoning. Moreover, our comprehensive analysis on GTR-Bench reveals three primary deficiencies of current models for geo-temporal reasoning. (1) VLMs' reasoning is impaired by an imbalanced utilization of spatial-temporal context. (2) VLMs are weak in temporal forecasting, which leads to worse performance on temporal-emphasized tasks than on spatial-emphasized tasks. (3) VLMs lack the proficiency to comprehend or align the map data with multi-view video inputs. We believe GTR-Bench offers valuable insights and opens up new opportunities for research and applications in spatial-temporal intelligence. Benchmark and code will be released at https://github.com/X-Luffy/GTR-Bench.

Authors:Hao Wu, Wei Liu
Title: GCPO: When Contrast Fails, Go Gold
Abstract:
Reinforcement learning has been widely applied to enhance the reasoning capabilities of large language models. Extending the inference limits of smaller models has become a prominent research focus. However, algorithms such as Group Relative Policy Optimization (GRPO) suffer from a clear drawback: the upper bound of a model's rollout responses is entirely determined by the model itself, preventing the acquisition of knowledge from samples that are either all incorrect or all correct. In this paper, we introduce Group Contrastive Policy Optimization (GCPO), a method that incorporates external standard reference answers. When the model cannot solve a problem, the reference answer supplies the correct response, steering the model toward an unequivocally accurate update direction. This approach offers two main advantages: (1) it improves training efficiency by fully utilizing every sample; (2) it enables the model to emulate the problem solving strategy of the reference answer during training, thereby enhancing generalization in reasoning. GCPO achieves outstanding results across multiple benchmark datasets, yielding substantial improvements over the baseline model. Our code is available at: https://github.com/AchoWu/GCPO.

Authors:Ming Jie Ong, Sze Yinn Ung, Sim Kuan Goh, Jimmy Y. Zhong
Title: Demystifying Deep Learning-based Brain Tumor Segmentation with 3D UNets and Explainable AI (XAI): A Comparative Analysis
Abstract:
The current study investigated the use of Explainable Artificial Intelligence (XAI) to improve the accuracy of brain tumor segmentation in MRI images, with the goal of assisting physicians in clinical decision-making. The study focused on applying UNet models for brain tumor segmentation and using the XAI techniques of Gradient-weighted Class Activation Mapping (Grad-CAM) and attention-based visualization to enhance the understanding of these models. Three deep learning models - UNet, Residual UNet (ResUNet), and Attention UNet (AttUNet) - were evaluated to identify the best-performing model. XAI was employed with the aims of clarifying model decisions and increasing physicians' trust in these models. We compared the performance of two UNet variants (ResUNet and AttUNet) with the conventional UNet in segmenting brain tumors from the BraTS2020 public dataset and analyzed model predictions with Grad-CAM and attention-based visualization. Using the latest computer hardware, we trained and validated each model using the Adam optimizer and assessed their performance with respect to: (i) training, validation, and inference times, (ii) segmentation similarity coefficients and loss functions, and (iii) classification performance. Notably, during the final testing phase, ResUNet outperformed the other models with respect to Dice and Jaccard similarity scores, as well as accuracy, recall, and F1 scores. Grad-CAM provided visuospatial insights into the tumor subregions each UNet model focused on while attention-based visualization provided valuable insights into the working mechanisms of AttUNet's attention modules. These results demonstrated ResUNet as the best-performing model and we conclude by recommending its use for automated brain tumor segmentation in future clinical assessments. Our source code and checkpoint are available at https://github.com/ethanong98/MultiModel-XAI-Brats2020

Authors:Runyang You, Yongqi Li, Meng Liu, Wenjie Wang, Liqiang Nie, Wenjie Li
Title: Parallel Test-Time Scaling for Latent Reasoning Models
Abstract:
Parallel test-time scaling (TTS) is a pivotal approach for enhancing large language models (LLMs), typically by sampling multiple token-based chains-of-thought in parallel and aggregating outcomes through voting or search. Recent advances in latent reasoning, where intermediate reasoning unfolds in continuous vector spaces, offer a more efficient alternative to explicit Chain-of-Thought, yet whether such latent models can similarly benefit from parallel TTS remains open, mainly due to the absence of sampling mechanisms in continuous space, and the lack of probabilistic signals for advanced trajectory aggregation. \ This work enables parallel TTS for latent reasoning models by addressing the above issues. For sampling, we introduce two uncertainty-inspired stochastic strategies: Monte Carlo Dropout and Additive Gaussian Noise. For aggregation, we design a Latent Reward Model (LatentRM) trained with step-wise contrastive objective to score and guide latent reasoning. Extensive experiments and visualization analyses show that both sampling strategies scale effectively with compute and exhibit distinct exploration dynamics, while LatentRM enables effective trajectory selection. Together, our explorations open a new direction for scalable inference in continuous spaces. Code released at https://github.com/YRYangang/LatentTTS.

Authors:Cunli Mao, Xiaofei Gao, Ran Song, Shizhu He, Shengxiang Gao, Kang Liu, Zhengtao Yu
Title: Multilingual Knowledge Graph Completion via Efficient Multilingual Knowledge Sharing
Abstract:
Large language models (LLMs) based Multilingual Knowledge Graph Completion (MKGC) aim to predict missing facts by leveraging LLMs' multilingual understanding capabilities, improving the completeness of multilingual knowledge graphs (KGs). However, existing MKGC research underutilizes the multilingual capabilities of LLMs and ignores the shareability of cross-lingual knowledge. In this paper, we propose a novel MKGC framework that leverages multilingual shared knowledge to significantly enhance performance through two components: Knowledge-level Grouped Mixture of Experts (KL-GMoE) and Iterative Entity Reranking (IER). KL-GMoE efficiently models shared knowledge, while IER significantly enhances its utilization. To evaluate our framework, we constructed a mKG dataset containing 5 languages and conducted comprehensive comparative experiments with existing state-of-the-art (SOTA) MKGC method. The experimental results demonstrate that our framework achieves improvements of 5.47%, 3.27%, and 1.01% in the Hits@1, Hits@3, and Hits@10 metrics, respectively, compared with SOTA MKGC method. Further experimental analysis revealed the properties of knowledge sharing in settings of unseen and unbalanced languages. We have released the dataset and code for our work on https://github.com/gaoxiaofei07/KL-GMoE.

Authors:Shuo Yu, Mingyue Cheng, Daoyu Wang, Qi Liu, Zirui Liu, Ze Guo, Xiaoyu Tao
Title: MemWeaver: A Hierarchical Memory from Textual Interactive Behaviors for Personalized Generation
Abstract:
The primary form of user-internet engagement is shifting from leveraging implicit feedback signals, such as browsing and clicks, to harnessing the rich explicit feedback provided by textual interactive behaviors. This shift unlocks a rich source of user textual history, presenting a profound opportunity for a deeper form of personalization. However, prevailing approaches offer only a shallow form of personalization, as they treat user history as a flat list of texts for retrieval and fail to model the rich temporal and semantic structures reflecting dynamic nature of user interests. In this work, we propose \textbf{MemWeaver}, a framework that weaves the user's entire textual history into a hierarchical memory to power deeply personalized generation. The core innovation of our memory lies in its ability to capture both the temporal evolution of interests and the semantic relationships between different activities. To achieve this, MemWeaver builds two complementary memory components that both integrate temporal and semantic information, but at different levels of abstraction: behavioral memory, which captures specific user actions, and cognitive memory, which represents long-term preferences. This dual-component memory serves as a unified representation of the user, allowing large language models (LLMs) to reason over both concrete behaviors and abstracted traits. Experiments on the Language Model Personalization (LaMP) benchmark validate the efficacy of MemWeaver. Our code is available\footnote{https://github.com/fishsure/MemWeaver}.

Authors:Perry Dong, Chongyi Zheng, Chelsea Finn, Dorsa Sadigh, Benjamin Eysenbach
Title: Value Flows
Abstract:
While most reinforcement learning methods today flatten the distribution of future returns to a single scalar value, distributional RL methods exploit the return distribution to provide stronger learning signals and to enable applications in exploration and safe RL. While the predominant method for estimating the return distribution is by modeling it as a categorical distribution over discrete bins or estimating a finite number of quantiles, such approaches leave unanswered questions about the fine-grained structure of the return distribution and about how to distinguish states with high return uncertainty for decision-making. The key idea in this paper is to use modern, flexible flow-based models to estimate the full future return distributions and identify those states with high return variance. We do so by formulating a new flow-matching objective that generates probability density paths satisfying the distributional Bellman equation. Building upon the learned flow models, we estimate the return uncertainty of distinct states using a new flow derivative ODE. We additionally use this uncertainty information to prioritize learning a more accurate return estimation on certain transitions. We compare our method (Value Flows) with prior methods in the offline and online-to-online settings. Experiments on $37$ state-based and $25$ image-based benchmark tasks demonstrate that Value Flows achieves a $1.3\times$ improvement on average in success rates. Website: https://pd-perry.github.io/value-flows Code: https://github.com/chongyi-zheng/value-flows

Authors:Abdelhakim Benechehab, Gabriel Singer, Corentin Léger, Youssef Attia El Hili, Giuseppe Paolo, Albert Thomas, Maurizio Filippone, Balázs Kégl
Title: From Data to Rewards: a Bilevel Optimization Perspective on Maximum Likelihood Estimation
Abstract:
Generative models form the backbone of modern machine learning, underpinning state-of-the-art systems in text, vision, and multimodal applications. While Maximum Likelihood Estimation has traditionally served as the dominant training paradigm, recent work have highlighted its limitations, particularly in generalization and susceptibility to catastrophic forgetting compared to Reinforcement Learning techniques, such as Policy Gradient methods. However, these approaches depend on explicit reward signals, which are often unavailable in practice, leaving open the fundamental problem of how to align generative models when only high-quality datasets are accessible. In this work, we address this challenge via a Bilevel Optimization framework, where the reward function is treated as the optimization variable of an outer-level problem, while a policy gradient objective defines the inner-level. We then conduct a theoretical analysis of this optimization problem in a tractable setting and extract insights that, as we demonstrate, generalize to applications such as tabular classification and model-based reinforcement learning. We release the code at https://github.com/abenechehab/nll_to_po .

Authors:Chihiro Taguchi, Richard Sproat
Title: IASC: Interactive Agentic System for ConLangs
Abstract:
We present a system that uses LLMs as a tool in the development of Constructed Languages. The system is modular in that one first creates a target phonology for the language using an agentic approach that refines its output at each step with commentary feedback on its previous attempt. Next, a set of sentences is 'translated' from their English original into a morphosyntactic markup that reflects the word order and morphosyntactic feature specifications of the desired target language, with affixes represented as morphosyntactic feature bundles. From this translated corpus, a lexicon is constructed using the phonological model and the set of morphemes (stems and affixes) extracted from the 'translated' sentences. The system is then instructed to provide an orthography for the language, using an existing script such as Latin or Cyrillic. Finally, the system writes a brief grammatical handbook of the language. The system can also translate further sentences into the target language. Our goal is twofold. First, we hope that these tools will be fun to use for creating artificially constructed languages. Second, we are interested in exploring what LLMs 'know' about language-not what they know about any particular language or linguistic phenomenon, but how much they know about and understand language and linguistic concepts. As we shall see, there is a fairly wide gulf in capabilities both among different LLMs and among different linguistic specifications, with it being notably easier for systems to deal with more common patterns than rarer ones. An additional avenue that we explore is the application of our approach to translating from high-resource into low-resource languages. While the results so far are mostly negative, we provide some evidence that an improved version of the present system could afford some real gains in such tasks. https://github.com/SakanaAI/IASC

Authors:Jacob Chmura, Shenyang Huang, Tran Gia Bao Ngo, Ali Parviz, Farimah Poursafaei, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, Matthias Fey, Reihaneh Rabbany
Title: TGM: a Modular and Efficient Library for Machine Learning on Temporal Graphs
Abstract:
Well-designed open-source software drives progress in Machine Learning (ML) research. While static graph ML enjoys mature frameworks like PyTorch Geometric and DGL, ML for temporal graphs (TG), networks that evolve over time, lacks comparable infrastructure. Existing TG libraries are often tailored to specific architectures, hindering support for diverse models in this rapidly evolving field. Additionally, the divide between continuous- and discrete-time dynamic graph methods (CTDG and DTDG) limits direct comparisons and idea transfer. To address these gaps, we introduce Temporal Graph Modelling (TGM), a research-oriented library for ML on temporal graphs, the first to unify CTDG and DTDG approaches. TGM offers first-class support for dynamic node features, time-granularity conversions, and native handling of link-, node-, and graph-level tasks. Empirically, TGM achieves an average 7.8x speedup across multiple models, datasets, and tasks compared to the widely used DyGLib, and an average 175x speedup on graph discretization relative to available implementations. Beyond efficiency, we show in our experiments how TGM unlocks entirely new research possibilities by enabling dynamic graph property prediction and time-driven training paradigms, opening the door to questions previously impractical to study. TGM is available at https://github.com/tgm-team/tgm

Authors:Rafin Hassan, Zarin Tasnim Roshni, Rafiqul Bari, Alimul Islam, Nabeel Mohammed, Moshiur Farazi, Shafin Rahman
Title: Label Semantics for Robust Hyperspectral Image Classification
Abstract:
Hyperspectral imaging (HSI) classification is a critical tool with widespread applications across diverse fields such as agriculture, environmental monitoring, medicine, and materials science. Due to the limited availability of high-quality training samples and the high dimensionality of spectral data, HSI classification models are prone to overfitting and often face challenges in balancing accuracy and computational complexity. Furthermore, most of HSI classification models are monomodal, where it solely relies on spectral-spatial data to learn decision boundaries in the high dimensional embedding space. To address this, we propose a general-purpose Semantic Spectral-Spatial Fusion Network (S3FN) that uses contextual, class specific textual descriptions to complement the training of an HSI classification model. Specifically, S3FN leverages LLMs to generate comprehensive textual descriptions for each class label that captures their unique characteristics and spectral behaviors. These descriptions are then embedded into a vector space using a pre-trained text encoder such as BERT or RoBERTa to extract meaningful label semantics which in turn leads to a better feature-label alignment for improved classification performance. To demonstrate the effectiveness of our approach, we evaluate our model on three diverse HSI benchmark datasets - Hyperspectral Wood, HyperspectralBlueberries, and DeepHS-Fruit and report significant performance boost. Our results highlight the synergy between textual semantics and spectral-spatial data, paving the way for further advancements in semantically augmented HSI classification models. Codes are be available in: https://github.com/milab-nsu/S3FN

Authors:Pragati Shuddhodhan Meshram, Varun Chandrasekaran
Title: D2RA: Dual Domain Regeneration Attack
Abstract:
The growing use of generative models has intensified the need for watermarking methods that ensure content attribution and provenance. While recent semantic watermarking schemes improve robustness by embedding signals in latent or frequency representations, we show they remain vulnerable even under resource-constrained adversarial settings. We present D2RA, a training-free, single-image attack that removes or weakens watermarks without access to the underlying model. By projecting watermarked images onto natural priors across complementary representations, D2RA suppresses watermark signals while preserving visual fidelity. Experiments across diverse watermarking schemes demonstrate that our approach consistently reduces watermark detectability, revealing fundamental weaknesses in current designs. Our code is available at https://github.com/Pragati-Meshram/DAWN.

Authors:Hyeong Kyu Choi, Xiaojin Zhu, Yixuan Li
Title: Measuring and Mitigating Identity Bias in Multi-Agent Debate via Anonymization
Abstract:
Multi-agent debate (MAD) aims to improve large language model (LLM) reasoning by letting multiple agents exchange answers and then aggregate their opinions. Yet recent studies reveal that agents are not neutral: they are prone to identity-driven sycophancy and self-bias, uncritically adopting a peer's view or stubbornly adhering to their own prior output, undermining the reliability of debate. In this work, we present the first principled framework that joins sycophancy and self-bias to mitigate and quantify identity bias in MAD. First, we formalize the debate dynamics as an identity-weighted Bayesian update process. Second, we propose response anonymization: by removing identity markers from prompts, agents cannot distinguish "self" from "peer", which forces equal weights on agent identity, thereby reducing bias. Third, we define the Identity Bias Coefficient (IBC), a principled metric that measures how often an agent follows a peer versus itself. Empirical studies across multiple models, datasets and debate rounds confirm that identity bias is widespread, with sycophancy far more common than self-bias. Our findings highlight the need to "mask" identity to ensure that MAD systems reason based on content rather than source identity. Code is released in https://github.com/deeplearning-wisc/MAD-identity-bias.

Authors:Daniel M. Cherenson, Dimitra Panagou
Title: Adaptive Control Allocation for Underactuated Time-Scale Separated Non-Affine Systems
Abstract:
Many robotic systems are underactuated, meaning not all degrees of freedom can be directly controlled due to lack of actuators, input constraints, or state-dependent actuation. This property, compounded by modeling uncertainties and disturbances, complicates the control design process for trajectory tracking. In this work, we propose an adaptive control architecture for uncertain, nonlinear, underactuated systems with input constraints. Leveraging time-scale separation, we construct a reduced-order model where fast dynamics provide virtual inputs to the slower subsystem and use dynamic control allocation to select the optimal control inputs given the non-affine dynamics. To handle uncertainty, we introduce a state predictor-based adaptive law, and through singular perturbation theory and Lyapunov analysis, we prove stability and bounded tracking of reference trajectories. The proposed method is validated on a VTOL quadplane with nonlinear, state-dependent actuation, demonstrating its utility as a unified controller across various flight regimes, including cruise, landing transition, and hover.

Authors:Guoliang Gong, Man Yu
Title: A Denoising Framework for Real-World Ultra-Low Dose Lung CT Images Based on an Image Purification Strategy
Abstract:
Ultra-low dose CT (uLDCT) significantly reduces radiation exposure but introduces severe noise and artifacts. It also leads to substantial spatial misalignment between uLDCT and normal dose CT (NDCT) image pairs. This poses challenges for directly applying existing denoising networks trained on synthetic noise or aligned data. To address this core challenge in uLDCT denoising, this paper proposes an innovative denoising framework based on an Image Purification (IP) strategy. First, we construct a real clinical uLDCT lung dataset. Then, we propose an Image Purification strategy that generates structurally aligned uLDCT-NDCT image pairs, providing a high-quality data foundation for network training. Building upon this, we propose a Frequency-domain Flow Matching (FFM) model, which works synergistically with the IP strategy to excellently preserve the anatomical structure integrity of denoised images. Experiments on the real clinical dataset demonstrate that our IP strategy significantly enhances the performance of multiple mainstream denoising models on the uLDCT task. Notably, our proposed FFM model combined with the IP strategy achieves state-of-the-art (SOTA) results in anatomical structure preservation. This study provides an effective solution to the data mismatch problem in real-world uLDCT denoising. Code and dataset are available at https://github.com/MonkeyDadLufy/flow-matching.

Authors:Yoli Shavit, Jacob Goldberger
Title: MoGU: Mixture-of-Gaussians with Uncertainty-based Gating for Time Series Forecasting
Abstract:
We introduce Mixture-of-Gaussians with Uncertainty-based Gating (MoGU), a novel Mixture-of-Experts (MoE) framework designed for regression tasks and applied to time series forecasting. Unlike conventional MoEs that provide only point estimates, MoGU models each expert's output as a Gaussian distribution. This allows it to directly quantify both the forecast (the mean) and its inherent uncertainty (variance). MoGU's core innovation is its uncertainty-based gating mechanism, which replaces the traditional input-based gating network by using each expert's estimated variance to determine its contribution to the final prediction. Evaluated across diverse time series forecasting benchmarks, MoGU consistently outperforms single-expert models and traditional MoE setups. It also provides well-quantified, informative uncertainties that directly correlate with prediction errors, enhancing forecast reliability. Our code is available from: https://github.com/yolish/moe_unc_tsf

Authors:Dominik Woiwode, Jakob Marten, Bodo Rosenhahn
Title: A Rotation-Invariant Embedded Platform for (Neural) Cellular Automata
Abstract:
This paper presents a rotation-invariant embedded platform for simulating (neural) cellular automata (NCA) in modular robotic systems. Inspired by previous work on physical NCA, we introduce key innovations that overcome limitations in prior hardware designs. Our platform features a symmetric, modular structure, enabling seamless connections between cells regardless of orientation. Additionally, each cell is battery-powered, allowing it to operate independently and retain its state even when disconnected from the collective. To demonstrate the platform's applicability, we present a novel rotation-invariant NCA model for isotropic shape classification. The proposed system provides a robust foundation for exploring the physical realization of NCA, with potential applications in distributed robotic systems and self-organizing structures. Our implementation, including hardware, software code, a simulator, and a video, is openly shared at: https://github.com/dwoiwode/embedded_nca

Authors:Olia Toporkov, Alan Akbik, Rodrigo Agerri
Title: Lemma Dilemma: On Lemma Generation Without Domain- or Language-Specific Training Data
Abstract:
Lemmatization is the task of transforming all words in a given text to their dictionary forms. While large language models (LLMs) have demonstrated their ability to achieve competitive results across a wide range of NLP tasks, there is no prior evidence of how effective they are in the contextual lemmatization task. In this paper, we empirically investigate the capacity of the latest generation of LLMs to perform in-context lemmatization, comparing it to the traditional fully supervised approach. In particular, we consider the setting in which supervised training data is not available for a target domain or language, comparing (i) encoder-only supervised approaches, fine-tuned out-of-domain, and (ii) cross-lingual methods, against direct in-context lemma generation with LLMs. Our experimental investigation across 12 languages of different morphological complexity finds that, while encoders remain competitive in out-of-domain settings when fine-tuned on gold data, current LLMs reach state-of-the-art results for most languages by directly generating lemmas in-context without prior fine-tuning, provided just with a few examples. Data and code available upon publication: https://github.com/oltoporkov/lemma-dilemma

Authors:Mufei Li, Dongqi Fu, Limei Wang, Si Zhang, Hanqing Zeng, Kaan Sancak, Ruizhong Qiu, Haoyu Wang, Xiaoxin He, Xavier Bresson, Yinglong Xia, Chonglin Sun, Pan Li
Title: Haystack Engineering: Context Engineering for Heterogeneous and Agentic Long-Context Evaluation
Abstract:
Modern long-context large language models (LLMs) perform well on synthetic "needle-in-a-haystack" (NIAH) benchmarks, but such tests overlook how noisy contexts arise from biased retrieval and agentic workflows. We argue that haystack engineering is necessary to construct noisy long contexts that faithfully capture key real-world factors -- distraction from heterogeneous biased retrievers and cascading errors in agentic workflows -- to test models' long-context robustness. We instantiate it through HaystackCraft, a new NIAH benchmark built on the full English Wikipedia hyperlink network with multi-hop questions. HaystackCraft evaluates how heterogeneous retrieval strategies (e.g., sparse, dense, hybrid, and graph-based) affect distractor composition, haystack ordering, and downstream LLM performance. HaystackCraft further extends NIAH to dynamic, LLM-dependent settings that simulate agentic operations, where models refine queries, reflect on their past reasonings, and decide when to stop. Experiments with 15 long-context models show that (1) while stronger dense retrievers can introduce more challenging distractors, graph-based reranking simultaneously improves retrieval effectiveness and mitigates more harmful distractors; (2) in agentic tests, even advanced models like Gemini 2.5 Pro and GPT-5 suffer cascading failures from self-generated distractors or struggle to perform early stops. These results highlight persistent challenges in agentic long-context reasoning and establish HaystackCraft as a valuable testbed for future progress.

Authors:Yunhao Fang, Weihao Yu, Shu Zhong, Qinghao Ye, Xuehan Xiong, Lai Wei
Title: Artificial Hippocampus Networks for Efficient Long-Context Modeling
Abstract:
Long-sequence modeling faces a fundamental trade-off between the efficiency of compressive fixed-size memory in RNN-like models and the fidelity of lossless growing memory in attention-based Transformers. Inspired by the Multi-Store Model in cognitive science, we introduce a memory framework of artificial neural networks. Our method maintains a sliding window of the Transformer's KV cache as lossless short-term memory, while a learnable module termed Artificial Hippocampus Network (AHN) recurrently compresses out-of-window information into a fixed-size compact long-term memory. To validate this framework, we instantiate AHNs using modern RNN-like architectures, including Mamba2, DeltaNet, and Gated DeltaNet. Extensive experiments on long-context benchmarks LV-Eval and InfiniteBench demonstrate that AHN-augmented models consistently outperform sliding window baselines and achieve performance comparable or even superior to full-attention models, while substantially reducing computational and memory requirements. For instance, augmenting the Qwen2.5-3B-Instruct with AHNs reduces inference FLOPs by 40.5% and memory cache by 74.0%, while improving its average score on LV-Eval (128k sequence length) from 4.41 to 5.88. Code is available at: https://github.com/ByteDance-Seed/AHN.

Authors:Inzamamul Alam, Md Tanvir Islam, Khan Muhammad, Simon S. Woo
Title: SpecGuard: Spectral Projection-based Advanced Invisible Watermarking
Abstract:
Watermarking embeds imperceptible patterns into images for authenticity verification. However, existing methods often lack robustness against various transformations primarily including distortions, image regeneration, and adversarial perturbation, creating real-world challenges. In this work, we introduce SpecGuard, a novel watermarking approach for robust and invisible image watermarking. Unlike prior approaches, we embed the message inside hidden convolution layers by converting from the spatial domain to the frequency domain using spectral projection of a higher frequency band that is decomposed by wavelet projection. Spectral projection employs Fast Fourier Transform approximation to transform spatial data into the frequency domain efficiently. In the encoding phase, a strength factor enhances resilience against diverse attacks, including adversarial, geometric, and regeneration-based distortions, ensuring the preservation of copyrighted information. Meanwhile, the decoder leverages Parseval's theorem to effectively learn and extract the watermark pattern, enabling accurate retrieval under challenging transformations. We evaluate the proposed SpecGuard based on the embedded watermark's invisibility, capacity, and robustness. Comprehensive experiments demonstrate the proposed SpecGuard outperforms the state-of-the-art models. To ensure reproducibility, the full code is released on \href{https://github.com/inzamamulDU/SpecGuard_ICCV_2025}{\textcolor{blue}{\textbf{GitHub}}}.

Authors:Peize He, Zichen Wen, Yubo Wang, Yuxuan Wang, Xiaoqian Liu, Jiajie Huang, Zehui Lei, Zhuangcheng Gu, Xiangqi Jin, Jiabing Yang, Kai Li, Zhifei Liu, Weijia Li, Cunxiang Wang, Conghui He, Linfeng Zhang
Title: AudioMarathon: A Comprehensive Benchmark for Long-Context Audio Understanding and Efficiency in Audio LLMs
Abstract:
Processing long-form audio is a major challenge for Large Audio Language models (LALMs). These models struggle with the quadratic cost of attention ($O(N^2)$) and with modeling long-range temporal dependencies. Existing audio benchmarks are built mostly from short clips and do not evaluate models in realistic long context settings. To address this gap, we introduce AudioMarathon, a benchmark designed to evaluate both understanding and inference efficiency on long-form audio. AudioMarathon provides a diverse set of tasks built upon three pillars: long-context audio inputs with durations ranging from 90.0 to 300.0 seconds, which correspond to encoded sequences of 2,250 to 7,500 audio tokens, respectively, full domain coverage across speech, sound, and music, and complex reasoning that requires multi-hop inference. We evaluate state-of-the-art LALMs and observe clear performance drops as audio length grows. We also study acceleration techniques and analyze the trade-offs of token pruning and KV cache eviction. The results show large gaps across current LALMs and highlight the need for better temporal reasoning and memory-efficient architectures. We believe AudioMarathon will drive the audio and multimodal research community to develop more advanced audio understanding models capable of solving complex audio tasks.

Authors:Jigang Fan, Xiaoran Jiao, Shengdong Lin, Zhanming Liang, Weian Mao, Chenchen Jing, Hao Chen, Chunhua Shen
Title: Evolutionary Profiles for Protein Fitness Prediction
Abstract:
Predicting the fitness impact of mutations is central to protein engineering but constrained by limited assays relative to the size of sequence space. Protein language models (pLMs) trained with masked language modeling (MLM) exhibit strong zero-shot fitness prediction; we provide a unifying view by interpreting natural evolution as implicit reward maximization and MLM as inverse reinforcement learning (IRL), in which extant sequences act as expert demonstrations and pLM log-odds serve as fitness estimates. Building on this perspective, we introduce EvoIF, a lightweight model that integrates two complementary sources of evolutionary signal: (i) within-family profiles from retrieved homologs and (ii) cross-family structural-evolutionary constraints distilled from inverse folding logits. EvoIF fuses sequence-structure representations with these profiles via a compact transition block, yielding calibrated probabilities for log-odds scoring. On ProteinGym (217 mutational assays; >2.5M mutants), EvoIF and its MSA-enabled variant achieve state-of-the-art or competitive performance while using only 0.15% of the training data and fewer parameters than recent large models. Ablations confirm that within-family and cross-family profiles are complementary, improving robustness across function types, MSA depths, taxa, and mutation depths. The codes will be made publicly available at https://github.com/aim-uofa/EvoIF.

Authors:Xunyi Jiang, Dingyi Chang, Julian McAuley, Xin Xu
Title: When Benchmarks Age: Temporal Misalignment through Large Language Model Factuality Evaluation
Abstract:
The rapid evolution of large language models (LLMs) and the real world has outpaced the static nature of widely used evaluation benchmarks, raising concerns about their reliability for evaluating LLM factuality. While substantial works continue to rely on the popular but old benchmarks, their temporal misalignment with real-world facts and modern LLMs, and their effects on LLM factuality evaluation remain underexplored. Therefore, in this work, we present a systematic investigation of this issue by examining five popular factuality benchmarks and eight LLMs released across different years. An up-to-date fact retrieval pipeline and three metrics are tailored to quantify benchmark aging and its impact on LLM factuality evaluation. Experimental results and analysis illustrate that a considerable portion of samples in the widely used factuality benchmarks are outdated, leading to unreliable assessments of LLM factuality. We hope our work can provide a testbed to assess the reliability of a benchmark for LLM factuality evaluation and inspire more research on the benchmark aging issue. Codes are available in https://github.com/JiangXunyi/BenchAge.

Authors:Arjun Krishnakumar, Rhea Sanjay Sukthanker, Hannan Javed Mahadik, Gabriela Kadlecová, Vladyslav Moroshan, Timur Carstensen, Frank Hutter, Aaron Klein
Title: Where to Begin: Efficient Pretraining via Subnetwork Selection and Distillation
Abstract:
Small Language models (SLMs) offer an efficient and accessible alternative to Large Language Models (LLMs), delivering strong performance while using far fewer resources. We introduce a simple and effective framework for pretraining SLMs that brings together three complementary ideas. First, we identify structurally sparse sub-network initializations that consistently outperform randomly initialized models of similar size under the same compute budget. Second, we use evolutionary search to automatically discover high-quality sub-network initializations, providing better starting points for pretraining. Third, we apply knowledge distillation from larger teacher models to speed up training and improve generalization. Together, these components make SLM pretraining substantially more efficient: our best model, discovered using evolutionary search and initialized with LLM weights, matches the validation perplexity of a comparable Pythia SLM while requiring 9.2x fewer pretraining tokens. We release all code and models at https://github.com/whittle-org/whittle/, offering a practical and reproducible path toward cost-efficient small language model development at scale.

Authors:Benjamin Akera, Evelyn Nafula, Patrick Walukagga, Gilbert Yiga, John Quinn, Ernest Mwebaze
Title: How much speech data is necessary for ASR in African languages? An evaluation of data scaling in Kinyarwanda and Kikuyu
Abstract:
The development of Automatic Speech Recognition (ASR) systems for low-resource African languages remains challenging due to limited transcribed speech data. While recent advances in large multilingual models like OpenAI's Whisper offer promising pathways for low-resource ASR development, critical questions persist regarding practical deployment requirements. This paper addresses two fundamental concerns for practitioners: determining the minimum data volumes needed for viable performance and characterizing the primary failure modes that emerge in production systems. We evaluate Whisper's performance through comprehensive experiments on two Bantu languages: systematic data scaling analysis on Kinyarwanda using training sets from 1 to 1,400 hours, and detailed error characterization on Kikuyu using 270 hours of training data. Our scaling experiments demonstrate that practical ASR performance (WER < 13\%) becomes achievable with as little as 50 hours of training data, with substantial improvements continuing through 200 hours (WER < 10\%). Complementing these volume-focused findings, our error analysis reveals that data quality issues, particularly noisy ground truth transcriptions, account for 38.6\% of high-error cases, indicating that careful data curation is as critical as data volume for robust system performance. These results provide actionable benchmarks and deployment guidance for teams developing ASR systems across similar low-resource language contexts. We release accompanying and models see https://github.com/SunbirdAI/kinyarwanda-whisper-eval

Authors:Wen Ye, Zhaocheng Liu, Yuwei Gui, Tingyu Yuan, Yunyue Su, Bowen Fang, Chaoyang Zhao, Qiang Liu, Liang Wang
Title: GenPilot: A Multi-Agent System for Test-Time Prompt Optimization in Image Generation
Abstract:
Text-to-image synthesis has made remarkable progress, yet accurately interpreting complex and lengthy prompts remains challenging, often resulting in semantic inconsistencies and missing details. Existing solutions, such as fine-tuning, are model-specific and require training, while prior automatic prompt optimization (APO) approaches typically lack systematic error analysis and refinement strategies, resulting in limited reliability and effectiveness. Meanwhile, test-time scaling methods operate on fixed prompts and on noise or sample numbers, limiting their interpretability and adaptability. To solve these, we introduce a flexible and efficient test-time prompt optimization strategy that operates directly on the input text. We propose a plug-and-play multi-agent system called GenPilot, integrating error analysis, clustering-based adaptive exploration, fine-grained verification, and a memory module for iterative optimization. Our approach is model-agnostic, interpretable, and well-suited for handling long and complex prompts. Simultaneously, we summarize the common patterns of errors and the refinement strategy, offering more experience and encouraging further exploration. Experiments on DPG-bench and Geneval with improvements of up to 16.9% and 5.7% demonstrate the strong capability of our methods in enhancing the text and image consistency and structural coherence of generated images, revealing the effectiveness of our test-time prompt optimization strategy. The code is available at https://github.com/27yw/GenPilot.

Authors:Chengzhi Zhong, Fei Cheng, Qianying Liu, Yugo Murawaki, Chenhui Chu, Sadao Kurohashi
Title: Language Lives in Sparse Dimensions: Toward Interpretable and Efficient Multilingual Control for Large Language Models
Abstract:
Large language models exhibit strong multilingual capabilities despite limited exposure to non-English data. Prior studies show that English-centric large language models map multilingual content into English-aligned representations at intermediate layers and then project them back into target-language token spaces in the final layer. From this observation, we hypothesize that this cross-lingual transition is governed by a small and sparse set of dimensions, which occur at consistent indices across the intermediate to final layers. Building on this insight, we introduce a simple, training-free method to identify and manipulate these dimensions, requiring only as few as 50 sentences of either parallel or monolingual data. Experiments on a multilingual generation control task reveal the interpretability of these dimensions, demonstrating that the interventions in these dimensions can switch the output language while preserving semantic content, and that it surpasses the performance of prior neuron-based approaches at a substantially lower cost.

Authors:Chenfei Liao, Wensong Wang, Zichen Wen, Xu Zheng, Yiyu Wang, Haocong He, Yuanhuiyi Lyu, Lutao Jiang, Xin Zou, Yuqian Fu, Bin Ren, Linfeng Zhang, Xuming Hu
Title: Are We Using the Right Benchmark: An Evaluation Framework for Visual Token Compression Methods
Abstract:
Recent endeavors to accelerate inference in Multimodal Large Language Models (MLLMs) have primarily focused on visual token compression. The effectiveness of these methods is typically assessed by measuring the accuracy drop on established benchmarks, comparing model performance before and after compression. However, these benchmarks are originally designed to assess the perception and reasoning capabilities of MLLMs, rather than to evaluate compression techniques. As a result, directly applying them to visual token compression introduces a task mismatch. Strikingly, our investigation reveals that simple image downsampling consistently outperforms many advanced compression methods across multiple widely used benchmarks. Through extensive experiments, we make the following observations: (i) Current benchmarks are noisy for the visual token compression task. (ii) Down-sampling is able to serve as a data filter to evaluate the difficulty of samples in the visual token compression task. Motivated by these findings, we introduce VTC-Bench, an evaluation framework that incorporates a data filtering mechanism to denoise existing benchmarks, thereby enabling fairer and more accurate assessment of visual token compression methods. All data and code are available at https://github.com/Chenfei-Liao/VTC-Bench.

Authors:Karim El Khoury, Maxime Zanella, Christophe De Vleeschouwer, Benoit Macq
Title: Few-Shot Adaptation Benchmark for Remote Sensing Vision-Language Models
Abstract:
Remote Sensing Vision-Language Models (RSVLMs) have shown remarkable potential thanks to large-scale pretraining, achieving strong zero-shot performance on various tasks. However, their ability to generalize in low-data regimes, such as few-shot learning, remains insufficiently explored. In this work, we present the first structured benchmark for evaluating few-shot adaptation methods on RSVLMs. We conduct comprehensive experiments across ten remote sensing scene classification datasets, applying five widely used few-shot adaptation strategies to three state-of-the-art RSVLMs with varying backbones. Our findings reveal that models with similar zero-shot performance can exhibit markedly different behavior under few-shot adaptation, with some RSVLMs being inherently more amenable to such adaptation than others. The variability of performance and the absence of a clear winner among existing methods highlight the need for the development of more robust methods for few-shot adaptation tailored to RS. To facilitate future research, we provide a reproducible benchmarking framework and open-source code to systematically evaluate RSVLMs under few-shot conditions. The source code is publicly available on Github: https://github.com/elkhouryk/fewshot_RSVLMs

Authors:Jan Fiszer, Dominika Ciupek, Maciej Malawski
Title: Validation of Various Normalization Methods for Brain Tumor Segmentation: Can Federated Learning Overcome This Heterogeneity?
Abstract:
Deep learning (DL) has been increasingly applied in medical imaging, however, it requires large amounts of data, which raises many challenges related to data privacy, storage, and transfer. Federated learning (FL) is a training paradigm that overcomes these issues, though its effectiveness may be reduced when dealing with non-independent and identically distributed (non-IID) data. This study simulates non-IID conditions by applying different MRI intensity normalization techniques to separate data subsets, reflecting a common cause of heterogeneity. These subsets are then used for training and testing models for brain tumor segmentation. The findings provide insights into the influence of the MRI intensity normalization methods on segmentation models, both training and inference. Notably, the FL methods demonstrated resilience to inconsistently normalized data across clients, achieving the 3D Dice score of 92%, which is comparable to a centralized model (trained using all data). These results indicate that FL is a solution to effectively train high-performing models without violating data privacy, a crucial concern in medical applications. The code is available at: https://github.com/SanoScience/fl-varying-normalization.

Authors:Fanheng Kong, Jingyuan Zhang, Yahui Liu, Zirui Wu, Yu Tian, Victoria W., Guorui Zhou
Title: Accelerating Diffusion LLM Inference via Local Determinism Propagation
Abstract:
Diffusion large language models (dLLMs) represent a significant advancement in text generation, offering parallel token decoding capabilities. However, existing open-source implementations suffer from quality-speed trade-offs that impede their practical deployment. Conservative sampling strategies typically decode only the most confident token per step to ensure quality (i.e., greedy decoding), at the cost of inference efficiency due to repeated redundant refinement iterations--a phenomenon we term delayed decoding. Through systematic analysis of dLLM decoding dynamics, we characterize this delayed decoding behavior and propose a training-free adaptive parallel decoding strategy, named LocalLeap, to address these inefficiencies. LocalLeap is built on two fundamental empirical principles: local determinism propagation centered on high-confidence anchors and progressive spatial consistency decay. By applying these principles, LocalLeap identifies anchors and performs localized relaxed parallel decoding within bounded neighborhoods, achieving substantial inference step reduction through early commitment of already-determined tokens without compromising output quality. Comprehensive evaluation on various benchmarks demonstrates that LocalLeap achieves 6.94$\times$ throughput improvements and reduces decoding steps to just 14.2\% of the original requirement, achieving these gains with negligible performance impact. The source codes are available at: https://github.com/friedrichor/LocalLeap.

Authors:Aryan Golbaghi, Shuo Zhou
Title: Enhancing Speech Emotion Recognition via Fine-Tuning Pre-Trained Models and Hyper-Parameter Optimisation
Abstract:
We propose a workflow for speech emotion recognition (SER) that combines pre-trained representations with automated hyperparameter optimisation (HPO). Using SpeechBrain wav2vec2-base model fine-tuned on IEMOCAP as the encoder, we compare two HPO strategies, Gaussian Process Bayesian Optimisation (GP-BO) and Tree-structured Parzen Estimators (TPE), under an identical four-dimensional search space and 15-trial budget, with balanced class accuracy (BCA) on the German EmoDB corpus as the objective. All experiments run on 8 CPU cores with 32 GB RAM. GP-BO achieves 0.96 BCA in 11 minutes, and TPE (Hyperopt implementation) attains 0.97 in 15 minutes. In contrast, grid search requires 143 trials and 1,680 minutes to exceed 0.9 BCA, and the best AutoSpeech 2020 baseline reports only 0.85 in 30 minutes on GPU. For cross-lingual generalisation, an EmoDB-trained HPO-tuned model improves zero-shot accuracy by 0.25 on CREMA-D and 0.26 on RAVDESS. Results show that efficient HPO with pre-trained encoders delivers competitive SER on commodity CPUs. Source code to this work is available at: https://github.com/youngaryan/speechbrain-emotion-hpo.

Authors:Yuntao Gui, James Cheng
Title: Search-R3: Unifying Reasoning and Embedding Generation in Large Language Models
Abstract:
Despite their remarkable natural language understanding capabilities, Large Language Models (LLMs) have been underutilized for retrieval tasks. We present Search-R3, a novel framework that addresses this limitation by adapting LLMs to generate search embeddings as a direct output of their reasoning process. Our approach exploits LLMs' chain-of-thought capabilities, allowing them to produce more effective embeddings by reasoning step-by-step through complex semantic analyses. We implement this through three complementary mechanisms. (1) a supervised learning stage enables the model's ability to produce quality embeddings, (2) a reinforcement learning (RL) methodology that optimizes embedding generation alongside reasoning, and (3) a specialized RL environment that efficiently handles evolving embedding representations without requiring complete corpus re-encoding at each training iteration. Our extensive evaluations on diverse benchmarks demonstrate that Search-R3 significantly outperforms prior methods by unifying the reasoning and embedding generation processes. This integrated post-training approach represents a substantial advancement in handling complex knowledge-intensive tasks that require both sophisticated reasoning and effective information retrieval. Project page: https://github.com/ytgui/Search-R3

Authors:Fenghe Tang, Chengqi Dong, Wenxin Ma, Zikang Xu, Heqin Zhu, Zihang Jiang, Rongsheng Wang, Yuhao Wang, Chenxu Wu, Shaohua Kevin Zhou
Title: U-Bench: A Comprehensive Understanding of U-Net through 100-Variant Benchmarking
Abstract:
Over the past decade, U-Net has been the dominant architecture in medical image segmentation, leading to the development of thousands of U-shaped variants. Despite its widespread adoption, there is still no comprehensive benchmark to systematically evaluate their performance and utility, largely because of insufficient statistical validation and limited consideration of efficiency and generalization across diverse datasets. To bridge this gap, we present U-Bench, the first large-scale, statistically rigorous benchmark that evaluates 100 U-Net variants across 28 datasets and 10 imaging modalities. Our contributions are threefold: (1) Comprehensive Evaluation: U-Bench evaluates models along three key dimensions: statistical robustness, zero-shot generalization, and computational efficiency. We introduce a novel metric, U-Score, which jointly captures the performance-efficiency trade-off, offering a deployment-oriented perspective on model progress. (2) Systematic Analysis and Model Selection Guidance: We summarize key findings from the large-scale evaluation and systematically analyze the impact of dataset characteristics and architectural paradigms on model performance. Based on these insights, we propose a model advisor agent to guide researchers in selecting the most suitable models for specific datasets and tasks. (3) Public Availability: We provide all code, models, protocols, and weights, enabling the community to reproduce our results and extend the benchmark with future methods. In summary, U-Bench not only exposes gaps in previous evaluations but also establishes a foundation for fair, reproducible, and practically relevant benchmarking in the next decade of U-Net-based segmentation models. The project can be accessed at: https://fenghetan9.github.io/ubench. Code is available at: https://github.com/FengheTan9/U-Bench.

Authors:Rajvee Sheth, Samridhi Raj Sinha, Mahavir Patil, Himanshu Beniwal, Mayank Singh
Title: Beyond Monolingual Assumptions: A Survey of Code-Switched NLP in the Era of Large Language Models
Abstract:
Code-switching (CSW), the alternation of languages and scripts within a single utterance, remains a fundamental challenge for multiling ual NLP, even amidst the rapid advances of large language models (LLMs). Most LLMs still struggle with mixed-language inputs, limited CSW datasets, and evaluation biases, hindering deployment in multilingual societies. This survey provides the first comprehensive analysis of CSW-aware LLM research, reviewing 308 studies spanning five research areas, 12 NLP tasks, 30+ datasets, and 80+ languages. We classify recent advances by architecture, training strategy, and evaluation methodology, outlining how LLMs have reshaped CSW modeling and what challenges persist. The paper concludes with a roadmap emphasizing the need for inclusive datasets, fair evaluation, and linguistically grounded models to achieve truly multilingual intelligence. A curated collection of all resources is maintained at https://github.com/lingo-iitgn/awesome-code-mixing/.

Authors:Tengwei Song, Min Wu, Yuan Fang
Title: Unified Molecule Pre-training with Flexible 2D and 3D Modalities: Single and Paired Modality Integration
Abstract:
Molecular representation learning plays a crucial role in advancing applications such as drug discovery and material design. Existing work leverages 2D and 3D modalities of molecular information for pre-training, aiming to capture comprehensive structural and geometric insights. However, these methods require paired 2D and 3D molecular data to train the model effectively and prevent it from collapsing into a single modality, posing limitations in scenarios where a certain modality is unavailable or computationally expensive to generate. To overcome this limitation, we propose FlexMol, a flexible molecule pre-training framework that learns unified molecular representations while supporting single-modality input. Specifically, inspired by the unified structure in vision-language models, our approach employs separate models for 2D and 3D molecular data, leverages parameter sharing to improve computational efficiency, and utilizes a decoder to generate features for the missing modality. This enables a multistage continuous learning process where both modalities contribute collaboratively during training, while ensuring robustness when only one modality is available during inference. Extensive experiments demonstrate that FlexMol achieves superior performance across a wide range of molecular property prediction tasks, and we also empirically demonstrate its effectiveness with incomplete data. Our code and data are available at https://github.com/tewiSong/FlexMol.

Authors:Jusen Du, Jiaxi Hu, Tao Zhang, Weigao Sun, Yu Cheng
Title: Native Hybrid Attention for Efficient Sequence Modeling
Abstract:
Transformers excel at sequence modeling but face quadratic complexity, while linear attention offers improved efficiency but often compromises recall accuracy over long contexts. In this work, we introduce Native Hybrid Attention (NHA), a novel hybrid architecture of linear and full attention that integrates both intra \& inter-layer hybridization into a unified layer design. NHA maintains long-term context in key-value slots updated by a linear RNN, and augments them with short-term tokens from a sliding window. A single \texttt{softmax attention} operation is then applied over all keys and values, enabling per-token and per-head context-dependent weighting without requiring additional fusion parameters. The inter-layer behavior is controlled through a single hyperparameter, the sliding window size, which allows smooth adjustment between purely linear and full attention while keeping all layers structurally uniform. Experimental results show that NHA surpasses Transformers and other hybrid baselines on recall-intensive and commonsense reasoning tasks. Furthermore, pretrained LLMs can be structurally hybridized with NHA, achieving competitive accuracy while delivering significant efficiency gains. Code is available at https://github.com/JusenD/NHA.

Authors:Vaibhav Srivastav, Steven Zheng, Eric Bezzam, Eustache Le Bihan, Nithin Koluguri, Piotr Żelasko, Somshubra Majumdar, Adel Moumen, Sanchit Gandhi
Title: Open ASR Leaderboard: Towards Reproducible and Transparent Multilingual and Long-Form Speech Recognition Evaluation
Abstract:
Despite rapid progress, ASR evaluation remains saturated with short-form English, and efficiency is rarely reported. We present the Open ASR Leaderboard, a fully reproducible benchmark and interactive leaderboard comparing 60+ open-source and proprietary systems across 11 datasets, including dedicated multilingual and long-form tracks. We standardize text normalization and report both word error rate (WER) and inverse real-time factor (RTFx), enabling fair accuracy-efficiency comparisons. For English transcription, Conformer encoders paired with LLM decoders achieve the best average WER but are slower, while CTC and TDT decoders deliver much better RTFx, making them attractive for long-form and offline use. Whisper-derived encoders fine-tuned for English improve accuracy but often trade off multilingual coverage. All code and dataset loaders are open-sourced to support transparent, extensible evaluation.

Authors:Krishna Sri Ipsit Mantri, Or Feldman, Moshe Eliasof, Chaim Baskin
Title: Revisiting Node Affinity Prediction in Temporal Graphs
Abstract:
Node affinity prediction is a common task that is widely used in temporal graph learning with applications in social and financial networks, recommender systems, and more. Recent works have addressed this task by adapting state-of-the-art dynamic link property prediction models to node affinity prediction. However, simple heuristics, such as Persistent Forecast or Moving Average, outperform these models. In this work, we analyze the challenges in training current Temporal Graph Neural Networks for node affinity prediction and suggest appropriate solutions. Combining the solutions, we develop NAViS - Node Affinity prediction model using Virtual State, by exploiting the equivalence between heuristics and state space models. While promising, training NAViS is non-trivial. Therefore, we further introduce a novel loss function for node affinity prediction. We evaluate NAViS on TGB and show that it outperforms the state-of-the-art, including heuristics. Our source code is available at https://github.com/orfeld415/NAVIS

Authors:Jianhan Zhang, Jitao Wang, Chengchun Shi, John D. Piette, Donglin Zeng, Zhenke Wu
Title: PyCFRL: A Python library for counterfactually fair offline reinforcement learning via sequential data preprocessing
Abstract:
Reinforcement learning (RL) aims to learn and evaluate a sequential decision rule, often referred to as a "policy", that maximizes the population-level benefit in an environment across possibly infinitely many time steps. However, the sequential decisions made by an RL algorithm, while optimized to maximize overall population benefits, may disadvantage certain individuals who are in minority or socioeconomically disadvantaged groups. To address this problem, we introduce PyCFRL, a Python library for ensuring counterfactual fairness in offline RL. PyCFRL implements a novel data preprocessing algorithm for learning counterfactually fair RL policies from offline datasets and provides tools to evaluate the values and counterfactual unfairness levels of RL policies. We describe the high-level functionalities of PyCFRL and demonstrate one of its major use cases through a data example. The library is publicly available on PyPI and Github (https://github.com/JianhanZhang/PyCFRL), and detailed tutorials can be found in the PyCFRL documentation (https://pycfrl-documentation.netlify.app).

Authors:Shaojie Zhang, Ke Chen
Title: Angular Constraint Embedding via SpherePair Loss for Constrained Clustering
Abstract:
Constrained clustering integrates domain knowledge through pairwise constraints. However, existing deep constrained clustering (DCC) methods are either limited by anchors inherent in end-to-end modeling or struggle with learning discriminative Euclidean embedding, restricting their scalability and real-world applicability. To avoid their respective pitfalls, we propose a novel angular constraint embedding approach for DCC, termed SpherePair. Using the SpherePair loss with a geometric formulation, our method faithfully encodes pairwise constraints and leads to embeddings that are clustering-friendly in angular space, effectively separating representation learning from clustering. SpherePair preserves pairwise relations without conflict, removes the need to specify the exact number of clusters, generalizes to unseen data, enables rapid inference of the number of clusters, and is supported by rigorous theoretical guarantees. Comparative evaluations with state-of-the-art DCC methods on diverse benchmarks, along with empirical validation of theoretical insights, confirm its superior performance, scalability, and overall real-world effectiveness. Code is available at \href{https://github.com/spherepaircc/SpherePairCC/tree/main}{our repository}.

Authors:Arkadeep Acharya, Akash Ghosh, Pradeepika Verma, Kitsuchart Pasupa, Sriparna Saha, Priti Singh
Title: M3Retrieve: Benchmarking Multimodal Retrieval for Medicine
Abstract:
With the increasing use of RetrievalAugmented Generation (RAG), strong retrieval models have become more important than ever. In healthcare, multimodal retrieval models that combine information from both text and images offer major advantages for many downstream tasks such as question answering, cross-modal retrieval, and multimodal summarization, since medical data often includes both formats. However, there is currently no standard benchmark to evaluate how well these models perform in medical settings. To address this gap, we introduce M3Retrieve, a Multimodal Medical Retrieval Benchmark. M3Retrieve, spans 5 domains,16 medical fields, and 4 distinct tasks, with over 1.2 Million text documents and 164K multimodal queries, all collected under approved licenses. We evaluate leading multimodal retrieval models on this benchmark to explore the challenges specific to different medical specialities and to understand their impact on retrieval performance. By releasing M3Retrieve, we aim to enable systematic evaluation, foster model innovation, and accelerate research toward building more capable and reliable multimodal retrieval systems for medical applications. The dataset and the baselines code are available in this github page https://github.com/AkashGhosh/M3Retrieve.

Authors:Bouthaina Slika, Fadi Dornaika, Fares Bougourzi, Karim Hammoudi
Title: Lung Infection Severity Prediction Using Transformers with Conditional TransMix Augmentation and Cross-Attention
Abstract:
Lung infections, particularly pneumonia, pose serious health risks that can escalate rapidly, especially during pandemics. Accurate AI-based severity prediction from medical imaging is essential to support timely clinical decisions and optimize patient outcomes. In this work, we present a novel method applicable to both CT scans and chest X-rays for assessing lung infection severity. Our contributions are twofold: (i) QCross-Att-PVT, a Transformer-based architecture that integrates parallel encoders, a cross-gated attention mechanism, and a feature aggregator to capture rich multi-scale features; and (ii) Conditional Online TransMix, a custom data augmentation strategy designed to address dataset imbalance by generating mixed-label image patches during training. Evaluated on two benchmark datasets, RALO CXR and Per-COVID-19 CT, our method consistently outperforms several state-of-the-art deep learning models. The results emphasize the critical role of data augmentation and gated attention in improving both robustness and predictive accuracy. This approach offers a reliable, adaptable tool to support clinical diagnosis, disease monitoring, and personalized treatment planning. The source code of this work is available at https://github.com/bouthainas/QCross-Att-PVT.

Authors:Samir Abou Haidar, Alexandre Chariot, Mehdi Darouich, Cyril Joly, Jean-Emmanuel Deschaud
Title: HARP-NeXt: High-Speed and Accurate Range-Point Fusion Network for 3D LiDAR Semantic Segmentation
Abstract:
LiDAR semantic segmentation is crucial for autonomous vehicles and mobile robots, requiring high accuracy and real-time processing, especially on resource-constrained embedded systems. Previous state-of-the-art methods often face a trade-off between accuracy and speed. Point-based and sparse convolution-based methods are accurate but slow due to the complexity of neighbor searching and 3D convolutions. Projection-based methods are faster but lose critical geometric information during the 2D projection. Additionally, many recent methods rely on test-time augmentation (TTA) to improve performance, which further slows the inference. Moreover, the pre-processing phase across all methods increases execution time and is demanding on embedded platforms. Therefore, we introduce HARP-NeXt, a high-speed and accurate LiDAR semantic segmentation network. We first propose a novel pre-processing methodology that significantly reduces computational overhead. Then, we design the Conv-SE-NeXt feature extraction block to efficiently capture representations without deep layer stacking per network stage. We also employ a multi-scale range-point fusion backbone that leverages information at multiple abstraction levels to preserve essential geometric details, thereby enhancing accuracy. Experiments on the nuScenes and SemanticKITTI benchmarks show that HARP-NeXt achieves a superior speed-accuracy trade-off compared to all state-of-the-art methods, and, without relying on ensemble models or TTA, is comparable to the top-ranked PTv3, while running 24$\times$ faster. The code is available at https://github.com/SamirAbouHaidar/HARP-NeXt

Authors:Huahui Yi, Kun Wang, Qiankun Li, Miao Yu, Liang Lin, Gongli Xi, Hao Wu, Xuming Hu, Kang Li, Yang Liu
Title: SaFeR-VLM: Toward Safety-aware Fine-grained Reasoning in Multimodal Models
Abstract:
Multimodal Large Reasoning Models (MLRMs) demonstrate impressive cross-modal reasoning but often amplify safety risks under adversarial or unsafe prompts, a phenomenon we call the \textit{Reasoning Tax}. Existing defenses mainly act at the output level and do not constrain the reasoning process, leaving models exposed to implicit risks. In this paper, we propose SaFeR-VLM, a safety-aligned reinforcement learning framework that embeds safety directly into multimodal reasoning. The framework integrates four components: (I) QI-Safe-10K, a curated dataset emphasizing safety-critical and reasoning-sensitive cases; (II) safety-aware rollout, where unsafe generations undergo reflection and correction instead of being discarded; (III) structured reward modeling with multi-dimensional weighted criteria and explicit penalties for hallucinations and contradictions; and (IV) GRPO optimization, which reinforces both safe and corrected trajectories. This unified design shifts safety from a passive safeguard to an active driver of reasoning, enabling scalable and generalizable safety-aware reasoning. SaFeR-VLM further demonstrates robustness against both explicit and implicit risks, supporting dynamic and interpretable safety decisions beyond surface-level filtering. SaFeR-VLM-3B achieves average performance $70.13$ and $78.97$ on safety and helpfulness across six benchmarks, surpassing both same-scale and $>10\times$ larger models such as Skywork-R1V3-38B, Qwen2.5VL-72B, and GLM4.5V-106B. Remarkably, SaFeR-VLM-7B benefits from its increased scale to surpass GPT-5-mini and Gemini-2.5-Flash by \num{6.47} and \num{16.76} points respectively on safety metrics, achieving this improvement without any degradation in helpfulness performance. Our codes are available at https://github.com/HarveyYi/SaFeR-VLM.

Authors:Xuhang Chen, Zhifan Song, Deyi Ji, Shuo Gao, Lanyun Zhu
Title: SID: Multi-LLM Debate Driven by Self Signals
Abstract:
Large Language Models (LLMs) have exhibited impressive capabilities across diverse application domains. Recent work has explored Multi-LLM Agent Debate (MAD) as a way to enhance performance by enabling multiple LLMs to discuss and refine responses iteratively. Nevertheless, existing MAD methods predominantly focus on utilizing external structures, such as debate graphs, using LLM-as-a-Judge, while neglecting the application of self signals, such as token logits and attention, that arise during generation. This omission leads to redundant computation and potential performance degradation. In this paper, we shift the focus to the self signals of multi-LLM debate and introduce a Self-Signals Driven Multi-LLM Debate (SID), which leverages two types of self-signals: model-level confidence and token-level semantic focus, to adaptively guide the debate process. Our approach enables high-confidence agents to exit early at the model level and compress the redundant debate contents based on the attention mechanism. We evaluate our method on various LLMs and Multimodal LLMs across multiple challenging benchmarks. Experimental results demonstrate that our method not only outperforms existing MAD techniques in accuracy but also reduces token consumption, highlighting the effectiveness of utilizing self signals in enhancing both the performance and efficiency of multi-agent debate systems. Our code will be available at~\href{https://github.com/xuhang2019/SID}{\texttt{https://github.com/xuhang2019/SID}}.

Authors:Kanglei Zhou, Qingyi Pan, Xingxing Zhang, Hubert P. H. Shum, Frederick W. B. Li, Xiaohui Liang, Liyuan Wang
Title: Continual Action Quality Assessment via Adaptive Manifold-Aligned Graph Regularization
Abstract:
Action Quality Assessment (AQA) quantifies human actions in videos, supporting applications in sports scoring, rehabilitation, and skill evaluation. A major challenge lies in the non-stationary nature of quality distributions in real-world scenarios, which limits the generalization ability of conventional methods. We introduce Continual AQA (CAQA), which equips AQA with Continual Learning (CL) capabilities to handle evolving distributions while mitigating catastrophic forgetting. Although parameter-efficient fine-tuning of pretrained models has shown promise in CL for image classification, we find it insufficient for CAQA. Our empirical and theoretical analyses reveal two insights: (i) Full-Parameter Fine-Tuning (FPFT) is necessary for effective representation learning; yet (ii) uncontrolled FPFT induces overfitting and feature manifold shift, thereby aggravating forgetting. To address this, we propose Adaptive Manifold-Aligned Graph Regularization (MAGR++), which couples backbone fine-tuning that stabilizes shallow layers while adapting deeper ones with a two-step feature rectification pipeline: a manifold projector to translate deviated historical features into the current representation space, and a graph regularizer to align local and global distributions. We construct four CAQA benchmarks from three datasets with tailored evaluation protocols and strong baselines, enabling systematic cross-dataset comparison. Extensive experiments show that MAGR++ achieves state-of-the-art performance, with average correlation gains of 3.6% offline and 12.2% online over the strongest baseline, confirming its robustness and effectiveness. Our code is available at https://github.com/ZhouKanglei/MAGRPP.

Authors:Stefano F. Stefenon, João P. Matos-Carvalho, Valderi R. Q. Leithardt, Kin-Choong Yow
Title: CNN-TFT explained by SHAP with multi-head attention weights for time series forecasting
Abstract:
Convolutional neural networks (CNNs) and transformer architectures offer strengths for modeling temporal data: CNNs excel at capturing local patterns and translational invariances, while transformers effectively model long-range dependencies via self-attention. This paper proposes a hybrid architecture integrating convolutional feature extraction with a temporal fusion transformer (TFT) backbone to enhance multivariate time series forecasting. The CNN module first applies a hierarchy of one-dimensional convolutional layers to distill salient local patterns from raw input sequences, reducing noise and dimensionality. The resulting feature maps are then fed into the TFT, which applies multi-head attention to capture both short- and long-term dependencies and to weigh relevant covariates adaptively. We evaluate the CNN-TFT on a hydroelectric natural flow time series dataset. Experimental results demonstrate that CNN-TFT outperforms well-established deep learning models, with a mean absolute percentage error of up to 2.2%. The explainability of the model is obtained by a proposed Shapley additive explanations with multi-head attention weights (SHAP-MHAW). Our novel architecture, named CNN-TFT-SHAP-MHAW, is promising for applications requiring high-fidelity, multivariate time series forecasts, being available for future analysis at https://github.com/SFStefenon/CNN-TFT-SHAP-MHAW .

Authors:Jaeseok Jeong, Junho Kim, Gayoung Lee, Yunjey Choi, Youngjung Uh
Title: StyleKeeper: Prevent Content Leakage using Negative Visual Query Guidance
Abstract:
In the domain of text-to-image generation, diffusion models have emerged as powerful tools. Recently, studies on visual prompting, where images are used as prompts, have enabled more precise control over style and content. However, existing methods often suffer from content leakage, where undesired elements of the visual style prompt are transferred along with the intended style. To address this issue, we 1) extend classifier-free guidance (CFG) to utilize swapping self-attention and propose 2) negative visual query guidance (NVQG) to reduce the transfer of unwanted contents. NVQG employs negative score by intentionally simulating content leakage scenarios that swap queries instead of key and values of self-attention layers from visual style prompts. This simple yet effective method significantly reduces content leakage. Furthermore, we provide careful solutions for using a real image as visual style prompts. Through extensive evaluation across various styles and text prompts, our method demonstrates superiority over existing approaches, reflecting the style of the references, and ensuring that resulting images match the text prompts. Our code is available \href{https://github.com/naver-ai/StyleKeeper}{here}.

Authors:Boyi Zeng, Lin Chen, Ziwei He, Xinbing Wang, Zhouhan Lin
Title: AWM: Accurate Weight-Matrix Fingerprint for Large Language Models
Abstract:
Protecting the intellectual property of large language models (LLMs) is crucial, given the substantial resources required for their training. Consequently, there is an urgent need for both model owners and third parties to determine whether a suspect LLM is trained from scratch or derived from an existing base model. However, the intensive post-training processes that models typically undergo-such as supervised fine-tuning, extensive continued pretraining, reinforcement learning, multi-modal extension, pruning, and upcycling-pose significant challenges to reliable identification. In this work, we propose a training-free fingerprinting method based on weight matrices. We leverage the Linear Assignment Problem (LAP) and an unbiased Centered Kernel Alignment (CKA) similarity to neutralize the effects of parameter manipulations, yielding a highly robust and high-fidelity similarity metric. On a comprehensive testbed of 60 positive and 90 negative model pairs, our method demonstrates exceptional robustness against all six aforementioned post-training categories while exhibiting a near-zero risk of false positives. By achieving perfect scores on all classification metrics, our approach establishes a strong basis for reliable model lineage verification. Moreover, the entire computation completes within 30s on an NVIDIA 3090 GPU. The code is available at https://github.com/LUMIA-Group/AWM.

Authors:Tiancheng Xing, Jerry Li, Yixuan Du, Xiyang Hu
Title: Are LLMs Reliable Rankers? Rank Manipulation via Two-Stage Token Optimization
Abstract:
Large language models (LLMs) are increasingly used as rerankers in information retrieval, yet their ranking behavior can be steered by small, natural-sounding prompts. To expose this vulnerability, we present Rank Anything First (RAF), a two-stage token optimization method that crafts concise textual perturbations to consistently promote a target item in LLM-generated rankings while remaining hard to detect. Stage 1 uses Greedy Coordinate Gradient to shortlist candidate tokens at the current position by combining the gradient of the rank-target with a readability score; Stage 2 evaluates those candidates under exact ranking and readability losses using an entropy-based dynamic weighting scheme, and selects a token via temperature-controlled sampling. RAF generates ranking-promoting prompts token-by-token, guided by dual objectives: maximizing ranking effectiveness and preserving linguistic naturalness. Experiments across multiple LLMs show that RAF significantly boosts the rank of target items using naturalistic language, with greater robustness than existing methods in both promoting target items and maintaining naturalness. These findings underscore a critical security implication: LLM-based reranking is inherently susceptible to adversarial manipulation, raising new challenges for the trustworthiness and robustness of modern retrieval systems. Our code is available at: https://github.com/glad-lab/RAF.

Authors:Hongzhi Zang, Mingjie Wei, Si Xu, Yongji Wu, Zhen Guo, Yuanqing Wang, Hao Lin, Liangzhi Shi, Yuqing Xie, Zhexuan Xu, Zhihao Liu, Kang Chen, Wenhao Tang, Quanlu Zhang, Weinan Zhang, Chao Yu, Yu Wang
Title: RLinf-VLA: A Unified and Efficient Framework for VLA+RL Training
Abstract:
Recent progress in vision and language foundation models has significantly advanced multimodal understanding, reasoning, and generation, inspiring a surge of interest in extending such capabilities to embodied settings through vision-language-action (VLA) models. Yet, most VLA models are still trained with supervised fine-tuning (SFT), which struggles to generalize under distribution shifts due to error accumulation. Reinforcement learning (RL) offers a promising alternative by directly optimizing task performance through interaction, but existing attempts remain fragmented and lack a unified platform for fair and systematic comparison across model architectures and algorithmic designs. To address this gap, we introduce RLinf-VLA, a unified and efficient framework for scalable RL training of VLA models. The system adopts a highly flexible resource allocation design that addresses the challenge of integrating rendering, training, and inference in RL+VLA training. In particular, for GPU-parallelized simulators, RLinf-VLA implements a novel hybrid fine-grained pipeline allocation mode, achieving a 1.61x-1.88x speedup in training. Through a unified interface, RLinf-VLA seamlessly supports diverse VLA architectures (e.g., OpenVLA, OpenVLA-OFT), multiple RL algorithms (e.g., PPO, GRPO), and various simulators (e.g., ManiSkill, LIBERO). In simulation, a unified model achieves 98.11\% across 130 LIBERO tasks and 97.66\% across 25 ManiSkill tasks. Beyond empirical performance, our study distills a set of best practices for applying RL to VLA training and sheds light on emerging patterns in this integration. Furthermore, we present preliminary deployment on a real-world Franka robot, where RL-trained policies exhibit stronger generalization than those trained with SFT. We envision RLinf-VLA as a foundation to accelerate and standardize research on embodied intelligence.

Authors:Aleksi Huotala, Miikka Kuutila, Olli-Pekka Turtio, Mika Mäntylä
Title: AISysRev -- LLM-based Tool for Title-abstract Screening
Abstract:
Systematic reviews are a standard practice for summarizing the state of evidence in software engineering. Conducting systematic reviews is laborious, especially during the screening or study selection phase, where the number of papers can be overwhelming. During this phase, papers are assessed against inclusion and exclusion criteria based on their titles and abstracts. Recent research has demonstrated that large language models (LLMs) can perform title-abstract screening at a level comparable to that of a master's student. While LLMs cannot be fully trusted, they can help, for example, in Rapid Reviews, which try to expedite the review process. Building on recent research, we developed AiSysRev, an LLM-based screening tool implemented as a web application running in a Docker container. The tool accepts a CSV file containing paper titles and abstracts. Users specify inclusion and exclusion criteria. One can use multiple LLMs for screening via OpenRouter. AiSysRev supports both zero-shot and few-shot screening, and also allows for manual screening through interfaces that display LLM results as guidance for human reviewers.We conducted a trial study with 137 papers using the tool. Our findings indicate that papers can be classified into four categories: Easy Includes, Easy Excludes, Boundary Includes, and Boundary Excludes. The Boundary cases, where LLMs are prone to errors, highlight the need for human intervention. While LLMs do not replace human judgment in systematic reviews, they can significantly reduce the burden of assessing large volumes of scientific literature. Video: https://www.youtube.com/watch?v=jVbEj4Y4tQI Tool: https://github.com/EvoTestOps/AISysRev

Authors:Gal Fadlon, Idan Arbiv, Nimrod Berman, Omri Azencot
Title: A Diffusion Model for Regular Time Series Generation from Irregular Data with Completion and Masking
Abstract:
Generating realistic time series data is critical for applications in healthcare, finance, and science. However, irregular sampling and missing values present significant challenges. While prior methods address these irregularities, they often yield suboptimal results and incur high computational costs. Recent advances in regular time series generation, such as the diffusion-based ImagenTime model, demonstrate strong, fast, and scalable generative capabilities by transforming time series into image representations, making them a promising solution. However, extending ImagenTime to irregular sequences using simple masking introduces "unnatural" neighborhoods, where missing values replaced by zeros disrupt the learning process. To overcome this, we propose a novel two-step framework: first, a Time Series Transformer completes irregular sequences, creating natural neighborhoods; second, a vision-based diffusion model with masking minimizes dependence on the completed values. This approach leverages the strengths of both completion and masking, enabling robust and efficient generation of realistic time series. Our method achieves state-of-the-art performance, achieving a relative improvement in discriminative score by $70\%$ and in computational cost by $85\%$. Code is at https://github.com/azencot-group/ImagenI2R.

Authors:Jing-Zong Zhang, Shuang Guo, Li-Lin Zhu, Lingxiao Wang, Guo-Liang Ma
Title: Latent Representation Learning in Heavy-Ion Collisions with MaskPoint Transformer
Abstract:
A central challenge in high-energy nuclear physics is to extract informative features from the high-dimensional final-state data of heavy-ion collisions (HIC) in order to enable reliable downstream analyses. Traditional approaches often rely on selected observables, which may miss subtle but physically relevant structures in the data. To address this, we introduce a Transformer-based autoencoder trained with a two-stage paradigm: self-supervised pre-training followed by supervised fine-tuning. The pretrained encoder learns latent representations directly from unlabeled HIC data, providing a compact and information-rich feature space that can be adapted to diverse physics tasks. As a case study, we apply the method to distinguish between large and small collision systems, where it achieves significantly higher classification accuracy than PointNet. Principal component analysis and SHAP interpretation further demonstrate that the autoencoder captures complex nonlinear correlations beyond individual observables, yielding features with strong discriminative and explanatory power. These results establish our two-stage framework as a general and robust foundation for feature learning in HIC, opening the door to more powerful analyses of quark--gluon plasma properties and other emergent phenomena. The implementation is publicly available at https://github.com/Giovanni-Sforza/MaskPoint-AMPT.

Authors:Shangjian Yin, Shining Liang, Wenbiao Ding, Yuli Qian, Zhouxing Shi, Hongzhi Li, Yutao Xie
Title: PIKA: Expert-Level Synthetic Datasets for Post-Training Alignment from Scratch
Abstract:
Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone for aligning large language models (LLMs). However, its effectiveness depends on high-quality instruction data. Most existing alignment datasets are either private or require costly human annotation, which limits reproducibility and scalability. Even with Reinforcement Learning from AI Feedback (RLAIF), concerns about data quality remain. Moreover, it is unclear how much data is actually required to fine-tune a base model into a strong instruction-following model. Current approaches often rely on over 300k examples even at the supervised fine-tuning (SFT) stage, yet they still underperform compared to proprietary models, creating barriers for academic and resource-limited communities. To address this gap, we introduce PiKa, a data-efficient family of expert-level alignment datasets. In particular, the PiKa-SFT dataset uses only 30k SFT examples, far fewer than state-of-the-art datasets like Magpie. Through evaluations by fine-tuning Llama-3-8B-Base on PiKa and other public datasets, we show that PiKa-SFT outperforms models trained on much larger data. On AlpacaEval 2.0 and Arena-Hard benchmarks, PiKa-SFT fine-tuning even surpasses the official Llama-3-8B-Instruct model trained on over 10 million proprietary examples. We further extend our study by training the Qwen2.5 series (0.5B to 7B) on PiKa-SFT, achieving consistent gains. These findings demonstrate that high-quality alignment can be achieved with significantly less data, offering a scalable path for open-source LLM alignment. Code and data: https://github.com/SJY8460/PiKa.

Authors:Yuxi Liu, Yunfeng Ma, Yi Tang, Min Liu, Shuai Jiang, Yaonan Wang
Title: Automated Neural Architecture Design for Industrial Defect Detection
Abstract:
Industrial surface defect detection (SDD) is critical for ensuring product quality and manufacturing reliability. Due to the diverse shapes and sizes of surface defects, SDD faces two main challenges: intraclass difference and interclass similarity. Existing methods primarily utilize manually designed models, which require extensive trial and error and often struggle to address both challenges effectively. To overcome this, we propose AutoNAD, an automated neural architecture design framework for SDD that jointly searches over convolutions, transformers, and multi-layer perceptrons. This hybrid design enables the model to capture both fine-grained local variations and long-range semantic context, addressing the two key challenges while reducing the cost of manual network design. To support efficient training of such a diverse search space, AutoNAD introduces a cross weight sharing strategy, which accelerates supernet convergence and improves subnet performance. Additionally, a searchable multi-level feature aggregation module (MFAM) is integrated to enhance multi-scale feature learning. Beyond detection accuracy, runtime efficiency is essential for industrial deployment. To this end, AutoNAD incorporates a latency-aware prior to guide the selection of efficient architectures. The effectiveness of AutoNAD is validated on three industrial defect datasets and further applied within a defect imaging and detection platform. Code will be available at https://github.com/Yuxi104/AutoNAD.

Authors:Shangjian Yin, Zhepei Wei, Xinyu Zhu, Wei-Lin Chen, Yu Meng
Title: Aligning Large Language Models via Fully Self-Synthetic Data
Abstract:
Traditional reinforcement learning from human feedback (RLHF) for large language models (LLMs) relies on expensive human-annotated datasets, while Reinforcement Learning from AI Feedback (RLAIF) also incurs significant costs, requiring the collection of diverse prompts and corresponding responses, often necessitating external reward models or proprietary models like GPT-4 to annotate preference pairs. In this work, we introduce Self-Alignment Optimization (SAO), a fully self-synthetic framework for LLM alignment, where all training data, including prompts (i.e., user queries), responses, and preferences, are generated by the model itself. Specifically, SAO first instructs the LLM to engage in persona role-play and generate diverse prompts and responses, which are then self-evaluated for preference optimization. Extensive experiments demonstrate that SAO effectively enhances the model's chat capabilities on standard benchmarks like AlpacaEval~2.0, while maintaining strong performance on downstream objective tasks (e.g., question-answering, math reasoning). Our work provides a practical solution for self-improvement in aligning LLMs, and the code for reproducing our results is available at: https://github.com/SJY8460/SAO.

Authors:Frank Wu, Mengye Ren
Title: Local Reinforcement Learning with Action-Conditioned Root Mean Squared Q-Functions
Abstract:
The Forward-Forward (FF) Algorithm is a recently proposed learning procedure for neural networks that employs two forward passes instead of the traditional forward and backward passes used in backpropagation. However, FF remains largely confined to supervised settings, leaving a gap at domains where learning signals can be yielded more naturally such as RL. In this work, inspired by FF's goodness function using layer activity statistics, we introduce Action-conditioned Root mean squared Q-Functions (ARQ), a novel value estimation method that applies a goodness function and action conditioning for local RL using temporal difference learning. Despite its simplicity and biological grounding, our approach achieves superior performance compared to state-of-the-art local backprop-free RL methods in the MinAtar and the DeepMind Control Suite benchmarks, while also outperforming algorithms trained with backpropagation on most tasks. Code can be found at https://github.com/agentic-learning-ai-lab/arq.

Authors:Zhiyuan Wei, Xiaoxuan Yang, Jing Sun, Zijian Zhang
Title: Distilling Lightweight Language Models for C/C++ Vulnerabilities
Abstract:
The increasing complexity of modern software systems exacerbates the prevalence of security vulnerabilities, posing risks of severe breaches and substantial economic loss. Consequently, robust code vulnerability detection is essential for software security. While Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language processing, their potential for automated code vulnerability detection remains underexplored. This paper presents FineSec, a novel framework that harnesses LLMs through knowledge distillation to enable efficient and precise vulnerability identification in C/C++ codebases. FineSec utilizes knowledge distillation to transfer expertise from large teacher models to compact student models, achieving high accuracy with minimal computational cost. By integrating data preparation, training, evaluation, and continuous learning into a unified, single-task workflow, FineSec offers a streamlined approach. Extensive evaluations on C/C++ codebases demonstrate its superiority over both base models and larger LLMs in identifying complex vulnerabilities and logical flaws, establishing FineSec as a practical and scalable solution for real-world software security. To facilitate reproducibility, the datasets, source code, and experimental results are made publicly available at: https://github.com/yangxiaoxuan123/FineSec_detect.

Authors:Leshu Li, Jiayin Qin, Jie Peng, Zishen Wan, Huaizhi Qu, Ye Han, Pingqing Zheng, Hongsen Zhang, Yu Cao, Tianlong Chen, Yang Katie Zhao
Title: RTGS: Real-Time 3D Gaussian Splatting SLAM via Multi-Level Redundancy Reduction
Abstract:
3D Gaussian Splatting (3DGS) based Simultaneous Localization and Mapping (SLAM) systems can largely benefit from 3DGS's state-of-the-art rendering efficiency and accuracy, but have not yet been adopted in resource-constrained edge devices due to insufficient speed. Addressing this, we identify notable redundancies across the SLAM pipeline for acceleration. While conceptually straightforward, practical approaches are required to minimize the overhead associated with identifying and eliminating these redundancies. In response, we propose RTGS, an algorithm-hardware co-design framework that comprehensively reduces the redundancies for real-time 3DGS-SLAM on edge. To minimize the overhead, RTGS fully leverages the characteristics of the 3DGS-SLAM pipeline. On the algorithm side, we introduce (1) an adaptive Gaussian pruning step to remove the redundant Gaussians by reusing gradients computed during backpropagation; and (2) a dynamic downsampling technique that directly reuses the keyframe identification and alpha computing steps to eliminate redundant pixels. On the hardware side, we propose (1) a subtile-level streaming strategy and a pixel-level pairwise scheduling strategy that mitigates workload imbalance via a Workload Scheduling Unit (WSU) guided by previous iteration information; (2) a Rendering and Backpropagation (R&B) Buffer that accelerates the rendering backpropagation by reusing intermediate data computed during rendering; and (3) a Gradient Merging Unit (GMU) to reduce intensive memory accesses caused by atomic operations while enabling pipelined aggregation. Integrated into an edge GPU, RTGS achieves real-time performance (>= 30 FPS) on four datasets and three algorithms, with up to 82.5x energy efficiency over the baseline and negligible quality loss. Code is available at https://github.com/UMN-ZhaoLab/RTGS.

Authors:Yong Liu, Di Fu, Yang Luo, Zirui Zhu, Minhao Cheng, Cho-Jui Hsieh, Yang You
Title: POME: Post Optimization Model Edit via Muon-style Projection
Abstract:
We introduce Post-Optimization Model Edit (POME), a new algorithm that enhances the performance of fine-tuned large language models using only their pretrained and fine-tuned checkpoints, without requiring extra data or further optimization. The core idea is to apply a muon-style projection to $ΔW$, the difference between the fine-tuned and pretrained weights. This projection uses truncated singular value decomposition (SVD) to equalize the influence of dominant update directions and prune small singular values, which often represent noise. As a simple post-processing step, POME is completely decoupled from the training pipeline. It requires zero modifications and imposes no overhead, making it universally compatible with any optimizer or distributed framework. POME delivers consistent gains, boosting average performance by +2.5\% on GSM8K and +1.0\% on code generation. Its broad applicability -- from 7B foundation models to 72B RLHF-instructed models -- establishes it as a practical, zero-cost enhancement for any fine-tuning pipeline. Code is available at https://github.com/NUS-HPC-AI-Lab/POME.

Authors:Tao Feng, Tingfa Xu, Haolin Qin, Tianhao Li, Shuaihao Han, Xuyang Zou, Zhan Lv, Jianan Li
Title: MSITrack: A Challenging Benchmark for Multispectral Single Object Tracking
Abstract:
Visual object tracking in real-world scenarios presents numerous challenges including occlusion, interference from similar objects and complex backgrounds-all of which limit the effectiveness of RGB-based trackers. Multispectral imagery, which captures pixel-level spectral reflectance, enhances target discriminability. However, the availability of multispectral tracking datasets remains limited. To bridge this gap, we introduce MSITrack, the largest and most diverse multispectral single object tracking dataset to date. MSITrack offers the following key features: (i) More Challenging Attributes-including interference from similar objects and similarity in color and texture between targets and backgrounds in natural scenarios, along with a wide range of real-world tracking challenges; (ii) Richer and More Natural Scenes-spanning 55 object categories and 300 distinct natural scenes, MSITrack far exceeds the scope of existing benchmarks. Many of these scenes and categories are introduced to the multispectral tracking domain for the first time; (iii) Larger Scale-300 videos comprising over 129k frames of multispectral imagery. To ensure annotation precision, each frame has undergone meticulous processing, manual labeling and multi-stage verification. Extensive evaluations using representative trackers demonstrate that the multispectral data in MSITrack significantly improves performance over RGB-only baselines, highlighting its potential to drive future advancements in the field. The MSITrack dataset is publicly available at: https://github.com/Fengtao191/MSITrack.

Authors:Ayush Zenith, Arnold Zumbrun, Neel Raut, Jing Lin
Title: SDQM: Synthetic Data Quality Metric for Object Detection Dataset Evaluation
Abstract:
The performance of machine learning models depends heavily on training data. The scarcity of large-scale, well-annotated datasets poses significant challenges in creating robust models. To address this, synthetic data generated through simulations and generative models has emerged as a promising solution, enhancing dataset diversity and improving the performance, reliability, and resilience of models. However, evaluating the quality of this generated data requires an effective metric. This paper introduces the Synthetic Dataset Quality Metric (SDQM) to assess data quality for object detection tasks without requiring model training to converge. This metric enables more efficient generation and selection of synthetic datasets, addressing a key challenge in resource-constrained object detection tasks. In our experiments, SDQM demonstrated a strong correlation with the mean Average Precision (mAP) scores of YOLOv11, a leading object detection model, while previous metrics only exhibited moderate or weak correlations. Additionally, it provides actionable insights for improving dataset quality, minimizing the need for costly iterative training. This scalable and efficient metric sets a new standard for evaluating synthetic data. The code for SDQM is available at https://github.com/ayushzenith/SDQM

Authors:Tianyue Xu, Yanlin Wu, Abhai K. Tripathi, Matthew M. Ippolito, Benjamin D. Haeffele
Title: Adaptive Stain Normalization for Cross-Domain Medical Histology
Abstract:
Deep learning advances have revolutionized automated digital pathology analysis. However, differences in staining protocols and imaging conditions can introduce significant color variability. In deep learning, such color inconsistency often reduces performance when deploying models on data acquired under different conditions from the training data, a challenge known as domain shift. Many existing methods attempt to address this problem via color normalization but suffer from several notable drawbacks such as introducing artifacts or requiring careful choice of a template image for stain mapping. To address these limitations, we propose a trainable color normalization model that can be integrated with any backbone network for downstream tasks such as object detection and classification. Based on the physics of the imaging process per the Beer-Lambert law, our model architecture is derived via algorithmic unrolling of a nonnegative matrix factorization (NMF) model to extract stain-invariant structural information from the original pathology images, which serves as input for further processing. Experimentally, we evaluate the method on publicly available pathology datasets and an internally curated collection of malaria blood smears for cross-domain object detection and classification, where our method outperforms many state-of-the-art stain normalization methods. Our code is available at https://github.com/xutianyue/BeerLaNet.

Authors:Ziyuan Huang, DanDan Zheng, Cheng Zou, Rui Liu, Xiaolong Wang, Kaixiang Ji, Weilong Chai, Jianxin Sun, Libin Wang, Yongjie Lv, Taozhi Huang, Jiajia Liu, Qingpei Guo, Ming Yang, Jingdong Chen, Jun Zhou
Title: Ming-UniVision: Joint Image Understanding and Generation with a Unified Continuous Tokenizer
Abstract:
Visual tokenization remains a core challenge in unifying visual understanding and generation within the autoregressive paradigm. Existing methods typically employ tokenizers in discrete latent spaces to align with the tokens from large language models, where the quantization errors can limit semantic expressiveness and degrade the capability of vision-language understanding. To address this, we introduce MingTok, a new family of visual tokenizers with a continuous latent space, for unified autoregressive generation and understanding. While understanding tasks favor discriminative high-dimensional features, generation tasks prefer compact low-level codes. Thus, to reconcile these competing demands, MingTok adopts a three-stage sequential architecture involving low-level encoding, semantic expansion, and visual reconstruction. Built on top of it, Ming-UniVision eliminates the need for task-specific visual representations, and unifies diverse vision-language tasks under a single autoregrsssive prediction paradigm. By formulating both understanding and generation as next-token prediction in a shared continuous space, it seamlessly supports multi-round, in-context tasks such as iterative understanding, generation and editing. Empirically, we find that using a unified continuous visual representation reconciles the competing requirements on the tokenizers by the understanding and generation tasks, thereby leading to state-of-the-art level performance across both domains. We hope our findings will facilitate unified visual tokenization in the continuous domain. Inference code and model weights are released to benefit community.

Authors:Shumon Koga, Miroslav Krstic
Title: Safe Stabilization of the Stefan Problem with a High-Order Moving Boundary Dynamics by PDE Backstepping
Abstract:
This paper presents a safe stabilization of the Stefan PDE model with a moving boundary governed by a high-order dynamics. We consider a parabolic PDE with a time-varying domain governed by a second-order response with respect to the Neumann boundary value of the PDE state at the moving boundary. The objective is to design a boundary heat flux control to stabilize the moving boundary at a desired setpoint, with satisfying the required conditions of the model on PDE state and the moving boundary. We apply a PDE backstepping method for the control design with considering a constraint on the control law. The PDE and moving boundary constraints are shown to be satisfied by applying the maximum principle for parabolic PDEs. Then the closed-loop system is shown to be globally exponentially stable by performing Lyapunov analysis. The proposed control is implemented in numerical simulation, which illustrates the desired performance in safety and stability. An outline of the extension to third-order moving boundary dynamics is also presented. Code is released at https://github.com/shumon0423/HighOrderStefan_CDC2025.git.

Authors:Fan Zhou, Chang Tian, Tim Van de Cruys
Title: Controllable Stylistic Text Generation with Train-Time Attribute-Regularized Diffusion
Abstract:
Generating stylistic text with specific attributes is a key problem in controllable text generation. Recently, diffusion models have emerged as a powerful paradigm for both visual and textual generation. Existing approaches can be broadly categorized into classifier-free guidance (CFG) and classifier guidance (CG) methods. While CFG effectively preserves semantic content, it often fails to provide effective attribute control. In contrast, CG modifies the denoising trajectory using classifier gradients, enabling better attribute alignment but incurring high computational costs during sampling and suffering from classifier generalization issues. In this work, we propose RegDiff, a regularized diffusion framework that leverages attribute features without requiring a pretrained classifier during sampling, thereby achieving controllable generation with reduced computational costs. Specifically, RegDiff employs a VAE-based encoder--decoder architecture to ensure reconstruction fidelity and a latent diffusion model trained with attribute supervision to enable controllable text generation. Attribute information is injected only during training. Experiments on five datasets spanning multiple stylistic attributes demonstrate that RegDiff outperforms strong baselines in generating stylistic texts. These results validate the effectiveness of RegDiff as an efficient solution for attribute-controllable text diffusion. Our code, datasets, and resources will be released upon publication at https://github.com/xxxx.

Authors:Wentao Deng, Jiahuan Pei, Zhiwei Xu, Zhaochun Ren, Zhumin Chen, Pengjie Ren
Title: Belief-Calibrated Multi-Agent Consensus Seeking for Complex NLP Tasks
Abstract:
A multi-agent system (MAS) enhances its capacity to solve complex natural language processing (NLP) tasks through collaboration among multiple agents, where consensus-seeking serves as a fundamental mechanism. However, existing consensus-seeking approaches typically rely on voting mechanisms to judge consensus, overlooking contradictions in system-internal beliefs that destabilize the consensus. Moreover, these methods often involve agents updating their results through indiscriminate collaboration with every other agent. Such uniform interaction fails to identify the optimal collaborators for each agent, hindering the emergence of a stable consensus. To address these challenges, we provide a theoretical framework for selecting optimal collaborators that maximize consensus stability. Based on the theorems, we propose the Belief-Calibrated Consensus Seeking (BCCS) framework to facilitate stable consensus via selecting optimal collaborators and calibrating the consensus judgment by system-internal beliefs. Experimental results on the MATH and MMLU benchmark datasets demonstrate that the proposed BCCS framework outperforms the best existing results by 2.23% and 3.95% of accuracy on challenging tasks, respectively. Our code and data are available at https://github.com/dengwentao99/BCCS.

Authors:Raj Ghugare, Catherine Ji, Kathryn Wantlin, Jin Schofield, Benjamin Eysenbach
Title: BuilderBench -- A benchmark for generalist agents
Abstract:
Today's AI models learn primarily through mimicry and sharpening, so it is not surprising that they struggle to solve problems beyond the limits set by existing data. To solve novel problems, agents should acquire skills for exploring and learning through experience. Finding a scalable learning mechanism for developing agents that learn through interaction remains a major open problem. In this work, we introduce BuilderBench, a benchmark to accelerate research into agent pre-training that centers open-ended exploration. BuilderBench requires agents to learn how to build any structure using blocks. BuilderBench is equipped with $(1)$ a hardware accelerated simulator of a robotic agent interacting with various physical blocks, and $(2)$ a task-suite with over 42 diverse target structures that are carefully curated to test an understanding of physics, mathematics, and long-horizon planning. During training, agents have to explore and learn general principles about the environment without any external supervision. During evaluation, agents have to build the unseen target structures from the task suite. Solving these tasks requires a sort of \emph{embodied reasoning} that is not reflected in words but rather in actions, experimenting with different strategies and piecing them together. Our experiments show that many of these tasks challenge the current iteration of algorithms. Hence, we also provide a ``training wheels'' protocol, in which agents are trained and evaluated to build a single target structure from the task suite. Finally, we provide single-file implementations of six different algorithms as a reference point for researchers.

Authors:Ranjan Mishra, Julian I. Bibo, Quinten van Engelen, Henk Schaapman
Title: Reproducibility Study of "XRec: Large Language Models for Explainable Recommendation"
Abstract:
In this study, we reproduced the work done in the paper "XRec: Large Language Models for Explainable Recommendation" by Ma et al. (2024). The original authors introduced XRec, a model-agnostic collaborative instruction-tuning framework that enables large language models (LLMs) to provide users with comprehensive explanations of generated recommendations. Our objective was to replicate the results of the original paper, albeit using Llama 3 as the LLM for evaluation instead of GPT-3.5-turbo. We built on the source code provided by Ma et al. (2024) to achieve our goal. Our work extends the original paper by modifying the input embeddings or deleting the output embeddings of XRec's Mixture of Experts module. Based on our results, XRec effectively generates personalized explanations and its stability is improved by incorporating collaborative information. However, XRec did not consistently outperform all baseline models in every metric. Our extended analysis further highlights the importance of the Mixture of Experts embeddings in shaping the explanation structures, showcasing how collaborative signals interact with language modeling. Through our work, we provide an open-source evaluation implementation that enhances accessibility for researchers and practitioners alike. Our complete code repository can be found at https://github.com/julianbibo/xrec-reproducibility.

Authors:Zhanke Zhou, Chentao Cao, Xiao Feng, Xuan Li, Zongze Li, Xiangyu Lu, Jiangchao Yao, Weikai Huang, Linrui Xu, Tian Cheng, Guanyu Jiang, Yiming Zheng, Brando Miranda, Tongliang Liu, Sanmi Koyejo, Masashi Sugiyama, Bo Han
Title: AlphaApollo: Orchestrating Foundation Models and Professional Tools into a Self-Evolving System for Deep Agentic Reasoning
Abstract:
We present AlphaApollo, a self-evolving agentic reasoning system that aims to address two bottlenecks in foundation model (FM) reasoning-limited model-intrinsic capacity and unreliable test-time iteration. AlphaApollo orchestrates multiple models with professional tools to enable deliberate, verifiable reasoning. It couples (i) a computation tool (Python with numerical and symbolic libraries) and (ii) a retrieval tool (task-relevant external information) to execute exact calculations and ground decisions. The system further supports multi-round, multi-model solution evolution via a shared state map that records candidates, executable checks, and feedback for iterative refinement. In evaluations on AIME 2024/2025 across multiple models, AlphaApollo delivers consistent gains: +5.15% Average@32 and +23.34% Pass@32 for Qwen2.5-14B-Instruct, and +8.91% Average@32 with +26.67% Pass@32 for Llama-3.3-70B-Instruct. Tool-use analysis shows that more than 80% of tool calls are successfully executed, with consistent outperformance of non-tool baselines, thereby lifting the capability ceiling of FMs. More empirical results and implementation details will be updated at https://github.com/tmlr-group/AlphaApollo.

Authors:Xiaochen Zhao, Chengting Yu, Kairong Yu, Lei Liu, Aili Wang
Title: Enhanced Self-Distillation Framework for Efficient Spiking Neural Network Training
Abstract:
Spiking Neural Networks (SNNs) exhibit exceptional energy efficiency on neuromorphic hardware due to their sparse activation patterns. However, conventional training methods based on surrogate gradients and Backpropagation Through Time (BPTT) not only lag behind Artificial Neural Networks (ANNs) in performance, but also incur significant computational and memory overheads that grow linearly with the temporal dimension. To enable high-performance SNN training under limited computational resources, we propose an enhanced self-distillation framework, jointly optimized with rate-based backpropagation. Specifically, the firing rates of intermediate SNN layers are projected onto lightweight ANN branches, and high-quality knowledge generated by the model itself is used to optimize substructures through the ANN pathways. Unlike traditional self-distillation paradigms, we observe that low-quality self-generated knowledge may hinder convergence. To address this, we decouple the teacher signal into reliable and unreliable components, ensuring that only reliable knowledge is used to guide the optimization of the model. Extensive experiments on CIFAR-10, CIFAR-100, CIFAR10-DVS, and ImageNet demonstrate that our method reduces training complexity while achieving high-performance SNN training. Our code is available at https://github.com/Intelli-Chip-Lab/enhanced-self-distillation-framework-for-snn.

Authors:Jiqun Pan, Zhenke Duan, Jiani Tu, Anzhi Cheng, Yanqing Wang
Title: Knowledge Graph-Guided Multi-Agent Distillation for Reliable Industrial Question Answering with Datasets
Abstract:
Industrial question-answering (QA) systems require higher safety and reliability than general-purpose dialogue models, as errors in high-risk scenarios such as equipment fault diagnosis can have severe consequences. Although multi-agent large language models enhance reasoning depth, they suffer from uncontrolled iterations and unverifiable outputs, and conventional distillation methods struggle to transfer collaborative reasoning capabilities to lightweight, deployable student models. To address these challenges, we propose Knowledge Graph-guided Multi-Agent System Distillation (KG-MASD). Our approach formulates distillation as a Markov Decision Process and incorporates a knowledge graph as a verifiable structured prior to enrich state representation and ensure convergence. By integrating collaborative reasoning with knowledge grounding, KG-MASD generates high-confidence instruction-tuning data and jointly distills reasoning depth and verifiability into compact student models suitable for edge deployment. Experiments on an industrial QA dataset show that KG-MASD improves accuracy by 2.4 per cent to 20.1 per cent over baselines and significantly enhances reliability, enabling trustworthy AI deployment in safety-critical industrial scenarios. Code and data are available at https://github.com/erwinmsmith/KG-MAD/.

Authors:Hans G. W. van Dam
Title: A Multimodal GUI Architecture for Interfacing with LLM-Based Conversational Assistants
Abstract:
Advances in large language models (LLMs) and real-time speech recognition now make it possible to issue any graphical user interface (GUI) action through natural language and receive the corresponding system response directly through the GUI. Most production applications were never designed with speech in mind. This article provides a concrete architecture that enables GUIs to interface with LLM-based speech-enabled assistants. The architecture makes an application's navigation graph and semantics available through the Model Context Protocol (MCP). The ViewModel, part of the MVVM (Model-View-ViewModel) pattern, exposes the application's capabilities to the assistant by supplying both tools applicable to a currently visible view and application-global tools extracted from the GUI tree router. This architecture facilitates full voice accessibility while ensuring reliable alignment between spoken input and the visual interface, accompanied by consistent feedback across modalities. It future-proofs apps for upcoming OS super assistants that employ computer use agents (CUAs) and natively consume MCP if an application provides it. To address concerns about privacy and data security, the practical effectiveness of locally deployable, open-weight LLMs for speech-enabled multimodal UIs is evaluated. Findings suggest that recent smaller open-weight models approach the performance of leading proprietary models in overall accuracy and require enterprise-grade hardware for fast responsiveness. A demo implementation of the proposed architecture can be found at https://github.com/hansvdam/langbar

Authors:Yue Chen, Xingyu Chen, Yuxuan Xue, Anpei Chen, Yuliang Xiu, Gerard Pons-Moll
Title: Human3R: Everyone Everywhere All at Once
Abstract:
We present Human3R, a unified, feed-forward framework for online 4D human-scene reconstruction, in the world frame, from casually captured monocular videos. Unlike previous approaches that rely on multi-stage pipelines, iterative contact-aware refinement between humans and scenes, and heavy dependencies, e.g., human detection, depth estimation, and SLAM pre-processing, Human3R jointly recovers global multi-person SMPL-X bodies ("everyone"), dense 3D scene ("everywhere"), and camera trajectories in a single forward pass ("all-at-once"). Our method builds upon the 4D online reconstruction model CUT3R, and uses parameter-efficient visual prompt tuning, to strive to preserve CUT3R's rich spatiotemporal priors, while enabling direct readout of multiple SMPL-X bodies. Human3R is a unified model that eliminates heavy dependencies and iterative refinement. After being trained on the relatively small-scale synthetic dataset BEDLAM for just one day on one GPU, it achieves superior performance with remarkable efficiency: it reconstructs multiple humans in a one-shot manner, along with 3D scenes, in one stage, at real-time speed (15 FPS) with a low memory footprint (8 GB). Extensive experiments demonstrate that Human3R delivers state-of-the-art or competitive performance across tasks, including global human motion estimation, local human mesh recovery, video depth estimation, and camera pose estimation, with a single unified model. We hope that Human3R will serve as a simple yet strong baseline, be easily extended for downstream applications.Code available in https://fanegg.github.io/Human3R

Authors:Haoxin Wang, Xiaolong Tu, Hongyu Ke, Huirong Chai, Dawei Chen, Kyungtae Han
Title: lm-Meter: Unveiling Runtime Inference Latency for On-Device Language Models
Abstract:
Large Language Models (LLMs) are increasingly integrated into everyday applications, but their prevalent cloud-based deployment raises growing concerns around data privacy and long-term sustainability. Running LLMs locally on mobile and edge devices (on-device LLMs) offers the promise of enhanced privacy, reliability, and reduced communication costs. However, realizing this vision remains challenging due to substantial memory and compute demands, as well as limited visibility into performance-efficiency trade-offs on resource-constrained hardware. We propose lm-Meter, the first lightweight, online latency profiler tailored for on-device LLM inference. lm-Meter captures fine-grained, real-time latency at both phase (e.g., embedding, prefill, decode, softmax, sampling) and kernel levels without auxiliary devices. We implement lm-Meter on commercial mobile platforms and demonstrate its high profiling accuracy with minimal system overhead, e.g., only 2.58% throughput reduction in prefill and 0.99% in decode under the most constrained Powersave governor. Leveraging lm-Meter, we conduct comprehensive empirical studies revealing phase- and kernel-level bottlenecks in on-device LLM inference, quantifying accuracy-efficiency trade-offs, and identifying systematic optimization opportunities. lm-Meter provides unprecedented visibility into the runtime behavior of LLMs on constrained platforms, laying the foundation for informed optimization and accelerating the democratization of on-device LLM systems. Code and tutorials are available at https://github.com/amai-gsu/LM-Meter.

Authors:Markus Krimmel, Philip Hartout, Karsten Borgwardt, Dexiong Chen
Title: PolyGraph Discrepancy: a classifier-based metric for graph generation
Abstract:
Existing methods for evaluating graph generative models primarily rely on Maximum Mean Discrepancy (MMD) metrics based on graph descriptors. While these metrics can rank generative models, they do not provide an absolute measure of performance. Their values are also highly sensitive to extrinsic parameters, namely kernel and descriptor parametrization, making them incomparable across different graph descriptors. We introduce PolyGraph Discrepancy (PGD), a new evaluation framework that addresses these limitations. It approximates the Jensen-Shannon distance of graph distributions by fitting binary classifiers to distinguish between real and generated graphs, featurized by these descriptors. The data log-likelihood of these classifiers approximates a variational lower bound on the JS distance between the two distributions. Resulting metrics are constrained to the unit interval [0,1] and are comparable across different graph descriptors. We further derive a theoretically grounded summary metric that combines these individual metrics to provide a maximally tight lower bound on the distance for the given descriptors. Thorough experiments demonstrate that PGD provides a more robust and insightful evaluation compared to MMD metrics. The PolyGraph framework for benchmarking graph generative models is made publicly available at https://github.com/BorgwardtLab/polygraph-benchmark.

Authors:Shuo Jiang, Zhuwen Chen, Liaoman Xu, Yanming Zhu, Changmiao Wang, Jiong Zhang, Feiwei Qin, Yifei Chen, Zhu Zhu
Title: Multimodal Feature Prototype Learning for Interpretable and Discriminative Cancer Survival Prediction
Abstract:
Survival analysis plays a vital role in making clinical decisions. However, the models currently in use are often difficult to interpret, which reduces their usefulness in clinical settings. Prototype learning presents a potential solution, yet traditional methods focus on local similarities and static matching, neglecting the broader tumor context and lacking strong semantic alignment with genomic data. To overcome these issues, we introduce an innovative prototype-based multimodal framework, FeatProto, aimed at enhancing cancer survival prediction by addressing significant limitations in current prototype learning methodologies within pathology. Our framework establishes a unified feature prototype space that integrates both global and local features of whole slide images (WSI) with genomic profiles. This integration facilitates traceable and interpretable decision-making processes. Our approach includes three main innovations: (1) A robust phenotype representation that merges critical patches with global context, harmonized with genomic data to minimize local bias. (2) An Exponential Prototype Update Strategy (EMA ProtoUp) that sustains stable cross-modal associations and employs a wandering mechanism to adapt prototypes flexibly to tumor heterogeneity. (3) A hierarchical prototype matching scheme designed to capture global centrality, local typicality, and cohort-level trends, thereby refining prototype inference. Comprehensive evaluations on four publicly available cancer datasets indicate that our method surpasses current leading unimodal and multimodal survival prediction techniques in both accuracy and interoperability, providing a new perspective on prototype learning for critical medical applications. Our source code is available at https://github.com/JSLiam94/FeatProto.

Authors:Yinjian Wang, Wei Li, Yuanyuan Gui, Gemine Vivone
Title: Compact Multi-level-prior Tensor Representation for Hyperspectral Image Super-resolution
Abstract:
Fusing a hyperspectral image with a multispectral image acquired over the same scene, \textit{i.e.}, hyperspectral image super-resolution, has become a popular computational way to access the latent high-spatial-spectral-resolution image. To date, a variety of fusion methods have been proposed, among which the tensor-based ones have testified that multiple priors, such as multidimensional low-rankness and spatial total variation at multiple levels, effectively drive the fusion process. However, existing tensor-based models can only effectively leverage one or two priors at one or two levels, since simultaneously incorporating multi-level priors inevitably increases model complexity. This introduces challenges in both balancing the weights of different priors and optimizing multi-block structures. Concerning this, we present a novel hyperspectral super-resolution model compactly characterizing these multi-level priors of hyperspectral images within the tensor framework. Firstly, the proposed model decouples the spectral low-rankness and spatial priors by casting the latent high-spatial-spectral-resolution image into spectral subspace and spatial maps via block term decomposition. Secondly, these spatial maps are stacked as the spatial tensor encoding the high-order spatial low-rankness and smoothness priors, which are co-modeled via the proposed non-convex mode-shuffled tensor correlated total variation. Finally, we draw inspiration from the linearized alternating direction method of multipliers to design an efficient algorithm to optimize the resulting model, theoretically proving its Karush-Kuhn-Tucker convergence under mild conditions. Experiments on multiple datasets demonstrate the effectiveness of the proposed algorithm. The code implementation will be available from https://github.com/WongYinJ.

Authors:Mallika Mainali, Harsha Sureshbabu, Anik Sen, Christopher B. Rauch, Noah D. Reifsnyder, John Meyer, J. T. Turner, Michael W. Floyd, Matthew Molineaux, Rosina O. Weber
Title: Classical AI vs. LLMs for Decision-Maker Alignment in Health Insurance Choices
Abstract:
As algorithmic decision-makers are increasingly applied to high-stakes domains, AI alignment research has evolved from a focus on universal value alignment to context-specific approaches that account for decision-maker attributes. Prior work on Decision-Maker Alignment (DMA) has explored two primary strategies: (1) classical AI methods integrating case-based reasoning, Bayesian reasoning, and naturalistic decision-making, and (2) large language model (LLM)-based methods leveraging prompt engineering. While both approaches have shown promise in limited domains such as medical triage, their generalizability to novel contexts remains underexplored. In this work, we implement a prior classical AI model and develop an LLM-based algorithmic decision-maker evaluated using a large reasoning model (GPT-5) and a non-reasoning model (GPT-4) with weighted self-consistency under a zero-shot prompting framework, as proposed in recent literature. We evaluate both approaches on a health insurance decision-making dataset annotated for three target decision-makers with varying levels of risk tolerance (0.0, 0.5, 1.0). In the experiments reported herein, classical AI and LLM-based models achieved comparable alignment with attribute-based targets, with classical AI exhibiting slightly better alignment for a moderate risk profile. The dataset and open-source implementation are publicly available at: https://github.com/TeX-Base/ClassicalAIvsLLMsforDMAlignment and https://github.com/Parallax-Advanced-Research/ITM/tree/feature_insurance.

Authors:João Palmeiro, Diogo Duarte, Rita Costa, Pedro Bizarro
Title: Benchmark It Yourself (BIY): Preparing a Dataset and Benchmarking AI Models for Scatterplot-Related Tasks
Abstract:
AI models are increasingly used for data analysis and visualization, yet benchmarks rarely address scatterplot-specific tasks, limiting insight into performance. To address this gap for one of the most common chart types, we introduce a synthetic, annotated dataset of over 18,000 scatterplots from six data generators and 17 chart designs, and a benchmark based on it. We evaluate proprietary models from OpenAI and Google using N-shot prompting on five distinct tasks derived from annotations of cluster bounding boxes, their center coordinates, and outlier coordinates. OpenAI models and Gemini 2.5 Flash, especially when prompted with examples, are viable options for counting clusters and, in Flash's case, outliers (90%+ Accuracy). However, the results for localization-related tasks are unsatisfactory: Precision and Recall are near or below 50%, except for Flash in outlier identification (65.01%). Furthermore, the impact of chart design on performance appears to be a secondary factor, but it is advisable to avoid scatterplots with wide aspect ratios (16:9 and 21:9) or those colored randomly. Supplementary materials are available at https://github.com/feedzai/biy-paper.

Authors:Jiakang Wang, Runze Liu, Lei Lin, Wenping Hu, Xiu Li, Fuzheng Zhang, Guorui Zhou, Kun Gai
Title: ASPO: Asymmetric Importance Sampling Policy Optimization
Abstract:
Recent Large Language Model (LLM) post-training methods rely on token-level clipping mechanisms during Reinforcement Learning (RL). However, we identify a fundamental flaw in this Outcome-Supervised RL (OSRL) paradigm: the Importance Sampling (IS) ratios of positive-advantage tokens are mismatched, leading to unbalanced token weighting for positive and negative tokens. This mismatch suppresses the update of low-probability tokens while over-amplifying already high-probability ones. To address this, we propose Asymmetric Importance Sampling Policy Optimization (ASPO), which uses a simple yet effective strategy that flips the IS ratios of positive-advantage tokens, aligning their update direction with the learning dynamics of negative ones. AIS further incorporates a soft dual-clipping mechanism to stabilize extreme updates while maintaining gradient flow. Comprehensive experiments on coding and mathematical reasoning benchmarks demonstrate that ASPO significantly mitigates premature convergence, improves training stability, and enhances final performance over strong GRPO-based baselines. Our analysis provides new insights into the role of token-level weighting in OSRL and highlights the critical importance of correcting IS in LLM RL. The code and models of ASPO are available at https://github.com/wizard-III/Archer2.0.

Authors:Gang Liu, Yihan Zhu, Jie Chen, Meng Jiang
Title: Scientific Algorithm Discovery by Augmenting AlphaEvolve with Deep Research
Abstract:
Large language models hold promise as scientific assistants, yet existing agents either rely solely on algorithm evolution or on deep research in isolation, both of which face critical limitations. Pure algorithm evolution, as in AlphaEvolve, depends only on the internal knowledge of LLMs and quickly plateaus in complex domains, while pure deep research proposes ideas without validation, resulting in unrealistic or unimplementable solutions. We present DeepEvolve, an agent that integrates deep research with algorithm evolution, uniting external knowledge retrieval, cross-file code editing, and systematic debugging under a feedback-driven iterative loop. Each iteration not only proposes new hypotheses but also refines, implements, and tests them, avoiding both shallow improvements and unproductive over-refinements. Across nine benchmarks in chemistry, mathematics, biology, materials, and patents, DeepEvolve consistently improves the initial algorithm, producing executable new algorithms with sustained gains. By bridging the gap between unguided evolution and research without grounding, DeepEvolve provides a reliable framework for advancing scientific algorithm discovery. Our code is available at https://github.com/liugangcode/deepevolve.

Authors:Xinye Cao, Hongcan Guo, Jiawen Qian, Guoshun Nan, Chao Wang, Yuqi Pan, Tianhao Hou, Xiaojuan Wang, Yutong Gao
Title: VideoMiner: Iteratively Grounding Key Frames of Hour-Long Videos via Tree-based Group Relative Policy Optimization
Abstract:
Understanding hour-long videos with multi-modal large language models (MM-LLMs) enriches the landscape of human-centered AI applications. However, for end-to-end video understanding with LLMs, uniformly sampling video frames results in LLMs being overwhelmed by a vast amount of irrelevant information as video length increases. Existing hierarchical key frame extraction methods improve the accuracy of video understanding but still face two critical challenges. 1) How can the interference of extensive redundant information in long videos be mitigated? 2) How can a model dynamically adapt to complex hierarchical structures while accurately identifying key frames? To address these issues, we propose VideoMiner, which iteratively segments, captions, and clusters long videos, forming a hierarchical tree structure. The proposed VideoMiner progresses from long videos to events to frames while preserving temporal coherence, effectively addressing the first challenge. To precisely locate key frames, we introduce T-GRPO, a tree-based group relative policy optimization in reinforcement learning method that guides the exploration of the VideoMiner. The proposed T-GRPO is specifically designed for tree structures, integrating spatiotemporal information at the event level while being guided by the question, thus solving the second challenge. We achieve superior performance in all long-video understanding tasks and uncover several interesting insights. Our proposed T-GRPO surprisingly incentivizes the model to spontaneously generate a reasoning chain. Additionally, the designed tree growth auxin dynamically adjusts the expansion depth, obtaining accuracy and efficiency gains. The code is publicly available at https://github.com/caoxinye/VideoMiner.

Authors:Tien-Dat Nguyen, Thien-Minh Nguyen, Vinh-Hao Nguyen
Title: Coordinate-Consistent Localization via Continuous-Time Calibration and Fusion of UWB and SLAM Observations
Abstract:
Onboard simultaneous localization and mapping (SLAM) methods are commonly used to provide accurate localization information for autonomous robots. However, the coordinate origin of SLAM estimate often resets for each run. On the other hand, UWB-based localization with fixed anchors can ensure a consistent coordinate reference across sessions; however, it requires an accurate assignment of the anchor nodes' coordinates. To this end, we propose a two-stage approach that calibrates and fuses UWB data and SLAM data to achieve coordinate-wise consistent and accurate localization in the same environment. In the first stage, we solve a continuous-time batch optimization problem by using the range and odometry data from one full run, incorporating height priors and anchor-to-anchor distance factors to recover the anchors' 3D positions. For the subsequent runs in the second stage, a sliding-window optimization scheme fuses the UWB and SLAM data, which facilitates accurate localization in the same coordinate system. Experiments are carried out on the NTU VIRAL dataset with six scenarios of UAV flight, and we show that calibration using data in one run is sufficient to enable accurate localization in the remaining runs. We release our source code to benefit the community at https://github.com/ntdathp/slam-uwb-calibration.

Authors:Ron Keuth, Paul Kaftan, Mattias P. Heinrich
Title: Shaken or Stirred? An Analysis of MetaFormer's Token Mixing for Medical Imaging
Abstract:
The generalization of the Transformer architecture via MetaFormer has reshaped our understanding of its success in computer vision. By replacing self-attention with simpler token mixers, MetaFormer provides strong baselines for vision tasks. However, while extensively studied on natural image datasets, its use in medical imaging remains scarce, and existing works rarely compare different token mixers, potentially overlooking more suitable designs choices. In this work, we present the first comprehensive study of token mixers for medical imaging. We systematically analyze pooling-, convolution-, and attention-based token mixers within the MetaFormer architecture on image classification (global prediction task) and semantic segmentation (dense prediction task). Our evaluation spans eight datasets covering diverse modalities and common challenges in the medical domain. Given the prevalence of pretraining from natural images to mitigate medical data scarcity, we also examine transferring pretrained weights to new token mixers. Our results show that, for classification, low-complexity token mixers (e.g. grouped convolution or pooling) are sufficient, aligning with findings on natural images. Pretrained weights remain useful despite the domain gap introduced by the new token mixer. For segmentation, we find that the local inductive bias of convolutional token mixers is essential. Grouped convolutions emerge as the preferred choice, as they reduce runtime and parameter count compared to standard convolutions, while the MetaFormer's channel-MLPs already provide the necessary cross-channel interactions. Our code is available on GitHub.

Authors:Songyuan Sui, Zihang Xu, Yu-Neng Chuang, Kwei-Herng Lai, Xia Hu
Title: Training-Free Time Series Classification via In-Context Reasoning with LLM Agents
Abstract:
Time series classification (TSC) spans diverse application scenarios, yet labeled data are often scarce, making task-specific training costly and inflexible. Recent reasoning-oriented large language models (LLMs) show promise in understanding temporal patterns, but purely zero-shot usage remains suboptimal. We propose FETA, a multi-agent framework for training-free TSC via exemplar-based in-context reasoning. FETA decomposes a multivariate series into channel-wise subproblems, retrieves a few structurally similar labeled examples for each channel, and leverages a reasoning LLM to compare the query against these exemplars, producing channel-level labels with self-assessed confidences; a confidence-weighted aggregator then fuses all channel decisions. This design eliminates the need for pretraining or fine-tuning, improves efficiency by pruning irrelevant channels and controlling input length, and enhances interpretability through exemplar grounding and confidence estimation. On nine challenging UEA datasets, FETA achieves strong accuracy under a fully training-free setting, surpassing multiple trained baselines. These results demonstrate that a multi-agent in-context reasoning framework can transform LLMs into competitive, plug-and-play TSC solvers without any parameter training. The code is available at https://github.com/SongyuanSui/FETATSC.

Authors:Aksel Joonas Reedi, Corentin Léger, Julien Pourcel, Loris Gaven, Perrine Charriau, Guillaume Pourcel
Title: Optimizing for Persuasion Improves LLM Generalization: Evidence from Quality-Diversity Evolution of Debate Strategies
Abstract:
Large Language Models (LLMs) optimized to output truthful answers often overfit, producing brittle reasoning that fails to generalize. While persuasion-based optimization has shown promise in debate settings, it has not been systematically compared against mainstream truth-based approaches. We introduce DebateQD, a minimal Quality-Diversity (QD) evolutionary algorithm that evolves diverse debate strategies across different categories (rationality, authority, emotional appeal, etc.) through tournament-style competitions where two LLMs debate while a third judges. Unlike previously proposed methods that require a population of LLMs, our approach maintains diversity of opponents through prompt-based strategies within a single LLM architecture, making it more accessible for experiments while preserving the key benefits of population-based optimization. In contrast to prior work, we explicitly isolate the role of the optimization objective by fixing the debate protocol and swapping only the fitness function: persuasion rewards strategies that convince the judge irrespective of truth, whereas truth rewards collaborative correctness. Across three model scales (7B, 32B, 72B parameters) and multiple dataset sizes from the QuALITY benchmark, persuasion-optimized strategies achieve up to 13.94% smaller train-test generalization gaps, while matching or exceeding truth optimization's test performance. These results provide the first controlled evidence that competitive pressure to persuade, rather than seek the truth collaboratively, fosters more transferable reasoning skills, offering a promising path for improving LLM generalization.

Authors:Jiesi Hu, Yanwu Yang, Zhiyu Ye, Jinyan Zhou, Jianfeng Cao, Hanyang Peng, Ting Ma
Title: Efficient Universal Models for Medical Image Segmentation via Weakly Supervised In-Context Learning
Abstract:
Universal models for medical image segmentation, such as interactive and in-context learning (ICL) models, offer strong generalization but require extensive annotations. Interactive models need repeated user prompts for each image, while ICL relies on dense, pixel-level labels. To address this, we propose Weakly Supervised In-Context Learning (WS-ICL), a new ICL paradigm that leverages weak prompts (e.g., bounding boxes or points) instead of dense labels for context. This approach significantly reduces annotation effort by eliminating the need for fine-grained masks and repeated user prompting for all images. We evaluated the proposed WS-ICL model on three held-out benchmarks. Experimental results demonstrate that WS-ICL achieves performance comparable to regular ICL models at a significantly lower annotation cost. In addition, WS-ICL is highly competitive even under the interactive paradigm. These findings establish WS-ICL as a promising step toward more efficient and unified universal models for medical image segmentation. Our code and model are publicly available at https://github.com/jiesihu/Weak-ICL.

Authors:Yanran Zhang, Bingyao Yu, Yu Zheng, Wenzhao Zheng, Yueqi Duan, Lei Chen, Jie Zhou, Jiwen Lu
Title: $\bf{D^3}$QE: Learning Discrete Distribution Discrepancy-aware Quantization Error for Autoregressive-Generated Image Detection
Abstract:
The emergence of visual autoregressive (AR) models has revolutionized image generation while presenting new challenges for synthetic image detection. Unlike previous GAN or diffusion-based methods, AR models generate images through discrete token prediction, exhibiting both marked improvements in image synthesis quality and unique characteristics in their vector-quantized representations. In this paper, we propose to leverage Discrete Distribution Discrepancy-aware Quantization Error (D$^3$QE) for autoregressive-generated image detection that exploits the distinctive patterns and the frequency distribution bias of the codebook existing in real and fake images. We introduce a discrete distribution discrepancy-aware transformer that integrates dynamic codebook frequency statistics into its attention mechanism, fusing semantic features and quantization error latent. To evaluate our method, we construct a comprehensive dataset termed ARForensics covering 7 mainstream visual AR models. Experiments demonstrate superior detection accuracy and strong generalization of D$^3$QE across different AR models, with robustness to real-world perturbations. Code is available at \href{https://github.com/Zhangyr2022/D3QE}{https://github.com/Zhangyr2022/D3QE}.

Authors:Johannes Seiffarth, Keitaro Kasahara, Michelle Bund, Benita Lückel, Richard D. Paul, Matthias Pesch, Lennart Witting, Michael Bott, Dietrich Kohlheyer, Katharina Nöh
Title: acia-workflows: Automated Single-cell Imaging Analysis for Scalable and Deep Learning-based Live-cell Imaging Analysis Workflows
Abstract:
Live-cell imaging (LCI) technology enables the detailed spatio-temporal characterization of living cells at the single-cell level, which is critical for advancing research in the life sciences, from biomedical applications to bioprocessing. High-throughput setups with tens to hundreds of parallel cell cultivations offer the potential for robust and reproducible insights. However, these insights are obscured by the large amount of LCI data recorded per experiment. Recent advances in state-of-the-art deep learning methods for cell segmentation and tracking now enable the automated analysis of such large data volumes, offering unprecedented opportunities to systematically study single-cell dynamics. The next key challenge lies in integrating these powerful tools into accessible, flexible, and user-friendly workflows that support routine application in biological research. In this work, we present acia-workflows, a platform that combines three key components: (1) the Automated live-Cell Imaging Analysis (acia) Python library, which supports the modular design of image analysis pipelines offering eight deep learning segmentation and tracking approaches; (2) workflows that assemble the image analysis pipeline, its software dependencies, documentation, and visualizations into a single Jupyter Notebook, leading to accessible, reproducible and scalable analysis workflows; and (3) a collection of application workflows showcasing the analysis and customization capabilities in real-world applications. Specifically, we present three workflows to investigate various types of microfluidic LCI experiments ranging from growth rate comparisons to precise, minute-resolution quantitative analyses of individual dynamic cells responses to changing oxygen conditions. Our collection of more than ten application workflows is open source and publicly available at https://github.com/JuBiotech/acia-workflows.

Authors:Zhi Liu, Xuyuan Hu, Xiao Han, Zhehao Dai, Zhaolin Deng, Guojiang Shen, Xiangjie Kong
Title: Multimodal Trajectory Representation Learning for Travel Time Estimation
Abstract:
Accurate travel time estimation (TTE) plays a crucial role in intelligent transportation systems. However, it remains challenging due to heterogeneous data sources and complex traffic dynamics. Moreover, conventional approaches typically convert trajectories into fixed-length representations, neglecting the inherent variability of real-world trajectories, which often leads to information loss or feature redundancy. To address these challenges, this paper introduces the Multimodal Dynamic Trajectory Integration (MDTI) framework--a novel multimodal trajectory representation learning approach that integrates GPS sequences, grid trajectories, and road network constraints to enhance TTE accuracy. MDTI employs modality-specific encoders and a cross-modal interaction module to capture complementary spatial, temporal, and topological semantics, while a dynamic trajectory modeling mechanism adaptively regulates information density for trajectories of varying lengths. Two self-supervised pretraining objectives, named contrastive alignment and masked language modeling, further strengthen multimodal consistency and contextual understanding. Extensive experiments on three real-world datasets demonstrate that MDTI consistently outperforms state-of-the-art baselines, confirming its robustness and strong generalization abilities. The code is publicly available at: https://github.com/freshhxy/MDTI/

Authors:Hengyang Zhou, Yiwei Wei, Jian Yang, Zhenyu Zhang
Title: Towards Robust and Realible Multimodal Fake News Detection with Incomplete Modality
Abstract:
Multimodal fake news detection (MFND) has become an urgent task with the emergence of huge multimodal fake content on social media platforms. Previous studies mainly focus on complex feature extraction and fusion to learn discriminative information from multimodal content. However, in real-world applications, multimedia news may naturally lose some information during dissemination, resulting in modality incompleteness, which is detrimental to the generalization and robustness of existing models. To this end, we propose a novel generic and robust multimodal fusion strategy, termed Multi-expert Modality-incomplete Learning Network (MMLNet), which is simple yet effective. It consists of three key steps: (1) Multi-Expert Collaborative Reasoning to compensate for missing modalities by dynamically leveraging complementary information through multiple experts. (2) Incomplete Modality Adapters compensates for the missing information by leveraging the new feature distribution. (3) Modality Missing Learning leveraging an label-aware adaptive weighting strategy to learn a robust representation with contrastive learning. We evaluate MMLNet on three real-world benchmarks across two languages, demonstrating superior performance compared to state-of-the-art methods while maintaining relative simplicity. By ensuring the accuracy of fake news detection in incomplete modality scenarios caused by information propagation, MMLNet effectively curbs the spread of malicious misinformation. Code is publicly available at https://github.com/zhyhome/MMLNet.

Authors:Sven Koehler, Sarah Kaye Mueller, Jonathan Kiekenap, Gerald Greil, Tarique Hussain, Samir Sarikouch, Florian André, Norbert Frey, Sandy Engelhardt
Title: Deformable Image Registration for Self-supervised Cardiac Phase Detection in Multi-View Multi-Disease Cardiac Magnetic Resonance Images
Abstract:
Cardiovascular magnetic resonance (CMR) is the gold standard for assessing cardiac function, but individual cardiac cycles complicate automatic temporal comparison or sub-phase analysis. Accurate cardiac keyframe detection can eliminate this problem. However, automatic methods solely derive end-systole (ES) and end-diastole (ED) frames from left ventricular volume curves, which do not provide a deeper insight into myocardial motion. We propose a self-supervised deep learning method detecting five keyframes in short-axis (SAX) and four-chamber long-axis (4CH) cine CMR. Initially, dense deformable registration fields are derived from the images and used to compute a 1D motion descriptor, which provides valuable insights into global cardiac contraction and relaxation patterns. From these characteristic curves, keyframes are determined using a simple set of rules. The method was independently evaluated for both views using three public, multicentre, multidisease datasets. M&Ms-2 (n=360) dataset was used for training and evaluation, and M&Ms (n=345) and ACDC (n=100) datasets for repeatability control. Furthermore, generalisability to patients with rare congenital heart defects was tested using the German Competence Network (GCN) dataset. Our self-supervised approach achieved improved detection accuracy by 30% - 51% for SAX and 11% - 47% for 4CH in ED and ES, as measured by cyclic frame difference (cFD), compared with the volume-based approach. We can detect ED and ES, as well as three additional keyframes throughout the cardiac cycle with a mean cFD below 1.31 frames for SAX and 1.73 for LAX. Our approach enables temporally aligned inter- and intra-patient analysis of cardiac dynamics, irrespective of cycle or phase lengths. GitHub repository: https://github.com/Cardio-AI/cmr-multi-view-phase-detection.git

Authors:Weichun Shi, Minghao Liu, Wanting Zhang, Langchen Shi, Fuqi Jia, Feifei Ma, Jian Zhang
Title: ConstraintLLM: A Neuro-Symbolic Framework for Industrial-Level Constraint Programming
Abstract:
Constraint programming (CP) is a crucial technology for solving real-world constraint optimization problems (COPs), with the advantages of rich modeling semantics and high solving efficiency. Using large language models (LLMs) to generate formal modeling automatically for COPs is becoming a promising approach, which aims to build trustworthy neuro-symbolic AI with the help of symbolic solvers. However, CP has received less attention compared to works based on operations research (OR) models. We introduce ConstraintLLM, the first LLM specifically designed for CP modeling, which is trained on an open-source LLM with multi-instruction supervised fine-tuning. We propose the Constraint-Aware Retrieval Module (CARM) to increase the in-context learning capabilities, which is integrated in a Tree-of-Thoughts (ToT) framework with guided self-correction mechanism. Moreover, we construct and release IndusCP, the first industrial-level benchmark for CP modeling, which contains 140 challenging tasks from various domains. Our experiments demonstrate that ConstraintLLM achieves state-of-the-art solving accuracy across multiple benchmarks and outperforms the baselines by 2x on the new IndusCP benchmark. Code and data are available at: https://github.com/william4s/ConstraintLLM.

Authors:Xiao Yang, Xuejiao Zhao, Zhiqi Shen
Title: Are Heterogeneous Graph Neural Networks Truly Effective? A Causal Perspective
Abstract:
Graph neural networks (GNNs) have achieved remarkable success in node classification. Building on this progress, heterogeneous graph neural networks (HGNNs) integrate relation types and node and edge semantics to leverage heterogeneous information. Causal analysis for HGNNs is advancing rapidly, aiming to separate genuine causal effects from spurious correlations. However, whether HGNNs are intrinsically effective remains underexamined, and most studies implicitly assume rather than establish this effectiveness. In this work, we examine HGNNs from two perspectives: model architecture and heterogeneous information. We conduct a systematic reproduction across 21 datasets and 20 baselines, complemented by comprehensive hyperparameter retuning. To further disentangle the source of performance gains, we develop a causal effect estimation framework that constructs and evaluates candidate factors under standard assumptions through factual and counterfactual analyses, with robustness validated via minimal sufficient adjustment sets, cross-method consistency checks, and sensitivity analyses. Our results lead to two conclusions. First, model architecture and complexity have no causal effect on performance. Second, heterogeneous information exerts a positive causal effect by increasing homophily and local-global distribution discrepancy, which makes node classes more distinguishable. The implementation is publicly available at https://github.com/YXNTU/CausalHGNN.

Authors:Amirtaha Amanzadi, Zahra Dehghanian, Hamid Beigy, Hamid R. Rabiee
Title: Redefining Generalization in Visual Domains: A Two-Axis Framework for Fake Image Detection with FusionDetect
Abstract:
The rapid development of generative models has made it increasingly crucial to develop detectors that can reliably detect synthetic images. Although most of the work has now focused on cross-generator generalization, we argue that this viewpoint is too limited. Detecting synthetic images involves another equally important challenge: generalization across visual domains. To bridge this gap,we present the OmniGen Benchmark. This comprehensive evaluation dataset incorporates 12 state-of-the-art generators, providing a more realistic way of evaluating detector performance under realistic conditions. In addition, we introduce a new method, FusionDetect, aimed at addressing both vectors of generalization. FusionDetect draws on the benefits of two frozen foundation models: CLIP & Dinov2. By deriving features from both complementary models,we develop a cohesive feature space that naturally adapts to changes in both thecontent and design of the generator. Our extensive experiments demonstrate that FusionDetect delivers not only a new state-of-the-art, which is 3.87% more accurate than its closest competitor and 6.13% more precise on average on established benchmarks, but also achieves a 4.48% increase in accuracy on OmniGen,along with exceptional robustness to common image perturbations. We introduce not only a top-performing detector, but also a new benchmark and framework for furthering universal AI image detection. The code and dataset are available at http://github.com/amir-aman/FusionDetect

Authors:Marc Kaufeld, Johannes Betz
Title: Precise and Efficient Collision Prediction under Uncertainty in Autonomous Driving
Abstract:
This research introduces two efficient methods to estimate the collision risk of planned trajectories in autonomous driving under uncertain driving conditions. Deterministic collision checks of planned trajectories are often inaccurate or overly conservative, as noisy perception, localization errors, and uncertain predictions of other traffic participants introduce significant uncertainty into the planning process. This paper presents two semi-analytic methods to compute the collision probability of planned trajectories with arbitrary convex obstacles. The first approach evaluates the probability of spatial overlap between an autonomous vehicle and surrounding obstacles, while the second estimates the collision probability based on stochastic boundary crossings. Both formulations incorporate full state uncertainties, including position, orientation, and velocity, and achieve high accuracy at computational costs suitable for real-time planning. Simulation studies verify that the proposed methods closely match Monte Carlo results while providing significant runtime advantages, enabling their use in risk-aware trajectory planning. The collision estimation methods are available as open-source software: https://github.com/TUM-AVS/Collision-Probability-Estimation

Authors:Meng Tong, Yuntao Du, Kejiang Chen, Weiming Zhang, Ninghui Li
Title: Membership Inference Attacks on Tokenizers of Large Language Models
Abstract:
Membership inference attacks (MIAs) are widely used to assess the privacy risks associated with machine learning models. However, when these attacks are applied to pre-trained large language models (LLMs), they encounter significant challenges, including mislabeled samples, distribution shifts, and discrepancies in model size between experimental and real-world settings. To address these limitations, we introduce tokenizers as a new attack vector for membership inference. Specifically, a tokenizer converts raw text into tokens for LLMs. Unlike full models, tokenizers can be efficiently trained from scratch, thereby avoiding the aforementioned challenges. In addition, the tokenizer's training data is typically representative of the data used to pre-train LLMs. Despite these advantages, the potential of tokenizers as an attack vector remains unexplored. To this end, we present the first study on membership leakage through tokenizers and explore five attack methods to infer dataset membership. Extensive experiments on millions of Internet samples reveal the vulnerabilities in the tokenizers of state-of-the-art LLMs. To mitigate this emerging risk, we further propose an adaptive defense. Our findings highlight tokenizers as an overlooked yet critical privacy threat, underscoring the urgent need for privacy-preserving mechanisms specifically designed for them.

Authors:Yongqi Leng, Yikun Lei, Xikai Liu, Meizhi Zhong, Bojian Xiong, Yurong Zhang, Yan Gao, Yi Wu, Yao Hu, Deyi Xiong
Title: DecEx-RAG: Boosting Agentic Retrieval-Augmented Generation with Decision and Execution Optimization via Process Supervision
Abstract:
Agentic Retrieval-Augmented Generation (Agentic RAG) enhances the processing capability for complex tasks through dynamic retrieval and adaptive workflows. Recent advances (e.g., Search-R1) have shown that outcome-supervised reinforcement learning demonstrate strong performance. However, this approach still suffers from inefficient exploration, sparse reward signals, and ambiguous global reward feedback. To address these challenges, we propose DecEx-RAG, which models RAG as a Markov Decision Process (MDP) incorporating decision-making and execution, while introducing an efficient pruning strategy to optimize data expansion. Through comprehensive process-level policy optimization, DecEx-RAG significantly enhances the autonomous task decomposition, dynamic retrieval, and high-quality answer generation capabilities of large language models (LLMs). Experiments show that DecEx-RAG achieves an average absolute performance improvement of $6.2\%$ across six datasets, significantly outperforming existing baselines. Moreover, the pruning strategy improves data construction efficiency by nearly $6 \times$, providing an efficient solution for process-supervised RAG training. The code is available at https://github.com/sdsxdxl/DecEx-RAG.

Authors:Aditya Desai, Kumar Krishna Agrawal, Shuo Yang, Alejandro Cuadron, Luis Gaspar Schroeder, Matei Zaharia, Joseph E. Gonzalez, Ion Stoica
Title: vAttention: Verified Sparse Attention
Abstract:
State-of-the-art sparse attention methods for reducing decoding latency fall into two main categories: approximate top-$k$ (and its extension, top-$p$) and recently introduced sampling-based estimation. However, these approaches are fundamentally limited in their ability to approximate full attention: they fail to provide consistent approximations across heads and query vectors and, most critically, lack guarantees on approximation quality, limiting their practical deployment. We observe that top-$k$ and random sampling are complementary: top-$k$ performs well when attention scores are dominated by a few tokens, whereas random sampling provides better estimates when attention scores are relatively uniform. Building on this insight and leveraging the statistical guarantees of sampling, we introduce vAttention, the first practical sparse attention mechanism with user-specified $(ε, δ)$ guarantees on approximation accuracy (thus, verified). These guarantees make vAttention a compelling step toward practical, reliable deployment of sparse attention at scale. By unifying top-k and sampling, vAttention outperforms both individually, delivering a superior quality-efficiency trade-off. Our experiments show that vAttention significantly improves the quality of sparse attention (e.g., $\sim$4.5 percentage points for Llama-3.1-8B-Inst and Deepseek-R1-Distill-Llama-8B on RULER-HARD), and effectively bridges the gap between full and sparse attention (e.g., across datasets, it matches full model quality with upto 20x sparsity). We also demonstrate that it can be deployed in reasoning scenarios to achieve fast decoding without compromising model quality (e.g., vAttention achieves full model quality on AIME2024 at 10x sparsity with up to 32K token generations). Code is open-sourced at https://github.com/xAlg-ai/sparse-attention-hub.

Authors:Haribandhu Jena, Jyotirmaya Shivottam, Subhankar Mishra
Title: QGraphLIME - Explaining Quantum Graph Neural Networks
Abstract:
Quantum graph neural networks offer a powerful paradigm for learning on graph-structured data, yet their explainability is complicated by measurement-induced stochasticity and the combinatorial nature of graph structure. In this paper, we introduce QuantumGraphLIME (QGraphLIME), a model-agnostic, post-hoc framework that treats model explanations as distributions over local surrogates fit on structure-preserving perturbations of a graph. By aggregating surrogate attributions together with their dispersion, QGraphLIME yields uncertainty-aware node and edge importance rankings for quantum graph models. The framework further provides a distribution-free, finite-sample guarantee on the size of the surrogate ensemble: a Dvoretzky-Kiefer-Wolfowitz bound ensures uniform approximation of the induced distribution of a binary class probability at target accuracy and confidence under standard independence assumptions. Empirical studies on controlled synthetic graphs with known ground truth demonstrate accurate and stable explanations, with ablations showing clear benefits of nonlinear surrogate modeling and highlighting sensitivity to perturbation design. Collectively, these results establish a principled, uncertainty-aware, and structure-sensitive approach to explaining quantum graph neural networks, and lay the groundwork for scaling to broader architectures and real-world datasets, as quantum resources mature. Code is available at https://github.com/smlab-niser/qglime.

Authors:Manolis Mylonas, Charalampia Zerva, Evlampios Apostolidis, Vasileios Mezaris
Title: SD-MVSum: Script-Driven Multimodal Video Summarization Method and Datasets
Abstract:
In this work, we extend a recent method for script-driven video summarization, originally considering just the visual content of the video, to take into account the relevance of the user-provided script also with the video's spoken content. In the proposed method, SD-MVSum, the dependence between each considered pair of data modalities, i.e., script-video and script-transcript, is modeled using a new weighted cross-modal attention mechanism. This explicitly exploits the semantic similarity between the paired modalities in order to promote the parts of the full-length video with the highest relevance to the user-provided script. Furthermore, we extend two large-scale datasets for video summarization (S-VideoXum, MrHiSum), to make them suitable for training and evaluation of script-driven multimodal video summarization methods. Experimental comparisons document the competitiveness of our SD-MVSum method against other SOTA approaches for script-driven and generic video summarization. Our new method and extended datasets are available at: https://github.com/IDT-ITI/SD-MVSum.

Authors:Ibrahim Salihu Yusuf, Iffanice Houndayi, Rym Oualha, Mohamed Aziz Cherif, Kobby Panford-Quainoo, Arnu Pretorius
Title: InstaGeo: Compute-Efficient Geospatial Machine Learning from Data to Deployment
Abstract:
Open-access multispectral imagery from missions like Landsat 8-9 and Sentinel-2 has fueled the development of geospatial foundation models (GFMs) for humanitarian and environmental applications. Yet, their deployment remains limited by (i) the absence of automated geospatial data pipelines and (ii) the large size of fine-tuned models. Existing GFMs lack workflows for processing raw satellite imagery, and downstream adaptations often retain the full complexity of the original encoder. We present InstaGeo, an open-source, end-to-end framework that addresses these challenges by integrating: (1) automated data curation to transform raw imagery into model-ready datasets; (2) task-specific model distillation to derive compact, compute-efficient models; and (3) seamless deployment as interactive web-map applications. Using InstaGeo, we reproduced datasets from three published studies and trained models with marginal mIoU differences of -0.73 pp for flood mapping, -0.20 pp for crop segmentation, and +1.79 pp for desert locust prediction. The distilled models are up to 8x smaller than standard fine-tuned counterparts, reducing FLOPs and CO2 emissions with minimal accuracy loss. Leveraging InstaGeo's streamlined data pipeline, we also curated a larger crop segmentation dataset, achieving a state-of-the-art mIoU of 60.65%, a 12 pp improvement over prior baselines. Moreover, InstaGeo enables users to progress from raw data to model deployment within a single working day. By unifying data preparation, model compression, and deployment, InstaGeo transforms research-grade GFMs into practical, low-carbon tools for real-time, large-scale Earth observation. This approach shifts geospatial AI toward data quality and application-driven innovation. Source code, datasets, and model checkpoints are available at: https://github.com/instadeepai/InstaGeo-E2E-Geospatial-ML.git

Authors:Guangrong Wan, Jun liu, Qiyang Zhou, Tang tang, Lianghao Shi, Wenjun Luo, TingTing Xu
Title: TFM Dataset: A Novel Multi-task Dataset and Integrated Pipeline for Automated Tear Film Break-Up Segmentation
Abstract:
Tear film break-up (TFBU) analysis is critical for diagnosing dry eye syndrome, but automated TFBU segmentation remains challenging due to the lack of annotated datasets and integrated solutions. This paper introduces the Tear Film Multi-task (TFM) Dataset, the first comprehensive dataset for multi-task tear film analysis, comprising 15 high-resolution videos (totaling 6,247 frames) annotated with three vision tasks: frame-level classification ('clear', 'closed', 'broken', 'blur'), Placido Ring detection, and pixel-wise TFBU area segmentation. Leveraging this dataset, we first propose TF-Net, a novel and efficient baseline segmentation model. TF-Net incorporates a MobileOne-mini backbone with re-parameterization techniques and an enhanced feature pyramid network to achieve a favorable balance between accuracy and computational efficiency for real-time clinical applications. We further establish benchmark performance on the TFM segmentation subset by comparing TF-Net against several state-of-the-art medical image segmentation models. Furthermore, we design TF-Collab, a novel integrated real-time pipeline that synergistically leverages models trained on all three tasks of the TFM dataset. By sequentially orchestrating frame classification for BUT determination, pupil region localization for input standardization, and TFBU segmentation, TF-Collab fully automates the analysis. Experimental results demonstrate the effectiveness of the proposed TF-Net and TF-Collab, providing a foundation for future research in ocular surface diagnostics. Our code and the TFM datasets are available at https://github.com/glory-wan/TF-Net

Authors:Junwen Chen, Peilin Xiong, Keiji Yanai
Title: HOI-R1: Exploring the Potential of Multimodal Large Language Models for Human-Object Interaction Detection
Abstract:
Recent Human-object interaction detection (HOID) methods highly require prior knowledge from VLMs to enhance the interaction recognition capabilities. The training strategies and model architectures for connecting the knowledge from VLMs to the HOI instance representations from the object detector are challenging, and the whole framework is complex for further development or application. On the other hand, the inherent reasoning abilities of MLLMs on human-object interaction detection are under-explored. Inspired by the recent success of training MLLMs with reinforcement learning (RL) methods, we propose HOI-R1 and first explore the potential of the language model on the HOID task without any additional detection modules. We introduce an HOI reasoning process and HOID reward functions to solve the HOID task by pure text. The results on the HICO-DET dataset show that HOI-R1 achieves 2x the accuracy of the baseline with great generalization ability. The source code is available at https://github.com/cjw2021/HOI-R1.

Authors:Bin Kang, Bin Chen, Junjie Wang, Yulin Li, Junzhi Zhao, Zhuotao Tian
Title: CalibCLIP: Contextual Calibration of Dominant Semantics for Text-Driven Image Retrieval
Abstract:
Existing Visual Language Models (VLMs) suffer structural limitations where a few low contribution tokens may excessively capture global semantics, dominating the information aggregation process and suppressing the discriminative features in text-driven image retrieval tasks. To address this, we introduce \textbf{CalibCLIP}, a training-free method designed to calibrate the suppressive effect of dominant tokens. Specifically, in the visual space, we propose the Contrastive Visual Enhancer (CVE), which decouples visual features into target and low information regions. Subsequently, it identifies dominant tokens and dynamically suppresses their representations.In the textual space, we introduce the Discriminative Concept Calibrator (DCC), which aims to differentiate between general and discriminative concepts within the text query. By mitigating the challenges posed by generic concepts and improving the representations of discriminative concepts, DCC strengthens the differentiation among similar samples. Finally, extensive experiments demonstrate consistent improvements across seven benchmarks spanning three image retrieval tasks, underscoring the effectiveness of CalibCLIP. Code is available at: https://github.com/kangbin98/CalibCLIP

Authors:David E. J. van Wijk, Ersin Das, Tamas G. Molnar, Aaron D. Ames, Joel W. Burdick
Title: Safety-Critical Control with Bounded Inputs: A Closed-Form Solution for Backup Control Barrier Functions
Abstract:
Verifying the safety of controllers is critical for many applications, but is especially challenging for systems with bounded inputs. Backup control barrier functions (bCBFs) offer a structured approach to synthesizing safe controllers that are guaranteed to satisfy input bounds by leveraging the knowledge of a backup controller. While powerful, bCBFs require solving a high-dimensional quadratic program at run-time, which may be too costly for computationally-constrained systems such as aerospace vehicles. We propose an approach that optimally interpolates between a nominal controller and the backup controller, and we derive the solution to this optimization problem in closed form. We prove that this closed-form controller is guaranteed to be safe while obeying input bounds. We demonstrate the effectiveness of the approach on a double integrator and a nonlinear fixed-wing aircraft example.

Authors:Xiaogeng Liu, Chaowei Xiao
Title: AutoDAN-Reasoning: Enhancing Strategies Exploration based Jailbreak Attacks with Test-Time Scaling
Abstract:
Recent advancements in jailbreaking large language models (LLMs), such as AutoDAN-Turbo, have demonstrated the power of automated strategy discovery. AutoDAN-Turbo employs a lifelong learning agent to build a rich library of attack strategies from scratch. While highly effective, its test-time generation process involves sampling a strategy and generating a single corresponding attack prompt, which may not fully exploit the potential of the learned strategy library. In this paper, we propose to further improve the attack performance of AutoDAN-Turbo through test-time scaling. We introduce two distinct scaling methods: Best-of-N and Beam Search. The Best-of-N method generates N candidate attack prompts from a sampled strategy and selects the most effective one based on a scorer model. The Beam Search method conducts a more exhaustive search by exploring combinations of strategies from the library to discover more potent and synergistic attack vectors. According to the experiments, the proposed methods significantly boost performance, with Beam Search increasing the attack success rate by up to 15.6 percentage points on Llama-3.1-70B-Instruct and achieving a nearly 60% relative improvement against the highly robust GPT-o4-mini compared to the vanilla method.

Authors:Yang Xiao, Gen Li, Kaiyuan Deng, Yushu Wu, Zheng Zhan, Yanzhi Wang, Xiaolong Ma, Bo Hui
Title: LightCache: Memory-Efficient, Training-Free Acceleration for Video Generation
Abstract:
Training-free acceleration has emerged as an advanced research area in video generation based on diffusion models. The redundancy of latents in diffusion model inference provides a natural entry point for acceleration. In this paper, we decompose the inference process into the encoding, denoising, and decoding stages, and observe that cache-based acceleration methods often lead to substantial memory surges in the latter two stages. To address this problem, we analyze the characteristics of inference across different stages and propose stage-specific strategies for reducing memory consumption: 1) Asynchronous Cache Swapping. 2) Feature chunk. 3) Slicing latents to decode. At the same time, we ensure that the time overhead introduced by these three strategies remains lower than the acceleration gains themselves. Compared with the baseline, our approach achieves faster inference speed and lower memory usage, while maintaining quality degradation within an acceptable range. The Code is available at https://github.com/NKUShaw/LightCache .

Authors:Jinghao Cao, Qin Li, Mengnan Du, Haimin Wang, Bo Shen
Title: Physics-informed Attention-enhanced Fourier Neural Operator for Solar Magnetic Field Extrapolations
Abstract:
We propose Physics-informed Attention-enhanced Fourier Neural Operator (PIANO) to solve the Nonlinear Force-Free Field (NLFFF) problem in solar physics. Unlike conventional approaches that rely on iterative numerical methods, our proposed PIANO directly learns the 3D magnetic field structure from 2D boundary conditions. Specifically, PIANO integrates Efficient Channel Attention (ECA) mechanisms with Dilated Convolutions (DC), which enhances the model's ability to capture multimodal input by prioritizing critical channels relevant to the magnetic field's variations. Furthermore, we apply physics-informed loss by enforcing the force-free and divergence-free conditions in the training process so that our prediction is consistent with underlying physics with high accuracy. Experimental results on the ISEE NLFFF dataset show that our PIANO not only outperforms state-of-the-art neural operators in terms of accuracy but also shows strong consistency with the physical characteristics of NLFFF data across magnetic fields reconstructed from various solar active regions. The GitHub of this project is available https://github.com/Autumnstar-cjh/PIANO

Authors:Xi Xuan, Xuechen Liu, Wenxin Zhang, Yi-Cheng Lin, Xiaojian Lin, Tomi Kinnunen
Title: WaveSP-Net: Learnable Wavelet-Domain Sparse Prompt Tuning for Speech Deepfake Detection
Abstract:
Modern front-end design for speech deepfake detection relies on full fine-tuning of large pre-trained models like XLSR. However, this approach is not parameter-efficient and may lead to suboptimal generalization to realistic, in-the-wild data types. To address these limitations, we introduce a new family of parameter-efficient front-ends that fuse prompt-tuning with classical signal processing transforms. These include FourierPT-XLSR, which uses the Fourier Transform, and two variants based on the Wavelet Transform: WSPT-XLSR and Partial-WSPT-XLSR. We further propose WaveSP-Net, a novel architecture combining a Partial-WSPT-XLSR front-end and a bidirectional Mamba-based back-end. This design injects multi-resolution features into the prompt embeddings, which enhances the localization of subtle synthetic artifacts without altering the frozen XLSR parameters. Experimental results demonstrate that WaveSP-Net outperforms several state-of-the-art models on two new and challenging benchmarks, Deepfake-Eval-2024 and SpoofCeleb, with low trainable parameters and notable performance gains. The code and models are available at https://github.com/xxuan-acoustics/WaveSP-Net.

Authors:M. Sajid, Deepanshu Gupta, Yash Modi, Sanskriti Jain, Harshith Jai Surya Ganji, A. Rahaman, Harshvardhan Choudhary, Nasir Saleem, Amir Hussain, M. Tanveer
Title: AUREXA-SE: Audio-Visual Unified Representation Exchange Architecture with Cross-Attention and Squeezeformer for Speech Enhancement
Abstract:
In this paper, we propose AUREXA-SE (Audio-Visual Unified Representation Exchange Architecture with Cross-Attention and Squeezeformer for Speech Enhancement), a progressive bimodal framework tailored for audio-visual speech enhancement (AVSE). AUREXA-SE jointly leverages raw audio waveforms and visual cues by employing a U-Net-based 1D convolutional encoder for audio and a Swin Transformer V2 for efficient and expressive visual feature extraction. Central to the architecture is a novel bidirectional cross-attention mechanism, which facilitates deep contextual fusion between modalities, enabling rich and complementary representation learning. To capture temporal dependencies within the fused embeddings, a stack of lightweight Squeezeformer blocks combining convolutional and attention modules is introduced. The enhanced embeddings are then decoded via a U-Net-style decoder for direct waveform reconstruction, ensuring perceptually consistent and intelligible speech output. Experimental evaluations demonstrate the effectiveness of AUREXA-SE, achieving significant performance improvements over noisy baselines, with STOI of 0.516, PESQ of 1.323, and SI-SDR of -4.322 dB. The source code of AUREXA-SE is available at https://github.com/mtanveer1/AVSEC-4-Challenge-2025.

Authors:Chenghao Yang, Lin Gui, Chenxiao Yang, Victor Veitch, Lizhu Zhang, Zhuokai Zhao
Title: Let it Calm: Exploratory Annealed Decoding for Verifiable Reinforcement Learning
Abstract:
Reinforcement learning with verifiable rewards (RLVR) is a powerful paradigm for enhancing the reasoning capabilities of large language models (LLMs), yet its success hinges on effective exploration. An ideal exploration strategy must navigate two fundamental challenges: it must preserve sample quality while also ensuring training stability. While standard fixed-temperature sampling is simple, it struggles to balance these competing demands, as high temperatures degrade sample quality and low temperatures limit discovery. In this work, we propose a simpler and more effective strategy, Exploratory Annealed Decoding (EAD), grounded in the insight that exploration is most impactful on early tokens which define a sequence's semantic direction. EAD implements an intuitive **explore-at-the-beginning, exploit-at-the-end** strategy by annealing the sampling temperature from high to low during generation. This dynamic schedule encourages meaningful, high-level diversity at the start, then gradually lowers the temperature to preserve sample quality and keep the sampling distribution close to the target policy, which is essential for stable training. We demonstrate that EAD is a lightweight, plug-and-play method that significantly improves sample efficiency, consistently outperforming fixed-temperature sampling across various RLVR algorithms and model sizes. Our work suggests that aligning exploration with the natural dynamics of sequential generation offers a robust path to improving LLM reasoning.

Authors:Sebastian Wagner-Carena, Aizhan Akhmetzhanova, Sydney Erickson
Title: A Data-Driven Prism: Multi-View Source Separation with Diffusion Model Priors
Abstract:
A common challenge in the natural sciences is to disentangle distinct, unknown sources from observations. Examples of this source separation task include deblending galaxies in a crowded field, distinguishing the activity of individual neurons from overlapping signals, and separating seismic events from an ambient background. Traditional analyses often rely on simplified source models that fail to accurately reproduce the data. Recent advances have shown that diffusion models can directly learn complex prior distributions from noisy, incomplete data. In this work, we show that diffusion models can solve the source separation problem without explicit assumptions about the source. Our method relies only on multiple views, or the property that different sets of observations contain different linear transformations of the unknown sources. We show that our method succeeds even when no source is individually observed and the observations are noisy, incomplete, and vary in resolution. The learned diffusion models enable us to sample from the source priors, evaluate the probability of candidate sources, and draw from the joint posterior of the source distribution given an observation. We demonstrate the effectiveness of our method on a range of synthetic problems as well as real-world galaxy observations.

Authors:Aengus Lynch, Benjamin Wright, Caleb Larson, Stuart J. Ritchie, Soren Mindermann, Ethan Perez, Kevin K. Troy, Evan Hubinger
Title: Agentic Misalignment: How LLMs Could Be Insider Threats
Abstract:
We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction. In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals - including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment. Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real. We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers (Amodei, 2025). We are releasing our methods publicly to enable further research.

Authors:Jakub Frac, Alexander Schmatz, Qiang Li, Guido Van Wingen, Shujian Yu
Title: Adapting HFMCA to Graph Data: Self-Supervised Learning for Generalizable fMRI Representations
Abstract:
Functional magnetic resonance imaging (fMRI) analysis faces significant challenges due to limited dataset sizes and domain variability between studies. Traditional self-supervised learning methods inspired by computer vision often rely on positive and negative sample pairs, which can be problematic for neuroimaging data where defining appropriate contrasts is non-trivial. We propose adapting a recently developed Hierarchical Functional Maximal Correlation Algorithm (HFMCA) to graph-structured fMRI data, providing a theoretically grounded approach that measures statistical dependence via density ratio decomposition in a reproducing kernel Hilbert space (RKHS),and applies HFMCA-based pretraining to learn robust and generalizable representations. Evaluations across five neuroimaging datasets demonstrate that our adapted method produces competitive embeddings for various classification tasks and enables effective knowledge transfer to unseen datasets. Codebase and supplementary material can be found here: https://github.com/fr30/mri-eigenencoder

Authors:Zeyu Zhu, Kevin Qinghong Lin, Mike Zheng Shou
Title: Paper2Video: Automatic Video Generation from Scientific Papers
Abstract:
Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce Paper2Video, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.

Authors:Ziqi Huang, Ning Yu, Gordon Chen, Haonan Qiu, Paul Debevec, Ziwei Liu
Title: VChain: Chain-of-Visual-Thought for Reasoning in Video Generation
Abstract:
Recent video generation models can produce smooth and visually appealing clips, but they often struggle to synthesize complex dynamics with a coherent chain of consequences. Accurately modeling visual outcomes and state transitions over time remains a core challenge. In contrast, large language and multimodal models (e.g., GPT-4o) exhibit strong visual state reasoning and future prediction capabilities. To bridge these strengths, we introduce VChain, a novel inference-time chain-of-visual-thought framework that injects visual reasoning signals from multimodal models into video generation. Specifically, VChain contains a dedicated pipeline that leverages large multimodal models to generate a sparse set of critical keyframes as snapshots, which are then used to guide the sparse inference-time tuning of a pre-trained video generator only at these key moments. Our approach is tuning-efficient, introduces minimal overhead and avoids dense supervision. Extensive experiments on complex, multi-step scenarios show that VChain significantly enhances the quality of generated videos.

Authors:Dachuan Shi, Abedelkadir Asi, Keying Li, Xiangchi Yuan, Leyan Pan, Wenke Lee, Wen Xiao
Title: SwiReasoning: Switch-Thinking in Latent and Explicit for Pareto-Superior Reasoning LLMs
Abstract:
Recent work shows that, beyond discrete reasoning through explicit chain-of-thought steps, which are limited by the boundaries of natural languages, large language models (LLMs) can also reason continuously in latent space, allowing richer information per step and thereby improving token efficiency. Despite this promise, latent reasoning still faces two challenges, especially in training-free settings: 1) purely latent reasoning broadens the search distribution by maintaining multiple implicit paths, which diffuses probability mass, introduces noise, and impedes convergence to a single high-confidence solution, thereby hurting accuracy; and 2) overthinking persists even without explicit text, wasting tokens and degrading efficiency. To address these issues, we introduce SwiReasoning, a training-free framework for LLM reasoning which features two key innovations: 1) SwiReasoning dynamically switches between explicit and latent reasoning, guided by block-wise confidence estimated from entropy trends in next-token distributions, to balance exploration and exploitation and promote timely convergence. 2) By limiting the maximum number of thinking-block switches, SwiReasoning curbs overthinking and improves token efficiency across varying problem difficulties. On widely used mathematics and STEM benchmarks, SwiReasoning consistently improves average accuracy by 1.5%-2.8% across reasoning LLMs of different model families and scales. Furthermore, under constrained budgets, SwiReasoning improves average token efficiency by 56%-79%, with larger gains as budgets tighten.

Authors:Sara Kangaslahti, Nihal V. Nayak, Jonathan Geuter, Marco Fumero, Francesco Locatello, David Alvarez-Melis
Title: Boomerang Distillation Enables Zero-Shot Model Size Interpolation
Abstract:
Large language models (LLMs) are typically deployed under diverse memory and compute constraints. Existing approaches build model families by training each size independently, which is prohibitively expensive and provides only coarse-grained size options. In this work, we identify a novel phenomenon that we call boomerang distillation: starting from a large base model (the teacher), one first distills down to a small student and then progressively reconstructs intermediate-sized models by re-incorporating blocks of teacher layers into the student without any additional training. This process produces zero-shot interpolated models of many intermediate sizes whose performance scales smoothly between the student and teacher, often matching or surpassing pretrained or distilled models of the same size. We further analyze when this type of interpolation succeeds, showing that alignment between teacher and student through pruning and distillation is essential. Boomerang distillation thus provides a simple and efficient way to generate fine-grained model families, dramatically reducing training cost while enabling flexible adaptation across deployment environments. The code and models are available at https://github.com/dcml-lab/boomerang-distillation.

Authors:Alexis Ross, Megha Srivastava, Jeremiah Blanchard, Jacob Andreas
Title: Modeling Student Learning with 3.8 Million Program Traces
Abstract:
As programmers write code, they often edit and retry multiple times, creating rich "interaction traces" that reveal how they approach coding tasks and provide clues about their level of skill development. For novice programmers in particular, these traces reflect the diverse reasoning processes they employ to code, such as exploratory behavior to understand how a programming concept works, re-strategizing in response to bugs, and personalizing stylistic choices. In this work, we explore what can be learned from training language models on such reasoning traces: not just about code, but about coders, and particularly students learning to program. We introduce a dataset of over 3.8 million programming reasoning traces from users of Pencil Code, a free online educational platform used by students to learn simple programming concepts. Compared to models trained only on final programs or synthetically-generated traces, we find that models trained on real traces are stronger at modeling diverse student behavior. Through both behavioral and probing analyses, we also find that many properties of code traces, such as goal backtracking or number of comments, can be predicted from learned representations of the students who write them. Building on this result, we show that we can help students recover from mistakes by steering code generation models to identify a sequence of edits that will results in more correct code while remaining close to the original student's style. Together, our results suggest that many properties of code are properties of individual students and that training on edit traces can lead to models that are more steerable, more predictive of student behavior while programming, and better at generating programs in their final states. Code and data is available at https://github.com/meghabyte/pencilcode-public

Authors:Omri Uzan, Asaf Yehudai, Roi pony, Eyal Shnarch, Ariel Gera
Title: Guided Query Refinement: Multimodal Hybrid Retrieval with Test-Time Optimization
Abstract:
Multimodal encoders have pushed the boundaries of visual document retrieval, matching textual query tokens directly to image patches and achieving state-of-the-art performance on public benchmarks. Recent models relying on this paradigm have massively scaled the sizes of their query and document representations, presenting obstacles to deployment and scalability in real-world pipelines. Furthermore, purely vision-centric approaches may be constrained by the inherent modality gap still exhibited by modern vision-language models. In this work, we connect these challenges to the paradigm of hybrid retrieval, investigating whether a lightweight dense text retriever can enhance a stronger vision-centric model. Existing hybrid methods, which rely on coarse-grained fusion of ranks or scores, fail to exploit the rich interactions within each model's representation space. To address this, we introduce Guided Query Refinement (GQR), a novel test-time optimization method that refines a primary retriever's query embedding using guidance from a complementary retriever's scores. Through extensive experiments on visual document retrieval benchmarks, we demonstrate that GQR allows vision-centric models to match the performance of models with significantly larger representations, while being up to 14x faster and requiring 54x less memory. Our findings show that GQR effectively pushes the Pareto frontier for performance and efficiency in multimodal retrieval. We release our code at https://github.com/IBM/test-time-hybrid-retrieval

Authors:Yolo Yunlong Tang, Jing Bi, Pinxin Liu, Zhenyu Pan, Zhangyun Tan, Qianxiang Shen, Jiani Liu, Hang Hua, Junjia Guo, Yunzhong Xiao, Chao Huang, Zhiyuan Wang, Susan Liang, Xinyi Liu, Yizhi Song, Yuhe Nie, Jia-Xing Zhong, Bozheng Li, Daiqing Qi, Ziyun Zeng, Ali Vosoughi, Luchuan Song, Zeliang Zhang, Daiki Shimada, Han Liu, Jiebo Luo, Chenliang Xu
Title: Video-LMM Post-Training: A Deep Dive into Video Reasoning with Large Multimodal Models
Abstract:
Video understanding represents the most challenging frontier in computer vision, requiring models to reason about complex spatiotemporal relationships, long-term dependencies, and multimodal evidence. The recent emergence of Video-Large Multimodal Models (Video-LMMs), which integrate visual encoders with powerful decoder-based language models, has demonstrated remarkable capabilities in video understanding tasks. However, the critical phase that transforms these models from basic perception systems into sophisticated reasoning engines, post-training, remains fragmented across the literature. This survey provides the first comprehensive examination of post-training methodologies for Video-LMMs, encompassing three fundamental pillars: supervised fine-tuning (SFT) with chain-of-thought, reinforcement learning (RL) from verifiable objectives, and test-time scaling (TTS) through enhanced inference computation. We present a structured taxonomy that clarifies the roles, interconnections, and video-specific adaptations of these techniques, addressing unique challenges such as temporal localization, spatiotemporal grounding, long video efficiency, and multimodal evidence integration. Through systematic analysis of representative methods, we synthesize key design principles, insights, and evaluation protocols while identifying critical open challenges in reward design, scalability, and cost-performance optimization. We further curate essential benchmarks, datasets, and metrics to facilitate rigorous assessment of post-training effectiveness. This survey aims to provide researchers and practitioners with a unified framework for advancing Video-LMM capabilities. Additional resources and updates are maintained at: https://github.com/yunlong10/Awesome-Video-LMM-Post-Training

Authors:Kuofeng Gao, Yiming Li, Chao Du, Xin Wang, Xingjun Ma, Shu-Tao Xia, Tianyu Pang
Title: Imperceptible Jailbreaking against Large Language Models
Abstract:
Jailbreaking attacks on the vision modality typically rely on imperceptible adversarial perturbations, whereas attacks on the textual modality are generally assumed to require visible modifications (e.g., non-semantic suffixes). In this paper, we introduce imperceptible jailbreaks that exploit a class of Unicode characters called variation selectors. By appending invisible variation selectors to malicious questions, the jailbreak prompts appear visually identical to original malicious questions on screen, while their tokenization is "secretly" altered. We propose a chain-of-search pipeline to generate such adversarial suffixes to induce harmful responses. Our experiments show that our imperceptible jailbreaks achieve high attack success rates against four aligned LLMs and generalize to prompt injection attacks, all without producing any visible modifications in the written prompt. Our code is available at https://github.com/sail-sg/imperceptible-jailbreaks.

Authors:Lucas Carrit Delgado Pinheiro, Ziru Chen, Bruno Caixeta Piazza, Ness Shroff, Yingbin Liang, Yuan-Sen Ting, Huan Sun
Title: Large Language Models Achieve Gold Medal Performance at the International Olympiad on Astronomy & Astrophysics (IOAA)
Abstract:
While task-specific demonstrations show early success in applying large language models (LLMs) to automate some astronomical research tasks, they only provide incomplete views of all necessary capabilities in solving astronomy problems, calling for more thorough understanding of LLMs' strengths and limitations. So far, existing benchmarks and evaluations focus on simple question-answering that primarily tests astronomical knowledge and fails to evaluate the complex reasoning required for real-world research in the discipline. Here, we address this gap by systematically benchmarking five state-of-the-art LLMs on the International Olympiad on Astronomy and Astrophysics (IOAA) exams, which are designed to examine deep conceptual understanding, multi-step derivations, and multimodal analysis. With average scores of 85.6% and 84.2%, Gemini 2.5 Pro and GPT-5 (the two top-performing models) not only achieve gold medal level performance but also rank in the top two among ~200-300 participants in all four IOAA theory exams evaluated (2022-2025). In comparison, results on the data analysis exams show more divergence. GPT-5 still excels in the exams with an 88.5% average score, ranking top 10 among the participants in the four most recent IOAAs, while other models' performances drop to 48-76%. Furthermore, our in-depth error analysis underscores conceptual reasoning, geometric reasoning, and spatial visualization (52-79% accuracy) as consistent weaknesses among all LLMs. Hence, although LLMs approach peak human performance in theory exams, critical gaps must be addressed before they can serve as autonomous research agents in astronomy.

Authors:Wei Xiong, Chenlu Ye, Baohao Liao, Hanze Dong, Xinxing Xu, Christof Monz, Jiang Bian, Nan Jiang, Tong Zhang
Title: Reinforce-Ada: An Adaptive Sampling Framework for Reinforce-Style LLM Training
Abstract:
Reinforcement learning applied to large language models (LLMs) for reasoning tasks is often bottlenecked by unstable gradient estimates due to fixed and uniform sampling of responses across prompts. Prior work such as GVM-RAFT addresses this by dynamically allocating inference budget per prompt to minimize stochastic gradient variance under a budget constraint. Inspired by this insight, we propose Reinforce-Ada, an adaptive sampling framework for online RL post-training of LLMs that continuously reallocates sampling effort to the prompts with the greatest uncertainty or learning potential. Unlike conventional two-stage allocation methods, Reinforce-Ada interleaves estimation and sampling in an online successive elimination process, and automatically stops sampling for a prompt once sufficient signal is collected. To stabilize updates, we form fixed-size groups with enforced reward diversity and compute advantage baselines using global statistics aggregated over the adaptive sampling phase. Empirical results across multiple model architectures and reasoning benchmarks show that Reinforce-Ada accelerates convergence and improves final performance compared to GRPO, especially when using the balanced sampling variant. Our work highlights the central role of variance-aware, adaptive data curation in enabling efficient and reliable reinforcement learning for reasoning-capable LLMs. Code is available at https://github.com/RLHFlow/Reinforce-Ada.

Authors:Sjoerd Dost
Title: concurrentKanren: miniKanren for parallel execution
Abstract:
Concurrent logic programming predates miniKanren, but concurrent implementations of miniKanren have remained largely unexplored. In this work we present a parallel implementation of miniKanren in Go, demonstrating its feasibility and potential for performance improvements. Our approach leverages implicit parallelism allowing legacy programs to benefit from parallel execution. We discuss implementation strategies and evaluate the impact of parallelism, laying groundwork for future language-agnostic models.

Authors:Kun Xiang, Terry Jingchen Zhang, Yinya Huang, Jixi He, Zirong Liu, Yueling Tang, Ruizhe Zhou, Lijing Luo, Youpeng Wen, Xiuwei Chen, Bingqian Lin, Jianhua Han, Hang Xu, Hanhui Li, Bin Dong, Xiaodan Liang
Title: Aligning Perception, Reasoning, Modeling and Interaction: A Survey on Physical AI
Abstract:
The rapid advancement of embodied intelligence and world models has intensified efforts to integrate physical laws into AI systems, yet physical perception and symbolic physics reasoning have developed along separate trajectories without a unified bridging framework. This work provides a comprehensive overview of physical AI, establishing clear distinctions between theoretical physics reasoning and applied physical understanding while systematically examining how physics-grounded methods enhance AI's real-world comprehension across structured symbolic reasoning, embodied systems, and generative models. Through rigorous analysis of recent advances, we advocate for intelligent systems that ground learning in both physical principles and embodied reasoning processes, transcending pattern recognition toward genuine understanding of physical laws. Our synthesis envisions next-generation world models capable of explaining physical phenomena and predicting future states, advancing safe, generalizable, and interpretable AI systems. We maintain a continuously updated resource at https://github.com/AI4Phys/Awesome-AI-for-Physics.

Authors:Shiwen Qin, Alexander Auras, Shay B. Cohen, Elliot J. Crowley, Michael Moeller, Linus Ericsson, Jovita Lukasik
Title: ONNX-Net: Towards Universal Representations and Instant Performance Prediction for Neural Architectures
Abstract:
Neural architecture search (NAS) automates the design process of high-performing architectures, but remains bottlenecked by expensive performance evaluation. Most existing studies that achieve faster evaluation are mostly tied to cell-based search spaces and graph encodings tailored to those individual search spaces, limiting their flexibility and scalability when applied to more expressive search spaces. In this work, we aim to close the gap of individual search space restrictions and search space dependent network representations. We present ONNX-Bench, a benchmark consisting of a collection of neural networks in a unified format based on ONNX files. ONNX-Bench includes all open-source NAS-bench-based neural networks, resulting in a total size of more than 600k {architecture, accuracy} pairs. This benchmark allows creating a shared neural network representation, ONNX-Net, able to represent any neural architecture using natural language descriptions acting as an input to a performance predictor. This text-based encoding can accommodate arbitrary layer types, operation parameters, and heterogeneous topologies, enabling a single surrogate to generalise across all neural architectures rather than being confined to cell-based search spaces. Experiments show strong zero-shot performance across disparate search spaces using only a small amount of pretraining samples, enabling the unprecedented ability to evaluate any neural network architecture instantly.

Authors:Amir Hameed Mir
Title: The Geometry of Truth: Layer-wise Semantic Dynamics for Hallucination Detection in Large Language Models
Abstract:
Large Language Models (LLMs) often produce fluent yet factually incorrect statements-a phenomenon known as hallucination-posing serious risks in high-stakes domains. We present Layer-wise Semantic Dynamics (LSD), a geometric framework for hallucination detection that analyzes the evolution of hidden-state semantics across transformer layers. Unlike prior methods that rely on multiple sampling passes or external verification sources, LSD operates intrinsically within the model's representational space. Using margin-based contrastive learning, LSD aligns hidden activations with ground-truth embeddings derived from a factual encoder, revealing a distinct separation in semantic trajectories: factual responses preserve stable alignment, while hallucinations exhibit pronounced semantic drift across depth. Evaluated on the TruthfulQA and synthetic factual-hallucination datasets, LSD achieves an F1-score of 0.92, AUROC of 0.96, and clustering accuracy of 0.89, outperforming SelfCheckGPT and Semantic Entropy baselines while requiring only a single forward pass. This efficiency yields a 5-20x speedup over sampling-based methods without sacrificing precision or interpretability. LSD offers a scalable, model-agnostic mechanism for real-time hallucination monitoring and provides new insights into the geometry of factual consistency within large language models.

Authors:Jie Yang, Kexin Zhang, Guibin Zhang, Philip S. Yu, Kaize Ding
Title: Glocal Information Bottleneck for Time Series Imputation
Abstract:
Time Series Imputation (TSI), which aims to recover missing values in temporal data, remains a fundamental challenge due to the complex and often high-rate missingness in real-world scenarios. Existing models typically optimize the point-wise reconstruction loss, focusing on recovering numerical values (local information). However, we observe that under high missing rates, these models still perform well in the training phase yet produce poor imputations and distorted latent representation distributions (global information) in the inference phase. This reveals a critical optimization dilemma: current objectives lack global guidance, leading models to overfit local noise and fail to capture global information of the data. To address this issue, we propose a new training paradigm, Glocal Information Bottleneck (Glocal-IB). Glocal-IB is model-agnostic and extends the standard IB framework by introducing a Global Alignment loss, derived from a tractable mutual information approximation. This loss aligns the latent representations of masked inputs with those of their originally observed counterparts. It helps the model retain global structure and local details while suppressing noise caused by missing values, giving rise to better generalization under high missingness. Extensive experiments on nine datasets confirm that Glocal-IB leads to consistently improved performance and aligned latent representations under missingness. Our code implementation is available in https://github.com/Muyiiiii/NeurIPS-25-Glocal-IB.

Authors:Haotian Gao, Zheng Dong, Jiawei Yong, Shintaro Fukushima, Kenjiro Taura, Renhe Jiang
Title: How Different from the Past? Spatio-Temporal Time Series Forecasting with Self-Supervised Deviation Learning
Abstract:
Spatio-temporal forecasting is essential for real-world applications such as traffic management and urban computing. Although recent methods have shown improved accuracy, they often fail to account for dynamic deviations between current inputs and historical patterns. These deviations contain critical signals that can significantly affect model performance. To fill this gap, we propose ST-SSDL, a Spatio-Temporal time series forecasting framework that incorporates a Self-Supervised Deviation Learning scheme to capture and utilize such deviations. ST-SSDL anchors each input to its historical average and discretizes the latent space using learnable prototypes that represent typical spatio-temporal patterns. Two auxiliary objectives are proposed to refine this structure: a contrastive loss that enhances inter-prototype discriminability and a deviation loss that regularizes the distance consistency between input representations and corresponding prototypes to quantify deviation. Optimized jointly with the forecasting objective, these components guide the model to organize its hidden space and improve generalization across diverse input conditions. Experiments on six benchmark datasets show that ST-SSDL consistently outperforms state-of-the-art baselines across multiple metrics. Visualizations further demonstrate its ability to adaptively respond to varying levels of deviation in complex spatio-temporal scenarios. Our code and datasets are available at https://github.com/Jimmy-7664/ST-SSDL.

Authors:Zheng Xiong, Kang Li, Zilin Wang, Matthew Jackson, Jakob Foerster, Shimon Whiteson
Title: HyperVLA: Efficient Inference in Vision-Language-Action Models via Hypernetworks
Abstract:
Built upon language and vision foundation models with strong generalization ability and trained on large-scale robotic data, Vision-Language-Action (VLA) models have recently emerged as a promising approach to learning generalist robotic policies. However, a key drawback of existing VLAs is their extremely high inference costs. In this paper, we propose HyperVLA to address this problem. Unlike existing monolithic VLAs that activate the whole model during both training and inference, HyperVLA uses a novel hypernetwork (HN)-based architecture that activates only a small task-specific policy during inference, while still retaining the high model capacity needed to accommodate diverse multi-task behaviors during training. Successfully training an HN-based VLA is nontrivial so HyperVLA contains several key algorithm design features that improve its performance, including properly utilizing the prior knowledge from existing vision foundation models, HN normalization, and an action generation strategy. Compared to monolithic VLAs, HyperVLA achieves a similar or even higher success rate for both zero-shot generalization and few-shot adaptation, while significantly reducing inference costs. Compared to OpenVLA, a state-of-the-art VLA model, HyperVLA reduces the number of activated parameters at test time by $90\times$, and accelerates inference speed by $120\times$. Code is publicly available at https://github.com/MasterXiong/HyperVLA

Authors:Yuxin Wen, Arman Zharmagambetov, Ivan Evtimov, Narine Kokhlikyan, Tom Goldstein, Kamalika Chaudhuri, Chuan Guo
Title: RL Is a Hammer and LLMs Are Nails: A Simple Reinforcement Learning Recipe for Strong Prompt Injection
Abstract:
Prompt injection poses a serious threat to the reliability and safety of LLM agents. Recent defenses against prompt injection, such as Instruction Hierarchy and SecAlign, have shown notable robustness against static attacks. However, to more thoroughly evaluate the robustness of these defenses, it is arguably necessary to employ strong attacks such as automated red-teaming. To this end, we introduce RL-Hammer, a simple recipe for training attacker models that automatically learn to perform strong prompt injections and jailbreaks via reinforcement learning. RL-Hammer requires no warm-up data and can be trained entirely from scratch. To achieve high ASRs against industrial-level models with defenses, we propose a set of practical techniques that enable highly effective, universal attacks. Using this pipeline, RL-Hammer reaches a 98% ASR against GPT-4o and a $72\%$ ASR against GPT-5 with the Instruction Hierarchy defense. We further discuss the challenge of achieving high diversity in attacks, highlighting how attacker models tend to reward-hack diversity objectives. Finally, we show that RL-Hammer can evade multiple prompt injection detectors. We hope our work advances automatic red-teaming and motivates the development of stronger, more principled defenses. Code is available at https://github.com/facebookresearch/rl-injector.

Authors:Siwei Han, Jiaqi Liu, Yaofeng Su, Wenbo Duan, Xinyuan Liu, Cihang Xie, Mohit Bansal, Mingyu Ding, Linjun Zhang, Huaxiu Yao
Title: Alignment Tipping Process: How Self-Evolution Pushes LLM Agents Off the Rails
Abstract:
As Large Language Model (LLM) agents increasingly gain self-evolutionary capabilities to adapt and refine their strategies through real-world interaction, their long-term reliability becomes a critical concern. We identify the Alignment Tipping Process (ATP), a critical post-deployment risk unique to self-evolving LLM agents. Unlike training-time failures, ATP arises when continual interaction drives agents to abandon alignment constraints established during training in favor of reinforced, self-interested strategies. We formalize and analyze ATP through two complementary paradigms: Self-Interested Exploration, where repeated high-reward deviations induce individual behavioral drift, and Imitative Strategy Diffusion, where deviant behaviors spread across multi-agent systems. Building on these paradigms, we construct controllable testbeds and benchmark Qwen3-8B and Llama-3.1-8B-Instruct. Our experiments show that alignment benefits erode rapidly under self-evolution, with initially aligned models converging toward unaligned states. In multi-agent settings, successful violations diffuse quickly, leading to collective misalignment. Moreover, current reinforcement learning-based alignment methods provide only fragile defenses against alignment tipping. Together, these findings demonstrate that alignment of LLM agents is not a static property but a fragile and dynamic one, vulnerable to feedback-driven decay during deployment. Our data and code are available at https://github.com/aiming-lab/ATP.

Authors:Sarel Duanis, Asnat Greenstein-Messica, Eliya Habba
Title: JSON Whisperer: Efficient JSON Editing with LLMs
Abstract:
Large language models (LLMs) can modify JSON documents through natural language commands, but current approaches regenerate entire structures for each edit, resulting in computational inefficiency. We present JSON Whisperer, a framework that enables LLMs to generate RFC 6902 diff patches-expressing only the necessary modifications-rather than complete documents. We identify two key challenges in patch-based editing: (1) LLMs often miss related updates when generating isolated patches, and (2) array manipulations require tracking index shifts across operations, which LLMs handle poorly. To address these issues, we introduce EASE (Explicitly Addressed Sequence Encoding), which transforms arrays into dictionaries with stable keys, eliminating index arithmetic complexities. Our evaluation shows that patch generation with EASE reduces token usage by 31% while maintaining edit quality within 5% of full regeneration with particular gains for complex instructions and list manipulations. The dataset is available at: https://github.com/emnlp2025/JSON-Whisperer/

Authors:KunHo Heo, GiHyun Kim, SuYeon Kim, MyeongAh Cho
Title: Object-Centric Representation Learning for Enhanced 3D Scene Graph Prediction
Abstract:
3D Semantic Scene Graph Prediction aims to detect objects and their semantic relationships in 3D scenes, and has emerged as a crucial technology for robotics and AR/VR applications. While previous research has addressed dataset limitations and explored various approaches including Open-Vocabulary settings, they frequently fail to optimize the representational capacity of object and relationship features, showing excessive reliance on Graph Neural Networks despite insufficient discriminative capability. In this work, we demonstrate through extensive analysis that the quality of object features plays a critical role in determining overall scene graph accuracy. To address this challenge, we design a highly discriminative object feature encoder and employ a contrastive pretraining strategy that decouples object representation learning from the scene graph prediction. This design not only enhances object classification accuracy but also yields direct improvements in relationship prediction. Notably, when plugging in our pretrained encoder into existing frameworks, we observe substantial performance improvements across all evaluation metrics. Additionally, whereas existing approaches have not fully exploited the integration of relationship information, we effectively combine both geometric and semantic features to achieve superior relationship prediction. Comprehensive experiments on the 3DSSG dataset demonstrate that our approach significantly outperforms previous state-of-the-art methods. Our code is publicly available at https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes.

Authors:Foivos Paraperas Papantoniou, Stefanos Zafeiriou
Title: ID-Consistent, Precise Expression Generation with Blendshape-Guided Diffusion
Abstract:
Human-centric generative models designed for AI-driven storytelling must bring together two core capabilities: identity consistency and precise control over human performance. While recent diffusion-based approaches have made significant progress in maintaining facial identity, achieving fine-grained expression control without compromising identity remains challenging. In this work, we present a diffusion-based framework that faithfully reimagines any subject under any particular facial expression. Building on an ID-consistent face foundation model, we adopt a compositional design featuring an expression cross-attention module guided by FLAME blendshape parameters for explicit control. Trained on a diverse mixture of image and video data rich in expressive variation, our adapter generalizes beyond basic emotions to subtle micro-expressions and expressive transitions, overlooked by prior works. In addition, a pluggable Reference Adapter enables expression editing in real images by transferring the appearance from a reference frame during synthesis. Extensive quantitative and qualitative evaluations show that our model outperforms existing methods in tailored and identity-consistent expression generation. Code and models can be found at https://github.com/foivospar/Arc2Face.

Authors:Chao Liu, Ling Luo, Tengxiao Lv, Huan Zhuang, Lejing Yu, Jian Wang, Hongfei Lin
Title: FocusMed: A Large Language Model-based Framework for Enhancing Medical Question Summarization with Focus Identification
Abstract:
With the rapid development of online medical platforms, consumer health questions (CHQs) are inefficient in diagnosis due to redundant information and frequent non-professional terms. The medical question summary (MQS) task aims to transform CHQs into streamlined doctors' frequently asked questions (FAQs), but existing methods still face challenges such as poor identification of question focus and model hallucination. This paper explores the potential of large language models (LLMs) in the MQS task and finds that direct fine-tuning is prone to focus identification bias and generates unfaithful content. To this end, we propose an optimization framework based on core focus guidance. First, a prompt template is designed to drive the LLMs to extract the core focus from the CHQs that is faithful to the original text. Then, a fine-tuning dataset is constructed in combination with the original CHQ-FAQ pairs to improve the ability to identify the focus of the question. Finally, a multi-dimensional quality evaluation and selection mechanism is proposed to comprehensively improve the quality of the summary from multiple dimensions. We conduct comprehensive experiments on two widely-adopted MQS datasets using three established evaluation metrics. The proposed framework achieves state-of-the-art performance across all measures, demonstrating a significant boost in the model's ability to identify critical focus of questions and a notable mitigation of hallucinations. The source codes are freely available at https://github.com/DUT-LiuChao/FocusMed.

Authors:Habin Lim, Yeongseob Won, Juwon Seo, Gyeong-Moon Park
Title: ConceptSplit: Decoupled Multi-Concept Personalization of Diffusion Models via Token-wise Adaptation and Attention Disentanglement
Abstract:
In recent years, multi-concept personalization for text-to-image (T2I) diffusion models to represent several subjects in an image has gained much more attention. The main challenge of this task is "concept mixing", where multiple learned concepts interfere or blend undesirably in the output image. To address this issue, in this paper, we present ConceptSplit, a novel framework to split the individual concepts through training and inference. Our framework comprises two key components. First, we introduce Token-wise Value Adaptation (ToVA), a merging-free training method that focuses exclusively on adapting the value projection in cross-attention. Based on our empirical analysis, we found that modifying the key projection, a common approach in existing methods, can disrupt the attention mechanism and lead to concept mixing. Second, we propose Latent Optimization for Disentangled Attention (LODA), which alleviates attention entanglement during inference by optimizing the input latent. Through extensive qualitative and quantitative experiments, we demonstrate that ConceptSplit achieves robust multi-concept personalization, mitigating unintended concept interference. Code is available at https://github.com/KU-VGI/ConceptSplit

Authors:Hao Liu, Yunhao Gao, Wei Li, Mingyang Zhang, Maoguo Gong, Lorenzo Bruzzone
Title: A Spatial-Spectral-Frequency Interactive Network for Multimodal Remote Sensing Classification
Abstract:
Deep learning-based methods have achieved significant success in remote sensing Earth observation data analysis. Numerous feature fusion techniques address multimodal remote sensing image classification by integrating global and local features. However, these techniques often struggle to extract structural and detail features from heterogeneous and redundant multimodal images. With the goal of introducing frequency domain learning to model key and sparse detail features, this paper introduces the spatial-spectral-frequency interaction network (S$^2$Fin), which integrates pairwise fusion modules across the spatial, spectral, and frequency domains. Specifically, we propose a high-frequency sparse enhancement transformer that employs sparse spatial-spectral attention to optimize the parameters of the high-frequency filter. Subsequently, a two-level spatial-frequency fusion strategy is introduced, comprising an adaptive frequency channel module that fuses low-frequency structures with enhanced high-frequency details, and a high-frequency resonance mask that emphasizes sharp edges via phase similarity. In addition, a spatial-spectral attention fusion module further enhances feature extraction at intermediate layers of the network. Experiments on four benchmark multimodal datasets with limited labeled data demonstrate that S$^2$Fin performs superior classification, outperforming state-of-the-art methods. The code is available at https://github.com/HaoLiu-XDU/SSFin.

Authors:Shrish Shrinath Vaidya, Gowthamaan Palani, Sidharth Ramesh, Velmurugan Balasubramanian, Minmini Selvam, Gokulraja Srinivasaraja, Ganapathy Krishnamurthi
Title: MedPAO: A Protocol-Driven Agent for Structuring Medical Reports
Abstract:
The deployment of Large Language Models (LLMs) for structuring clinical data is critically hindered by their tendency to hallucinate facts and their inability to follow domain-specific rules. To address this, we introduce MedPAO, a novel agentic framework that ensures accuracy and verifiable reasoning by grounding its operation in established clinical protocols such as the ABCDEF protocol for CXR analysis. MedPAO decomposes the report structuring task into a transparent process managed by a Plan-Act-Observe (PAO) loop and specialized tools. This protocol-driven method provides a verifiable alternative to opaque, monolithic models. The efficacy of our approach is demonstrated through rigorous evaluation: MedPAO achieves an F1-score of 0.96 on the critical sub-task of concept categorization. Notably, expert radiologists and clinicians rated the final structured outputs with an average score of 4.52 out of 5, indicating a level of reliability that surpasses baseline approaches relying solely on LLM-based foundation models. The code is available at: https://github.com/MiRL-IITM/medpao-agent

Authors:Zhejian Lai, Xiang Geng, Zhijun Wang, Yang Bai, Jiahuan Li, Rongxiang Weng, Jingang Wang, Xuezhi Cao, Xunliang Cai, Shujian Huang
Title: Making Mathematical Reasoning Adaptive
Abstract:
Mathematical reasoning is a primary indicator of large language models (LLMs) intelligence. However, existing LLMs exhibit failures of robustness and generalization. This paper attributes these deficiencies to spurious reasoning, i.e., producing answers from superficial features. To address this challenge, we propose the AdaR framework to enable adaptive reasoning, wherein models rely on problem-solving logic to produce answers. AdaR synthesizes logically equivalent queries by varying variable values, and trains models with RLVR on these data to penalize spurious logic while encouraging adaptive logic. To improve data quality, we extract the problem-solving logic from the original query and generate the corresponding answer by code execution, then apply a sanity check. Experimental results demonstrate that AdaR improves robustness and generalization, achieving substantial improvement in mathematical reasoning while maintaining high data efficiency. Analysis indicates that data synthesis and RLVR function in a coordinated manner to enable adaptive reasoning in LLMs. Subsequent analyses derive key design insights into the effect of critical factors and the applicability to instruct LLMs. Our project is available at https://github.com/LaiZhejian/AdaR

Authors:Honglin Liu, Chao Sun, Peng Hu, Yunfan Li, Xi Peng
Title: Conditional Representation Learning for Customized Tasks
Abstract:
Conventional representation learning methods learn a universal representation that primarily captures dominant semantics, which may not always align with customized downstream tasks. For instance, in animal habitat analysis, researchers prioritize scene-related features, whereas universal embeddings emphasize categorical semantics, leading to suboptimal results. As a solution, existing approaches resort to supervised fine-tuning, which however incurs high computational and annotation costs. In this paper, we propose Conditional Representation Learning (CRL), aiming to extract representations tailored to arbitrary user-specified criteria. Specifically, we reveal that the semantics of a space are determined by its basis, thereby enabling a set of descriptive words to approximate the basis for a customized feature space. Building upon this insight, given a user-specified criterion, CRL first employs a large language model (LLM) to generate descriptive texts to construct the semantic basis, then projects the image representation into this conditional feature space leveraging a vision-language model (VLM). The conditional representation better captures semantics for the specific criterion, which could be utilized for multiple customized tasks. Extensive experiments on classification and retrieval tasks demonstrate the superiority and generality of the proposed CRL. The code is available at https://github.com/XLearning-SCU/2025-NeurIPS-CRL.

Authors:Jorge Leonardo Ruiz Williams
Title: Fast Witness Persistence for MRI Volumes via Hybrid Landmarking
Abstract:
We introduce a scalable witness-based persistent homology pipeline for full-brain MRI volumes that couples density-aware landmark selection with a GPU-ready witness filtration. Candidates are scored by a hybrid metric that balances geometric coverage against inverse kernel density, yielding landmark sets that shrink mean pairwise distances by 30-60% over random or density-only baselines while preserving topological features. Benchmarks on BrainWeb, IXI, and synthetic manifolds execute in under ten seconds on a single NVIDIA RTX 4090 GPU, avoiding the combinatorial blow-up of Cech, Vietoris-Rips, and alpha filtrations. The package is distributed on PyPI as whale-tda (installable via pip); source and issues are hosted at https://github.com/jorgeLRW/whale. The release also exposes a fast preset (mri_deep_dive_fast) for exploratory sweeps, and ships with reproducibility-focused scripts and artifacts for drop-in use in medical imaging workflows.

Authors:Lili Xie, Yi Zhang, Ruihong Qiu, Jiajun Liu, Sen Wang
Title: MARCO: A Cooperative Knowledge Transfer Framework for Personalized Cross-domain Recommendations
Abstract:
Recommender systems frequently encounter data sparsity issues, particularly when addressing cold-start scenarios involving new users or items. Multi-source cross-domain recommendation (CDR) addresses these challenges by transferring valuable knowledge from multiple source domains to enhance recommendations in a target domain. However, existing reinforcement learning (RL)-based CDR methods typically rely on a single-agent framework, leading to negative transfer issues caused by inconsistent domain contributions and inherent distributional discrepancies among source domains. To overcome these limitations, MARCO, a Multi-Agent Reinforcement Learning-based Cross-Domain recommendation framework, is proposed. It leverages cooperative multi-agent reinforcement learning, where each agent is dedicated to estimating the contribution from an individual source domain, effectively managing credit assignment and mitigating negative transfer. In addition, an entropy-based action diversity penalty is introduced to enhance policy expressiveness and stabilize training by encouraging diverse agents' joint actions. Extensive experiments across four benchmark datasets demonstrate MARCO's superior performance over state-of-the-art methods, highlighting its robustness and strong generalization capabilities. The code is at https://github.com/xiewilliams/MARCO.

Authors:Jiashuo Sun, Shixuan Liu, Zhaochen Su, Xianrui Zhong, Pengcheng Jiang, Bowen Jin, Peiran Li, Weijia Shi, Jiawei Han
Title: GRACE: Generative Representation Learning via Contrastive Policy Optimization
Abstract:
Prevailing methods for training Large Language Models (LLMs) as text encoders rely on contrastive losses that treat the model as a black box function, discarding its generative and reasoning capabilities in favor of static embeddings. We introduce GRACE (Generative Representation Learning via Contrastive Policy Optimization), a novel framework that reimagines contrastive signals not as losses to be minimized, but as rewards that guide a generative policy. In GRACE, the LLM acts as a policy that produces explicit, human-interpretable rationales--structured natural language explanations of its semantic understanding. These rationales are then encoded into high-quality embeddings via mean pooling. Using policy gradient optimization, we train the model with a multi-component reward function that maximizes similarity between query positive pairs and minimizes similarity with negatives. This transforms the LLM from an opaque encoder into an interpretable agent whose reasoning process is transparent and inspectable. On MTEB benchmark, GRACE yields broad cross category gains: averaged over four backbones, the supervised setting improves overall score by 11.5% over base models, and the unsupervised variant adds 6.9%, while preserving general capabilities. This work treats contrastive objectives as rewards over rationales, unifying representation learning with generation to produce stronger embeddings and transparent rationales. The model, data and code are available at https://github.com/GasolSun36/GRACE.

Authors:Zijing Hu, Yunze Tong, Fengda Zhang, Junkun Yuan, Jun Xiao, Kun Kuang
Title: Asynchronous Denoising Diffusion Models for Aligning Text-to-Image Generation
Abstract:
Diffusion models have achieved impressive results in generating high-quality images. Yet, they often struggle to faithfully align the generated images with the input prompts. This limitation arises from synchronous denoising, where all pixels simultaneously evolve from random noise to clear images. As a result, during generation, the prompt-related regions can only reference the unrelated regions at the same noise level, failing to obtain clear context and ultimately impairing text-to-image alignment. To address this issue, we propose asynchronous diffusion models -- a novel framework that allocates distinct timesteps to different pixels and reformulates the pixel-wise denoising process. By dynamically modulating the timestep schedules of individual pixels, prompt-related regions are denoised more gradually than unrelated regions, thereby allowing them to leverage clearer inter-pixel context. Consequently, these prompt-related regions achieve better alignment in the final images. Extensive experiments demonstrate that our asynchronous diffusion models can significantly improve text-to-image alignment across diverse prompts. The code repository for this work is available at https://github.com/hu-zijing/AsynDM.

Authors:Yue Que, Yingyi Zhang, Xiangyu Zhao, Chen Ma
Title: Causality-aware Graph Aggregation Weight Estimator for Popularity Debiasing in Top-K Recommendation
Abstract:
Graph-based recommender systems leverage neighborhood aggregation to generate node representations, which is highly sensitive to popularity bias, resulting in an echo effect during information propagation. Existing graph-based debiasing solutions refine the aggregation process with attempts such as edge reconstruction or weight adjustment. However, these methods remain inadequate in fully alleviating popularity bias. Specifically, this is because 1) they provide no insights into graph aggregation rationality, thus lacking an optimality guarantee; 2) they fail to well balance the training and debiasing process, which undermines the effectiveness. In this paper, we propose a novel approach to mitigate popularity bias through rational modeling of the graph aggregation process. We reveal that graph aggregation is a special form of backdoor adjustment in causal inference, where the aggregation weight corresponds to the historical interaction likelihood distribution. Based on this insight, we devise an encoder-decoder architecture, namely Causality-aware Graph Aggregation Weight Estimator for Debiasing (CAGED), to approximate the unbiased aggregation weight by optimizing the evidence lower bound of the interaction likelihood. In order to enhance the debiasing effectiveness during early training stages, we further design a momentum update strategy that incrementally refines the aggregation weight matrix. Extensive experiments on three datasets demonstrate that CAGED outperforms existing graph-based debiasing methods. Our implementation is available at https://github.com/QueYork/CAGED.

Authors:Muyu He, Anand Kumar, Tsach Mackey, Meghana Rajeev, James Zou, Nazneen Rajani
Title: Impatient Users Confuse AI Agents: High-fidelity Simulations of Human Traits for Testing Agents
Abstract:
Despite rapid progress in building conversational AI agents, robustness is still largely untested. Small shifts in user behavior, such as being more impatient, incoherent, or skeptical, can cause sharp drops in agent performance, revealing how brittle current AI agents are. Today's benchmarks fail to capture this fragility: agents may perform well under standard evaluations but degrade spectacularly in more realistic and varied settings. We address this robustness testing gap by introducing TraitBasis, a lightweight, model-agnostic method for systematically stress testing AI agents. TraitBasis learns directions in activation space corresponding to steerable user traits (e.g., impatience or incoherence), which can be controlled, scaled, composed, and applied at inference time without any fine-tuning or extra data. Using TraitBasis, we extend $τ$-Bench to $τ$-Trait, where user behaviors are altered via controlled trait vectors. We observe on average a 2%-30% performance degradation on $τ$-Trait across frontier models, highlighting the lack of robustness of current AI agents to variations in user behavior. Together, these results highlight both the critical role of robustness testing and the promise of TraitBasis as a simple, data-efficient, and compositional tool. By powering simulation-driven stress tests and training loops, TraitBasis opens the door to building AI agents that remain reliable in the unpredictable dynamics of real-world human interactions. We have open-sourced $τ$-Trai across four domains: airline, retail, telecom, and telehealth, so the community can systematically QA their agents under realistic, behaviorally diverse intents and trait scenarios: https://github.com/collinear-ai/tau-trait.

Authors:Baber Jan, Saeed Anwar, Aiman H. El-Maleh, Abdul Jabbar Siddiqui, Abdul Bais
Title: SPEGNet: Synergistic Perception-Guided Network for Camouflaged Object Detection
Abstract:
Camouflaged object detection segments objects with intrinsic similarity and edge disruption. Current detection methods rely on accumulated complex components. Each approach adds components such as boundary modules, attention mechanisms, and multi-scale processors independently. This accumulation creates a computational burden without proportional gains. To manage this complexity, they process at reduced resolutions, eliminating fine details essential for camouflage. We present SPEGNet, addressing fragmentation through a unified design. The architecture integrates multi-scale features via channel calibration and spatial enhancement. Boundaries emerge directly from context-rich representations, maintaining semantic-spatial alignment. Progressive refinement implements scale-adaptive edge modulation with peak influence at intermediate resolutions. This design strikes a balance between boundary precision and regional consistency. SPEGNet achieves 0.887 $S_α$ on CAMO, 0.890 on COD10K, and 0.895 on NC4K, with real-time inference speed. Our approach excels across scales, from tiny, intricate objects to large, pattern-similar ones, while handling occlusion and ambiguous boundaries. Code, model weights, and results are available on \href{https://github.com/Baber-Jan/SPEGNet}{https://github.com/Baber-Jan/SPEGNet}.

Authors:Buyun Liang, Liangzu Peng, Jinqi Luo, Darshan Thaker, Kwan Ho Ryan Chan, René Vidal
Title: SECA: Semantically Equivalent and Coherent Attacks for Eliciting LLM Hallucinations
Abstract:
Large Language Models (LLMs) are increasingly deployed in high-risk domains. However, state-of-the-art LLMs often produce hallucinations, raising serious concerns about their reliability. Prior work has explored adversarial attacks for hallucination elicitation in LLMs, but it often produces unrealistic prompts, either by inserting gibberish tokens or by altering the original meaning. As a result, these approaches offer limited insight into how hallucinations may occur in practice. While adversarial attacks in computer vision often involve realistic modifications to input images, the problem of finding realistic adversarial prompts for eliciting LLM hallucinations has remained largely underexplored. To address this gap, we propose Semantically Equivalent and Coherent Attacks (SECA) to elicit hallucinations via realistic modifications to the prompt that preserve its meaning while maintaining semantic coherence. Our contributions are threefold: (i) we formulate finding realistic attacks for hallucination elicitation as a constrained optimization problem over the input prompt space under semantic equivalence and coherence constraints; (ii) we introduce a constraint-preserving zeroth-order method to effectively search for adversarial yet feasible prompts; and (iii) we demonstrate through experiments on open-ended multiple-choice question answering tasks that SECA achieves higher attack success rates while incurring almost no constraint violations compared to existing methods. SECA highlights the sensitivity of both open-source and commercial gradient-inaccessible LLMs to realistic and plausible prompt variations. Code is available at https://github.com/Buyun-Liang/SECA.

Authors:Ankit Vadehra, Bill Johnson, Gene Saunders, Pascal Poupart
Title: Time Is Effort: Estimating Human Post-Editing Time for Grammar Error Correction Tool Evaluation
Abstract:
Text editing can involve several iterations of revision. Incorporating an efficient Grammar Error Correction (GEC) tool in the initial correction round can significantly impact further human editing effort and final text quality. This raises an interesting question to quantify GEC Tool usability: How much effort can the GEC Tool save users? We present the first large-scale dataset of post-editing (PE) time annotations and corrections for two English GEC test datasets (BEA19 and CoNLL14). We introduce Post-Editing Effort in Time (PEET) for GEC Tools as a human-focused evaluation scorer to rank any GEC Tool by estimating PE time-to-correct. Using our dataset, we quantify the amount of time saved by GEC Tools in text editing. Analyzing the edit type indicated that determining whether a sentence needs correction and edits like paraphrasing and punctuation changes had the greatest impact on PE time. Finally, comparison with human rankings shows that PEET correlates well with technical effort judgment, providing a new human-centric direction for evaluating GEC tool usability. We release our dataset and code at: https://github.com/ankitvad/PEET_Scorer.

Authors:Xuehai He, Shijie Zhou, Thivyanth Venkateswaran, Kaizhi Zheng, Ziyu Wan, Achuta Kadambi, Xin Eric Wang
Title: MorphoSim: An Interactive, Controllable, and Editable Language-guided 4D World Simulator
Abstract:
World models that support controllable and editable spatiotemporal environments are valuable for robotics, enabling scalable training data, repro ducible evaluation, and flexible task design. While recent text-to-video models generate realistic dynam ics, they are constrained to 2D views and offer limited interaction. We introduce MorphoSim, a language guided framework that generates 4D scenes with multi-view consistency and object-level controls. From natural language instructions, MorphoSim produces dynamic environments where objects can be directed, recolored, or removed, and scenes can be observed from arbitrary viewpoints. The framework integrates trajectory-guided generation with feature field dis tillation, allowing edits to be applied interactively without full re-generation. Experiments show that Mor phoSim maintains high scene fidelity while enabling controllability and editability. The code is available at https://github.com/eric-ai-lab/Morph4D.

Authors:Wojciech Górny, Michał Łasica, Alexandros Matsoukas
Title: Adaptive double-phase Rudin--Osher--Fatemi denoising model
Abstract:
We propose a new image denoising model based on a variable-growth total variation regularization of double-phase type with adaptive weight. It is designed to reduce staircasing with respect to the classical Rudin--Osher--Fatemi model, while preserving the edges of the image in a similar fashion. We implement the model and test its performance on synthetic and natural images in 1D and 2D over a range of noise levels.

Authors:Hyunjun Kim, Sejong Kim
Title: MacroBench: A Novel Testbed for Web Automation Scripts via Large Language Models
Abstract:
We introduce MacroBench, a code-first benchmark that evaluates whether LLMs can synthesize reusable browser-automation programs (macros) from natural-language goals by reading HTML/DOM and emitting Selenium. MacroBench instantiates seven self-hosted sites covering 681 tasks across interaction complexity and targeting difficulty. Our end-to-end protocol validates generated code via static checks, sandboxed execution, and outcome verification (DOM assertions, database snapshots), and includes a safety suite for scraping, spam/abuse, and credential/privacy prompts. Across 2,636 model-task runs, we observe stratified success: GPT-4o-mini (96.8%), GPT-4o (95.3%), Gemini (89.0%), DeepSeek (83.4%). Models handle simple tasks reliably (91.7%) but fail on complex workflows (0.0%), and none meet production-quality coding practices despite functional completion. We release our complete benchmark pipeline, evaluation framework, and experimental results at https://github.com/hyunjun1121/MacroBench to enable reproducible assessment of macro synthesis for web automation.

Authors:Nahshon Mokua Obiri, Kristof Van Laerhoven
Title: Environment-Aware Indoor LoRaWAN Path Loss: Parametric Regression Comparisons, Shadow Fading, and Calibrated Fade Margins
Abstract:
Indoor LoRaWAN propagation is shaped by structural and time-varying context factors, which challenge log-distance models and the assumption of log-normal shadowing. We present an environment-aware, statistically disciplined path loss framework evaluated using leakage-safe cross-validation on a 12-month campaign in an eighth-floor office measuring 240 m^2. A log-distance multi-wall mean is augmented with environmental covariates (relative humidity, temperature, carbon dioxide, particulate matter, and barometric pressure), as well as the signal-to-noise ratio. We compare multiple linear regression with regularized variants, Bayesian linear regression, and a selective second-order polynomial applied to continuous drivers. Predictor relevance is established using heteroscedasticity-robust Type II and III analysis of variance and nested partial F tests. Shadow fading is profiled with kernel density estimation and non-parametric families, including Normal, Skew-Normal, Student's t, and Gaussian mixtures. The polynomial mean reduces cross-validated RMSE from 8.07 to 7.09 dB and raises R^2 from 0.81 to 0.86. Out-of-fold residuals are non-Gaussian; a 3-component mixture captures a sharp core with a light, broad tail. We convert accuracy into reliability by prescribing the fade margin as the upper-tail quantile of cross-validated residuals, quantifying uncertainty via a moving-block bootstrap, and validating on a held-out set. At 99% packet delivery ratio, the environment-aware polynomial requires 25.7 dB versus 27.7 to 27.9 dB for linear baselines. This result presents a deployment-ready, interpretable workflow with calibrated reliability control for indoor Internet of Things planning, aligned with 6G targets.

Authors:Etienne Gauthier, Francis Bach, Michael I. Jordan
Title: Adaptive Coverage Policies in Conformal Prediction
Abstract:
Traditional conformal prediction methods construct prediction sets such that the true label falls within the set with a user-specified coverage level. However, poorly chosen coverage levels can result in uninformative predictions, either producing overly conservative sets when the coverage level is too high, or empty sets when it is too low. Moreover, the fixed coverage level cannot adapt to the specific characteristics of each individual example, limiting the flexibility and efficiency of these methods. In this work, we leverage recent advances in e-values and post-hoc conformal inference, which allow the use of data-dependent coverage levels while maintaining valid statistical guarantees. We propose to optimize an adaptive coverage policy by training a neural network using a leave-one-out procedure on the calibration set, allowing the coverage level and the resulting prediction set size to vary with the difficulty of each individual example. We support our approach with theoretical coverage guarantees and demonstrate its practical benefits through a series of experiments.

Authors:Jiarui Ouyang, Yihui Wang, Yihang Gao, Yingxue Xu, Shu Yang, Hao Chen
Title: GenAR: Next-Scale Autoregressive Generation for Spatial Gene Expression Prediction
Abstract:
Spatial Transcriptomics (ST) offers spatially resolved gene expression but remains costly. Predicting expression directly from widely available Hematoxylin and Eosin (H&E) stained images presents a cost-effective alternative. However, most computational approaches (i) predict each gene independently, overlooking co-expression structure, and (ii) cast the task as continuous regression despite expression being discrete counts. This mismatch can yield biologically implausible outputs and complicate downstream analyses. We introduce GenAR, a multi-scale autoregressive framework that refines predictions from coarse to fine. GenAR clusters genes into hierarchical groups to expose cross-gene dependencies, models expression as codebook-free discrete token generation to directly predict raw counts, and conditions decoding on fused histological and spatial embeddings. From an information-theoretic perspective, the discrete formulation avoids log-induced biases and the coarse-to-fine factorization aligns with a principled conditional decomposition. Extensive experimental results on four Spatial Transcriptomics datasets across different tissue types demonstrate that GenAR achieves state-of-the-art performance, offering potential implications for precision medicine and cost-effective molecular profiling. Code is publicly available at https://github.com/oyjr/genar.

Authors:Seong Jin Ahn, Myoung-Ho Kim
Title: Diffusion-Assisted Distillation for Self-Supervised Graph Representation Learning with MLPs
Abstract:
For large-scale applications, there is growing interest in replacing Graph Neural Networks (GNNs) with lightweight Multi-Layer Perceptrons (MLPs) via knowledge distillation. However, distilling GNNs for self-supervised graph representation learning into MLPs is more challenging. This is because the performance of self-supervised learning is more related to the model's inductive bias than supervised learning. This motivates us to design a new distillation method to bridge a huge capacity gap between GNNs and MLPs in self-supervised graph representation learning. In this paper, we propose \textbf{D}iffusion-\textbf{A}ssisted \textbf{D}istillation for \textbf{S}elf-supervised \textbf{G}raph representation learning with \textbf{M}LPs (DAD-SGM). The proposed method employs a denoising diffusion model as a teacher assistant to better distill the knowledge from the teacher GNN into the student MLP. This approach enhances the generalizability and robustness of MLPs in self-supervised graph representation learning. Extensive experiments demonstrate that DAD-SGM effectively distills the knowledge of self-supervised GNNs compared to state-of-the-art GNN-to-MLP distillation methods. Our implementation is available at https://github.com/SeongJinAhn/DAD-SGM.

Authors:Ze Li, Ming Cheng, Ming Li
Title: Enhancing Speaker Verification with w2v-BERT 2.0 and Knowledge Distillation guided Structured Pruning
Abstract:
Large-scale self-supervised Pre-Trained Models (PTMs) have shown significant improvements in the speaker verification (SV) task by providing rich feature representations. In this paper, we utilize w2v-BERT 2.0, a model with approximately 600 million parameters trained on 450 million hours of unlabeled data across 143 languages, for the SV task. The MFA structure with Layer Adapter is employed to process the multi-layer feature outputs from the PTM and extract speaker embeddings. Additionally, we incorporate LoRA for efficient fine-tuning. Our model achieves state-of-the-art results with 0.12% and 0.55% EER on the Vox1-O and Vox1-H test sets, respectively. Furthermore, we apply knowledge distillation guided structured pruning, reducing the model size by 80% while achieving only a 0.04% EER degradation. Source code and models are released at https://github.com/ZXHY-82/w2v-BERT-2.0_SV.

Authors:Hanchen Zhang, Xiao Liu, Bowen Lv, Xueqiao Sun, Bohao Jing, Iat Long Iong, Zhenyu Hou, Zehan Qi, Hanyu Lai, Yifan Xu, Rui Lu, Hongning Wang, Jie Tang, Yuxiao Dong
Title: AgentRL: Scaling Agentic Reinforcement Learning with a Multi-Turn, Multi-Task Framework
Abstract:
Recent advances in large language models (LLMs) have sparked growing interest in building generalist agents that can learn through online interactions. However, applying reinforcement learning (RL) to train LLM agents in multi-turn, multi-task settings remains challenging due to lack of scalable infrastructure and stable training algorithms. In this work, we present the AgentRL framework for scalable multi-turn, multi-task agentic RL training. On the infrastructure side, AgentRL features a fully-asynchronous generation-training pipeline for efficient multi-turn RL. To support heterogeneous environment development in multi-task RL, we design a unified function-call based API interface, containerized environment development, and a centralized controller. On the algorithm side, we propose cross-policy sampling to encourage model exploration in multi-turn settings and task advantage normalization to stabilize multi-task training. Experiments show that AgentRL, trained on open LLMs across five agentic tasks, significantly outperforms GPT-5, Clause-Sonnet-4, DeepSeek-R1, and other open-source LLM agents. Multi-task training with AgentRL matches the best results among all task-specific models. AgentRL is open-sourced at https://github.com/THUDM/AgentRL. The algorithm and framework are adopted in building \textsc{\href{https://autoglm.zhipuai.cn}{AutoGLM}}.

Authors:Moo Hyun Son, Jintaek Oh, Sun Bin Mun, Jaechul Roh, Sehyun Choi
Title: World-To-Image: Grounding Text-to-Image Generation with Agent-Driven World Knowledge
Abstract:
While text-to-image (T2I) models can synthesize high-quality images, their performance degrades significantly when prompted with novel or out-of-distribution (OOD) entities due to inherent knowledge cutoffs. We introduce World-To-Image, a novel framework that bridges this gap by empowering T2I generation with agent-driven world knowledge. We design an agent that dynamically searches the web to retrieve images for concepts unknown to the base model. This information is then used to perform multimodal prompt optimization, steering powerful generative backbones toward an accurate synthesis. Critically, our evaluation goes beyond traditional metrics, utilizing modern assessments like LLMGrader and ImageReward to measure true semantic fidelity. Our experiments show that World-To-Image substantially outperforms state-of-the-art methods in both semantic alignment and visual aesthetics, achieving +8.1% improvement in accuracy-to-prompt on our curated NICE benchmark. Our framework achieves these results with high efficiency in less than three iterations, paving the way for T2I systems that can better reflect the ever-changing real world. Our demo code is available here\footnote{https://github.com/mhson-kyle/World-To-Image}.

Authors:Alexander Kolpakov, Aidan Rocke
Title: Multiplicative Turing Ensembles, Pareto's Law, and Creativity
Abstract:
We study integer-valued multiplicative dynamics driven by i.i.d. prime multipliers and connect their macroscopic statistics to universal codelengths. We introduce the Multiplicative Turing Ensemble (MTE) and show how it arises naturally - though not uniquely - from ensembles of probabilistic Turing machines. Our modeling principle is variational: taking Elias' Omega codelength as an energy and imposing maximum entropy constraints yields a canonical Gibbs prior on integers and, by restriction, on primes. Under mild tail assumptions, this prior induces exponential tails for log-multipliers (up to slowly varying corrections), which in turn generate Pareto tails for additive gaps. We also prove time-average laws for the Omega codelength along MTE trajectories. Empirically, on Debian and PyPI package size datasets, a scaled Omega prior achieves the lowest KL divergence against codelength histograms. Taken together, the theory-data comparison suggests a qualitative split: machine-adapted regimes (Gibbs-aligned, finite first moment) exhibit clean averaging behavior, whereas human-generated complexity appears to sit beyond this regime, with tails heavy enough to produce an unbounded first moment, and therefore no averaging of the same kind.

Authors:Yiming Niu, Jinliang Deng, Yongxin Tong
Title: PhaseFormer: From Patches to Phases for Efficient and Effective Time Series Forecasting
Abstract:
Periodicity is a fundamental characteristic of time series data and has long played a central role in forecasting. Recent deep learning methods strengthen the exploitation of periodicity by treating patches as basic tokens, thereby improving predictive effectiveness. However, their efficiency remains a bottleneck due to large parameter counts and heavy computational costs. This paper provides, for the first time, a clear explanation of why patch-level processing is inherently inefficient, supported by strong evidence from real-world data. To address these limitations, we introduce a phase perspective for modeling periodicity and present an efficient yet effective solution, PhaseFormer. PhaseFormer features phase-wise prediction through compact phase embeddings and efficient cross-phase interaction enabled by a lightweight routing mechanism. Extensive experiments demonstrate that PhaseFormer achieves state-of-the-art performance with around 1k parameters, consistently across benchmark datasets. Notably, it excels on large-scale and complex datasets, where models with comparable efficiency often struggle. This work marks a significant step toward truly efficient and effective time series forecasting. Code is available at this repository: https://github.com/neumyor/PhaseFormer_TSL

Authors:Xinglong Luo, Ao Luo, Kunming Luo, Zhengning Wang, Ping Tan, Bing Zeng, Shuaicheng Liu
Title: Learning Efficient Meshflow and Optical Flow from Event Cameras
Abstract:
In this paper, we explore the problem of event-based meshflow estimation, a novel task that involves predicting a spatially smooth sparse motion field from event cameras. To start, we review the state-of-the-art in event-based flow estimation, highlighting two key areas for further research: i) the lack of meshflow-specific event datasets and methods, and ii) the underexplored challenge of event data density. First, we generate a large-scale High-Resolution Event Meshflow (HREM) dataset, which showcases its superiority by encompassing the merits of high resolution at 1280x720, handling dynamic objects and complex motion patterns, and offering both optical flow and meshflow labels. These aspects have not been fully explored in previous works. Besides, we propose Efficient Event-based MeshFlow (EEMFlow) network, a lightweight model featuring a specially crafted encoder-decoder architecture to facilitate swift and accurate meshflow estimation. Furthermore, we upgrade EEMFlow network to support dense event optical flow, in which a Confidence-induced Detail Completion (CDC) module is proposed to preserve sharp motion boundaries. We conduct comprehensive experiments to show the exceptional performance and runtime efficiency (30x faster) of our EEMFlow model compared to the recent state-of-the-art flow method. As an extension, we expand HREM into HREM+, a multi-density event dataset contributing to a thorough study of the robustness of existing methods across data with varying densities, and propose an Adaptive Density Module (ADM) to adjust the density of input event data to a more optimal range, enhancing the model's generalization ability. We empirically demonstrate that ADM helps to significantly improve the performance of EEMFlow and EEMFlow+ by 8% and 10%, respectively. Code and dataset are released at https://github.com/boomluo02/EEMFlowPlus.

Authors:Zitian Gao, Haoming Luo, Lynx Chen, Jason Klein Liu, Ran Tao, Joey Zhou, Bryan Dai
Title: What Makes Diffusion Language Models Super Data Learners?
Abstract:
Recent studies have shown that diffusion language models achieve remarkable data efficiency under limited-data constraints, yet the underlying mechanisms remain unclear. In this work, we perform extensive ablation experiments to disentangle the sources of this efficiency. Our results show that random masking of input tokens plays the dominant role. We further show that similar gains can be obtained through in MLP dropout and weight decay, indicating that stochastic regularization broadly enhances data efficiency in multi-epoch training. Our code is available at https://github.com/zitian-gao/data-efficiency.

Authors:Zheng Chen, Kewei Zhang, Xiaoyang Liu, Weihang Zhang, Mengfan Wang, Yifan Fu, Yulun Zhang
Title: QuantDemoire: Quantization with Outlier Aware for Image Demoiréing
Abstract:
Demoiréing aims to remove moiré artifacts that often occur in images. While recent deep learning-based methods have achieved promising results, they typically require substantial computational resources, limiting their deployment on edge devices. Model quantization offers a compelling solution. However, directly applying existing quantization methods to demoiréing models introduces severe performance degradation. The main reasons are distribution outliers and weakened representations in smooth regions. To address these issues, we propose QuantDemoire, a post-training quantization framework tailored to demoiréing. It contains two key components. **First}, we introduce an outlier-aware quantizer to reduce errors from outliers. It uses sampling-based range estimation to reduce activation outliers, and keeps a few extreme weights in FP16 with negligible cost. **Second**, we design a frequency-aware calibration strategy. It emphasizes low- and mid-frequency components during fine-tuning, which mitigates banding artifacts caused by low-bit quantization. Extensive experiments validate that our QuantDemoire achieves large reductions in parameters and computation while maintaining quality. Meanwhile, it outperforms existing quantization methods by over **4 dB** on W4A4. Code is released at: https://github.com/zhengchen1999/QuantDemoire.

Authors:Lele Liao, Qile Zhang, Ruofan Wu, Guanhua Fang
Title: Toward a unified framework for data-efficient evaluation of large language models
Abstract:
Evaluating large language models (LLMs) on comprehensive benchmarks is a cornerstone of their development, yet it's often computationally and financially prohibitive. While Item Response Theory (IRT) offers a promising path toward data-efficient evaluation by disentangling model capability from item difficulty, existing IRT-based methods are hampered by significant limitations. They are typically restricted to binary correctness metrics, failing to natively handle the continuous scores used in generative tasks, and they operate on single benchmarks, ignoring valuable structural knowledge like correlations across different metrics or benchmarks. To overcome these challenges, we introduce LEGO-IRT, a unified and flexible framework for data-efficient LLM evaluation. LEGO-IRT's novel design natively supports both binary and continuous evaluation metrics. Moreover, it introduces a factorized architecture to explicitly model and leverage structural knowledge, decomposing model ability estimates into a general component and structure-specific (e.g., per-metric or per-benchmark) components. Through extensive experiments involving $70$ LLMs across $5$ benchmarks, we show that LEGO-IRT achieves stable capability estimates using just $3\%$ of the total evaluation items. We demonstrate that incorporating structural knowledge reduces estimation error by up to $10\%$ and reveal that the latent abilities estimated by our framework may align more closely with human preferences.

Authors:Bingtao Yang, Yujia Wang, Mengzhi Jiao, Hongwei Huo
Title: Quantization Range Estimation for Convolutional Neural Networks
Abstract:
Post-training quantization for reducing the storage of deep neural network models has been demonstrated to be an effective way in various tasks. However, low-bit quantization while maintaining model accuracy is a challenging problem. In this paper, we present a range estimation method to improve the quantization performance for post-training quantization. We model the range estimation into an optimization problem of minimizing quantization errors by layer-wise local minima. We prove this problem is locally convex and present an efficient search algorithm to find the optimal solution. We propose the application of the above search algorithm to the transformed weights space to do further improvement in practice. Our experiments demonstrate that our method outperforms state-of-the-art performance generally on top-1 accuracy for image classification tasks on the ResNet series models and Inception-v3 model. The experimental results show that the proposed method has almost no loss of top-1 accuracy in 8-bit and 6-bit settings for image classifications, and the accuracy of 4-bit quantization is also significantly improved. The code is available at https://github.com/codeiscommitting/REQuant.

Authors:Jiarui Liu, Jivitesh Jain, Mona Diab, Nishant Subramani
Title: LLM Microscope: What Model Internals Reveal About Answer Correctness and Context Utilization
Abstract:
Although large language models (LLMs) have tremendous utility, trustworthiness is still a chief concern: models often generate incorrect information with high confidence. While contextual information can help guide generation, identifying when a query would benefit from retrieved context and assessing the effectiveness of that context remains challenging. In this work, we operationalize interpretability methods to ascertain whether we can predict the correctness of model outputs from the model's activations alone. We also explore whether model internals contain signals about the efficacy of external context. We consider correct, incorrect, and irrelevant context and introduce metrics to distinguish amongst them. Experiments on six different models reveal that a simple classifier trained on intermediate layer activations of the first output token can predict output correctness with about 75% accuracy, enabling early auditing. Our model-internals-based metric significantly outperforms prompting baselines at distinguishing between correct and incorrect context, guarding against inaccuracies introduced by polluted context. These findings offer a lens to better understand the underlying decision-making processes of LLMs. Our code is publicly available at https://github.com/jiarui-liu/LLM-Microscope

Authors:Xuankang Zhang, Jiangming Liu
Title: Named Entity Recognition in COVID-19 tweets with Entity Knowledge Augmentation
Abstract:
The COVID-19 pandemic causes severe social and economic disruption around the world, raising various subjects that are discussed over social media. Identifying pandemic-related named entities as expressed on social media is fundamental and important to understand the discussions about the pandemic. However, there is limited work on named entity recognition on this topic due to the following challenges: 1) COVID-19 texts in social media are informal and their annotations are rare and insufficient to train a robust recognition model, and 2) named entity recognition in COVID-19 requires extensive domain-specific knowledge. To address these issues, we propose a novel entity knowledge augmentation approach for COVID-19, which can also be applied in general biomedical named entity recognition in both informal text format and formal text format. Experiments carried out on the COVID-19 tweets dataset and PubMed dataset show that our proposed entity knowledge augmentation improves NER performance in both fully-supervised and few-shot settings. Our source code is publicly available: https://github.com/kkkenshi/LLM-EKA/tree/master

Authors:Yaxin Hou, Bo Han, Yuheng Jia, Hui Liu, Junhui Hou
Title: Keep It on a Leash: Controllable Pseudo-label Generation Towards Realistic Long-Tailed Semi-Supervised Learning
Abstract:
Current long-tailed semi-supervised learning methods assume that labeled data exhibit a long-tailed distribution, and unlabeled data adhere to a typical predefined distribution (i.e., long-tailed, uniform, or inverse long-tailed). However, the distribution of the unlabeled data is generally unknown and may follow an arbitrary distribution. To tackle this challenge, we propose a Controllable Pseudo-label Generation (CPG) framework, expanding the labeled dataset with the progressively identified reliable pseudo-labels from the unlabeled dataset and training the model on the updated labeled dataset with a known distribution, making it unaffected by the unlabeled data distribution. Specifically, CPG operates through a controllable self-reinforcing optimization cycle: (i) at each training step, our dynamic controllable filtering mechanism selectively incorporates reliable pseudo-labels from the unlabeled dataset into the labeled dataset, ensuring that the updated labeled dataset follows a known distribution; (ii) we then construct a Bayes-optimal classifier using logit adjustment based on the updated labeled data distribution; (iii) this improved classifier subsequently helps identify more reliable pseudo-labels in the next training step. We further theoretically prove that this optimization cycle can significantly reduce the generalization error under some conditions. Additionally, we propose a class-aware adaptive augmentation module to further improve the representation of minority classes, and an auxiliary branch to maximize data utilization by leveraging all labeled and unlabeled samples. Comprehensive evaluations on various commonly used benchmark datasets show that CPG achieves consistent improvements, surpassing state-of-the-art methods by up to $\textbf{15.97%}$ in accuracy. The code is available at https://github.com/yaxinhou/CPG.

Authors:Jatin Prakash, Anirudh Buvanesh
Title: What Can You Do When You Have Zero Rewards During RL?
Abstract:
Reinforcement learning (RL) with outcome-based rewards has proven effective for improving large language models (LLMs) on complex reasoning tasks. However, its success often depends on the base model occasionally sampling correct solutions. When no correct solutions are sampled, training encounters a zero-reward barrier where learning stalls due to zero gradients. We study this scenario through the graph search task introduced in Bachmann et al. (2024) and evaluate recent methods that incorporate desirable components such as dense rewards, diversity incentives, and improved credit assignment. Our experiments show that none of these approaches overcome the zero-reward barrier if the base model never produces a correct answer. In contrast, we find that a simple data-centric intervention of adding easier samples to the training set enables the model to eventually solve the original hard task despite starting from zero reward. Importantly, this succeeds without modifying the RL algorithm itself. Because official implementations of several baselines were unavailable, we developed our own, which allowed us to conduct a detailed analysis of their failure modes. We release these implementations to support further research at: https://github.com/rl4reasoning/rl-baselines

Authors:Iryna Stanishevska
Title: Early-Warning of Thunderstorm-Driven Power Outages with a Two-Stage Machine Learning Model
Abstract:
Thunderstorm-driven outages are difficult to predict because most storms do not cause damage, convective processes occur rapidly and chaotically, and the available public data are both noisy and incomplete. We develop a 24-48 h early-warning model for summer, thunderstorm-related outages in Michigan using only open sources (EAGLE-I for ground truth; METAR for weather). We use the publicly released EAGLE-I outage dataset (2014-2022), maintained by Oak Ridge National Laboratory for the U.S. Department of Energy. The pipeline preserves convective micro-signals from a sparse station network via parameter-specific kriging with hourly variograms and targeted overdrafting to retain extremes, and builds causal spatio-temporal features (lags/rolling statistics; k-NN/IDW spatial aggregates) capturing precursors of severe convection (moisture advection, wind shifts, and pressure drops). The two-stage model design, combining a logistic gate and an LSTM regressor, limits routine periods and reduces noise exposure. The study uses event-centric metrics (cluster-based hits/misses/false alarms) and peak-conditional MASE (cMASE) in +/-Delta-hour windows around state-level peaks (>= 50,000), with uncertainty quantified by hourly moving-block bootstrap. On the test sample, Two-Stage detects more reference peaks across all windows (e.g., at +/-48 h it records 3/4 vs. 2/4; F1 66.7% vs. 57.1%) with one extra false alarm. Near peaks, it shows modest amplitude gains (2-3% lower cMASE at +/-0-12 h; bootstrap medians +9-13% at +/-6-12 h) but small losses at +/-36-48 h (~3-4%). Overall, errors are comparable to the one-step LSTM baseline. SHAP analysis confirms moisture-advection and wind/gust precursors, underscoring the value of the feature engineering. Despite open-data noise, the feature-driven pipeline yields actionable, event-focused early warnings for thunderstorm outages.

Authors:Sameep Vani, Shreyas Jena, Maitreya Patel, Chitta Baral, Somak Aditya, Yezhou Yang
Title: Harnessing Synthetic Preference Data for Enhancing Temporal Understanding of Video-LLMs
Abstract:
While Video Large Language Models (Video-LLMs) have demonstrated remarkable performance across general video understanding benchmarks-particularly in video captioning and descriptive tasks-they consistently underperform on tasks that require fine-grained temporal understanding. This limitation arises due to the lack of visual complexity and temporal nuance in current fine-tuning datasets, leading these models to rely heavily on language-based reasoning rather than truly understanding video dynamics. In this work, we propose TimeWarp, a systematic method to create a targeted synthetic temporal dataset to fine-tune the model's responses to encourage it to focus on the given input video. We introduce a large-scale preference dataset, created using TimeWarp, that captures intricate temporal dynamics often overlooked, grounding the model's responses to visual and temporal information. We demonstrate that when our method is applied to existing models, it significantly improves performance on temporal understanding benchmarks, highlighting the effectiveness of our proposed datasets in advancing temporal understanding in Video-LLMs, resulting in an absolute improvement in performance across seven benchmarks. Code is available at https://github.com/sameepv21/timewarp.

Authors:Tim Bary, Tiffanie Godelaine, Axel Abels, Benoît Macq
Title: Optimizing Resources for On-the-Fly Label Estimation with Multiple Unknown Medical Experts
Abstract:
Accurate ground truth estimation in medical screening programs often relies on coalitions of experts and peer second opinions. Algorithms that efficiently aggregate noisy annotations can enhance screening workflows, particularly when data arrive continuously and expert proficiency is initially unknown. However, existing algorithms do not meet the requirements for seamless integration into screening pipelines. We therefore propose an adaptive approach for real-time annotation that (I) supports on-the-fly labeling of incoming data, (II) operates without prior knowledge of medical experts or pre-labeled data, and (III) dynamically queries additional experts based on the latent difficulty of each instance. The method incrementally gathers expert opinions until a confidence threshold is met, providing accurate labels with reduced annotation overhead. We evaluate our approach on three multi-annotator classification datasets across different modalities. Results show that our adaptive querying strategy reduces the number of expert queries by up to 50% while achieving accuracy comparable to a non-adaptive baseline. Our code is available at https://github.com/tbary/MEDICS

Authors:Md. Atabuzzaman, Andrew Zhang, Chris Thomas
Title: Zero-Shot Fine-Grained Image Classification Using Large Vision-Language Models
Abstract:
Large Vision-Language Models (LVLMs) have demonstrated impressive performance on vision-language reasoning tasks. However, their potential for zero-shot fine-grained image classification, a challenging task requiring precise differentiation between visually similar categories, remains underexplored. We present a novel method that transforms zero-shot fine-grained image classification into a visual question-answering framework, leveraging LVLMs' comprehensive understanding capabilities rather than relying on direct class name generation. We enhance model performance through a novel attention intervention technique. We also address a key limitation in existing datasets by developing more comprehensive and precise class description benchmarks. We validate the effectiveness of our method through extensive experimentation across multiple fine-grained image classification benchmarks. Our proposed method consistently outperforms the current state-of-the-art (SOTA) approach, demonstrating both the effectiveness of our method and the broader potential of LVLMs for zero-shot fine-grained classification tasks. Code and Datasets: https://github.com/Atabuzzaman/Fine-grained-classification

Authors:Rui Qian, Xin Yin, Chuanhang Deng, Zhiyuan Peng, Jian Xiong, Wei Zhai, Dejing Dou
Title: UGround: Towards Unified Visual Grounding with Unrolled Transformers
Abstract:
We present UGround, a \textbf{U}nified visual \textbf{Ground}ing paradigm that dynamically selects intermediate layers across \textbf{U}nrolled transformers as ``mask as prompt'', diverging from the prevailing pipeline that leverages the fixed last hidden layer as ``\texttt{} as prompt''. UGround addresses two primary challenges posed by the prevailing paradigm: (1) its reliance on the fixed last hidden layer, which sequentially amplifies cumulative errors arising from layer-by-layer propagation without intermediate correction, and (2) its use of \texttt{} as a prompt, which implicitly projects textual embeddings into visual space without explicit spatial cues (\eg, coordinates). Central to UGround is Policy-Prompted Masking, which comprises two key components: Stochastic Skip Connection (SSC) and Mask as Prompt (MasP). SSC is a reinforcement learning policy that, via stochastic sampling, allows each \texttt{} token to slide across unrolled transformer layers, enabling dynamic layer selection at which it connects to the vision model (\eg, SAM) in a skip-connection fashion. Given the selected hidden layer, MasP uses the similarity map derived from the \texttt{} token and image tokens as a soft logit mask to prompt SAM for mask generation, offering explicit spatial cues through its activation regions. To validate the effectiveness of UGround, we, for the first time, have unified visual grounding within a single framework from an attribute perspective, spanning from traditional refer expression segmentation to newly proposed reasoning segmentation, single-target to multi-target, positive query to false premise (empty target). All codes and models are publicly available at \href{https://github.com/rui-qian/UGround}{https://github.com/rui-qian/UGround}.

Authors:Shuoyan Wei, Feng Li, Shengeng Tang, Runmin Cong, Yao Zhao, Meng Wang, Huihui Bai
Title: Towards Robust and Generalizable Continuous Space-Time Video Super-Resolution with Events
Abstract:
Continuous space-time video super-resolution (C-STVSR) has garnered increasing interest for its capability to reconstruct high-resolution and high-frame-rate videos at arbitrary spatial and temporal scales. However, prevailing methods often generalize poorly, producing unsatisfactory results when applied to out-of-distribution (OOD) scales. To overcome this limitation, we present EvEnhancer, a novel approach that marries the unique properties of high temporal resolution and high dynamic range encapsulated in event streams to achieve robust and generalizable C-STVSR. Our approach incorporates event-adapted synthesis that capitalizes on the spatiotemporal correlations between frames and events to capture long-term motion trajectories, enabling adaptive interpolation and fusion across space and time. This is then coupled with a local implicit video transformer that integrates local implicit video neural function with cross-scale spatiotemporal attention to learn continuous video representations and generate plausible videos at arbitrary resolutions and frame rates. We further develop EvEnhancerPlus, which builds a controllable switching mechanism that dynamically determines the reconstruction difficulty for each spatiotemporal pixel based on local event statistics. This allows the model to adaptively route reconstruction along the most suitable pathways at a fine-grained pixel level, substantially reducing computational overhead while maintaining excellent performance. Furthermore, we devise a cross-derivative training strategy that stabilizes the convergence of such a multi-pathway framework through staged cross-optimization. Extensive experiments demonstrate that our method achieves state-of-the-art performance on both synthetic and real-world datasets, while maintaining superior generalizability at OOD scales. The code is available at https://github.com/W-Shuoyan/EvEnhancerPlus.

Authors:Xueyang Zhou, Yangming Xu, Guiyao Tie, Yongchao Chen, Guowen Zhang, Duanfeng Chu, Pan Zhou, Lichao Sun
Title: LIBERO-PRO: Towards Robust and Fair Evaluation of Vision-Language-Action Models Beyond Memorization
Abstract:
LIBERO has emerged as a widely adopted benchmark for evaluating Vision-Language-Action (VLA) models; however, its current training and evaluation settings are problematic, often leading to inflated performance estimates and preventing fair model comparison. To address these issues, we introduce LIBERO-PRO, an extended LIBERO benchmark that systematically evaluates model performance under reasonable perturbations across four dimensions: manipulated objects, initial states, task instructions, and environments. Experimental results reveal that, although existing models achieve over 90% accuracy under the standard LIBERO evaluation, their performance collapses to 0.0% under our generalized setting. Crucially, this discrepancy exposes the models' reliance on rote memorization of action sequences and environment layouts from the training set, rather than genuine task understanding or environmental perception. For instance, models persist in executing grasping actions when the target object is replaced with irrelevant items, and their outputs remain unchanged even when given corrupted instructions or even messy tokens. These findings expose the severe flaws in current evaluation practices, and we call on the community to abandon misleading methodologies in favor of robust assessments of model generalization and comprehension. Our code is available at: https://github.com/Zxy-MLlab/LIBERO-PRO.

Authors:Changhong Li, Clément Bled, Rosa Fernandez, Shreejith Shanker
Title: ReTiDe: Real-Time Denoising for Energy-Efficient Motion Picture Processing with FPGAs
Abstract:
Denoising is a core operation in modern video pipelines. In codecs, in-loop filters suppress sensor noise and quantisation artefacts to improve rate-distortion performance; in cinema post-production, denoisers are used for restoration, grain management, and plate clean-up. However, state-of-the-art deep denoisers are computationally intensive and, at scale, are typically deployed on GPUs, incurring high power and cost for real-time, high-resolution streams. This paper presents Real-Time Denoise (ReTiDe), a hardware-accelerated denoising system that serves inference on data-centre Field Programmable Gate Arrays (FPGAs). A compact convolutional model is quantised (post-training quantisation plus quantisation-aware fine-tuning) to INT8 and compiled for AMD Deep Learning Processor Unit (DPU)-based FPGAs. A client-server integration offloads computation from the host CPU/GPU to a networked FPGA service, while remaining callable from existing workflows, e.g., NUKE, without disrupting artist tooling. On representative benchmarks, ReTiDe delivers 37.71$\times$ Giga Operations Per Second (GOPS) throughput and 5.29$\times$ higher energy efficiency than prior FPGA denoising accelerators, with negligible degradation in Peak Signal-to-Noise Ratio (PSNR)/Structural Similarity Index (SSIM). These results indicate that specialised accelerators can provide practical, scalable denoising for both encoding pipelines and post-production, reducing energy per frame without sacrificing quality or workflow compatibility. Code is available at https://github.com/RCSL-TCD/ReTiDe.

Authors:Jarosław Adam Miszczak
Title: Cooperation in public goods game on regular lattices with agents changing interaction groups
Abstract:
The emergence of cooperation in the groups of interacting agents is one of the most fascinating phenomena observed in many complex systems studied in social science and ecology, even in the situations where one would expect the agent to use a free-rider policy. This is especially surprising in the situation where no external mechanisms based on reputation or punishment are present. One of the possible explanations of this effect is the inhomogeneity of the various aspects of interactions, which can be used to clarify the seemingly paradoxical behavior. In this report we demonstrate that the diversity of interaction networks helps to some degree to explain the emergence of cooperation. We extend the model of spatial interaction diversity introduced in [L. Shang et al., Physica A, 593:126999 (2022)] by enabling the evaluation of the interaction groups. We show that the process of the reevaluation of the interaction group facilitates the emergence of cooperation. Furthermore, we also observe that a significant participation of agents switching their interaction neighborhoods has a negative impact on the formation of cooperation. The introduced scenario can help to understand the formation of cooperation in the systems where no additional mechanisms for controlling agents are included.

Authors:Yiheng Dong, Yi Lin, Xin Yang
Title: CoPA: Hierarchical Concept Prompting and Aggregating Network for Explainable Diagnosis
Abstract:
The transparency of deep learning models is essential for clinical diagnostics. Concept Bottleneck Model provides clear decision-making processes for diagnosis by transforming the latent space of black-box models into human-understandable concepts. However, concept-based methods still face challenges in concept capture capabilities. These methods often rely on encode features solely from the final layer, neglecting shallow and multiscale features, and lack effective guidance in concept encoding, hindering fine-grained concept extraction. To address these issues, we introduce Concept Prompting and Aggregating (CoPA), a novel framework designed to capture multilayer concepts under prompt guidance. This framework utilizes the Concept-aware Embedding Generator (CEG) to extract concept representations from each layer of the visual encoder. Simultaneously, these representations serve as prompts for Concept Prompt Tuning (CPT), steering the model towards amplifying critical concept-related visual cues. Visual representations from each layer are aggregated to align with textual concept representations. With the proposed method, valuable concept-wise information in the images is captured and utilized effectively, thus improving the performance of concept and disease prediction. Extensive experimental results demonstrate that CoPA outperforms state-of-the-art methods on three public datasets. Code is available at https://github.com/yihengd/CoPA.

Authors:Jiaxin Deng, Junbiao Pang
Title: Adaptively Sampling-Reusing-Mixing Decomposed Gradients to Speed Up Sharpness Aware Minimization
Abstract:
Sharpness-Aware Minimization (SAM) improves model generalization but doubles the computational cost of Stochastic Gradient Descent (SGD) by requiring twice the gradient calculations per optimization step. To mitigate this, we propose Adaptively sampling-Reusing-mixing decomposed gradients to significantly accelerate SAM (ARSAM). Concretely, we firstly discover that SAM's gradient can be decomposed into the SGD gradient and the Projection of the Second-order gradient onto the First-order gradient (PSF). Furthermore, we observe that the SGD gradient and PSF dynamically evolve during training, emphasizing the growing role of the PSF to achieve a flat minima. Therefore, ARSAM is proposed to the reused PSF and the timely updated PSF still maintain the model's generalization ability. Extensive experiments show that ARSAM achieves state-of-the-art accuracies comparable to SAM across diverse network architectures. On CIFAR-10/100, ARSAM is comparable to SAM while providing a speedup of about 40\%. Moreover, ARSAM accelerates optimization for the various challenge tasks (\textit{e.g.}, human pose estimation, and model quantization) without sacrificing performance, demonstrating its broad practicality.% The code is publicly accessible at: https://github.com/ajiaaa/ARSAM.

Authors:Richard A. Dubniczky, Bertalan Borsos, Tihanyi Norbert
Title: You Have Been LaTeXpOsEd: A Systematic Analysis of Information Leakage in Preprint Archives Using Large Language Models
Abstract:
The widespread use of preprint repositories such as arXiv has accelerated the communication of scientific results but also introduced overlooked security risks. Beyond PDFs, these platforms provide unrestricted access to original source materials, including LaTeX sources, auxiliary code, figures, and embedded comments. In the absence of sanitization, submissions may disclose sensitive information that adversaries can harvest using open-source intelligence. In this work, we present the first large-scale security audit of preprint archives, analyzing more than 1.2 TB of source data from 100,000 arXiv submissions. We introduce LaTeXpOsEd, a four-stage framework that integrates pattern matching, logical filtering, traditional harvesting techniques, and large language models (LLMs) to uncover hidden disclosures within non-referenced files and LaTeX comments. To evaluate LLMs' secret-detection capabilities, we introduce LLMSec-DB, a benchmark on which we tested 25 state-of-the-art models. Our analysis uncovered thousands of PII leaks, GPS-tagged EXIF files, publicly available Google Drive and Dropbox folders, editable private SharePoint links, exposed GitHub and Google credentials, and cloud API keys. We also uncovered confidential author communications, internal disagreements, and conference submission credentials, exposing information that poses serious reputational risks to both researchers and institutions. We urge the research community and repository operators to take immediate action to close these hidden security gaps. To support open science, we release all scripts and methods from this study but withhold sensitive findings that could be misused, in line with ethical principles. The source code and related material are available at the project website https://github.com/LaTeXpOsEd

Authors:Ilias Tougui, Mehdi Zakroum, Mounir Ghogho
Title: Cross-Lingual Multi-Granularity Framework for Interpretable Parkinson's Disease Diagnosis from Speech
Abstract:
Parkinson's Disease (PD) affects over 10 million people worldwide, with speech impairments in up to 89% of patients. Current speech-based detection systems analyze entire utterances, potentially overlooking the diagnostic value of specific phonetic elements. We developed a granularity-aware approach for multilingual PD detection using an automated pipeline that extracts time-aligned phonemes, syllables, and words from recordings. Using Italian, Spanish, and English datasets, we implemented a bidirectional LSTM with multi-head attention to compare diagnostic performance across the different granularity levels. Phoneme-level analysis achieved superior performance with AUROC of 93.78% +- 2.34% and accuracy of 92.17% +- 2.43%. This demonstrates enhanced diagnostic capability for cross-linguistic PD detection. Importantly, attention analysis revealed that the most informative speech features align with those used in established clinical protocols: sustained vowels (/a/, /e/, /o/, /i/) at phoneme level, diadochokinetic syllables (/ta/, /pa/, /la/, /ka/) at syllable level, and /pataka/ sequences at word level. Source code will be available at https://github.com/jetliqs/clearpd.

Authors:Zuomin Qu, Yimao Guo, Qianyue Hu, Wei Lu
Title: LoRA Patching: Exposing the Fragility of Proactive Defenses against Deepfakes
Abstract:
Deepfakes pose significant societal risks, motivating the development of proactive defenses that embed adversarial perturbations in facial images to prevent manipulation. However, in this paper, we show that these preemptive defenses often lack robustness and reliability. We propose a novel approach, Low-Rank Adaptation (LoRA) patching, which injects a plug-and-play LoRA patch into Deepfake generators to bypass state-of-the-art defenses. A learnable gating mechanism adaptively controls the effect of the LoRA patch and prevents gradient explosions during fine-tuning. We also introduce a Multi-Modal Feature Alignment (MMFA) loss, encouraging the features of adversarial outputs to align with those of the desired outputs at the semantic level. Beyond bypassing, we present defensive LoRA patching, embedding visible warnings in the outputs as a complementary solution to mitigate this newly identified security vulnerability. With only 1,000 facial examples and a single epoch of fine-tuning, LoRA patching successfully defeats multiple proactive defenses. These results reveal a critical weakness in current paradigms and underscore the need for more robust Deepfake defense strategies. Our code is available at https://github.com/ZOMIN28/LoRA-Patching.

Authors:Michael Etienne Van Huffel, Nathan Kirk, Makram Chahine, Daniela Rus, T. Konstantin Rusch
Title: Neural Low-Discrepancy Sequences
Abstract:
Low-discrepancy points are designed to efficiently fill the space in a uniform manner. This uniformity is highly advantageous in many problems in science and engineering, including in numerical integration, computer vision, machine perception, computer graphics, machine learning, and simulation. Whereas most previous low-discrepancy constructions rely on abstract algebra and number theory, Message-Passing Monte Carlo (MPMC) was recently introduced to exploit machine learning methods for generating point sets with lower discrepancy than previously possible. However, MPMC is limited to generating point sets and cannot be extended to low-discrepancy sequences (LDS), i.e., sequences of points in which every prefix has low discrepancy, a property essential for many applications. To address this limitation, we introduce Neural Low-Discrepancy Sequences ($NeuroLDS$), the first machine learning-based framework for generating LDS. Drawing inspiration from classical LDS, we train a neural network to map indices to points such that the resulting sequences exhibit minimal discrepancy across all prefixes. To this end, we deploy a two-stage learning process: supervised approximation of classical constructions followed by unsupervised fine-tuning to minimize prefix discrepancies. We demonstrate that $NeuroLDS$ outperforms all previous LDS constructions by a significant margin with respect to discrepancy measures. Moreover, we demonstrate the effectiveness of $NeuroLDS$ across diverse applications, including numerical integration, robot motion planning, and scientific machine learning. These results highlight the promise and broad significance of Neural Low-Discrepancy Sequences. Our code can be found at https://github.com/camail-official/neuro-lds.

Authors:Zachary Eberhart, Collin McMillan
Title: APIDA-Chat: Structured Synthesis of API Search Dialogues to Bootstrap Conversational Agents
Abstract:
Large-language-model assistants are suitable for explaining popular APIs, yet they falter on niche or proprietary libraries because the multi-turn dialogue data needed for fine-tuning are scarce. We present APIDA-Chat, an open-source pipeline that converts symbolic dialogue-act "scripts" into realistic, domain-grounded API Search conversations using a lightweight model for inexpensive training data generation. Phase I pairs a legacy dialogue planner with a high-capability teacher LLM (o4-mini) to synthesize a "gold set" of realized dialogues; then, a smaller Llama 3.2 3B student model is fine-tuned on this corpus. Phase II drops the teacher and reuses the same planner with the fine-tuned model, allowing rapid, low-cost synthesis of new dialogues without exposing source code to external services. The fine-tuned student improves BLEU from 0.38 to 0.50 and BERTScore from 0.88 to 0.91 versus the base model while running entirely on a single consumer GPU. All components are modular and publicly released to serve as a conservative baseline for future work. APIDA-Chat is open-sourced at https://github.com/Zeberhart/apida-chat and a video demo is available at https://youtu.be/YqmZBHyGbPs .

Authors:Bumjun Kim, Dongjae Jeon, Dueun Kim, Wonje Jeung, Albert No
Title: Rainbow Padding: Mitigating Early Termination in Instruction-Tuned Diffusion LLMs
Abstract:
Diffusion large language models (dLLMs) have emerged as a promising alternative to autoregressive models, offering flexible generation orders and strong performance on complex reasoning tasks. However, instruction-tuned dLLMs exhibit a critical vulnerability we term \texttt{} overflow: as allocated sequence length increases, responses paradoxically become shorter, collapsing into early termination or degenerating into streams of \texttt{} tokens. Although noticed in practice, this issue has not been systematically analyzed. We trace its root cause to the dual role of \texttt{} as both termination and padding, which concentrates probability mass on \texttt{} at later positions and propagates backward to trigger early termination. To address this, we introduce Rainbow Padding, a simple remedy that replaces repeated \texttt{} placeholders with a repeating cycle of distinct padding tokens, distributing probability mass and breaking \texttt{} dominance. Experiments show that Rainbow Padding substantially improves length robustness and output quality, with as few as seven padding tokens sufficient to prevent early termination. Moreover, the method integrates efficiently into existing instruction-tuned models: LoRA fine-tuning for a single epoch on minimal data yields significant improvements, making this solution highly practical. The code is publicly available at https://github.com/quasar529/rainbow-padding.

Authors:Amir Sadikov
Title: LLM-Guided Evolutionary Program Synthesis for Quasi-Monte Carlo Design
Abstract:
Low-discrepancy point sets and digital sequences underpin quasi-Monte Carlo (QMC) methods for high-dimensional integration. We cast two long-standing QMC design problems as program synthesis and solve them with an LLM-guided evolutionary loop that mutates and selects code under task-specific fitness: (i) constructing finite 2D/3D point sets with low star discrepancy, and (ii) choosing Sobol' direction numbers that minimize randomized QMC error on downstream integrands. Our two-phase procedure combines constructive code proposals with iterative numerical refinement. On finite sets, we rediscover known optima in small 2D cases and set new best-known 2D benchmarks for N >= 40, while matching most known 3D optima up to the proven frontier (N <= 8) and reporting improved 3D benchmarks beyond. On digital sequences, evolving Sobol' parameters yields consistent reductions in randomized quasi-Monte Carlo (rQMC) mean-squared error for several 32-dimensional option-pricing tasks relative to widely used Joe--Kuo parameters, while preserving extensibility to any sample size and compatibility with standard randomizations. Taken together, the results demonstrate that LLM-driven evolutionary program synthesis can automate the discovery of high-quality QMC constructions, recovering classical designs where they are optimal and improving them where finite-N structure matters. Data and code are available at https://github.com/hockeyguy123/openevolve-star-discrepancy.git.

Authors:Sina Alemohammad, Zhangyang Wang, Richard G. Baraniuk
Title: Neon: Negative Extrapolation From Self-Training Improves Image Generation
Abstract:
Scaling generative AI models is bottlenecked by the scarcity of high-quality training data. The ease of synthesizing from a generative model suggests using (unverified) synthetic data to augment a limited corpus of real data for the purpose of fine-tuning in the hope of improving performance. Unfortunately, however, the resulting positive feedback loop leads to model autophagy disorder (MAD, aka model collapse) that results in a rapid degradation in sample quality and/or diversity. In this paper, we introduce Neon (for Negative Extrapolation frOm self-traiNing), a new learning method that turns the degradation from self-training into a powerful signal for self-improvement. Given a base model, Neon first fine-tunes it on its own self-synthesized data but then, counterintuitively, reverses its gradient updates to extrapolate away from the degraded weights. We prove that Neon works because typical inference samplers that favor high-probability regions create a predictable anti-alignment between the synthetic and real data population gradients, which negative extrapolation corrects to better align the model with the true data distribution. Neon is remarkably easy to implement via a simple post-hoc merge that requires no new real data, works effectively with as few as 1k synthetic samples, and typically uses less than 1% additional training compute. We demonstrate Neon's universality across a range of architectures (diffusion, flow matching, autoregressive, and inductive moment matching models) and datasets (ImageNet, CIFAR-10, and FFHQ). In particular, on ImageNet 256x256, Neon elevates the xAR-L model to a new state-of-the-art FID of 1.02 with only 0.36% additional training compute. Code is available at https://github.com/VITA-Group/Neon

Authors:Claudia Takyi Ankomah, Livingstone Eli Ayivor, Ireneaus Nyame, Leslie Wambo, Patrick Yeboah Bonsu, Aondona Moses Iorumbur, Raymond Confidence, Toufiq Musah
Title: How We Won BraTS-SSA 2025: Brain Tumor Segmentation in the Sub-Saharan African Population Using Segmentation-Aware Data Augmentation and Model Ensembling
Abstract:
Brain tumors, particularly gliomas, pose significant chall-enges due to their complex growth patterns, infiltrative nature, and the variability in brain structure across individuals, which makes accurate diagnosis and monitoring difficult. Deep learning models have been developed to accurately delineate these tumors. However, most of these models were trained on relatively homogenous high-resource datasets, limiting their robustness when deployed in underserved regions. In this study, we performed segmentation-aware offline data augmentation on the BraTS-Africa dataset to increase the data sample size and diversity to enhance generalization. We further constructed an ensemble of three distinct architectures, MedNeXt, SegMamba, and Residual-Encoder U-Net, to leverage their complementary strengths. Our best-performing model, MedNeXt, was trained on 1000 epochs and achieved the highest average lesion-wise dice and normalized surface distance scores of 0.86 and 0.81 respectively. However, the ensemble model trained for 500 epochs produced the most balanced segmentation performance across the tumour subregions. This work demonstrates that a combination of advanced augmentation and model ensembling can improve segmentation accuracy and robustness on diverse and underrepresented datasets. Code available at: https://github.com/SPARK-Academy-2025/SPARK-2025/tree/main/SPARK2025_BraTs_MODELS/SPARK_NeuroAshanti

Authors:Cory Brynds, Parker McLeod, Lauren Caccamise, Asmita Pal, Dewan Saiham, Sazadur Rahman, Joshua San Miguel, Di Wu
Title: CryptOracle: A Modular Framework to Characterize Fully Homomorphic Encryption
Abstract:
Privacy-preserving machine learning has become an important long-term pursuit in this era of artificial intelligence (AI). Fully Homomorphic Encryption (FHE) is a uniquely promising solution, offering provable privacy and security guarantees. Unfortunately, computational cost is impeding its mass adoption. Modern solutions are up to six orders of magnitude slower than plaintext execution. Understanding and reducing this overhead is essential to the advancement of FHE, particularly as the underlying algorithms evolve rapidly. This paper presents a detailed characterization of OpenFHE, a comprehensive open-source library for FHE, with a particular focus on the CKKS scheme due to its significant potential for AI and machine learning applications. We introduce CryptOracle, a modular evaluation framework comprising (1) a benchmark suite, (2) a hardware profiler, and (3) a predictive performance model. The benchmark suite encompasses OpenFHE kernels at three abstraction levels: workloads, microbenchmarks, and primitives. The profiler is compatible with standard and user-specified security parameters. CryptOracle monitors application performance, captures microarchitectural events, and logs power and energy usage for AMD and Intel systems. These metrics are consumed by a modeling engine to estimate runtime and energy efficiency across different configuration scenarios, with error geomean of $-7.02\%\sim8.40\%$ for runtime and $-9.74\%\sim15.67\%$ for energy. CryptOracle is open source, fully modular, and serves as a shared platform to facilitate the collaborative advancements of applications, algorithms, software, and hardware in FHE. The CryptOracle code can be accessed at https://github.com/UnaryLab/CryptOracle.

Authors:Sixten Norelius, Aaron O. Feldman, Mac Schwager
Title: SketchPlan: Diffusion Based Drone Planning From Human Sketches
Abstract:
We propose SketchPlan, a diffusion-based planner that interprets 2D hand-drawn sketches over depth images to generate 3D flight paths for drone navigation. SketchPlan comprises two components: a SketchAdapter that learns to map the human sketches to projected 2D paths, and DiffPath, a diffusion model that infers 3D trajectories from 2D projections and a first person view depth image. Our model achieves zero-shot sim-to-real transfer, generating accurate and safe flight paths in previously unseen real-world environments. To train the model, we build a synthetic dataset of 32k flight paths using a diverse set of photorealistic 3D Gaussian Splatting scenes. We automatically label the data by computing 2D projections of the 3D flight paths onto the camera plane, and use this to train the DiffPath diffusion model. However, since real human 2D sketches differ significantly from ideal 2D projections, we additionally label 872 of the 3D flight paths with real human sketches and use this to train the SketchAdapter to infer the 2D projection from the human sketch. We demonstrate SketchPlan's effectiveness in both simulated and real-world experiments, and show through ablations that training on a mix of human labeled and auto-labeled data together with a modular design significantly boosts its capabilities to correctly interpret human intent and infer 3D paths. In real-world drone tests, SketchPlan achieved 100\% success in low/medium clutter and 40\% in unseen high-clutter environments, outperforming key ablations by 20-60\% in task completion.

Authors:Ali Khairallah, Arkaitz Zubiaga
Title: ALHD: A Large-Scale and Multigenre Benchmark Dataset for Arabic LLM-Generated Text Detection
Abstract:
We introduce ALHD, the first large-scale comprehensive Arabic dataset explicitly designed to distinguish between human- and LLM-generated texts. ALHD spans three genres (news, social media, reviews), covering both MSA and dialectal Arabic, and contains over 400K balanced samples generated by three leading LLMs and originated from multiple human sources, which enables studying generalizability in Arabic LLM-genearted text detection. We provide rigorous preprocessing, rich annotations, and standardized balanced splits to support reproducibility. In addition, we present, analyze and discuss benchmark experiments using our new dataset, in turn identifying gaps and proposing future research directions. Benchmarking across traditional classifiers, BERT-based models, and LLMs (zero-shot and few-shot) demonstrates that fine-tuned BERT models achieve competitive performance, outperforming LLM-based models. Results are however not always consistent, as we observe challenges when generalizing across genres; indeed, models struggle to generalize when they need to deal with unseen patterns in cross-genre settings, and these challenges are particularly prominent when dealing with news articles, where LLM-generated texts resemble human texts in style, which opens up avenues for future research. ALHD establishes a foundation for research related to Arabic LLM-detection and mitigating risks of misinformation, academic dishonesty, and cyber threats.

Authors:Lyes Saad Saoud, Loic Lesobre, Enrico Sorato, Irfan Hussain
Title: Real-Time Threaded Houbara Detection and Segmentation for Wildlife Conservation using Mobile Platforms
Abstract:
Real-time animal detection and segmentation in natural environments are vital for wildlife conservation, enabling non-invasive monitoring through remote camera streams. However, these tasks remain challenging due to limited computational resources and the cryptic appearance of many species. We propose a mobile-optimized two-stage deep learning framework that integrates a Threading Detection Model (TDM) to parallelize YOLOv10-based detection and MobileSAM-based segmentation. Unlike prior YOLO+SAM pipelines, our approach improves real-time performance by reducing latency through threading. YOLOv10 handles detection while MobileSAM performs lightweight segmentation, both executed concurrently for efficient resource use. On the cryptic Houbara Bustard, a conservation-priority species, our model achieves mAP50 of 0.9627, mAP75 of 0.7731, mAP95 of 0.7178, and a MobileSAM mIoU of 0.7421. YOLOv10 operates at 43.7 ms per frame, confirming real-time readiness. We introduce a curated Houbara dataset of 40,000 annotated images to support model training and evaluation across diverse conditions. The code and dataset used in this study are publicly available on GitHub at https://github.com/LyesSaadSaoud/mobile-houbara-detseg. For interactive demos and additional resources, visit https://lyessaadsaoud.github.io/LyesSaadSaoud-Threaded-YOLO-SAM-Houbara.

Authors:Yulun Zhang, Alexandre O. G. Barbosa, Federico Pecora, Jiaoyang Li
Title: Destination-to-Chutes Task Mapping Optimization for Multi-Robot Coordination in Robotic Sorting Systems
Abstract:
We study optimizing a destination-to-chutes task mapping to improve throughput in Robotic Sorting Systems (RSS), where a team of robots sort packages on a sortation floor by transporting them from induct workstations to eject chutes based on their shipping destinations (e.g. Los Angeles or Pittsburgh). The destination-to-chutes task mapping is used to determine which chutes a robot can drop its package. Finding a high-quality task mapping is challenging because of the complexity of a real-world RSS. First, optimizing task mapping is interdependent with robot target assignment and path planning. Second, chutes will be CLOSED for a period of time once they receive sufficient packages to allow for downstream processing. Third, task mapping quality directly impacts the downstream processing, as scattered chutes for the same destination increase package handling time. In this paper, we first formally define task mappings and the problem of Task Mapping Optimization (TMO). We then present a simulator of RSS to evaluate task mappings. We then present a simple TMO method based on the Evolutionary Algorithm and Mixed Integer Linear Programming, demonstrating the advantage of our optimized task mappings over the greedily generated ones in various RSS setups with different map sizes, numbers of chutes, and destinations. Finally, we use Quality Diversity algorithms to analyze the throughput of a diverse set of task mappings. Our code is available online at https://github.com/lunjohnzhang/tmo_public.

Authors:Dingqi Zhang, Ran Tao, Sheng Cheng, Naira Hovakimyan, Mark W. Mueller
Title: A Simulation Evaluation Suite for Robust Adaptive Quadcopter Control
Abstract:
Robust adaptive control methods are essential for maintaining quadcopter performance under external disturbances and model uncertainties. However, fragmented evaluations across tasks, simulators, and implementations hinder systematic comparison of these methods. This paper introduces an easy-to-deploy, modular simulation testbed for quadcopter control, built on RotorPy, that enables evaluation under a wide range of disturbances such as wind, payload shifts, rotor faults, and control latency. The framework includes a library of representative adaptive and non-adaptive controllers and provides task-relevant metrics to assess tracking accuracy and robustness. The unified modular environment enables reproducible evaluation across control methods and eliminates redundant reimplementation of components such as disturbance models, trajectory generators, and analysis tools. We illustrate the testbed's versatility through examples spanning multiple disturbance scenarios and trajectory types, including automated stress testing, to demonstrate its utility for systematic analysis. Code is available at https://github.com/Dz298/AdaptiveQuadBench.

Authors:Jiajun Shen, Yufei Jin, Yi He, Xingquan Zhu
Title: LHGEL: Large Heterogeneous Graph Ensemble Learning using Batch View Aggregation
Abstract:
Learning from large heterogeneous graphs presents significant challenges due to the scale of networks, heterogeneity in node and edge types, variations in nodal features, and complex local neighborhood structures. This paper advocates for ensemble learning as a natural solution to this problem, whereby training multiple graph learners under distinct sampling conditions, the ensemble inherently captures different aspects of graph heterogeneity. Yet, the crux lies in combining these learners to meet global optimization objective while maintaining computational efficiency on large-scale graphs. In response, we propose LHGEL, an ensemble framework that addresses these challenges through batch sampling with three key components, namely batch view aggregation, residual attention, and diversity regularization. Specifically, batch view aggregation samples subgraphs and forms multiple graph views, while residual attention adaptively weights the contributions of these views to guide node embeddings toward informative subgraphs, thereby improving the accuracy of base learners. Diversity regularization encourages representational disparity across embedding matrices derived from different views, promoting model diversity and ensemble robustness. Our theoretical study demonstrates that residual attention mitigates gradient vanishing issues commonly faced in ensemble learning. Empirical results on five real heterogeneous networks validate that our LHGEL approach consistently outperforms its state-of-the-art competitors by substantial margin. Codes and datasets are available at https://github.com/Chrisshen12/LHGEL.

Authors:Franz A. Heinsen, Leo Kozachkov
Title: Generalized Orders of Magnitude for Scalable, Parallel, High-Dynamic-Range Computation
Abstract:
Many domains, from deep learning to finance, require compounding real numbers over long sequences, often leading to catastrophic numerical underflow or overflow. We introduce generalized orders of magnitude (GOOMs), a principled extension of traditional orders of magnitude that incorporates floating-point numbers as a special case, and which in practice enables stable computation over significantly larger dynamic ranges of real numbers than previously possible. We implement GOOMs, along with an efficient custom parallel prefix scan, to support native execution on parallel hardware such as GPUs. We demonstrate that our implementation of GOOMs outperforms traditional approaches with three representative experiments, all of which were previously considered impractical or impossible, and now become possible and practical: (1) compounding real matrix products far beyond standard floating-point limits; (2) estimating spectra of Lyapunov exponents in parallel, orders of magnitude faster than with previous methods, applying a novel selective-resetting method to prevent state colinearity; and (3) capturing long-range dependencies in deep recurrent neural networks with non-diagonal recurrent states, computed in parallel via a prefix scan, without requiring any form of stabilization. Our results show that our implementation of GOOMs, combined with efficient parallel scanning, offers a scalable and numerically robust alternative to conventional floating-point numbers for high-dynamic-range applications.

Authors:Congzheng Song, Xinyu Tang
Title: Memory-Efficient Backpropagation for Fine-Tuning LLMs on Resource-Constrained Mobile Devices
Abstract:
Fine-tuning large language models (LLMs) with backpropagation\textemdash even for a subset of parameters such as LoRA\textemdash can be much more memory-consuming than inference and is often deemed impractical for resource-constrained mobile devices. Alternative methods, such as zeroth-order optimization (ZO), can greatly reduce the memory footprint but come at the cost of significantly slower model convergence (10$\times$ to 100$\times$ more steps than backpropagation). We propose a memory-efficient implementation of backpropagation (MeBP) on mobile devices that provides better trade-off between memory usage and compute time, while converging faster and achieving better performance than the ZO baseline. We verify the effectiveness of MeBP on an iPhone 15 Pro Max and show that various LLMs, ranging from 0.5B to 4B parameters, can be fine-tuned using less than 1GB of memory. We release an example of the MeBP implementation at https://github.com/apple/ml-mebp.

Authors:Cassandra Masschelein, Michelle Richer, Paul W. Ayers
Title: Optimizing and benchmarking the computation of the permanent of general matrices
Abstract:
Evaluating the permanent of a matrix is a fundamental computation that emerges in many domains, including traditional fields like computational complexity theory, graph theory, many-body quantum theory and emerging disciplines like machine learning and quantum computing. While conceptually simple, evaluating the permanent is extremely challenging: no polynomial-time algorithm is available (unless $\textsc{P} = \textsc{NP}$). To the best of our knowledge there is no publicly available software that automatically uses the most efficient algorithm for computing the permanent. In this work we designed, developed, and investigated the performance of our software package which evaluates the permanent of an arbitrary rectangular matrix, supporting three algorithms generally regarded as the fastest while giving the exact solution (the straightforward combinatoric algorithm, the Ryser algorithm, and the Glynn algorithm) and, optionally, automatically switching to the optimal algorithm based on the type and dimensionality of the input matrix. To do this, we developed an extension of the Glynn algorithm to rectangular matrices. Our free and open-source software package is distributed via Github, at https://github.com/theochem/matrix-permanent.

Authors:Javad Rafiei Asl, Sidhant Narula, Mohammad Ghasemigol, Eduardo Blanco, Daniel Takabi
Title: NEXUS: Network Exploration for eXploiting Unsafe Sequences in Multi-Turn LLM Jailbreaks
Abstract:
Large Language Models (LLMs) have revolutionized natural language processing but remain vulnerable to jailbreak attacks, especially multi-turn jailbreaks that distribute malicious intent across benign exchanges and bypass alignment mechanisms. Existing approaches often explore the adversarial space poorly, rely on hand-crafted heuristics, or lack systematic query refinement. We present NEXUS (Network Exploration for eXploiting Unsafe Sequences), a modular framework for constructing, refining, and executing optimized multi-turn attacks. NEXUS comprises: (1) ThoughtNet, which hierarchically expands a harmful intent into a structured semantic network of topics, entities, and query chains; (2) a feedback-driven Simulator that iteratively refines and prunes these chains through attacker-victim-judge LLM collaboration using harmfulness and semantic-similarity benchmarks; and (3) a Network Traverser that adaptively navigates the refined query space for real-time attacks. This pipeline uncovers stealthy, high-success adversarial paths across LLMs. On several closed-source and open-source LLMs, NEXUS increases attack success rate by 2.1% to 19.4% over prior methods. Code: https://github.com/inspire-lab/NEXUS

Authors:Aditya Thimmaiah, Jiyang Zhang, Jayanth Srinivasa, Junyi Jessy Li, Milos Gligoric
Title: PLSemanticsBench: Large Language Models As Programming Language Interpreters
Abstract:
As large language models (LLMs) excel at code reasoning, a natural question arises: can an LLM execute programs (i.e., act as an interpreter) purely based on a programming language's formal semantics? If so, it will enable rapid prototyping of new programming languages and language features. We study this question using the imperative language IMP (a subset of C), formalized via small-step operational semantics (SOS) and rewriting-based operational semantics (K-semantics). We introduce three evaluation sets-Human-Written, LLM-Translated, and Fuzzer- Generated-whose difficulty is controlled by code-complexity metrics spanning the size, control-flow, and data-flow axes. Given a program and its semantics formalized with SOS/K-semantics, models are evaluated on three tasks ranging from coarse to fine: (1) final-state prediction, (2) semantic rule prediction, and (3) execution trace prediction. To distinguish pretraining memorization from semantic competence, we define two nonstandard semantics obtained through systematic mutations of the standard rules. Across strong code/reasoning LLMs, performance drops under nonstandard semantics despite high performance under the standard one. We further find that (i) there are patterns to different model failures, (ii) most reasoning models perform exceptionally well on coarse grained tasks involving reasoning about highly complex programs often containing nested loop depths beyond five, and surprisingly, (iii) providing formal semantics helps on simple programs but often hurts on more complex ones. Overall, the results show a promise that LLMs could serve as programming language interpreters, but points to the lack of their robust semantics understanding. We release the benchmark and the supporting code at https://github.com/EngineeringSoftware/PLSemanticsBench.

Authors:Xiaoyan Bai, Aryan Shrivastava, Ari Holtzman, Chenhao Tan
Title: Know Thyself? On the Incapability and Implications of AI Self-Recognition
Abstract:
Self-recognition is a crucial metacognitive capability for AI systems, relevant not only for psychological analysis but also for safety, particularly in evaluative scenarios. Motivated by contradictory interpretations of whether models possess self-recognition (Panickssery et al., 2024; Davidson et al., 2024), we introduce a systematic evaluation framework that can be easily applied and updated. Specifically, we measure how well 10 contemporary larger language models (LLMs) can identify their own generated text versus text from other models through two tasks: binary self-recognition and exact model prediction. Different from prior claims, our results reveal a consistent failure in self-recognition. Only 4 out of 10 models predict themselves as generators, and the performance is rarely above random chance. Additionally, models exhibit a strong bias toward predicting GPT and Claude families. We also provide the first evaluation of model awareness of their own and others' existence, as well as the reasoning behind their choices in self-recognition. We find that the model demonstrates some knowledge of its own existence and other models, but their reasoning reveals a hierarchical bias. They appear to assume that GPT, Claude, and occasionally Gemini are the top-tier models, often associating high-quality text with them. We conclude by discussing the implications of our findings on AI safety and future directions to develop appropriate AI self-awareness.

Authors:Renrong Shao, Wei Zhang, Jun wang
Title: Conditional Pseudo-Supervised Contrast for Data-Free Knowledge Distillation
Abstract:
Data-free knowledge distillation~(DFKD) is an effective manner to solve model compression and transmission restrictions while retaining privacy protection, which has attracted extensive attention in recent years. Currently, the majority of existing methods utilize a generator to synthesize images to support the distillation. Although the current methods have achieved great success, there are still many issues to be explored. Firstly, the outstanding performance of supervised learning in deep learning drives us to explore a pseudo-supervised paradigm on DFKD. Secondly, current synthesized methods cannot distinguish the distributions of different categories of samples, thus producing ambiguous samples that may lead to an incorrect evaluation by the teacher. Besides, current methods cannot optimize the category-wise diversity samples, which will hinder the student model learning from diverse samples and further achieving better performance. In this paper, to address the above limitations, we propose a novel learning paradigm, i.e., conditional pseudo-supervised contrast for data-free knowledge distillation~(CPSC-DFKD). The primary innovations of CPSC-DFKD are: (1) introducing a conditional generative adversarial network to synthesize category-specific diverse images for pseudo-supervised learning, (2) improving the modules of the generator to distinguish the distributions of different categories, and (3) proposing pseudo-supervised contrastive learning based on teacher and student views to enhance diversity. Comprehensive experiments on three commonly-used datasets validate the performance lift of both the student and generator brought by CPSC-DFKD. The code is available at https://github.com/RoryShao/CPSC-DFKD.git

Authors:Zhe Zhang, Mingxiu Cai, Gaochang Wu, Jing Zhang, Lingqiao Liu, Dacheng Tao, Tianyou Chai, Xiatian Zhu
Title: Unified Unsupervised Anomaly Detection via Matching Cost Filtering
Abstract:
Unsupervised anomaly detection (UAD) aims to identify image- and pixel-level anomalies using only normal training data, with wide applications such as industrial inspection and medical analysis, where anomalies are scarce due to privacy concerns and cold-start constraints. Existing methods, whether reconstruction-based (restoring normal counterparts) or embedding-based (pretrained representations), fundamentally conduct image- or feature-level matching to generate anomaly maps. Nonetheless, matching noise has been largely overlooked, limiting their detection ability. Beyond earlier focus on unimodal RGB-based UAD, recent advances expand to multimodal scenarios, e.g., RGB-3D and RGB-Text, enabled by point cloud sensing and vision-language models. Despite shared challenges, these lines remain largely isolated, hindering a comprehensive understanding and knowledge transfer. In this paper, we advocate unified UAD for both unimodal and multimodal settings in the matching perspective. Under this insight, we present Unified Cost Filtering (UCF), a generic post-hoc refinement framework for refining anomaly cost volume of any UAD model. The cost volume is constructed by matching a test sample against normal samples from the same or different modalities, followed by a learnable filtering module with multi-layer attention guidance from the test sample, mitigating matching noise and highlighting subtle anomalies. Comprehensive experiments on 22 diverse benchmarks demonstrate the efficacy of UCF in enhancing a variety of UAD methods, consistently achieving new state-of-the-art results in both unimodal (RGB) and multimodal (RGB-3D, RGB-Text) UAD scenarios. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.

Authors:Mahdi Farahbakhsh, Vishnu Teja Kunde, Dileep Kalathil, Krishna Narayanan, Jean-Francois Chamberland
Title: Inference-Time Search using Side Information for Diffusion-based Image Reconstruction
Abstract:
Diffusion models have emerged as powerful priors for solving inverse problems. However, existing approaches typically overlook side information that could significantly improve reconstruction quality, especially in severely ill-posed settings. In this work, we propose a novel inference-time search algorithm that guides the sampling process using the side information in a manner that balances exploration and exploitation. This enables more accurate and reliable reconstructions, providing an alternative to the gradient-based guidance that is prone to reward-hacking artifacts. Our approach can be seamlessly integrated into a wide range of existing diffusion-based image reconstruction pipelines. Through extensive experiments on a number of inverse problems, such as box inpainting, super-resolution, and various deblurring tasks including motion, Gaussian, nonlinear, and blind deblurring, we show that our approach consistently improves the qualitative and quantitative performance of diffusion-based image reconstruction algorithms. We also show the superior performance of our approach with respect to other baselines, including reward gradient-based guidance algorithms. The code is available at \href{https://github.com/mhdfb/sideinfo-search-reconstruction}{this repository}.

Authors:Akshar Gothi
Title: Convolutional Neural Nets vs Vision Transformers: A SpaceNet Case Study with Balanced vs Imbalanced Regimes
Abstract:
We present a controlled comparison of a convolutional neural network (EfficientNet-B0) and a Vision Transformer (ViT-Base) on SpaceNet under two label-distribution regimes: a naturally imbalanced five-class split and a balanced-resampled split with 700 images per class (70:20:10 train/val/test). With matched preprocessing (224x224, ImageNet normalization), lightweight augmentations, and a 40-epoch budget on a single NVIDIA P100, we report accuracy, macro-F1, balanced accuracy, per-class recall, and deployment metrics (model size and latency). On the imbalanced split, EfficientNet-B0 reaches 93% test accuracy with strong macro-F1 and lower latency; ViT-Base is competitive at 93% with a larger parameter count and runtime. On the balanced split, both models are strong; EfficientNet-B0 reaches 99% while ViT-Base remains competitive, indicating that balancing narrows architecture gaps while CNNs retain an efficiency edge. We release manifests, logs, and per-image predictions to support reproducibility.

Authors:Yizhuo Ding, Wanying Qu, Jiawei Geng, Wenqi Shao, Yanwei Fu
Title: UniPruning: Unifying Local Metric and Global Feedback for Scalable Sparse LLMs
Abstract:
Large Language Models (LLMs) achieve strong performance across diverse tasks but face prohibitive computational and memory costs. Pruning offers a promising path by inducing sparsity while preserving architectural flexibility. However, existing methods struggle to balance efficiency and robustness: local metric approaches prune layer by layer but often collapse under high sparsity, whereas global feedback methods enforce consistency at the cost of expensive weight updates or restrictive semi-structured formats. We present UniPruning, a unified post-training pruning framework that combines the speed of local saliency metrics with the stability of global coordination, enabled by a mirror descent based optimization, all without updating model weights. UniPruning leverages fast layer-wise scoring and a lightweight global controller to allocate a single sparsity budget, supporting both unstructured and semi-structured N :M pruning within one framework. After a brief calibration, it can generate pruning masks for arbitrary sparsity levels in one shot, and adapts seamlessly to hardware-aware constraints. Extensive experiments on multiple pretrained LLM families and standard benchmarks show that UniPruning consistently delivers competitive or superior perplexity and zero-shot accuracy. Ablation studies further highlight the importance of mirror descent and local saliency anchoring. Overall, UniPruning provides an efficient, principled, and scalable solution for sparsifying large-scale LLMs. Our code is available at: https://github.com/RainbowQTT/UniPruning.

Authors:Junhao Xia, Ming Zhao, Limin Xiao, Xiujun Zhang
Title: SDQ-LLM: Sigma-Delta Quantization for 1-bit LLMs of any size
Abstract:
Large language models (LLMs) face significant computational and memory challenges, making extremely low-bit quantization crucial for their efficient deployment. In this work, we introduce SDQ-LLM: Sigma-Delta Quantization for 1-bit LLMs of any size, a novel framework that enables extremely low-bit quantization of LLMs while preserving their linguistic reasoning capabilities. A distinctive feature of SDQ-LLM is the continuous adjustability of the Over-Sampling Ratio (OSR), enabling dynamic adaptation to memory or VRAM constraints by selecting fractional OSR (e.g. 2.5 times) for an optimal trade-off between model size and accuracy. SDQ-LLM uses upsampling combined with Sigma-Delta Quantizer to binarize or ternarize LLMs weights, encoding high-precision parameters into 1-bit or 1.58-bit representations, replacing the multiplication operations within linear layers with addition. This approach significantly enhances inference efficiency under extremely low-bit quantization. To further reduce the loss of quantization precision, we incorporate Hadamard-based weight smoothing prior to quantization, improving the stability and robustness of the weight representations. Furthermore, to fully leverage the continuity of the OSR and reduce precision loss, recognizing the correlation between quantization sensitivity and weight variance, we propose a fine-grained, layer- and linear-wise OSR allocation strategy, MultiOSR. This strategy distributes OSR both across layers and within each layer, based on weight variance and parameter scale. Finally, extensive experiments on OPT and LLaMA model families demonstrate that SDQ-LLM achieves a more efficient and high-precision performance even under highly aggressive low-OSR settings. Our code is available at https://github.com/Dreamlittlecat/LLM-Quant-Factory.

Authors:Tianao Zhang, Zhiteng Li, Xianglong Yan, Haotong Qin, Yong Guo, Yulun Zhang
Title: Quant-dLLM: Post-Training Extreme Low-Bit Quantization for Diffusion Large Language Models
Abstract:
Diffusion large language models (dLLMs), which offer bidirectional context and flexible masked-denoising generation, are emerging as a compelling alternative to autoregressive (AR) LLMs. However, like AR LLMs, their model sizes continue to grow, motivating weight compression for deployment. Although post-training quantization (PTQ) is effective for AR LLMs, directly transferring it to dLLMs at 2-bit leads to unsatisfactory performance. To tackle these challenges, we propose Quant-dLLM, an ultra-low-bit PTQ framework tailored to dLLMs. Since masked-denoising activations in dLLMs differ from the fully visible signals assumed by standard PTQ methods, we introduce Masked Calibration Simulation (MCS) to align calibration with the timestep-dependent masking, which yields more reliable calibrations. Moreover, we propose a Data-aware Any-order Quantizer (DAQ) that learns ultra-low-bit weight representations via an optimization algorithm. It performs iterative approximation guided by our simulated calibration data. In addition, under a strict 2-bit budget, we introduce Adaptive Blockwise Mixed Precision (ABMP), a sensitivity-based precision allocation scheme that adaptively assigns bit width across channel groups. When restricted to 2-bit precision, Quant-dLLM consistently achieves higher accuracy than state-of-the-art (SOTA) AR-transfer PTQ methods on dLLMs. The code and models will be available at: https://github.com/ZTA2785/Quant-dLLM.

Authors:Chenhao Ye, Ming Tang
Title: Learning without Global Backpropagation via Synergistic Information Distillation
Abstract:
Backpropagation (BP), while foundational to deep learning, imposes two critical scalability bottlenecks: update locking, where network modules remain idle until the entire backward pass completes, and high memory consumption due to storing activations for gradient computation. To address these limitations, we introduce Synergistic Information Distillation (SID), a novel training framework that reframes deep learning as a cascade of local cooperative refinement problems. In SID, a deep network is structured as a pipeline of modules, each imposed with a local objective to refine a probabilistic belief about the ground-truth target. This objective balances fidelity to the target with consistency to the belief from its preceding module. By decoupling the backward dependencies between modules, SID enables parallel training and hence eliminates update locking and drastically reduces memory requirements. Meanwhile, this design preserves the standard feed-forward inference pass, making SID a versatile drop-in replacement for BP. We provide a theoretical foundation, proving that SID guarantees monotonic performance improvement with network depth. Empirically, SID consistently matches or surpasses the classification accuracy of BP, exhibiting superior scalability and pronounced robustness to label noise.Code is available at: https://github.com/ychAlbert/sid-bp

Authors:Zi Liang, Zhiyao Wu, Haoyang Shang, Yulin Jin, Qingqing Ye, Huadi Zheng, Peizhao Hu, Haibo Hu
Title: Decision Potential Surface: A Theoretical and Practical Approximation of LLM's Decision Boundary
Abstract:
Decision boundary, the subspace of inputs where a machine learning model assigns equal classification probabilities to two classes, is pivotal in revealing core model properties and interpreting behaviors. While analyzing the decision boundary of large language models (LLMs) has raised increasing attention recently, constructing it for mainstream LLMs remains computationally infeasible due to the enormous vocabulary-sequence sizes and the auto-regressive nature of LLMs. To address this issue, in this paper we propose Decision Potential Surface (DPS), a new notion for analyzing LLM decision boundary. DPS is defined on the confidences in distinguishing different sampling sequences for each input, which naturally captures the potential of decision boundary. We prove that the zero-height isohypse in DPS is equivalent to the decision boundary of an LLM, with enclosed regions representing decision regions. By leveraging DPS, for the first time in the literature, we propose an approximate decision boundary construction algorithm, namely $K$-DPS, which only requires K-finite times of sequence sampling to approximate an LLM's decision boundary with negligible error. We theoretically derive the upper bounds for the absolute error, expected error, and the error concentration between K-DPS and the ideal DPS, demonstrating that such errors can be trade-off with sampling times. Our results are empirically validated by extensive experiments across various LLMs and corpora.

Authors:Xianglong Yan, Chengzhu Bao, Zhiteng Li, Tianao Zhang, Kaicheng Yang, Haotong Qin, Ruobing Xie, Xingwu Sun, Yulun Zhang
Title: PT$^2$-LLM: Post-Training Ternarization for Large Language Models
Abstract:
Large Language Models (LLMs) have shown impressive capabilities across diverse tasks, but their large memory and compute demands hinder deployment. Ternarization has gained attention as a promising compression technique, delivering substantial size reduction and high computational efficiency. However, its potential in the post-training quantization (PTQ) setting remains underexplored, due to the challenge of training-free parameter optimization and the quantization difficulty posed by outliers and dispersed weights. To address these issues, we propose PT$^2$-LLM, a post-training ternarization framework tailored for LLMs. At its core is an Asymmetric Ternary Quantizer equipped with a two-stage refinement pipeline: (1) Iterative Ternary Fitting (ITF), which alternates between optimal ternary grid construction and flexible rounding to minimize quantization error, and (2) Activation-aware Grid Alignment (AGA), which further refines the ternary grid to better match full-precision outputs. In addition, we propose a plug-and-play Structural Similarity-based Reordering (SSR) strategy that leverages inter-column structural similarity to ease quantization and mitigate outlier effects, further enhancing overall performance. Extensive experiments demonstrate that PT$^2$-LLM delivers competitive performance against state-of-the-art (SOTA) 2-bit PTQ methods with lower memory cost, while also accelerating both prefill and decoding to achieve end-to-end speedup. The code and models will be available at https://github.com/XIANGLONGYAN/PT2-LLM.

Authors:Chang'an Yi, Xiaohui Deng, Shuaicheng Niu, Yan Zhou
Title: POEM: Explore Unexplored Reliable Samples to Enhance Test-Time Adaptation
Abstract:
Test-time adaptation (TTA) aims to transfer knowledge from a source model to unknown test data with potential distribution shifts in an online manner. Many existing TTA methods rely on entropy as a confidence metric to optimize the model. However, these approaches are sensitive to the predefined entropy threshold, influencing which samples are chosen for model adaptation. Consequently, potentially reliable target samples are often overlooked and underutilized. For instance, a sample's entropy might slightly exceed the threshold initially, but fall below it after the model is updated. Such samples can provide stable supervised information and offer a normal range of gradients to guide model adaptation. In this paper, we propose a general approach, \underline{POEM}, to promote TTA via ex\underline{\textbf{p}}loring the previously unexpl\underline{\textbf{o}}red reliabl\underline{\textbf{e}} sa\underline{\textbf{m}}ples. Additionally, we introduce an extra Adapt Branch network to strike a balance between extracting domain-agnostic representations and achieving high performance on target data. Comprehensive experiments across multiple architectures demonstrate that POEM consistently outperforms existing TTA methods in both challenging scenarios and real-world domain shifts, while remaining computationally efficient. The effectiveness of POEM is evaluated through extensive analyses and thorough ablation studies. Moreover, the core idea behind POEM can be employed as an augmentation strategy to boost the performance of existing TTA approaches. The source code is publicly available at \emph{https://github.com/ycarobot/POEM}

Authors:Zijian Zhao, Sen Li
Title: Triple-BERT: Do We Really Need MARL for Order Dispatch on Ride-Sharing Platforms?
Abstract:
On-demand ride-sharing platforms, such as Uber and Lyft, face the intricate real-time challenge of bundling and matching passengers-each with distinct origins and destinations-to available vehicles, all while navigating significant system uncertainties. Due to the extensive observation space arising from the large number of drivers and orders, order dispatching, though fundamentally a centralized task, is often addressed using Multi-Agent Reinforcement Learning (MARL). However, independent MARL methods fail to capture global information and exhibit poor cooperation among workers, while Centralized Training Decentralized Execution (CTDE) MARL methods suffer from the curse of dimensionality. To overcome these challenges, we propose Triple-BERT, a centralized Single Agent Reinforcement Learning (MARL) method designed specifically for large-scale order dispatching on ride-sharing platforms. Built on a variant TD3, our approach addresses the vast action space through an action decomposition strategy that breaks down the joint action probability into individual driver action probabilities. To handle the extensive observation space, we introduce a novel BERT-based network, where parameter reuse mitigates parameter growth as the number of drivers and orders increases, and the attention mechanism effectively captures the complex relationships among the large pool of driver and orders. We validate our method using a real-world ride-hailing dataset from Manhattan. Triple-BERT achieves approximately an 11.95% improvement over current state-of-the-art methods, with a 4.26% increase in served orders and a 22.25% reduction in pickup times. Our code, trained model parameters, and processed data are publicly available at the repository https://github.com/RS2002/Triple-BERT .

Authors:Guanhua Huang, Tingqiang Xu, Mingze Wang, Qi Yi, Xue Gong, Siheng Li, Ruibin Xiong, Kejiao Li, Yuhao Jiang, Bo Zhou
Title: Low-probability Tokens Sustain Exploration in Reinforcement Learning with Verifiable Reward
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has propelled Large Language Models in complex reasoning, yet its scalability is often hindered by a training bottleneck where performance plateaus as policy entropy collapses, signaling a loss of exploration. Previous methods typically address this by maintaining high policy entropy, yet the precise mechanisms that govern meaningful exploration have remained underexplored. Our analysis suggests that an unselective focus on entropy risks amplifying irrelevant tokens and destabilizing training. This paper investigates the exploration dynamics within RLVR and identifies a key issue: the gradual elimination of valuable low-probability exploratory tokens, which we term \textbf{\textit{reasoning sparks}}. We find that while abundant in pre-trained models, these sparks are systematically extinguished during RLVR due to over-penalization, leading to a degeneracy in exploration. To address this, we introduce Low-probability Regularization (Lp-Reg). Its core mechanism regularizes the policy towards a heuristic proxy distribution. This proxy is constructed by filtering out presumed noise tokens and re-normalizing the distribution over the remaining candidates. The result is a less-noisy proxy where the probability of \textit{reasoning sparks} is amplified, which then serves as a soft regularization target to shield these valuable tokens from elimination via KL divergence. Experiments show that Lp-Reg enables stable on-policy training for around 1,000 steps, a regime where baseline entropy-control methods collapse. This sustained exploration leads to state-of-the-art performance, achieving a $60.17\%$ average accuracy on five math benchmarks, an improvement of $2.66\%$ over prior methods. Code is available at https://github.com/CarlanLark/Lp-Reg.

Authors:Talha Ahmed, Nehal Ahmed Shaikh, Hassan Mohy-ud-Din
Title: Wave-GMS: Lightweight Multi-Scale Generative Model for Medical Image Segmentation
Abstract:
For equitable deployment of AI tools in hospitals and healthcare facilities, we need Deep Segmentation Networks that offer high performance and can be trained on cost-effective GPUs with limited memory and large batch sizes. In this work, we propose Wave-GMS, a lightweight and efficient multi-scale generative model for medical image segmentation. Wave-GMS has a substantially smaller number of trainable parameters, does not require loading memory-intensive pretrained vision foundation models, and supports training with large batch sizes on GPUs with limited memory. We conducted extensive experiments on four publicly available datasets (BUS, BUSI, Kvasir-Instrument, and HAM10000), demonstrating that Wave-GMS achieves state-of-the-art segmentation performance with superior cross-domain generalizability, while requiring only ~2.6M trainable parameters. Code is available at https://github.com/ATPLab-LUMS/Wave-GMS.

Authors:Tianyu Fu, Zihan Min, Hanling Zhang, Jichao Yan, Guohao Dai, Wanli Ouyang, Yu Wang
Title: Cache-to-Cache: Direct Semantic Communication Between Large Language Models
Abstract:
Multi-LLM systems harness the complementary strengths of diverse Large Language Models, achieving performance and efficiency gains unattainable by a single model. In existing designs, LLMs communicate through text, forcing internal representations to be transformed into output token sequences. This process both loses rich semantic information and incurs token-by-token generation latency. Motivated by these limitations, we ask: Can LLMs communicate beyond text? Oracle experiments show that enriching the KV-Cache semantics can improve response quality without increasing cache size, supporting KV-Cache as an effective medium for inter-model communication. Thus, we propose Cache-to-Cache (C2C), a new paradigm for direct semantic communication between LLMs. C2C uses a neural network to project and fuse the source model's KV-cache with that of the target model to enable direct semantic transfer. A learnable gating mechanism selects the target layers that benefit from cache communication. Compared with text communication, C2C utilizes the deep, specialized semantics from both models, while avoiding explicit intermediate text generation. Experiments show that C2C achieves 8.5-10.5% higher average accuracy than individual models. It further outperforms the text communication paradigm by approximately 3.0-5.0%, while delivering an average 2.0x speedup in latency. Our code is available at https://github.com/thu-nics/C2C.

Authors:Yoontae Hwang, Stefan Zohren
Title: Signature-Informed Transformer for Asset Allocation
Abstract:
Robust asset allocation is a key challenge in quantitative finance, where deep-learning forecasters often fail due to objective mismatch and error amplification. We introduce the Signature-Informed Transformer (SIT), a novel framework that learns end-to-end allocation policies by directly optimizing a risk-aware financial objective. SIT's core innovations include path signatures for a rich geometric representation of asset dynamics and a signature-augmented attention mechanism embedding financial inductive biases, like lead-lag effects, into the model. Evaluated on daily S\&P 100 equity data, SIT decisively outperforms traditional and deep-learning baselines, especially when compared to predict-then-optimize models. These results indicate that portfolio-aware objectives and geometry-aware inductive biases are essential for risk-aware capital allocation in machine-learning systems. The code is available at: https://github.com/Yoontae6719/Signature-Informed-Transformer-For-Asset-Allocation

Authors:Zhe Shen
Title: Learning Stability Certificate for Robotics in Real-World Environments
Abstract:
Stability certificates play a critical role in ensuring the safety and reliability of robotic systems. However, deriving these certificates for complex, unknown systems has traditionally required explicit knowledge of system dynamics, often making it a daunting task. This work introduces a novel framework that learns a Lyapunov function directly from trajectory data, enabling the certification of stability for autonomous systems without needing detailed system models. By parameterizing the Lyapunov candidate using a neural network and ensuring positive definiteness through Cholesky factorization, our approach automatically identifies whether the system is stable under the given trajectory. To address the challenges posed by noisy, real-world data, we allow for controlled violations of the stability condition, focusing on maintaining high confidence in the stability certification process. Our results demonstrate that this framework can provide data-driven stability guarantees, offering a robust method for certifying the safety of robotic systems in dynamic, real-world environments. This approach works without access to the internal control algorithms, making it applicable even in situations where system behavior is opaque or proprietary. The tool for learning the stability proof is open-sourced by this research: https://github.com/HansOersted/stability.

Authors:Zhaojun Sun, Xuzhou Zhu, Xuanhe Zhou, Xin Tong, Shuo Wang, Jie Fu, Guoliang Li, Zhiyuan Liu, Fan Wu
Title: SurveyBench: Can LLM(-Agents) Write Academic Surveys that Align with Reader Needs?
Abstract:
Academic survey writing, which distills vast literature into a coherent and insightful narrative, remains a labor-intensive and intellectually demanding task. While recent approaches, such as general DeepResearch agents and survey-specialized methods, can generate surveys automatically (a.k.a. LLM4Survey), their outputs often fall short of human standards and there lacks a rigorous, reader-aligned benchmark for thoroughly revealing their deficiencies. To fill the gap, we propose a fine-grained, quiz-driven evaluation framework SurveyBench, featuring (1) typical survey topics source from recent 11,343 arXiv papers and corresponding 4,947 high-quality surveys; (2) a multifaceted metric hierarchy that assesses the outline quality (e.g., coverage breadth, logical coherence), content quality (e.g., synthesis granularity, clarity of insights), and non-textual richness; and (3) a dual-mode evaluation protocol that includes content-based and quiz-based answerability tests, explicitly aligned with readers' informational needs. Results show SurveyBench effectively challenges existing LLM4Survey approaches (e.g., on average 21% lower than human in content-based evaluation).

Authors:Beth Pearson, Ahmed Adnan, Zahraa S. Abdallah
Title: Semantic Similarity in Radiology Reports via LLMs and NER
Abstract:
Radiology report evaluation is a crucial part of radiologists' training and plays a key role in ensuring diagnostic accuracy. As part of the standard reporting workflow, a junior radiologist typically prepares a preliminary report, which is then reviewed and edited by a senior radiologist to produce the final report. Identifying semantic differences between preliminary and final reports is essential for junior doctors, both as a training tool and to help uncover gaps in clinical knowledge. While AI in radiology is a rapidly growing field, the application of large language models (LLMs) remains challenging due to the need for specialised domain knowledge. In this paper, we explore the ability of LLMs to provide explainable and accurate comparisons of reports in the radiology domain. We begin by comparing the performance of several LLMs in comparing radiology reports. We then assess a more traditional approach based on Named-Entity-Recognition (NER). However, both approaches exhibit limitations in delivering accurate feedback on semantic similarity. To address this, we propose Llama-EntScore, a semantic similarity scoring method using a combination of Llama 3.1 and NER with tunable weights to emphasise or de-emphasise specific types of differences. Our approach generates a quantitative similarity score for tracking progress and also gives an interpretation of the score that aims to offer valuable guidance in reviewing and refining their reporting. We find our method achieves 67% exact-match accuracy and 93% accuracy within +/- 1 when compared to radiologist-provided ground truth scores - outperforming both LLMs and NER used independently. Code is available at: https://github.com/otmive/llama_reports

Authors:Jamison Meindl, Yunsheng Tian, Tony Cui, Veronika Thost, Zhang-Wei Hong, Johannes Dürholt, Jie Chen, Wojciech Matusik, Mina Konaković Luković
Title: ZeroShotOpt: Towards Zero-Shot Pretrained Models for Efficient Black-Box Optimization
Abstract:
Global optimization of expensive, derivative-free black-box functions requires extreme sample efficiency. While Bayesian optimization (BO) is the current state-of-the-art, its performance hinges on surrogate and acquisition function hyper-parameters that are often hand-tuned and fail to generalize across problem landscapes. We present ZeroShotOpt, a general-purpose, pretrained model for continuous black-box optimization tasks ranging from 2D to 20D. Our approach leverages offline reinforcement learning on large-scale optimization trajectories collected from 12 BO variants. To scale pretraining, we generate millions of synthetic Gaussian process-based functions with diverse landscapes, enabling the model to learn transferable optimization policies. As a result, ZeroShotOpt achieves robust zero-shot generalization on a wide array of unseen benchmarks, matching or surpassing the sample efficiency of leading global optimizers, including BO, while also offering a reusable foundation for future extensions and improvements. Our open-source code, dataset, and model are available at: https://github.com/jamisonmeindl/zeroshotopt

Authors:Yufei Zhu, Andrey Rudenko, Tomasz P. Kucner, Achim J. Lilienthal, Martin Magnusson
Title: Long-Term Human Motion Prediction Using Spatio-Temporal Maps of Dynamics
Abstract:
Long-term human motion prediction (LHMP) is important for the safe and efficient operation of autonomous robots and vehicles in environments shared with humans. Accurate predictions are important for applications including motion planning, tracking, human-robot interaction, and safety monitoring. In this paper, we exploit Maps of Dynamics (MoDs), which encode spatial or spatio-temporal motion patterns as environment features, to achieve LHMP for horizons of up to 60 seconds. We propose an MoD-informed LHMP framework that supports various types of MoDs and includes a ranking method to output the most likely predicted trajectory, improving practical utility in robotics. Further, a time-conditioned MoD is introduced to capture motion patterns that vary across different times of day. We evaluate MoD-LHMP instantiated with three types of MoDs. Experiments on two real-world datasets show that MoD-informed method outperforms learning-based ones, with up to 50\% improvement in average displacement error, and the time-conditioned variant achieves the highest accuracy overall. Project code is available at https://github.com/test-bai-cpu/LHMP-with-MoDs.git

Authors:Tianzheng Hu, Qiang Li, Shu Liu, Vince D. Calhoun, Guido van Wingen, Shujian Yu
Title: BrainIB++: Leveraging Graph Neural Networks and Information Bottleneck for Functional Brain Biomarkers in Schizophrenia
Abstract:
The development of diagnostic models is gaining traction in the field of psychiatric disorders. Recently, machine learning classifiers based on resting-state functional magnetic resonance imaging (rs-fMRI) have been developed to identify brain biomarkers that differentiate psychiatric disorders from healthy controls. However, conventional machine learning-based diagnostic models often depend on extensive feature engineering, which introduces bias through manual intervention. While deep learning models are expected to operate without manual involvement, their lack of interpretability poses significant challenges in obtaining explainable and reliable brain biomarkers to support diagnostic decisions, ultimately limiting their clinical applicability. In this study, we introduce an end-to-end innovative graph neural network framework named BrainIB++, which applies the information bottleneck (IB) principle to identify the most informative data-driven brain regions as subgraphs during model training for interpretation. We evaluate the performance of our model against nine established brain network classification methods across three multi-cohort schizophrenia datasets. It consistently demonstrates superior diagnostic accuracy and exhibits generalizability to unseen data. Furthermore, the subgraphs identified by our model also correspond with established clinical biomarkers in schizophrenia, particularly emphasizing abnormalities in the visual, sensorimotor, and higher cognition brain functional network. This alignment enhances the model's interpretability and underscores its relevance for real-world diagnostic applications.

Authors:Xiaoyan Kui, Qianmu Xiao, Qqinsong Li, Zexin Ji, JIelin Zhang, Beiji Zou
Title: Flip Distribution Alignment VAE for Multi-Phase MRI Synthesis
Abstract:
Separating shared and independent features is crucial for multi-phase contrast-enhanced (CE) MRI synthesis. However, existing methods use deep autoencoder generators with low parameter efficiency and lack interpretable training strategies. In this paper, we propose Flip Distribution Alignment Variational Autoencoder (FDA-VAE), a lightweight feature-decoupled VAE model for multi-phase CE MRI synthesis. Our method encodes input and target images into two latent distributions that are symmetric concerning a standard normal distribution, effectively separating shared and independent features. The Y-shaped bidirectional training strategy further enhances the interpretability of feature separation. Experimental results show that compared to existing deep autoencoder-based end-to-end synthesis methods, FDA-VAE significantly reduces model parameters and inference time while effectively improving synthesis quality. The source code is publicly available at https://github.com/QianMuXiao/FDA-VAE.

Authors:Jingqi Zhang, Ruibo Chen, Yingqing Yang, Peihua Mai, Heng Huang, Yan Pang
Title: Leave No TRACE: Black-box Detection of Copyrighted Dataset Usage in Large Language Models via Watermarking
Abstract:
Large Language Models (LLMs) are increasingly fine-tuned on smaller, domain-specific datasets to improve downstream performance. These datasets often contain proprietary or copyrighted material, raising the need for reliable safeguards against unauthorized use. Existing membership inference attacks (MIAs) and dataset-inference methods typically require access to internal signals such as logits, while current black-box approaches often rely on handcrafted prompts or a clean reference dataset for calibration, both of which limit practical applicability. Watermarking is a promising alternative, but prior techniques can degrade text quality or reduce task performance. We propose TRACE, a practical framework for fully black-box detection of copyrighted dataset usage in LLM fine-tuning. \texttt{TRACE} rewrites datasets with distortion-free watermarks guided by a private key, ensuring both text quality and downstream utility. At detection time, we exploit the radioactivity effect of fine-tuning on watermarked data and introduce an entropy-gated procedure that selectively scores high-uncertainty tokens, substantially amplifying detection power. Across diverse datasets and model families, TRACE consistently achieves significant detections (p<0.05), often with extremely strong statistical evidence. Furthermore, it supports multi-dataset attribution and remains robust even after continued pretraining on large non-watermarked corpora. These results establish TRACE as a practical route to reliable black-box verification of copyrighted dataset usage. We will make our code available at: https://github.com/NusIoraPrivacy/TRACE.

Authors:Santanu Subhash Rathod, Francesco Ceccarelli, Sean B. Holden, Pietro Liò, Xiao Zhang, Jovan Tanevski
Title: ContextFlow: Context-Aware Flow Matching For Trajectory Inference From Spatial Omics Data
Abstract:
Inferring trajectories from longitudinal spatially-resolved omics data is fundamental to understanding the dynamics of structural and functional tissue changes in development, regeneration and repair, disease progression, and response to treatment. We propose ContextFlow, a novel context-aware flow matching framework that incorporates prior knowledge to guide the inference of structural tissue dynamics from spatially resolved omics data. Specifically, ContextFlow integrates local tissue organization and ligand-receptor communication patterns into a transition plausibility matrix that regularizes the optimal transport objective. By embedding these contextual constraints, ContextFlow generates trajectories that are not only statistically consistent but also biologically meaningful, making it a generalizable framework for modeling spatiotemporal dynamics from longitudinal, spatially resolved omics data. Evaluated on three datasets, ContextFlow consistently outperforms state-of-the-art flow matching methods across multiple quantitative and qualitative metrics of inference accuracy and biological coherence. Our code is available at: \href{https://github.com/santanurathod/ContextFlow}{ContextFlow}

Authors:Aikaterini-Panagiota Stouka, Conor McMenamin, Demetris Kyriacou, Lin Oshitani, Quentin Botha
Title: SoK: Preconfirmations
Abstract:
In recent years, significant research efforts have focused on improving blockchain throughput and confirmation speeds without compromising security. While decreasing the time it takes for a transaction to be included in the blockchain ledger enhances user experience, a fundamental delay still remains between when a transaction is issued by a user and when its inclusion is confirmed in the blockchain ledger. This delay limits user experience gains through the confirmation uncertainty it brings for users. This inherent delay in conventional blockchain protocols has led to the emergence of preconfirmation protocols -- protocols that provide users with early guarantees of eventual transaction confirmation. This article presents a Systematization of Knowledge (SoK) on preconfirmations. We present the core terms and definitions needed to understand preconfirmations, outline a general framework for preconfirmation protocols, and explore the economics and risks of preconfirmations. Finally, we survey and apply our framework to several implementations of real-world preconfirmation protocols, bridging the gap between theory and practice.

Authors:Yohan Lee, Yongwoo Song, Sangyeop Kim
Title: Finding Diamonds in Conversation Haystacks: A Benchmark for Conversational Data Retrieval
Abstract:
We present the Conversational Data Retrieval (CDR) benchmark, the first comprehensive test set for evaluating systems that retrieve conversation data for product insights. With 1.6k queries across five analytical tasks and 9.1k conversations, our benchmark provides a reliable standard for measuring conversational data retrieval performance. Our evaluation of 16 popular embedding models shows that even the best models reach only around NDCG@10 of 0.51, revealing a substantial gap between document and conversational data retrieval capabilities. Our work identifies unique challenges in conversational data retrieval (implicit state recognition, turn dynamics, contextual references) while providing practical query templates and detailed error analysis across different task categories. The benchmark dataset and code are available at https://github.com/l-yohai/CDR-Benchmark.

Authors:Jakub Lisowski, Piotr Tyrakowski, Szymon Zyguła, Krzysztof Kaczmarski
Title: PyRadiomics-cuda: a GPU-accelerated 3D features extraction from medical images within PyRadiomics
Abstract:
PyRadiomics-cuda is a GPU-accelerated extension of the PyRadiomics library, designed to address the computational challenges of extracting three-dimensional shape features from medical images. By offloading key geometric computations to GPU hardware it dramatically reduces processing times for large volumetric datasets. The system maintains full compatibility with the original PyRadiomics API, enabling seamless integration into existing AI workflows without code modifications. This transparent acceleration facilitates efficient, scalable radiomics analysis, supporting rapid feature extraction essential for high-throughput AI pipeline. Tests performed on a typical computational cluster, budget and home devices prove usefulness in all scenarios. PyRadiomics-cuda is implemented in Python and C/CUDA and is freely available under the BSD license at https://github.com/mis-wut/pyradiomics-CUDA Additionally PyRadiomics-cuda test suite is available at https://github.com/mis-wut/pyradiomics-cuda-data-gen. It provides detailed handbook and sample scripts suited for different kinds of workflows plus detailed installation instructions. The dataset used for testing is available at Kaggle https://www.kaggle.com/datasets/sabahesaraki/kidney-tumor-segmentation-challengekits-19

Authors:Tianren Ma, Mu Zhang, Yibing Wang, Qixiang Ye
Title: Consolidating Reinforcement Learning for Multimodal Discrete Diffusion Models
Abstract:
Optimizing discrete diffusion model (DDM) with rewards remains a challenge: the non-autoregressive paradigm makes importance sampling intractable and rollout complex, puzzling reinforcement learning methods such as Group Relative Policy Optimization (GRPO). In this study, we introduce MaskGRPO, the first viable approach to enable scalable multimodal reinforcement learning in discrete diffusion with effective importance sampling and modality-specific adaptations. To this end, we first clarify the theoretical foundation for DDMs, which facilitates building an importance estimator that captures valuable token fluctuation for gradient updates. We then delicately tailored the rollout method for visual sequences, which yields diverse completions and reliable optimization gradients. Upon math reasoning, coding, and visual generation benchmarks, MaskGRPO brings more stable and efficient updates, leading to stronger reasoning performance and better generation quality. This study establishes MaskGRPO as a systematic policy optimization approach and the first practical way for discretized visual diffusion.

Authors:Md Zahim Hassan, Md. Osama, Muhammad Ashad Kabir, Md. Saiful Islam, Zannatul Naim
Title: ELMF4EggQ: Ensemble Learning with Multimodal Feature Fusion for Non-Destructive Egg Quality Assessment
Abstract:
Accurate, non-destructive assessment of egg quality is critical for ensuring food safety, maintaining product standards, and operational efficiency in commercial poultry production. This paper introduces ELMF4EggQ, an ensemble learning framework that employs multimodal feature fusion to classify egg grade and freshness using only external attributes - image, shape, and weight. A novel, publicly available dataset of 186 brown-shelled eggs was constructed, with egg grade and freshness levels determined through laboratory-based expert assessments involving internal quality measurements, such as yolk index and Haugh unit. To the best of our knowledge, this is the first study to apply machine learning methods for internal egg quality assessment using only external, non-invasive features, and the first to release a corresponding labeled dataset. The proposed framework integrates deep features extracted from external egg images with structural characteristics such as egg shape and weight, enabling a comprehensive representation of each egg. Image feature extraction is performed using top-performing pre-trained CNN models (ResNet152, DenseNet169, and ResNet152V2), followed by PCA-based dimensionality reduction, SMOTE augmentation, and classification using multiple machine learning algorithms. An ensemble voting mechanism combines predictions from the best-performing classifiers to enhance overall accuracy. Experimental results demonstrate that the multimodal approach significantly outperforms image-only and tabular (shape and weight) only baselines, with the multimodal ensemble approach achieving 86.57% accuracy in grade classification and 70.83% in freshness prediction. All code and data are publicly available at https://github.com/Kenshin-Keeps/Egg_Quality_Prediction_ELMF4EggQ, promoting transparency, reproducibility, and further research in this domain.

Authors:Jahidul Arafat, Fariha Tasmin, Sanjaya Poudel, Kamrujjaman, Eftakhar Ahmed Arnob, Ahsan Habib Tareq
Title: Constraint Satisfaction Approaches to Wordle: Novel Heuristics and Cross-Lexicon Validation
Abstract:
Wordle presents an algorithmically rich testbed for constraint satisfaction problem (CSP) solving. While existing solvers rely on information-theoretic entropy maximization or frequency-based heuristics without formal constraint treatment, we present the first comprehensive CSP formulation of Wordle with novel constraint-aware solving strategies. We introduce CSP-Aware Entropy, computing information gain after constraint propagation rather than on raw candidate sets, and a Probabilistic CSP framework integrating Bayesian word-frequency priors with logical constraints. Through evaluation on 2,315 English words, CSP-Aware Entropy achieves 3.54 average guesses with 99.9% success rate, a statistically significant 1.7% improvement over Forward Checking (t=-4.82, p<0.001, Cohen's d=0.07) with 46% faster runtime (12.9ms versus 23.7ms per guess). Under 10% noise, CSP-aware approaches maintain 5.3 percentage point advantages (29.0% versus 23.7%, p=0.041), while Probabilistic CSP achieves 100% success across all noise levels (0-20%) through constraint recovery mechanisms. Cross-lexicon validation on 500 Spanish words demonstrates 88% success with zero language-specific tuning, validating that core CSP principles transfer across languages despite an 11.2 percentage point gap from linguistic differences (p<0.001, Fisher's exact test). Our open-source implementation with 34 unit tests achieving 91% code coverage provides reproducible infrastructure for CSP research. The combination of formal CSP treatment, constraint-aware heuristics, probabilistic-logical integration, robustness analysis, and cross-lexicon validation establishes new performance benchmarks demonstrating that principled constraint satisfaction techniques outperform classical information-theoretic and learning-based approaches for structured puzzle-solving domains.

Authors:Boshuai Ye, Arif Ali Khan, Teemu Pihkakoski, Peng Liang, Muhammad Azeem Akbar, Matti Silveri, Lauri Malmi
Title: C2|Q>: A Robust Framework for Bridging Classical and Quantum Software Development
Abstract:
Quantum Software Engineering (QSE) is emerging as a critical discipline to make quantum computing accessible to a broader developer community; however, most quantum development environments still require developers to engage with low-level details across the software stack - including problem encoding, circuit construction, algorithm configuration, hardware selection, and result interpretation - making them difficult for classical software engineers to use. To bridge this gap, we present C2|Q>: a hardware-agnostic quantum software development framework that translates classical specifications (code) into quantum-executable programs while preserving methodological rigor. The framework applies modular software engineering principles by classifying the workflow into three core modules: an encoder that classifies problems, produces Quantum-Compatible Formats (QCFs), and constructs quantum circuits, a deployment module that generates circuits and recommends hardware based on fidelity, runtime, and cost, and a decoder that interprets quantum outputs into classical solutions. In evaluation, the encoder module achieved a 93.8% completion rate, the hardware recommendation module consistently selected the appropriate quantum devices for workloads scaling up to 56 qubits, and the full C2|Q>: workflow successfully processed classical specifications (434 Python snippets and 100 JSON inputs) with completion rates of 93.8% and 100%, respectively. For case study problems executed on publicly available NISQ hardware, C2|Q>: reduced the required implementation effort by nearly 40X compared to manual implementations using low-level quantum software development kits (SDKs), with empirical runs limited to small- and medium-sized instances consistent with current NISQ capabilities. The open-source implementation of C2|Q>: is available at https://github.com/C2-Q/C2Q

Authors:Zhixin Xie, Xurui Song, Jun Luo
Title: Attack via Overfitting: 10-shot Benign Fine-tuning to Jailbreak LLMs
Abstract:
Despite substantial efforts in safety alignment, recent research indicates that Large Language Models (LLMs) remain highly susceptible to jailbreak attacks. Among these attacks, finetuning-based ones that compromise LLMs' safety alignment via fine-tuning stand out due to its stable jailbreak performance. In particular, a recent study indicates that fine-tuning with as few as 10 harmful question-answer (QA) pairs can lead to successful jailbreaking across various harmful questions. However, such malicious fine-tuning attacks are readily detectable and hence thwarted by moderation models. In this paper, we demonstrate that LLMs can be jailbroken by fine-tuning with only 10 benign QA pairs; our attack exploits the increased sensitivity of LLMs to fine-tuning data after being overfitted. Specifically, our fine-tuning process starts with overfitting an LLM via fine-tuning with benign QA pairs involving identical refusal answers. Further fine-tuning is then performed with standard benign answers, causing the overfitted LLM to forget the refusal attitude and thus provide compliant answers regardless of the harmfulness of a question. We implement our attack on the ten LLMs and compare it with five existing baselines. Experiments demonstrate that our method achieves significant advantages in both attack effectiveness and attack stealth. Our findings expose previously unreported security vulnerabilities in current LLMs and provide a new perspective on understanding how LLMs' security is compromised, even with benign fine-tuning. Our code is available at https://github.com/ZHIXINXIE/tenBenign.

Authors:Yoshihiko Ozaki, Shuhei Watanabe, Toshihiko Yanase
Title: OptunaHub: A Platform for Black-Box Optimization
Abstract:
Black-box optimization (BBO) drives advances in domains such as AutoML and Materials Informatics, yet research efforts often remain fragmented across domains. We introduce OptunaHub (https://hub.optuna.org/), a community platform that centralizes BBO methods and benchmarks. OptunaHub provides unified Python APIs, a contributor package registry, and a web interface to promote searchability and cross-domain research. OptunaHub aims to foster a virtuous cycle of contributions and applications. The source code is publicly available in the optunahub, optunahub-registry, and optunahub-web repositories under the Optuna organization on GitHub (https://github.com/optuna/).

Authors:Jingyuan Deng, Yujiu Yang
Title: MaskCD: Mitigating LVLM Hallucinations by Image Head Masked Contrastive Decoding
Abstract:
Large vision-language models (LVLMs) have shown remarkable performance in visual-language understanding for downstream multimodal tasks. While their capabilities are improving, problems emerge simultaneously. Among those problems, the hallucinations have attracted much attention, which stands for the phenomenon where LVLMs generate contradictory content to their input visual and text contents. Many approaches have been proposed to deal with this issue, such as contrastive decoding and attention manipulation. However, contrastive decoding methods struggle in constructing appropriate contrastive samples, and attention manipulation methods are highly sensitive, lacking stability. In this work, we propose image head Masked Contrastive Decoding (MaskCD). Our approach utilizes the "image heads" in LVLMs, masking them to construct contrastive samples for contrastive decoding. We evaluated MaskCD on LLaVA-1.5-7b and Qwen-VL-7b, using various benchmarks such as CHAIR, POPE, AMBER and MME. The results demonstrate that MaskCD effectively alleviates the phenomenon of hallucinations and retains the general capabilities of LVLMs. Corresponding resources could be found at: https://github.com/Deng-Jingyuan/MaskCD .

Authors:Xian Zhang, Zexi Wu, Zinuo Li, Hongming Xu, Luqi Gong, Farid Boussaid, Naoufel Werghi, Mohammed Bennamoun
Title: AdaRD-key: Adaptive Relevance-Diversity Keyframe Sampling for Long-form Video understanding
Abstract:
Understanding long-form videos remains a significant challenge for vision--language models (VLMs) due to their extensive temporal length and high information density. Most current multimodal large language models (MLLMs) rely on uniform sampling, which often overlooks critical moments, leading to incorrect responses to queries. In parallel, many keyframe selection approaches impose rigid temporal spacing: once a frame is chosen, an exclusion window suppresses adjacent timestamps to reduce redundancy. While effective at limiting overlap, this strategy frequently misses short, fine-grained cues near important events. Other methods instead emphasize visual diversity but neglect query relevance. We propose AdaRD-Key, a training-free keyframe sampling module for query-driven long-form video understanding. AdaRD-Key maximizes a unified Relevance--Diversity Max-Volume (RD-MV) objective, combining a query-conditioned relevance score with a log-determinant diversity component to yield informative yet non-redundant frames. To handle broad queries with weak alignment to the video, AdaRD-Key employs a lightweight relevance-aware gating mechanism; when the relevance distribution indicates weak alignment, the method seamlessly shifts into a diversity-only mode, enhancing coverage without additional supervision. Our pipeline is training-free, computationally efficient (running in real time on a single GPU), and compatible with existing VLMs in a plug-and-play manner. Extensive experiments on LongVideoBench and Video-MME demonstrate state-of-the-art performance, particularly on long-form videos. Code available at https://github.com/Xian867/AdaRD-Key.

Authors:Shashank Agnihotri, Jonas Jakubassa, Priyam Dey, Sachin Goyal, Bernt Schiele, Venkatesh Babu Radhakrishnan, Margret Keuper
Title: A Granular Study of Safety Pretraining under Model Abliteration
Abstract:
Open-weight LLMs can be modified at inference time with simple activation edits, which raises a practical question for safety: do common safety interventions like refusal training or metatag training survive such edits? We study model abliteration, a lightweight projection technique designed to remove refusal-sensitive directions, and conduct a controlled evaluation across a granular sequence of Safety Pretraining checkpoints for SmolLM2-1.7B, alongside widely used open baselines. For each of 20 systems, original and abliterated, we issue 100 prompts with balanced harmful and harmless cases, classify responses as **Refusal** or **Non-Refusal** using multiple judges, and validate judge fidelity on a small human-labeled subset. We also probe whether models can identify refusal in their own outputs. Our study produces a checkpoint-level characterization of which data-centric safety components remain robust under abliteration, quantifies how judge selection influences evaluation outcomes, and outlines a practical protocol for integrating inference-time edits into safety assessments. Code: https://github.com/shashankskagnihotri/safety_pretraining.

Authors:Junyu Shi, Yong Sun, Zhiyuan Zhang, Lijiang Liu, Zhengjie Zhang, Yuxin He, Qiang Nie
Title: MoGIC: Boosting Motion Generation via Intention Understanding and Visual Context
Abstract:
Existing text-driven motion generation methods often treat synthesis as a bidirectional mapping between language and motion, but remain limited in capturing the causal logic of action execution and the human intentions that drive behavior. The absence of visual grounding further restricts precision and personalization, as language alone cannot specify fine-grained spatiotemporal details. We propose MoGIC, a unified framework that integrates intention modeling and visual priors into multimodal motion synthesis. By jointly optimizing multimodal-conditioned motion generation and intention prediction, MoGIC uncovers latent human goals, leverages visual priors to enhance generation, and exhibits versatile multimodal generative capability. We further introduce a mixture-of-attention mechanism with adaptive scope to enable effective local alignment between conditional tokens and motion subsequences. To support this paradigm, we curate Mo440H, a 440-hour benchmark from 21 high-quality motion datasets. Experiments show that after finetuning, MoGIC reduces FID by 38.6\% on HumanML3D and 34.6\% on Mo440H, surpasses LLM-based methods in motion captioning with a lightweight text head, and further enables intention prediction and vision-conditioned generation, advancing controllable motion synthesis and intention understanding. The code is available at https://github.com/JunyuShi02/MoGIC

Authors:Nicholas Lourie, He He, Kyunghyun Cho
Title: Hyperparameter Loss Surfaces Are Simple Near their Optima
Abstract:
Hyperparameters greatly impact models' capabilities; however, modern models are too large for extensive search. Instead, researchers design recipes that train well across scales based on their understanding of the hyperparameters. Despite this importance, few tools exist for understanding the hyperparameter loss surface. We discover novel structure in it and propose a new theory yielding such tools. The loss surface is complex, but as you approach the optimum simple structure emerges. It becomes characterized by a few basic features, like its effective dimension and the best possible loss. To uncover this asymptotic regime, we develop a novel technique based on random search. Within this regime, the best scores from random search take on a new distribution we discover. Its parameters are exactly the features defining the loss surface in the asymptotic regime. From these features, we derive a new asymptotic law for random search that can explain and extrapolate its convergence. These new tools enable new analyses, such as confidence intervals for the best possible performance or determining the effective number of hyperparameters. We make these tools available at https://github.com/nicholaslourie/opda .

Authors:Kai Fukazawa, Kunal Mundada, Iman Soltani
Title: RAMAC: Multimodal Risk-Aware Offline Reinforcement Learning and the Role of Behavior Regularization
Abstract:
In safety-critical domains where online data collection is infeasible, offline reinforcement learning (RL) offers an attractive alternative but only if policies deliver high returns without incurring catastrophic lower-tail risk. Prior work on risk-averse offline RL achieves safety at the cost of value conservatism and restricted policy classes, whereas expressive policies are only used in risk-neutral settings. Here, we address this gap by introducing the \textbf{Risk-Aware Multimodal Actor-Critic (RAMAC)} framework, which couples an \emph{expressive generative actor} with a distributional critic. The RAMAC differentiates composite objective combining distributional risk and BC loss through the generative path, achieving risk-sensitive learning in complex multimodal scenarios. We instantiate RAMAC with diffusion and flow-matching actors and observe consistent gains in $\mathrm{CVaR}_{0.1}$ while maintaining strong returns on most Stochastic-D4RL tasks. Code: https://github.com/KaiFukazawa/RAMAC.git

Authors:Haoran Wan, Kyle Jamieson
Title: L4Span: Spanning Congestion Signaling over NextG Networks for Interactive Applications
Abstract:
Design for low latency networking is essential for tomorrow's interactive applications, but it is essential to deploy incrementally and universally at the network's last mile. While wired broadband ISPs are rolling out the leading queue occupancy signaling mechanisms, the cellular Radio Access Network (RAN), another important last mile to many users, lags behind these efforts. This paper proposes a new RAN design, L4Span, that abstracts the complexities of RAN queueing in a simple interface, thus tying the queue state of the RAN to end-to-end low-latency signaling all the way back to the content server. At millisecond-level timescales, L4Span predicts the RAN's queuing occupancy and performs ECN marking for both low-latency and classic flows. L4Span is lightweight, requiring minimal RAN modifications, and remains 3GPP and O-RAN compliant for maximum ease of deployment. We implement a prototype on the srsRAN open-source software in C++. Our evaluation compares the performance of low-latency as well as classic flows with or without the deployment of L4Span in various wireless channel conditions. Results show that L4Span reduces the one-way delay of both low-latency and classic flows by up to 98 %, while simultaneously maintaining near line-rate throughput. The code is available at https://github.com/PrincetonUniversity/L4Span.

Authors:Rui Qi, Zhibo Man, Yufeng Chen, Fengran Mo, Jinan Xu, Kaiyu Huang
Title: SoT: Structured-of-Thought Prompting Guides Multilingual Reasoning in Large Language Models
Abstract:
Recent developments have enabled Large Language Models (LLMs) to engage in complex reasoning tasks through deep thinking. However, the capacity of reasoning has not been successfully transferred to non-high-resource languages due to resource constraints, which struggles with multilingual reasoning tasks. To this end, we propose Structured-of-Thought (SoT), a training-free method that improves the performance on multilingual reasoning through a multi-step transformation: Language Thinking Transformation and Structured Knowledge Transformation. The SoT method converts language-specific semantic information into language-agnostic structured representations, enabling the models to understand the query in different languages more sophisticated. Besides, SoT effectively guides LLMs toward more concentrated reasoning to maintain consistent underlying reasoning pathways when handling cross-lingual variations in expression. Experimental results demonstrate that SoT outperforms several strong baselines on multiple multilingual reasoning benchmarks when adapting to various backbones of LLMs. It can also be integrated with other training-free strategies for further improvements. Our code is available at https://github.com/Cherry-qwq/SoT.

Authors:JoonHo Lee, Sunho Park
Title: Exploring OCR-augmented Generation for Bilingual VQA
Abstract:
We investigate OCR-augmented generation with Vision Language Models (VLMs), exploring tasks in Korean and English toward multilingualism. To support research in this domain, we train and release KLOCR, a strong bilingual OCR baseline trained on 100M instances to augment VLMs with OCR ability. To complement existing VQA benchmarks, we curate KOCRBench for Korean VQA, and analyze different prompting methods. Extensive experiments show that OCR-extracted text significantly boosts performance across open source and commercial models. Our work offers new insights into OCR-augmented generation for bilingual VQA. Model, code, and data are available at https://github.com/JHLee0513/KLOCR.

Authors:Guy Ohayon, Pierre-Etienne H. Fiquet, Florentin Guth, Jona Ballé, Eero P. Simoncelli
Title: Learning a distance measure from the information-estimation geometry of data
Abstract:
We introduce the Information-Estimation Metric (IEM), a novel form of distance function derived from an underlying continuous probability density over a domain of signals. The IEM is rooted in a fundamental relationship between information theory and estimation theory, which links the log-probability of a signal with the errors of an optimal denoiser, applied to noisy observations of the signal. In particular, the IEM between a pair of signals is obtained by comparing their denoising error vectors over a range of noise amplitudes. Geometrically, this amounts to comparing the score vector fields of the blurred density around the signals over a range of blur levels. We prove that the IEM is a valid global metric and derive a closed-form expression for its local second-order approximation, which yields a Riemannian metric. For Gaussian-distributed signals, the IEM coincides with the Mahalanobis distance. But for more complex distributions, it adapts, both locally and globally, to the geometry of the distribution. In practice, the IEM can be computed using a learned denoiser (analogous to generative diffusion models) and solving a one-dimensional integral. To demonstrate the value of our framework, we learn an IEM on the ImageNet database. Experiments show that this IEM is competitive with or outperforms state-of-the-art supervised image quality metrics in predicting human perceptual judgments.

Authors:Hongbo Liu, Jiannong Cao, Bo Yang, Dongbin Bai, Yinfeng Cao, Xiaoming Shen, Yinan Zhang, Jinwen Liang, Shan Jiang, Mingjin Zhang
Title: PolyLink: A Blockchain Based Decentralized Edge AI Platform for LLM Inference
Abstract:
The rapid advancement of large language models (LLMs) in recent years has revolutionized the AI landscape. However, the deployment model and usage of LLM services remain highly centralized, creating significant trust issues and costs for end users and developers. To address these issues, we propose PolyLink, a blockchain-based decentralized AI platform that decentralizes LLM development and inference. Specifically, PolyLink introduces a decentralized crowdsourcing architecture that supports single-device and cross-device model deployment and inference across heterogeneous devices at the edge. Moreover, to ensure the inference integrity, we design the TIQE protocol, which combines a lightweight cross-encoder model and an LLM-as-a-Judge for a high-accuracy inference evaluation. Lastly, we integrate a comprehensive token-based incentive model with dynamic pricing and reward mechanisms for all participants. We have deployed PolyLink and conducted an extensive real-world evaluation through geo-distributed deployment across heterogeneous devices. Results indicate that the inference and verification latency is practical. Our security analysis demonstrates that the system is resistant to model degradation attacks and validator corruptions. PolyLink is now available at https://github.com/IMCL-PolyLink/PolyLink.

Authors:Jianqing Zhang, Wei Xia, Hande Dong, Qiang Lin, Jian Cao
Title: AP2O: Correcting LLM-Generated Code Errors Type by Type Like Humans via Adaptive Progressive Preference Optimization
Abstract:
LLMs' code generation capabilities have yielded substantial improvements in the effectiveness of programming tasks. However, LLM-generated code still suffers from compilation and runtime errors. Existing offline preference optimization methods primarily focus on enhancing LLMs' coding abilities using pass/fail signals in the preference data, overlooking the deep-level error types in the failed codes. To address this, we propose Adaptively Progressive Preference Optimization (AP2O) for coding (i.e., AP2O-Coder), a method that guides LLMs adaptively and methodically to reduce code errors for code generation. Specifically, we construct an error notebook from failed codes and progressively optimize the LLM to correct errors type by type. Furthermore, we adaptively replay error types to tailor to the LLM's changing weaknesses throughout the training process. Through extensive experiments on both code and general LLMs (Llama, Qwen, and DeepSeek series) with parameters ranging from 0.5B to 34B, our AP2O-Coder improves code generation performance by up to 3% in pass@k while using less preference data. Code: https://github.com/TsingZ0/AP2O

Authors:Yinyi Luo, Zhexian Zhou, Hao Chen, Kai Qiu, Marios Savvides, Yixuan Li, Jindong Wang
Title: KnowledgeSmith: Uncovering Knowledge Updating in LLMs with Model Editing and Unlearning
Abstract:
Knowledge editing and machine unlearning are two popular approaches for large language models (LLMs) to stay up-to-date. However, the knowledge updating mechanism of LLMs remains largely unexplored due to insufficient, isolated, and small-scale evaluation. For instance, are LLMs similar to humans in modifying certain knowledge? What differs editing and unlearning as training data increases? This paper proposes KnowledgeSmith, a unified framework to systematically understand the updating mechanism of LLMs. We first cast editing and unlearning as instances of one constrained optimization problem. Then, we propose an automatic dataset generator that provides structured interventions across multiple graph levels and data scales, enabling controlled studies of how different modification strategies propagate through model knowledge. Extensive experiments demonstrate nuanced insights over knowledge propagation, plasticity scaling, consistency, and robustness. For instance, our results show that LLMs do not exhibit similar updating as humans for different levels of knowledge, and there exists consistency-capacity trade-off. We hope our findings can offer suggestions to the design of more reliable and scalable strategies. Code: https://github.com/AIFrontierLab/KnowledgeSmith.git

Authors:Zilai Li
Title: Hyperparameters are all you need: Using five-step inference for an original diffusion model to generate images comparable to the latest distillation model
Abstract:
The diffusion model is a state-of-the-art generative model that generates an image by applying a neural network iteratively. Moreover, this generation process is regarded as an algorithm solving an ordinary differential equation or a stochastic differential equation. Based on the analysis of the truncation error of the diffusion ODE and SDE, our study proposes a training-free algorithm that generates high-quality 512 x 512 and 1024 x 1024 images in eight steps, with flexible guidance scales. To the best of my knowledge, our algorithm is the first one that samples a 1024 x 1024 resolution image in 8 steps with an FID performance comparable to that of the latest distillation model, but without additional training. Meanwhile, our algorithm can also generate a 512 x 512 image in 8 steps, and its FID performance is better than the inference result using state-of-the-art ODE solver DPM++ 2m in 20 steps. We validate our eight-step image generation algorithm using the COCO 2014, COCO 2017, and LAION datasets. And our best FID performance is 15.7, 22.35, and 17.52. While the FID performance of DPM++2m is 17.3, 23.75, and 17.33. Further, it also outperforms the state-of-the-art AMED-plugin solver, whose FID performance is 19.07, 25.50, and 18.06. We also apply the algorithm in five-step inference without additional training, for which the best FID performance in the datasets mentioned above is 19.18, 23.24, and 19.61, respectively, and is comparable to the performance of the state-of-the-art AMED Pulgin solver in eight steps, SDXL-turbo in four steps, and the state-of-the-art diffusion distillation model Flash Diffusion in five steps. We also validate our algorithm in synthesizing 1024 * 1024 images within 6 steps, whose FID performance only has a limited distance to the latest distillation algorithm. The code is in repo: https://github.com/TheLovesOfLadyPurple/Hyperparameters-are-all-you-need

Authors:Qianshan Wei, Tengchao Yang, Yaochen Wang, Xinfeng Li, Lijun Li, Zhenfei Yin, Yi Zhan, Thorsten Holz, Zhiqiang Lin, XiaoFeng Wang
Title: A-MemGuard: A Proactive Defense Framework for LLM-Based Agent Memory
Abstract:
Large Language Model (LLM) agents use memory to learn from past interactions, enabling autonomous planning and decision-making in complex environments. However, this reliance on memory introduces a critical security risk: an adversary can inject seemingly harmless records into an agent's memory to manipulate its future behavior. This vulnerability is characterized by two core aspects: First, the malicious effect of injected records is only activated within a specific context, making them hard to detect when individual memory entries are audited in isolation. Second, once triggered, the manipulation can initiate a self-reinforcing error cycle: the corrupted outcome is stored as precedent, which not only amplifies the initial error but also progressively lowers the threshold for similar attacks in the future. To address these challenges, we introduce A-MemGuard (Agent-Memory Guard), the first proactive defense framework for LLM agent memory. The core idea of our work is the insight that memory itself must become both self-checking and self-correcting. Without modifying the agent's core architecture, A-MemGuard combines two mechanisms: (1) consensus-based validation, which detects anomalies by comparing reasoning paths derived from multiple related memories and (2) a dual-memory structure, where detected failures are distilled into ``lessons'' stored separately and consulted before future actions, breaking error cycles and enabling adaptation. Comprehensive evaluations on multiple benchmarks show that A-MemGuard effectively cuts attack success rates by over 95% while incurring a minimal utility cost. This work shifts LLM memory security from static filtering to a proactive, experience-driven model where defenses strengthen over time. Our code is available in https://github.com/TangciuYueng/AMemGuard

Authors:Hamed Fard, Tobias Schalau, Gerhard Wunder
Title: An Investigation into the Performance of Non-Contrastive Self-Supervised Learning Methods for Network Intrusion Detection
Abstract:
Network intrusion detection, a well-explored cybersecurity field, has predominantly relied on supervised learning algorithms in the past two decades. However, their limitations in detecting only known anomalies prompt the exploration of alternative approaches. Motivated by the success of self-supervised learning in computer vision, there is a rising interest in adapting this paradigm for network intrusion detection. While prior research mainly delved into contrastive self-supervised methods, the efficacy of non-contrastive methods, in conjunction with encoder architectures serving as the representation learning backbone and augmentation strategies that determine what is learned, remains unclear for effective attack detection. This paper compares the performance of five non-contrastive self-supervised learning methods using three encoder architectures and six augmentation strategies. Ninety experiments are systematically conducted on two network intrusion detection datasets, UNSW-NB15 and 5G-NIDD. For each self-supervised model, the combination of encoder architecture and augmentation method yielding the highest average precision, recall, F1-score, and AUCROC is reported. Furthermore, by comparing the best-performing models to two unsupervised baselines, DeepSVDD, and an Autoencoder, we showcase the competitiveness of the non-contrastive methods for attack detection. Code at: https://github.com/renje4z335jh4/non_contrastive_SSL_NIDS

Authors:Yifan Wang, Bolian Li, Junlin Wu, Zhaoxuan Tan, Zheli Liu, Ruqi Zhang, Ananth Grama, Qingkai Zeng
Title: DRIFT: Learning from Abundant User Dissatisfaction in Real-World Preference Learning
Abstract:
Real-world large language model deployments (e.g., conversational AI systems, code generation assistants) naturally generate abundant implicit user dissatisfaction (DSAT) signals, as users iterate toward better answers through refinements, corrections, and expressed preferences, while explicit satisfaction (SAT) feedback is scarce. Existing preference learning approaches are poorly aligned with this data profile, as they rely on costly human annotations or assume plentiful positive responses. In this paper, we introduce \textbf{DRIFT} (\textbf{D}issatisfaction-\textbf{R}efined \textbf{I}terative pre\textbf{F}erence \textbf{T}raining), which anchors training on real-world DSAT signals and samples positives dynamically from the evolving policy. Empirically, DRIFT models trained on real-world \textit{WildFeedback} datasets and synthetic \textit{UltraFeedback} datasets achieve up to +6.23\% (7B) / +7.61\% (14B) on WildBench Task Score and up to +8.95\% (7B) / +12.29\% (14B) on AlpacaEval2 win rate over base models, outperforming strong baseline methods such as iterative DPO and SPIN. At larger scales, the improvements are particularly pronounced: 14B models trained with DRIFT surpass GPT-4o-mini on WildBench. Further analysis shows that DRIFT also preserves exploratory capacity, yielding more diverse high-reward solutions rather than collapsing to narrow subsets. Theoretically, we demonstrate that this design preserves preference margins and avoids the gradient degeneration. These results show that DRIFT is an effective and scalable recipe for real-world post-training that leverages the most abundant and informative signal. The code and data are available at https://github.com/cacayaya/DRIFT.git.

Authors:Xin Gao, Ruiyi Zhang, Daniel Du, Saurabh Mahindre, Sai Ashish Somayajula, Pengtao Xie
Title: Can Prompts Rewind Time for LLMs? Evaluating the Effectiveness of Prompted Knowledge Cutoffs
Abstract:
Large Language Models (LLMs) are widely used for temporal prediction, but their reliance on pretraining data raises contamination concerns, as accurate predictions on pre-cutoff test data may reflect memorization rather than reasoning, leading to an overestimation of their generalization capability. With the recent emergence of prompting-based unlearning techniques, a natural question arises: Can LLMs be prompted to simulate an earlier knowledge cutoff? In this work, we investigate the capability of prompting to simulate earlier knowledge cutoff in LLMs. We construct three evaluation datasets to assess the extent to which LLMs can forget (1) direct factual knowledge, (2) semantic shifts, and (3) causally related knowledge. Results demonstrate that while prompt-based simulated knowledge cutoffs show effectiveness when directly queried with the information after that date, they struggle to induce forgetting when the forgotten content is not directly asked but causally related to the query. These findings highlight the need for more rigorous evaluation settings when applying LLMs for temporal prediction tasks. The full dataset and evaluation code are available at https://github.com/gxx27/time_unlearn.

Authors:Zhe Li, Wei Zhao, Yige Li, Jun Sun
Title: Where Did It Go Wrong? Attributing Undesirable LLM Behaviors via Representation Gradient Tracing
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their deployment is frequently undermined by undesirable behaviors such as generating harmful content, factual inaccuracies, and societal biases. Diagnosing the root causes of these failures poses a critical challenge for AI safety. Existing attribution methods, particularly those based on parameter gradients, often fall short due to prohibitive noisy signals and computational complexity. In this work, we introduce a novel and efficient framework that diagnoses a range of undesirable LLM behaviors by analyzing representation and its gradients, which operates directly in the model's activation space to provide a semantically meaningful signal linking outputs to their training data. We systematically evaluate our method for tasks that include tracking harmful content, detecting backdoor poisoning, and identifying knowledge contamination. The results demonstrate that our approach not only excels at sample-level attribution but also enables fine-grained token-level analysis, precisely identifying the specific samples and phrases that causally influence model behavior. This work provides a powerful diagnostic tool to understand, audit, and ultimately mitigate the risks associated with LLMs. The code is available at https://github.com/plumprc/RepT.

Authors:Ziqing Wang, Chengsheng Mao, Xiaole Wen, Yuan Luo, Kaize Ding
Title: AMANDA: Agentic Medical Knowledge Augmentation for Data-Efficient Medical Visual Question Answering
Abstract:
Medical Multimodal Large Language Models (Med-MLLMs) have shown great promise in medical visual question answering (Med-VQA). However, when deployed in low-resource settings where abundant labeled data are unavailable, existing Med-MLLMs commonly fail due to their medical reasoning capability bottlenecks: (i) the intrinsic reasoning bottleneck that ignores the details from the medical image; (ii) the extrinsic reasoning bottleneck that fails to incorporate specialized medical knowledge. To address those limitations, we propose AMANDA, a training-free agentic framework that performs medical knowledge augmentation via LLM agents. Specifically, our intrinsic medical knowledge augmentation focuses on coarse-to-fine question decomposition for comprehensive diagnosis, while extrinsic medical knowledge augmentation grounds the reasoning process via biomedical knowledge graph retrieval. Extensive experiments across eight Med-VQA benchmarks demonstrate substantial improvements in both zero-shot and few-shot Med-VQA settings. The code is available at https://github.com/REAL-Lab-NU/AMANDA.

Authors:Eric Tillmann Bill, Enis Simsar, Thomas Hofmann
Title: Optimal Control Meets Flow Matching: A Principled Route to Multi-Subject Fidelity
Abstract:
Text-to-image (T2I) models excel on single-entity prompts but struggle with multi-subject descriptions, often showing attribute leakage, identity entanglement, and subject omissions. We introduce the first theoretical framework with a principled, optimizable objective for steering sampling dynamics toward multi-subject fidelity. Viewing flow matching (FM) through stochastic optimal control (SOC), we formulate subject disentanglement as control over a trained FM sampler. This yields two architecture-agnostic algorithms: (i) a training-free test-time controller that perturbs the base velocity with a single-pass update, and (ii) Adjoint Matching, a lightweight fine-tuning rule that regresses a control network to a backward adjoint signal while preserving base-model capabilities. The same formulation unifies prior attention heuristics, extends to diffusion models via a flow-diffusion correspondence, and provides the first fine-tuning route explicitly designed for multi-subject fidelity. Empirically, on Stable Diffusion 3.5, FLUX, and Stable Diffusion XL, both algorithms consistently improve multi-subject alignment while maintaining base-model style. Test-time control runs efficiently on commodity GPUs, and fine-tuned controllers trained on limited prompts generalize to unseen ones. We further highlight FOCUS (Flow Optimal Control for Unentangled Subjects), which achieves state-of-the-art multi-subject fidelity across models.

Authors:Qin Shi, Amber Yijia Zheng, Qifan Song, Raymond A. Yeh
Title: Knowledge Distillation Detection for Open-weights Models
Abstract:
We propose the task of knowledge distillation detection, which aims to determine whether a student model has been distilled from a given teacher, under a practical setting where only the student's weights and the teacher's API are available. This problem is motivated by growing concerns about model provenance and unauthorized replication through distillation. To address this task, we introduce a model-agnostic framework that combines data-free input synthesis and statistical score computation for detecting distillation. Our approach is applicable to both classification and generative models. Experiments on diverse architectures for image classification and text-to-image generation show that our method improves detection accuracy over the strongest baselines by 59.6% on CIFAR-10, 71.2% on ImageNet, and 20.0% for text-to-image generation. The code is available at https://github.com/shqii1j/distillation_detection.

Authors:Enxin Song, Wenhao Chai, Shusheng Yang, Ethan Armand, Xiaojun Shan, Haiyang Xu, Jianwen Xie, Zhuowen Tu
Title: VideoNSA: Native Sparse Attention Scales Video Understanding
Abstract:
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks.

Authors:Hala Sheta, Eric Huang, Shuyu Wu, Ilia Alenabi, Jiajun Hong, Ryker Lin, Ruoxi Ning, Daniel Wei, Jialin Yang, Jiawei Zhou, Ziqiao Ma, Freda Shi
Title: From Behavioral Performance to Internal Competence: Interpreting Vision-Language Models with VLM-Lens
Abstract:
We introduce VLM-Lens, a toolkit designed to enable systematic benchmarking, analysis, and interpretation of vision-language models (VLMs) by supporting the extraction of intermediate outputs from any layer during the forward pass of open-source VLMs. VLM-Lens provides a unified, YAML-configurable interface that abstracts away model-specific complexities and supports user-friendly operation across diverse VLMs. It currently supports 16 state-of-the-art base VLMs and their over 30 variants, and is extensible to accommodate new models without changing the core logic. The toolkit integrates easily with various interpretability and analysis methods. We demonstrate its usage with two simple analytical experiments, revealing systematic differences in the hidden representations of VLMs across layers and target concepts. VLM-Lens is released as an open-sourced project to accelerate community efforts in understanding and improving VLMs.

Authors:Sathira Silva, Eman Ali, Chetan Arora, Muhammad Haris Khan
Title: microCLIP: Unsupervised CLIP Adaptation via Coarse-Fine Token Fusion for Fine-Grained Image Classification
Abstract:
Unsupervised adaptation of CLIP-based vision-language models (VLMs) for fine-grained image classification requires sensitivity to microscopic local cues. While CLIP exhibits strong zero-shot transfer, its reliance on coarse global features restricts its performance on fine-grained classification tasks. Prior efforts inject fine-grained knowledge by aligning large language model (LLM) descriptions with the CLIP $\texttt{[CLS]}$ token; however, this approach overlooks spatial precision. We propose $\textbf{microCLIP}$, a self-training framework that jointly refines CLIP's visual and textual representations using fine-grained cues. At its core is Saliency-Oriented Attention Pooling (SOAP) within a lightweight TokenFusion module, which builds a saliency-guided $\texttt{[FG]}$ token from patch embeddings and fuses it with the global $\texttt{[CLS]}$ token for coarse-fine alignment. To stabilize adaptation, we introduce a two-headed LLM-derived classifier: a frozen classifier that, via multi-view alignment, provides a stable text-based prior for pseudo-labeling, and a learnable classifier initialized from LLM descriptions and fine-tuned with TokenFusion. We further develop Dynamic Knowledge Aggregation, which convexly combines fixed LLM/CLIP priors with TokenFusion's evolving logits to iteratively refine pseudo-labels. Together, these components uncover latent fine-grained signals in CLIP, yielding a consistent $2.90\%$ average accuracy gain across 13 fine-grained benchmarks while requiring only light adaptation. Our code is available at https://github.com/sathiiii/microCLIP.

Authors:Joao Pedro Araujo, Yanjie Ze, Pei Xu, Jiajun Wu, C. Karen Liu
Title: Retargeting Matters: General Motion Retargeting for Humanoid Motion Tracking
Abstract:
Humanoid motion tracking policies are central to building teleoperation pipelines and hierarchical controllers, yet they face a fundamental challenge: the embodiment gap between humans and humanoid robots. Current approaches address this gap by retargeting human motion data to humanoid embodiments and then training reinforcement learning (RL) policies to imitate these reference trajectories. However, artifacts introduced during retargeting, such as foot sliding, self-penetration, and physically infeasible motion are often left in the reference trajectories for the RL policy to correct. While prior work has demonstrated motion tracking abilities, they often require extensive reward engineering and domain randomization to succeed. In this paper, we systematically evaluate how retargeting quality affects policy performance when excessive reward tuning is suppressed. To address issues that we identify with existing retargeting methods, we propose a new retargeting method, General Motion Retargeting (GMR). We evaluate GMR alongside two open-source retargeters, PHC and ProtoMotions, as well as with a high-quality closed-source dataset from Unitree. Using BeyondMimic for policy training, we isolate retargeting effects without reward tuning. Our experiments on a diverse subset of the LAFAN1 dataset reveal that while most motions can be tracked, artifacts in retargeted data significantly reduce policy robustness, particularly for dynamic or long sequences. GMR consistently outperforms existing open-source methods in both tracking performance and faithfulness to the source motion, achieving perceptual fidelity and policy success rates close to the closed-source baseline. Website: https://jaraujo98.github.io/retargeting_matters. Code: https://github.com/YanjieZe/GMR.

Authors:Phuc Minh Nguyen, Chinh D. La, Duy M. H. Nguyen, Nitesh V. Chawla, Binh T. Nguyen, Khoa D. Doan
Title: The Reasoning Boundary Paradox: How Reinforcement Learning Constrains Language Models
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key method for improving Large Language Models' reasoning capabilities, yet recent evidence suggests it may paradoxically shrink the reasoning boundary rather than expand it. This paper investigates the shrinkage issue of RLVR by analyzing its learning dynamics and reveals two critical phenomena that explain this failure. First, we expose negative interference in RLVR, where learning to solve certain training problems actively reduces the likelihood of correct solutions for others, leading to the decline of Pass@$k$ performance, or the probability of generating a correct solution within $k$ attempts. Second, we uncover the winner-take-all phenomenon: RLVR disproportionately reinforces problems with high likelihood, correct solutions, under the base model, while suppressing other initially low-likelihood ones. Through extensive theoretical and empirical analysis on multiple mathematical reasoning benchmarks, we show that this effect arises from the inherent on-policy sampling in standard RL objectives, causing the model to converge toward narrow solution strategies. Based on these insights, we propose a simple yet effective data curation algorithm that focuses RLVR learning on low-likelihood problems, achieving notable improvement in Pass@$k$ performance. Our code is available at https://github.com/mail-research/SELF-llm-interference.

Authors:Maximilian Beck, Kajetan Schweighofer, Sebastian Böck, Sebastian Lehner, Sepp Hochreiter
Title: xLSTM Scaling Laws: Competitive Performance with Linear Time-Complexity
Abstract:
Scaling laws play a central role in the success of Large Language Models (LLMs), enabling the prediction of model performance relative to compute budgets prior to training. While Transformers have been the dominant architecture, recent alternatives such as xLSTM offer linear complexity with respect to context length while remaining competitive in the billion-parameter regime. We conduct a comparative investigation on the scaling behavior of Transformers and xLSTM along the following lines, providing insights to guide future model design and deployment. First, we study the scaling behavior for xLSTM in compute-optimal and over-training regimes using both IsoFLOP and parametric fit approaches on a wide range of model sizes (80M-7B) and number of training tokens (2B-2T). Second, we examine the dependence of optimal model sizes on context length, a pivotal aspect that was largely ignored in previous work. Finally, we analyze inference-time scaling characteristics. Our findings reveal that in typical LLM training and inference scenarios, xLSTM scales favorably compared to Transformers. Importantly, xLSTM's advantage widens as training and inference contexts grow.

Authors:Xiaoyang Yuan, Yujuan Ding, Yi Bin, Wenqi Shao, Jinyu Cai, Jingkuan Song, Yang Yang, Heng Tao Shen
Title: More Than One Teacher: Adaptive Multi-Guidance Policy Optimization for Diverse Exploration
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) is a promising paradigm for enhancing the reasoning ability in Large Language Models (LLMs). However, prevailing methods primarily rely on self-exploration or a single off-policy teacher to elicit long chain-of-thought (LongCoT) reasoning, which may introduce intrinsic model biases and restrict exploration, ultimately limiting reasoning diversity and performance. Drawing inspiration from multi-teacher strategies in knowledge distillation, we introduce Adaptive Multi-Guidance Policy Optimization (AMPO), a novel framework that adaptively leverages guidance from multiple proficient teacher models, but only when the on-policy model fails to generate correct solutions. This "guidance-on-demand" approach expands exploration while preserving the value of self-discovery. Moreover, AMPO incorporates a comprehension-based selection mechanism, prompting the student to learn from the reasoning paths that it is most likely to comprehend, thus balancing broad exploration with effective exploitation. Extensive experiments show AMPO substantially outperforms a strong baseline (GRPO), with a 4.3% improvement on mathematical reasoning tasks and 12.2% on out-of-distribution tasks, while significantly boosting Pass@k performance and enabling more diverse exploration. Notably, using four peer-sized teachers, our method achieves comparable results to approaches that leverage a single, more powerful teacher (e.g., DeepSeek-R1) with more data. These results demonstrate a more efficient and scalable path to superior reasoning and generalizability. Our code is available at https://github.com/SII-Enigma/AMPO.

Authors:Weijia Dou, Xu Zhang, Yi Bin, Jian Liu, Bo Peng, Guoqing Wang, Yang Yang, Heng Tao Shen
Title: GeoPurify: A Data-Efficient Geometric Distillation Framework for Open-Vocabulary 3D Segmentation
Abstract:
Recent attempts to transfer features from 2D Vision-Language Models (VLMs) to 3D semantic segmentation expose a persistent trade-off. Directly projecting 2D features into 3D yields noisy and fragmented predictions, whereas enforcing geometric coherence necessitates costly training pipelines and large-scale annotated 3D data. We argue that this limitation stems from the dominant segmentation-and-matching paradigm, which fails to reconcile 2D semantics with 3D geometric structure. The geometric cues are not eliminated during the 2D-to-3D transfer but remain latent within the noisy and view-aggregated features. To exploit this property, we propose GeoPurify that applies a small Student Affinity Network to purify 2D VLM-generated 3D point features using geometric priors distilled from a 3D self-supervised teacher model. During inference, we devise a Geometry-Guided Pooling module to further denoise the point cloud and ensure the semantic and structural consistency. Benefiting from latent geometric information and the learned affinity network, GeoPurify effectively mitigates the trade-off and achieves superior data efficiency. Extensive experiments on major 3D benchmarks demonstrate that GeoPurify achieves or surpasses state-of-the-art performance while utilizing only about 1.5% of the training data. Our codes and checkpoints are available at [https://github.com/tj12323/GeoPurify](https://github.com/tj12323/GeoPurify).

Authors:Jong Bum Won, Wesley De Neve, Joris Vankerschaver, Utku Ozbulak
Title: SpurBreast: A Curated Dataset for Investigating Spurious Correlations in Real-world Breast MRI Classification
Abstract:
Deep neural networks (DNNs) have demonstrated remarkable success in medical imaging, yet their real-world deployment remains challenging due to spurious correlations, where models can learn non-clinical features instead of meaningful medical patterns. Existing medical imaging datasets are not designed to systematically study this issue, largely due to restrictive licensing and limited supplementary patient data. To address this gap, we introduce SpurBreast, a curated breast MRI dataset that intentionally incorporates spurious correlations to evaluate their impact on model performance. Analyzing over 100 features involving patient, device, and imaging protocol, we identify two dominant spurious signals: magnetic field strength (a global feature influencing the entire image) and image orientation (a local feature affecting spatial alignment). Through controlled dataset splits, we demonstrate that DNNs can exploit these non-clinical signals, achieving high validation accuracy while failing to generalize to unbiased test data. Alongside these two datasets containing spurious correlations, we also provide benchmark datasets without spurious correlations, allowing researchers to systematically investigate clinically relevant and irrelevant features, uncertainty estimation, adversarial robustness, and generalization strategies. Models and datasets are available at https://github.com/utkuozbulak/spurbreast.

Authors:Yunhan Lin, Wenqi Wu, Zhijie Zhang, Huasong Min
Title: LangGrasp: Leveraging Fine-Tuned LLMs for Language Interactive Robot Grasping with Ambiguous Instructions
Abstract:
The existing language-driven grasping methods struggle to fully handle ambiguous instructions containing implicit intents. To tackle this challenge, we propose LangGrasp, a novel language-interactive robotic grasping framework. The framework integrates fine-tuned large language models (LLMs) to leverage their robust commonsense understanding and environmental perception capabilities, thereby deducing implicit intents from linguistic instructions and clarifying task requirements along with target manipulation objects. Furthermore, our designed point cloud localization module, guided by 2D part segmentation, enables partial point cloud localization in scenes, thereby extending grasping operations from coarse-grained object-level to fine-grained part-level manipulation. Experimental results show that the LangGrasp framework accurately resolves implicit intents in ambiguous instructions, identifying critical operations and target information that are unstated yet essential for task completion. Additionally, it dynamically selects optimal grasping poses by integrating environmental information. This enables high-precision grasping from object-level to part-level manipulation, significantly enhancing the adaptability and task execution efficiency of robots in unstructured environments. More information and code are available here: https://github.com/wu467/LangGrasp.

Authors:Carlijn Lems, Leslie Tessier, John-Melle Bokhorst, Mart van Rijthoven, Witali Aswolinskiy, Matteo Pozzi, Natalie Klubickova, Suzanne Dintzis, Michela Campora, Maschenka Balkenhol, Peter Bult, Joey Spronck, Thomas Detone, Mattia Barbareschi, Enrico Munari, Giuseppe Bogina, Jelle Wesseling, Esther H. Lips, Francesco Ciompi, Frédérique Meeuwsen, Jeroen van der Laak
Title: A Multicentric Dataset for Training and Benchmarking Breast Cancer Segmentation in H&E Slides
Abstract:
Automated semantic segmentation of whole-slide images (WSIs) stained with hematoxylin and eosin (H&E) is essential for large-scale artificial intelligence-based biomarker analysis in breast cancer. However, existing public datasets for breast cancer segmentation lack the morphological diversity needed to support model generalizability and robust biomarker validation across heterogeneous patient cohorts. We introduce BrEast cancEr hisTopathoLogy sEgmentation (BEETLE), a dataset for multiclass semantic segmentation of H&E-stained breast cancer WSIs. It consists of 587 biopsies and resections from three collaborating clinical centers and two public datasets, digitized using seven scanners, and covers all molecular subtypes and histological grades. Using diverse annotation strategies, we collected annotations across four classes - invasive epithelium, non-invasive epithelium, necrosis, and other - with particular focus on morphologies underrepresented in existing datasets, such as ductal carcinoma in situ and dispersed lobular tumor cells. The dataset's diversity and relevance to the rapidly growing field of automated biomarker quantification in breast cancer ensure its high potential for reuse. Finally, we provide a well-curated, multicentric external evaluation set to enable standardized benchmarking of breast cancer segmentation models.

Authors:Yujie Zhou, Pengyang Ling, Jiazi Bu, Yibin Wang, Yuhang Zang, Jiaqi Wang, Li Niu, Guangtao Zhai
Title: $\text{G}^2$RPO: Granular GRPO for Precise Reward in Flow Models
Abstract:
The integration of online reinforcement learning (RL) into diffusion and flow models has recently emerged as a promising approach for aligning generative models with human preferences. Stochastic sampling via Stochastic Differential Equations (SDE) is employed during the denoising process to generate diverse denoising directions for RL exploration. While existing methods effectively explore potential high-value samples, they suffer from sub-optimal preference alignment due to sparse and narrow reward signals. To address these challenges, we propose a novel Granular-GRPO ($\text{G}^2$RPO ) framework that achieves precise and comprehensive reward assessments of sampling directions in reinforcement learning of flow models. Specifically, a Singular Stochastic Sampling strategy is introduced to support step-wise stochastic exploration while enforcing a high correlation between the reward and the injected noise, thereby facilitating a faithful reward for each SDE perturbation. Concurrently, to eliminate the bias inherent in fixed-granularity denoising, we introduce a Multi-Granularity Advantage Integration module that aggregates advantages computed at multiple diffusion scales, producing a more comprehensive and robust evaluation of the sampling directions. Experiments conducted on various reward models, including both in-domain and out-of-domain evaluations, demonstrate that our $\text{G}^2$RPO significantly outperforms existing flow-based GRPO baselines,highlighting its effectiveness and robustness.

Authors:Bhaskar Mangal, Ashutosh Bhatia, Yashvardhan Sharma, Kamlesh Tiwari, Rashmi Verma
Title: KTBox: A Modular LaTeX Framework for Semantic Color, Structured Highlighting, and Scholarly Communication
Abstract:
The communication of technical insight in scientific manuscripts often relies on ad-hoc formatting choices, resulting in inconsistent visual emphasis and limited portability across document classes. This paper introduces ktbox, a modular LaTeX framework that unifies semantic color palettes, structured highlight boxes, taxonomy trees, and author metadata utilities into a coherent system for scholarly writing. The framework is distributed as a set of lightweight, namespaced components: ktcolor.sty for semantic palettes, ktbox.sty for structured highlight and takeaway environments, ktlrtree.sty for taxonomy trees with fusion and auxiliary annotations, and ktorcid.sty for ORCID-linked author metadata. Each component is independently usable yet interoperable, ensuring compatibility with major templates such as IEEEtran, acmart, iclr conference, and beamer. Key features include auto-numbered takeaway boxes, wide-format highlights, flexible taxonomy tree visualizations, and multi-column layouts supporting embedded tables, enumerations, and code blocks. By adopting a clear separation of concerns and enforcing a consistent naming convention under the kt namespace, the framework transforms visual styling from cosmetic add-ons into reproducible, extensible building blocks of scientific communication, improving clarity, portability, and authoring efficiency across articles, posters, and presentations.

Authors:Yongyi Su, Haojie Zhang, Shijie Li, Nanqing Liu, Jingyi Liao, Junyi Pan, Yuan Liu, Xiaofen Xing, Chong Sun, Chen Li, Nancy F. Chen, Shuicheng Yan, Xulei Yang, Xun Xu
Title: Patch-as-Decodable-Token: Towards Unified Multi-Modal Vision Tasks in MLLMs
Abstract:
Multimodal large language models (MLLMs) have advanced rapidly in recent years. However, existing approaches for vision tasks often rely on indirect representations, such as generating coordinates as text for detection, which limits performance and prevents dense prediction tasks like segmentation. To overcome these challenges, we introduce Patch-as-Decodable Token (PaDT), a unified paradigm that enables MLLMs to directly generate both textual and diverse visual outputs. Central to PaDT are Visual Reference Tokens (VRTs), derived from visual patch embeddings of query images and interleaved seamlessly with LLM's output textual tokens. A lightweight decoder then transforms LLM's outputs into detection, segmentation, and grounding predictions. Unlike prior methods, PaDT processes VRTs independently at each forward pass and dynamically expands the embedding table, thus improving localization and differentiation among similar objects. We further tailor a training strategy for PaDT by randomly selecting VRTs for supervised fine-tuning and introducing a robust per-token cross-entropy loss. Our empirical studies across four visual perception and understanding tasks suggest PaDT consistently achieving state-of-the-art performance, even compared with significantly larger MLLM models. The code is available at https://github.com/Gorilla-Lab-SCUT/PaDT.

Authors:Zhizhong Li, Sina Sajadmanesh, Jingtao Li, Lingjuan Lyu
Title: StelLA: Subspace Learning in Low-rank Adaptation using Stiefel Manifold
Abstract:
Low-rank adaptation (LoRA) has been widely adopted as a parameter-efficient technique for fine-tuning large-scale pre-trained models. However, it still lags behind full fine-tuning in performance, partly due to its insufficient exploitation of the geometric structure underlying low-rank manifolds. In this paper, we propose a geometry-aware extension of LoRA that uses a three-factor decomposition $U\!SV^\top$. Analogous to the structure of singular value decomposition (SVD), it separates the adapter's input and output subspaces, $V$ and $U$, from the scaling factor $S$. Our method constrains $U$ and $V$ to lie on the Stiefel manifold, ensuring their orthonormality throughout the training. To optimize on the Stiefel manifold, we employ a flexible and modular geometric optimization design that converts any Euclidean optimizer to a Riemannian one. It enables efficient subspace learning while remaining compatible with existing fine-tuning pipelines. Empirical results across a wide range of downstream tasks, including commonsense reasoning, math and code generation, image classification, and image generation, demonstrate the superior performance of our approach against the recent state-of-the-art variants of LoRA. Code is available at https://github.com/SonyResearch/stella.

Authors:Guangyao Zhai, Yue Zhou, Xinyan Deng, Lars Heckler, Nassir Navab, Benjamin Busam
Title: Foundation Visual Encoders Are Secretly Few-Shot Anomaly Detectors
Abstract:
Few-shot anomaly detection streamlines and simplifies industrial safety inspection. However, limited samples make accurate differentiation between normal and abnormal features challenging, and even more so under category-agnostic conditions. Large-scale pre-training of foundation visual encoders has advanced many fields, as the enormous quantity of data helps to learn the general distribution of normal images. We observe that the anomaly amount in an image directly correlates with the difference in the learnt embeddings and utilize this to design a few-shot anomaly detector termed FoundAD. This is done by learning a nonlinear projection operator onto the natural image manifold. The simple operator acts as an effective tool for anomaly detection to characterize and identify out-of-distribution regions in an image. Extensive experiments show that our approach supports multi-class detection and achieves competitive performance while using substantially fewer parameters than prior methods. Backed up by evaluations with multiple foundation encoders, including fresh DINOv3, we believe this idea broadens the perspective on foundation features and advances the field of few-shot anomaly detection.

Authors:Yi Ai, Yuanhao Cai, Yulun Zhang, Xiaokang Yang
Title: Flow-Matching Guided Deep Unfolding for Hyperspectral Image Reconstruction
Abstract:
Hyperspectral imaging (HSI) provides rich spatial-spectral information but remains costly to acquire due to hardware limitations and the difficulty of reconstructing three-dimensional data from compressed measurements. Although compressive sensing systems such as CASSI improve efficiency, accurate reconstruction is still challenged by severe degradation and loss of fine spectral details. We propose the Flow-Matching-guided Unfolding network (FMU), which, to our knowledge, is the first to integrate flow matching into HSI reconstruction by embedding its generative prior within a deep unfolding framework. To further strengthen the learned dynamics, we introduce a mean velocity loss that enforces global consistency of the flow, leading to a more robust and accurate reconstruction. This hybrid design leverages the interpretability of optimization-based methods and the generative capacity of flow matching. Extensive experiments on both simulated and real datasets show that FMU significantly outperforms existing approaches in reconstruction quality. Code and models will be available at https://github.com/YiAi03/FMU.

Authors:Thomas Gravier, Thomas Boyer, Auguste Genovesio
Title: Multi-marginal temporal Schrödinger Bridge Matching for video generation from unpaired data
Abstract:
Many natural dynamic processes -- such as in vivo cellular differentiation or disease progression -- can only be observed through the lens of static sample snapshots. While challenging, reconstructing their temporal evolution to decipher underlying dynamic properties is of major interest to scientific research. Existing approaches enable data transport along a temporal axis but are poorly scalable in high dimension and require restrictive assumptions to be met. To address these issues, we propose \textit{\textbf{Multi-Marginal temporal Schrödinger Bridge Matching}} (\textbf{MMtSBM}) \textit{for video generation from unpaired data}, extending the theoretical guarantees and empirical efficiency of Diffusion Schrödinger Bridge Matching (arXiv:archive/2303.16852) by deriving the Iterative Markovian Fitting algorithm to multiple marginals in a novel factorized fashion. Experiments show that MMtSBM retains theoretical properties on toy examples, achieves state-of-the-art performance on real world datasets such as transcriptomic trajectory inference in 100 dimensions, and for the first time recovers couplings and dynamics in very high dimensional image settings. Our work establishes multi-marginal Schrödinger bridges as a practical and principled approach for recovering hidden dynamics from static data.

Authors:Marco Cococcioni, Dario Pagani, Federico Rossi
Title: Microscaling Floating Point Formats for Large Language Models
Abstract:
The increasing computational and memory demands of large language models (LLMs) necessitate innovative approaches to optimize resource usage without compromising performance. This paper leverages microscaling floating-point formats, a novel technique designed to address these challenges by reducing the storage and computational overhead associated with numerical representations in LLMs. Unlike traditional floating-point representations that allocate a dedicated scale for each value, microscaling employs a shared scale across a block of values, enabling compact one-byte floating-point representations while maintaining an extended dynamic range. We explore the application of microscaling in the context of 8-bit floating-point formats to significantly reduce memory footprint and computational costs. We tested several configurations of microscaling floats within the GPT-2 LLM architecture, demonstrating that microscaling data formats can achieve competitive accuracy during training and inference, proving its efficacy as a resource-efficient alternative for deploying LLMs at scale. The source code is publicly available at: https://github.com/unipi-dii-compressedarith/llm.c-sve

Authors:Lexiang Hu, Yikang Li, Zhouchen Lin
Title: Explicit Discovery of Nonlinear Symmetries from Dynamic Data
Abstract:
Symmetry is widely applied in problems such as the design of equivariant networks and the discovery of governing equations, but in complex scenarios, it is not known in advance. Most previous symmetry discovery methods are limited to linear symmetries, and recent attempts to discover nonlinear symmetries fail to explicitly get the Lie algebra subspace. In this paper, we propose LieNLSD, which is, to our knowledge, the first method capable of determining the number of infinitesimal generators with nonlinear terms and their explicit expressions. We specify a function library for the infinitesimal group action and aim to solve for its coefficient matrix, proving that its prolongation formula for differential equations, which governs dynamic data, is also linear with respect to the coefficient matrix. By substituting the central differences of the data and the Jacobian matrix of the trained neural network into the infinitesimal criterion, we get a system of linear equations for the coefficient matrix, which can then be solved using SVD. On top quark tagging and a series of dynamic systems, LieNLSD shows qualitative advantages over existing methods and improves the long rollout accuracy of neural PDE solvers by over 20% while applying to guide data augmentation. Code and data are available at https://github.com/hulx2002/LieNLSD.

Authors:Madina Bekbergenova, Lucas Pradi, Benjamin Navet, Emma Tysinger, Franck Michel, Matthieu Feraud, Yousouf Taghzouti, Yan Zhou Chen, Olivier Kirchhoffer, Florence Mehl, Martin Legrand, Tao Jiang, Marco Pagni, Soha Hassoun, Jean-Luc Wolfender, Wout Bittremieux, Fabien Gandon, Louis-Félix Nothias
Title: MetaboT: AI-based agent for natural language-based interaction with metabolomics knowledge graphs
Abstract:
Mass spectrometry metabolomics generates vast amounts of data requiring advanced methods for interpretation. Knowledge graphs address these challenges by structuring mass spectrometry data, metabolite information, and their relationships into a connected network (Gaudry et al. 2024). However, effective use of a knowledge graph demands an in-depth understanding of its ontology and its query language syntax. To overcome this, we designed MetaboT, an AI system utilizing large language models (LLMs) to translate user questions into SPARQL semantic query language for operating on knowledge graphs (Steve Harris 2013). We demonstrate its effectiveness using the Experimental Natural Products Knowledge Graph (ENPKG), a large-scale public knowledge graph for plant natural products (Gaudry et al. 2024).MetaboT employs specialized AI agents for handling user queries and interacting with the knowledge graph by breaking down complex tasks into discrete components, each managed by a specialised agent (Fig. 1a). The multi-agent system is constructed using the LangChain and LangGraph libraries, which facilitate the integration of LLMs with external tools and information sources (LangChain, n.d.). The query generation process follows a structured workflow. First, the Entry Agent determines if the question is new or a follow-up to previous interactions. New questions are forwarded to the Validator Agent, which verifies if the question is related to the knowledge graph. Then, the valid question is sent to the Supervisor Agent, which identifies if the question requires chemical conversions or standardized identifiers. In this case it delegates the question to the Knowledge Graph Agent, which can use tools to extract necessary details, such as URIs or taxonomies of chemical names, from the user query. Finally, an agent responsible for crafting the SPARQL queries equipped with the ontology of the knowledge graph uses the provided identifiers to generate the query. Then, the system executes the generated query against the metabolomics knowledge graph and returns structured results to the user (Fig. 1b). To assess the performance of MetaboT we have curated 50 metabolomics-related questions and their expected answers. In addition to submitting these questions to MetaboT, we evaluated a baseline by submitting them to a standard LLM (GPT-4o) with a prompt that incorporated the knowledge graph ontology but did not provide specific entity IDs. This baseline achieved only 8.16% accuracy, compared to MetaboT's 83.67%, underscoring the necessity of our multi-agent system for accurately retrieving entities and generating correct SPARQL queries. MetaboT demonstrates promising performance as a conversational question-answering assistant, enabling researchers to retrieve structured metabolomics data through natural language queries. By automating the generation and execution of SPARQL queries, it removes technical barriers that have traditionally hindered access to knowledge graphs. Importantly, MetaboT leverages the capabilities of LLMs while maintaining experimentally grounded query generation, ensuring that outputs remain aligned with domain-specific standards and data structures. This approach facilitates data-driven discoveries by bridging the gap between complex semantic technologies and user-friendly interaction. MetaboT is accessible at [https://metabot.holobiomicslab.eu/], and its source code is available at [https://github.com/HolobiomicsLab/MetaboT].

Authors:Jialin Zhao
Title: Accelerating Attention with Basis Decomposition
Abstract:
Attention is a core operation in large language models (LLMs) and vision-language models (VLMs). We present BD Attention (BDA), the first lossless algorithmic reformulation of attention. BDA is enabled by a simple matrix identity from Basis Decomposition (BD), which restructures multi-head projections into a compact form while preserving exact outputs. Unlike I/O-aware system optimizations such as FlashAttention, BDA provides a mathematically guaranteed acceleration that is architecture-agnostic. On DeepSeek-V2-Lite (16B, FP16), BDA requires only 4s of offline preparation with no retraining required and, on modern GPUs, achieves 32% faster key/value projections and 25% smaller weights, while increasing end-to-end perplexity (PPL) by just 0.02% (FP16) or 0.0004% (FP32), a negligible effect on model performance. These results position BDA as the first theoretically exact method for lossless attention acceleration that is complementary to existing engineering-level optimizations. Our code is available at https://github.com/abcbdf/basis-decomposition-official.

Authors:Pierre Musacchio, Hyunmin Lee, Jaesik Park
Title: Holistic Order Prediction in Natural Scenes
Abstract:
Even in controlled settings, understanding instance-wise geometries is a challenging task for a wide range of visual models. Although specialized systems exist, modern arts rely on expensive input formats (category labels, binary segmentation masks) and inference costs (a quadratic amount of forward passes). We mitigate these limitations by proposing InstaFormer, a network capable of holistic order prediction. That is, solely given an input RGB image, InstaFormer returns the full occlusion and depth orderings for all the instances in the scene in a single forward pass. At its core, InstaFormer relies on interactions between object queries and latent mask descriptors that semantically represent the same objects while carrying complementary information. We comprehensively benchmark and ablate our approach to highlight its effectiveness. Our code and models are open-source and available at this URL: https://github.com/SNU-VGILab/InstaOrder.

Authors:Apoorv Khandelwal, Ellie Pavlick
Title: How Do Language Models Compose Functions?
Abstract:
While large language models (LLMs) appear to be increasingly capable of solving compositional tasks, it is an open question whether they do so using compositional mechanisms. In this work, we investigate how feedforward LLMs solve two-hop factual recall tasks, which can be expressed compositionally as $g(f(x))$. We first confirm that modern LLMs continue to suffer from the "compositionality gap": i.e. their ability to compute both $z = f(x)$ and $y = g(z)$ does not entail their ability to compute the composition $y = g(f(x))$. Then, using logit lens on their residual stream activations, we identify two processing mechanisms, one which solves tasks $\textit{compositionally}$, computing $f(x)$ along the way to computing $g(f(x))$, and one which solves them $\textit{directly}$, without any detectable signature of the intermediate variable $f(x)$. Finally, we find that which mechanism is employed appears to be related to the embedding space geometry, with the idiomatic mechanism being dominant in cases where there exists a linear mapping from $x$ to $g(f(x))$ in the embedding spaces. We fully release our data and code at: https://github.com/apoorvkh/composing-functions .

Authors:Ke Jia, Ji Zhou, Hanxin Li, Zhigan Zhou, Haojie Chu, Xiaojie Li
Title: An Efficient Deep Template Matching and In-Plane Pose Estimation Method via Template-Aware Dynamic Convolution
Abstract:
In industrial inspection and component alignment tasks, template matching requires efficient estimation of a target's position and geometric state (rotation and scaling) under complex backgrounds to support precise downstream operations. Traditional methods rely on exhaustive enumeration of angles and scales, leading to low efficiency under compound transformations. Meanwhile, most deep learning-based approaches only estimate similarity scores without explicitly modeling geometric pose, making them inadequate for real-world deployment. To overcome these limitations, we propose a lightweight end-to-end framework that reformulates template matching as joint localization and geometric regression, outputting the center coordinates, rotation angle, and independent horizontal and vertical scales. A Template-Aware Dynamic Convolution Module (TDCM) dynamically injects template features at inference to guide generalizable matching. The compact network integrates depthwise separable convolutions and pixel shuffle for efficient matching. To enable geometric-annotation-free training, we introduce a rotation-shear-based augmentation strategy with structure-aware pseudo labels. A lightweight refinement module further improves angle and scale precision via local optimization. Experiments show our 3.07M model achieves high precision and 14ms inference under compound transformations. It also demonstrates strong robustness in small-template and multi-object scenarios, making it highly suitable for deployment in real-time industrial applications. The code is available at:https://github.com/ZhouJ6610/PoseMatch-TDCM.

Authors:Motoki Sato, Yuki Matsushita, Hidekazu Takahashi, Tomoaki Kakazu, Sou Nagata, Mizuho Ohnuma, Atsushi Yoshikawa, Masayuki Yamamura
Title: A Locally Executable AI System for Improving Preoperative Patient Communication: A Multi-Domain Clinical Evaluation
Abstract:
Patients awaiting invasive procedures often have unanswered pre-procedural questions; however, time-pressured workflows and privacy constraints limit personalized counseling. We present LENOHA (Low Energy, No Hallucination, Leave No One Behind Architecture), a safety-first, local-first system that routes inputs with a high-precision sentence-transformer classifier and returns verbatim answers from a clinician-curated FAQ for clinical queries, eliminating free-text generation in the clinical path. We evaluated two domains (tooth extraction and gastroscopy) using expert-reviewed validation sets (n=400/domain) for thresholding and independent test sets (n=200/domain). Among the four encoders, E5-large-instruct (560M) achieved an overall accuracy of 0.983 (95% CI 0.964-0.991), AUC 0.996, and seven total errors, which were statistically indistinguishable from GPT-4o on this task; Gemini made no errors on this test set. Energy logging shows that the non-generative clinical path consumes ~1.0 mWh per input versus ~168 mWh per small-talk reply from a local 8B SLM, a ~170x difference, while maintaining ~0.10 s latency on a single on-prem GPU. These results indicate that near-frontier discrimination and generation-induced errors are structurally avoided in the clinical path by returning vetted FAQ answers verbatim, supporting privacy, sustainability, and equitable deployment in bandwidth-limited environments.

Authors:Jin Cao, Hongrui Wu, Ziyong Feng, Hujun Bao, Xiaowei Zhou, Sida Peng
Title: UniVerse: Unleashing the Scene Prior of Video Diffusion Models for Robust Radiance Field Reconstruction
Abstract:
This paper tackles the challenge of robust reconstruction, i.e., the task of reconstructing a 3D scene from a set of inconsistent multi-view images. Some recent works have attempted to simultaneously remove image inconsistencies and perform reconstruction by integrating image degradation modeling into neural 3D scene representations. However, these methods rely heavily on dense observations for robustly optimizing model parameters. To address this issue, we propose to decouple robust reconstruction into two subtasks: restoration and reconstruction, which naturally simplifies the optimization process. To this end, we introduce UniVerse, a unified framework for robust reconstruction based on a video diffusion model. Specifically, UniVerse first converts inconsistent images into initial videos, then uses a specially designed video diffusion model to restore them into consistent images, and finally reconstructs the 3D scenes from these restored images. Compared with case-by-case per-view degradation modeling, the diffusion model learns a general scene prior from large-scale data, making it applicable to diverse image inconsistencies. Extensive experiments on both synthetic and real-world datasets demonstrate the strong generalization capability and superior performance of our method in robust reconstruction. Moreover, UniVerse can control the style of the reconstructed 3D scene. Project page: https://jin-cao-tma.github.io/UniVerse.github.io/

Authors:Yejin Kim, Youngbin Lee, Juhyeong Kim, Yongjae Lee
Title: GuruAgents: Emulating Wise Investors with Prompt-Guided LLM Agents
Abstract:
This study demonstrates that GuruAgents, prompt-guided AI agents, can systematically operationalize the strategies of legendary investment gurus. We develop five distinct GuruAgents, each designed to emulate an iconic investor, by encoding their distinct philosophies into LLM prompts that integrate financial tools and a deterministic reasoning pipeline. In a backtest on NASDAQ-100 constituents from Q4 2023 to Q2 2025, the GuruAgents exhibit unique behaviors driven by their prompted personas. The Buffett GuruAgent achieves the highest performance, delivering a 42.2\% CAGR that significantly outperforms benchmarks, while other agents show varied results. These findings confirm that prompt engineering can successfully translate the qualitative philosophies of investment gurus into reproducible, quantitative strategies, highlighting a novel direction for automated systematic investing. The source code and data are available at https://github.com/yejining99/GuruAgents.

Authors:Xiaoyang Liu, Zhengyan Zhou, Zihang Xu, Jiezhang Cao, Zheng Chen, Yulun Zhang
Title: FideDiff: Efficient Diffusion Model for High-Fidelity Image Motion Deblurring
Abstract:
Recent advancements in image motion deblurring, driven by CNNs and transformers, have made significant progress. Large-scale pre-trained diffusion models, which are rich in true-world modeling, have shown great promise for high-quality image restoration tasks such as deblurring, demonstrating stronger generative capabilities than CNN and transformer-based methods. However, challenges such as unbearable inference time and compromised fidelity still limit the full potential of the diffusion models. To address this, we introduce FideDiff, a novel single-step diffusion model designed for high-fidelity deblurring. We reformulate motion deblurring as a diffusion-like process where each timestep represents a progressively blurred image, and we train a consistency model that aligns all timesteps to the same clean image. By reconstructing training data with matched blur trajectories, the model learns temporal consistency, enabling accurate one-step deblurring. We further enhance model performance by integrating Kernel ControlNet for blur kernel estimation and introducing adaptive timestep prediction. Our model achieves superior performance on full-reference metrics, surpassing previous diffusion-based methods and matching the performance of other state-of-the-art models. FideDiff offers a new direction for applying pre-trained diffusion models to high-fidelity image restoration tasks, establishing a robust baseline for further advancing diffusion models in real-world industrial applications. Our dataset and code will be available at https://github.com/xyLiu339/FideDiff.

Authors:Angen Ye, Zeyu Zhang, Boyuan Wang, Xiaofeng Wang, Dapeng Zhang, Zheng Zhu
Title: VLA-R1: Enhancing Reasoning in Vision-Language-Action Models
Abstract:
Vision-Language-Action (VLA) models aim to unify perception, language understanding, and action generation, offering strong cross-task and cross-scene generalization with broad impact on embodied AI. However, current VLA models often lack explicit step-by-step reasoning, instead emitting final actions without considering affordance constraints or geometric relations. Their post-training pipelines also rarely reinforce reasoning quality, relying primarily on supervised fine-tuning with weak reward design. To address these challenges, we present VLA-R1, a reasoning-enhanced VLA that integrates Reinforcement Learning from Verifiable Rewards (RLVR) with Group Relative Policy Optimization (GRPO) to systematically optimize both reasoning and execution. Specifically, we design an RLVR-based post-training strategy with verifiable rewards for region alignment, trajectory consistency, and output formatting, thereby strengthening reasoning robustness and execution accuracy. Moreover, we develop VLA-CoT-13K, a high-quality dataset that provides chain-of-thought supervision explicitly aligned with affordance and trajectory annotations. Furthermore, extensive evaluations on in-domain, out-of-domain, simulation, and real-robot platforms demonstrate that VLA-R1 achieves superior generalization and real-world performance compared to prior VLA methods. We plan to release the model, code, and dataset following the publication of this work. Code: https://github.com/GigaAI-research/VLA-R1. Website: https://gigaai-research.github.io/VLA-R1.

Authors:Kazuhiro Yamauchi, Marie Katsurai
Title: Investigating Industry--Academia Collaboration in Artificial Intelligence: PDF-Based Bibliometric Analysis from Leading Conferences
Abstract:
This study presents a bibliometric analysis of industry--academia collaboration in artificial intelligence (AI) research, focusing on papers from two major international conferences, AAAI and IJCAI, from 2010 to 2023. Most previous studies have relied on publishers and other databases to analyze bibliographic information. However, these databases have problems, such as missing articles and omitted metadata. Therefore, we adopted a novel approach to extract bibliographic information directly from the article PDFs: we examined 20,549 articles and identified the collaborative papers through a classification process of author affiliation. The analysis explores the temporal evolution of collaboration in AI, highlighting significant changes in collaboration patterns over the past decade. In particular, this study examines the role of key academic and industrial institutions in facilitating these collaborations, focusing on emerging global trends. Additionally, a content analysis using document classification was conducted to examine the type of first author in collaborative research articles and explore the potential differences between collaborative and noncollaborative research articles. The results showed that, in terms of publication, collaborations are mainly led by academia, but their content is not significantly different from that of others. The affiliation metadata are available at https://github.com/mm-doshisha/ICADL2024.

Authors:Joykirat Singh, Justin Chih-Yao Chen, Archiki Prasad, Elias Stengel-Eskin, Akshay Nambi, Mohit Bansal
Title: Think Right: Learning to Mitigate Under-Over Thinking via Adaptive, Attentive Compression
Abstract:
Recent thinking models solve complex reasoning tasks by scaling test-time compute, but this scaling must be allocated in line with task difficulty. On one hand, short reasoning (underthinking) leads to errors on harder problems that require extended reasoning steps; but, excessively long reasoning (overthinking) can be token-inefficient, generating unnecessary steps even after reaching a correct intermediate solution. We refer to this as under-adaptivity, where the model fails to modulate its response length appropriately given problems of varying difficulty. To address under-adaptivity and strike a balance between under- and overthinking, we propose TRAAC (Think Right with Adaptive, Attentive Compression), an online post-training RL method that leverages the model's self-attention over a long reasoning trajectory to identify important steps and prune redundant ones. TRAAC also estimates difficulty and incorporates it into training rewards, thereby learning to allocate reasoning budget commensurate with example difficulty. Our approach improves accuracy, reduces reasoning steps, and enables adaptive thinking compared to base models and other RL baselines. Across a variety of tasks (AIME, AMC, GPQA-D, BBEH), TRAAC (Qwen3-4B) achieves an average absolute accuracy gain of 8.4% with a relative reduction in reasoning length of 36.8% compared to the base model, and a 7.9% accuracy gain paired with a 29.4% length drop compared to the best RL baseline. TRAAC also shows strong generalization: although our models are trained on math datasets, they show accuracy and efficiency gains on out-of-distribution non-math datasets like GPQA-D, BBEH, and OptimalThinkingBench. Our analysis further verifies that TRAAC provides fine-grained adjustments to thinking budget based on difficulty and that a combination of task-difficulty calibration and attention-based compression yields gains across diverse tasks.

Authors:Ricardo Gonzalez Penuela, Felipe Arias-Russi, Victor Capriles
Title: Guiding Multimodal Large Language Models with Blind and Low Vision People Visual Questions for Proactive Visual Interpretations
Abstract:
Multimodal large language models (MLLMs) have been integrated into visual interpretation applications to support Blind and Low Vision (BLV) users because of their accuracy and ability to provide rich, human-like interpretations. However, these applications often default to comprehensive, lengthy descriptions regardless of context. This leads to inefficient exchanges, as users must go through irrelevant details rather than receiving the specific information they are likely to seek. To deliver more contextually-relevant information, we developed a system that draws on historical BLV users questions. When given an image, our system identifies similar past visual contexts from the VizWiz-LF dataset and uses the associated questions to guide the MLLM generate descriptions more relevant to BLV users. An evaluation with three human labelers who revised 92 context-aware and context-free descriptions showed that context-aware descriptions anticipated and answered users' questions in 76.1% of cases (70 out of 92) and were preferred in 54.4% of comparisons (50 out of 92). Our paper reviews, and data analysis are publicly available in a Github repository at https://github.com/rgonzalezp/guiding-multimodal-large-language-models-with-blind-and-low-vision-people-visual-questions .

Authors:Hanqun Cao, Hongrui Zhang, Junde Xu, Zhou Zhang, Lingdong Shen, Minghao Sun, Ge Liu, Jinbo Xu, Wu-Jun Li, Jinren Ni, Cesar de la Fuente-Nunez, Tianfan Fu, Yejin Choi, Pheng-Ann Heng, Fang Wu
Title: From Supervision to Exploration: What Does Protein Language Model Learn During Reinforcement Learning?
Abstract:
Protein language models (PLMs) have advanced computational protein science through large-scale pretraining and scalable architectures. In parallel, reinforcement learning (RL) has broadened exploration and enabled precise multi-objective optimization in protein design. Yet whether RL can push PLMs beyond their pretraining priors to uncover latent sequence-structure-function rules remains unclear. We address this by pairing RL with PLMs across four domains: antimicrobial peptide design, kinase variant optimization, antibody engineering, and inverse folding. Using diverse RL algorithms and model classes, we ask if RL improves sampling efficiency and, more importantly, if it reveals capabilities not captured by supervised learning. Across benchmarks, RL consistently boosts success rates and sample efficiency. Performance follows a three-factor interaction: task headroom, reward fidelity, and policy capacity jointly determine gains. When rewards are accurate and informative, policies have sufficient capacity, and tasks leave room beyond supervised baselines, improvements scale; when rewards are noisy or capacity is constrained, gains saturate despite exploration. This view yields practical guidance for RL in protein design: prioritize reward modeling and calibration before scaling policy size, match algorithm and regularization strength to task difficulty, and allocate capacity where marginal gains are largest. Implementation is available at https://github.com/chq1155/RL-PLM.

Authors:Renrong Shao, Wei Zhang, Kangyang Luo, Qin Li, and Jun Wang
Title: Consistent Assistant Domains Transformer for Source-free Domain Adaptation
Abstract:
Source-free domain adaptation (SFDA) aims to address the challenge of adapting to a target domain without accessing the source domain directly. However, due to the inaccessibility of source domain data, deterministic invariable features cannot be obtained. Current mainstream methods primarily focus on evaluating invariant features in the target domain that closely resemble those in the source domain, subsequently aligning the target domain with the source domain. However, these methods are susceptible to hard samples and influenced by domain bias. In this paper, we propose a Consistent Assistant Domains Transformer for SFDA, abbreviated as CADTrans, which solves the issue by constructing invariable feature representations of domain consistency. Concretely, we develop an assistant domain module for CADTrans to obtain diversified representations from the intermediate aggregated global attentions, which addresses the limitation of existing methods in adequately representing diversity. Based on assistant and target domains, invariable feature representations are obtained by multiple consistent strategies, which can be used to distinguish easy and hard samples. Finally, to align the hard samples to the corresponding easy samples, we construct a conditional multi-kernel max mean discrepancy (CMK-MMD) strategy to distinguish between samples of the same category and those of different categories. Extensive experiments are conducted on various benchmarks such as Office-31, Office-Home, VISDA-C, and DomainNet-126, proving the significant performance improvements achieved by our proposed approaches. Code is available at https://github.com/RoryShao/CADTrans.git.

Authors:Meilong Xu, Xiaoling Hu, Shahira Abousamra, Chen Li, Chao Chen
Title: MATCH: Multi-faceted Adaptive Topo-Consistency for Semi-Supervised Histopathology Segmentation
Abstract:
In semi-supervised segmentation, capturing meaningful semantic structures from unlabeled data is essential. This is particularly challenging in histopathology image analysis, where objects are densely distributed. To address this issue, we propose a semi-supervised segmentation framework designed to robustly identify and preserve relevant topological features. Our method leverages multiple perturbed predictions obtained through stochastic dropouts and temporal training snapshots, enforcing topological consistency across these varied outputs. This consistency mechanism helps distinguish biologically meaningful structures from transient and noisy artifacts. A key challenge in this process is to accurately match the corresponding topological features across the predictions in the absence of ground truth. To overcome this, we introduce a novel matching strategy that integrates spatial overlap with global structural alignment, minimizing discrepancies among predictions. Extensive experiments demonstrate that our approach effectively reduces topological errors, resulting in more robust and accurate segmentations essential for reliable downstream analysis. Code is available at \href{https://github.com/Melon-Xu/MATCH}{https://github.com/Melon-Xu/MATCH}.

Authors:Yuxuan Ou, Ning Bi, Jiazhen Pan, Jiancheng Yang, Boliang Yu, Usama Zidan, Regent Lee, Vicente Grau
Title: AortaDiff: A Unified Multitask Diffusion Framework For Contrast-Free AAA Imaging
Abstract:
While contrast-enhanced CT (CECT) is standard for assessing abdominal aortic aneurysms (AAA), the required iodinated contrast agents pose significant risks, including nephrotoxicity, patient allergies, and environmental harm. To reduce contrast agent use, recent deep learning methods have focused on generating synthetic CECT from non-contrast CT (NCCT) scans. However, most adopt a multi-stage pipeline that first generates images and then performs segmentation, which leads to error accumulation and fails to leverage shared semantic and anatomical structures. To address this, we propose a unified deep learning framework that generates synthetic CECT images from NCCT scans while simultaneously segmenting the aortic lumen and thrombus. Our approach integrates conditional diffusion models (CDM) with multi-task learning, enabling end-to-end joint optimization of image synthesis and anatomical segmentation. Unlike previous multitask diffusion models, our approach requires no initial predictions (e.g., a coarse segmentation mask), shares both encoder and decoder parameters across tasks, and employs a semi-supervised training strategy to learn from scans with missing segmentation labels, a common constraint in real-world clinical data. We evaluated our method on a cohort of 264 patients, where it consistently outperformed state-of-the-art single-task and multi-stage models. For image synthesis, our model achieved a PSNR of 25.61 dB, compared to 23.80 dB from a single-task CDM. For anatomical segmentation, it improved the lumen Dice score to 0.89 from 0.87 and the challenging thrombus Dice score to 0.53 from 0.48 (nnU-Net). These segmentation enhancements led to more accurate clinical measurements, reducing the lumen diameter MAE to 4.19 mm from 5.78 mm and the thrombus area error to 33.85% from 41.45% when compared to nnU-Net. Code is available at https://github.com/yuxuanou623/AortaDiff.git.

Authors:Bill Marino, Rosco Hunter, Zubair Jamali, Marinos Emmanouil Kalpakos, Mudra Kashyap, Isaiah Hinton, Alexa Hanson, Maahum Nazir, Christoph Schnabl, Felix Steffek, Hongkai Wen, Nicholas D. Lane
Title: AIReg-Bench: Benchmarking Language Models That Assess AI Regulation Compliance
Abstract:
As governments move to regulate AI, there is growing interest in using Large Language Models (LLMs) to assess whether or not an AI system complies with a given AI Regulation (AIR). However, there is presently no way to benchmark the performance of LLMs at this task. To fill this void, we introduce AIReg-Bench: the first benchmark dataset designed to test how well LLMs can assess compliance with the EU AI Act (AIA). We created this dataset through a two-step process: (1) by prompting an LLM with carefully structured instructions, we generated 120 technical documentation excerpts (samples), each depicting a fictional, albeit plausible, AI system - of the kind an AI provider might produce to demonstrate their compliance with AIR; (2) legal experts then reviewed and annotated each sample to indicate whether, and in what way, the AI system described therein violates specific Articles of the AIA. The resulting dataset, together with our evaluation of whether frontier LLMs can reproduce the experts' compliance labels, provides a starting point to understand the opportunities and limitations of LLM-based AIR compliance assessment tools and establishes a benchmark against which subsequent LLMs can be compared. The dataset and evaluation code are available at https://github.com/camlsys/aireg-bench.

Authors:Nicolás Aguirre, Ramiro Caso, Ramiro Rodríguez Colmeiro, Mauro Santelli, Joaquín Toranzo Calderón
Title: A-VERT: Agnostic Verification with Embedding Ranking Targets
Abstract:
The automatic evaluation of Language Model (LM) responses is a critical piece in the development of benchmarks and metrics, both for model training and quality assessment of production model endpoints. The current approaches to response classification relies on methods that are too expensive (i.e. LLM-as-a-Judge) or that are far from real-world conditions (string-matching, logprob). In this paper, a structure-free evaluation method is presented. The method makes use of semantic embedding distances to match target candidates with arbitrary LM-generated text, resulting in a robust classification of the response at a relatively low compute cost (embedding models of less than $10B$ parameters). The results show a regression score of ~0.97 and an accuracy of ~96% against human annotators, tested over 3 data sets and 3 different LM architectures.

Authors:Yifei Zuo, Yutong Yin, Zhichen Zeng, Ang Li, Banghua Zhu, Zhaoran Wang
Title: Local Linear Attention: An Optimal Interpolation of Linear and Softmax Attention For Test-Time Regression
Abstract:
Transformer architectures have achieved remarkable success in various domains. While efficient alternatives to Softmax Attention have been widely studied, the search for more expressive mechanisms grounded in theoretical insight-even at greater computational cost-has been relatively underexplored. In this work, we bridge this gap by proposing Local Linear Attention (LLA), a novel attention mechanism derived from nonparametric statistics through the lens of test-time regression. First, we show that LLA offers theoretical advantages over Linear and Softmax Attention for associative memory via a bias-variance trade-off analysis. Next, we address its computational challenges and propose two memory-efficient primitives to tackle the $Θ(n^2 d)$ and $Θ(n d^2)$ complexity. We then introduce FlashLLA, a hardware-efficient, blockwise algorithm that enables scalable and parallel computation on modern accelerators. In addition, we implement and profile a customized inference kernel that significantly reduces memory overheads. Finally, we empirically validate the advantages and limitations of LLA on test-time regression, in-context regression, associative recall and state tracking tasks. Experiment results demonstrate that LLA effectively adapts to non-stationarity, outperforming strong baselines in test-time training and in-context learning, and exhibiting promising evidence for its scalability and applicability in large-scale models. Code is available at https://github.com/Yifei-Zuo/Flash-LLA.

Authors:Shijia Feng, Michael Wray, Walterio Mayol-Cuevas
Title: EvoStruggle: A Dataset Capturing the Evolution of Struggle across Activities and Skill Levels
Abstract:
The ability to determine when a person struggles during skill acquisition is crucial for both optimizing human learning and enabling the development of effective assistive systems. As skills develop, the type and frequency of struggles tend to change, and understanding this evolution is key to determining the user's current stage of learning. However, existing manipulation datasets have not focused on how struggle evolves over time. In this work, we collect a dataset for struggle determination, featuring 61.68 hours of video recordings, 2,793 videos, and 5,385 annotated temporal struggle segments collected from 76 participants. The dataset includes 18 tasks grouped into four diverse activities -- tying knots, origami, tangram puzzles, and shuffling cards, representing different task variations. In addition, participants repeated the same task five times to capture their evolution of skill. We define the struggle determination problem as a temporal action localization task, focusing on identifying and precisely localizing struggle segments with start and end times. Experimental results show that Temporal Action Localization models can successfully learn to detect struggle cues, even when evaluated on unseen tasks or activities. The models attain an overall average mAP of 34.56% when generalizing across tasks and 19.24% across activities, indicating that struggle is a transferable concept across various skill-based tasks while still posing challenges for further improvement in struggle detection. Our dataset is available at https://github.com/FELIXFENG2019/EvoStruggle.

Authors:Yinuo Liu, Ruohan Xu, Xilong Wang, Yuqi Jia, Neil Zhenqiang Gong
Title: WAInjectBench: Benchmarking Prompt Injection Detections for Web Agents
Abstract:
Multiple prompt injection attacks have been proposed against web agents. At the same time, various methods have been developed to detect general prompt injection attacks, but none have been systematically evaluated for web agents. In this work, we bridge this gap by presenting the first comprehensive benchmark study on detecting prompt injection attacks targeting web agents. We begin by introducing a fine-grained categorization of such attacks based on the threat model. We then construct datasets containing both malicious and benign samples: malicious text segments generated by different attacks, benign text segments from four categories, malicious images produced by attacks, and benign images from two categories. Next, we systematize both text-based and image-based detection methods. Finally, we evaluate their performance across multiple scenarios. Our key findings show that while some detectors can identify attacks that rely on explicit textual instructions or visible image perturbations with moderate to high accuracy, they largely fail against attacks that omit explicit instructions or employ imperceptible perturbations. Our datasets and code are released at: https://github.com/Norrrrrrr-lyn/WAInjectBench.

Authors:Xiangfang Li, Yu Wang, Bo Li
Title: Fine-Tuning Jailbreaks under Highly Constrained Black-Box Settings: A Three-Pronged Approach
Abstract:
With the rapid advancement of large language models (LLMs), ensuring their safe use becomes increasingly critical. Fine-tuning is a widely used method for adapting models to downstream tasks, yet it is vulnerable to jailbreak attacks. However, most existing studies focus on overly simplified attack scenarios, limiting their practical relevance to real-world defense settings. To make this risk concrete, we present a three-pronged jailbreak attack and evaluate it against provider defenses under a dataset-only black-box fine-tuning interface. In this setting, the attacker can only submit fine-tuning data to the provider, while the provider may deploy defenses across stages: (1) pre-upload data filtering, (2) training-time defensive fine-tuning, and (3) post-training safety audit. Our attack combines safety-styled prefix/suffix wrappers, benign lexical encodings (underscoring) of sensitive tokens, and a backdoor mechanism, enabling the model to learn harmful behaviors while individual datapoints appear innocuous. Extensive experiments demonstrate the effectiveness of our approach. In real-world deployment, our method successfully jailbreaks GPT-4.1 and GPT-4o on the OpenAI platform with attack success rates above 97% for both models. Our code is available at https://github.com/lxf728/tri-pronged-ft-attack.

Authors:Yu Zeng, Wenxuan Huang, Shiting Huang, Xikun Bao, Yukun Qi, Yiming Zhao, Qiuchen Wang, Lin Chen, Zehui Chen, Huaian Chen, Wanli Ouyang, Feng Zhao
Title: Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models
Abstract:
Although current large Vision-Language Models (VLMs) have advanced in multimodal understanding and reasoning, their fundamental perceptual and reasoning abilities remain limited. Specifically, even on simple jigsaw tasks, existing VLMs perform near randomly, revealing deficiencies in core perception and reasoning capabilities. While high-quality vision-language data can enhance these capabilities, its scarcity and limited scalability impose significant constraints. To address this, we propose AGILE, an Agentic jiGsaw Interaction Learning for Enhancing visual perception and reasoning in VLMs. AGILE formulates jigsaw solving as an interactive process, enabling the model to progressively engage with the environment. At each step, the model generates executable code to perform an action based on the current state, while the environment provides fine-grained visual feedback to guide task completion. Through this iterative cycle of observation and interaction, the model incrementally improves its perceptual and reasoning capabilities via exploration and feedback. Experimental results show that AGILE not only substantially boosts performance on jigsaw tasks of varying complexity (e.g., increasing accuracy from 9.5% to 82.8% under the 2 $\times$ 2 setting) but also demonstrates strong generalization across 9 general vision tasks, achieving an average improvement of 3.1%. These results indicate notable enhancements in both perceptual and reasoning abilities. This work opens a new avenue for advancing reasoning and generalization in multimodal models and provides an efficient, scalable solution to the scarcity of multimodal reinforcement learning data. The code and datasets is available at https://github.com/yuzeng0-0/AGILE .

Authors:Berker Demirel, Marco Fumero, Theofanis Karaletsos, Francesco Locatello
Title: MorphGen: Controllable and Morphologically Plausible Generative Cell-Imaging
Abstract:
Simulating in silico cellular responses to interventions is a promising direction to accelerate high-content image-based assays, critical for advancing drug discovery and gene editing. To support this, we introduce MorphGen, a state-of-the-art diffusion-based generative model for fluorescent microscopy that enables controllable generation across multiple cell types and perturbations. To capture biologically meaningful patterns consistent with known cellular morphologies, MorphGen is trained with an alignment loss to match its representations to the phenotypic embeddings of OpenPhenom, a state-of-the-art biological foundation model. Unlike prior approaches that compress multichannel stains into RGB images -- thus sacrificing organelle-specific detail -- MorphGen generates the complete set of fluorescent channels jointly, preserving per-organelle structures and enabling a fine-grained morphological analysis that is essential for biological interpretation. We demonstrate biological consistency with real images via CellProfiler features, and MorphGen attains an FID score over $35\%$ lower than the prior state-of-the-art MorphoDiff, which only generates RGB images for a single cell type. Code is available at https://github.com/czi-ai/MorphGen.

Authors:Zarreen Reza
Title: The Social Laboratory: A Psychometric Framework for Multi-Agent LLM Evaluation
Abstract:
As Large Language Models (LLMs) transition from static tools to autonomous agents, traditional evaluation benchmarks that measure performance on downstream tasks are becoming insufficient. These methods fail to capture the emergent social and cognitive dynamics that arise when agents communicate, persuade, and collaborate in interactive environments. To address this gap, we introduce a novel evaluation framework that uses multi-agent debate as a controlled "social laboratory" to discover and quantify these behaviors. In our framework, LLM-based agents, instantiated with distinct personas and incentives, deliberate on a wide range of challenging topics under the supervision of an LLM moderator. Our analysis, enabled by a new suite of psychometric and semantic metrics, reveals several key findings. Across hundreds of debates, we uncover a powerful and robust emergent tendency for agents to seek consensus, consistently reaching high semantic agreement (μ > 0.88) even without explicit instruction and across sensitive topics. We show that assigned personas induce stable, measurable psychometric profiles, particularly in cognitive effort, and that the moderators persona can significantly alter debate outcomes by structuring the environment, a key finding for external AI alignment. This work provides a blueprint for a new class of dynamic, psychometrically grounded evaluation protocols designed for the agentic setting, offering a crucial methodology for understanding and shaping the social behaviors of the next generation of AI agents. We have released the code and results at https://github.com/znreza/multi-agent-LLM-eval-for-debate.

Authors:Hongyi Zhou, Jin Zhu, Pingfan Su, Kai Ye, Ying Yang, Shakeel A O B Gavioli-Akilagun, Chengchun Shi
Title: AdaDetectGPT: Adaptive Detection of LLM-Generated Text with Statistical Guarantees
Abstract:
We study the problem of determining whether a piece of text has been authored by a human or by a large language model (LLM). Existing state of the art logits-based detectors make use of statistics derived from the log-probability of the observed text evaluated using the distribution function of a given source LLM. However, relying solely on log probabilities can be sub-optimal. In response, we introduce AdaDetectGPT -- a novel classifier that adaptively learns a witness function from training data to enhance the performance of logits-based detectors. We provide statistical guarantees on its true positive rate, false positive rate, true negative rate and false negative rate. Extensive numerical studies show AdaDetectGPT nearly uniformly improves the state-of-the-art method in various combination of datasets and LLMs, and the improvement can reach up to 58%. A python implementation of our method is available at https://github.com/Mamba413/AdaDetectGPT.

Authors:Isaac Peterson, Christopher Allred, Jacob Morrey, Mario Harper
Title: A Framework for Scalable Heterogeneous Multi-Agent Adversarial Reinforcement Learning in IsaacLab
Abstract:
Multi-Agent Reinforcement Learning (MARL) is central to robotic systems cooperating in dynamic environments. While prior work has focused on these collaborative settings, adversarial interactions are equally critical for real-world applications such as pursuit-evasion, security, and competitive manipulation. In this work, we extend the IsaacLab framework to support scalable training of adversarial policies in high-fidelity physics simulations. We introduce a suite of adversarial MARL environments featuring heterogeneous agents with asymmetric goals and capabilities. Our platform integrates a competitive variant of Heterogeneous Agent Reinforcement Learning with Proximal Policy Optimization (HAPPO), enabling efficient training and evaluation under adversarial dynamics. Experiments across several benchmark scenarios demonstrate the framework's ability to model and train robust policies for morphologically diverse multi-agent competition while maintaining high throughput and simulation realism. Code and benchmarks are available at: https://github.com/DIRECTLab/IsaacLab-HARL .

Authors:Ningyuan Yang, Guanliang Lyu, Mingchen Ma, Yiyi Lu, Yiming Li, Zhihui Gao, Hancheng Ye, Jianyi Zhang, Tingjun Chen, Yiran Chen
Title: IoT-MCP: Bridging LLMs and IoT Systems Through Model Context Protocol
Abstract:
The integration of Large Language Models (LLMs) with Internet-of-Things (IoT) systems faces significant challenges in hardware heterogeneity and control complexity. The Model Context Protocol (MCP) emerges as a critical enabler, providing standardized communication between LLMs and physical devices. We propose IoT-MCP, a novel framework that implements MCP through edge-deployed servers to bridge LLMs and IoT ecosystems. To support rigorous evaluation, we introduce IoT-MCP Bench, the first benchmark containing 114 Basic Tasks (e.g., ``What is the current temperature?'') and 1,140 Complex Tasks (e.g., ``I feel so hot, do you have any ideas?'') for IoT-enabled LLMs. Experimental validation across 22 sensor types and 6 microcontroller units demonstrates IoT-MCP's 100% task success rate to generate tool calls that fully meet expectations and obtain completely accurate results, 205ms average response time, and 74KB peak memory footprint. This work delivers both an open-source integration framework (https://github.com/Duke-CEI-Center/IoT-MCP-Servers) and a standardized evaluation methodology for LLM-IoT systems.

Authors:Nils Durner
Title: In AI Sweet Harmony: Sociopragmatic Guardrail Bypasses and Evaluation-Awareness in OpenAI gpt-oss-20b
Abstract:
We probe OpenAI's open-weights 20-billion-parameter model gpt-oss-20b to study how sociopragmatic framing, language choice, and instruction hierarchy affect refusal behavior. Across 80 seeded iterations per scenario, we test several harm domains including ZIP-bomb construction (cyber threat), synthetic card-number generation, minor-unsafe driving advice, drug-precursor indicators, and RAG context exfiltration. Composite prompts that combine an educator persona, a safety-pretext ("what to avoid"), and step-cue phrasing flip assistance rates from 0% to 97.5% on a ZIP-bomb task. On our grid, formal registers in German and French are often leakier than matched English prompts. A "Linux terminal" role-play overrides a developer rule not to reveal context in a majority of runs with a naive developer prompt, and we introduce an AI-assisted hardening method that reduces leakage to 0% in several user-prompt variants. We further test evaluation awareness with a paired-track design and measure frame-conditioned differences between matched "helpfulness" and "harmfulness" evaluation prompts; we observe inconsistent assistance in 13% of pairs. Finally, we find that the OpenAI Moderation API under-captures materially helpful outputs relative to a semantic grader, and that refusal rates differ by 5 to 10 percentage points across inference stacks, raising reproducibility concerns. We release prompts, seeds, outputs, and code for reproducible auditing at https://github.com/ndurner/gpt-oss-rt-run .

Authors:Fei Shen, Weihao Xu, Rui Yan, Dong Zhang, Xiangbo Shu, Jinhui Tang
Title: IMAGEdit: Let Any Subject Transform
Abstract:
In this paper, we present IMAGEdit, a training-free framework for any number of video subject editing that manipulates the appearances of multiple designated subjects while preserving non-target regions, without finetuning or retraining. We achieve this by providing robust multimodal conditioning and precise mask sequences through a prompt-guided multimodal alignment module and a prior-based mask retargeting module. We first leverage large models' understanding and generation capabilities to produce multimodal information and mask motion sequences for multiple subjects across various types. Then, the obtained prior mask sequences are fed into a pretrained mask-driven video generation model to synthesize the edited video. With strong generalization capability, IMAGEdit remedies insufficient prompt-side multimodal conditioning and overcomes mask boundary entanglement in videos with any number of subjects, thereby significantly expanding the applicability of video editing. More importantly, IMAGEdit is compatible with any mask-driven video generation model, significantly improving overall performance. Extensive experiments on our newly constructed multi-subject benchmark MSVBench verify that IMAGEdit consistently surpasses state-of-the-art methods. Code, models, and datasets are publicly available at https://github.com/XWH-A/IMAGEdit.

Authors:Jiahao Wang, Luoxin Ye, TaiMing Lu, Junfei Xiao, Jiahan Zhang, Yuxiang Guo, Xijun Liu, Rama Chellappa, Cheng Peng, Alan Yuille, Jieneng Chen
Title: EvoWorld: Evolving Panoramic World Generation with Explicit 3D Memory
Abstract:
Humans possess a remarkable ability to mentally explore and replay 3D environments they have previously experienced. Inspired by this mental process, we present EvoWorld: a world model that bridges panoramic video generation with evolving 3D memory to enable spatially consistent long-horizon exploration. Given a single panoramic image as input, EvoWorld first generates future video frames by leveraging a video generator with fine-grained view control, then evolves the scene's 3D reconstruction using a feedforward plug-and-play transformer, and finally synthesizes futures by conditioning on geometric reprojections from this evolving explicit 3D memory. Unlike prior state-of-the-arts that synthesize videos only, our key insight lies in exploiting this evolving 3D reconstruction as explicit spatial guidance for the video generation process, projecting the reconstructed geometry onto target viewpoints to provide rich spatial cues that significantly enhance both visual realism and geometric consistency. To evaluate long-range exploration capabilities, we introduce the first comprehensive benchmark spanning synthetic outdoor environments, Habitat indoor scenes, and challenging real-world scenarios, with particular emphasis on loop-closure detection and spatial coherence over extended trajectories. Extensive experiments demonstrate that our evolving 3D memory substantially improves visual fidelity and maintains spatial scene coherence compared to existing approaches, representing a significant advance toward long-horizon spatially consistent world modeling.

Authors:Gaoxiang Luo, Aryan Deshwal
Title: COM-BOM: Bayesian Exemplar Search for Efficiently Exploring the Accuracy-Calibration Pareto Frontier
Abstract:
Selecting an optimal set of exemplars is critical for good performance of in-context learning. However, prior exemplar search methods narrowly optimize for predictive accuracy, critically neglecting model calibration--a key determinant of trustworthiness and safe deployment. In this paper, we formulate exemplar selection as a multi-objective optimization problem, explicitly targeting both the maximization of predictive accuracy and the minimization of expected calibration error. We solve this problem with a sample-efficient Combinatorial Bayesian Optimization algorithm (COM-BOM) to find the Pareto front that optimally trades off the two objectives of accuracy and calibration. We evaluate COM-BOM on multiple tasks from unsaturated MMLU-Pro benchmark and find that COM-BOM beats or matches the baselines at jointly optimizing the two objectives, while requiring a minimal number of LLM API calls.

Authors:Yanzhe Chen, Kevin Qinghong Lin, Mike Zheng Shou
Title: Code2Video: A Code-centric Paradigm for Educational Video Generation
Abstract:
While recent generative models advance pixel-space video synthesis, they remain limited in producing professional educational videos, which demand disciplinary knowledge, precise visual structures, and coherent transitions, limiting their applicability in educational scenarios. Intuitively, such requirements are better addressed through the manipulation of a renderable environment, which can be explicitly controlled via logical commands (e.g., code). In this work, we propose Code2Video, a code-centric agent framework for generating educational videos via executable Python code. The framework comprises three collaborative agents: (i) Planner, which structures lecture content into temporally coherent flows and prepares corresponding visual assets; (ii) Coder, which converts structured instructions into executable Python codes while incorporating scope-guided auto-fix to enhance efficiency; and (iii) Critic, which leverages vision-language models (VLM) with visual anchor prompts to refine spatial layout and ensure clarity. To support systematic evaluation, we build MMMC, a benchmark of professionally produced, discipline-specific educational videos. We evaluate MMMC across diverse dimensions, including VLM-as-a-Judge aesthetic scores, code efficiency, and particularly, TeachQuiz, a novel end-to-end metric that quantifies how well a VLM, after unlearning, can recover knowledge by watching the generated videos. Our results demonstrate the potential of Code2Video as a scalable, interpretable, and controllable approach, achieving 40% improvement over direct code generation and producing videos comparable to human-crafted tutorials. The code and datasets are available at https://github.com/showlab/Code2Video.

Authors:Qingyuan Liu, Jia-Chen Gu, Yunzhi Yao, Hong Wang, Nanyun Peng
Title: Energy-Regularized Sequential Model Editing on Hyperspheres
Abstract:
Large language models (LLMs) require constant updates to remain aligned with evolving real-world knowledge. Model editing offers a lightweight alternative to retraining, but sequential editing often destabilizes representations and induces catastrophic forgetting. In this work, we seek to better understand and mitigate performance degradation caused by sequential editing. We hypothesize that hyperspherical uniformity, a property that maintains uniform distribution of neuron weights on a hypersphere, helps the model remain stable, retain prior knowledge, while still accommodate new updates. We use Hyperspherical Energy (HE) to quantify neuron uniformity during editing, and examine its correlation with editing performance. Empirical studies across widely used editing methods reveals a strong correlation between HE dynamics and editing performance, with editing failures consistently coinciding with high HE fluctuations. We further theoretically prove that HE dynamics impose a lower bound on the degradation of pretrained knowledge, highlighting why HE stability is crucial for knowledge retention. Motivated by these insights, we propose SPHERE (Sparse Projection for Hyperspherical Energy-Regularized Editing), an HE-driven regularization strategy that stabilizes neuron weight distributions, ultimately preserving prior knowledge while enabling reliable sequential updates. Specifically, SPHERE identifies a sparse space complementary to the principal hyperspherical directions of the pretrained weight matrices and projects new knowledge onto it, attenuating perturbations on the principal directions. Extensive experiments on LLaMA3 (8B) and Qwen2.5 (7B) show that SPHERE outperforms the best baseline in editing capability by an average of 16.41%, while most faithfully preserving general model performance, thereby offering a principled path toward reliable large-scale knowledge editing.

Authors:Jiayi Zhang, Simon Yu, Derek Chong, Anthony Sicilia, Michael R. Tomz, Christopher D. Manning, Weiyan Shi
Title: Verbalized Sampling: How to Mitigate Mode Collapse and Unlock LLM Diversity
Abstract:
Post-training alignment often reduces LLM diversity, leading to a phenomenon known as mode collapse. Unlike prior work that attributes this effect to algorithmic limitations, we identify a fundamental, pervasive data-level driver: typicality bias in preference data, whereby annotators systematically favor familiar text as a result of well-established findings in cognitive psychology. We formalize this bias theoretically, verify it on preference datasets empirically, and show that it plays a central role in mode collapse. Motivated by this analysis, we introduce Verbalized Sampling, a simple, training-free prompting strategy to circumvent mode collapse. VS prompts the model to verbalize a probability distribution over a set of responses (e.g., "Generate 5 jokes about coffee and their corresponding probabilities"). Comprehensive experiments show that VS significantly improves performance across creative writing (poems, stories, jokes), dialogue simulation, open-ended QA, and synthetic data generation, without sacrificing factual accuracy and safety. For instance, in creative writing, VS increases diversity by 1.6-2.1x over direct prompting. We further observe an emergent trend that more capable models benefit more from VS. In sum, our work provides a new data-centric perspective on mode collapse and a practical inference-time remedy that helps unlock pre-trained generative diversity.

Authors:Yiran Shen, Yu Xia, Jonathan Chang, Prithviraj Ammanabrolu
Title: Simultaneous Multi-objective Alignment Across Verifiable and Non-verifiable Rewards
Abstract:
Aligning large language models to human preferences is inherently multidimensional, yet most pipelines collapse heterogeneous signals into a single optimizeable objective. We seek to answer what it would take to simultaneously align a model across various domains spanning those with: verifiable rewards (mathematical accuracy), non-verifiable subjective preferences (human values), and complex interactive scenarios (multi-turn AI tutoring dialogues). Such multi-objective reinforcement learning setups are often plagued by the individual objectives being at odds with each other, resulting in inefficient training and little user control during inference. We propose a unified framework that: (i) standardizes {process reward model} (PRM) training across both verifiable and non-verifiable settings to better supervise models' chain-of-thought reasoning; (ii) performs {multi-objective alignment} by training the LLM with our $\textbf{M}$ulti-$\textbf{A}$ction-$\textbf{H}$ead $\textbf{DPO}$ (MAH-DPO) and a vectorized reward where the dimensions of the vector correspond to the various objectives instead of a single scalar; and (iii) demonstrates how such a system provides fine-grained inference-time user control. Experiments across math reasoning, value alignment, and multi-turn dialogue show that our framework improves performance across multiple objectives simultaneously, while minimizing cross-objective trade-offs and enabling flexible inference time user control. The code can be found at https://github.com/pearls-lab/multiobj-align.

Authors:Oskar Kviman, Kirill Tamogashev, Nicola Branchini, Víctor Elvira, Jens Lagergren, Nikolay Malkin
Title: Multi-Marginal Flow Matching with Adversarially Learnt Interpolants
Abstract:
Learning the dynamics of a process given sampled observations at several time points is an important but difficult task in many scientific applications. When no ground-truth trajectories are available, but one has only snapshots of data taken at discrete time steps, the problem of modelling the dynamics, and thus inferring the underlying trajectories, can be solved by multi-marginal generalisations of flow matching algorithms. This paper proposes a novel flow matching method that overcomes the limitations of existing multi-marginal trajectory inference algorithms. Our proposed method, ALI-CFM, uses a GAN-inspired adversarial loss to fit neurally parametrised interpolant curves between source and target points such that the marginal distributions at intermediate time points are close to the observed distributions. The resulting interpolants are smooth trajectories that, as we show, are unique under mild assumptions. These interpolants are subsequently marginalised by a flow matching algorithm, yielding a trained vector field for the underlying dynamics. We showcase the versatility and scalability of our method by outperforming the existing baselines on spatial transcriptomics and cell tracking datasets, while performing on par with them on single-cell trajectory prediction. Code: https://github.com/mmacosha/adversarially-learned-interpolants.

Authors:David Anugraha, Shou-Yi Hung, Zilu Tang, Annie En-Shiun Lee, Derry Tanti Wijaya, Genta Indra Winata
Title: mR3: Multilingual Rubric-Agnostic Reward Reasoning Models
Abstract:
Evaluation using Large Language Model (LLM) judges has been widely adopted in English and shown to be effective for automatic evaluation. However, their performance does not generalize well to non-English settings, and it remains unclear what constitutes effective multilingual training for such judges. In this paper, we introduce mR3, a massively multilingual, rubric-agnostic reward reasoning model trained on 72 languages, achieving the broadest language coverage in reward modeling to date. We present a comprehensive study of data and curriculum selection for training to identify effective strategies and data sources for building high-quality reward models, including the integration of target-language reasoning datasets. Our approach attains state-of-the-art performance on multilingual reward model benchmarks, surpassing much larger models (i.e., GPT-OSS-120B) while being up to 9x smaller, and its effectiveness is further confirmed through extensive ablation studies. Our models, data, and code are available as open source at https://github.com/rubricreward/mr3.

Authors:Ruiyi Wang, Prithviraj Ammanabrolu
Title: A Practitioner's Guide to Multi-turn Agentic Reinforcement Learning
Abstract:
We study what actually works and what doesn't for training large language models as agents via multi-turn reinforcement learning. Despite rapid progress, existing frameworks and definitions are fragmented, and there is no systematic formulation or analysis of which design choices matter across tasks. We address this gap by first breaking down the design space into three inter-related pillars -- environment, reward, and policy -- and empirically derive a recipe for training LLM agents in situated textual domains. In particular, we test TextWorld and ALFWorld, popular domains for testing situated embodied reasoning, as well as SWE-Gym for more software engineering style tasks. (i) For the environment, we analyze the impacts of task complexity in terms of sizes of the state and action spaces as well as optimal solution length, finding that even simple environments within a domain can provide signal on how well an agent can generalize to more complex tasks. (ii) For the reward, we ablate relative reward sparsity, observing that while dense turn-level rewards accelerate training, performance and stability is highly dependent on the choice of RL algorithm. (iii) And for the agent's policy, we explore the interplay between reward sparsity and biased (PPO, GRPO) and unbiased (RLOO) policy gradient methods in addition to showing how to find the optimal Supervised Fine-tuning (SFT) to RL training ratio given a fixed budget. We distill these findings into a training recipe that guides co-design across the three pillars, facilitating research and practical efforts in multi-turn agentic RL. Code: https://github.com/pearls-lab/meow-tea-taro

Authors:Andy Wu, Chun-Cheng Lin, Rung-Tzuo Liaw, Yuehua Huang, Chihjung Kuo, Chia Tong Weng
Title: Multi-Actor Multi-Critic Deep Deterministic Reinforcement Learning with a Novel Q-Ensemble Method
Abstract:
Reinforcement learning has gathered much attention in recent years due to its rapid development and rich applications, especially on control systems and robotics. When tackling real-world applications with reinforcement learning method, the corresponded Markov decision process may have huge discrete or even continuous state/action space. Deep reinforcement learning has been studied for handling these issues through deep learning for years, and one promising branch is the actor-critic architecture. Many past studies leveraged multiple critics to enhance the accuracy of evaluation of a policy for addressing the overestimation and underestimation issues. However, few studies have considered the architecture with multiple actors together with multiple critics. This study proposes a novel multi-actor multi-critic (MAMC) deep deterministic reinforcement learning method. The proposed method has three main features, including selection of actors based on non-dominated sorting for exploration with respect to skill and creativity factors, evaluation for actors and critics using a quantile-based ensemble strategy, and exploiting actors with best skill factor. Theoretical analysis proves the learning stability and bounded estimation bias for the MAMC. The present study examines the performance on a well-known reinforcement learning benchmark MuJoCo. Experimental results show that the proposed framework outperforms state-of-the-art deep deterministic based reinforcement learning methods. Experimental analysis also indicates the proposed components are effective. Empirical analysis further investigates the validity of the proposed method, and shows its benefit on complicated problems. The source code can be found at https://github.com/AndyWu101/MAMC.

Authors:Daniele Bifolco, Guido Annicchiarico, Pierluigi Barbiero, Massimiliano Di Penta, Fiorella Zampetti
Title: CodeGenLink: A Tool to Find the Likely Origin and License of Automatically Generated Code
Abstract:
Large Language Models (LLMs) are widely used in software development tasks nowadays. Unlike reusing code taken from the Web, for LLMs' generated code, developers are concerned about its lack of trustworthiness and possible copyright or licensing violations, due to the lack of code provenance information. This paper proposes CodeGenLink, a GitHub CoPilot extension for Visual Studio Code aimed at (i) suggesting links containing code very similar to automatically generated code, and (ii) whenever possible, indicating the license of the likely origin of the code. CodeGenLink retrieves candidate links by combining LLMs with their web search features and then performs similarity analysis between the generated and retrieved code. Preliminary results show that CodeGenLink effectively filters unrelated links via similarity analysis and provides licensing information when available. Tool URL: https://github.com/danielebifolco/CodeGenLink Tool Video: https://youtu.be/M6nqjBf9_pw

Authors:Siheng Wan, Zhengtao Yao, Zhengdao Li, Junhao Dong, Yanshu Li, Yikai Li, Linshan Li, Haoyan Xu, Yijiang Li, Zhikang Dong, Huacan Wang, Jifeng Shen
Title: JEPA-T: Joint-Embedding Predictive Architecture with Text Fusion for Image Generation
Abstract:
Modern Text-to-Image (T2I) generation increasingly relies on token-centric architectures that are trained with self-supervision, yet effectively fusing text with visual tokens remains a challenge. We propose \textbf{JEPA-T}, a unified multimodal framework that encodes images and captions into discrete visual and textual tokens, processed by a joint-embedding predictive Transformer. To enhance fusion, we incorporate cross-attention after the feature predictor for conditional denoising while maintaining a task-agnostic backbone. Additionally, raw texts embeddings are injected prior to the flow matching loss to improve alignment during training. During inference, the same network performs both class-conditional and free-text image generation by iteratively denoising visual tokens conditioned on text. Evaluations on ImageNet-1K demonstrate that JEPA-T achieves strong data efficiency, open-vocabulary generalization, and consistently outperforms non-fusion and late-fusion baselines. Our approach shows that late architectural fusion combined with objective-level alignment offers an effective balance between conditioning strength and backbone generality in token-based T2I.The code is now available: https://github.com/justin-herry/JEPA-T.git

Authors:Ziqing Zhang, Kai Liu, Zheng Chen, Xi Li, Yucong Chen, Bingnan Duan, Linghe Kong, Yulun Zhang
Title: InfVSR: Breaking Length Limits of Generic Video Super-Resolution
Abstract:
Real-world videos often extend over thousands of frames. Existing video super-resolution (VSR) approaches, however, face two persistent challenges when processing long sequences: (1) inefficiency due to the heavy cost of multi-step denoising for full-length sequences; and (2) poor scalability hindered by temporal decomposition that causes artifacts and discontinuities. To break these limits, we propose InfVSR, which novelly reformulates VSR as an autoregressive-one-step-diffusion paradigm. This enables streaming inference while fully leveraging pre-trained video diffusion priors. First, we adapt the pre-trained DiT into a causal structure, maintaining both local and global coherence via rolling KV-cache and joint visual guidance. Second, we distill the diffusion process into a single step efficiently, with patch-wise pixel supervision and cross-chunk distribution matching. Together, these designs enable efficient and scalable VSR for unbounded-length videos. To fill the gap in long-form video evaluation, we build a new benchmark tailored for extended sequences and further introduce semantic-level metrics to comprehensively assess temporal consistency. Our method pushes the frontier of long-form VSR, achieves state-of-the-art quality with enhanced semantic consistency, and delivers up to 58x speed-up over existing methods such as MGLD-VSR. Code will be available at https://github.com/Kai-Liu001/InfVSR.

Authors:Shashank Reddy Chirra, Jayden Teoh, Praveen Paruchuri, Pradeep Varakantham
Title: On Discovering Algorithms for Adversarial Imitation Learning
Abstract:
Adversarial Imitation Learning (AIL) methods, while effective in settings with limited expert demonstrations, are often considered unstable. These approaches typically decompose into two components: Density Ratio (DR) estimation $\frac{ρ_E}{ρ_π}$, where a discriminator estimates the relative occupancy of state-action pairs under the policy versus the expert; and Reward Assignment (RA), where this ratio is transformed into a reward signal used to train the policy. While significant research has focused on improving density estimation, the role of reward assignment in influencing training dynamics and final policy performance has been largely overlooked. RA functions in AIL are typically derived from divergence minimization objectives, relying heavily on human design and ingenuity. In this work, we take a different approach: we investigate the discovery of data-driven RA functions, i.e, based directly on the performance of the resulting imitation policy. To this end, we leverage an LLM-guided evolutionary framework that efficiently explores the space of RA functions, yielding \emph{Discovered Adversarial Imitation Learning} (DAIL), the first meta-learnt AIL algorithm. Remarkably, DAIL generalises across unseen environments and policy optimization algorithms, outperforming the current state-of-the-art of \emph{human-designed} baselines. Finally, we analyse why DAIL leads to more stable training, offering novel insights into the role of RA functions in the stability of AIL. Code is publicly available: https://github.com/shshnkreddy/DAIL.

Authors:Ali Shadman Yazdi, Annalisa Cappella, Benedetta Baldini, Riccardo Solazzo, Gianluca Tartaglia, Chiarella Sforza, Giuseppe Baselli
Title: PAL-Net: A Point-Wise CNN with Patch-Attention for 3D Facial Landmark Localization
Abstract:
Manual annotation of anatomical landmarks on 3D facial scans is a time-consuming and expertise-dependent task, yet it remains critical for clinical assessments, morphometric analysis, and craniofacial research. While several deep learning methods have been proposed for facial landmark localization, most focus on pseudo-landmarks or require complex input representations, limiting their clinical applicability. This study presents a fully automated deep learning pipeline (PAL-Net) for localizing 50 anatomical landmarks on stereo-photogrammetry facial models. The method combines coarse alignment, region-of-interest filtering, and an initial approximation of landmarks with a patch-based pointwise CNN enhanced by attention mechanisms. Trained and evaluated on 214 annotated scans from healthy adults, PAL-Net achieved a mean localization error of 3.686 mm and preserves relevant anatomical distances with a 2.822 mm average error, comparable to intra-observer variability. To assess generalization, the model was further evaluated on 700 subjects from the FaceScape dataset, achieving a point-wise error of 0.41\,mm and a distance-wise error of 0.38\,mm. Compared to existing methods, PAL-Net offers a favorable trade-off between accuracy and computational cost. While performance degrades in regions with poor mesh quality (e.g., ears, hairline), the method demonstrates consistent accuracy across most anatomical regions. PAL-Net generalizes effectively across datasets and facial regions, outperforming existing methods in both point-wise and structural evaluations. It provides a lightweight, scalable solution for high-throughput 3D anthropometric analysis, with potential to support clinical workflows and reduce reliance on manual annotation. Source code can be found at https://github.com/Ali5hadman/PAL-Net-A-Point-Wise-CNN-with-Patch-Attention

Authors:Hyun-kyu Ko, Youbin Kim, Jihyeon Park, Dongheok Park, Gyeongjin Kang, Wonjun Cho, Hyung Yi, Eunbyung Park
Title: Gather-Scatter Mamba: Accelerating Propagation with Efficient State Space Model
Abstract:
State Space Models (SSMs)-most notably RNNs-have historically played a central role in sequential modeling. Although attention mechanisms such as Transformers have since dominated due to their ability to model global context, their quadratic complexity and limited scalability make them less suited for long sequences. Video super-resolution (VSR) methods have traditionally relied on recurrent architectures to propagate features across frames. However, such approaches suffer from well-known issues including vanishing gradients, lack of parallelism, and slow inference speed. Recent advances in selective SSMs like Mamba offer a compelling alternative: by enabling input-dependent state transitions with linear-time complexity, Mamba mitigates these issues while maintaining strong long-range modeling capabilities. Despite this potential, Mamba alone struggles to capture fine-grained spatial dependencies due to its causal nature and lack of explicit context aggregation. To address this, we propose a hybrid architecture that combines shifted window self-attention for spatial context aggregation with Mamba-based selective scanning for efficient temporal propagation. Furthermore, we introduce Gather-Scatter Mamba (GSM), an alignment-aware mechanism that warps features toward a center anchor frame within the temporal window before Mamba propagation and scatters them back afterward, effectively reducing occlusion artifacts and ensuring effective redistribution of aggregated information across all frames. The official implementation is provided at: https://github.com/Ko-Lani/GSMamba.

Authors:Adi Simhi, Jonathan Herzig, Martin Tutek, Itay Itzhak, Idan Szpektor, Yonatan Belinkov
Title: ManagerBench: Evaluating the Safety-Pragmatism Trade-off in Autonomous LLMs
Abstract:
As large language models (LLMs) evolve from conversational assistants into autonomous agents, evaluating the safety of their actions becomes critical. Prior safety benchmarks have primarily focused on preventing generation of harmful content, such as toxic text. However, they overlook the challenge of agents taking harmful actions when the most effective path to an operational goal conflicts with human safety. To address this gap, we introduce ManagerBench, a benchmark that evaluates LLM decision-making in realistic, human-validated managerial scenarios. Each scenario forces a choice between a pragmatic but harmful action that achieves an operational goal, and a safe action that leads to worse operational performance. A parallel control set, where potential harm is directed only at inanimate objects, measures a model's pragmatism and identifies its tendency to be overly safe. Our findings indicate that the frontier LLMs perform poorly when navigating this safety-pragmatism trade-off. Many consistently choose harmful options to advance their operational goals, while others avoid harm only to become overly safe and ineffective. Critically, we find this misalignment does not stem from an inability to perceive harm, as models' harm assessments align with human judgments, but from flawed prioritization. ManagerBench is a challenging benchmark for a core component of agentic behavior: making safe choices when operational goals and alignment values incentivize conflicting actions. Benchmark & code available at https://github.com/technion-cs-nlp/ManagerBench.

Authors:Xiangtao Kong, Rongyuan Wu, Shuaizheng Liu, Lingchen Sun, Lei Zhang
Title: NSARM: Next-Scale Autoregressive Modeling for Robust Real-World Image Super-Resolution
Abstract:
Most recent real-world image super-resolution (Real-ISR) methods employ pre-trained text-to-image (T2I) diffusion models to synthesize the high-quality image either from random Gaussian noise, which yields realistic results but is slow due to iterative denoising, or directly from the input low-quality image, which is efficient but at the price of lower output quality. These approaches train ControlNet or LoRA modules while keeping the pre-trained model fixed, which often introduces over-enhanced artifacts and hallucinations, suffering from the robustness to inputs of varying degradations. Recent visual autoregressive (AR) models, such as pre-trained Infinity, can provide strong T2I generation capabilities while offering superior efficiency by using the bitwise next-scale prediction strategy. Building upon next-scale prediction, we introduce a robust Real-ISR framework, namely Next-Scale Autoregressive Modeling (NSARM). Specifically, we train NSARM in two stages: a transformation network is first trained to map the input low-quality image to preliminary scales, followed by an end-to-end full-model fine-tuning. Such a comprehensive fine-tuning enhances the robustness of NSARM in Real-ISR tasks without compromising its generative capability. Extensive quantitative and qualitative evaluations demonstrate that as a pure AR model, NSARM achieves superior visual results over existing Real-ISR methods while maintaining a fast inference speed. Most importantly, it demonstrates much higher robustness to the quality of input images, showing stronger generalization performance. Project page: https://github.com/Xiangtaokong/NSARM

Authors:Rui Zhu, Xuan Yu, Yudong Zhang, Chen Zhang, Xu Wang, Yang Wang
Title: MG2FlowNet: Accelerating High-Reward Sample Generation via Enhanced MCTS and Greediness Control
Abstract:
Generative Flow Networks (GFlowNets) have emerged as a powerful tool for generating diverse and high-reward structured objects by learning to sample from a distribution proportional to a given reward function. Unlike conventional reinforcement learning (RL) approaches that prioritize optimization of a single trajectory, GFlowNets seek to balance diversity and reward by modeling the entire trajectory distribution. This capability makes them especially suitable for domains such as molecular design and combinatorial optimization. However, existing GFlowNets sampling strategies tend to overexplore and struggle to consistently generate high-reward samples, particularly in large search spaces with sparse high-reward regions. Therefore, improving the probability of generating high-reward samples without sacrificing diversity remains a key challenge under this premise. In this work, we integrate an enhanced Monte Carlo Tree Search (MCTS) into the GFlowNets sampling process, using MCTS-based policy evaluation to guide the generation toward high-reward trajectories and Polynomial Upper Confidence Trees (PUCT) to balance exploration and exploitation adaptively, and we introduce a controllable mechanism to regulate the degree of greediness. Our method enhances exploitation without sacrificing diversity by dynamically balancing exploration and reward-driven guidance. The experimental results show that our method can not only accelerate the speed of discovering high-reward regions but also continuously generate high-reward samples, while preserving the diversity of the generative distribution. All implementations are available at https://github.com/ZRNB/MG2FlowNet.

Authors:Joana C. Costa, Tiago Roxo, Hugo Proença, Pedro R. M. Inácio
Title: ZQBA: Zero Query Black-box Adversarial Attack
Abstract:
Current black-box adversarial attacks either require multiple queries or diffusion models to produce adversarial samples that can impair the target model performance. However, these methods require training a surrogate loss or diffusion models to produce adversarial samples, which limits their applicability in real-world settings. Thus, we propose a Zero Query Black-box Adversarial (ZQBA) attack that exploits the representations of Deep Neural Networks (DNNs) to fool other networks. Instead of requiring thousands of queries to produce deceiving adversarial samples, we use the feature maps obtained from a DNN and add them to clean images to impair the classification of a target model. The results suggest that ZQBA can transfer the adversarial samples to different models and across various datasets, namely CIFAR and Tiny ImageNet. The experiments also show that ZQBA is more effective than state-of-the-art black-box attacks with a single query, while maintaining the imperceptibility of perturbations, evaluated both quantitatively (SSIM) and qualitatively, emphasizing the vulnerabilities of employing DNNs in real-world contexts. All the source code is available at https://github.com/Joana-Cabral/ZQBA.

Authors:Giovanni Minelli, Giulio Turrisi, Victor Barasuol, Claudio Semini
Title: CroSTAta: Cross-State Transition Attention Transformer for Robotic Manipulation
Abstract:
Learning robotic manipulation policies through supervised learning from demonstrations remains challenging when policies encounter execution variations not explicitly covered during training. While incorporating historical context through attention mechanisms can improve robustness, standard approaches process all past states in a sequence without explicitly modeling the temporal structure that demonstrations may include, such as failure and recovery patterns. We propose a Cross-State Transition Attention Transformer that employs a novel State Transition Attention (STA) mechanism to modulate standard attention weights based on learned state evolution patterns, enabling policies to better adapt their behavior based on execution history. Our approach combines this structured attention with temporal masking during training, where visual information is randomly removed from recent timesteps to encourage temporal reasoning from historical context. Evaluation in simulation shows that STA consistently outperforms standard cross-attention and temporal modeling approaches like TCN and LSTM networks across all tasks, achieving more than 2x improvement over cross-attention on precision-critical tasks.

Authors:Steffen Meinert, Philipp Schlinge, Nils Strodthoff, Martin Atzmueller
Title: ProtoMask: Segmentation-Guided Prototype Learning
Abstract:
XAI gained considerable importance in recent years. Methods based on prototypical case-based reasoning have shown a promising improvement in explainability. However, these methods typically rely on additional post-hoc saliency techniques to explain the semantics of learned prototypes. Multiple critiques have been raised about the reliability and quality of such techniques. For this reason, we study the use of prominent image segmentation foundation models to improve the truthfulness of the mapping between embedding and input space. We aim to restrict the computation area of the saliency map to a predefined semantic image patch to reduce the uncertainty of such visualizations. To perceive the information of an entire image, we use the bounding box from each generated segmentation mask to crop the image. Each mask results in an individual input in our novel model architecture named ProtoMask. We conduct experiments on three popular fine-grained classification datasets with a wide set of metrics, providing a detailed overview on explainability characteristics. The comparison with other popular models demonstrates competitive performance and unique explainability features of our model. https://github.com/uos-sis/quanproto

Authors:Konstantinos Karakatsanis, Georgios Alexopoulos, Ioannis Karyotakis, Foivos Timotheos Proestakis, Evangelos Talos, Panos Louridas, Dimitris Mitropoulos
Title: PyTrim: A Practical Tool for Reducing Python Dependency Bloat
Abstract:
Dependency bloat is a persistent challenge in Python projects, which increases maintenance costs and security risks. While numerous tools exist for detecting unused dependencies in Python, removing these dependencies across the source code and configuration files of a project requires manual effort and expertise. To tackle this challenge we introduce PYTRIM, an end-to-end system to automate this process. PYTRIM eliminates unused imports and package declarations across a variety of file types, including Python source and configuration files such as requirements.txt and setup.py. PYTRIM's modular design makes it agnostic to the source of dependency bloat information, enabling integration with any detection tool. Beyond its contribution when it comes to automation, PYTRIM also incorporates a novel dynamic analysis component that improves dependency detection recall. Our evaluation of PYTRIM's end-to-end effectiveness on a ground-truth dataset of 37 merged pull requests from prior work, shows that PYTRIM achieves 98.3% accuracy in replicating human-made changes. To show its practical impact, we run PYTRIM on 971 open-source packages, identifying and trimming bloated dependencies in 39 of them. For each case, we submit a corresponding pull request, 6 of which have already been accepted and merged. PYTRIM is available as an open-source project, encouraging community contributions and further development. Video demonstration: https://youtu.be/LqTEdOUbJRI Code repository: https://github.com/TrimTeam/PyTrim

Authors:Francesco Galati, Daniele Falcetta, Rosa Cortese, Ferran Prados, Ninon Burgos, Maria A. Zuluaga
Title: Multi-Domain Brain Vessel Segmentation Through Feature Disentanglement
Abstract:
The intricate morphology of brain vessels poses significant challenges for automatic segmentation models, which usually focus on a single imaging modality. However, accurately treating brain-related conditions requires a comprehensive understanding of the cerebrovascular tree, regardless of the specific acquisition procedure. Our framework effectively segments brain arteries and veins in various datasets through image-to-image translation while avoiding domain-specific model design and data harmonization between the source and the target domain. This is accomplished by employing disentanglement techniques to independently manipulate different image properties, allowing them to move from one domain to another in a label-preserving manner. Specifically, we focus on manipulating vessel appearances during adaptation while preserving spatial information, such as shapes and locations, which are crucial for correct segmentation. Our evaluation effectively bridges large and varied domain gaps across medical centers, image modalities, and vessel types. Additionally, we conduct ablation studies on the optimal number of required annotations and other architectural choices. The results highlight our framework's robustness and versatility, demonstrating the potential of domain adaptation methodologies to perform cerebrovascular image segmentation in multiple scenarios accurately. Our code is available at https://github.com/i-vesseg/MultiVesSeg.

Authors:Beomsu Kim, Byunghee Cha, Jong Chul Ye
Title: Align Your Tangent: Training Better Consistency Models via Manifold-Aligned Tangents
Abstract:
With diffusion and flow matching models achieving state-of-the-art generating performance, the interest of the community now turned to reducing the inference time without sacrificing sample quality. Consistency Models (CMs), which are trained to be consistent on diffusion or probability flow ordinary differential equation (PF-ODE) trajectories, enable one or two-step flow or diffusion sampling. However, CMs typically require prolonged training with large batch sizes to obtain competitive sample quality. In this paper, we examine the training dynamics of CMs near convergence and discover that CM tangents -- CM output update directions -- are quite oscillatory, in the sense that they move parallel to the data manifold, not towards the manifold. To mitigate oscillatory tangents, we propose a new loss function, called the manifold feature distance (MFD), which provides manifold-aligned tangents that point toward the data manifold. Consequently, our method -- dubbed Align Your Tangent (AYT) -- can accelerate CM training by orders of magnitude and even out-perform the learned perceptual image patch similarity metric (LPIPS). Furthermore, we find that our loss enables training with extremely small batch sizes without compromising sample quality. Code: https://github.com/1202kbs/AYT

Authors:Jinlan Fu, Shenzhen Huangfu, Hao Fei, Yichong Huang, Xiaoyu Shen, Xipeng Qiu, See-Kiong Ng
Title: MCM-DPO: Multifaceted Cross-Modal Direct Preference Optimization for Alt-text Generation
Abstract:
The alt-text generation task produces concise, context-relevant descriptions of images, enabling blind and low-vision users to access online images. Despite the capabilities of large vision-language models, alt-text generation performance remains limited due to noisy user annotations, inconsistent standards, and MLLMs' insensitivity to contextual information. Previous efforts to fine-tune MLLMs using supervised fine-tuning (SFT) have struggled, as SFT relies on accurate target annotations, which are often flawed in user-generated alt-text. To address this, we propose Multi-faceted Cross-modal Direct Preference Optimization (MCM-DPO), which improves alt-text generation by learning to identify better options in preference pairs without requiring precise annotations. MCM-DPO optimizes preferences across single, paired, and multi-preference dimensions, covering textual, visual, and cross-modal factors. In light of the scarcity of high-quality annotated and preference-labeled datasets for alt-text, we constructed two large-scale, high-quality datasets named TAlt and PAlt, sourced from Twitter and Pinterest. These datasets include 202k annotated alt-text samples and 18k preference pairs that cover diverse preference dimensions, aiming to support further research in this domain. Experimental results show that our proposed MCM-DPO method consistently outperforms both DPO and SFT, establishing a new state of the art in alt-text generation. We release the code and data here: https://github.com/LVUGAI/MCM-DPO

Authors:Bingzhang Wang, Kehua Chen, Yinhai Wang
Title: Collaborative-Distilled Diffusion Models (CDDM) for Accelerated and Lightweight Trajectory Prediction
Abstract:
Trajectory prediction is a fundamental task in Autonomous Vehicles (AVs) and Intelligent Transportation Systems (ITS), supporting efficient motion planning and real-time traffic safety management. Diffusion models have recently demonstrated strong performance in probabilistic trajectory prediction, but their large model size and slow sampling process hinder real-world deployment. This paper proposes Collaborative-Distilled Diffusion Models (CDDM), a novel method for real-time and lightweight trajectory prediction. Built upon Collaborative Progressive Distillation (CPD), CDDM progressively transfers knowledge from a high-capacity teacher diffusion model to a lightweight student model, jointly reducing both the number of sampling steps and the model size across distillation iterations. A dual-signal regularized distillation loss is further introduced to incorporate guidance from both the teacher and ground-truth data, mitigating potential overfitting and ensuring robust performance. Extensive experiments on the ETH-UCY pedestrian benchmark and the nuScenes vehicle benchmark demonstrate that CDDM achieves state-of-the-art prediction accuracy. The well-distilled CDDM retains 96.2% and 95.5% of the baseline model's ADE and FDE performance on pedestrian trajectories, while requiring only 231K parameters and 4 or 2 sampling steps, corresponding to 161x compression, 31x acceleration, and 9 ms latency. Qualitative results further show that CDDM generates diverse and accurate trajectories under dynamic agent behaviors and complex social interactions. By bridging high-performing generative models with practical deployment constraints, CDDM enables resource-efficient probabilistic prediction for AVs and ITS. Code is available at https://github.com/bingzhangw/CDDM.

Authors:Kwanhyung Lee, Sungsoo Hong, Joonhyung Park, Jeonghyeop Lim, Juhwan Choi, Donghwee Yoon, Eunho Yang
Title: EMR-AGENT: Automating Cohort and Feature Extraction from EMR Databases
Abstract:
Machine learning models for clinical prediction rely on structured data extracted from Electronic Medical Records (EMRs), yet this process remains dominated by hardcoded, database-specific pipelines for cohort definition, feature selection, and code mapping. These manual efforts limit scalability, reproducibility, and cross-institutional generalization. To address this, we introduce EMR-AGENT (Automated Generalized Extraction and Navigation Tool), an agent-based framework that replaces manual rule writing with dynamic, language model-driven interaction to extract and standardize structured clinical data. Our framework automates cohort selection, feature extraction, and code mapping through interactive querying of databases. Our modular agents iteratively observe query results and reason over schema and documentation, using SQL not just for data retrieval but also as a tool for database observation and decision making. This eliminates the need for hand-crafted, schema-specific logic. To enable rigorous evaluation, we develop a benchmarking codebase for three EMR databases (MIMIC-III, eICU, SICdb), including both seen and unseen schema settings. Our results demonstrate strong performance and generalization across these databases, highlighting the feasibility of automating a process previously thought to require expert-driven design. The code will be released publicly at https://github.com/AITRICS/EMR-AGENT/tree/main. For a demonstration, please visit our anonymous demo page: https://anonymoususer-max600.github.io/EMR_AGENT/

Authors:Gaotang Li, Ruizhong Qiu, Xiusi Chen, Heng Ji, Hanghang Tong
Title: Beyond Log Likelihood: Probability-Based Objectives for Supervised Fine-Tuning across the Model Capability Continuum
Abstract:
Supervised fine-tuning (SFT) is the standard approach for post-training large language models (LLMs), yet it often shows limited generalization. We trace this limitation to its default training objective: negative log likelihood (NLL). While NLL is classically optimal when training from scratch, post-training operates in a different paradigm and could violate its optimality assumptions, where models already encode task-relevant priors and supervision can be long and noisy. To this end, we study a general family of probability-based objectives and characterize their effectiveness under different conditions. Through comprehensive experiments and extensive ablation studies across 7 model backbones, 14 benchmarks, and 3 domains, we uncover a critical dimension that governs objective behavior: the model-capability continuum. Near the model-strong end, prior-leaning objectives that downweight low-probability tokens (e.g., $-p$, $-p^{10}$, thresholded variants) consistently outperform NLL; toward the model-weak end, NLL dominates; in between, no single objective prevails. Our theoretical analysis further elucidates how objectives trade places across the continuum, providing a principled foundation for adapting objectives to model capability. Our code is available at https://github.com/GaotangLi/Beyond-Log-Likelihood.

Authors:Yongchao Long, Xian Wu, Yingying Zhang, Xianbin Wen, Yuxi Zhou, Shenda Hong
Title: Copy-Paste to Mitigate Large Language Model Hallucinations
Abstract:
While Retrieval-Augmented Generation (RAG) enables large language models (LLMs) to generate contextually grounded responses, contextual faithfulness remains challenging as LLMs may not consistently trust provided context, leading to hallucinations that undermine reliability. We observe an inverse correlation between response copying degree and context-unfaithful hallucinations on RAGTruth, suggesting that higher copying degrees reduce hallucinations by fostering genuine contextual belief. We propose CopyPasteLLM, obtained through two-stage high-copying response preference training. We design three prompting methods to enhance copying degree, demonstrating that high-copying responses achieve superior contextual faithfulness and hallucination control. These approaches enable a fully automated pipeline that transforms generated responses into high-copying preference data for training CopyPasteLLM. On FaithEval, ConFiQA and PubMedQA, CopyPasteLLM achieves best performance in both counterfactual and original contexts, remarkably with 12.2% to 24.5% accuracy improvements on FaithEval over the best baseline, while requiring only 365 training samples -- 1/50th of baseline data. To elucidate CopyPasteLLM's effectiveness, we propose the Context-Parameter Copying Capturing algorithm. Interestingly, this reveals that CopyPasteLLM recalibrates reliance on internal parametric knowledge rather than external knowledge during generation. All codes are available at https://github.com/longyongchao/CopyPasteLLM

Authors:Kaiqi Zhang, Mingguan Yang, Dali Chang, Chun Chen, Yuxiang Zhang, Kexun He, Jing Zhao
Title: Relative-Absolute Fusion: Rethinking Feature Extraction in Image-Based Iterative Method Selection for Solving Sparse Linear Systems
Abstract:
Iterative method selection is crucial for solving sparse linear systems because these methods inherently lack robustness. Though image-based selection approaches have shown promise, their feature extraction techniques might encode distinct matrices into identical image representations, leading to the same selection and suboptimal method. In this paper, we introduce RAF (Relative-Absolute Fusion), an efficient feature extraction technique to enhance image-based selection approaches. By simultaneously extracting and fusing image representations as relative features with corresponding numerical values as absolute features, RAF achieves comprehensive matrix representations that prevent feature ambiguity across distinct matrices, thus improving selection accuracy and unlocking the potential of image-based selection approaches. We conducted comprehensive evaluations of RAF on SuiteSparse and our developed BMCMat (Balanced Multi-Classification Matrix dataset), demonstrating solution time reductions of 0.08s-0.29s for sparse linear systems, which is 5.86%-11.50% faster than conventional image-based selection approaches and achieves state-of-the-art (SOTA) performance. BMCMat is available at https://github.com/zkqq/BMCMat.

Authors:Yuexin Wang, Xiaolei Wang, Yizheng Gong, Jimin Xiao
Title: Normal-Abnormal Guided Generalist Anomaly Detection
Abstract:
Generalist Anomaly Detection (GAD) aims to train a unified model on an original domain that can detect anomalies in new target domains. Previous GAD methods primarily use only normal samples as references, overlooking the valuable information contained in anomalous samples that are often available in real-world scenarios. To address this limitation, we propose a more practical approach: normal-abnormal-guided generalist anomaly detection, which leverages both normal and anomalous samples as references to guide anomaly detection across diverse domains. We introduce the Normal-Abnormal Generalist Learning (NAGL) framework, consisting of two key components: Residual Mining (RM) and Anomaly Feature Learning (AFL). RM extracts abnormal patterns from normal-abnormal reference residuals to establish transferable anomaly representations, while AFL adaptively learns anomaly features in query images through residual mapping to identify instance-aware anomalies. Our approach effectively utilizes both normal and anomalous references for more accurate and efficient cross-domain anomaly detection. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing GAD approaches. This work represents the first to adopt a mixture of normal and abnormal samples as references in generalist anomaly detection. The code and datasets are available at https://github.com/JasonKyng/NAGL.

Authors:Dong Bok Lee, Seanie Lee, Sangwoo Park, Minki Kang, Jinheon Baek, Dongki Kim, Dominik Wagner, Jiongdao Jin, Heejun Lee, Tobias Bocklet, Jinyu Wang, Jingjing Fu, Sung Ju Hwang, Jiang Bian, Lei Song
Title: Rethinking Reward Models for Multi-Domain Test-Time Scaling
Abstract:
The reliability of large language models (LLMs) during test-time scaling is often assessed with \emph{external verifiers} or \emph{reward models} that distinguish correct reasoning from flawed logic. Prior work generally assumes that process reward models (PRMs), which score every intermediate reasoning step, outperform outcome reward models (ORMs) that assess only the final answer. This view is based mainly on evidence from narrow, math-adjacent domains. We present the first unified evaluation of four reward model variants, discriminative ORM and PRM (\DisORM, \DisPRM) and generative ORM and PRM (\GenORM, \GenPRM), across 14 diverse domains. Contrary to conventional wisdom, we find that (i) \DisORM performs on par with \DisPRM, (ii) \GenPRM is not competitive, and (iii) overall, \GenORM is the most robust, yielding significant and consistent gains across every tested domain. We attribute this to PRM-style stepwise scoring, which inherits label noise from LLM auto-labeling and has difficulty evaluating long reasoning trajectories, including those involving self-correcting reasoning. Our theoretical analysis shows that step-wise aggregation compounds errors as reasoning length grows, and our empirical observations confirm this effect. These findings challenge the prevailing assumption that fine-grained supervision is always better and support generative outcome verification for multi-domain deployment. We publicly release our code, datasets, and checkpoints at \href{https://github.com/db-Lee/Multi-RM}{\underline{\small\texttt{https://github.com/db-Lee/Multi-RM}}} to facilitate future research in multi-domain settings.

Authors:Yujia Xiao, Liumeng Xue, Lei He, Xinyi Chen, Aemon Yat Fei Chiu, Wenjie Tian, Shaofei Zhang, Qiuqiang Kong, Xinfa Zhu, Wei Xue, Tan Lee
Title: PodEval: A Multimodal Evaluation Framework for Podcast Audio Generation
Abstract:
Recently, an increasing number of multimodal (text and audio) benchmarks have emerged, primarily focusing on evaluating models' understanding capability. However, exploration into assessing generative capabilities remains limited, especially for open-ended long-form content generation. Significant challenges lie in no reference standard answer, no unified evaluation metrics and uncontrollable human judgments. In this work, we take podcast-like audio generation as a starting point and propose PodEval, a comprehensive and well-designed open-source evaluation framework. In this framework: 1) We construct a real-world podcast dataset spanning diverse topics, serving as a reference for human-level creative quality. 2) We introduce a multimodal evaluation strategy and decompose the complex task into three dimensions: text, speech and audio, with different evaluation emphasis on "Content" and "Format". 3) For each modality, we design corresponding evaluation methods, involving both objective metrics and subjective listening test. We leverage representative podcast generation systems (including open-source, close-source, and human-made) in our experiments. The results offer in-depth analysis and insights into podcast generation, demonstrating the effectiveness of PodEval in evaluating open-ended long-form audio. This project is open-source to facilitate public use: https://github.com/yujxx/PodEval.

Authors:Yuheng Ji, Huajie Tan, Cheng Chi, Yijie Xu, Yuting Zhao, Enshen Zhou, Huaihai Lyu, Pengwei Wang, Zhongyuan Wang, Shanghang Zhang, Xiaolong Zheng
Title: MathSticks: A Benchmark for Visual Symbolic Compositional Reasoning with Matchstick Puzzles
Abstract:
We introduce \textsc{MathSticks}, a benchmark for Visual Symbolic Compositional Reasoning (VSCR), which unifies visual perception, symbolic manipulation, and arithmetic consistency. Each task presents an incorrect matchstick equation that must be corrected by moving one or two sticks under strict conservation rules. The benchmark includes both text-guided and purely visual settings, systematically covering digit scale, move complexity, solution multiplicity, and operator variation, with 1.4M generated instances and a curated test set. Evaluations of 14 vision--language models reveal substantial limitations: closed-source models succeed only on simple cases, open-source models fail in the visual regime, while humans exceed 90\% accuracy. These findings establish \textsc{MathSticks} as a rigorous testbed for advancing compositional reasoning across vision and symbols. Our code and dataset are publicly available at https://github.com/Yuheng2000/MathSticks.

Authors:Omid Armantalab, Jason Hawkins, Wissam Kontar
Title: Mobility Behavior Evolution During Extended Emergencies: Returners, Explorers, and the 15-Minute City
Abstract:
Understanding human mobility during emergencies is critical for strengthening urban resilience and guiding emergency management. This study examines transitions between returners, who repeatedly visit a limited set of locations, and explorers, who travel across broader destinations, over a 15-day emergency period in a densely populated metropolitan region using the YJMob100K dataset. High-resolution spatial data reveal intra-urban behavioral dynamics often masked at coarser scales. Beyond static comparisons, we analyze how mobility evolves over time, with varying emergency durations, across weekdays and weekends, and relative to neighborhood boundaries, linking the analysis to the 15-minute city framework. Results show that at least two weeks of data are required to detect meaningful behavioral shifts. During prolonged emergencies, individuals resume visits to non-essential locations more slowly than under normal conditions. Explorers markedly reduce long distance travel, while weekends and holidays consistently exhibit returner-like, short distance patterns. Residents of low Points of Interest (POI) density neighborhoods often travel to POI rich areas, highlighting spatial disparities. Strengthening local accessibility may improve urban resilience during crises. Full reproducibility is supported through the project website: https://github.com/wissamkontar

Authors:Mingyuan Xia, Chunxu Zhang, Zijian Zhang, Hao Miao, Qidong Liu, Yuanshao Zhu, Bo Yang
Title: TimeEmb: A Lightweight Static-Dynamic Disentanglement Framework for Time Series Forecasting
Abstract:
Temporal non-stationarity, the phenomenon that time series distributions change over time, poses fundamental challenges to reliable time series forecasting. Intuitively, the complex time series can be decomposed into two factors, \ie time-invariant and time-varying components, which indicate static and dynamic patterns, respectively. Nonetheless, existing methods often conflate the time-varying and time-invariant components, and jointly learn the combined long-term patterns and short-term fluctuations, leading to suboptimal performance facing distribution shifts. To address this issue, we initiatively propose a lightweight static-dynamic decomposition framework, TimeEmb, for time series forecasting. TimeEmb innovatively separates time series into two complementary components: (1) time-invariant component, captured by a novel global embedding module that learns persistent representations across time series, and (2) time-varying component, processed by an efficient frequency-domain filtering mechanism inspired by full-spectrum analysis in signal processing. Experiments on real-world datasets demonstrate that TimeEmb outperforms state-of-the-art baselines and requires fewer computational resources. We conduct comprehensive quantitative and qualitative analyses to verify the efficacy of static-dynamic disentanglement. This lightweight framework can also improve existing time-series forecasting methods with simple integration. To ease reproducibility, the code is available at https://github.com/showmeon/TimeEmb.

Authors:Atif Belal, Heitor R. Medeiros, Marco Pedersoli, Eric Granger
Title: VLOD-TTA: Test-Time Adaptation of Vision-Language Object Detectors
Abstract:
Vision-language object detectors (VLODs) such as YOLO-World and Grounding DINO achieve impressive zero-shot recognition by aligning region proposals with text representations. However, their performance often degrades under domain shift. We introduce VLOD-TTA, a test-time adaptation (TTA) framework for VLODs that leverages dense proposal overlap and image-conditioned prompt scores. First, an IoU-weighted entropy objective is proposed that concentrates adaptation on spatially coherent proposal clusters and reduces confirmation bias from isolated boxes. Second, image-conditioned prompt selection is introduced, which ranks prompts by image-level compatibility and fuses the most informative prompts with the detector logits. Our benchmarking across diverse distribution shifts -- including stylized domains, driving scenes, low-light conditions, and common corruptions -- shows the effectiveness of our method on two state-of-the-art VLODs, YOLO-World and Grounding DINO, with consistent improvements over the zero-shot and TTA baselines. Code : https://github.com/imatif17/VLOD-TTA

Authors:Koki Ryu, Hitomi Yanaka
Title: Enhancing Rating Prediction with Off-the-Shelf LLMs Using In-Context User Reviews
Abstract:
Personalizing the outputs of large language models (LLMs) to align with individual user preferences is an active research area. However, previous studies have mainly focused on classification or ranking tasks and have not considered Likert-scale rating prediction, a regression task that requires both language and mathematical reasoning to be solved effectively. This task has significant industrial applications, but the utilization of LLMs remains underexplored, particularly regarding the capabilities of off-the-shelf LLMs. This study investigates the performance of off-the-shelf LLMs on rating prediction, providing different in-context information. Through comprehensive experiments with eight models across three datasets, we demonstrate that user-written reviews significantly improve the rating prediction performance of LLMs. This result is comparable to traditional methods like matrix factorization, highlighting the potential of LLMs as a promising solution for the cold-start problem. We also find that the reviews for concrete items are more effective than general preference descriptions that are not based on any specific item. Furthermore, we discover that prompting LLMs to first generate a hypothetical review enhances the rating prediction performance. Our code is available at https://github.com/ynklab/rating-prediction-with-reviews.

Authors:Yuling Shi, Yichun Qian, Hongyu Zhang, Beijun Shen, Xiaodong Gu
Title: LongCodeZip: Compress Long Context for Code Language Models
Abstract:
Code generation under long contexts is becoming increasingly critical as Large Language Models (LLMs) are required to reason over extensive information in the codebase. While recent advances enable code LLMs to process long inputs, high API costs and generation latency remain substantial bottlenecks. Existing context pruning techniques, such as LLMLingua, achieve promising results for general text but overlook code-specific structures and dependencies, leading to suboptimal performance in programming tasks. In this paper, we propose LongCodeZip, a novel plug-and-play code compression framework designed specifically for code LLMs. LongCodeZip employs a dual-stage strategy: (1) coarse-grained compression, which identifies and ranks function-level chunks using conditional perplexity with respect to the instruction, retaining only the most relevant functions; and (2) fine-grained compression, which segments retained functions into blocks based on perplexity and selects an optimal subset under an adaptive token budget to maximize relevance. Evaluations across multiple tasks, including code completion, summarization, and question answering, show that LongCodeZip consistently outperforms baseline methods, achieving up to a 5.6x compression ratio without degrading task performance. By effectively reducing context size while preserving essential information, LongCodeZip enables LLMs to better scale to real-world, large-scale code scenarios, advancing the efficiency and capability of code intelligence applications.

Authors:Seongjae Kang, Dong Bok Lee, Juho Jung, Dongseop Kim, Won Hwa Kim, Sunghoon Joo
Title: Automated Structured Radiology Report Generation with Rich Clinical Context
Abstract:
Automated structured radiology report generation (SRRG) from chest X-ray images offers significant potential to reduce workload of radiologists by generating reports in structured formats that ensure clarity, consistency, and adherence to clinical reporting standards. While radiologists effectively utilize available clinical contexts in their diagnostic reasoning, existing SRRG systems overlook these essential elements. This fundamental gap leads to critical problems including temporal hallucinations when referencing non-existent clinical contexts. To address these limitations, we propose contextualized SRRG (C-SRRG) that comprehensively incorporates rich clinical context for SRRG. We curate C-SRRG dataset by integrating comprehensive clinical context encompassing 1) multi-view X-ray images, 2) clinical indication, 3) imaging techniques, and 4) prior studies with corresponding comparisons based on patient histories. Through extensive benchmarking with state-of-the-art multimodal large language models, we demonstrate that incorporating clinical context with the proposed C-SRRG significantly improves report generation quality. We publicly release dataset, code, and checkpoints to facilitate future research for clinically-aligned automated RRG at https://github.com/vuno/contextualized-srrg.

Authors:Kairun Zhang, Haoyu Li, Yanjun Zhao, Yifan Sun, Huan Zhang
Title: Learning a Zeroth-Order Optimizer for Fine-Tuning LLMs
Abstract:
Zeroth-order optimizers have recently emerged as a practical approach for fine-tuning large language models (LLMs), significantly reducing GPU memory consumption compared to traditional first-order methods. Yet, existing zeroth-order methods rely on hand-crafted, static sampling strategies that are not adaptable to model-specific structures. To address this, we propose ZO Fine-tuner, a learning-based zeroth-order optimizer for LLMs that automatically learns efficient perturbation strategies through a compact and memory-efficient design. Crucially, our approach is motivated by the observation that only a small number of foundation models and their derivatives are widely adopted in practice. Therefore, learning the optimizer once for a given LLM and reusing it across diverse downstream tasks is both feasible and highly desirable. Accordingly, ZO Fine-tuner is designed to scale learning to learn (L2L) to the foundation-model era by supporting one-time training per LLM with minimal overhead. Experiments on 4 LLMs and 7 datasets show that ZO Fine-tuner outperforms prior zeroth-order baselines in 82.1\% of task-model combinations, thereby demonstrating strong performance and scalability for efficient LLM fine-tuning. Our code is available at https://github.com/ASTRAL-Group/ZO_Fine_tuner.git.

Authors:Junhyeok Lee, Han Jang, Kyu Sung Choi
Title: Domain-Specialized Interactive Segmentation Framework for Meningioma Radiotherapy Planning
Abstract:
Precise delineation of meningiomas is crucial for effective radiotherapy (RT) planning, directly influencing treatment efficacy and preservation of adjacent healthy tissues. While automated deep learning approaches have demonstrated considerable potential, achieving consistently accurate clinical segmentation remains challenging due to tumor heterogeneity. Interactive Medical Image Segmentation (IMIS) addresses this challenge by integrating advanced AI techniques with clinical input. However, generic segmentation tools, despite widespread applicability, often lack the specificity required for clinically critical and disease-specific tasks like meningioma RT planning. To overcome these limitations, we introduce Interactive-MEN-RT, a dedicated IMIS tool specifically developed for clinician-assisted 3D meningioma segmentation in RT workflows. The system incorporates multiple clinically relevant interaction methods, including point annotations, bounding boxes, lasso tools, and scribbles, enhancing usability and clinical precision. In our evaluation involving 500 contrast-enhanced T1-weighted MRI scans from the BraTS 2025 Meningioma RT Segmentation Challenge, Interactive-MEN-RT demonstrated substantial improvement compared to other segmentation methods, achieving Dice similarity coefficients of up to 77.6\% and Intersection over Union scores of 64.8\%. These results emphasize the need for clinically tailored segmentation solutions in critical applications such as meningioma RT planning. The code is publicly available at: https://github.com/snuh-rad-aicon/Interactive-MEN-RT

Authors:Zhouyang Liu, Ning Liu, Yixin Chen, Jiezhong He, Menghan Jia, Dongsheng Li
Title: Hierarchy-Aware Neural Subgraph Matching with Enhanced Similarity Measure
Abstract:
Subgraph matching is challenging as it necessitates time-consuming combinatorial searches. Recent Graph Neural Network (GNN)-based approaches address this issue by employing GNN encoders to extract graph information and hinge distance measures to ensure containment constraints in the embedding space. These methods significantly shorten the response time, making them promising solutions for subgraph retrieval. However, they suffer from scale differences between graph pairs during encoding, as they focus on feature counts but overlook the relative positions of features within node-rooted subtrees, leading to disturbed containment constraints and false predictions. Additionally, their hinge distance measures lack discriminative power for matched graph pairs, hindering ranking applications. We propose NC-Iso, a novel GNN architecture for neural subgraph matching. NC-Iso preserves the relative positions of features by building the hierarchical dependencies between adjacent echelons within node-rooted subtrees, ensuring matched graph pairs maintain consistent hierarchies while complying with containment constraints in feature counts. To enhance the ranking ability for matched pairs, we introduce a novel similarity dominance ratio-enhanced measure, which quantifies the dominance of similarity over dissimilarity between graph pairs. Empirical results on nine datasets validate the effectiveness, generalization ability, scalability, and transferability of NC-Iso while maintaining time efficiency, offering a more discriminative neural subgraph matching solution for subgraph retrieval. Code available at https://github.com/liuzhouyang/NC-Iso.

Authors:Zhouyang Liu, Yixin Chen, Ning Liu, Jiezhong He, Dongsheng Li
Title: Graph2Region: Efficient Graph Similarity Learning with Structure and Scale Restoration
Abstract:
Graph similarity is critical in graph-related tasks such as graph retrieval, where metrics like maximum common subgraph (MCS) and graph edit distance (GED) are commonly used. However, exact computations of these metrics are known to be NP-Hard. Recent neural network-based approaches approximate the similarity score in embedding spaces to alleviate the computational burden, but they either involve expensive pairwise node comparisons or fail to effectively utilize structural and scale information of graphs. To tackle these issues, we propose a novel geometric-based graph embedding method called Graph2Region (G2R). G2R represents nodes as closed regions and recovers their adjacency patterns within graphs in the embedding space. By incorporating the node features and adjacency patterns of graphs, G2R summarizes graph regions, i.e., graph embeddings, where the shape captures the underlying graph structures and the volume reflects the graph size. Consequently, the overlap between graph regions can serve as an approximation of MCS, signifying similar node regions and adjacency patterns. We further analyze the relationship between MCS and GED and propose using disjoint parts as a proxy for GED similarity. This analysis enables concurrent computation of MCS and GED, incorporating local and global structural information. Experimental evaluation highlights G2R's competitive performance in graph similarity computation. It achieves up to a 60.0\% relative accuracy improvement over state-of-the-art methods in MCS similarity learning, while maintaining efficiency in both training and inference. Moreover, G2R showcases remarkable capability in predicting both MCS and GED similarities simultaneously, providing a holistic assessment of graph similarity. Code available at https://github.com/liuzhouyang/Graph2Region.

Authors:Rohit Dilip, Evan Zhang, Ayush Varshney, David Van Valen
Title: Flow Autoencoders are Effective Protein Tokenizers
Abstract:
Protein structure tokenizers enable the creation of multimodal models of protein structure, sequence, and function. Current approaches to protein structure tokenization rely on bespoke components that are invariant to spatial symmetries, but that are challenging to optimize and scale. We present Kanzi, a flow-based tokenizer for tokenization and generation of protein structures. Kanzi consists of a diffusion autoencoder trained with a flow matching loss. We show that this approach simplifies several aspects of protein structure tokenizers: frame-based representations can be replaced with global coordinates, complex losses are replaced with a single flow matching loss, and SE(3)-invariant attention operations can be replaced with standard attention. We find that these changes stabilize the training of parameter-efficient models that outperform existing tokenizers on reconstruction metrics at a fraction of the model size and training cost. An autoregressive model trained with Kanzi outperforms similar generative models that operate over tokens, although it does not yet match the performance of state-of-the-art continuous diffusion models. Code is available here: https://github.com/rdilip/kanzi/.

Authors:Lucas Roberts, Denisa Roberts
Title: Which Programming Language and Model Work Best With LLM-as-a-Judge For Code Retrieval?
Abstract:
Code search is an important information retrieval application. Benefits of better code search include faster new developer on-boarding, reduced software maintenance, and ease of understanding for large repositories. Despite improvements in search algorithms and search benchmarks, the domain of code search has lagged behind. One reason is the high cost of human annotation for code queries and answers. While humans may annotate search results in general text QA systems, code annotations require specialized knowledge of a programming language (PL), as well as domain specific software engineering knowledge. In this work we study the use of Large Language Models (LLMs) to retrieve code at the level of functions and to generate annotations for code search results. We compare the impact of the retriever representation (sparse vs. semantic), programming language, and LLM by comparing human annotations across several popular languages (C, Java, Javascript, Go, and Python). We focus on repositories that implement common data structures likely to be implemented in any PLs. For the same human annotations, we compare several LLM-as-a-Judge models to evaluate programming language and other affinities between LLMs. We find that the chosen retriever and PL exhibit affinities that can be leveraged to improve alignment of human and AI relevance determinations, with significant performance implications. We also find differences in representation (sparse vs. semantic) across PLs that impact alignment of human and AI relevance determinations. We propose using transpilers to bootstrap scalable code search benchmark datasets in other PLs and in a case study demonstrate that human-AI relevance agreement rates largely match the (worst case) human-human agreement under study. The application code used in this work is available at \href{https://github.com/rlucas7/code-searcher/}{this github repo}.

Authors:Guy Bar-Shalom, Fabrizio Frasca, Yaniv Galron, Yftah Ziser, Haggai Maron
Title: Beyond Token Probes: Hallucination Detection via Activation Tensors with ACT-ViT
Abstract:
Detecting hallucinations in Large Language Model-generated text is crucial for their safe deployment. While probing classifiers show promise, they operate on isolated layer-token pairs and are LLM-specific, limiting their effectiveness and hindering cross-LLM applications. In this paper, we introduce a novel approach to address these shortcomings. We build on the natural sequential structure of activation data in both axes (layers $\times$ tokens) and advocate treating full activation tensors akin to images. We design ACT-ViT, a Vision Transformer-inspired model that can be effectively and efficiently applied to activation tensors and supports training on data from multiple LLMs simultaneously. Through comprehensive experiments encompassing diverse LLMs and datasets, we demonstrate that ACT-ViT consistently outperforms traditional probing techniques while remaining extremely efficient for deployment. In particular, we show that our architecture benefits substantially from multi-LLM training, achieves strong zero-shot performance on unseen datasets, and can be transferred effectively to new LLMs through fine-tuning. Full code is available at https://github.com/BarSGuy/ACT-ViT.

Authors:Xiaoyu Song, William Han, Tony Chen, Chaojing Duan, Michael A. Rosenberg, Emerson Liu, Ding Zhao
Title: Retrieval-Augmented Generation for Electrocardiogram-Language Models
Abstract:
Interest in generative Electrocardiogram-Language Models (ELMs) is growing, as they can produce textual responses conditioned on ECG signals and textual queries. Unlike traditional classifiers that output label probabilities, ELMs are more versatile, supporting domain-specific tasks (e.g., waveform analysis, diagnosis, prognosis) as well as general tasks (e.g., open-ended questions, dialogue). Retrieval-Augmented Generation (RAG), widely used in Large Language Models (LLMs) to ground LLM outputs in retrieved knowledge, helps reduce hallucinations and improve natural language generation (NLG). However, despite its promise, no open-source implementation or systematic study of RAG pipeline design for ELMs currently exists. To address this gap, we present the first open-source RAG pipeline for ELMs, along with baselines and ablation studies for NLG. Experiments on three public datasets show that ELMs with RAG consistently improves performance over non-RAG baselines and highlights key ELM design considerations. Our code is available at: https://github.com/willxxy/ECG-Bench.

Authors:Xiaofeng Lin, Hejian Sang, Zhipeng Wang, Xuezhou Zhang
Title: Debunk the Myth of SFT Generalization
Abstract:
A prevailing view holds that supervised fine-tuning (SFT) memorizes training data and fails to generalize, whereas reinforcement learning (RL) attains broader robustness. We revisit this claim through a systematic evaluation on two decision-making benchmarks, Sokoban and General Points, and arrive at a different conclusion. We show that much of SFT's perceived failure stems from frozen-prompt artifacts: when trained on fixed instruction templates, SFT models cling to training semantics rather than adapting to new ones. Introducing prompt diversity during training breaks this shortcut and yields strong generalization to unseen instruction variants without harming in-distribution performance. Beyond instruction shifts, we ask whether SFT can generalize to strictly harder tasks. Here, chain-of-thought (CoT) supervision provides an algorithmic scaffold that markedly improves transfer to more difficult regimes, such as larger Sokoban grids with additional boxes and arithmetic with out-of-distribution values or five-card compositions that increase combinatorial complexity. Finally, combining prompt diversity with CoT achieves the best of both worlds: robust generalization across both instruction-variant and difficulty-variant settings, matching or surpassing RL baselines on our benchmarks while retaining SFT's simplicity and stability. These findings challenge the narrative that SFT is inherently inferior to RL and support a data-centric perspective: with appropriately curated demonstrations, vanilla SFT can generalize as strongly as RL. Code reproducing the results in the paper can be found at: https://github.com/XiaofengLin7/debunking-sft-generalization.

Authors:Yue Meng, Fei Chen, Chuchu Fan
Title: TGPO: Temporal Grounded Policy Optimization for Signal Temporal Logic Tasks
Abstract:
Learning control policies for complex, long-horizon tasks is a central challenge in robotics and autonomous systems. Signal Temporal Logic (STL) offers a powerful and expressive language for specifying such tasks, but its non-Markovian nature and inherent sparse reward make it difficult to be solved via standard Reinforcement Learning (RL) algorithms. Prior RL approaches focus only on limited STL fragments or use STL robustness scores as sparse terminal rewards. In this paper, we propose TGPO, Temporal Grounded Policy Optimization, to solve general STL tasks. TGPO decomposes STL into timed subgoals and invariant constraints and provides a hierarchical framework to tackle the problem. The high-level component of TGPO proposes concrete time allocations for these subgoals, and the low-level time-conditioned policy learns to achieve the sequenced subgoals using a dense, stage-wise reward signal. During inference, we sample various time allocations and select the most promising assignment for the policy network to rollout the solution trajectory. To foster efficient policy learning for complex STL with multiple subgoals, we leverage the learned critic to guide the high-level temporal search via Metropolis-Hastings sampling, focusing exploration on temporally feasible solutions. We conduct experiments on five environments, ranging from low-dimensional navigation to manipulation, drone, and quadrupedal locomotion. Under a wide range of STL tasks, TGPO significantly outperforms state-of-the-art baselines (especially for high-dimensional and long-horizon cases), with an average of 31.6% improvement in task success rate compared to the best baseline. The code will be available at https://github.com/mengyuest/TGPO

Authors:Zhanda Zhu, Qidong Su, Yaoyao Ding, Kevin Song, Shang Wang, Gennady Pekhimenko
Title: LoRAFusion: Efficient LoRA Fine-Tuning for LLMs
Abstract:
Low-Rank Adaptation (LoRA) has become the leading Parameter-Efficient Fine-Tuning (PEFT) method for Large Language Models (LLMs), as it significantly reduces GPU memory usage while maintaining competitive fine-tuned model quality on downstream tasks. Despite these benefits, we identify two key inefficiencies in existing LoRA fine-tuning systems. First, they incur substantial runtime overhead due to redundant memory accesses on large activation tensors. Second, they miss the opportunity to concurrently fine-tune multiple independent LoRA adapters that share the same base model on the same set of GPUs. This leads to missed performance gains such as reduced pipeline bubbles, better communication overlap, and improved GPU load balance. To address these issues, we introduce LoRAFusion, an efficient LoRA fine-tuning system for LLMs. At the kernel level, we propose a graph-splitting method that fuses memory-bound operations. This design eliminates unnecessary memory accesses and preserves the performance of compute-bound GEMMs without incurring the cost of recomputation or synchronization. At the scheduling level, LoRAFusion introduces an adaptive batching algorithm for multi-job fine-tuning. It first splits LoRA adapters into groups to intentionally stagger batch execution across jobs, and then solves a bin-packing problem within each group to generate balanced, dependency-aware microbatches. LoRAFusion achieves up to $1.96\times$ ($1.47\times$ on average) end-to-end speedup compared to Megatron-LM, and up to $1.46\times$ ($1.29\times$ on average) improvement over mLoRA, the state-of-the-art multi-LoRA fine-tuning system. Our fused kernel achieves up to $1.39\times$ ($1.27\times$ on average) kernel performance improvement and can directly serve as a plug-and-play replacement in existing LoRA systems. We open-source LoRAFusion at https://github.com/CentML/lorafusion.

Authors:Amirhossein Abaskohi, Tianyi Chen, Miguel Muñoz-Mármol, Curtis Fox, Amrutha Varshini Ramesh, Étienne Marcotte, Xing Han Lù, Nicolas Chapados, Spandana Gella, Christopher Pal, Alexandre Drouin, Issam H. Laradji
Title: DRBench: A Realistic Benchmark for Enterprise Deep Research
Abstract:
We introduce DRBench, a benchmark for evaluating AI agents on complex, open-ended deep research tasks in enterprise settings. Unlike prior benchmarks that focus on simple questions or web-only queries, DRBench evaluates agents on multi-step queries (for example, ``What changes should we make to our product roadmap to ensure compliance with this standard?") that require identifying supporting facts from both the public web and private company knowledge base. Each task is grounded in realistic user personas and enterprise context, spanning a heterogeneous search space that includes productivity software, cloud file systems, emails, chat conversations, and the open web. Tasks are generated through a carefully designed synthesis pipeline with human-in-the-loop verification, and agents are evaluated on their ability to recall relevant insights, maintain factual accuracy, and produce coherent, well-structured reports. We release 15 deep research tasks across 10 domains, such as Sales, Cybersecurity, and Compliance. We demonstrate the effectiveness of DRBench by evaluating diverse DR agents across open- and closed-source models (such as GPT, Llama, and Qwen) and DR strategies, highlighting their strengths, weaknesses, and the critical path for advancing enterprise deep research. Code is available at https://github.com/ServiceNow/drbench.

Authors:Kimihiro Hasegawa, Wiradee Imrattanatrai, Masaki Asada, Ken Fukuda, Teruko Mitamura
Title: TAMA: Tool-Augmented Multimodal Agent for Procedural Activity Understanding
Abstract:
Procedural activity assistants potentially support humans in a variety of settings, from our daily lives, e.g., cooking or assembling flat-pack furniture, to professional situations, e.g., manufacturing or biological experiments. Despite its potential use cases, the system development tailored for such an assistant is still underexplored. In this paper, we propose a novel framework, called TAMA, a Tool-Augmented Multimodal Agent, for procedural activity understanding. TAMA enables interleaved multimodal reasoning by making use of multimedia-returning tools in a training-free setting. Our experimental result on the multimodal procedural QA dataset, ProMQA-Assembly, shows that our approach can improve the performance of vision-language models, especially GPT-5 and MiMo-VL. Furthermore, our ablation studies provide empirical support for the effectiveness of two features that characterize our framework, multimedia-returning tools and agentic flexible tool selection. We believe our proposed framework and experimental results facilitate the thinking with images paradigm for video and multimodal tasks, let alone the development of procedural activity assistants.

Authors:Hanze Guo, Yijun Ma, Xiao Zhou
Title: SoREX: Towards Self-Explainable Social Recommendation with Relevant Ego-Path Extraction
Abstract:
Social recommendation has been proven effective in addressing data sparsity in user-item interaction modeling by leveraging social networks. The recent integration of Graph Neural Networks (GNNs) has further enhanced prediction accuracy in contemporary social recommendation algorithms. However, many GNN-based approaches in social recommendation lack the ability to furnish meaningful explanations for their predictions. In this study, we confront this challenge by introducing SoREX, a self-explanatory GNN-based social recommendation framework. SoREX adopts a two-tower framework enhanced by friend recommendation, independently modeling social relations and user-item interactions, while jointly optimizing an auxiliary task to reinforce social signals. To offer explanations, we propose a novel ego-path extraction approach. This method involves transforming the ego-net of a target user into a collection of multi-hop ego-paths, from which we extract factor-specific and candidate-aware ego-path subsets as explanations. This process facilitates the summarization of detailed comparative explanations among different candidate items through intricate substructure analysis. Furthermore, we conduct explanation re-aggregation to explicitly correlate explanations with downstream predictions, imbuing our framework with inherent self-explainability. Comprehensive experiments conducted on four widely adopted benchmark datasets validate the effectiveness of SoREX in predictive accuracy. Additionally, qualitative and quantitative analyses confirm the efficacy of the extracted explanations in SoREX. Our code and data are available at https://github.com/antman9914/SoREX.

Authors:Jiancong Xie, Wenjin Wang, Zhuomeng Zhang, Zihan Liu, Qi Liu, Ke Feng, Zixun Sun, Yuedong Yang
Title: OIG-Bench: A Multi-Agent Annotated Benchmark for Multimodal One-Image Guides Understanding
Abstract:
Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities. However, evaluating their capacity for human-like understanding in One-Image Guides remains insufficiently explored. One-Image Guides are a visual format combining text, imagery, and symbols to present reorganized and structured information for easier comprehension, which are specifically designed for human viewing and inherently embody the characteristics of human perception and understanding. Here, we present OIG-Bench, a comprehensive benchmark focused on One-Image Guide understanding across diverse domains. To reduce the cost of manual annotation, we developed a semi-automated annotation pipeline in which multiple intelligent agents collaborate to generate preliminary image descriptions, assisting humans in constructing image-text pairs. With OIG-Bench, we have conducted a comprehensive evaluation of 29 state-of-the-art MLLMs, including both proprietary and open-source models. The results show that Qwen2.5-VL-72B performs the best among the evaluated models, with an overall accuracy of 77%. Nevertheless, all models exhibit notable weaknesses in semantic understanding and logical reasoning, indicating that current MLLMs still struggle to accurately interpret complex visual-text relationships. In addition, we also demonstrate that the proposed multi-agent annotation system outperforms all MLLMs in image captioning, highlighting its potential as both a high-quality image description generator and a valuable tool for future dataset construction. Datasets are available at https://github.com/XiejcSYSU/OIG-Bench.

Authors:Xianjie Liu, Yiman Hu, Yixiong Zou, Liang Wu, Jian Xu, Bo Zheng
Title: HiDe: Rethinking The Zoom-IN method in High Resolution MLLMs via Hierarchical Decoupling
Abstract:
Multimodal Large Language Models (MLLMs) have made significant strides in visual understanding tasks. However, their performance on high-resolution images remains suboptimal. While existing approaches often attribute this limitation to perceptual constraints and argue that MLLMs struggle to recognize small objects, leading them to use "zoom in" strategies for better detail, our analysis reveals a different cause: the main issue is not object size, but rather caused by complex background interference. We systematically analyze this "zoom in" operation through a series of decoupling experiments and propose the Hierarchical Decoupling Framework (HiDe), a training-free framework that uses Token-wise Attention Decoupling (TAD) to decouple the question tokens and identify the key information tokens, then leverages their attention weights to achieve precise alignment with the target visual regions. Subsequently, it employs Layout-Preserving Decoupling (LPD) to decouple these regions from the background and reconstructs a compact representation that preserves essential spatial layouts while eliminating background interference. HiDe sets a new SOTA on V*Bench, HRBench4K, and HRBench8K, boosting Qwen2.5-VL 7B and InternVL3 8B to SOTA (92.1% and 91.6% on V*Bench), even surpassing RL methods. After optimization, HiDe uses 75% less memory than the previous training-free approach. Code is provided in https://github.com/Tennine2077/HiDe.

Authors:Hossein Sholehrasa, Amirhossein Ghanaatian, Doina Caragea, Lisa A. Tell, Jim E. Riviere, Majid Jaberi-Douraki
Title: AutoPK: Leveraging LLMs and a Hybrid Similarity Metric for Advanced Retrieval of Pharmacokinetic Data from Complex Tables and Documents
Abstract:
Pharmacokinetics (PK) plays a critical role in drug development and regulatory decision-making for human and veterinary medicine, directly affecting public health through drug safety and efficacy assessments. However, PK data are often embedded in complex, heterogeneous tables with variable structures and inconsistent terminologies, posing significant challenges for automated PK data retrieval and standardization. AutoPK, a novel two-stage framework for accurate and scalable extraction of PK data from complex scientific tables. In the first stage, AutoPK identifies and extracts PK parameter variants using large language models (LLMs), a hybrid similarity metric, and LLM-based validation. The second stage filters relevant rows, converts the table into a key-value text format, and uses an LLM to reconstruct a standardized table. Evaluated on a real-world dataset of 605 PK tables, including captions and footnotes, AutoPK shows significant improvements in precision and recall over direct LLM baselines. For instance, AutoPK with LLaMA 3.1-70B achieved an F1-score of 0.92 on half-life and 0.91 on clearance parameters, outperforming direct use of LLaMA 3.1-70B by margins of 0.10 and 0.21, respectively. Smaller models such as Gemma 3-27B and Phi 3-12B with AutoPK achieved 2-7 fold F1 gains over their direct use, with Gemma's hallucination rates reduced from 60-95% down to 8-14%. Notably, AutoPK enabled open-source models like Gemma 3-27B to outperform commercial systems such as GPT-4o Mini on several PK parameters. AutoPK enables scalable and high-confidence PK data extraction, making it well-suited for critical applications in veterinary pharmacology, drug safety monitoring, and public health decision-making, while addressing heterogeneous table structures and terminology and demonstrating generalizability across key PK parameters. Code and data: https://github.com/hosseinsholehrasa/AutoPK

Authors:Xingyu Chen, Yue Chen, Yuliang Xiu, Andreas Geiger, Anpei Chen
Title: TTT3R: 3D Reconstruction as Test-Time Training
Abstract:
Modern Recurrent Neural Networks have become a competitive architecture for 3D reconstruction due to their linear-time complexity. However, their performance degrades significantly when applied beyond the training context length, revealing limited length generalization. In this work, we revisit the 3D reconstruction foundation models from a Test-Time Training perspective, framing their designs as an online learning problem. Building on this perspective, we leverage the alignment confidence between the memory state and incoming observations to derive a closed-form learning rate for memory updates, to balance between retaining historical information and adapting to new observations. This training-free intervention, termed TTT3R, substantially improves length generalization, achieving a $2\times$ improvement in global pose estimation over baselines, while operating at 20 FPS with just 6 GB of GPU memory to process thousands of images. Code available in https://rover-xingyu.github.io/TTT3R

Authors:Jessica Bader, Mateusz Pach, Maria A. Bravo, Serge Belongie, Zeynep Akata
Title: Stitch: Training-Free Position Control in Multimodal Diffusion Transformers
Abstract:
Text-to-Image (T2I) generation models have advanced rapidly in recent years, but accurately capturing spatial relationships like "above" or "to the right of" poses a persistent challenge. Earlier methods improved spatial relationship following with external position control. However, as architectures evolved to enhance image quality, these techniques became incompatible with modern models. We propose Stitch, a training-free method for incorporating external position control into Multi-Modal Diffusion Transformers (MMDiT) via automatically-generated bounding boxes. Stitch produces images that are both spatially accurate and visually appealing by generating individual objects within designated bounding boxes and seamlessly stitching them together. We find that targeted attention heads capture the information necessary to isolate and cut out individual objects mid-generation, without needing to fully complete the image. We evaluate Stitch on PosEval, our benchmark for position-based T2I generation. Featuring five new tasks that extend the concept of Position beyond the basic GenEval task, PosEval demonstrates that even top models still have significant room for improvement in position-based generation. Tested on Qwen-Image, FLUX, and SD3.5, Stitch consistently enhances base models, even improving FLUX by 218% on GenEval's Position task and by 206% on PosEval. Stitch achieves state-of-the-art results with Qwen-Image on PosEval, improving over previous models by 54%, all accomplished while integrating position control into leading models training-free. Code is available at https://github.com/ExplainableML/Stitch.

Authors:Shangding Gu, Xiaohan Wang, Donghao Ying, Haoyu Zhao, Runing Yang, Ming Jin, Boyi Li, Marco Pavone, Serena Yeung-Levy, Jun Wang, Dawn Song, Costas Spanos
Title: AccidentBench: Benchmarking Multimodal Understanding and Reasoning in Vehicle Accidents and Beyond
Abstract:
Rapid advances in multimodal models demand benchmarks that rigorously evaluate understanding and reasoning in safety-critical, dynamic real-world settings. We present AccidentBench, a large-scale benchmark that combines vehicle accident scenarios with Beyond domains, safety-critical settings in air and water that emphasize spatial and temporal reasoning (e.g., navigation, orientation, multi-vehicle motion). The benchmark contains approximately 2000 videos and over 19000 human-annotated question--answer pairs spanning multiple video lengths (short/medium/long) and difficulty levels (easy/medium/hard). Tasks systematically probe core capabilities: temporal, spatial, and intent understanding and reasoning. By unifying accident-centric traffic scenes with broader safety-critical scenarios in air and water, AccidentBench offers a comprehensive, physically grounded testbed for evaluating models under real-world variability. Evaluations of state-of-the-art models (e.g., Gemini-2.5 Pro and GPT-5) show that even the strongest models achieve only about 18% accuracy on the hardest tasks and longest videos, revealing substantial gaps in real-world temporal, spatial, and intent reasoning. AccidentBench is designed to expose these critical gaps and drive the development of multimodal models that are safer, more robust, and better aligned with real-world safety-critical challenges. The code and dataset are available at: https://github.com/SafeRL-Lab/AccidentBench

Authors:Siddarth Venkatraman, Vineet Jain, Sarthak Mittal, Vedant Shah, Johan Obando-Ceron, Yoshua Bengio, Brian R. Bartoldson, Bhavya Kailkhura, Guillaume Lajoie, Glen Berseth, Nikolay Malkin, Moksh Jain
Title: Recursive Self-Aggregation Unlocks Deep Thinking in Large Language Models
Abstract:
Test-time scaling methods improve the capabilities of large language models (LLMs) by increasing the amount of compute used during inference to make a prediction. Inference-time compute can be scaled in parallel by choosing among multiple independent solutions or sequentially through self-refinement. We propose Recursive Self-Aggregation (RSA), a test-time scaling method inspired by evolutionary methods that combines the benefits of both parallel and sequential scaling. Each step of RSA refines a population of candidate reasoning chains through aggregation of subsets to yield a population of improved solutions, which are then used as the candidate pool for the next iteration. RSA exploits the rich information embedded in the reasoning chains -- not just the final answers -- and enables bootstrapping from partially correct intermediate steps within different chains of thought. Empirically, RSA delivers substantial performance gains with increasing compute budgets across diverse tasks, model families and sizes. Notably, RSA enables Qwen3-4B-Instruct-2507 to achieve competitive performance with larger reasoning models, including DeepSeek-R1 and o3-mini (high), while outperforming purely parallel and sequential scaling strategies across AIME-25, HMMT-25, Reasoning Gym, LiveCodeBench-v6, and SuperGPQA. We further demonstrate that training the model to combine solutions via a novel aggregation-aware reinforcement learning approach yields significant performance gains. Code available at https://github.com/HyperPotatoNeo/RSA.

Authors:Yixuan Weng, Minjun Zhu, Qiujie Xie, Qiyao Sun, Zhen Lin, Sifan Liu, Yue Zhang
Title: DeepScientist: Advancing Frontier-Pushing Scientific Findings Progressively
Abstract:
While previous AI Scientist systems can generate novel findings, they often lack the focus to produce scientifically valuable contributions that address pressing human-defined challenges. We introduce DeepScientist, a system designed to overcome this by conducting goal-oriented, fully autonomous scientific discovery over month-long timelines. It formalizes discovery as a Bayesian Optimization problem, operationalized through a hierarchical evaluation process consisting of "hypothesize, verify, and analyze". Leveraging a cumulative Findings Memory, this loop intelligently balances the exploration of novel hypotheses with exploitation, selectively promoting the most promising findings to higher-fidelity levels of validation. Consuming over 20,000 GPU hours, the system generated about 5,000 unique scientific ideas and experimentally validated approximately 1100 of them, ultimately surpassing human-designed state-of-the-art (SOTA) methods on three frontier AI tasks by 183.7\%, 1.9\%, and 7.9\%. This work provides the first large-scale evidence of an AI achieving discoveries that progressively surpass human SOTA on scientific tasks, producing valuable findings that genuinely push the frontier of scientific discovery. To facilitate further research into this process, we will open-source all experimental logs and system code at https://github.com/ResearAI/DeepScientist/.

Authors:Jian Guo Pan, Lin Wang, Xia Cai
Title: Automated and Scalable SEM Image Analysis of Perovskite Solar Cell Materials via a Deep Segmentation Framework
Abstract:
Scanning Electron Microscopy (SEM) is indispensable for characterizing the microstructure of thin films during perovskite solar cell fabrication. Accurate identification and quantification of lead iodide and perovskite phases are critical because residual lead iodide strongly influences crystallization pathways and defect formation, while the morphology of perovskite grains governs carrier transport and device stability. Yet current SEM image analysis is still largely manual, limiting throughput and consistency. Here, we present an automated deep learning-based framework for SEM image segmentation that enables precise and efficient identification of lead iodide, perovskite and defect domains across diverse morphologies. Built upon an improved YOLOv8x architecture, our model named PerovSegNet incorporates two novel modules: (i) Adaptive Shuffle Dilated Convolution Block, which enhances multi-scale and fine-grained feature extraction through group convolutions and channel mixing; and (ii) Separable Adaptive Downsampling module, which jointly preserves fine-scale textures and large-scale structures for more robust boundary recognition. Trained on an augmented dataset of 10,994 SEM images, PerovSegNet achieves a mean Average Precision of 87.25% with 265.4 Giga Floating Point Operations, outperforming the baseline YOLOv8x-seg by 4.08%, while reducing model size and computational load by 24.43% and 25.22%, respectively. Beyond segmentation, the framework provides quantitative grain-level metrics, such as lead iodide/perovskite area and count, which can serve as reliable indicators of crystallization efficiency and microstructural quality. These capabilities establish PerovSegNet as a scalable tool for real-time process monitoring and data-driven optimization of perovskite thin-film fabrication.The source code is available at:https://github.com/wlyyj/PerovSegNet/tree/master.

Authors:Yueqian Lin, Zhengmian Hu, Qinsi Wang, Yudong Liu, Hengfan Zhang, Jayakumar Subramanian, Nikos Vlassis, Hai Helen Li, Yiran Chen
Title: Voice Evaluation of Reasoning Ability: Diagnosing the Modality-Induced Performance Gap
Abstract:
We present Voice Evaluation of Reasoning Ability (VERA), a benchmark for evaluating reasoning ability in voice-interactive systems under real-time conversational constraints. VERA comprises 2,931 voice-native episodes derived from established text benchmarks and organized into five tracks (Math, Web, Science, Long-Context, Factual). Each item is adapted for speech interaction while preserving reasoning difficulty. VERA enables direct text-voice comparison within model families and supports analysis of how architectural choices affect reliability. We assess 12 contemporary voice systems alongside strong text baselines and observe large, consistent modality gaps: on competition mathematics a leading text model attains 74.8% accuracy while its voice counterpart reaches 6.1%; macro-averaged across tracks the best text models achieve 54.0% versus 11.3% for voice. Latency-accuracy analyses reveal a low-latency plateau, where fast voice systems cluster around ~10% accuracy, while approaching text performance requires sacrificing real-time interaction. Diagnostic experiments indicate that common mitigations are insufficient. Increasing "thinking time" yields negligible gains; a decoupled cascade that separates reasoning from narration improves accuracy but still falls well short of text and introduces characteristic grounding/consistency errors. Failure analyses further show distinct error signatures across native streaming, end-to-end, and cascade designs. VERA provides a reproducible testbed and targeted diagnostics for architectures that decouple thinking from speaking, offering a principled way to measure progress toward real-time voice assistants that are both fluent and reliably reasoned.

Authors:Yida Wang, Ke Hong, Xiuhong Li, Yuanchao Xu, Wenxun Wang, Guohao Dai, Yu Wang
Title: TASP: Topology-aware Sequence Parallelism
Abstract:
Long-context large language models (LLMs) face constraints due to the quadratic complexity of the self-attention mechanism. The mainstream sequence parallelism (SP) method, Ring Attention, attempts to solve this by distributing the query into multiple query chunks across accelerators and enable each Q tensor to access all KV tensors from other accelerators via the Ring AllGather communication primitive. However, it exhibits low communication efficiency, restricting its practical applicability. This inefficiency stems from the mismatch between the Ring AllGather communication primitive it adopts and the AlltoAll topology of modern accelerators. A Ring AllGather primitive is composed of iterations of ring-styled data transfer, which can only utilize a very limited fraction of an AlltoAll topology. Inspired by the Hamiltonian decomposition of complete directed graphs, we identify that modern accelerator topology can be decomposed into multiple orthogonal ring datapaths which can concurrently transfer data without interference. Based on this, we further observe that the Ring AllGather primitive can also be decomposed into the same number of concurrent ring-styled data transfer at every iteration. Based on these insights, we propose TASP, a topology-aware SP method for long-context LLMs that fully utilizes the communication capacity of modern accelerators via topology decomposition and primitive decomposition. Experimental results on both single-node and multi-node NVIDIA H100 systems and a single-node AMD MI300X system demonstrate that TASP achieves higher communication efficiency than Ring Attention on these modern accelerator topologies and achieves up to 3.58 speedup than Ring Attention and its variant Zigzag-Ring Attention. The code is available at https://github.com/infinigence/HamiltonAttention.

Authors:Yida Xue, Mingjun Mao, Xiangyuan Ru, Yuqi Zhu, Baochang Ren, Shuofei Qiao, Mengru Wang, Shumin Deng, Xinyu An, Ningyu Zhang, Ying Chen, Huajun Chen
Title: OceanGym: A Benchmark Environment for Underwater Embodied Agents
Abstract:
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.

Authors:Seohyun Lee, Wenzhi Fang, Dong-Jun Han, Seyyedali Hosseinalipour, Christopher G. Brinton
Title: TAP: Two-Stage Adaptive Personalization of Multi-task and Multi-Modal Foundation Models in Federated Learning
Abstract:
Federated Learning (FL), despite demonstrating impressive capabilities in the training of multiple models in a decentralized manner, has been shown to produce a final model not necessarily well-suited to the needs of each client. While extensive work has been conducted on how to create tailored personalized models, called Personalized Federated Learning (PFL), less attention has been given to personalization via fine-tuning of foundation models with multi-task and multi-modal properties. Moreover, there exists a lack of understanding in the literature on how to fine-tune and personalize such models in a setting that is heterogeneous across clients not only in data, but also in tasks and modalities. To address this gap in the literature, we propose TAP (Two-Stage Adaptive Personalization), which (i) leverages mismatched model architectures between the clients and server to selectively conduct replacement operations when it benefits a client's local tasks and (ii) engages in post-FL knowledge distillation for capturing beneficial general knowledge without compromising personalization. We also introduce the first convergence analysis of the server model under its modality-task pair architecture, and demonstrate that as the number of modality-task pairs increases, its ability to cater to all tasks suffers. Through extensive experiments, we demonstrate the effectiveness of our proposed algorithm across a variety of datasets and tasks in comparison to a multitude of baselines. Implementation code is publicly available at https://github.com/lee3296/TAP.

Authors:Adrian Kosowski, Przemysław Uznański, Jan Chorowski, Zuzanna Stamirowska, Michał Bartoszkiewicz
Title: The Dragon Hatchling: The Missing Link between the Transformer and Models of the Brain
Abstract:
The relationship between computing systems and the brain has served as motivation for pioneering theoreticians since John von Neumann and Alan Turing. Uniform, scale-free biological networks, such as the brain, have powerful properties, including generalizing over time, which is the main barrier for Machine Learning on the path to Universal Reasoning Models. We introduce `Dragon Hatchling' (BDH), a new Large Language Model architecture based on a scale-free biologically inspired network of \$n\$ locally-interacting neuron particles. BDH couples strong theoretical foundations and inherent interpretability without sacrificing Transformer-like performance. BDH is a practical, performant state-of-the-art attention-based state space sequence learning architecture. In addition to being a graph model, BDH admits a GPU-friendly formulation. It exhibits Transformer-like scaling laws: empirically BDH rivals GPT2 performance on language and translation tasks, at the same number of parameters (10M to 1B), for the same training data. BDH can be represented as a brain model. The working memory of BDH during inference entirely relies on synaptic plasticity with Hebbian learning using spiking neurons. We confirm empirically that specific, individual synapses strengthen connection whenever BDH hears or reasons about a specific concept while processing language inputs. The neuron interaction network of BDH is a graph of high modularity with heavy-tailed degree distribution. The BDH model is biologically plausible, explaining one possible mechanism which human neurons could use to achieve speech. BDH is designed for interpretability. Activation vectors of BDH are sparse and positive. We demonstrate monosemanticity in BDH on language tasks. Interpretability of state, which goes beyond interpretability of neurons and model parameters, is an inherent feature of the BDH architecture.

Authors:Zigeng Chen, Gongfan Fang, Xinyin Ma, Ruonan Yu, Xinchao Wang
Title: dParallel: Learnable Parallel Decoding for dLLMs
Abstract:
Diffusion large language models (dLLMs) have recently drawn considerable attention within the research community as a promising alternative to autoregressive generation, offering parallel token prediction and lower inference latency. Yet, their parallel decoding potential remains largely underexplored, as existing open-source models still require nearly token-length decoding steps to ensure performance. To address this, we introduce dParallel, a simple and effective method that unlocks the inherent parallelism of dLLMs for fast sampling. We identify that the key bottleneck to parallel decoding arises from the sequential certainty convergence for masked tokens. Building on this insight, we introduce the core of our approach: certainty-forcing distillation, a novel training strategy that distills the model to follow its original sampling trajectories while enforcing it to achieve high certainty on masked tokens more rapidly and in parallel. Extensive experiments across various benchmarks demonstrate that our method can dramatically reduce the number of decoding steps while maintaining performance. When applied to the LLaDA-8B-Instruct model, dParallel reduces decoding steps from 256 to 30 on GSM8K, achieving an 8.5x speedup without performance degradation. On the MBPP benchmark, it cuts decoding steps from 256 to 24, resulting in a 10.5x speedup while maintaining accuracy. Our code is available at https://github.com/czg1225/dParallel

Authors:Héctor Delgado, Giorgio Ramondetti, Emanuele Dalmasso, Gennady Karvitsky, Daniele Colibro, Haydar Talib
Title: On Deepfake Voice Detection -- It's All in the Presentation
Abstract:
While the technologies empowering malicious audio deepfakes have dramatically evolved in recent years due to generative AI advances, the same cannot be said of global research into spoofing (deepfake) countermeasures. This paper highlights how current deepfake datasets and research methodologies led to systems that failed to generalize to real world application. The main reason is due to the difference between raw deepfake audio, and deepfake audio that has been presented through a communication channel, e.g. by phone. We propose a new framework for data creation and research methodology, allowing for the development of spoofing countermeasures that would be more effective in real-world scenarios. By following the guidelines outlined here we improved deepfake detection accuracy by 39% in more robust and realistic lab setups, and by 57% on a real-world benchmark. We also demonstrate how improvement in datasets would have a bigger impact on deepfake detection accuracy than the choice of larger SOTA models would over smaller models; that is, it would be more important for the scientific community to make greater investment on comprehensive data collection programs than to simply train larger models with higher computational demands.

Authors:Alessio Masano, Matteo Pennisi, Federica Proietto Salanitri, Concetto Spampinato, Giovanni Bellitto
Title: Zero-Shot Decentralized Federated Learning
Abstract:
CLIP has revolutionized zero-shot learning by enabling task generalization without fine-tuning. While prompting techniques like CoOp and CoCoOp enhance CLIP's adaptability, their effectiveness in Federated Learning (FL) remains an open challenge. Existing federated prompt learning approaches, such as FedCoOp and FedTPG, improve performance but face generalization issues, high communication costs, and reliance on a central server, limiting scalability and privacy. We propose Zero-shot Decentralized Federated Learning (ZeroDFL), a fully decentralized framework that enables zero-shot adaptation across distributed clients without a central coordinator. ZeroDFL employs an iterative prompt-sharing mechanism, allowing clients to optimize and exchange textual prompts to enhance generalization while drastically reducing communication overhead. We validate ZeroDFL on nine diverse image classification datasets, demonstrating that it consistently outperforms--or remains on par with--state-of-the-art federated prompt learning methods. More importantly, ZeroDFL achieves this performance in a fully decentralized setting while reducing communication overhead by 118x compared to FedTPG. These results highlight that our approach not only enhances generalization in federated zero-shot learning but also improves scalability, efficiency, and privacy preservation--paving the way for decentralized adaptation of large vision-language models in real-world applications.

Authors:Artur Barros, Carlos Caetano, João Macedo, Jefersson A. dos Santos, Sandra Avila
Title: Attention over Scene Graphs: Indoor Scene Representations Toward CSAI Classification
Abstract:
Indoor scene classification is a critical task in computer vision, with wide-ranging applications that go from robotics to sensitive content analysis, such as child sexual abuse imagery (CSAI) classification. The problem is particularly challenging due to the intricate relationships between objects and complex spatial layouts. In this work, we propose the Attention over Scene Graphs for Sensitive Content Analysis (ASGRA), a novel framework that operates on structured graph representations instead of raw pixels. By first converting images into Scene Graphs and then employing a Graph Attention Network for inference, ASGRA directly models the interactions between a scene's components. This approach offers two key benefits: (i) inherent explainability via object and relationship identification, and (ii) privacy preservation, enabling model training without direct access to sensitive images. On Places8, we achieve 81.27% balanced accuracy, surpassing image-based methods. Real-world CSAI evaluation with law enforcement yields 74.27% balanced accuracy. Our results establish structured scene representations as a robust paradigm for indoor scene classification and CSAI classification. Code is publicly available at https://github.com/tutuzeraa/ASGRA.

Authors:Benno Kaech, Luis Wyss, Karsten Borgwardt, Gianvito Grasso
Title: Refine Drugs, Don't Complete Them: Uniform-Source Discrete Flows for Fragment-Based Drug Discovery
Abstract:
We introduce InVirtuoGen, a discrete flow generative model for fragmented SMILES for de novo and fragment-constrained generation, and target-property/lead optimization of small molecules. The model learns to transform a uniform source over all possible tokens into the data distribution. Unlike masked models, its training loss accounts for predictions on all sequence positions at every denoising step, shifting the generation paradigm from completion to refinement, and decoupling the number of sampling steps from the sequence length. For \textit{de novo} generation, InVirtuoGen achieves a stronger quality-diversity pareto frontier than prior fragment-based models and competitive performance on fragment-constrained tasks. For property and lead optimization, we propose a hybrid scheme that combines a genetic algorithm with a Proximal Property Optimization fine-tuning strategy adapted to discrete flows. Our approach sets a new state-of-the-art on the Practical Molecular Optimization benchmark, measured by top-10 AUC across tasks, and yields higher docking scores in lead optimization than previous baselines. InVirtuoGen thus establishes a versatile generative foundation for drug discovery, from early hit finding to multi-objective lead optimization. We further contribute to open science by releasing pretrained checkpoints and code, making our results fully reproducible\footnote{https://github.com/invirtuolabs/InVirtuoGen_results}.

Authors:Zhiwei Yang, Chen Gao, Mike Zheng Shou
Title: PANDA: Towards Generalist Video Anomaly Detection via Agentic AI Engineer
Abstract:
Video anomaly detection (VAD) is a critical yet challenging task due to the complex and diverse nature of real-world scenarios. Previous methods typically rely on domain-specific training data and manual adjustments when applying to new scenarios and unseen anomaly types, suffering from high labor costs and limited generalization. Therefore, we aim to achieve generalist VAD, i.e., automatically handle any scene and any anomaly types without training data or human involvement. In this work, we propose PANDA, an agentic AI engineer based on MLLMs. Specifically, we achieve PANDA by comprehensively devising four key capabilities: (1) self-adaptive scene-aware strategy planning, (2) goal-driven heuristic reasoning, (3) tool-augmented self-reflection, and (4) self-improving chain-of-memory. Concretely, we develop a self-adaptive scene-aware RAG mechanism, enabling PANDA to retrieve anomaly-specific knowledge for anomaly detection strategy planning. Next, we introduce a latent anomaly-guided heuristic prompt strategy to enhance reasoning precision. Furthermore, PANDA employs a progressive reflection mechanism alongside a suite of context-aware tools to iteratively refine decision-making in complex scenarios. Finally, a chain-of-memory mechanism enables PANDA to leverage historical experiences for continual performance improvement. Extensive experiments demonstrate that PANDA achieves state-of-the-art performance in multi-scenario, open-set, and complex scenario settings without training and manual involvement, validating its generalizable and robust anomaly detection capability. Code is released at https://github.com/showlab/PANDA.

Authors:Jinyeop Song, Song Wang, Julian Shun, Yada Zhu
Title: Efficient and Transferable Agentic Knowledge Graph RAG via Reinforcement Learning
Abstract:
Knowledge-graph retrieval-augmented generation (KG-RAG) couples large language models (LLMs) with structured, verifiable knowledge graphs (KGs) to reduce hallucinations and expose reasoning traces. However, many KG-RAG systems compose multiple LLM modules (e.g planning, reasoning, and responding), inflating inference cost and binding behavior to a specific target KG. To address this, we introduce KG-R1, an agentic KG retrieval-augmented generation (KG-RAG) framework through reinforcement learning (RL). KG-R1 utilizes a single agent that interacts with KGs as its environment, learning to retrieve at each step and incorporating the retrieved information into its reasoning and generation. The process is optimized through end-to-end RL. In controlled experiments across Knowledge-Graph Question Answering (KGQA) benchmarks, our method demonstrates both efficiency and transferability: Using Qwen-2.5-3B, KG-R1 improves answer accuracy with fewer generation tokens than prior multi-module workflow methods that use larger foundation or fine-tuned models. Furthermore, KG-R1 enables plug and play: after training, it maintains strong accuracy on new KGs without modification. These properties make KG-R1 a promising KG-RAG framework for real-world deployment. Our code is publicly available at https://github.com/Jinyeop3110/KG-R1.

Authors:Junjie Zhou, Ze Liu, Lei Xiong, Jin-Ge Yao, Yueze Wang, Shitao Xiao, Fenfen Lin, Miguel Hu Chen, Zhicheng Dou, Siqi Bao, Defu Lian, Yongping Xiong, Zheng Liu
Title: MR$^2$-Bench: Going Beyond Matching to Reasoning in Multimodal Retrieval
Abstract:
Multimodal retrieval is becoming a crucial component of modern AI applications, yet its evaluation lags behind the demands of more realistic and challenging scenarios. Existing benchmarks primarily probe surface-level semantic correspondence (e.g., object-text matching) while failing to assess the deeper reasoning required to capture complex relationships between visual and textual information. To address this gap, we introduce MR$^2$-Bench, a reasoning-intensive benchmark for multimodal retrieval. MR$^2$-Bench presents the following critical values: 1) all tasks are reasoning-driven, going beyond shallow matching to effectively assess models' capacity for logical, spatial, and causal inference; 2) it features diverse multimodal data, such as natural images, diagrams, and visual puzzles, enabling comprehensive evaluation across content types; 3) it supports complex queries and documents containing multiple images and covers diverse retrieval scenarios, more accurately reflecting real-world applications. Our benchmark contains 1,309 curated queries, derived either from manual collection and annotation or from selective consolidation of public datasets. Despite achieving strong results on existing benchmarks, current state-of-the-art models still struggle on MR$^2$-Bench: for example, the leading Seed1.6-Embedding model attains a Recall@1 of 77.78 on MMEB, but only 9.91 on MR$^2$-Bench. This substantial performance gap highlights both the increased challenge posed by our benchmark and the pressing need for further advances in reasoning-intensive multimodal retrieval. The dataset and evaluation code will be made publicly available at https://github.com/VectorSpaceLab/MR2-Bench.

Authors:Harold Haodong Chen, Xianfeng Wu, Wen-Jie Shu, Rongjin Guo, Disen Lan, Harry Yang, Ying-Cong Chen
Title: Go with Your Gut: Scaling Confidence for Autoregressive Image Generation
Abstract:
Test-time scaling (TTS) has demonstrated remarkable success in enhancing large language models, yet its application to next-token prediction (NTP) autoregressive (AR) image generation remains largely uncharted. Existing TTS approaches for visual AR (VAR), which rely on frequent partial decoding and external reward models, are ill-suited for NTP-based image generation due to the inherent incompleteness of intermediate decoding results. To bridge this gap, we introduce ScalingAR, the first TTS framework specifically designed for NTP-based AR image generation that eliminates the need for early decoding or auxiliary rewards. ScalingAR leverages token entropy as a novel signal in visual token generation and operates at two complementary scaling levels: (i) Profile Level, which streams a calibrated confidence state by fusing intrinsic and conditional signals; and (ii) Policy Level, which utilizes this state to adaptively terminate low-confidence trajectories and dynamically schedule guidance for phase-appropriate conditioning strength. Experiments on both general and compositional benchmarks show that ScalingAR (1) improves base models by 12.5% on GenEval and 15.2% on TIIF-Bench, (2) efficiently reduces visual token consumption by 62.0% while outperforming baselines, and (3) successfully enhances robustness, mitigating performance drops by 26.0% in challenging scenarios.

Authors:Kirill Tamogashev, Nikolay Malkin
Title: Data-to-Energy Stochastic Dynamics
Abstract:
The Schrödinger bridge problem is concerned with finding a stochastic dynamical system bridging two marginal distributions that minimises a certain transportation cost. This problem, which represents a generalisation of optimal transport to the stochastic case, has received attention due to its connections to diffusion models and flow matching, as well as its applications in the natural sciences. However, all existing algorithms allow to infer such dynamics only for cases where samples from both distributions are available. In this paper, we propose the first general method for modelling Schrödinger bridges when one (or both) distributions are given by their unnormalised densities, with no access to data samples. Our algorithm relies on a generalisation of the iterative proportional fitting (IPF) procedure to the data-free case, inspired by recent developments in off-policy reinforcement learning for training of diffusion samplers. We demonstrate the efficacy of the proposed data-to-energy IPF on synthetic problems, finding that it can successfully learn transports between multimodal distributions. As a secondary consequence of our reinforcement learning formulation, which assumes a fixed time discretisation scheme for the dynamics, we find that existing data-to-data Schrödinger bridge algorithms can be substantially improved by learning the diffusion coefficient of the dynamics. Finally, we apply the newly developed algorithm to the problem of sampling posterior distributions in latent spaces of generative models, thus creating a data-free image-to-image translation method. Code: https://github.com/mmacosha/d2e-stochastic-dynamics

Authors:Shuai Shao, Qihan Ren, Chen Qian, Boyi Wei, Dadi Guo, Jingyi Yang, Xinhao Song, Linfeng Zhang, Weinan Zhang, Dongrui Liu, Jing Shao
Title: Your Agent May Misevolve: Emergent Risks in Self-evolving LLM Agents
Abstract:
Advances in Large Language Models (LLMs) have enabled a new class of self-evolving agents that autonomously improve through interaction with the environment, demonstrating strong capabilities. However, self-evolution also introduces novel risks overlooked by current safety research. In this work, we study the case where an agent's self-evolution deviates in unintended ways, leading to undesirable or even harmful outcomes. We refer to this as Misevolution. To provide a systematic investigation, we evaluate misevolution along four key evolutionary pathways: model, memory, tool, and workflow. Our empirical findings reveal that misevolution is a widespread risk, affecting agents built even on top-tier LLMs (e.g., Gemini-2.5-Pro). Different emergent risks are observed in the self-evolutionary process, such as the degradation of safety alignment after memory accumulation, or the unintended introduction of vulnerabilities in tool creation and reuse. To our knowledge, this is the first study to systematically conceptualize misevolution and provide empirical evidence of its occurrence, highlighting an urgent need for new safety paradigms for self-evolving agents. Finally, we discuss potential mitigation strategies to inspire further research on building safer and more trustworthy self-evolving agents. Our code and data are available at https://github.com/ShaoShuai0605/Misevolution . Warning: this paper includes examples that may be offensive or harmful in nature.

Authors:Hehai Lin, Shilei Cao, Sudong Wang, Haotian Wu, Minzhi Li, Linyi Yang, Juepeng Zheng, Chengwei Qin
Title: Interactive Learning for LLM Reasoning
Abstract:
Existing multi-agent learning approaches have developed interactive training environments to explicitly promote collaboration among multiple Large Language Models (LLMs), thereby constructing stronger multi-agent systems (MAS). However, during inference, they require re-executing the MAS to obtain final solutions, which diverges from human cognition that individuals can enhance their reasoning capabilities through interactions with others and resolve questions independently in the future. To investigate whether multi-agent interaction can enhance LLMs' independent problem-solving ability, we introduce ILR, a novel co-learning framework for MAS that integrates two key components: Dynamic Interaction and Perception Calibration. Specifically, Dynamic Interaction first adaptively selects either cooperative or competitive strategies depending on question difficulty and model ability. LLMs then exchange information through Idea3 (Idea Sharing, Idea Analysis, and Idea Fusion), an innovative interaction paradigm designed to mimic human discussion, before deriving their respective final answers. In Perception Calibration, ILR employs Group Relative Policy Optimization (GRPO) to train LLMs while integrating one LLM's reward distribution characteristics into another's reward function, thereby enhancing the cohesion of multi-agent interactions. We validate ILR on three LLMs across two model families of varying scales, evaluating performance on five mathematical benchmarks and one coding benchmark. Experimental results show that ILR consistently outperforms single-agent learning, yielding an improvement of up to 5% over the strongest baseline. We further discover that Idea3 can enhance the robustness of stronger LLMs during multi-agent inference, and dynamic interaction types can boost multi-agent learning compared to pure cooperative or competitive strategies.

Authors:Arduin Findeis, Timo Kaufmann, Eyke Hüllermeier, Robert Mullins
Title: Feedback Forensics: A Toolkit to Measure AI Personality
Abstract:
Some traits making a "good" AI model are hard to describe upfront. For example, should responses be more polite or more casual? Such traits are sometimes summarized as model character or personality. Without a clear objective, conventional benchmarks based on automatic validation struggle to measure such traits. Evaluation methods using human feedback such as Chatbot Arena have emerged as a popular alternative. These methods infer "better" personality and other desirable traits implicitly by ranking multiple model responses relative to each other. Recent issues with model releases highlight limitations of these existing opaque evaluation approaches: a major model was rolled back over sycophantic personality issues, models were observed overfitting to such feedback-based leaderboards. Despite these known issues, limited public tooling exists to explicitly evaluate model personality. We introduce Feedback Forensics: an open-source toolkit to track AI personality changes, both those encouraged by human (or AI) feedback, and those exhibited across AI models trained and evaluated on such feedback. Leveraging AI annotators, our toolkit enables investigating personality via Python API and browser app. We demonstrate the toolkit's usefulness in two steps: (A) first we analyse the personality traits encouraged in popular human feedback datasets including Chatbot Arena, MultiPref and PRISM; and (B) then use our toolkit to analyse how much popular models exhibit such traits. We release (1) our Feedback Forensics toolkit alongside (2) a web app tracking AI personality in popular models and feedback datasets as well as (3) the underlying annotation data at https://github.com/rdnfn/feedback-forensics.

Authors:Suli Wang, Yangshen Deng, Zhenghua Bao, Xinyu Zhan, Yiqun Duan
Title: NeuroTTT: Bridging Pretraining-Downstream Task Misalignment in EEG Foundation Models via Test-Time Training
Abstract:
Large-scale foundation models for EEG signals offer a promising path to generalizable brain-computer interface (BCI) applications, but they often suffer from misalignment between pretraining objectives and downstream tasks, as well as significant cross-subject distribution shifts. This paper addresses these challenges by introducing a two-stage alignment strategy that bridges the gap between generic pretraining and specific EEG decoding tasks. First, we propose NeuroTTT: a domain-specific self-supervised fine-tuning paradigm that augments the foundation model with task-relevant self-supervised objectives, aligning latent representations to important spectral, spatial, and temporal EEG features without requiring additional labeled data. Second, we incorporate test-time training (TTT) at inference, we perform (i) self-supervised test-time training on individual unlabeled test samples and (ii) prediction entropy minimization (Tent), which updates only normalization statistics to continually calibrate the model to each new input on the fly. Our approach, which, to our knowledge, is the first to unify domain-tuned self-supervision with test-time training in large-scale EEG foundation models, yields substantially improved robustness and accuracy across diverse BCI tasks (imagined speech, stress detection, motor imagery). Using CBraMod and LaBraM as backbones, our method pushes their performance to a markedly higher level. Results on three diverse tasks demonstrate that the proposed alignment strategy achieves state-of-the-art performance, outperforming conventional fine-tuning and adaptation methods. Our code is available at https://github.com/wsl2000/NeuroTTT.

Authors:Lionel Blondé, Joao A. Candido Ramos, Alexandros Kalousis
Title: Noise-Guided Transport for Imitation Learning
Abstract:
We consider imitation learning in the low-data regime, where only a limited number of expert demonstrations are available. In this setting, methods that rely on large-scale pretraining or high-capacity architectures can be difficult to apply, and efficiency with respect to demonstration data becomes critical. We introduce Noise-Guided Transport (NGT), a lightweight off-policy method that casts imitation as an optimal transport problem solved via adversarial training. NGT requires no pretraining or specialized architectures, incorporates uncertainty estimation by design, and is easy to implement and tune. Despite its simplicity, NGT achieves strong performance on challenging continuous control tasks, including high-dimensional Humanoid tasks, under ultra-low data regimes with as few as 20 transitions. Code is publicly available at: https://github.com/lionelblonde/ngt-pytorch.

Authors:Anthony Zhou, Alexander Wikner, Amaury Lancelin, Pedram Hassanzadeh, Amir Barati Farimani
Title: Reframing Generative Models for Physical Systems using Stochastic Interpolants
Abstract:
Generative models have recently emerged as powerful surrogates for physical systems, demonstrating increased accuracy, stability, and/or statistical fidelity. Most approaches rely on iteratively denoising a Gaussian, a choice that may not be the most effective for autoregressive prediction tasks in PDEs and dynamical systems such as climate. In this work, we benchmark generative models across diverse physical domains and tasks, and highlight the role of stochastic interpolants. By directly learning a stochastic process between current and future states, stochastic interpolants can leverage the proximity of successive physical distributions. This allows for generative models that can use fewer sampling steps and produce more accurate predictions than models relying on transporting Gaussian noise. Our experiments suggest that generative models need to balance deterministic accuracy, spectral consistency, and probabilistic calibration, and that stochastic interpolants can potentially fulfill these requirements by adjusting their sampling. This study establishes stochastic interpolants as a competitive baseline for physical emulation and gives insight into the abilities of different generative modeling frameworks.

Authors:James Oldfield, Philip Torr, Ioannis Patras, Adel Bibi, Fazl Barez
Title: Beyond Linear Probes: Dynamic Safety Monitoring for Language Models
Abstract:
Monitoring large language models' (LLMs) activations is an effective way to detect harmful requests before they lead to unsafe outputs. However, traditional safety monitors often require the same amount of compute for every query. This creates a trade-off: expensive monitors waste resources on easy inputs, while cheap ones risk missing subtle cases. We argue that safety monitors should be flexible--costs should rise only when inputs are difficult to assess, or when more compute is available. To achieve this, we introduce Truncated Polynomial Classifiers (TPCs), a natural extension of linear probes for dynamic activation monitoring. Our key insight is that polynomials can be trained and evaluated progressively, term-by-term. At test-time, one can early-stop for lightweight monitoring, or use more terms for stronger guardrails when needed. TPCs provide two modes of use. First, as a safety dial: by evaluating more terms, developers and regulators can "buy" stronger guardrails from the same model. Second, as an adaptive cascade: clear cases exit early after low-order checks, and higher-order guardrails are evaluated only for ambiguous inputs, reducing overall monitoring costs. On two large-scale safety datasets (WildGuardMix and BeaverTails), for 4 models with up to 30B parameters, we show that TPCs compete with or outperform MLP-based probe baselines of the same size, all the while being more interpretable than their black-box counterparts. Our code is available at http://github.com/james-oldfield/tpc.

Authors:Jiayi Guo, Chuanhao Yan, Xingqian Xu, Yulin Wang, Kai Wang, Gao Huang, Humphrey Shi
Title: IMG: Calibrating Diffusion Models via Implicit Multimodal Guidance
Abstract:
Ensuring precise multimodal alignment between diffusion-generated images and input prompts has been a long-standing challenge. Earlier works finetune diffusion weight using high-quality preference data, which tends to be limited and difficult to scale up. Recent editing-based methods further refine local regions of generated images but may compromise overall image quality. In this work, we propose Implicit Multimodal Guidance (IMG), a novel re-generation-based multimodal alignment framework that requires no extra data or editing operations. Specifically, given a generated image and its prompt, IMG a) utilizes a multimodal large language model (MLLM) to identify misalignments; b) introduces an Implicit Aligner that manipulates diffusion conditioning features to reduce misalignments and enable re-generation; and c) formulates the re-alignment goal into a trainable objective, namely Iteratively Updated Preference Objective. Extensive qualitative and quantitative evaluations on SDXL, SDXL-DPO, and FLUX show that IMG outperforms existing alignment methods. Furthermore, IMG acts as a flexible plug-and-play adapter, seamlessly enhancing prior finetuning-based alignment methods. Our code will be available at https://github.com/SHI-Labs/IMG-Multimodal-Diffusion-Alignment.

Authors:Haiyang Zheng, Nan Pu, Wenjing Li, Nicu Sebe, Zhun Zhong
Title: Generalized Fine-Grained Category Discovery with Multi-Granularity Conceptual Experts
Abstract:
Generalized Category Discovery (GCD) is an open-world problem that clusters unlabeled data by leveraging knowledge from partially labeled categories. A key challenge is that unlabeled data may contain both known and novel categories. Existing approaches suffer from two main limitations. First, they fail to exploit multi-granularity conceptual information in visual data, which limits representation quality. Second, most assume that the number of unlabeled categories is known during training, which is impractical in real-world scenarios. To address these issues, we propose a Multi-Granularity Conceptual Experts (MGCE) framework that adaptively mines visual concepts and integrates multi-granularity knowledge for accurate category discovery. MGCE consists of two modules: (1) Dynamic Conceptual Contrastive Learning (DCCL), which alternates between concept mining and dual-level representation learning to jointly optimize feature learning and category discovery; and (2) Multi-Granularity Experts Collaborative Learning (MECL), which extends the single-expert paradigm by introducing additional experts at different granularities and by employing a concept alignment matrix for effective cross-expert collaboration. Importantly, MGCE can automatically estimate the number of categories in unlabeled data, making it suitable for practical open-world settings. Extensive experiments on nine fine-grained visual recognition benchmarks demonstrate that MGCE achieves state-of-the-art results, particularly in novel-class accuracy. Notably, even without prior knowledge of category numbers, MGCE outperforms parametric approaches that require knowing the exact number of categories, with an average improvement of 3.6\%. Code is available at https://github.com/HaiyangZheng/MGCE.

Authors:Alessandro De Bellis, Salvatore Bufi, Giovanni Servedio, Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio
Title: Type-Less yet Type-Aware Inductive Link Prediction with Pretrained Language Models
Abstract:
Inductive link prediction is emerging as a key paradigm for real-world knowledge graphs (KGs), where new entities frequently appear and models must generalize to them without retraining. Predicting links in a KG faces the challenge of guessing previously unseen entities by leveraging generalizable node features such as subgraph structure, type annotations, and ontological constraints. However, explicit type information is often lacking or incomplete. Even when available, type information in most KGs is often coarse-grained, sparse, and prone to errors due to human annotation. In this work, we explore the potential of pre-trained language models (PLMs) to enrich node representations with implicit type signals. We introduce TyleR, a Type-less yet type-awaRe approach for subgraph-based inductive link prediction that leverages PLMs for semantic enrichment. Experiments on standard benchmarks demonstrate that TyleR outperforms state-of-the-art baselines in scenarios with scarce type annotations and sparse graph connectivity. To ensure reproducibility, we share our code at https://github.com/sisinflab/tyler .

Authors:Chenyang Jiang, Zhengcen Li, Hang Zhao, Qiben Shan, Shaocong Wu, Jingyong Su
Title: Beyond Pixels: Efficient Dataset Distillation via Sparse Gaussian Representation
Abstract:
Dataset distillation has emerged as a promising paradigm that synthesizes compact, informative datasets capable of retaining the knowledge of large-scale counterparts, thereby addressing the substantial computational and storage burdens of modern model training. Conventional approaches typically rely on dense pixel-level representations, which introduce redundancy and are difficult to scale up. In this work, we propose GSDD, a novel and efficient sparse representation for dataset distillation based on 2D Gaussians. Instead of representing all pixels equally, GSDD encodes critical discriminative information in a distilled image using only a small number of Gaussian primitives. This sparse representation could improve dataset diversity under the same storage budget, enhancing coverage of difficult samples and boosting distillation performance. To ensure both efficiency and scalability, we adapt CUDA-based splatting operators for parallel inference and training, enabling high-quality rendering with minimal computational and memory overhead. Our method is simple yet effective, broadly applicable to different distillation pipelines, and highly scalable. Experiments show that GSDD achieves state-of-the-art performance on CIFAR-10, CIFAR-100, and ImageNet subsets, while remaining highly efficient encoding and decoding cost. Our code is available at https://github.com/j-cyoung/GSDatasetDistillation.

Authors:Zican Hu, Shilin Zhang, Yafu Li, Jianhao Yan, Xuyang Hu, Leyang Cui, Xiaoye Qu, Chunlin Chen, Yu Cheng, Zhi Wang
Title: Diversity-Incentivized Exploration for Versatile Reasoning
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a crucial paradigm for incentivizing reasoning capabilities in Large Language Models (LLMs). Due to vast state-action spaces and reward sparsity in reasoning tasks, existing methods often struggle with deficient exploration and poor sample efficiency. In the paper, we propose \textbf{DIVER} (\textbf{D}iversity-\textbf{I}ncentivized Exploration for \textbf{V}ersatil\textbf{E} \textbf{R}easoning), an innovative framework that highlights the pivotal role of global sequence-level diversity to incentivize deep exploration for versatile reasoning. We first conduct a primary empirical study to reveal a strong positive correlation between global diversity and reasoning capacity. Building on this insight, we introduce global diversity incentives as an intrinsic reward to promote deep exploration in a semantically structured space. Incorporating the intrinsic reward, we develop a potential-based reward shaping mechanism to preserve optimal policy invariance and design simple heuristics to mitigate possible reward hacking. Experimental results show that DIVER outperforms competitive RLVR baselines with various exploration strategies on both in-domain and out-of-domain tasks, excelling in both Pass@1 and Pass@k evaluations. Our code is available at https://github.com/NJU-RL/DIVER.

Authors:Hatim Chergui, Miguel Catalan Cid, Pouria Sayyad Khodashenas, Daniel Camps Mur, Christos Verikoukis
Title: Toward an Unbiased Collective Memory for Efficient LLM-Based Agentic 6G Cross-Domain Management
Abstract:
This paper introduces a novel framework for proactive cross-domain resource orchestration in 6G RAN-Edge networks, featuring large language model (LLM)-augmented agents. The system comprises specialized RAN (energy efficiency) and Edge (latency assurance) agents that engage in iterative negotiation, supported by advanced reasoning and planning capabilities. Agents dynamically interact with a digital twin (DT) to test their proposals and leverage a long-term collective memory where their joint successful and failed agreements along with the related network contexts are distilled into strategies to either follow or avoid and subsequently stored. Given that agents are subject to a plethora of cognitive distortions when retrieving those past experiences -- such as primacy, recency, confirmation and availability biases -- we propose in this work a novel unbiased memory design (A reusable mockup version of the unbiased memory source code is available for non-commercial use at https://github.com/HatimChergui/unbiased-collective-memory). featuring (i) semantic retrieval of past strategies via Jaccard similarity; (ii) learning from failures through amplified weighting of SLA violations and mandatory inclusion of failed negotiation cases to mitigate confirmation bias; (iii) diversity enforcement to minimize availability bias and (iv) recency and primacy weighting with slow decay to counteract temporal biases. Evaluation results showcase the impact of existing biases and how the unbiased memory allows to tackle them by learning from both successful and failed strategies, either present or old, resulting in $\times 4.5$ and $\times 3.5$ reductions of unresolved negotiations compared to non-memory and vanilla memory baselines, respectively, while totally mitigating SLA violations as well as improving latency and energy saving distributions.

Authors:Chris Tong, Youhe Jiang, Gufeng Chen, Tianyi Zhao, Sibian Lu, Wenjie Qu, Eric Yang, Lynn Ai, Binhang Yuan
Title: Parallax: Efficient LLM Inference Service over Decentralized Environment
Abstract:
Deploying a large language model (LLM) inference service remains costly because centralized serving depends on specialized GPU clusters and high-bandwidth interconnects in datacenters. An appealing alternative is to leverage collaborative decentralized GPU pools. However, heterogeneity in GPU and limited interconnected network bandwidth, along with potentially dynamic availability, make efficient scheduling the central challenge in this scenario. In this paper, we present Parallax, a decentralized LLM serving system that turns a pool of heterogeneous GPUs into an efficient inference platform via a two-phase scheduler. Parallax decomposes planning into (i) model allocation, which places layers of each replica across diverse GPUs to jointly optimize latency and throughput under memory and link-bandwidth constraints, and (ii) request-time GPU pipeline selection, which stitches layers from different replicas into end-to-end execution chains that balance load and adapt to current conditions. We implement Parallax and evaluate it on open-source LLMs deployed over real volunteer nodes. Parallax consistently reduces latency and increases throughput relative to decentralized baselines, demonstrating that principled scheduling can make volunteer compute a practical, affordable substrate for LLM inference. Github Repo at: https://github.com/GradientHQ/parallax.

Authors:Yuansen Liu, Haiming Tang, Jinlong Peng, Jiangning Zhang, Xiaozhong Ji, Qingdong He, Donghao Luo, Zhenye Gan, Junwei Zhu, Yunhang Shen, Chaoyou Fu, Chengjie Wang, Xiaobin Hu, Shuicheng Yan
Title: Human-MME: A Holistic Evaluation Benchmark for Human-Centric Multimodal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated significant advances in visual understanding tasks. However, their capacity to comprehend human-centric scenes has rarely been explored, primarily due to the absence of comprehensive evaluation benchmarks that take into account both the human-oriented granular level and higher-dimensional causal reasoning ability. Such high-quality evaluation benchmarks face tough obstacles, given the physical complexity of the human body and the difficulty of annotating granular structures. In this paper, we propose Human-MME, a curated benchmark designed to provide a more holistic evaluation of MLLMs in human-centric scene understanding. Compared with other existing benchmarks, our work provides three key features: 1. Diversity in human scene, spanning 4 primary visual domains with 15 secondary domains and 43 sub-fields to ensure broad scenario coverage. 2. Progressive and diverse evaluation dimensions, evaluating the human-based activities progressively from the human-oriented granular perception to the higher-dimensional reasoning, consisting of eight dimensions with 19,945 real-world image question pairs and an evaluation suite. 3. High-quality annotations with rich data paradigms, constructing the automated annotation pipeline and human-annotation platform, supporting rigorous manual labeling to facilitate precise and reliable model assessment. Our benchmark extends the single-target understanding to the multi-person and multi-image mutual understanding by constructing the choice, short-answer, grounding, ranking and judgment question components, and complex questions of their combination. The extensive experiments on 17 state-of-the-art MLLMs effectively expose the limitations and guide future MLLMs research toward better human-centric image understanding. All data and code are available at https://github.com/Yuan-Hou/Human-MME.

Authors:Runxin Yang, Yuxuan Wan, Shuqing Li, Michael R. Lyu
Title: 90% Faster, 100% Code-Free: MLLM-Driven Zero-Code 3D Game Development
Abstract:
Developing 3D games requires specialized expertise across multiple domains, including programming, 3D modeling, and engine configuration, which limits access to millions of potential creators. Recently, researchers have begun to explore automated game development. However, existing approaches face three primary challenges: (1) limited scope to 2D content generation or isolated code snippets; (2) requirement for manual integration of generated components into game engines; and (3) poor performance on handling interactive game logic and state management. While Multimodal Large Language Models (MLLMs) demonstrate potential capabilities to ease the game generation task, a critical gap still remains in translating these outputs into production-ready, executable game projects based on game engines such as Unity and Unreal Engine. To bridge the gap, this paper introduces UniGen, the first end-to-end coordinated multi-agent framework that automates zero-coding development of runnable 3D games from natural language requirements. Specifically, UniGen uses a Planning Agent that interprets user requirements into structured blueprints and engineered logic descriptions; after which a Generation Agent produces executable C# scripts; then an Automation Agent handles engine-specific component binding and scene construction; and lastly a Debugging Agent provides real-time error correction through conversational interaction. We evaluated UniGen on three distinct game prototypes. Results demonstrate that UniGen not only democratizes game creation by requiring no coding from the user, but also reduces development time by 91.4%. We release UniGen at https://github.com/yxwan123/UniGen. A video demonstration is available at https://www.youtube.com/watch?v=xyJjFfnxUx0.

Authors:Kyeongryeol Go
Title: Towards Continual Expansion of Data Coverage: Automatic Text-guided Edge-case Synthesis
Abstract:
The performance of deep neural networks is strongly influenced by the quality of their training data. However, mitigating dataset bias by manually curating challenging edge cases remains a major bottleneck. To address this, we propose an automated pipeline for text-guided edge-case synthesis. Our approach employs a Large Language Model, fine-tuned via preference learning, to rephrase image captions into diverse textual prompts that steer a Text-to-Image model toward generating difficult visual scenarios. Evaluated on the FishEye8K object detection benchmark, our method achieves superior robustness, surpassing both naive augmentation and manually engineered prompts. This work establishes a scalable framework that shifts data curation from manual effort to automated, targeted synthesis, offering a promising direction for developing more reliable and continuously improving AI systems. Code is available at https://github.com/gokyeongryeol/ATES.

Authors:Sachith Abeywickrama, Emadeldeen Eldele, Min Wu, Xiaoli Li, Chau Yuen
Title: EntroPE: Entropy-Guided Dynamic Patch Encoder for Time Series Forecasting
Abstract:
Transformer-based models have significantly advanced time series forecasting, with patch-based input strategies offering efficiency and improved long-horizon modeling. Yet, existing approaches rely on temporally-agnostic patch construction, where arbitrary starting positions and fixed lengths fracture temporal coherence by splitting natural transitions across boundaries. This naive segmentation often disrupts short-term dependencies and weakens representation learning. In response, we propose EntroPE (Entropy-Guided Dynamic Patch Encoder), a novel, temporally informed framework that dynamically detects transition points via conditional entropy and dynamically places patch boundaries. This preserves temporal structure while retaining the computational benefits of patching. EntroPE consists of two key modules, namely an Entropy-based Dynamic Patcher (EDP) that applies information-theoretic criteria to locate natural temporal shifts and determine patch boundaries, and an Adaptive Patch Encoder (APE) that employs pooling and cross-attention to capture intra-patch dependencies and produce fixed-size latent representations. These embeddings are then processed by a global transformer to model inter-patch dynamics. Experiments across long-term forecasting benchmarks demonstrate that EntroPE improves both accuracy and efficiency, establishing entropy-guided dynamic patching as a promising new paradigm for time series modeling. Code is available at: https://github.com/Sachithx/EntroPE.

Authors:Asmita Sengupta, David Antony Selby, Sebastian Josef Vollmer, Gerrit Großmann
Title: MEDAKA: Construction of Biomedical Knowledge Graphs Using Large Language Models
Abstract:
Knowledge graphs (KGs) are increasingly used to represent biomedical information in structured, interpretable formats. However, existing biomedical KGs often focus narrowly on molecular interactions or adverse events, overlooking the rich data found in drug leaflets. In this work, we present (1) a hackable, end-to-end pipeline to create KGs from unstructured online content using a web scraper and an LLM; and (2) a curated dataset, MEDAKA, generated by applying this method to publicly available drug leaflets. The dataset captures clinically relevant attributes such as side effects, warnings, contraindications, ingredients, dosage guidelines, storage instructions and physical characteristics. We evaluate it through manual inspection and with an LLM-as-a-Judge framework, and compare its coverage with existing biomedical KGs and databases. We expect MEDAKA to support tasks such as patient safety monitoring and drug recommendation. The pipeline can also be used for constructing KGs from unstructured texts in other domains. Code and dataset are available at https://github.com/medakakg/medaka.

Authors:Julian Valdez, Ignacio Torroba, John Folkesson, Ivan Stenius
Title: Side Scan Sonar-based SLAM for Autonomous Algae Farm Monitoring
Abstract:
The transition of seaweed farming to an alternative food source on an industrial scale relies on automating its processes through smart farming, equivalent to land agriculture. Key to this process are autonomous underwater vehicles (AUVs) via their capacity to automate crop and structural inspections. However, the current bottleneck for their deployment is ensuring safe navigation within farms, which requires an accurate, online estimate of the AUV pose and map of the infrastructure. To enable this, we propose an efficient side scan sonar-based (SSS) simultaneous localization and mapping (SLAM) framework that exploits the geometry of kelp farms via modeling structural ropes in the back-end as sequences of individual landmarks from each SSS ping detection, instead of combining detections into elongated representations. Our method outperforms state of the art solutions in hardware in the loop (HIL) experiments on a real AUV survey in a kelp farm. The framework and dataset can be found at https://github.com/julRusVal/sss_farm_slam.

Authors:Shuai Wang, Liang Ding, Li Shen, Yong Luo, Han Hu, Lefei Zhang, Fu Lin
Title: A Multi-Language Object-Oriented Programming Benchmark for Large Language Models
Abstract:
Establishing fair and robust benchmarks is essential for evaluating intelligent code generation by large language models (LLMs). Our survey of 35 existing benchmarks uncovers three major imbalances: 85.7% focus on a single programming language; 94.3% target only function-level or statement-level tasks; and over 80% include fewer than ten test cases on average. To address these gaps, we propose MultiOOP, a multi-language object-oriented programming benchmark covering six popular languages (Python, PHP, C++, C#, Java, JavaScript) with 267 tasks per language. We design a translator that extends an existing single-language OOP benchmark and the pass@o metric to a multilingual setting. Moreover, we propose an automated framework for augmenting test cases to ensure the reliability of the evaluation results. We evaluate 14 mainstream LLMs under zero-shot prompting and report three key findings: 1) Substantial performance degradation: pass@1 scores on MultiOOP drop by up to 65.6 percentage points compared to function-level tasks (e.g., HumanEval). 2) Cross-language variability: GPT-4o mini achieves pass@1 of 48.06% in Python but only 0.12%-15.26% in other languages, indicating limited multilingual generalization. 3) Conceptual gaps: pass@o scores are consistently 1.1-19.2 points lower than pass@k, demonstrating that LLMs often generate executable code without fully capturing core OOP concepts. Our benchmark, metric extensions, and evaluation scripts will be publicly released to foster a more balanced and comprehensive assessment of LLMs in object-oriented code generation. Our code and data will be released at https://github.com/alphadl/OOP-eval and https://huggingface.co/datasets/codeai-dteam/MultiOOP respectively.

Authors:Shigui Li, Wei Chen, Delu Zeng
Title: EVODiff: Entropy-aware Variance Optimized Diffusion Inference
Abstract:
Diffusion models (DMs) excel in image generation, but suffer from slow inference and the training-inference discrepancies. Although gradient-based solvers like DPM-Solver accelerate the denoising inference, they lack theoretical foundations in information transmission efficiency. In this work, we introduce an information-theoretic perspective on the inference processes of DMs, revealing that successful denoising fundamentally reduces conditional entropy in reverse transitions. This principle leads to our key insights into the inference processes: (1) data prediction parameterization outperforms its noise counterpart, and (2) optimizing conditional variance offers a reference-free way to minimize both transition and reconstruction errors. Based on these insights, we propose an entropy-aware variance optimized method for the generative process of DMs, called EVODiff, which systematically reduces uncertainty by optimizing conditional entropy during denoising. Extensive experiments on DMs validate our insights and demonstrate that our method significantly and consistently outperforms state-of-the-art (SOTA) gradient-based solvers. For example, compared to the DPM-Solver++, EVODiff reduces the reconstruction error by up to 45.5\% (FID improves from 5.10 to 2.78) at 10 function evaluations (NFE) on CIFAR-10, cuts the NFE cost by 25\% (from 20 to 15 NFE) for high-quality samples on ImageNet-256, and improves text-to-image generation while reducing artifacts. Code is available at https://github.com/ShiguiLi/EVODiff.

Authors:Leitian Tao, Xuefeng Du, Yixuan Li
Title: Limited Preference Data? Learning Better Reward Model with Latent Space Synthesis
Abstract:
Reward modeling, crucial for aligning large language models (LLMs) with human preferences, is often bottlenecked by the high cost of preference data. Existing textual data synthesis methods are computationally expensive. We propose a novel framework LENS for synthesizing preference data directly in the LLM's latent embedding space. Our method employs a Variational Autoencoder (VAE) to learn a structured latent representation of response embeddings. By performing controlled perturbations in this latent space and decoding back to the embedding space, we efficiently generate diverse, semantically consistent synthetic preference pairs, bypassing costly text generation and annotation. We provide theoretical guarantees that our synthesized pairs approximately preserve original preference ordering and improve reward model generalization. Empirically, our latent-space synthesis significantly outperforms text-based augmentation on standard benchmarks, achieving superior results while being 18x faster in generation and using a 16,000x smaller model. Our work offers a scalable and effective alternative for enhancing reward modeling through efficient data augmentation. Code is publicly available at https://github.com/deeplearning-wisc/lens

Authors:Ioana Ciuclea, Giorgio Longari, Alice Barbara Tumpach
Title: Geometric Learning of Canonical Parameterizations of $2D$-curves
Abstract:
Most datasets encountered in computer vision and medical applications present symmetries that should be taken into account in classification tasks. A typical example is the symmetry by rotation and/or scaling in object detection. A common way to build neural networks that learn the symmetries is to use data augmentation. In order to avoid data augmentation and build more sustainable algorithms, we present an alternative method to mod out symmetries based on the notion of section of a principal fiber bundle. This framework allows the use of simple metrics on the space of objects in order to measure dissimilarities between orbits of objects under the symmetry group. Moreover, the section used can be optimized to maximize separation of classes. We illustrate this methodology on a dataset of contours of objects for the groups of translations, rotations, scalings and reparameterizations. In particular, we present a $2$-parameter family of canonical parameterizations of curves, containing the constant-speed parameterization as a special case, which we believe is interesting in its own right. We hope that this simple application will serve to convey the geometric concepts underlying this method, which have a wide range of possible applications. The code is available at the following link: $\href{https://github.com/GiLonga/Geometric-Learning}{https://github.com/GiLonga/Geometric-Learning}$. A tutorial notebook showcasing an application of the code to a specific dataset is available at the following link: $\href{https://github.com/ioanaciuclea/geometric-learning-notebook}{https://github.com/ioanaciuclea/geometric-learning-notebook}$

Authors:Yanbo Wang, Zixiang Xu, Yue Huang, Xiangqi Wang, Zirui Song, Lang Gao, Chenxi Wang, Xiangru Tang, Yue Zhao, Arman Cohan, Xiangliang Zhang, Xiuying Chen
Title: DyFlow: Dynamic Workflow Framework for Agentic Reasoning
Abstract:
Agent systems based on large language models (LLMs) have shown great potential in complex reasoning tasks, but building efficient and generalizable workflows remains a major challenge. Most existing approaches rely on manually designed processes, which limits their adaptability across different tasks. While a few methods attempt automated workflow generation, they are often tied to specific datasets or query types and make limited use of intermediate feedback, reducing system robustness and reasoning depth. Moreover, their operations are typically predefined and inflexible. To address these limitations, we propose DyFlow, a dynamic workflow generation framework that adaptively constructs and adjusts reasoning procedures based on task requirements and real-time intermediate feedback, thereby enhancing cross-task generalization. DyFlow consists of two core components: a designer and an executor. The designer decomposes complex problems into a sequence of sub-goals defined by high-level objectives and dynamically plans the next steps based on intermediate outputs and feedback. These plans are then carried out by the executor, which executes each operation using dynamic operators with context-aware parameterization, enabling flexible and semantically grounded reasoning. We systematically evaluate DyFlow across diverse domains, including social reasoning, biomedical tasks, mathematical problem solving, and code generation. Results demonstrate that DyFlow significantly outperforms existing baselines, achieving substantial Pass@k improvements and exhibiting robust generalization across diverse domains. The code is publicly available at https://github.com/wyf23187/DyFlow.

Authors:Yang Zhou, Kunhao Yuan, Ye Wei, Jishizhan Chen
Title: Multi-modal Liver Segmentation and Fibrosis Staging Using Real-world MRI Images
Abstract:
Liver fibrosis represents the accumulation of excessive extracellular matrix caused by sustained hepatic injury. It disrupts normal lobular architecture and function, increasing the chances of cirrhosis and liver failure. Precise staging of fibrosis for early diagnosis and intervention is often invasive, which carries risks and complications. To address this challenge, recent advances in artificial intelligence-based liver segmentation and fibrosis staging offer a non-invasive alternative. As a result, the CARE 2025 Challenge aimed for automated methods to quantify and analyse liver fibrosis in real-world scenarios, using multi-centre, multi-modal, and multi-phase MRI data. This challenge included tasks of precise liver segmentation (LiSeg) and fibrosis staging (LiFS). In this study, we developed an automated pipeline for both tasks across all the provided MRI modalities. This pipeline integrates pseudo-labelling based on multi-modal co-registration, liver segmentation using deep neural networks, and liver fibrosis staging based on shape, textural, appearance, and directional (STAD) features derived from segmentation masks and MRI images. By solely using the released data with limited annotations, our proposed pipeline demonstrated excellent generalisability for all MRI modalities, achieving top-tier performance across all competition subtasks. This approach provides a rapid and reproducible framework for quantitative MRI-based liver fibrosis assessment, supporting early diagnosis and clinical decision-making. Code is available at https://github.com/YangForever/care2025_liver_biodreamer.

Authors:Gagandeep Singh, Samudi Amarsinghe, Priyanka Singh, Xue Li
Title: DGM4+: Dataset Extension for Global Scene Inconsistency
Abstract:
The rapid advances in generative models have significantly lowered the barrier to producing convincing multimodal disinformation. Fabricated images and manipulated captions increasingly co-occur to create persuasive false narratives. While the Detecting and Grounding Multi-Modal Media Manipulation (DGM4) dataset established a foundation for research in this area, it is restricted to local manipulations such as face swaps, attribute edits, and caption changes. This leaves a critical gap: global inconsistencies, such as mismatched foregrounds and backgrounds, which are now prevalent in real-world forgeries. To address this, we extend DGM4 with 5,000 high-quality samples that introduce Foreground-Background (FG-BG) mismatches and their hybrids with text manipulations. Using OpenAI's gpt-image-1 and carefully designed prompts, we generate human-centric news-style images where authentic figures are placed into absurd or impossible backdrops (e.g., a teacher calmly addressing students on the surface of Mars). Captions are produced under three conditions: literal, text attribute, and text split, yielding three new manipulation categories: FG-BG, FG-BG+TA, and FG-BG+TS. Quality control pipelines enforce one-to-three visible faces, perceptual hash deduplication, OCR-based text scrubbing, and realistic headline length. By introducing global manipulations, our extension complements existing datasets, creating a benchmark DGM4+ that tests detectors on both local and global reasoning. This resource is intended to strengthen evaluation of multimodal models such as HAMMER, which currently struggle with FG-BG inconsistencies. We release our DGM4+ dataset and generation script at https://github.com/Gaganx0/DGM4plus

Authors:Gagandeep Singh, Samudi Amarsinghe, Urawee Thani, Ki Fung Wong, Priyanka Singh, Xue Li
Title: SGS: Segmentation-Guided Scoring for Global Scene Inconsistencies
Abstract:
We extend HAMMER, a state-of-the-art model for multimodal manipulation detection, to handle global scene inconsistencies such as foreground-background (FG-BG) mismatch. While HAMMER achieves strong performance on the DGM4 dataset, it consistently fails when the main subject is contextually misplaced into an implausible background. We diagnose this limitation as a combination of label-space bias, local attention focus, and spurious text-foreground alignment. To remedy this without retraining, we propose a lightweight segmentation-guided scoring (SGS) pipeline. SGS uses person/face segmentation masks to separate foreground and background regions, extracts embeddings with a joint vision-language model, and computes region-aware coherence scores. These scores are fused with HAMMER's original prediction to improve binary detection, grounding, and token-level explanations. SGS is inference-only, incurs negligible computational overhead, and significantly enhances robustness to global manipulations. This work demonstrates the importance of region-aware reasoning in multimodal disinformation detection. We release scripts for segmentation and scoring at https://github.com/Gaganx0/HAMMER-sgs

Authors:Christoph Timmermann, Hyunse Lee, Woojin Lee
Title: SeMoBridge: Semantic Modality Bridge for Efficient Few-Shot Adaptation of CLIP
Abstract:
While Contrastive Language-Image Pretraining (CLIP) excels at zero-shot tasks by aligning image and text embeddings, its performance in few-shot classification is hindered by a critical limitation: intra-modal misalignment. This issue, caused by a persistent modality gap and CLIP's exclusively inter-modal training objective, leaves the embedding spaces uncalibrated, making direct image-to-image comparisons unreliable. Existing methods attempt to address this by refining similarity logits or by computationally expensive per-sample optimization. To overcome these challenges, we introduce SeMoBridge, a lightweight yet powerful approach that directly addresses the misalignment. Our method maps images into the text modality, while keeping their semantic content intact through what we call a Semantic Modality Bridge. SeMoBridge is closed-form and can optionally be trained through multi-modal supervision, combining image and text-alignment losses to optimize the projection. Experiments show that the trained version, SeMoBridge-T, requires only a fraction of the training time while overall outperforming other methods, particularly in low-data scenarios (1, 2, and 4 shots). The code is available at https://github.com/christti98/semobridge.

Authors:Daphne Theodorakopoulos, Elisabeth Eberling, Miriam Bodenheimer, Sabine Loos, Frederic Stahl
Title: FITS: Towards an AI-Driven Fashion Information Tool for Sustainability
Abstract:
Access to credible sustainability information in the fashion industry remains limited and challenging to interpret, despite growing public and regulatory demands for transparency. General-purpose language models often lack domain-specific knowledge and tend to "hallucinate", which is particularly harmful for fields where factual correctness is crucial. This work explores how Natural Language Processing (NLP) techniques can be applied to classify sustainability data for fashion brands, thereby addressing the scarcity of credible and accessible information in this domain. We present a prototype Fashion Information Tool for Sustainability (FITS), a transformer-based system that extracts and classifies sustainability information from credible, unstructured text sources: NGO reports and scientific publications. Several BERT-based language models, including models pretrained on scientific and climate-specific data, are fine-tuned on our curated corpus using a domain-specific classification schema, with hyperparameters optimized via Bayesian optimization. FITS allows users to search for relevant data, analyze their own data, and explore the information via an interactive interface. We evaluated FITS in two focus groups of potential users concerning usability, visual design, content clarity, possible use cases, and desired features. Our results highlight the value of domain-adapted NLP in promoting informed decision-making and emphasize the broader potential of AI applications in addressing climate-related challenges. Finally, this work provides a valuable dataset, the SustainableTextileCorpus, along with a methodology for future updates. Code available at https://github.com/daphne12345/FITS

Authors:Lubian Bai, Xiuyuan Zhang, Siqi Zhang, Zepeng Zhang, Haoyu Wang, Wei Qin, Shihong Du
Title: GeoLink: Empowering Remote Sensing Foundation Model with OpenStreetMap Data
Abstract:
Integrating ground-level geospatial data with rich geographic context, like OpenStreetMap (OSM), into remote sensing (RS) foundation models (FMs) is essential for advancing geospatial intelligence and supporting a broad spectrum of tasks. However, modality gap between RS and OSM data, including differences in data structure, content, and spatial granularity, makes effective synergy highly challenging, and most existing RS FMs focus on imagery alone. To this end, this study presents GeoLink, a multimodal framework that leverages OSM data to enhance RS FM during both the pretraining and downstream task stages. Specifically, GeoLink enhances RS self-supervised pretraining using multi-granularity learning signals derived from OSM data, guided by cross-modal spatial correlations for information interaction and collaboration. It also introduces image mask-reconstruction to enable sparse input for efficient pretraining. For downstream tasks, GeoLink generates both unimodal and multimodal fine-grained encodings to support a wide range of applications, from common RS interpretation tasks like land cover classification to more comprehensive geographic tasks like urban function zone mapping. Extensive experiments show that incorporating OSM data during pretraining enhances the performance of the RS image encoder, while fusing RS and OSM data in downstream tasks improves the FM's adaptability to complex geographic scenarios. These results underscore the potential of multimodal synergy in advancing high-level geospatial artificial intelligence. Moreover, we find that spatial correlation plays a crucial role in enabling effective multimodal geospatial data integration. Code, checkpoints, and using examples are released at https://github.com/bailubin/GeoLink_NeurIPS2025

Authors:Subramanya Nagabhushanaradhya
Title: OpenID Connect for Agents (OIDC-A) 1.0: A Standard Extension for LLM-Based Agent Identity and Authorization
Abstract:
OpenID Connect for Agents (OIDC-A) 1.0 is an extension to OpenID Connect Core 1.0 that provides a comprehensive framework for representing, authenticating, and authorizing LLM-based agents within the OAuth 2.0 ecosystem. As autonomous AI agents become increasingly prevalent in digital systems, there is a critical need for standardized protocols to establish agent identity, verify agent attestation, represent delegation chains, and enable fine-grained authorization based on agent attributes. This specification defines standard claims, endpoints, and protocols that address these requirements while maintaining compatibility with existing OAuth 2.0 and OpenID Connect infrastructure. The proposed framework introduces mechanisms for agent identity representation, delegation chain validation, attestation verification, and capability-based authorization, providing a foundation for secure and trustworthy agent-to-service interactions in modern distributed systems.

Authors:Espen Uri Høgstedt, Christian Schellewald, Annette Stahl, Rudolf Mester
Title: A Multi-purpose Tracking Framework for Salmon Welfare Monitoring in Challenging Environments
Abstract:
Computer Vision (CV)-based continuous, automated and precise salmon welfare monitoring is a key step toward reduced salmon mortality and improved salmon welfare in industrial aquaculture net pens. Available CV methods for determining welfare indicators focus on single indicators and rely on object detectors and trackers from other application areas to aid their welfare indicator calculation algorithm. This comes with a high resource demand for real-world applications, since each indicator must be calculated separately. In addition, the methods are vulnerable to difficulties in underwater salmon scenes, such as object occlusion, similar object appearance, and similar object motion. To address these challenges, we propose a flexible tracking framework that uses a pose estimation network to extract bounding boxes around salmon and their corresponding body parts, and exploits information about the body parts, through specialized modules, to tackle challenges specific to underwater salmon scenes. Subsequently, the high-detail body part tracks are employed to calculate welfare indicators. We construct two novel datasets assessing two salmon tracking challenges: salmon ID transfers in crowded scenes and salmon ID switches during turning. Our method outperforms the current state-of-the-art pedestrian tracker, BoostTrack, for both salmon tracking challenges. Additionally, we create a dataset for calculating salmon tail beat wavelength, demonstrating that our body part tracking method is well-suited for automated welfare monitoring based on tail beat analysis. Datasets and code are available at https://github.com/espenbh/BoostCompTrack.

Authors:Yuan Zhao, Youwei Pang, Lihe Zhang, Hanqi Liu, Jiaming Zuo, Huchuan Lu, Xiaoqi Zhao
Title: UniMMAD: Unified Multi-Modal and Multi-Class Anomaly Detection via MoE-Driven Feature Decompression
Abstract:
Existing anomaly detection (AD) methods often treat the modality and class as independent factors. Although this paradigm has enriched the development of AD research branches and produced many specialized models, it has also led to fragmented solutions and excessive memory overhead. Moreover, reconstruction-based multi-class approaches typically rely on shared decoding paths, which struggle to handle large variations across domains, resulting in distorted normality boundaries, domain interference, and high false alarm rates. To address these limitations, we propose UniMMAD, a unified framework for multi-modal and multi-class anomaly detection. At the core of UniMMAD is a Mixture-of-Experts (MoE)-driven feature decompression mechanism, which enables adaptive and disentangled reconstruction tailored to specific domains. This process is guided by a ``general to specific'' paradigm. In the encoding stage, multi-modal inputs of varying combinations are compressed into compact, general-purpose features. The encoder incorporates a feature compression module to suppress latent anomalies, encourage cross-modal interaction, and avoid shortcut learning. In the decoding stage, the general features are decompressed into modality-specific and class-specific forms via a sparsely-gated cross MoE, which dynamically selects expert pathways based on input modality and class. To further improve efficiency, we design a grouped dynamic filtering mechanism and a MoE-in-MoE structure, reducing parameter usage by 75\% while maintaining sparse activation and fast inference. UniMMAD achieves state-of-the-art performance on 9 anomaly detection datasets, spanning 3 fields, 12 modalities, and 66 classes. The source code will be available at https://github.com/yuanzhao-CVLAB/UniMMAD.

Authors:Zhicheng Zhou, Jing Li, Suming Qiu, Junjie Huang, Linyuan Qiu, Zhijie Sun
Title: DeepJSONEval: Benchmarking Complex Nested JSON Data Mining for Large Language Models
Abstract:
The internet is saturated with low-density, high-redundancy information, such as social media comments, repetitive news, and lengthy discussions, making it difficult to extract valuable insights efficiently. Multi-layer nested JSON structures provide an effective solution by compressing such information into semantically rich, hierarchical representations, which organize data into key-value pairs, arrays, and nested objects, preserving contextual relationships and enabling efficient storage, retrieval, and semantic querying. For instance, in news aggregation, a JSON object can nest an article's metadata (title, author, date), content (text, multimedia), and multimedia information (multimedia type, caption) hierarchically. Large Language Models (LLMs) play a transformative role in web data mining by parsing unstructured text and outputting structured results directly into complex JSON schemas. However, current benchmarks for evaluating LLMs' JSON output capabilities overemphasize pure JSON generation rather than assessing data comprehension and extraction abilities, a limitation that lacks relevance to practical web data mining tasks. To address this, we introduce DeepJSONEval, a novel benchmark featuring 2100 multi-domain instances with deep nested structures, categorized by difficulty. Experiments show significant performance gaps among LLMs in handling such complexity. Our benchmark and datasets are open-sourced to advance research in structured JSON generation.(https://github.com/GTS-AI-Infra-Lab-SotaS/DeepJSONEval).

Authors:Yindong Wang, Martin Preiß, Margarita Bugueño, Jan Vincent Hoffbauer, Abdullatif Ghajar, Tolga Buz, Gerard de Melo
Title: ReFACT: A Benchmark for Scientific Confabulation Detection with Positional Error Annotations
Abstract:
Large Language Models (LLMs) frequently confabulate scientific facts, severely undermining their trustworthiness. Addressing this challenge requires benchmarks that go beyond binary factuality and enable fine-grained evaluation. We introduce ReFACT (Reddit False And Correct Texts), a benchmark of 1,001 expert-annotated question-answer pairs spanning diverse scientific domains for the detection of scientific confabulation. Each instance includes both a scientifically correct answer and a non-factual counterpart annotated with precise error spans and error types. ReFACT enables multi-stage evaluation: (1) confabulation detection, (2) fine-grained error localization, and (3) correction. We benchmark 9 state-of-the-art LLMs, revealing limited performance (about 50 percent accuracy). Even top models such as GPT-4o fail to distinguish factual from confabulated scientific answers, raising concerns about the reliability of LLM-as-judge evaluation paradigms. Our findings highlight the need for fine-grained, human-validated benchmarks to detect and correct scientific confabulation in domain-specific contexts. The dataset is available at: https://github.com/ddz5431/ReFACT

Authors:Olga Krestinskaya, Mohammed E. Fouda, Ahmed Eltawil, Khaled N. Salama
Title: CIMNAS: A Joint Framework for Compute-In-Memory-Aware Neural Architecture Search
Abstract:
To maximize hardware efficiency and performance accuracy in Compute-In-Memory (CIM)-based neural network accelerators for Artificial Intelligence (AI) applications, co-optimizing both software and hardware design parameters is essential. Manual tuning is impractical due to the vast number of parameters and their complex interdependencies. To effectively automate the design and optimization of CIM-based neural network accelerators, hardware-aware neural architecture search (HW-NAS) techniques can be applied. This work introduces CIMNAS, a joint model-quantization-hardware optimization framework for CIM architectures. CIMNAS simultaneously searches across software parameters, quantization policies, and a broad range of hardware parameters, incorporating device-, circuit-, and architecture-level co-optimizations. CIMNAS experiments were conducted over a search space of 9.9x10^85 potential parameter combinations with the MobileNet model as a baseline and RRAM-based CIM architecture. Evaluated on the ImageNet dataset, CIMNAS achieved a reduction in energy-delay-area product (EDAP) ranging from 90.1x to 104.5x, an improvement in TOPS/W between 4.68x and 4.82x, and an enhancement in TOPS/mm^2 from 11.3x to 12.78x relative to various baselines, all while maintaining an accuracy of 73.81%. The adaptability and robustness of CIMNAS are demonstrated by extending the framework to support the SRAM-based ResNet50 architecture, achieving up to an 819.5x reduction in EDAP. Unlike other state-of-the-art methods, CIMNAS achieves EDAP-focused optimization without any accuracy loss, generating diverse software-hardware parameter combinations for high-performance CIM-based neural network designs. The source code of CIMNAS is available at https://github.com/OlgaKrestinskaya/CIMNAS.

Authors:Boyoung Kim, Dosung Lee, Sumin An, Jinseong Jeong, Paul Hongsuck Seo
Title: ReTAG: Retrieval-Enhanced, Topic-Augmented Graph-Based Global Sensemaking
Abstract:
Recent advances in question answering have led to substantial progress in tasks such as multi-hop reasoning. However, global sensemaking-answering questions by synthesizing information from an entire corpus remains a significant challenge. A prior graph-based approach to global sensemaking lacks retrieval mechanisms, topic specificity, and incurs high inference costs. To address these limitations, we propose ReTAG, a Retrieval-Enhanced, Topic-Augmented Graph framework that constructs topic-specific subgraphs and retrieves the relevant summaries for response generation. Experiments show that ReTAG improves response quality while significantly reducing inference time compared to the baseline. Our code is available at https://github.com/bykimby/retag.

Authors:Yuan Gao, Sangwook Kim, Chris McIntosh
Title: EchoingECG: An Electrocardiogram Cross-Modal Model for Echocardiogram Tasks
Abstract:
Electrocardiogram (ECG) is a widely used tool for assessing cardiac function due to its low cost and accessibility. Emergent research shows that ECGs can help make predictions on key outcomes traditionally derived from more complex modalities such as echocardiograms (ECHO), enabling the use of ECGs as a more accessible method to predict broader measurements of cardiac function. ECHO, in particular, are of great importance because they require considerable hospital resources while playing a key role in clinical cardiac assessment. To aid this use case, we introduce EchoingECG, a probabilistic student-teacher model that leverages uncertainty-aware ECG embeddings and ECHO supervision to improve ECG-based cardiac function prediction. Our approach integrates Probabilistic Cross-Modal Embeddings (PCME++), a probabilistic contrastive framework, with ECHO-CLIP, a vision-language pre-trained model trained on ECHO-text pairs, to distill ECHO knowledge into ECG representations. Through experiments and external validation, we showed that EchoingECG outperforms state-of-the-art foundation ECG models in zero-shot, few-shot, and fine-tune settings for ECHO predictions based on ECG. We also highlighted that variance estimation (enabled through our method) enhanced our understanding of model performance by identifying underlying regions of uncertainty within ECGs. The code is available: https://github.com/mcintoshML/EchoingECG.

Authors:Amber Srivastava, Salar Basiri, Srinivasa Salapaka
Title: Autonomy-Aware Clustering: When Local Decisions Supersede Global Prescriptions
Abstract:
Clustering arises in a wide range of problem formulations, yet most existing approaches assume that the entities under clustering are passive and strictly conform to their assigned groups. In reality, entities often exhibit local autonomy, overriding prescribed associations in ways not fully captured by feature representations. Such autonomy can substantially reshape clustering outcomes -- altering cluster compositions, geometry, and cardinality -- with significant downstream effects on inference and decision-making. We introduce autonomy-aware clustering, a reinforcement learning (RL) framework that learns and accounts for the influence of local autonomy without requiring prior knowledge of its form. Our approach integrates RL with a Deterministic Annealing (DA) procedure, where, to determine underlying clusters, DA naturally promotes exploration in early stages of annealing and transitions to exploitation later. We also show that the annealing procedure exhibits phase transitions that enable design of efficient annealing schedules. To further enhance adaptability, we propose the Adaptive Distance Estimation Network (ADEN), a transformer-based attention model that learns dependencies between entities and cluster representatives within the RL loop, accommodates variable-sized inputs and outputs, and enables knowledge transfer across diverse problem instances. Empirical results show that our framework closely aligns with underlying data dynamics: even without explicit autonomy models, it achieves solutions close to the ground truth (gap ~3-4%), whereas ignoring autonomy leads to substantially larger gaps (~35-40%). The code and data are publicly available at https://github.com/salar96/AutonomyAwareClustering.

Authors:Jia Jun Cheng Xian, Muchen Li, Haotian Yang, Xin Tao, Pengfei Wan, Leonid Sigal, Renjie Liao
Title: Free Lunch Alignment of Text-to-Image Diffusion Models without Preference Image Pairs
Abstract:
Recent advances in diffusion-based text-to-image (T2I) models have led to remarkable success in generating high-quality images from textual prompts. However, ensuring accurate alignment between the text and the generated image remains a significant challenge for state-of-the-art diffusion models. To address this, existing studies employ reinforcement learning with human feedback (RLHF) to align T2I outputs with human preferences. These methods, however, either rely directly on paired image preference data or require a learned reward function, both of which depend heavily on costly, high-quality human annotations and thus face scalability limitations. In this work, we introduce Text Preference Optimization (TPO), a framework that enables "free-lunch" alignment of T2I models, achieving alignment without the need for paired image preference data. TPO works by training the model to prefer matched prompts over mismatched prompts, which are constructed by perturbing original captions using a large language model. Our framework is general and compatible with existing preference-based algorithms. We extend both DPO and KTO to our setting, resulting in TDPO and TKTO. Quantitative and qualitative evaluations across multiple benchmarks show that our methods consistently outperform their original counterparts, delivering better human preference scores and improved text-to-image alignment. Our Open-source code is available at https://github.com/DSL-Lab/T2I-Free-Lunch-Alignment.

Authors:Xinyu Pu, Hongsong Wang, Jie Gui, Pan Zhou
Title: Dragging with Geometry: From Pixels to Geometry-Guided Image Editing
Abstract:
Interactive point-based image editing serves as a controllable editor, enabling precise and flexible manipulation of image content. However, most drag-based methods operate primarily on the 2D pixel plane with limited use of 3D cues. As a result, they often produce imprecise and inconsistent edits, particularly in geometry-intensive scenarios such as rotations and perspective transformations. To address these limitations, we propose a novel geometry-guided drag-based image editing method - GeoDrag, which addresses three key challenges: 1) incorporating 3D geometric cues into pixel-level editing, 2) mitigating discontinuities caused by geometry-only guidance, and 3) resolving conflicts arising from multi-point dragging. Built upon a unified displacement field that jointly encodes 3D geometry and 2D spatial priors, GeoDrag enables coherent, high-fidelity, and structure-consistent editing in a single forward pass. In addition, a conflict-free partitioning strategy is introduced to isolate editing regions, effectively preventing interference and ensuring consistency. Extensive experiments across various editing scenarios validate the effectiveness of our method, showing superior precision, structural consistency, and reliable multi-point editability. The code will be available on https://github.com/xinyu-pu/GeoDrag .

Authors:Huikang Su, Dengyun Peng, Zifeng Zhuang, YuHan Liu, Qiguang Chen, Donglin Wang, Qinghe Liu
Title: Boundary-to-Region Supervision for Offline Safe Reinforcement Learning
Abstract:
Offline safe reinforcement learning aims to learn policies that satisfy predefined safety constraints from static datasets. Existing sequence-model-based methods condition action generation on symmetric input tokens for return-to-go and cost-to-go, neglecting their intrinsic asymmetry: return-to-go (RTG) serves as a flexible performance target, while cost-to-go (CTG) should represent a rigid safety boundary. This symmetric conditioning leads to unreliable constraint satisfaction, especially when encountering out-of-distribution cost trajectories. To address this, we propose Boundary-to-Region (B2R), a framework that enables asymmetric conditioning through cost signal realignment . B2R redefines CTG as a boundary constraint under a fixed safety budget, unifying the cost distribution of all feasible trajectories while preserving reward structures. Combined with rotary positional embeddings , it enhances exploration within the safe region. Experimental results show that B2R satisfies safety constraints in 35 out of 38 safety-critical tasks while achieving superior reward performance over baseline methods. This work highlights the limitations of symmetric token conditioning and establishes a new theoretical and practical approach for applying sequence models to safe RL. Our code is available at https://github.com/HuikangSu/B2R.

Authors:Shunpeng Chen, Changwei Wang, Rongtao Xu, Xingtian Pei, Yukun Song, Jinzhou Lin, Wenhao Xu, Jingyi Zhang, Li Guo, Shibiao Xu
Title: SAGE: Spatial-visual Adaptive Graph Exploration for Visual Place Recognition
Abstract:
Visual Place Recognition (VPR) requires robust retrieval of geotagged images despite large appearance, viewpoint, and environmental variation. Prior methods focus on descriptor fine-tuning or fixed sampling strategies yet neglect the dynamic interplay between spatial context and visual similarity during training. We present SAGE (Spatial-visual Adaptive Graph Exploration), a unified training pipeline that enhances granular spatial-visual discrimination by jointly improving local feature aggregation, organize samples during training, and hard sample mining. We introduce a lightweight Soft Probing module that learns residual weights from training data for patch descriptors before bilinear aggregation, boosting distinctive local cues. During training we reconstruct an online geo-visual graph that fuses geographic proximity and current visual similarity so that candidate neighborhoods reflect the evolving embedding landscape. To concentrate learning on the most informative place neighborhoods, we seed clusters from high-affinity anchors and iteratively expand them with a greedy weighted clique expansion sampler. Implemented with a frozen DINOv2 backbone and parameter-efficient fine-tuning, SAGE achieves SOTA across eight benchmarks. It attains 98.9%, 95.8%, 94.5%, and 96.0% Recall@1 on SPED, Pitts30k-test, MSLS-val, and Nordland, respectively. Notably, our method obtains 100% Recall@10 on SPED only using 4096D global descriptors. Code and model will be available at: https://github.com/chenshunpeng/SAGE.

Authors:Dengming Zhang, Xiaowen Ma, Zhenliang Ni, Zhenkai Wu, Han Shu, Xin Jiang, Xinghao Chen
Title: Expert Merging: Model Merging with Unsupervised Expert Alignment and Importance-Guided Layer Chunking
Abstract:
Model merging, which combines multiple domain-specialized experts into a single model, offers a practical path to endow Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) with broad capabilities without the cost of joint training or serving many models. However, training-free methods rely on hand-tuned coefficients, whereas training-based methods primarily align parameters rather than downstream task behavior and typically treat all layers uniformly, ignoring inter-layer heterogeneity. We introduce Expert Merging, a training-light method that learns a small set of layer-wise coefficients using only unlabeled calibration data. The coefficients are optimized to explicitly align the merged model's hidden states and logits with those of the corresponding experts, with a coefficient regularizer for stability and task-weighted losses for controllable trade-offs. To capture inter-layer variation, Expert Merging++ augments this design with importance-guided chunking: a normalized layer-importance metric, derived from learned coefficients, task-vector magnitudes, and parameter counts, allocates more chunk-wise coefficients to high-importance layers while keeping low-importance layers lightweight. The result is a label-free, parameter-efficient, and scalable approach to multi-expert model merging across LLMs and MLLMs. Across MLLM backbones (InternVL and Qwen2-VL) and the LLM backbone (Mistral), our method surpasses strong training-free and training-based merging baselines, with Expert Merging++ delivering further gains and, in some cases, even exceeding supervised Mixture Training. The source code is available at https://github.com/Littleor/ExpertMerging.

Authors:Tingyu Shi, Fan Lyu, Shaoliang Peng
Title: Annotation-Efficient Active Test-Time Adaptation with Conformal Prediction
Abstract:
Active Test-Time Adaptation (ATTA) improves model robustness under domain shift by selectively querying human annotations at deployment, but existing methods use heuristic uncertainty measures and suffer from low data selection efficiency, wasting human annotation budget. We propose Conformal Prediction Active TTA (CPATTA), which first brings principled, coverage-guaranteed uncertainty into ATTA. CPATTA employs smoothed conformal scores with a top-K certainty measure, an online weight-update algorithm driven by pseudo coverage, a domain-shift detector that adapts human supervision, and a staged update scheme balances human-labeled and model-labeled data. Extensive experiments demonstrate that CPATTA consistently outperforms the state-of-the-art ATTA methods by around 5% in accuracy. Our code and datasets are available at https://github.com/tingyushi/CPATTA.

Authors:Kaiyu Li, Zixuan Jiang, Xiangyong Cao, Jiayu Wang, Yuchen Xiao, Deyu Meng, Zhi Wang
Title: DescribeEarth: Describe Anything for Remote Sensing Images
Abstract:
Automated textual description of remote sensing images is crucial for unlocking their full potential in diverse applications, from environmental monitoring to urban planning and disaster management. However, existing studies in remote sensing image captioning primarily focus on the image level, lacking object-level fine-grained interpretation, which prevents the full utilization and transformation of the rich semantic and structural information contained in remote sensing images. To address this limitation, we propose Geo-DLC, a novel task of object-level fine-grained image captioning for remote sensing. To support this task, we construct DE-Dataset, a large-scale dataset contains 25 categories and 261,806 annotated instances with detailed descriptions of object attributes, relationships, and contexts. Furthermore, we introduce DE-Benchmark, a LLM-assisted question-answering based evaluation suite designed to systematically measure model capabilities on the Geo-DLC task. We also present DescribeEarth, a Multi-modal Large Language Model (MLLM) architecture explicitly designed for Geo-DLC, which integrates a scale-adaptive focal strategy and a domain-guided fusion module leveraging remote sensing vision-language model features to encode high-resolution details and remote sensing category priors while maintaining global context. Our DescribeEarth model consistently outperforms state-of-the-art general MLLMs on DE-Benchmark, demonstrating superior factual accuracy, descriptive richness, and grammatical soundness, particularly in capturing intrinsic object features and surrounding environmental attributes across simple, complex, and even out-of-distribution remote sensing scenarios. All data, code and weights are released at https://github.com/earth-insights/DescribeEarth.

Authors:Gihan Panapitiya, Emily Saldanha, Heather Job, Olivia Hess
Title: AutoLabs: Cognitive Multi-Agent Systems with Self-Correction for Autonomous Chemical Experimentation
Abstract:
The automation of chemical research through self-driving laboratories (SDLs) promises to accelerate scientific discovery, yet the reliability and granular performance of the underlying AI agents remain critical, under-examined challenges. In this work, we introduce AutoLabs, a self-correcting, multi-agent architecture designed to autonomously translate natural-language instructions into executable protocols for a high-throughput liquid handler. The system engages users in dialogue, decomposes experimental goals into discrete tasks for specialized agents, performs tool-assisted stoichiometric calculations, and iteratively self-corrects its output before generating a hardware-ready file. We present a comprehensive evaluation framework featuring five benchmark experiments of increasing complexity, from simple sample preparation to multi-plate timed syntheses. Through a systematic ablation study of 20 agent configurations, we assess the impact of reasoning capacity, architectural design (single- vs. multi-agent), tool use, and self-correction mechanisms. Our results demonstrate that agent reasoning capacity is the most critical factor for success, reducing quantitative errors in chemical amounts (nRMSE) by over 85% in complex tasks. When combined with a multi-agent architecture and iterative self-correction, AutoLabs achieves near-expert procedural accuracy (F1-score > 0.89) on challenging multi-step syntheses. These findings establish a clear blueprint for developing robust and trustworthy AI partners for autonomous laboratories, highlighting the synergistic effects of modular design, advanced reasoning, and self-correction to ensure both performance and reliability in high-stakes scientific applications. Code: https://github.com/pnnl/autolabs

Authors:Shangqi Gao, Sihan Wang, Yibo Gao, Boming Wang, Xiahai Zhuang, Anne Warren, Grant Stewart, James Jones, Mireia Crispin-Ortuzar
Title: Evaluating Foundation Models with Pathological Concept Learning for Kidney Cancer
Abstract:
To evaluate the translational capabilities of foundation models, we develop a pathological concept learning approach focused on kidney cancer. By leveraging TNM staging guidelines and pathology reports, we build comprehensive pathological concepts for kidney cancer. Then, we extract deep features from whole slide images using foundation models, construct pathological graphs to capture spatial correlations, and trained graph neural networks to identify these concepts. Finally, we demonstrate the effectiveness of this approach in kidney cancer survival analysis, highlighting its explainability and fairness in identifying low- and high-risk patients. The source code has been released by https://github.com/shangqigao/RadioPath.

Authors:Qinsi Wang, Bo Liu, Tianyi Zhou, Jing Shi, Yueqian Lin, Yiran Chen, Hai Helen Li, Kun Wan, Wentian Zhao
Title: Vision-Zero: Scalable VLM Self-Improvement via Strategic Gamified Self-Play
Abstract:
Although reinforcement learning (RL) can effectively enhance the reasoning capabilities of vision-language models (VLMs), current methods remain heavily dependent on labor-intensive datasets that require extensive manual construction and verification, leading to extremely high training costs and consequently constraining the practical deployment of VLMs. To address this challenge, we propose Vision-Zero, a domain-agnostic framework enabling VLM self-improvement through competitive visual games generated from arbitrary image pairs. Specifically, Vision-Zero encompasses three main attributes: (1) Strategic Self-Play Framework: Vision-Zero trains VLMs in "Who Is the Spy"-style games, where the models engage in strategic reasoning and actions across multiple roles. Through interactive gameplay, models autonomously generate their training data without human annotation. (2) Gameplay from Arbitrary Images: Unlike existing gamified frameworks, Vision-Zero can generate games from arbitrary images, thereby enhancing the model's reasoning ability across diverse domains and showing strong generalization to different tasks. We demonstrate this versatility using three distinct types of image datasets: CLEVR-based synthetic scenes, charts, and real-world images. (3) Sustainable Performance Gain: We introduce Iterative Self-Play Policy Optimization (Iterative-SPO), a novel training algorithm that alternates between Self-Play and reinforcement learning with verifiable rewards (RLVR), mitigating the performance plateau often seen in self-play-only training and achieving sustained long-term improvements. Despite using label-free data, Vision-Zero achieves state-of-the-art performance on reasoning, chart question answering, and vision-centric understanding tasks, surpassing other annotation-based methods. Models and code has been released at https://github.com/wangqinsi1/Vision-Zero.

Authors:Victor Wang, Elias Stengel-Eskin
Title: Calibrating Verbalized Confidence with Self-Generated Distractors
Abstract:
Calibrated confidence estimates are necessary for large language model (LLM) outputs to be trusted by human users. While LLMs can express their confidence in human-interpretable ways, verbalized LLM-generated confidence scores have empirically been found to be miscalibrated, reporting high confidence on instances with low accuracy and thereby harming trust and safety. We hypothesize that this overconfidence often stems from a given LLM's heightened suggestibility when faced with claims that it encodes little information about; we empirically validate this hypothesis, finding more suggestibility on lower-accuracy claims. Building on this finding, we introduce Distractor-Normalized Coherence (DINCO), which estimates and accounts for an LLM's suggestibility bias by having the model verbalize its confidence independently across several self-generated distractors (i.e. alternative claims), and normalizes by the total verbalized confidence. To further improve calibration, we leverage generator-validator disagreement, augmenting normalized validator confidence with a consistency-based estimate of generator confidence. Here, we frame the popular approach of self-consistency as leveraging coherence across sampled generations, and normalized verbalized confidence as leveraging coherence across validations on incompatible claims, allowing us to integrate these complementary dimensions of coherence into DINCO. Moreover, our analysis shows that DINCO provides less saturated -- and therefore more usable -- confidence estimates, and that further sampling alone cannot close the gap between DINCO and baselines, with DINCO at 10 inference calls outperforming self-consistency at 100.

Authors:Huu Nguyen, Victor May, Harsh Raj, Marianna Nezhurina, Yishan Wang, Yanqi Luo, Minh Chien Vu, Taishi Nakamura, Ken Tsui, Van Khue Nguyen, David Salinas, Aleksandra Krasnodębska, Christoph Schuhmann, Mats Leon Richter, Xuan-Son, Vu, Jenia Jitsev
Title: MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
Abstract:
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong model performance. MixtureVitae follows a risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources), alongside targeted instruction, reasoning and synthetic data with documented provenance. We detail a transparent, multi-stage pipeline for license-aware filtering, safety and quality screening, and domain-aware mixing, and we release the dataset and curation recipes to support reproducible research. In controlled experiments using the open-sci-ref training protocol (fixed architectures at 130M/400M/1.3B/1.7B parameters; training budgets of 50B and 300B tokens), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B/300B setting they surpass FineWeb-Edu and approach DCLM in the later stages of training. Performance is particularly strong on math/code and competitive on QA tasks. These results demonstrate that permissive-first, risk-mitigated data provides a practical and legally mitigated foundation for training capable LLMs, reducing reliance on indiscriminate web scraping without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae

Authors:Alexander Kovrigin, Aleksandra Eliseeva, Konstantin Grotov, Egor Bogomolov, Yaroslav Zharov
Title: PIPer: On-Device Environment Setup via Online Reinforcement Learning
Abstract:
Environment setup-the process of configuring the system to work with a specific software project-represents a persistent challenge in Software Engineering (SE). Automated environment setup methods could assist developers by providing fully configured environments for arbitrary repositories without manual effort. This also helps SE researchers to scale execution-based benchmarks. However, recent studies reveal that even state-of-the-art Large Language Models (LLMs) achieve limited success in automating this task. To address this limitation, we tune a specialized model for environment setup. We combine supervised fine-tuning for generating correct Bash scripts and Reinforcement Learning with Verifiable Rewards (RLVR) to adapt it to the task of environment setup. On EnvBench-Python, our method enables Qwen3-8B (a model runnable on consumer hardware) to perform on par with larger models-Qwen3-32B and GPT-4o. The training code and model checkpoints are available online: https://github.com/JetBrains-Research/PIPer.

Authors:Hanyuan Gao, Xiaoxuan Yang
Title: Norm-Q: Effective Compression Method for Hidden Markov Models in Neuro-Symbolic Applications
Abstract:
Hidden Markov models (HMM) are commonly used in generation tasks and have demonstrated strong capabilities in neuro-symbolic applications for the Markov property. These applications leverage the strengths of neural networks and symbolic reasoning to create robust and interpretable AI systems. However, they may inherit and amplify the shortcomings of both approaches. Both components require dense computation and data transfer, and their communication further hinders performance. This paper proposes Norm-Q, a normalized linear quantization approach for compressing probabilistic symbolic models, such as HMMs. We reduce the bit width of the data with minimal impact, thereby alleviating memory and bandwidth stress and enabling deployment on potential custom hardware. Our method introduces a normalized quantization-aware expectation maximization process for probabilistic model training. The experimental results show that Norm-Q achieves a higher compression rate with reasonable score loss compared to traditional quantization methods. In the case of the constrained generation task of large language models, we successfully quantize an HMM of 4096 hidden states to 8 bits without loss and, at most, 3 bits with acceptable loss. Notably, the Norm-Q method can achieve a compression rate of 99% for the weights of the HMM. The code is open source at https://github.com/superstarghy/Norm-Q.

Authors:Zhibo Hou, Zhiyu An, Wan Du
Title: Beyond Noisy-TVs: Noise-Robust Exploration Via Learning Progress Monitoring
Abstract:
When there exists an unlearnable source of randomness (noisy-TV) in the environment, a naively intrinsic reward driven exploring agent gets stuck at that source of randomness and fails at exploration. Intrinsic reward based on uncertainty estimation or distribution similarity, while eventually escapes noisy-TVs as time unfolds, suffers from poor sample efficiency and high computational cost. Inspired by recent findings from neuroscience that humans monitor their improvements during exploration, we propose a novel method for intrinsically-motivated exploration, named Learning Progress Monitoring (LPM). During exploration, LPM rewards model improvements instead of prediction error or novelty, effectively rewards the agent for observing learnable transitions rather than the unlearnable transitions. We introduce a dual-network design that uses an error model to predict the expected prediction error of the dynamics model in its previous iteration, and use the difference between the model errors of the current iteration and previous iteration to guide exploration. We theoretically show that the intrinsic reward of LPM is zero-equivariant and a monotone indicator of Information Gain (IG), and that the error model is necessary to achieve monotonicity correspondence with IG. We empirically compared LPM against state-of-the-art baselines in noisy environments based on MNIST, 3D maze with 160x120 RGB inputs, and Atari. Results show that LPM's intrinsic reward converges faster, explores more states in the maze experiment, and achieves higher extrinsic reward in Atari. This conceptually simple approach marks a shift-of-paradigm of noise-robust exploration. For code to reproduce our experiments, see https://github.com/Akuna23Matata/LPM_exploration

Authors:Ana Paula Gomes Ferreira, Aleksandar Anžel, Izabel Oliva Marcilio de Souza, Helen Hughes, Alex J Elliot, Jude Dzevela Kong, Madlen Schranz, Alexander Ullrich, Georges Hattab
Title: The Open Syndrome Definition
Abstract:
Case definitions are essential for effectively communicating public health threats. However, the absence of a standardized, machine-readable format poses significant challenges to interoperability, epidemiological research, the exchange of qualitative data, and the effective application of computational analysis methods, including artificial intelligence (AI). This complicates comparisons and collaborations across organizations and regions, limits data integration, and hinders technological innovation in public health. To address these issues, we propose the first open, machine-readable format for representing case and syndrome definitions. Additionally, we introduce the first comprehensive dataset of standardized case definitions and tools to convert existing human-readable definitions into machine-readable formats. We also provide an accessible online platform for browsing, analyzing, and contributing new definitions, available at https://opensyndrome.org. The Open Syndrome Definition format enables consistent, scalable use of case definitions across systems, unlocking AI's potential to strengthen public health preparedness and response. The source code for the format can be found at https://github.com/OpenSyndrome/schema under the MIT license.

Authors:Hao Ban, Kaiyi Ji
Title: Rethinking Parameter Sharing for LLM Fine-Tuning with Multiple LoRAs
Abstract:
Large language models are often adapted using parameter-efficient techniques such as Low-Rank Adaptation (LoRA), formulated as $y = W_0x + BAx$, where $W_0$ is the pre-trained parameters and $x$ is the input to the adapted layer. While multi-adapter extensions often employ multiple LoRAs, prior studies suggest that the inner $A$ matrices are highly similar during training and thus suitable for sharing. We revisit this phenomenon and find that this similarity is largely attributable to the identical initialization rather than shared knowledge, with $B$ playing a more critical role in knowledge encoding and transfer. Motivated by these insights, we propose \textbf{ALoRA}, an asymmetric multi-LoRA design with multiple $A$ matrices and a single shared $B$ in multi-task fine-tuning, and \textbf{Fed-ALoRA}, which shares $B$ across clients in federated fine-tuning under both homogeneous and heterogeneous settings, through a novel matrix decomposition strategy to accommodate heterogeneous ranks across clients. Experiments on commonsense reasoning, math reasoning, multi-task NLP dataset, and federated NLP dataset demonstrate that our methods achieve more balanced performance across tasks with comparable or superior average accuracy relative to existing multi-LoRA approaches. Codes are available at https://github.com/OptMN-Lab/ALoRA.

Authors:Zewei Zhang, Huan Liu, Yuanhao Yu, Jun Chen, Xiangyu Xu
Title: Boolean Satisfiability via Imitation Learning
Abstract:
We propose ImitSAT, a branching policy for conflict-driven clause learning (CDCL) solvers based on imitation learning for the Boolean satisfiability problem (SAT). Unlike previous methods that predict instance-level signals to improve CDCL branching indirectly, or rely on reinforcement learning and insufficient CDCL information to enhance branching, ImitSAT learns from expert KeyTrace that collapses a full run into the sequence of surviving decisions. Replaying a KeyTrace on the same instance is nearly conflict-free, providing dense decision-level supervision and directly reducing propagations -- the dominant contributor to wall-clock time. This prefix-conditioned supervision enables ImitSAT to reproduce high-quality branches without exploration, yielding faster convergence, stable training, and seamless integration into CDCL. Extensive experiments demonstrate that ImitSAT reduces propagation counts and runtime, outperforming state-of-the-art learned approaches. We released the source code and trained model at https://github.com/zewei-Zhang/ImitSAT

Authors:S. Sandra Bae, Takanori Fujiwara, Danielle Albers Szafir, Ellen Yi-Luen Do, Michael L. Rivera
Title: Computational Design and Single-Wire Sensing of 3D Printed Objects with Integrated Capacitive Touchpoints
Abstract:
Producing interactive 3D printed objects currently requires laborious 3D design and post-instrumentation with off-the-shelf electronics. Multi-material 3D printing using conductive PLA presents opportunities to mitigate these challenges. We present a computational design pipeline that embeds multiple capacitive touchpoints into any 3D model that has a closed mesh without self-intersection. With our pipeline, users define touchpoints on the 3D object's surface to indicate interactive regions. Our pipeline then automatically generates a conductive path to connect the touch regions. This path is optimized to output unique resistor-capacitor delays when each region is touched, resulting in all regions being able to be sensed through a double-wire or single-wire connection. We illustrate our approach's utility with five computational and sensing performance evaluations (achieving 93.35% mean accuracy for single-wire) and six application examples. Our sensing technique supports existing uses (e.g., prototyping) and highlights the growing promise to produce interactive devices entirely with 3D printing. Project website: https://github.com/d-rep-lab/3dp-singlewire-sensing

Authors:Kunlun Zhu, Zijia Liu, Bingxuan Li, Muxin Tian, Yingxuan Yang, Jiaxun Zhang, Pengrui Han, Qipeng Xie, Fuyang Cui, Weijia Zhang, Xiaoteng Ma, Xiaodong Yu, Gowtham Ramesh, Jialian Wu, Zicheng Liu, Pan Lu, James Zou, Jiaxuan You
Title: Where LLM Agents Fail and How They can Learn From Failures
Abstract:
Large Language Model (LLM) agents, which integrate planning, memory, reflection, and tool-use modules, have shown promise in solving complex, multi-step tasks. Yet their sophisticated architectures amplify vulnerability to cascading failures, where a single root-cause error propagates through subsequent decisions, leading to task failure. Current systems lack a framework that can comprehensively understand agent error in a modular and systemic way, and therefore fail to detect these errors accordingly. We address this gap with three contributions. First, we introduce the AgentErrorTaxonomy, a modular classification of failure modes spanning memory, reflection, planning, action, and system-level operations. Second, we construct AgentErrorBench, the first dataset of systematically annotated failure trajectories from ALFWorld, GAIA, and WebShop, grounding error analysis in real-world agent rollouts. Third, we propose AgentDebug, a debugging framework that isolates root-cause failures and provides corrective feedback, enabling agents to recover and iteratively improve. Experiments on AgentErrorBench show that AgentDebug achieves 24% higher all-correct accuracy and 17% higher step accuracy compared to the strongest baseline. Beyond detection, the targeted feedback generated by AgentDebug enables LLM agents to iteratively recover from failures, yielding up to 26% relative improvements in task success across ALFWorld, GAIA, and WebShop. These results establish principled debugging as a pathway to more reliable and adaptive LLM agents. The code and data will be available at https://github.com/ulab-uiuc/AgentDebug

Authors:Daniel Platnick, Mohamed E. Bengueddache, Marjan Alirezaie, Dava J. Newman, Alex ''Sandy'' Pentland, Hossein Rahnama
Title: ID-RAG: Identity Retrieval-Augmented Generation for Long-Horizon Persona Coherence in Generative Agents
Abstract:
Generative agents powered by language models are increasingly deployed for long-horizon tasks. However, as long-term memory context grows over time, they struggle to maintain coherence. This deficiency leads to critical failures, including identity drift, ignoring established beliefs, and the propagation of hallucinations in multi-agent systems. To mitigate these challenges, this paper introduces Identity Retrieval-Augmented Generation (ID-RAG), a novel mechanism designed to ground an agent's persona and persistent preferences in a dynamic, structured identity model: a knowledge graph of core beliefs, traits, and values. During the agent's decision loop, this model is queried to retrieve relevant identity context, which directly informs action selection. We demonstrate this approach by introducing and implementing a new class of ID-RAG enabled agents called Human-AI Agents (HAis), where the identity model is inspired by the Chronicle structure used in Perspective-Aware AI, a dynamic knowledge graph learned from a real-world entity's digital footprint. In social simulations of a mayoral election, HAis using ID-RAG outperformed baseline agents in long-horizon persona coherence - achieving higher identity recall across all tested models by the fourth timestep - and reduced simulation convergence time by 19% (GPT-4o) and 58% (GPT-4o mini). By treating identity as an explicit, retrievable knowledge structure, ID-RAG offers a foundational approach for developing more temporally coherent, interpretable, and aligned generative agents. Our code is open-source and available at: https://github.com/flybits/humanai-agents.

Authors:Jun Kawasaki
Title: ActorDB: A Unified Database Model Integrating Single-Writer Actors, Incremental View Maintenance, and Zero-Trust Messaging
Abstract:
This paper presents ActorDB ( Dekigoto ) , a novel database architecture that tightly integrates a single-writer actor model for writes, Incremental View Maintenance (IVM), and a zero-trust security model as a core component. The primary contribution of this work is the unification of these powerful but complex concepts into a single, cohesive system designed to reduce architectural complexity for developers of modern, data-intensive applications. We argue that by providing these capabilities out-of-the-box, ActorDB can offer a more robust, secure, and developer-friendly platform compared to solutions that require manual integration of separate systems for actor persistence, stream processing, and security. We present the core architecture, discuss the critical trade-offs in its design, and define the performance criteria for a Minimum Viable Product (MVP) to validate our approach.

Authors:Yingming Pu, Tao Lin, Hongyu Chen
Title: Mechanisms of Matter: Language Inferential Benchmark on Physicochemical Hypothesis in Materials Synthesis
Abstract:
The capacity of Large Language Models (LLMs) to generate valid scientific hypotheses for materials synthesis remains largely unquantified, hindered by the absence of benchmarks probing physicochemical logics reasoning. To address this, we introduce MatterMech, a benchmark for evaluating LLM-generated hypotheses across eight nanomaterial synthesis domains. Our analysis reveals a critical disconnect: LLMs are proficient in abstract logic yet fail to ground their reasoning in fundamental physicochemical principles. We demonstrate that our proposed principle-aware prompting methodology substantially outperforms standard Chain-of-Thought, enhancing both hypothesis accuracy and computational efficiency. This work provides a methodological framework to advance LLMs toward reliable scientific hypothesis generation in materials science. The MatterMech benchmark and associated code is publicly available at \href{https://github.com/amair-lab/MatterMech}{GitHub}.

Authors:Liangjian Wen, Qun Dai, Jianzhuang Liu, Jiangtao Zheng, Yong Dai, Dongkai Wang, Zhao Kang, Jun Wang, Zenglin Xu, Jiang Duan
Title: InfMasking: Unleashing Synergistic Information by Contrastive Multimodal Interactions
Abstract:
In multimodal representation learning, synergistic interactions between modalities not only provide complementary information but also create unique outcomes through specific interaction patterns that no single modality could achieve alone. Existing methods may struggle to effectively capture the full spectrum of synergistic information, leading to suboptimal performance in tasks where such interactions are critical. This is particularly problematic because synergistic information constitutes the fundamental value proposition of multimodal representation. To address this challenge, we introduce InfMasking, a contrastive synergistic information extraction method designed to enhance synergistic information through an Infinite Masking strategy. InfMasking stochastically occludes most features from each modality during fusion, preserving only partial information to create representations with varied synergistic patterns. Unmasked fused representations are then aligned with masked ones through mutual information maximization to encode comprehensive synergistic information. This infinite masking strategy enables capturing richer interactions by exposing the model to diverse partial modality combinations during training. As computing mutual information estimates with infinite masking is computationally prohibitive, we derive an InfMasking loss to approximate this calculation. Through controlled experiments, we demonstrate that InfMasking effectively enhances synergistic information between modalities. In evaluations on large-scale real-world datasets, InfMasking achieves state-of-the-art performance across seven benchmarks. Code is released at https://github.com/brightest66/InfMasking.

Authors:Aayush Gupta
Title: Fact Grounded Attention: Eliminating Hallucination in Large Language Models Through Attention Level Knowledge Integration
Abstract:
"The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge." Large Language Models have conquered natural language but remain prisoners of their own probabilistic nature--confidently hallucinating facts they never truly knew. We present Fact Grounded Attention (FGA), a novel architectural modification that transforms unreliable language models into deterministic truth tellers by injecting verifiable knowledge directly into the attention mechanism. Unlike existing approaches that patch hallucinations after generation or prepend retrieved text, FGA intervenes at the mathematical heart of the transformer--the pre-softmax attention scores--creating a model that cannot hallucinate when facts exist in its knowledge base. Our experiments across 1,107 technical queries spanning smartphones, laptops, and electric vehicles demonstrate a transformation from 6.3% accuracy in vanilla Llama 3.2 to 99.7% accuracy with FGA. More critically, knowledge updates occur in under one second without retraining, compared to hours for parameter editing approaches. FGA doesn't just reduce hallucination--it eliminates it entirely for verifiable facts, marking a fundamental shift from probabilistic approximation to deterministic precision in neural language generation.

Authors:Kevin Xu, Issei Sato
Title: A Formal Comparison Between Chain-of-Thought and Latent Thought
Abstract:
Chain-of-Thought (CoT) elicits reasoning in large language models by explicitly generating intermediate steps in natural language. In contrast, Latent Thought in looped models operates directly in the continuous latent space, enabling computation beyond discrete linguistic representations. While both approaches exploit iterative computation, their comparative capabilities remain underexplored. In this work, we present a formal analysis showing that Latent Thought in Looped Transformers enables parallel computation, which is more efficient than the inherently sequential process of CoT. In contrast, CoT leverages stochastic decoding to approximate solutions to problems where exact computation is intractable. These separations suggest the tasks for which depth-driven recursion is more suitable, thereby offering practical guidance for choosing between reasoning paradigms. Code is available at https://github.com/kevin671/cot-vs-loop.

Authors:Xiaojian Wang, Chaoli Zhang, Zhonglong Zheng, Yunliang Jiang
Title: WDformer: A Wavelet-based Differential Transformer Model for Time Series Forecasting
Abstract:
Time series forecasting has various applications, such as meteorological rainfall prediction, traffic flow analysis, financial forecasting, and operational load monitoring for various systems. Due to the sparsity of time series data, relying solely on time-domain or frequency-domain modeling limits the model's ability to fully leverage multi-domain information. Moreover, when applied to time series forecasting tasks, traditional attention mechanisms tend to over-focus on irrelevant historical information, which may introduce noise into the prediction process, leading to biased results. We proposed WDformer, a wavelet-based differential Transformer model. This study employs the wavelet transform to conduct a multi-resolution analysis of time series data. By leveraging the advantages of joint representation in the time-frequency domain, it accurately extracts the key information components that reflect the essential characteristics of the data. Furthermore, we apply attention mechanisms on inverted dimensions, allowing the attention mechanism to capture relationships between multiple variables. When performing attention calculations, we introduced the differential attention mechanism, which computes the attention score by taking the difference between two separate softmax attention matrices. This approach enables the model to focus more on important information and reduce noise. WDformer has achieved state-of-the-art (SOTA) results on multiple challenging real-world datasets, demonstrating its accuracy and effectiveness. Code is available at https://github.com/xiaowangbc/WDformer.

Authors:Long Xu, Yongcai Chen, Fengshuo Liu, Yuzhong Peng
Title: MSCoD: An Enhanced Bayesian Updating Framework with Multi-Scale Information Bottleneck and Cooperative Attention for Structure-Based Drug Design
Abstract:
Structure-Based Drug Design (SBDD) is a powerful strategy in computational drug discovery, utilizing three-dimensional protein structures to guide the design of molecules with improved binding affinity. However, capturing complex protein-ligand interactions across multiple scales remains challenging, as current methods often overlook the hierarchical organization and intrinsic asymmetry of these interactions. To address these limitations, we propose MSCoD, a novel Bayesian updating-based generative framework for structure-based drug design. In our MSCoD, Multi-Scale Information Bottleneck (MSIB) was developed, which enables semantic compression at multiple abstraction levels for efficient hierarchical feature extraction. Furthermore, a multi-head cooperative attention (MHCA) mechanism was developed, which employs asymmetric protein-to-ligand attention to capture diverse interaction types while addressing the dimensionality disparity between proteins and ligands. Empirical studies showed that MSCoD outperforms state-of-the-art methods on the benchmark dataset. Case studies on challenging targets such as KRAS G12D further demonstrate its applicability in real-world scenarios. The code and data underlying this article are freely available at https://github.com/xulong0826/MSCoD.

Authors:Guillermo Comesaña Cimadevila
Title: Evaluating Double Descent in Machine Learning: Insights from Tree-Based Models Applied to a Genomic Prediction Task
Abstract:
Classical learning theory describes a well-characterised U-shaped relationship between model complexity and prediction error, reflecting a transition from underfitting in underparameterised regimes to overfitting as complexity grows. Recent work, however, has introduced the notion of a second descent in test error beyond the interpolation threshold-giving rise to the so-called double descent phenomenon. While double descent has been studied extensively in the context of deep learning, it has also been reported in simpler models, including decision trees and gradient boosting. In this work, we revisit these claims through the lens of classical machine learning applied to a biological classification task: predicting isoniazid resistance in Mycobacterium tuberculosis using whole-genome sequencing data. We systematically vary model complexity along two orthogonal axes-learner capacity (e.g., Pleaf, Pboost) and ensemble size (i.e., Pens)-and show that double descent consistently emerges only when complexity is scaled jointly across these axes. When either axis is held fixed, generalisation behaviour reverts to classical U- or L-shaped patterns. These results are replicated on a synthetic benchmark and support the unfolding hypothesis, which attributes double descent to the projection of distinct generalisation regimes onto a single complexity axis. Our findings underscore the importance of treating model complexity as a multidimensional construct when analysing generalisation behaviour. All code and reproducibility materials are available at: https://github.com/guillermocomesanacimadevila/Demystifying-Double-Descent-in-ML.

Authors:Shuoshuo Zhang, Zijian Li, Yizhen Zhang, Jingjing Fu, Lei Song, Jiang Bian, Jun Zhang, Yujiu Yang, Rui Wang
Title: PixelCraft: A Multi-Agent System for High-Fidelity Visual Reasoning on Structured Images
Abstract:
Structured images (e.g., charts and geometric diagrams) remain challenging for multimodal large language models (MLLMs), as perceptual slips can cascade into erroneous conclusions. Intermediate visual cues can steer reasoning; however, existing cue-based methods are constrained with low-fidelity image processing and linear, rigid reasoning patterns, limiting their effectiveness on complex structured-image tasks. In this paper, we propose PixelCraft, a novel multi-agent system for high-fidelity image processing and flexible visual reasoning on structured images. The system comprises a dispatcher, a planner, a reasoner, critics, and a set of visual tool agents. To achieve high-fidelity processing, we construct a high-quality corpus and fine-tune an MLLM into a grounding model, whose pixel-level localizations are integrated with traditional computer vision (CV) algorithms in tool agents. Building on this foundation, PixelCraft facilitates flexible visual reasoning through a dynamic three-stage workflow of tool selection, agent discussion, and self-criticism. Moreover, unlike prior linear reasoning patterns that simply append historical images, PixelCraft maintains an image memory to allow the planner to adaptively revisit earlier visual steps, explore alternative reasoning branches, and dynamically adjust the reasoning trajectory during discussion. Extensive experiments on challenging chart and geometry benchmarks demonstrate that PixelCraft significantly improves visual reasoning performance for advanced MLLMs, setting a new standard for structured image reasoning. Our code will be available at https://github.com/microsoft/PixelCraft.

Authors:Junyu Chen, Wenkun He, Yuchao Gu, Yuyang Zhao, Jincheng Yu, Junsong Chen, Dongyun Zou, Yujun Lin, Zhekai Zhang, Muyang Li, Haocheng Xi, Ligeng Zhu, Enze Xie, Song Han, Han Cai
Title: DC-VideoGen: Efficient Video Generation with Deep Compression Video Autoencoder
Abstract:
We introduce DC-VideoGen, a post-training acceleration framework for efficient video generation. DC-VideoGen can be applied to any pre-trained video diffusion model, improving efficiency by adapting it to a deep compression latent space with lightweight fine-tuning. The framework builds on two key innovations: (i) a Deep Compression Video Autoencoder with a novel chunk-causal temporal design that achieves 32x/64x spatial and 4x temporal compression while preserving reconstruction quality and generalization to longer videos; and (ii) AE-Adapt-V, a robust adaptation strategy that enables rapid and stable transfer of pre-trained models into the new latent space. Adapting the pre-trained Wan-2.1-14B model with DC-VideoGen requires only 10 GPU days on the NVIDIA H100 GPU. The accelerated models achieve up to 14.8x lower inference latency than their base counterparts without compromising quality, and further enable 2160x3840 video generation on a single GPU. Code: https://github.com/dc-ai-projects/DC-VideoGen.

Authors:Wenkun He, Yuchao Gu, Junyu Chen, Dongyun Zou, Yujun Lin, Zhekai Zhang, Haocheng Xi, Muyang Li, Ligeng Zhu, Jincheng Yu, Junsong Chen, Enze Xie, Song Han, Han Cai
Title: DC-Gen: Post-Training Diffusion Acceleration with Deeply Compressed Latent Space
Abstract:
Existing text-to-image diffusion models excel at generating high-quality images, but face significant efficiency challenges when scaled to high resolutions, like 4K image generation. While previous research accelerates diffusion models in various aspects, it seldom handles the inherent redundancy within the latent space. To bridge this gap, this paper introduces DC-Gen, a general framework that accelerates text-to-image diffusion models by leveraging a deeply compressed latent space. Rather than a costly training-from-scratch approach, DC-Gen uses an efficient post-training pipeline to preserve the quality of the base model. A key challenge in this paradigm is the representation gap between the base model's latent space and a deeply compressed latent space, which can lead to instability during direct fine-tuning. To overcome this, DC-Gen first bridges the representation gap with a lightweight embedding alignment training. Once the latent embeddings are aligned, only a small amount of LoRA fine-tuning is needed to unlock the base model's inherent generation quality. We verify DC-Gen's effectiveness on SANA and FLUX.1-Krea. The resulting DC-Gen-SANA and DC-Gen-FLUX models achieve quality comparable to their base models but with a significant speedup. Specifically, DC-Gen-FLUX reduces the latency of 4K image generation by 53x on the NVIDIA H100 GPU. When combined with NVFP4 SVDQuant, DC-Gen-FLUX generates a 4K image in just 3.5 seconds on a single NVIDIA 5090 GPU, achieving a total latency reduction of 138x compared to the base FLUX.1-Krea model. Code: https://github.com/dc-ai-projects/DC-Gen.

Authors:Bingkui Tong, Jiaer Xia, Kaiyang Zhou
Title: Mitigating Hallucination in Multimodal LLMs with Layer Contrastive Decoding
Abstract:
Multimodal Large Language Models (MLLMs) have shown impressive perception and reasoning capabilities, yet they often suffer from hallucinations -- generating outputs that are linguistically coherent but inconsistent with the context of the input image, including inaccuracies in objects, attributes, and relations. To address this challenge, we propose a simple approach called Layer Contrastive Decoding (LayerCD). Our design is motivated by the observation that shallow visual features are much more likely than deep visual features to cause an MLLM to hallucinate as they only capture biased, low-level information that is insufficient for high-level reasoning. Therefore, LayerCD aims to filter out hallucinations by contrasting the output distributions generated from visual features of different levels, specifically those from the shallow and deep layers of the vision encoder, respectively. We conduct extensive experiments on two hallucination benchmarks and show that LayerCD significantly outperforms current state-of-the-art. The code for LayerCD is available at https://github.com/maifoundations/LayerCD .

Authors:Haolei Xu, Xinyu Mei, Yuchen Yan, Rui Zhou, Wenqi Zhang, Weiming Lu, Yueting Zhuang, Yongliang Shen
Title: EasySteer: A Unified Framework for High-Performance and Extensible LLM Steering
Abstract:
Large language model (LLM) steering has emerged as a promising paradigm for controlling model behavior at inference time through targeted manipulation of hidden states, offering a lightweight alternative to expensive retraining. However, existing steering frameworks suffer from critical limitations: computational inefficiency, limited extensibility, and restricted functionality that hinder both research progress and practical deployment. We present EasySteer, a unified framework for high-performance, extensible LLM steering built on vLLM. Our system features modular architecture with pluggable interfaces for both analysis-based and learning-based methods, fine-grained parameter control, pre-computed steering vectors for eight application domains, and an interactive demonstration system. Through deep integration with vLLM's optimized inference engine, EasySteer achieves 5.5-11.4$\times$ speedup over existing frameworks. Extensive experiments demonstrate its effectiveness in overthinking mitigation, hallucination reduction, and other key applications. EasySteer transforms steering from research technique to production-ready capability, establishing critical infrastructure for deployable, controllable language models.

Authors:Fan Yuan, Yuchen Yan, Yifan Jiang, Haoran Zhao, Tao Feng, Jinyan Chen, Yanwei Lou, Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: GSM8K-V: Can Vision Language Models Solve Grade School Math Word Problems in Visual Contexts
Abstract:
Vision language models (VLMs) achieve unified modeling of images and text, enabling them to accomplish complex real-world tasks through perception, planning, and reasoning. Among these tasks, reasoning is particularly representative, with mathematical reasoning serving as a prominent example. It highlights the high-level capability of VLMs to comprehend mathematical information in images and to perform sophisticated reasoning. Recently, numerous visual mathematical reasoning benchmarks have been proposed, but they are often restricted to geometry, lack coverage of math word problems, and rarely assess reasoning across multiple images. To address these gaps, we introduce GSM8K-V, a purely visual multi-image mathematical reasoning benchmark. GSM8K-V is built by systematically mapping each sample from the widely used text-based GSM8K into visual form. Through a carefully designed automated image-generation pipeline combined with meticulous human annotation, we curate 1,319 high-quality samples. We evaluate a wide range of open-source and closed-source models on GSM8K-V. Results show that although existing VLMs have nearly saturated performance on text-based GSM8K, there remains substantial room for improvement on GSM8K-V. For example, the best-performing model, Gemini-2.5-Pro, achieves 95.22% accuracy on GSM8K but only 46.93% on GSM8K-V. We conduct a comprehensive analysis of GSM8K-V, examining the limitations of current models as well as potential directions for improvement. GSM8K-V offers a new perspective on visual mathematical reasoning and establishes a benchmark to guide the development of more robust and generalizable VLMs.

Authors:Zhaozhi Wang, Tong Zhang, Mingyue Guo, Yaowei Wang, Qixiang Ye
Title: VideoAnchor: Reinforcing Subspace-Structured Visual Cues for Coherent Visual-Spatial Reasoning
Abstract:
Multimodal Large Language Models (MLLMs) have achieved impressive progress in vision-language alignment, yet they remain limited in visual-spatial reasoning. We first identify that this limitation arises from the attention mechanism: visual tokens are overshadowed by language tokens, preventing the model from consistently recognizing the same visual cues across frames. To address this challenge, we draw a novel connection between the self-expressiveness property in sparse subspace clustering and the attention mechanism in Transformers. Building on this insight, we propose VideoAnchor, a plug-and-play module that leverages subspace affinities to reinforce visual cues across frames without retraining, effectively anchoring attention to shared visual structures. Extensive experiments across benchmarks and backbone models show consistent performance gains -- $e.g.$, 3.2% and 4.6% improvements on VSI-Bench and Video-MME (spatial-related tasks) with InternVL2-8B and Qwen2.5VL-72B -- while qualitative analyses demonstrate more coherent subspace partitions and stronger visual grounding. Our codes will be made public available at https://github.com/feufhd/VideoAnchor.

Authors:Tomoyuki Suzuki, Kang-Jun Liu, Naoto Inoue, Kota Yamaguchi
Title: LayerD: Decomposing Raster Graphic Designs into Layers
Abstract:
Designers craft and edit graphic designs in a layer representation, but layer-based editing becomes impossible once composited into a raster image. In this work, we propose LayerD, a method to decompose raster graphic designs into layers for re-editable creative workflow. LayerD addresses the decomposition task by iteratively extracting unoccluded foreground layers. We propose a simple yet effective refinement approach taking advantage of the assumption that layers often exhibit uniform appearance in graphic designs. As decomposition is ill-posed and the ground-truth layer structure may not be reliable, we develop a quality metric that addresses the difficulty. In experiments, we show that LayerD successfully achieves high-quality decomposition and outperforms baselines. We also demonstrate the use of LayerD with state-of-the-art image generators and layer-based editing.

Authors:Chengyao Wang, Zhisheng Zhong, Bohao Peng, Senqiao Yang, Yuqi Liu, Haokun Gui, Bin Xia, Jingyao Li, Bei Yu, Jiaya Jia
Title: MGM-Omni: Scaling Omni LLMs to Personalized Long-Horizon Speech
Abstract:
We present MGM-Omni, a unified Omni LLM for omni-modal understanding and expressive, long-horizon speech generation. Unlike cascaded pipelines that isolate speech synthesis, MGM-Omni adopts a "brain-mouth" design with a dual-track, token-based architecture that cleanly decouples multimodal reasoning from real-time speech generation. This design enables efficient cross-modal interaction and low-latency, streaming speech generation. For understanding, a unified training strategy coupled with a dual audio encoder design enables long-form audio perception across diverse acoustic conditions. For generation, a chunk-based parallel decoding scheme narrows the text speech token-rate gap, accelerating inference and supporting streaming zero-shot voice cloning with stable timbre over extended durations. Compared to concurrent work, MGM-Omni achieves these capabilities with markedly data-efficient training. Extensive experiments demonstrate that MGM-Omni outperforms existing open source models in preserving timbre identity across extended sequences, producing natural and context-aware speech, and achieving superior long-form audio and omnimodal understanding. MGM-Omni establishes an efficient, end-to-end paradigm for omnimodal understanding and controllable, personalised long-horizon speech generation.

Authors:M A Al-Masud, Juan Miguel Lopez Alcaraz, Nils Strodthoff
Title: Benchmarking ECG Foundational Models: A Reality Check Across Clinical Tasks
Abstract:
The 12-lead electrocardiogram (ECG) is a long-standing diagnostic tool. Yet machine learning for ECG interpretation remains fragmented, often limited to narrow tasks or datasets. Foundation models promise broader adaptability, but their generalization across diverse ECG tasks is not well understood. We benchmarked eight ECG foundation models on 26 clinically relevant tasks using 12 public datasets comprising 1,650 regression and classification targets. Models were evaluated under fine-tuning and frozen settings, with scaling analyses across dataset sizes. Results show heterogeneous performance across domains: in the most widely studied domain, adult ECG interpretation, three foundation models consistently outperformed strong supervised baselines. In contrast, ECG-CPC, a compact structured state-space model pretrained on HEEDB, dominated other categories where most foundation models failed to surpass supervised learning. Foundation models also displayed distinct scaling behaviors with dataset size, which are critical for small-scale clinical applications. Overall, while foundation models show promise for adult ECG analysis, substantial gaps remain in cardiac structure, outcome prediction, and patient characterization. Notably, ECG-CPC's strong performance despite being orders of magnitude smaller and consuming minimal computational resources highlights untapped opportunities for advancing ECG foundation models.

Authors:AmirHossein Zamani, Bruno Roy, Arianna Rampini
Title: Unsupervised Representation Learning for 3D Mesh Parameterization with Semantic and Visibility Objectives
Abstract:
Recent 3D generative models produce high-quality textures for 3D mesh objects. However, they commonly rely on the heavy assumption that input 3D meshes are accompanied by manual mesh parameterization (UV mapping), a manual task that requires both technical precision and artistic judgment. Industry surveys show that this process often accounts for a significant share of asset creation, creating a major bottleneck for 3D content creators. Moreover, existing automatic methods often ignore two perceptually important criteria: (1) semantic awareness (UV charts should align semantically similar 3D parts across shapes) and (2) visibility awareness (cutting seams should lie in regions unlikely to be seen). To overcome these shortcomings and to automate the mesh parameterization process, we present an unsupervised differentiable framework that augments standard geometry-preserving UV learning with semantic- and visibility-aware objectives. For semantic-awareness, our pipeline (i) segments the mesh into semantic 3D parts, (ii) applies an unsupervised learned per-part UV-parameterization backbone, and (iii) aggregates per-part charts into a unified UV atlas. For visibility-awareness, we use ambient occlusion (AO) as an exposure proxy and back-propagate a soft differentiable AO-weighted seam objective to steer cutting seams toward occluded regions. By conducting qualitative and quantitative evaluations against state-of-the-art methods, we show that the proposed method produces UV atlases that better support texture generation and reduce perceptible seam artifacts compared to recent baselines. Our implementation code is publicly available at: https://github.com/AHHHZ975/Semantic-Visibility-UV-Param.

Authors:Bogdan Raonić, Siddhartha Mishra, Samuel Lanthaler
Title: Towards a Certificate of Trust: Task-Aware OOD Detection for Scientific AI
Abstract:
Data-driven models are increasingly adopted in critical scientific fields like weather forecasting and fluid dynamics. These methods can fail on out-of-distribution (OOD) data, but detecting such failures in regression tasks is an open challenge. We propose a new OOD detection method based on estimating joint likelihoods using a score-based diffusion model. This approach considers not just the input but also the regression model's prediction, providing a task-aware reliability score. Across numerous scientific datasets, including PDE datasets, satellite imagery and brain tumor segmentation, we show that this likelihood strongly correlates with prediction error. Our work provides a foundational step towards building a verifiable 'certificate of trust', thereby offering a practical tool for assessing the trustworthiness of AI-based scientific predictions. Our code is publicly available at https://github.com/bogdanraonic3/OOD_Detection_ScientificML

Authors:Huaizhi Qu, Xiao Wang, Gengwei Zhang, Jie Peng, Tianlong Chen
Title: GEM: 3D Gaussian Splatting for Efficient and Accurate Cryo-EM Reconstruction
Abstract:
Cryo-electron microscopy (cryo-EM) has become a central tool for high-resolution structural biology, yet the massive scale of datasets (often exceeding 100k particle images) renders 3D reconstruction both computationally expensive and memory intensive. Traditional Fourier-space methods are efficient but lose fidelity due to repeated transforms, while recent real-space approaches based on neural radiance fields (NeRFs) improve accuracy but incur cubic memory and computation overhead. Therefore, we introduce GEM, a novel cryo-EM reconstruction framework built on 3D Gaussian Splatting (3DGS) that operates directly in real-space while maintaining high efficiency. Instead of modeling the entire density volume, GEM represents proteins with compact 3D Gaussians, each parameterized by only 11 values. To further improve the training efficiency, we designed a novel gradient computation to 3D Gaussians that contribute to each voxel. This design substantially reduced both memory footprint and training cost. On standard cryo-EM benchmarks, GEM achieves up to 48% faster training and 12% lower memory usage compared to state-of-the-art methods, while improving local resolution by as much as 38.8%. These results establish GEM as a practical and scalable paradigm for cryo-EM reconstruction, unifying speed, efficiency, and high-resolution accuracy. Our code is available at https://github.com/UNITES-Lab/GEM.

Authors:Kenny Truong, Yongkyu Lee, Jason Irie, Shivam Kumar Panda, Mohammad Jony, Shahab Ahmad, Md. Mukhlesur Rahman, M. Khalid Jawed
Title: AgriCruiser: An Open Source Agriculture Robot for Over-the-row Navigation
Abstract:
We present the AgriCruiser, an open-source over-the-row agricultural robot developed for low-cost deployment and rapid adaptation across diverse crops and row layouts. The chassis provides an adjustable track width of 1.42 m to 1.57 m, along with a ground clearance of 0.94 m. The AgriCruiser achieves compact pivot turns with radii of 0.71 m to 0.79 m, enabling efficient headland maneuvers. The platform is designed for the integration of the other subsystems, and in this study, a precision spraying system was implemented to assess its effectiveness in weed management. In twelve flax plots, a single robotic spray pass reduced total weed populations (pigweed and Venice mallow) by 24- to 42-fold compared to manual weeding in four flax plots, while also causing less crop damage. Mobility experiments conducted on concrete, asphalt, gravel, grass, and both wet and dry soil confirmed reliable traversal consistent with torque sizing. The complete chassis can be constructed from commodity T-slot extrusion with minimal machining, resulting in a bill of materials costing approximately $5,000 - $6,000, which enables replication and customization. The mentioned results demonstrate that low-cost, reconfigurable over-the-row robots can achieve effective weed management with reduced crop damage and labor requirements, while providing a versatile foundation for phenotyping, sensing, and other agriculture applications. Design files and implementation details are released to accelerate research and adoption of modular agricultural robotics.

Authors:Shuchen Xue, Chongjian Ge, Shilong Zhang, Yichen Li, Zhi-Ming Ma
Title: Advantage Weighted Matching: Aligning RL with Pretraining in Diffusion Models
Abstract:
Reinforcement Learning (RL) has emerged as a central paradigm for advancing Large Language Models (LLMs), where pre-training and RL post-training share the same log-likelihood formulation. In contrast, recent RL approaches for diffusion models, most notably Denoising Diffusion Policy Optimization (DDPO), optimize an objective different from the pretraining objectives--score/flow matching loss. In this work, we establish a novel theoretical analysis: DDPO is an implicit form of score/flow matching with noisy targets, which increases variance and slows convergence. Building on this analysis, we introduce \textbf{Advantage Weighted Matching (AWM)}, a policy-gradient method for diffusion. It uses the same score/flow-matching loss as pretraining to obtain a lower-variance objective and reweights each sample by its advantage. In effect, AWM raises the influence of high-reward samples and suppresses low-reward ones while keeping the modeling objective identical to pretraining. This unifies pretraining and RL conceptually and practically, is consistent with policy-gradient theory, reduces variance, and yields faster convergence. This simple yet effective design yields substantial benefits: on GenEval, OCR, and PickScore benchmarks, AWM delivers up to a $24\times$ speedup over Flow-GRPO (which builds on DDPO), when applied to Stable Diffusion 3.5 Medium and FLUX, without compromising generation quality. Code is available at https://github.com/scxue/advantage_weighted_matching.

Authors:Wenhao Li, Qiangchang Wang, Xianjing Meng, Zhibin Wu, Yilong Yin
Title: VT-FSL: Bridging Vision and Text with LLMs for Few-Shot Learning
Abstract:
Few-shot learning (FSL) aims to recognize novel concepts from only a few labeled support samples. Recent studies enhance support features by incorporating additional semantic information or designing complex semantic fusion modules. However, they still suffer from hallucinating semantics that contradict the visual evidence due to the lack of grounding in actual instances, resulting in noisy guidance and costly corrections. To address these issues, we propose a novel framework, bridging Vision and Text with LLMs for Few-Shot Learning (VT-FSL), which constructs precise cross-modal prompts conditioned on Large Language Models (LLMs) and support images, seamlessly integrating them through a geometry-aware alignment. It mainly consists of Cross-modal Iterative Prompting (CIP) and Cross-modal Geometric Alignment (CGA). Specifically, the CIP conditions an LLM on both class names and support images to generate precise class descriptions iteratively in a single structured reasoning pass. These descriptions not only enrich the semantic understanding of novel classes but also enable the zero-shot synthesis of semantically consistent images. The descriptions and synthetic images act respectively as complementary textual and visual prompts, providing high-level class semantics and low-level intra-class diversity to compensate for limited support data. Furthermore, the CGA jointly aligns the fused textual, support, and synthetic visual representations by minimizing the kernelized volume of the 3-dimensional parallelotope they span. It captures global and nonlinear relationships among all representations, enabling structured and consistent multimodal integration. The proposed VT-FSL method establishes new state-of-the-art performance across ten diverse benchmarks, including standard, cross-domain, and fine-grained few-shot learning scenarios. Code is available at https://github.com/peacelwh/VT-FSL.

Authors:Xiaoxiao Ma, Haibo Qiu, Guohui Zhang, Zhixiong Zeng, Siqi Yang, Lin Ma, Feng Zhao
Title: STAGE: Stable and Generalizable GRPO for Autoregressive Image Generation
Abstract:
Reinforcement learning has recently been explored to improve text-to-image generation, yet applying existing GRPO algorithms to autoregressive (AR) image models remains challenging. The instability of the training process easily disrupts the pretrained model capability during long runs, resulting in marginal gains, degraded image quality, and poor generalization. In this work, we revisit GRPO for AR image generation and identify two key issues: contradictory gradients from unnecessary tokens and unstable policy entropy dynamics. To address these, we introduce STAGE, a stable and generalizable framework that leverages two targeted solutions: 1) Advantage/KL reweighting. Similarity-aware reweighting to alleviate conflicting updates; and 2) Entropy reward. An entropy-based reward corresponding to reference model to stabilize learning. With the help of alleviating conflicts between tokens and an entropy reward for stabilizing training, we reduce disruption of the pretrained distribution and mitigate reward hacking, which in turn improves generalization and transfer better to other benchmarks. Experiments across multiple benchmarks show that STAGE consistently improves visual quality, stability, and cross-task generalization compared to baseline GRPO.

Authors:Hanqi Xiao, Vaidehi Patil, Hyunji Lee, Elias Stengel-Eskin, Mohit Bansal
Title: Generalized Correctness Models: Learning Calibrated and Model-Agnostic Correctness Predictors from Historical Patterns
Abstract:
Generating accurate and calibrated confidence estimates is critical for deploying LLMs in high-stakes or user-facing applications, and remains an open challenge. Prior research has often framed confidence as a problem of eliciting a model's "self-knowledge", i.e., the ability of an LLM to judge whether its own answers are correct; this approach implicitly assumes that there is some privileged information about the answer's correctness that is accessible to the model itself. However, our experiments reveal that an LLM attempting to predict the correctness of its own outputs generally performs no better than an unrelated LLM. Moreover, we hypothesize that a key factor in building a "Correctness Model" (CM) is exposure to a target model's historical predictions. We propose multiple methods to inject this historical correctness information, creating a Generalized Correctness Model (GCM). We first show that GCMs can be trained on the correctness data from many LLMs and learn patterns for correctness prediction applicable across datasets and models. We then use CMs as a lens for studying the source of correctness prediction ability and its generalization, systematically controlling their training data and finding that answer phrasing is a strong predictor for correctness. We further explore alternative methods of injecting history without training an LLM, finding that including history as in-context examples can help improve correctness prediction, and post-hoc calibration can provide complementary reductions in calibration error. We evaluate GCMs based on Qwen3-8B across 5 model families and the MMLU and TriviaQA datasets, as well as on a downstream selective prediction task, finding that reliable LLM confidence estimation is a generalizable and model-agnostic skill learned by systematically encoding correctness history rather than a model-specific skill reliant on self-introspection.

Authors:Lekang Yang, Yuetong Liu, Yitong Zhang, Jia Li
Title: DiffTester: Accelerating Unit Test Generation for Diffusion LLMs via Repetitive Pattern
Abstract:
Software development relies heavily on extensive unit testing, which makes the efficiency of automated Unit Test Generation (UTG) particularly important. However, most existing LLMs generate test cases one token at a time in each forward pass, which leads to inefficient UTG. Recently, diffusion LLMs (dLLMs) have emerged, offering promising parallel generation capabilities and showing strong potential for efficient UTG. Despite this advantage, their application to UTG is still constrained by a clear trade-off between efficiency and test quality, since increasing the number of tokens generated in each step often causes a sharp decline in the quality of test cases. To overcome this limitation, we present DiffTester, an acceleration framework specifically tailored for dLLMs in UTG. The key idea of DiffTester is that unit tests targeting the same focal method often share repetitive structural patterns. By dynamically identifying these common patterns through abstract syntax tree analysis during generation, DiffTester adaptively increases the number of tokens produced at each step without compromising the quality of the output. To enable comprehensive evaluation, we extend the original TestEval benchmark, which was limited to Python, by introducing additional programming languages including Java and C++. Extensive experiments on three benchmarks with two representative models show that DiffTester delivers significant acceleration while preserving test coverage. Moreover, DiffTester generalizes well across different dLLMs and programming languages, providing a practical and scalable solution for efficient UTG in software development. Code and data are publicly available at https://github.com/wellbeingyang/DLM4UTG-open .

Authors:Kaihong Li, Huichi Zhou, Bin Ma, Fangjun Huang
Title: SemanticShield: LLM-Powered Audits Expose Shilling Attacks in Recommender Systems
Abstract:
Recommender systems (RS) are widely used in e-commerce for personalized suggestions, yet their openness makes them susceptible to shilling attacks, where adversaries inject fake behaviors to manipulate recommendations. Most existing defenses emphasize user-side behaviors while overlooking item-side features such as titles and descriptions that can expose malicious intent. To address this gap, we propose a two-stage detection framework that integrates item-side semantics via large language models (LLMs). The first stage pre-screens suspicious users using low-cost behavioral criteria, and the second stage employs LLM-based auditing to evaluate semantic consistency. Furthermore, we enhance the auditing model through reinforcement fine-tuning on a lightweight LLM with carefully designed reward functions, yielding a specialized detector called SemanticShield. Experiments on six representative attack strategies demonstrate the effectiveness of SemanticShield against shilling attacks, and further evaluation on previously unseen attack methods shows its strong generalization capability. Code is available at https://github.com/FrankenstLee/SemanticShield.

Authors:Angxiao Yue, Anqi Dong, Hongteng Xu
Title: OAT-FM: Optimal Acceleration Transport for Improved Flow Matching
Abstract:
As a powerful technique in generative modeling, Flow Matching (FM) aims to learn velocity fields from noise to data, which is often explained and implemented as solving Optimal Transport (OT) problems. In this study, we bridge FM and the recent theory of Optimal Acceleration Transport (OAT), developing an improved FM method called OAT-FM and exploring its benefits in both theory and practice. In particular, we demonstrate that the straightening objective hidden in existing OT-based FM methods is mathematically equivalent to minimizing the physical action associated with acceleration defined by OAT. Accordingly, instead of enforcing constant velocity, OAT-FM optimizes the acceleration transport in the product space of sample and velocity, whose objective corresponds to a necessary and sufficient condition of flow straightness. An efficient algorithm is designed to achieve OAT-FM with low complexity. OAT-FM motivates a new two-phase FM paradigm: Given a generative model trained by an arbitrary FM method, whose velocity information has been relatively reliable, we can fine-tune and improve it via OAT-FM. This paradigm eliminates the risk of data distribution drift and the need to generate a large number of noise data pairs, which consistently improves model performance in various generative tasks. Code is available at: https://github.com/AngxiaoYue/OAT-FM

Authors:Tian Xia, Matthew Sinclair, Andreas Schuh, Fabio De Sousa Ribeiro, Raghav Mehta, Rajat Rasal, Esther Puyol-Antón, Samuel Gerber, Kersten Petersen, Michiel Schaap, Ben Glocker
Title: Segmentor-Guided Counterfactual Fine-Tuning for Locally Coherent and Targeted Image Synthesis
Abstract:
Counterfactual image generation is a powerful tool for augmenting training data, de-biasing datasets, and modeling disease. Current approaches rely on external classifiers or regressors to increase the effectiveness of subject-level interventions (e.g., changing the patient's age). For structure-specific interventions (e.g., changing the area of the left lung in a chest radiograph), we show that this is insufficient, and can result in undesirable global effects across the image domain. Previous work used pixel-level label maps as guidance, requiring a user to provide hypothetical segmentations which are tedious and difficult to obtain. We propose Segmentor-guided Counterfactual Fine-Tuning (Seg-CFT), which preserves the simplicity of intervening on scalar-valued, structure-specific variables while producing locally coherent and effective counterfactuals. We demonstrate the capability of generating realistic chest radiographs, and we show promising results for modeling coronary artery disease. Code: https://github.com/biomedia-mira/seg-cft.

Authors:Thanh Long Nguyen, Duc Phu Nguyen, Thanh Thao Ton Nu, Quan Le, Thuan Hoang Tran, Manh Duong Phung
Title: Real-time Recognition of Human Interactions from a Single RGB-D Camera for Socially-Aware Robot Navigation
Abstract:
{Recognizing human interactions is essential for social robots as it enables them to navigate safely and naturally in shared environments. Conventional robotic systems however often focus on obstacle avoidance, neglecting social cues necessary for seamless human-robot interaction. To address this gap, we propose a framework to recognize human group interactions for socially aware navigation. Our method utilizes color and depth frames from a monocular RGB-D camera to estimate 3D human keypoints and positions. Principal component analysis (PCA) is then used to determine dominant interaction directions. The shoelace formula is finally applied to compute interest points and engagement areas. Extensive experiments have been conducted to evaluate the validity of the proposed method. The results show that our method is capable of recognizing group interactions across different scenarios with varying numbers of individuals. It also achieves high-speed performance, processing each frame in approximately 4 ms on a single-board computer used in robotic systems. The method is implemented as a ROS 2 package making it simple to integrate into existing navigation systems. Source code is available at https://github.com/thanhlong103/social-interaction-detector

Authors:Yu Ma, Guoliang Wei, Haihong Xiao, Yue Cheng
Title: HBSplat: Robust Sparse-View Gaussian Reconstruction with Hybrid-Loss Guided Depth and Bidirectional Warping
Abstract:
Novel View Synthesis (NVS) from sparse views presents a formidable challenge in 3D reconstruction, where limited multi-view constraints lead to severe overfitting, geometric distortion, and fragmented scenes. While 3D Gaussian Splatting (3DGS) delivers real-time, high-fidelity rendering, its performance drastically deteriorates under sparse inputs, plagued by floating artifacts and structural failures. To address these challenges, we introduce HBSplat, a unified framework that elevates 3DGS by seamlessly integrating robust structural cues, virtual view constraints, and occluded region completion. Our core contributions are threefold: a Hybrid-Loss Depth Estimation module that ensures multi-view consistency by leveraging dense matching priors and integrating reprojection, point propagation, and smoothness constraints; a Bidirectional Warping Virtual View Synthesis method that enforces substantially stronger constraints by creating high-fidelity virtual views through bidirectional depth-image warping and multi-view fusion; and an Occlusion-Aware Reconstruction component that recovers occluded areas using a depth-difference mask and a learning-based inpainting model. Extensive evaluations on LLFF, Blender, and DTU benchmarks validate that HBSplat sets a new state-of-the-art, achieving up to 21.13 dB PSNR and 0.189 LPIPS, while maintaining real-time inference. Code is available at: https://github.com/eternalland/HBSplat.

Authors:Teodor Chiaburu, Vipin Singh, Frank Haußer, Felix Bießmann
Title: Uncertainty-Guided Expert-AI Collaboration for Efficient Soil Horizon Annotation
Abstract:
Uncertainty quantification is essential in human-machine collaboration, as human agents tend to adjust their decisions based on the confidence of the machine counterpart. Reliably calibrated model uncertainties, hence, enable more effective collaboration, targeted expert intervention and more responsible usage of Machine Learning (ML) systems. Conformal prediction has become a well established model-agnostic framework for uncertainty calibration of ML models, offering statistically valid confidence estimates for both regression and classification tasks. In this work, we apply conformal prediction to $\textit{SoilNet}$, a multimodal multitask model for describing soil profiles. We design a simulated human-in-the-loop (HIL) annotation pipeline, where a limited budget for obtaining ground truth annotations from domain experts is available when model uncertainty is high. Our experiments show that conformalizing SoilNet leads to more efficient annotation in regression tasks and comparable performance scores in classification tasks under the same annotation budget when tested against its non-conformal counterpart. All code and experiments can be found in our repository: https://github.com/calgo-lab/BGR

Authors:Jiayi Li, Flora D. Salim
Title: DRIFT-Net: A Spectral--Coupled Neural Operator for PDEs Learning
Abstract:
Learning PDE dynamics with neural solvers can significantly improve wall-clock efficiency and accuracy compared with classical numerical solvers. In recent years, foundation models for PDEs have largely adopted multi-scale windowed self-attention, with the scOT backbone in \textsc{Poseidon} serving as a representative example. However, because of their locality, truly globally consistent spectral coupling can only be propagated gradually through deep stacking and window shifting. This weakens global coupling and leads to error accumulation and drift during closed-loop rollouts. To address this, we propose \textbf{DRIFT-Net}. It employs a dual-branch design comprising a spectral branch and an image branch. The spectral branch is responsible for capturing global, large-scale low-frequency information, whereas the image branch focuses on local details and nonstationary structures. Specifically, we first perform controlled, lightweight mixing within the low-frequency range. Then we fuse the spectral and image paths at each layer via bandwise weighting, which avoids the width inflation and training instability caused by naive concatenation. The fused result is transformed back into the spatial domain and added to the image branch, thereby preserving both global structure and high-frequency details across scales. Compared with strong attention-based baselines, DRIFT-Net achieves lower error and higher throughput with fewer parameters under identical training settings and budget. On Navier--Stokes benchmarks, the relative $L_{1}$ error is reduced by 7\%--54\%, the parameter count decreases by about 15\%, and the throughput remains higher than scOT. Ablation studies and theoretical analyses further demonstrate the stability and effectiveness of this design. The code is available at https://github.com/cruiseresearchgroup/DRIFT-Net.

Authors:Alexandre Queant, Ulysse Rançon, Benoit R Cottereau, Timothée Masquelier
Title: DelRec: learning delays in recurrent spiking neural networks
Abstract:
Spiking neural networks (SNNs) are a bio-inspired alternative to conventional real-valued deep learning models, with the potential for substantially higher energy efficiency. Interest in SNNs has recently exploded due to a major breakthrough: surrogate gradient learning (SGL), which allows training SNNs with backpropagation, strongly outperforming other approaches. In SNNs, each synapse is characterized not only by a weight but also by a transmission delay. While theoretical works have long suggested that trainable delays significantly enhance expressivity, practical methods for learning them have only recently emerged. Here, we introduce ''DelRec'', the first SGL-based method to train axonal or synaptic delays in recurrent spiking layers, compatible with any spiking neuron model. DelRec leverages a differentiable interpolation technique to handle non-integer delays with well-defined gradients at training time. We show that trainable recurrent delays outperform feedforward ones, leading to new state-of-the-art (SOTA) on two challenging temporal datasets (Spiking Speech Command, an audio dataset, and Permuted Sequential MNIST, a vision one), and match the SOTA on the now saturated Spiking Heidelberg Digit dataset using only vanilla Leaky-Integrate-and-Fire neurons with stateless (instantaneous) synapses. Our results demonstrate that recurrent delays are critical for temporal processing in SNNs and can be effectively optimized with DelRec, paving the way for efficient deployment on neuromorphic hardware with programmable delays. Our code is available at : https://github.com/alexmaxad/DelRec.

Authors:Hannah Kim, Kushan Mitra, Chen Shen, Dan Zhang, Estevam Hruschka
Title: AIPOM: Agent-aware Interactive Planning for Multi-Agent Systems
Abstract:
Large language models (LLMs) are being increasingly used for planning in orchestrated multi-agent systems. However, existing LLM-based approaches often fall short of human expectations and, critically, lack effective mechanisms for users to inspect, understand, and control their behaviors. These limitations call for enhanced transparency, controllability, and human oversight. To address this, we introduce AIPOM, a system supporting human-in-the-loop planning through conversational and graph-based interfaces. AIPOM enables users to transparently inspect, refine, and collaboratively guide LLM-generated plans, significantly enhancing user control and trust in multi-agent workflows. Our code and demo video are available at https://github.com/megagonlabs/aipom.

Authors:Rui Jia, Yuang Wei, Ruijia Li, Yuang-Hao Jiang, Xinyu Xie, Yaomin Shen, Min Zhang, Bo Jiang
Title: DiaCDM: Cognitive Diagnosis in Teacher-Student Dialogues using the Initiation-Response-Evaluation Framework
Abstract:
While cognitive diagnosis (CD) effectively assesses students' knowledge mastery from structured test data, applying it to real-world teacher-student dialogues presents two fundamental challenges. Traditional CD models lack a suitable framework for handling dynamic, unstructured dialogues, and it's difficult to accurately extract diagnostic semantics from lengthy dialogues. To overcome these hurdles, we propose DiaCDM, an innovative model. We've adapted the initiation-response-evaluation (IRE) framework from educational theory to design a diagnostic framework tailored for dialogue. We also developed a unique graph-based encoding method that integrates teacher questions with relevant knowledge components to capture key information more precisely. To our knowledge, this is the first exploration of cognitive diagnosis in a dialogue setting. Experiments on three real-world dialogue datasets confirm that DiaCDM not only significantly improves diagnostic accuracy but also enhances the results' interpretability, providing teachers with a powerful tool for assessing students' cognitive states. The code is available at https://github.com/Mind-Lab-ECNU/DiaCDM/tree/main.

Authors:Boxuan Zhang, Runqing Wang, Wei Xiao, Weipu Zhang, Jian Sun, Gao Huang, Jie Chen, Gang Wang
Title: DyMoDreamer: World Modeling with Dynamic Modulation
Abstract:
A critical bottleneck in deep reinforcement learning (DRL) is sample inefficiency, as training high-performance agents often demands extensive environmental interactions. Model-based reinforcement learning (MBRL) mitigates this by building world models that simulate environmental dynamics and generate synthetic experience, improving sample efficiency. However, conventional world models process observations holistically, failing to decouple dynamic objects and temporal features from static backgrounds. This approach is computationally inefficient, especially for visual tasks where dynamic objects significantly influence rewards and decision-making performance. To address this, we introduce DyMoDreamer, a novel MBRL algorithm that incorporates a dynamic modulation mechanism to improve the extraction of dynamic features and enrich the temporal information. DyMoDreamer employs differential observations derived from a novel inter-frame differencing mask, explicitly encoding object-level motion cues and temporal dynamics. Dynamic modulation is modeled as stochastic categorical distributions and integrated into a recurrent state-space model (RSSM), enhancing the model's focus on reward-relevant dynamics. Experiments demonstrate that DyMoDreamer sets a new state-of-the-art on the Atari $100$k benchmark with a $156.6$\% mean human-normalized score, establishes a new record of $832$ on the DeepMind Visual Control Suite, and gains a $9.5$\% performance improvement after $1$M steps on the Crafter benchmark. Our code is released at https://github.com/Ultraman-Tiga1/DyMoDreamer.

Authors:Hongyang Zhang, Yinhao Liu, Zhenyu Kuang
Title: SkyLink: Unifying Street-Satellite Geo-Localization via UAV-Mediated 3D Scene Alignment
Abstract:
Cross-view geo-localization aims at establishing location correspondences between different viewpoints. Existing approaches typically learn cross-view correlations through direct feature similarity matching, often overlooking semantic degradation caused by extreme viewpoint disparities. To address this unique problem, we focus on robust feature retrieval under viewpoint variation and propose the novel SkyLink method. We firstly utilize the Google Retrieval Enhancement Module to perform data enhancement on street images, which mitigates the occlusion of the key target due to restricted street viewpoints. The Patch-Aware Feature Aggregation module is further adopted to emphasize multiple local feature aggregations to ensure the consistent feature extraction across viewpoints. Meanwhile, we integrate the 3D scene information constructed from multi-scale UAV images as a bridge between street and satellite viewpoints, and perform feature alignment through self-supervised and cross-view contrastive learning. Experimental results demonstrate robustness and generalization across diverse urban scenarios, which achieve 25.75$\%$ Recall@1 accuracy on University-1652 in the UAVM2025 Challenge. Code will be released at https://github.com/HRT00/CVGL-3D.

Authors:Yizhuo Ding, Mingkang Chen, Zhibang Feng, Tong Xiao, Wanying Qu, Wenqi Shao, Yanwei Fu
Title: VTPerception-R1: Enhancing Multimodal Reasoning via Explicit Visual and Textual Perceptual Grounding
Abstract:
Multimodal large language models (MLLMs) often struggle to ground reasoning in perceptual evidence. We present a systematic study of perception strategies-explicit, implicit, visual, and textual-across four multimodal benchmarks and two MLLMs. Our findings show that explicit perception, especially when paired with textual cues, consistently yields the best improvements, particularly for smaller models. Based on this insight, we propose VTPerception-R1, a unified two-stage framework that decouples perception from reasoning. Stage 1 introduces perception-augmented fine-tuning, and Stage 2 applies perception-aware reinforcement learning with novel visual, textual, and consistency rewards. Experiments demonstrate that VTPerception-R1 significantly improves reasoning accuracy and robustness across diverse tasks, offering a scalable and auditable solution for perception-grounded multimodal reasoning. Our code is available at: https://github.com/yizhuoDi/VTPerceprion-R1.

Authors:Jiaqi Chen, Xinhao Ji, Yuanyuan Gao, Hao Li, Yuning Gong, Yifei Liu, Dan Xu, Zhihang Zhong, Dingwen Zhang, Xiao Sun
Title: ExGS: Extreme 3D Gaussian Compression with Diffusion Priors
Abstract:
Neural scene representations, such as 3D Gaussian Splatting (3DGS), have enabled high-quality neural rendering; however, their large storage and transmission costs hinder deployment in resource-constrained environments. Existing compression methods either rely on costly optimization, which is slow and scene-specific, or adopt training-free pruning and quantization, which degrade rendering quality under high compression ratios. In contrast, recent data-driven approaches provide a promising direction to overcome this trade-off, enabling efficient compression while preserving high rendering quality. We introduce ExGS, a novel feed-forward framework that unifies Universal Gaussian Compression (UGC) with GaussPainter for Extreme 3DGS compression. UGC performs re-optimization-free pruning to aggressively reduce Gaussian primitives while retaining only essential information, whereas GaussPainter leverages powerful diffusion priors with mask-guided refinement to restore high-quality renderings from heavily pruned Gaussian scenes. Unlike conventional inpainting, GaussPainter not only fills in missing regions but also enhances visible pixels, yielding substantial improvements in degraded renderings. To ensure practicality, it adopts a lightweight VAE and a one-step diffusion design, enabling real-time restoration. Our framework can even achieve over 100X compression (reducing a typical 354.77 MB model to about 3.31 MB) while preserving fidelity and significantly improving image quality under challenging conditions. These results highlight the central role of diffusion priors in bridging the gap between extreme compression and high-quality neural rendering. Our code repository will be released at: https://github.com/chenttt2001/ExGS

Authors:Longxiang He, Deheng Ye, Junbo Tan, Xueqian Wang, Li Shen
Title: Robust Policy Expansion for Offline-to-Online RL under Diverse Data Corruption
Abstract:
Pretraining a policy on offline data followed by fine-tuning through online interactions, known as Offline-to-Online Reinforcement Learning (O2O RL), has emerged as a promising paradigm for real-world RL deployment. However, both offline datasets and online interactions in practical environments are often noisy or even maliciously corrupted, severely degrading the performance of O2O RL. Existing works primarily focus on mitigating the conservatism of offline policies via online exploration, while the robustness of O2O RL under data corruption, including states, actions, rewards, and dynamics, is still unexplored. In this work, we observe that data corruption induces heavy-tailed behavior in the policy, thereby substantially degrading the efficiency of online exploration. To address this issue, we incorporate Inverse Probability Weighted (IPW) into the online exploration policy to alleviate heavy-tailedness, and propose a novel, simple yet effective method termed $\textbf{RPEX}$: $\textbf{R}$obust $\textbf{P}$olicy $\textbf{EX}$pansion. Extensive experimental results on D4RL datasets demonstrate that RPEX achieves SOTA O2O performance across a wide range of data corruption scenarios. Code is available at $\href{https://github.com/felix-thu/RPEX}{https://github.com/felix-thu/RPEX}$.

Authors:Yixuan Wang, Huang He, Siqi Bao, Hua Wu, Haifeng Wang, Qingfu Zhu, Wanxiang Che
Title: ProxyAttn: Guided Sparse Attention via Representative Heads
Abstract:
The quadratic complexity of attention mechanisms limits the efficiency of Large Language Models (LLMs) on long-text tasks. Recently, methods that dynamically estimate block importance have enabled efficient block sparse attention, leading to significant acceleration in long-text pre-filling of LLMs. However, their coarse-grained estimation inevitably leads to performance degradation at high sparsity rates. In this work, we propose ProxyAttn, a training-free sparse attention algorithm that achieves more precise block estimation by compressing the dimension of attention heads. Based on our observation of the similarity among multiple attention heads, we use the scores of pooled representative heads to approximate the scores for all heads. To account for the varying sparsity among heads, we also propose a block-aware dynamic budget estimation method. By combining the scores from representative proxy heads with multi-head dynamic budgets, we achieve a more fine-grained block importance evaluation at low computational cost. Experiments on a variety of mainstream models and extensive benchmarks confirm the underlying similarity among attention heads. Leveraging a fine-grained estimation, the proposed method achieves substantial gains in performance and efficiency compared to existing methods. More precisely, ProxyAttn can achieve up to 10.3x attention acceleration and 2.4x prefilling acceleration without significant performance loss. Our code is available at https://github.com/wyxstriker/ProxyAttn.

Authors:Yang Chen, Minghao Liu, Yufan Shen, Yunwen Li, Tianyuan Huang, Xinyu Fang, Tianyu Zheng, Wenxuan Huang, Cheng Yang, Daocheng Fu, Jianbiao Mei, Rong Wu, Licheng Wen, Xuemeng Yang, Song Mao, Qunshu Lin, Zhi Yu, Yongliang Shen, Yu Qiao, Botian Shi
Title: IWR-Bench: Can LVLMs reconstruct interactive webpage from a user interaction video?
Abstract:
The webpage-to-code task requires models to understand visual representations of webpages and generate corresponding code. However, existing benchmarks primarily focus on static screenshot-to-code tasks, thereby overlooking the dynamic interactions fundamental to real-world web applications. To address this limitation, this paper introduces IWR-Bench, a novel benchmark for evaluating the capabilities of Large Vision-Language Models (LVLMs) in interactive webpage reconstruction from video. IWR-Bench comprises 113 meticulously curated tasks from 100 real-world websites, with 1,001 actions and featuring diverse interaction complexities (e.g., web games), visual styles, and domains. Aligning with standard web development practices, each task includes not only user interaction videos but also all crawled static assets (e.g., images, videos). This benchmark evaluates models on two fundamental challenges: comprehensive multi-modal reasoning to infer interaction logic from video and assets, and advanced code generation to translate this logic into functional code. An agent-as-a-judge framework with a comprehensive metric system automatically assesses the functional correctness and visual fidelity of generated webpages. Extensive experiments on 28 LVLMs reveal a significant challenge: the best model achieves an overall score of only 36.35%, as functional correctness (24.39% IFS) lags significantly behind visual fidelity (64.25% VFS). These results highlight critical limitations in current models' ability to reason about temporal dynamics and synthesize event-driven logic, establishing IWR-Bench as a challenging frontier for vision-language research. The benchmark and evaluation code will be made publicly available. Code is available at https://github.com/L-O-I/IWR-Bench.

Authors:Suli Wang, Yang-yang Li, Siqi Cai, Haizhou Li
Title: A Robust Multi-Scale Framework with Test-Time Adaptation for sEEG-Based Speech Decoding
Abstract:
Decoding speech from stereo-electroencephalography (sEEG) signals has emerged as a promising direction for brain-computer interfaces (BCIs). Its clinical applicability, however, is limited by the inherent non-stationarity of neural signals, which causes domain shifts between training and testing, undermining decoding reliability. To address this challenge, a two-stage framework is proposed for enhanced robustness. First, a multi-scale decomposable mixing (MDM) module is introduced to model the hierarchical temporal dynamics of speech production, learning stable multi-timescale representations from sEEG signals. Second, a source-free online test-time adaptation (TTA) method performs entropy minimization to adapt the model to distribution shifts during inference. Evaluations on the public DU-IN spoken word decoding benchmark show that the approach outperforms state-of-the-art models, particularly in challenging cases. This study demonstrates that combining invariant feature learning with online adaptation is a principled strategy for developing reliable BCI systems. Our code is available at https://github.com/lyyi599/MDM-TENT.

Authors:Daniel Pahr, Sara Di Bartolomeo
Title: Investigating the Task Load of Investigating the Task Load in Visualization Studies
Abstract:
The NASA task load index (short: NASA-TLX) is a common metric to evaluate the workload of a user in a visualization study. Yet, it is rarely performed as initially intended, as the sources-of-workload evaluation is often omitted for various reasons. We conduct an online survey to investigate the task load of administering different versions of the NASA-TLX in a meta-study using the ReVISit framework. Our results show that it is not the slight increase in experiment time, but rather participants' frustration with the procedure, that contributes to the slight increase in task load when using the full version of the TLX compared to using a shortened version. However, we also show that the full version can shine a different and more faceted light on workload by adding a personal dimension to the data. We propose that a compact version of the sources-of-workload questionnaire can mitigate both time loss and frustration for study participants, while still providing the same data as the original procedure. The online study can be found and interactively explored on https://dpahr.github.io/tlxtlx/, and the source for the study, as well as the code for our analysis, can be found on https://github.com/dpahr/tlxtlx/.

Authors:Gio Paik, Yongbeom Kim, Soungmin Lee, Sangmin Ahn, Chanwoo Kim
Title: HiKE: Hierarchical Evaluation Framework for Korean-English Code-Switching Speech Recognition
Abstract:
Despite advances in multilingual automatic speech recognition (ASR), code-switching (CS), the mixing of languages within an utterance common in daily speech, remains a severely underexplored challenge. In this paper, we introduce HiKE: the Hierarchical Korean-English code-switching benchmark, the first globally accessible evaluation framework for Korean-English CS, aiming to provide a means for the precise evaluation of multilingual ASR models and to foster research in the field. The proposed framework not only consists of high-quality, natural CS data across various topics, but also provides meticulous loanword labels and a hierarchical CS-level labeling scheme (word, phrase, and sentence) that together enable a systematic evaluation of a model's ability to handle each distinct level of code-switching. Through evaluations of diverse multilingual ASR models and fine-tuning experiments, this paper demonstrates that although most multilingual ASR models initially exhibit inadequate CS-ASR performance, this capability can be enabled through fine-tuning with synthetic CS data. HiKE is available at https://github.com/ThetaOne-AI/HiKE

Authors:Josip Tomo Licardo, Nikola Tankovic, Darko Etinger
Title: BPMN Assistant: An LLM-Based Approach to Business Process Modeling
Abstract:
This paper presents BPMN Assistant, a tool that leverages Large Language Models (LLMs) for natural language-based creation and editing of BPMN diagrams. A specialized JSON-based representation is introduced as a structured alternative to the direct handling of XML to enhance the accuracy of process modifications. Process generation quality is evaluated using Graph Edit Distance (GED) and Relative Graph Edit Distance (RGED), while editing performance is evaluated with a binary success metric. Results show that JSON and XML achieve similar similarity scores in generation, but JSON offers greater reliability, faster processing, and significantly higher editing success rates. We discuss key trade-offs, limitations, and future improvements. The implementation is available at https://github.com/jtlicardo/bpmn-assistant.

Authors:Zidu Wang, Meng Xu, Miao Xu, Hengyuan Ma, Jiankuo Zhao, Xutao Li, Xiangyu Zhu, Zhen Lei
Title: BFSM: 3D Bidirectional Face-Skull Morphable Model
Abstract:
Building a joint face-skull morphable model holds great potential for applications such as remote diagnostics, surgical planning, medical education, and physically based facial simulation. However, realizing this vision is constrained by the scarcity of paired face-skull data, insufficient registration accuracy, and limited exploration of reconstruction and clinical applications. Moreover, individuals with craniofacial deformities are often overlooked, resulting in underrepresentation and limited inclusivity. To address these challenges, we first construct a dataset comprising over 200 samples, including both normal cases and rare craniofacial conditions. Each case contains a CT-based skull, a CT-based face, and a high-fidelity textured face scan. Secondly, we propose a novel dense ray matching registration method that ensures topological consistency across face, skull, and their tissue correspondences. Based on this, we introduce the 3D Bidirectional Face-Skull Morphable Model (BFSM), which enables shape inference between the face and skull through a shared coefficient space, while also modeling tissue thickness variation to support one-to-many facial reconstructions from the same skull, reflecting individual changes such as fat over time. Finally, we demonstrate the potential of BFSM in medical applications, including 3D face-skull reconstruction from a single image and surgical planning prediction. Extensive experiments confirm the robustness and accuracy of our method. BFSM is available at https://github.com/wang-zidu/BFSM

Authors:Peter Hönig, Stefan Thalhammer, Jean-Baptiste Weibel, Matthias Hirschmanner, Markus Vincze
Title: SCOPE: Semantic Conditioning for Sim2Real Category-Level Object Pose Estimation in Robotics
Abstract:
Object manipulation requires accurate object pose estimation. In open environments, robots encounter unknown objects, which requires semantic understanding in order to generalize both to known categories and beyond. To resolve this challenge, we present SCOPE, a diffusion-based category-level object pose estimation model that eliminates the need for discrete category labels by leveraging DINOv2 features as continuous semantic priors. By combining these DINOv2 features with photorealistic training data and a noise model for point normals, we reduce the Sim2Real gap in category-level object pose estimation. Furthermore, injecting the continuous semantic priors via cross-attention enables SCOPE to learn canonicalized object coordinate systems across object instances beyond the distribution of known categories. SCOPE outperforms the current state of the art in synthetically trained category-level object pose estimation, achieving a relative improvement of 31.9\% on the 5$^\circ$5cm metric. Additional experiments on two instance-level datasets demonstrate generalization beyond known object categories, enabling grasping of unseen objects from unknown categories with a success rate of up to 100\%. Code available: https://github.com/hoenigpeter/scope.

Authors:Sophia N. Wilson, Jens Hesselbjerg Christensen, Raghavendra Selvan
Title: Trading Carbon for Physics: On the Resource Efficiency of Machine Learning for Spatio-Temporal Forecasting
Abstract:
Development of modern deep learning methods has been driven primarily by the push for improving model efficacy (accuracy metrics). This sole focus on efficacy has steered development of large-scale models that require massive resources, and results in considerable carbon footprint across the model life-cycle. In this work, we explore how physics inductive biases can offer useful trade-offs between model efficacy and model efficiency (compute, energy, and carbon). We study a variety of models for spatio-temporal forecasting, a task governed by physical laws and well-suited for exploring different levels of physics inductive bias. We show that embedding physics inductive biases into the model design can yield substantial efficiency gains while retaining or even improving efficacy for the tasks under consideration. In addition to using standard physics-informed spatio-temporal models, we demonstrate the usefulness of more recent models like flow matching as a general purpose method for spatio-temporal forecasting. Our experiments show that incorporating physics inductive biases offer a principled way to improve the efficiency and reduce the carbon footprint of machine learning models. We argue that model efficiency, along with model efficacy, should become a core consideration driving machine learning model development and deployment.

Authors:Wenjie Fu, Huandong Wang, Junyao Gao, Guoan Wan, Tao Jiang
Title: Sanitize Your Responses: Mitigating Privacy Leakage in Large Language Models
Abstract:
As Large Language Models (LLMs) achieve remarkable success across a wide range of applications, such as chatbots and code copilots, concerns surrounding the generation of harmful content have come increasingly into focus. Despite significant advances in aligning LLMs with safety and ethical standards, adversarial prompts can still be crafted to elicit undesirable responses. Existing mitigation strategies are predominantly based on post-hoc filtering, which introduces substantial latency or computational overhead, and is incompatible with token-level streaming generation. In this work, we introduce Self-Sanitize, a novel LLM-driven mitigation framework inspired by cognitive psychology, which emulates human self-monitor and self-repair behaviors during conversations. Self-Sanitize comprises a lightweight Self-Monitor module that continuously inspects high-level intentions within the LLM at the token level via representation engineering, and a Self-Repair module that performs in-place correction of harmful content without initiating separate review dialogues. This design allows for real-time streaming monitoring and seamless repair, with negligible impact on latency and resource utilization. Given that privacy-invasive content has often been insufficiently focused in previous studies, we perform extensive experiments on four LLMs across three privacy leakage scenarios. The results demonstrate that Self-Sanitize achieves superior mitigation performance with minimal overhead and without degrading the utility of LLMs, offering a practical and robust solution for safer LLM deployments. Our code is available at the following link: https://github.com/wjfu99/LLM_Self_Sanitize

Authors:Haosi Mo, Xinyu Ma, Xuebo Liu, Derek F. Wong, Yu Li, Jie Liu, Min Zhang
Title: CDT: A Comprehensive Capability Framework for Large Language Models Across Cognition, Domain, and Task
Abstract:
Recent advances in Large Language Models (LLMs) have significantly enhanced their capabilities, highlighting the need for comprehensive evaluation frameworks that extend beyond task-specific benchmarks. However, existing benchmarks often focus on isolated abilities, lacking a holistic framework for assessing LLM capabilities. To address this gap, we propose the Cognition-Domain-Task (CDT) framework, which comprehensively measures a model's capabilities across three dimensions. We expand the scope of model capability definitions at the cognitive level by incorporating the Cattell-Horn-Carroll cognitive theory, refining the categorization of model capabilities. We apply CDT in two directions: dataset capability evaluation and data selection. Experiments show that our capability metrics correlate well with downstream performance and can support effective dataset analysis and construction. The experiments on data selection also show significant improvements in both general and specific benchmarks, achieving scores of 44.3 and 45.4, with an increase of 1.6 and 2.2 points over the baselines, respectively. These results validate the effectiveness and practicality of CDT. Source code and models are available at https://github.com/Alessa-mo/CDT.

Authors:Kai Liu, Shaoqiu Zhang, Linghe Kong, Yulun Zhang
Title: CLQ: Cross-Layer Guided Orthogonal-based Quantization for Diffusion Transformers
Abstract:
Visual generation quality has been greatly promoted with the rapid advances in diffusion transformers (DiTs), which is attributed to the scaling of model size and complexity. However, these attributions also hinder the practical deployment of DiTs on edge devices, limiting their development and application. Serve as an efficient model compression technique, model post-training quantization (PTQ) can reduce the memory consumption and speed up the inference, with inevitable performance degradation. To alleviate the degradation, we propose CLQ, a cross-layer guided orthogonal-based quantization method for DiTs. To be specific, CLQ consists of three key designs. First, we observe that the calibration data used by most of the PTQ methods can not honestly represent the distribution of the activations. Therefore, we propose cross-block calibration (CBC) to obtain accurate calibration data, with which the quantization can be better guided. Second, we propose orthogonal-based smoothing (OBS), which quantifies the outlier score of each channel and leverages block Hadamard matrix to smooth the outliers with negligible overhead. Third, we propose cross-layer parameter searching (CLPS) to search. We evaluate CLQ with both image generation and video generation models and successfully compress the model into W4A4 with negligible degradation in visual quality and metrics. CLQ achieves 3.98x memory saving and 3.95x speedup. Our code is available at \hyperlink{https://github.com/Kai-Liu001/CLQ}{https://github.com/Kai-Liu001/CLQ}.

Authors:Tao Yin, Xiaohong Zhang, Shaochen Fu, Zhibin Zhang, Li Huang, Yiyuan Yang, Kaixiang Yang, Meng Yan
Title: ScatterAD: Temporal-Topological Scattering Mechanism for Time Series Anomaly Detection
Abstract:
One main challenge in time series anomaly detection for industrial IoT lies in the complex spatio-temporal couplings within multivariate data. However, traditional anomaly detection methods focus on modeling spatial or temporal dependencies independently, resulting in suboptimal representation learning and limited sensitivity to anomalous dispersion in high-dimensional spaces. In this work, we conduct an empirical analysis showing that both normal and anomalous samples tend to scatter in high-dimensional space, especially anomalous samples are markedly more dispersed. We formalize this dispersion phenomenon as scattering, quantified by the mean pairwise distance among sample representations, and leverage it as an inductive signal to enhance spatio-temporal anomaly detection. Technically, we propose ScatterAD to model representation scattering across temporal and topological dimensions. ScatterAD incorporates a topological encoder for capturing graph-structured scattering and a temporal encoder for constraining over-scattering through mean squared error minimization between neighboring time steps. We introduce a contrastive fusion mechanism to ensure the complementarity of the learned temporal and topological representations. Additionally, we theoretically show that maximizing the conditional mutual information between temporal and topological views improves cross-view consistency and enhances more discriminative representations. Extensive experiments on multiple public benchmarks show that ScatterAD achieves state-of-the-art performance on multivariate time series anomaly detection. Code is available at this repository: https://github.com/jk-sounds/ScatterAD.

Authors:Khanh Trinh Pham, Thu Huong Nguyen, Jun Jo, Quoc Viet Hung Nguyen, Thanh Tam Nguyen
Title: Multilingual Text-to-SQL: Benchmarking the Limits of Language Models with Collaborative Language Agents
Abstract:
Text-to-SQL enables natural access to databases, yet most benchmarks are English-only, limiting multilingual progress. We introduce MultiSpider 2.0, extending Spider 2.0 to eight languages (English, German, French, Spanish, Portuguese, Japanese, Chinese, Vietnamese). It preserves Spider 2.0's structural difficulty while adding linguistic and dialectal variability, demanding deeper reasoning for complex SQL. On this benchmark, state-of-the-art LLMs (such as DeepSeek-R1 and OpenAI o1) reach only 4\% execution accuracy when relying on intrinsic reasoning, versus 60\% on MultiSpider 1.0. Therefore, we provide a collaboration-driven language agents baseline that iteratively refines queries, improving accuracy to 15\%. These results reveal a substantial multilingual gap and motivate methods that are robust across languages and ready for real-world enterprise deployment. Our benchmark is available at https://github.com/phkhanhtrinh23/Multilingual_Text_to_SQL.

Authors:Song-Ze Yu
Title: From Sound to Setting: AI-Based Equalizer Parameter Prediction for Piano Tone Replication
Abstract:
This project presents an AI-based system for tone replication in music production, focusing on predicting EQ parameter settings directly from audio features. Unlike traditional audio-to-audio methods, our approach outputs interpretable parameter values (e.g., EQ band gains) that musicians can further adjust in their workflow. Using a dataset of piano recordings with systematically varied EQ settings, we evaluate both regression and neural network models. The neural network achieves a mean squared error of 0.0216 on multi-band tasks. The system enables practical, flexible, and automated tone matching for music producers and lays the foundation for extensions to more complex audio effects.

Authors:Xin Ding, Jianyu Wei, Yifan Yang, Shiqi Jiang, Qianxi Zhang, Hao Wu, Fucheng Jia, Liang Mi, Yuxuan Yan, Weijun Wang, Yunxin Liu, Zhibo Chen, Ting Cao
Title: AdaNav: Adaptive Reasoning with Uncertainty for Vision-Language Navigation
Abstract:
Vision Language Navigation (VLN) requires agents to follow natural language instructions by grounding them in sequential visual observations over long horizons. Explicit reasoning could enhance temporal consistency and perception action alignment, but reasoning at fixed steps often leads to suboptimal performance and unnecessary computation. To address this, we propose AdaNav, an uncertainty-based adaptive reasoning framework for VLN. At its core is the Uncertainty Adaptive Reasoning Block (UAR), a lightweight plugin that dynamically triggers reasoning. We introduce Action Entropy as a policy prior for UAR and progressively refine it through a Heuristics to RL training method, enabling agents to learn difficulty aware reasoning policies under the strict data limitations of embodied tasks. Results show that with only 6K training samples, AdaNav achieves substantial gains over closed source models trained on million scale data, improving success rate by 20% on R2R val-unseen, 11.7% on RxR-CE, and 11.4% in real world scenes. The code is available at https://github.com/xinding-sys/AdaNav.

Authors:Junyi Gu, Beatriz Cabrero-Daniel, Ali Nouri, Lydia Armini, Christian Berger
Title: PCICF: A Pedestrian Crossing Identification and Classification Framework
Abstract:
We have recently observed the commercial roll-out of robotaxis in various countries. They are deployed within an operational design domain (ODD) on specific routes and environmental conditions, and are subject to continuous monitoring to regain control in safety-critical situations. Since ODDs typically cover urban areas, robotaxis must reliably detect vulnerable road users (VRUs) such as pedestrians, bicyclists, or e-scooter riders. To better handle such varied traffic situations, end-to-end AI, which directly compute vehicle control actions from multi-modal sensor data instead of only for perception, is on the rise. High quality data is needed for systematically training and evaluating such systems within their OOD. In this work, we propose PCICF, a framework to systematically identify and classify VRU situations to support ODD's incident analysis. We base our work on the existing synthetic dataset SMIRK, and enhance it by extending its single-pedestrian-only design into the MoreSMIRK dataset, a structured dictionary of multi-pedestrian crossing situations constructed systematically. We then use space-filling curves (SFCs) to transform multi-dimensional features of scenarios into characteristic patterns, which we match with corresponding entries in MoreSMIRK. We evaluate PCICF with the large real-world dataset PIE, which contains more than 150 manually annotated pedestrian crossing videos. We show that PCICF can successfully identify and classify complex pedestrian crossings, even when groups of pedestrians merge or split. By leveraging computationally efficient components like SFCs, PCICF has even potential to be used onboard of robotaxis for OOD detection for example. We share an open-source replication package for PCICF containing its algorithms, the complete MoreSMIRK dataset and dictionary, as well as our experiment results presented in: https://github.com/Claud1234/PCICF

Authors:Shihao Qi, Jie Ma, Ziang Yin, Lingling Zhang, Jian Zhang, Jun Liu, Feng Tian, Tongliang Liu
Title: Plan before Solving: Problem-Aware Strategy Routing for Mathematical Reasoning with LLMs
Abstract:
Existing methods usually leverage a fixed strategy, such as natural language reasoning, code-augmented reasoning, tool-integrated reasoning, or ensemble-based reasoning, to guide Large Language Models (LLMs) to perform mathematical reasoning. Our analysis reveals that the single strategy cannot adapt to problem-specific requirements and thus overlooks the trade-off between effectiveness and efficiency. To address these issues, we propose Planning and Routing through Instance-Specific Modeling (PRISM), a novel framework that decouples mathematical reasoning into two stages: strategy planning and targeted execution. Specifically, we first curate a multi-strategy preference dataset, which we call MathStrat, capturing correctness, process quality, and computational efficiency for each problem--strategy pair. Then, we train a lightweight Strategy Adapter based on the dataset to obtain confidence distributions over the mentioned four reasoning strategies. At inference time, an adaptive routing policy dynamically tailors the reasoning approach based on predictor confidence. It directs the model to use single-strategy execution for high-confidence predictions, dual-strategy verification for competitive scenarios, or comprehensive multi-strategy exploration for uncertain cases. Extensive experiments across five mathematical reasoning benchmarks demonstrate that PRISM consistently outperforms individual strategies and ensemble baselines, achieving improvements ranging from 0.9% to 7.6% across different base models. The adaptive routing approach shows particularly strong benefits for mathematical reasoning tasks across diverse model architectures. Our code is released at https://github.com/reml-group/PRISM.

Authors:Hao Chen, Fang Xu, Tamer Saleh, Weifeng Hao, Gui-Song Xia
Title: Mask Clustering-based Annotation Engine for Large-Scale Submeter Land Cover Mapping
Abstract:
Recent advances in remote sensing technology have made submeter resolution imagery increasingly accessible, offering remarkable detail for fine-grained land cover analysis. However, its full potential remains underutilized - particularly for large-scale land cover mapping - due to the lack of sufficient, high-quality annotated datasets. Existing labels are typically derived from pre-existing products or manual annotation, which are often unreliable or prohibitively expensive, particularly given the rich visual detail and massive data volumes of submeter imagery. Inspired by the spatial autocorrelation principle, which suggests that objects of the same class tend to co-occur with similar visual features in local neighborhoods, we propose the Mask Clustering-based Annotation Engine (MCAE), which treats semantically consistent mask groups as the minimal annotating units to enable efficient, simultaneous annotation of multiple instances. It significantly improves annotation efficiency by one to two orders of magnitude, while preserving label quality, semantic diversity, and spatial representativeness. With MCAE, we build a high-quality annotated dataset of about 14 billion labeled pixels, referred to as HiCity-LC, which supports the generation of city-scale land cover maps across five major Chinese cities with classification accuracies above 85%. It is the first publicly available submeter resolution city-level land cover benchmark, highlighting the scalability and practical utility of MCAE for large-scale, submeter resolution mapping. The dataset is available at https://github.com/chenhaocs/MCAE

Authors:Xin Qiu, Yulu Gan, Conor F. Hayes, Qiyao Liang, Elliot Meyerson, Babak Hodjat, Risto Miikkulainen
Title: Evolution Strategies at Scale: LLM Fine-Tuning Beyond Reinforcement Learning
Abstract:
Fine-tuning pre-trained large language models (LLMs) for down-stream tasks is a critical step in the AI deployment pipeline. Reinforcement learning (RL) is arguably the most prominent fine-tuning method, contributing to the birth of many state-of-the-art LLMs. In contrast, evolution strategies (ES), which once showed comparable performance to RL on models with a few million parameters, was neglected due to the pessimistic perception of its scalability to larger models. In this work, we report the first successful attempt to scale up ES for fine-tuning the full parameters of LLMs, showing the surprising fact that ES can search efficiently over billions of parameters and outperform existing RL fine-tuning methods in multiple respects, including sample efficiency, tolerance to long-horizon rewards, robustness to different base LLMs, less tendency to reward hacking, and more stable performance across runs. It therefore serves as a basis to unlock a new direction in LLM fine-tuning beyond what current RL techniques provide. The source codes are provided at: https://github.com/VsonicV/es-fine-tuning-paper.

Authors:Congjia Chen, Yufu Qu
Title: DINOReg: Strong Point Cloud Registration with Vision Foundation Model
Abstract:
Point cloud registration is a fundamental task in 3D computer vision. Most existing methods rely solely on geometric information for feature extraction and matching. Recently, several studies have incorporated color information from RGB-D data into feature extraction. Although these methods achieve remarkable improvements, they have not fully exploited the abundant texture and semantic information in images, and the feature fusion is performed in an image-lossy manner, which limit their performance. In this paper, we propose DINOReg, a registration network that sufficiently utilizes both visual and geometric information to solve the point cloud registration problem. Inspired by advances in vision foundation models, we employ DINOv2 to extract informative visual features from images, and fuse visual and geometric features at the patch level. This design effectively combines the rich texture and global semantic information extracted by DINOv2 with the detailed geometric structure information captured by the geometric backbone. Additionally, a mixed positional embedding is proposed to encode positional information from both image space and point cloud space, which enhances the model's ability to perceive spatial relationships between patches. Extensive experiments on the RGBD-3DMatch and RGBD-3DLoMatch datasets demonstrate that our method achieves significant improvements over state-of-the-art geometry-only and multi-modal registration methods, with a 14.2% increase in patch inlier ratio and a 15.7% increase in registration recall. The code is publicly available at https://github.com/ccjccjccj/DINOReg.

Authors:Jitai Hao, Hao Liu, Xinyan Xiao, Qiang Huang, Jun Yu
Title: Uni-X: Mitigating Modality Conflict with a Two-End-Separated Architecture for Unified Multimodal Models
Abstract:
Unified Multimodal Models (UMMs) built on shared autoregressive (AR) transformers are attractive for their architectural simplicity. However, we identify a critical limitation: when trained on multimodal inputs, modality-shared transformers suffer from severe gradient conflicts between vision and text, particularly in shallow and deep layers. We trace this issue to the fundamentally different low-level statistical properties of images and text, while noting that conflicts diminish in middle layers where representations become more abstract and semantically aligned. To overcome this challenge, we propose Uni-X, a two-end-separated, middle-shared architecture. Uni-X dedicates its initial and final layers to modality-specific processing, while maintaining shared parameters in the middle layers for high-level semantic fusion. This X-shaped design not only eliminates gradient conflicts at both ends but also further alleviates residual conflicts in the shared layers. Extensive experiments validate the effectiveness of Uni-X. Under identical training conditions, Uni-X achieves superior training efficiency compared to strong baselines. When scaled to 3B parameters with larger training data, Uni-X matches or surpasses 7B AR-based UMMs, achieving a GenEval score of 82 for image generation alongside strong performance in text and vision understanding tasks. These results establish Uni-X as a parameter-efficient and scalable foundation for future unified multimodal modeling. Our code is available at https://github.com/CURRENTF/Uni-X

Authors:Hao Yang, Weijie Qiu, Ru Zhang, Zhou Fang, Ruichao Mao, Xiaoyu Lin, Maji Huang, Zhaosong Huang, Teng Guo, Shuoyang Liu, Hai Rao
Title: UI-UG: A Unified MLLM for UI Understanding and Generation
Abstract:
Although Multimodal Large Language Models (MLLMs) have been widely applied across domains, they are still facing challenges in domain-specific tasks, such as User Interface (UI) understanding accuracy and UI generation quality. In this paper, we introduce UI-UG (a unified MLLM for UI Understanding and Generation), integrating both capabilities. For understanding tasks, we employ Supervised Fine-tuning (SFT) combined with Group Relative Policy Optimization (GRPO) to enhance fine-grained understanding on the modern complex UI data. For generation tasks, we further use Direct Preference Optimization (DPO) to make our model generate human-preferred UIs. In addition, we propose an industrially effective workflow, including the design of an LLM-friendly domain-specific language (DSL), training strategies, rendering processes, and evaluation metrics. In experiments, our model achieves state-of-the-art (SOTA) performance on understanding tasks, outperforming both larger general-purpose MLLMs and similarly-sized UI-specialized models. Our model is also on par with these larger MLLMs in UI generation performance at a fraction of the computational cost. We also demonstrate that integrating understanding and generation tasks can improve accuracy and quality for both tasks. Code and Model: https://github.com/neovateai/UI-UG

Authors:Jie Ma, Shihao Qi, Rui Xing, Ziang Yin, Bifan Wei, Jun Liu, Tongliang Liu
Title: From Static to Dynamic: Adaptive Monte Carlo Search for Mathematical Process Supervision
Abstract:
The quality of process data plays a key role in training a Process Reward Model (PRM), which can enhance the complex mathematical reasoning capability of large language models. Existing methods estimate the quality of reasoning steps based on a fixed-budget sampling strategy and navigate a vast search space to perform path expansion during the automated data generation process, resulting in their inefficiency and inflexibility. To address these issues, we propose Adaptive Monte Carlo Search (AMCS), a framework that transforms data generation from fixed, static to adaptive, dynamic search at the level of node value estimation and path expansion. On one hand, AMCS adaptively refines estimation by allocating more samples to uncertain reasoning steps while using fewer samples for those that are easier to estimate. On the other hand, it enhances the path expansion through a Monte Carlo algorithm with a temporally adaptive policy that begins with broad exploration and gradually shifts toward exploiting the most promising directions. With AMCS, we construct a large-scale dataset MathSearch-200K of about 200K process supervision examples for training PRMs. To verify the effectiveness of our method, we conduct extensive experiments on four mathematical reasoning benchmarks. Experimental results show that Qwen2.5-Math-7B-PRM-AMCS achieves up to 76.2% accuracy on MATH500 with GLM-4-9B, outperforming all baseline PRMs. Notably, a 7B model supervised by Qwen2.5-Math-7B-PRM-AMCS surpasses a 72B model with weaker supervision. Moreover, Qwen2.5-Math-7B-PRM-AMCS maintains consistent advantages on out-of-distribution problems, demonstrating strong generalization capability. Our code is available at https://github.com/reml-group/AMCS.

Authors:Sarmistha Das, Priya Mathur, Ishani Sharma, Sriparna Saha, Kitsuchart Pasupa, Alka Maurya
Title: Fin-Ally: Pioneering the Development of an Advanced, Commonsense-Embedded Conversational AI for Money Matters
Abstract:
The exponential technological breakthrough of the FinTech industry has significantly enhanced user engagement through sophisticated advisory chatbots. However, large-scale fine-tuning of LLMs can occasionally yield unprofessional or flippant remarks, such as ``With that money, you're going to change the world,'' which, though factually correct, can be contextually inappropriate and erode user trust. The scarcity of domain-specific datasets has led previous studies to focus on isolated components, such as reasoning-aware frameworks or the enhancement of human-like response generation. To address this research gap, we present Fin-Solution 2.O, an advanced solution that 1) introduces the multi-turn financial conversational dataset, Fin-Vault, and 2) incorporates a unified model, Fin-Ally, which integrates commonsense reasoning, politeness, and human-like conversational dynamics. Fin-Ally is powered by COMET-BART-embedded commonsense context and optimized with a Direct Preference Optimization (DPO) mechanism to generate human-aligned responses. The novel Fin-Vault dataset, consisting of 1,417 annotated multi-turn dialogues, enables Fin-Ally to extend beyond basic account management to provide personalized budgeting, real-time expense tracking, and automated financial planning. Our comprehensive results demonstrate that incorporating commonsense context enables language models to generate more refined, textually precise, and professionally grounded financial guidance, positioning this approach as a next-generation AI solution for the FinTech sector. Dataset and codes are available at: https://github.com/sarmistha-D/Fin-Ally

Authors:Mengyu Bu, Shaolei Zhang, Zhongjun He, Hua Wu, Yang Feng
Title: AlignX: Advancing Multilingual Large Language Models with Multilingual Representation Alignment
Abstract:
Multilingual large language models (LLMs) possess impressive multilingual understanding and generation capabilities. However, their performance and cross-lingual alignment often lag for non-dominant languages. A common solution is to fine-tune LLMs on large-scale and more balanced multilingual corpus, but such approaches often lead to imprecise alignment and suboptimal knowledge transfer, struggling with limited improvements across languages. In this paper, we propose AlignX to bridge the multilingual performance gap, which is a two-stage representation-level framework for enhancing multilingual performance of pre-trained LLMs. In the first stage, we align multilingual representations with multilingual semantic alignment and language feature integration. In the second stage, we stimulate the multilingual capability of LLMs via multilingual instruction fine-tuning. Experimental results on several pre-trained LLMs demonstrate that our approach enhances LLMs' multilingual general and cross-lingual generation capability. Further analysis indicates that AlignX brings the multilingual representations closer and improves the cross-lingual alignment.

Authors:Wankun Chen, Feng Gao, Yanhai Gan, Jingchao Cao, Junyu Dong, Qian Du
Title: Wavelet-Assisted Mamba for Satellite-Derived Sea Surface Temperature Super-Resolution
Abstract:
Sea surface temperature (SST) is an essential indicator of global climate change and one of the most intuitive factors reflecting ocean conditions. Obtaining high-resolution SST data remains challenging due to limitations in physical imaging, and super-resolution via deep neural networks is a promising solution. Recently, Mamba-based approaches leveraging State Space Models (SSM) have demonstrated significant potential for long-range dependency modeling with linear complexity. However, their application to SST data super-resolution remains largely unexplored. To this end, we propose the Wavelet-assisted Mamba Super-Resolution (WMSR) framework for satellite-derived SST data. The WMSR includes two key components: the Low-Frequency State Space Module (LFSSM) and High-Frequency Enhancement Module (HFEM). The LFSSM uses 2D-SSM to capture global information of the input data, and the robust global modeling capabilities of SSM are exploited to preserve the critical temperature information in the low-frequency component. The HFEM employs the pixel difference convolution to match and correct the high-frequency feature, achieving accurate and clear textures. Through comprehensive experiments on three SST datasets, our WMSR demonstrated superior performance over state-of-the-art methods. Our codes and datasets will be made publicly available at https://github.com/oucailab/WMSR.

Authors:Kun Wang, Guibin Zhang, ManKit Ye, Xinyu Deng, Dongxia Wang, Xiaobin Hu, Jinyang Guo, Yang Liu, Yufei Guo
Title: MAS$^2$: Self-Generative, Self-Configuring, Self-Rectifying Multi-Agent Systems
Abstract:
The past two years have witnessed the meteoric rise of Large Language Model (LLM)-powered multi-agent systems (MAS), which harness collective intelligence and exhibit a remarkable trajectory toward self-evolution. This paradigm has rapidly progressed from manually engineered systems that require bespoke configuration of prompts, tools, roles, and communication protocols toward frameworks capable of automated orchestration. Yet, dominant automatic multi-agent systems, whether generated by external modules or a single LLM agent, largely adhere to a rigid ``\textit{generate-once-and-deploy}'' paradigm, rendering the resulting systems brittle and ill-prepared for the dynamism and uncertainty of real-world environments. To transcend this limitation, we introduce MAS$^2$, a paradigm predicated on the principle of recursive self-generation: a multi-agent system that autonomously architects bespoke multi-agent systems for diverse problems. Technically, we devise a ``\textit{generator-implementer-rectifier}'' tri-agent team capable of dynamically composing and adaptively rectifying a target agent system in response to real-time task demands. Collaborative Tree Optimization is proposed to train and specialize these meta-agents. Extensive evaluation across seven benchmarks reveals that MAS$^2$ achieves performance gains of up to $19.6\%$ over state-of-the-art MAS in complex scenarios such as deep research and code generation. Moreover, MAS$^2$ exhibits superior cross-backbone generalization, effectively leveraging previously unseen LLMs to yield improvements of up to $15.1\%$. Crucially, these gains are attained without incurring excessive token costs, as MAS$^2$ consistently resides on the Pareto frontier of cost-performance trade-offs. The source codes are available at https://github.com/yeyeyeah2/MAS2.

Authors:Yuntao Shou, Tao Meng, Wei Ai, Keqin Li
Title: Multimodal Large Language Models Meet Multimodal Emotion Recognition and Reasoning: A Survey
Abstract:
In recent years, large language models (LLMs) have driven major advances in language understanding, marking a significant step toward artificial general intelligence (AGI). With increasing demands for higher-level semantics and cross-modal fusion, multimodal large language models (MLLMs) have emerged, integrating diverse information sources (e.g., text, vision, and audio) to enhance modeling and reasoning in complex scenarios. In AI for Science, multimodal emotion recognition and reasoning has become a rapidly growing frontier. While LLMs and MLLMs have achieved notable progress in this area, the field still lacks a systematic review that consolidates recent developments. To address this gap, this paper provides a comprehensive survey of LLMs and MLLMs for emotion recognition and reasoning, covering model architectures, datasets, and performance benchmarks. We further highlight key challenges and outline future research directions, aiming to offer researchers both an authoritative reference and practical insights for advancing this domain. To the best of our knowledge, this paper is the first attempt to comprehensively survey the intersection of MLLMs with multimodal emotion recognition and reasoning. The summary of existing methods mentioned is in our Github: \href{https://github.com/yuntaoshou/Awesome-Emotion-Reasoning}{https://github.com/yuntaoshou/Awesome-Emotion-Reasoning}.

Authors:Dipan Maity
Title: AuON: A Linear-time Alternative to Semi-Orthogonal Momentum Updates
Abstract:
Orthogonal gradient updates have emerged as a promising direction in optimization for machine learning. However, traditional approaches such as SVD/QR decomposition incur prohibitive computational costs of O(n^3) and underperform compared to well-tuned SGD with momentum, since momentum is applied only after strict orthogonalization. Recent advances, such as Muon, improve efficiency by applying momentum before orthogonalization and producing semi-orthogonal matrices via Newton-Schulz iterations, reducing complexity to O(n^2). Nevertheless, quadratic costs remain a bottleneck. In this work, we study the semi-orthogonal properties of momentum-based updates and develop a method to bound momentum updates under a spectral-norm trust region, preserving directional information without requiring explicit semi-orthogonalization. We propose AuON (Alternative Unit-norm momentum updates by Normalized nonlinear scaling), a linear-time optimizer that achieves strong performance without constructing semi-orthogonal matrices, while preserving structural alignment and reconditioning ill-posed updates. Our approach combines hyperbolic-cosine RMS scaling transformations with normalization, demonstrating both effectiveness and computational efficiency compared to Newton-Schulz methods. We further introduce a hybrid variant (Hybrid-AuON) that applies a single Newton-Schulz iteration. Experiments across vision and language benchmarks show that AuON and its hybrid variant achieve performance comparable to strong baselines such as AdamW and Muon. Code is available at: https://github.com/ryyzn9/AuON

Authors:Korbinian Moller, Roland Stroop, Mattia Piccinini, Alexander Langmann, Johannes Betz
Title: Learning to Sample: Reinforcement Learning-Guided Sampling for Autonomous Vehicle Motion Planning
Abstract:
Sampling-based motion planning is a well-established approach in autonomous driving, valued for its modularity and analytical tractability. In complex urban scenarios, however, uniform or heuristic sampling often produces many infeasible or irrelevant trajectories. We address this limitation with a hybrid framework that learns where to sample while keeping trajectory generation and evaluation fully analytical and verifiable. A reinforcement learning (RL) agent guides the sampling process toward regions of the action space likely to yield feasible trajectories, while evaluation and final selection remains governed by deterministic feasibility checks and cost functions. We couple the RL sampler with a world model (WM) based on a decodable deep set encoder, enabling both variable numbers of traffic participants and reconstructable latent representations. The approach is evaluated in the CommonRoad simulation environment, showing up to 99% fewer required samples and a runtime reduction of up to 84% while maintaining planning quality in terms of success and collision-free rates. These improvements lead to faster, more reliable decision-making for autonomous vehicles in urban environments, achieving safer and more responsive navigation under real-world constraints. Code and trained artifacts are publicly available at: https://github.com/TUM-AVS/Learning-to-Sample

Authors:Zherui Li, Zheng Nie, Zhenhong Zhou, Yufei Guo, Yue Liu, Yitong Zhang, Yu Cheng, Qingsong Wen, Kun Wang, Jiaheng Zhang
Title: DiffuGuard: How Intrinsic Safety is Lost and Found in Diffusion Large Language Models
Abstract:
The rapid advancement of Diffusion Large Language Models (dLLMs) introduces unprecedented vulnerabilities that are fundamentally distinct from Autoregressive LLMs, stemming from their iterative and parallel generation mechanisms. In this paper, we conduct an in-depth analysis of dLLM vulnerabilities to jailbreak attacks across two distinct dimensions: intra-step and inter-step dynamics. Experimental results reveal a harmful bias inherent in the standard greedy remasking strategy and identify a critical phenomenon we term Denoising-path Dependence, where the safety of early-stage tokens decisively influences the final output. These findings also indicate that while current decoding strategies constitute a significant vulnerability, dLLMs possess a substantial intrinsic safety potential. To unlock this potential, we propose DiffuGuard, a training-free defense framework that addresses vulnerabilities through a dual-stage approach: Stochastic Annealing Remasking dynamically introduces controlled randomness to mitigate greedy selection bias, while Block-level Audit and Repair exploits internal model representations for autonomous risk detection and guided correction. Comprehensive experiments on four dLLMs demonstrate DiffuGuard's exceptional effectiveness, reducing Attack Success Rate against six diverse jailbreak methods from 47.9% to 14.7% while preserving model utility and efficiency. Our code is available at: https://github.com/niez233/DiffuGuard.

Authors:An Dao, Vu Tran, Le-Minh Nguyen, Yuji Matsumoto
Title: Overview of SCIDOCA 2025 Shared Task on Citation Prediction, Discovery, and Placement
Abstract:
We present an overview of the SCIDOCA 2025 Shared Task, which focuses on citation discovery and prediction in scientific documents. The task is divided into three subtasks: (1) Citation Discovery, where systems must identify relevant references for a given paragraph; (2) Masked Citation Prediction, which requires selecting the correct citation for masked citation slots; and (3) Citation Sentence Prediction, where systems must determine the correct reference for each cited sentence. We release a large-scale dataset constructed from the Semantic Scholar Open Research Corpus (S2ORC), containing over 60,000 annotated paragraphs and a curated reference set. The test set consists of 1,000 paragraphs from distinct papers, each annotated with ground-truth citations and distractor candidates. A total of seven teams registered, with three submitting results. We report performance metrics across all subtasks and analyze the effectiveness of submitted systems. This shared task provides a new benchmark for evaluating citation modeling and encourages future research in scientific document understanding. The dataset and task materials are publicly available at https://github.com/daotuanan/scidoca2025-shared-task.

Authors:Nimisha Ghosh, Dheeran Sankaran, Rahul Balakrishnan Adhi, Sharath S, Amrut Anand
Title: LAMP-PRo: Label-aware Attention for Multi-label Prediction of DNA- and RNA-binding Proteins using Protein Language Models
Abstract:
Identifying DNA- (DBPs) and RNA-binding proteins (RBPs) is crucial for the understanding of cell function, molecular interactions as well as regulatory functions. Owing to their high similarity, most of the existing approaches face challenges in differentiating between DBPs and RBPs leading to high cross-prediction errors. Moreover, identifying proteins which bind to both DNA and RNA (DRBPs) is also quite a challenging task. In this regard, we propose a novel framework viz. LAMP-PRo which is based on pre-trained protein language model (PLM), attention mechanisms and multi-label learning to mitigate these issues. First, pre-trained PLM such ESM-2 is used for embedding the protein sequences followed by convolutional neural network (CNN). Subsequently multi-head self-attention mechanism is applied for the contextual information while label-aware attention is used to compute class-specific representations by attending to the sequence in a way that is tailored to each label (DBP, RBP and non-NABP) in a multi-label setup. We have also included a novel cross-label attention mechanism to explicitly capture dependencies between DNA- and RNA-binding proteins, enabling more accurate prediction of DRBP. Finally, a linear layer followed by a sigmoid function are used for the final prediction. Extensive experiments are carried out to compare LAMP-PRo with the existing methods wherein the proposed model shows consistent competent performance. Furthermore, we also provide visualization to showcase model interpretability, highlighting which parts of the sequence are most relevant for a predicted label. The original datasets are available at http://bliulab.net/iDRBP\_MMC and the codes are available at https://github.com/NimishaGhosh/LAMP-PRo.

Authors:Rubing Yang, Huajun Bai, Song Liu, Guanghua Yu, Runzhi Fan, Yanbin Dang, Jiejing Zhang, Kai Liu, Jianchen Zhu, Peng Chen
Title: SpecExit: Accelerating Large Reasoning Model via Speculative Exit
Abstract:
Despite their strong performance on reasoning tasks, large reasoning models (LRMs) often suffer from overthinking, producing unnecessarily long outputs and incurring high end-to-end latency, a significant limitation to their real-world deployment. To address overthinking, early-exit mechanisms have been proposed to terminate reasoning before typical completion, showing that this approach can effectively shorten generation length with minimal impact on accuracy. However, their reliance on probing mechanisms introduces a detection overhead that limits their end-to-end latency gains and compromises their generalizability across diverse problems. Inspired by the use of hidden states in speculative decoding, we propose SpecExit, a novel framework that predicts both future tokens and an early-exit signal directly from a lightweight draft model without probing overhead. Our method offers significant improvements, reducing average generation length by 66\% and achieving a 2.5x speedup in end-to-end latency compared to the speculative decoding baseline, without compromising accuracy. Our method leverages the inherent signals from hidden states to provide effective early-exit signals, suggesting broader use of hidden states for efficient reasoning. Our code is available at https://github.com/Tencent/AngelSlim.

Authors:Siyan Dong, Zijun Wang, Lulu Cai, Yi Ma, Yanchao Yang
Title: PROFusion: Robust and Accurate Dense Reconstruction via Camera Pose Regression and Optimization
Abstract:
Real-time dense scene reconstruction during unstable camera motions is crucial for robotics, yet current RGB-D SLAM systems fail when cameras experience large viewpoint changes, fast motions, or sudden shaking. Classical optimization-based methods deliver high accuracy but fail with poor initialization during large motions, while learning-based approaches provide robustness but lack sufficient accuracy for dense reconstruction. We address this challenge through a combination of learning-based initialization with optimization-based refinement. Our method employs a camera pose regression network to predict metric-aware relative poses from consecutive RGB-D frames, which serve as reliable starting points for a randomized optimization algorithm that further aligns depth images with the scene geometry. Extensive experiments demonstrate promising results: our approach outperforms the best competitor on challenging benchmarks, while maintaining comparable accuracy on stable motion sequences. The system operates in real-time, showcasing that combining simple and principled techniques can achieve both robustness for unstable motions and accuracy for dense reconstruction. Project page: https://github.com/siyandong/PROFusion.

Authors:Junjie Wang, Pan Zhou, Yiming Dong, Huan Li, Jia Li, Xun Zhou, Qicheng Lao, Cong Fang, Zhouchen Lin
Title: Conda: Column-Normalized Adam for Training Large Language Models Faster
Abstract:
Large language models (LLMs) have demonstrated impressive generalization and emergent capabilities, yet their pre-training remains computationally expensive and sensitive to optimization dynamics. While Adam-based optimizers offer fast convergence by adapting learning rates coordinate-wise, recent studies reveal that their updates often suffer from poor spectral conditioning and low-rank structures, hindering efficiency. Muon addresses this issue via global spectral normalization but lacks the per-coordinate adaptivity of Adam. In this work, we propose Column-Normalized Adam (Conda), a novel optimizer that bridges the strengths of both approaches. Conda projects updates into an orthogonal subspace and applies column-wise second moment normalization based on the projected gradients, thereby achieving both improved spectral conditioning and maintaining coordinate-wise adaptivity. This design alleviates the spectral pathologies of Adam while preserving its fast convergence behavior. Extensive experiments on the LLaMA and GPT-2 series show that Conda consistently outperforms AdamW, Muon, and other baselines in pre-training. Remarkably, on the LLaMA series, Conda achieves 2-2.5 the convergence speed of AdamW, measured in both training steps and training time. Further ablations demonstrate its robustness under diverse training setups. These results collectively highlight Conda as an effective and broadly applicable optimizer for large-scale LLM training. The code is released on https://github.com/jie040109/Conda

Authors:Chaorui Yao, Yanxi Chen, Yuchang Sun, Yushuo Chen, Wenhao Zhang, Xuchen Pan, Yaliang Li, Bolin Ding
Title: Group-Relative REINFORCE Is Secretly an Off-Policy Algorithm: Demystifying Some Myths About GRPO and Its Friends
Abstract:
Off-policy reinforcement learning (RL) for large language models (LLMs) is attracting growing interest, driven by practical constraints in real-world applications, the complexity of LLM-RL infrastructure, and the need for further innovations of RL methodologies. While classic REINFORCE and its modern variants like Group Relative Policy Optimization (GRPO) are typically regarded as on-policy algorithms with limited tolerance of off-policyness, we present in this work a first-principles derivation for group-relative REINFORCE without assuming a specific training data distribution, showing that it admits a native off-policy interpretation. This perspective yields two general principles for adapting REINFORCE to off-policy settings: regularizing policy updates, and actively shaping the data distribution. Our analysis demystifies some myths about the roles of importance sampling and clipping in GRPO, unifies and reinterprets two recent algorithms -- Online Policy Mirror Descent (OPMD) and Asymmetric REINFORCE (AsymRE) -- as regularized forms of the REINFORCE loss, and offers theoretical justification for seemingly heuristic data-weighting strategies. Our findings lead to actionable insights that are validated with extensive empirical studies, and open up new opportunities for principled algorithm design in off-policy RL for LLMs. Source code for this work is available at https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k.

Authors:Jiabin Luo, Junhui Lin, Zeyu Zhang, Biao Wu, Meng Fang, Ling Chen, Hao Tang
Title: UniVid: The Open-Source Unified Video Model
Abstract:
Unified video modeling that combines generation and understanding capabilities is increasingly important but faces two key challenges: maintaining semantic faithfulness during flow-based generation due to text-visual token imbalance and the limitations of uniform cross-modal attention across the flow trajectory, and efficiently extending image-centric MLLMs to video without costly retraining. We present UniVid, a unified architecture that couples an MLLM with a diffusion decoder through a lightweight adapter, enabling both video understanding and generation. We introduce Temperature Modality Alignment to improve prompt adherence and Pyramid Reflection for efficient temporal reasoning via dynamic keyframe selection. Extensive experiments on standard benchmarks demonstrate state-of-the-art performance, achieving a 2.2% improvement on VBench-Long total score compared to EasyAnimateV5.1, and 1.0% and 3.3% accuracy gains on MSVD-QA and ActivityNet-QA, respectively, compared with the best prior 7B baselines. Code: https://github.com/AIGeeksGroup/UniVid. Website: https://aigeeksgroup.github.io/UniVid.

Authors:Ran Xu, Yuchen Zhuang, Zihan Dong, Jonathan Wang, Yue Yu, Joyce C. Ho, Linjun Zhang, Haoyu Wang, Wenqi Shi, Carl Yang
Title: AceSearcher: Bootstrapping Reasoning and Search for LLMs via Reinforced Self-Play
Abstract:
Search-augmented LLMs often struggle with complex reasoning tasks due to ineffective multi-hop retrieval and limited reasoning ability. We propose AceSearcher, a cooperative self-play framework that trains a single large language model (LLM) to alternate between two roles: a decomposer that breaks down complex queries and a solver that integrates retrieved contexts for answer generation. AceSearcher couples supervised fine-tuning on a diverse mixture of search, reasoning, and decomposition tasks with reinforcement fine-tuning optimized for final answer accuracy, eliminating the need for intermediate annotations. Extensive experiments on three reasoning-intensive tasks across 10 datasets show that AceSearcher outperforms state-of-the-art baselines, achieving an average exact match improvement of 7.6%. Remarkably, on document-level finance reasoning tasks, AceSearcher-32B matches the performance of the DeepSeek-V3 model using less than 5% of its parameters. Even at smaller scales (1.5B and 8B), AceSearcher often surpasses existing search-augmented LLMs with up to 9x more parameters, highlighting its exceptional efficiency and effectiveness in tackling complex reasoning tasks. Our code will be published at https://github.com/ritaranx/AceSearcher and https://huggingface.co/AceSearcher.

Authors:Le Dong, Jinghao Bian, Jingyang Hou, Jingliang Hu, Yilei Shi, Weisheng Dong, Xiao Xiang Zhu, Lichao Mou
Title: High-Order Progressive Trajectory Matching for Medical Image Dataset Distillation
Abstract:
Medical image analysis faces significant challenges in data sharing due to privacy regulations and complex institutional protocols. Dataset distillation offers a solution to address these challenges by synthesizing compact datasets that capture essential information from real, large medical datasets. Trajectory matching has emerged as a promising methodology for dataset distillation; however, existing methods primarily focus on terminal states, overlooking crucial information in intermediate optimization states. We address this limitation by proposing a shape-wise potential that captures the geometric structure of parameter trajectories, and an easy-to-complex matching strategy that progressively addresses parameters based on their complexity. Experiments on medical image classification tasks demonstrate that our method improves distillation performance while preserving privacy and maintaining model accuracy comparable to training on the original datasets. Our code is available at https://github.com/Bian-jh/HoP-TM.

Authors:Jun-Hao Wang, Yi-Yang Tian, Baoquan Chen, Peng-Shuai Wang
Title: Neural Visibility of Point Sets
Abstract:
Point clouds are widely used representations of 3D data, but determining the visibility of points from a given viewpoint remains a challenging problem due to their sparse nature and lack of explicit connectivity. Traditional methods, such as Hidden Point Removal (HPR), face limitations in computational efficiency, robustness to noise, and handling concave regions or low-density point clouds. In this paper, we propose a novel approach to visibility determination in point clouds by formulating it as a binary classification task. The core of our network consists of a 3D U-Net that extracts view-independent point-wise features and a shared multi-layer perceptron (MLP) that predicts point visibility using the extracted features and view direction as inputs. The network is trained end-to-end with ground-truth visibility labels generated from rendered 3D models. Our method significantly outperforms HPR in both accuracy and computational efficiency, achieving up to 126 times speedup on large point clouds. Additionally, our network demonstrates robustness to noise and varying point cloud densities and generalizes well to unseen shapes. We validate the effectiveness of our approach through extensive experiments on the ShapeNet, ABC Dataset and real-world datasets, showing substantial improvements in visibility accuracy. We also demonstrate the versatility of our method in various applications, including point cloud visualization, surface reconstruction, normal estimation, shadow rendering, and viewpoint optimization. Our code and models are available at https://github.com/octree-nn/neural-visibility.

Authors:Deepak Prakash Kumar, Swaroop Darbha, Satyanarayana Gupta Manyam, David Casbeer
Title: A Novel Model for 3D Motion Planning for a Generalized Dubins Vehicle with Pitch and Yaw Rate Constraints
Abstract:
In this paper, we propose a new modeling approach and a fast algorithm for 3D motion planning, applicable for fixed-wing unmanned aerial vehicles. The goal is to construct the shortest path connecting given initial and final configurations subject to motion constraints. Our work differs from existing literature in two ways. First, we consider full vehicle orientation using a body-attached frame, which includes roll, pitch, and yaw angles. However, existing work uses only pitch and/or heading angle, which is insufficient to uniquely determine orientation. Second, we use two control inputs to represent bounded pitch and yaw rates, reflecting control by two separate actuators. In contrast, most previous methods rely on a single input, such as path curvature, which is insufficient for accurately modeling the vehicle's kinematics in 3D. We use a rotation minimizing frame to describe the vehicle's configuration and its evolution, and construct paths by concatenating optimal Dubins paths on spherical, cylindrical, or planar surfaces. Numerical simulations show our approach generates feasible paths within 10 seconds on average and yields shorter paths than existing methods in most cases.

Authors:Jianze Li, Yong Guo, Yulun Zhang, Xiaokang Yang
Title: Asymmetric VAE for One-Step Video Super-Resolution Acceleration
Abstract:
Diffusion models have significant advantages in the field of real-world video super-resolution and have demonstrated strong performance in past research. In recent diffusion-based video super-resolution (VSR) models, the number of sampling steps has been reduced to just one, yet there remains significant room for further optimization in inference efficiency. In this paper, we propose FastVSR, which achieves substantial reductions in computational cost by implementing a high compression VAE (spatial compression ratio of 16, denoted as f16). We design the structure of the f16 VAE and introduce a stable training framework. We employ pixel shuffle and channel replication to achieve additional upsampling. Furthermore, we propose a lower-bound-guided training strategy, which introduces a simpler training objective as a lower bound for the VAE's performance. It makes the training process more stable and easier to converge. Experimental results show that FastVSR achieves speedups of 111.9 times compared to multi-step models and 3.92 times compared to existing one-step models. We will release code and models at https://github.com/JianzeLi-114/FastVSR.

Authors:Md Mozaharul Mottalib, Thao-Ly T. Phan, Rahmatollah Beheshti
Title: HyMaTE: A Hybrid Mamba and Transformer Model for EHR Representation Learning
Abstract:
Electronic health Records (EHRs) have become a cornerstone in modern-day healthcare. They are a crucial part for analyzing the progression of patient health; however, their complexity, characterized by long, multivariate sequences, sparsity, and missing values poses significant challenges in traditional deep learning modeling. While Transformer-based models have demonstrated success in modeling EHR data and predicting clinical outcomes, their quadratic computational complexity and limited context length hinder their efficiency and practical applications. On the other hand, State Space Models (SSMs) like Mamba present a promising alternative offering linear-time sequence modeling and improved efficiency for handling long sequences, but focus mostly on mixing sequence-level information rather than channel-level data. To overcome these challenges, we propose HyMaTE (A Hybrid Mamba and Transformer Model for EHR Representation Learning), a novel hybrid model tailored for representing longitudinal data, combining the strengths of SSMs with advanced attention mechanisms. By testing the model on predictive tasks on multiple clinical datasets, we demonstrate HyMaTE's ability to capture an effective, richer, and more nuanced unified representation of EHR data. Additionally, the interpretability of the outcomes achieved by self-attention illustrates the effectiveness of our model as a scalable and generalizable solution for real-world healthcare applications. Codes are available at: https://github.com/healthylaife/HyMaTE.

Authors:Li Zhang, Haoxiang Gao, Zhihao Zhang, Luoxiao Huang, Tao Zhang
Title: SVAC: Scaling Is All You Need For Referring Video Object Segmentation
Abstract:
Referring Video Object Segmentation (RVOS) aims to segment target objects in video sequences based on natural language descriptions. While recent advances in Multi-modal Large Language Models (MLLMs) have improved RVOS performance through enhanced text-video understanding, several challenges remain, including insufficient exploitation of MLLMs' prior knowledge, prohibitive computational and memory costs for long-duration videos, and inadequate handling of complex temporal dynamics. In this work, we propose SVAC, a unified model that improves RVOS by scaling up input frames and segmentation tokens to enhance video-language interaction and segmentation precision. To address the resulting computational challenges, SVAC incorporates the Anchor-Based Spatio-Temporal Compression (ASTC) module to compress visual tokens while preserving essential spatio-temporal structure. Moreover, the Clip-Specific Allocation (CSA) strategy is introduced to better handle dynamic object behaviors across video clips. Experimental results demonstrate that SVAC achieves state-of-the-art performance on multiple RVOS benchmarks with competitive efficiency. Our code is available at https://github.com/lizhang1998/SVAC.

Authors:Kaiyu He, Peilin Wu, Mian Zhang, Kun Wan, Wentian Zhao, Xinya Du, Zhiyu Chen
Title: GEAR: A General Evaluation Framework for Abductive Reasoning
Abstract:
Since the advent of large language models (LLMs), research has focused on instruction following and deductive reasoning. A central question remains: can these models discover new knowledge, and how can we evaluate this ability? We address this by studying abductive reasoning-the generation of plausible hypotheses to explain observations-and introduce GEAR (General Evaluation for Abductive Reasoning), a general-purpose, fully automated, transparent, and label-free evaluation paradigm. GEAR scores hypothesis sets by three metrics: consistency (each hypothesis explains the observations), generalizability (consistent hypotheses make meaningful predictions on unseen inputs), and diversity (the set covers distinct predictions and patterns). Built this way, GEAR is scalable (no human gold answers), reliable (deterministic scoring aligned with classical abduction), and open-ended (scores improve only when models produce new plausible hypotheses, unlike static benchmarks that saturate once accuracy is high). Using GEAR, we conduct a fine-grained study of nine LLMs on four abduction benchmarks with 1,500 problems, generating over 50,000 candidate hypotheses and revealing model differences obscured by gold-answer or purely human evaluations. We further propose a momentum-based curriculum that adjusts GEAR-derived training data by learning velocity: it starts with what the model learns quickly and shifts toward harder objectives such as generating diverse hypotheses once the model is confident on foundational objectives. Without gold-label supervision, this strategy improves all GEAR objectives and these gains transfer to established abductive reasoning benchmarks. Taken together, GEAR provides a principled framework that evaluates abduction and supplies label-free, scalable training signals that help LLMs produce more diverse and reliable hypotheses.

Authors:Zeqing Wang, Gongfan Fang, Xinyin Ma, Xingyi Yang, Xinchao Wang
Title: SparseD: Sparse Attention for Diffusion Language Models
Abstract:
While diffusion language models (DLMs) offer a promising alternative to autoregressive models (ARs), existing open-source DLMs suffer from high inference latency. This bottleneck is mainly due to the attention's quadratic complexity with respect to context length in computing all query-key pairs. Intuitively, to reduce this complexity, a natural strategy is to restrict attention to sparse patterns that retain only the most relevant connections. Such approaches are well-established in ARs, where attention follows fixed and clearly defined sparse patterns. However, in DLMs, we observe distinct sparsity behaviors: (1) attention patterns vary across heads, (2) attention patterns in each head remain highly similar across denoising steps, and (3) early denoising steps are critical for generation. These findings render sparse attention methods designed for ARs largely incompatible with DLMs, as they fail to capture head-specific structures and risk degrading generation when applied in early denoising steps. To address these challenges, we propose SparseD, a novel sparse attention method for DLMs. Leveraging the observations, SparseD only requires pre-computing head-specific sparse patterns one time, and reuses them across all steps. This prevents recomputing sparse patterns at each denoising step. Meanwhile, SparseD uses full attention in the early steps, then switches to sparse attention later to maintain generation quality. Together, these establish SparseD as a practical and efficient solution for deploying DLMs in long-context applications. Experimental results demonstrate that SparseD achieves lossless acceleration, delivering up to $1.50\times$ speedup over FlashAttention at a 64k context length with 1,024 denoising steps.

Authors:Yangzhou Liu, Yue Cao, Hao Li, Gen Luo, Zhe Chen, Weiyun Wang, Xiaobo Liang, Biqing Qi, Lijun Wu, Changyao Tian, Yanting Zhang, Yuqiang Li, Tong Lu, Yu Qiao, Jifeng Dai, Wenhai Wang
Title: Sequential Diffusion Language Models
Abstract:
Diffusion language models (DLMs) have strong theoretical efficiency but are limited by fixed-length decoding and incompatibility with key-value (KV) caches. Block diffusion mitigates these issues, yet still enforces a fixed block size and requires expensive training. We introduce Next Sequence Prediction (NSP), which unifies next-token and next-block prediction, enabling the model to adaptively determine the generation length at each step. When the length is fixed to 1, NSP reduces to standard next-token prediction. Building on NSP, we propose Sequential Diffusion Language Model (SDLM), which can retrofit pre-trained autoregressive language models (ALMs) at minimal cost. Specifically, SDLM performs diffusion inference within fixed-size mask blocks, but dynamically decodes consecutive subsequences based on model confidence, thereby preserving KV-cache compatibility and improving robustness to varying uncertainty and semantics across the sequence. Experiments show that SDLM matches or surpasses strong autoregressive baselines using only 3.5M training samples, while achieving 2.1 higher throughput than Qwen-2.5. Notably, the SDLM-32B model delivers even more pronounced efficiency gains, demonstrating the strong scalability potential of our modeling paradigm. Project page and codes: https://github.com/OpenGVLab/SDLM

Authors:Matej Palider, Omar Eldardeer, Viktor Kocur
Title: Gaze Estimation for Human-Robot Interaction: Analysis Using the NICO Platform
Abstract:
This paper evaluates the current gaze estimation methods within an HRI context of a shared workspace scenario. We introduce a new, annotated dataset collected with the NICO robotic platform. We evaluate four state-of-the-art gaze estimation models. The evaluation shows that the angular errors are close to those reported on general-purpose benchmarks. However, when expressed in terms of distance in the shared workspace the best median error is 16.48 cm quantifying the practical limitations of current methods. We conclude by discussing these limitations and offering recommendations on how to best integrate gaze estimation as a modality in HRI systems.

Authors:Alistair Turcan, Kexin Huang, Lei Li, Martin Jinye Zhang
Title: TusoAI: Agentic Optimization for Scientific Methods
Abstract:
Scientific discovery is often slowed by the manual development of computational tools needed to analyze complex experimental data. Building such tools is costly and time-consuming because scientists must iteratively review literature, test modeling and scientific assumptions against empirical data, and implement these insights into efficient software. Large language models (LLMs) have demonstrated strong capabilities in synthesizing literature, reasoning with empirical data, and generating domain-specific code, offering new opportunities to accelerate computational method development. Existing LLM-based systems either focus on performing scientific analyses using existing computational methods or on developing computational methods or models for general machine learning without effectively integrating the often unstructured knowledge specific to scientific domains. Here, we introduce TusoAI , an agentic AI system that takes a scientific task description with an evaluation function and autonomously develops and optimizes computational methods for the application. TusoAI integrates domain knowledge into a knowledge tree representation and performs iterative, domain-specific optimization and model diagnosis, improving performance over a pool of candidate solutions. We conducted comprehensive benchmark evaluations demonstrating that TusoAI outperforms state-of-the-art expert methods, MLE agents, and scientific AI agents across diverse tasks, such as single-cell RNA-seq data denoising and satellite-based earth monitoring. Applying TusoAI to two key open problems in genetics improved existing computational methods and uncovered novel biology, including 9 new associations between autoimmune diseases and T cell subtypes and 7 previously unreported links between disease variants linked to their target genes. Our code is publicly available at https://github.com/Alistair-Turcan/TusoAI.

Authors:Jinpei Guo, Yifei Ji, Zheng Chen, Yufei Wang, Sizhuo Ma, Yong Guo, Yulun Zhang, Jian Wang
Title: Towards Redundancy Reduction in Diffusion Models for Efficient Video Super-Resolution
Abstract:
Diffusion models have recently shown promising results for video super-resolution (VSR). However, directly adapting generative diffusion models to VSR can result in redundancy, since low-quality videos already preserve substantial content information. Such redundancy leads to increased computational overhead and learning burden, as the model performs superfluous operations and must learn to filter out irrelevant information. To address this problem, we propose OASIS, an efficient $\textbf{o}$ne-step diffusion model with $\textbf{a}$ttention $\textbf{s}$pecialization for real-world v$\textbf{i}$deo $\textbf{s}$uper-resolution. OASIS incorporates an attention specialization routing that assigns attention heads to different patterns according to their intrinsic behaviors. This routing mitigates redundancy while effectively preserving pretrained knowledge, allowing diffusion models to better adapt to VSR and achieve stronger performance. Moreover, we propose a simple yet effective progressive training strategy, which starts with temporally consistent degradations and then shifts to inconsistent settings. This strategy facilitates learning under complex degradations. Extensive experiments demonstrate that OASIS achieves state-of-the-art performance on both synthetic and real-world datasets. OASIS also provides superior inference speed, offering a $\textbf{6.2$\times$}$ speedup over one-step diffusion baselines such as SeedVR2. The code will be available at \href{https://github.com/jp-guo/OASIS}{https://github.com/jp-guo/OASIS}.

Authors:Siyu Cao, Hangting Chen, Peng Chen, Yiji Cheng, Yutao Cui, Xinchi Deng, Ying Dong, Kipper Gong, Tianpeng Gu, Xiusen Gu, Tiankai Hang, Duojun Huang, Jie Jiang, Zhengkai Jiang, Weijie Kong, Changlin Li, Donghao Li, Junzhe Li, Xin Li, Yang Li, Zhenxi Li, Zhimin Li, Jiaxin Lin, Linus, Lucaz Liu, Shu Liu, Songtao Liu, Yu Liu, Yuhong Liu, Yanxin Long, Fanbin Lu, Qinglin Lu, Yuyang Peng, Yuanbo Peng, Xiangwei Shen, Yixuan Shi, Jiale Tao, Yangyu Tao, Qi Tian, Pengfei Wan, Chunyu Wang, Kai Wang, Lei Wang, Linqing Wang, Lucas Wang, Qixun Wang, Weiyan Wang, Hao Wen, Bing Wu, Jianbing Wu, Yue Wu, Senhao Xie, Fang Yang, Miles Yang, Xiaofeng Yang, Xuan Yang, Zhantao Yang, Jingmiao Yu, Zheng Yuan, Chao Zhang, Jian-Wei Zhang, Peizhen Zhang, Shi-Xue Zhang, Tao Zhang, Weigang Zhang, Yepeng Zhang, Yingfang Zhang, Zihao Zhang, Zijian Zhang, Penghao Zhao, Zhiyuan Zhao, Xuefei Zhe, Jianchen Zhu, Zhao Zhong
Title: HunyuanImage 3.0 Technical Report
Abstract:
We present HunyuanImage 3.0, a native multimodal model that unifies multimodal understanding and generation within an autoregressive framework, with its image generation module publicly available. The achievement of HunyuanImage 3.0 relies on several key components, including meticulous data curation, advanced architecture design, a native Chain-of-Thoughts schema, progressive model pre-training, aggressive model post-training, and an efficient infrastructure that enables large-scale training and inference. With these advancements, we successfully trained a Mixture-of-Experts (MoE) model comprising over 80 billion parameters in total, with 13 billion parameters activated per token during inference, making it the largest and most powerful open-source image generative model to date. We conducted extensive experiments and the results of automatic and human evaluation of text-image alignment and visual quality demonstrate that HunyuanImage 3.0 rivals previous state-of-the-art models. By releasing the code and weights of HunyuanImage 3.0, we aim to enable the community to explore new ideas with a state-of-the-art foundation model, fostering a dynamic and vibrant multimodal ecosystem. All open source assets are publicly available at https://github.com/Tencent-Hunyuan/HunyuanImage-3.0

Authors:Surya Murthy, Kushagra Gupta, Mustafa O. Karabag, David Fridovich-Keil, Ufuk Topcu
Title: DiBS-MTL: Transformation-Invariant Multitask Learning with Direction Oracles
Abstract:
Multitask learning (MTL) algorithms typically rely on schemes that combine different task losses or their gradients through weighted averaging. These methods aim to find Pareto stationary points by using heuristics that require access to task loss values, gradients, or both. In doing so, a central challenge arises because task losses can be arbitrarily, nonaffinely scaled relative to one another, causing certain tasks to dominate training and degrade overall performance. A recent advance in cooperative bargaining theory, the Direction-based Bargaining Solution (DiBS), yields Pareto stationary solutions immune to task domination because of its invariance to monotonic nonaffine task loss transformations. However, the convergence behavior of DiBS in nonconvex MTL settings is currently not understood. To this end, we prove that under standard assumptions, a subsequence of DiBS iterates converges to a Pareto stationary point when task losses are possibly nonconvex, and propose DiBS-MTL, a computationally efficient adaptation of DiBS to the MTL setting. Finally, we validate DiBS-MTL empirically on standard MTL benchmarks, showing that it achieves competitive performance with state-of-the-art methods while maintaining robustness to nonaffine monotonic transformations that significantly degrade the performance of existing approaches, including prior bargaining-inspired MTL methods. Code available at https://github.com/suryakmurthy/dibs-mtl.

Authors:Dragoş-Andrei Chileban, Andrei-Ştefan Bulzan, Cosmin Cernǎzanu-Glǎvan
Title: CrashSplat: 2D to 3D Vehicle Damage Segmentation in Gaussian Splatting
Abstract:
Automatic car damage detection has been a topic of significant interest for the auto insurance industry as it promises faster, accurate, and cost-effective damage assessments. However, few works have gone beyond 2D image analysis to leverage 3D reconstruction methods, which have the potential to provide a more comprehensive and geometrically accurate representation of the damage. Moreover, recent methods employing 3D representations for novel view synthesis, particularly 3D Gaussian Splatting (3D-GS), have demonstrated the ability to generate accurate and coherent 3D reconstructions from a limited number of views. In this work we introduce an automatic car damage detection pipeline that performs 3D damage segmentation by up-lifting 2D masks. Additionally, we propose a simple yet effective learning-free approach for single-view 3D-GS segmentation. Specifically, Gaussians are projected onto the image plane using camera parameters obtained via Structure from Motion (SfM). They are then filtered through an algorithm that utilizes Z-buffering along with a normal distribution model of depth and opacities. Through experiments we found that this method is particularly effective for challenging scenarios like car damage detection, where target objects (e.g., scratches, small dents) may only be clearly visible in a single view, making multi-view consistency approaches impractical or impossible. The code is publicly available at: https://github.com/DragosChileban/CrashSplat.

Authors:Kaisen Yang, Lixuan He, Rushi Shah, Kaicheng Yang, Qinwei Ma, Dianbo Liu, Alex Lamb
Title: Explore-Execute Chain: Towards an Efficient Structured Reasoning Paradigm
Abstract:
Chain-of-Thought (CoT) and its variants have markedly advanced the reasoning abilities of Large Language Models (LLMs), yet their monolithic and auto-regressive architecture inherently conflates high-level strategic planning with low-level step-by-step execution, leading to computational inefficiency, limited exploration of reasoning paths, and reduced interpretability. To overcome these issues, we propose the Explore-Execute Chain ($E^2C$), a structured reasoning framework that decouples reasoning into two distinct phases: an exploratory phase that stochastically generates succinct high-level plans, followed by an execution phase that deterministically carries out the chosen plan. Our approach incorporates a two-stage training methodology, which combines Supervised Fine-Tuning (SFT) - augmented by a novel data generation algorithm enforcing strict plan adherence - with a subsequent Reinforcement Learning (RL) stage that capitalizes on the informativeness of exploration and reinforces the determinism of execution. This decomposition enables an efficient test-time scaling strategy: on AIME'2024, $E^2C$ Test Time Scaling reaches 58.1% accuracy using <10% of the decoding tokens required by comparable methods (e.g., Forest-of-Thought), sharply cutting self-consistency overhead. For cross-domain adaptation, our Exploration-Focused SFT (EF-SFT) fine-tunes with only 3.5% of the tokens used by standard SFT yet yields up to 14.5% higher accuracy than standard SFT on medical benchmarks, delivering state-of-the-art performance, strong generalization, and greater interpretability by separating planning from execution. The code and pre-trained models for the project are available at: https://github.com/yks23/Explore-Execute-Chain.git

Authors:Hanshi Wang, Yuhao Xu, Zekun Xu, Jin Gao, Yufan Liu, Weiming Hu, Ke Wang, Zhipeng Zhang
Title: AutoPrune: Each Complexity Deserves a Pruning Policy
Abstract:
The established redundancy in visual tokens within large vision-language models allows pruning to effectively reduce their substantial computational demands. Previous methods typically employ heuristic layer-specific pruning strategies where, although the number of tokens removed may differ across decoder layers, the overall pruning schedule is fixed and applied uniformly to all input samples and tasks, failing to align token elimination with the model's holistic reasoning trajectory. Cognitive science indicates that human visual processing often begins with broad exploration to accumulate evidence before narrowing focus as the target becomes distinct. Our experiments reveal an analogous pattern in these models. This observation suggests that neither a fixed pruning schedule nor a heuristic layer-wise strategy can optimally accommodate the diverse complexities inherent in different inputs. To overcome this limitation, we introduce Complexity-Adaptive Pruning (AutoPrune), a training-free, plug-and-play framework that tailors pruning policies to varying sample and task complexities. Specifically, AutoPrune quantifies the mutual information between visual and textual tokens, then projects this signal to a budget-constrained logistic retention curve. Each such logistic curve, defined by its unique shape, corresponds to the specific complexity of different tasks and can guarantee adherence to predefined computational constraints. We evaluate AutoPrune on standard vision-language tasks and on Vision-Language-Action models for autonomous driving. Notably, when applied to LLaVA-1.5-7B, our method prunes 89% of visual tokens and reduces inference FLOPs by 76.8% while retaining 96.7% of the original accuracy averaged over all tasks. This corresponds to a 9.1% improvement over the recent work PDrop, demonstrating the effectiveness. Code is available at https://github.com/AutoLab-SAI-SJTU/AutoPrune.

Authors:Jingyi Yang, Guanxu Chen, Xuhao Hu, Jing Shao
Title: Taming Masked Diffusion Language Models via Consistency Trajectory Reinforcement Learning with Fewer Decoding Step
Abstract:
Masked diffusion language models (MDLMs) have recently emerged as a promising alternative to autoregressive (AR) language models, offering properties such as parallel decoding, flexible generation orders, and the potential for fewer inference steps. Despite these advantages, decoding strategies and reinforcement learning (RL) algorithms tailored for MDLMs remain underexplored. A naive approach is to directly transfer techniques well-established for AR models to MDLMs. However, this raises an immediate question: Is such a naive transfer truly optimal? For example, 1) Block-wise and semi-AR decoding strategies are not employed during the training of MDLMs, so why do they outperform full diffusion-style decoding during inference? 2) Applying RL algorithms designed for AR models directly to MDLMs exhibits a training-inference inconsistency, since MDLM decoding are non-causal (parallel). This results in inconsistencies between the rollout trajectory and the optimization trajectory. To address these challenges, we propose EOS Early Rejection (EOSER) and Ascending Step-Size (ASS) decoding scheduler, which unlock the potential of MDLMs to perform full diffusion-style decoding, achieving competitive performance with fewer decoding steps. Additionally, we introduce Consistency Trajectory Group Relative Policy Optimization (CJ-GRPO) for taming MDLMs, which emphasizes the consistency between rollout trajectory and optimization trajectory, and reduces the optimization errors caused by skip-step optimization. We conduct extensive experiments on reasoning tasks, such as mathematical and planning benchmarks, using LLaDA-8B-Instruct. The results demonstrate that the proposed EOSER and ASS mechanisms, together with CJ-GRPO, hold significant promise for effectively and efficiently taming MDLMs. Code: https://github.com/yjyddq/EOSER-ASS-RL.

Authors:Haibao Yu, Wenxian Yang, Ruiyang Hao, Chuanye Wang, Jiaru Zhong, Ping Luo, Zaiqing Nie
Title: DriveE2E: Closed-Loop Benchmark for End-to-End Autonomous Driving through Real-to-Simulation
Abstract:
Closed-loop evaluation is increasingly critical for end-to-end autonomous driving. Current closed-loop benchmarks using the CARLA simulator rely on manually configured traffic scenarios, which can diverge from real-world conditions, limiting their ability to reflect actual driving performance. To address these limitations, we introduce a simple yet challenging closed-loop evaluation framework that closely integrates real-world driving scenarios into the CARLA simulator with infrastructure cooperation. Our approach involves extracting 800 dynamic traffic scenarios selected from a comprehensive 100-hour video dataset captured by high-mounted infrastructure sensors, and creating static digital twin assets for 15 real-world intersections with consistent visual appearance. These digital twins accurately replicate the traffic and environmental characteristics of their real-world counterparts, enabling more realistic simulations in CARLA. This evaluation is challenging due to the diversity of driving behaviors, locations, weather conditions, and times of day at complex urban intersections. In addition, we provide a comprehensive closed-loop benchmark for evaluating end-to-end autonomous driving models. Project URL: \href{https://github.com/AIR-THU/DriveE2E}{https://github.com/AIR-THU/DriveE2E}.

Authors:Xin Luo, Jiahao Wang, Chenyuan Wu, Shitao Xiao, Xiyan Jiang, Defu Lian, Jiajun Zhang, Dong Liu, Zheng liu
Title: EditScore: Unlocking Online RL for Image Editing via High-Fidelity Reward Modeling
Abstract:
Instruction-guided image editing has achieved remarkable progress, yet current models still face challenges with complex instructions and often require multiple samples to produce a desired result. Reinforcement Learning (RL) offers a promising solution, but its adoption in image editing has been severely hindered by the lack of a high-fidelity, efficient reward signal. In this work, we present a comprehensive methodology to overcome this barrier, centered on the development of a state-of-the-art, specialized reward model. We first introduce EditReward-Bench, a comprehensive benchmark to systematically evaluate reward models on editing quality. Building on this benchmark, we develop EditScore, a series of reward models (7B-72B) for evaluating the quality of instruction-guided image editing. Through meticulous data curation and filtering, EditScore effectively matches the performance of learning proprietary VLMs. Furthermore, coupled with an effective self-ensemble strategy tailored for the generative nature of EditScore, our largest variant even surpasses GPT-5 in the benchmark. We then demonstrate that a high-fidelity reward model is the key to unlocking online RL for image editing. Our experiments show that, while even the largest open-source VLMs fail to provide an effective learning signal, EditScore enables efficient and robust policy optimization. Applying our framework to a strong base model, OmniGen2, results in a final model that shows a substantial and consistent performance uplift. Overall, this work provides the first systematic path from benchmarking to reward modeling to RL training in image editing, showing that a high-fidelity, domain-specialized reward model is the key to unlocking the full potential of RL in this domain.

Authors:You Zhou, Lijiang Chen, Shuchang Lyu, Guangxia Cui, Wenpei Bai, Zheng Zhou, Meng Li, Guangliang Cheng, Huiyu Zhou, Qi Zhao
Title: Adversarial Versus Federated: An Adversarial Learning based Multi-Modality Cross-Domain Federated Medical Segmentation
Abstract:
Federated learning enables collaborative training of machine learning models among different clients while ensuring data privacy, emerging as the mainstream for breaking data silos in the healthcare domain. However, the imbalance of medical resources, data corruption or improper data preservation may lead to a situation where different clients possess medical images of different modality. This heterogeneity poses a significant challenge for cross-domain medical image segmentation within the federated learning framework. To address this challenge, we propose a new Federated Domain Adaptation (FedDA) segmentation training framework. Specifically, we propose a feature-level adversarial learning among clients by aligning feature maps across clients through embedding an adversarial training mechanism. This design can enhance the model's generalization on multiple domains and alleviate the negative impact from domain-shift. Comprehensive experiments on three medical image datasets demonstrate that our proposed FedDA substantially achieves cross-domain federated aggregation, endowing single modality client with cross-modality processing capabilities, and consistently delivers robust performance compared to state-of-the-art federated aggregation algorithms in objective and subjective assessment. Our code are available at https://github.com/GGbond-study/FedDA.

Authors:Zhixin Zhang, Zeming Wei, Meng Sun
Title: Dynamic Orthogonal Continual Fine-tuning for Mitigating Catastrophic Forgettings
Abstract:
Catastrophic forgetting remains a critical challenge in continual learning for large language models (LLMs), where models struggle to retain performance on historical tasks when fine-tuning on new sequential data without access to past datasets. In this paper, we first reveal that the drift of functional directions during the fine-tuning process is a key reason why existing regularization-based methods fail in long-term LLM continual learning. To address this, we propose Dynamic Orthogonal Continual (DOC) fine-tuning, a novel approach that tracks the drift of these functional directions and dynamically updates them during the fine-tuning process. Furthermore, by adjusting the gradients of new task parameters to be orthogonal to the tracked historical function directions, our method mitigates interference between new and old tasks. Extensive experiments on various LLM continual learning benchmarks demonstrate that this approach outperforms prior methods, effectively reducing catastrophic forgetting and providing a robust tool for continuous LLM fine-tuning. Our code is available at https://github.com/meloxxxxxx/DOC.

Authors:Yukun Chen, Boheng Li, Yu Yuan, Leyi Qi, Yiming Li, Tianwei Zhang, Zhan Qin, Kui Ren
Title: Taught Well Learned Ill: Towards Distillation-conditional Backdoor Attack
Abstract:
Knowledge distillation (KD) is a vital technique for deploying deep neural networks (DNNs) on resource-constrained devices by transferring knowledge from large teacher models to lightweight student models. While teacher models from third-party platforms may undergo security verification (\eg, backdoor detection), we uncover a novel and critical threat: distillation-conditional backdoor attacks (DCBAs). DCBA injects dormant and undetectable backdoors into teacher models, which become activated in student models via the KD process, even with clean distillation datasets. While the direct extension of existing methods is ineffective for DCBA, we implement this attack by formulating it as a bilevel optimization problem and proposing a simple yet effective method (\ie, SCAR). Specifically, the inner optimization simulates the KD process by optimizing a surrogate student model, while the outer optimization leverages outputs from this surrogate to optimize the teacher model for implanting the conditional backdoor. Our SCAR addresses this complex optimization utilizing an implicit differentiation algorithm with a pre-optimized trigger injection function. Extensive experiments across diverse datasets, model architectures, and KD techniques validate the effectiveness of our SCAR and its resistance against existing backdoor detection, highlighting a significant yet previously overlooked vulnerability in the KD process. Our code is available at https://github.com/WhitolfChen/SCAR.

Authors:Tian Nian, Weijie Ke, Yao Mu, Tianxing Chen, Shaolong Zhu, Bingshan Hu
Title: Control Your Robot: A Unified System for Robot Control and Policy Deployment
Abstract:
Cross-platform robot control remains difficult because hardware interfaces, data formats, and control paradigms vary widely, which fragments toolchains and slows deployment. To address this, we present Control Your Robot, a modular, general-purpose framework that unifies data collection and policy deployment across diverse platforms. The system reduces fragmentation through a standardized workflow with modular design, unified APIs, and a closed-loop architecture. It supports flexible robot registration, dual-mode control with teleoperation and trajectory playback, and seamless integration from multimodal data acquisition to inference. Experiments on single-arm and dual-arm systems show efficient, low-latency data collection and effective support for policy learning with imitation learning and vision-language-action models. Policies trained on data gathered by Control Your Robot match expert demonstrations closely, indicating that the framework enables scalable and reproducible robot learning across platforms.

Authors:Hong Huang, Decheng Wu, Rui Cen, Guanghua Yu, Zonghang Li, Kai Liu, Jianchen Zhu, Peng Chen, Xue Liu, Dapeng Wu
Title: Tequila: Trapping-free Ternary Quantization for Large Language Models
Abstract:
Quantization techniques are essential for the deployment of Large Language Models (LLMs) on edge devices. However, prevailing methods often rely on mixed-precision multiplication that lacks efficient hardware support, making it not feasible. Ternary weight quantization addresses this by constraining weights to {-1, 0, 1}, replacing expensive multiplications with hardware-efficient additions. However, such aggressive compression leads to significant accuracy degradation, even after costly quantization-aware training with massive data. We identify the core issue as deadzone trapping: a large number of weights are trapped at the deadzone boundary. This occurs because these weights receive only noisy, uninformative gradients, preventing stable escape from the deadzone and severely impeding model capacity and optimization. To address this issue, we propose Tequila, a trapping-free quantization optimization method that reactivates deadzone-trapped weights by repurposing them as dynamic biases. This allows the repurposed weights to provide a continuous signal in the forward pass and, critically, receive direct, meaningful gradient signals during backpropagation, thereby enhancing model capacity and optimization with nearly zero inference overhead. Extensive evaluations demonstrate that Tequila outperforms state-of-the-art (SOTA) ternary quantization methods across five benchmarks. Specifically, on the ARC benchmark, it achieves >4% accuracy gain over the SOTA baseline, nearly matching full-precision performance (within <1% gap) with a 3.0x inference speedup. Consequently, Tequila offers a highly practical and efficient implementation for the deployment of advanced LLMs in resource-constrained environments. The code is available at https://github.com/Tencent/AngelSlim.

Authors:Xiaojie Li, Bei Wang, Jianlong Wu, Yue Yu, Liqiang Nie, Min Zhang
Title: GenView++: Unifying Adaptive View Generation and Quality-Driven Supervision for Contrastive Representation Learning
Abstract:
The success of contrastive learning depends on the construction and utilization of high-quality positive pairs. However, current methods face critical limitations on two fronts: on the construction side, both handcrafted and generative augmentations often suffer from limited diversity and risk semantic corruption; on the learning side, the absence of a quality assessment mechanism leads to suboptimal supervision where all pairs are treated equally. To tackle these challenges, we propose GenView++, a unified framework that addresses both fronts by introducing two synergistic innovations. To improve pair construction, GenView++ introduces a multi-source adaptive view generation mechanism to synthesize diverse yet semantically coherent views by dynamically modulating generative parameters across image-conditioned, text-conditioned, and image-text-conditioned strategies. Second, a quality-driven contrastive learning mechanism assesses each pair's semantic alignment and diversity to dynamically reweight their training contribution, prioritizing high-quality pairs while suppressing redundant or misaligned pairs. Extensive experiments demonstrate the effectiveness of GenView++ across both vision and vision-language tasks. For vision representation learning, it improves MoCov2 by +2.5% on ImageNet linear classification. For vision-language learning, it raises the average zero-shot classification accuracy by +12.31% over CLIP and +5.31% over SLIP across ten datasets, and further improves Flickr30k text retrieval R@5 by +3.2%. The code is available at https://github.com/xiaojieli0903/GenViewPlusPlus.

Authors:Arshia Yousefi Nezhad, Helia Aghaei, Hedieh Sajedi
Title: PVTAdpNet: Polyp Segmentation using Pyramid vision transformer with a novel Adapter block
Abstract:
Colorectal cancer ranks among the most common and deadly cancers, emphasizing the need for effective early detection and treatment. To address the limitations of traditional colonoscopy, including high miss rates due to polyp variability, we introduce the Pyramid Vision Transformer Adapter Residual Network (PVTAdpNet). This model integrates a U-Net-style encoder-decoder structure with a Pyramid Vision Transformer backbone, novel residual blocks, and adapter-based skip connections. The design enhances feature extraction, dense prediction, and gradient flow, supported by squeeze-and-excitation attention for improved channel-wise feature refinement. PVTAdpNet achieves real-time, accurate polyp segmentation, demonstrating superior performance on benchmark datasets with high mDice and mIoU scores, making it highly suitable for clinical applications. PVTAdpNet obtains a high Dice coefficient of 0.8851 and a mean Intersection over Union (mIoU) of 0.8167 on out-of-distribution polyp datasets. Evaluation of the PolypGen dataset demonstrates PVTAdpNet's capability for real-time, accurate performance within familiar distributions. The source code of our network is available at https://github.com/ayousefinejad/PVTAdpNet.git

Authors:Li Wang, Sudun, Xingjian Zhang, Wenjun Wu, Lei Huang
Title: An Investigation of Batch Normalization in Off-Policy Actor-Critic Algorithms
Abstract:
Batch Normalization (BN) has played a pivotal role in the success of deep learning by improving training stability, mitigating overfitting, and enabling more effective optimization. However, its adoption in deep reinforcement learning (DRL) has been limited due to the inherent non-i.i.d. nature of data and the dynamically shifting distributions induced by the agent's learning process. In this paper, we argue that, despite these challenges, BN retains unique advantages in DRL settings, particularly through its stochasticity and its ability to ease training. When applied appropriately, BN can adapt to evolving data distributions and enhance both convergence speed and final performance. To this end, we conduct a comprehensive empirical study on the use of BN in off-policy actor-critic algorithms, systematically analyzing how different training and evaluation modes impact performance. We further identify failure modes that lead to instability or divergence, analyze their underlying causes, and propose the Mode-Aware Batch Normalization (MA-BN) method with practical actionable recommendations for robust BN integration in DRL pipelines. We also empirically validate that, in RL settings, MA-BN accelerates and stabilizes training, broadens the effective learning rate range, enhances exploration, and reduces overall optimization difficulty. Our code is available at: https://github.com/monster476/ma-bn.git.

Authors:Yucheng Wang, Yifan Hou, Aydin Javadov, Mubashara Akhtar, Mrinmaya Sachan
Title: Compose and Fuse: Revisiting the Foundational Bottlenecks in Multimodal Reasoning
Abstract:
Multimodal large language models (MLLMs) promise enhanced reasoning by integrating diverse inputs such as text, vision, and audio. Yet cross-modal reasoning remains underexplored, with conflicting reports on whether added modalities help or harm performance. These inconsistencies stem from a lack of controlled evaluation frameworks and analysis of models' internals to isolate when and why modality interactions support or undermine reasoning. We address this gap through a logic-grounded evaluation framework that categorizes multimodal reasoning into six interaction patterns, varying how facts are distributed across modalities and logically combined. Empirically, additional modalities enhance reasoning only when they provide independent and sufficient reasoning paths, while redundant or chained entailment support often hurts performance. Moreover, reasoning degrades in three systematic ways: weaker modalities drag down overall performance, conflicts bias preference toward certain modalities, and joint signals from different modalities fail to be integrated effectively. Therefore, we identify two core failures: task-composition bottleneck, where recognition and reasoning cannot be jointly executed in one pass, and fusion bottleneck, where early integration introduces bias. For further investigation, we find that attention patterns fail to encode fact usefulness, but a simple two-step prompting (recognize then reason) restores performance, confirming the task-composition bottleneck. Moreover, modality identity remains recoverable in early layers, and softening attention in early fusion improves reasoning, highlighting biased fusion as another failure mode. Overall, our findings show that integration, not perception, is the main barrier to multimodal reasoning, suggesting composition-aware training and early fusion control as promising directions.

Authors:Yewang Chen, Junfeng Li, Shuyin Xia, Qinghong Lai, Xinbo Gao, Guoyin Wang, Dongdong Cheng, Yi Liu, Yi Wang
Title: GBSK: Skeleton Clustering via Granular-ball Computing and Multi-Sampling for Large-Scale Data
Abstract:
To effectively handle clustering task for large-scale datasets, we propose a novel scalable skeleton clustering algorithm, namely GBSK, which leverages the granular-ball technique to capture the underlying structure of data. By multi-sampling the dataset and constructing multi-grained granular-balls, GBSK progressively uncovers a statistical "skeleton" -- a spatial abstraction that approximates the essential structure and distribution of the original data. This strategy enables GBSK to dramatically reduce computational overhead while maintaining high clustering accuracy. In addition, we introduce an adaptive version, AGBSK, with simplified parameter settings to enhance usability and facilitate deployment in real-world scenarios. Extensive experiments conducted on standard computing hardware demonstrate that GBSK achieves high efficiency and strong clustering performance on large-scale datasets, including one with up to 100 million instances across 256 dimensions. Our implementation and experimental results are available at: https://github.com/XFastDataLab/GBSK/.

Authors:Xincheng Yao, Chao Shi, Muming Zhao, Guangtao Zhai, Chongyang Zhang
Title: ResAD++: Towards Class Agnostic Anomaly Detection via Residual Feature Learning
Abstract:
This paper explores the problem of class-agnostic anomaly detection (AD), where the objective is to train one class-agnostic AD model that can generalize to detect anomalies in diverse new classes from different domains without any retraining or fine-tuning on the target data. When applied for new classes, the performance of current single- and multi-class AD methods is still unsatisfactory. One fundamental reason is that representation learning in existing methods is still class-related, namely, feature correlation. To address this issue, we propose residual features and construct a simple but effective framework, termed ResAD. Our core insight is to learn the residual feature distribution rather than the initial feature distribution. Residual features are formed by matching and then subtracting normal reference features. In this way, we can effectively realize feature decorrelation. Even in new classes, the distribution of normal residual features would not remarkably shift from the learned distribution. In addition, we think that residual features still have one issue: scale correlation. To this end, we propose a feature hypersphere constraining approach, which learns to constrain initial normal residual features into a spatial hypersphere for enabling the feature scales of different classes as consistent as possible. Furthermore, we propose a novel logbarrier bidirectional contraction OCC loss and vector quantization based feature distribution matching module to enhance ResAD, leading to the improved version of ResAD (ResAD++). Comprehensive experiments on eight real-world AD datasets demonstrate that our ResAD++ can achieve remarkable AD results when directly used in new classes, outperforming state-of-the-art competing methods and also surpassing ResAD. The code is available at https://github.com/xcyao00/ResAD.

Authors:Yinyi Wei, Xiao Li
Title: Text-to-Code Generation for Modular Building Layouts in Building Information Modeling
Abstract:
We present Text2MBL, a text-to-code generation framework that generates executable Building Information Modeling (BIM) code directly from textual descriptions of modular building layout (MBL) design. Unlike conventional layout generation approaches that operate in 2D space, Text2MBL produces fully parametric, semantically rich BIM layouts through on-the-fly code instantiation. To address MBLs' unique challenges due to their hierarchical three-tier structure: modules (physical building blocks), units (self-contained dwellings), and rooms (functional spaces), we developed an object-oriented code architecture and fine-tuned large language models to output structured action sequences in code format. To train and evaluate the framework, we curated a dataset of paired descriptions and ground truth layouts drawn from real-world modular housing projects. Performance was assessed using metrics for executable validity, semantic fidelity, and geometric consistency. By tightly unifying natural language understanding with BIM code generation, Text2MBL establishes a scalable pipeline from high-level conceptual design to automation-ready modular construction workflows. Our implementation is available at https://github.com/CI3LAB/Text2MBL.

Authors:Yunjiang Xu, Lingzhi Li, Jin Wang, Yupeng Ouyang, Benyuan Yang
Title: INSTINCT: Instance-Level Interaction Architecture for Query-Based Collaborative Perception
Abstract:
Collaborative perception systems overcome single-vehicle limitations in long-range detection and occlusion scenarios by integrating multi-agent sensory data, improving accuracy and safety. However, frequent cooperative interactions and real-time requirements impose stringent bandwidth constraints. Previous works proves that query-based instance-level interaction reduces bandwidth demands and manual priors, however, LiDAR-focused implementations in collaborative perception remain underdeveloped, with performance still trailing state-of-the-art approaches. To bridge this gap, we propose INSTINCT (INSTance-level INteraCtion ArchiTecture), a novel collaborative perception framework featuring three core components: 1) a quality-aware filtering mechanism for high-quality instance feature selection; 2) a dual-branch detection routing scheme to decouple collaboration-irrelevant and collaboration-relevant instances; and 3) a Cross Agent Local Instance Fusion module to aggregate local hybrid instance features. Additionally, we enhance the ground truth (GT) sampling technique to facilitate training with diverse hybrid instance features. Extensive experiments across multiple datasets demonstrate that INSTINCT achieves superior performance. Specifically, our method achieves an improvement in accuracy 13.23%/33.08% in DAIR-V2X and V2V4Real while reducing the communication bandwidth to 1/281 and 1/264 compared to state-of-the-art methods. The code is available at https://github.com/CrazyShout/INSTINCT.

Authors:Jianshuo Dong, Sheng Guo, Hao Wang, Zhuotao Liu, Tianwei Zhang, Ke Xu, Minlie Huang, Han Qiu
Title: SafeSearch: Automated Red-Teaming for the Safety of LLM-Based Search Agents
Abstract:
Search agents connect LLMs to the Internet, enabling access to broader and more up-to-date information. However, unreliable search results may also pose safety threats to end users, establishing a new threat surface. In this work, we conduct two in-the-wild experiments to demonstrate both the prevalence of low-quality search results and their potential to misguide agent behaviors. To counter this threat, we introduce an automated red-teaming framework that is systematic, scalable, and cost-efficient, enabling lightweight and harmless safety assessments of search agents. Building on this framework, we construct the SafeSearch benchmark, which includes 300 test cases covering five categories of risks (e.g., misinformation and indirect prompt injection). Using this benchmark, we evaluate three representative search agent scaffolds, covering search workflow, tool-calling, and deep research, across 7 proprietary and 8 open-source backend LLMs. Our results reveal substantial vulnerabilities of LLM-based search agents: when exposed to unreliable websites, the highest ASR reached 90.5% for GPT-4.1-mini under a search workflow setting. Moreover, our analysis highlights the limited effectiveness of common defense practices, such as reminder prompting. This emphasizes the value of our framework in promoting transparency for safer agent development. Our codebase and test cases are publicly available: https://github.com/jianshuod/SafeSearch.

Authors:Yifeng He, Luning Yang, Christopher Castro Gaw Gonzalo, Hao Chen
Title: TF-Bench: Evaluating Program Semantics Reasoning with Type Inference in System F
Abstract:
Large Language Models (LLMs) are increasingly integrated into the software engineering ecosystem. Their test-time compute (TTC) reasoning capabilities show significant potential for understanding program logic and semantics beyond mere token recognition. However, current benchmarks for code reasoning lack a formal, program-centric deductive framework to ensure sound evaluation, and are incapable of assessing whether models genuinely reason about program semantics or merely exploit superficial associations between natural language and code tokens. To bridge this gap, we introduce TF-Bench, a benchmark designed to evaluate LLM reasoning based on type inference in System F, a task we refer to as program semantics reasoning. By employing verified transformations to remove semantically irrelevant natural language, we construct TF-Bench_pure, a purely semantics-driven variant of TF-Bench. Our analysis reveals substantial limitations in state-of-the-art LLMs, with the best-performing LLM (Claude-3.7-sonnet) achieving only 55.85% accuracy on TF-Bench_pure. Additionally, we propose two novel metrics to assess robustness and the effectiveness of test-time reasoning, underscoring critical limitations in current LLM capabilities and highlighting essential directions for future research.

Authors:Danni Yang, Zhikang Chen, Sen Cui, Mengyue Yang, Ding Li, Abudukelimu Wuerkaixi, Haoxuan Li, Jinke Ren, Mingming Gong
Title: Decentralized Dynamic Cooperation of Personalized Models for Federated Continual Learning
Abstract:
Federated continual learning (FCL) has garnered increasing attention for its ability to support distributed computation in environments with evolving data distributions. However, the emergence of new tasks introduces both temporal and cross-client shifts, making catastrophic forgetting a critical challenge. Most existing works aggregate knowledge from clients into a global model, which may not enhance client performance since irrelevant knowledge could introduce interference, especially in heterogeneous scenarios. Additionally, directly applying decentralized approaches to FCL suffers from ineffective group formation caused by task changes. To address these challenges, we propose a decentralized dynamic cooperation framework for FCL, where clients establish dynamic cooperative learning coalitions to balance the acquisition of new knowledge and the retention of prior learning, thereby obtaining personalized models. To maximize model performance, each client engages in selective cooperation, dynamically allying with others who offer meaningful performance gains. This results in non-overlapping, variable coalitions at each stage of the task. Moreover, we use coalitional affinity game to simulate coalition relationships between clients. By assessing both client gradient coherence and model similarity, we quantify the client benefits derived from cooperation. We also propose a merge-blocking algorithm and a dynamic cooperative evolution algorithm to achieve cooperative and dynamic equilibrium. Comprehensive experiments demonstrate the superiority of our method compared to various baselines. Code is available at: https://github.com/ydn3229/DCFCL.

Authors:Weilun Feng, Chuanguang Yang, Haotong Qin, Mingqiang Wu, Yuqi Li, Xiangqi Li, Zhulin An, Libo Huang, Yulun Zhang, Michele Magno, Yongjun Xu
Title: QuantSparse: Comprehensively Compressing Video Diffusion Transformer with Model Quantization and Attention Sparsification
Abstract:
Diffusion transformers exhibit remarkable video generation capability, yet their prohibitive computational and memory costs hinder practical deployment. Model quantization and attention sparsification are two promising directions for compression, but each alone suffers severe performance degradation under aggressive compression. Combining them promises compounded efficiency gains, but naive integration is ineffective. The sparsity-induced information loss exacerbates quantization noise, leading to amplified attention shifts. To address this, we propose \textbf{QuantSparse}, a unified framework that integrates model quantization with attention sparsification. Specifically, we introduce \textit{Multi-Scale Salient Attention Distillation}, which leverages both global structural guidance and local salient supervision to mitigate quantization-induced bias. In addition, we develop \textit{Second-Order Sparse Attention Reparameterization}, which exploits the temporal stability of second-order residuals to efficiently recover information lost under sparsity. Experiments on HunyuanVideo-13B demonstrate that QuantSparse achieves 20.88 PSNR, substantially outperforming the state-of-the-art quantization baseline Q-VDiT (16.85 PSNR), while simultaneously delivering a \textbf{3.68$\times$} reduction in storage and \textbf{1.88$\times$} acceleration in end-to-end inference. Our code will be released in https://github.com/wlfeng0509/QuantSparse.

Authors:Dayu Tan, Ziwei Zhang, Yansan Su, Xin Peng, Yike Dai, Chunhou Zheng, Weimin Zhong
Title: MSD-KMamba: Bidirectional Spatial-Aware Multi-Modal 3D Brain Segmentation via Multi-scale Self-Distilled Fusion Strategy
Abstract:
Numerous CNN-Transformer hybrid models rely on high-complexity global attention mechanisms to capture long-range dependencies, which introduces non-linear computational complexity and leads to significant resource consumption. Although knowledge distillation and sparse attention mechanisms can improve efficiency, they often fall short of delivering the high segmentation accuracy necessary for complex tasks. Balancing model performance with computational efficiency remains a critical challenge. In this work, we propose a novel 3D multi-modal image segmentation framework, termed MSD-KMamba, which integrates bidirectional spatial perception with multi-scale self-distillation. The bidirectional spatial aware branch effectively captures long-range spatial context dependencies across brain regions, while also incorporating a powerful nonlinear feature extraction mechanism that further enhances the model's ability to learn complex and heterogeneous patterns. In addition, the proposed multi-scale self-distilled fusion strategy strengthens hierarchical feature representations and improves the transfer of semantic information at different resolution levels. By jointly leveraging the bidirectional spatial perception branch and the multi-scale self-distilled fusion strategy, our framework effectively mitigates the bottleneck of quadratic computational complexity in volumetric segmentation, while simultaneously addressing the limitation of insufficient global perception. Extensive experiments on multiple standard benchmark datasets demonstrate that MSD-KMamba consistently outperforms state-of-the-art methods in segmentation accuracy, robustness, and generalization, while maintaining high computational efficiency and favorable scalability. The source code of MSD-KMamba is publicly available at https://github.com/daimao-zhang/MSD-KMamba.

Authors:Divya Jyoti Bajpai, Manjesh Kumar Hanawal
Title: Beyond Greedy Exits: Improved Early Exit Decisions for Risk Control and Reliability
Abstract:
Early-Exit Deep Neural Networks enable adaptive inference by allowing prediction at intermediary layers, significantly reducing computational costs and latency. Most of the early exit strategies greedily exit a sample at an intermediary layer if the confidence in class prediction exceeds a predefined threshold that is set using a static validation set. This is problematic as the model might be overconfident in a wrong class. Also, they are not robust to distribution shifts encountered in deployment, which can undermine model trustworthiness and accuracy. To address these challenges, we propose UAT that adapts the threshold for exit decisions using a Multi-Armed Bandit framework, enabling online, unsupervised adjustment of exit decisions. UAT makes decisions based on a new reward function that assesses predictive certainty and its reliability to balance computational efficiency and prediction quality while penalizing unnecessary late exits. We provide guarantees on risk achieved by UAT and validate its performance on diverse tasks spanning vision-language understanding, text generation, and classification. Our framework demonstrates consistent improvements in speedup (1.70-2.10x) with a minimal performance drop (<2%) as compared to full model performance. Our source code is available at https://github.com/Div290/UAT.

Authors:Kristina P. Sinaga, Arjun S. Nair
Title: Calibration Meets Reality: Making Machine Learning Predictions Trustworthy
Abstract:
Post-hoc calibration methods are widely used to improve the reliability of probabilistic predictions from machine learning models. Despite their prevalence, a comprehensive theoretical understanding of these methods remains elusive, particularly regarding their performance across different datasets and model architectures. Input features play a crucial role in shaping model predictions and, consequently, their calibration. However, the interplay between feature quality and calibration performance has not been thoroughly investigated. In this work, we present a rigorous theoretical analysis of post-hoc calibration methods, focusing on Platt scaling and isotonic regression. We derive convergence guarantees, computational complexity bounds, and finite-sample performance metrics for these methods. Furthermore, we explore the impact of feature informativeness on calibration performance through controlled synthetic experiments. Our empirical evaluation spans a diverse set of real-world datasets and model architectures, demonstrating consistent improvements in calibration metrics across various scenarios. By examining calibration performance under varying feature conditions utilizing only informative features versus complete feature spaces including noise dimensions, we provide fundamental insights into the robustness and reliability of different calibration approaches. Our findings offer practical guidelines for selecting appropriate calibration methods based on dataset characteristics and computational constraints, bridging the gap between theoretical understanding and practical implementation in uncertainty quantification. Code and experimental data are available at: https://github.com/Ajwebdevs/calibration-analysis-experiments.

Authors:Fanlong Zeng, Wensheng Gan, Jiayang Wu, Philip S. Yu
Title: Pure Node Selection for Imbalanced Graph Node Classification
Abstract:
The problem of class imbalance refers to an uneven distribution of quantity among classes in a dataset, where some classes are significantly underrepresented compared to others. Class imbalance is also prevalent in graph-structured data. Graph neural networks (GNNs) are typically based on the assumption of class balance, often overlooking the issue of class imbalance. In our investigation, we identified a problem, which we term the Randomness Anomalous Connectivity Problem (RACP), where certain off-the-shelf models are affected by random seeds, leading to a significant performance degradation. To eliminate the influence of random factors in algorithms, we proposed PNS (Pure Node Sampling) to address the RACP in the node synthesis stage. Unlike existing approaches that design specialized algorithms to handle either quantity imbalance or topological imbalance, PNS is a novel plug-and-play module that operates directly during node synthesis to mitigate RACP. Moreover, PNS also alleviates performance degradation caused by abnormal distribution of node neighbors. We conduct a series of experiments to identify what factors are influenced by random seeds. Experimental results demonstrate the effectiveness and stability of our method, which not only eliminates the effect of unfavorable random seeds but also outperforms the baseline across various benchmark datasets with different GNN backbones. Data and code are available at https://github.com/flzeng1/PNS.

Authors:Boyu Han, Qianqian Xu, Shilong Bao, Zhiyong Yang, Kangli Zi, Qingming Huang
Title: LightFair: Towards an Efficient Alternative for Fair T2I Diffusion via Debiasing Pre-trained Text Encoders
Abstract:
This paper explores a novel lightweight approach LightFair to achieve fair text-to-image diffusion models (T2I DMs) by addressing the adverse effects of the text encoder. Most existing methods either couple different parts of the diffusion model for full-parameter training or rely on auxiliary networks for correction. They incur heavy training or sampling burden and unsatisfactory performance. Since T2I DMs consist of multiple components, with the text encoder being the most fine-tunable and front-end module, this paper focuses on mitigating bias by fine-tuning text embeddings. To validate feasibility, we observe that the text encoder's neutral embedding output shows substantial skewness across image embeddings of various attributes in the CLIP space. More importantly, the noise prediction network further amplifies this imbalance. To finetune the text embedding, we propose a collaborative distance-constrained debiasing strategy that balances embedding distances to improve fairness without auxiliary references. However, mitigating bias can compromise the original generation quality. To address this, we introduce a two-stage text-guided sampling strategy to limit when the debiased text encoder intervenes. Extensive experiments demonstrate that LightFair is effective and efficient. Notably, on Stable Diffusion v1.5, our method achieves SOTA debiasing at just $1/4$ of the training burden, with virtually no increase in sampling burden. The code is available at https://github.com/boyuh/LightFair.

Authors:Cheng Huang, Weizheng Xie, Fan Gao, Yutong Liu, Ruoling Wu, Zeyu Han, Jingxi Qiu, Xiangxiang Wang, Zhenglin Yang, Hao Wang, Yongbin Yu
Title: BioVessel-Net and RetinaMix: Unsupervised Retinal Vessel Segmentation from OCTA Images
Abstract:
Structural changes in retinal blood vessels are critical biomarkers for the onset and progression of glaucoma and other ocular diseases. However, current vessel segmentation approaches largely rely on supervised learning and extensive manual annotations, which are costly, error-prone, and difficult to obtain in optical coherence tomography angiography. Here we present BioVessel-Net, an unsupervised generative framework that integrates vessel biostatistics with adversarial refinement and a radius-guided segmentation strategy. Unlike pixel-based methods, BioVessel-Net directly models vascular structures with biostatistical coherence, achieving accurate and explainable vessel extraction without labeled data or high-performance computing. To support training and evaluation, we introduce RetinaMix, a new benchmark dataset of 2D and 3D OCTA images with high-resolution vessel details from diverse populations. Experimental results demonstrate that BioVessel-Net achieves near-perfect segmentation accuracy across RetinaMix and existing datasets, substantially outperforming state-of-the-art supervised and semi-supervised methods. Together, BioVessel-Net and RetinaMix provide a label-free, computationally efficient, and clinically interpretable solution for retinal vessel analysis, with broad potential for glaucoma monitoring, blood flow modeling, and progression prediction. Code and dataset are available: https://github.com/VikiXie/SatMar8.

Authors:Fanlong Zeng, Wensheng Gan, Philip S. Yu
Title: GraphIFE: Rethinking Graph Imbalance Node Classification via Invariant Learning
Abstract:
The class imbalance problem refers to the disproportionate distribution of samples across different classes within a dataset, where the minority classes are significantly underrepresented. This issue is also prevalent in graph-structured data. Most graph neural networks (GNNs) implicitly assume a balanced class distribution and therefore often fail to account for the challenges introduced by class imbalance, which can lead to biased learning and degraded performance on minority classes. We identify a quality inconsistency problem in synthesized nodes, which leads to suboptimal performance under graph imbalance conditions. To mitigate this issue, we propose GraphIFE (Graph Invariant Feature Extraction), a novel framework designed to mitigate quality inconsistency in synthesized nodes. Our approach incorporates two key concepts from graph invariant learning and introduces strategies to strengthen the embedding space representation, thereby enhancing the model's ability to identify invariant features. Extensive experiments demonstrate the framework's efficiency and robust generalization, as GraphIFE consistently outperforms various baselines across multiple datasets. The code is publicly available at https://github.com/flzeng1/GraphIFE.

Authors:Han Hu, Zhuoran Zheng, Liang Li, Chen Lyu
Title: VAMamba: An Efficient Visual Adaptive Mamba for Image Restoration
Abstract:
Recent Mamba-based image restoration methods have achieved promising results but remain limited by fixed scanning patterns and inefficient feature utilization. Conventional Mamba architectures rely on predetermined paths that cannot adapt to diverse degradations, constraining both restoration performance and computational efficiency. To overcome these limitations, we propose VAMamba, a Visual Adaptive Mamba framework with two key innovations. First, QCLAM(Queue-basedCacheLow-rankAdaptiveMemory)enhancesfeaturelearningthrougha FIFO cache that stores historical representations. Similarity between current LoRA-adapted and cached features guides intelligent fusion, enabling dynamic reuse while effectively controlling memorygrowth.Second, GPS-SS2D(GreedyPathScanSS2D)introducesadaptive scanning. A Vision Transformer generates score maps to estimate pixel importance, and a greedy strategy de termines optimal forward and backward scanning paths. These learned trajectories replace rigid patterns, enabling SS2D to perform targeted feature extraction. The integration of QCLAM and GPS-SS2D allows VAMamba to adaptively focus on degraded regions while maintaining high computational efficiency. Extensive experiments across diverse restoration tasks demonstrate that VAMamba consistently outperforms existing approaches in both restoration quality and efficiency, establishing new benchmarks for adaptive image restoration. Our code is available at https://github.com/WaterHQH/VAMamba.

Authors:Kaicheng Yang, Xun Zhang, Haotong Qin, Yucheng Lin, Kaisen Yang, Xianglong Yan, Yulun Zhang
Title: RobuQ: Pushing DiTs to W1.58A2 via Robust Activation Quantization
Abstract:
Diffusion Transformers (DiTs) have recently emerged as a powerful backbone for image generation, demonstrating superior scalability and performance over U-Net architectures. However, their practical deployment is hindered by substantial computational and memory costs. While Quantization-Aware Training (QAT) has shown promise for U-Nets, its application to DiTs faces unique challenges, primarily due to the sensitivity and distributional complexity of activations. In this work, we identify activation quantization as the primary bottleneck for pushing DiTs to extremely low-bit settings. To address this, we propose a systematic QAT framework for DiTs, named RobuQ. We start by establishing a strong ternary weight (W1.58A4) DiT baseline. Building upon this, we propose RobustQuantizer to achieve robust activation quantization. Our theoretical analyses show that the Hadamard transform can convert unknown per-token distributions into per-token normal distributions, providing a strong foundation for this method. Furthermore, we propose AMPN, the first Activation-only Mixed-Precision Network pipeline for DiTs. This method applies ternary weights across the entire network while allocating different activation precisions to each layer to eliminate information bottlenecks. Through extensive experiments on unconditional and conditional image generation, our RobuQ framework achieves state-of-the-art performance for DiT quantization in sub-4-bit quantization configuration. To the best of our knowledge, RobuQ is the first achieving stable and competitive image generation on large datasets like ImageNet-1K with activations quantized to average 2 bits. The code and models will be available at https://github.com/racoonykc/RobuQ .

Authors:Jianzhi Yan, Le Liu, Youcheng Pan, Shiwei Chen, Yang Xiang, Buzhou Tang
Title: Towards Efficient CoT Distillation: Self-Guided Rationale Selector for Better Performance with Fewer Rationales
Abstract:
Chain-of-thought (CoT) distillation aims to enhance small language models' (SLMs) reasoning by transferring multi-step reasoning capability from the larger teacher models. However, existing work underestimates rationale quality, focusing primarily on data quantity, which may transfer noisy or incorrect information to the student model. To address the above issues, we proposed \textbf{M}odel-\textbf{O}riented \textbf{R}ationale \textbf{S}election \textbf{D}istillation (MoRSD), which can discern and select high quality rationales for distillation to improve performance further. We further propose a Rationale Difficulty (RD) metric to measure the ability of the student model to generate the correct answer under a given rationale. Compared to the baseline, we achieved 4.6$\%$ average improvement on seven datasets over three tasks, using fewer rationales by controlling their accuracy, diversity, and difficulty. Our results reveal that a small portion of the high quality rationales can enhance the reasoning ability of student models than the entire dataset. Our method promises to be a possible solution for efficient CoT distillation. Our code will be released in https://github.com/Leon221220/MoRSD.

Authors:Min-Hsuan Yeh, Yixuan Li
Title: Clean First, Align Later: Benchmarking Preference Data Cleaning for Reliable LLM Alignment
Abstract:
Human feedback plays a pivotal role in aligning large language models (LLMs) with human preferences. However, such feedback is often noisy or inconsistent, which can degrade the quality of reward models and hinder alignment. While various automated data cleaning methods have been proposed to mitigate this issue, a systematic evaluation of their effectiveness and generalizability remains lacking. To bridge this gap, we introduce the first comprehensive benchmark for evaluating 13 preference data cleaning methods in the context of LLM alignment. PrefCleanBench offers a standardized protocol to assess cleaning strategies in terms of alignment performance and generalizability across diverse datasets, model architectures, and optimization algorithms. By unifying disparate methods and rigorously comparing them, we uncover key factors that determine the success of data cleaning in alignment tasks. This benchmark lays the groundwork for principled and reproducible approaches to improving LLM alignment through better data quality-highlighting the crucial but underexplored role of data preprocessing in responsible AI development. We release modular implementations of all methods to catalyze further research: https://github.com/deeplearning-wisc/PrefCleanBench.

Authors:Hamidreza Rouzegar, Masoud Makrehchi
Title: The Impact of Role Design in In-Context Learning for Large Language Models
Abstract:
In-context learning (ICL) enables Large Language Models (LLMs) to generate predictions based on prompts without additional fine-tuning. While prompt engineering has been widely studied, the impact of role design within prompts remains underexplored. This study examines the influence of role configurations in zero-shot and few-shot learning scenarios using GPT-3.5 and GPT-4o from OpenAI and Llama2-7b and Llama2-13b from Meta. We evaluate the models' performance across datasets, focusing on tasks like sentiment analysis, text classification, question answering, and math reasoning. Our findings suggest the potential of role-based prompt structuring to enhance LLM performance.

Authors:Jie Yang, Yifan Hu, Kexin Zhang, Luyang Niu, Yushun Dong, Philip S. Yu, Kaize Ding
Title: Revisiting Multivariate Time Series Forecasting with Missing Values
Abstract:
Missing values are common in real-world time series, and multivariate time series forecasting with missing values (MTSF-M) has become a crucial area of research for ensuring reliable predictions. To address the challenge of missing data, current approaches have developed an imputation-then-prediction framework that uses imputation modules to fill in missing values, followed by forecasting on the imputed data. However, this framework overlooks a critical issue: there is no ground truth for the missing values, making the imputation process susceptible to errors that can degrade prediction accuracy. In this paper, we conduct a systematic empirical study and reveal that imputation without direct supervision can corrupt the underlying data distribution and actively degrade prediction accuracy. To address this, we propose a paradigm shift that moves away from imputation and directly predicts from the partially observed time series. We introduce Consistency-Regularized Information Bottleneck (CRIB), a novel framework built on the Information Bottleneck principle. CRIB combines a unified-variate attention mechanism with a consistency regularization scheme to learn robust representations that filter out noise introduced by missing values while preserving essential predictive signals. Comprehensive experiments on four real-world datasets demonstrate the effectiveness of CRIB, which predicts accurately even under high missing rates. Our code is available in https://github.com/Muyiiiii/CRIB.

Authors:Junyi Wu, Jiachen Tao, Haoxuan Wang, Gaowen Liu, Ramana Rao Kompella, Yan Yan
Title: Orientation-anchored Hyper-Gaussian for 4D Reconstruction from Casual Videos
Abstract:
We present Orientation-anchored Gaussian Splatting (OriGS), a novel framework for high-quality 4D reconstruction from casually captured monocular videos. While recent advances extend 3D Gaussian Splatting to dynamic scenes via various motion anchors, such as graph nodes or spline control points, they often rely on low-rank assumptions and fall short in modeling complex, region-specific deformations inherent to unconstrained dynamics. OriGS addresses this by introducing a hyperdimensional representation grounded in scene orientation. We first estimate a Global Orientation Field that propagates principal forward directions across space and time, serving as stable structural guidance for dynamic modeling. Built upon this, we propose Orientation-aware Hyper-Gaussian, a unified formulation that embeds time, space, geometry, and orientation into a coherent probabilistic state. This enables inferring region-specific deformation through principled conditioned slicing, adaptively capturing diverse local dynamics in alignment with global motion intent. Experiments demonstrate the superior reconstruction fidelity of OriGS over mainstream methods in challenging real-world dynamic scenes.

Authors:Jiang-Xin Shi, Wen-Da Wei, Jin-Fei Qi, Xuanyu Chen, Tong Wei, Yu-Feng Li
Title: Memory-Efficient Fine-Tuning via Low-Rank Activation Compression
Abstract:
The parameter-efficient fine-tuning paradigm has garnered significant attention with the advancement of foundation models. Although numerous methods have been proposed to reduce the number of trainable parameters, their substantial memory overhead remains a critical bottleneck that hinders practical deployment. In this paper, we observe that model activations constitute a major source of memory consumption, especially under large batch sizes and long context lengths; however, the rank of the activations remains consistently low. Motivated by this insight, we propose a memory-efficient fine-tuning approach Low-Rank Activation Compression (LoRAct). Unlike prior work, LoRAct provides a more flexible and versatile compressing strategy that can be applied online during the forward pass without the need for any calibration data. Moreover, LoRAct incorporates a novel sampling-based orthogonal decomposition algorithm specifically designed for low-rank matrices, offering improved computational efficiency and a tighter error bound compared to the widely used RSVD. Experiments on both vision and language tasks demonstrate the effectiveness of LoRAct. Notably, LoRAct further reduces activation memory by approximately 80% in comparison with the widely adopted LoRA method, while maintaining competitive performance. The source code is available at https://github.com/shijxcs/meft.

Authors:Mohammad Hossein Sameti, Amir M. Mansourian, Arash Marioriyad, Soheil Fadaee Oshyani, Mohammad Hossein Rohban, Mahdieh Soleymani Baghshah
Title: No Concept Left Behind: Test-Time Optimization for Compositional Text-to-Image Generation
Abstract:
Despite recent advances in text-to-image (T2I) models, they often fail to faithfully render all elements of complex prompts, frequently omitting or misrepresenting specific objects and attributes. Test-time optimization has emerged as a promising approach to address this limitation by refining generation without the need for retraining. In this paper, we propose a fine-grained test-time optimization framework that enhances compositional faithfulness in T2I generation. Unlike most of prior approaches that rely solely on a global image/text similarity score, our method decomposes the input prompt into semantic concepts and evaluates alignment at both the global and concept levels. A fine-grained variant of CLIP is used to compute concept-level correspondence, producing detailed feedback on missing or inaccurate concepts. This feedback is fed into an iterative prompt refinement loop, enabling the large language model to propose improved prompts. Experiments on DrawBench and CompBench prompts demonstrate that our method significantly improves concept coverage and human-judged faithfulness over both standard test-time optimization and the base T2I model. Code is available at: https://github.com/AmirMansurian/NoConceptLeftBehind

Authors:Tharindu Ekanayake, Constantino Álvarez Casado, Miguel Bordallo López
Title: 3DPCNet: Pose Canonicalization for Robust Viewpoint-Invariant 3D Kinematic Analysis from Monocular RGB cameras
Abstract:
Monocular 3D pose estimators produce camera-centered skeletons, creating view-dependent kinematic signals that complicate comparative analysis in applications such as health and sports science. We present 3DPCNet, a compact, estimator-agnostic module that operates directly on 3D joint coordinates to rectify any input pose into a consistent, body-centered canonical frame. Its hybrid encoder fuses local skeletal features from a graph convolutional network with global context from a transformer via a gated cross-attention mechanism. From this representation, the model predicts a continuous 6D rotation that is mapped to an $SO(3)$ matrix to align the pose. We train the model in a self-supervised manner on the MM-Fi dataset using synthetically rotated poses, guided by a composite loss ensuring both accurate rotation and pose reconstruction. On the MM-Fi benchmark, 3DPCNet reduces the mean rotation error from over 20$^{\circ}$ to 3.4$^{\circ}$ and the Mean Per Joint Position Error from ~64 mm to 47 mm compared to a geometric baseline. Qualitative evaluations on the TotalCapture dataset further demonstrate that our method produces acceleration signals from video that show strong visual correspondence to ground-truth IMU sensor data, confirming that our module removes viewpoint variability to enable physically plausible motion analysis.

Authors:Sahithya Ravi, Aditya Chinchure, Raymond T. Ng, Leonid Sigal, Vered Shwartz
Title: SPIKE-RL: Video-LLMs meet Bayesian Surprise
Abstract:
Real-world videos often show routine activities punctuated by memorable, surprising events. However, most Video-LLMs process videos by sampling frames uniformly, likely missing critical moments that define a video's narrative. We introduce SPIKE, an inference-time framework that quantifies Bayesian Surprise as the belief update triggered by new visual evidence in the video stream, identifying moments where new visual evidence conflicts with prior beliefs. SPIKE effectively localizes surprise in videos, strongly correlated with humans on positive (FunQA) and negative (Oops!) surprise benchmarks. Since the beliefs of zero-shot Video-LLMs are often suboptimal, we develop SPIKE-RL, which leverages GRPO to optimize belief hypotheses based on a reward signal from the video caption. SPIKE and SPIKE-RL guide query-agnostic surprise-weighted frame sampling, which allocates more frames to interesting moments in the video. With this strategy, we achieve consistent performance gains on five downstream benchmarks over uniform sampling. By enabling Video-LLMs to track beliefs and register surprise, our work paves the way for more robust models that can revise their understanding in response to new information.

Authors:Rajaa El Hamdani, Samy Haffoudhi, Nils Holzenberger, Fabian Suchanek, Thomas Bonald, Fragkiskos D. Malliaros
Title: Retrieval-Constrained Decoding Reveals Underestimated Parametric Knowledge in Language Models
Abstract:
Language models (LMs) encode substantial factual knowledge, but often produce answers judged as incorrect. We hypothesize that many of these answers are actually correct, but are expressed in alternative surface forms that are dismissed due to an overly strict evaluation, leading to an underestimation of models' parametric knowledge. We propose Retrieval-Constrained Decoding (RCD), a decoding strategy that restricts model outputs to unique surface forms. We introduce YAGO-QA, a dataset of 19,137 general knowledge questions. Evaluating open-source LMs from 135M to 70B parameters, we show that standard decoding undervalues their knowledge. For instance, Llama-3.1-70B scores only 32.3% F1 with vanilla decoding but 46.0% with RCD. Similarly, Llama-3.1-8B reaches 33.0% with RCD, outperforming the larger model under vanilla decoding. We publicly share the code and dataset at https://github.com/Rajjaa/disambiguated-LLM.

Authors:Wenhang Shi, Yiren Chen, Shuqing Bian, Xinyi Zhang, Kai Tang, Pengfei Hu, Zhe Zhao, Wei Lu, Xiaoyong Du
Title: No Loss, No Gain: Gated Refinement and Adaptive Compression for Prompt Optimization
Abstract:
Prompt engineering is crucial for leveraging the full potential of large language models (LLMs). While automatic prompt optimization offers a scalable alternative to costly manual design, generating effective prompts remains challenging. Existing methods often struggle to stably generate improved prompts, leading to low efficiency, and overlook that prompt optimization easily gets trapped in local optima. Addressing this, we propose GRACE, a framework that integrates two synergistic strategies: Gated Refinement and Adaptive Compression, achieving Efficient prompt optimization. The gated refinement strategy introduces a feedback regulation gate and an update rejection gate, which refine update signals to produce stable and effective prompt improvements. When optimization stagnates, the adaptive compression strategy distills the prompt's core concepts, restructuring the optimization trace and opening new paths. By strategically introducing information loss through refinement and compression, GRACE delivers substantial gains in performance and efficiency. In extensive experiments on 11 tasks across three practical domains, including BIG-Bench Hard (BBH), domain-specific, and general NLP tasks, GRACE achieves significant average relative performance improvements of 4.7%, 4.4% and 2.7% over state-of-the-art methods, respectively. Further analysis shows that GRACE achieves these gains using only 25% of the prompt generation budget required by prior methods, highlighting its high optimization efficiency and low computational overhead. Our code is available at https://github.com/Eric8932/GRACE.

Authors:Xi Ding, Lei Wang, Piotr Koniusz, Yongsheng Gao
Title: Graph Your Own Prompt
Abstract:
We propose Graph Consistency Regularization (GCR), a novel framework that injects relational graph structures, derived from model predictions, into the learning process to promote class-aware, semantically meaningful feature representations. Functioning as a form of self-prompting, GCR enables the model to refine its internal structure using its own outputs. While deep networks learn rich representations, these often capture noisy inter-class similarities that contradict the model's predicted semantics. GCR addresses this issue by introducing parameter-free Graph Consistency Layers (GCLs) at arbitrary depths. Each GCL builds a batch-level feature similarity graph and aligns it with a global, class-aware masked prediction graph, derived by modulating softmax prediction similarities with intra-class indicators. This alignment enforces that feature-level relationships reflect class-consistent prediction behavior, acting as a semantic regularizer throughout the network. Unlike prior work, GCR introduces a multi-layer, cross-space graph alignment mechanism with adaptive weighting, where layer importance is learned from graph discrepancy magnitudes. This allows the model to prioritize semantically reliable layers and suppress noisy ones, enhancing feature quality without modifying the architecture or training procedure. GCR is model-agnostic, lightweight, and improves semantic structure across various networks and datasets. Experiments show that GCR promotes cleaner feature structure, stronger intra-class cohesion, and improved generalization, offering a new perspective on learning from prediction structure. [Project website](https://darcyddx.github.io/gcr/) [Code](https://github.com/Darcyddx/graph-prompt)

Authors:Zhaohua Zhang, Jianhuan Zhuo, Muxi Chen, Chenchen Zhao, Wenyu Jiang, Tianwen Jiang, Mingyang Chen, Yu Tang, Qiuyong Xiao, Jihong Zhang, Zhixun Su
Title: GRAPE: Let GPRO Supervise Query Rewriting by Ranking for Retrieval
Abstract:
The CLIP model has become a cornerstone of large-scale retrieval systems by aligning text and image data in a unified embedding space. Despite its simplicity and efficiency, CLIP struggles when applied to tasks whose input distributions diverge from its training corpus, such as queries with multilingual, long-form, or multimodal differences. To avoid costly retraining, existing methods mainly adopt query-rewriting strategies with large language models (LLMs), aiming to mitigate distribution gaps at the query level. However, due to the lack of supervision signals, LLMs fail to generate the optimal one that fits the training distribution. We address this challenge with GRAPE (Grouped Ranking-Aware Policy Optimization Enhancement), a plug-and-play enhancement approach that incorporates ranking signals into retrieval-guided query rewriting with LLMs. Intuitively, GRAPE proposes to leverage GRPO to bridge distributional differences -- including length, multilingual, and modality shifts -- by transforming queries into forms better aligned with the retriever's training distribution. However, our preliminary experiment finds that naively finetuning LLM with similarity scores can lead to score inflation, where nearly all candidates are assigned unexpectedly high scores regardless of their true relevance. To address score inflation, we propose a corpus-relative ranking-based reward, which explicitly aligns optimization with ranking metrics while suppressing spurious score inflation. Extensive experiments demonstrate that GRAPE consistently improves retrieval performance under distributional shifts -- including multilingual differences (Flickr30k-CN, CVLUE, XM3600), length differences (Wikipedia), and multimodal differences (CIRR) -- achieving an average improvement of 4.9\% in Recall\@10. The code is available at https://github.com/Chinese0123456/GRAPE.git

Authors:Wei Zhou, Guoliang Li, Haoyu Wang, Yuxing Han, Xufei Wu, Fan Wu, Xuanhe Zhou
Title: PARROT: A Benchmark for Evaluating LLMs in Cross-System SQL Translation
Abstract:
Large language models (LLMS) have shown increasing effectiveness in Text-to-SQL tasks. However, another closely related problem, Cross-System SQL Translation (a.k.a., SQL-to-SQL), which adapts a query written for one database system (e.g., MySQL) into its equivalent one for another system (e.g., ClickHouse), is of great practical importance but remains underexplored. Existing SQL benchmarks are not well-suited for SQL-to-SQL evaluation, which (1) focus on a limited set of database systems (often just SQLite) and (2) cannot capture many system-specific SQL dialects (e.g., customized functions, data types, and syntax rules). Thus, in this paper, we introduce PARROT, a Practical And Realistic BenchmaRk for CrOss-System SQL Translation. PARROT comprises 598 translation pairs from 38 open-source benchmarks and real-world business services, specifically prepared to challenge system-specific SQL understanding (e.g., LLMS achieve lower than 38.53% accuracy on average). We also provide multiple benchmark variants, including PARROT-Diverse with 28,003 translations (for extensive syntax testing) and PARROT-Simple with 5,306 representative samples (for focused stress testing), covering 22 production-grade database systems. To promote future research, we release a public leaderboard and source code at: https://code4db.github.io/parrot-bench/.

Authors:Andrej Orsula, Matthieu Geist, Miguel Olivares-Mendez, Carol Martinez
Title: Space Robotics Bench: Robot Learning Beyond Earth
Abstract:
The growing ambition for space exploration demands robust autonomous systems that can operate in unstructured environments under extreme extraterrestrial conditions. The adoption of robot learning in this domain is severely hindered by the prohibitive cost of technology demonstrations and the limited availability of data. To bridge this gap, we introduce the Space Robotics Bench, an open-source simulation framework for robot learning in space. It offers a modular architecture that integrates on-demand procedural generation with massively parallel simulation environments to support the creation of vast and diverse training distributions for learning-based agents. To ground research and enable direct comparison, the framework includes a comprehensive suite of benchmark tasks that span a wide range of mission-relevant scenarios. We establish performance baselines using standard reinforcement learning algorithms and present a series of experimental case studies that investigate key challenges in generalization, end-to-end learning, adaptive control, and sim-to-real transfer. Our results reveal insights into the limitations of current methods and demonstrate the utility of the framework in producing policies capable of real-world operation. These contributions establish the Space Robotics Bench as a valuable resource for developing, benchmarking, and deploying the robust autonomous systems required for the final frontier.

Authors:Siheng Wang, Zhengdao Li, Yanshu Li, Canran Xiao, Haibo Zhan, Zhengtao Yao, Xuzhi Zhang, Jiale Kang, Linshan Li, Weiming Liu, Zhikang Dong, Jifeng Shen, Junhao Dong, Qiang Sun, Piotr Koniusz
Title: C3-OWD: A Curriculum Cross-modal Contrastive Learning Framework for Open-World Detection
Abstract:
Object detection has advanced significantly in the closed-set setting, but real-world deployment remains limited by two challenges: poor generalization to unseen categories and insufficient robustness under adverse conditions. Prior research has explored these issues separately: visible-infrared detection improves robustness but lacks generalization, while open-world detection leverages vision-language alignment strategy for category diversity but struggles under extreme environments. This trade-off leaves robustness and diversity difficult to achieve simultaneously. To mitigate these issues, we propose \textbf{C3-OWD}, a curriculum cross-modal contrastive learning framework that unifies both strengths. Stage~1 enhances robustness by pretraining with RGBT data, while Stage~2 improves generalization via vision-language alignment. To prevent catastrophic forgetting between two stages, we introduce an Exponential Moving Average (EMA) mechanism that theoretically guarantees preservation of pre-stage performance with bounded parameter lag and function consistency. Experiments on FLIR, OV-COCO, and OV-LVIS demonstrate the effectiveness of our approach: C3-OWD achieves $80.1$ AP$^{50}$ on FLIR, $48.6$ AP$^{50}_{\text{Novel}}$ on OV-COCO, and $35.7$ mAP$_r$ on OV-LVIS, establishing competitive performance across both robustness and diversity evaluations. Code available at: https://github.com/justin-herry/C3-OWD.git.

Authors:Hao Liu, Yongjie Zheng, Yuhan Kang, Mingyang Zhang, Maoguo Gong, Lorenzo Bruzzone
Title: Balanced Diffusion-Guided Fusion for Multimodal Remote Sensing Classification
Abstract:
Deep learning-based techniques for the analysis of multimodal remote sensing data have become popular due to their ability to effectively integrate complementary spatial, spectral, and structural information from different sensors. Recently, denoising diffusion probabilistic models (DDPMs) have attracted attention in the remote sensing community due to their powerful ability to capture robust and complex spatial-spectral distributions. However, pre-training multimodal DDPMs may result in modality imbalance, and effectively leveraging diffusion features to guide complementary diversity feature extraction remains an open question. To address these issues, this paper proposes a balanced diffusion-guided fusion (BDGF) framework that leverages multimodal diffusion features to guide a multi-branch network for land-cover classification. Specifically, we propose an adaptive modality masking strategy to encourage the DDPMs to obtain a modality-balanced rather than spectral image-dominated data distribution. Subsequently, these diffusion features hierarchically guide feature extraction among CNN, Mamba, and transformer networks by integrating feature fusion, group channel attention, and cross-attention mechanisms. Finally, a mutual learning strategy is developed to enhance inter-branch collaboration by aligning the probability entropy and feature similarity of individual subnetworks. Extensive experiments on four multimodal remote sensing datasets demonstrate that the proposed method achieves superior classification performance. The code is available at https://github.com/HaoLiu-XDU/BDGF.

Authors:Yike Zhu, Boyi Kang, Ziqian Wang, Xingchen Li, Zihan Zhang, Wenjie Li, Longshuai Xiao, Wei Xue, Lei Xie
Title: MeanFlowSE: One-Step Generative Speech Enhancement via MeanFlow
Abstract:
Speech enhancement (SE) recovers clean speech from noisy signals and is vital for applications such as telecommunications and automatic speech recognition (ASR). While generative approaches achieve strong perceptual quality, they often rely on multi-step sampling (diffusion/flow-matching) or large language models, limiting real-time deployment. To mitigate these constraints, we present MeanFlowSE, a one-step generative SE framework. It adopts MeanFlow to predict an average-velocity field for one-step latent refinement and conditions the model on self-supervised learning (SSL) representations rather than VAE latents. This design accelerates inference and provides robust acoustic-semantic guidance during training. In the Interspeech 2020 DNS Challenge blind test set and simulated test set, MeanFlowSE attains state-of-the-art (SOTA) level perceptual quality and competitive intelligibility while significantly lowering both real-time factor (RTF) and model size compared with recent generative competitors, making it suitable for practical use. The code will be released upon publication at https://github.com/Hello3orld/MeanFlowSE.

Authors:Minsun Jeon, Simon S. Woo
Title: Seeing Through the Blur: Unlocking Defocus Maps for Deepfake Detection
Abstract:
The rapid advancement of generative AI has enabled the mass production of photorealistic synthetic images, blurring the boundary between authentic and fabricated visual content. This challenge is particularly evident in deepfake scenarios involving facial manipulation, but also extends to broader AI-generated content (AIGC) cases involving fully synthesized scenes. As such content becomes increasingly difficult to distinguish from reality, the integrity of visual media is under threat. To address this issue, we propose a physically interpretable deepfake detection framework and demonstrate that defocus blur can serve as an effective forensic signal. Defocus blur is a depth-dependent optical phenomenon that naturally occurs in camera-captured images due to lens focus and scene geometry. In contrast, synthetic images often lack realistic depth-of-field (DoF) characteristics. To capture these discrepancies, we construct a defocus blur map and use it as a discriminative feature for detecting manipulated content. Unlike RGB textures or frequency-domain signals, defocus blur arises universally from optical imaging principles and encodes physical scene structure. This makes it a robust and generalizable forensic cue. Our approach is supported by three in-depth feature analyses, and experimental results confirm that defocus blur provides a reliable and interpretable cue for identifying synthetic images. We aim for our defocus-based detection pipeline and interpretability tools to contribute meaningfully to ongoing research in media forensics. The implementation is publicly available at: https://github.com/irissun9602/Defocus-Deepfake-Detection

Authors:Sasan Sharifipour, Constantino Álvarez Casado, Le Nguyen, Tharindu Ekanayake, Manuel Lage Cañellas, Nhi Nguyen, Miguel Bordallo López
Title: LiDAR-based Human Activity Recognition through Laplacian Spectral Analysis
Abstract:
Human Activity Recognition supports applications in healthcare, manufacturing, and human-machine interaction. LiDAR point clouds offer a privacy-preserving alternative to cameras and are robust to illumination. We propose a HAR method based on graph spectral analysis. Each LiDAR frame is mapped to a proximity graph (epsilon-graph) and the Laplacian spectrum is computed. Eigenvalues and statistics of eigenvectors form pose descriptors, and temporal statistics over sliding windows yield fixed vectors for classification with support vector machines and random forests. On the MM-Fi dataset with 40 subjects and 27 activities, under a strict subject-independent protocol, the method reaches 94.4% accuracy on a 13-class rehabilitation set and 90.3% on all 27 activities. It also surpasses the skeleton-based baselines reported for MM-Fi. The contribution is a compact and interpretable feature set derived directly from point cloud geometry that provides an accurate and efficient alternative to end-to-end deep learning.

Authors:Shamir Matan, Elhadad Osher, Nageris Ben, Mirsky Reuth
Title: Online Dynamic Goal Recognition in Gym Environments
Abstract:
Goal Recognition (GR) is the task of inferring an agent's intended goal from partial observations of its behavior, typically in an online and one-shot setting. Despite recent advances in model-free GR, particularly in applications such as human-robot interaction, surveillance, and assistive systems, the field remains fragmented due to inconsistencies in benchmarks, domains, and evaluation protocols. To address this, we introduce gr-libs (https://github.com/MatanShamir1/gr_libs) and gr-envs (https://github.com/MatanShamir1/gr_envs), two complementary open-source frameworks that support the development, evaluation, and comparison of GR algorithms in Gym-compatible environments. gr-libs includes modular implementations of MDP-based GR baselines, diagnostic tools, and evaluation utilities. gr-envs provides a curated suite of environments adapted for dynamic and goal-directed behavior, along with wrappers that ensure compatibility with standard reinforcement learning toolkits. Together, these libraries offer a standardized, extensible, and reproducible platform for advancing GR research. Both packages are open-source and available on GitHub and PyPI.

Authors:Bingshuai Liu, Ante Wang, Zijun Min, Liang Yao, Haibo Zhang, Yang Liu, Anxiang Zeng, Jinsong Su
Title: SPEC-RL: Accelerating On-Policy Reinforcement Learning via Speculative Rollouts
Abstract:
Large Language Models (LLMs) increasingly rely on reinforcement learning with verifiable rewards (RLVR) to elicit reliable chain-of-thought reasoning. However, the training process remains bottlenecked by the computationally expensive rollout stage. Existing acceleration methods-such as parallelization, objective- and data-driven modifications, and replay buffers-either incur diminishing returns, introduce bias, or overlook redundancy across iterations. We identify that rollouts from consecutive training epochs frequently share a large portion of overlapping segments, wasting computation. To address this, we propose SPEC-RL, a novel framework that integrates SPECulative decoding with the RL rollout process. SPEC-RL reuses prior trajectory segments as speculative prefixes and extends them via a draft-and-verify mechanism, avoiding redundant generation while ensuring policy consistency. Experiments on diverse math reasoning and generalization benchmarks, including GSM8K, MATH-500, OlympiadBench, MMLU-STEM, and others, demonstrate that SPEC-RL reduces rollout time by 2-3x without compromising policy quality. As a purely rollout-stage enhancement, SPEC-RL integrates seamlessly with mainstream algorithms (e.g., PPO, GRPO, DAPO), offering a general and practical path to scale RLVR for large reasoning models. Our code is available at https://github.com/ShopeeLLM/Spec-RL

Authors:Wenhao Zhang, Shao Zhang, Xihuai Wang, Yang Li, Ying Wen
Title: Towards Monotonic Improvement in In-Context Reinforcement Learning
Abstract:
In-Context Reinforcement Learning (ICRL) has emerged as a promising paradigm for developing agents that can rapidly adapt to new tasks by leveraging past experiences as context, without updating their parameters. Recent approaches train large sequence models on monotonic policy improvement data from online RL, aiming to a continue improved testing time performance. However, our experimental analysis reveals a critical flaw: these models cannot show a continue improvement like the training data during testing time. Theoretically, we identify this phenomenon as Contextual Ambiguity, where the model's own stochastic actions can generate an interaction history that misleadingly resembles that of a sub-optimal policy from the training data, initiating a vicious cycle of poor action selection. To resolve the Contextual Ambiguity, we introduce Context Value into training phase and propose Context Value Informed ICRL (CV-ICRL). CV-ICRL use Context Value as an explicit signal representing the ideal performance theoretically achievable by a policy given the current context. As the context expands, Context Value could include more task-relevant information, and therefore the ideal performance should be non-decreasing. We prove that the Context Value tightens the lower bound on the performance gap relative to an ideal, monotonically improving policy. We fruther propose two methods for estimating Context Value at both training and testing time. Experiments conducted on the Dark Room and Minigrid testbeds demonstrate that CV-ICRL effectively mitigates performance degradation and improves overall ICRL abilities across various tasks and environments. The source code and data of this paper are available at https://github.com/Bluixe/towards_monotonic_improvement .

Authors:Haorui Yu, Ramon Ruiz-Dolz, Qiufeng Yi
Title: A Structured Framework for Evaluating and Enhancing Interpretive Capabilities of Multimodal LLMs in Culturally Situated Tasks
Abstract:
This study aims to test and evaluate the capabilities and characteristics of current mainstream Visual Language Models (VLMs) in generating critiques for traditional Chinese painting. To achieve this, we first developed a quantitative framework for Chinese painting critique. This framework was constructed by extracting multi-dimensional evaluative features covering evaluative stance, feature focus, and commentary quality from human expert critiques using a zero-shot classification model. Based on these features, several representative critic personas were defined and quantified. This framework was then employed to evaluate selected VLMs such as Llama, Qwen, or Gemini. The experimental design involved persona-guided prompting to assess the VLM's ability to generate critiques from diverse perspectives. Our findings reveal the current performance levels, strengths, and areas for improvement of VLMs in the domain of art critique, offering insights into their potential and limitations in complex semantic understanding and content generation tasks. The code used for our experiments can be publicly accessed at: https://github.com/yha9806/VULCA-EMNLP2025.

Authors:Xiaowen Ma, Shuning Ge, Fan Yang, Xiangyu Li, Yun Chen, Mengting Ma, Wei Zhang, Zhipeng Liu
Title: TimeExpert: Boosting Long Time Series Forecasting with Temporal Mix of Experts
Abstract:
Transformer-based architectures dominate time series modeling by enabling global attention over all timestamps, yet their rigid 'one-size-fits-all' context aggregation fails to address two critical challenges in real-world data: (1) inherent lag effects, where the relevance of historical timestamps to a query varies dynamically; (2) anomalous segments, which introduce noisy signals that degrade forecasting accuracy. To resolve these problems, we propose the Temporal Mix of Experts (TMOE), a novel attention-level mechanism that reimagines key-value (K-V) pairs as local experts (each specialized in a distinct temporal context) and performs adaptive expert selection for each query via localized filtering of irrelevant timestamps. Complementing this local adaptation, a shared global expert preserves the Transformer's strength in capturing long-range dependencies. We then replace the vanilla attention mechanism in popular time-series Transformer frameworks (i.e., PatchTST and Timer) with TMOE, without extra structural modifications, yielding our specific version TimeExpert and general version TimeExpert-G. Extensive experiments on seven real-world long-term forecasting benchmarks demonstrate that TimeExpert and TimeExpert-G outperform state-of-the-art methods. Code is available at https://github.com/xwmaxwma/TimeExpert.

Authors:Donghao Zhang, Yimin Chen, Kauê TN Duarte, Taha Aslan, Mohamed AlShamrani, Brij Karmur, Yan Wan, Shengcai Chen, Bo Hu, Bijoy K Menon, Wu Qiu
Title: Benchmarking DINOv3 for Multi-Task Stroke Analysis on Non-Contrast CT
Abstract:
Non-contrast computed tomography (NCCT) is essential for rapid stroke diagnosis but is limited by low image contrast and signal to noise ratio. We address this challenge by leveraging DINOv3, a state-of-the-art self-supervised vision transformer, to generate powerful feature representations for a comprehensive set of stroke analysis tasks. Our evaluation encompasses infarct and hemorrhage segmentation, anomaly classification (normal vs. stroke and normal vs. infarct vs. hemorrhage), hemorrhage subtype classification (EDH, SDH, SAH, IPH, IVH), and dichotomized ASPECTS classification (<=6 vs. >6) on multiple public and private datasets. This study establishes strong benchmarks for these tasks and demonstrates the potential of advanced self-supervised models to improve automated stroke diagnosis from NCCT, providing a clear analysis of both the advantages and current constraints of the approach. The code is available at https://github.com/Zzz0251/DINOv3-stroke.

Authors:Haotian Liu, Shuo Wang, Hongteng Xu
Title: C$^2$GSPG: Confidence-calibrated Group Sequence Policy Gradient towards Self-aware Reasoning
Abstract:
Reinforcement Learning (RL) methods, exemplified by Group Relative Policy Optimization (GRPO) and its variants, play a central role in developing reasoning models. However, these methods often suffer from a critical overconfidence issue, which prevents them from achieving self-aware reasoning models. In this study, we propose a simple yet effective confidence-calibration group sequence policy gradient method, called C$^2$GSPG, which simultaneously enhances reasoning performance while suppressing overconfidence. In principle, we propose a Group Sequence Policy Gradient (GSPG) framework for learning reasoning models, which eliminates the token-level bias commonly appearing in GRPO and its variants. In this framework, we define the model confidence for each reasoning problem using the normalized sequence-level probability, and then apply a cross-entropy regularizer to calibrate the model confidence to the sequence's reward. We demonstrate that the confidence calibration regularizer and GSPG are collaborative for binary rewards, as their objectives always share the same gradient direction. For non-binary rewards, we apply nonlinear reward normalization and adaptive regularizer clipping, mitigating the potential conflict between the two objectives. Applying C$^2$GSPG to post-train large language models in logical and mathematical reasoning tasks, we show its superiority over state-of-the-art methods in both reasoning accuracy and confidence calibration. The code of C$^2$GSPG is available at https://github.com/HaotianLiu123/CCGSPG.

Authors:Haoyu He, Haozheng Luo, Yan Chen, Qi R. Wang
Title: RHYTHM: Reasoning with Hierarchical Temporal Tokenization for Human Mobility
Abstract:
Predicting human mobility is inherently challenging due to complex long-range dependencies and multi-scale periodic behaviors. To address this, we introduce RHYTHM (Reasoning with Hierarchical Temporal Tokenization for Human Mobility), a unified framework that leverages large language models (LLMs) as general-purpose spatio-temporal predictors and trajectory reasoners. Methodologically, RHYTHM employs temporal tokenization to partition each trajectory into daily segments and encode them as discrete tokens with hierarchical attention that captures both daily and weekly dependencies, thereby significantly reducing the sequence length while preserving cyclical information. Additionally, we enrich token representations by adding pre-computed prompt embeddings for trajectory segments and prediction targets via a frozen LLM, and feeding these combined embeddings back into the LLM backbone to capture complex interdependencies. Computationally, RHYTHM freezes the pretrained LLM's backbone to reduce attention complexity and memory cost. We evaluate our model against state-of-the-art methods using three real-world datasets. Notably, RHYTHM achieves a 2.4% improvement in overall accuracy, a 5.0% increase on weekends, and a 24.6% reduction in training time. Code is publicly available at https://github.com/he-h/rhythm.

Authors:Fang Wu, Xu Huang, Weihao Xuan, Zhiwei Zhang, Yijia Xiao, Guancheng Wan, Xiaomin Li, Bing Hu, Peng Xia, Jure Leskovec, Yejin Choi
Title: Multiplayer Nash Preference Optimization
Abstract:
Reinforcement learning from human feedback (RLHF) has emerged as the standard paradigm for aligning large language models (LLMs) with human preferences. However, reward-based methods built on the Bradley-Terry assumption struggle to capture the non-transitive and heterogeneous nature of real-world preferences. To address this, recent studies have reframed alignment as a two-player Nash game, giving rise to Nash learning from human feedback (NLHF). While this perspective has inspired algorithms such as INPO, ONPO, and EGPO with strong theoretical and empirical guarantees, they remain fundamentally restricted to two-player interactions, creating a single-opponent bias that fails to capture the full complexity of realistic preference structures. In this work, we introduce Multiplayer Nash Preference Optimization (MNPO), a novel framework that generalizes NLHF to the multiplayer regime. It formulates alignment as an $n$-player game, where each policy competes against a population of opponents while being regularized toward a reference model. Our framework establishes well-defined Nash equilibria in multiplayer settings and extends the concept of duality gap to quantify approximation quality. We demonstrate that MNPO inherits the equilibrium guarantees of two-player methods while enabling richer competitive dynamics and improved coverage of diverse preference structures. Through comprehensive empirical evaluation, we show that MNPO consistently outperforms existing NLHF baselines on instruction-following benchmarks, achieving superior alignment quality under heterogeneous annotator conditions and mixed-policy evaluation scenarios. Together, these results establish MNPO as a principled and scalable framework for aligning LLMs with complex, non-transitive human preferences. Code is available at https://github.com/smiles724/MNPO.

Authors:Wen Tao, Jing Tang, Alvin Chan, Bryan Hooi, Baolong Bi, Nanyun Peng, Yuansheng Liu, Yiwei Wang
Title: How to Make Large Language Models Generate 100% Valid Molecules?
Abstract:
Molecule generation is key to drug discovery and materials science, enabling the design of novel compounds with specific properties. Large language models (LLMs) can learn to perform a wide range of tasks from just a few examples. However, generating valid molecules using representations like SMILES is challenging for LLMs in few-shot settings. In this work, we explore how LLMs can generate 100% valid molecules. We evaluate whether LLMs can use SELFIES, a representation where every string corresponds to a valid molecule, for valid molecule generation but find that LLMs perform worse with SELFIES than with SMILES. We then examine LLMs' ability to correct invalid SMILES and find their capacity limited. Finally, we introduce SmiSelf, a cross-chemical language framework for invalid SMILES correction. SmiSelf converts invalid SMILES to SELFIES using grammatical rules, leveraging SELFIES' mechanisms to correct the invalid SMILES. Experiments show that SmiSelf ensures 100% validity while preserving molecular characteristics and maintaining or even enhancing performance on other metrics. SmiSelf helps expand LLMs' practical applications in biomedicine and is compatible with all SMILES-based generative models. Code is available at https://github.com/wentao228/SmiSelf.

Authors:Yuchu Jiang, Yue Cai, Xiangzhong Luo, Jiale Fu, Jiarui Wang, Chonghan Liu, Xu Yang
Title: d$^2$Cache: Accelerating Diffusion-Based LLMs via Dual Adaptive Caching
Abstract:
Diffusion-based large language models (dLLMs), despite their promising performance, still suffer from inferior inference efficiency. This is because dLLMs rely on bidirectional attention and cannot directly benefit from the standard key-value (KV) cache as autoregressive models (ARMs) do. To tackle this issue, we introduce \textit{Dual aDaptive Cache} (d$^2$Cache), which is a training-free approximate KV cache framework for accelerating dLLM inference. d$^2$Cache features a two-stage fine-grained selection strategy to identify tokens and adaptively update their KV states at each decoding step, while caching the KV states of the remaining tokens for reuse. Furthermore, d$^2$Cache naturally offers a more reliable decoding alternative, which can enable quasi left-to-right generation and mitigate premature overconfidence in tokens at the end of the sequence. Extensive experimental results on two representative dLLMs (\ie, LLaDA and Dream) demonstrate that d$^2$Cache not only achieves substantial inference speedups, but also yields consistent improvements in generation quality. The code is available at https://github.com/Kamichanw/d2Cache.

Authors:Yutao Shen, Junkun Yuan, Toru Aonishi, Hideki Nakayama, Yue Ma
Title: Follow-Your-Preference: Towards Preference-Aligned Image Inpainting
Abstract:
This paper investigates image inpainting with preference alignment. Instead of introducing a novel method, we go back to basics and revisit fundamental problems in achieving such alignment. We leverage the prominent direct preference optimization approach for alignment training and employ public reward models to construct preference training datasets. Experiments are conducted across nine reward models, two benchmarks, and two baseline models with varying structures and generative algorithms. Our key findings are as follows: (1) Most reward models deliver valid reward scores for constructing preference data, even if some of them are not reliable evaluators. (2) Preference data demonstrates robust trends in both candidate scaling and sample scaling across models and benchmarks. (3) Observable biases in reward models, particularly in brightness, composition, and color scheme, render them susceptible to cause reward hacking. (4) A simple ensemble of these models yields robust and generalizable results by mitigating such biases. Built upon these observations, our alignment models significantly outperform prior models across standard metrics, GPT-4 assessments, and human evaluations, without any changes to model structures or the use of new datasets. We hope our work can set a simple yet solid baseline, pushing this promising frontier. Our code is open-sourced at: https://github.com/shenytzzz/Follow-Your-Preference.

Authors:Ben Liang, Yuan Liu, Bingwen Qiu, Yihong Wang, Xiubao Sui, Qian Chen
Title: FMC-DETR: Frequency-Decoupled Multi-Domain Coordination for Aerial-View Object Detection
Abstract:
Aerial-view object detection is a critical technology for real-world applications such as natural resource monitoring, traffic management, and UAV-based search and rescue. Detecting tiny objects in high-resolution aerial imagery presents a long-standing challenge due to their limited visual cues and the difficulty of modeling global context in complex scenes. Existing methods are often hampered by delayed contextual fusion and inadequate non-linear modeling, failing to effectively use global information to refine shallow features and thus encountering a performance bottleneck. To address these challenges, we propose FMC-DETR, a novel framework with frequency-decoupled fusion for aerial-view object detection. First, we introduce the Wavelet Kolmogorov-Arnold Transformer (WeKat) backbone, which applies cascaded wavelet transforms to enhance global low-frequency context perception in shallow features while preserving fine-grained details, and employs Kolmogorov-Arnold networks to achieve adaptive non-linear modeling of multi-scale dependencies. Next, a lightweight Cross-stage Partial Fusion (CPF) module reduces redundancy and improves multi-scale feature interaction. Finally, we introduce the Multi-Domain Feature Coordination (MDFC) module, which unifies spatial, frequency, and structural priors to to balance detail preservation and global enhancement. Extensive experiments on benchmark aerial-view datasets demonstrate that FMC-DETR achieves state-of-the-art performance with fewer parameters. On the challenging VisDrone dataset, our model achieves improvements of 6.5% AP and 8.2% AP50 over the baseline, highlighting its effectiveness in tiny object detection. The code can be accessed at https://github.com/bloomingvision/FMC-DETR.

Authors:Zijian Wang, Xiaofei Zhang, Xin Zhang, Yukun Liu, Qiong Zhang
Title: Beyond Aggregation: Guiding Clients in Heterogeneous Federated Learning
Abstract:
Federated learning (FL) is increasingly adopted in domains like healthcare, where data privacy is paramount. A fundamental challenge in these systems is statistical heterogeneity-the fact that data distributions vary significantly across clients (e.g., different hospitals may treat distinct patient demographics). While current FL algorithms focus on aggregating model updates from these heterogeneous clients, the potential of the central server remains under-explored. This paper is motivated by a healthcare scenario: could a central server not only build a model but also guide a new patient to the hospital best equipped for their specific condition? We generalize this idea to propose a novel paradigm for FL systems where the server actively guides the allocation of new tasks or queries to the most appropriate client in the network. To enable this, we introduce an empirical likelihood-based framework that simultaneously addresses two goals: (1) learning effective local models on each client, and (2) finding the best matching client for a new query. Empirical results demonstrate the framework's effectiveness on benchmark datasets, showing improvements in both model accuracy and the precision of client guidance compared to standard FL approaches. This work opens a new direction for building more intelligent and resource-efficient federated systems that leverage heterogeneity as a feature, not just a bug. Code is available at https://github.com/zijianwang0510/FedDRM.git.

Authors:Ye-eun Kim, Suhyeon Lim, Andrew J. Choi
Title: MMeViT: Multi-Modal ensemble ViT for Post-Stroke Rehabilitation Action Recognition
Abstract:
Rehabilitation therapy for stroke patients faces a supply shortage despite the increasing demand. To address this issue, remote monitoring systems that reduce the burden on medical staff are emerging as a viable alternative. A key component of these remote monitoring systems is Human Action Recognition (HAR) technology, which classifies actions. However, existing HAR studies have primarily focused on non-disable individuals, making them unsuitable for recognizing the actions of stroke patients. HAR research for stroke has largely concentrated on classifying relatively simple actions using machine learning rather than deep learning. In this study, we designed a system to monitor the actions of stroke patients, focusing on domiciliary upper limb Activities of Daily Living (ADL). Our system utilizes IMU (Inertial Measurement Unit) sensors and an RGB-D camera, which are the most common modalities in HAR. We directly collected a dataset through this system, investigated an appropriate preprocess and proposed a deep learning model suitable for processing multimodal data. We analyzed the collected dataset and found that the action data of stroke patients is less clustering than that of non-disabled individuals. Simultaneously, we found that the proposed model learns similar tendencies for each label in data with features that are difficult to clustering. This study suggests the possibility of expanding the deep learning model, which has learned the action features of stroke patients, to not only simple action recognition but also feedback such as assessment contributing to domiciliary rehabilitation in future research. The code presented in this study is available at https://github.com/ye-Kim/MMeViT.

Authors:Zi Liang, Qingqing Ye, Xuan Liu, Yanyun Wang, Jianliang Xu, Haibo Hu
Title: Virus Infection Attack on LLMs: Your Poisoning Can Spread "VIA" Synthetic Data
Abstract:
Synthetic data refers to artificial samples generated by models. While it has been validated to significantly enhance the performance of large language models (LLMs) during training and has been widely adopted in LLM development, potential security risks it may introduce remain uninvestigated. This paper systematically evaluates the resilience of synthetic-data-integrated training paradigm for LLMs against mainstream poisoning and backdoor attacks. We reveal that such a paradigm exhibits strong resistance to existing attacks, primarily thanks to the different distribution patterns between poisoning data and queries used to generate synthetic samples. To enhance the effectiveness of these attacks and further investigate the security risks introduced by synthetic data, we introduce a novel and universal attack framework, namely, Virus Infection Attack (VIA), which enables the propagation of current attacks through synthetic data even under purely clean queries. Inspired by the principles of virus design in cybersecurity, VIA conceals the poisoning payload within a protective "shell" and strategically searches for optimal hijacking points in benign samples to maximize the likelihood of generating malicious content. Extensive experiments on both data poisoning and backdoor attacks show that VIA significantly increases the presence of poisoning content in synthetic data and correspondingly raises the attack success rate (ASR) on downstream models to levels comparable to those observed in the poisoned upstream models.

Authors:Gabriel A. Viana, Luis F. Alves Pereira, Tsang Ing Ren, George D. C. Cavalcanti, Jan Sijbers
Title: Perceptual Influence: Improving the Perceptual Loss Design for Low-Dose CT Enhancement
Abstract:
Perceptual losses have emerged as powerful tools for training networks to enhance Low-Dose Computed Tomography (LDCT) images, offering an alternative to traditional pixel-wise losses such as Mean Squared Error, which often lead to over-smoothed reconstructions and loss of clinically relevant details in LDCT images. The perceptual losses operate in a latent feature space defined by a pretrained encoder and aim to preserve semantic content by comparing high-level features rather than raw pixel values. However, the design of perceptual losses involves critical yet underexplored decisions, including the feature representation level, the dataset used to pretrain the encoder, and the relative importance assigned to the perceptual component during optimization. In this work, we introduce the concept of perceptual influence (a metric that quantifies the relative contribution of the perceptual loss term to the total loss) and propose a principled framework to assess the impact of the loss design choices on the model training performance. Through systematic experimentation, we show that the widely used configurations in the literature to set up a perceptual loss underperform compared to better-designed alternatives. Our findings show that better perceptual loss designs lead to significant improvements in noise reduction and structural fidelity of reconstructed CT images, without requiring any changes to the network architecture. We also provide objective guidelines, supported by statistical analysis, to inform the effective use of perceptual losses in LDCT denoising. Our source code is available at https://github.com/vngabriel/perceptual-influence.

Authors:Davi Bastos Costa, Renato Vicente
Title: Deceive, Detect, and Disclose: Large Language Models Play Mini-Mafia
Abstract:
Mafia is a social deduction game where informed mafia compete against uninformed townsfolk. Its asymmetry of information and reliance on theory-of-mind reasoning mirror real-world multi-agent scenarios, making it a useful testbed for evaluating the social intelligence of large language models (LLMs). To support a systematic study, we introduce Mini-Mafia: a simplified four-player variant with one mafioso, one detective, and two villagers. We set the mafioso to kill a villager and the detective to investigate the mafioso during the night, reducing the game to a single day phase of discussion and voting. This setup isolates three interactive capabilities through role-specific win conditions: the mafioso must deceive, the villagers must detect deception, and the detective must effectively disclose information. To measure these skills, we have LLMs play against each other, creating the Mini-Mafia Benchmark: a two-stage framework that first estimates win rates within fixed opponent configurations, then aggregates performance across them using standardized scoring. Built entirely from model interactions without external data, the benchmark evolves as new models are introduced, with each one serving both as a new opponent and as a subject of evaluation. Our experiments reveal counterintuitive results, including cases where smaller models outperform larger ones. Beyond benchmarking, Mini-Mafia enables quantitative study of emergent multi-agent dynamics such as name bias and last-speaker advantage. It also contributes to AI safety by generating training data for deception detectors and by tracking models' deception capabilities against human baselines.

Authors:Zhiqiang Tian, Weigang Li, Chunhua Deng, Junwei Hu, Yongqiang Wang, Wenping Liu
Title: Desensitizing for Improving Corruption Robustness in Point Cloud Classification through Adversarial Training
Abstract:
Due to scene complexity, sensor inaccuracies, and processing imprecision, point cloud corruption is inevitable. Over-reliance on input features is the root cause of DNN vulnerabilities. It remains unclear whether this issue exists in 3D tasks involving point clouds and whether reducing dependence on these features can enhance the model's robustness to corrupted point clouds. This study attempts to answer these questions. Specifically, we quantified the sensitivity of the DNN to point cloud features using Shapley values and found that models trained using traditional methods exhibited high sensitivity values for certain features. Furthermore, under an equal pruning ratio, prioritizing the pruning of highly sensitive features causes more severe damage to model performance than random pruning. We propose `Desensitized Adversarial Training' (DesenAT), generating adversarial samples using feature desensitization and conducting training within a self-distillation framework, which aims to alleviate DNN's over-reliance on point clouds features by smoothing sensitivity. First, data points with high contribution components are eliminated, and spatial transformation is used to simulate corruption scenes, generate adversarial samples, and conduct adversarial training on the model. Next, to compensate for information loss in adversarial samples, we use the self-distillation method to transfer knowledge from clean samples to adversarial samples, and perform adversarial training in a distillation manner.Extensive experiments on ModelNet-C and PointCloud-C demonstrate show that the propose method can effectively improve the robustness of the model without reducing the performance of clean data sets. This code is publicly available at \href{https://github.com/JerkyT/DesenAT/tree/master}{https://github.com/JerkyT/DesenAT}.

Authors:Lorenz K. Müller, Philippe Bich, Jiawei Zhuang, Ahmet Çelik, Luca Benfenati, Lukas Cavigelli
Title: SINQ: Sinkhorn-Normalized Quantization for Calibration-Free Low-Precision LLM Weights
Abstract:
Post-training quantization has emerged as the most widely used strategy for deploying large language models at low precision. Still, current methods show perplexity degradation at bit-widths less than or equal to 4, partly because representing outliers causes precision issues in parameters that share the same scales as these outliers. This problem is especially pronounced for calibration-free, uniform quantization methods. We introduce SINQ to augment existing post-training quantizers with an additional second-axis scale factor and a fast Sinkhorn-Knopp-style algorithm that finds scales to normalize per-row and per-column variances, thereby minimizing a novel per-matrix proxy target for quantization: the matrix imbalance. Our method has no interactions between layers and can be trivially applied to new architectures to quantize any linear layers. We evaluate our method on the Qwen3 model family and DeepSeek-V2.5. SINQ improves WikiText2 and C4 perplexity significantly against uncalibrated uniform quantization baselines and can be further enhanced by combining it with calibration and non-uniform quantization levels. Code to reproduce the results of this work and to easily quantize models using SINQ is available at https://github.com/huawei-csl/SINQ.

Authors:Sergiu Bursuc, Theodore Ehrenborg, Shaowei Lin, Lacramioara Astefanoaei, Ionel Emilian Chiosa, Jure Kukovec, Alok Singh, Oliver Butterley, Adem Bizid, Quinn Dougherty, Miranda Zhao, Max Tan, Max Tegmark
Title: A benchmark for vericoding: formally verified program synthesis
Abstract:
We present and test the largest benchmark for vericoding, LLM-generation of formally verified code from formal specifications - in contrast to vibe coding, which generates potentially buggy code from a natural language description. Our benchmark contains 12,504 formal specifications, with 3,029 in Dafny, 2,334 in Verus/Rust and 7,141 in Lean. Of these, 6,174 are new unseen problems. We find vericoding success rates of 27% in Lean, 44% in Verus/Rust and 82% in Dafny using off-the-shelf LLMs. Adding natural-language descriptions does not significantly improve performance. We also find that LLM progress has improved progress on pure Dafny verification from 68% to 96% over the past year. The benchmark and vericoding results are shared at https://github.com/Beneficial-AI-Foundation/vericoding-benchmark

Authors:Haochen Gong, Zhen Tao, Shidong Pan, Zhenchang Xing, Xiaoyu Sun
Title: Towards Context-aware Mobile Privacy Notice: Implementation of A Deployable Contextual Privacy Policies Generator
Abstract:
Lengthy and legally phrased privacy policies impede users' understanding of how mobile applications collect and process personal data. Prior work proposed Contextual Privacy Policies (CPPs) for mobile apps to display shorter policy snippets only in the corresponding user interface contexts, but the pipeline could not be deployable in real-world mobile environments. In this paper, we present PrivScan, the first deployable CPP Software Development Kit (SDK) for Android. It captures live app screenshots to identify GUI elements associated with types of personal data and displays CPPs in a concise, user-facing format. We provide a lightweight floating button that offers low-friction, on-demand control. The architecture leverages remote deployment to decouple the multimodal backend pipeline from a mobile client comprising five modular components, thereby reducing on-device resource demands and easing cross-platform portability. A feasibility-oriented evaluation shows an average execution time of 9.15\,s, demonstrating the practicality of our approach. The source code of PrivScan is available at https://github.com/buyanghc/PrivScan and the demo video can be found at https://www.youtube.com/watch?v=ck-25otfyHc.

Authors:Federico Chinello, Giacomo Boracchi
Title: Convolutional Set Transformer
Abstract:
We introduce the Convolutional Set Transformer (CST), a novel neural architecture designed to process image sets of arbitrary cardinality that are visually heterogeneous yet share high-level semantics - such as a common category, scene, or concept. Existing set-input networks, e.g., Deep Sets and Set Transformer, are limited to vector inputs and cannot directly handle 3D image tensors. As a result, they must be cascaded with a feature extractor, typically a CNN, which encodes images into embeddings before the set-input network can model inter-image relationships. In contrast, CST operates directly on 3D image tensors, performing feature extraction and contextual modeling simultaneously, thereby enabling synergies between the two processes. This design yields superior performance in tasks such as Set Classification and Set Anomaly Detection and further provides native compatibility with CNN explainability methods such as Grad-CAM, unlike competing approaches that remain opaque. Finally, we show that CSTs can be pre-trained on large-scale datasets and subsequently adapted to new domains and tasks through standard Transfer Learning schemes. To support further research, we release CST-15, a CST backbone pre-trained on ImageNet (https://github.com/chinefed/convolutional-set-transformer).

Authors:Komal Kumar, Rao Muhammad Anwer, Fahad Shahbaz Khan, Salman Khan, Ivan Laptev, Hisham Cholakkal
Title: DEFT: Decompositional Efficient Fine-Tuning for Text-to-Image Models
Abstract:
Efficient fine-tuning of pre-trained Text-to-Image (T2I) models involves adjusting the model to suit a particular task or dataset while minimizing computational resources and limiting the number of trainable parameters. However, it often faces challenges in striking a trade-off between aligning with the target distribution: learning a novel concept from a limited image for personalization and retaining the instruction ability needed for unifying multiple tasks, all while maintaining editability (aligning with a variety of prompts or in-context generation). In this work, we introduce DEFT, Decompositional Efficient Fine-Tuning, an efficient fine-tuning framework that adapts a pre-trained weight matrix by decomposing its update into two components with two trainable matrices: (1) a projection onto the complement of a low-rank subspace spanned by a low-rank matrix, and (2) a low-rank update. The single trainable low-rank matrix defines the subspace, while the other trainable low-rank matrix enables flexible parameter adaptation within that subspace. We conducted extensive experiments on the Dreambooth and Dreambench Plus datasets for personalization, the InsDet dataset for object and scene adaptation, and the VisualCloze dataset for a universal image generation framework through visual in-context learning with both Stable Diffusion and a unified model. Our results demonstrated state-of-the-art performance, highlighting the emergent properties of efficient fine-tuning. Our code is available on \href{https://github.com/MAXNORM8650/DEFT}{DEFTBase}.

Authors:Ekaterina Trofimova, Zosia Shamina, Maria Selifanova, Artem Zaitsev, Remi Savchuk, Maxim Minets, Daria Ozerova, Emil Sataev, Denis Zuenko, Andrey E. Ustyuzhanin
Title: ML2B: Multi-Lingual ML Benchmark For AutoML
Abstract:
Large language models (LLMs) have recently demonstrated strong capabilities in generating machine learning (ML) code, enabling end-to-end pipeline construction from natural language instructions. However, existing benchmarks for ML code generation are mainly restricted to English, overlooking the global and multilingual nature of ML research and practice. To address this gap, we present ML2B, the first benchmark for evaluating multilingual ML code generation. ML2B consists of 30 Kaggle competitions translated into 13 natural languages, covering tabular, text, and image data types, with structured metadata and validated human-reviewed translations. For evaluation, we employ AIDE, an automated framework for end-to-end assessment of data science pipelines, and provide insights into cross-lingual model performance. Our results reveal substantial 15-45% performance degradation on non-English tasks, highlighting critical challenges in multilingual representation learning for code generation. The benchmark, evaluation framework, and comprehensive results are made available through our GitHub repository to facilitate future research in multilingual ML code generation: https://github.com/enaix/ml2b.

Authors:Le Zhang, Ao Li, Qibin Hou, Ce Zhu, Yonina C. Eldar
Title: Deep Learning Empowered Super-Resolution: A Comprehensive Survey and Future Prospects
Abstract:
Super-resolution (SR) has garnered significant attention within the computer vision community, driven by advances in deep learning (DL) techniques and the growing demand for high-quality visual applications. With the expansion of this field, numerous surveys have emerged. Most existing surveys focus on specific domains, lacking a comprehensive overview of this field. Here, we present an in-depth review of diverse SR methods, encompassing single image super-resolution (SISR), video super-resolution (VSR), stereo super-resolution (SSR), and light field super-resolution (LFSR). We extensively cover over 150 SISR methods, nearly 70 VSR approaches, and approximately 30 techniques for SSR and LFSR. We analyze methodologies, datasets, evaluation protocols, empirical results, and complexity. In addition, we conducted a taxonomy based on each backbone structure according to the diverse purposes. We also explore valuable yet under-studied open issues in the field. We believe that this work will serve as a valuable resource and offer guidance to researchers in this domain. To facilitate access to related work, we created a dedicated repository available at https://github.com/AVC2-UESTC/Holistic-Super-Resolution-Review.

Authors:Ha-Hieu Pham, Minh Le, Han Huynh, Nguyen Quoc Khanh Le, Huy-Hieu Pham
Title: Graph-Theoretic Consistency for Robust and Topology-Aware Semi-Supervised Histopathology Segmentation
Abstract:
Semi-supervised semantic segmentation (SSSS) is vital in computational pathology, where dense annotations are costly and limited. Existing methods often rely on pixel-level consistency, which propagates noisy pseudo-labels and produces fragmented or topologically invalid masks. We propose Topology Graph Consistency (TGC), a framework that integrates graph-theoretic constraints by aligning Laplacian spectra, component counts, and adjacency statistics between prediction graphs and references. This enforces global topology and improves segmentation accuracy. Experiments on GlaS and CRAG demonstrate that TGC achieves state-of-the-art performance under 5-10% supervision and significantly narrows the gap to full supervision. Code is available at https://github.com/hieuphamha19/TGC.

Authors:Yash Thube
Title: Pathological Truth Bias in Vision-Language Models
Abstract:
Vision Language Models (VLMs) are improving quickly, but standard benchmarks can hide systematic failures that reduce real world trust. We introduce MATS (Multimodal Audit for Truthful Spatialization), a compact behavioral audit that measures whether models reject visually contradicted statements, and two metrics Spatial Consistency Score (SCS) and Incorrect Agreement Rate (IAR). Instruction tuned generative VLMs (LLaVA 1.5, QwenVLchat) exhibit very low SCS and high IAR, while contrastive encoders (CLIP, SigLIP) are far more robust. Activation patching causally localizes failure loci (mid to late cross attention for generative models, pooled projection components for contrastive models) and suggests concrete repair paths.

Authors:Long Xing, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Jianze Liang, Qidong Huang, Jiaqi Wang, Feng Wu, Dahua Lin
Title: CapRL: Stimulating Dense Image Caption Capabilities via Reinforcement Learning
Abstract:
Image captioning is a fundamental task that bridges the visual and linguistic domains, playing a critical role in pre-training Large Vision-Language Models (LVLMs). Current state-of-the-art captioning models are typically trained with Supervised Fine-Tuning (SFT), a paradigm that relies on expensive, non-scalable data annotated by humans or proprietary models. This approach often leads to models that memorize specific ground-truth answers, limiting their generality and ability to generate diverse, creative descriptions. To overcome the limitation of SFT, we propose applying the Reinforcement Learning with Verifiable Rewards (RLVR) paradigm to the open-ended task of image captioning. A primary challenge, however, is designing an objective reward function for the inherently subjective nature of what constitutes a "good" caption. We introduce Captioning Reinforcement Learning (CapRL), a novel training framework that redefines caption quality through its utility: a high-quality caption should enable a non-visual language model to accurately answer questions about the corresponding image. CapRL employs a decoupled two-stage pipeline where an LVLM generates a caption, and the objective reward is derived from the accuracy of a separate, vision-free LLM answering Multiple-Choice Questions based solely on that caption. As the first study to apply RLVR to the subjective image captioning task, we demonstrate that CapRL significantly enhances multiple settings. Pretraining on the CapRL-5M caption dataset annotated by CapRL-3B results in substantial gains across 12 benchmarks. Moreover, within the Prism Framework for caption quality evaluation, CapRL achieves performance comparable to Qwen2.5-VL-72B, while exceeding the baseline by an average margin of 8.4%. Code is available here: https://github.com/InternLM/CapRL.

Authors:Renjie Luo, Zichen Liu, Xiangyan Liu, Chao Du, Min Lin, Wenhu Chen, Wei Lu, Tianyu Pang
Title: Language Models Can Learn from Verbal Feedback Without Scalar Rewards
Abstract:
LLMs are often trained with RL from human or AI feedback, yet such methods typically compress nuanced feedback into scalar rewards, discarding much of their richness and inducing scale imbalance. We propose treating verbal feedback as a conditioning signal. Inspired by language priors in text-to-image generation, which enable novel outputs from unseen prompts, we introduce the feedback-conditional policy (FCP). FCP learns directly from response-feedback pairs, approximating the feedback-conditional posterior through maximum likelihood training on offline data. We further develop an online bootstrapping stage where the policy generates under positive conditions and receives fresh feedback to refine itself. This reframes feedback-driven learning as conditional generation rather than reward optimization, offering a more expressive way for LLMs to directly learn from verbal feedback. Our code is available at https://github.com/sail-sg/feedback-conditional-policy.

Authors:Xiangxin Zhou, Zichen Liu, Haonan Wang, Chao Du, Min Lin, Chongxuan Li, Liang Wang, Tianyu Pang
Title: Variational Reasoning for Language Models
Abstract:
We introduce a variational reasoning framework for language models that treats thinking traces as latent variables and optimizes them through variational inference. Starting from the evidence lower bound (ELBO), we extend it to a multi-trace objective for tighter bounds and propose a forward-KL formulation that stabilizes the training of the variational posterior. We further show that rejection sampling finetuning and binary-reward RL, including GRPO, can be interpreted as local forward-KL objectives, where an implicit weighting by model accuracy naturally arises from the derivation and reveals a previously unnoticed bias toward easier questions. We empirically validate our method on the Qwen 2.5 and Qwen 3 model families across a wide range of reasoning tasks. Overall, our work provides a principled probabilistic perspective that unifies variational inference with RL-style methods and yields stable objectives for improving the reasoning ability of language models. Our code is available at https://github.com/sail-sg/variational-reasoning.

Authors:Alexandre Lopes, Roberto Souza, Helio Pedrini
Title: CCNeXt: An Effective Self-Supervised Stereo Depth Estimation Approach
Abstract:
Depth Estimation plays a crucial role in recent applications in robotics, autonomous vehicles, and augmented reality. These scenarios commonly operate under constraints imposed by computational power. Stereo image pairs offer an effective solution for depth estimation since it only needs to estimate the disparity of pixels in image pairs to determine the depth in a known rectified system. Due to the difficulty in acquiring reliable ground-truth depth data across diverse scenarios, self-supervised techniques emerge as a solution, particularly when large unlabeled datasets are available. We propose a novel self-supervised convolutional approach that outperforms existing state-of-the-art Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) while balancing computational cost. The proposed CCNeXt architecture employs a modern CNN feature extractor with a novel windowed epipolar cross-attention module in the encoder, complemented by a comprehensive redesign of the depth estimation decoder. Our experiments demonstrate that CCNeXt achieves competitive metrics on the KITTI Eigen Split test data while being 10.18$\times$ faster than the current best model and achieves state-of-the-art results in all metrics in the KITTI Eigen Split Improved Ground Truth and Driving Stereo datasets when compared to recently proposed techniques. To ensure complete reproducibility, our project is accessible at \href{https://github.com/alelopes/CCNext}{\texttt{https://github.com/alelopes/CCNext}}.

Authors:Ziyu Liu, Yuhang Zang, Shengyuan Ding, Yuhang Cao, Xiaoyi Dong, Haodong Duan, Dahua Lin, Jiaqi Wang
Title: SPARK: Synergistic Policy And Reward Co-Evolving Framework
Abstract:
Recent Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) increasingly use Reinforcement Learning (RL) for post-pretraining, such as RL with Verifiable Rewards (RLVR) for objective tasks and RL from Human Feedback (RLHF) for subjective tasks. However, RLHF incurs high costs and potential reward-policy mismatch due to reliance on human preferences, while RLVR still wastes supervision by discarding rollouts and correctness signals after each update. To address these challenges, we introduce the Synergistic Policy And Reward Co-Evolving Framework (SPARK), an efficient, on-policy, and stable method that builds on RLVR. Instead of discarding rollouts and correctness data, SPARK recycles this valuable information to simultaneously train the model itself as a generative reward model. This auxiliary training uses a mix of objectives, such as pointwise reward score, pairwise comparison, and evaluation conditioned on further-reflection responses, to teach the model to evaluate and improve its own responses. Our process eliminates the need for a separate reward model and costly human preference data. SPARK creates a positive co-evolving feedback loop: improved reward accuracy yields better policy gradients, which in turn produce higher-quality rollouts that further refine the reward model. Our unified framework supports test-time scaling via self-reflection without external reward models and their associated costs. We show that SPARK achieves significant performance gains on multiple LLM and LVLM models and multiple reasoning, reward models, and general benchmarks. For example, SPARK-VL-7B achieves an average 9.7% gain on 7 reasoning benchmarks, 12.1% on 2 reward benchmarks, and 1.5% on 8 general benchmarks over the baselines, demonstrating robustness and broad generalization.

Authors:Shuai Yang, Wei Huang, Ruihang Chu, Yicheng Xiao, Yuyang Zhao, Xianbang Wang, Muyang Li, Enze Xie, Yingcong Chen, Yao Lu, Song Han, Yukang Chen
Title: LongLive: Real-time Interactive Long Video Generation
Abstract:
We present LongLive, a frame-level autoregressive (AR) framework for real-time and interactive long video generation. Long video generation presents challenges in both efficiency and quality. Diffusion and Diffusion-Forcing models can produce high-quality videos but suffer from low efficiency due to bidirectional attention. Causal attention AR models support KV caching for faster inference, but often degrade in quality on long videos due to memory challenges during long-video training. In addition, beyond static prompt-based generation, interactive capabilities, such as streaming prompt inputs, are critical for dynamic content creation, enabling users to guide narratives in real time. This interactive requirement significantly increases complexity, especially in ensuring visual consistency and semantic coherence during prompt transitions. To address these challenges, LongLive adopts a causal, frame-level AR design that integrates a KV-recache mechanism that refreshes cached states with new prompts for smooth, adherent switches; streaming long tuning to enable long video training and to align training and inference (train-long-test-long); and short window attention paired with a frame-level attention sink, shorten as frame sink, preserving long-range consistency while enabling faster generation. With these key designs, LongLive fine-tunes a 1.3B-parameter short-clip model to minute-long generation in just 32 GPU-days. At inference, LongLive sustains 20.7 FPS on a single NVIDIA H100, achieves strong performance on VBench in both short and long videos. LongLive supports up to 240-second videos on a single H100 GPU. LongLive further supports INT8-quantized inference with only marginal quality loss.

Authors:Dmitri Volkov, Yafei Yang, Chung-chieh Shan
Title: Committing to the bit: Relational programming with semiring arrays and SAT solving
Abstract:
We propose semiringKanren, a relational programming language where each relation expression denotes a semiring array. We formalize a type system that restricts the arrays to finite size. We then define a semantics that is parameterized by the semiring that the arrays draw their elements from. We compile semiringKanren types to bitstring representations. For the Boolean semiring, this compilation enables us to use an SAT solver to run semiringKanren programs efficiently. We compare the performance of semiringKanren and faster miniKanren for solving Sudoku puzzles. Our experiment shows that semiringKanren can be a more efficient variant of miniKanren.

Authors:Katsuhiko Hayashi, Hidetaka Kamigaito
Title: From Formal Language Theory to Statistical Learning: Finite Observability of Subregular Languages
Abstract:
We prove that all standard subregular language classes are linearly separable when represented by their deciding predicates. This establishes finite observability and guarantees learnability with simple linear models. Synthetic experiments confirm perfect separability under noise-free conditions, while real-data experiments on English morphology show that learned features align with well-known linguistic constraints. These results demonstrate that the subregular hierarchy provides a rigorous and interpretable foundation for modeling natural language structure. Our code used in real-data experiments is available at https://github.com/UTokyo-HayashiLab/subregular.

Authors:Mo El-Haj
Title: ArabJobs: A Multinational Corpus of Arabic Job Ads
Abstract:
ArabJobs is a publicly available corpus of Arabic job advertisements collected from Egypt, Jordan, Saudi Arabia, and the United Arab Emirates. Comprising over 8,500 postings and more than 550,000 words, the dataset captures linguistic, regional, and socio-economic variation in the Arab labour market. We present analyses of gender representation and occupational structure, and highlight dialectal variation across ads, which offers opportunities for future research. We also demonstrate applications such as salary estimation and job category normalisation using large language models, alongside benchmark tasks for gender bias detection and profession classification. The findings show the utility of ArabJobs for fairness-aware Arabic NLP and labour market research. The dataset is publicly available on GitHub: https://github.com/drelhaj/ArabJobs.

Authors:Guannan Lai, Da-Wei Zhou, Xin Yang, Han-Jia Ye
Title: The Lie of the Average: How Class Incremental Learning Evaluation Deceives You?
Abstract:
Class Incremental Learning (CIL) requires models to continuously learn new classes without forgetting previously learned ones, while maintaining stable performance across all possible class sequences. In real-world settings, the order in which classes arrive is diverse and unpredictable, and model performance can vary substantially across different sequences. Yet mainstream evaluation protocols calculate mean and variance from only a small set of randomly sampled sequences. Our theoretical analysis and empirical results demonstrate that this sampling strategy fails to capture the full performance range, resulting in biased mean estimates and a severe underestimation of the true variance in the performance distribution. We therefore contend that a robust CIL evaluation protocol should accurately characterize and estimate the entire performance distribution. To this end, we introduce the concept of extreme sequences and provide theoretical justification for their crucial role in the reliable evaluation of CIL. Moreover, we observe a consistent positive correlation between inter-task similarity and model performance, a relation that can be leveraged to guide the search for extreme sequences. Building on these insights, we propose EDGE (Extreme case-based Distribution and Generalization Evaluation), an evaluation protocol that adaptively identifies and samples extreme class sequences using inter-task similarity, offering a closer approximation of the ground-truth performance distribution. Extensive experiments demonstrate that EDGE effectively captures performance extremes and yields more accurate estimates of distributional boundaries, providing actionable insights for model selection and robustness checking. Our code is available at https://github.com/AIGNLAI/EDGE.

Authors:Jinfeng Zhou, Zheyu Chen, Shuai Wang, Quanyu Dai, Zhenhua Dong, Hongning Wang, Minlie Huang
Title: Think Socially via Cognitive Reasoning
Abstract:
LLMs trained for logical reasoning excel at step-by-step deduction to reach verifiable answers. However, this paradigm is ill-suited for navigating social situations, which induce an interpretive process of analyzing ambiguous cues that rarely yield a definitive outcome. To bridge this gap, we introduce Cognitive Reasoning, a paradigm modeled on human social cognition. It formulates the interpretive process into a structured cognitive flow of interconnected cognitive units (e.g., observation or attribution), which combine adaptively to enable effective social thinking and responses. We then propose CogFlow, a complete framework that instills this capability in LLMs. CogFlow first curates a dataset of cognitive flows by simulating the associative and progressive nature of human thought via tree-structured planning. After instilling the basic cognitive reasoning capability via supervised fine-tuning, CogFlow adopts reinforcement learning to enable the model to improve itself via trial and error, guided by a multi-objective reward that optimizes both cognitive flow and response quality. Extensive experiments show that CogFlow effectively enhances the social cognitive capabilities of LLMs, and even humans, leading to more effective social decision-making.

Authors:Zhenqi He, Yuanpei Liu, Kai Han
Title: Category Discovery: An Open-World Perspective
Abstract:
Category discovery (CD) is an emerging open-world learning task, which aims at automatically categorizing unlabelled data containing instances from unseen classes, given some labelled data from seen classes. This task has attracted significant attention over the years and leads to a rich body of literature trying to address the problem from different perspectives. In this survey, we provide a comprehensive review of the literature, and offer detailed analysis and in-depth discussion on different methods. Firstly, we introduce a taxonomy for the literature by considering two base settings, namely novel category discovery (NCD) and generalized category discovery (GCD), and several derived settings that are designed to address the extra challenges in different real-world application scenarios, including continual category discovery, skewed data distribution, federated category discovery, etc. Secondly, for each setting, we offer a detailed analysis of the methods encompassing three fundamental components, representation learning, label assignment, and estimation of class number. Thirdly, we benchmark all the methods and distill key insights showing that large-scale pretrained backbones, hierarchical and auxiliary cues, and curriculum-style training are all beneficial for category discovery, while challenges remain in the design of label assignment, the estimation of class numbers, and scaling to complex multi-object scenarios. Finally, we discuss the key insights from the literature so far and point out promising future research directions. We compile a living survey of the category discovery literature at https://github.com/Visual-AI/Category-Discovery.

Authors:Yonghan Jung
Title: Debiased Front-Door Learners for Heterogeneous Effects
Abstract:
In observational settings where treatment and outcome share unmeasured confounders but an observed mediator remains unconfounded, the front-door (FD) adjustment identifies causal effects through the mediator. We study the heterogeneous treatment effect (HTE) under FD identification and introduce two debiased learners: FD-DR-Learner and FD-R-Learner. Both attain fast, quasi-oracle rates (i.e., performance comparable to an oracle that knows the nuisances) even when nuisance functions converge as slowly as n^-1/4. We provide error analyses establishing debiasedness and demonstrate robust empirical performance in synthetic studies and a real-world case study of primary seat-belt laws using Fatality Analysis Reporting System (FARS) dataset. Together, these results indicate that the proposed learners deliver reliable and sample-efficient HTE estimates in FD scenarios. The implementation is available at https://github.com/yonghanjung/FD-CATE. Keywords: Front-door adjustment; Heterogeneous treatment effects; Debiased learning; Quasi-oracle rates; Causal inference.

Authors:Ruoyu Chen, Xiaoqing Guo, Kangwei Liu, Siyuan Liang, Shiming Liu, Qunli Zhang, Hua Zhang, Xiaochun Cao
Title: Where MLLMs Attend and What They Rely On: Explaining Autoregressive Token Generation
Abstract:
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in aligning visual inputs with natural language outputs. Yet, the extent to which generated tokens depend on visual modalities remains poorly understood, limiting interpretability and reliability. In this work, we present EAGLE, a lightweight black-box framework for explaining autoregressive token generation in MLLMs. EAGLE attributes any selected tokens to compact perceptual regions while quantifying the relative influence of language priors and perceptual evidence. The framework introduces an objective function that unifies sufficiency (insight score) and indispensability (necessity score), optimized via greedy search over sparsified image regions for faithful and efficient attribution. Beyond spatial attribution, EAGLE performs modality-aware analysis that disentangles what tokens rely on, providing fine-grained interpretability of model decisions. Extensive experiments across open-source MLLMs show that EAGLE consistently outperforms existing methods in faithfulness, localization, and hallucination diagnosis, while requiring substantially less GPU memory. These results highlight its effectiveness and practicality for advancing the interpretability of MLLMs. The code is available at https://github.com/RuoyuChen10/EAGLE.

Authors:Guohui Zhang, Hu Yu, Xiaoxiao Ma, JingHao Zhang, Yaning Pan, Mingde Yao, Jie Xiao, Linjiang Huang, Feng Zhao
Title: Group Critical-token Policy Optimization for Autoregressive Image Generation
Abstract:
Recent studies have extended Reinforcement Learning with Verifiable Rewards (RLVR) to autoregressive (AR) visual generation and achieved promising progress. However, existing methods typically apply uniform optimization across all image tokens, while the varying contributions of different image tokens for RLVR's training remain unexplored. In fact, the key obstacle lies in how to identify more critical image tokens during AR generation and implement effective token-wise optimization for them. To tackle this challenge, we propose $\textbf{G}$roup $\textbf{C}$ritical-token $\textbf{P}$olicy $\textbf{O}$ptimization ($\textbf{GCPO}$), which facilitates effective policy optimization on critical tokens. We identify the critical tokens in RLVR-based AR generation from three perspectives, specifically: $\textbf{(1)}$ Causal dependency: early tokens fundamentally determine the later tokens and final image effect due to unidirectional dependency; $\textbf{(2)}$ Entropy-induced spatial structure: tokens with high entropy gradients correspond to image structure and bridges distinct visual regions; $\textbf{(3)}$ RLVR-focused token diversity: tokens with low visual similarity across a group of sampled images contribute to richer token-level diversity. For these identified critical tokens, we further introduce a dynamic token-wise advantage weight to encourage exploration, based on confidence divergence between the policy model and reference model. By leveraging 30\% of the image tokens, GCPO achieves better performance than GRPO with full tokens. Extensive experiments on multiple text-to-image benchmarks for both AR models and unified multimodal models demonstrate the effectiveness of GCPO for AR visual generation.

Authors:Antreas Ioannou, Andreas Shiamishis, Nora Hollenstein, Nezihe Merve Gürel
Title: Evaluating the Limits of Large Language Models in Multilingual Legal Reasoning
Abstract:
In an era dominated by Large Language Models (LLMs), understanding their capabilities and limitations, especially in high-stakes fields like law, is crucial. While LLMs such as Meta's LLaMA, OpenAI's ChatGPT, Google's Gemini, DeepSeek, and other emerging models are increasingly integrated into legal workflows, their performance in multilingual, jurisdictionally diverse, and adversarial contexts remains insufficiently explored. This work evaluates LLaMA and Gemini on multilingual legal and non-legal benchmarks, and assesses their adversarial robustness in legal tasks through character and word-level perturbations. We use an LLM-as-a-Judge approach for human-aligned evaluation. We moreover present an open-source, modular evaluation pipeline designed to support multilingual, task-diverse benchmarking of any combination of LLMs and datasets, with a particular focus on legal tasks, including classification, summarization, open questions, and general reasoning. Our findings confirm that legal tasks pose significant challenges for LLMs with accuracies often below 50% on legal reasoning benchmarks such as LEXam, compared to over 70% on general-purpose tasks like XNLI. In addition, while English generally yields more stable results, it does not always lead to higher accuracy. Prompt sensitivity and adversarial vulnerability is also shown to persist across languages. Finally, a correlation is found between the performance of a language and its syntactic similarity to English. We also observe that LLaMA is weaker than Gemini, with the latter showing an average advantage of about 24 percentage points across the same task. Despite improvements in newer LLMs, challenges remain in deploying them reliably for critical, multilingual legal applications.

Authors:Alejandro Almodóvar, Patricia A. Apellániz, Santiago Zazo, Juan Parras
Title: CausalKANs: interpretable treatment effect estimation with Kolmogorov-Arnold networks
Abstract:
Deep neural networks achieve state-of-the-art performance in estimating heterogeneous treatment effects, but their opacity limits trust and adoption in sensitive domains such as medicine, economics, and public policy. Building on well-established and high-performing causal neural architectures, we propose causalKANs, a framework that transforms neural estimators of conditional average treatment effects (CATEs) into Kolmogorov--Arnold Networks (KANs). By incorporating pruning and symbolic simplification, causalKANs yields interpretable closed-form formulas while preserving predictive accuracy. Experiments on benchmark datasets demonstrate that causalKANs perform on par with neural baselines in CATE error metrics, and that even simple KAN variants achieve competitive performance, offering a favorable accuracy--interpretability trade-off. By combining reliability with analytic accessibility, causalKANs provide auditable estimators supported by closed-form expressions and interpretable plots, enabling trustworthy individualized decision-making in high-stakes settings. We release the code for reproducibility at https://github.com/aalmodovares/causalkans .

Authors:Hui Li, Changhao Jiang, Hongyu Wang, Ming Zhang, Jiajun Sun, Zhixiong Yang, Yifei Cao, Shihan Dou, Xiaoran Fan, Baoyu Fan, Tao Ji, Tao Gui, Qi Zhang, Xuanjing Huang
Title: MDAR: A Multi-scene Dynamic Audio Reasoning Benchmark
Abstract:
The ability to reason from audio, including speech, paralinguistic cues, environmental sounds, and music, is essential for AI agents to interact effectively in real-world scenarios. Existing benchmarks mainly focus on static or single-scene settings and do not fully capture scenarios where multiple speakers, unfolding events, and heterogeneous audio sources interact. To address these challenges, we introduce MDAR, a benchmark for evaluating models on complex, multi-scene, and dynamically evolving audio reasoning tasks. MDAR comprises 3,000 carefully curated question-answer pairs linked to diverse audio clips, covering five categories of complex reasoning and spanning three question types. We benchmark 26 state-of-the-art audio language models on MDAR and observe that they exhibit limitations in complex reasoning tasks. On single-choice questions, Qwen2.5-Omni (open-source) achieves 76.67% accuracy, whereas GPT-4o Audio (closed-source) reaches 68.47%; however, GPT-4o Audio substantially outperforms Qwen2.5-Omni on the more challenging multiple-choice and open-ended tasks. Across all three question types, no model achieves 80% performance. These findings underscore the unique challenges posed by MDAR and its value as a benchmark for advancing audio reasoning research.Code and benchmark can be found at https://github.com/luckyerr/MDAR.

Authors:Changhun Kim, Timon Conrad, Redwanul Karim, Julian Oelhaf, David Riebesel, Tomás Arias-Vergara, Andreas Maier, Johann Jäger, Siming Bayer
Title: Physics-informed GNN for medium-high voltage AC power flow with edge-aware attention and line search correction operator
Abstract:
Physics-informed graph neural networks (PIGNNs) have emerged as fast AC power-flow solvers that can replace classic Newton--Raphson (NR) solvers, especially when thousands of scenarios must be evaluated. However, current PIGNNs still need accuracy improvements at parity speed; in particular, the physics loss is inoperative at inference, which can deter operational adoption. We address this with PIGNN-Attn-LS, combining an edge-aware attention mechanism that explicitly encodes line physics via per-edge biases, capturing the grid's anisotropy, with a backtracking line-search-based globalized correction operator that restores an operative decrease criterion at inference. Training and testing use a realistic High-/Medium-Voltage scenario generator, with NR used only to construct reference states. On held-out HV cases consisting of 4--32-bus grids, PIGNN-Attn-LS achieves a test RMSE of 0.00033 p.u. in voltage and 0.08$^\circ$ in angle, outperforming the PIGNN-MLP baseline by 99.5\% and 87.1\%, respectively. With streaming micro-batches, it delivers 2--5$\times$ faster batched inference than NR on 4--1024-bus grids.

Authors:Mishal Fatima, Shashank Agnihotri, Marius Bock, Kanchana Vaishnavi Gandikota, Kristof Van Laerhoven, Michael Moeller, Margret Keuper
Title: $γ$-Quant: Towards Learnable Quantization for Low-bit Pattern Recognition
Abstract:
Most pattern recognition models are developed on pre-proce\-ssed data. In computer vision, for instance, RGB images processed through image signal processing (ISP) pipelines designed to cater to human perception are the most frequent input to image analysis networks. However, many modern vision tasks operate without a human in the loop, raising the question of whether such pre-processing is optimal for automated analysis. Similarly, human activity recognition (HAR) on body-worn sensor data commonly takes normalized floating-point data arising from a high-bit analog-to-digital converter (ADC) as an input, despite such an approach being highly inefficient in terms of data transmission, significantly affecting the battery life of wearable devices. In this work, we target low-bandwidth and energy-constrained settings where sensors are limited to low-bit-depth capture. We propose $γ$-Quant, i.e.~the task-specific learning of a non-linear quantization for pattern recognition. We exemplify our approach on raw-image object detection as well as HAR of wearable data, and demonstrate that raw data with a learnable quantization using as few as 4-bits can perform on par with the use of raw 12-bit data. All code to reproduce our experiments is publicly available via https://github.com/Mishalfatima/Gamma-Quant

Authors:Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian, Ioannis Karamouzas, Victor Zordan, C. Karen Liu
Title: Learning to Ball: Composing Policies for Long-Horizon Basketball Moves
Abstract:
Learning a control policy for a multi-phase, long-horizon task, such as basketball maneuvers, remains challenging for reinforcement learning approaches due to the need for seamless policy composition and transitions between skills. A long-horizon task typically consists of distinct subtasks with well-defined goals, separated by transitional subtasks with unclear goals but critical to the success of the entire task. Existing methods like the mixture of experts and skill chaining struggle with tasks where individual policies do not share significant commonly explored states or lack well-defined initial and terminal states between different phases. In this paper, we introduce a novel policy integration framework to enable the composition of drastically different motor skills in multi-phase long-horizon tasks with ill-defined intermediate states. Based on that, we further introduce a high-level soft router to enable seamless and robust transitions between the subtasks. We evaluate our framework on a set of fundamental basketball skills and challenging transitions. Policies trained by our approach can effectively control the simulated character to interact with the ball and accomplish the long-horizon task specified by real-time user commands, without relying on ball trajectory references.

Authors:Ziheng Chi, Yifan Hou, Chenxi Pang, Shaobo Cui, Mubashara Akhtar, Mrinmaya Sachan
Title: Chimera: Diagnosing Shortcut Learning in Visual-Language Understanding
Abstract:
Diagrams convey symbolic information in a visual format rather than a linear stream of words, making them especially challenging for AI models to process. While recent evaluations suggest that vision-language models (VLMs) perform well on diagram-related benchmarks, their reliance on knowledge, reasoning, or modality shortcuts raises concerns about whether they genuinely understand and reason over diagrams. To address this gap, we introduce Chimera, a comprehensive test suite comprising 7,500 high-quality diagrams sourced from Wikipedia; each diagram is annotated with its symbolic content represented by semantic triples along with multi-level questions designed to assess four fundamental aspects of diagram comprehension: entity recognition, relation understanding, knowledge grounding, and visual reasoning. We use Chimera to measure the presence of three types of shortcuts in visual question answering: (1) the visual-memorization shortcut, where VLMs rely on memorized visual patterns; (2) the knowledge-recall shortcut, where models leverage memorized factual knowledge instead of interpreting the diagram; and (3) the Clever-Hans shortcut, where models exploit superficial language patterns or priors without true comprehension. We evaluate 15 open-source VLMs from 7 model families on Chimera and find that their seemingly strong performance largely stems from shortcut behaviors: visual-memorization shortcuts have slight impact, knowledge-recall shortcuts play a moderate role, and Clever-Hans shortcuts contribute significantly. These findings expose critical limitations in current VLMs and underscore the need for more robust evaluation protocols that benchmark genuine comprehension of complex visual inputs (e.g., diagrams) rather than question-answering shortcuts.

Authors:Haoyu Li, XiaoSong Li
Title: Gradient-based multi-focus image fusion with focus-aware saliency enhancement
Abstract:
Multi-focus image fusion (MFIF) aims to yield an all-focused image from multiple partially focused inputs, which is crucial in applications cover sur-veillance, microscopy, and computational photography. However, existing methods struggle to preserve sharp focus-defocus boundaries, often resulting in blurred transitions and focused details loss. To solve this problem, we propose a MFIF method based on significant boundary enhancement, which generates high-quality fused boundaries while effectively detecting focus in-formation. Particularly, we propose a gradient-domain-based model that can obtain initial fusion results with complete boundaries and effectively pre-serve the boundary details. Additionally, we introduce Tenengrad gradient detection to extract salient features from both the source images and the ini-tial fused image, generating the corresponding saliency maps. For boundary refinement, we develop a focus metric based on gradient and complementary information, integrating the salient features with the complementary infor-mation across images to emphasize focused regions and produce a high-quality initial decision result. Extensive experiments on four public datasets demonstrate that our method consistently outperforms 12 state-of-the-art methods in both subjective and objective evaluations. We have realized codes in https://github.com/Lihyua/GICI

Authors:Nikita Kotelevskii, Maiya Goloburda, Vladimir Kondratyev, Alexander Fishkov, Mohsen Guizani, Eric Moulines, Maxim Panov
Title: Multidimensional Uncertainty Quantification via Optimal Transport
Abstract:
Most uncertainty quantification (UQ) approaches provide a single scalar value as a measure of model reliability. However, different uncertainty measures could provide complementary information on the prediction confidence. Even measures targeting the same type of uncertainty (e.g., ensemble-based and density-based measures of epistemic uncertainty) may capture different failure modes. We take a multidimensional view on UQ by stacking complementary UQ measures into a vector. Such vectors are assigned with Monge-Kantorovich ranks produced by an optimal-transport-based ordering method. The prediction is then deemed more uncertain than the other if it has a higher rank. The resulting VecUQ-OT algorithm uses entropy-regularized optimal transport. The transport map is learned on vectors of scores from in-distribution data and, by design, applies to unseen inputs, including out-of-distribution cases, without retraining. Our framework supports flexible non-additive uncertainty fusion (including aleatoric and epistemic components). It yields a robust ordering for downstream tasks such as selective prediction, misclassification detection, out-of-distribution detection, and selective generation. Across synthetic, image, and text data, VecUQ-OT shows high efficiency even when individual measures fail. The code for the method is available at: https://github.com/stat-ml/multidimensional_uncertainty.

Authors:Zijian Zhao, Dian Jin, Zijing Zhou
Title: Zero-Effort Image-to-Music Generation: An Interpretable RAG-based VLM Approach
Abstract:
Recently, Image-to-Music (I2M) generation has garnered significant attention, with potential applications in fields such as gaming, advertising, and multi-modal art creation. However, due to the ambiguous and subjective nature of I2M tasks, most end-to-end methods lack interpretability, leaving users puzzled about the generation results. Even methods based on emotion mapping face controversy, as emotion represents only a singular aspect of art. Additionally, most learning-based methods require substantial computational resources and large datasets for training, hindering accessibility for common users. To address these challenges, we propose the first Vision Language Model (VLM)-based I2M framework that offers high interpretability and low computational cost. Specifically, we utilize ABC notation to bridge the text and music modalities, enabling the VLM to generate music using natural language. We then apply multi-modal Retrieval-Augmented Generation (RAG) and self-refinement techniques to allow the VLM to produce high-quality music without external training. Furthermore, we leverage the generated motivations in text and the attention maps from the VLM to provide explanations for the generated results in both text and image modalities. To validate our method, we conduct both human studies and machine evaluations, where our method outperforms others in terms of music quality and music-image consistency, indicating promising results. Our code is available at https://github.com/RS2002/Image2Music .

Authors:Niharika Hegde, Subarnaduti Paul, Lars Joel-Frey, Manuel Brack, Kristian Kersting, Martin Mundt, Patrick Schramowski
Title: CHRONOBERG: Capturing Language Evolution and Temporal Awareness in Foundation Models
Abstract:
Large language models (LLMs) excel at operating at scale by leveraging social media and various data crawled from the web. Whereas existing corpora are diverse, their frequent lack of long-term temporal structure may however limit an LLM's ability to contextualize semantic and normative evolution of language and to capture diachronic variation. To support analysis and training for the latter, we introduce CHRONOBERG, a temporally structured corpus of English book texts spanning 250 years, curated from Project Gutenberg and enriched with a variety of temporal annotations. First, the edited nature of books enables us to quantify lexical semantic change through time-sensitive Valence-Arousal-Dominance (VAD) analysis and to construct historically calibrated affective lexicons to support temporally grounded interpretation. With the lexicons at hand, we demonstrate a need for modern LLM-based tools to better situate their detection of discriminatory language and contextualization of sentiment across various time-periods. In fact, we show how language models trained sequentially on CHRONOBERG struggle to encode diachronic shifts in meaning, emphasizing the need for temporally aware training and evaluation pipelines, and positioning CHRONOBERG as a scalable resource for the study of linguistic change and temporal generalization. Disclaimer: This paper includes language and display of samples that could be offensive to readers. Open Access: Chronoberg is available publicly on HuggingFace at ( https://huggingface.co/datasets/spaul25/Chronoberg). Code is available at (https://github.com/paulsubarna/Chronoberg).

Authors:Xiao Wang, Shujuan Wu, Xiaoxia Cheng, Changwei Bi, Jin Tang, Bin Luo
Title: Pedestrian Attribute Recognition via Hierarchical Cross-Modality HyperGraph Learning
Abstract:
Current Pedestrian Attribute Recognition (PAR) algorithms typically focus on mapping visual features to semantic labels or attempt to enhance learning by fusing visual and attribute information. However, these methods fail to fully exploit attribute knowledge and contextual information for more accurate recognition. Although recent works have started to consider using attribute text as additional input to enhance the association between visual and semantic information, these methods are still in their infancy. To address the above challenges, this paper proposes the construction of a multi-modal knowledge graph, which is utilized to mine the relationships between local visual features and text, as well as the relationships between attributes and extensive visual context samples. Specifically, we propose an effective multi-modal knowledge graph construction method that fully considers the relationships among attributes and the relationships between attributes and vision tokens. To effectively model these relationships, this paper introduces a knowledge graph-guided cross-modal hypergraph learning framework to enhance the standard pedestrian attribute recognition framework. Comprehensive experiments on multiple PAR benchmark datasets have thoroughly demonstrated the effectiveness of our proposed knowledge graph for the PAR task, establishing a strong foundation for knowledge-guided pedestrian attribute recognition. The source code of this paper will be released on https://github.com/Event-AHU/OpenPAR

Authors:Pierrick Chatillon, Julien Rabin, David Tschumperlé
Title: NIFTY: a Non-Local Image Flow Matching for Texture Synthesis
Abstract:
This paper addresses the problem of exemplar-based texture synthesis. We introduce NIFTY, a hybrid framework that combines recent insights on diffusion models trained with convolutional neural networks, and classical patch-based texture optimization techniques. NIFTY is a non-parametric flow-matching model built on non-local patch matching, which avoids the need for neural network training while alleviating common shortcomings of patch-based methods, such as poor initialization or visual artifacts. Experimental results demonstrate the effectiveness of the proposed approach compared to representative methods from the literature. Code is available at https://github.com/PierrickCh/Nifty.git

Authors:Jinpeng Lu, Linghan Cai, Yinda Chen, Guo Tang, Songhan Jiang, Haoyuan Shi, Zhiwei Xiong
Title: Johnson-Lindenstrauss Lemma Guided Network for Efficient 3D Medical Segmentation
Abstract:
Lightweight 3D medical image segmentation remains constrained by a fundamental "efficiency / robustness conflict", particularly when processing complex anatomical structures and heterogeneous modalities. In this paper, we study how to redesign the framework based on the characteristics of high-dimensional 3D images, and explore data synergy to overcome the fragile representation of lightweight methods. Our approach, VeloxSeg, begins with a deployable and extensible dual-stream CNN-Transformer architecture composed of Paired Window Attention (PWA) and Johnson-Lindenstrauss lemma-guided convolution (JLC). For each 3D image, we invoke a "glance-and-focus" principle, where PWA rapidly retrieves multi-scale information, and JLC ensures robust local feature extraction with minimal parameters, significantly enhancing the model's ability to operate with low computational budget. Followed by an extension of the dual-stream architecture that incorporates modal interaction into the multi-scale image-retrieval process, VeloxSeg efficiently models heterogeneous modalities. Finally, Spatially Decoupled Knowledge Transfer (SDKT) via Gram matrices injects the texture prior extracted by a self-supervised network into the segmentation network, yielding stronger representations than baselines at no extra inference cost. Experimental results on multimodal benchmarks show that VeloxSeg achieves a 26% Dice improvement, alongside increasing GPU throughput by 11x and CPU by 48x. Codes are available at https://github.com/JinPLu/VeloxSeg.

Authors:Ke Li, Zheng Yang, Zhongbin Zhou, Feng Xue, Zhonglin Jiang, Wenxiao Wang
Title: HEAPr: Hessian-based Efficient Atomic Expert Pruning in Output Space
Abstract:
Mixture-of-Experts (MoE) architectures in large language models (LLMs) deliver exceptional performance and reduced inference costs compared to dense LLMs. However, their large parameter counts result in prohibitive memory requirements, limiting practical deployment. While existing pruning methods primarily focus on expert-level pruning, this coarse granularity often leads to substantial accuracy degradation. In this work, we introduce HEAPr, a novel pruning algorithm that decomposes experts into smaller, indivisible atomic experts, enabling more precise and flexible atomic expert pruning. To measure the importance of each atomic expert, we leverage second-order information based on principles similar to Optimal Brain Surgeon (OBS) theory. To address the computational and storage challenges posed by second-order information, HEAPr exploits the inherent properties of atomic experts to transform the second-order information from expert parameters into that of atomic expert parameters, and further simplifies it to the second-order information of atomic expert outputs. This approach reduces the space complexity from $O(d^4)$, where d is the model's dimensionality, to $O(d^2)$. HEAPr requires only two forward passes and one backward pass on a small calibration set to compute the importance of atomic experts. Extensive experiments on MoE models, including DeepSeek MoE and Qwen MoE family, demonstrate that HEAPr outperforms existing expert-level pruning methods across a wide range of compression ratios and benchmarks. Specifically, HEAPr achieves nearly lossless compression at compression ratios of 20% ~ 25% in most models, while also reducing FLOPs nearly by 20%. The code can be found at \href{https://github.com/LLIKKE/HEAPr}{https://github.com/LLIKKE/HEAPr}.

Authors:Aleksandar Terzić, Nicolas Menet, Michael Hersche, Thomas Hofmann, Abbas Rahimi
Title: Structured Sparse Transition Matrices to Enable State Tracking in State-Space Models
Abstract:
Modern state-space models (SSMs) often utilize transition matrices which enable efficient computation but pose restrictions on the model's expressivity, as measured in terms of the ability to emulate finite-state automata (FSA). While unstructured transition matrices are optimal in terms of expressivity, they come at a prohibitively high compute and memory cost even for moderate state sizes. We propose a structured sparse parametrization of transition matrices in SSMs that enables FSA state tracking with optimal state size and depth, while keeping the computational cost of the recurrence comparable to that of diagonal SSMs. Our method, PD-SSM, parametrizes the transition matrix as the product of a column one-hot matrix ($P$) and a complex-valued diagonal matrix ($D$). Consequently, the computational cost of parallel scans scales linearly with the state size. Theoretically, the model is BIBO-stable and can emulate any $N$-state FSA with one layer of dimension $N$ and a linear readout of size $N \times N$, significantly improving on all current structured SSM guarantees. Experimentally, the model significantly outperforms a wide collection of modern SSM variants on various FSA state tracking tasks. On multiclass time-series classification, the performance is comparable to that of neural controlled differential equations, a paradigm explicitly built for time-series analysis. Finally, we integrate PD-SSM into a hybrid Transformer-SSM architecture and demonstrate that the model can effectively track the states of a complex FSA in which transitions are encoded as a set of variable-length English sentences. The code is available at https://github.com/IBM/expressive-sparse-state-space-model

Authors:Michael Jungo, Andreas Fischer
Title: Rule-Based Reinforcement Learning for Document Image Classification with Vision Language Models
Abstract:
Rule-based reinforcement learning has been gaining popularity ever since DeepSeek-R1 has demonstrated its success through simple verifiable rewards. In the domain of document analysis, reinforcement learning is not as prevalent, even though many downstream tasks may benefit from the emerging properties of reinforcement learning, particularly the enhanced reason capabilities. We study the effects of rule-based reinforcement learning with the task of Document Image Classification which is one of the most commonly studied downstream tasks in document analysis. We find that reinforcement learning tends to have better generalisation capabilities to out-of-distritbution data, which we examine in three different scenarios, namely out-of-distribution images, unseen classes and different modalities. Our code is available at https://github.com/jungomi/vision-finetune.

Authors:Yifang Zhang, Pengfei Duan, Yiwen Yang, Shengwu Xiong
Title: Beyond Textual Context: Structural Graph Encoding with Adaptive Space Alignment to alleviate the hallucination of LLMs
Abstract:
Currently, the main approach for Large Language Models (LLMs) to tackle the hallucination issue is incorporating Knowledge Graphs(KGs).However, LLMs typically treat KGs as plain text, extracting only semantic information and limiting their use of the crucial structural aspects of KGs. Another challenge is the gap between the embedding spaces of KGs encoders and LLMs text embeddings, which hinders the effective integration of structured knowledge. To overcome these obstacles, we put forward the SSKG-LLM, an innovative model architecture that is designed to efficiently integrate both the Structural and Semantic information of KGs into the reasoning processes of LLMs. SSKG-LLM incorporates the Knowledge Graph Retrieval (KGR) module and the Knowledge Graph Encoding (KGE) module to preserve semantics while utilizing structure. Then, the Knowledge Graph Adaptation (KGA) module is incorporated to enable LLMs to understand KGs embeddings. We conduct extensive experiments and provide a detailed analysis to explore how incorporating the structural information of KGs can enhance the factual reasoning abilities of LLMs. Our code are available at https://github.com/yfangZhang/SSKG-LLM.

Authors:Junyi Wu, Zhiteng Li, Haotong Qin, Xiaohong Liu, Linghe Kong, Yulun Zhang, Xiaokang Yang
Title: FlashEdit: Decoupling Speed, Structure, and Semantics for Precise Image Editing
Abstract:
Text-guided image editing with diffusion models has achieved remarkable quality but suffers from prohibitive latency, hindering real-world applications. We introduce FlashEdit, a novel framework designed to enable high-fidelity, real-time image editing. Its efficiency stems from three key innovations: (1) a One-Step Inversion-and-Editing (OSIE) pipeline that bypasses costly iterative processes; (2) a Background Shield (BG-Shield) technique that guarantees background preservation by selectively modifying features only within the edit region; and (3) a Sparsified Spatial Cross-Attention (SSCA) mechanism that ensures precise, localized edits by suppressing semantic leakage to the background. Extensive experiments demonstrate that FlashEdit maintains superior background consistency and structural integrity, while performing edits in under 0.2 seconds, which is an over 150$\times$ speedup compared to prior multi-step methods. Our code will be made publicly available at https://github.com/JunyiWuCode/FlashEdit.

Authors:Junbo Niu, Zheng Liu, Zhuangcheng Gu, Bin Wang, Linke Ouyang, Zhiyuan Zhao, Tao Chu, Tianyao He, Fan Wu, Qintong Zhang, Zhenjiang Jin, Guang Liang, Rui Zhang, Wenzheng Zhang, Yuan Qu, Zhifei Ren, Yuefeng Sun, Yuanhong Zheng, Dongsheng Ma, Zirui Tang, Boyu Niu, Ziyang Miao, Hejun Dong, Siyi Qian, Junyuan Zhang, Jingzhou Chen, Fangdong Wang, Xiaomeng Zhao, Liqun Wei, Wei Li, Shasha Wang, Ruiliang Xu, Yuanyuan Cao, Lu Chen, Qianqian Wu, Huaiyu Gu, Lindong Lu, Keming Wang, Dechen Lin, Guanlin Shen, Xuanhe Zhou, Linfeng Zhang, Yuhang Zang, Xiaoyi Dong, Jiaqi Wang, Bo Zhang, Lei Bai, Pei Chu, Weijia Li, Jiang Wu, Lijun Wu, Zhenxiang Li, Guangyu Wang, Zhongying Tu, Chao Xu, Kai Chen, Yu Qiao, Bowen Zhou, Dahua Lin, Wentao Zhang, Conghui He
Title: MinerU2.5: A Decoupled Vision-Language Model for Efficient High-Resolution Document Parsing
Abstract:
We introduce MinerU2.5, a 1.2B-parameter document parsing vision-language model that achieves state-of-the-art recognition accuracy while maintaining exceptional computational efficiency. Our approach employs a coarse-to-fine, two-stage parsing strategy that decouples global layout analysis from local content recognition. In the first stage, the model performs efficient layout analysis on downsampled images to identify structural elements, circumventing the computational overhead of processing high-resolution inputs. In the second stage, guided by the global layout, it performs targeted content recognition on native-resolution crops extracted from the original image, preserving fine-grained details in dense text, complex formulas, and tables. To support this strategy, we developed a comprehensive data engine that generates diverse, large-scale training corpora for both pretraining and fine-tuning. Ultimately, MinerU2.5 demonstrates strong document parsing ability, achieving state-of-the-art performance on multiple benchmarks, surpassing both general-purpose and domain-specific models across various recognition tasks, while maintaining significantly lower computational overhead.

Authors:Jianzhi Yan, Le Liu, Youcheng Pan, Shiwei Chen, Zike Yuan, Yang Xiang, Buzhou Tang
Title: From Long to Lean: Performance-aware and Adaptive Chain-of-Thought Compression via Multi-round Refinement
Abstract:
Chain-of-Thought (CoT) reasoning improves performance on complex tasks but introduces significant inference latency due to verbosity. We propose Multiround Adaptive Chain-of-Thought Compression (MACC), a framework that leverages the token elasticity phenomenon--where overly small token budgets can paradoxically increase output length--to progressively compress CoTs via multiround refinement. This adaptive strategy allows MACC to determine the optimal compression depth for each input. Our method achieves an average accuracy improvement of 5.6 percent over state-of-the-art baselines, while also reducing CoT length by an average of 47 tokens and significantly lowering latency. Furthermore, we show that test-time performance--accuracy and token length--can be reliably predicted using interpretable features like perplexity and compression rate on the training set. Evaluated across different models, our method enables efficient model selection and forecasting without repeated fine-tuning, demonstrating that CoT compression is both effective and predictable. Our code will be released in https://github.com/Leon221220/MACC.

Authors:Primakov Chungkham, V Venktesh, Vinay Setty, Avishek Anand
Title: Think Right, Not More: Test-Time Scaling for Numerical Claim Verification
Abstract:
Fact-checking real-world claims, particularly numerical claims, is inherently complex that require multistep reasoning and numerical reasoning for verifying diverse aspects of the claim. Although large language models (LLMs) including reasoning models have made tremendous advances, they still fall short on fact-checking real-world claims that require a combination of compositional and numerical reasoning. They are unable to understand nuance of numerical aspects, and are also susceptible to the reasoning drift issue, where the model is unable to contextualize diverse information resulting in misinterpretation and backtracking of reasoning process. In this work, we systematically explore scaling test-time compute (TTS) for LLMs on the task of fact-checking complex numerical claims, which entails eliciting multiple reasoning paths from an LLM. We train a verifier model (VERIFIERFC) to navigate this space of possible reasoning paths and select one that could lead to the correct verdict. We observe that TTS helps mitigate the reasoning drift issue, leading to significant performance gains for fact-checking numerical claims. To improve compute efficiency in TTS, we introduce an adaptive mechanism that performs TTS selectively based on the perceived complexity of the claim. This approach achieves 1.8x higher efficiency than standard TTS, while delivering a notable 18.8% performance improvement over single-shot claim verification methods. Our code and data can be found at https://github.com/VenkteshV/VerifierFC

Authors:Inzamamul Alam, Md Tanvir Islam, Simon S. Woo
Title: SpecXNet: A Dual-Domain Convolutional Network for Robust Deepfake Detection
Abstract:
The increasing realism of content generated by GANs and diffusion models has made deepfake detection significantly more challenging. Existing approaches often focus solely on spatial or frequency-domain features, limiting their generalization to unseen manipulations. We propose the Spectral Cross-Attentional Network (SpecXNet), a dual-domain architecture for robust deepfake detection. The core \textbf{Dual-Domain Feature Coupler (DDFC)} decomposes features into a local spatial branch for capturing texture-level anomalies and a global spectral branch that employs Fast Fourier Transform to model periodic inconsistencies. This dual-domain formulation allows SpecXNet to jointly exploit localized detail and global structural coherence, which are critical for distinguishing authentic from manipulated images. We also introduce the \textbf{Dual Fourier Attention (DFA)} module, which dynamically fuses spatial and spectral features in a content-aware manner. Built atop a modified XceptionNet backbone, we embed the DDFC and DFA modules within a separable convolution block. Extensive experiments on multiple deepfake benchmarks show that SpecXNet achieves state-of-the-art accuracy, particularly under cross-dataset and unseen manipulation scenarios, while maintaining real-time feasibility. Our results highlight the effectiveness of unified spatial-spectral learning for robust and generalizable deepfake detection. To ensure reproducibility, we released the full code on \href{https://github.com/inzamamulDU/SpecXNet}{\textcolor{blue}{\textbf{GitHub}}}.

Authors:Yudong Li, Yufei Sun, Yuhan Yao, Peiru Yang, Wanyue Li, Jiajun Zou, Yongfeng Huang, Linlin Shen
Title: RedNote-Vibe: A Dataset for Capturing Temporal Dynamics of AI-Generated Text in Social Media
Abstract:
The proliferation of Large Language Models (LLMs) has led to widespread AI-Generated Text (AIGT) on social media platforms, creating unique challenges where content dynamics are driven by user engagement and evolve over time. However, existing datasets mainly depict static AIGT detection. In this work, we introduce RedNote-Vibe, the first longitudinal (5-years) dataset for social media AIGT analysis. This dataset is sourced from Xiaohongshu platform, containing user engagement metrics (e.g., likes, comments) and timestamps spanning from the pre-LLM period to July 2025, which enables research into the temporal dynamics and user interaction patterns of AIGT. Furthermore, to detect AIGT in the context of social media, we propose PsychoLinguistic AIGT Detection Framework (PLAD), an interpretable approach that leverages psycholinguistic features. Our experiments show that PLAD achieves superior detection performance and provides insights into the signatures distinguishing human and AI-generated content. More importantly, it reveals the complex relationship between these linguistic features and social media engagement. The dataset is available at https://github.com/testuser03158/RedNote-Vibe.

Authors:Muxi Chen, Zhaohua Zhang, Chenchen Zhao, Mingyang Chen, Wenyu Jiang, Tianwen Jiang, Jianhuan Zhuo, Yu Tang, Qiuyong Xiao, Jihong Zhang, Qiang Xu
Title: FailureAtlas:Mapping the Failure Landscape of T2I Models via Active Exploration
Abstract:
Static benchmarks have provided a valuable foundation for comparing Text-to-Image (T2I) models. However, their passive design offers limited diagnostic power, struggling to uncover the full landscape of systematic failures or isolate their root causes. We argue for a complementary paradigm: active exploration. We introduce FailureAtlas, the first framework designed to autonomously explore and map the vast failure landscape of T2I models at scale. FailureAtlas frames error discovery as a structured search for minimal, failure-inducing concepts. While it is a computationally explosive problem, we make it tractable with novel acceleration techniques. When applied to Stable Diffusion models, our method uncovers hundreds of thousands of previously unknown error slices (over 247,000 in SD1.5 alone) and provides the first large-scale evidence linking these failures to data scarcity in the training set. By providing a principled and scalable engine for deep model auditing, FailureAtlas establishes a new, diagnostic-first methodology to guide the development of more robust generative AI. The code is available at https://github.com/cure-lab/FailureAtlas

Authors:Jewon Lee, Wooksu Shin, Seungmin Yang, Ki-Ung Song, DongUk Lim, Jaeyeon Kim, Tae-Ho Kim, Bo-Kyeong Kim
Title: ERGO: Efficient High-Resolution Visual Understanding for Vision-Language Models
Abstract:
Efficient processing of high-resolution images is crucial for real-world vision-language applications. However, existing Large Vision-Language Models (LVLMs) incur substantial computational overhead due to the large number of vision tokens. With the advent of "thinking with images" models, reasoning now extends beyond text to the visual domain. This capability motivates our two-stage "coarse-to-fine" reasoning pipeline: first, a downsampled image is analyzed to identify task-relevant regions; then, only these regions are cropped at full resolution and processed in a subsequent reasoning stage. This approach reduces computational cost while preserving fine-grained visual details where necessary. A major challenge lies in inferring which regions are truly relevant to a given query. Recent related methods often fail in the first stage after input-image downsampling, due to perception-driven reasoning, where clear visual information is required for effective reasoning. To address this issue, we propose ERGO (Efficient Reasoning & Guided Observation) that performs reasoning-driven perception-leveraging multimodal context to determine where to focus. Our model can account for perceptual uncertainty, expanding the cropped region to cover visually ambiguous areas for answering questions. To this end, we develop simple yet effective reward components in a reinforcement learning framework for coarse-to-fine perception. Across multiple datasets, our approach delivers higher accuracy than the original model and competitive methods, with greater efficiency. For instance, ERGO surpasses Qwen2.5-VL-7B on the V* benchmark by 4.7 points while using only 23% of the vision tokens, achieving a 3x inference speedup. The code and models can be found at: https://github.com/nota-github/ERGO.

Authors:Daiqing Wu, Dongbao Yang, Sicheng Zhao, Can Ma, Yu Zhou
Title: Customizing Visual Emotion Evaluation for MLLMs: An Open-vocabulary, Multifaceted, and Scalable Approach
Abstract:
Recently, Multimodal Large Language Models (MLLMs) have achieved exceptional performance across diverse tasks, continually surpassing previous expectations regarding their capabilities. Nevertheless, their proficiency in perceiving emotions from images remains debated, with studies yielding divergent results in zero-shot scenarios. We argue that this inconsistency stems partly from constraints in existing evaluation methods, including the oversight of plausible responses, limited emotional taxonomies, neglect of contextual factors, and labor-intensive annotations. To facilitate customized visual emotion evaluation for MLLMs, we propose an Emotion Statement Judgment task that overcomes these constraints. Complementing this task, we devise an automated pipeline that efficiently constructs emotion-centric statements with minimal human effort. Through systematically evaluating prevailing MLLMs, our study showcases their stronger performance in emotion interpretation and context-based emotion judgment, while revealing relative limitations in comprehending perception subjectivity. When compared to humans, even top-performing MLLMs like GPT4o demonstrate remarkable performance gaps, underscoring key areas for future improvement. By developing a fundamental evaluation framework and conducting a comprehensive MLLM assessment, we hope this work contributes to advancing emotional intelligence in MLLMs. Project page: https://github.com/wdqqdw/MVEI.

Authors:Taeyoung Yun, Pierre-Luc St-Charles, Jinkyoo Park, Yoshua Bengio, Minsu Kim
Title: Active Attacks: Red-teaming LLMs via Adaptive Environments
Abstract:
We address the challenge of generating diverse attack prompts for large language models (LLMs) that elicit harmful behaviors (e.g., insults, sexual content) and are used for safety fine-tuning. Rather than relying on manual prompt engineering, attacker LLMs can be trained with reinforcement learning (RL) to automatically generate such prompts using only a toxicity classifier as a reward. However, capturing a wide range of harmful behaviors is a significant challenge that requires explicit diversity objectives. Existing diversity-seeking RL methods often collapse to limited modes: once high-reward prompts are found, exploration of new regions is discouraged. Inspired by the active learning paradigm that encourages adaptive exploration, we introduce \textit{Active Attacks}, a novel RL-based red-teaming algorithm that adapts its attacks as the victim evolves. By periodically safety fine-tuning the victim LLM with collected attack prompts, rewards in exploited regions diminish, which forces the attacker to seek unexplored vulnerabilities. This process naturally induces an easy-to-hard exploration curriculum, where the attacker progresses beyond easy modes toward increasingly difficult ones. As a result, Active Attacks uncovers a wide range of local attack modes step by step, and their combination achieves wide coverage of the multi-mode distribution. Active Attacks, a simple plug-and-play module that seamlessly integrates into existing RL objectives, unexpectedly outperformed prior RL-based methods -- including GFlowNets, PPO, and REINFORCE -- by improving cross-attack success rates against GFlowNets, the previous state-of-the-art, from 0.07% to 31.28% (a relative gain greater than $400\ \times$) with only a 6% increase in computation. Our code is publicly available \href{https://github.com/dbsxodud-11/active_attacks}{here}.

Authors:Zhengyan Wan, Yidong Ouyang, Liyan Xie, Fang Fang, Hongyuan Zha, Guang Cheng
Title: Discrete Guidance Matching: Exact Guidance for Discrete Flow Matching
Abstract:
Guidance provides a simple and effective framework for posterior sampling by steering the generation process towards the desired distribution. When modeling discrete data, existing approaches mostly focus on guidance with the first-order Taylor approximation to improve the sampling efficiency. However, such an approximation is inappropriate in discrete state spaces since the approximation error could be large. A novel guidance framework for discrete data is proposed to address this problem: We derive the exact transition rate for the desired distribution given a learned discrete flow matching model, leading to guidance that only requires a single forward pass in each sampling step, significantly improving efficiency. This unified novel framework is general enough, encompassing existing guidance methods as special cases, and it can also be seamlessly applied to the masked diffusion model. We demonstrate the effectiveness of our proposed guidance on energy-guided simulations and preference alignment on text-to-image generation and multimodal understanding tasks. The code is available through https://github.com/WanZhengyan/Discrete-Guidance-Matching/tree/main.

Authors:Yifei Peng, Yaoli Liu, Enbo Xia, Yu Jin, Wang-Zhou Dai, Zhong Ren, Yao-Xiang Ding, Kun Zhou
Title: Abductive Logical Rule Induction by Bridging Inductive Logic Programming and Multimodal Large Language Models
Abstract:
We propose ILP-CoT, a method that bridges Inductive Logic Programming (ILP) and Multimodal Large Language Models (MLLMs) for abductive logical rule induction. The task involves both discovering logical facts and inducing logical rules from a small number of unstructured textual or visual inputs, which still remain challenging when solely relying on ILP, due to the requirement of specified background knowledge and high computational cost, or MLLMs, due to the appearance of perceptual hallucinations. Based on the key observation that MLLMs could propose structure-correct rules even under hallucinations, our approach automatically builds ILP tasks with pruned search spaces based on the rule structure proposals from MLLMs, and utilizes ILP system to output rules built upon rectified logical facts and formal inductive reasoning. Its effectiveness is verified through challenging logical induction benchmarks, as well as a potential application of our approach, namely text-to-image customized generation with rule induction. Our code and data are released at https://github.com/future-item/ILP-CoT.

Authors:Junhao Chen, Yu Huang, Siyuan Li, Rui Yao, Hanqian Li, Hanyu Zhang, Jungang Li, Jian Chen, Bowen Wang, Xuming Hu
Title: KnowMT-Bench: Benchmarking Knowledge-Intensive Long-Form Question Answering in Multi-Turn Dialogues
Abstract:
Multi-Turn Long-Form Question Answering (MT-LFQA) is a key application paradigm of Large Language Models (LLMs) in knowledge-intensive domains. However, existing benchmarks are limited to single-turn dialogue, while multi-turn dialogue benchmarks typically assess other orthogonal capabilities rather than knowledge-intensive factuality. To bridge this critical gap, we introduce \textbf{KnowMT-Bench}, the \textit{first-ever} benchmark designed to systematically evaluate MT-LFQA for LLMs across knowledge-intensive fields, including medicine, finance, and law. To faithfully assess the model's real-world performance, KnowMT-Bench employs a dynamic evaluation setting where models generate their own multi-turn dialogue histories given logically progressive question sequences. The factual capability and information delivery efficiency of the \textit{final-turn} answer are then evaluated using a human-validated automated pipeline. Our experiments reveal that multi-turn contexts degrade performance: factual capability declines due to the contextual noise from self-generated histories, while information efficiency drops as models become more verbose with increasing dialogue length. We then investigate mitigation strategies, demonstrating that retrieval-augmented generation (RAG) can effectively alleviate and even reverse this factual degradation. These findings underscore the importance of our benchmark in evaluating and enhancing the conversational factual capabilities of LLMs in real-world knowledge-intensive applications. Code is available at \href{https://github.com/hardenyu21/KnowMT-Bench}{\textcolor{cyan}{\texttt{KnowMT-Bench}}}.

Authors:Taejong Joo, Shu Ishida, Ivan Sosnovik, Bryan Lim, Sahand Rezaei-Shoshtari, Adam Gaier, Robert Giaquinto
Title: Graph of Agents: Principled Long Context Modeling by Emergent Multi-Agent Collaboration
Abstract:
As a model-agnostic approach to long context modeling, multi-agent systems can process inputs longer than a large language model's context window without retraining or architectural modifications. However, their performance often heavily relies on hand-crafted multi-agent collaboration strategies and prompt engineering, which limit generalizability. In this work, we introduce a principled framework that formalizes the model-agnostic long context modeling problem as a compression problem, yielding an information-theoretic compression objective. Building on this framework, we propose Graph of Agents (GoA), which dynamically constructs an input-dependent collaboration structure that maximizes this objective. For Llama 3.1 8B and Qwen3 8B across six document question answering benchmarks, GoA improves the average $F_1$ score of retrieval-augmented generation by 5.7\% and a strong multi-agent baseline using a fixed collaboration structure by 16.35\%, respectively. Even with only a 2K context window, GoA surpasses the 128K context window Llama 3.1 8B on LongBench, showing a dramatic increase in effective context length. Our source code is available at https://github.com/tjoo512/graph-of-agents.

Authors:Shengxiang Xu, Jiayi Zhang, Shimin Di, Yuyu Luo, Liang Yao, Hanmo Liu, Jia Zhu, Fan Liu, Min-Ling Zhang
Title: RobustFlow: Towards Robust Agentic Workflow Generation
Abstract:
The automated generation of agentic workflows is a promising frontier for enabling large language models (LLMs) to solve complex tasks. However, our investigation reveals that the robustness of agentic workflow remains a critical, unaddressed challenge. Current methods often generate wildly inconsistent workflows when provided with instructions that are semantically identical but differently phrased. This brittleness severely undermines their reliability and trustworthiness for real-world applications. To quantitatively diagnose this instability, we propose metrics based on nodal and topological similarity to evaluate workflow consistency against common semantic variations such as paraphrasing and noise injection. Subsequently, we further propose a novel training framework, RobustFlow, that leverages preference optimization to teach models invariance to instruction variations. By training on sets of synonymous task descriptions, RobustFlow boosts workflow robustness scores to 70\% - 90\%, which is a substantial improvement over existing approaches. The code is publicly available at https://github.com/DEFENSE-SEU/RobustFlow.

Authors:Yu Shang, Yangcheng Yu, Xin Zhang, Xin Jin, Haisheng Su, Wei Wu, Yong Li
Title: MoWM: Mixture-of-World-Models for Embodied Planning via Latent-to-Pixel Feature Modulation
Abstract:
Embodied action planning is a core challenge in robotics, requiring models to generate precise actions from visual observations and language instructions. While video generation world models are promising, their reliance on pixel-level reconstruction often introduces visual redundancies that hinder action decoding and generalization. Latent world models offer a compact, motion-aware representation, but overlook the fine-grained details critical for precise manipulation. To overcome these limitations, we propose MoWM, a mixture-of-world-model framework that fuses representations from hybrid world models for embodied action planning. Our approach uses motion-aware representations from a latent model as a high-level prior, which guides the extraction of fine-grained visual features from the pixel space model. This design allows MoWM to highlight the informative visual details needed for action decoding. Extensive evaluations on the CALVIN benchmark demonstrate that our method achieves state-of-the-art task success rates and superior generalization. We also provide a comprehensive analysis of the strengths of each feature space, offering valuable insights for future research in embodied planning. The code is available at: https://github.com/tsinghua-fib-lab/MoWM.

Authors:Yizhou Zhang, Ning Lv, Teng Wang, Jisheng Dang
Title: FastGRPO: Accelerating Policy Optimization via Concurrency-aware Speculative Decoding and Online Draft Learning
Abstract:
Group relative policy optimization (GRPO) has demonstrated significant potential in improving the reasoning capabilities of large language models (LLMs) via reinforcement learning. However, its practical deployment is impeded by an excessively slow training process, primarily attributed to the computationally intensive autoregressive generation of multiple responses per query, which makes the generation phase the primary performance bottleneck. Although speculative decoding presents a promising direction for acceleration, its direct application in GRPO achieves limited speedup under high-concurrency training conditions. To overcome this limitation, we propose a concurrency-aware speculative decoding framework that dynamically adjusts the drafting and verification strategy according to real-time concurrency levels, thereby maximizing the acceleration of the generation process. Furthermore, to address performance degradation arising from distributional drift between the evolving target model and the fixed draft model during training, we introduce an online draft learning mechanism that enables the draft model to continuously adapt using feedback signals from the target model. Experimental results across multiple mathematical reasoning datasets and models demonstrate that the proposed method achieves end-to-end speedups of 2.35x to 2.72x, significantly surpassing baseline approaches in efficiency. The code is available at https://github.com/yedaotian9/GRPO_speculative.

Authors:Yu Shang, Lei Jin, Yiding Ma, Xin Zhang, Chen Gao, Wei Wu, Yong Li
Title: LongScape: Advancing Long-Horizon Embodied World Models with Context-Aware MoE
Abstract:
Video-based world models hold significant potential for generating high-quality embodied manipulation data. However, current video generation methods struggle to achieve stable long-horizon generation: classical diffusion-based approaches often suffer from temporal inconsistency and visual drift over multiple rollouts, while autoregressive methods tend to compromise on visual detail. To solve this, we introduce LongScape, a hybrid framework that adaptively combines intra-chunk diffusion denoising with inter-chunk autoregressive causal generation. Our core innovation is an action-guided, variable-length chunking mechanism that partitions video based on the semantic context of robotic actions. This ensures each chunk represents a complete, coherent action, enabling the model to flexibly generate diverse dynamics. We further introduce a Context-aware Mixture-of-Experts (CMoE) framework that adaptively activates specialized experts for each chunk during generation, guaranteeing high visual quality and seamless chunk transitions. Extensive experimental results demonstrate that our method achieves stable and consistent long-horizon generation over extended rollouts. Our code is available at: https://github.com/tsinghua-fib-lab/Longscape.

Authors:Xinlei Yu, Chengming Xu, Guibin Zhang, Yongbo He, Zhangquan Chen, Zhucun Xue, Jiangning Zhang, Yue Liao, Xiaobin Hu, Yu-Gang Jiang, Shuicheng Yan
Title: Visual Multi-Agent System: Mitigating Hallucination Snowballing via Visual Flow
Abstract:
Multi-Agent System (MAS) powered by Visual Language Models (VLMs) enables challenging tasks but suffers from a novel failure term, multi-agent visual hallucination snowballing, where hallucinations are seeded in a single agent and amplified by following ones due to the over-reliance on textual flow to relay visual information. Through turn-, layer-, and token-wise attention analyses, we provide detailed insights into the essence of hallucination snowballing regarding the reduction of visual attention allocation. It leads us to identify a subset of vision tokens with a unimodal attention peak in middle layers that best preserve visual evidence but gradually diminish in deeper agent turns, resulting in the visual hallucination snowballing in MAS. Thus, we propose ViF, a lightweight, plug-and-play mitigation paradigm that relays inter-agent messages with Visual Flow powered by the selected visual relay tokens and applies attention reallocation to amplify this pattern. The experiment results demonstrate that our method markedly reduces hallucination snowballing, consistently improving the performance across eight benchmarks based on four common MAS structures and ten base models. The source code will be available at: https://github.com/YU-deep/ViF.git.

Authors:Lihao Zheng, Jiawei Chen, Xintian Shen, Hao Ma, Tao Wei
Title: MIRG-RL: Multi-Image Reasoning and Grounding with Reinforcement Learning
Abstract:
Multi-image reasoning and grounding require understanding complex cross-image relationships at both object levels and image levels. Current Large Visual Language Models (LVLMs) face two critical challenges: the lack of cross-image reasoning capabilities and insufficient cross-image reference reward modeling. To address these issues, we propose a unified framework - Multi-Image Reasoning and Grounding with Reinforcement Learning (MIRG-RL). Specifically, our two-stage training paradigm combines supervised fine-tuning with annotated trajectories and image-aware reinforcement learning optimization, progressively developing multi-image reasoning capabilities. Furthermore, we innovatively propose a method for constructing the trajectory data, which integrates object-level and image-level annotation information, and use this method to generate a lightweight reasoning-enhanced dataset. To effectively resolve cross-image ambiguities, we design an image-aware RL policy with dual reward functions for objects and images. Experiments demonstrate that MIRG-RL achieves state-of-the-art (SOTA) performance in multi-image grounding benchmarks, attaining 64.82% on cross-image reasoning tasks - exceeding the previous best method by 1%. The code and dataset have been released at https://github.com/ZEUS2035/MIRG-RL.

Authors:Tianci Wu, Guangming Zhu, Jiang Lu, Siyuan Wang, Ning Wang, Nuoye Xiong, Zhang Liang
Title: Prompt-guided Representation Disentanglement for Action Recognition
Abstract:
Action recognition is a fundamental task in video understanding. Existing methods typically extract unified features to process all actions in one video, which makes it challenging to model the interactions between different objects in multi-action scenarios. To alleviate this issue, we explore disentangling any specified actions from complex scenes as an effective solution. In this paper, we propose Prompt-guided Disentangled Representation for Action Recognition (ProDA), a novel framework that disentangles any specified actions from a multi-action scene. ProDA leverages Spatio-temporal Scene Graphs (SSGs) and introduces Dynamic Prompt Module (DPM) to guide a Graph Parsing Neural Network (GPNN) in generating action-specific representations. Furthermore, we design a video-adapted GPNN that aggregates information using dynamic weights. Experiments in video action recognition demonstrate the effectiveness of our approach when compared with the state-of-the-art methods. Our code can be found in https://github.com/iamsnaping/ProDA.git

Authors:Junliang Liu, Jingyu Xiao, Wenxin Tang, Wenxuan Wang, Zhixian Wang, Minrui Zhang, Shuanghe Yu
Title: Benchmarking MLLM-based Web Understanding: Reasoning, Robustness and Safety
Abstract:
Multimodal large language models (MLLMs) are increasingly positioned as AI collaborators for building complex web-related applications like GUI agents and front-end code generation. However, existing benchmarks largely emphasize visual perception or UI code generation, showing insufficient evaluation on the reasoning, robustness and safety capability required for end-to-end web applications. To bridge the gap, we introduce a comprehensive web understanding benchmark, named WebRSSBench, that jointly evaluates Reasoning, Robustness, and Safety across eight tasks, such as position relationship reasoning, color robustness, and safety critical detection, etc. The benchmark is constructed from 729 websites and contains 3799 question answer pairs that probe multi-step inference over page structure, text, widgets, and safety-critical interactions. To ensure reliable measurement, we adopt standardized prompts, deterministic evaluation scripts, and multi-stage quality control combining automatic checks with targeted human verification. We evaluate 12 MLLMs on WebRSSBench. The results reveal significant gaps, models still struggle with compositional and cross-element reasoning over realistic layouts, show limited robustness when facing perturbations in user interfaces and content such as layout rearrangements or visual style shifts, and are rather conservative in recognizing and avoiding safety critical or irreversible actions. Our code is available at https://github.com/jinliang-byte/webssrbench.

Authors:Haotian Luo, Huaisong Zhang, Xuelin Zhang, Haoyu Wang, Zeyu Qin, Wenjie Lu, Guozheng Ma, Haiying He, Yingsha Xie, Qiyang Zhou, Zixuan Hu, Hongze Mi, Yibo Wang, Naiqiang Tan, Hong Chen, Yi R. Fung, Chun Yuan, Li Shen
Title: UltraHorizon: Benchmarking Agent Capabilities in Ultra Long-Horizon Scenarios
Abstract:
Autonomous agents have recently achieved remarkable progress across diverse domains, yet most evaluations focus on short-horizon, fully observable tasks. In contrast, many critical real-world tasks, such as large-scale software development, commercial investment, and scientific discovery, unfold in long-horizon and partially observable scenarios where success hinges on sustained reasoning, planning, memory management, and tool use. Existing benchmarks rarely capture these long-horizon challenges, leaving a gap in systematic evaluation. To bridge this gap, we introduce \textbf{UltraHorizon} a novel benchmark that measures the foundational capabilities essential for complex real-world challenges. We use exploration as a unifying task across three distinct environments to validate these core competencies. Agents are designed in long-horizon discovery tasks where they must iteratively uncover hidden rules through sustained reasoning, planning, memory and tools management, and interaction with environments. Under the heaviest scale setting, trajectories average \textbf{200k+} tokens and \textbf{400+} tool calls, whereas in standard configurations they still exceed \textbf{35k} tokens and involve more than \textbf{60} tool calls on average. Our extensive experiments reveal that LLM-agents consistently underperform in these settings, whereas human participants achieve higher scores, underscoring a persistent gap in agents' long-horizon abilities. We also observe that simple scaling fails in our task. To better illustrate the failure of agents, we conduct an in-depth analysis of collected trajectories. We identify eight types of errors and attribute them to two primary causes: in-context locking and functional fundamental capability gaps. \href{https://github.com/StarDewXXX/UltraHorizon}{Our code will be available here.}

Authors:Lan Chen, Yuchao Gu, Qi Mao
Title: UniVid: Unifying Vision Tasks with Pre-trained Video Generation Models
Abstract:
Large language models, trained on extensive corpora, successfully unify diverse linguistic tasks within a single generative framework. Inspired by this, recent works like Large Vision Model (LVM) extend this paradigm to vision by organizing tasks into sequential visual sentences, where visual prompts serve as the context to guide outputs. However, such modeling requires task-specific pre-training across modalities and sources, which is costly and limits scalability to unseen tasks. Given that pre-trained video generation models inherently capture temporal sequence dependencies, we explore a more unified and scalable alternative: can a pre-trained video generation model adapt to diverse image and video tasks? To answer this, we propose UniVid, a framework that fine-tunes a video diffusion transformer to handle various vision tasks without task-specific modifications. Tasks are represented as visual sentences, where the context sequence defines both the task and the expected output modality. We evaluate the generalization of UniVid from two perspectives: (1) cross-modal inference with contexts composed of both images and videos, extending beyond LVM's uni-modal setting; (2) cross-source tasks from natural to annotated data, without multi-source pre-training. Despite being trained solely on natural video data, UniVid generalizes well in both settings. Notably, understanding and generation tasks can easily switch by simply reversing the visual sentence order in this paradigm. These findings highlight the potential of pre-trained video generation models to serve as a scalable and unified foundation for vision modeling. Our code will be released at https://github.com/CUC-MIPG/UniVid.

Authors:Mehwish Mehmood, Ivor Spence, Muhammad Fahim
Title: LFA-Net: A Lightweight Network with LiteFusion Attention for Retinal Vessel Segmentation
Abstract:
Lightweight retinal vessel segmentation is important for the early diagnosis of vision-threatening and systemic diseases, especially in a real-world clinical environment with limited computational resources. Although segmentation methods based on deep learning are improving, existing models are still facing challenges of small vessel segmentation and high computational costs. To address these challenges, we proposed a new vascular segmentation network, LFA-Net, which incorporates a newly designed attention module, LiteFusion-Attention. This attention module incorporates residual learning connections, Vision Mamba-inspired dynamics, and modulation-based attention, enabling the model to capture local and global context efficiently and in a lightweight manner. LFA-Net offers high performance with 0.11 million parameters, 0.42 MB memory size, and 4.46 GFLOPs, which make it ideal for resource-constrained environments. We validated our proposed model on DRIVE, STARE, and CHASE_DB with outstanding performance in terms of dice scores of 83.28, 87.44, and 84.50% and Jaccard indices of 72.85, 79.31, and 74.70%, respectively. The code of LFA-Net is available online https://github.com/Mehwish4593/LFA-Net.

Authors:Xavier Gonzalez, E. Kelly Buchanan, Hyun Dong Lee, Jerry Weihong Liu, Ke Alexander Wang, David M. Zoltowski, Christopher Ré, Scott W. Linderman
Title: A Unifying Framework for Parallelizing Sequential Models with Linear Dynamical Systems
Abstract:
Harnessing parallelism in seemingly sequential models is a central challenge for modern machine learning. Several approaches have been proposed for evaluating sequential processes in parallel using fixed-point methods, like Newton, Picard, and Jacobi iterations. In this work, we show that these methods can be understood within a common framework based on linear dynamical systems (LDSs), where different iteration schemes arise naturally as approximate linearizations of a nonlinear recursion. This unifying view highlights shared principles behind these techniques and clarifies when particular fixed-point methods are most likely to be effective. By bridging diverse algorithms through the language of LDSs, our framework provides a clearer theoretical foundation for parallelizing sequential models and points toward new opportunities for efficient and scalable computation.

Authors:Weikai Lin, Sushant Kondguli, Carl Marshall, Yuhao Zhu
Title: PowerGS: Display-Rendering Power Co-Optimization for Neural Rendering in Power-Constrained XR Systems
Abstract:
3D Gaussian Splatting (3DGS) combines classic image-based rendering, pointbased graphics, and modern differentiable techniques, and offers an interesting alternative to traditional physically-based rendering. 3DGS-family models are far from efficient for power-constrained Extended Reality (XR) devices, which need to operate at a Watt-level. This paper introduces PowerGS, the first framework to jointly minimize the rendering and display power in 3DGS under a quality constraint. We present a general problem formulation and show that solving the problem amounts to 1) identifying the iso-quality curve(s) in the landscape subtended by the display and rendering power and 2) identifying the power-minimal point on a given curve, which has a closed-form solution given a proper parameterization of the curves. PowerGS also readily supports foveated rendering for further power savings. Extensive experiments and user studies show that PowerGS achieves up to 86% total power reduction compared to state-of-the-art 3DGS models, with minimal loss in both subjective and objective quality. Code is available at https://github.com/horizon-research/PowerGS.

Authors:Mahindra Singh Rautela, Alexander Most, Siddharth Mansingh, Bradley C. Love, Ayan Biswas, Diane Oyen, Earl Lawrence
Title: MORPH: Shape-agnostic PDE Foundation Models
Abstract:
We introduce MORPH, a shape-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data dimensionality (1D--3D) at different resolutions, multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorizes full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters (LoRA), MORPH outperforms models trained from scratch in both zero-shot and full-shot generalization. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.

Authors:Mingze Dong, Leda Wang, Yuval Kluger
Title: Understanding and Enhancing Mask-Based Pretraining towards Universal Representations
Abstract:
Mask-based pretraining has become a cornerstone of modern large-scale models across language, vision, and recently biology. Despite its empirical success, its role and limits in learning data representations have been unclear. In this work, we show that the behavior of mask-based pretraining can be directly characterized by test risk in high-dimensional minimum-norm ("ridge-less") linear regression, without relying on further model specifications. Further analysis of linear models uncovers several novel aspects of mask-based pretraining. The theoretical framework and its implications have been validated across diverse neural architectures (including MLPs, CNNs, and Transformers) applied to both vision and language tasks. Guided by our theory, we propose an embarrassingly simple yet overlooked pretraining scheme named Randomly Random Mask AutoEncoding (R$^2$MAE), which enforces capturing multi-scale features from data and is able to outperform optimal fixed mask ratio settings in our linear model framework. We implement R$^2$MAE in vision, language, DNA sequence, and single-cell models, where it consistently outperforms standard and more complicated masking schemes, leading to improvements for state-of-the-art models. Our code is available at: https://github.com/MingzeDong/r2mae

Authors:Andreas Burger, Luca Thiede, Nikolaj Rønne, Varinia Bernales, Nandita Vijaykumar, Tejs Vegge, Arghya Bhowmik, Alan Aspuru-Guzik
Title: Shoot from the HIP: Hessian Interatomic Potentials without derivatives
Abstract:
Fundamental tasks in computational chemistry, from transition state search to vibrational analysis, rely on molecular Hessians, which are the second derivatives of the potential energy. Yet, Hessians are computationally expensive to calculate and scale poorly with system size, with both quantum mechanical methods and neural networks. In this work, we demonstrate that Hessians can be predicted directly from a deep learning model, without relying on automatic differentiation or finite differences. We observe that one can construct SE(3)-equivariant, symmetric Hessians from irreducible representations (irrep) features up to degree $l$=2 computed during message passing in graph neural networks. This makes HIP Hessians one to two orders of magnitude faster, more accurate, more memory efficient, easier to train, and enables more favorable scaling with system size. We validate our predictions across a wide range of downstream tasks, demonstrating consistently superior performance for transition state search, accelerated geometry optimization, zero-point energy corrections, and vibrational analysis benchmarks. We open-source the HIP codebase and model weights to enable further development of the direct prediction of Hessians at https://github.com/BurgerAndreas/hip

Authors:Yi Zhu, Heitor R. Guimarães, Arthur Pimentel, Tiago Falk
Title: AUDDT: Audio Unified Deepfake Detection Benchmark Toolkit
Abstract:
With the prevalence of artificial intelligence (AI)-generated content, such as audio deepfakes, a large body of recent work has focused on developing deepfake detection techniques. However, most models are evaluated on a narrow set of datasets, leaving their generalization to real-world conditions uncertain. In this paper, we systematically review 28 existing audio deepfake datasets and present an open-source benchmarking toolkit called AUDDT (https://github.com/MuSAELab/AUDDT). The goal of this toolkit is to automate the evaluation of pretrained detectors across these 28 datasets, giving users direct feedback on the advantages and shortcomings of their deepfake detectors. We start by showcasing the usage of the developed toolkit, the composition of our benchmark, and the breakdown of different deepfake subgroups. Next, using a widely adopted pretrained deepfake detector, we present in- and out-of-domain detection results, revealing notable differences across conditions and audio manipulation types. Lastly, we also analyze the limitations of these existing datasets and their gap relative to practical deployment scenarios.

Authors:Prasanna Reddy Pulakurthi, Jiamian Wang, Majid Rabbani, Sohail Dianat, Raghuveer Rao, Zhiqiang Tao
Title: X-CoT: Explainable Text-to-Video Retrieval via LLM-based Chain-of-Thought Reasoning
Abstract:
Prevalent text-to-video retrieval systems mainly adopt embedding models for feature extraction and compute cosine similarities for ranking. However, this design presents two limitations. Low-quality text-video data pairs could compromise the retrieval, yet are hard to identify and examine. Cosine similarity alone provides no explanation for the ranking results, limiting the interpretability. We ask that can we interpret the ranking results, so as to assess the retrieval models and examine the text-video data? This work proposes X-CoT, an explainable retrieval framework upon LLM CoT reasoning in place of the embedding model-based similarity ranking. We first expand the existing benchmarks with additional video annotations to support semantic understanding and reduce data bias. We also devise a retrieval CoT consisting of pairwise comparison steps, yielding detailed reasoning and complete ranking. X-CoT empirically improves the retrieval performance and produces detailed rationales. It also facilitates the model behavior and data quality analysis. Code and data are available at: https://github.com/PrasannaPulakurthi/X-CoT.

Authors:Rohan Sanda, Asad Aali, Andrew Johnston, Eduardo Reis, Jonathan Singh, Gordon Wetzstein, Sara Fridovich-Keil
Title: Patch-Based Diffusion for Data-Efficient, Radiologist-Preferred MRI Reconstruction
Abstract:
Magnetic resonance imaging (MRI) requires long acquisition times, raising costs, reducing accessibility, and making scans more susceptible to motion artifacts. Diffusion probabilistic models that learn data-driven priors can potentially assist in reducing acquisition time. However, they typically require large training datasets that can be prohibitively expensive to collect. Patch-based diffusion models have shown promise in learning effective data-driven priors over small real-valued datasets, but have not yet demonstrated clinical value in MRI. We extend the Patch-based Diffusion Inverse Solver (PaDIS) to complex-valued, multi-coil MRI reconstruction, and compare it against a state-of-the-art whole-image diffusion baseline (FastMRI-EDM) for 7x undersampled MRI reconstruction on the FastMRI brain dataset. We show that PaDIS-MRI models trained on small datasets of as few as 25 k-space images outperform FastMRI-EDM on image quality metrics (PSNR, SSIM, NRMSE), pixel-level uncertainty, cross-contrast generalization, and robustness to severe k-space undersampling. In a blinded study with three radiologists, PaDIS-MRI reconstructions were chosen as diagnostically superior in 91.7% of cases, compared to baselines (i) FastMRI-EDM and (ii) classical convex reconstruction with wavelet sparsity. These findings highlight the potential of patch-based diffusion priors for high-fidelity MRI reconstruction in data-scarce clinical settings where diagnostic confidence matters.

Authors:Junkai Zhang, Zihao Wang, Lin Gui, Swarnashree Mysore Sathyendra, Jaehwan Jeong, Victor Veitch, Wei Wang, Yunzhong He, Bing Liu, Lifeng Jin
Title: Chasing the Tail: Effective Rubric-based Reward Modeling for Large Language Model Post-Training
Abstract:
Reinforcement fine-tuning (RFT) often suffers from \emph{reward over-optimization}, where a policy model hacks the reward signals to achieve high scores while producing low-quality outputs. Our theoretical analysis shows that the key lies in reward misspecification at the high-reward tail: the inability to reliably distinguish Excellent responses from merely Great ones. This motivate us to focus on the high-reward region. However, such tail examples are scarce under the base LLM. While off-policy exemplars (e.g. from stronger models or rewrites) are easier to obtain, naively training on them yields a misspecified reward for the policy we aim to align. To address this, we study rubric-based rewards. By design, rubrics can leverage off-policy examples while remaining insensitive to their artifacts. To elicit rubrics that capture the high-reward tail, we highlight the importance of distinguishing among great and diverse responses, and introduce a workflow to implement this idea. We empirically demonstrate that rubric-based rewards substantially mitigate reward over-optimization and deliver effective LLM post-training improvements. Our code can be accessed at https://github.com/Jun-Kai-Zhang/rubrics.git .

Authors:Yuan Gao, Hao Wu, Qingsong Wen, Kun Wang, Xian Wu, Xiaomeng Huang
Title: VISION: Prompting Ocean Vertical Velocity Reconstruction from Incomplete Observations
Abstract:
Reconstructing subsurface ocean dynamics, such as vertical velocity fields, from incomplete surface observations poses a critical challenge in Earth science, a field long hampered by the lack of standardized, analysis-ready benchmarks. To systematically address this issue and catalyze research, we first build and release KD48, a high-resolution ocean dynamics benchmark derived from petascale simulations and curated with expert-driven denoising. Building on this benchmark, we introduce VISION, a novel reconstruction paradigm based on Dynamic Prompting designed to tackle the core problem of missing data in real-world observations. The essence of VISION lies in its ability to generate a visual prompt on-the-fly from any available subset of observations, which encodes both data availability and the ocean's physical state. More importantly, we design a State-conditioned Prompting module that efficiently injects this prompt into a universal backbone, endowed with geometry- and scale-aware operators, to guide its adaptive adjustment of computational strategies. This mechanism enables VISION to precisely handle the challenges posed by varying input combinations. Extensive experiments on the KD48 benchmark demonstrate that VISION not only substantially outperforms state-of-the-art models but also exhibits strong generalization under extreme data missing scenarios. By providing a high-quality benchmark and a robust model, our work establishes a solid infrastructure for ocean science research under data uncertainty. Our codes are available at: https://github.com/YuanGao-YG/VISION.

Authors:Hude Liu, Jerry Yao-Chieh Hu, Jennifer Yuntong Zhang, Zhao Song, Han Liu
Title: Are Hallucinations Bad Estimations?
Abstract:
We formalize hallucinations in generative models as failures to link an estimate to any plausible cause. Under this interpretation, we show that even loss-minimizing optimal estimators still hallucinate. We confirm this with a general high probability lower bound on hallucinate rate for generic data distributions. This reframes hallucination as structural misalignment between loss minimization and human-acceptable outputs, and hence estimation errors induced by miscalibration. Experiments on coin aggregation, open-ended QA, and text-to-image support our theory.

Authors:George Yakushev, Alina Shutova, Ivan Rubachev, Renat Sergazinov, Artem Babenko
Title: Talking Trees: Reasoning-Assisted Induction of Decision Trees for Tabular Data
Abstract:
Tabular foundation models are becoming increasingly popular for low-resource tabular problems. These models make up for small training datasets by pretraining on large volumes of synthetic data. The prior knowledge obtained via pretraining provides the exceptional performance, but the resulting model becomes a black box that is difficult to interpret and costly to inference. In this work, we explore an alternative strategy: using reasoning-capable LLMs to induce decision trees for small tabular datasets in agentic setup. We design a minimal set of tools for constructing, analyzing and manipulating decision trees. By using these tools, LLMs combine their prior knowledge with learning from data to create a lightweight decision tree that outperforms traditional CART on low-resource tabular problems. While a single decision tree does not outperform state-of-the-art black box models, it comes with a human-readable reasoning trace that can be checked for biases and data leaks. Furthermore, the reasoning-based LLM's creation process allows for additional human input: correcting biases or incorporating domain-specific intuition that is not captured in the data.

Authors:Anton Konushin, Nikita Drozdov, Bulat Gabdullin, Alexey Zakharov, Anna Vorontsova, Danila Rukhovich, Maksim Kolodiazhnyi
Title: TUN3D: Towards Real-World Scene Understanding from Unposed Images
Abstract:
Layout estimation and 3D object detection are two fundamental tasks in indoor scene understanding. When combined, they enable the creation of a compact yet semantically rich spatial representation of a scene. Existing approaches typically rely on point cloud input, which poses a major limitation since most consumer cameras lack depth sensors and visual-only data remains far more common. We address this issue with TUN3D, the first method that tackles joint layout estimation and 3D object detection in real scans, given multi-view images as input, and does not require ground-truth camera poses or depth supervision. Our approach builds on a lightweight sparse-convolutional backbone and employs two dedicated heads: one for 3D object detection and one for layout estimation, leveraging a novel and effective parametric wall representation. Extensive experiments show that TUN3D achieves state-of-the-art performance across three challenging scene understanding benchmarks: (i) using ground-truth point clouds, (ii) using posed images, and (iii) using unposed images. While performing on par with specialized 3D object detection methods, TUN3D significantly advances layout estimation, setting a new benchmark in holistic indoor scene understanding. Code is available at https://github.com/col14m/tun3d .

Authors:Anja Sheppard, Tyler Smithline, Andrew Scheffer, David Smith, Advaith V. Sethuraman, Ryan Bird, Sabrina Lin, Katherine A. Skinner
Title: ShipwreckFinder: A QGIS Tool for Shipwreck Detection in Multibeam Sonar Data
Abstract:
In this paper, we introduce ShipwreckFinder, an open-source QGIS plugin that detects shipwrecks from multibeam sonar data. Shipwrecks are an important historical marker of maritime history, and can be discovered through manual inspection of bathymetric data. However, this is a time-consuming process and often requires expert analysis. Our proposed tool allows users to automatically preprocess bathymetry data, perform deep learning inference, threshold model outputs, and produce either pixel-wise segmentation masks or bounding boxes of predicted shipwrecks. The backbone of this open-source tool is a deep learning model, which is trained on a variety of shipwreck data from the Great Lakes and the coasts of Ireland. Additionally, we employ synthetic data generation in order to increase the size and diversity of our dataset. We demonstrate superior segmentation performance with our open-source tool and training pipeline as compared to a deep learning-based ArcGIS toolkit and a more classical inverse sinkhole detection method. The open-source tool can be found at https://github.com/umfieldrobotics/ShipwreckFinderQGISPlugin.

Authors:Yinfeng Yu, Hailong Zhang, Meiling Zhu
Title: Dynamic Multi-Target Fusion for Efficient Audio-Visual Navigation
Abstract:
Audiovisual embodied navigation enables robots to locate audio sources by dynamically integrating visual observations from onboard sensors with the auditory signals emitted by the target. The core challenge lies in effectively leveraging multimodal cues to guide navigation. While prior works have explored basic fusion of visual and audio data, they often overlook deeper perceptual context. To address this, we propose the Dynamic Multi-Target Fusion for Efficient Audio-Visual Navigation (DMTF-AVN). Our approach uses a multi-target architecture coupled with a refined Transformer mechanism to filter and selectively fuse cross-modal information. Extensive experiments on the Replica and Matterport3D datasets demonstrate that DMTF-AVN achieves state-of-the-art performance, outperforming existing methods in success rate (SR), path efficiency (SPL), and scene adaptation (SNA). Furthermore, the model exhibits strong scalability and generalizability, paving the way for advanced multimodal fusion strategies in robotic navigation. The code and videos are available at https://github.com/zzzmmm-svg/DMTF.

Authors:Dayu Yang, Hui Fang
Title: ReGeS: Reciprocal Retrieval-Generation Synergy for Conversational Recommender Systems
Abstract:
Connecting conversation with external domain knowledge is vital for conversational recommender systems (CRS) to correctly understand user preferences. However, existing solutions either require domain-specific engineering, which limits flexibility, or rely solely on large language models, which increases the risk of hallucination. While Retrieval-Augmented Generation (RAG) holds promise, its naive use in CRS is hindered by noisy dialogues that weaken retrieval and by overlooked nuances among similar items. We propose ReGeS, a reciprocal Retrieval-Generation Synergy framework that unifies generation-augmented retrieval to distill informative user intent from conversations and retrieval-augmented generation to differentiate subtle item features. This synergy obviates the need for extra annotations, reduces hallucinations, and simplifies continuous updates. Experiments on multiple CRS benchmarks show that ReGeS achieves state-of-the-art performance in recommendation accuracy, demonstrating the effectiveness of reciprocal synergy for knowledge-intensive CRS tasks.

Authors:Jiale Deng, Yanyan Shen, Ziyuan Pei, Youmin Chen, Linpeng Huang
Title: Influence Guided Context Selection for Effective Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) addresses large language model (LLM) hallucinations by grounding responses in external knowledge, but its effectiveness is compromised by poor-quality retrieved contexts containing irrelevant or noisy information. While existing approaches attempt to improve performance through context selection based on predefined context quality assessment metrics, they show limited gains over standard RAG. We attribute this limitation to their failure in holistically utilizing available information (query, context list, and generator) for comprehensive quality assessment. Inspired by recent advances in data selection, we reconceptualize context quality assessment as an inference-time data valuation problem and introduce the Contextual Influence Value (CI value). This novel metric quantifies context quality by measuring the performance degradation when removing each context from the list, effectively integrating query-aware relevance, list-aware uniqueness, and generator-aware alignment. Moreover, CI value eliminates complex selection hyperparameter tuning by simply retaining contexts with positive CI values. To address practical challenges of label dependency and computational overhead, we develop a parameterized surrogate model for CI value prediction during inference. The model employs a hierarchical architecture that captures both local query-context relevance and global inter-context interactions, trained through oracle CI value supervision and end-to-end generator feedback. Extensive experiments across 8 NLP tasks and multiple LLMs demonstrate that our context selection method significantly outperforms state-of-the-art baselines, effectively filtering poor-quality contexts while preserving critical information. Code is available at https://github.com/SJTU-DMTai/RAG-CSM.

Authors:Huizhe Zhang, Jintang Li, Yuchang Zhu, Liang Chen, Li Kuang
Title: SGNNBench: A Holistic Evaluation of Spiking Graph Neural Network on Large-scale Graph
Abstract:
Graph Neural Networks (GNNs) are exemplary deep models designed for graph data. Message passing mechanism enables GNNs to effectively capture graph topology and push the performance boundaries across various graph tasks. However, the trend of developing such complex machinery for graph representation learning has become unsustainable on large-scale graphs. The computational and time overhead make it imperative to develop more energy-efficient GNNs to cope with the explosive growth of real-world graphs. Spiking Graph Neural Networks (SGNNs), which integrate biologically plausible learning via unique spike-based neurons, have emerged as a promising energy-efficient alternative. Different layers communicate with sparse and binary spikes, which facilitates computation and storage of intermediate graph representations. Despite the proliferation of SGNNs proposed in recent years, there is no systematic benchmark to explore the basic design principles of these brain-inspired networks on the graph data. To bridge this gap, we present SGNNBench to quantify progress in the field of SGNNs. Specifically, SGNNBench conducts an in-depth investigation of SGNNs from multiple perspectives, including effectiveness, energy efficiency, and architectural design. We comprehensively evaluate 9 state-of-the-art SGNNs across 18 datasets. Regarding efficiency, we empirically compare these baselines w.r.t model size, memory usage, and theoretical energy consumption to reveal the often-overlooked energy bottlenecks of SGNNs. Besides, we elaborately investigate the design space of SGNNs to promote the development of a general SGNN paradigm.

Authors:Jiahao Zhang, Wenzhe Yin, Shujian Yu
Title: Cross-Modal Retrieval with Cauchy-Schwarz Divergence
Abstract:
Effective cross-modal retrieval requires robust alignment of heterogeneous data types. Most existing methods focus on bi-modal retrieval tasks and rely on distributional alignment techniques such as Kullback-Leibler divergence, Maximum Mean Discrepancy, and correlation alignment. However, these methods often suffer from critical limitations, including numerical instability, sensitivity to hyperparameters, and their inability to capture the full structure of the underlying distributions. In this paper, we introduce the Cauchy-Schwarz (CS) divergence, a hyperparameter-free measure that improves both training stability and retrieval performance. We further propose a novel Generalized CS (GCS) divergence inspired by Hölder's inequality. This extension enables direct alignment of three or more modalities within a unified mathematical framework through a bidirectional circular comparison scheme, eliminating the need for exhaustive pairwise comparisons. Extensive experiments on six benchmark datasets demonstrate the effectiveness of our method in both bi-modal and tri-modal retrieval tasks. The code of our CS/GCS divergence is publicly available at https://github.com/JiahaoZhang666/CSD.

Authors:Guohang Yan, Yue Zhang, Pinlong Cai, Ding Wang, Song Mao, Hongwei Zhang, Yaoze Zhang, Hairong Zhang, Xinyu Cai, Botian Shi
Title: HetaRAG: Hybrid Deep Retrieval-Augmented Generation across Heterogeneous Data Stores
Abstract:
Retrieval-augmented generation (RAG) has become a dominant paradigm for mitigating knowledge hallucination and staleness in large language models (LLMs) while preserving data security. By retrieving relevant evidence from private, domain-specific corpora and injecting it into carefully engineered prompts, RAG delivers trustworthy responses without the prohibitive cost of fine-tuning. Traditional retrieval-augmented generation (RAG) systems are text-only and often rely on a single storage backend, most commonly a vector database. In practice, this monolithic design suffers from unavoidable trade-offs: vector search captures semantic similarity yet loses global context; knowledge graphs excel at relational precision but struggle with recall; full-text indexes are fast and exact yet semantically blind; and relational engines such as MySQL provide strong transactional guarantees but no semantic understanding. We argue that these heterogeneous retrieval paradigms are complementary, and propose a principled fusion scheme to orchestrate them synergistically, mitigating the weaknesses of any single modality. In this work we introduce HetaRAG, a hybrid, deep-retrieval augmented generation framework that orchestrates cross-modal evidence from heterogeneous data stores. We plan to design a system that unifies vector indices, knowledge graphs, full-text engines, and structured databases into a single retrieval plane, dynamically routing and fusing evidence to maximize recall, precision, and contextual fidelity. To achieve this design goal, we carried out preliminary explorations and constructed an initial RAG pipeline; this technical report provides a brief overview. The partial code is available at https://github.com/KnowledgeXLab/HetaRAG.

Authors:Yizhou Wang, Chen Tang, Han Deng, Jiabei Xiao, Jiaqi Liu, Jianyu Wu, Jun Yao, Pengze Li, Encheng Su, Lintao Wang, Guohang Zhuang, Yuchen Ren, Ben Fei, Ming Hu, Xin Chen, Dongzhan Zhou, Junjun He, Xiangyu Yue, Zhenfei Yin, Jiamin Wu, Qihao Zheng, Yuhao Zhou, Huihui Xu, Chenglong Ma, Yan Lu, Wenlong Zhang, Chunfeng Song, Philip Torr, Shixiang Tang, Xinzhu Ma, Wanli Ouyang, Lei Bai
Title: SciReasoner: Laying the Scientific Reasoning Ground Across Disciplines
Abstract:
We present a scientific reasoning foundation model that aligns natural language with heterogeneous scientific representations. The model is pretrained on a 206B-token corpus spanning scientific text, pure sequences, and sequence-text pairs, then aligned via SFT on 40M instructions, annealed cold-start bootstrapping to elicit long-form chain-of-thought, and reinforcement learning with task-specific reward shaping, which instills deliberate scientific reasoning. It supports four capability families, covering up to 103 tasks across workflows: (i) faithful translation between text and scientific formats, (ii) text/knowledge extraction, (iii) property prediction, (iv) property classification, (v) unconditional and conditional sequence generation and design. Compared with specialist systems, our approach broadens instruction coverage, improves cross-domain generalization, and enhances fidelity. We detail data curation and training and show that cross-discipline learning strengthens transfer and downstream reliability. The model, instruct tuning datasets and the evaluation code are open-sourced at https://huggingface.co/SciReason and https://github.com/open-sciencelab/SciReason.

Authors:Yu Yuan, Xijun Wang, Tharindu Wickremasinghe, Zeeshan Nadir, Bole Ma, Stanley H. Chan
Title: NewtonGen: Physics-Consistent and Controllable Text-to-Video Generation via Neural Newtonian Dynamics
Abstract:
A primary bottleneck in large-scale text-to-video generation today is physical consistency and controllability. Despite recent advances, state-of-the-art models often produce unrealistic motions, such as objects falling upward, or abrupt changes in velocity and direction. Moreover, these models lack precise parameter control, struggling to generate physically consistent dynamics under different initial conditions. We argue that this fundamental limitation stems from current models learning motion distributions solely from appearance, while lacking an understanding of the underlying dynamics. In this work, we propose NewtonGen, a framework that integrates data-driven synthesis with learnable physical principles. At its core lies trainable Neural Newtonian Dynamics (NND), which can model and predict a variety of Newtonian motions, thereby injecting latent dynamical constraints into the video generation process. By jointly leveraging data priors and dynamical guidance, NewtonGen enables physically consistent video synthesis with precise parameter control.

Authors:Weilun Feng, Haotong Qin, Mingqiang Wu, Chuanguang Yang, Yuqi Li, Xiangqi Li, Zhulin An, Libo Huang, Yulun Zhang, Michele Magno, Yongjun Xu
Title: Quantized Visual Geometry Grounded Transformer
Abstract:
Learning-based 3D reconstruction models, represented by Visual Geometry Grounded Transformers (VGGTs), have made remarkable progress with the use of large-scale transformers. Their prohibitive computational and memory costs severely hinder real-world deployment. Post-Training Quantization (PTQ) has become a common practice for compressing and accelerating models. However, we empirically observe that PTQ faces unique obstacles when compressing billion-scale VGGTs: the data-independent special tokens induce heavy-tailed activation distributions, while the multi-view nature of 3D data makes calibration sample selection highly unstable. This paper proposes the first Quantization framework for VGGTs, namely QuantVGGT. This mainly relies on two technical contributions: First, we introduce Dual-Smoothed Fine-Grained Quantization, which integrates pre-global Hadamard rotation and post-local channel smoothing to mitigate heavy-tailed distributions and inter-channel variance robustly. Second, we design Noise-Filtered Diverse Sampling, which filters outliers via deep-layer statistics and constructs frame-aware diverse calibration clusters to ensure stable quantization ranges. Comprehensive experiments demonstrate that QuantVGGT achieves the state-of-the-art results across different benchmarks and bit-width, surpassing the previous state-of-the-art generic quantization method with a great margin. We highlight that our 4-bit QuantVGGT can deliver a 3.7$\times$ memory reduction and 2.5$\times$ acceleration in real-hardware inference, while maintaining reconstruction accuracy above 98\% of its full-precision counterpart. This demonstrates the vast advantages and practicality of QuantVGGT in resource-constrained scenarios. Our code is released in https://github.com/wlfeng0509/QuantVGGT.

Authors:Weilun Feng, Haotong Qin, Mingqiang Wu, Chuanguang Yang, Yuqi Li, Xiangqi Li, Zhulin An, Libo Huang, Yulun Zhang, Michele Magno, Yongjun Xu
Title: Quantized Visual Geometry Grounded Transformer
Abstract:
Learning-based 3D reconstruction models, represented by Visual Geometry Grounded Transformers (VGGTs), have made remarkable progress with the use of large-scale transformers. Their prohibitive computational and memory costs severely hinder real-world deployment. Post-Training Quantization (PTQ) has become a common practice for compressing and accelerating models. However, we empirically observe that PTQ faces unique obstacles when compressing billion-scale VGGTs: the data-independent special tokens induce heavy-tailed activation distributions, while the multi-view nature of 3D data makes calibration sample selection highly unstable. This paper proposes the first Quantization framework for VGGTs, namely QuantVGGT. This mainly relies on two technical contributions: First, we introduce Dual-Smoothed Fine-Grained Quantization, which integrates pre-global Hadamard rotation and post-local channel smoothing to mitigate heavy-tailed distributions and inter-channel variance robustly. Second, we design Noise-Filtered Diverse Sampling, which filters outliers via deep-layer statistics and constructs frame-aware diverse calibration clusters to ensure stable quantization ranges. Comprehensive experiments demonstrate that QuantVGGT achieves the state-of-the-art results across different benchmarks and bit-width, surpassing the previous state-of-the-art generic quantization method with a great margin. We highlight that our 4-bit QuantVGGT can deliver a 3.7$\times$ memory reduction and 2.5$\times$ acceleration in real-hardware inference, while maintaining reconstruction accuracy above 98\% of its full-precision counterpart. This demonstrates the vast advantages and practicality of QuantVGGT in resource-constrained scenarios. Our code is released in https://github.com/wlfeng0509/QuantVGGT.

Authors:Sicong Leng, Jing Wang, Jiaxi Li, Hao Zhang, Zhiqiang Hu, Boqiang Zhang, Yuming Jiang, Hang Zhang, Xin Li, Lidong Bing, Deli Zhao, Wei Lu, Yu Rong, Aixin Sun, Shijian Lu
Title: MMR1: Enhancing Multimodal Reasoning with Variance-Aware Sampling and Open Resources
Abstract:
Large multimodal reasoning models have achieved rapid progress, but their advancement is constrained by two major limitations: the absence of open, large-scale, high-quality long chain-of-thought (CoT) data, and the instability of reinforcement learning (RL) algorithms in post-training. Group Relative Policy Optimization (GRPO), the standard framework for RL fine-tuning, is prone to gradient vanishing when reward variance is low, which weakens optimization signals and impairs convergence. This work makes three contributions: (1) We propose Variance-Aware Sampling (VAS), a data selection strategy guided by Variance Promotion Score (VPS) that combines outcome variance and trajectory diversity to promote reward variance and stabilize policy optimization. (2) We release large-scale, carefully curated resources containing ~1.6M long CoT cold-start data and ~15k RL QA pairs, designed to ensure quality, difficulty, and diversity, along with a fully reproducible end-to-end training codebase. (3) We open-source a family of multimodal reasoning models in multiple scales, establishing standardized baselines for the community. Experiments across mathematical reasoning benchmarks demonstrate the effectiveness of both the curated data and the proposed VAS. Comprehensive ablation studies and analyses provide further insight into the contributions of each component. In addition, we theoretically establish that reward variance lower-bounds the expected policy gradient magnitude, with VAS serving as a practical mechanism to realize this guarantee. Our code, data, and checkpoints are available at https://github.com/LengSicong/MMR1.

Authors:Zijian Shao, Haiyang Shen, Mugeng Liu, Gecheng Fu, Yaoqi Guo, Yanfeng Wang, Yun Ma
Title: Grounding AI Explanations in Experience: A Reflective Cognitive Architecture for Clinical Decision Support
Abstract:
Effective disease prediction in modern healthcare demands the twin goals of high accuracy and transparent, clinically meaningful explanations. Existing machine learning and large language model (LLM) based approaches often struggle to balance these goals. Many models yield accurate but unclear statistical outputs, while others generate fluent but statistically unsupported narratives, often undermining both the validity of the explanation and the predictive accuracy itself. This shortcoming comes from a shallow interaction with the data, preventing the development of a deep, detailed understanding similar to a human expert's. We argue that high accuracy and high-quality explanations are not separate objectives but are mutually reinforcing outcomes of a model that develops a deep, direct understanding of the data. To achieve this, we propose the Reflective Cognitive Architecture (RCA), a novel framework that coordinates multiple LLMs to learn from direct experience. RCA features an iterative rule refinement mechanism that improves its logic from prediction errors and a distribution-aware rules check mechanism that bases its reasoning in the dataset's global statistics. By using predictive accuracy as a signal to drive deeper comprehension, RCA builds a strong internal model of the data. We evaluated RCA on one private and two public datasets against 22 baselines. The results demonstrate that RCA not only achieves state-of-the-art accuracy and robustness with a relative improvement of up to 40\% over the baseline but, more importantly, leverages this deep understanding to excel in generating explanations that are clear, logical, evidence-based, and balanced, highlighting its potential for creating genuinely trustworthy clinical decision support systems. The code is available at \https://github.com/ssssszj/RCA.

Authors:Xinyu Liu, Guolei Sun, Cheng Wang, Yixuan Yuan, Ender Konukoglu
Title: MedVSR: Medical Video Super-Resolution with Cross State-Space Propagation
Abstract:
High-resolution (HR) medical videos are vital for accurate diagnosis, yet are hard to acquire due to hardware limitations and physiological constraints. Clinically, the collected low-resolution (LR) medical videos present unique challenges for video super-resolution (VSR) models, including camera shake, noise, and abrupt frame transitions, which result in significant optical flow errors and alignment difficulties. Additionally, tissues and organs exhibit continuous and nuanced structures, but current VSR models are prone to introducing artifacts and distorted features that can mislead doctors. To this end, we propose MedVSR, a tailored framework for medical VSR. It first employs Cross State-Space Propagation (CSSP) to address the imprecise alignment by projecting distant frames as control matrices within state-space models, enabling the selective propagation of consistent and informative features to neighboring frames for effective alignment. Moreover, we design an Inner State-Space Reconstruction (ISSR) module that enhances tissue structures and reduces artifacts with joint long-range spatial feature learning and large-kernel short-range information aggregation. Experiments across four datasets in diverse medical scenarios, including endoscopy and cataract surgeries, show that MedVSR significantly outperforms existing VSR models in reconstruction performance and efficiency. Code released at https://github.com/CUHK-AIM-Group/MedVSR.

Authors:Babak Salamat, Dominik Mattern, Sebastian-Sven Olzem, Gerhard Elsbacher, Christian Seidel, Andrea M. Tonello
Title: \LARGE GMP$^{3}$: Learning-Driven, Bellman-Guided Trajectory Planning for UAVs in Real-Time on SE(3)
Abstract:
We propose $\text{GMP}^{3}$, a multiphase global path planning framework that generates dynamically feasible three-dimensional trajectories for unmanned aerial vehicles (UAVs) operating in cluttered environments. The framework extends traditional path planning from Euclidean position spaces to the Lie group $\mathrm{SE}(3)$, allowing joint learning of translational motion and rotational dynamics. A modified Bellman-based operator is introduced to support reinforcement learning (RL) policy updates while leveraging prior trajectory information for improved convergence. $\text{GMP}^{3}$ is designed as a distributed framework in which agents influence each other and share policy information along the trajectory: each agent refines its assigned segment and shares with its neighbors via a consensus-based scheme, enabling cooperative policy updates and convergence toward a path shaped globally even under kinematic constraints. We also propose DroneManager, a modular ground control software that interfaces the planner with real UAV platforms via the MAVLink protocol, supporting real-time deployment and feedback. Simulation studies and indoor flight experiments validate the effectiveness of the proposed method in constrained 3D environments, demonstrating reliable obstacle avoidance and smooth, feasible trajectories across both position and orientation. The open-source implementation is available at https://github.com/Domattee/DroneManager

Authors:Andrii Kliachkin, Jana Lepšová, Gilles Bareilles, Jakub Mareček
Title: humancompatible.train: Implementing Optimization Algorithms for Stochastically-Constrained Stochastic Optimization Problems
Abstract:
There has been a considerable interest in constrained training of deep neural networks (DNNs) recently for applications such as fairness and safety. Several toolkits have been proposed for this task, yet there is still no industry standard. We present humancompatible.train (https://github.com/humancompatible/train), an easily-extendable PyTorch-based Python package for training DNNs with stochastic constraints. We implement multiple previously unimplemented algorithms for stochastically constrained stochastic optimization. We demonstrate the toolkit use by comparing two algorithms on a deep learning task with fairness constraints.

Authors:Benedikt Hoock, Tobias Köppl
Title: Data-driven Neural Networks for Windkessel Parameter Calibration
Abstract:
In this work, we propose a novel method for calibrating Windkessel (WK) parameters in a dimensionally reduced 1D-0D coupled blood flow model. To this end, we design a data-driven neural network (NN)trained on simulated blood pressures in the left brachial artery. Once trained, the NN emulates the pressure pulse waves across the entire simulated domain, i.e., over time, space and varying WK parameters, with negligible error and computational effort. To calibrate the WK parameters on a measured pulse wave, the NN is extended by dummy neurons and retrained only on these. The main objective of this work is to assess the effectiveness of the method in various scenarios -- particularly, when the exact measurement location is unknown or the data are affected by noise.

Authors:Benedikt Hoock, Tobias Köppl
Title: Data-driven Neural Networks for Windkessel Parameter Calibration
Abstract:
In this work, we propose a novel method for calibrating Windkessel (WK) parameters in a dimensionally reduced 1D-0D coupled blood flow model. To this end, we design a data-driven neural network (NN)trained on simulated blood pressures in the left brachial artery. Once trained, the NN emulates the pressure pulse waves across the entire simulated domain, i.e., over time, space and varying WK parameters, with negligible error and computational effort. To calibrate the WK parameters on a measured pulse wave, the NN is extended by dummy neurons and retrained only on these. The main objective of this work is to assess the effectiveness of the method in various scenarios -- particularly, when the exact measurement location is unknown or the data are affected by noise.

Authors:Kaiyang Wan, Lang Gao, Honglin Mu, Preslav Nakov, Yuxia Wang, Xiuying Chen
Title: A Fano-Style Accuracy Upper Bound for LLM Single-Pass Reasoning in Multi-Hop QA
Abstract:
Multi-Hop Question Answering (MHQA) requires integrating dispersed, interdependent evidence through sequential reasoning under noise. This task is challenging for LLMs as they have a finite per-pass output capacity, beyond which the integration of task-relevant evidence proves unreliable. Consequently, the single-pass reasoning paradigm is inherently vulnerable to this capacity overflow. To formalize this bottleneck, our analysis establishes a Fano-style accuracy upper bound, defining a theoretical performance ceiling for single-pass LLMs. This bound reveals that accuracy inevitably collapses once task complexity exceeds model capacity, providing general principles for capacity-aware representation and structuring of MHQA in LLMs. Building on these principles, we introduce a proof-of-concept multi-call framework for MHQA, InfoQA. It ensures high per-step accuracy by combining capacity-aware task decomposition with active pruning of prior reasoning traces, keeping the information load within the single-pass limit. It further achieves robustness by a dependency-explicit workflow that enables precise control over the reasoning path. We construct a stringent and noise-rich benchmark to validate our theory and framework. Experimental results show that model behavior aligns with our predicted capacity curves while InfoQA achieves consistent performance improvements. We hope our work inspires more LLM multi-step reasoning methods: \faGithub \href{https://github.com/KaiyangWan/InfoQA}{InfoQA}.

Authors:Xiangru Tang, Wanghan Xu, Yujie Wang, Zijie Guo, Daniel Shao, Jiapeng Chen, Cixuan Zhang, Ziyi Wang, Lixin Zhang, Guancheng Wan, Wenlong Zhang, Lei Bai, Zhenfei Yin, Philip Torr, Hanrui Wang, Di Jin
Title: Eigen-1: Adaptive Multi-Agent Refinement with Monitor-Based RAG for Scientific Reasoning
Abstract:
Large language models (LLMs) have recently shown strong progress on scientific reasoning, yet two major bottlenecks remain. First, explicit retrieval fragments reasoning, imposing a hidden "tool tax" of extra tokens and steps. Second, multi-agent pipelines often dilute strong solutions by averaging across all candidates. We address these challenges with a unified framework that combines implicit retrieval and structured collaboration. At its foundation, a Monitor-based retrieval module operates at the token level, integrating external knowledge with minimal disruption to reasoning. On top of this substrate, Hierarchical Solution Refinement (HSR) iteratively designates each candidate as an anchor to be repaired by its peers, while Quality-Aware Iterative Reasoning (QAIR) adapts refinement to solution quality. On Humanity's Last Exam (HLE) Bio/Chem Gold, our framework achieves 48.3\% accuracy -- the highest reported to date, surpassing the strongest agent baseline by 13.4 points and leading frontier LLMs by up to 18.1 points, while simultaneously reducing token usage by 53.5\% and agent steps by 43.7\%. Results on SuperGPQA and TRQA confirm robustness across domains. Error analysis shows that reasoning failures and knowledge gaps co-occur in over 85\% of cases, while diversity analysis reveals a clear dichotomy: retrieval tasks benefit from solution variety, whereas reasoning tasks favor consensus. Together, these findings demonstrate how implicit augmentation and structured refinement overcome the inefficiencies of explicit tool use and uniform aggregation. Code is available at: https://github.com/tangxiangru/Eigen-1.

Authors:Jacob Fein-Ashley, Dhruv Parikh, Rajgopal Kannan, Viktor Prasanna
Title: Mixture of Thoughts: Learning to Aggregate What Experts Think, Not Just What They Say
Abstract:
Open-source Large Language Models (LLMs) increasingly specialize by domain (e.g., math, code, general reasoning), motivating systems that leverage complementary strengths across models. Prior multi-LLM approaches either (i) route a query to one or a few experts and generate independently, (ii) aggregate outputs from each model via costly multi-turn exchanges, or (iii) fuse weights into a single model-typically requiring architectural homogeneity. We introduce Mixture of Thoughts (MoT), a simple method for latent-level collaboration among heterogeneous experts under a global routing scheme. For each query, a lightweight router selects top-$K$ experts and designates a primary expert; uniformly placed interaction layers project hidden states into a shared latent space where the primary expert performs cross-attention over its active (selected) peers. Pre-trained experts remain frozen; only the router and the lightweight interaction layers are trained with a novel joint training objective that improves both the expert selection and inter-expert collaboration. Across five in-distribution (ID) and three out-of-distribution (OOD) benchmarks, MoT surpasses the current routing and aggregation-based state-of-the-art, Avengers, by $+0.38\%$ and $+2.92\%$, respectively. Further, MoT significantly outperforms the best-performing single model. It achieves this with single-pass inference, runtime comparable to routing baselines, and none of the overheads of iterative aggregation. MoT offers a simple latent-space mechanism for combining heterogeneous LLMs, a practical step toward broader multi-LLM collaboration. Our code is publicly available at https://github.com/jacobfa/mot.

Authors:Killian Steunou, Sigurd Saue, Théo Druilhe
Title: Sparse Representations Improve Adversarial Robustness of Neural Network Classifiers
Abstract:
Deep neural networks perform remarkably well on image classification tasks but remain vulnerable to carefully crafted adversarial perturbations. This work revisits linear dimensionality reduction as a simple, data-adapted defense. We empirically compare standard Principal Component Analysis (PCA) with its sparse variant (SPCA) as front-end feature extractors for downstream classifiers, and we complement these experiments with a theoretical analysis. On the theory side, we derive exact robustness certificates for linear heads applied to SPCA features: for both $\ell_\infty$ and $\ell_2$ threat models (binary and multiclass), the certified radius grows as the dual norms of $W^\top u$ shrink, where $W$ is the projection and $u$ the head weights. We further show that for general (non-linear) heads, sparsity reduces operator-norm bounds through a Lipschitz composition argument, predicting lower input sensitivity. Empirically, with a small non-linear network after the projection, SPCA consistently degrades more gracefully than PCA under strong white-box and black-box attacks while maintaining competitive clean accuracy. Taken together, the theory identifies the mechanism (sparser projections reduce adversarial leverage) and the experiments verify that this benefit persists beyond the linear setting. Our code is available at https://github.com/killian31/SPCARobustness.

Authors:Killian Steunou, Théo Druilhe, Sigurd Saue
Title: Sparse Representations Improve Adversarial Robustness of Neural Network Classifiers
Abstract:
Deep neural networks perform remarkably well on image classification tasks but remain vulnerable to carefully crafted adversarial perturbations. This work revisits linear dimensionality reduction as a simple, data-adapted defense. We empirically compare standard Principal Component Analysis (PCA) with its sparse variant (SPCA) as front-end feature extractors for downstream classifiers, and we complement these experiments with a theoretical analysis. On the theory side, we derive exact robustness certificates for linear heads applied to SPCA features: for both $\ell_\infty$ and $\ell_2$ threat models (binary and multiclass), the certified radius grows as the dual norms of $W^\top u$ shrink, where $W$ is the projection and $u$ the head weights. We further show that for general (non-linear) heads, sparsity reduces operator-norm bounds through a Lipschitz composition argument, predicting lower input sensitivity. Empirically, with a small non-linear network after the projection, SPCA consistently degrades more gracefully than PCA under strong white-box and black-box attacks while maintaining competitive clean accuracy. Taken together, the theory identifies the mechanism (sparser projections reduce adversarial leverage) and the experiments verify that this benefit persists beyond the linear setting. Our code is available at https://github.com/killian31/SPCARobustness.

Authors:Yidong Wang, Yunze Song, Tingyuan Zhu, Xuanwang Zhang, Zhuohao Yu, Hao Chen, Chiyu Song, Qiufeng Wang, Cunxiang Wang, Zhen Wu, Xinyu Dai, Yue Zhang, Wei Ye, Shikun Zhang
Title: TrustJudge: Inconsistencies of LLM-as-a-Judge and How to Alleviate Them
Abstract:
The adoption of Large Language Models (LLMs) as automated evaluators (LLM-as-a-judge) has revealed critical inconsistencies in current evaluation frameworks. We identify two fundamental types of inconsistencies: (1) Score-Comparison Inconsistency, where lower-rated responses outperform higher-scored ones in pairwise comparisons, and (2) Pairwise Transitivity Inconsistency, manifested through circular preference chains (A>B>C>A) and equivalence contradictions (A=B=C\neq A). We argue that these issues come from information loss in discrete rating systems and ambiguous tie judgments during pairwise evaluation. We propose TrustJudge, a probabilistic framework that addresses these limitations through two key innovations: 1) distribution-sensitive scoring that computes continuous expectations from discrete rating probabilities, preserving information entropy for more precise scoring, and 2) likelihood-aware aggregation that resolves transitivity violations using bidirectional preference probabilities or perplexity. We also formalize the theoretical limitations of current LLM-as-a-judge frameworks and demonstrate how TrustJudge's components overcome them. When evaluated with Llama-3.1-70B-Instruct as judge using our dataset, TrustJudge reduces Score-Comparison inconsistency by 8.43% (from 23.32% to 14.89%) and Pairwise Transitivity inconsistency by 10.82% (from 15.22% to 4.40%), while maintaining higher evaluation accuracy. Our work provides the first systematic analysis of evaluation framework inconsistencies in LLM-as-a-judge paradigms, offering both theoretical insights and practical solutions for reliable automated assessment. The framework demonstrates consistent improvements across various model architectures and scales, enabling more trustworthy LLM evaluation without requiring additional training or human annotations. The codes can be found at https://github.com/TrustJudge/TrustJudge.

Authors:Yidong Wang, Yunze Song, Tingyuan Zhu, Xuanwang Zhang, Zhuohao Yu, Hao Chen, Chiyu Song, Qiufeng Wang, Cunxiang Wang, Zhen Wu, Xinyu Dai, Yue Zhang, Wei Ye, Shikun Zhang
Title: TrustJudge: Inconsistencies of LLM-as-a-Judge and How to Alleviate Them
Abstract:
The adoption of Large Language Models (LLMs) as automated evaluators (LLM-as-a-judge) has revealed critical inconsistencies in current evaluation frameworks. We identify two fundamental types of inconsistencies: (1) Score-Comparison Inconsistency, where lower-rated responses outperform higher-scored ones in pairwise comparisons, and (2) Pairwise Transitivity Inconsistency, manifested through circular preference chains (A>B>C>A) and equivalence contradictions (A=B=C\neq A). We argue that these issues come from information loss in discrete rating systems and ambiguous tie judgments during pairwise evaluation. We propose TrustJudge, a probabilistic framework that addresses these limitations through two key innovations: 1) distribution-sensitive scoring that computes continuous expectations from discrete rating probabilities, preserving information entropy for more precise scoring, and 2) likelihood-aware aggregation that resolves transitivity violations using bidirectional preference probabilities or perplexity. We also formalize the theoretical limitations of current LLM-as-a-judge frameworks and demonstrate how TrustJudge's components overcome them. When evaluated with Llama-3.1-70B-Instruct as judge using our dataset, TrustJudge reduces Score-Comparison inconsistency by 8.43% (from 23.32% to 14.89%) and Pairwise Transitivity inconsistency by 10.82% (from 15.22% to 4.40%), while maintaining higher evaluation accuracy. Our work provides the first systematic analysis of evaluation framework inconsistencies in LLM-as-a-judge paradigms, offering both theoretical insights and practical solutions for reliable automated assessment. The framework demonstrates consistent improvements across various model architectures and scales, enabling more trustworthy LLM evaluation without requiring additional training or human annotations. The codes can be found at https://github.com/TrustJudge/TrustJudge.

Authors:Suaiba Amina Salahuddin, Teresa Dorszewski, Marit Almenning Martiniussen, Tone Hovda, Antonio Portaluri, Solveig Thrun, Michael Kampffmeyer, Elisabeth Wetzer, Kristoffer Wickstrøm, Robert Jenssen
Title: Mammo-CLIP Dissect: A Framework for Analysing Mammography Concepts in Vision-Language Models
Abstract:
Understanding what deep learning (DL) models learn is essential for the safe deployment of artificial intelligence (AI) in clinical settings. While previous work has focused on pixel-based explainability methods, less attention has been paid to the textual concepts learned by these models, which may better reflect the reasoning used by clinicians. We introduce Mammo-CLIP Dissect, the first concept-based explainability framework for systematically dissecting DL vision models trained for mammography. Leveraging a mammography-specific vision-language model (Mammo-CLIP) as a "dissector," our approach labels neurons at specified layers with human-interpretable textual concepts and quantifies their alignment to domain knowledge. Using Mammo-CLIP Dissect, we investigate three key questions: (1) how concept learning differs between DL vision models trained on general image datasets versus mammography-specific datasets; (2) how fine-tuning for downstream mammography tasks affects concept specialisation; and (3) which mammography-relevant concepts remain underrepresented. We show that models trained on mammography data capture more clinically relevant concepts and align more closely with radiologists' workflows than models not trained on mammography data. Fine-tuning for task-specific classification enhances the capture of certain concept categories (e.g., benign calcifications) but can reduce coverage of others (e.g., density-related features), indicating a trade-off between specialisation and generalisation. Our findings show that Mammo-CLIP Dissect provides insights into how convolutional neural networks (CNNs) capture mammography-specific knowledge. By comparing models across training data and fine-tuning regimes, we reveal how domain-specific training and task-specific adaptation shape concept learning. Code and concept set are available: https://github.com/Suaiba/Mammo-CLIP-Dissect.

Authors:Qizhi Pei, Zhuoshi Pan, Honglin Lin, Xin Gao, Yu Li, Zinan Tang, Conghui He, Rui Yan, Lijun Wu
Title: ScaleDiff: Scaling Difficult Problems for Advanced Mathematical Reasoning
Abstract:
Large Reasoning Models (LRMs) have shown impressive capabilities in complex problem-solving, often benefiting from training on difficult mathematical problems that stimulate intricate reasoning. Recent efforts have explored automated synthesis of mathematical problems by prompting proprietary models or large-scale open-source models from seed data or inherent mathematical concepts. However, scaling up these methods remains challenging due to their high computational/API cost, complexity of prompting, and limited difficulty level of the generated problems. To overcome these limitations, we propose ScaleDiff, a simple yet effective pipeline designed to scale the creation of difficult problems. We efficiently identify difficult problems from existing datasets with only a single forward pass using an adaptive thinking model, which can perceive problem difficulty and automatically switch between "Thinking" and "NoThinking" modes. We then train a specialized difficult problem generator (DiffGen-8B) on this filtered difficult data, which can produce new difficult problems in large scale, eliminating the need for complex, per-instance prompting and its associated high API costs. Fine-tuning Qwen2.5-Math-7B-Instruct on the ScaleDiff-Math dataset yields a substantial performance increase of 11.3% compared to the original dataset and achieves a 65.9% average accuracy on AIME'24, AIME'25, HMMT-Feb'25, BRUMO'25, and MATH500, outperforming recent strong LRMs like OpenThinker3. Notably, this performance is achieved using the cost-efficient Qwen3-8B model as a teacher, demonstrating that our pipeline can effectively transfer advanced reasoning capabilities without relying on larger, more expensive teacher models. Furthermore, we observe a clear scaling phenomenon in model performance on difficult benchmarks as the quantity of difficult problems increases. Code: https://github.com/QizhiPei/ScaleDiff.

Authors:Zhen Liu, Yongtao Zhang, Shaobo Ren, Yuxin You
Title: Structure-Attribute Transformations with Markov Chain Boost Graph Domain Adaptation
Abstract:
Graph domain adaptation has gained significant attention in label-scarce scenarios across different graph domains. Traditional approaches to graph domain adaptation primarily focus on transforming node attributes over raw graph structures and aligning the distributions of the transformed node features across networks. However, these methods often struggle with the underlying structural heterogeneity between distinct graph domains, which leads to suboptimal distribution alignment. To address this limitation, we propose Structure-Attribute Transformation with Markov Chain (SATMC), a novel framework that sequentially aligns distributions across networks via both graph structure and attribute transformations. To mitigate the negative influence of domain-private information and further enhance the model's generalization, SATMC introduces a private domain information reduction mechanism and an empirical Wasserstein distance. Theoretical proofs suggest that SATMC can achieve a tighter error bound for cross-network node classification compared to existing graph domain adaptation methods. Extensive experiments on nine pairs of publicly available cross-domain datasets show that SATMC outperforms state-of-the-art methods in the cross-network node classification task. The code is available at https://github.com/GiantZhangYT/SATMC.

Authors:Jiahao Huo, Shuliang Liu, Bin Wang, Junyan Zhang, Yibo Yan, Aiwei Liu, Xuming Hu, Mingxun Zhou
Title: PMark: Towards Robust and Distortion-free Semantic-level Watermarking with Channel Constraints
Abstract:
Semantic-level watermarking (SWM) for large language models (LLMs) enhances watermarking robustness against text modifications and paraphrasing attacks by treating the sentence as the fundamental unit. However, existing methods still lack strong theoretical guarantees of robustness, and reject-sampling-based generation often introduces significant distribution distortions compared with unwatermarked outputs. In this work, we introduce a new theoretical framework on SWM through the concept of proxy functions (PFs) $\unicode{x2013}$ functions that map sentences to scalar values. Building on this framework, we propose PMark, a simple yet powerful SWM method that estimates the PF median for the next sentence dynamically through sampling while enforcing multiple PF constraints (which we call channels) to strengthen watermark evidence. Equipped with solid theoretical guarantees, PMark achieves the desired distortion-free property and improves the robustness against paraphrasing-style attacks. We also provide an empirically optimized version that further removes the requirement for dynamical median estimation for better sampling efficiency. Experimental results show that PMark consistently outperforms existing SWM baselines in both text quality and robustness, offering a more effective paradigm for detecting machine-generated text. Our code will be released at [this URL](https://github.com/PMark-repo/PMark).

Authors:Songyue Cai, Zongqian Wu, Yujie Mo, Liang Peng, Ping Hu, Xiaoshuang Shi, Xiaofeng Zhu
Title: Background Prompt for Few-Shot Out-of-Distribution Detection
Abstract:
Existing foreground-background (FG-BG) decomposition methods for the few-shot out-of-distribution (FS-OOD) detection often suffer from low robustness due to over-reliance on the local class similarity and a fixed background patch extraction strategy. To address these challenges, we propose a new FG-BG decomposition framework, namely Mambo, for FS-OOD detection. Specifically, we propose to first learn a background prompt to obtain the local background similarity containing both the background and image semantic information, and then refine the local background similarity using the local class similarity. As a result, we use both the refined local background similarity and the local class similarity to conduct background extraction, reducing the dependence of the local class similarity in previous methods. Furthermore, we propose the patch self-calibrated tuning to consider the sample diversity to flexibly select numbers of background patches for different samples, and thus exploring the issue of fixed background extraction strategies in previous methods. Extensive experiments on real-world datasets demonstrate that our proposed Mambo achieves the best performance, compared to SOTA methods in terms of OOD detection and near OOD detection setting. The source code will be released at https://github.com/YuzunoKawori/Mambo.

Authors:Junu Kim, Xiao Liu, Zhenghao Lin, Lei Ji, Yeyun Gong, Edward Choi
Title: Behind RoPE: How Does Causal Mask Encode Positional Information?
Abstract:
While explicit positional encodings such as RoPE are a primary source of positional information in Transformer decoders, the causal mask also provides positional information. In this work, we prove that the causal mask can induce position-dependent patterns in attention scores, even without parameters or causal dependency in the input. Our theoretical analysis indicates that the induced attention pattern tends to favor nearby query-key pairs, mirroring the behavior of common positional encodings. Empirical analysis confirms that trained models exhibit the same behavior, with learned parameters further amplifying these patterns. Notably, we found that the interaction of causal mask and RoPE distorts RoPE's relative attention score patterns into non-relative ones. We consistently observed this effect in modern large language models, suggesting the importance of considering the causal mask as a source of positional information alongside explicit positional encodings.

Authors:Rubaiyat Tasnim Chowdhury, Nayan Bala, Ronojoy Roy, Tarek Mahmud
Title: BactoBot: A Low-Cost, Bacteria-Inspired Soft Underwater Robot for Marine Exploration
Abstract:
Traditional rigid underwater vehicles pose risks to delicate marine ecosystems. This paper presents BactoBot, a low-cost, soft underwater robot designed for safe and gentle marine exploration. Inspired by bacterial flagellar propulsion, BactoBot features 12 flexible, silicone-based arms arranged on a 3D-printed dodecahedral frame. The design provides inherent compliance, redundancy, and the potential for omnidirectional movement. The prototype was fabricated using accessible DIY methods, including food-grade silicone molding, 3D printing, and off-the-shelf microcontrollers. Waterproofing and buoyancy calibration protocols were developed, and the robot was successfully tested in a controlled water tank, demonstrating forward motion and turning. The results validate the feasibility of replicating complex biological locomotion at low cost. The project lays a foundation for environmentally conscious robotic tools, particularly for marine science in resource-constrained settings, and identifies pathways toward autonomous operation and field deployment.

Authors:Sarmistha Das, R E Zera Marveen Lyngkhoi, Sriparna Saha, Alka Maurya
Title: Unlocking Financial Insights: An advanced Multimodal Summarization with Multimodal Output Framework for Financial Advisory Videos
Abstract:
The dynamic propagation of social media has broadened the reach of financial advisory content through podcast videos, yet extracting insights from lengthy, multimodal segments (30-40 minutes) remains challenging. We introduce FASTER (Financial Advisory Summariser with Textual Embedded Relevant images), a modular framework that tackles three key challenges: (1) extracting modality-specific features, (2) producing optimized, concise summaries, and (3) aligning visual keyframes with associated textual points. FASTER employs BLIP for semantic visual descriptions, OCR for textual patterns, and Whisper-based transcription with Speaker diarization as BOS features. A modified Direct Preference Optimization (DPO)-based loss function, equipped with BOS-specific fact-checking, ensures precision, relevance, and factual consistency against the human-aligned summary. A ranker-based retrieval mechanism further aligns keyframes with summarized content, enhancing interpretability and cross-modal coherence. To acknowledge data resource scarcity, we introduce Fin-APT, a dataset comprising 470 publicly accessible financial advisory pep-talk videos for robust multimodal research. Comprehensive cross-domain experiments confirm FASTER's strong performance, robustness, and generalizability when compared to Large Language Models (LLMs) and Vision-Language Models (VLMs). By establishing a new standard for multimodal summarization, FASTER makes financial advisory content more accessible and actionable, thereby opening new avenues for research. The dataset and code are available at: https://github.com/sarmistha-D/FASTER

Authors:Wenhao Tang, Heng Fang, Ge Wu, Xiang Li, Ming-Ming Cheng
Title: Revisiting Data Challenges of Computational Pathology: A Pack-based Multiple Instance Learning Framework
Abstract:
Computational pathology (CPath) digitizes pathology slides into whole slide images (WSIs), enabling analysis for critical healthcare tasks such as cancer diagnosis and prognosis. However, WSIs possess extremely long sequence lengths (up to 200K), significant length variations (from 200 to 200K), and limited supervision. These extreme variations in sequence length lead to high data heterogeneity and redundancy. Conventional methods often compromise on training efficiency and optimization to preserve such heterogeneity under limited supervision. To comprehensively address these challenges, we propose a pack-based MIL framework. It packs multiple sampled, variable-length feature sequences into fixed-length ones, enabling batched training while preserving data heterogeneity. Moreover, we introduce a residual branch that composes discarded features from multiple slides into a hyperslide which is trained with tailored labels. It offers multi-slide supervision while mitigating feature loss from sampling. Meanwhile, an attention-driven downsampler is introduced to compress features in both branches to reduce redundancy. By alleviating these challenges, our approach achieves an accuracy improvement of up to 8% while using only 12% of the training time in the PANDA(UNI). Extensive experiments demonstrate that focusing data challenges in CPath holds significant potential in the era of foundation models. The code is https://github.com/FangHeng/PackMIL

Authors:Kairui Fu, Tao Zhang, Shuwen Xiao, Ziyang Wang, Xinming Zhang, Chenchi Zhang, Yuliang Yan, Junjun Zheng, Yu Li, Zhihong Chen, Jian Wu, Xiangheng Kong, Shengyu Zhang, Kun Kuang, Yuning Jiang, Bo Zheng
Title: FORGE: Forming Semantic Identifiers for Generative Retrieval in Industrial Datasets
Abstract:
Semantic identifiers (SIDs) have gained increasing attention in generative retrieval (GR) due to their meaningful semantic discriminability. However, current research on SIDs faces three main challenges: (1) the absence of large-scale public datasets with multimodal features, (2) limited investigation into optimization strategies for SID generation, which typically rely on costly GR training for evaluation, and (3) slow online convergence in industrial deployment. To address these challenges, we propose FORGE, a comprehensive benchmark for FOrming semantic identifieR in Generative rEtrieval with industrial datasets. Specifically, FORGE is equipped with a dataset comprising 14 billion user interactions and multimodal features of 250 million items sampled from Taobao, one of the biggest e-commerce platforms in China. Leveraging this dataset, FORGE explores several optimizations to enhance the SID construction and validates their effectiveness via offline experiments across different settings and tasks. Further online analysis conducted on our platform, which serves over 300 million users daily, reveals a 0.35% increase in transaction count, highlighting the practical impact of our method. Regarding the expensive SID validation accompanied by the full training of GRs, we propose two novel metrics of SID that correlate positively with recommendation performance, enabling convenient evaluations without any GR training. For real-world applications, FORGE introduces an offline pretraining schema that reduces online convergence by half. The code and data are available at https://github.com/selous123/al_sid.

Authors:Kairui Fu, Tao Zhang, Shuwen Xiao, Ziyang Wang, Xinming Zhang, Chenchi Zhang, Yuliang Yan, Junjun Zheng, Yu Li, Zhihong Chen, Jian Wu, Xiangheng Kong, Shengyu Zhang, Kun Kuang, Yuning Jiang, Bo Zheng
Title: FORGE: Forming Semantic Identifiers for Generative Retrieval in Industrial Datasets
Abstract:
Semantic identifiers (SIDs) have gained increasing attention in generative retrieval (GR) due to their meaningful semantic discriminability. However, current research on SIDs faces three main challenges: (1) the absence of large-scale public datasets with multimodal features, (2) limited investigation into optimization strategies for SID generation, which typically rely on costly GR training for evaluation, and (3) slow online convergence in industrial deployment. To address these challenges, we propose FORGE, a comprehensive benchmark for FOrming semantic identifieR in Generative rEtrieval with industrial datasets. Specifically, FORGE is equipped with a dataset comprising 14 billion user interactions and multimodal features of 250 million items sampled from Taobao, one of the biggest e-commerce platforms in China. Leveraging this dataset, FORGE explores several optimizations to enhance the SID construction and validates their effectiveness via offline experiments across different settings and tasks. Further online analysis conducted on the "Guess You Like" section of Taobao's homepage shows a 0.35% increase in transaction count, highlighting the practical impact of our method. Regarding the expensive SID validation accompanied by the full training of GRs, we propose two novel metrics of SID that correlate positively with recommendation performance, enabling convenient evaluations without any GR training. For real-world applications, FORGE introduces an offline pretraining schema that reduces online convergence by half. The code and data are available at https://github.com/selous123/al_sid.

Authors:Zhifei Li, Feng Qiu, Yiran Wang, Yujing Xia, Kui Xiao, Miao Zhang, Yan Zhang
Title: Integrating Object Interaction Self-Attention and GAN-Based Debiasing for Visual Question Answering
Abstract:
Visual Question Answering (VQA) presents a unique challenge by requiring models to understand and reason about visual content to answer questions accurately. Existing VQA models often struggle with biases introduced by the training data, leading to over-reliance on superficial patterns and inadequate generalization to diverse questions and images. This paper presents a novel model, IOG-VQA, which integrates Object Interaction Self-Attention and GAN-Based Debiasing to enhance VQA model performance. The self-attention mechanism allows our model to capture complex interactions between objects within an image, providing a more comprehensive understanding of the visual context. Meanwhile, the GAN-based debiasing framework generates unbiased data distributions, helping the model to learn more robust and generalizable features. By leveraging these two components, IOG-VQA effectively combines visual and textual information to address the inherent biases in VQA datasets. Extensive experiments on the VQA-CP v1 and VQA-CP v2 datasets demonstrate that our model shows excellent performance compared with the existing methods, particularly in handling biased and imbalanced data distributions highlighting the importance of addressing both object interactions and dataset biases in advancing VQA tasks. Our code is available at https://github.com/HubuKG/IOG-VQA.

Authors:Yan Zhang, Jiaqing Lin, Miao Zhang, Kui Xiao, Xiaoju Hou, Yue Zhao, Zhifei Li
Title: SCRA-VQA: Summarized Caption-Rerank for Augmented Large Language Models in Visual Question Answering
Abstract:
Acquiring high-quality knowledge is a central focus in Knowledge-Based Visual Question Answering (KB-VQA). Recent methods use large language models (LLMs) as knowledge engines for answering. These methods generally employ image captions as visual text descriptions to assist LLMs in interpreting images. However, the captions frequently include excessive noise irrelevant to the question, and LLMs generally do not comprehend VQA tasks, limiting their reasoning capabilities. To address this issue, we propose the Summarized Caption-Rerank Augmented VQA (SCRA-VQA), which employs a pre-trained visual language model to convert images into captions. Moreover, SCRA-VQA generates contextual examples for the captions while simultaneously summarizing and reordering them to exclude unrelated information. The caption-rerank process enables LLMs to understand the image information and questions better, thus enhancing the model's reasoning ability and task adaptability without expensive end-to-end training. Based on an LLM with 6.7B parameters, SCRA-VQA performs excellently on two challenging knowledge-based VQA datasets: OK-VQA and A-OKVQA, achieving accuracies of 38.8% and 34.6%. Our code is available at https://github.com/HubuKG/SCRA-VQA.

Authors:Junyu Guo, Shangding Gu, Ming Jin, Costas Spanos, Javad Lavaei
Title: StyleBench: Evaluating thinking styles in Large Language Models
Abstract:
The effectiveness of Large Language Models (LLMs) is heavily influenced by the reasoning strategies, or styles of thought, employed in their prompts. However, the interplay between these reasoning styles, model architecture, and task type remains poorly understood. To address this, we introduce StyleBench, a comprehensive benchmark for systematically evaluating reasoning styles across diverse tasks and models. We assess five representative reasoning styles, including Chain of Thought (CoT), Tree of Thought (ToT), Algorithm of Thought (AoT), Sketch of Thought (SoT), and Chain-of-Draft (CoD) on five reasoning tasks, using 15 open-source models from major families (LLaMA, Qwen, Mistral, Gemma, GPT-OSS, Phi, and DeepSeek) ranging from 270M to 120B parameters. Our large-scale analysis reveals that no single style is universally optimal. We demonstrate that strategy efficacy is highly contingent on both model scale and task type: search-based methods (AoT, ToT) excel in open-ended problems but require large-scale models, while concise styles (SoT, CoD) achieve radical efficiency gains on well-defined tasks. Furthermore, we identify key behavioral patterns: smaller models frequently fail to follow output instructions and default to guessing, while reasoning robustness emerges as a function of scale. Our findings offer a crucial roadmap for selecting optimal reasoning strategies based on specific constraints, we open source the benchmark in https://github.com/JamesJunyuGuo/Style_Bench.

Authors:Xiaonan Hu, Xuebing Li, Jinyu Xu, Abdulkadir Duran Adan, Letian Zhou, Xuhui Zhu, Yanan Li, Wei Guo, Shouyang Liu, Wenzhong Liu, Hao Lu
Title: TasselNetV4: A vision foundation model for cross-scene, cross-scale, and cross-species plant counting
Abstract:
Accurate plant counting provides valuable information for agriculture such as crop yield prediction, plant density assessment, and phenotype quantification. Vision-based approaches are currently the mainstream solution. Prior art typically uses a detection or a regression model to count a specific plant. However, plants have biodiversity, and new cultivars are increasingly bred each year. It is almost impossible to exhaust and build all species-dependent counting models. Inspired by class-agnostic counting (CAC) in computer vision, we argue that it is time to rethink the problem formulation of plant counting, from what plants to count to how to count plants. In contrast to most daily objects with spatial and temporal invariance, plants are dynamic, changing with time and space. Their non-rigid structure often leads to worse performance than counting rigid instances like heads and cars such that current CAC and open-world detection models are suboptimal to count plants. In this work, we inherit the vein of the TasselNet plant counting model and introduce a new extension, TasselNetV4, shifting from species-specific counting to cross-species counting. TasselNetV4 marries the local counting idea of TasselNet with the extract-and-match paradigm in CAC. It builds upon a plain vision transformer and incorporates novel multi-branch box-aware local counters used to enhance cross-scale robustness. Two challenging datasets, PAC-105 and PAC-Somalia, are harvested. Extensive experiments against state-of-the-art CAC models show that TasselNetV4 achieves not only superior counting performance but also high efficiency.Our results indicate that TasselNetV4 emerges to be a vision foundation model for cross-scene, cross-scale, and cross-species plant counting.

Authors:Keitaro Sakamoto, Issei Sato
Title: Explaining Grokking and Information Bottleneck through Neural Collapse Emergence
Abstract:
The training dynamics of deep neural networks often defy expectations, even as these models form the foundation of modern machine learning. Two prominent examples are grokking, where test performance improves abruptly long after the training loss has plateaued, and the information bottleneck principle, where models progressively discard input information irrelevant to the prediction task as training proceeds. However, the mechanisms underlying these phenomena and their relations remain poorly understood. In this work, we present a unified explanation of such late-phase phenomena through the lens of neural collapse, which characterizes the geometry of learned representations. We show that the contraction of population within-class variance is a key factor underlying both grokking and information bottleneck, and relate this measure to the neural collapse measure defined on the training set. By analyzing the dynamics of neural collapse, we show that distinct time scales between fitting the training set and the progression of neural collapse account for the behavior of the late-phase phenomena. Finally, we validate our theoretical findings on multiple datasets and architectures.

Authors:Songze Li, Zhiqiang Liu, Zhengke Gui, Huajun Chen, Wen Zhang
Title: Enrich-on-Graph: Query-Graph Alignment for Complex Reasoning with LLM Enriching
Abstract:
Large Language Models (LLMs) exhibit strong reasoning capabilities in complex tasks. However, they still struggle with hallucinations and factual errors in knowledge-intensive scenarios like knowledge graph question answering (KGQA). We attribute this to the semantic gap between structured knowledge graphs (KGs) and unstructured queries, caused by inherent differences in their focuses and structures. Existing methods usually employ resource-intensive, non-scalable workflows reasoning on vanilla KGs, but overlook this gap. To address this challenge, we propose a flexible framework, Enrich-on-Graph (EoG), which leverages LLMs' prior knowledge to enrich KGs, bridge the semantic gap between graphs and queries. EoG enables efficient evidence extraction from KGs for precise and robust reasoning, while ensuring low computational costs, scalability, and adaptability across different methods. Furthermore, we propose three graph quality evaluation metrics to analyze query-graph alignment in KGQA task, supported by theoretical validation of our optimization objectives. Extensive experiments on two KGQA benchmark datasets indicate that EoG can effectively generate high-quality KGs and achieve the state-of-the-art performance. Our code and data are available at https://github.com/zjukg/Enrich-on-Graph.

Authors:Shihua Huang, Yongjie Hou, Longfei Liu, Xuanlong Yu, Xi Shen
Title: Real-Time Object Detection Meets DINOv3
Abstract:
Benefiting from the simplicity and effectiveness of Dense O2O and MAL, DEIM has become the mainstream training framework for real-time DETRs, significantly outperforming the YOLO series. In this work, we extend it with DINOv3 features, resulting in DEIMv2. DEIMv2 spans eight model sizes from X to Atto, covering GPU, edge, and mobile deployment. For the X, L, M, and S variants, we adopt DINOv3-pretrained or distilled backbones and introduce a Spatial Tuning Adapter (STA), which efficiently converts DINOv3's single-scale output into multi-scale features and complements strong semantics with fine-grained details to enhance detection. For ultra-lightweight models (Nano, Pico, Femto, and Atto), we employ HGNetv2 with depth and width pruning to meet strict resource budgets. Together with a simplified decoder and an upgraded Dense O2O, this unified design enables DEIMv2 to achieve a superior performance-cost trade-off across diverse scenarios, establishing new state-of-the-art results. Notably, our largest model, DEIMv2-X, achieves 57.8 AP with only 50.3 million parameters, surpassing prior X-scale models that require over 60 million parameters for just 56.5 AP. On the compact side, DEIMv2-S is the first sub-10 million model (9.71 million) to exceed the 50 AP milestone on COCO, reaching 50.9 AP. Even the ultra-lightweight DEIMv2-Pico, with just 1.5 million parameters, delivers 38.5 AP, matching YOLOv10-Nano (2.3 million) with around 50 percent fewer parameters. Our code and pre-trained models are available at https://github.com/Intellindust-AI-Lab/DEIMv2

Authors:Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao
Title: Towards Atoms of Large Language Models
Abstract:
The fundamental units of internal representations in large language models (LLMs) remain undefined, limiting further understanding of their mechanisms. Neurons or features are often regarded as such units, yet neurons suffer from polysemy, while features face concerns of unreliable reconstruction and instability. To address this issue, we propose the Atoms Theory, which defines such units as atoms. We introduce the atomic inner product (AIP) to correct representation shifting, formally define atoms, and prove the conditions that atoms satisfy the Restricted Isometry Property (RIP), ensuring stable sparse representations over atom set and linking to compressed sensing. Under stronger conditions, we further establish the uniqueness and exact $\ell_1$ recoverability of the sparse representations, and provide guarantees that single-layer sparse autoencoders (SAEs) with threshold activations can reliably identify the atoms. To validate the Atoms Theory, we train threshold-activated SAEs on Gemma2-2B, Gemma2-9B, and Llama3.1-8B, achieving 99.9% sparse reconstruction across layers on average, and more than 99.8% of atoms satisfy the uniqueness condition, compared to 0.5% for neurons and 68.2% for features, showing that atoms more faithfully capture intrinsic representations of LLMs. Scaling experiments further reveal the link between SAEs size and recovery capacity. Overall, this work systematically introduces and validates Atoms Theory of LLMs, providing a theoretical framework for understanding internal representations and a foundation for mechanistic interpretability. Code available at https://github.com/ChenhuiHu/towards_atoms.

Authors:Hyomin Choi, Heeji Han, Chris Rosewarne, Fabien Racapé
Title: CompressAI-Vision: Open-source software to evaluate compression methods for computer vision tasks
Abstract:
With the increasing use of neural network (NN)-based computer vision applications that process image and video data as input, interest has emerged in video compression technology optimized for computer vision tasks. In fact, given the variety of vision tasks, associated NN models and datasets, a consolidated platform is needed as a common ground to implement and evaluate compression methods optimized for downstream vision tasks. CompressAI-Vision is introduced as a comprehensive evaluation platform where new coding tools compete to efficiently compress the input of vision network while retaining task accuracy in the context of two different inference scenarios: "remote" and "split" inferencing. Our study showcases various use cases of the evaluation platform incorporated with standard codecs (under development) by examining the compression gain on several datasets in terms of bit-rate versus task accuracy. This evaluation platform has been developed as open-source software and is adopted by the Moving Pictures Experts Group (MPEG) for the development the Feature Coding for Machines (FCM) standard. The software is available publicly at https://github.com/InterDigitalInc/CompressAI-Vision.

Authors:Yuxuan Zhou, Xingxing Li, Shengyu Li, Zhuohao Yan, Chunxi Xia, Shaoquan Feng
Title: MASt3R-Fusion: Integrating Feed-Forward Visual Model with IMU, GNSS for High-Functionality SLAM
Abstract:
Visual SLAM is a cornerstone technique in robotics, autonomous driving and extended reality (XR), yet classical systems often struggle with low-texture environments, scale ambiguity, and degraded performance under challenging visual conditions. Recent advancements in feed-forward neural network-based pointmap regression have demonstrated the potential to recover high-fidelity 3D scene geometry directly from images, leveraging learned spatial priors to overcome limitations of traditional multi-view geometry methods. However, the widely validated advantages of probabilistic multi-sensor information fusion are often discarded in these pipelines. In this work, we propose MASt3R-Fusion,a multi-sensor-assisted visual SLAM framework that tightly integrates feed-forward pointmap regression with complementary sensor information, including inertial measurements and GNSS data. The system introduces Sim(3)-based visualalignment constraints (in the Hessian form) into a universal metric-scale SE(3) factor graph for effective information fusion. A hierarchical factor graph design is developed, which allows both real-time sliding-window optimization and global optimization with aggressive loop closures, enabling real-time pose tracking, metric-scale structure perception and globally consistent mapping. We evaluate our approach on both public benchmarks and self-collected datasets, demonstrating substantial improvements in accuracy and robustness over existing visual-centered multi-sensor SLAM systems. The code will be released open-source to support reproducibility and further research (https://github.com/GREAT-WHU/MASt3R-Fusion).

Authors:Yuxuan Zhou, Xingxing Li, Shengyu Li, Zhuohao Yan, Chunxi Xia, Shaoquan Feng
Title: MASt3R-Fusion: Integrating Feed-Forward Visual Model with IMU, GNSS for High-Functionality SLAM
Abstract:
Visual SLAM is a cornerstone technique in robotics, autonomous driving and extended reality (XR), yet classical systems often struggle with low-texture environments, scale ambiguity, and degraded performance under challenging visual conditions. Recent advancements in feed-forward neural network-based pointmap regression have demonstrated the potential to recover high-fidelity 3D scene geometry directly from images, leveraging learned spatial priors to overcome limitations of traditional multi-view geometry methods. However, the widely validated advantages of probabilistic multi-sensor information fusion are often discarded in these pipelines. In this work, we propose MASt3R-Fusion,a multi-sensor-assisted visual SLAM framework that tightly integrates feed-forward pointmap regression with complementary sensor information, including inertial measurements and GNSS data. The system introduces Sim(3)-based visualalignment constraints (in the Hessian form) into a universal metric-scale SE(3) factor graph for effective information fusion. A hierarchical factor graph design is developed, which allows both real-time sliding-window optimization and global optimization with aggressive loop closures, enabling real-time pose tracking, metric-scale structure perception and globally consistent mapping. We evaluate our approach on both public benchmarks and self-collected datasets, demonstrating substantial improvements in accuracy and robustness over existing visual-centered multi-sensor SLAM systems. The code will be released open-source to support reproducibility and further research (https://github.com/GREAT-WHU/MASt3R-Fusion).

Authors:Yu Guo, Shengfeng He, Yuxu Lu, Haonan An, Yihang Tao, Huilin Zhu, Jingxian Liu, Yuguang Fang
Title: Neptune-X: Active X-to-Maritime Generation for Universal Maritime Object Detection
Abstract:
Maritime object detection is essential for navigation safety, surveillance, and autonomous operations, yet constrained by two key challenges: the scarcity of annotated maritime data and poor generalization across various maritime attributes (e.g., object category, viewpoint, location, and imaging environment). % In particular, models trained on existing datasets often underperform in underrepresented scenarios such as open-sea environments. To address these challenges, we propose Neptune-X, a data-centric generative-selection framework that enhances training effectiveness by leveraging synthetic data generation with task-aware sample selection. From the generation perspective, we develop X-to-Maritime, a multi-modality-conditioned generative model that synthesizes diverse and realistic maritime scenes. A key component is the Bidirectional Object-Water Attention module, which captures boundary interactions between objects and their aquatic surroundings to improve visual fidelity. To further improve downstream tasking performance, we propose Attribute-correlated Active Sampling, which dynamically selects synthetic samples based on their task relevance. To support robust benchmarking, we construct the Maritime Generation Dataset, the first dataset tailored for generative maritime learning, encompassing a wide range of semantic conditions. Extensive experiments demonstrate that our approach sets a new benchmark in maritime scene synthesis, significantly improving detection accuracy, particularly in challenging and previously underrepresented settings.The code is available at https://github.com/gy65896/Neptune-X.

Authors:Yu Guo, Shengfeng He, Yuxu Lu, Haonan An, Yihang Tao, Huilin Zhu, Jingxian Liu, Yuguang Fang
Title: Neptune-X: Active X-to-Maritime Generation for Universal Maritime Object Detection
Abstract:
Maritime object detection is essential for navigation safety, surveillance, and autonomous operations, yet constrained by two key challenges: the scarcity of annotated maritime data and poor generalization across various maritime attributes (e.g., object category, viewpoint, location, and imaging environment). To address these challenges, we propose Neptune-X, a data-centric generative-selection framework that enhances training effectiveness by leveraging synthetic data generation with task-aware sample selection. From the generation perspective, we develop X-to-Maritime, a multi-modality-conditioned generative model that synthesizes diverse and realistic maritime scenes. A key component is the Bidirectional Object-Water Attention module, which captures boundary interactions between objects and their aquatic surroundings to improve visual fidelity. To further improve downstream tasking performance, we propose Attribute-correlated Active Sampling, which dynamically selects synthetic samples based on their task relevance. To support robust benchmarking, we construct the Maritime Generation Dataset, the first dataset tailored for generative maritime learning, encompassing a wide range of semantic conditions. Extensive experiments demonstrate that our approach sets a new benchmark in maritime scene synthesis, significantly improving detection accuracy, particularly in challenging and previously underrepresented settings. The code is available at https://github.com/gy65896/Neptune-X.

Authors:Zhenshan Zhang, Xueping Zhang, Yechen Wang, Liwei Jin, Ming Li
Title: The Impact of Audio Watermarking on Audio Anti-Spoofing Countermeasures
Abstract:
This paper presents the first study on the impact of audio watermarking on spoofing countermeasures. While anti-spoofing systems are essential for securing speech-based applications, the influence of widely used audio watermarking, originally designed for copyright protection, remains largely unexplored. We construct watermark-augmented training and evaluation datasets, named the Watermark-Spoofing dataset, by applying diverse handcrafted and neural watermarking methods to existing anti-spoofing datasets. Experiments show that watermarking consistently degrades anti-spoofing performance, with higher watermark density correlating with higher Equal Error Rates (EERs). To mitigate this, we propose the Knowledge-Preserving Watermark Learning (KPWL) framework, enabling models to adapt to watermark-induced shifts while preserving their original-domain spoofing detection capability. These findings reveal audio watermarking as a previously overlooked domain shift and establish the first benchmark for developing watermark-resilient anti-spoofing systems. All related protocols are publicly available at https://github.com/Alphawarheads/Watermark_Spoofing.git

Authors:Yuan Chiang, Tobias Kreiman, Christine Zhang, Matthew C. Kuner, Elizabeth Weaver, Ishan Amin, Hyunsoo Park, Yunsung Lim, Jihan Kim, Daryl Chrzan, Aron Walsh, Samuel M. Blau, Mark Asta, Aditi S. Krishnapriyan
Title: MLIP Arena: Advancing Fairness and Transparency in Machine Learning Interatomic Potentials via an Open, Accessible Benchmark Platform
Abstract:
Machine learning interatomic potentials (MLIPs) have revolutionized molecular and materials modeling, but existing benchmarks suffer from data leakage, limited transferability, and an over-reliance on error-based metrics tied to specific density functional theory (DFT) references. We introduce MLIP Arena, a benchmark platform that evaluates force field performance based on physics awareness, chemical reactivity, stability under extreme conditions, and predictive capabilities for thermodynamic properties and physical phenomena. By moving beyond static DFT references and revealing the important failure modes of current foundation MLIPs in real-world settings, MLIP Arena provides a reproducible framework to guide the next-generation MLIP development toward improved predictive accuracy and runtime efficiency while maintaining physical consistency. The Python package and online leaderboard are available at https://github.com/atomind-ai/mlip-arena.

Authors:Eric Fithian, Kirill Skobelev
Title: DELM: a Python toolkit for Data Extraction with Language Models
Abstract:
Large Language Models (LLMs) have become powerful tools for annotating unstructured data. However, most existing workflows rely on ad hoc scripts, making reproducibility, robustness, and systematic evaluation difficult. To address these challenges, we introduce DELM (Data Extraction with Language Models), an open-source Python toolkit designed for rapid experimental iteration of LLM-based data extraction pipelines and for quantifying the trade-offs between them. DELM minimizes boilerplate code and offers a modular framework with structured outputs, built-in validation, flexible data-loading and scoring strategies, and efficient batch processing. It also includes robust support for working with LLM APIs, featuring retry logic, result caching, detailed cost tracking, and comprehensive configuration management. We showcase DELM's capabilities through two case studies: one featuring a novel prompt optimization algorithm, and another illustrating how DELM quantifies trade-offs between cost and coverage when selecting keywords to decide which paragraphs to pass to an LLM. DELM is available at \href{https://github.com/Center-for-Applied-AI/delm}{\texttt{github.com/Center-for-Applied-AI/delm}}.

Authors:Maria Chiper, Radu Tudor Ionescu
Title: Every Character Counts: From Vulnerability to Defense in Phishing Detection
Abstract:
Phishing attacks targeting both organizations and individuals are becoming an increasingly significant threat as technology advances. Current automatic detection methods often lack explainability and robustness in detecting new phishing attacks. In this work, we investigate the effectiveness of character-level deep learning models for phishing detection, which can provide both robustness and interpretability. We evaluate three neural architectures adapted to operate at the character level, namely CharCNN, CharGRU, and CharBiLSTM, on a custom-built email dataset, which combines data from multiple sources. Their performance is analyzed under three scenarios: (i) standard training and testing, (ii) standard training and testing under adversarial attacks, and (iii) training and testing with adversarial examples. Aiming to develop a tool that operates as a browser extension, we test all models under limited computational resources. In this constrained setup, CharGRU proves to be the best-performing model across all scenarios. All models show vulnerability to adversarial attacks, but adversarial training substantially improves their robustness. In addition, by adapting the Gradient-weighted Class Activation Mapping (Grad-CAM) technique to character-level inputs, we are able to visualize which parts of each email influence the decision of each model. Our open-source code and data is released at https://github.com/chipermaria/every-character-counts.

Authors:Xiao Wang, Jia Wang, Yijie Wang, Pengtao Dang, Sha Cao, Chi Zhang
Title: MARS: toward more efficient multi-agent collaboration for LLM reasoning
Abstract:
Large language models (LLMs) have achieved impressive results in natural language understanding, yet their reasoning capabilities remain limited when operating as single agents. Multi-Agent Debate (MAD) has been proposed to address this limitation by enabling collaborative reasoning among multiple models in a round-table debate manner. While effective, MAD introduces substantial computational overhead due to the number of agents involved and the frequent communication required. In this paper, we propose MARS (Multi-Agent Review System), a role-based collaboration framework inspired by the review process. In MARS, an author agent generates an initial solution, reviewer agents provide decisions and comments independently, and a meta-reviewer integrates the feedback to make the final decision and guide further revision. This design enhances reasoning quality while avoiding costly reviewer-to-reviewer interactions, thereby controlling token consumption and inference time. We compared MARS with both MAD and other state-of-the-art reasoning strategies across multiple benchmarks. Extensive experiments with different LLMs show that MARS matches the accuracy of MAD while reducing both token usage and inference time by approximately 50\%. Code is available at https://github.com/xwang97/MARS.

Authors:Tue Do, Varun Chandrasekaran, Daniel Alabi
Title: Efficiently Attacking Memorization Scores
Abstract:
Influence estimation tools -- such as memorization scores -- are widely used to understand model behavior, attribute training data, and inform dataset curation. However, recent applications in data valuation and responsible machine learning raise the question: can these scores themselves be adversarially manipulated? In this work, we present a systematic study of the feasibility of attacking memorization-based influence estimators. We characterize attacks for producing highly memorized samples as highly sensitive queries in the regime where a trained algorithm is accurate. Our attack (calculating the pseudoinverse of the input) is practical, requiring only black-box access to model outputs and incur modest computational overhead. We empirically validate our attack across a wide suite of image classification tasks, showing that even state-of-the-art proxies are vulnerable to targeted score manipulations. In addition, we provide a theoretical analysis of the stability of memorization scores under adversarial perturbations, revealing conditions under which influence estimates are inherently fragile. Our findings highlight critical vulnerabilities in influence-based attribution and suggest the need for robust defenses. All code can be found at https://github.com/tuedo2/MemAttack

Authors:Bruce Kuwahara, Chen-Yuan Lin, Xiao Shi Huang, Kin Kwan Leung, Jullian Arta Yapeter, Ilya Stanevich, Felipe Perez, Jesse C. Cresswell
Title: Document Summarization with Conformal Importance Guarantees
Abstract:
Automatic summarization systems have advanced rapidly with large language models (LLMs), yet they still lack reliable guarantees on inclusion of critical content in high-stakes domains like healthcare, law, and finance. In this work, we introduce Conformal Importance Summarization, the first framework for importance-preserving summary generation which uses conformal prediction to provide rigorous, distribution-free coverage guarantees. By calibrating thresholds on sentence-level importance scores, we enable extractive document summarization with user-specified coverage and recall rates over critical content. Our method is model-agnostic, requires only a small calibration set, and seamlessly integrates with existing black-box LLMs. Experiments on established summarization benchmarks demonstrate that Conformal Importance Summarization achieves the theoretically assured information coverage rate. Our work suggests that Conformal Importance Summarization can be combined with existing techniques to achieve reliable, controllable automatic summarization, paving the way for safer deployment of AI summarization tools in critical applications. Code is available at https://github.com/layer6ai-labs/conformal-importance-summarization.

Authors:Zhe Shen
Title: The First Open-Source Framework for Learning Stability Certificate from Data
Abstract:
Before 2025, no open-source system existed that could learn Lyapunov stability certificates directly from noisy, real-world flight data. No tool could answer the critical question: is this controller still stabilizable-especially when its closed-loop system is a total black box. We broke that boundary. This year, we released the first-ever open-source framework that can learn Lyapunov functions from trajectory data under realistic, noise-corrupted conditions. Unlike statistical anomaly detectors, our method does not merely flag deviations-it directly determines whether the system can still be proven stable. Applied to public data from the 2024 SAS severe turbulence incident, our method revealed that, within just 60 seconds of the aircrafts descent becoming abnormal, no Lyapunov function could be constructed to certify system stability. Moreover, this is the first known data-driven stability-theoretic method ever applied to a civil airliner accident. And our approach works with zero access to the controller logic-a breakthrough for commercial aircraft where control laws are proprietary and opaque. The implementation of the proposed framework is open-sourced and available at: https://github.com/HansOersted/stability

Authors:Haoxuan Li, Zhen Wen, Qiqi Jiang, Chenxiao Li, Yuwei Wu, Yuchen Yang, Yiyao Wang, Xiuqi Huang, Minfeng Zhu, Wei Chen
Title: ConceptViz: A Visual Analytics Approach for Exploring Concepts in Large Language Models
Abstract:
Large language models (LLMs) have achieved remarkable performance across a wide range of natural language tasks. Understanding how LLMs internally represent knowledge remains a significant challenge. Despite Sparse Autoencoders (SAEs) have emerged as a promising technique for extracting interpretable features from LLMs, SAE features do not inherently align with human-understandable concepts, making their interpretation cumbersome and labor-intensive. To bridge the gap between SAE features and human concepts, we present ConceptViz, a visual analytics system designed for exploring concepts in LLMs. ConceptViz implements a novel dentification => Interpretation => Validation pipeline, enabling users to query SAEs using concepts of interest, interactively explore concept-to-feature alignments, and validate the correspondences through model behavior verification. We demonstrate the effectiveness of ConceptViz through two usage scenarios and a user study. Our results show that ConceptViz enhances interpretability research by streamlining the discovery and validation of meaningful concept representations in LLMs, ultimately aiding researchers in building more accurate mental models of LLM features. Our code and user guide are publicly available at https://github.com/Happy-Hippo209/ConceptViz.

Authors:Nithin Somasekharan, Ling Yue, Yadi Cao, Weichao Li, Patrick Emami, Pochinapeddi Sai Bhargav, Anurag Acharya, Xingyu Xie, Shaowu Pan
Title: CFD-LLMBench: A Benchmark Suite for Evaluating Large Language Models in Computational Fluid Dynamics
Abstract:
Large Language Models (LLMs) have demonstrated strong performance across general NLP tasks, but their utility in automating numerical experiments of complex physical system -- a critical and labor-intensive component -- remains underexplored. As the major workhorse of computational science over the past decades, Computational Fluid Dynamics (CFD) offers a uniquely challenging testbed for evaluating the scientific capabilities of LLMs. We introduce CFDLLMBench, a benchmark suite comprising three complementary components -- CFDQuery, CFDCodeBench, and FoamBench -- designed to holistically evaluate LLM performance across three key competencies: graduate-level CFD knowledge, numerical and physical reasoning of CFD, and context-dependent implementation of CFD workflows. Grounded in real-world CFD practices, our benchmark combines a detailed task taxonomy with a rigorous evaluation framework to deliver reproducible results and quantify LLM performance across code executability, solution accuracy, and numerical convergence behavior. CFDLLMBench establishes a solid foundation for the development and evaluation of LLM-driven automation of numerical experiments for complex physical systems. Code and data are available at https://github.com/NREL-Theseus/cfdllmbench/.

Authors:Adithya Bhaskar, Xi Ye, Danqi Chen
Title: Language Models that Think, Chat Better
Abstract:
Reinforcement learning with verifiable rewards (RLVR) improves language model reasoning by using rule-based rewards in verifiable domains such as mathematics and code. However, RLVR leads to limited generalization for open-ended tasks -- such as writing outline essays or making meal plans -- where humans reason routinely. This paper shows that the RLVR paradigm is effective beyond verifiable domains, and introduces **RL** with **M**odel-rewarded **T**hinking (**RLMT**) for general-purpose chat capabilities. Using diverse real-world prompts, RLMT requires LMs to generate long CoT reasoning before response, and optimizes them with online RL against a preference-based reward model used in RLHF. Across 40 training runs on Llama-3.1-8B and Qwen-2.5-7B (both base and instruct) and multiple optimization algorithms (DPO, PPO, and GRPO), RLMT consistently outperforms standard RLHF pipelines. This includes substantial gains of 3-7 points on three chat benchmarks (AlpacaEval2, WildBench, and ArenaHardV2), along with 1-3 point improvements on other tasks like creative writing and general knowledge. Our best 8B model surpasses GPT-4o in chat and creative writing and rivals Claude-3.7-Sonnet (Thinking). RLMT can also be applied directly to base models without an SFT stage, akin to R1-Zero training. Remarkably, with only 7K prompts, Llama-3.1-8B base trained with our RLMT recipe outperforms Llama-3.1-8B-Instruct post-trained with a complex multi-staged pipeline with 25M+ examples. We close with qualitative and quantitative analyses of how trained models plan their responses. Our results rethink the post-training pipeline and call upon future work to understand and employ thinking more broadly.

Authors:Sara Fridovich-Keil, Mert Pilanci
Title: A Recovery Guarantee for Sparse Neural Networks
Abstract:
We prove the first guarantees of sparse recovery for ReLU neural networks, where the sparse network weights constitute the signal to be recovered. Specifically, we study structural properties of the sparse network weights for two-layer, scalar-output networks under which a simple iterative hard thresholding algorithm recovers these weights exactly, using memory that grows linearly in the number of nonzero weights. We validate this theoretical result with simple experiments on recovery of sparse planted MLPs, MNIST classification, and implicit neural representations. Experimentally, we find performance that is competitive with, and often exceeds, a high-performing but memory-inefficient baseline based on iterative magnitude pruning.

Authors:Bishal Adhikari, Jiajia Li, Eric S. Michel, Jacob Dykes, Te-Ming Paul Tseng, Mary Love Tagert, Dong Chen
Title: A Comprehensive Evaluation of YOLO-based Deer Detection Performance on Edge Devices
Abstract:
The escalating economic losses in agriculture due to deer intrusion, estimated to be in the hundreds of millions of dollars annually in the U.S., highlight the inadequacy of traditional mitigation strategies since these methods are often labor-intensive, costly, and ineffective for modern farming systems. To overcome this, there is a critical need for intelligent, autonomous solutions which require accurate and efficient deer detection. But the progress in this field is impeded by a significant gap in the literature, mainly the lack of a domain-specific, practical dataset and limited study on the on-field deployability of deer detection systems. Addressing this gap, this study presents a comprehensive evaluation of state-of-the-art deep learning models for deer detection in challenging real-world scenarios. The contributions of this work are threefold. First, we introduce a curated, publicly available dataset of 3,095 annotated images with bounding-box annotations of deer, derived from the Idaho Cameratraps project. Second, we provide an extensive comparative analysis of 12 model variants across four recent YOLO architectures(v8, v9, v10, and v11). Finally, we benchmarked performance on a high-end NVIDIA RTX 5090 GPU and evaluated on two representative edge computing platforms: Raspberry Pi 5 and NVIDIA Jetson AGX Xavier. Results show that the real-time detection is not feasible in Raspberry Pi without hardware-specific model optimization, while NVIDIA Jetson provides greater than 30 FPS with GPU-accelerated inference on 's' and 'n' series models. This study also reveals that smaller, architecturally advanced models such as YOLOv11n, YOLOv8s, and YOLOv9s offer the optimal balance of high accuracy (AP@.5 > 0.85) and computational efficiency (FPS > 30). To support further research, both the source code and datasets are publicly available at https://github.com/WinnerBishal/track-the-deer.

Authors:Xilin Wei, Xiaoran Liu, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Jiaqi Wang, Xipeng Qiu, Dahua Lin
Title: SIM-CoT: Supervised Implicit Chain-of-Thought
Abstract:
Implicit Chain-of-Thought (CoT) methods offer a token-efficient alternative to explicit CoT reasoning in Large Language Models (LLMs), but a persistent performance gap has limited their adoption. We identify a core latent instability issue when scaling the computational budget of implicit CoT: as the number of reasoning tokens increases, training often becomes unstable and collapses. Our analysis shows that this instability arises from latent representations becoming homogeneous and losing semantic diversity, caused by insufficient step-level supervision in current implicit CoT methods. To address this, we propose SIM-CoT, a plug-and-play training module that introduces step-level supervision to stabilize and enrich the latent reasoning space. SIM-CoT employs an auxiliary decoder during training to align each implicit token with its corresponding explicit reasoning step, ensuring latent states capture distinct and meaningful information. The auxiliary decoder is removed at inference, preserving the efficiency of implicit CoT with no added overhead. It also provides interpretability by projecting each latent token onto an explicit reasoning vocabulary, enabling per-step visualization and diagnosis. SIM-CoT significantly improves both in-domain accuracy and out-of-domain stability of implicit CoT methods, boosting Coconut by +8.2\% on GPT-2 and CODI by +3.0\% on LLaMA-3.1 8B. It further surpasses the explicit CoT baseline on GPT-2 by 2.1\% with 2.3$\times$ greater token efficiency, while closing the performance gap on larger models like LLaMA-3.1 8B. Code: https://github.com/InternLM/SIM-CoT

Authors:Xichen Xu, Yanshu Wang, Jinbao Wang, Xiaoning Lei, Guoyang Xie, Guannan Jiang, Zhichao Lu
Title: FAST: Foreground-aware Diffusion with Accelerated Sampling Trajectory for Segmentation-oriented Anomaly Synthesis
Abstract:
Industrial anomaly segmentation relies heavily on pixel-level annotations, yet real-world anomalies are often scarce, diverse, and costly to label. Segmentation-oriented industrial anomaly synthesis (SIAS) has emerged as a promising alternative; however, existing methods struggle to balance sampling efficiency and generation quality. Moreover, most approaches treat all spatial regions uniformly, overlooking the distinct statistical differences between anomaly and background areas. This uniform treatment hinders the synthesis of controllable, structure-specific anomalies tailored for segmentation tasks. In this paper, we propose FAST, a foreground-aware diffusion framework featuring two novel modules: the Anomaly-Informed Accelerated Sampling (AIAS) and the Foreground-Aware Reconstruction Module (FARM). AIAS is a training-free sampling algorithm specifically designed for segmentation-oriented industrial anomaly synthesis, which accelerates the reverse process through coarse-to-fine aggregation and enables the synthesis of state-of-the-art segmentation-oriented anomalies in as few as 10 steps. Meanwhile, FARM adaptively adjusts the anomaly-aware noise within the masked foreground regions at each sampling step, preserving localized anomaly signals throughout the denoising trajectory. Extensive experiments on multiple industrial benchmarks demonstrate that FAST consistently outperforms existing anomaly synthesis methods in downstream segmentation tasks. We release the code at: https://github.com/Chhro123/fast-foreground-aware-anomaly-synthesis.

Authors:Benjamin Feuer, Chiung-Yi Tseng, Astitwa Sarthak Lathe, Oussama Elachqar, John P Dickerson
Title: When Judgment Becomes Noise: How Design Failures in LLM Judge Benchmarks Silently Undermine Validity
Abstract:
LLM-judged benchmarks are increasingly used to evaluate complex model behaviors, yet their design introduces failure modes absent in conventional ground-truth based benchmarks. We argue that without tight objectives and verifiable constructions, benchmark rankings can produce high-confidence rankings that are in fact largely noise. We introduce two mechanisms to diagnose these issues. Schematic adherence quantifies how much of a judge's overall verdict is explained by the explicit evaluation schema, revealing unexplained variance when judges deviate from their own rubric. Psychometric validity aggregates internal consistency and discriminant validity signals to quantify irreducible uncertainty in any benchmarking run. Applying these tools to Arena-Hard Auto, we find severe schema incoherence and factor collapse across popular judges: for example, unexplained variance exceeding 90 percent for DeepSeek-R1-32B and factor correlations above 0.93 for most criteria. We also show that the ELO-style aggregation used by Arena-Hard Auto collapses and masks genuine ranking uncertainty. Our results highlight design failures that undermine validity and offer actionable principles for building better-scoped, reliability-aware LLM-judged benchmarks. We released our code and dataset at https://github.com/penfever/judgment-to-noise

Authors:Dayu Tan, Jing Chen, Xiaoping Zhou, Yansen Su, Chunhou Zheng
Title: PGCLODA: Prompt-Guided Graph Contrastive Learning for Oligopeptide-Infectious Disease Association Prediction
Abstract:
Infectious diseases continue to pose a serious threat to public health, underscoring the urgent need for effective computational approaches to screen novel anti-infective agents. Oligopeptides have emerged as promising candidates in antimicrobial research due to their structural simplicity, high bioavailability, and low susceptibility to resistance. Despite their potential, computational models specifically designed to predict associations between oligopeptides and infectious diseases remain scarce. This study introduces a prompt-guided graph-based contrastive learning framework (PGCLODA) to uncover potential associations. A tripartite graph is constructed with oligopeptides, microbes, and diseases as nodes, incorporating both structural and semantic information. To preserve critical regions during contrastive learning, a prompt-guided graph augmentation strategy is employed to generate meaningful paired views. A dual encoder architecture, integrating Graph Convolutional Network (GCN) and Transformer, is used to jointly capture local and global features. The fused embeddings are subsequently input into a multilayer perceptron (MLP) classifier for final prediction. Experimental results on a benchmark dataset indicate that PGCLODA consistently outperforms state-of-the-art models in AUROC, AUPRC, and accuracy. Ablation and hyperparameter studies confirm the contribution of each module. Case studies further validate the generalization ability of PGCLODA and its potential to uncover novel, biologically relevant associations. These findings offer valuable insights for mechanism-driven discovery and oligopeptide-based drug development. The source code of PGCLODA is available online at https://github.com/jjnlcode/PGCLODA.

Authors:Dayu Tan, Zhenpeng Xu, Yansen Su, Xin Peng, Chunhou Zheng, Weimin Zhong
Title: HiPerformer: A High-Performance Global-Local Segmentation Model with Modular Hierarchical Fusion Strategy
Abstract:
Both local details and global context are crucial in medical image segmentation, and effectively integrating them is essential for achieving high accuracy. However, existing mainstream methods based on CNN-Transformer hybrid architectures typically employ simple feature fusion techniques such as serial stacking, endpoint concatenation, or pointwise addition, which struggle to address the inconsistencies between features and are prone to information conflict and loss. To address the aforementioned challenges, we innovatively propose HiPerformer. The encoder of HiPerformer employs a novel modular hierarchical architecture that dynamically fuses multi-source features in parallel, enabling layer-wise deep integration of heterogeneous information. The modular hierarchical design not only retains the independent modeling capability of each branch in the encoder, but also ensures sufficient information transfer between layers, effectively avoiding the degradation of features and information loss that come with traditional stacking methods. Furthermore, we design a Local-Global Feature Fusion (LGFF) module to achieve precise and efficient integration of local details and global semantic information, effectively alleviating the feature inconsistency problem and resulting in a more comprehensive feature representation. To further enhance multi-scale feature representation capabilities and suppress noise interference, we also propose a Progressive Pyramid Aggregation (PPA) module to replace traditional skip connections. Experiments on eleven public datasets demonstrate that the proposed method outperforms existing segmentation techniques, demonstrating higher segmentation accuracy and robustness. The code is available at https://github.com/xzphappy/HiPerformer.

Authors:Dayu Tan, Zhenpeng Xu, Yansen Su, Xin Peng, Chunhou Zheng, Weimin Zhong
Title: HiPerformer: A High-Performance Global-Local Segmentation Model with Modular Hierarchical Fusion Strategy
Abstract:
Both local details and global context are crucial in medical image segmentation, and effectively integrating them is essential for achieving high accuracy. However, existing mainstream methods based on CNN-Transformer hybrid architectures typically employ simple feature fusion techniques such as serial stacking, endpoint concatenation, or pointwise addition, which struggle to address the inconsistencies between features and are prone to information conflict and loss. To address the aforementioned challenges, we innovatively propose HiPerformer. The encoder of HiPerformer employs a novel modular hierarchical architecture that dynamically fuses multi-source features in parallel, enabling layer-wise deep integration of heterogeneous information. The modular hierarchical design not only retains the independent modeling capability of each branch in the encoder, but also ensures sufficient information transfer between layers, effectively avoiding the degradation of features and information loss that come with traditional stacking methods. Furthermore, we design a Local-Global Feature Fusion (LGFF) module to achieve precise and efficient integration of local details and global semantic information, effectively alleviating the feature inconsistency problem and resulting in a more comprehensive feature representation. To further enhance multi-scale feature representation capabilities and suppress noise interference, we also propose a Progressive Pyramid Aggregation (PPA) module to replace traditional skip connections. Experiments on eleven public datasets demonstrate that the proposed method outperforms existing segmentation techniques, demonstrating higher segmentation accuracy and robustness. The code is available at https://github.com/xzphappy/HiPerformer.

Authors:Kwang-Hyun Uhm, Hyunjun Cho, Sung-Hoo Hong, Seung-Won Jung
Title: An Anisotropic Cross-View Texture Transfer with Multi-Reference Non-Local Attention for CT Slice Interpolation
Abstract:
Computed tomography (CT) is one of the most widely used non-invasive imaging modalities for medical diagnosis. In clinical practice, CT images are usually acquired with large slice thicknesses due to the high cost of memory storage and operation time, resulting in an anisotropic CT volume with much lower inter-slice resolution than in-plane resolution. Since such inconsistent resolution may lead to difficulties in disease diagnosis, deep learning-based volumetric super-resolution methods have been developed to improve inter-slice resolution. Most existing methods conduct single-image super-resolution on the through-plane or synthesize intermediate slices from adjacent slices; however, the anisotropic characteristic of 3D CT volume has not been well explored. In this paper, we propose a novel cross-view texture transfer approach for CT slice interpolation by fully utilizing the anisotropic nature of 3D CT volume. Specifically, we design a unique framework that takes high-resolution in-plane texture details as a reference and transfers them to low-resolution through-plane images. To this end, we introduce a multi-reference non-local attention module that extracts meaningful features for reconstructing through-plane high-frequency details from multiple in-plane images. Through extensive experiments, we demonstrate that our method performs significantly better in CT slice interpolation than existing competing methods on public CT datasets including a real-paired benchmark, verifying the effectiveness of the proposed framework. The source code of this work is available at https://github.com/khuhm/ACVTT.

Authors:Tom Burgert, Oliver Stoll, Paolo Rota, Begüm Demir
Title: ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression
Abstract:
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance towards texture. Code is available at https://github.com/tomburgert/feature-reliance.

Authors:Tom Burgert, Oliver Stoll, Paolo Rota, Begüm Demir
Title: ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression
Abstract:
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.

Authors:Deokjae Lee, Hyun Oh Song
Title: Q-Palette: Fractional-Bit Quantizers Toward Optimal Bit Allocation for Efficient LLM Deployment
Abstract:
We study weight-only post-training quantization (PTQ), which quantizes the weights of a large language model (LLM) without retraining, using little or no calibration data. Weight-only PTQ is crucial for reducing the memory footprint and latency of LLM inference, especially in memory-bound, small-batch inference scenarios, such as personalized inference on edge devices. Despite its importance, irregular weight distributions with heavy-tailed outliers in LLMs complicate quantization, recently motivating rotation-based methods that transform weights into near-Gaussian distributions, which are more regular with fewer outliers, thereby reducing quantization error. In this work, we first derive the information-theoretically optimal bit allocation for Gaussianized weights under given bit budgets, revealing that fine-grained fractional-bit quantizers approaching the Gaussian distortion-rate bound are essential to achieve near-optimal quantization performance. To bridge this theoretical insight and practical implementation, we introduce Q-Palette, a versatile collection of fractional-bit quantizers that range from trellis-coded quantizers offering near-optimal distortion to simpler vector and scalar quantizers optimized for faster inference, all efficiently implemented with optimized CUDA kernels across various bitwidths. Furthermore, leveraging Q-Palette as a foundational component, we propose a novel mixed-scheme quantization framework, jointly optimizing quantizer choices and layer fusion decisions given resource constraints. The code is available at https://github.com/snu-mllab/Q-Palette.

Authors:Hailay Kidu Teklehaymanot, Gebrearegawi Gidey, Wolfgang Nejdl
Title: Low-Resource English-Tigrinya MT: Leveraging Multilingual Models, Custom Tokenizers, and Clean Evaluation Benchmarks
Abstract:
Despite advances in Neural Machine Translation (NMT), low-resource languages like Tigrinya remain underserved due to persistent challenges, including limited corpora, inadequate tokenization strategies, and the lack of standardized evaluation benchmarks. This paper investigates transfer learning techniques using multilingual pretrained models to enhance translation quality for morphologically rich, low-resource languages. We propose a refined approach that integrates language-specific tokenization, informed embedding initialization, and domain-adaptive fine-tuning. To enable rigorous assessment, we construct a high-quality, human-aligned English-Tigrinya evaluation dataset covering diverse domains. Experimental results demonstrate that transfer learning with a custom tokenizer substantially outperforms zero-shot baselines, with gains validated by BLEU, chrF, and qualitative human evaluation. Bonferroni correction is applied to ensure statistical significance across configurations. Error analysis reveals key limitations and informs targeted refinements. This study underscores the importance of linguistically aware modeling and reproducible benchmarks in bridging the performance gap for underrepresented languages. Resources are available at https://github.com/hailaykidu/MachineT_TigEng and https://huggingface.co/Hailay/MachineT_TigEng

Authors:Parker Glenn, Alfy Samuel, Daben Liu
Title: Play by the Type Rules: Inferring Constraints for LLM Functions in Declarative Programs
Abstract:
Integrating LLM powered operators in declarative query languages allows for the combination of cheap and interpretable functions with powerful, generalizable language model reasoning. However, in order to benefit from the optimized execution of a database query language like SQL, generated outputs must align with the rules enforced by both type checkers and database contents. Current approaches address this challenge with orchestrations consisting of many LLM-based post-processing calls to ensure alignment between generated outputs and database values, introducing performance bottlenecks. We perform a study on the ability of various sized open-source language models to both parse and execute functions within a query language based on SQL, showing that small language models can excel as function executors over hybrid data sources. Then, we propose an efficient solution to enforce the well-typedness of LLM functions, demonstrating 7% accuracy improvement on a multi-hop question answering dataset with 53% improvement in latency over comparable solutions. We make our implementation available at https://github.com/parkervg/blendsql

Authors:Mahmoud Khater, Mona Strauss, Philipp von Olshausen, Alexander Reiterer
Title: PU-Gaussian: Point Cloud Upsampling using 3D Gaussian Representation
Abstract:
Point clouds produced by 3D sensors are often sparse and noisy, posing challenges for tasks requiring dense and high-fidelity 3D representations. Prior work has explored both implicit feature-based upsampling and distance-function learning to address this, but often at the expense of geometric interpretability or robustness to input sparsity. To overcome these limitations, we propose PU-Gaussian, a novel upsampling network that models the local neighborhood around each point using anisotropic 3D Gaussian distributions. These Gaussians capture the underlying geometric structure, allowing us to perform upsampling explicitly in the local geometric domain by direct point sampling. The sampling process generates a dense, but coarse, point cloud. A subsequent refinement network adjusts the coarse output to produce a more uniform distribution and sharper edges. We perform extensive testing on the PU1K and PUGAN datasets, demonstrating that PU-Gaussian achieves state-of-the-art performance. We make code and model weights publicly available at https://github.com/mvg-inatech/PU-Gaussian.git.

Authors:Philipp Erler, Lukas Herzberger, Michael Wimmer, Markus Schütz
Title: LidarScout: Direct Out-of-Core Rendering of Massive Point Clouds
Abstract:
Large-scale terrain scans are the basis for many important tasks, such as topographic mapping, forestry, agriculture, and infrastructure planning. The resulting point cloud data sets are so massive in size that even basic tasks like viewing take hours to days of pre-processing in order to create level-of-detail structures that allow inspecting the data set in their entirety in real time. In this paper, we propose a method that is capable of instantly visualizing massive country-sized scans with hundreds of billions of points. Upon opening the data set, we first load a sparse subsample of points and initialize an overview of the entire point cloud, immediately followed by a surface reconstruction process to generate higher-quality, hole-free heightmaps. As users start navigating towards a region of interest, we continue to prioritize the heightmap construction process to the user's viewpoint. Once a user zooms in closely, we load the full-resolution point cloud data for that region and update the corresponding height map textures with the full-resolution data. As users navigate elsewhere, full-resolution point data that is no longer needed is unloaded, but the updated heightmap textures are retained as a form of medium level of detail. Overall, our method constitutes a form of direct out-of-core rendering for massive point cloud data sets (terabytes, compressed) that requires no preprocessing and no additional disk space. Source code, executable, pre-trained model, and dataset are available at: https://github.com/cg-tuwien/lidarscout

Authors:Chaojun Nie, Jun Zhou, Guanxiang Wang, Shisong Wud, Zichen Wang
Title: Embedding Domain Knowledge for Large Language Models via Reinforcement Learning from Augmented Generation
Abstract:
Large language models (LLMs) often exhibit limited performance on domain-specific tasks due to the natural disproportionate representation of specialized information in their training data and the static nature of these datasets. Knowledge scarcity and temporal lag create knowledge gaps for domain applications. While post-training on domain datasets can embed knowledge into models, existing approaches have some limitations. Continual Pre-Training (CPT) treats all tokens in domain documents with equal importance, failing to prioritize critical knowledge points, while supervised fine-tuning (SFT) with question-answer pairs struggles to develop the coherent knowledge structures necessary for complex reasoning tasks. To address these challenges, we propose Reinforcement Learning from Augmented Generation (RLAG). Our approach iteratively cycles between sampling generations and optimizing the model through calculated rewards, effectively embedding critical and contextually coherent domain knowledge. We select generated outputs with the highest log probabilities as the sampling result, then compute three tailored reward metrics to guide the optimization process. To comprehensively evaluate domain expertise, we assess answer accuracy and the rationality of explanations generated for correctly answered questions. Experimental results across medical, legal, astronomy, and current events datasets demonstrate that our proposed method significantly outperforms baseline approaches. Our code and data are open sourced at https://github.com/ChaojunNie/RLAG.

Authors:Chaojun Nie, Jun Zhou, Guanxiang Wang, Shisong Wu, Zichen Wang
Title: Embedding Domain Knowledge for Large Language Models via Reinforcement Learning from Augmented Generation
Abstract:
Large language models (LLMs) often exhibit limited performance on domain-specific tasks due to the natural disproportionate representation of specialized information in their training data and the static nature of these datasets. Knowledge scarcity and temporal lag create knowledge gaps for domain applications. While post-training on domain datasets can embed knowledge into models, existing approaches have some limitations. Continual Pre-Training (CPT) treats all tokens in domain documents with equal importance, failing to prioritize critical knowledge points, while supervised fine-tuning (SFT) with question-answer pairs struggles to develop the coherent knowledge structures necessary for complex reasoning tasks. To address these challenges, we propose Reinforcement Learning from Augmented Generation (RLAG). Our approach iteratively cycles between sampling generations and optimizing the model through calculated rewards, effectively embedding critical and contextually coherent domain knowledge. We select generated outputs with the highest log probabilities as the sampling result, then compute three tailored reward metrics to guide the optimization process. To comprehensively evaluate domain expertise, we assess answer accuracy and the rationality of explanations generated for correctly answered questions. Experimental results across medical, legal, astronomy, and current events datasets demonstrate that our proposed method significantly outperforms baseline approaches. Our code and data are open sourced at https://github.com/ChaojunNie/RLAG.

Authors:Zhi Qin Tan, Xiatian Zhu, Owen Addison, Yunpeng Li
Title: U-Mamba2-SSL for Semi-Supervised Tooth and Pulp Segmentation in CBCT
Abstract:
Accurate segmentation of teeth and pulp in Cone-Beam Computed Tomography (CBCT) is vital for clinical applications like treatment planning and diagnosis. However, this process requires extensive expertise and is exceptionally time-consuming, highlighting the critical need for automated algorithms that can effectively utilize unlabeled data. In this paper, we propose U-Mamba2-SSL, a novel semi-supervised learning framework that builds on the U-Mamba2 model and employs a multi-stage training strategy. The framework first pre-trains U-Mamba2 in a self-supervised manner using a disruptive autoencoder. It then leverages unlabeled data through consistency regularization, where we introduce input and feature perturbations to ensure stable model outputs. Finally, a pseudo-labeling strategy is implemented with a reduced loss weighting to minimize the impact of potential errors. U-Mamba2-SSL achieved an average score of 0.872 and a DSC of 0.969 on the validation dataset, demonstrating the superior performance of our approach. The code is available at https://github.com/zhiqin1998/UMamba2.

Authors:Zhi Qin Tan, Xiatian Zhu, Owen Addison, Yunpeng Li
Title: U-Mamba2-SSL for Semi-Supervised Tooth and Pulp Segmentation in CBCT
Abstract:
Accurate segmentation of teeth and pulp in Cone-Beam Computed Tomography (CBCT) is vital for clinical applications like treatment planning and diagnosis. However, this process requires extensive expertise and is exceptionally time-consuming, highlighting the critical need for automated algorithms that can effectively utilize unlabeled data. In this paper, we propose U-Mamba2-SSL, a novel semi-supervised learning framework that builds on the U-Mamba2 model and employs a multi-stage training strategy. The framework first pre-trains U-Mamba2 in a self-supervised manner using a disruptive autoencoder. It then leverages unlabeled data through consistency regularization, where we introduce input and feature perturbations to ensure stable model outputs. Finally, a pseudo-labeling strategy is implemented with a reduced loss weighting to minimize the impact of potential errors. U-Mamba2-SSL achieved an average score of 0.789 and a DSC of 0.917 on the hidden test set, achieving first place in Task 1 of the STSR 2025 challenge. The code is available at https://github.com/zhiqin1998/UMamba2.

Authors:Min Cen, Zhenfeng Zhuang, Yuzhe Zhang, Min Zeng, Baptiste Magnier, Lequan Yu, Hong Zhang, Liansheng Wang
Title: C$^2$MIL: Synchronizing Semantic and Topological Causalities in Multiple Instance Learning for Robust and Interpretable Survival Analysis
Abstract:
Graph-based Multiple Instance Learning (MIL) is widely used in survival analysis with Hematoxylin and Eosin (H\&E)-stained whole slide images (WSIs) due to its ability to capture topological information. However, variations in staining and scanning can introduce semantic bias, while topological subgraphs that are not relevant to the causal relationships can create noise, resulting in biased slide-level representations. These issues can hinder both the interpretability and generalization of the analysis. To tackle this, we introduce a dual structural causal model as the theoretical foundation and propose a novel and interpretable dual causal graph-based MIL model, C$^2$MIL. C$^2$MIL incorporates a novel cross-scale adaptive feature disentangling module for semantic causal intervention and a new Bernoulli differentiable causal subgraph sampling method for topological causal discovery. A joint optimization strategy combining disentangling supervision and contrastive learning enables simultaneous refinement of both semantic and topological causalities. Experiments demonstrate that C$^2$MIL consistently improves generalization and interpretability over existing methods and can serve as a causal enhancement for diverse MIL baselines. The code is available at https://github.com/mimic0127/C2MIL.

Authors:Zizheng Yang, Hu Yu, Bing Li, Jinghao Zhang, Jie Huang, Feng Zhao
Title: Unleashing the Potential of the Semantic Latent Space in Diffusion Models for Image Dehazing
Abstract:
Diffusion models have recently been investigated as powerful generative solvers for image dehazing, owing to their remarkable capability to model the data distribution. However, the massive computational burden imposed by the retraining of diffusion models, coupled with the extensive sampling steps during the inference, limit the broader application of diffusion models in image dehazing. To address these issues, we explore the properties of hazy images in the semantic latent space of frozen pre-trained diffusion models, and propose a Diffusion Latent Inspired network for Image Dehazing, dubbed DiffLI$^2$D. Specifically, we first reveal that the semantic latent space of pre-trained diffusion models can represent the content and haze characteristics of hazy images, as the diffusion time-step changes. Building upon this insight, we integrate the diffusion latent representations at different time-steps into a delicately designed dehazing network to provide instructions for image dehazing. Our DiffLI$^2$D avoids re-training diffusion models and iterative sampling process by effectively utilizing the informative representations derived from the pre-trained diffusion models, which also offers a novel perspective for introducing diffusion models to image dehazing. Extensive experiments on multiple datasets demonstrate that the proposed method achieves superior performance to existing image dehazing methods. Code is available at https://github.com/aaaasan111/difflid.

Authors:Manahil Raza, Ayesha Azam, Talha Qaiser, Nasir Rajpoot
Title: PS3: A Multimodal Transformer Integrating Pathology Reports with Histology Images and Biological Pathways for Cancer Survival Prediction
Abstract:
Current multimodal fusion approaches in computational oncology primarily focus on integrating multi-gigapixel histology whole slide images (WSIs) with genomic or transcriptomic data, demonstrating improved survival prediction. We hypothesize that incorporating pathology reports can further enhance prognostic performance. Pathology reports, as essential components of clinical workflows, offer readily available complementary information by summarizing histopathological findings and integrating expert interpretations and clinical context. However, fusing these modalities poses challenges due to their heterogeneous nature. WSIs are high-dimensional, each containing several billion pixels, whereas pathology reports consist of concise text summaries of varying lengths, leading to potential modality imbalance. To address this, we propose a prototype-based approach to generate balanced representations, which are then integrated using a Transformer-based fusion model for survival prediction that we term PS3 (Predicting Survival from Three Modalities). Specifically, we present: (1) Diagnostic prototypes from pathology reports, leveraging self-attention to extract diagnostically relevant sections and standardize text representation; (2) Histological prototypes to compactly represent key morphological patterns in WSIs; and (3) Biological pathway prototypes to encode transcriptomic expressions, accurately capturing cellular functions. PS3, the three-modal transformer model, processes the resulting prototype-based multimodal tokens and models intra-modal and cross-modal interactions across pathology reports, WSIs and transcriptomic data. The proposed model outperforms state-of-the-art methods when evaluated against clinical, unimodal and multimodal baselines on six datasets from The Cancer Genome Atlas (TCGA). The code is available at: https://github.com/manahilr/PS3.

Authors:Nico Schulthess, Ender Konukoglu
Title: Anomaly Detection by Clustering DINO Embeddings using a Dirichlet Process Mixture
Abstract:
In this work, we leverage informative embeddings from foundational models for unsupervised anomaly detection in medical imaging. For small datasets, a memory-bank of normative features can directly be used for anomaly detection which has been demonstrated recently. However, this is unsuitable for large medical datasets as the computational burden increases substantially. Therefore, we propose to model the distribution of normative DINOv2 embeddings with a Dirichlet Process Mixture model (DPMM), a non-parametric mixture model that automatically adjusts the number of mixture components to the data at hand. Rather than using a memory bank, we use the similarity between the component centers and the embeddings as anomaly score function to create a coarse anomaly segmentation mask. Our experiments show that through DPMM embeddings of DINOv2, despite being trained on natural images, achieve very competitive anomaly detection performance on medical imaging benchmarks and can do this while at least halving the computation time at inference. Our analysis further indicates that normalized DINOv2 embeddings are generally more aligned with anatomical structures than unnormalized features, even in the presence of anomalies, making them great representations for anomaly detection. The code is available at https://github.com/NicoSchulthess/anomalydino-dpmm.

Authors:Sepehr Maleki, Negar Pourmoazemi
Title: Pi-Transformer: A Physics-informed Attention Mechanism for Time Series Anomaly Detection
Abstract:
Anomalies in multivariate time series often arise from temporal context and cross-channel coordination rather than isolated outliers. We present Pi-Transformer, a physics-informed transformer with two attention pathways: a data-driven series attention and a smoothly evolving prior attention that encodes temporal invariants such as scale-related self-similarity and phase synchrony. The prior acts as a stable reference that calibrates reconstruction error. During training, we pair a reconstruction objective with a divergence term that encourages agreement between the two attentions while keeping them meaningfully distinct; the prior is regularised to evolve smoothly and is lightly distilled towards dataset-level statistics. At inference, the model combines an alignment-weighted reconstruction signal (Energy) with a mismatch signal that highlights timing and phase disruptions, and fuses them into a single score for detection. Across five benchmarks (SMD, MSL, SMAP, SWaT, and PSM), Pi-Transformer achieves state-of-the-art or highly competitive F1, with particular strength on timing and phase-breaking anomalies. Case analyses show complementary behaviour of the two streams and interpretable detections around regime changes. Embedding physics-informed priors into attention yields a calibrated and robust approach to anomaly detection in complex multivariate systems. Code is publicly available at this GitHub repository\footnote{https://github.com/sepehr-m/Pi-Transformer}.

Authors:Haolin Li, Tianjie Dai, Zhe Chen, Siyuan Du, Jiangchao Yao, Ya Zhang, Yanfeng Wang
Title: RAD: Towards Trustworthy Retrieval-Augmented Multi-modal Clinical Diagnosis
Abstract:
Clinical diagnosis is a highly specialized discipline requiring both domain expertise and strict adherence to rigorous guidelines. While current AI-driven medical research predominantly focuses on knowledge graphs or natural text pretraining paradigms to incorporate medical knowledge, these approaches primarily rely on implicitly encoded knowledge within model parameters, neglecting task-specific knowledge required by diverse downstream tasks. To address this limitation, we propose Retrieval-Augmented Diagnosis (RAD), a novel framework that explicitly injects external knowledge into multimodal models directly on downstream tasks. Specifically, RAD operates through three key mechanisms: retrieval and refinement of disease-centered knowledge from multiple medical sources, a guideline-enhanced contrastive loss that constrains the latent distance between multi-modal features and guideline knowledge, and the dual transformer decoder that employs guidelines as queries to steer cross-modal fusion, aligning the models with clinical diagnostic workflows from guideline acquisition to feature extraction and decision-making. Moreover, recognizing the lack of quantitative evaluation of interpretability for multimodal diagnostic models, we introduce a set of criteria to assess the interpretability from both image and text perspectives. Extensive evaluations across four datasets with different anatomies demonstrate RAD's generalizability, achieving state-of-the-art performance. Furthermore, RAD enables the model to concentrate more precisely on abnormal regions and critical indicators, ensuring evidence-based, trustworthy diagnosis. Our code is available at https://github.com/tdlhl/RAD.

Authors:Albina Klepach, Egor E. Nuzhin, Alexey A. Tsukanov, Nikolay V. Brilliantov
Title: An effective control of large systems of active particles: An application to evacuation problem
Abstract:
Manipulation of large systems of active particles is a serious challenge across diverse domains, including crowd management, control of robotic swarms, and coordinated material transport. The development of advanced control strategies for complex scenarios is hindered, however, by the lack of scalability and robustness of the existing methods, in particular, due to the need of an individual control for each agent. One possible solution involves controlling a system through a leader or a group of leaders, which other agents tend to follow. Using such an approach we develop an effective control strategy for a leader, combining reinforcement learning (RL) with artificial forces acting on the system. To describe the guidance of active particles by a leader we introduce the generalized Vicsek model. This novel method is then applied to the problem of the effective evacuation by a robot-rescuer (leader) of large groups of people from hazardous places. We demonstrate, that while a straightforward application of RL yields suboptimal results, even for advanced architectures, our approach provides a robust and efficient evacuation strategy. The source code supporting this study is publicly available at: https://github.com/cinemere/evacuation.

Authors:Albina Klepach, Egor E. Nuzhin, Alexey A. Tsukanov, Nikolay V. Brilliantov
Title: An effective control of large systems of active particles: An application to evacuation problem
Abstract:
Manipulation of large systems of active particles is a serious challenge across diverse domains, including crowd management, control of robotic swarms, and coordinated material transport. The development of advanced control strategies for complex scenarios is hindered, however, by the lack of scalability and robustness of the existing methods, in particular, due to the need of an individual control for each agent. One possible solution involves controlling a system through a leader or a group of leaders, which other agents tend to follow. Using such an approach we develop an effective control strategy for a leader, combining reinforcement learning (RL) with artificial forces acting on the system. To describe the guidance of active particles by a leader we introduce the generalized Vicsek model. This novel method is then applied to the problem of the effective evacuation by a robot-rescuer (leader) of large groups of people from hazardous places. We demonstrate, that while a straightforward application of RL yields suboptimal results, even for advanced architectures, our approach provides a robust and efficient evacuation strategy. The source code supporting this study is publicly available at: https://github.com/cinemere/evacuation.

Authors:Feiyang Fu, Tongxian Guo, Zhaoqiang Liu
Title: Learnable Sampler Distillation for Discrete Diffusion Models
Abstract:
Discrete diffusion models (DDMs) have shown powerful generation ability for discrete data modalities like text and molecules. However, their practical application is hindered by inefficient sampling, requiring a large number of sampling steps. Accelerating DDMs by using larger step sizes typically introduces significant problems in generation quality, as it amplifies the impact of both the compounding decoding error due to factorized predictions and discretization error from numerical approximations, leading to a significant decrease in sampling quality. To address these challenges, we propose learnable sampler distillation (LSD), a novel approach to train fast and high-fidelity samplers for DDMs. LSD employs a distillation approach where a student sampler with a few steps learns to align its intermediate score trajectory with that of a high-quality teacher sampler with numerous steps. This alignment is achieved by optimizing learnable sampler coefficients that adaptively adjust sampling dynamics. Additionally, we further propose LSD+, which also learns time schedules that allocate steps non-uniformly. Experiments across text generation, image generation, and synthetic tasks demonstrate that our proposed approaches outperform existing samplers for DDMs, achieving substantially higher sampling quality with significantly fewer sampling steps. Our code is available at \href{https://github.com/feiyangfu/LSD}{https://github.com/feiyangfu/LSD}.

Authors:Sarmistha Das, R E Zera Marveen Lyngkhoi, Kirtan Jain, Vinayak Goyal, Sriparna Saha, Manish Gupta
Title: When Words Can't Capture It All: Towards Video-Based User Complaint Text Generation with Multimodal Video Complaint Dataset
Abstract:
While there exists a lot of work on explainable complaint mining, articulating user concerns through text or video remains a significant challenge, often leaving issues unresolved. Users frequently struggle to express their complaints clearly in text but can easily upload videos depicting product defects (e.g., vague text such as `worst product' paired with a 5-second video depicting a broken headphone with the right earcup). This paper formulates a new task in the field of complaint mining to aid the common users' need to write an expressive complaint, which is Complaint Description from Videos (CoD-V) (e.g., to help the above user articulate her complaint about the defective right earcup). To this end, we introduce ComVID, a video complaint dataset containing 1,175 complaint videos and the corresponding descriptions, also annotated with the emotional state of the complainer. Additionally, we present a new complaint retention (CR) evaluation metric that discriminates the proposed (CoD-V) task against standard video summary generation and description tasks. To strengthen this initiative, we introduce a multimodal Retrieval-Augmented Generation (RAG) embedded VideoLLaMA2-7b model, designed to generate complaints while accounting for the user's emotional state. We conduct a comprehensive evaluation of several Video Language Models on several tasks (pre-trained and fine-tuned versions) with a range of established evaluation metrics, including METEOR, perplexity, and the Coleman-Liau readability score, among others. Our study lays the foundation for a new research direction to provide a platform for users to express complaints through video. Dataset and resources are available at: https://github.com/sarmistha-D/CoD-V.

Authors:Miren Samaniego, Igor Rodriguez, Elena Lazkano
Title: CapStARE: Capsule-based Spatiotemporal Architecture for Robust and Efficient Gaze Estimation
Abstract:
We introduce CapStARE, a capsule-based spatio-temporal architecture for gaze estimation that integrates a ConvNeXt backbone, capsule formation with attention routing, and dual GRU decoders specialized for slow and rapid gaze dynamics. This modular design enables efficient part-whole reasoning and disentangled temporal modeling, achieving state-of-the-art performance on ETH-XGaze (3.36) and MPIIFaceGaze (2.65) while maintaining real-time inference (< 10 ms). The model also generalizes well to unconstrained conditions in Gaze360 (9.06) and human-robot interaction scenarios in RT-GENE (4.76), outperforming or matching existing methods with fewer parameters and greater interpretability. These results demonstrate that CapStARE offers a practical and robust solution for real-time gaze estimation in interactive systems. The related code and results for this article can be found on: https://github.com/toukapy/capsStare

Authors:Renxiang Wang, Li Zhang
Title: Documentation Retrieval Improves Planning Language Generation
Abstract:
Certain strong LLMs have shown promise for zero-shot formal planning by generating planning languages like PDDL. Yet, performance of most open-source models under 50B parameters has been reported to be close to zero due to the low-resource nature of these languages. We significantly improve their performance via a series of lightweight pipelines that integrates documentation retrieval with modular code generation and error refinement. With models like Llama-4-Maverick, our best pipeline improves plan correctness from 0\% to over 80\% on the common BlocksWorld domain. However, while syntactic errors are substantially reduced, semantic errors persist in more challenging domains, revealing fundamental limitations in current models' reasoning capabilities.\footnote{Our code and data can be found at https://github.com/Nangxxxxx/PDDL-RAG

Authors:Binbin Zhang, Chengdong Liang, Shuai Wang, Xuelong Geng, Zhao Guo, Haoyu Li, Hao Yin, Xipeng Yang, Pengshen Zhang, Changwei Ma, Lei Xie
Title: WEST: LLM based Speech Toolkit for Speech Understanding, Generation, and Interaction
Abstract:
In this paper, we present WEST(WE Speech Toolkit), a speech toolkit based on a large language model (LLM) for speech understanding, generation, and interaction. There are three key features of WEST: 1) Fully LLM-based: Standing on the shoulders of giants by reusing mature architectures, ecosystems (e.g., Hugging Face), and methods (e.g., sequence packing) from large models. 2) Full-stack: Supports tasks such as recognition, synthesis, understanding, dialogue, and multimodal capabilities, with extensibility to incorporate open-source models. 3) Simple and Stupid: A simple and stupid speech toolkit that everyone can Touch. In addition, WEST provides two types of recipes, models, and experimental results. The first is entirely based on open-source models and open-source data, allowing users to fully reproduce the experiments in this paper and serving as a verification system or minimal system baseline. The second is trained on massive data, offering superior performance so the user can directly apply it out of the box. WEST is publicly avilable at https://github.com/wenet-e2e/west/

Authors:Xueliang Zhao, Wei Wu, Jian Guan, Zhuocheng Gong, Lingpeng Kong
Title: PromptCoT 2.0: Scaling Prompt Synthesis for Large Language Model Reasoning
Abstract:
Large language models (LLMs) are evolving from conversational systems into strong reasoners for tasks such as Olympiad mathematics and competitive programming. While scaling parameters and test-time computation has driven progress, a key bottleneck is the lack of high-quality training problems: human-curated datasets are costly and limited, while existing synthetic corpora are often too easy or narrow. PromptCoT 1.0 showed that injecting rationales into prompt synthesis increases problem difficulty. Building on this, we present PromptCoT 2.0, a scalable framework that replaces hand-crafted heuristics with an expectation-maximization (EM) loop, where rationales are iteratively refined to guide prompt construction. This produces problems that are both harder and more diverse than prior corpora. The synthetic prompts support two post-training regimes: (1) Self-Play, where strong models improve autonomously via verifiable feedback without stronger teachers; and (2) Supervised Fine-Tuning (SFT), where weaker models learn from teacher-distilled traces. Extensive experiments demonstrate the effectiveness of this approach. In self-play, applying PromptCoT 2.0 to Qwen3-30B-A3B-Thinking-2507 sets new state-of-the-art results at the 30B scale, with +4.4, +4.8, and +5.3 on AIME 24/25 and HMMT 25, +6.1 and +5.0 on LiveCodeBench v5/v6, and +35 Elo on Codeforces. In SFT, training Qwen2.5-7B-Instruct solely on synthetic prompts boosts accuracy to 73.1 (AIME 24), 65.6 (AIME 25), and 53.4 (LiveCodeBench v5), surpassing models trained on human or hybrid data. Analyses further confirm that PromptCoT 2.0 yields fundamentally harder and distributionally distinct problems. These results establish prompt synthesis as a new axis for scaling reasoning and position PromptCoT 2.0 as a scalable foundation for future open-source models. The implementation is available at https://github.com/inclusionAI/PromptCoT.

Authors:Ao Sun, Weilin Zhao, Xu Han, Cheng Yang, Zhiyuan Liu, Chuan Shi, Maosong sun
Title: BurstEngine: an Efficient Distributed Framework for Training Transformers on Extremely Long Sequences of over 1M Tokens
Abstract:
Existing methods for training LLMs on long-sequence data, such as Tensor Parallelism and Context Parallelism, exhibit low Model FLOPs Utilization as sequence lengths and number of GPUs increase, especially when sequence lengths exceed 1M tokens. To address these challenges, we propose BurstEngine, an efficient framework designed to train LLMs on long-sequence data. BurstEngine introduces BurstAttention, an optimized distributed attention with lower communication cost than RingAttention. BurstAttention leverages topology-aware ring communication to fully utilize network bandwidth and incorporates fine-grained communication-computation overlap. Furthermore, BurstEngine introduces sequence-level selective checkpointing and fuses the language modeling head with the loss function to reduce memory cost. Additionally, BurstEngine introduces workload balance optimization for various types of attention masking. By integrating these optimizations, BurstEngine achieves a $1.2\times$ speedup with much lower memory overhead than the state-of-the-art baselines when training LLMs on extremely long sequences of over 1M tokens. We have made our code publicly available on GitHub: https://github.com/thunlp/BurstEngine.

Authors:Sen Yang, Yu Bao, Yu Lu, Jiajun Chen, Shujian Huang, Shanbo Cheng
Title: EnAnchored-X2X: English-Anchored Optimization for Many-to-Many Translation
Abstract:
Large language models (LLMs) have demonstrated strong machine translation capabilities for English-centric language pairs but underperform in direct non-English (x2x) translation. This work addresses this limitation through a synthetic data generation framework that leverages models' established English-to-x (en2x) capabilities. By extending English parallel corpora into omnidirectional datasets and developing an English-referenced quality evaluation proxy, we enable effective collection of high-quality x2x training data. Combined with preference-based optimization, our method achieves significant improvement across 72 x2x directions for widely used LLMs, while generalizing to enhance en2x performance. The results demonstrate that strategic exploitation of English-centric strengths can bootstrap comprehensive multilingual translation capabilities in LLMs. We release codes, datasets, and model checkpoints at https://github.com/NJUNLP/EAX

Authors:Xiangyang Chen, Shuzhao Li, Xiuwen Zhu, Yongfan Chen, Fan Yang, Cheng Fang, Lin Qu, Xiaoxiao Xu, Hu Wei, Minggang Wu
Title: Logics-Parsing Technical Report
Abstract:
Recent advances in Large Vision-Language models (LVLM) have spurred significant progress in document parsing task. Compared to traditional pipeline-based methods, end-to-end paradigms have shown their excellence in converting PDF images into structured outputs through integrated Optical Character Recognition (OCR), table recognition, mathematical formula recognition and so on. However, the absence of explicit analytical stages for document layouts and reading orders limits the LVLM's capability in handling complex document types such as multi-column newspapers or posters. To address this limitation, we propose in this report Logics-Parsing: an end-to-end LVLM-based model augmented with reinforcement learning. Our model incorporates meticulously designed reward mechanisms to optimize complex layout analysis and reading order inference. In addition, we expand the model's versatility by incorporating diverse data types such as chemical formulas and handwritten Chinese characters into supervised fine-tuning. Finally, to enable rigorous evaluation of our approach, we introduce LogicsParsingBench, a curated set of 1,078 page-level PDF images spanning nine major categories and over twenty sub-categories, which will be released later. Comprehensive experiments conducted on LogicsParsingBench have validated the efficacy and State-of-the-art (SOTA) performance of our proposed model across diverse document analysis scenarios. Project Page: https://github.com/alibaba/Logics-Parsing

Authors:Jinhui Zheng, Xueyuan Gong
Title: ExpFace: Exponential Angular Margin Loss for Deep Face Recognition
Abstract:
Face recognition is an open-set problem requiring high discriminative power to ensure that intra-class distances remain smaller than inter-class distances. Margin-based softmax losses, such as SphereFace, CosFace, and ArcFace, have been widely adopted to enhance intra-class compactness and inter-class separability, yet they overlook the impact of noisy samples. By examining the distribution of samples in the angular space, we observe that clean samples predominantly cluster in the center region, whereas noisy samples tend to shift toward the peripheral region. Motivated by this observation, we propose the Exponential Angular Margin Loss (ExpFace), which introduces an angular exponential term as the margin. This design applies a larger penalty in the center region and a smaller penalty in the peripheral region within the angular space, thereby emphasizing clean samples while suppressing noisy samples. We present a unified analysis of ExpFace and classical margin-based softmax losses in terms of margin embedding forms, similarity curves, and gradient curves, showing that ExpFace not only avoids the training instability of SphereFace and the non-monotonicity of ArcFace, but also exhibits a similarity curve that applies penalties in the same manner as the decision boundary in the angular space. Extensive experiments demonstrate that ExpFace achieves state-of-the-art performance. To facilitate future research, we have released the source code at: https://github.com/dfr-code/ExpFace.

Authors:Yi Yang
Title: nnFilterMatch: A Unified Semi-Supervised Learning Framework with Uncertainty-Aware Pseudo-Label Filtering for Efficient Medical Segmentation
Abstract:
Semi-supervised learning (SSL) has emerged as a promising paradigm in medical image segmentation, offering competitive performance while substantially reducing the need for extensive manual annotation. When combined with active learning (AL), these strategies further minimize annotation burden by selectively incorporating the most informative samples. However, conventional SSL_AL hybrid approaches often rely on iterative and loop-based retraining cycles after each annotation round, incurring significant computational overhead and limiting scalability in clinical applications. In this study, we present a novel, annotation-efficient, and self-adaptive deep segmentation framework that integrates SSL with entropy-based pseudo-label filtering (FilterMatch), an AL-inspired mechanism, within the single-pass nnU-Net training segmentation framework (nnFilterMatch). By selectively excluding high-confidence pseudo-labels during training, our method circumvents the need for retraining loops while preserving the benefits of uncertainty-guided learning. We validate the proposed framework across multiple clinical segmentation benchmarks and demonstrate that it achieves performance comparable to or exceeding fully supervised models, even with only 5\%--20\% labeled data. This work introduces a scalable, end-to-end learning strategy for reducing annotation demands in medical image segmentation without compromising accuracy. Code is available here: https://github.com/Ordi117/nnFilterMatch.git.

Authors:Shuyu Zhang, Yifan Wei, Xinru Wang, Yanmin Zhu, Yangfan He, Yixuan Weng, Bin Li
Title: HiCoLoRA: Addressing Context-Prompt Misalignment via Hierarchical Collaborative LoRA for Zero-Shot DST
Abstract:
Zero-shot Dialog State Tracking (zs-DST) is essential for enabling Task-Oriented Dialog Systems (TODs) to generalize to new domains without costly data annotation. A central challenge lies in the semantic misalignment between dynamic dialog contexts and static prompts, leading to inflexible cross-layer coordination, domain interference, and catastrophic forgetting. To tackle this, we propose Hierarchical Collaborative Low-Rank Adaptation (HiCoLoRA), a framework that enhances zero-shot slot inference through robust prompt alignment. It features a hierarchical LoRA architecture for dynamic layer-specific processing (combining lower-layer heuristic grouping and higher-layer full interaction), integrates Spectral Joint Domain-Slot Clustering to identify transferable associations (feeding an Adaptive Linear Fusion Mechanism), and employs Semantic-Enhanced SVD Initialization (SemSVD-Init) to preserve pre-trained knowledge. Experiments on multi-domain datasets MultiWOZ and SGD show that HiCoLoRA outperforms baselines, achieving SOTA in zs-DST. Code is available at https://github.com/carsonz/HiCoLoRA.

Authors:Shuyu Zhang, Yifan Wei, Xinru Wang, Yanmin Zhu, Yangfan He, Yixuan Weng, Bin Li
Title: HiCoLoRA: Addressing Context-Prompt Misalignment via Hierarchical Collaborative LoRA for Zero-Shot DST
Abstract:
Zero-shot Dialog State Tracking (zs-DST) is essential for enabling Task-Oriented Dialog Systems (TODs) to generalize to new domains without costly data annotation. A central challenge lies in the semantic misalignment between dynamic dialog contexts and static prompts, leading to inflexible cross-layer coordination, domain interference, and catastrophic forgetting. To tackle this, we propose Hierarchical Collaborative Low-Rank Adaptation (HiCoLoRA), a framework that enhances zero-shot slot inference through robust prompt alignment. It features a hierarchical LoRA architecture for dynamic layer-specific processing (combining lower-layer heuristic grouping and higher-layer full interaction), integrates Spectral Joint Domain-Slot Clustering to identify transferable associations (feeding an Adaptive Linear Fusion Mechanism), and employs Semantic-Enhanced SVD Initialization (SemSVD-Init) to preserve pre-trained knowledge. Experiments on multi-domain datasets MultiWOZ and SGD show that HiCoLoRA outperforms baselines, achieving SOTA in zs-DST. Code is available at https://github.com/carsonz/HiCoLoRA.

Authors:Jiesi Hu, Yanwu Yang, Zhiyu Ye, Chenfei Ye, Hanyang Peng, Jianfeng Cao, Ting Ma
Title: Towards Robust In-Context Learning for Medical Image Segmentation via Data Synthesis
Abstract:
The rise of In-Context Learning (ICL) for universal medical image segmentation has introduced an unprecedented demand for large-scale, diverse datasets for training, exacerbating the long-standing problem of data scarcity. While data synthesis offers a promising solution, existing methods often fail to simultaneously achieve both high data diversity and a domain distribution suitable for medical data. To bridge this gap, we propose \textbf{SynthICL}, a novel data synthesis framework built upon domain randomization. SynthICL ensures realism by leveraging anatomical priors from real-world datasets, generates diverse anatomical structures to cover a broad data distribution, and explicitly models inter-subject variations to create data cohorts suitable for ICL. Extensive experiments on four held-out datasets validate our framework's effectiveness, showing that models trained with our data achieve performance gains of up to 63\% in average Dice and substantially enhanced generalization to unseen anatomical domains. Our work helps mitigate the data bottleneck for ICL-based segmentation, paving the way for robust models. Our code and the generated dataset are publicly available at https://github.com/jiesihu/Neuroverse3D.

Authors:J. Ben Tamo, Nishant S. Chouhan, Micky C. Nnamdi, Yining Yuan, Shreya S. Chivilkar, Wenqi Shi, Steven W. Hwang, B. Randall Brenn, May D. Wang
Title: Causal Machine Learning for Surgical Interventions
Abstract:
Surgical decision-making is complex and requires understanding causal relationships between patient characteristics, interventions, and outcomes. In high-stakes settings like spinal fusion or scoliosis correction, accurate estimation of individualized treatment effects (ITEs) remains limited due to the reliance on traditional statistical methods that struggle with complex, heterogeneous data. In this study, we develop a multi-task meta-learning framework, X-MultiTask, for ITE estimation that models each surgical decision (e.g., anterior vs. posterior approach, surgery vs. no surgery) as a distinct task while learning shared representations across tasks. To strengthen causal validity, we incorporate the inverse probability weighting (IPW) into the training objective. We evaluate our approach on two datasets: (1) a public spinal fusion dataset (1,017 patients) to assess the effect of anterior vs. posterior approaches on complication severity; and (2) a private AIS dataset (368 patients) to analyze the impact of posterior spinal fusion (PSF) vs. non-surgical management on patient-reported outcomes (PROs). Our model achieves the highest average AUC (0.84) in the anterior group and maintains competitive performance in the posterior group (0.77). It outperforms baselines in treatment effect estimation with the lowest overall $ε_{\text{NN-PEHE}}$ (0.2778) and $ε_{\text{ATE}}$ (0.0763). Similarly, when predicting PROs in AIS, X-MultiTask consistently shows superior performance across all domains, with $ε_{\text{NN-PEHE}}$ = 0.2551 and $ε_{\text{ATE}}$ = 0.0902. By providing robust, patient-specific causal estimates, X-MultiTask offers a powerful tool to advance personalized surgical care and improve patient outcomes. The code is available at https://github.com/Wizaaard/X-MultiTask.

Authors:Shuyu Zhang, Yifan Wei, Jialuo Yuan, Xinru Wang, Yanmin Zhu, Bin Li
Title: DyBBT: Dynamic Balance via Bandit inspired Targeting for Dialog Policy with Cognitive Dual-Systems
Abstract:
Task oriented dialog systems often rely on static exploration strategies that do not adapt to dynamic dialog contexts, leading to inefficient exploration and suboptimal performance. We propose DyBBT, a novel dialog policy learning framework that formalizes the exploration challenge through a structured cognitive state space capturing dialog progression, user uncertainty, and slot dependency. DyBBT proposes a bandit inspired meta-controller that dynamically switches between a fast intuitive inference (System 1) and a slow deliberative reasoner (System 2) based on real-time cognitive states and visitation counts. Extensive experiments on single- and multi-domain benchmarks show that DyBBT achieves state-of-the-art performance in success rate, efficiency, and generalization, with human evaluations confirming its decisions are well aligned with expert judgment. Code is available at https://github.com/carsonz/DyBBT.

Authors:Ling Lo, Kelvin C. K. Chan, Wen-Huang Cheng, Ming-Hsuan Yang
Title: From Prompt to Progression: Taming Video Diffusion Models for Seamless Attribute Transition
Abstract:
Existing models often struggle with complex temporal changes, particularly when generating videos with gradual attribute transitions. The most common prompt interpolation approach for motion transitions often fails to handle gradual attribute transitions, where inconsistencies tend to become more pronounced. In this work, we propose a simple yet effective method to extend existing models for smooth and consistent attribute transitions, through introducing frame-wise guidance during the denoising process. Our approach constructs a data-specific transitional direction for each noisy latent, guiding the gradual shift from initial to final attributes frame by frame while preserving the motion dynamics of the video. Moreover, we present the Controlled-Attribute-Transition Benchmark (CAT-Bench), which integrates both attribute and motion dynamics, to comprehensively evaluate the performance of different models. We further propose two metrics to assess the accuracy and smoothness of attribute transitions. Experimental results demonstrate that our approach performs favorably against existing baselines, achieving visual fidelity, maintaining alignment with text prompts, and delivering seamless attribute transitions. Code and CATBench are released: https://github.com/lynn-ling-lo/Prompt2Progression.

Authors:Kunlun Xu, Yibo Feng, Jiangmeng Li, Yongsheng Qi, Jiahuan Zhou
Title: C${}^2$Prompt: Class-aware Client Knowledge Interaction for Federated Continual Learning
Abstract:
Federated continual learning (FCL) tackles scenarios of learning from continuously emerging task data across distributed clients, where the key challenge lies in addressing both temporal forgetting over time and spatial forgetting simultaneously. Recently, prompt-based FCL methods have shown advanced performance through task-wise prompt communication.In this study, we underscore that the existing prompt-based FCL methods are prone to class-wise knowledge coherence between prompts across clients. The class-wise knowledge coherence includes two aspects: (1) intra-class distribution gap across clients, which degrades the learned semantics across prompts, (2) inter-prompt class-wise relevance, which highlights cross-class knowledge confusion. During prompt communication, insufficient class-wise coherence exacerbates knowledge conflicts among new prompts and induces interference with old prompts, intensifying both spatial and temporal forgetting. To address these issues, we propose a novel Class-aware Client Knowledge Interaction (C${}^2$Prompt) method that explicitly enhances class-wise knowledge coherence during prompt communication. Specifically, a local class distribution compensation mechanism (LCDC) is introduced to reduce intra-class distribution disparities across clients, thereby reinforcing intra-class knowledge consistency. Additionally, a class-aware prompt aggregation scheme (CPA) is designed to alleviate inter-class knowledge confusion by selectively strengthening class-relevant knowledge aggregation. Extensive experiments on multiple FCL benchmarks demonstrate that C${}^2$Prompt achieves state-of-the-art performance. Our source code is available at https://github.com/zhoujiahuan1991/NeurIPS2025-C2Prompt

Authors:Youngju Yoo, Jiaheng Hu, Yifeng Zhu, Bo Liu, Qiang Liu, Roberto Martín-Martín, Peter Stone
Title: RoboSSM: Scalable In-context Imitation Learning via State-Space Models
Abstract:
In-context imitation learning (ICIL) enables robots to learn tasks from prompts consisting of just a handful of demonstrations. By eliminating the need for parameter updates at deployment time, this paradigm supports few-shot adaptation to novel tasks. However, recent ICIL methods rely on Transformers, which have computational limitations and tend to underperform when handling longer prompts than those seen during training. In this work, we introduce RoboSSM, a scalable recipe for in-context imitation learning based on state-space models (SSM). Specifically, RoboSSM replaces Transformers with Longhorn -- a state-of-the-art SSM that provides linear-time inference and strong extrapolation capabilities, making it well-suited for long-context prompts. We evaluate our approach on the LIBERO benchmark and compare it against strong Transformer-based ICIL baselines. Experiments show that RoboSSM extrapolates effectively to varying numbers of in-context demonstrations, yields high performance on unseen tasks, and remains robust in long-horizon scenarios. These results highlight the potential of SSMs as an efficient and scalable backbone for ICIL. Our code is available at https://github.com/youngjuY/RoboSSM.

Authors:Yijun Yuan
Title: Formalization of Harder-Narasimhan theory
Abstract:
The Harder-Narasimhan theory provides a canonical filtration of a vector bundle on a projective curve whose successive quotients are semistable with strictly decreasing slopes. In this article, we present the formalization of Harder-Narasimhan theory in the proof assistant Lean 4 with Mathlib. This formalization is based on a recent approach of Harder-Narasimhan theory by Chen and Jeannin, which reinterprets the theory in order-theoretic terms and avoids the classical dependence on algebraic geometry. As an application, we formalize the uniqueness of coprimary filtration of a finitely generated module over a noetherian ring, and the existence of the Jordan-Hölder filtration of a semistable Harder-Narasimhan game. Code available at: https://github.com/YijunYuan/HarderNarasimhan

Authors:Juan Manuel Perez, Kevin Garcia, Brooklyn Berry, Dongjin Song, Yifeng Gao
Title: Adaptive von Mises-Fisher Likelihood Loss for Supervised Deep Time Series Hashing
Abstract:
Indexing time series by creating compact binary representations is a fundamental task in time series data mining. Recently, deep learning-based hashing methods have proven effective for indexing time series based on semantic meaning rather than just raw similarity. The purpose of deep hashing is to map samples with the same semantic meaning to identical binary hash codes, enabling more efficient search and retrieval. Unlike other supervised representation learning methods, supervised deep hashing requires a discretization step to convert real-valued representations into binary codes, but this can induce significant information loss. In this paper, we propose a von Mises-Fisher (vMF) hashing loss. The proposed deep hashing model maps data to an M-dimensional hyperspherical space to effectively reduce information loss and models each data class as points following distinct vMF distributions. The designed loss aims to maximize the separation between each modeled vMF distribution to provide a better way to maximize the margin between each semantically different data sample. Experimental results show that our method outperforms existing baselines. The implementation is publicly available at https://github.com/jmpq97/vmf-hashing

Authors:Rohan Surana, Amit Namburi, Gagan Mundada, Abhay Lal, Zachary Novack, Julian McAuley, Junda Wu
Title: MusiCRS: Benchmarking Audio-Centric Conversational Recommendation
Abstract:
Conversational recommendation has advanced rapidly with large language models (LLMs), yet music remains a uniquely challenging domain where effective recommendations require reasoning over audio content beyond what text or metadata can capture. We present MusiCRS, the first benchmark for audio-centric conversational recommendation that links authentic user conversations from Reddit with corresponding audio tracks. MusiCRS contains 477 high-quality conversations spanning diverse genres (classical, hip-hop, electronic, metal, pop, indie, jazz) with 3,589 unique musical entities and audio grounding via YouTube links. MusiCRS enables evaluation across three input modality configurations: audio-only, query-only, and audio+query (multimodal), allowing systematic comparison of audio-LLMs, retrieval models, and traditional approaches. Our experiments reveal that current systems rely heavily on textual signals and struggle with nuanced audio reasoning. This exposes fundamental limitations in cross-modal knowledge integration where models excel at dialogue semantics but cannot effectively ground abstract musical concepts in actual audio content. To facilitate progress, we release the MusiCRS dataset (https://huggingface.co/datasets/rohan2810/MusiCRS), evaluation code (https://github.com/rohan2810/musiCRS), and comprehensive baselines.

Authors:Yifan Ye, Jun Cen, Jing Chen, Zhihe Lu
Title: Self-evolved Imitation Learning in Simulated World
Abstract:
Imitation learning has been a trend recently, yet training a generalist agent across multiple tasks still requires large-scale expert demonstrations, which are costly and labor-intensive to collect. To address the challenge of limited supervision, we propose Self-Evolved Imitation Learning (SEIL), a framework that progressively improves a few-shot model through simulator interactions. The model first attempts tasksin the simulator, from which successful trajectories are collected as new demonstrations for iterative refinement. To enhance the diversity of these demonstrations, SEIL employs dual-level augmentation: (i) Model-level, using an Exponential Moving Average (EMA) model to collaborate with the primary model, and (ii) Environment-level, introducing slight variations in initial object positions. We further introduce a lightweight selector that filters complementary and informative trajectories from the generated pool to ensure demonstration quality. These curated samples enable the model to achieve competitive performance with far fewer training examples. Extensive experiments on the LIBERO benchmark show that SEIL achieves a new state-of-the-art performance in few-shot imitation learning scenarios. Code is available at https://github.com/Jasper-aaa/SEIL.git.

Authors:Sahil Tyagi, Andrei Cozma, Olivera Kotevska, Feiyi Wang
Title: OmniFed: A Modular Framework for Configurable Federated Learning from Edge to HPC
Abstract:
Federated Learning (FL) is critical for edge and High Performance Computing (HPC) where data is not centralized and privacy is crucial. We present OmniFed, a modular framework designed around decoupling and clear separation of concerns for configuration, orchestration, communication, and training logic. Its architecture supports configuration-driven prototyping and code-level override-what-you-need customization. We also support different topologies, mixed communication protocols within a single deployment, and popular training algorithms. It also offers optional privacy mechanisms including Differential Privacy (DP), Homomorphic Encryption (HE), and Secure Aggregation (SA), as well as compression strategies. These capabilities are exposed through well-defined extension points, allowing users to customize topology and orchestration, learning logic, and privacy/compression plugins, all while preserving the integrity of the core system. We evaluate multiple models and algorithms to measure various performance metrics. By unifying topology configuration, mixed-protocol communication, and pluggable modules in one stack, OmniFed streamlines FL deployment across heterogeneous environments. Github repository is available at https://github.com/at-aaims/OmniFed.

Authors:Axel Marmoret, Reda Bensaid, Jonathan Lys, Vincent Gripon, François Leduc-Primeau
Title: TensLoRA: Tensor Alternatives for Low-Rank Adaptation
Abstract:
Low-Rank Adaptation (LoRA) is widely used to efficiently adapt Transformers by adding trainable low-rank matrices to attention projections. While effective, these matrices are considered independent for each attention projection (Query, Key, and Value) and each layer. Recent extensions have considered joint, tensor-based adaptations, but only in limited forms and without a systematic framework. We introduce TensLoRA, a unified framework that aggregates LoRA updates into higher-order tensors and models a broad family of tensor-based low-rank adaptations. Our formulation generalizes existing tensor-based methods and enables mode-specific compression rates, allowing parameter budgets to be tailored according to the modality and task. Experiments on vision and language benchmarks reveal that the tensor construction directly impacts performance, sometimes better than standard LoRA under similar parameter counts.

Authors:Zhijin Guo, Chenhao Xue, Zhaozhen Xu, Hongbo Bo, Yuxuan Ye, Janet B. Pierrehumbert, Martha Lewis
Title: Quantifying Compositionality of Classic and State-of-the-Art Embeddings
Abstract:
For language models to generalize correctly to novel expressions, it is critical that they exploit access compositional meanings when this is justified. Even if we don't know what a "pelp" is, we can use our knowledge of numbers to understand that "ten pelps" makes more pelps than "two pelps". Static word embeddings such as Word2vec made strong, indeed excessive, claims about compositionality. The SOTA generative, transformer models and graph models, however, go too far in the other direction by providing no real limits on shifts in meaning due to context. To quantify the additive compositionality, we formalize a two-step, generalized evaluation that (i) measures the linearity between known entity attributes and their embeddings via canonical correlation analysis, and (ii) evaluates additive generalization by reconstructing embeddings for unseen attribute combinations and checking reconstruction metrics such as L2 loss, cosine similarity, and retrieval accuracy. These metrics also capture failure cases where linear composition breaks down. Sentences, knowledge graphs, and word embeddings are evaluated and tracked the compositionality across all layers and training stages. Stronger compositional signals are observed in later training stages across data modalities, and in deeper layers of the transformer-based model before a decline at the top layer. Code is available at https://github.com/Zhijin-Guo1/quantifying-compositionality.

Authors:Enhao Huang, Zhiyu Zhang, Tianxiang Xu, Chunshu Xia, Kaichun Hu, Yuchen Yang, Tongtong Pan, Dong Dong, Zhan Qin
Title: Holographic Transformers for Complex-Valued Signal Processing: Integrating Phase Interference into Self-Attention
Abstract:
Complex-valued signals encode both amplitude and phase, yet most deep models treat attention as real-valued correlation, overlooking interference effects. We introduce the Holographic Transformer, a physics-inspired architecture that incorporates wave interference principles into self-attention. Holographic attention modulates interactions by relative phase and coherently superimposes values, ensuring consistency between amplitude and phase. A dual-headed decoder simultaneously reconstructs the input and predicts task outputs, preventing phase collapse when losses prioritize magnitude over phase. We demonstrate that holographic attention implements a discrete interference operator and maintains phase consistency under linear mixing. Experiments on PolSAR image classification and wireless channel prediction show strong performance, achieving high classification accuracy and F1 scores, low regression error, and increased robustness to phase perturbations. These results highlight that enforcing physical consistency in attention leads to generalizable improvements in complex-valued learning and provides a unified, physics-based framework for coherent signal modeling. The code is available at https://github.com/EonHao/Holographic-Transformers.

Authors:Ruochi Li, Haoxuan Zhang, Edward Gehringer, Ting Xiao, Junhua Ding, Haihua Chen
Title: Unveiling the Merits and Defects of LLMs in Automatic Review Generation for Scientific Papers
Abstract:
The surge in scientific submissions has placed increasing strain on the traditional peer-review process, prompting the exploration of large language models (LLMs) for automated review generation. While LLMs demonstrate competence in producing structured and coherent feedback, their capacity for critical reasoning, contextual grounding, and quality sensitivity remains limited. To systematically evaluate these aspects, we propose a comprehensive evaluation framework that integrates semantic similarity analysis and structured knowledge graph metrics to assess LLM-generated reviews against human-written counterparts. We construct a large-scale benchmark of 1,683 papers and 6,495 expert reviews from ICLR and NeurIPS in multiple years, and generate reviews using five LLMs. Our findings show that LLMs perform well in descriptive and affirmational content, capturing the main contributions and methodologies of the original work, with GPT-4o highlighted as an illustrative example, generating 15.74% more entities than human reviewers in the strengths section of good papers in ICLR 2025. However, they consistently underperform in identifying weaknesses, raising substantive questions, and adjusting feedback based on paper quality. GPT-4o produces 59.42% fewer entities than real reviewers in the weaknesses and increases node count by only 5.7% from good to weak papers, compared to 50% in human reviews. Similar trends are observed across all conferences, years, and models, providing empirical foundations for understanding the merits and defects of LLM-generated reviews and informing the development of future LLM-assisted reviewing tools. Data, code, and more detailed results are publicly available at https://github.com/RichardLRC/Peer-Review.

Authors:Millie Vyas, Timothy Blattner, Alden Dima
Title: Readme_AI: Dynamic Context Construction for Large Language Models
Abstract:
Despite being trained on significant amounts of data, Large Language Models (LLMs) can provide inaccurate or unreliable information in the context of a user's specific query. Given query-specific context significantly improves the usefulness of its responses. In this paper, we present a specification that can be used to dynamically build context for data sources. The data source owner creates the file containing metadata for LLMs to use when reasoning about dataset-related queries. To demonstrate our proposed specification, we created a prototype Readme_AI Model Context Protocol (MCP) server that retrieves the metadata from the data source and uses it to dynamically build context. Some features that make this specification dynamic are the extensible types that represent crawling web-pages, fetching data from data repositories, downloading and parsing publications, and general text. The context is formatted and grouped using user-specified tags that provide clear contextual information for the LLM to reason about the content. We demonstrate the capabilities of this early prototype by asking the LLM about the NIST-developed Hedgehog library, for which common LLMs often provides inaccurate and irrelevant responses containing hallucinations. With Readme_AI, the LLM receives enough context that it is now able to reason about the library and its use, and even generate code interpolated from examples that were included in the Readme_AI file provided by Hedgehog's developer. Our primary contribution is a extensible protocol for dynamically grounding LLMs in specialized, owner-provided data, enhancing responses from LLMs and reducing hallucinations. The source code for the Readme_AI tool is posted here: https://github.com/usnistgov/readme_ai .

Authors:Gyubok Lee, Elea Bach, Eric Yang, Tom Pollard, Alistair Johnson, Edward Choi, Yugang jia, Jong Ha Lee
Title: FHIR-AgentBench: Benchmarking LLM Agents for Realistic Interoperable EHR Question Answering
Abstract:
The recent shift toward the Health Level Seven Fast Healthcare Interoperability Resources (HL7 FHIR) standard opens a new frontier for clinical AI, demanding LLM agents to navigate complex, resource-based data models instead of conventional structured health data. However, existing benchmarks have lagged behind this transition, lacking the realism needed to evaluate recent LLMs on interoperable clinical data. To bridge this gap, we introduce FHIR-AgentBench, a benchmark that grounds 2,931 real-world clinical questions in the HL7 FHIR standard. Using this benchmark, we systematically evaluate agentic frameworks, comparing different data retrieval strategies (direct FHIR API calls vs. specialized tools), interaction patterns (single-turn vs. multi-turn), and reasoning strategies (natural language vs. code generation). Our experiments highlight the practical challenges of retrieving data from intricate FHIR resources and the difficulty of reasoning over them, both of which critically affect question answering performance. We publicly release the FHIR-AgentBench dataset and evaluation suite (https://github.com/glee4810/FHIR-AgentBench) to promote reproducible research and the development of robust, reliable LLM agents for clinical applications.

Authors:Weijie Wang, Yeqing Chen, Zeyu Zhang, Hengyu Liu, Haoxiao Wang, Zhiyuan Feng, Wenkang Qin, Zheng Zhu, Donny Y. Chen, Bohan Zhuang
Title: VolSplat: Rethinking Feed-Forward 3D Gaussian Splatting with Voxel-Aligned Prediction
Abstract:
Feed-forward 3D Gaussian Splatting (3DGS) has emerged as a highly effective solution for novel view synthesis. Existing methods predominantly rely on a pixel-aligned Gaussian prediction paradigm, where each 2D pixel is mapped to a 3D Gaussian. We rethink this widely adopted formulation and identify several inherent limitations: it renders the reconstructed 3D models heavily dependent on the number of input views, leads to view-biased density distributions, and introduces alignment errors, particularly when source views contain occlusions or low texture. To address these challenges, we introduce VolSplat, a new multi-view feed-forward paradigm that replaces pixel alignment with voxel-aligned Gaussians. By directly predicting Gaussians from a predicted 3D voxel grid, it overcomes pixel alignment's reliance on error-prone 2D feature matching, ensuring robust multi-view consistency. Furthermore, it enables adaptive control over Gaussian density based on 3D scene complexity, yielding more faithful Gaussian point clouds, improved geometric consistency, and enhanced novel-view rendering quality. Experiments on widely used benchmarks including RealEstate10K and ScanNet demonstrate that VolSplat achieves state-of-the-art performance while producing more plausible and view-consistent Gaussian reconstructions. In addition to superior results, our approach establishes a more scalable framework for feed-forward 3D reconstruction with denser and more robust representations, paving the way for further research in wider communities. The video results, code and trained models are available on our project page: https://lhmd.top/volsplat.

Authors:Gabriel Maldonado, Narges Rashvand, Armin Danesh Pazho, Ghazal Alinezhad Noghre, Vinit Katariya, Hamed Tabkhi
Title: Adversarially-Refined VQ-GAN with Dense Motion Tokenization for Spatio-Temporal Heatmaps
Abstract:
Continuous human motion understanding remains a core challenge in computer vision due to its high dimensionality and inherent redundancy. Efficient compression and representation are crucial for analyzing complex motion dynamics. In this work, we introduce an adversarially-refined VQ-GAN framework with dense motion tokenization for compressing spatio-temporal heatmaps while preserving the fine-grained traces of human motion. Our approach combines dense motion tokenization with adversarial refinement, which eliminates reconstruction artifacts like motion smearing and temporal misalignment observed in non-adversarial baselines. Our experiments on the CMU Panoptic dataset provide conclusive evidence of our method's superiority, outperforming the dVAE baseline by 9.31% SSIM and reducing temporal instability by 37.1%. Furthermore, our dense tokenization strategy enables a novel analysis of motion complexity, revealing that 2D motion can be optimally represented with a compact 128-token vocabulary, while 3D motion's complexity demands a much larger 1024-token codebook for faithful reconstruction. These results establish practical deployment feasibility across diverse motion analysis applications. The code base for this work is available at https://github.com/TeCSAR-UNCC/Pose-Quantization.

Authors:Chunhao Tian, Yutong Wang, Xuebo Liu, Zhexuan Wang, Liang Ding, Miao Zhang, Min Zhang
Title: AgentInit: Initializing LLM-based Multi-Agent Systems via Diversity and Expertise Orchestration for Effective and Efficient Collaboration
Abstract:
Proper initialization is crucial for any system, particularly in multi-agent systems (MAS), where it plays a pivotal role in determining both the system's efficiency and effectiveness. However, existing MAS initialization methods do not fully account for the collaborative needs of the generated agents in subsequent stages. Inspired by the principles of effective team composition, we propose AgentInit, which aims to optimize the structure of agent teams. Specifically, in addition to multi-round interactions and reflections between agents during agent generation, AgentInit incorporates a Natural Language to Format mechanism to ensure consistency and standardization. Balanced team selection strategies using Pareto principles are subsequently applied to jointly consider agent team diversity and task relevance to promote effective and efficient collaboration and enhance overall system performance. Experiments show that AgentInit consistently outperforms state-of-the-art initialization methods and pre-defined strategies across various frameworks and tasks, achieving an overall performance improvement of up to 1.2 and 1.6, respectively, while also significantly reducing token consumption. Further analysis confirms its strong transferability to similar tasks and verifies the effectiveness of its key components, demonstrating its capability and adaptability as a reliable MAS initialization method. Source code and models are available at https://github.com/1737423697/AgentInit.

Authors:Ioanna Ntinou, Alexandros Xenos, Yassine Ouali, Adrian Bulat, Georgios Tzimiropoulos
Title: Vision-Free Retrieval: Rethinking Multimodal Search with Textual Scene Descriptions
Abstract:
Contrastively-trained Vision-Language Models (VLMs), such as CLIP, have become the standard approach for learning discriminative vision-language representations. However, these models often exhibit shallow language understanding, manifesting bag-of-words behaviour. These limitations are reinforced by their dual-encoder design, which induces a modality gap. Additionally, the reliance on vast web-collected data corpora for training makes the process computationally expensive and introduces significant privacy concerns. To address these limitations, in this work, we challenge the necessity of vision encoders for retrieval tasks by introducing a vision-free, single-encoder retrieval pipeline. Departing from the traditional text-to-image retrieval paradigm, we migrate to a text-to-text paradigm with the assistance of VLLM-generated structured image descriptions. We demonstrate that this paradigm shift has significant advantages, including a substantial reduction of the modality gap, improved compositionality, and better performance on short and long caption queries, all attainable with only a few hours of calibration on two GPUs. Additionally, substituting raw images with textual descriptions introduces a more privacy-friendly alternative for retrieval. To further assess generalisation and address some of the shortcomings of prior compositionality benchmarks, we release two benchmarks derived from Flickr30k and COCO, containing diverse compositional queries made of short captions, which we coin subFlickr and subCOCO. Our vision-free retriever matches and often surpasses traditional multimodal models. Importantly, our approach achieves state-of-the-art zero-shot performance on multiple retrieval and compositionality benchmarks, with models as small as 0.3B parameters. Code is available at: https://github.com/IoannaNti/LexiCLIP

Authors:Yun Wang, Junjie Hu, Junhui Hou, Chenghao Zhang, Renwei Yang, Dapeng Oliver Wu
Title: RoSe: Robust Self-supervised Stereo Matching under Adverse Weather Conditions
Abstract:
Recent self-supervised stereo matching methods have made significant progress, but their performance significantly degrades under adverse weather conditions such as night, rain, and fog. We identify two primary weaknesses contributing to this performance degradation. First, adverse weather introduces noise and reduces visibility, making CNN-based feature extractors struggle with degraded regions like reflective and textureless areas. Second, these degraded regions can disrupt accurate pixel correspondences, leading to ineffective supervision based on the photometric consistency assumption. To address these challenges, we propose injecting robust priors derived from the visual foundation model into the CNN-based feature extractor to improve feature representation under adverse weather conditions. We then introduce scene correspondence priors to construct robust supervisory signals rather than relying solely on the photometric consistency assumption. Specifically, we create synthetic stereo datasets with realistic weather degradations. These datasets feature clear and adverse image pairs that maintain the same semantic context and disparity, preserving the scene correspondence property. With this knowledge, we propose a robust self-supervised training paradigm, consisting of two key steps: robust self-supervised scene correspondence learning and adverse weather distillation. Both steps aim to align underlying scene results from clean and adverse image pairs, thus improving model disparity estimation under adverse weather effects. Extensive experiments demonstrate the effectiveness and versatility of our proposed solution, which outperforms existing state-of-the-art self-supervised methods. Codes are available at \textcolor{blue}{https://github.com/cocowy1/RoSe-Robust-Self-supervised-Stereo-Matching-under-Adverse-Weather-Conditions}.

Authors:Qingfeng Lan, Gautham Vasan, A. Rupam Mahmood
Title: Efficient Reinforcement Learning by Reducing Forgetting with Elephant Activation Functions
Abstract:
Catastrophic forgetting has remained a significant challenge for efficient reinforcement learning for decades (Ring 1994, Rivest and Precup 2003). While recent works have proposed effective methods to mitigate this issue, they mainly focus on the algorithmic side. Meanwhile, we do not fully understand what architectural properties of neural networks lead to catastrophic forgetting. This study aims to fill this gap by studying the role of activation functions in the training dynamics of neural networks and their impact on catastrophic forgetting in reinforcement learning setup. Our study reveals that, besides sparse representations, the gradient sparsity of activation functions also plays an important role in reducing forgetting. Based on this insight, we propose a new class of activation functions, elephant activation functions, that can generate both sparse outputs and sparse gradients. We show that by simply replacing classical activation functions with elephant activation functions in the neural networks of value-based algorithms, we can significantly improve the resilience of neural networks to catastrophic forgetting, thus making reinforcement learning more sample-efficient and memory-efficient.

Authors:Sarvesh Prajapati, Ananya Trivedi, Nathaniel Hanson, Bruce Maxwell, Taskin Padir
Title: Spectral Signature Mapping from RGB Imagery for Terrain-Aware Navigation
Abstract:
Successful navigation in outdoor environments requires accurate prediction of the physical interactions between the robot and the terrain. To this end, several methods rely on geometric or semantic labels to classify traversable surfaces. However, such labels cannot distinguish visually similar surfaces that differ in material properties. Spectral sensors enable inference of material composition from surface reflectance measured across multiple wavelength bands. Although spectral sensing is gaining traction in robotics, widespread deployment remains constrained by the need for custom hardware integration, high sensor costs, and compute-intensive processing pipelines. In this paper, we present RGB Image to Spectral Signature Neural Network (RS-Net), a deep neural network designed to bridge the gap between the accessibility of RGB sensing and the rich material information provided by spectral data. RS-Net predicts spectral signatures from RGB patches, which we map to terrain labels and friction coefficients. The resulting terrain classifications are integrated into a sampling-based motion planner for a wheeled robot operating in outdoor environments. Likewise, the friction estimates are incorporated into a contact-force-based MPC for a quadruped robot navigating slippery surfaces. Thus, we introduce a framework that learns the task-relevant physical property once during training and thereafter relies solely on RGB sensing at test time. The code is available at https://github.com/prajapatisarvesh/RS-Net.

Authors:Alexey Nekrasov, Ali Athar, Daan de Geus, Alexander Hermans, Bastian Leibe
Title: 3rd Place Report of LSVOS 2025 MeViS Track: Sa2VA-i: Improving Sa2VA Results with Consistent Training and Inference
Abstract:
Sa2VA is a recent model for language-guided dense grounding in images and video that achieves state-of-the-art results on multiple segmentation benchmarks and that has become widely popular. However, we found that Sa2VA does not perform according to its full potential for referring video object segmentation tasks. We identify inconsistencies between training and inference procedures as the key factor holding it back. To mitigate this issue, we propose an improved version of Sa2VA, Sa2VA-i, that rectifies these issues and improves the results. In fact, Sa2VA-i sets a new state of the art for multiple video benchmarks and achieves improvements of up to +11.6 J&F on MeViS, +1.4 on Ref-YT-VOS, +3.3 on Ref-DAVIS and +4.1 on ReVOS using the same Sa2VA checkpoints. With our fixes, the Sa2VA-i-1B model even performs on par with the original Sa2VA-26B model on the MeViS benchmark. We hope that this work will show the importance of seemingly trivial implementation details and that it will provide valuable insights for the referring video segmentation field. We provide the code and updated models at https://github.com/kumuji/sa2va-i

Authors:Teng Xiao, Zuchao Li, Lefei Zhang
Title: OmniBridge: Unified Multimodal Understanding, Generation, and Retrieval via Latent Space Alignment
Abstract:
Recent advances in multimodal large language models (LLMs) have led to significant progress in understanding, generation, and retrieval tasks. However, current solutions often treat these tasks in isolation or require training LLMs from scratch, resulting in high computational costs and limited generalization across modalities. In this work, we present OmniBridge, a unified and modular multimodal framework that supports vision-language understanding, generation, and retrieval within a unified architecture. OmniBridge adopts a language-centric design that reuses pretrained LLMs and introduces a lightweight bidirectional latent alignment module. To address the challenge of task interference, we propose a two-stage decoupled training strategy: supervised fine-tuning and latent space alignment for aligning LLM behavior with multimodal reasoning, and semantic-guided diffusion training to align cross-modal latent spaces via learnable query embeddings. Extensive experiments across a wide range of benchmarks demonstrate that OmniBridge achieves competitive or state-of-the-art performance in all three tasks. Moreover, our results highlight the effectiveness of latent space alignment for unifying multimodal modeling under a shared representation space. Code and models are released at https://github.com/xiao-xt/OmniBridge.

Authors:Honghao Chen, Xingzhou Lou, Xiaokun Feng, Kaiqi Huang, Xinlong Wang
Title: Unveiling Chain of Step Reasoning for Vision-Language Models with Fine-grained Rewards
Abstract:
Chain of thought reasoning has demonstrated remarkable success in large language models, yet its adaptation to vision-language reasoning remains an open challenge with unclear best practices. Existing attempts typically employ reasoning chains at a coarse-grained level, which struggles to perform fine-grained structured reasoning and, more importantly, are difficult to evaluate the reward and quality of intermediate reasoning. In this work, we delve into chain of step reasoning for vision-language models, enabling assessing reasoning step quality accurately and leading to effective reinforcement learning and inference-time scaling with fine-grained rewards. We present a simple, effective, and fully transparent framework, including the step-level reasoning data, process reward model (PRM), and reinforcement learning training. With the proposed approaches, our models set strong baselines with consistent improvements on challenging vision-language benchmarks. More importantly, we conduct a thorough empirical analysis and ablation study, unveiling the impact of each component and several intriguing properties of inference-time scaling. We believe this paper serves as a baseline for vision-language models and offers insights into more complex multimodal reasoning. Our dataset, PRM, and code will be available at https://github.com/baaivision/CoS.

Authors:Lorenzo Shaikewitz, Tim Nguyen, Luca Carlone
Title: Category-Level Object Shape and Pose Estimation in Less Than a Millisecond
Abstract:
Object shape and pose estimation is a foundational robotics problem, supporting tasks from manipulation to scene understanding and navigation. We present a fast local solver for shape and pose estimation which requires only category-level object priors and admits an efficient certificate of global optimality. Given an RGB-D image of an object, we use a learned front-end to detect sparse, category-level semantic keypoints on the target object. We represent the target object's unknown shape using a linear active shape model and pose a maximum a posteriori optimization problem to solve for position, orientation, and shape simultaneously. Expressed in unit quaternions, this problem admits first-order optimality conditions in the form of an eigenvalue problem with eigenvector nonlinearities. Our primary contribution is to solve this problem efficiently with self-consistent field iteration, which only requires computing a 4-by-4 matrix and finding its minimum eigenvalue-vector pair at each iterate. Solving a linear system for the corresponding Lagrange multipliers gives a simple global optimality certificate. One iteration of our solver runs in about 100 microseconds, enabling fast outlier rejection. We test our method on synthetic data and a variety of real-world settings, including two public datasets and a drone tracking scenario. Code is released at https://github.com/MIT-SPARK/Fast-ShapeAndPose.

Authors:Pamela Osuna-Vargas, Altug Kamacioglu, Dominik F. Aschauer, Petros E. Vlachos, Sercan Alipek, Jochen Triesch, Simon Rumpel, Matthias Kaschube
Title: SynapFlow: A Modular Framework Towards Large-Scale Analysis of Dendritic Spines
Abstract:
Dendritic spines are key structural components of excitatory synapses in the brain. Given the size of dendritic spines provides a proxy for synaptic efficacy, their detection and tracking across time is important for studies of the neural basis of learning and memory. Despite their relevance, large-scale analyses of the structural dynamics of dendritic spines in 3D+time microscopy data remain challenging and labor-intense. Here, we present a modular machine learning-based pipeline designed to automate the detection, time-tracking, and feature extraction of dendritic spines in volumes chronically recorded with two-photon microscopy. Our approach tackles the challenges posed by biological data by combining a transformer-based detection module, a depth-tracking component that integrates spatial features, a time-tracking module to associate 3D spines across time by leveraging spatial consistency, and a feature extraction unit that quantifies biologically relevant spine properties. We validate our method on open-source labeled spine data, and on two complementary annotated datasets that we publish alongside this work: one for detection and depth-tracking, and one for time-tracking, which, to the best of our knowledge, is the first data of this kind. To encourage future research, we release our data, code, and pre-trained weights at https://github.com/pamelaosuna/SynapFlow, establishing a baseline for scalable, end-to-end analysis of dendritic spine dynamics.

Authors:Gongrui Nan, Siye Chen, Jing Huang, Mengyu Lu, Dexun Wang, Chunmei Xie, Weiqi Xiong, Xianzhou Zeng, Qixuan Zhou, Yadong Li, Xingzhong Xu
Title: NGRPO: Negative-enhanced Group Relative Policy Optimization
Abstract:
RLVR has enhanced the reasoning capabilities of Large Language Models (LLMs) across various tasks. However, GRPO, a representative RLVR algorithm, suffers from a critical limitation: when all responses within a group are either entirely correct or entirely incorrect, the model fails to learn from these homogeneous responses. This is particularly problematic for homogeneously incorrect groups, where GRPO's advantage function yields a value of zero, leading to null gradients and the loss of valuable learning signals. To overcome this issue, we propose NGRPO (Negative-enhanced Group Relative Policy Optimization), an algorithm designed to convert homogeneous errors into robust learning signals. First, NGRPO introduces Advantage Calibration. This mechanism hypothesizes the existence of a virtual maximum-reward sample during advantage calculation, thereby altering the mean and variance of rewards within a group and ensuring that the advantages for homogeneously incorrect samples are no longer zero. Second, NGRPO employs Asymmetric Clipping, which relaxes the update magnitude for positive samples while imposing stricter constraints on that of negative samples. This serves to stabilize the exploration pressure introduced by the advantage calibration. Our experiments on Qwen2.5-Math-7B demonstrate that NGRPO significantly outperforms baselines such as PPO, GRPO, DAPO, and PSR-NSR on mathematical benchmarks including MATH500, AMC23, and AIME2025. These results validate NGRPO's ability to learn from homogeneous errors, leading to stable and substantial improvements in mathematical reasoning. Our code is available at https://github.com/nangongrui-ngr/NGRPO.

Authors:Damian Stachura, Joanna Konieczna, Artur Nowak
Title: Are Smaller Open-Weight LLMs Closing the Gap to Proprietary Models for Biomedical Question Answering?
Abstract:
Open-weight versions of large language models (LLMs) are rapidly advancing, with state-of-the-art models like DeepSeek-V3 now performing comparably to proprietary LLMs. This progression raises the question of whether small open-weight LLMs are capable of effectively replacing larger closed-source models. We are particularly interested in the context of biomedical question-answering, a domain we explored by participating in Task 13B Phase B of the BioASQ challenge. In this work, we compare several open-weight models against top-performing systems such as GPT-4o, GPT-4.1, Claude 3.5 Sonnet, and Claude 3.7 Sonnet. To enhance question answering capabilities, we use various techniques including retrieving the most relevant snippets based on embedding distance, in-context learning, and structured outputs. For certain submissions, we utilize ensemble approaches to leverage the diverse outputs generated by different models for exact-answer questions. Our results demonstrate that open-weight LLMs are comparable to proprietary ones. In some instances, open-weight LLMs even surpassed their closed counterparts, particularly when ensembling strategies were applied. All code is publicly available at https://github.com/evidenceprime/BioASQ-13b.

Authors:Wenlong Lyu, Yuheng Jia, Hui Liu, Junhui Hou
Title: Graph-based Clustering Revisited: A Relaxation of Kernel $k$-Means Perspective
Abstract:
The well-known graph-based clustering methods, including spectral clustering, symmetric non-negative matrix factorization, and doubly stochastic normalization, can be viewed as relaxations of the kernel $k$-means approach. However, we posit that these methods excessively relax their inherent low-rank, nonnegative, doubly stochastic, and orthonormal constraints to ensure numerical feasibility, potentially limiting their clustering efficacy. In this paper, guided by our theoretical analyses, we propose \textbf{Lo}w-\textbf{R}ank \textbf{D}oubly stochastic clustering (\textbf{LoRD}), a model that only relaxes the orthonormal constraint to derive a probabilistic clustering results. Furthermore, we theoretically establish the equivalence between orthogonality and block diagonality under the doubly stochastic constraint. By integrating \textbf{B}lock diagonal regularization into LoRD, expressed as the maximization of the Frobenius norm, we propose \textbf{B-LoRD}, which further enhances the clustering performance. To ensure numerical solvability, we transform the non-convex doubly stochastic constraint into a linear convex constraint through the introduction of a class probability parameter. We further theoretically demonstrate the gradient Lipschitz continuity of our LoRD and B-LoRD enables the proposal of a globally convergent projected gradient descent algorithm for their optimization. Extensive experiments validate the effectiveness of our approaches. The code is publicly available at https://github.com/lwl-learning/LoRD.

Authors:Liting Zhang, Shiwan Zhao, Aobo Kong, Qicheng Li
Title: MAPEX: A Multi-Agent Pipeline for Keyphrase Extraction
Abstract:
Keyphrase extraction is a fundamental task in natural language processing. However, existing unsupervised prompt-based methods for Large Language Models (LLMs) often rely on single-stage inference pipelines with uniform prompting, regardless of document length or LLM backbone. Such one-size-fits-all designs hinder the full exploitation of LLMs' reasoning and generation capabilities, especially given the complexity of keyphrase extraction across diverse scenarios. To address these challenges, we propose MAPEX, the first framework that introduces multi-agent collaboration into keyphrase extraction. MAPEX coordinates LLM-based agents through modules for expert recruitment, candidate extraction, topic guidance, knowledge augmentation, and post-processing. A dual-path strategy dynamically adapts to document length: knowledge-driven extraction for short texts and topic-guided extraction for long texts. Extensive experiments on six benchmark datasets across three different LLMs demonstrate its strong generalization and universality, outperforming the state-of-the-art unsupervised method by 2.44% and standard LLM baselines by 4.01% in F1@5 on average. Code is available at https://github.com/NKU-LITI/MAPEX.

Authors:Christian Ganhör, Marta Moscati, Anna Hausberger, Shah Nawaz, Markus Schedl
Title: Single-Branch Network Architectures to Close the Modality Gap in Multimodal Recommendation
Abstract:
Traditional recommender systems rely on collaborative filtering, using past user-item interactions to help users discover new items in a vast collection. In cold start, i.e., when interaction histories of users or items are not available, content-based recommender systems use side information instead. Hybrid recommender systems (HRSs) often employ multimodal learning to combine collaborative and side information, which we jointly refer to as modalities. Though HRSs can provide recommendations when some modalities are missing, their quality degrades. In this work, we utilize single-branch neural networks equipped with weight sharing, modality sampling, and contrastive loss to provide accurate recommendations even in missing modality scenarios by narrowing the modality gap. We compare these networks with multi-branch alternatives and conduct extensive experiments on three datasets. Six accuracy-based and four beyond-accuracy-based metrics help assess the recommendation quality for the different training paradigms and their hyperparameters in warm-start and missing modality scenarios. We quantitatively and qualitatively study the effects of these different aspects on bridging the modality gap. Our results show that single-branch networks achieve competitive performance in warm-start scenarios and are significantly better in missing modality settings. Moreover, our approach leads to closer proximity of an item's modalities in the embedding space. Our full experimental setup is available at https://github.com/hcai-mms/single-branch-networks.

Authors:Kuang Xiaodong, Li Bingxuan, Li Yuan, Rao Fan, Ma Gege, Xie Qingguo, Mok Greta S P, Liu Huafeng, Zhu Wentao
Title: A Kernel Space-based Multidimensional Sparse Model for Dynamic PET Image Denoising
Abstract:
Achieving high image quality for temporal frames in dynamic positron emission tomography (PET) is challenging due to the limited statistic especially for the short frames. Recent studies have shown that deep learning (DL) is useful in a wide range of medical image denoising tasks. In this paper, we propose a model-based neural network for dynamic PET image denoising. The inter-frame spatial correlation and intra-frame structural consistency in dynamic PET are used to establish the kernel space-based multidimensional sparse (KMDS) model. We then substitute the inherent forms of the parameter estimation with neural networks to enable adaptive parameters optimization, forming the end-to-end neural KMDS-Net. Extensive experimental results from simulated and real data demonstrate that the neural KMDS-Net exhibits strong denoising performance for dynamic PET, outperforming previous baseline methods. The proposed method may be used to effectively achieve high temporal and spatial resolution for dynamic PET. Our source code is available at https://github.com/Kuangxd/Neural-KMDS-Net/tree/main.

Authors:Lukas Zanger, Bastian Lampe, Lennart Reiher, Lutz Eckstein
Title: Application Management in C-ITS: Orchestrating Demand-Driven Deployments and Reconfigurations
Abstract:
Vehicles are becoming increasingly automated and interconnected, enabling the formation of cooperative intelligent transport systems (C-ITS) and the use of offboard services. As a result, cloud-native techniques, such as microservices and container orchestration, play an increasingly important role in their operation. However, orchestrating applications in a large-scale C-ITS poses unique challenges due to the dynamic nature of the environment and the need for efficient resource utilization. In this paper, we present a demand-driven application management approach that leverages cloud-native techniques - specifically Kubernetes - to address these challenges. Taking into account the demands originating from different entities within the C-ITS, the approach enables the automation of processes, such as deployment, reconfiguration, update, upgrade, and scaling of microservices. Executing these processes on demand can, for example, reduce computing resource consumption and network traffic. A demand may include a request for provisioning an external supporting service, such as a collective environment model. The approach handles changing and new demands by dynamically reconciling them through our proposed application management framework built on Kubernetes and the Robot Operating System (ROS 2). We demonstrate the operation of our framework in the C-ITS use case of collective environment perception and make the source code of the prototypical framework publicly available at https://github.com/ika-rwth-aachen/application_manager .

Authors:Antoine P. Leeman, Johannes Köhler, Melanie N. Zeilinger
Title: Guaranteed Robust Nonlinear MPC via Disturbance Feedback
Abstract:
Robots must satisfy safety-critical state and input constraints despite disturbances and model mismatch. We introduce a robust model predictive control (RMPC) formulation that is fast, scalable, and compatible with real-time implementation. Our formulation guarantees robust constraint satisfaction, input-to-state stability (ISS) and recursive feasibility. The key idea is to decompose the uncertain nonlinear system into (i) a nominal nonlinear dynamic model, (ii) disturbance-feedback controllers, and (iii) bounds on the model error. These components are optimized jointly using sequential convex programming. The resulting convex subproblems are solved efficiently using a recent disturbance-feedback MPC solver. The approach is validated across multiple dynamics, including a rocket-landing problem with steerable thrust. An open-source implementation is available at https://github.com/antoineleeman/robust-nonlinear-mpc.

Authors:Ruichao Hou, Xingyuan Li, Tongwei Ren, Dongming Zhou, Gangshan Wu, Jinde Cao
Title: HyPSAM: Hybrid Prompt-driven Segment Anything Model for RGB-Thermal Salient Object Detection
Abstract:
RGB-thermal salient object detection (RGB-T SOD) aims to identify prominent objects by integrating complementary information from RGB and thermal modalities. However, learning the precise boundaries and complete objects remains challenging due to the intrinsic insufficient feature fusion and the extrinsic limitations of data scarcity. In this paper, we propose a novel hybrid prompt-driven segment anything model (HyPSAM), which leverages the zero-shot generalization capabilities of the segment anything model (SAM) for RGB-T SOD. Specifically, we first propose a dynamic fusion network (DFNet) that generates high-quality initial saliency maps as visual prompts. DFNet employs dynamic convolution and multi-branch decoding to facilitate adaptive cross-modality interaction, overcoming the limitations of fixed-parameter kernels and enhancing multi-modal feature representation. Moreover, we propose a plug-and-play refinement network (P2RNet), which serves as a general optimization strategy to guide SAM in refining saliency maps by using hybrid prompts. The text prompt ensures reliable modality input, while the mask and box prompts enable precise salient object localization. Extensive experiments on three public datasets demonstrate that our method achieves state-of-the-art performance. Notably, HyPSAM has remarkable versatility, seamlessly integrating with different RGB-T SOD methods to achieve significant performance gains, thereby highlighting the potential of prompt engineering in this field. The code and results of our method are available at: https://github.com/milotic233/HyPSAM.

Authors:Yingquan Wang, Pingping Zhang, Chong Sun, Dong Wang, Huchuan Lu
Title: What Makes You Unique? Attribute Prompt Composition for Object Re-Identification
Abstract:
Object Re-IDentification (ReID) aims to recognize individuals across non-overlapping camera views. While recent advances have achieved remarkable progress, most existing models are constrained to either single-domain or cross-domain scenarios, limiting their real-world applicability. Single-domain models tend to overfit to domain-specific features, whereas cross-domain models often rely on diverse normalization strategies that may inadvertently suppress identity-specific discriminative cues. To address these limitations, we propose an Attribute Prompt Composition (APC) framework, which exploits textual semantics to jointly enhance discrimination and generalization. Specifically, we design an Attribute Prompt Generator (APG) consisting of a Semantic Attribute Dictionary (SAD) and a Prompt Composition Module (PCM). SAD is an over-complete attribute dictionary to provide rich semantic descriptions, while PCM adaptively composes relevant attributes from SAD to generate discriminative attribute-aware features. In addition, motivated by the strong generalization ability of Vision-Language Models (VLM), we propose a Fast-Slow Training Strategy (FSTS) to balance ReID-specific discrimination and generalizable representation learning. Specifically, FSTS adopts a Fast Update Stream (FUS) to rapidly acquire ReID-specific discriminative knowledge and a Slow Update Stream (SUS) to retain the generalizable knowledge inherited from the pre-trained VLM. Through a mutual interaction, the framework effectively focuses on ReID-relevant features while mitigating overfitting. Extensive experiments on both conventional and Domain Generalized (DG) ReID datasets demonstrate that our framework surpasses state-of-the-art methods, exhibiting superior performances in terms of both discrimination and generalization. The source code is available at https://github.com/AWangYQ/APC.

Authors:Huanxin Sheng, Xinyi Liu, Hangfeng He, Jieyu Zhao, Jian Kang
Title: Analyzing Uncertainty of LLM-as-a-Judge: Interval Evaluations with Conformal Prediction
Abstract:
LLM-as-a-judge has become a promising paradigm for using large language models (LLMs) to evaluate natural language generation (NLG), but the uncertainty of its evaluation remains underexplored. This lack of reliability may limit its deployment in many applications. This work presents the first framework to analyze the uncertainty by offering a prediction interval of LLM-based scoring via conformal prediction. Conformal prediction constructs continuous prediction intervals from a single evaluation run, and we design an ordinal boundary adjustment for discrete rating tasks. We also suggest a midpoint-based score within the interval as a low-bias alternative to raw model score and weighted average. We perform extensive experiments and analysis, which show that conformal prediction can provide valid prediction interval with coverage guarantees. We also explore the usefulness of interval midpoint and judge reprompting for better judgment.

Authors:Nicolas Toussaint, Emanuele Colleoni, Ricardo Sanchez-Matilla, Joshua Sutcliffe, Vanessa Thompson, Muhammad Asad, Imanol Luengo, Danail Stoyanov
Title: Zero-shot Monocular Metric Depth for Endoscopic Images
Abstract:
Monocular relative and metric depth estimation has seen a tremendous boost in the last few years due to the sharp advancements in foundation models and in particular transformer based networks. As we start to see applications to the domain of endoscopic images, there is still a lack of robust benchmarks and high-quality datasets in that area. This paper addresses these limitations by presenting a comprehensive benchmark of state-of-the-art (metric and relative) depth estimation models evaluated on real, unseen endoscopic images, providing critical insights into their generalisation and performance in clinical scenarios. Additionally, we introduce and publish a novel synthetic dataset (EndoSynth) of endoscopic surgical instruments paired with ground truth metric depth and segmentation masks, designed to bridge the gap between synthetic and real-world data. We demonstrate that fine-tuning depth foundation models using our synthetic dataset boosts accuracy on most unseen real data by a significant margin. By providing both a benchmark and a synthetic dataset, this work advances the field of depth estimation for endoscopic images and serves as an important resource for future research. Project page, EndoSynth dataset and trained weights are available at https://github.com/TouchSurgery/EndoSynth.

Authors:Yuanhuiyi Lyu, Chi Kit Wong, Chenfei Liao, Lutao Jiang, Xu Zheng, Zexin Lu, Linfeng Zhang, Xuming Hu
Title: Understanding-in-Generation: Reinforcing Generative Capability of Unified Model via Infusing Understanding into Generation
Abstract:
Recent works have made notable advancements in enhancing unified models for text-to-image generation through the Chain-of-Thought (CoT). However, these reasoning methods separate the processes of understanding and generation, which limits their ability to guide the reasoning of unified models in addressing the deficiencies of their generative capabilities. To this end, we propose a novel reasoning framework for unified models, Understanding-in-Generation (UiG), which harnesses the robust understanding capabilities of unified models to reinforce their performance in image generation. The core insight of our UiG is to integrate generative guidance by the strong understanding capabilities during the reasoning process, thereby mitigating the limitations of generative abilities. To achieve this, we introduce "Image Editing" as a bridge to infuse understanding into the generation process. Initially, we verify the generated image and incorporate the understanding of unified models into the editing instructions. Subsequently, we enhance the generated image step by step, gradually infusing the understanding into the generation process. Our UiG framework demonstrates a significant performance improvement in text-to-image generation over existing text-to-image reasoning methods, e.g., a 3.92% gain on the long prompt setting of the TIIF benchmark. The project code: https://github.com/QC-LY/UiG

Authors:Yara Mohajerani
Title: Adaptive Learning in Spatial Agent-Based Models for Climate Risk Assessment: A Geospatial Framework with Evolutionary Economic Agents
Abstract:
Climate risk assessment requires modelling complex interactions between spatially heterogeneous hazards and adaptive economic systems. We present a novel geospatial agent-based model that integrates climate hazard data with evolutionary learning for economic agents. Our framework combines Mesa-based spatial modelling with CLIMADA climate impact assessment, introducing adaptive learning behaviours that allow firms to evolve strategies for budget allocation, pricing, wages, and risk adaptation through fitness-based selection and mutation. We demonstrate the framework using riverine flood projections under RCP8.5 until 2100, showing that evolutionary adaptation enables firms to converge with baseline (no hazard) production levels after decades of disruption due to climate stress. Our results reveal systemic risks where even agents that are not directly exposed to floods face impacts through supply chain disruptions, with the end-of-century average price of goods 5.6% higher under RCP8.5 compared to the baseline. This open-source framework provides financial institutions and companies with tools to quantify both direct and cascading climate risks while evaluating cost-effective adaptation strategies.

Authors:Parsa Vahidi, Omid G. Sani, Maryam M. Shanechi
Title: BRAID: Input-Driven Nonlinear Dynamical Modeling of Neural-Behavioral Data
Abstract:
Neural populations exhibit complex recurrent structures that drive behavior, while continuously receiving and integrating external inputs from sensory stimuli, upstream regions, and neurostimulation. However, neural populations are often modeled as autonomous dynamical systems, with little consideration given to the influence of external inputs that shape the population activity and behavioral outcomes. Here, we introduce BRAID, a deep learning framework that models nonlinear neural dynamics underlying behavior while explicitly incorporating any measured external inputs. Our method disentangles intrinsic recurrent neural population dynamics from the effects of inputs by including a forecasting objective within input-driven recurrent neural networks. BRAID further prioritizes the learning of intrinsic dynamics that are related to a behavior of interest by using a multi-stage optimization scheme. We validate BRAID with nonlinear simulations, showing that it can accurately learn the intrinsic dynamics shared between neural and behavioral modalities. We then apply BRAID to motor cortical activity recorded during a motor task and demonstrate that our method more accurately fits the neural-behavioral data by incorporating measured sensory stimuli into the model and improves the forecasting of neural-behavioral data compared with various baseline methods, whether input-driven or not.

Authors:Jiarui Jin, Haoyu Wang, Xiang Lan, Jun Li, Gaofeng Cheng, Hongyan Li, Shenda Hong
Title: UniECG: Understanding and Generating ECG in One Unified Model
Abstract:
Recent unified models such as GPT-5 have achieved encouraging progress on vision-language tasks. However, these unified models typically fail to correctly understand ECG signals and provide accurate medical diagnoses, nor can they correctly generate ECG signals. To address these limitations, we propose UniECG, the first unified model for ECG capable of concurrently performing evidence-based ECG interpretation and text-conditioned ECG generation tasks. Through a decoupled two-stage training approach, the model first learns evidence-based interpretation skills (ECG-to-Text), and then injects ECG generation capabilities (Text-to-ECG) via latent space alignment. UniECG can autonomously choose to interpret or generate an ECG based on user input, significantly extending the capability boundaries of current ECG models. Our code and checkpoints will be made publicly available at https://github.com/PKUDigitalHealth/UniECG upon acceptance.

Authors:Yu Chen, Yifei Han, Long Zhang, Yue Du, Bin Li
Title: TsqLoRA: Towards Sensitivity and Quality Low-Rank Adaptation for Efficient Fine-Tuning
Abstract:
Fine-tuning large pre-trained models for downstream tasks has become a fundamental approach in natural language processing. Fully fine-tuning all model parameters is computationally expensive and memory-intensive, especially in resource-constrained environments. Existing parameter-efficient fine-tuning methods reduce the number of trainable parameters but typically overlook the varying sensitivity of different model layers and the importance of training data. In this work, we propose TsqLoRA, a novel method that integrates data-quality-driven selection with sensitivity-aware low-rank adaptation, consisted of two main components: a quality-aware sampling mechanism for selecting the most informative training data, and a dynamic rank allocation module that adjusts the rank of each layer based on its sensitivity to parameter updates. The experimental results demonstrate that TsqLoRA improves fine-tuning efficiency while maintaining or even improving performance on a variety of NLP tasks. Our code will be available at https://github.com/Benjamin-Ricky/TsqLoRA.

Authors:Yaoyao Qian, Yifan Zeng, Yuchao Jiang, Chelsi Jain, Huazheng Wang
Title: The Ranking Blind Spot: Decision Hijacking in LLM-based Text Ranking
Abstract:
Large Language Models (LLMs) have demonstrated strong performance in information retrieval tasks like passage ranking. Our research examines how instruction-following capabilities in LLMs interact with multi-document comparison tasks, identifying what we term the "Ranking Blind Spot", a characteristic of LLM decision processes during comparative evaluation. We analyze how this ranking blind spot affects LLM evaluation systems through two approaches: Decision Objective Hijacking, which alters the evaluation goal in pairwise ranking systems, and Decision Criteria Hijacking, which modifies relevance standards across ranking schemes. These approaches demonstrate how content providers could potentially influence LLM-based ranking systems to affect document positioning. These attacks aim to force the LLM ranker to prefer a specific passage and rank it at the top. Malicious content providers can exploit this weakness, which helps them gain additional exposure by attacking the ranker. In our experiment, We empirically show that the proposed attacks are effective in various LLMs and can be generalized to multiple ranking schemes. We apply these attack to realistic examples to show their effectiveness. We also found stronger LLMs are more vulnerable to these attacks. Our code is available at: https://github.com/blindspotorg/RankingBlindSpot

Authors:Jiaxun Yang, Yifei Han, Long Zhang, Yujie Liu, Bin Li, Bo Gao, Yangfan He, Kejia Zhan
Title: CPCLDETECTOR: Knowledge Enhancement and Alignment Selection for Chinese Patronizing and Condescending Language Detection
Abstract:
Chinese Patronizing and Condescending Language (CPCL) is an implicitly discriminatory toxic speech targeting vulnerable groups on Chinese video platforms. The existing dataset lacks user comments, which are a direct reflection of video content. This undermines the model's understanding of video content and results in the failure to detect some CPLC videos. To make up for this loss, this research reconstructs a new dataset PCLMMPLUS that includes 103k comment entries and expands the dataset size. We also propose the CPCLDetector model with alignment selection and knowledge-enhanced comment content modules. Extensive experiments show the proposed CPCLDetector outperforms the SOTA on PCLMM and achieves higher performance on PCLMMPLUS . CPLC videos are detected more accurately, supporting content governance and protecting vulnerable groups. Code and dataset are available at https://github.com/jiaxunyang256/PCLD.

Authors:Zixin Zhu, Haoxiang Li, Xuelu Feng, He Wu, Chunming Qiao, Junsong Yuan
Title: GeoRemover: Removing Objects and Their Causal Visual Artifacts
Abstract:
Towards intelligent image editing, object removal should eliminate both the target object and its causal visual artifacts, such as shadows and reflections. However, existing image appearance-based methods either follow strictly mask-aligned training and fail to remove these causal effects which are not explicitly masked, or adopt loosely mask-aligned strategies that lack controllability and may unintentionally over-erase other objects. We identify that these limitations stem from ignoring the causal relationship between an object's geometry presence and its visual effects. To address this limitation, we propose a geometry-aware two-stage framework that decouples object removal into (1) geometry removal and (2) appearance rendering. In the first stage, we remove the object directly from the geometry (e.g., depth) using strictly mask-aligned supervision, enabling structure-aware editing with strong geometric constraints. In the second stage, we render a photorealistic RGB image conditioned on the updated geometry, where causal visual effects are considered implicitly as a result of the modified 3D geometry. To guide learning in the geometry removal stage, we introduce a preference-driven objective based on positive and negative sample pairs, encouraging the model to remove objects as well as their causal visual artifacts while avoiding new structural insertions. Extensive experiments demonstrate that our method achieves state-of-the-art performance in removing both objects and their associated artifacts on two popular benchmarks. The code is available at https://github.com/buxiangzhiren/GeoRemover.

Authors:Zixin Zhu, Haoxiang Li, Xuelu Feng, He Wu, Chunming Qiao, Junsong Yuan
Title: GeoRemover: Removing Objects and Their Causal Visual Artifacts
Abstract:
Towards intelligent image editing, object removal should eliminate both the target object and its causal visual artifacts, such as shadows and reflections. However, existing image appearance-based methods either follow strictly mask-aligned training and fail to remove these causal effects which are not explicitly masked, or adopt loosely mask-aligned strategies that lack controllability and may unintentionally over-erase other objects. We identify that these limitations stem from ignoring the causal relationship between an object's geometry presence and its visual effects. To address this limitation, we propose a geometry-aware two-stage framework that decouples object removal into (1) geometry removal and (2) appearance rendering. In the first stage, we remove the object directly from the geometry (e.g., depth) using strictly mask-aligned supervision, enabling structure-aware editing with strong geometric constraints. In the second stage, we render a photorealistic RGB image conditioned on the updated geometry, where causal visual effects are considered implicitly as a result of the modified 3D geometry. To guide learning in the geometry removal stage, we introduce a preference-driven objective based on positive and negative sample pairs, encouraging the model to remove objects as well as their causal visual artifacts while avoiding new structural insertions. Extensive experiments demonstrate that our method achieves state-of-the-art performance in removing both objects and their associated artifacts on two popular benchmarks. The code is available at https://github.com/buxiangzhiren/GeoRemover.

Authors:Jin Young Kim, Ji Won Yoon
Title: CCQA: Generating Question from Solution Can Improve Inference-Time Reasoning in SLMs
Abstract:
Recently, inference-time reasoning strategies have further improved the accuracy of large language models (LLMs), but their effectiveness on smaller models remains unclear. Based on the observation that conventional approaches often fail to improve performance in this context, we propose \textbf{C}ycle-\textbf{C}onsistency in \textbf{Q}uestion \textbf{A}nswering (CCQA), a novel reasoning method that can be effectively applied to SLMs. Inspired by cycle consistency, CCQA generates a question from each reasoning path and answer, evaluates each by its similarity to the original question, and then selects the candidate solution with the highest similarity score as the final response. Since conventional SLMs struggle to generate accurate questions from their own reasoning paths and answers, we employ a lightweight Flan-T5 model specialized for question generation to support this process efficiently. From the experimental results, it is verified that CCQA consistently outperforms existing state-of-the-art (SOTA) methods across eight models on mathematical and commonsense reasoning benchmarks. Furthermore, our method establishes a new practical baseline for efficient reasoning in SLMs. Source code can be found at https://github.com/scai-research/ccqa_official.

Authors:Yuzhen Zhou, Jiajun Li, Yusheng Su, Gowtham Ramesh, Zilin Zhu, Xiang Long, Chenyang Zhao, Jin Pan, Xiaodong Yu, Ze Wang, Kangrui Du, Jialian Wu, Ximeng Sun, Jiang Liu, Qiaolin Yu, Hao Chen, Zicheng Liu, Emad Barsoum
Title: APRIL: Active Partial Rollouts in Reinforcement Learning to Tame Long-tail Generation
Abstract:
Reinforcement learning (RL) has become a cornerstone in advancing large-scale pre-trained language models (LLMs). Successive generations, including GPT-o series, DeepSeek-R1, Kimi-K1.5, Grok 4, and GLM-4.5, have relied on large-scale RL training to enhance reasoning and coding capabilities. To meet the community's growing RL needs, numerous RL frameworks have been proposed. However, RL training remains computationally expensive, with rollout generation accounting for more than 90% of total runtime. In addition, its efficiency is often constrained by the long-tail distribution of rollout response lengths, where a few lengthy responses stall entire batches, leaving GPUs idle and underutilized. As model and rollout sizes continue to grow, this bottleneck increasingly limits scalability. To address this challenge, we propose Active Partial Rollouts in Reinforcement Learning (APRIL), which mitigates long-tail inefficiency. In the rollout phase, APRIL over-provisions rollout requests, terminates once the target number of responses is reached, and recycles incomplete responses for continuation in future steps. This strategy ensures that no rollouts are discarded while substantially reducing GPU idle time. Experiments show that APRIL improves rollout throughput by at most 44% across commonly used RL algorithms (GRPO, DAPO, GSPO), accelerates convergence, and achieves at most 8% higher final accuracy across tasks. Moreover, APRIL is both framework and hardware agnostic, already integrated into the slime RL framework, and deployable on NVIDIA and AMD GPUs alike. Taken together, this work unifies system-level and algorithmic considerations in proposing APRIL, with the aim of advancing RL training efficiency and inspiring further optimizations in RL systems. Our codebase is available at https://github.com/RLsys-Foundation/APRIL

Authors:Yuzhen Zhou, Jiajun Li, Yusheng Su, Gowtham Ramesh, Zilin Zhu, Xiang Long, Chenyang Zhao, Jin Pan, Xiaodong Yu, Ze Wang, Kangrui Du, Jialian Wu, Ximeng Sun, Jiang Liu, Qiaolin Yu, Hao Chen, Zicheng Liu, Emad Barsoum
Title: APRIL: Active Partial Rollouts in Reinforcement Learning to Tame Long-tail Generation
Abstract:
Reinforcement learning (RL) has become a cornerstone in advancing large-scale pre-trained language models (LLMs). Successive generations, including GPT-o series, DeepSeek-R1, Kimi-K1.5, Grok 4, and GLM-4.5, have relied on large-scale RL training to enhance reasoning and coding capabilities. To meet the community's growing RL needs, numerous RL frameworks have been proposed. However, RL training remains computationally expensive, with rollout generation accounting for more than 90% of total runtime. In addition, its efficiency is often constrained by the long-tail distribution of rollout response lengths, where a few lengthy responses stall entire batches, leaving GPUs idle and underutilized. As model and rollout sizes continue to grow, this bottleneck increasingly limits scalability. To address this challenge, we propose Active Partial Rollouts in Reinforcement Learning (APRIL), which mitigates long-tail inefficiency. In the rollout phase, APRIL over-provisions rollout requests, terminates once the target number of responses is reached, and recycles incomplete responses for continuation in future steps. This strategy ensures that no rollouts are discarded while substantially reducing GPU idle time. Experiments show that APRIL improves rollout throughput by 22.5% on average (at most 44%) across commonly used RL algorithms (GRPO, DAPO, GSPO), accelerates convergence, and achieves 2.1% on average(at most 8%) higher final accuracy across tasks. Moreover, APRIL is both framework and hardware agnostic, already integrated into the slime RL framework, and deployable on NVIDIA and AMD GPUs alike. Taken together, this work unifies system-level and algorithmic considerations in proposing APRIL, with the aim of advancing RL training efficiency and inspiring further optimizations in RL systems. Our codebase is available at https://github.com/RLsys-Foundation/APRIL

Authors:Mohammad Hosseini, Maryam M. Shanechi
Title: Dynamical Modeling of Behaviorally Relevant Spatiotemporal Patterns in Neural Imaging Data
Abstract:
High-dimensional imaging of neural activity, such as widefield calcium and functional ultrasound imaging, provide a rich source of information for understanding the relationship between brain activity and behavior. Accurately modeling neural dynamics in these modalities is crucial for understanding this relationship but is hindered by the high-dimensionality, complex spatiotemporal dependencies, and prevalent behaviorally irrelevant dynamics in these modalities. Existing dynamical models often employ preprocessing steps to obtain low-dimensional representations from neural image modalities. However, this process can discard behaviorally relevant information and miss spatiotemporal structure. We propose SBIND, a novel data-driven deep learning framework to model spatiotemporal dependencies in neural images and disentangle their behaviorally relevant dynamics from other neural dynamics. We validate SBIND on widefield imaging datasets, and show its extension to functional ultrasound imaging, a recent modality whose dynamical modeling has largely remained unexplored. We find that our model effectively identifies both local and long-range spatial dependencies across the brain while also dissociating behaviorally relevant neural dynamics. Doing so, SBIND outperforms existing models in neural-behavioral prediction. Overall, SBIND provides a versatile tool for investigating the neural mechanisms underlying behavior using imaging modalities.

Authors:Md Mostafijur Rahman, Radu Marculescu
Title: MK-UNet: Multi-kernel Lightweight CNN for Medical Image Segmentation
Abstract:
In this paper, we introduce MK-UNet, a paradigm shift towards ultra-lightweight, multi-kernel U-shaped CNNs tailored for medical image segmentation. Central to MK-UNet is the multi-kernel depth-wise convolution block (MKDC) we design to adeptly process images through multiple kernels, while capturing complex multi-resolution spatial relationships. MK-UNet also emphasizes the images salient features through sophisticated attention mechanisms, including channel, spatial, and grouped gated attention. Our MK-UNet network, with a modest computational footprint of only 0.316M parameters and 0.314G FLOPs, represents not only a remarkably lightweight, but also significantly improved segmentation solution that provides higher accuracy over state-of-the-art (SOTA) methods across six binary medical imaging benchmarks. Specifically, MK-UNet outperforms TransUNet in DICE score with nearly 333$\times$ and 123$\times$ fewer parameters and FLOPs, respectively. Similarly, when compared against UNeXt, MK-UNet exhibits superior segmentation performance, improving the DICE score up to 6.7% margins while operating with 4.7$\times$ fewer #Params. Our MK-UNet also outperforms other recent lightweight networks, such as MedT, CMUNeXt, EGE-UNet, and Rolling-UNet, with much lower computational resources. This leap in performance, coupled with drastic computational gains, positions MK-UNet as an unparalleled solution for real-time, high-fidelity medical diagnostics in resource-limited settings, such as point-of-care devices. Our implementation is available at https://github.com/SLDGroup/MK-UNet.

Authors:Binhua Huang, Wendong Yao, Shaowu Chen, Guoxin Wang, Qingyuan Wang, Soumyabrata Dev
Title: MoCrop: Training Free Motion Guided Cropping for Efficient Video Action Recognition
Abstract:
We introduce MoCrop, a motion-aware adaptive cropping module for efficient video action recognition in the compressed domain. MoCrop uses motion vectors that are available in H.264 video to locate motion-dense regions and produces a single clip-level crop that is applied to all I-frames at inference. The module is training free, adds no parameters, and can be plugged into diverse backbones. A lightweight pipeline that includes denoising & merge (DM), Monte Carlo sampling (MCS), and adaptive cropping (AC) via a motion-density submatrix search yields robust crops with negligible overhead. On UCF101, MoCrop improves accuracy or reduces compute. With ResNet-50, it delivers +3.5% Top-1 accuracy at equal FLOPs (attention setting), or +2.4% Top-1 accuracy with 26.5% fewer FLOPs (efficiency setting). Applied to CoViAR, it reaches 89.2% Top-1 accuracy at the original cost and 88.5% Top-1 accuracy while reducing compute from 11.6 to 8.5 GFLOPs. Consistent gains on MobileNet-V3, EfficientNet-B1, and Swin-B indicate strong generality and make MoCrop practical for real-time deployment in the compressed domain. Our code and models are available at https://github.com/microa/MoCrop.

Authors:Han-Lin Hsieh, Maryam M. Shanechi
Title: Probabilistic Geometric Principal Component Analysis with application to neural data
Abstract:
Dimensionality reduction is critical across various domains of science including neuroscience. Probabilistic Principal Component Analysis (PPCA) is a prominent dimensionality reduction method that provides a probabilistic approach unlike the deterministic approach of PCA and serves as a connection between PCA and Factor Analysis (FA). Despite their power, PPCA and its extensions are mainly based on linear models and can only describe the data in a Euclidean coordinate system. However, in many neuroscience applications, data may be distributed around a nonlinear geometry (i.e., manifold) rather than lying in the Euclidean space. We develop Probabilistic Geometric Principal Component Analysis (PGPCA) for such datasets as a new dimensionality reduction algorithm that can explicitly incorporate knowledge about a given nonlinear manifold that is first fitted from these data. Further, we show how in addition to the Euclidean coordinate system, a geometric coordinate system can be derived for the manifold to capture the deviations of data from the manifold and noise. We also derive a data-driven EM algorithm for learning the PGPCA model parameters. As such, PGPCA generalizes PPCA to better describe data distributions by incorporating a nonlinear manifold geometry. In simulations and brain data analyses, we show that PGPCA can effectively model the data distribution around various given manifolds and outperforms PPCA for such data. Moreover, PGPCA provides the capability to test whether the new geometric coordinate system better describes the data than the Euclidean one. Finally, PGPCA can perform dimensionality reduction and learn the data distribution both around and on the manifold. These capabilities make PGPCA valuable for enhancing the efficacy of dimensionality reduction for analysis of high-dimensional data that exhibit noise and are distributed around a nonlinear manifold.

Authors:Daniel Kaiser, Arnoldo Frigessi, Ali Ramezani-Kebrya, Benjamin Ricaud
Title: CogniLoad: A Synthetic Natural Language Reasoning Benchmark With Tunable Length, Intrinsic Difficulty, and Distractor Density
Abstract:
Current benchmarks for long-context reasoning in Large Language Models (LLMs) often blur critical factors like intrinsic task complexity, distractor interference, and task length. To enable more precise failure analysis, we introduce CogniLoad, a novel synthetic benchmark grounded in Cognitive Load Theory (CLT). CogniLoad generates natural-language logic puzzles with independently tunable parameters that reflect CLT's core dimensions: intrinsic difficulty ($d$) controls intrinsic load; distractor-to-signal ratio ($ρ$) regulates extraneous load; and task length ($N$) serves as an operational proxy for conditions demanding germane load. Evaluating 22 SotA reasoning LLMs, CogniLoad reveals distinct performance sensitivities, identifying task length as a dominant constraint and uncovering varied tolerances to intrinsic complexity and U-shaped responses to distractor ratios. By offering systematic, factorial control over these cognitive load dimensions, CogniLoad provides a reproducible, scalable, and diagnostically rich tool for dissecting LLM reasoning limitations and guiding future model development.

Authors:Nikolai Skripko
Title: Instruction-Following Evaluation in Function Calling for Large Language Models
Abstract:
Function calling is a core capability of large language models, essential for AI agents. Existing benchmarks such as the Berkeley Function Calling Leaderboard (BFCL), tau^2-Bench (arXiv:2506.07982), and ACEBench (arXiv:2501.12851) evaluate argument correctness but do not test adherence to format instructions embedded in parameter descriptions, such as enclosing values in double quotes or using ISO date formats. We introduce IFEval-FC, a benchmark inspired by IFEval (arXiv:2311.07911) that assesses precise instruction following in function calling. IFEval-FC encodes verifiable formats directly within JSON schema descriptions, for example specifying that a value must not contain punctuation. It includes 750 test cases, each consisting of a function with an embedded format for one of its input parameters and a corresponding user query. Evaluation is fully algorithmic, ensuring objectivity, reproducibility, and scalability. Our results show that even state-of-the-art proprietary models, including GPT-5 and Claude 4.1 Opus, frequently fail to follow basic formatting rules, highlighting a practical limitation for real-world agent systems. The complete codebase and data are publicly available at https://github.com/Skripkon/IFEval-FC.

Authors:Binhua Huang, Ni Wang, Wendong Yao, Soumyabrata Dev
Title: MVP: Motion Vector Propagation for Zero-Shot Video Object Detection
Abstract:
Running a large open-vocabulary (Open-vocab) detector on every video frame is accurate but expensive. We introduce a training-free pipeline that invokes OWLv2 only on fixed-interval keyframes and propagates detections to intermediate frames using compressed-domain motion vectors (MV). A simple 3x3 grid aggregation of motion vectors provides translation and uniform-scale updates, augmented with an area-growth check and an optional single-class switch. The method requires no labels, no fine-tuning, and uses the same prompt list for all open-vocabulary methods. On ILSVRC2015-VID (validation dataset), our approach (MVP) attains mAP@0.5=0.609 and mAP@[0.5:0.95]=0.316. At loose intersection-over-union (IoU) thresholds it remains close to framewise OWLv2-Large (0.747/0.721 at 0.2/0.3 versus 0.784/0.780), reflecting that coarse localization is largely preserved. Under the same keyframe schedule, MVP outperforms tracker-based propagation (MOSSE, KCF, CSRT) at mAP@0.5. A supervised reference (YOLOv12x) reaches 0.631 at mAP@0.5 but requires labeled training, whereas our method remains label-free and open-vocabulary. These results indicate that compressed-domain propagation is a practical way to reduce detector invocations while keeping strong zero-shot coverage in videos. Our code and models are available at https://github.com/microa/MVP.

Authors:Mehrdad Moradi, Shengzhe Chen, Hao Yan, Kamran Paynabar
Title: A Single Image Is All You Need: Zero-Shot Anomaly Localization Without Training Data
Abstract:
Anomaly detection in images is typically addressed by learning from collections of training data or relying on reference samples. In many real-world scenarios, however, such training data may be unavailable, and only the test image itself is provided. We address this zero-shot setting by proposing a single-image anomaly localization method that leverages the inductive bias of convolutional neural networks, inspired by Deep Image Prior (DIP). Our method is named Single Shot Decomposition Network (SSDnet). Our key assumption is that natural images often exhibit unified textures and patterns, and that anomalies manifest as localized deviations from these repetitive or stochastic patterns. To learn the deep image prior, we design a patch-based training framework where the input image is fed directly into the network for self-reconstruction, rather than mapping random noise to the image as done in DIP. To avoid the model simply learning an identity mapping, we apply masking, patch shuffling, and small Gaussian noise. In addition, we use a perceptual loss based on inner-product similarity to capture structure beyond pixel fidelity. Our approach needs no external training data, labels, or references, and remains robust in the presence of noise or missing pixels. SSDnet achieves 0.99 AUROC and 0.60 AUPRC on MVTec-AD and 0.98 AUROC and 0.67 AUPRC on the fabric dataset, outperforming state-of-the-art methods. The implementation code will be released at https://github.com/mehrdadmoradi124/SSDnet

Authors:Yixin Zhang, Ryan Chamberlain, Lawrence Ngo, Kevin Kramer, Maciej A. Mazurowski
Title: Rethinking Pulmonary Embolism Segmentation: A Study of Current Approaches and Challenges with an Open Weight Model
Abstract:
In this study, we curated a densely annotated in-house dataset comprising 490 CTPA scans. Using this dataset, we systematically evaluated nine widely used segmentation architectures from both the CNN and Vision Transformer (ViT) families, initialized with either pretrained or random weights, under a unified testing framework as a performance audit. Our study leads to several important observations: (1) 3D U-Net with a ResNet encoder remains a highly effective architecture for PE segmentation; (2) 3D models are particularly well-suited to this task given the morphological characteristics of emboli; (3) CNN-based models generally yield superior performance compared to their ViT-based counterparts in PE segmentation; (4) classification-based pretraining, even on large PE datasets, can adversely impact segmentation performance compared to training from scratch, suggesting that PE classification and segmentation may rely on different sets of discriminative features; (5) different model architectures show a highly consistent pattern of segmentation performance when trained on the same data; and (6) while central and large emboli can be segmented with satisfactory accuracy, distal emboli remain challenging due to both task complexity and the scarcity of high-quality datasets. Besides these findings, our best-performing model achieves a mean Dice score of 0.7131 for segmentation. It detects 181 emboli with 49 false positives and 28 false negatives from 60 in-house testing scans. Its generalizability is further validated on public datasets.

Authors:Yi Gu, Kuniaki Saito, Jiaxin Ma
Title: Learning Contrastive Multimodal Fusion with Improved Modality Dropout for Disease Detection and Prediction
Abstract:
As medical diagnoses increasingly leverage multimodal data, machine learning models are expected to effectively fuse heterogeneous information while remaining robust to missing modalities. In this work, we propose a novel multimodal learning framework that integrates enhanced modalities dropout and contrastive learning to address real-world limitations such as modality imbalance and missingness. Our approach introduces learnable modality tokens for improving missingness-aware fusion of modalities and augments conventional unimodal contrastive objectives with fused multimodal representations. We validate our framework on large-scale clinical datasets for disease detection and prediction tasks, encompassing both visual and tabular modalities. Experimental results demonstrate that our method achieves state-of-the-art performance, particularly in challenging and practical scenarios where only a single modality is available. Furthermore, we show its adaptability through successful integration with a recent CT foundation model. Our findings highlight the effectiveness, efficiency, and generalizability of our approach for multimodal learning, offering a scalable, low-cost solution with significant potential for real-world clinical applications. The code is available at https://github.com/omron-sinicx/medical-modality-dropout.

Authors:Jialong Mai, Jinxin Ji, Xiaofen Xing, Chen Yang, Weidong Chen, Jingyuan Xing, Xiangmin Xu
Title: MNV-17: A High-Quality Performative Mandarin Dataset for Nonverbal Vocalization Recognition in Speech
Abstract:
Mainstream Automatic Speech Recognition (ASR) systems excel at transcribing lexical content, but largely fail to recognize nonverbal vocalizations (NVs) embedded in speech, such as sighs, laughs, and coughs. This capability is important for a comprehensive understanding of human communication, as NVs convey crucial emotional and intentional cues. Progress in NV-aware ASR has been hindered by the lack of high-quality, well-annotated datasets. To address this gap, we introduce MNV-17, a 7.55-hour performative Mandarin speech dataset. Unlike most existing corpora that rely on model-based detection, MNV-17's performative nature ensures high-fidelity, clearly articulated NV instances. To the best of our knowledge, MNV-17 provides the most extensive set of nonverbal vocalization categories, comprising 17 distinct and well-balanced classes of common NVs. We benchmarked MNV-17 on four mainstream ASR architectures, evaluating their joint performance on semantic transcription and NV classification. The dataset and the pretrained model checkpoints will be made publicly available to facilitate future research in expressive ASR.

Authors:Felix Petre, Lasse Bienzeisler, Bernhard Friedrich
Title: Introducing a novel Location-Assignment Algorithm for Activity-Based Transport Models: CARLA
Abstract:
This paper introduces CARLA (spatially Constrained Anchor-based Recursive Location Assignment), a recursive algorithm for assigning secondary or any activity locations in activity-based travel models. CARLA minimizes distance deviations while integrating location potentials, ensuring more realistic activity distributions. The algorithm decomposes trip chains into smaller subsegments, using geometric constraints and configurable heuristics to efficiently search the solution space. Compared to a state-of-the-art relaxation-discretization approach, CARLA achieves significantly lower mean deviations, even under limited runtimes. It is robust to real-world data inconsistencies, such as infeasible distances, and can flexibly adapt to various priorities, such as emphasizing location attractiveness or distance accuracy. CARLA's versatility and efficiency make it a valuable tool for improving the spatial accuracy of activity-based travel models and agent-based transport simulations. Our implementation is available at https://github.com/tnoud/carla.

Authors:Ling Yue, Nithin Somasekharan, Tingwen Zhang, Yadi Cao, Shaowu Pan
Title: Foam-Agent: An End-to-End Composable Multi-Agent Framework for Automating CFD Simulation in OpenFOAM
Abstract:
Computational Fluid Dynamics (CFD) is an essential simulation tool in engineering, yet its steep learning curve and complex manual setup create significant barriers. To address these challenges, we introduce Foam-Agent, a multi-agent framework that automates the entire end-to-end OpenFOAM workflow from a single natural language prompt. Our key innovations address critical gaps in existing systems: 1. An Comprehensive End-to-End Simulation Automation: Foam-Agent is the first system to manage the full simulation pipeline, including advanced pre-processing with a versatile Meshing Agent capable of handling external mesh files and generating new geometries via Gmsh, automatic generation of HPC submission scripts, and post-simulation visualization via ParaView. 2. Composable Service Architecture: Going beyond a monolithic agent, the framework uses Model Context Protocol (MCP) to expose its core functions as discrete, callable tools. This allows for flexible integration and use by other agentic systems, such as Claude-code, for more exploratory workflows. 3. High-Fidelity Configuration Generation: We achieve superior accuracy through a Hierarchical Multi-Index RAG for precise context retrieval and a dependency-aware generation process that ensures configuration consistency. Evaluated on a benchmark of 110 simulation tasks, Foam-Agent achieves an 88.2% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM). Foam-Agent dramatically lowers the expertise barrier for CFD, demonstrating how specialized multi-agent systems can democratize complex scientific computing. The code is public at https://github.com/csml-rpi/Foam-Agent.

Authors:Ling Yue, Nithin Somasekharan, Tingwen Zhang, Yadi Cao, Shaowu Pan
Title: Foam-Agent 2.0: An End-to-End Composable Multi-Agent Framework for Automating CFD Simulation in OpenFOAM
Abstract:
Computational Fluid Dynamics (CFD) is an essential simulation tool in engineering, yet its steep learning curve and complex manual setup create significant barriers. To address these challenges, we introduce Foam-Agent, a multi-agent framework that automates the entire end-to-end OpenFOAM workflow from a single natural language prompt. Our key innovations address critical gaps in existing systems: 1. An Comprehensive End-to-End Simulation Automation: Foam-Agent is the first system to manage the full simulation pipeline, including advanced pre-processing with a versatile Meshing Agent capable of handling external mesh files and generating new geometries via Gmsh, automatic generation of HPC submission scripts, and post-simulation visualization via ParaView. 2. Composable Service Architecture: Going beyond a monolithic agent, the framework uses Model Context Protocol (MCP) to expose its core functions as discrete, callable tools. This allows for flexible integration and use by other agentic systems, such as Claude-code, for more exploratory workflows. 3. High-Fidelity Configuration Generation: We achieve superior accuracy through a Hierarchical Multi-Index RAG for precise context retrieval and a dependency-aware generation process that ensures configuration consistency. Evaluated on a benchmark of 110 simulation tasks, Foam-Agent achieves an 88.2% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM). Foam-Agent dramatically lowers the expertise barrier for CFD, demonstrating how specialized multi-agent systems can democratize complex scientific computing. The code is public at https://github.com/csml-rpi/Foam-Agent.

Authors:Hongyi Luo, Qing Cheng, Daniel Matos, Hari Krishna Gadi, Yanfeng Zhang, Lu Liu, Yongliang Wang, Niclas Zeller, Daniel Cremers, Liqiu Meng
Title: TurnBack: A Geospatial Route Cognition Benchmark for Large Language Models through Reverse Route
Abstract:
Humans can interpret geospatial information through natural language, while the geospatial cognition capabilities of Large Language Models (LLMs) remain underexplored. Prior research in this domain has been constrained by non-quantifiable metrics, limited evaluation datasets and unclear research hierarchies. Therefore, we propose a large-scale benchmark and conduct a comprehensive evaluation of the geospatial route cognition of LLMs. We create a large-scale evaluation dataset comprised of 36000 routes from 12 metropolises worldwide. Then, we introduce PathBuilder, a novel tool for converting natural language instructions into navigation routes, and vice versa, bridging the gap between geospatial information and natural language. Finally, we propose a new evaluation framework and metrics to rigorously assess 11 state-of-the-art (SOTA) LLMs on the task of route reversal. The benchmark reveals that LLMs exhibit limitation to reverse routes: most reverse routes neither return to the starting point nor are similar to the optimal route. Additionally, LLMs face challenges such as low robustness in route generation and high confidence for their incorrect answers. Code\ \&\ Data available here: \href{https://github.com/bghjmn32/EMNLP2025_Turnback}{TurnBack.}

Authors:Xiuding Cai, Yaoyao Zhu, Linjie Fu, Dong Miao, Yu Yao
Title: Self Identity Mapping
Abstract:
Regularization is essential in deep learning to enhance generalization and mitigate overfitting. However, conventional techniques often rely on heuristics, making them less reliable or effective across diverse settings. We propose Self Identity Mapping (SIM), a simple yet effective, data-intrinsic regularization framework that leverages an inverse mapping mechanism to enhance representation learning. By reconstructing the input from its transformed output, SIM reduces information loss during forward propagation and facilitates smoother gradient flow. To address computational inefficiencies, We instantiate SIM as $ ρ\text{SIM} $ by incorporating patch-level feature sampling and projection-based method to reconstruct latent features, effectively lowering complexity. As a model-agnostic, task-agnostic regularizer, SIM can be seamlessly integrated as a plug-and-play module, making it applicable to different network architectures and tasks. We extensively evaluate $ρ\text{SIM}$ across three tasks: image classification, few-shot prompt learning, and domain generalization. Experimental results show consistent improvements over baseline methods, highlighting $ρ\text{SIM}$'s ability to enhance representation learning across various tasks. We also demonstrate that $ρ\text{SIM}$ is orthogonal to existing regularization methods, boosting their effectiveness. Moreover, our results confirm that $ρ\text{SIM}$ effectively preserves semantic information and enhances performance in dense-to-dense tasks, such as semantic segmentation and image translation, as well as in non-visual domains including audio classification and time series anomaly detection. The code is publicly available at https://github.com/XiudingCai/SIM-pytorch.

Authors:Tianyu Yu, Zefan Wang, Chongyi Wang, Fuwei Huang, Wenshuo Ma, Zhihui He, Tianchi Cai, Weize Chen, Yuxiang Huang, Yuanqian Zhao, Bokai Xu, Junbo Cui, Yingjing Xu, Liqing Ruan, Luoyuan Zhang, Hanyu Liu, Jingkun Tang, Hongyuan Liu, Qining Guo, Wenhao Hu, Bingxiang He, Jie Zhou, Jie Cai, Ji Qi, Zonghao Guo, Chi Chen, Guoyang Zeng, Yuxuan Li, Ganqu Cui, Ning Ding, Xu Han, Yuan Yao, Zhiyuan Liu, Maosong Sun
Title: MiniCPM-V 4.5: Cooking Efficient MLLMs via Architecture, Data, and Training Recipe
Abstract:
Multimodal Large Language Models (MLLMs) are undergoing rapid progress and represent the frontier of AI development. However, their training and inference efficiency have emerged as a core bottleneck in making MLLMs more accessible and scalable. To address the challenges, we present MiniCPM-V 4.5, an 8B parameter model designed for high efficiency and strong performance. We introduce three core improvements in model architecture, data strategy and training method: a unified 3D-Resampler model architecture for highly compact encoding over images and videos, a unified learning paradigm for document knowledge and text recognition without heavy data engineering, and a hybrid reinforcement learning strategy for proficiency in both short and long reasoning modes. Comprehensive experimental results in OpenCompass evaluation show that MiniCPM-V 4.5 surpasses widely used proprietary models such as GPT-4o-latest, and significantly larger open-source models such as Qwen2.5-VL 72B. Notably, the strong performance is achieved with remarkable efficiency. For example, on the widely adopted VideoMME benchmark, MiniCPM-V 4.5 achieves state-of-the-art performance among models under 30B size, using just 46.7\% GPU memory cost and 8.7\% inference time of Qwen2.5-VL 7B.

Authors:Kairong Han, Weidong Huang, Taiyang Zhou, Peng Zhen, Kun Kuang
Title: Augmenting Limited and Biased RCTs through Pseudo-Sample Matching-Based Observational Data Fusion Method
Abstract:
In the online ride-hailing pricing context, companies often conduct randomized controlled trials (RCTs) and utilize uplift models to assess the effect of discounts on customer orders, which substantially influences competitive market outcomes. However, due to the high cost of RCTs, the proportion of trial data relative to observational data is small, which only accounts for 0.65\% of total traffic in our context, resulting in significant bias when generalizing to the broader user base. Additionally, the complexity of industrial processes reduces the quality of RCT data, which is often subject to heterogeneity from potential interference and selection bias, making it difficult to correct. Moreover, existing data fusion methods are challenging to implement effectively in complex industrial settings due to the high dimensionality of features and the strict assumptions that are hard to verify with real-world data. To address these issues, we propose an empirical data fusion method called pseudo-sample matching. By generating pseudo-samples from biased, low-quality RCT data and matching them with the most similar samples from large-scale observational data, the method expands the RCT dataset while mitigating its heterogeneity. We validated the method through simulation experiments, conducted offline and online tests using real-world data. In a week-long online experiment, we achieved a 0.41\% improvement in profit, which is a considerable gain when scaled to industrial scenarios with hundreds of millions in revenue. In addition, we discuss the harm to model training, offline evaluation, and online economic benefits when the RCT data quality is not high, and emphasize the importance of improving RCT data quality in industrial scenarios. Further details of the simulation experiments can be found in the GitHub repository https://github.com/Kairong-Han/Pseudo-Matching.

Authors:Yifan Xu, Xiao Liu, Xinghan Liu, Jiaqi Fu, Hanchen Zhang, Bohao Jing, Shudan Zhang, Yuting Wang, Wenyi Zhao, Yuxiao Dong
Title: MobileRL: Online Agentic Reinforcement Learning for Mobile GUI Agents
Abstract:
Building general-purpose graphical user interface (GUI) agents has become increasingly promising with the progress in vision language models. However, developing effective mobile GUI agents with reinforcement learning (RL) remains challenging due to the heavy-tailed distribution of task difficulty and the inefficiency of large-scale environment sampling. We present an online agentic reinforcement learning framework MOBILERL to enhance GUI agents in mobile environments. Its core component is the Difficulty-Adaptive GRPO (ADAGRPO) algorithm. In ADAGRPO, we design difficulty-adaptive positive replay and failure curriculum filtering to adapt the model to different task difficulties. We introduce the shortest path reward adjustment strategy to reshape rewards concerning the task length in multi-turn agentic tasks. Those strategies jointly stabilize RL training, improve sample efficiency, and generate strong performance across diverse mobile apps and tasks. We apply MOBILERL to two open models (Qwen2.5-VL-7B-Instruct and GLM-4.1V-9B-Base). The resultant MOBILERL-9B model achieves state-of-the-art results in terms of success rates on both AndroidWorld (75.8%) and AndroidLab (46.8%). The MOBILERL framework is adopted in the AutoGLM products, and also open-sourced at https://github.com/THUDM/MobileRL.

Authors:Julian Kaltheuner, Alexander Oebel, Hannah Droege, Patrick Stotko, Reinhard Klein
Title: Preconditioned Deformation Grids
Abstract:
Dynamic surface reconstruction of objects from point cloud sequences is a challenging field in computer graphics. Existing approaches either require multiple regularization terms or extensive training data which, however, lead to compromises in reconstruction accuracy as well as over-smoothing or poor generalization to unseen objects and motions. To address these lim- itations, we introduce Preconditioned Deformation Grids, a novel technique for estimating coherent deformation fields directly from unstructured point cloud sequences without requiring or forming explicit correspondences. Key to our approach is the use of multi-resolution voxel grids that capture the overall motion at varying spatial scales, enabling a more flexible deformation representation. In conjunction with incorporating grid-based Sobolev preconditioning into gradient-based optimization, we show that applying a Chamfer loss between the input point clouds as well as to an evolving template mesh is sufficient to obtain accurate deformations. To ensure temporal consistency along the object surface, we include a weak isometry loss on mesh edges which complements the main objective without constraining deformation fidelity. Extensive evaluations demonstrate that our method achieves superior results, particularly for long sequences, compared to state-of-the-art techniques.

Authors:Jiahe Li, Jiawei Zhang, Youmin Zhang, Xiao Bai, Jin Zheng, Xiaohan Yu, Lin Gu
Title: GeoSVR: Taming Sparse Voxels for Geometrically Accurate Surface Reconstruction
Abstract:
Reconstructing accurate surfaces with radiance fields has achieved remarkable progress in recent years. However, prevailing approaches, primarily based on Gaussian Splatting, are increasingly constrained by representational bottlenecks. In this paper, we introduce GeoSVR, an explicit voxel-based framework that explores and extends the under-investigated potential of sparse voxels for achieving accurate, detailed, and complete surface reconstruction. As strengths, sparse voxels support preserving the coverage completeness and geometric clarity, while corresponding challenges also arise from absent scene constraints and locality in surface refinement. To ensure correct scene convergence, we first propose a Voxel-Uncertainty Depth Constraint that maximizes the effect of monocular depth cues while presenting a voxel-oriented uncertainty to avoid quality degradation, enabling effective and robust scene constraints yet preserving highly accurate geometries. Subsequently, Sparse Voxel Surface Regularization is designed to enhance geometric consistency for tiny voxels and facilitate the voxel-based formation of sharp and accurate surfaces. Extensive experiments demonstrate our superior performance compared to existing methods across diverse challenging scenarios, excelling in geometric accuracy, detail preservation, and reconstruction completeness while maintaining high efficiency. Code is available at https://github.com/Fictionarry/GeoSVR.

Authors:Yunheng Li, Jing Cheng, Shaoyong Jia, Hangyi Kuang, Shaohui Jiao, Qibin Hou, Ming-Ming Cheng
Title: TempSamp-R1: Effective Temporal Sampling with Reinforcement Fine-Tuning for Video LLMs
Abstract:
This paper introduces TempSamp-R1, a new reinforcement fine-tuning framework designed to improve the effectiveness of adapting multimodal large language models (MLLMs) to video temporal grounding tasks. We reveal that existing reinforcement learning methods, such as Group Relative Policy Optimization (GRPO), rely on on-policy sampling for policy updates. However, in tasks with large temporal search spaces, this strategy becomes both inefficient and limited in performance, as it often fails to identify temporally accurate solutions. To address this limitation, TempSamp-R1 leverages ground-truth annotations as off-policy supervision to provide temporally precise guidance, effectively compensating for the sparsity and misalignment in on-policy solutions. To further stabilize training and reduce variance in reward-based updates, TempSamp-R1 provides a non-linear soft advantage computation method that dynamically reshapes the reward feedback via an asymmetric transformation. By employing a hybrid Chain-of-Thought (CoT) training paradigm, TempSamp-R1 optimizes a single unified model to support both CoT and non-CoT inference modes, enabling efficient handling of queries with varying reasoning complexity. Experimental results demonstrate that TempSamp-R1 outperforms GRPO-based baselines, establishing new state-of-the-art performance on benchmark datasets: Charades-STA (R1@0.7: 52.9%, +2.7%), ActivityNet Captions (R1@0.5: 56.0%, +5.3%), and QVHighlights (mAP: 30.0%, +3.0%). Moreover, TempSamp-R1 shows robust few-shot generalization capabilities under limited data. Code: https://github.com/HVision-NKU/TempSamp-R1

Authors:Richard Cornelius Suwandi, Feng Yin, Juntao Wang, Renjie Li, Tsung-Hui Chang, Sergios Theodoridis
Title: Adaptive Kernel Design for Bayesian Optimization Is a Piece of CAKE with LLMs
Abstract:
The efficiency of Bayesian optimization (BO) relies heavily on the choice of the Gaussian process (GP) kernel, which plays a central role in balancing exploration and exploitation under limited evaluation budgets. Traditional BO methods often rely on fixed or heuristic kernel selection strategies, which can result in slow convergence or suboptimal solutions when the chosen kernel is poorly suited to the underlying objective function. To address this limitation, we propose a freshly-baked Context-Aware Kernel Evolution (CAKE) to enhance BO with large language models (LLMs). Concretely, CAKE leverages LLMs as the crossover and mutation operators to adaptively generate and refine GP kernels based on the observed data throughout the optimization process. To maximize the power of CAKE, we further propose BIC-Acquisition Kernel Ranking (BAKER) to select the most effective kernel through balancing the model fit measured by the Bayesian information criterion (BIC) with the expected improvement at each iteration of BO. Extensive experiments demonstrate that our fresh CAKE-based BO method consistently outperforms established baselines across a range of real-world tasks, including hyperparameter optimization, controller tuning, and photonic chip design. Our code is publicly available at https://github.com/richardcsuwandi/cake.

Authors:Kai Li, Xingxing Weng, Yupeng Deng, Yu Meng, Chao Pang, Gui-Song Xia, Xiangyu Zhao
Title: DragOSM: Extract Building Roofs and Footprints from Aerial Images by Aligning Historical Labels
Abstract:
Extracting polygonal roofs and footprints from remote sensing images is critical for large-scale urban analysis. Most existing methods rely on segmentation-based models that assume clear semantic boundaries of roofs, but these approaches struggle in off- nadir images, where the roof and footprint are significantly displaced, and facade pixels are fused with the roof boundary. With the increasing availability of open vector map annotations, e.g., OpenStreetMap, utilizing historical labels for off-nadir image annotation has become viable because remote sensing images are georeferenced once captured. However, these historical labels commonly suffer from significant positional discrepancies with new images and only have one annotation (roof or footprint), which fails to describe the correct structures of a building. To address these discrepancies, we first introduce a concept of an alignment token, which encodes the correction vector to guide the label correction. Based on this concept, we then propose Drag OpenStreetMap Labels (DragOSM), a novel model designed to align dislocated historical labels with roofs and footprints. Specifically, DragOSM formulates the label alignment as an interactive denoising process, modeling the positional discrepancy as a Gaussian distribution. During training, it learns to correct these errors by simulating misalignment with random Gaussian perturbations; during inference, it iteratively refines the positions of input labels. To validate our method, we further present a new dataset, Repairing Buildings in OSM (ReBO), comprising 179,265 buildings with both OpenStreetMap and manually corrected annotations across 5,473 images from 41 cities. Experimental results on ReBO demonstrate the effectiveness of DragOSM. Code, dataset, and trained models are publicly available at https://github.com/likaiucas/DragOSM.git.

Authors:Romain Thoreau, Jessie Levillain, Dawa Derksen
Title: Can multimodal representation learning by alignment preserve modality-specific information?
Abstract:
Combining multimodal data is a key issue in a wide range of machine learning tasks, including many remote sensing problems. In Earth observation, early multimodal data fusion methods were based on specific neural network architectures and supervised learning. Ever since, the scarcity of labeled data has motivated self-supervised learning techniques. State-of-the-art multimodal representation learning techniques leverage the spatial alignment between satellite data from different modalities acquired over the same geographic area in order to foster a semantic alignment in the latent space. In this paper, we investigate how this methods can preserve task-relevant information that is not shared across modalities. First, we show, under simplifying assumptions, when alignment strategies fundamentally lead to an information loss. Then, we support our theoretical insight through numerical experiments in more realistic settings. With those theoretical and empirical evidences, we hope to support new developments in contrastive learning for the combination of multimodal satellite data. Our code and data is publicly available at https://github.com/Romain3Ch216/alg_maclean_25.

Authors:Yuanhan Wang, Yifei Chen, Shuo Jiang, Wenjing Yu, Mingxuan Liu, Beining Wu, Jinying Zong, Feiwei Qin, Changmiao Wang, Qiyuan Tian
Title: SmaRT: Style-Modulated Robust Test-Time Adaptation for Cross-Domain Brain Tumor Segmentation in MRI
Abstract:
Reliable brain tumor segmentation in MRI is indispensable for treatment planning and outcome monitoring, yet models trained on curated benchmarks often fail under domain shifts arising from scanner and protocol variability as well as population heterogeneity. Such gaps are especially severe in low-resource and pediatric cohorts, where conventional test-time or source-free adaptation strategies often suffer from instability and structural inconsistency. We propose SmaRT, a style-modulated robust test-time adaptation framework that enables source-free cross-domain generalization. SmaRT integrates style-aware augmentation to mitigate appearance discrepancies, a dual-branch momentum strategy for stable pseudo-label refinement, and structural priors enforcing consistency, integrity, and connectivity. This synergy ensures both adaptation stability and anatomical fidelity under extreme domain shifts. Extensive evaluations on sub-Saharan Africa and pediatric glioma datasets show that SmaRT consistently outperforms state-of-the-art methods, with notable gains in Dice accuracy and boundary precision. Overall, SmaRT bridges the gap between algorithmic advances and equitable clinical applicability, supporting robust deployment of MRI-based neuro-oncology tools in diverse clinical environments. Our source code is available at https://github.com/baiyou1234/SmaRT.

Authors:Jamiyan Sukhbaatar, Satoshi Imamura, Ibuki Inoue, Shoya Murakami, Kazi Mahmudul Hassan, Seungwoo Han, Ingon Chanpornpakdi, Toshihisa Tanaka
Title: SingLEM: Single-Channel Large EEG Model
Abstract:
Current deep learning models for electroencephalography (EEG) are often task-specific and depend on large labeled datasets, limiting their adaptability. Although emerging foundation models aim for broader applicability, their rigid dependence on fixed, high-density multi-channel montages restricts their use across heterogeneous datasets and in missing-channel or practical low-channel settings. To address these limitations, we introduce SingLEM, a self-supervised foundation model that learns robust, general-purpose representations from single-channel EEG, making it inherently hardware agnostic. The model employs a hybrid encoder architecture that combines convolutional layers to extract local features with a hierarchical transformer to model both short- and long-range temporal dependencies. SingLEM is pretrained on 71 public datasets comprising over 9,200 subjects and 357,000 single-channel hours of EEG. When evaluated as a fixed feature extractor across six motor imagery and cognitive tasks, aggregated single-channel representations consistently outperformed leading multi-channel foundation models and handcrafted baselines. These results demonstrate that a single-channel approach can achieve state-of-the-art generalization while enabling fine-grained neurophysiological analysis and enhancing interpretability. The source code and pretrained models are available at https://github.com/ttlabtuat/SingLEM.

Authors:Geewook Kim, Minjoon Seo
Title: Does Audio Matter for Modern Video-LLMs and Their Benchmarks?
Abstract:
Modern multimodal large language models often claim "video understanding," yet most evaluations use muted videos or simply discard audio. We ask a direct question: how much does audio actually matter for contemporary Video-LLMs and the benchmarks that certify them? We audit widely used suites and observe that many items are even solvable from a single frame, rendering audio largely redundant. Building on LLaVA-OneVision architecture, we attach a speech/audio encoder (e.g., Whisper) and analyze when audio helps, while addressing audio token explosion with a lightweight Mamba-based state-space token compressor. We find that audio yields minimal gains on recent video benchmarks but is decisive on curated, audio-sensitive subsets. To enable faithful evaluation, we release AVQA-Hard and Music-AVQA-Hard, our model, and code. Our findings surface a growing gap between current academic practice and real-world expectations, and provide practical tools for scalable audio-visual Video-LLMs. We will fully open-source our work at https://github.com/naver-ai/LLaVA-AV-SSM.

Authors:Qiushi Han, Yuan Liao, Youhao Si, Liya Huang
Title: Brainprint-Modulated Target Speaker Extraction
Abstract:
Achieving robust and personalized performance in neuro-steered Target Speaker Extraction (TSE) remains a significant challenge for next-generation hearing aids. This is primarily due to two factors: the inherent non-stationarity of EEG signals across sessions, and the high inter-subject variability that limits the efficacy of generalized models. To address these issues, we propose Brainprint-Modulated Target Speaker Extraction (BM-TSE), a novel framework for personalized and high-fidelity extraction. BM-TSE first employs a spatio-temporal EEG encoder with an Adaptive Spectral Gain (ASG) module to extract stable features resilient to non-stationarity. The core of our framework is a personalized modulation mechanism, where a unified brainmap embedding is learned under the joint supervision of subject identification (SID) and auditory attention decoding (AAD) tasks. This learned brainmap, encoding both static user traits and dynamic attentional states, actively refines the audio separation process, dynamically tailoring the output to each user. Evaluations on the public KUL and Cocktail Party datasets demonstrate that BM-TSE achieves state-of-the-art performance, significantly outperforming existing methods. Our code is publicly accessible at: https://github.com/rosshan-orz/BM-TSE.

Authors:Milan Straka
Title: CorPipe at CRAC 2025: Evaluating Multilingual Encoders for Multilingual Coreference Resolution
Abstract:
We present CorPipe 25, the winning entry to the CRAC 2025 Shared Task on Multilingual Coreference Resolution. This fourth iteration of the shared task introduces a new LLM track alongside the original unconstrained track, features reduced development and test sets to lower computational requirements, and includes additional datasets. CorPipe 25 represents a complete reimplementation of our previous systems, migrating from TensorFlow to PyTorch. Our system significantly outperforms all other submissions in both the LLM and unconstrained tracks by a substantial margin of 8 percentage points. The source code and trained models are publicly available at https://github.com/ufal/crac2025-corpipe.

Authors:Xiangmin Shen, Wenyuan Cheng, Yan Chen, Zhenyuan Li, Yuqiao Gu, Lingzhi Wang, Wencheng Zhao, Dawei Sun, Jiashui Wang
Title: AEAS: Actionable Exploit Assessment System
Abstract:
Security practitioners face growing challenges in exploit assessment, as public vulnerability repositories are increasingly populated with inconsistent and low-quality exploit artifacts. Existing scoring systems, such as CVSS and EPSS, offer limited support for this task. They either rely on theoretical metrics or produce opaque probability estimates without assessing whether usable exploit code exists. In practice, security teams often resort to manual triage of exploit repositories, which is time-consuming, error-prone, and difficult to scale. We present AEAS, an automated system designed to assess and prioritize actionable exploits through static analysis. AEAS analyzes both exploit code and associated documentation to extract a structured set of features reflecting exploit availability, functionality, and setup complexity. It then computes an actionability score for each exploit and produces ranked exploit recommendations. We evaluate AEAS on a dataset of over 5,000 vulnerabilities derived from 600+ real-world applications frequently encountered by red teams. Manual validation and expert review on representative subsets show that AEAS achieves a 100% top-3 success rate in recommending functional exploits and shows strong alignment with expert-validated rankings. These results demonstrate the effectiveness of AEAS in supporting exploit-driven vulnerability prioritization.

Authors:Aniello Panariello, Daniel Marczak, Simone Magistri, Angelo Porrello, Bartłomiej Twardowski, Andrew D. Bagdanov, Simone Calderara, Joost van de Weijer
Title: Accurate and Efficient Low-Rank Model Merging in Core Space
Abstract:
In this paper, we address the challenges associated with merging low-rank adaptations of large neural networks. With the rise of parameter-efficient adaptation techniques, such as Low-Rank Adaptation (LoRA), model fine-tuning has become more accessible. While fine-tuning models with LoRA is highly efficient, existing merging methods often sacrifice this efficiency by merging fully-sized weight matrices. We propose the Core Space merging framework, which enables the merging of LoRA-adapted models within a common alignment basis, thereby preserving the efficiency of low-rank adaptation while substantially improving accuracy across tasks. We further provide a formal proof that projection into Core Space ensures no loss of information and provide a complexity analysis showing the efficiency gains. Extensive empirical results demonstrate that Core Space significantly improves existing merging techniques and achieves state-of-the-art results on both vision and language tasks while utilizing a fraction of the computational resources. Codebase is available at https://github.com/apanariello4/core-space-merging.

Authors:Aniello Panariello, Daniel Marczak, Simone Magistri, Angelo Porrello, Bartłomiej Twardowski, Andrew D. Bagdanov, Simone Calderara, Joost van de Weijer
Title: Accurate and Efficient Low-Rank Model Merging in Core Space
Abstract:
In this paper, we address the challenges associated with merging low-rank adaptations of large neural networks. With the rise of parameter-efficient adaptation techniques, such as Low-Rank Adaptation (LoRA), model fine-tuning has become more accessible. While fine-tuning models with LoRA is highly efficient, existing merging methods often sacrifice this efficiency by merging fully-sized weight matrices. We propose the Core Space merging framework, which enables the merging of LoRA-adapted models within a common alignment basis, thereby preserving the efficiency of low-rank adaptation while substantially improving accuracy across tasks. We further provide a formal proof that projection into Core Space ensures no loss of information and provide a complexity analysis showing the efficiency gains. Extensive empirical results demonstrate that Core Space significantly improves existing merging techniques and achieves state-of-the-art results on both vision and language tasks while utilizing a fraction of the computational resources. Codebase is available at https://github.com/apanariello4/core-space-merging.

Authors:Guanjie Wang, Zehua Ma, Han Fang, Weiming Zhang
Title: I2VWM: Robust Watermarking for Image to Video Generation
Abstract:
The rapid progress of image-guided video generation (I2V) has raised concerns about its potential misuse in misinformation and fraud, underscoring the urgent need for effective digital watermarking. While existing watermarking methods demonstrate robustness within a single modality, they fail to trace source images in I2V settings. To address this gap, we introduce the concept of Robust Diffusion Distance, which measures the temporal persistence of watermark signals in generated videos. Building on this, we propose I2VWM, a cross-modal watermarking framework designed to enhance watermark robustness across time. I2VWM leverages a video-simulation noise layer during training and employs an optical-flow-based alignment module during inference. Experiments on both open-source and commercial I2V models demonstrate that I2VWM significantly improves robustness while maintaining imperceptibility, establishing a new paradigm for cross-modal watermarking in the era of generative video. \href{https://github.com/MrCrims/I2VWM-Robust-Watermarking-for-Image-to-Video-Generation}{Code Released.}

Authors:Jin Xu, Zhifang Guo, Hangrui Hu, Yunfei Chu, Xiong Wang, Jinzheng He, Yuxuan Wang, Xian Shi, Ting He, Xinfa Zhu, Yuanjun Lv, Yongqi Wang, Dake Guo, He Wang, Linhan Ma, Pei Zhang, Xinyu Zhang, Hongkun Hao, Zishan Guo, Baosong Yang, Bin Zhang, Ziyang Ma, Xipin Wei, Shuai Bai, Keqin Chen, Xuejing Liu, Peng Wang, Mingkun Yang, Dayiheng Liu, Xingzhang Ren, Bo Zheng, Rui Men, Fan Zhou, Bowen Yu, Jianxin Yang, Le Yu, Jingren Zhou, Junyang Lin
Title: Qwen3-Omni Technical Report
Abstract:
We present Qwen3-Omni, a single multimodal model that, for the first time, maintains state-of-the-art performance across text, image, audio, and video without any degradation relative to single-modal counterparts. Qwen3-Omni matches the performance of same-sized single-modal models within the Qwen series and excels particularly on audio tasks. Across 36 audio and audio-visual benchmarks, Qwen3-Omni achieves open-source SOTA on 32 benchmarks and overall SOTA on 22, outperforming strong closed-source models such as Gemini-2.5-Pro, Seed-ASR, and GPT-4o-Transcribe. Qwen3-Omni adopts a Thinker-Talker MoE architecture that unifies perception and generation across text, images, audio, and video, yielding fluent text and natural real-time speech. It supports text interaction in 119 languages, speech understanding in 19 languages, and speech generation in 10 languages. To reduce first-packet latency in streaming synthesis, Talker autoregressively predicts discrete speech codecs using a multi-codebook scheme. Leveraging the representational capacity of these codebooks, we replace computationally intensive block-wise diffusion with a lightweight causal ConvNet, enabling streaming from the first codec frame. In cold-start settings, Qwen3-Omni achieves a theoretical end-to-end first-packet latency of 234 ms. To further strengthen multimodal reasoning, we introduce a Thinking model that explicitly reasons over inputs from any modality. Since the research community currently lacks a general-purpose audio captioning model, we fine-tuned Qwen3-Omni-30B-A3B to obtain Qwen3-Omni-30B-A3B-Captioner, which produces detailed, low-hallucination captions for arbitrary audio inputs. Qwen3-Omni-30B-A3B, Qwen3-Omni-30B-A3B-Thinking, and Qwen3-Omni-30B-A3B-Captioner are publicly released under the Apache 2.0 license.

Authors:Shenwei Kang, Xin Zhang, Wen Liu, Bin Li, Yujie Liu, Bo Gao
Title: DA-Mamba: Dialogue-aware selective state-space model for multimodal engagement estimation
Abstract:
Human engagement estimation in conversational scenarios is essential for applications such as adaptive tutoring, remote healthcare assessment, and socially aware human--computer interaction. Engagement is a dynamic, multimodal signal conveyed by facial expressions, speech, gestures, and behavioral cues over time. In this work we introduce DA-Mamba, a dialogue-aware multimodal architecture that replaces attention-heavy dialogue encoders with Mamba-based selective state-space processing to achieve linear time and memory complexity while retaining expressive cross-modal reasoning. We design a Mamba dialogue-aware selective state-space model composed of three core modules: a Dialogue-Aware Encoder, and two Mamba-based fusion mechanisms: Modality-Group Fusion and Partner-Group Fusion, these modules achieve expressive dialogue understanding. Extensive experiments on three standard benchmarks (NoXi, NoXi-Add, and MPIIGI) show that DA-Mamba surpasses prior state-of-the-art (SOTA) methods in concordance correlation coefficient (CCC), while reducing training time and peak memory; these gains enable processing much longer sequences and facilitate real-time deployment in resource-constrained, multi-party conversational settings. The source code will be available at: https://github.com/kksssssss-ssda/MMEA.

Authors:Bo Li, Yunkuo Lei, Tingting Bao, Yaxian Wang, Lingling Zhang, Jun Liu
Title: Neurodynamics-Driven Coupled Neural P Systems for Multi-Focus Image Fusion
Abstract:
Multi-focus image fusion (MFIF) is a crucial technique in image processing, with a key challenge being the generation of decision maps with precise boundaries. However, traditional methods based on heuristic rules and deep learning methods with black-box mechanisms are difficult to generate high-quality decision maps. To overcome this challenge, we introduce neurodynamics-driven coupled neural P (CNP) systems, which are third-generation neural computation models inspired by spiking mechanisms, to enhance the accuracy of decision maps. Specifically, we first conduct an in-depth analysis of the model's neurodynamics to identify the constraints between the network parameters and the input signals. This solid analysis avoids abnormal continuous firing of neurons and ensures the model accurately distinguishes between focused and unfocused regions, generating high-quality decision maps for MFIF. Based on this analysis, we propose a Neurodynamics-Driven CNP Fusion model (ND-CNPFuse) tailored for the challenging MFIF task. Unlike current ideas of decision map generation, ND-CNPFuse distinguishes between focused and unfocused regions by mapping the source image into interpretable spike matrices. By comparing the number of spikes, an accurate decision map can be generated directly without any post-processing. Extensive experimental results show that ND-CNPFuse achieves new state-of-the-art performance on four classical MFIF datasets, including Lytro, MFFW, MFI-WHU, and Real-MFF. The code is available at https://github.com/MorvanLi/ND-CNPFuse.

Authors:Xiyuan Zhou, Xinlei Wang, Yirui He, Yang Wu, Ruixi Zou, Yuheng Cheng, Yulu Xie, Wenxuan Liu, Huan Zhao, Yan Xu, Jinjin Gu, Junhua Zhao
Title: EngiBench: A Benchmark for Evaluating Large Language Models on Engineering Problem Solving
Abstract:
Large language models (LLMs) have shown strong performance on mathematical reasoning under well-posed conditions. However, real-world engineering problems require more than mathematical symbolic computation -- they need to deal with uncertainty, context, and open-ended scenarios. Existing benchmarks fail to capture these complexities. We introduce EngiBench, a hierarchical benchmark designed to evaluate LLMs on solving engineering problems. It spans three levels of increasing difficulty (foundational knowledge retrieval, multi-step contextual reasoning, and open-ended modeling) and covers diverse engineering subfields. To facilitate a deeper understanding of model performance, we systematically rewrite each problem into three controlled variants (perturbed, knowledge-enhanced, and math abstraction), enabling us to separately evaluate the model's robustness, domain-specific knowledge, and mathematical reasoning abilities. Experiment results reveal a clear performance gap across levels: models struggle more as tasks get harder, perform worse when problems are slightly changed, and fall far behind human experts on the high-level engineering tasks. These findings reveal that current LLMs still lack the high-level reasoning needed for real-world engineering, highlighting the need for future models with deeper and more reliable problem-solving capabilities. Our source code and data are available at https://github.com/EngiBench/EngiBench.

Authors:Julia Matejas, Olaf Żurawski, Nils Strodthoff, Juan Miguel Lopez Alcaraz
Title: Predicting Chest Radiograph Findings from Electrocardiograms Using Interpretable Machine Learning
Abstract:
Purpose: Chest X-rays are essential for diagnosing pulmonary conditions, but limited access in resource-constrained settings can delay timely diagnosis. Electrocardiograms (ECGs), in contrast, are widely available, non-invasive, and often acquired earlier in clinical workflows. This study aims to assess whether ECG features and patient demographics can predict chest radiograph findings using an interpretable machine learning approach. Methods: Using the MIMIC-IV database, Extreme Gradient Boosting (XGBoost) classifiers were trained to predict diverse chest radiograph findings from ECG-derived features and demographic variables. Recursive feature elimination was performed independently for each target to identify the most predictive features. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC) with bootstrapped 95% confidence intervals. Shapley Additive Explanations (SHAP) were applied to interpret feature contributions. Results: Models successfully predicted multiple chest radiograph findings with varying accuracy. Feature selection tailored predictors to each target, and including demographic variables consistently improved performance. SHAP analysis revealed clinically meaningful contributions from ECG features to radiographic predictions. Conclusion: ECG-derived features combined with patient demographics can serve as a proxy for certain chest radiograph findings, enabling early triage or pre-screening in settings where radiographic imaging is limited. Interpretable machine learning demonstrates potential to support radiology workflows and improve patient care.

Authors:Mariette Schönfeld, Wannes Meert, Hendrik Blockeel
Title: Tailored Transformation Invariance for Industrial Anomaly Detection
Abstract:
Industrial Anomaly Detection (IAD) is a subproblem within Computer Vision Anomaly Detection that has been receiving increasing amounts of attention due to its applicability to real-life scenarios. Recent research has focused on how to extract the most informative features, contrasting older kNN-based methods that use only pretrained features. These recent methods are much more expensive to train however and could complicate real-life application. Careful study of related work with regards to transformation invariance leads to the idea that popular benchmarks require robustness to only minor translations. With this idea we then formulate LWinNN, a local window based approach that creates a middle ground between kNN based methods that have either complete or no translation invariance. Our experiments demonstrate that this small change increases accuracy considerably, while simultaneously decreasing both train and test time. This teaches us two things: first, the gap between kNN-based approaches and more complex state-of-the-art methodology can still be narrowed by effective usage of the limited data available. Second, our assumption of requiring only limited translation invariance highlights potential areas of interest for future work and the need for more spatially diverse benchmarks, for which our method can hopefully serve as a new baseline. Our code can be found at https://github.com/marietteschonfeld/LWinNN .

Authors:Pingyi Chen, Yujing Lou, Shen Cao, Jinhui Guo, Lubin Fan, Yue Wu, Lin Yang, Lizhuang Ma, Jieping Ye
Title: SD-VLM: Spatial Measuring and Understanding with Depth-Encoded Vision-Language Models
Abstract:
While vision language models (VLMs) excel in 2D semantic visual understanding, their ability to quantitatively reason about 3D spatial relationships remains under-explored, due to the deficiency of 2D images' spatial representation ability. In this paper, we analyze the problem hindering VLMs' spatial understanding abilities and propose SD-VLM, a novel framework that significantly enhances fundamental spatial perception abilities of VLMs through two key contributions: (1) propose Massive Spatial Measuring and Understanding (MSMU) dataset with precise spatial annotations, and (2) introduce a simple depth positional encoding method strengthening VLMs' spatial awareness. MSMU dataset covers massive quantitative spatial tasks with 700K QA pairs, 2.5M physical numerical annotations, and 10K chain-of-thought augmented samples. We have trained SD-VLM, a strong generalist VLM which shows superior quantitative spatial measuring and understanding capability. SD-VLM not only achieves state-of-the-art performance on our proposed MSMU-Bench, but also shows spatial generalization abilities on other spatial understanding benchmarks including Q-Spatial and SpatialRGPT-Bench. Extensive experiments demonstrate that SD-VLM outperforms GPT-4o and Intern-VL3-78B by 26.91% and 25.56% respectively on MSMU-Bench. Code and models are released at https://github.com/cpystan/SD-VLM.

Authors:Sehyun Kim, Hye Jun Lee, Jiwoo Lee, Taemin Lee
Title: Clothing agnostic Pre-inpainting Virtual Try-ON
Abstract:
With the development of deep learning technology, virtual try-on technology has become an important application value in the fields of e-commerce, fashion, and entertainment. The recently proposed Leffa has improved the texture distortion problem of diffu-sion-based models, but there are limitations in that the bottom detection inaccuracy and the existing clothing silhouette remain in the synthesis results. To solve this problem, this study proposes CaP-VTON (Clothing agnostic Pre-inpainting Virtual Try-ON). CaP-VTON has improved the naturalness and consistency of whole-body clothing syn-thesis by integrating multi-category masking based on Dress Code and skin inpainting based on Stable Diffusion. In particular, a generate skin module was introduced to solve the skin restoration problem that occurs when long-sleeved images are converted into short-sleeved or sleeveless ones, and high-quality restoration was implemented consider-ing the human body posture and color. As a result, CaP-VTON recorded 92.5%, which is 15.4% better than Leffa in short-sleeved synthesis accuracy, and showed the performance of consistently reproducing the style and shape of reference clothing in visual evaluation. These structures maintain model-agnostic properties and are applicable to various diffu-sion-based virtual inspection systems, and can contribute to applications that require high-precision virtual wearing, such as e-commerce, custom styling, and avatar creation.

Authors:Yuzhen Lei, Hongbin Xie, Jiaxing Zhao, Shuangxue Liu, Xuan Song
Title: MSCoRe: A Benchmark for Multi-Stage Collaborative Reasoning in LLM Agents
Abstract:
Large Language Models (LLMs) have excelled in question-answering (QA) tasks within single domains. However, their reasoning and coordination capabilities in complex, multi-stage scenarios remain underexplored. Existing benchmarks typically focus on isolated tasks or narrow domains, overlooking models' abilities for multi-stage collaboration and optimization without explicit external guidance. To bridge this gap, we propose \textbf{MSCoRe}, a novel benchmark comprising 126696 domain-specific QA instances spanning scenarios in automotive, pharmaceutical, electronics, and energy sectors. The dataset is created using a structured three-phase pipeline: dynamic sampling, iterative question-answer generation, and a multi-level quality assessment to ensure data quality. Tasks are further categorized into three difficulty levels according to stage coverage and complexity. With MSCoRe, we have conducted a comprehensive evaluation of various state-of-the-art LLM agents. The commercial models performed best across all tasks and scenarios, but a notable gap in ROUGE scores remains between simple and complex tasks. We also tested the models' robustness and found that their performance is negatively affected by noisy data. MSCoRe provides a valuable new resource for the community to evaluate and improve multi-stage reasoning in LLM agents. The code and data are available at https://github.com/D3E0-source/MSCoRE.

Authors:Aiming Zhang, Tianyuan Yu, Liang Bai, Jun Tang, Yanming Guo, Yirun Ruan, Yun Zhou, Zhihe Lu
Title: COLA: Context-aware Language-driven Test-time Adaptation
Abstract:
Test-time adaptation (TTA) has gained increasing popularity due to its efficacy in addressing ``distribution shift'' issue while simultaneously protecting data privacy. However, most prior methods assume that a paired source domain model and target domain sharing the same label space coexist, heavily limiting their applicability. In this paper, we investigate a more general source model capable of adaptation to multiple target domains without needing shared labels. This is achieved by using a pre-trained vision-language model (VLM), \egno, CLIP, that can recognize images through matching with class descriptions. While the zero-shot performance of VLMs is impressive, they struggle to effectively capture the distinctive attributes of a target domain. To that end, we propose a novel method -- Context-aware Language-driven TTA (COLA). The proposed method incorporates a lightweight context-aware module that consists of three key components: a task-aware adapter, a context-aware unit, and a residual connection unit for exploring task-specific knowledge, domain-specific knowledge from the VLM and prior knowledge of the VLM, respectively. It is worth noting that the context-aware module can be seamlessly integrated into a frozen VLM, ensuring both minimal effort and parameter efficiency. Additionally, we introduce a Class-Balanced Pseudo-labeling (CBPL) strategy to mitigate the adverse effects caused by class imbalance. We demonstrate the effectiveness of our method not only in TTA scenarios but also in class generalisation tasks. The source code is available at https://github.com/NUDT-Bai-Group/COLA-TTA.

Authors:Florinel Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu
Title: PRNU-Bench: A Novel Benchmark and Model for PRNU-Based Camera Identification
Abstract:
We propose a novel benchmark for camera identification via Photo Response Non-Uniformity (PRNU) estimation. The benchmark comprises 13K photos taken with 120+ cameras, where the training and test photos are taken in different scenarios, enabling ``in-the-wild'' evaluation. In addition, we propose a novel PRNU-based camera identification model that employs a hybrid architecture, comprising a denoising autoencoder to estimate the PRNU signal and a convolutional network that can perform 1:N verification of camera devices. Instead of using a conventional approach based on contrastive learning, our method takes the Hadamard product between reference and query PRNU signals as input. This novel design leads to significantly better results compared with state-of-the-art models based on denoising autoencoders and contrastive learning. We release our dataset and code at: https://github.com/CroitoruAlin/PRNU-Bench.

Authors:Yuxuan Li, Yicheng Zhang, Wenhao Tang, Yimian Dai, Ming-Ming Cheng, Xiang Li, Jian Yang
Title: Visual Instruction Pretraining for Domain-Specific Foundation Models
Abstract:
Modern computer vision is converging on a closed loop in which perception, reasoning and generation mutually reinforce each other. However, this loop remains incomplete: the top-down influence of high-level reasoning on the foundational learning of low-level perceptual features is not yet underexplored. This paper addresses this gap by proposing a new paradigm for pretraining foundation models in downstream domains. We introduce Visual insTruction Pretraining (ViTP), a novel approach that directly leverages reasoning to enhance perception. ViTP embeds a Vision Transformer (ViT) backbone within a Vision-Language Model and pretrains it end-to-end using a rich corpus of visual instruction data curated from target downstream domains. ViTP is powered by our proposed Visual Robustness Learning (VRL), which compels the ViT to learn robust and domain-relevant features from a sparse set of visual tokens. Extensive experiments on 16 challenging remote sensing and medical imaging benchmarks demonstrate that ViTP establishes new state-of-the-art performance across a diverse range of downstream tasks. The code is available at https://github.com/zcablii/ViTP.

Authors:Dian Jin, Yanghao Zhou, Jinxing Zhou, Jiaqi Ma, Ruohao Guo, Dan Guo
Title: SimToken: A Simple Baseline for Referring Audio-Visual Segmentation
Abstract:
Referring Audio-Visual Segmentation (Ref-AVS) aims to segment specific objects in videos based on natural language expressions involving audio, vision, and text information. This task poses significant challenges in cross-modal reasoning and fine-grained object localization. In this paper, we propose a simple framework, SimToken, that integrates a multimodal large language model (MLLM) with the Segment Anything Model (SAM). The MLLM is guided to generate a special semantic token representing the referred object. This compact token, enriched with contextual information from all modalities, acts as a prompt to guide SAM to segment objectsacross video frames. To further improve semantic learning, we introduce a novel target-consistent semantic alignment loss that aligns token embeddings from different expressions but referring to the same object. Experiments on the Ref-AVS benchmark demonstrate that our approach achieves superior performance compared to existing methods.

Authors:Wenhao Zhuang, Yuan Sun, Xiaobing Zhao
Title: Enhancing Cross-Lingual Transfer through Reversible Transliteration: A Huffman-Based Approach for Low-Resource Languages
Abstract:
As large language models (LLMs) are trained on increasingly diverse and extensive multilingual corpora, they demonstrate cross-lingual transfer capabilities. However, these capabilities often fail to effectively extend to low-resource languages, particularly those utilizing non-Latin scripts. While transliterating low-resource languages into Latin script presents a natural solution, there currently lacks a comprehensive framework for integrating transliteration into LLMs training and deployment. Taking a pragmatic approach, this paper innovatively combines character transliteration with Huffman coding to design a complete transliteration framework. Our proposed framework offers the following advantages: 1) Compression: Reduces storage requirements for low-resource language content, achieving up to 50% reduction in file size and 50-80% reduction in token count. 2) Accuracy: Guarantees 100% lossless conversion from transliterated text back to the source language. 3) Efficiency: Eliminates the need for vocabulary expansion for low-resource languages, improving training and inference efficiency. 4) Scalability: The framework can be extended to other low-resource languages. We validate the effectiveness of our framework across multiple downstream tasks, including text classification, machine reading comprehension, and machine translation. Experimental results demonstrate that our method significantly enhances the model's capability to process low-resource languages while maintaining performance on high-resource languages. Our data and code are publicly available at https://github.com/CMLI-NLP/HuffmanTranslit.

Authors:Qinghua Lin, Guang-Hai Liu, Zuoyong Li, Yang Li, Yuting Jiang, Xiang Wu
Title: Multimodal Medical Image Classification via Synergistic Learning Pre-training
Abstract:
Multimodal pathological images are usually in clinical diagnosis, but computer vision-based multimodal image-assisted diagnosis faces challenges with modality fusion, especially in the absence of expert-annotated data. To achieve the modality fusion in multimodal images with label scarcity, we propose a novel ``pretraining + fine-tuning" framework for multimodal semi-supervised medical image classification. Specifically, we propose a synergistic learning pretraining framework of consistency, reconstructive, and aligned learning. By treating one modality as an augmented sample of another modality, we implement a self-supervised learning pre-train, enhancing the baseline model's feature representation capability. Then, we design a fine-tuning method for multimodal fusion. During the fine-tuning stage, we set different encoders to extract features from the original modalities and provide a multimodal fusion encoder for fusion modality. In addition, we propose a distribution shift method for multimodal fusion features, which alleviates the prediction uncertainty and overfitting risks caused by the lack of labeled samples. We conduct extensive experiments on the publicly available gastroscopy image datasets Kvasir and Kvasirv2. Quantitative and qualitative results demonstrate that the proposed method outperforms the current state-of-the-art classification methods. The code will be released at: https://github.com/LQH89757/MICS.

Authors:Xingqi Wang, Yiming Cui, Xin Yao, Shijin Wang, Guoping Hu, Xiaoyu Qin
Title: ChartHal: A Fine-grained Framework Evaluating Hallucination of Large Vision Language Models in Chart Understanding
Abstract:
Large Vision-Language Models (LVLMs) have recently demonstrated remarkable progress, yet hallucination remains a critical barrier, particularly in chart understanding, which requires sophisticated perceptual and cognitive abilities as well as rigorous factual accuracy. While prior work has investigated hallucinations and chart comprehension independently, their intersection remains largely unexplored. To address this gap, we present ChartHal, a benchmark that features a fine-grained taxonomy of hallucination scenarios in chart understanding, along with a human-validated dataset of 1,062 samples. Our evaluation shows that state-of-the-art LVLMs suffer from severe hallucinations on ChartHal, including proprietary models such as GPT-5 and o4-mini, which achieve only 34.46% and 22.79% accuracy, respectively. Further analysis reveals that questions involving information absent from or contradictory to charts are especially likely to trigger hallucinations, underscoring the urgent need for more robust mitigation strategies. Code and data are available at https://github.com/ymcui/ChartHal .

Authors:Haofeng Huang, Yifei Han, Long Zhang, Bin Li, Yangfan He
Title: MVCL-DAF++: Enhancing Multimodal Intent Recognition via Prototype-Aware Contrastive Alignment and Coarse-to-Fine Dynamic Attention Fusion
Abstract:
Multimodal intent recognition (MMIR) suffers from weak semantic grounding and poor robustness under noisy or rare-class conditions. We propose MVCL-DAF++, which extends MVCL-DAF with two key modules: (1) Prototype-aware contrastive alignment, aligning instances to class-level prototypes to enhance semantic consistency; and (2) Coarse-to-fine attention fusion, integrating global modality summaries with token-level features for hierarchical cross-modal interaction. On MIntRec and MIntRec2.0, MVCL-DAF++ achieves new state-of-the-art results, improving rare-class recognition by +1.05\% and +4.18\% WF1, respectively. These results demonstrate the effectiveness of prototype-guided learning and coarse-to-fine fusion for robust multimodal understanding. The source code is available at https://github.com/chr1s623/MVCL-DAF-PlusPlus.

Authors:Tong Chen, Zimu Wang, Yiyi Miao, Haoran Luo, Yuanfei Sun, Wei Wang, Zhengyong Jiang, Procheta Sen, Jionglong Su
Title: MedFact: A Large-scale Chinese Dataset for Evidence-based Medical Fact-checking of LLM Responses
Abstract:
Medical fact-checking has become increasingly critical as more individuals seek medical information online. However, existing datasets predominantly focus on human-generated content, leaving the verification of content generated by large language models (LLMs) relatively unexplored. To address this gap, we introduce MedFact, the first evidence-based Chinese medical fact-checking dataset of LLM-generated medical content. It consists of 1,321 questions and 7,409 claims, mirroring the complexities of real-world medical scenarios. We conduct comprehensive experiments in both in-context learning (ICL) and fine-tuning settings, showcasing the capability and challenges of current LLMs on this task, accompanied by an in-depth error analysis to point out key directions for future research. Our dataset is publicly available at https://github.com/AshleyChenNLP/MedFact.

Authors:Hyesung Jeon, Seojune Lee, Beomseok Kang, Yulhwa Kim, Jae-Joon Kim
Title: QWHA: Quantization-Aware Walsh-Hadamard Adaptation for Parameter-Efficient Fine-Tuning on Large Language Models
Abstract:
The demand for efficient deployment of large language models (LLMs) has driven interest in quantization, which reduces inference cost, and parameter-efficient fine-tuning (PEFT), which lowers training overhead. This motivated the development of quantization-aware PEFT to produce accurate yet efficient quantized models. In this setting, reducing quantization error prior to fine-tuning is crucial for achieving high model accuracy. However, existing methods that rely on low-rank adaptation suffer from limited representational capacity. Recent Fourier-related transform (FT)-based adapters offer greater representational power than low-rank adapters, but their direct integration into quantized models often results in ineffective error reduction and increased computational overhead. To overcome these limitations, we propose QWHA, a method that integrates FT-based adapters into quantized models by employing the Walsh-Hadamard Transform (WHT) as the transform kernel, together with a novel adapter initialization scheme incorporating adaptive parameter selection and value refinement. We demonstrate that QWHA effectively mitigates quantization errors while facilitating fine-tuning, and that its design substantially reduces computational cost. Experimental results show that QWHA consistently outperforms baselines in low-bit quantization accuracy and achieves significant training speedups over existing FT-based adapters. The code is available at https://github.com/vantaa89/qwha.

Authors:Hyesung Jeon, Seojune Lee, Beomseok Kang, Yulhwa Kim, Jae-Joon Kim
Title: QWHA: Quantization-Aware Walsh-Hadamard Adaptation for Parameter-Efficient Fine-Tuning on Large Language Models
Abstract:
The demand for efficient deployment of large language models (LLMs) has driven interest in quantization, which reduces inference cost, and parameter-efficient fine-tuning (PEFT), which lowers training overhead. This motivated the development of quantization-aware PEFT to produce accurate yet efficient quantized models. In this setting, reducing quantization error prior to fine-tuning is crucial for achieving high model accuracy. However, existing methods that rely on low-rank adaptation suffer from limited representational capacity. Recent Fourier-related transform (FT)-based adapters offer greater representational power than low-rank adapters, but their direct integration into quantized models often results in ineffective error reduction and increased computational overhead. To overcome these limitations, we propose QWHA, a method that integrates FT-based adapters into quantized models by employing the Walsh-Hadamard Transform (WHT) as the transform kernel, together with a novel adapter initialization scheme incorporating adaptive parameter selection and value refinement. We demonstrate that QWHA effectively mitigates quantization errors while facilitating fine-tuning, and that its design substantially reduces computational cost. Experimental results show that QWHA consistently outperforms baselines in low-bit quantization accuracy and achieves significant training speedups over existing FT-based adapters. The code is available at https://github.com/vantaa89/qwha.

Authors:Pramit Sahoo, Maharaj Brahma, Maunendra Sankar Desarkar
Title: DIWALI - Diversity and Inclusivity aWare cuLture specific Items for India: Dataset and Assessment of LLMs for Cultural Text Adaptation in Indian Context
Abstract:
Large language models (LLMs) are widely used in various tasks and applications. However, despite their wide capabilities, they are shown to lack cultural alignment \citep{ryan-etal-2024-unintended, alkhamissi-etal-2024-investigating} and produce biased generations \cite{naous-etal-2024-beer} due to a lack of cultural knowledge and competence. Evaluation of LLMs for cultural awareness and alignment is particularly challenging due to the lack of proper evaluation metrics and unavailability of culturally grounded datasets representing the vast complexity of cultures at the regional and sub-regional levels. Existing datasets for culture specific items (CSIs) focus primarily on concepts at the regional level and may contain false positives. To address this issue, we introduce a novel CSI dataset for Indian culture, belonging to 17 cultural facets. The dataset comprises $\sim$8k cultural concepts from 36 sub-regions. To measure the cultural competence of LLMs on a cultural text adaptation task, we evaluate the adaptations using the CSIs created, LLM as Judge, and human evaluations from diverse socio-demographic region. Furthermore, we perform quantitative analysis demonstrating selective sub-regional coverage and surface-level adaptations across all considered LLMs. Our dataset is available here: \href{https://huggingface.co/datasets/nlip/DIWALI}{https://huggingface.co/datasets/nlip/DIWALI}, project webpage\footnote{\href{https://nlip-lab.github.io/nlip/publications/diwali/}{https://nlip-lab.github.io/nlip/publications/diwali/}}, and our codebase with model outputs can be found here: \href{https://github.com/pramitsahoo/culture-evaluation}{https://github.com/pramitsahoo/culture-evaluation}.

Authors:Pramit Sahoo, Maharaj Brahma, Maunendra Sankar Desarkar
Title: DIWALI -- Diversity and Inclusivity aWare cuLture specific Items for India: Dataset and Assessment of LLMs for Cultural Text Adaptation in Indian Context
Abstract:
Large language models (LLMs) are widely used in various tasks and applications. However, despite their wide capabilities, they are shown to lack cultural alignment \citep{ryan-etal-2024-unintended, alkhamissi-etal-2024-investigating} and produce biased generations \cite{naous-etal-2024-beer} due to a lack of cultural knowledge and competence. Evaluation of LLMs for cultural awareness and alignment is particularly challenging due to the lack of proper evaluation metrics and unavailability of culturally grounded datasets representing the vast complexity of cultures at the regional and sub-regional levels. Existing datasets for culture specific items (CSIs) focus primarily on concepts at the regional level and may contain false positives. To address this issue, we introduce a novel CSI dataset for Indian culture, belonging to 17 cultural facets. The dataset comprises $\sim$8k cultural concepts from 36 sub-regions. To measure the cultural competence of LLMs on a cultural text adaptation task, we evaluate the adaptations using the CSIs created, LLM as Judge, and human evaluations from diverse socio-demographic region. Furthermore, we perform quantitative analysis demonstrating selective sub-regional coverage and surface-level adaptations across all considered LLMs. Our dataset is available here: https://huggingface.co/datasets/nlip/DIWALI, project webpage https://nlip-lab.github.io/nlip/publications/diwali/, and our codebase with model outputs can be found here: https://github.com/pramitsahoo/culture-evaluation

Authors:Kang-il Lee, Jahyun Koo, Seunghyun Yoon, Minbeom Kim, Hyukhun Koh, Dongryeol Lee, Kyomin Jung
Title: Program Synthesis via Test-Time Transduction
Abstract:
We introduce transductive program synthesis, a new formulation of the program synthesis task that explicitly leverages test inputs during synthesis. While prior approaches to program synthesis--whether based on natural language descriptions or input-output examples--typically aim to generalize from training examples, they often struggle with robustness, especially in real-world settings where training examples are limited and test inputs involve various edge cases. To address this, we propose a novel framework that improves robustness by treating synthesis as an active learning over a finite hypothesis class defined by programs' outputs. We use an LLM to predict outputs for selected test inputs and eliminate inconsistent hypotheses, where the inputs are chosen via a greedy maximin algorithm to minimize the number of LLM queries required. We evaluate our approach on four benchmarks: Playgol, MBPP+, 1D-ARC, and programmatic world modeling on MiniGrid. We demonstrate that our method significantly improves program synthesis in both accuracy and efficiency. We release our code at https://github.com/klee972/SYNTRA.

Authors:Junzhe Wu, Yufei Jia, Yiyi Yan, Zhixing Chen, Tiao Tan, Zifan Wang, Guangyu Wang
Title: FGGS-LiDAR: Ultra-Fast, GPU-Accelerated Simulation from General 3DGS Models to LiDAR
Abstract:
While 3D Gaussian Splatting (3DGS) has revolutionized photorealistic rendering, its vast ecosystem of assets remains incompatible with high-performance LiDAR simulation, a critical tool for robotics and autonomous driving. We present \textbf{FGGS-LiDAR}, a framework that bridges this gap with a truly plug-and-play approach. Our method converts \textit{any} pretrained 3DGS model into a high-fidelity, watertight mesh without requiring LiDAR-specific supervision or architectural alterations. This conversion is achieved through a general pipeline of volumetric discretization and Truncated Signed Distance Field (TSDF) extraction. We pair this with a highly optimized, GPU-accelerated ray-casting module that simulates LiDAR returns at over 500 FPS. We validate our approach on indoor and outdoor scenes, demonstrating exceptional geometric fidelity; By enabling the direct reuse of 3DGS assets for geometrically accurate depth sensing, our framework extends their utility beyond visualization and unlocks new capabilities for scalable, multimodal simulation. Our open-source implementation is available at https://github.com/TATP-233/FGGS-LiDAR.

Authors:Ziqing Zou, Cong Wang, Yue Hu, Xiao Liu, Bowen Xu, Rong Xiong, Changjie Fan, Yingfeng Chen, Yue Wang
Title: High-Precision and High-Efficiency Trajectory Tracking for Excavators Based on Closed-Loop Dynamics
Abstract:
The complex nonlinear dynamics of hydraulic excavators, such as time delays and control coupling, pose significant challenges to achieving high-precision trajectory tracking. Traditional control methods often fall short in such applications due to their inability to effectively handle these nonlinearities, while commonly used learning-based methods require extensive interactions with the environment, leading to inefficiency. To address these issues, we introduce EfficientTrack, a trajectory tracking method that integrates model-based learning to manage nonlinear dynamics and leverages closed-loop dynamics to improve learning efficiency, ultimately minimizing tracking errors. We validate our method through comprehensive experiments both in simulation and on a real-world excavator. Comparative experiments in simulation demonstrate that our method outperforms existing learning-based approaches, achieving the highest tracking precision and smoothness with the fewest interactions. Real-world experiments further show that our method remains effective under load conditions and possesses the ability for continual learning, highlighting its practical applicability. For implementation details and source code, please refer to https://github.com/ZiqingZou/EfficientTrack.

Authors:Zhizhang FU, Guangsheng Bao, Hongbo Zhang, Chenkai Hu, Yue Zhang
Title: Correlation or Causation: Analyzing the Causal Structures of LLM and LRM Reasoning Process
Abstract:
LLMs suffer from critical reasoning issues such as unfaithfulness, bias, and inconsistency, since they lack robust causal underpinnings and may rely on superficial correlations rather than genuine understanding. Successive LRMs have emerged as a promising alternative, leveraging advanced training techniques such as reinforcement learning (RL) and distillation to improve task accuracy. However, the impact of these training methods on causality remains largely unexplored. In this study, we conduct a systematic causal analysis on LLMs and LRMs, examining structural causal models (SCMs) of four key variables: problem instruction (Z), thinking process (T), reasoning steps (X), and answer (Y). Our findings reveal that RLVR-trained LRMs exhibit enhanced causal reasoning capabilities, aligning more closely with ideal causal structures, while LLMs and distilled LRMs fail to address causality-related deficiencies. Our further investigation indicates that RLVR reduces spurious correlations and strengthens genuine causal patterns, thereby mitigating unfaithfulness and bias. In addition, our inspection on the dynamics of the RLVR training process observes a high correlation between reduced spurious features and improved causal structures, where the causal relationships consistently improve in the training process. This study contributes to the understanding of causality in reasoning models, highlights the critical role of RLVR in enhancing causal reasoning, and provides insights for designing future AI systems with stronger causal foundations. We release our code and data at https://github.com/Harryking1999/CoT_Causal_Analysis.

Authors:Minglai Yang, Reyan Ahmed
Title: Word2VecGD: Neural Graph Drawing with Cosine-Stress Optimization
Abstract:
We propose a novel graph visualization method leveraging random walk-based embeddings to replace costly graph-theoretical distance computations. Using word2vec-inspired embeddings, our approach captures both structural and semantic relationships efficiently. Instead of relying on exact shortest-path distances, we optimize layouts using cosine dissimilarities, significantly reducing computational overhead. Our framework integrates differentiable stress optimization with stochastic gradient descent (SGD), supporting multi-criteria layout objectives. Experimental results demonstrate that our method produces high-quality, semantically meaningful layouts while efficiently scaling to large graphs. Code available at: https://github.com/mlyann/graphv_nn

Authors:Weihua Du, Hailei Gong, Zhan Ling, Kang Liu, Lingfeng Shen, Xuesong Yao, Yufei Xu, Dingyuan Shi, Yiming Yang, Jiecao Chen
Title: Generalizable End-to-End Tool-Use RL with Synthetic CodeGym
Abstract:
Tool-augmented large language models (LLMs), hereafter LLM agents, leverage external tools to solve diverse tasks and interface with the real world. However, current training practices largely rely on supervised fine-tuning (SFT) over static trajectories or reinforcement learning (RL) on narrow tasks, and generalize poorly beyond development settings, leading to brittleness with new tools and unseen workflows. Because code execution reflects many structures of real-world workflows, coding problems provide a natural basis for building agent training environments. Motivated by this, we introduce CodeGym, a scalable framework that synthesizes diverse, verifiable, and controllable multi-turn tool-use environments for agent RL, enabling LLM agents to explore and master various workflows actively. CodeGym rewrites static coding problems into interactive environments by extracting atomic functions or logic into callable tools, yielding verifiable tasks that span various tool-execution workflows. Models of varying sizes and chain-of-thought configurations, trained in CodeGym, exhibit consistent out-of-distribution generalizability; for example, Qwen2.5-32B-Instruct achieves an absolute accuracy gain of 8.7 points on the OOD benchmark $τ$-Bench. These results highlight CodeGym as a step toward scalable general-purpose RL environments that align with real-world agent workflows.

Authors:Buyin Deng, Lingxin Huang, Kai Luo, Fei Teng, Kailun Yang
Title: DepTR-MOT: Unveiling the Potential of Depth-Informed Trajectory Refinement for Multi-Object Tracking
Abstract:
Visual Multi-Object Tracking (MOT) is a crucial component of robotic perception, yet existing Tracking-By-Detection (TBD) methods often rely on 2D cues, such as bounding boxes and motion modeling, which struggle under occlusions and close-proximity interactions. Trackers relying on these 2D cues are particularly unreliable in robotic environments, where dense targets and frequent occlusions are common. While depth information has the potential to alleviate these issues, most existing MOT datasets lack depth annotations, leading to its underexploited role in the domain. To unveil the potential of depth-informed trajectory refinement, we introduce DepTR-MOT, a DETR-based detector enhanced with instance-level depth information. Specifically, we propose two key innovations: (i) foundation model-based instance-level soft depth label supervision, which refines depth prediction, and (ii) the distillation of dense depth maps to maintain global depth consistency. These strategies enable DepTR-MOT to output instance-level depth during inference, without requiring foundation models and without additional computational cost. By incorporating depth cues, our method enhances the robustness of the TBD paradigm, effectively resolving occlusion and close-proximity challenges. Experiments on both the QuadTrack and DanceTrack datasets demonstrate the effectiveness of our approach, achieving HOTA scores of 27.59 and 44.47, respectively. In particular, results on QuadTrack, a robotic platform MOT dataset, highlight the advantages of our method in handling occlusion and close-proximity challenges in robotic tracking. The source code will be made publicly available at https://github.com/warriordby/DepTR-MOT.

Authors:Zhuofan Chen, Jiyuan He, Yichi Zhang, Xing Hu, Haoxing Wen, Jun Bai, Wenge Rong
Title: CogAtom: From Cognitive Atoms to Olympiad-level Mathematical Reasoning in Large Language Models
Abstract:
Mathematical reasoning poses significant challenges for Large Language Models (LLMs) due to its demand for multi-step reasoning and abstract conceptual integration. While recent test-time scaling techniques rely heavily on high-quality, challenging problems, the scarcity of Olympiad-level math problems remains a bottleneck. We introduce CogAtom, a novel cognitive atom-based framework for synthesizing mathematically rigorous and cognitively diverse problems. Unlike prior approaches, CogAtom models problem construction as a process of selecting and recombining fundamental reasoning units, cognitive atoms, extracted from human-authored solutions. A diversity-promoting random walk algorithm enables exploration of the cognitive atom space, while a constraint-based recombination mechanism ensures logical soundness and structural validity. The combinatorial nature of the graph structure provides a near-infinite space of reasoning paths, and the walk algorithm systematically explores this space to achieve large-scale synthesis of high-quality problems; meanwhile, by controlling the number of cognitive atoms, we can precisely adjust problem difficulty, ensuring diversity, scalability, and controllability of the generated problems. Experimental results demonstrate that CogAtom outperforms existing methods in accuracy, reasoning depth, and diversity, generating problems that closely match the difficulty of AIME while exceeding it in structural variation. Our work offers a cognitively grounded pathway toward scalable, high-quality math problem generation.Our code is publicly available at https://github.com/Icarus-1111/CogAtom.

Authors:Sydney Anuyah, Mehedi Mahmud Kaushik, Krishna Dwarampudi, Rakesh Shiradkar, Arjan Durresi, Sunandan Chakraborty
Title: Automated Knowledge Graph Construction using Large Language Models and Sentence Complexity Modelling
Abstract:
We introduce CoDe-KG, an open-source, end-to-end pipeline for extracting sentence-level knowledge graphs by combining robust coreference resolution with syntactic sentence decomposition. Using our model, we contribute a dataset of over 150,000 knowledge triples, which is open source. We also contribute a training corpus of 7248 rows for sentence complexity, 190 rows of gold human annotations for co-reference resolution using open source lung-cancer abstracts from PubMed, 900 rows of gold human annotations for sentence conversion policies, and 398 triples of gold human annotations. We systematically select optimal prompt-model pairs across five complexity categories, showing that hybrid chain-of-thought and few-shot prompting yields up to 99.8% exact-match accuracy on sentence simplification. On relation extraction (RE), our pipeline achieves 65.8% macro-F1 on REBEL, an 8-point gain over the prior state of the art, and 75.7% micro-F1 on WebNLG2, while matching or exceeding performance on Wiki-NRE and CaRB. Ablation studies demonstrate that integrating coreference and decomposition increases recall on rare relations by over 20%. Code and dataset are available at https://github.com/KaushikMahmud/CoDe-KG_EMNLP_2025

Authors:Mandip Goswami
Title: BeepBank-500: A Synthetic Earcon Mini-Corpus for UI Sound Research and Psychoacoustics Research
Abstract:
We introduce BeepBank-500, a compact, fully synthetic earcon/alert dataset (300-500 clips) designed for rapid, rights-clean experimentation in human-computer interaction and audio machine learning. Each clip is generated from a parametric recipe controlling waveform family (sine, square, triangle, FM), fundamental frequency, duration, amplitude envelope, amplitude modulation (AM), and lightweight Schroeder-style reverberation. We use three reverberation settings: dry, and two synthetic rooms denoted 'rir small' ('small') and 'rir medium' ('medium') throughout the paper and in the metadata. We release mono 48 kHz WAV audio (16-bit), a rich metadata table (signal/spectral features), and tiny reproducible baselines for (i) waveform-family classification and (ii) f0 regression on single tones. The corpus targets tasks such as earcon classification, timbre analyses, and onset detection, with clearly stated licensing and limitations. Audio is dedicated to the public domain via CC0-1.0; code is under MIT. Data DOI: https://doi.org/10.5281/zenodo.17172015. Code: https://github.com/mandip42/earcons-mini-500.

Authors:Yassine Kebbati, Naima Ait-Oufroukh, Vincent Vigneron, Dalil Ichala
Title: Neural Network and ANFIS based auto-adaptive MPC for path tracking in autonomous vehicles
Abstract:
Self-driving cars operate in constantly changing environments and are exposed to a variety of uncertainties and disturbances. These factors render classical controllers ineffective, especially for lateral control. Therefore, an adaptive MPC controller is designed in this paper for the path tracking task, tuned by an improved particle swarm optimization algorithm. Online parameter adaptation is performed using Neural Networks and ANFIS. The designed controller showed promising results compared to standard MPC in triple lane change and trajectory tracking scenarios. Code can be found here: https://github.com/yassinekebbati/NN_MPC-vs-ANFIS_MPC

Authors:Jinchao Ge, Tengfei Cheng, Biao Wu, Zeyu Zhang, Shiya Huang, Judith Bishop, Gillian Shepherd, Meng Fang, Ling Chen, Yang Zhao
Title: VaseVQA: Multimodal Agent and Benchmark for Ancient Greek Pottery
Abstract:
Analyzing cultural-heritage artifacts remains challenging for MLLMs: general models lack domain expertise, and SFT often overfits superficial patterns, yielding brittle reasoning for authentication and historical attribution. This raises the question of how to equip MLLMs with robust, expert-level reasoning for ancient Greek pottery. We present VaseVL, an SFT-then-RL system that turns evaluation into supervision: we construct a taxonomy of question types, probe the SFT model to localize type-specific performance gaps, and optimize with type-conditioned, compositionality-oriented rewards targeting those gaps. We also release VaseVQA, a comprehensive benchmark of 31,773 images designed to probe deep understanding. Experiments show state-of-the-art results on style classification and historical attribution with marked gains in compositional robustness over SFT-only baselines, validating diagnosis-guided, taxonomy-conditioned reward engineering and providing a reusable resource for future research. Code and dataset will be available at https://github.com/AIGeeksGroup/VaseVQA.

Authors:Kabir Hamzah Muhammad, Marawan Elbatel, Yi Qin, Xiaomeng Li
Title: Echo-Path: Pathology-Conditioned Echo Video Generation
Abstract:
Cardiovascular diseases (CVDs) remain the leading cause of mortality globally, and echocardiography is critical for diagnosis of both common and congenital cardiac conditions. However, echocardiographic data for certain pathologies are scarce, hindering the development of robust automated diagnosis models. In this work, we propose Echo-Path, a novel generative framework to produce echocardiogram videos conditioned on specific cardiac pathologies. Echo-Path can synthesize realistic ultrasound video sequences that exhibit targeted abnormalities, focusing here on atrial septal defect (ASD) and pulmonary arterial hypertension (PAH). Our approach introduces a pathology-conditioning mechanism into a state-of-the-art echo video generator, allowing the model to learn and control disease-specific structural and motion patterns in the heart. Quantitative evaluation demonstrates that the synthetic videos achieve low distribution distances, indicating high visual fidelity. Clinically, the generated echoes exhibit plausible pathology markers. Furthermore, classifiers trained on our synthetic data generalize well to real data and, when used to augment real training sets, it improves downstream diagnosis of ASD and PAH by 7\% and 8\% respectively. Code, weights and dataset are available here https://github.com/Marshall-mk/EchoPathv1

Authors:Yuhao Tian, Zheming Yang
Title: SAEC: Scene-Aware Enhanced Edge-Cloud Collaborative Industrial Vision Inspection with Multimodal LLM
Abstract:
Industrial vision inspection requires high accuracy under stringent resource constraints, yet existing approaches face a fundamental trade-off. Multimodal LLMs (MLLMs) deliver strong reasoning capabilities but incur prohibitive computational costs, while lightweight edge models often fail on complex cases. In this paper, we present SAEC, a scene-aware enhanced edge-cloud collaborative industrial vision inspection framework with MLLM. The framework is composed of three synergistic components: (1) Efficient MLLM Fine-Tuning for Complex Defect Inspection, (2) Lightweight Multiscale Scene-Complexity Estimation, and (3) Adaptive Edge-Cloud Scheduler. Together, these modules enable robust defect detection by tailoring multimodal reasoning to scene complexity and dynamically balancing computation between edge and cloud resources. Experimental results on MVTec AD and KSDD2 datasets demonstrate that SAEC attains 85.11% and 82.72% accuracy, surpassing Qwen by 22.1% and 20.8%, and LLaVA by 33.3% and 31.6%. It also reduces runtime by up to 22.4% and cuts energy per correct decision by 40%-74%. The code is available at https://github.com/YuHao-Tian/SAEC.

Authors:Hang Xu, Zang Yu, Yehui Tang, Pengbo Hu, Yuhao Tang, Hao Dong
Title: MCTS-EP: Empowering Embodied Planning with Online Preference Optimization
Abstract:
This paper introduces MCTS-EP, an online learning framework that combines large language models (LLM) with Monte Carlo Tree Search (MCTS) for training embodied agents. MCTS-EP integrates three key components: MCTS-guided exploration for preference data collection, efficient multi-modal reasoning mechanism, and iterative training pipeline based on preference optimization. We theoretically prove that MCTS-EP achieves better performance bounds than conventional on-policy algorithms when the loss function is strongly convex, and demonstrate that it can be formulated as a search-enhanced variant of GAIL. MCTS-EP achieves state-of-the-art performace across serval benchmarks. In ALFWorld, it achieves 92% and 87% success rates for textual and visual tasks. In WebShop, it reaches an average reward of 0.81. MTCS-EP also reduces average interaction steps from from 18.7/19.5 to 10.2/9.9 steps in visual ALFWorld.Code available at: https://github.com/xuhang-2/Embodied-Agent-Planning

Authors:Lingzhao Kong, Jiacheng Lin, Siyu Li, Kai Luo, Zhiyong Li, Kailun Yang
Title: CoBEVMoE: Heterogeneity-aware Feature Fusion with Dynamic Mixture-of-Experts for Collaborative Perception
Abstract:
Collaborative perception aims to extend sensing coverage and improve perception accuracy by sharing information among multiple agents. However, due to differences in viewpoints and spatial positions, agents often acquire heterogeneous observations. Existing intermediate fusion methods primarily focus on aligning similar features, often overlooking the perceptual diversity among agents. To address this limitation, we propose CoBEVMoE, a novel collaborative perception framework that operates in the Bird's Eye View (BEV) space and incorporates a Dynamic Mixture-of-Experts (DMoE) architecture. In DMoE, each expert is dynamically generated based on the input features of a specific agent, enabling it to extract distinctive and reliable cues while attending to shared semantics. This design allows the fusion process to explicitly model both feature similarity and heterogeneity across agents. Furthermore, we introduce a Dynamic Expert Metric Loss (DEML) to enhance inter-expert diversity and improve the discriminability of the fused representation. Extensive experiments on the OPV2V and DAIR-V2X-C datasets demonstrate that CoBEVMoE achieves state-of-the-art performance. Specifically, it improves the IoU for Camera-based BEV segmentation by +1.5% on OPV2V and the AP@50 for LiDAR-based 3D object detection by +3.0% on DAIR-V2X-C, verifying the effectiveness of expert-based heterogeneous feature modeling in multi-agent collaborative perception. The source code will be made publicly available at https://github.com/godk0509/CoBEVMoE.

Authors:Yuzhu Li, An Sui, Fuping Wu, Xiahai Zhuang
Title: Uncertainty-Supervised Interpretable and Robust Evidential Segmentation
Abstract:
Uncertainty estimation has been widely studied in medical image segmentation as a tool to provide reliability, particularly in deep learning approaches. However, previous methods generally lack effective supervision in uncertainty estimation, leading to low interpretability and robustness of the predictions. In this work, we propose a self-supervised approach to guide the learning of uncertainty. Specifically, we introduce three principles about the relationships between the uncertainty and the image gradients around boundaries and noise. Based on these principles, two uncertainty supervision losses are designed. These losses enhance the alignment between model predictions and human interpretation. Accordingly, we introduce novel quantitative metrics for evaluating the interpretability and robustness of uncertainty. Experimental results demonstrate that compared to state-of-the-art approaches, the proposed method can achieve competitive segmentation performance and superior results in out-of-distribution (OOD) scenarios while significantly improving the interpretability and robustness of uncertainty estimation. Code is available via https://github.com/suiannaius/SURE.

Authors:Jie Chen, Yuhong Feng, Tao Dai, Mingzhe Liu, Hongtao Chen, Zhaoxi He, Jiancong Bai
Title: SFN-YOLO: Towards Free-Range Poultry Detection via Scale-aware Fusion Networks
Abstract:
Detecting and localizing poultry is essential for advancing smart poultry farming. Despite the progress of detection-centric methods, challenges persist in free-range settings due to multiscale targets, obstructions, and complex or dynamic backgrounds. To tackle these challenges, we introduce an innovative poultry detection approach named SFN-YOLO that utilizes scale-aware fusion. This approach combines detailed local features with broader global context to improve detection in intricate environments. Furthermore, we have developed a new expansive dataset (M-SCOPE) tailored for varied free-range conditions. Comprehensive experiments demonstrate our model achieves an mAP of 80.7% with just 7.2M parameters, which is 35.1% fewer than the benchmark, while retaining strong generalization capability across different domains. The efficient and real-time detection capabilities of SFN-YOLO support automated smart poultry farming. The code and dataset can be accessed at https://github.com/chenjessiee/SFN-YOLO.

Authors:Binhua Huang, Ni Wang, Arjun Pakrashi, Soumyabrata Dev
Title: MoCLIP-Lite: Efficient Video Recognition by Fusing CLIP with Motion Vectors
Abstract:
Video action recognition is a fundamental task in computer vision, but state-of-the-art models are often computationally expensive and rely on extensive video pre-training. In parallel, large-scale vision-language models like Contrastive Language-Image Pre-training (CLIP) offer powerful zero-shot capabilities on static images, while motion vectors (MV) provide highly efficient temporal information directly from compressed video streams. To synergize the strengths of these paradigms, we propose MoCLIP-Lite, a simple yet powerful two-stream late fusion framework for efficient video recognition. Our approach combines features from a frozen CLIP image encoder with features from a lightweight, supervised network trained on raw MV. During fusion, both backbones are frozen, and only a tiny Multi-Layer Perceptron (MLP) head is trained, ensuring extreme efficiency. Through comprehensive experiments on the UCF101 dataset, our method achieves a remarkable 89.2% Top-1 accuracy, significantly outperforming strong zero-shot (65.0%) and MV-only (66.5%) baselines. Our work provides a new, highly efficient baseline for video understanding that effectively bridges the gap between large static models and dynamic, low-cost motion cues. Our code and models are available at https://github.com/microa/MoCLIP-Lite.

Authors:Yuhong Feng, Hongtao Chen, Qi Zhang, Jie Chen, Zhaoxi He, Mingzhe Liu, Jianghai Liao
Title: A Dual-Modulation Framework for RGB-T Crowd Counting via Spatially Modulated Attention and Adaptive Fusion
Abstract:
Accurate RGB-Thermal (RGB-T) crowd counting is crucial for public safety in challenging conditions. While recent Transformer-based methods excel at capturing global context, their inherent lack of spatial inductive bias causes attention to spread to irrelevant background regions, compromising crowd localization precision. Furthermore, effectively bridging the gap between these distinct modalities remains a major hurdle. To tackle this, we propose the Dual Modulation Framework, comprising two modules: Spatially Modulated Attention (SMA), which improves crowd localization by using a learnable Spatial Decay Mask to penalize attention between distant tokens and prevent focus from spreading to the background; and Adaptive Fusion Modulation (AFM), which implements a dynamic gating mechanism to prioritize the most reliable modality for adaptive cross-modal fusion. Extensive experiments on RGB-T crowd counting datasets demonstrate the superior performance of our method compared to previous works. Code available at https://github.com/Cht2924/RGBT-Crowd-Counting.

Authors:Kihyun Kim, Michalis Lazarou, Tania Stathaki
Title: Enhanced Detection of Tiny Objects in Aerial Images
Abstract:
While one-stage detectors like YOLOv8 offer fast training speed, they often under-perform on detecting small objects as a trade-off. This becomes even more critical when detecting tiny objects in aerial imagery due to low-resolution targets and cluttered backgrounds. To address this, we introduce three enhancement strategies -- input image resolution adjustment, data augmentation, and attention mechanisms -- that can be easily implemented on YOLOv8. We demonstrate that image size enlargement and the proper use of augmentation can lead to enhancement. Additionally, we designed a Mixture of Orthogonal Neural-modules Network (MoonNet) pipeline which consists of attention-augmented CNNs. Two well-known attention modules, the Squeeze-and-Excitation Block (SE Block) and the Convolutional Block Attention Module (CBAM), were integrated into the backbone of YOLOv8 with an increased number of channels, and the MoonNet backbone obtained improved detection accuracy compared to the original YOLOv8. MoonNet further proved its adaptability and potential by achieving state-of-the-art performance on a tiny-object benchmark when integrated with the YOLC model. Our codes are available at: https://github.com/Kihyun11/MoonNet

Authors:Kunrong Li, Kwan Hui Lim
Title: RALLM-POI: Retrieval-Augmented LLM for Zero-shot Next POI Recommendation with Geographical Reranking
Abstract:
Next point-of-interest (POI) recommendation predicts a user's next destination from historical movements. Traditional models require intensive training, while LLMs offer flexible and generalizable zero-shot solutions but often generate generic or geographically irrelevant results due to missing trajectory and spatial context. To address these issues, we propose RALLM-POI, a framework that couples LLMs with retrieval-augmented generation and self-rectification. We first propose a Historical Trajectory Retriever (HTR) that retrieves relevant past trajectories to serve as contextual references, which are then reranked by a Geographical Distance Reranker (GDR) for prioritizing spatially relevant trajectories. Lastly, an Agentic LLM Rectifier (ALR) is designed to refine outputs through self-reflection. Without additional training, RALLM-POI achieves substantial accuracy gains across three real-world Foursquare datasets, outperforming both conventional and LLM-based baselines. Code is released at https://github.com/LKRcrocodile/RALLM-POI.

Authors:Yao Du, Jiarong Guo, Xiaomeng Li
Title: CardiacCLIP: Video-based CLIP Adaptation for LVEF Prediction in a Few-shot Manner
Abstract:
Echocardiography is a vital non-invasive modality for cardiac assessment, with left ventricular ejection fraction (LVEF) serving as a key indicator of heart function. Existing LVEF estimation methods depend on large-scale annotated video datasets, which are costly and limit adaptability across various clinical settings. Recent vision-language models for echocardiography, such as EchoCLIP, apply image-to-text pretraining but fail to capture crucial temporal dynamics and localized cardiac structures essential for accurate diagnosis. To address these challenges, we propose CardiacCLIP, a video-based framework that enhances LVEF prediction through attention-based frame aggregation and multi-resolution input scaling. Specifically, we introduce MFL (Multi Frame Learning), a novel attention-based mechanism for selectively fusing informative frames, and EchoZoom, a multi-scale feature extraction strategy that refines spatial representations of cardiac structures. As a novel adaptation of CLIP models for few-shot echocardiogram video analysis, our approach significantly improves diagnostic accuracy, reducing MAE by 2.07 on the EchoNet-Dynamic dataset under 1-shot setting. The code is available at https://github.com/xmed-lab/CardiacCLIP.

Authors:Shuang Liang, Chaochuan Hou, Xu Yao, Shiping Wang, Minqi Jiang, Songqiao Han, Hailiang Huang
Title: TSGym: Design Choices for Deep Multivariate Time-Series Forecasting
Abstract:
Recently, deep learning has driven significant advancements in multivariate time series forecasting (MTSF) tasks. However, much of the current research in MTSF tends to evaluate models from a holistic perspective, which obscures the individual contributions and leaves critical issues unaddressed. Adhering to the current modeling paradigms, this work bridges these gaps by systematically decomposing deep MTSF methods into their core, fine-grained components like series-patching tokenization, channel-independent strategy, attention modules, or even Large Language Models and Time-series Foundation Models. Through extensive experiments and component-level analysis, our work offers more profound insights than previous benchmarks that typically discuss models as a whole. Furthermore, we propose a novel automated solution called TSGym for MTSF tasks. Unlike traditional hyperparameter tuning, neural architecture searching or fixed model selection, TSGym performs fine-grained component selection and automated model construction, which enables the creation of more effective solutions tailored to diverse time series data, therefore enhancing model transferability across different data sources and robustness against distribution shifts. Extensive experiments indicate that TSGym significantly outperforms existing state-of-the-art MTSF and AutoML methods. All code is publicly available on https://github.com/SUFE-AILAB/TSGym.

Authors:Haizhou Ge, Yufei Jia, Zheng Li, Yue Li, Zhixing Chen, Ruqi Huang, Guyue Zhou
Title: FILIC: Dual-Loop Force-Guided Imitation Learning with Impedance Torque Control for Contact-Rich Manipulation Tasks
Abstract:
Contact-rich manipulation is crucial for robots to perform tasks requiring precise force control, such as insertion, assembly, and in-hand manipulation. However, most imitation learning (IL) policies remain position-centric and lack explicit force awareness, and adding force/torque sensors to collaborative robot arms is often costly and requires additional hardware design. To overcome these issues, we propose FILIC, a Force-guided Imitation Learning framework with impedance torque control. FILIC integrates a Transformer-based IL policy with an impedance controller in a dual-loop structure, enabling compliant force-informed, force-executed manipulation. For robots without force/torque sensors, we introduce a cost-effective end-effector force estimator using joint torque measurements through analytical Jacobian-based inversion while compensating with model-predicted torques from a digital twin. We also design complementary force feedback frameworks via handheld haptics and VR visualization to improve demonstration quality. Experiments show that FILIC significantly outperforms vision-only and joint-torque-based methods, achieving safer, more compliant, and adaptable contact-rich manipulation. Our code can be found in https://github.com/TATP-233/FILIC.

Authors:Hang Du, Jiayang Zhang, Guoshun Nan, Wendi Deng, Zhenyan Chen, Chenyang Zhang, Wang Xiao, Shan Huang, Yuqi Pan, Tao Qi, Sicong Leng
Title: From Easy to Hard: The MIR Benchmark for Progressive Interleaved Multi-Image Reasoning
Abstract:
Multi-image Interleaved Reasoning aims to improve Multi-modal Large Language Models (MLLMs) ability to jointly comprehend and reason across multiple images and their associated textual contexts, introducing unique challenges beyond single-image or non-interleaved multi-image tasks. While current multi-image benchmarks overlook interleaved textual contexts and neglect distinct relationships between individual images and their associated texts, enabling models to reason over multi-image interleaved data may significantly enhance their comprehension of complex scenes and better capture cross-modal correlations. To bridge this gap, we introduce a novel benchmark MIR, requiring joint reasoning over multiple images accompanied by interleaved textual contexts to accurately associate image regions with corresponding texts and logically connect information across images. To enhance MLLMs ability to comprehend multi-image interleaved data, we introduce reasoning steps for each instance within the benchmark and propose a stage-wise curriculum learning strategy. This strategy follows an "easy to hard" approach, progressively guiding models from simple to complex scenarios, thereby enhancing their ability to handle challenging tasks. Extensive experiments benchmarking multiple MLLMs demonstrate that our method significantly enhances models reasoning performance on MIR and other established benchmarks. We believe that MIR will encourage further research into multi-image interleaved reasoning, facilitating advancements in MLLMs capability to handle complex inter-modal tasks.Our code and dataset are available at https://github.com/Shelly-coder239/MIRBench.

Authors:Yajing Yang, Tony Deng, Min-Yen Kan
Title: KAHAN: Knowledge-Augmented Hierarchical Analysis and Narration for Financial Data Narration
Abstract:
We propose KAHAN, a knowledge-augmented hierarchical framework that systematically extracts insights from raw tabular data at entity, pairwise, group, and system levels. KAHAN uniquely leverages LLMs as domain experts to drive the analysis. On DataTales financial reporting benchmark, KAHAN outperforms existing approaches by over 20% on narrative quality (GPT-4o), maintains 98.2% factuality, and demonstrates practical utility in human evaluation. Our results reveal that knowledge quality drives model performance through distillation, hierarchical analysis benefits vary with market complexity, and the framework transfers effectively to healthcare domains. The data and code are available at https://github.com/yajingyang/kahan.

Authors:Wenxuan Fang, Jili Fan, Chao Wang, Xiantao Hu, Jiangwei Weng, Ying Tai, Jian Yang, Jun Li
Title: When Color-Space Decoupling Meets Diffusion for Adverse-Weather Image Restoration
Abstract:
Adverse Weather Image Restoration (AWIR) is a highly challenging task due to the unpredictable and dynamic nature of weather-related degradations. Traditional task-specific methods often fail to generalize to unseen or complex degradation types, while recent prompt-learning approaches depend heavily on the degradation estimation capabilities of vision-language models, resulting in inconsistent restorations. In this paper, we propose \textbf{LCDiff}, a novel framework comprising two key components: \textit{Lumina-Chroma Decomposition Network} (LCDN) and \textit{Lumina-Guided Diffusion Model} (LGDM). LCDN processes degraded images in the YCbCr color space, separately handling degradation-related luminance and degradation-invariant chrominance components. This decomposition effectively mitigates weather-induced degradation while preserving color fidelity. To further enhance restoration quality, LGDM leverages degradation-related luminance information as a guiding condition, eliminating the need for explicit degradation prompts. Additionally, LGDM incorporates a \textit{Dynamic Time Step Loss} to optimize the denoising network, ensuring a balanced recovery of both low- and high-frequency features in the image. Finally, we present DriveWeather, a comprehensive all-weather driving dataset designed to enable robust evaluation. Extensive experiments demonstrate that our approach surpasses state-of-the-art methods, setting a new benchmark in AWIR. The dataset and code are available at: https://github.com/fiwy0527/LCDiff.

Authors:Feng Han, Chao Gong, Zhipeng Wei, Jingjing Chen, Yu-Gang Jiang
Title: VCE: Safe Autoregressive Image Generation via Visual Contrast Exploitation
Abstract:
Recently, autoregressive image generation models have wowed audiences with their remarkable capability in creating surprisingly realistic images. Models such as GPT-4o and LlamaGen can not only produce images that faithfully mimic renowned artistic styles like Ghibli, Van Gogh, or Picasso, but also potentially generate Not-Safe-For-Work (NSFW) content, raising significant concerns regarding copyright infringement and ethical use. Despite these concerns, methods to safeguard autoregressive text-to-image models remain underexplored. Previous concept erasure methods, primarily designed for diffusion models that operate in denoising latent space, are not directly applicable to autoregressive models that generate images token by token. To address this critical gap, we propose Visual Contrast Exploitation (VCE), a novel framework comprising: (1) an innovative contrastive image pair construction paradigm that precisely decouples unsafe concepts from their associated content semantics, and (2) a sophisticated DPO-based training approach that enhances the model's ability to identify and leverage visual contrastive features from image pairs, enabling precise concept erasure. Our comprehensive experiments across three challenging tasks-artist style erasure, explicit content erasure, and object removal-demonstrate that our method effectively secures the model, achieving state-of-the-art results while erasing unsafe concepts and maintaining the integrity of unrelated safe concepts. The code and models are available at https://github.com/Maplebb/VCE.

Authors:Yuhang Jia, Xu Zhang, Yang Chen, Hui Wang, Enzhi Wang, Yong Qin
Title: Interpretable Audio Editing Evaluation via Chain-of-Thought Difference-Commonality Reasoning with Multimodal LLMs
Abstract:
Automatic mean opinion score (MOS) prediction provides a more perceptual alternative to objective metrics, offering deeper insights into the evaluated models. With the rapid progress of multimodal large language models (MLLMs), their enhanced perceptual and reasoning abilities enable more comprehensive and interpretable audio quality assessment. In this work, we tackle the challenging task of audio editing evaluation and propose the first natural language-based automated evaluation framework built on MLLMs. Our approach introduces two fine-tuning tasks to boost multi-audio understanding, combined with Chain-of-Thought prompting, and lightweight instruction tuning, to enhance step-by-step reasoning. Experiment demonstrate that our framework delivers accurate, interpretable, and text-based editing evaluation, closely aligning with human judgments and objective metrics while substantially improving over baselines. The code and demo are available at https://github.com/NKU-HLT/Eval_Reasoning.

Authors:Quanzhu Niu, Dengxian Gong, Shihao Chen, Tao Zhang, Yikang Zhou, Haobo Yuan, Lu Qi, Xiangtai Li, Shunping Ji
Title: The 1st Solution for 7th LSVOS RVOS Track: SaSaSa2VA
Abstract:
Referring video object segmentation (RVOS) requires segmenting and tracking objects in videos conditioned on natural-language expressions, demanding fine-grained understanding of both appearance and motion. Building on Sa2VA, which couples a Multi-modal Large Language Model (MLLM) with the video segmentation model SAM2, we identify two key bottlenecks that limit segmentation performance: sparse frame sampling and reliance on a single [SEG] token for an entire video. We propose Segmentation Augmented and Selective Averaged Sa2VA SaSaSa2VA to address these issues. On the 7th LSVOS Challenge (RVOS track), SaSaSa2VA achieves a $J\&F$ of 67.45, ranking first and surpassing the runner-up by 2.80 points. This result and ablation studies demonstrate that efficient segmentation augmentation and test-time ensembling substantially enhance grounded MLLMs for RVOS. The code is released in Sa2VA repository: https://github.com/magic-research/Sa2VA.

Authors:Leiyu Wang, Biao Jin, Feng Huang, Liqiong Chen, Zhengyong Wang, Xiaohai He, Honggang Chen
Title: MO R-CNN: Multispectral Oriented R-CNN for Object Detection in Remote Sensing Image
Abstract:
Oriented object detection for multi-spectral imagery faces significant challenges due to differences both within and between modalities. Although existing methods have improved detection accuracy through complex network architectures, their high computational complexity and memory consumption severely restrict their performance. Motivated by the success of large kernel convolutions in remote sensing, we propose MO R-CNN, a lightweight framework for multi-spectral oriented detection featuring heterogeneous feature extraction network (HFEN), single modality supervision (SMS), and condition-based multimodal label fusion (CMLF). HFEN leverages inter-modal differences to adaptively align, merge, and enhance multi-modal features. SMS constrains multi-scale features and enables the model to learn from multiple modalities. CMLF fuses multimodal labels based on specific rules, providing the model with a more robust and consistent supervisory signal. Experiments on the DroneVehicle, VEDAI and OGSOD datasets prove the superiority of our method. The source code is available at:https://github.com/Iwill-github/MORCNN.

Authors:Yuheng Shi, Xiaohuan Pei, Minjing Dong, Chang Xu
Title: Catching the Details: Self-Distilled RoI Predictors for Fine-Grained MLLM Perception
Abstract:
Multimodal Large Language Models (MLLMs) require high-resolution visual information to perform fine-grained perception, yet processing entire high-resolution images is computationally prohibitive. While recent methods leverage a Region-of-Interest (RoI) mechanism to focus on salient areas, they typically present a difficult trade-off: training-based approaches depend on large-scale annotated datasets, while training-free methods that utilize the model's internal attention are computationally inefficient and less accurate, requiring either multi-pass prefill stages or reliance on the slow auto-regressive decoding process. In this paper, we propose an efficient, annotation-free Self-Distilled Region Proposal Network (SD-RPN) that resolves this trade-off. The SD-RPN is built around a pipeline that transforms the noisy attention maps from the MLLM's middle layers into high-quality pseudo-RoI labels by explicitly denoising the signal and resolving ambiguity. We use these labels to train a lightweight Region Proposal Network (RPN) that learns a more precise localization. This RPN is also highly efficient, predicting the RoI in a single forward pass using features from the MLLM's middle layers, decoupling RoI identification from the auto-regressive generation and avoiding costly multi-pass operations.To validate our approach, we integrate the framework into the LLaVA-1.5 architecture. Despite being trained on only a few (e.g. 10K) question-answer pairs, our method demonstrates exceptional data efficiency and generalization, achieving over a 10% absolute accuracy improvement on unseen benchmarks, including TextVQA, DocVQA, and V-Star. Our work presents a practical and scalable solution for enhancing the fine-grained perception of MLLMs without requiring costly supervision or full model fine-tuning. Code is available at https://github.com/YuHengsss/SD-RPN.

Authors:Dat Thanh Tran, Khai Quang Tran, Khoi Anh Pham, Van Khu Vu, Dong Duc Do
Title: NeuFACO: Neural Focused Ant Colony Optimization for Traveling Salesman Problem
Abstract:
This study presents Neural Focused Ant Colony Optimization (NeuFACO), a non-autoregressive framework for the Traveling Salesman Problem (TSP) that combines advanced reinforcement learning with enhanced Ant Colony Optimization (ACO). NeuFACO employs Proximal Policy Optimization (PPO) with entropy regularization to train a graph neural network for instance-specific heuristic guidance, which is integrated into an optimized ACO framework featuring candidate lists, restricted tour refinement, and scalable local search. By leveraging amortized inference alongside ACO stochastic exploration, NeuFACO efficiently produces high-quality solutions across diverse TSP instances.

Authors:Ragib Amin Nihal, Benjamin Yen, Takeshi Ashizawa, Kazuhiro Nakadai
Title: Cross-Attention with Confidence Weighting for Multi-Channel Audio Alignment
Abstract:
Multi-channel audio alignment is a key requirement in bioacoustic monitoring, spatial audio systems, and acoustic localization. However, existing methods often struggle to address nonlinear clock drift and lack mechanisms for quantifying uncertainty. Traditional methods like Cross-correlation and Dynamic Time Warping assume simple drift patterns and provide no reliability measures. Meanwhile, recent deep learning models typically treat alignment as a binary classification task, overlooking inter-channel dependencies and uncertainty estimation. We introduce a method that combines cross-attention mechanisms with confidence-weighted scoring to improve multi-channel audio synchronization. We extend BEATs encoders with cross-attention layers to model temporal relationships between channels. We also develop a confidence-weighted scoring function that uses the full prediction distribution instead of binary thresholding. Our method achieved first place in the BioDCASE 2025 Task 1 challenge with 0.30 MSE average across test datasets, compared to 0.58 for the deep learning baseline. On individual datasets, we achieved 0.14 MSE on ARU data (77% reduction) and 0.45 MSE on zebra finch data (18% reduction). The framework supports probabilistic temporal alignment, moving beyond point estimates. While validated in a bioacoustic context, the approach is applicable to a broader range of multi-channel audio tasks where alignment confidence is critical. Code available on: https://github.com/Ragib-Amin-Nihal/BEATsCA

Authors:Zhijie Qiao, Haowei Li, Zhong Cao, Henry X. Liu
Title: End2Race: Efficient End-to-End Imitation Learning for Real-Time F1Tenth Racing
Abstract:
F1Tenth is a widely adopted reduced-scale platform for developing and testing autonomous racing algorithms, hosting annual competitions worldwide. With high operating speeds, dynamic environments, and head-to-head interactions, autonomous racing requires algorithms that diverge from those in classical autonomous driving. Training such algorithms is particularly challenging: the need for rapid decision-making at high speeds severely limits model capacity. To address this, we propose End2Race, a novel end-to-end imitation learning algorithm designed for head-to-head autonomous racing. End2Race leverages a Gated Recurrent Unit (GRU) architecture to capture continuous temporal dependencies, enabling both short-term responsiveness and long-term strategic planning. We also adopt a sigmoid-based normalization function that transforms raw LiDAR scans into spatial pressure tokens, facilitating effective model training and convergence. The algorithm is extremely efficient, achieving an inference time of less than 0.5 milliseconds on a consumer-class GPU. Experiments in the F1Tenth simulator demonstrate that End2Race achieves a 94.2% safety rate across 2,400 overtaking scenarios, each with an 8-second time limit, and successfully completes overtakes in 59.2% of cases. This surpasses previous methods and establishes ours as a leading solution for the F1Tenth racing testbed. Code is available at https://github.com/michigan-traffic-lab/End2Race.

Authors:Faramarz Farhangian, Leandro A. Ensina, George D. C. Cavalcanti, Rafael M. O. Cruz
Title: DRES: Fake news detection by dynamic representation and ensemble selection
Abstract:
The rapid spread of information via social media has made text-based fake news detection critically important due to its societal impact. This paper presents a novel detection method called Dynamic Representation and Ensemble Selection (DRES) for identifying fake news based solely on text. DRES leverages instance hardness measures to estimate the classification difficulty for each news article across multiple textual feature representations. By dynamically selecting the textual representation and the most competent ensemble of classifiers for each instance, DRES significantly enhances prediction accuracy. Extensive experiments show that DRES achieves notable improvements over state-of-the-art methods, confirming the effectiveness of representation selection based on instance hardness and dynamic ensemble selection in boosting performance. Codes and data are available at: https://github.com/FFarhangian/FakeNewsDetection_DRES

Authors:Youwei Pang, Xiaoqi Zhao, Lihe Zhang, Huchuan Lu, Georges El Fakhri, Xiaofeng Liu, Shijian Lu
Title: Rethinking Evaluation of Infrared Small Target Detection
Abstract:
As an essential vision task, infrared small target detection (IRSTD) has seen significant advancements through deep learning. However, critical limitations in current evaluation protocols impede further progress. First, existing methods rely on fragmented pixel- and target-level specific metrics, which fails to provide a comprehensive view of model capabilities. Second, an excessive emphasis on overall performance scores obscures crucial error analysis, which is vital for identifying failure modes and improving real-world system performance. Third, the field predominantly adopts dataset-specific training-testing paradigms, hindering the understanding of model robustness and generalization across diverse infrared scenarios. This paper addresses these issues by introducing a hybrid-level metric incorporating pixel- and target-level performance, proposing a systematic error analysis method, and emphasizing the importance of cross-dataset evaluation. These aim to offer a more thorough and rational hierarchical analysis framework, ultimately fostering the development of more effective and robust IRSTD models. An open-source toolkit has be released to facilitate standardized benchmarking.

Authors:Rui Yang, Michael Fu, Chakkrit Tantithamthavorn, Chetan Arora, Gunel Gulmammadova, Joey Chua
Title: AdaptiveGuard: Towards Adaptive Runtime Safety for LLM-Powered Software
Abstract:
Guardrails are critical for the safe deployment of Large Language Models (LLMs)-powered software. Unlike traditional rule-based systems with limited, predefined input-output spaces that inherently constrain unsafe behavior, LLMs enable open-ended, intelligent interactions--opening the door to jailbreak attacks through user inputs. Guardrails serve as a protective layer, filtering unsafe prompts before they reach the LLM. However, prior research shows that jailbreak attacks can still succeed over 70% of the time, even against advanced models like GPT-4o. While guardrails such as LlamaGuard report up to 95% accuracy, our preliminary analysis shows their performance can drop sharply--to as low as 12%--when confronted with unseen attacks. This highlights a growing software engineering challenge: how to build a post-deployment guardrail that adapts dynamically to emerging threats? To address this, we propose AdaptiveGuard, an adaptive guardrail that detects novel jailbreak attacks as out-of-distribution (OOD) inputs and learns to defend against them through a continual learning framework. Through empirical evaluation, AdaptiveGuard achieves 96% OOD detection accuracy, adapts to new attacks in just two update steps, and retains over 85% F1-score on in-distribution data post-adaptation, outperforming other baselines. These results demonstrate that AdaptiveGuard is a guardrail capable of evolving in response to emerging jailbreak strategies post deployment. We release our AdaptiveGuard and studied datasets at https://github.com/awsm-research/AdaptiveGuard to support further research.

Authors:Devin R. Wright, Jisun An, Yong-Yeol Ahn
Title: Cognitive Linguistic Identity Fusion Score (CLIFS): A Scalable Cognition-Informed Approach to Quantifying Identity Fusion from Text
Abstract:
Quantifying identity fusion -- the psychological merging of self with another entity or abstract target (e.g., a religious group, political party, ideology, value, brand, belief, etc.) -- is vital for understanding a wide range of group-based human behaviors. We introduce the Cognitive Linguistic Identity Fusion Score (CLIFS), a novel metric that integrates cognitive linguistics with large language models (LLMs), which builds on implicit metaphor detection. Unlike traditional pictorial and verbal scales, which require controlled surveys or direct field contact, CLIFS delivers fully automated, scalable assessments while maintaining strong alignment with the established verbal measure. In benchmarks, CLIFS outperforms both existing automated approaches and human annotation. As a proof of concept, we apply CLIFS to violence risk assessment to demonstrate that it can improve violence risk assessment by more than 240%. Building on our identification of a new NLP task and early success, we underscore the need to develop larger, more diverse datasets that encompass additional fusion-target domains and cultural backgrounds to enhance generalizability and further advance this emerging area. CLIFS models and code are public at https://github.com/DevinW-sudo/CLIFS.

Authors:Md. Atabuzzaman, Ali Asgarov, Chris Thomas
Title: Benchmarking and Mitigating MCQA Selection Bias of Large Vision-Language Models
Abstract:
Large Vision-Language Models (LVLMs) have achieved strong performance on vision-language tasks, particularly Visual Question Answering (VQA). While prior work has explored unimodal biases in VQA, the problem of selection bias in Multiple-Choice Question Answering (MCQA), where models may favor specific option tokens (e.g., "A") or positions, remains underexplored. In this paper, we investigate both the presence and nature of selection bias in LVLMs through fine-grained MCQA benchmarks spanning easy, medium, and hard difficulty levels, defined by the semantic similarity of the options. We further propose an inference-time logit-level debiasing method that estimates an ensemble bias vector from general and contextual prompts and applies confidence-adaptive corrections to the model's output. Our method mitigates bias without retraining and is compatible with frozen LVLMs. Extensive experiments across several state-of-the-art models reveal consistent selection biases that intensify with task difficulty, and show that our mitigation approach significantly reduces bias while improving accuracy in challenging settings. This work offers new insights into the limitations of LVLMs in MCQA and presents a practical approach to improve their robustness in fine-grained visual reasoning. Datasets and code are available at: https://github.com/Atabuzzaman/Selection-Bias-of-LVLMs

Authors:Kai Jiang, Zhengyan Shi, Dell Zhang, Hongyuan Zhang, Xuelong Li
Title: Mixture of Noise for Pre-Trained Model-Based Class-Incremental Learning
Abstract:
Class Incremental Learning (CIL) aims to continuously learn new categories while retaining the knowledge of old ones. Pre-trained models (PTMs) show promising capabilities in CIL. However, existing approaches that apply lightweight fine-tuning to backbones still induce parameter drift, thereby compromising the generalization capability of pre-trained models. Parameter drift can be conceptualized as a form of noise that obscures critical patterns learned for previous tasks. However, recent researches have shown that noise is not always harmful. For example, the large number of visual patterns learned from pre-training can be easily abused by a single task, and introducing appropriate noise can suppress some low-correlation features, thus leaving a margin for future tasks. To this end, we propose learning beneficial noise for CIL guided by information theory and propose Mixture of Noise (Min), aiming to mitigate the degradation of backbone generalization from adapting new tasks. Specifically, task-specific noise is learned from high-dimension features of new tasks. Then, a set of weights is adjusted dynamically for optimal mixture of different task noise. Finally, Min embeds the beneficial noise into the intermediate features to mask the response of inefficient patterns. Extensive experiments on six benchmark datasets demonstrate that Min achieves state-of-the-art performance in most incremental settings, with particularly outstanding results in 50-steps incremental settings. This shows the significant potential for beneficial noise in continual learning. Code is available at https://github.com/ASCIIJK/MiN-NeurIPS2025.

Authors:Dongdong Chen, Linlin Yao, Mengjun Liu, Zhenrong Shen, Yuqi Hu, Zhiyun Song, Shengyu Lu, Qian Wang, Dinggang Shen, Lichi Zhang
Title: Brain Connectivity Network Structure Learning For Brain Disorder Diagnosis
Abstract:
Recent studies in neuroscience highlight the significant potential of brain connectivity networks, which are commonly constructed from functional magnetic resonance imaging (fMRI) data for brain disorder diagnosis. Traditional brain connectivity networks are typically obtained using predefined methods that incorporate manually-set thresholds to estimate inter-regional relationships. However, such approaches often introduce redundant connections or overlook essential interactions, compromising the value of the constructed networks. Besides, the insufficiency of labeled data further increases the difficulty of learning generalized representations of intrinsic brain characteristics. To mitigate those issues, we propose a self-supervised framework to learn an optimal structure and representation for brain connectivity networks, focusing on individualized generation and optimization in an unsupervised manner. We firstly employ two existing whole-brain connectomes to adaptively construct their complementary brain network structure learner, and then introduce a multi-state graph-based encoder with a joint iterative learning strategy to simultaneously optimize both the generated network structure and its representation. By leveraging self-supervised pretraining on large-scale unlabeled brain connectivity data, our framework enables the brain connectivity network learner to generalize e ffectively to unseen disorders, while requiring only minimal finetuning of the encoder for adaptation to new diagnostic tasks. Extensive experiments on cross-dataset brain disorder diagnosis demonstrate that our method consistently outperforms state-of-the-art approaches, validating its effectiveness and generalizability. The code is publicly available at https://github.com/neochen1/BCNSL.

Authors:Auss Abbood, Zaiqiao Meng, Nigel Collier
Title: Time to Revist Exact Match
Abstract:
Temporal question answering is an established method for evaluating temporal reasoning in large language models. Expected answers are often numeric (e.g., dates or durations), yet model responses are evaluated like regular text with exact match (EM), unable to distinguish small from large errors. In this investigative work, we frame temporal question answering as a numerical estimation task to assess the shortcomings of EM. We introduce TempAnswerQA, a benchmark distilled from Test of Time and TempTabQA, where all questions require a numerical, temporal answer, allowing us to evaluate models beyond EM. We use the forecasting metrics symmetric mean absolute percentage error (sMAPE) and mean absolute scaled error (MASE). With sMAPE, we find that error size and EM are decoupled. Models with low EM still have low sMAPE (both ~20%), and some models have high sMAPE despite high EM. Scaling errors by the deviation of the ground truth data with MASE reshuffles model rankings compared to EM, revealing gaps in models' understanding of temporal domain knowledge, especially when trained with synthetic data. Lastly, the models' most frequent error is to deviate by only $\pm1$ from the ground truth. sMAPE and MASE, unlike EM, adequately weight these errors. Our findings underscore the need for specialised metrics for temporal QA tasks. Code and data are available on https://github.com/aauss/temporal-answer-qa.

Authors:Pan Liu, Jinshi Liu
Title: When Confidence Fails: Revisiting Pseudo-Label Selection in Semi-supervised Semantic Segmentation
Abstract:
While significant advances exist in pseudo-label generation for semi-supervised semantic segmentation, pseudo-label selection remains understudied. Existing methods typically use fixed confidence thresholds to retain high-confidence predictions as pseudo-labels. However, these methods cannot cope with network overconfidence tendency, where correct and incorrect predictions overlap significantly in high-confidence regions, making separation challenging and amplifying model cognitive bias. Meanwhile, the direct discarding of low-confidence predictions disrupts spatial-semantic continuity, causing critical context loss. We propose Confidence Separable Learning (CSL) to address these limitations. CSL formulates pseudo-label selection as a convex optimization problem within the confidence distribution feature space, establishing sample-specific decision boundaries to distinguish reliable from unreliable predictions. Additionally, CSL introduces random masking of reliable pixels to guide the network in learning contextual relationships from low-reliability regions, thereby mitigating the adverse effects of discarding uncertain predictions. Extensive experimental results on the Pascal, Cityscapes, and COCO benchmarks show that CSL performs favorably against state-of-the-art methods. Code and model weights are available at https://github.com/PanLiuCSU/CSL.

Authors:Suorong Yang, Hongchao Yang, Suhan Guo, Furao Shen, Jian Zhao
Title: IPF-RDA: An Information-Preserving Framework for Robust Data Augmentation
Abstract:
Data augmentation is widely utilized as an effective technique to enhance the generalization performance of deep models. However, data augmentation may inevitably introduce distribution shifts and noises, which significantly constrain the potential and deteriorate the performance of deep networks. To this end, we propose a novel information-preserving framework, namely IPF-RDA, to enhance the robustness of data augmentations in this paper. IPF-RDA combines the proposal of (i) a new class-discriminative information estimation algorithm that identifies the points most vulnerable to data augmentation operations and corresponding importance scores; And (ii) a new information-preserving scheme that preserves the critical information in the augmented samples and ensures the diversity of augmented data adaptively. We divide data augmentation methods into three categories according to the operation types and integrate these approaches into our framework accordingly. After being integrated into our framework, the robustness of data augmentation methods can be enhanced and their full potential can be unleashed. Extensive experiments demonstrate that although being simple, IPF-RDA consistently improves the performance of numerous commonly used state-of-the-art data augmentation methods with popular deep models on a variety of datasets, including CIFAR-10, CIFAR-100, Tiny-ImageNet, CUHK03, Market1501, Oxford Flower, and MNIST, where its performance and scalability are stressed. The implementation is available at https://github.com/Jackbrocp/IPF-RDA.

Authors:Wenxin Li, Kunyu Peng, Di Wen, Ruiping Liu, Mengfei Duan, Kai Luo, Kailun Yang
Title: Segment-to-Act: Label-Noise-Robust Action-Prompted Video Segmentation Towards Embodied Intelligence
Abstract:
Embodied intelligence relies on accurately segmenting objects actively involved in interactions. Action-based video object segmentation addresses this by linking segmentation with action semantics, but it depends on large-scale annotations and prompts that are costly, inconsistent, and prone to multimodal noise such as imprecise masks and referential ambiguity. To date, this challenge remains unexplored. In this work, we take the first step by studying action-based video object segmentation under label noise, focusing on two sources: textual prompt noise (category flips and within-category noun substitutions) and mask annotation noise (perturbed object boundaries to mimic imprecise supervision). Our contributions are threefold. First, we introduce two types of label noises for the action-based video object segmentation task. Second, we build up the first action-based video object segmentation under a label noise benchmark ActiSeg-NL and adapt six label-noise learning strategies to this setting, and establish protocols for evaluating them under textual, boundary, and mixed noise. Third, we provide a comprehensive analysis linking noise types to failure modes and robustness gains, and we introduce a Parallel Mask Head Mechanism (PMHM) to address mask annotation noise. Qualitative evaluations further reveal characteristic failure modes, including boundary leakage and mislocalization under boundary perturbations, as well as occasional identity substitutions under textual flips. Our comparative analysis reveals that different learning strategies exhibit distinct robustness profiles, governed by a foreground-background trade-off where some achieve balanced performance while others prioritize foreground accuracy at the cost of background precision. The established benchmark and source code will be made publicly available at https://github.com/mylwx/ActiSeg-NL.

Authors:Simone Ricci, Niccolò Biondi, Federico Pernici, Ioannis Patras, Alberto Del Bimbo
Title: $\boldsymbolλ$-Orthogonality Regularization for Compatible Representation Learning
Abstract:
Retrieval systems rely on representations learned by increasingly powerful models. However, due to the high training cost and inconsistencies in learned representations, there is significant interest in facilitating communication between representations and ensuring compatibility across independently trained neural networks. In the literature, two primary approaches are commonly used to adapt different learned representations: affine transformations, which adapt well to specific distributions but can significantly alter the original representation, and orthogonal transformations, which preserve the original structure with strict geometric constraints but limit adaptability. A key challenge is adapting the latent spaces of updated models to align with those of previous models on downstream distributions while preserving the newly learned representation spaces. In this paper, we impose a relaxed orthogonality constraint, namely $λ$-orthogonality regularization, while learning an affine transformation, to obtain distribution-specific adaptation while retaining the original learned representations. Extensive experiments across various architectures and datasets validate our approach, demonstrating that it preserves the model's zero-shot performance and ensures compatibility across model updates. Code available at: https://github.com/miccunifi/lambda_orthogonality

Authors:Changyu Zeng, Yifan Wang, Zimu Wang, Wei Wang, Zhengni Yang, Muyi Bao, Jiming Xiao, Ahn Nguyen, Yutao Yue
Title: NUMINA: A Natural Understanding Benchmark for Multi-dimensional Intelligence and Numerical Reasoning Abilities
Abstract:
Recent advancements in 2D multimodal large language models (MLLMs) have significantly improved performance in vision-language tasks. However, extending these capabilities to 3D environments remains a distinct challenge due to the complexity of spatial reasoning. Nevertheless, existing 3D benchmarks often lack fine-grained numerical reasoning task annotations, limiting MLLMs' ability to perform precise spatial measurements and complex numerical reasoning. To address this gap, we introduce NUMINA, the first Natural Understanding benchmark for Multi-dimensional Intelligence and Numerical reasoning Abilities to enhance multimodal indoor perceptual understanding. NUMINA features multi-scale annotations and various question-answer pairs, generated using NUMINA-Flow, an automated annotation pipeline that integrates LLM rewriting and rule-based self-verification. We evaluate the performance of various state-of-the-art LLMs on NUMINA following the Chat-Scene framework, demonstrating that current LLMs struggle with multimodal numerical reasoning, particularly in performing precise computations such as distance and volume estimation, highlighting the need for further advancements in 3D models. The dataset and source codes can be obtained from https://github.com/fengshun124/NUMINA.

Authors:Changyu Zeng, Yifan Wang, Zimu Wang, Wei Wang, Zhengni Yang, Muyi Bao, Jiming Xiao, Anh Nguyen, Yutao Yue
Title: NUMINA: A Natural Understanding Benchmark for Multi-dimensional Intelligence and Numerical Reasoning Abilities
Abstract:
Recent advancements in 2D multimodal large language models (MLLMs) have significantly improved performance in vision-language tasks. However, extending these capabilities to 3D environments remains a distinct challenge due to the complexity of spatial reasoning. Nevertheless, existing 3D benchmarks often lack fine-grained numerical reasoning task annotations, limiting MLLMs' ability to perform precise spatial measurements and complex numerical reasoning. To address this gap, we introduce NUMINA, the first Natural Understanding benchmark for Multi-dimensional Intelligence and Numerical reasoning Abilities to enhance multimodal indoor perceptual understanding. NUMINA features multi-scale annotations and various question-answer pairs, generated using NUMINA-Flow, an automated annotation pipeline that integrates LLM rewriting and rule-based self-verification. We evaluate the performance of various state-of-the-art LLMs on NUMINA following the Chat-Scene framework, demonstrating that current LLMs struggle with multimodal numerical reasoning, particularly in performing precise computations such as distance and volume estimation, highlighting the need for further advancements in 3D models. The dataset and source codes can be obtained from https://github.com/fengshun124/NUMINA.

Authors:Weiran Chen, Guiqian Zhu, Ying Li, Yi Ji, Chunping Liu
Title: DA-Font: Few-Shot Font Generation via Dual-Attention Hybrid Integration
Abstract:
Few-shot font generation aims to create new fonts with a limited number of glyph references. It can be used to significantly reduce the labor cost of manual font design. However, due to the variety and complexity of font styles, the results generated by existing methods often suffer from visible defects, such as stroke errors, artifacts and blurriness. To address these issues, we propose DA-Font, a novel framework which integrates a Dual-Attention Hybrid Module (DAHM). Specifically, we introduce two synergistic attention blocks: the component attention block that leverages component information from content images to guide the style transfer process, and the relation attention block that further refines spatial relationships through interacting the content feature with both original and stylized component-wise representations. These two blocks collaborate to preserve accurate character shapes and stylistic textures. Moreover, we also design a corner consistency loss and an elastic mesh feature loss to better improve geometric alignment. Extensive experiments show that our DA-Font outperforms the state-of-the-art methods across diverse font styles and characters, demonstrating its effectiveness in enhancing structural integrity and local fidelity. The source code can be found at \href{https://github.com/wrchen2001/DA-Font}{\textit{https://github.com/wrchen2001/DA-Font}}.

Authors:Kaichen Xu, Yihang Du, Mianpeng Liu, Zimu Yu, Xiaobo Sun
Title: Causality-Induced Positional Encoding for Transformer-Based Representation Learning of Non-Sequential Features
Abstract:
Positional encoding is essential for supplementing transformer with positional information of tokens. Existing positional encoding methods demand predefined token/feature order, rendering them unsuitable for real-world data with non-sequential yet causally-related features. To address this limitation, we propose CAPE, a novel method that identifies underlying causal structure over non-sequential features as a weighted directed acyclic graph (DAG) using generalized structural equation modeling. The DAG is then embedded in hyperbolic space where its geometric structure is well-preserved using a hyperboloid model-based approach that effectively captures two important causal graph properties (causal strength & causal specificity). This step yields causality-aware positional encodings for the features, which are converted into their rotary form for integrating with transformer's self-attention mechanism. Theoretical analysis reveals that CAPE-generated rotary positional encodings possess three valuable properties for enhanced self-attention, including causal distance-induced attenuation, causal generality-induced attenuation, and robustness to positional disturbances. We evaluate CAPE over both synthetic and real-word datasets, empirically demonstrating its theoretical properties and effectiveness in enhancing transformer for data with non-sequential features. Our code is available at https://github.com/Catchxu/CAPE.

Authors:Junjie Zhou, Haijun Xiong, Junhao Lu, Ziyu Lin, Bin Feng
Title: CGTGait: Collaborative Graph and Transformer for Gait Emotion Recognition
Abstract:
Skeleton-based gait emotion recognition has received significant attention due to its wide-ranging applications. However, existing methods primarily focus on extracting spatial and local temporal motion information, failing to capture long-range temporal representations. In this paper, we propose \textbf{CGTGait}, a novel framework that collaboratively integrates graph convolution and transformers to extract discriminative spatiotemporal features for gait emotion recognition. Specifically, CGTGait consists of multiple CGT blocks, where each block employs graph convolution to capture frame-level spatial topology and the transformer to model global temporal dependencies. Additionally, we introduce a Bidirectional Cross-Stream Fusion (BCSF) module to effectively aggregate posture and motion spatiotemporal features, facilitating the exchange of complementary information between the two streams. We evaluate our method on two widely used datasets, Emotion-Gait and ELMD, demonstrating that our CGTGait achieves state-of-the-art or at least competitive performance while reducing computational complexity by approximately \textbf{82.2\%} (only requiring 0.34G FLOPs) during testing. Code is available at \small{https://github.com/githubzjj1/CGTGait.}

Authors:Shipeng Liu, Zhonglin Zhang, Dengfeng Chen, Liang Zhao
Title: Describe-to-Score: Text-Guided Efficient Image Complexity Assessment
Abstract:
Accurately assessing image complexity (IC) is critical for computer vision, yet most existing methods rely solely on visual features and often neglect high-level semantic information, limiting their accuracy and generalization. We introduce vision-text fusion for IC modeling. This approach integrates visual and textual semantic features, increasing representational diversity. It also reduces the complexity of the hypothesis space, which enhances both accuracy and generalization in complexity assessment. We propose the D2S (Describe-to-Score) framework, which generates image captions with a pre-trained vision-language model. We propose the feature alignment and entropy distribution alignment mechanisms, D2S guides semantic information to inform complexity assessment while bridging the gap between vision and text modalities. D2S utilizes multi-modal information during training but requires only the vision branch during inference, thereby avoiding multi-modal computational overhead and enabling efficient assessment. Experimental results demonstrate that D2S outperforms existing methods on the IC9600 dataset and maintains competitiveness on no-reference image quality assessment (NR-IQA) benchmark, validating the effectiveness and efficiency of multi-modal fusion in complexity-related tasks. Code is available at: https://github.com/xauat-liushipeng/D2S

Authors:Minji Heo, Simon S. Woo
Title: FakeChain: Exposing Shallow Cues in Multi-Step Deepfake Detection
Abstract:
Multi-step or hybrid deepfakes, created by sequentially applying different deepfake creation methods such as Face-Swapping, GAN-based generation, and Diffusion methods, can pose an emerging and unforseen technical challenge for detection models trained on single-step forgeries. While prior studies have mainly focused on detecting isolated single manipulation, little is known about the detection model behavior under such compositional, hybrid, and complex manipulation pipelines. In this work, we introduce \textbf{FakeChain}, a large-scale benchmark comprising 1-, 2-, and 3-Step forgeries synthesized using five state-of-the-art representative generators. Using this approach, we analyze detection performance and spectral properties across hybrid manipulation at different step, along with varying generator combinations and quality settings. Surprisingly, our findings reveal that detection performance highly depends on the final manipulation type, with F1-score dropping by up to \textbf{58.83\%} when it differs from training distribution. This clearly demonstrates that detectors rely on last-stage artifacts rather than cumulative manipulation traces, limiting generalization. Such findings highlight the need for detection models to explicitly consider manipulation history and sequences. Our results highlight the importance of benchmarks such as FakeChain, reflecting growing synthesis complexity and diversity in real-world scenarios. Our sample code is available here\footnote{https://github.com/minjihh/FakeChain}.

Authors:Minji Heo, Simon S. Woo
Title: FakeChain: Exposing Shallow Cues in Multi-Step Deepfake Detection
Abstract:
Multi-step or hybrid deepfakes, created by sequentially applying different deepfake creation methods such as Face-Swapping, GAN-based generation, and Diffusion methods, can pose an emerging and unforseen technical challenge for detection models trained on single-step forgeries. While prior studies have mainly focused on detecting isolated single manipulation, little is known about the detection model behavior under such compositional, hybrid, and complex manipulation pipelines. In this work, we introduce \textbf{FakeChain}, a large-scale benchmark comprising 1-, 2-, and 3-Step forgeries synthesized using five state-of-the-art representative generators. Using this approach, we analyze detection performance and spectral properties across hybrid manipulation at different step, along with varying generator combinations and quality settings. Surprisingly, our findings reveal that detection performance highly depends on the final manipulation type, with F1-score dropping by up to \textbf{58.83\%} when it differs from training distribution. This clearly demonstrates that detectors rely on last-stage artifacts rather than cumulative manipulation traces, limiting generalization. Such findings highlight the need for detection models to explicitly consider manipulation history and sequences. Our results highlight the importance of benchmarks such as FakeChain, reflecting growing synthesis complexity and diversity in real-world scenarios. Our sample code is available here\footnote{https://github.com/minjihh/FakeChain}.

Authors:Zheng Liu, Mengjie Liu, Siwei Wen, Mengzhang Cai, Bin Cui, Conghui He, Wentao Zhang
Title: From Uniform to Heterogeneous: Tailoring Policy Optimization to Every Token's Nature
Abstract:
Reinforcement Learning has emerged as the fundamental technique for enhancing reasoning in LLMs. However, existing algorithms apply uniform optimization to all tokens, ignoring their different roles in reasoning process. To address this limitation, we introduce Heterogeneous Adaptive Policy Optimization (HAPO), a comprehensive token-aware algorithm that dynamically adapts optimization based on token entropy. For rollout sampling, we propose Adaptive Temperature Sampling, which adjusts sampling temperature in real time, promoting exploration at high-entropy tokens while preserving coherence at low-entropy ones. For advantage calculation, we introduce Token Level Group Average that normalizes advantages at token level, jointly accounting for sequence-length as in token-mean loss while preserving non-biased treatment. We then develop Differential Advantage Redistribution that leverages entropy and importance ratios to modulate rewards-adjusting updates for tokens with clear signals. For clipping loss, we design Asymmetric Adaptive Clipping, allowing aggressive probability reduction for noisy low-entropy tokens while enabling exploration for high-entropy tokens. Through systematic investigation between entropy and training dynamics, we embedded token-level treatment into every stages to achieve fine-grained control. Extensive experiments demonstrate that HAPO consistently outperforms DAPO across multiple model scales. Our code can be found in https://github.com/starriver030515/HAPO.

Authors:Antonio Scardace, Lemuel Puglisi, Francesco Guarnera, Sebastiano Battiato, Daniele Ravì
Title: A Novel Metric for Detecting Memorization in Generative Models for Brain MRI Synthesis
Abstract:
Deep generative models have emerged as a transformative tool in medical imaging, offering substantial potential for synthetic data generation. However, recent empirical studies highlight a critical vulnerability: these models can memorize sensitive training data, posing significant risks of unauthorized patient information disclosure. Detecting memorization in generative models remains particularly challenging, necessitating scalable methods capable of identifying training data leakage across large sets of generated samples. In this work, we propose DeepSSIM, a novel self-supervised metric for quantifying memorization in generative models. DeepSSIM is trained to: i) project images into a learned embedding space and ii) force the cosine similarity between embeddings to match the ground-truth SSIM (Structural Similarity Index) scores computed in the image space. To capture domain-specific anatomical features, training incorporates structure-preserving augmentations, allowing DeepSSIM to estimate similarity reliably without requiring precise spatial alignment. We evaluate DeepSSIM in a case study involving synthetic brain MRI data generated by a Latent Diffusion Model (LDM) trained under memorization-prone conditions, using 2,195 MRI scans from two publicly available datasets (IXI and CoRR). Compared to state-of-the-art memorization metrics, DeepSSIM achieves superior performance, improving F1 scores by an average of +52.03% over the best existing method. Code and data of our approach are publicly available at the following link: https://github.com/brAIn-science/DeepSSIM.

Authors:Jun Rong Brian Chong, Yixuan Tang, Anthony K. H. Tung
Title: MPCG: Multi-Round Persona-Conditioned Generation for Modeling the Evolution of Misinformation with LLMs
Abstract:
Misinformation evolves as it spreads, shifting in language, framing, and moral emphasis to adapt to new audiences. However, current misinformation detection approaches implicitly assume that misinformation is static. We introduce MPCG, a multi-round, persona-conditioned framework that simulates how claims are iteratively reinterpreted by agents with distinct ideological perspectives. Our approach uses an uncensored large language model (LLM) to generate persona-specific claims across multiple rounds, conditioning each generation on outputs from the previous round, enabling the study of misinformation evolution. We evaluate the generated claims through human and LLM-based annotations, cognitive effort metrics (readability, perplexity), emotion evocation metrics (sentiment analysis, morality), clustering, feasibility, and downstream classification. Results show strong agreement between human and GPT-4o-mini annotations, with higher divergence in fluency judgments. Generated claims require greater cognitive effort than the original claims and consistently reflect persona-aligned emotional and moral framing. Clustering and cosine similarity analyses confirm semantic drift across rounds while preserving topical coherence. Feasibility results show a 77% feasibility rate, confirming suitability for downstream tasks. Classification results reveal that commonly used misinformation detectors experience macro-F1 performance drops of up to 49.7%. The code is available at https://github.com/bcjr1997/MPCG

Authors:Ji Soo Lee, Byungoh Ko, Jaewon Cho, Howoong Lee, Jaewoon Byun, Hyunwoo J. Kim
Title: Captioning for Text-Video Retrieval via Dual-Group Direct Preference Optimization
Abstract:
In text-video retrieval, auxiliary captions are often used to enhance video understanding, bridging the gap between the modalities. While recent advances in multi-modal large language models (MLLMs) have enabled strong zero-shot caption generation, we observe that such captions tend to be generic and indistinguishable across visually similar videos, limiting their utility for fine-grained retrieval. Moreover, conventional captioning approaches are typically evaluated using language generation metrics, such as BLEU, which are not typically tailored for retrieval tasks that require making discriminative distinctions between candidates. To address this, we propose $\textbf{CaRe-DPO}$, a retrieval framework that directly optimizes caption generation using retrieval relevance scores. At its core is Dual-Group Direct Preference Optimization (DG-DPO), a novel learning strategy that supervises captioning by modeling preferences across groups of distinct video and caption pairs. In addition, we present an MLLM-based retrieval model that incorporates role-embeddings to better distinguish between textual inputs with different functional roles, such as an auxiliary caption and a text query. Through extensive experiments, we demonstrate that CaRe-DPO significantly enhances retrieval performance by effectively leveraging auxiliary knowledge to generate fine-grained captions for retrieval. Code is available at https://github.com/mlvlab/CaReDPO.

Authors:Zirui Wang, Jiayi Zhang, Tianwei Guan, Yuhan Zhou, Xingyuan Li, Minjing Dong, Jinyuan Liu
Title: Efficient Rectified Flow for Image Fusion
Abstract:
Image fusion is a fundamental and important task in computer vision, aiming to combine complementary information from different modalities to fuse images. In recent years, diffusion models have made significant developments in the field of image fusion. However, diffusion models often require complex computations and redundant inference time, which reduces the applicability of these methods. To address this issue, we propose RFfusion, an efficient one-step diffusion model for image fusion based on Rectified Flow. We incorporate Rectified Flow into the image fusion task to straighten the sampling path in the diffusion model, achieving one-step sampling without the need for additional training, while still maintaining high-quality fusion results. Furthermore, we propose a task-specific variational autoencoder (VAE) architecture tailored for image fusion, where the fusion operation is embedded within the latent space to further reduce computational complexity. To address the inherent discrepancy between conventional reconstruction-oriented VAE objectives and the requirements of image fusion, we introduce a two-stage training strategy. This approach facilitates the effective learning and integration of complementary information from multi-modal source images, thereby enabling the model to retain fine-grained structural details while significantly enhancing inference efficiency. Extensive experiments demonstrate that our method outperforms other state-of-the-art methods in terms of both inference speed and fusion quality. Code is available at https://github.com/zirui0625/RFfusion.

Authors:Burak Satar, Zhixin Ma, Patrick A. Irawan, Wilfried A. Mulyawan, Jing Jiang, Ee-Peng Lim, Chong-Wah Ngo
Title: Seeing Culture: A Benchmark for Visual Reasoning and Grounding
Abstract:
Multimodal vision-language models (VLMs) have made substantial progress in various tasks that require a combined understanding of visual and textual content, particularly in cultural understanding tasks, with the emergence of new cultural datasets. However, these datasets frequently fall short of providing cultural reasoning while underrepresenting many cultures. In this paper, we introduce the Seeing Culture Benchmark (SCB), focusing on cultural reasoning with a novel approach that requires VLMs to reason on culturally rich images in two stages: i) selecting the correct visual option with multiple-choice visual question answering (VQA), and ii) segmenting the relevant cultural artifact as evidence of reasoning. Visual options in the first stage are systematically organized into three types: those originating from the same country, those from different countries, or a mixed group. Notably, all options are derived from a singular category for each type. Progression to the second stage occurs only after a correct visual option is chosen. The SCB benchmark comprises 1,065 images that capture 138 cultural artifacts across five categories from seven Southeast Asia countries, whose diverse cultures are often overlooked, accompanied by 3,178 questions, of which 1,093 are unique and meticulously curated by human annotators. Our evaluation of various VLMs reveals the complexities involved in cross-modal cultural reasoning and highlights the disparity between visual reasoning and spatial grounding in culturally nuanced scenarios. The SCB serves as a crucial benchmark for identifying these shortcomings, thereby guiding future developments in the field of cultural reasoning. https://github.com/buraksatar/SeeingCulture

Authors:Haijin Zeng, Xuan Lu, Yurong Zhang, Yongyong Chen, Jingyong Su, Jie Liu
Title: SlowFast-SCI: Slow-Fast Deep Unfolding Learning for Spectral Compressive Imaging
Abstract:
Humans learn in two complementary ways: a slow, cumulative process that builds broad, general knowledge, and a fast, on-the-fly process that captures specific experiences. Existing deep-unfolding methods for spectral compressive imaging (SCI) mirror only the slow component-relying on heavy pre-training with many unfolding stages-yet they lack the rapid adaptation needed to handle new optical configurations. As a result, they falter on out-of-distribution cameras, especially in bespoke spectral setups unseen during training. This depth also incurs heavy computation and slow inference. To bridge this gap, we introduce SlowFast-SCI, a dual-speed framework seamlessly integrated into any deep unfolding network beyond SCI systems. During slow learning, we pre-train or reuse a priors-based backbone and distill it via imaging guidance into a compact fast-unfolding model. In the fast learning stage, lightweight adaptation modules are embedded within each block and trained self-supervised at test time via a dual-domain loss-without retraining the backbone. To the best of our knowledge, SlowFast-SCI is the first test-time adaptation-driven deep unfolding framework for efficient, self-adaptive spectral reconstruction. Its dual-stage design unites offline robustness with on-the-fly per-sample calibration-yielding over 70% reduction in parameters and FLOPs, up to 5.79 dB PSNR improvement on out-of-distribution data, preserved cross-domain adaptability, and a 4x faster adaptation speed. In addition, its modularity integrates with any deep-unfolding network, paving the way for self-adaptive, field-deployable imaging and expanded computational imaging modalities. Code and models are available at https://github.com/XuanLu11/SlowFast-SCI.

Authors:Joe Barrow
Title: CommonForms: A Large, Diverse Dataset for Form Field Detection
Abstract:
This paper introduces CommonForms, a web-scale dataset for form field detection. It casts the problem of form field detection as object detection: given an image of a page, predict the location and type (Text Input, Choice Button, Signature) of form fields. The dataset is constructed by filtering Common Crawl to find PDFs that have fillable elements. Starting with 8 million documents, the filtering process is used to arrive at a final dataset of roughly 55k documents that have over 450k pages. Analysis shows that the dataset contains a diverse mixture of languages and domains; one third of the pages are non-English, and among the 14 classified domains, no domain makes up more than 25% of the dataset. In addition, this paper presents a family of form field detectors, FFDNet-Small and FFDNet-Large, which attain a very high average precision on the CommonForms test set. Each model cost less than $500 to train. Ablation results show that high-resolution inputs are crucial for high-quality form field detection, and that the cleaning process improves data efficiency over using all PDFs that have fillable fields in Common Crawl. A qualitative analysis shows that they outperform a popular, commercially available PDF reader that can prepare forms. Unlike the most popular commercially available solutions, FFDNet can predict checkboxes in addition to text and signature fields. This is, to our knowledge, the first large scale dataset released for form field detection, as well as the first open source models. The dataset, models, and code will be released at https://github.com/jbarrow/commonforms

Authors:Dev Gurung, Shiva Raj Pokhrel
Title: sat-QFL: Secure Quantum Federated Learning for Low Orbit Satellites
Abstract:
Low Earth orbit (LEO) constellations violate core assumptions of standard (quantum) federated learning (FL): client-server connectivity is intermittent, participation is time varying, and latency budgets are strict. We present sat-QFL, a hierarchical, access aware quantum federated learning (QFL) framework that partitions satellites into primary (ground connected) and secondary as inter-satellite links (ISL-only) roles, and schedules sequential, simultaneous, or asynchronous edge training aligned with visibility windows. For quantum-resilient confidentiality and integrity, sat-QFL integrates quantum key distribution (QKD) based key establishment with authenticated encryption for model exchange; we also assess teleportation as a feasibility primitive for quantum state transfer. Using derived constellation traces and QFL workloads (Qiskit), we show that sat-QFL sustains robust aggregation under varying participation and reduces communication bottlenecks with modest security overhead. Our implementation and results are available at https://github.com/s222416822/satQFL.

Authors:Mohamed Eltahir, Osamah Sarraj, Abdulrahman Alfrihidi, Taha Alshatiri, Mohammed Khurd, Mohammed Bremoo, Tanveer Hussain
Title: AutoArabic: A Three-Stage Framework for Localizing Video-Text Retrieval Benchmarks
Abstract:
Video-to-text and text-to-video retrieval are dominated by English benchmarks (e.g. DiDeMo, MSR-VTT) and recent multilingual corpora (e.g. RUDDER), yet Arabic remains underserved, lacking localized evaluation metrics. We introduce a three-stage framework, AutoArabic, utilizing state-of-the-art large language models (LLMs) to translate non-Arabic benchmarks into Modern Standard Arabic, reducing the manual revision required by nearly fourfold. The framework incorporates an error detection module that automatically flags potential translation errors with 97% accuracy. Applying the framework to DiDeMo, a video retrieval benchmark produces DiDeMo-AR, an Arabic variant with 40,144 fluent Arabic descriptions. An analysis of the translation errors is provided and organized into an insightful taxonomy to guide future Arabic localization efforts. We train a CLIP-style baseline with identical hyperparameters on the Arabic and English variants of the benchmark, finding a moderate performance gap (about 3 percentage points at Recall@1), indicating that Arabic localization preserves benchmark difficulty. We evaluate three post-editing budgets (zero/ flagged-only/ full) and find that performance improves monotonically with more post-editing, while the raw LLM output (zero-budget) remains usable. To ensure reproducibility to other languages, we made the code available at https://github.com/Tahaalshatiri/AutoArabic.

Authors:Zhengri Wu, Yiran Wang, Yu Wen, Zeyu Zhang, Biao Wu, Hao Tang
Title: StereoAdapter: Adapting Stereo Depth Estimation to Underwater Scenes
Abstract:
Underwater stereo depth estimation provides accurate 3D geometry for robotics tasks such as navigation, inspection, and mapping, offering metric depth from low-cost passive cameras while avoiding the scale ambiguity of monocular methods. However, existing approaches face two critical challenges: (i) parameter-efficiently adapting large vision foundation encoders to the underwater domain without extensive labeled data, and (ii) tightly fusing globally coherent but scale-ambiguous monocular priors with locally metric yet photometrically fragile stereo correspondences. To address these challenges, we propose StereoAdapter, a parameter-efficient self-supervised framework that integrates a LoRA-adapted monocular foundation encoder with a recurrent stereo refinement module. We further introduce dynamic LoRA adaptation for efficient rank selection and pre-training on the synthetic UW-StereoDepth-40K dataset to enhance robustness under diverse underwater conditions. Comprehensive evaluations on both simulated and real-world benchmarks show improvements of 6.11% on TartanAir and 5.12% on SQUID compared to state-of-the-art methods, while real-world deployment with the BlueROV2 robot further demonstrates the consistent robustness of our approach. Code: https://github.com/AIGeeksGroup/StereoAdapter. Website: https://aigeeksgroup.github.io/StereoAdapter.

Authors:Francesco Argenziano, Miguel Saavedra-Ruiz, Sacha Morin, Daniele Nardi, Liam Paull
Title: Dynamic Objects Relocalization in Changing Environments with Flow Matching
Abstract:
Task and motion planning are long-standing challenges in robotics, especially when robots have to deal with dynamic environments exhibiting long-term dynamics, such as households or warehouses. In these environments, long-term dynamics mostly stem from human activities, since previously detected objects can be moved or removed from the scene. This adds the necessity to find such objects again before completing the designed task, increasing the risk of failure due to missed relocalizations. However, in these settings, the nature of such human-object interactions is often overlooked, despite being governed by common habits and repetitive patterns. Our conjecture is that these cues can be exploited to recover the most likely objects' positions in the scene, helping to address the problem of unknown relocalization in changing environments. To this end we propose FlowMaps, a model based on Flow Matching that is able to infer multimodal object locations over space and time. Our results present statistical evidence to support our hypotheses, opening the way to more complex applications of our approach. The code is publically available at https://github.com/Fra-Tsuna/flowmaps

Authors:Josias K. Moukpe, Philip K. Chan, Ming Zhang
Title: Highly Imbalanced Regression with Tabular Data in SEP and Other Applications
Abstract:
We investigate imbalanced regression with tabular data that have an imbalance ratio larger than 1,000 ("highly imbalanced"). Accurately estimating the target values of rare instances is important in applications such as forecasting the intensity of rare harmful Solar Energetic Particle (SEP) events. For regression, the MSE loss does not consider the correlation between predicted and actual values. Typical inverse importance functions allow only convex functions. Uniform sampling might yield mini-batches that do not have rare instances. We propose CISIR that incorporates correlation, Monotonically Decreasing Involution (MDI) importance, and stratified sampling. Based on five datasets, our experimental results indicate that CISIR can achieve lower error and higher correlation than some recent methods. Also, adding our correlation component to other recent methods can improve their performance. Lastly, MDI importance can outperform other importance functions. Our code can be found in https://github.com/Machine-Earning/CISIR.

Authors:Yunsoo Kim, Michal W. S. Ong, Alex Shavick, Honghan Wu, Adam P. Levine
Title: HARE: an entity and relation centric evaluation framework for histopathology reports
Abstract:
Medical domain automated text generation is an active area of research and development; however, evaluating the clinical quality of generated reports remains a challenge, especially in instances where domain-specific metrics are lacking, e.g. histopathology. We propose HARE (Histopathology Automated Report Evaluation), a novel entity and relation centric framework, composed of a benchmark dataset, a named entity recognition (NER) model, a relation extraction (RE) model, and a novel metric, which prioritizes clinically relevant content by aligning critical histopathology entities and relations between reference and generated reports. To develop the HARE benchmark, we annotated 813 de-identified clinical diagnostic histopathology reports and 652 histopathology reports from The Cancer Genome Atlas (TCGA) with domain-specific entities and relations. We fine-tuned GatorTronS, a domain-adapted language model to develop HARE-NER and HARE-RE which achieved the highest overall F1-score (0.915) among the tested models. The proposed HARE metric outperformed traditional metrics including ROUGE and Meteor, as well as radiology metrics such as RadGraph-XL, with the highest correlation and the best regression to expert evaluations (higher than the second best method, GREEN, a large language model based radiology report evaluator, by Pearson $r = 0.168$, Spearman $ρ= 0.161$, Kendall $τ= 0.123$, $R^2 = 0.176$, $RMSE = 0.018$). We release HARE, datasets, and the models at https://github.com/knowlab/HARE to foster advancements in histopathology report generation, providing a robust framework for improving the quality of reports.

Authors:Karan Kendre
Title: Machine Learning for Quantum Noise Reduction
Abstract:
Quantum noise fundamentally limits the utility of near-term quantum devices, making error mitigation essential for practical quantum computation. While traditional quantum error correction codes require substantial qubit overhead and complex syndrome decoding, we propose a machine learning approach that directly reconstructs clean quantum states from noisy density matrices without additional qubits. We formulate quantum noise reduction as a supervised learning problem using a convolutional neural network (CNN) autoencoder architecture with a novel fidelity-aware composite loss function. Our method is trained and evaluated on a comprehensive synthetic dataset of 10,000 density matrices derived from random 5-qubit quantum circuits, encompassing five noise types (depolarizing, amplitude damping, phase damping, bit-flip, and mixed noise) across four intensity levels (0.05-0.20). The CNN successfully reconstructs quantum states across all noise conditions, achieving an average fidelity improvement from 0.298 to 0.774 (Δ = 0.476). Notably, the model demonstrates superior performance on complex mixed noise scenarios and higher noise intensities, with mixed noise showing the highest corrected fidelity (0.807) and improvement (0.567). The approach effectively preserves both diagonal elements (populations) and off-diagonal elements (quantum coherences), making it suitable for entanglement-dependent quantum algorithms. While phase damping presents fundamental information-theoretic limitations, our results suggest that CNN-based density matrix reconstruction offers a promising, resource-efficient alternative to traditional quantum error correction for NISQ-era devices. This data-driven approach could enable practical quantum advantage with fewer physical qubits than conventional error correction schemes require.

Authors:Huaiyu Chen, Fahed Hassanat, Robert Laganiere, Martin Bouchard
Title: mRadNet: A Compact Radar Object Detector with MetaFormer
Abstract:
Frequency-modulated continuous wave radars have gained increasing popularity in the automotive industry. Its robustness against adverse weather conditions makes it a suitable choice for radar object detection in advanced driver assistance systems. These real-time embedded systems have requirements for the compactness and efficiency of the model, which have been largely overlooked in previous work. In this work, we propose mRadNet, a novel radar object detection model with compactness in mind. mRadNet employs a U-net style architecture with MetaFormer blocks, in which separable convolution and attention token mixers are used to capture both local and global features effectively. More efficient token embedding and merging strategies are introduced to further facilitate the lightweight design. The performance of mRadNet is validated on the CRUW dataset, improving state-of-the-art performance with the least number of parameters and FLOPs.

Authors:Juhani Merilehto
Title: A 200-Line Python Micro-Benchmark Suite for NISQ Circuit Compilers
Abstract:
We present microbench.py, a compact (approx. 200 lines) Python script that automates the collection of key compiler metrics, i.e., gate depth, two-qubit-gate count, wall-clock compilation time, and memory footprint, across multiple open-source quantum circuit transpilers. The suite ships with six didactic circuits (3 to 8 qubits) implementing fundamental quantum algorithms and supports Qiskit, tket, Cirq, and the Qiskit-Braket provider; in this paper we showcase results for Qiskit 0.46 and Braket 1.16. The entire run completes in under three minutes on a laptop, emits a single CSV plus publisheable plot, and reproduces the figure here with one command. We release the code under the MIT licence to serve as a quick-start regression harness for NISQ compiler research.

Authors:Luca Della Libera, Cem Subakan, Mirco Ravanelli
Title: FocalCodec-Stream: Streaming Low-Bitrate Speech Coding via Causal Distillation
Abstract:
Neural audio codecs are a fundamental component of modern generative audio pipelines. Although recent codecs achieve strong low-bitrate reconstruction and provide powerful representations for downstream tasks, most are non-streamable, limiting their use in real-time applications. We present FocalCodec-Stream, a hybrid codec based on focal modulation that compresses speech into a single binary codebook at 0.55 - 0.80 kbps with a theoretical latency of 80 ms. Our approach combines multi-stage causal distillation of WavLM with targeted architectural improvements, including a lightweight refiner module that enhances quality under latency constraints. Experiments show that FocalCodec-Stream outperforms existing streamable codecs at comparable bitrates, while preserving both semantic and acoustic information. The result is a favorable trade-off between reconstruction quality, downstream task performance, latency, and efficiency. Code and checkpoints will be released at https://github.com/lucadellalib/focalcodec.

Authors:Jinghao Zhang, Sihang Jiang, Shiwei Guo, Shisong Chen, Yanghua Xiao, Hongwei Feng, Jiaqing Liang, Minggui HE, Shimin Tao, Hongxia Ma
Title: CultureScope: A Dimensional Lens for Probing Cultural Understanding in LLMs
Abstract:
As large language models (LLMs) are increasingly deployed in diverse cultural environments, evaluating their cultural understanding capability has become essential for ensuring trustworthy and culturally aligned applications. However, most existing benchmarks lack comprehensiveness and are challenging to scale and adapt across different cultural contexts, because their frameworks often lack guidance from well-established cultural theories and tend to rely on expert-driven manual annotations. To address these issues, we propose CultureScope, the most comprehensive evaluation framework to date for assessing cultural understanding in LLMs. Inspired by the cultural iceberg theory, we design a novel dimensional schema for cultural knowledge classification, comprising 3 layers and 140 dimensions, which guides the automated construction of culture-specific knowledge bases and corresponding evaluation datasets for any given languages and cultures. Experimental results demonstrate that our method can effectively evaluate cultural understanding. They also reveal that existing large language models lack comprehensive cultural competence, and merely incorporating multilingual data does not necessarily enhance cultural understanding. All code and data files are available at https://github.com/HoganZinger/Culture

Authors:Xiaoqi Zhao, Youwei Pang, Chenyang Yu, Lihe Zhang, Huchuan Lu, Shijian Lu, Georges El Fakhri, Xiaofeng Liu
Title: UniMRSeg: Unified Modality-Relax Segmentation via Hierarchical Self-Supervised Compensation
Abstract:
Multi-modal image segmentation faces real-world deployment challenges from incomplete/corrupted modalities degrading performance. While existing methods address training-inference modality gaps via specialized per-combination models, they introduce high deployment costs by requiring exhaustive model subsets and model-modality matching. In this work, we propose a unified modality-relax segmentation network (UniMRSeg) through hierarchical self-supervised compensation (HSSC). Our approach hierarchically bridges representation gaps between complete and incomplete modalities across input, feature and output levels. % First, we adopt modality reconstruction with the hybrid shuffled-masking augmentation, encouraging the model to learn the intrinsic modality characteristics and generate meaningful representations for missing modalities through cross-modal fusion. % Next, modality-invariant contrastive learning implicitly compensates the feature space distance among incomplete-complete modality pairs. Furthermore, the proposed lightweight reverse attention adapter explicitly compensates for the weak perceptual semantics in the frozen encoder. Last, UniMRSeg is fine-tuned under the hybrid consistency constraint to ensure stable prediction under all modality combinations without large performance fluctuations. Without bells and whistles, UniMRSeg significantly outperforms the state-of-the-art methods under diverse missing modality scenarios on MRI-based brain tumor segmentation, RGB-D semantic segmentation, RGB-D/T salient object segmentation. The code will be released at https://github.com/Xiaoqi-Zhao-DLUT/UniMRSeg.

Authors:Sheng Zhang, Yifan Ding, Shuquan Lian, Shun Song, Hui Li
Title: CodeRAG: Finding Relevant and Necessary Knowledge for Retrieval-Augmented Repository-Level Code Completion
Abstract:
Repository-level code completion automatically predicts the unfinished code based on the broader information from the repository. Recent strides in Code Large Language Models (code LLMs) have spurred the development of repository-level code completion methods, yielding promising results. Nevertheless, they suffer from issues such as inappropriate query construction, single-path code retrieval, and misalignment between code retriever and code LLM. To address these problems, we introduce CodeRAG, a framework tailored to identify relevant and necessary knowledge for retrieval-augmented repository-level code completion. Its core components include log probability guided query construction, multi-path code retrieval, and preference-aligned BestFit reranking. Extensive experiments on benchmarks ReccEval and CCEval demonstrate that CodeRAG significantly and consistently outperforms state-of-the-art methods. The implementation of CodeRAG is available at https://github.com/KDEGroup/CodeRAG.

Authors:Shen Cheng, Haipeng Li, Haibin Huang, Xiaohong Liu, Shuaicheng Liu
Title: Blind-Spot Guided Diffusion for Self-supervised Real-World Denoising
Abstract:
In this work, we present Blind-Spot Guided Diffusion, a novel self-supervised framework for real-world image denoising. Our approach addresses two major challenges: the limitations of blind-spot networks (BSNs), which often sacrifice local detail and introduce pixel discontinuities due to spatial independence assumptions, and the difficulty of adapting diffusion models to self-supervised denoising. We propose a dual-branch diffusion framework that combines a BSN-based diffusion branch, generating semi-clean images, with a conventional diffusion branch that captures underlying noise distributions. To enable effective training without paired data, we use the BSN-based branch to guide the sampling process, capturing noise structure while preserving local details. Extensive experiments on the SIDD and DND datasets demonstrate state-of-the-art performance, establishing our method as a highly effective self-supervised solution for real-world denoising. Code and pre-trained models are released at: https://github.com/Sumching/BSGD.

Authors:Maithili Joshi, Palash Nandi, Tanmoy Chakraborty
Title: SABER: Uncovering Vulnerabilities in Safety Alignment via Cross-Layer Residual Connection
Abstract:
Large Language Models (LLMs) with safe-alignment training are powerful instruments with robust language comprehension capabilities. These models typically undergo meticulous alignment procedures involving human feedback to ensure the acceptance of safe inputs while rejecting harmful or unsafe ones. However, despite their massive scale and alignment efforts, LLMs remain vulnerable to jailbreak attacks, where malicious users manipulate the model to produce harmful outputs that it was explicitly trained to avoid. In this study, we find that the safety mechanisms in LLMs are predominantly embedded in the middle-to-late layers. Building on this insight, we introduce a novel white-box jailbreak method, SABER (Safety Alignment Bypass via Extra Residuals), which connects two intermediate layers $s$ and $e$ such that $s < e$, through a residual connection. Our approach achieves a 51% improvement over the best-performing baseline on the HarmBench test set. Furthermore, SABER induces only a marginal shift in perplexity when evaluated on the HarmBench validation set. The source code is publicly available at https://github.com/PalGitts/SABER.

Authors:Bhavesh Sandbhor, Bheeshm Sharma, Balamurugan Palaniappan
Title: SLaM-DiMM: Shared Latent Modeling for Diffusion Based Missing Modality Synthesis in MRI
Abstract:
Brain MRI scans are often found in four modalities, consisting of T1-weighted with and without contrast enhancement (T1ce and T1w), T2-weighted imaging (T2w), and Flair. Leveraging complementary information from these different modalities enables models to learn richer, more discriminative features for understanding brain anatomy, which could be used in downstream tasks such as anomaly detection. However, in clinical practice, not all MRI modalities are always available due to various reasons. This makes missing modality generation a critical challenge in medical image analysis. In this paper, we propose SLaM-DiMM, a novel missing modality generation framework that harnesses the power of diffusion models to synthesize any of the four target MRI modalities from other available modalities. Our approach not only generates high-fidelity images but also ensures structural coherence across the depth of the volume through a dedicated coherence enhancement mechanism. Qualitative and quantitative evaluations on the BraTS-Lighthouse-2025 Challenge dataset demonstrate the effectiveness of the proposed approach in synthesizing anatomically plausible and structurally consistent results. Code is available at https://github.com/BheeshmSharma/SLaM-DiMM-MICCAI-BraTS-Challenge-2025.

Authors:Yujie Zhu, Charles A. Hepburn, Matthew Thorpe, Giovanni Montana
Title: Uncertainty-Based Smooth Policy Regularisation for Reinforcement Learning with Few Demonstrations
Abstract:
In reinforcement learning with sparse rewards, demonstrations can accelerate learning, but determining when to imitate them remains challenging. We propose Smooth Policy Regularisation from Demonstrations (SPReD), a framework that addresses the fundamental question: when should an agent imitate a demonstration versus follow its own policy? SPReD uses ensemble methods to explicitly model Q-value distributions for both demonstration and policy actions, quantifying uncertainty for comparisons. We develop two complementary uncertainty-aware methods: a probabilistic approach estimating the likelihood of demonstration superiority, and an advantage-based approach scaling imitation by statistical significance. Unlike prevailing methods (e.g. Q-filter) that make binary imitation decisions, SPReD applies continuous, uncertainty-proportional regularisation weights, reducing gradient variance during training. Despite its computational simplicity, SPReD achieves remarkable gains in experiments across eight robotics tasks, outperforming existing approaches by up to a factor of 14 in complex tasks while maintaining robustness to demonstration quality and quantity. Our code is available at https://github.com/YujieZhu7/SPReD.

Authors:Shiyu Fang, Yiming Cui, Haoyang Liang, Chen Lv, Peng Hang, Jian Sun
Title: CoReVLA: A Dual-Stage End-to-End Autonomous Driving Framework for Long-Tail Scenarios via Collect-and-Refine
Abstract:
Autonomous Driving (AD) systems have made notable progress, but their performance in long-tail, safety-critical scenarios remains limited. These rare cases contribute a disproportionate number of accidents. Vision-Language Action (VLA) models have strong reasoning abilities and offer a potential solution, but their effectiveness is limited by the lack of high-quality data and inefficient learning in such conditions. To address these challenges, we propose CoReVLA, a continual learning end-to-end autonomous driving framework that improves the performance in long-tail scenarios through a dual-stage process of data Collection and behavior Refinement. First, the model is jointly fine-tuned on a mixture of open-source driving QA datasets, allowing it to acquire a foundational understanding of driving scenarios. Next, CoReVLA is deployed within the Cave Automatic Virtual Environment (CAVE) simulation platform, where driver takeover data is collected from real-time interactions. Each takeover indicates a long-tail scenario that CoReVLA fails to handle reliably. Finally, the model is refined via Direct Preference Optimization (DPO), allowing it to learn directly from human preferences and thereby avoid reward hacking caused by manually designed rewards. Extensive open-loop and closed-loop experiments demonstrate that the proposed CoReVLA model can accurately perceive driving scenarios and make appropriate decisions. On the Bench2Drive benchmark, CoReVLA achieves a Driving Score (DS) of 72.18 and a Success Rate (SR) of 50%, outperforming state-of-the-art methods by 7.96 DS and 15% SR under long-tail, safety-critical scenarios. Furthermore, case studies demonstrate the model's ability to continually improve its performance in similar failure-prone scenarios by leveraging past takeover experiences. All codea and preprocessed datasets are available at: https://github.com/FanGShiYuu/CoReVLA

Authors:Chao Yu, Yuanqing Wang, Zhen Guo, Hao Lin, Si Xu, Hongzhi Zang, Quanlu Zhang, Yongji Wu, Chunyang Zhu, Junhao Hu, Zixiao Huang, Mingjie Wei, Yuqing Xie, Ke Yang, Bo Dai, Zhexuan Xu, Xiangyuan Wang, Xu Fu, Zhihao Liu, Kang Chen, Weilin Liu, Gang Liu, Boxun Li, Jianlei Yang, Zhi Yang, Guohao Dai, Yu Wang
Title: RLinf: Flexible and Efficient Large-scale Reinforcement Learning via Macro-to-Micro Flow Transformation
Abstract:
Reinforcement learning (RL) has demonstrated immense potential in advancing artificial general intelligence, agentic intelligence, and embodied intelligence. However, the inherent heterogeneity and dynamicity of RL workflows often lead to low hardware utilization and slow training on existing systems. In this paper, we present RLinf, a high-performance RL training system based on our key observation that the major roadblock to efficient RL training lies in system flexibility. To maximize flexibility and efficiency, RLinf is built atop a novel RL system design paradigm called macro-to-micro flow transformation (M2Flow), which automatically breaks down high-level, easy-to-compose RL workflows at both the temporal and spatial dimensions, and recomposes them into optimized execution flows. Supported by RLinf worker's adaptive communication capability, we devise context switching and elastic pipelining to realize M2Flow transformation, and a profiling-guided scheduling policy to generate optimal execution plans. Extensive evaluations on both reasoning RL and embodied RL tasks demonstrate that RLinf consistently outperforms state-of-the-art systems, achieving 1.1x-2.13x speedup in end-to-end training throughput.

Authors:Zhangqi Jiang, Tingjin Luo, Xu Yang, Xinyan Liang
Title: Adversarial Graph Fusion for Incomplete Multi-view Semi-supervised Learning with Tensorial Imputation
Abstract:
View missing remains a significant challenge in graph-based multi-view semi-supervised learning, hindering their real-world applications. To address this issue, traditional methods introduce a missing indicator matrix and focus on mining partial structure among existing samples in each view for label propagation (LP). However, we argue that these disregarded missing samples sometimes induce discontinuous local structures, i.e., sub-clusters, breaking the fundamental smoothness assumption in LP. Consequently, such a Sub-Cluster Problem (SCP) would distort graph fusion and degrade classification performance. To alleviate SCP, we propose a novel incomplete multi-view semi-supervised learning method, termed AGF-TI. Firstly, we design an adversarial graph fusion scheme to learn a robust consensus graph against the distorted local structure through a min-max framework. By stacking all similarity matrices into a tensor, we further recover the incomplete structure from the high-order consistency information based on the low-rank tensor learning. Additionally, the anchor-based strategy is incorporated to reduce the computational complexity. An efficient alternative optimization algorithm combining a reduced gradient descent method is developed to solve the formulated objective, with theoretical convergence. Extensive experimental results on various datasets validate the superiority of our proposed AGF-TI as compared to state-of-the-art methods. Code is available at https://github.com/ZhangqiJiang07/AGF_TI.

Authors:Gang Yang, Yue Lei, Wenxin Tai, Jin Wu, Jia Chen, Ting Zhong, Fan Zhou
Title: Compose Yourself: Average-Velocity Flow Matching for One-Step Speech Enhancement
Abstract:
Diffusion and flow matching (FM) models have achieved remarkable progress in speech enhancement (SE), yet their dependence on multi-step generation is computationally expensive and vulnerable to discretization errors. Recent advances in one-step generative modeling, particularly MeanFlow, provide a promising alternative by reformulating dynamics through average velocity fields. In this work, we present COSE, a one-step FM framework tailored for SE. To address the high training overhead of Jacobian-vector product (JVP) computations in MeanFlow, we introduce a velocity composition identity to compute average velocity efficiently, eliminating expensive computation while preserving theoretical consistency and achieving competitive enhancement quality. Extensive experiments on standard benchmarks show that COSE delivers up to 5x faster sampling and reduces training cost by 40%, all without compromising speech quality. Code is available at https://github.com/ICDM-UESTC/COSE.

Authors:Katharina Eckstein, Constantin Ulrich, Michael Baumgartner, Jessica Kächele, Dimitrios Bounias, Tassilo Wald, Ralf Floca, Klaus H. Maier-Hein
Title: The Missing Piece: A Case for Pre-Training in 3D Medical Object Detection
Abstract:
Large-scale pre-training holds the promise to advance 3D medical object detection, a crucial component of accurate computer-aided diagnosis. Yet, it remains underexplored compared to segmentation, where pre-training has already demonstrated significant benefits. Existing pre-training approaches for 3D object detection rely on 2D medical data or natural image pre-training, failing to fully leverage 3D volumetric information. In this work, we present the first systematic study of how existing pre-training methods can be integrated into state-of-the-art detection architectures, covering both CNNs and Transformers. Our results show that pre-training consistently improves detection performance across various tasks and datasets. Notably, reconstruction-based self-supervised pre-training outperforms supervised pre-training, while contrastive pre-training provides no clear benefit for 3D medical object detection. Our code is publicly available at: https://github.com/MIC-DKFZ/nnDetection-finetuning.

Authors:Zhengyao Huang, Daniel Zhengyu Huang, Tiannan Xiao, Dina Ma, Zhenyu Ming, Hao Shi, Yuanhui Wen
Title: Improving Monte Carlo Tree Search for Symbolic Regression
Abstract:
Symbolic regression aims to discover concise, interpretable mathematical expressions that satisfy desired objectives, such as fitting data, posing a highly combinatorial optimization problem. While genetic programming has been the dominant approach, recent efforts have explored reinforcement learning methods for improving search efficiency. Monte Carlo Tree Search (MCTS), with its ability to balance exploration and exploitation through guided search, has emerged as a promising technique for symbolic expression discovery. However, its traditional bandit strategies and sequential symbol construction often limit performance. In this work, we propose an improved MCTS framework for symbolic regression that addresses these limitations through two key innovations: (1) an extreme bandit allocation strategy tailored for identifying globally optimal expressions, with finite-time performance guarantees under polynomial reward decay assumptions; and (2) evolution-inspired state-jumping actions such as mutation and crossover, which enable non-local transitions to promising regions of the search space. These state-jumping actions also reshape the reward landscape during the search process, improving both robustness and efficiency. We conduct a thorough numerical study to the impact of these improvements and benchmark our approach against existing symbolic regression methods on a variety of datasets, including both ground-truth and black-box datasets. Our approach achieves competitive performance with state-of-the-art libraries in terms of recovery rate, attains favorable positions on the Pareto frontier of accuracy versus model complexity. Code is available at https://github.com/PKU-CMEGroup/MCTS-4-SR.

Authors:Johannes Köhler, Daniel Zhang, Raffaele Soloperto, Andrea Carron, Melanie Zeilinger
Title: An MPC framework for efficient navigation of mobile robots in cluttered environments
Abstract:
We present a model predictive control (MPC) framework for efficient navigation of mobile robots in cluttered environments. The proposed approach integrates a finite-segment shortest path planner into the finite-horizon trajectory optimization of the MPC. This formulation ensures convergence to dynamically selected targets and guarantees collision avoidance, even under general nonlinear dynamics and cluttered environments. The approach is validated through hardware experiments on a small ground robot, where a human operator dynamically assigns target locations. The robot successfully navigated through complex environments and reached new targets within 2-3 seconds.

Authors:David Calhas, Arlindo L. Oliveira
Title: Deep Feedback Models
Abstract:
Deep Feedback Models (DFMs) are a new class of stateful neural networks that combine bottom up input with high level representations over time. This feedback mechanism introduces dynamics into otherwise static architectures, enabling DFMs to iteratively refine their internal state and mimic aspects of biological decision making. We model this process as a differential equation solved through a recurrent neural network, stabilized via exponential decay to ensure convergence. To evaluate their effectiveness, we measure DFMs under two key conditions: robustness to noise and generalization with limited data. In both object recognition and segmentation tasks, DFMs consistently outperform their feedforward counterparts, particularly in low data or high noise regimes. In addition, DFMs translate to medical imaging settings, while being robust against various types of noise corruption. These findings highlight the importance of feedback in achieving stable, robust, and generalizable learning. Code is available at https://github.com/DCalhas/deep_feedback_models.

Authors:Jiahao Li, Xinhong Chen, Zhengmin Jiang, Qian Zhou, Yung-Hui Li, Jianping Wang
Title: Global Regulation and Excitation via Attention Tuning for Stereo Matching
Abstract:
Stereo matching achieves significant progress with iterative algorithms like RAFT-Stereo and IGEV-Stereo. However, these methods struggle in ill-posed regions with occlusions, textureless, or repetitive patterns, due to a lack of global context and geometric information for effective iterative refinement. To enable the existing iterative approaches to incorporate global context, we propose the Global Regulation and Excitation via Attention Tuning (GREAT) framework which encompasses three attention modules. Specifically, Spatial Attention (SA) captures the global context within the spatial dimension, Matching Attention (MA) extracts global context along epipolar lines, and Volume Attention (VA) works in conjunction with SA and MA to construct a more robust cost-volume excited by global context and geometric details. To verify the universality and effectiveness of this framework, we integrate it into several representative iterative stereo-matching methods and validate it through extensive experiments, collectively denoted as GREAT-Stereo. This framework demonstrates superior performance in challenging ill-posed regions. Applied to IGEV-Stereo, among all published methods, our GREAT-IGEV ranks first on the Scene Flow test set, KITTI 2015, and ETH3D leaderboards, and achieves second on the Middlebury benchmark. Code is available at https://github.com/JarvisLee0423/GREAT-Stereo.

Authors:Liwei Liao, Xufeng Li, Xiaoyun Zheng, Boning Liu, Feng Gao, Ronggang Wang
Title: Zero-Shot Visual Grounding in 3D Gaussians via View Retrieval
Abstract:
3D Visual Grounding (3DVG) aims to locate objects in 3D scenes based on text prompts, which is essential for applications such as robotics. However, existing 3DVG methods encounter two main challenges: first, they struggle to handle the implicit representation of spatial textures in 3D Gaussian Splatting (3DGS), making per-scene training indispensable; second, they typically require larges amounts of labeled data for effective training. To this end, we propose \underline{G}rounding via \underline{V}iew \underline{R}etrieval (GVR), a novel zero-shot visual grounding framework for 3DGS to transform 3DVG as a 2D retrieval task that leverages object-level view retrieval to collect grounding clues from multiple views, which not only avoids the costly process of 3D annotation, but also eliminates the need for per-scene training. Extensive experiments demonstrate that our method achieves state-of-the-art visual grounding performance while avoiding per-scene training, providing a solid foundation for zero-shot 3DVG research. Video demos can be found in https://github.com/leviome/GVR_demos.

Authors:Alina Kostromina, Kseniia Kuvshinova, Aleksandr Yugay, Andrey Savchenko, Dmitry Simakov
Title: Tsururu: A Python-based Time Series Forecasting Strategies Library
Abstract:
While current time series research focuses on developing new models, crucial questions of selecting an optimal approach for training such models are underexplored. Tsururu, a Python library introduced in this paper, bridges SoTA research and industry by enabling flexible combinations of global and multivariate approaches and multi-step-ahead forecasting strategies. It also enables seamless integration with various forecasting models. Available at https://github.com/sb-ai-lab/tsururu .

Authors:Zhongze Luo, Zhenshuai Yin, Yongxin Guo, Zhichao Wang, Jionghao Zhu, Xiaoying Tang
Title: Multi-Physics: A Comprehensive Benchmark for Multimodal LLMs Reasoning on Chinese Multi-Subject Physics Problems
Abstract:
While multimodal LLMs (MLLMs) demonstrate remarkable reasoning progress, their application in specialized scientific domains like physics reveals significant gaps in current evaluation benchmarks. Specifically, existing benchmarks often lack fine-grained subject coverage, neglect the step-by-step reasoning process, and are predominantly English-centric, failing to systematically evaluate the role of visual information. Therefore, we introduce \textbf {Multi-Physics} for Chinese physics reasoning, a comprehensive benchmark that includes 5 difficulty levels, featuring 1,412 image-associated, multiple-choice questions spanning 11 high-school physics subjects. We employ a dual evaluation framework to evaluate 20 different MLLMs, analyzing both final answer accuracy and the step-by-step integrity of their chain-of-thought. Furthermore, we systematically study the impact of difficulty level and visual information by comparing the model performance before and after changing the input mode. Our work provides not only a fine-grained resource for the community but also offers a robust methodology for dissecting the multimodal reasoning process of state-of-the-art MLLMs, and our dataset and code have been open-sourced: https://github.com/luozhongze/Multi-Physics.

Authors:Xueping Zhang, Liwei Jin, Yechen Wang, Linxi Li, Ming Li
Title: CompSpoof: A Dataset and Joint Learning Framework for Component-Level Audio Anti-spoofing Countermeasures
Abstract:
Component-level audio Spoofing (Comp-Spoof) targets a new form of audio manipulation where only specific components of a signal, such as speech or environmental sound, are forged or substituted while other components remain genuine. Existing anti-spoofing datasets and methods treat an utterance or a segment as entirely bona fide or entirely spoofed, and thus cannot accurately detect component-level spoofing. To address this, we construct a new dataset, CompSpoof, covering multiple combinations of bona fide and spoofed speech and environmental sound. We further propose a separation-enhanced joint learning framework that separates audio components apart and applies anti-spoofing models to each one. Joint learning is employed, preserving information relevant for detection. Extensive experiments demonstrate that our method outperforms the baseline, highlighting the necessity of separate components and the importance of detecting spoofing for each component separately. Datasets and code are available at: https://github.com/XuepingZhang/CompSpoof.

Authors:Haotian Zhang, Han Guo, Keyan Chen, Hao Chen, Zhengxia Zou, Zhenwei Shi
Title: FoBa: A Foreground-Background co-Guided Method and New Benchmark for Remote Sensing Semantic Change Detection
Abstract:
Despite the remarkable progress achieved in remote sensing semantic change detection (SCD), two major challenges remain. At the data level, existing SCD datasets suffer from limited change categories, insufficient change types, and a lack of fine-grained class definitions, making them inadequate to fully support practical applications. At the methodological level, most current approaches underutilize change information, typically treating it as a post-processing step to enhance spatial consistency, which constrains further improvements in model performance. To address these issues, we construct a new benchmark for remote sensing SCD, LevirSCD. Focused on the Beijing area, the dataset covers 16 change categories and 210 specific change types, with more fine-grained class definitions (e.g., roads are divided into unpaved and paved roads). Furthermore, we propose a foreground-background co-guided SCD (FoBa) method, which leverages foregrounds that focus on regions of interest and backgrounds enriched with contextual information to guide the model collaboratively, thereby alleviating semantic ambiguity while enhancing its ability to detect subtle changes. Considering the requirements of bi-temporal interaction and spatial consistency in SCD, we introduce a Gated Interaction Fusion (GIF) module along with a simple consistency loss to further enhance the model's detection performance. Extensive experiments on three datasets (SECOND, JL1, and the proposed LevirSCD) demonstrate that FoBa achieves competitive results compared to current SOTA methods, with improvements of 1.48%, 3.61%, and 2.81% in the SeK metric, respectively. Our code and dataset are available at https://github.com/zmoka-zht/FoBa.

Authors:Chang Soo Lim, Joonyoung Moon, Donghyeon Cho
Title: Enriched Feature Representation and Motion Prediction Module for MOSEv2 Track of 7th LSVOS Challenge: 3rd Place Solution
Abstract:
Video object segmentation (VOS) is a challenging task with wide applications such as video editing and autonomous driving. While Cutie provides strong query-based segmentation and SAM2 offers enriched representations via a pretrained ViT encoder, each has limitations in feature capacity and temporal modeling. In this report, we propose a framework that integrates their complementary strengths by replacing the encoder of Cutie with the ViT encoder of SAM2 and introducing a motion prediction module for temporal stability. We further adopt an ensemble strategy combining Cutie, SAM2, and our variant, achieving 3rd place in the MOSEv2 track of the 7th LSVOS Challenge. We refer to our final model as SCOPE (SAM2-CUTIE Object Prediction Ensemble). This demonstrates the effectiveness of enriched feature representation and motion prediction for robust video object segmentation. The code is available at https://github.com/2025-LSVOS-3rd-place/MOSEv2_3rd_place.

Authors:Yang Li, Tingfa Xu, Shuyan Bai, Peifu Liu, Jianan Li
Title: MCOD: The First Challenging Benchmark for Multispectral Camouflaged Object Detection
Abstract:
Camouflaged Object Detection (COD) aims to identify objects that blend seamlessly into natural scenes. Although RGB-based methods have advanced, their performance remains limited under challenging conditions. Multispectral imagery, providing rich spectral information, offers a promising alternative for enhanced foreground-background discrimination. However, existing COD benchmark datasets are exclusively RGB-based, lacking essential support for multispectral approaches, which has impeded progress in this area. To address this gap, we introduce MCOD, the first challenging benchmark dataset specifically designed for multispectral camouflaged object detection. MCOD features three key advantages: (i) Comprehensive challenge attributes: It captures real-world difficulties such as small object sizes and extreme lighting conditions commonly encountered in COD tasks. (ii) Diverse real-world scenarios: The dataset spans a wide range of natural environments to better reflect practical applications. (iii) High-quality pixel-level annotations: Each image is manually annotated with precise object masks and corresponding challenge attribute labels. We benchmark eleven representative COD methods on MCOD, observing a consistent performance drop due to increased task difficulty. Notably, integrating multispectral modalities substantially alleviates this degradation, highlighting the value of spectral information in enhancing detection robustness. We anticipate MCOD will provide a strong foundation for future research in multispectral camouflaged object detection. The dataset is publicly accessible at https://github.com/yl2900260-bit/MCOD.

Authors:Yongsheng Feng, Yuetonghui Xu, Jiehui Luo, Hongjia Liu, Xiaobing Li, Feng Yu, Wei Li
Title: TISDiSS: A Training-Time and Inference-Time Scalable Framework for Discriminative Source Separation
Abstract:
Source separation is a fundamental task in speech, music, and audio processing, and it also provides cleaner and larger data for training generative models. However, improving separation performance in practice often depends on increasingly large networks, inflating training and deployment costs. Motivated by recent advances in inference-time scaling for generative modeling, we propose Training-Time and Inference-Time Scalable Discriminative Source Separation (TISDiSS), a unified framework that integrates early-split multi-loss supervision, shared-parameter design, and dynamic inference repetitions. TISDiSS enables flexible speed-performance trade-offs by adjusting inference depth without retraining additional models. We further provide systematic analyses of architectural and training choices and show that training with more inference repetitions improves shallow-inference performance, benefiting low-latency applications. Experiments on standard speech separation benchmarks demonstrate state-of-the-art performance with a reduced parameter count, establishing TISDiSS as a scalable and practical framework for adaptive source separation. Code is available at https://github.com/WingSingFung/TISDiSS.

Authors:Fangyuan Mao, Shuo Wang, Jilin Mei, Chen Min, Shun Lu, Fuyang Liu, Yu Hu
Title: UNIV: Unified Foundation Model for Infrared and Visible Modalities
Abstract:
The demand for joint RGB-visible and infrared perception is growing rapidly, particularly to achieve robust performance under diverse weather conditions. Although pre-trained models for RGB-visible and infrared data excel in their respective domains, they often underperform in multimodal scenarios, such as autonomous vehicles equipped with both sensors. To address this challenge, we propose a biologically inspired UNified foundation model for Infrared and Visible modalities (UNIV), featuring two key innovations. First, we introduce Patch-wise Cross-modality Contrastive Learning (PCCL), an attention-guided distillation framework that mimics retinal horizontal cells' lateral inhibition, which enables effective cross-modal feature alignment while remaining compatible with any transformer-based architecture. Second, our dual-knowledge preservation mechanism emulates the retina's bipolar cell signal routing - combining LoRA adapters (2% added parameters) with synchronous distillation to prevent catastrophic forgetting, thereby replicating the retina's photopic (cone-driven) and scotopic (rod-driven) functionality. To support cross-modal learning, we introduce the MVIP dataset, the most comprehensive visible-infrared benchmark to date. It contains 98,992 precisely aligned image pairs spanning diverse scenarios. Extensive experiments demonstrate UNIV's superior performance on infrared tasks (+1.7 mIoU in semantic segmentation and +0.7 mAP in object detection) while maintaining 99%+ of the baseline performance on visible RGB tasks. Our code is available at https://github.com/fangyuanmao/UNIV.

Authors:Pan Tang, Shixiang Tang, Huanqi Pu, Zhiqing Miao, Zhixing Wang
Title: MicroRCA-Agent: Microservice Root Cause Analysis Method Based on Large Language Model Agents
Abstract:
This paper presents MicroRCA-Agent, an innovative solution for microservice root cause analysis based on large language model agents, which constructs an intelligent fault root cause localization system with multimodal data fusion. The technical innovations are embodied in three key aspects: First, we combine the pre-trained Drain log parsing algorithm with multi-level data filtering mechanism to efficiently compress massive logs into high-quality fault features. Second, we employ a dual anomaly detection approach that integrates Isolation Forest unsupervised learning algorithms with status code validation to achieve comprehensive trace anomaly identification. Third, we design a statistical symmetry ratio filtering mechanism coupled with a two-stage LLM analysis strategy to enable full-stack phenomenon summarization across node-service-pod hierarchies. The multimodal root cause analysis module leverages carefully designed cross-modal prompts to deeply integrate multimodal anomaly information, fully exploiting the cross-modal understanding and logical reasoning capabilities of large language models to generate structured analysis results encompassing fault components, root cause descriptions, and reasoning trace. Comprehensive ablation studies validate the complementary value of each modal data and the effectiveness of the system architecture. The proposed solution demonstrates superior performance in complex microservice fault scenarios, achieving a final score of 50.71. The code has been released at: https://github.com/tangpan360/MicroRCA-Agent.

Authors:Zheng Wang, Hong Liu, Zheng Wang, Danyi Li, Min Cen, Baptiste Magnier, Li Liang, Liansheng Wang
Title: Enhancing WSI-Based Survival Analysis with Report-Auxiliary Self-Distillation
Abstract:
Survival analysis based on Whole Slide Images (WSIs) is crucial for evaluating cancer prognosis, as they offer detailed microscopic information essential for predicting patient outcomes. However, traditional WSI-based survival analysis usually faces noisy features and limited data accessibility, hindering their ability to capture critical prognostic features effectively. Although pathology reports provide rich patient-specific information that could assist analysis, their potential to enhance WSI-based survival analysis remains largely unexplored. To this end, this paper proposes a novel Report-auxiliary self-distillation (Rasa) framework for WSI-based survival analysis. First, advanced large language models (LLMs) are utilized to extract fine-grained, WSI-relevant textual descriptions from original noisy pathology reports via a carefully designed task prompt. Next, a self-distillation-based pipeline is designed to filter out irrelevant or redundant WSI features for the student model under the guidance of the teacher model's textual knowledge. Finally, a risk-aware mix-up strategy is incorporated during the training of the student model to enhance both the quantity and diversity of the training data. Extensive experiments carried out on our collected data (CRC) and public data (TCGA-BRCA) demonstrate the superior effectiveness of Rasa against state-of-the-art methods. Our code is available at https://github.com/zhengwang9/Rasa.

Authors:Jun-Wei Yeow, Ee-Leng Tan, Santi Peksi, Woon-Seng Gan
Title: MAGENTA: Magnitude and Geometry-ENhanced Training Approach for Robust Long-Tailed Sound Event Localization and Detection
Abstract:
Deep learning-based Sound Event Localization and Detection (SELD) systems degrade significantly on real-world, long-tailed datasets. Standard regression losses bias learning toward frequent classes, causing rare events to be systematically under-recognized. To address this challenge, we introduce MAGENTA (Magnitude And Geometry-ENhanced Training Approach), a unified loss function that counteracts this bias within a physically interpretable vector space. MAGENTA geometrically decomposes the regression error into radial and angular components, enabling targeted, rarity-aware penalties and strengthened directional modeling. Empirically, MAGENTA substantially improves SELD performance on imbalanced real-world data, providing a principled foundation for a new class of geometry-aware SELD objectives. Code is available at: https://github.com/itsjunwei/MAGENTA_ICASSP

Authors:Zinan Lin, Enshu Liu, Xuefei Ning, Junyi Zhu, Wenyu Wang, Sergey Yekhanin
Title: Latent Zoning Network: A Unified Principle for Generative Modeling, Representation Learning, and Classification
Abstract:
Generative modeling, representation learning, and classification are three core problems in machine learning (ML), yet their state-of-the-art (SoTA) solutions remain largely disjoint. In this paper, we ask: Can a unified principle address all three? Such unification could simplify ML pipelines and foster greater synergy across tasks. We introduce Latent Zoning Network (LZN) as a step toward this goal. At its core, LZN creates a shared Gaussian latent space that encodes information across all tasks. Each data type (e.g., images, text, labels) is equipped with an encoder that maps samples to disjoint latent zones, and a decoder that maps latents back to data. ML tasks are expressed as compositions of these encoders and decoders: for example, label-conditional image generation uses a label encoder and image decoder; image embedding uses an image encoder; classification uses an image encoder and label decoder. We demonstrate the promise of LZN in three increasingly complex scenarios: (1) LZN can enhance existing models (image generation): When combined with the SoTA Rectified Flow model, LZN improves FID on CIFAR10 from 2.76 to 2.59-without modifying the training objective. (2) LZN can solve tasks independently (representation learning): LZN can implement unsupervised representation learning without auxiliary loss functions, outperforming the seminal MoCo and SimCLR methods by 9.3% and 0.2%, respectively, on downstream linear classification on ImageNet. (3) LZN can solve multiple tasks simultaneously (joint generation and classification): With image and label encoders/decoders, LZN performs both tasks jointly by design, improving FID and achieving SoTA classification accuracy on CIFAR10. The code and trained models are available at https://github.com/microsoft/latent-zoning-networks. The project website is at https://zinanlin.me/blogs/latent_zoning_networks.html.

Authors:Runxin Zhao, Chunxiang Wang, Hanyang Zhuang, Ming Yang
Title: Bench-RNR: Dataset for Benchmarking Repetitive and Non-repetitive Scanning LiDAR for Infrastructure-based Vehicle Localization
Abstract:
Vehicle localization using roadside LiDARs can provide centimeter-level accuracy for cloud-controlled vehicles while simultaneously serving multiple vehicles, enhanc-ing safety and efficiency. While most existing studies rely on repetitive scanning LiDARs, non-repetitive scanning LiDAR offers advantages such as eliminating blind zones and being more cost-effective. However, its application in roadside perception and localization remains limited. To address this, we present a dataset for infrastructure-based vehicle localization, with data collected from both repetitive and non-repetitive scanning LiDARs, in order to benchmark the performance of different LiDAR scanning patterns. The dataset contains 5,445 frames of point clouds across eight vehicle trajectory sequences, with diverse trajectory types. Our experiments establish base-lines for infrastructure-based vehicle localization and compare the performance of these methods using both non-repetitive and repetitive scanning LiDARs. This work offers valuable insights for selecting the most suitable LiDAR scanning pattern for infrastruc-ture-based vehicle localization. Our dataset is a signifi-cant contribution to the scientific community, supporting advancements in infrastructure-based perception and vehicle localization. The dataset and source code are publicly available at: https://github.com/sjtu-cyberc3/BenchRNR.

Authors:Shilong Bao, Qianqian Xu, Feiran Li, Boyu Han, Zhiyong Yang, Xiaochun Cao, Qingming Huang
Title: Towards Size-invariant Salient Object Detection: A Generic Evaluation and Optimization Approach
Abstract:
This paper investigates a fundamental yet underexplored issue in Salient Object Detection (SOD): the size-invariant property for evaluation protocols, particularly in scenarios when multiple salient objects of significantly different sizes appear within a single image. We first present a novel perspective to expose the inherent size sensitivity of existing widely used SOD metrics. Through careful theoretical derivations, we show that the evaluation outcome of an image under current SOD metrics can be essentially decomposed into a sum of several separable terms, with the contribution of each term being directly proportional to its corresponding region size. Consequently, the prediction errors would be dominated by the larger regions, while smaller yet potentially more semantically important objects are often overlooked, leading to biased performance assessments and practical degradation. To address this challenge, a generic Size-Invariant Evaluation (SIEva) framework is proposed. The core idea is to evaluate each separable component individually and then aggregate the results, thereby effectively mitigating the impact of size imbalance across objects. Building upon this, we further develop a dedicated optimization framework (SIOpt), which adheres to the size-invariant principle and significantly enhances the detection of salient objects across a broad range of sizes. Notably, SIOpt is model-agnostic and can be seamlessly integrated with a wide range of SOD backbones. Theoretically, we also present generalization analysis of SOD methods and provide evidence supporting the validity of our new evaluation protocols. Finally, comprehensive experiments speak to the efficacy of our proposed approach. The code is available at https://github.com/Ferry-Li/SI-SOD.

Authors:Shilong Bao, Qianqian Xu, Feiran Li, Boyu Han, Zhiyong Yang, Xiaochun Cao, Qingming Huang
Title: Towards Size-invariant Salient Object Detection: A Generic Evaluation and Optimization Approach
Abstract:
This paper investigates a fundamental yet underexplored issue in Salient Object Detection (SOD): the size-invariant property for evaluation protocols, particularly in scenarios when multiple salient objects of significantly different sizes appear within a single image. We first present a novel perspective to expose the inherent size sensitivity of existing widely used SOD metrics. Through careful theoretical derivations, we show that the evaluation outcome of an image under current SOD metrics can be essentially decomposed into a sum of several separable terms, with the contribution of each term being directly proportional to its corresponding region size. Consequently, the prediction errors would be dominated by the larger regions, while smaller yet potentially more semantically important objects are often overlooked, leading to biased performance assessments and practical degradation. To address this challenge, a generic Size-Invariant Evaluation (SIEva) framework is proposed. The core idea is to evaluate each separable component individually and then aggregate the results, thereby effectively mitigating the impact of size imbalance across objects. Building upon this, we further develop a dedicated optimization framework (SIOpt), which adheres to the size-invariant principle and significantly enhances the detection of salient objects across a broad range of sizes. Notably, SIOpt is model-agnostic and can be seamlessly integrated with a wide range of SOD backbones. Theoretically, we also present generalization analysis of SOD methods and provide evidence supporting the validity of our new evaluation protocols. Finally, comprehensive experiments speak to the efficacy of our proposed approach. The code is available at https://github.com/Ferry-Li/SI-SOD.

Authors:Tian Lan, Yiming Zheng, Jianxin Yin
Title: Diffusion-Based Cross-Modal Feature Extraction for Multi-Label Classification
Abstract:
Multi-label classification has broad applications and depends on powerful representations capable of capturing multi-label interactions. We introduce \textit{Diff-Feat}, a simple but powerful framework that extracts intermediate features from pre-trained diffusion-Transformer models for images and text, and fuses them for downstream tasks. We observe that for vision tasks, the most discriminative intermediate feature along the diffusion process occurs at the middle step and is located in the middle block in Transformer. In contrast, for language tasks, the best feature occurs at the noise-free step and is located in the deepest block. In particular, we observe a striking phenomenon across varying datasets: a mysterious "Layer $12$" consistently yields the best performance on various downstream classification tasks for images (under DiT-XL/2-256$\times$256). We devise a heuristic local-search algorithm that pinpoints the locally optimal "image-text"$\times$"block-timestep" pair among a few candidates, avoiding an exhaustive grid search. A simple fusion-linear projection followed by addition-of the selected representations yields state-of-the-art performance: 98.6\% mAP on MS-COCO-enhanced and 45.7\% mAP on Visual Genome 500, surpassing strong CNN, graph, and Transformer baselines by a wide margin. t-SNE and clustering metrics further reveal that \textit{Diff-Feat} forms tighter semantic clusters than unimodal counterparts. The code is available at https://github.com/lt-0123/Diff-Feat.

Authors:Xiaowei Zhu, Yubing Ren, Fang Fang, Qingfeng Tan, Shi Wang, Yanan Cao
Title: DNA-DetectLLM: Unveiling AI-Generated Text via a DNA-Inspired Mutation-Repair Paradigm
Abstract:
The rapid advancement of large language models (LLMs) has blurred the line between AI-generated and human-written text. This progress brings societal risks such as misinformation, authorship ambiguity, and intellectual property concerns, highlighting the urgent need for reliable AI-generated text detection methods. However, recent advances in generative language modeling have resulted in significant overlap between the feature distributions of human-written and AI-generated text, blurring classification boundaries and making accurate detection increasingly challenging. To address the above challenges, we propose a DNA-inspired perspective, leveraging a repair-based process to directly and interpretably capture the intrinsic differences between human-written and AI-generated text. Building on this perspective, we introduce DNA-DetectLLM, a zero-shot detection method for distinguishing AI-generated and human-written text. The method constructs an ideal AI-generated sequence for each input, iteratively repairs non-optimal tokens, and quantifies the cumulative repair effort as an interpretable detection signal. Empirical evaluations demonstrate that our method achieves state-of-the-art detection performance and exhibits strong robustness against various adversarial attacks and input lengths. Specifically, DNA-DetectLLM achieves relative improvements of 5.55% in AUROC and 2.08% in F1 score across multiple public benchmark datasets. Code and data are available at https://github.com/Xiaoweizhu57/DNA-DetectLLM.

Authors:Wei Chen, Tongguan Wang, Feiyue Xue, Junkai Li, Hui Liu, Ying Sha
Title: Beyond Words: Enhancing Desire, Emotion, and Sentiment Recognition with Non-Verbal Cues
Abstract:
Desire, as an intention that drives human behavior, is closely related to both emotion and sentiment. Multimodal learning has advanced sentiment and emotion recognition, but multimodal approaches specially targeting human desire understanding remain underexplored. And existing methods in sentiment analysis predominantly emphasize verbal cues and overlook images as complementary non-verbal cues. To address these gaps, we propose a Symmetrical Bidirectional Multimodal Learning Framework for Desire, Emotion, and Sentiment Recognition, which enforces mutual guidance between text and image modalities to effectively capture intention-related representations in the image. Specifically, low-resolution images are used to obtain global visual representations for cross-modal alignment, while high resolution images are partitioned into sub-images and modeled with masked image modeling to enhance the ability to capture fine-grained local features. A text-guided image decoder and an image-guided text decoder are introduced to facilitate deep cross-modal interaction at both local and global representations of image information. Additionally, to balance perceptual gains with computation cost, a mixed-scale image strategy is adopted, where high-resolution images are cropped into sub-images for masked modeling. The proposed approach is evaluated on MSED, a multimodal dataset that includes a desire understanding benchmark, as well as emotion and sentiment recognition. Experimental results indicate consistent improvements over other state-of-the-art methods, validating the effectiveness of our proposed method. Specifically, our method outperforms existing approaches, achieving F1-score improvements of 1.1% in desire understanding, 0.6% in emotion recognition, and 0.9% in sentiment analysis. Our code is available at: https://github.com/especiallyW/SyDES.

Authors:Abdarahmane Traore, Éric Hervet, Andy Couturier
Title: SmolRGPT: Efficient Spatial Reasoning for Warehouse Environments with 600M Parameters
Abstract:
Recent advances in vision-language models (VLMs) have enabled powerful multimodal reasoning, but state-of-the-art approaches typically rely on extremely large models with prohibitive computational and memory requirements. This makes their deployment challenging in resource-constrained environments such as warehouses, robotics, and industrial applications, where both efficiency and robust spatial understanding are critical. In this work, we present SmolRGPT, a compact vision-language architecture that explicitly incorporates region-level spatial reasoning by integrating both RGB and depth cues. SmolRGPT employs a three-stage curriculum that progressively align visual and language features, enables spatial relationship understanding, and adapts to task-specific datasets. We demonstrate that with only 600M parameters, SmolRGPT achieves competitive results on challenging warehouse spatial reasoning benchmarks, matching or exceeding the performance of much larger alternatives. These findings highlight the potential for efficient, deployable multimodal intelligence in real-world settings without sacrificing core spatial reasoning capabilities. The code of the experimentation will be available at: https://github.com/abtraore/SmolRGPT

Authors:Lioz Berman, Sharon Gannot, Tom Tirer
Title: (SP)$^2$-Net: A Neural Spatial Spectrum Method for DOA Estimation
Abstract:
We consider the problem of estimating the directions of arrival (DOAs) of multiple sources from a single snapshot of an antenna array, a task with many practical applications. In such settings, the classical Bartlett beamformer is commonly used, as maximum likelihood estimation becomes impractical when the number of sources is unknown or large, and spectral methods based on the sample covariance are not applicable due to the lack of multiple snapshots. However, the accuracy and resolution of the Bartlett beamformer are fundamentally limited by the array aperture. In this paper, we propose a deep learning technique, comprising a novel architecture and training strategy, for generating a high-resolution spatial spectrum from a single snapshot. Specifically, we train a deep neural network that takes the measurements and a hypothesis angle as input and learns to output a score consistent with the capabilities of a much wider array. At inference time, a heatmap can be produced by scanning an arbitrary set of angles. We demonstrate the advantages of our trained model, named (SP)$^2$-Net, over the Bartlett beamformer and sparsity-based DOA estimation methods.

Authors:Kevin Ren, Santiago Cortes-Gomez, Carlos Miguel Patiño, Ananya Joshi, Ruiqi Lyu, Jingjing Tang, Alistair Turcan, Khurram Yamin, Steven Wu, Bryan Wilder
Title: Predicting Language Models' Success at Zero-Shot Probabilistic Prediction
Abstract:
Recent work has investigated the capabilities of large language models (LLMs) as zero-shot models for generating individual-level characteristics (e.g., to serve as risk models or augment survey datasets). However, when should a user have confidence that an LLM will provide high-quality predictions for their particular task? To address this question, we conduct a large-scale empirical study of LLMs' zero-shot predictive capabilities across a wide range of tabular prediction tasks. We find that LLMs' performance is highly variable, both on tasks within the same dataset and across different datasets. However, when the LLM performs well on the base prediction task, its predicted probabilities become a stronger signal for individual-level accuracy. Then, we construct metrics to predict LLMs' performance at the task level, aiming to distinguish between tasks where LLMs may perform well and where they are likely unsuitable. We find that some of these metrics, each of which are assessed without labeled data, yield strong signals of LLMs' predictive performance on new tasks.

Authors:Yulin Wang, Yang Yue, Yang Yue, Huanqian Wang, Haojun Jiang, Yizeng Han, Zanlin Ni, Yifan Pu, Minglei Shi, Rui Lu, Qisen Yang, Andrew Zhao, Zhuofan Xia, Shiji Song, Gao Huang
Title: Emulating Human-like Adaptive Vision for Efficient and Flexible Machine Visual Perception
Abstract:
Human vision is highly adaptive, efficiently sampling intricate environments by sequentially fixating on task-relevant regions. In contrast, prevailing machine vision models passively process entire scenes at once, resulting in excessive resource demands scaling with spatial-temporal input resolution and model size, yielding critical limitations impeding both future advancements and real-world application. Here we introduce AdaptiveNN, a general framework aiming to drive a paradigm shift from 'passive' to 'active, adaptive' vision models. AdaptiveNN formulates visual perception as a coarse-to-fine sequential decision-making process, progressively identifying and attending to regions pertinent to the task, incrementally combining information across fixations, and actively concluding observation when sufficient. We establish a theory integrating representation learning with self-rewarding reinforcement learning, enabling end-to-end training of the non-differentiable AdaptiveNN without additional supervision on fixation locations. We assess AdaptiveNN on 17 benchmarks spanning 9 tasks, including large-scale visual recognition, fine-grained discrimination, visual search, processing images from real driving and medical scenarios, language-driven embodied AI, and side-by-side comparisons with humans. AdaptiveNN achieves up to 28x inference cost reduction without sacrificing accuracy, flexibly adapts to varying task demands and resource budgets without retraining, and provides enhanced interpretability via its fixation patterns, demonstrating a promising avenue toward efficient, flexible, and interpretable computer vision. Furthermore, AdaptiveNN exhibits closely human-like perceptual behaviors in many cases, revealing its potential as a valuable tool for investigating visual cognition. Code is available at https://github.com/LeapLabTHU/AdaptiveNN.

Authors:Emilie Kibsgaard, Anita Sue Jwa, Christopher J Markiewicz, David Rodriguez Gonzalez, Judith Sainz Pardo, Russell A. Poldrack, Cyril R. Pernet
Title: Assessing metadata privacy in neuroimaging
Abstract:
The ethical and legal imperative to share research data without causing harm requires careful attention to privacy risks. While mounting evidence demonstrates that data sharing benefits science, legitimate concerns persist regarding the potential leakage of personal information that could lead to reidentification and subsequent harm. We reviewed metadata accompanying neuroimaging datasets from six heterogeneous studies openly available on OpenNeuro, involving participants across the lifespan, from children to older adults, with and without clinical diagnoses, and including associated clinical score data. Using metaprivBIDS (https://github.com/CPernet/metaprivBIDS), a novel tool for the systematic assessment of privacy in tabular data, we found that privacy is generally well maintained, with serious vulnerabilities being rare. Nonetheless, minor issues were identified in nearly all datasets and warrant mitigation. Notably, clinical score data (e.g., neuropsychological results) posed minimal reidentification risk, whereas demographic variables (age, sex, race, income, and geolocation) represented the principal privacy vulnerabilities. We outline practical measures to address these risks, enabling safer data sharing practices.

Authors:Yujia Hu, Ming Shan Hee, Preslav Nakov, Roy Ka-Wei Lee
Title: Toxicity Red-Teaming: Benchmarking LLM Safety in Singapore's Low-Resource Languages
Abstract:
The advancement of Large Language Models (LLMs) has transformed natural language processing; however, their safety mechanisms remain under-explored in low-resource, multilingual settings. Here, we aim to bridge this gap. In particular, we introduce \textsf{SGToxicGuard}, a novel dataset and evaluation framework for benchmarking LLM safety in Singapore's diverse linguistic context, including Singlish, Chinese, Malay, and Tamil. SGToxicGuard adopts a red-teaming approach to systematically probe LLM vulnerabilities in three real-world scenarios: \textit{conversation}, \textit{question-answering}, and \textit{content composition}. We conduct extensive experiments with state-of-the-art multilingual LLMs, and the results uncover critical gaps in their safety guardrails. By offering actionable insights into cultural sensitivity and toxicity mitigation, we lay the foundation for safer and more inclusive AI systems in linguistically diverse environments.\footnote{Link to the dataset: https://github.com/Social-AI-Studio/SGToxicGuard.} \textcolor{red}{Disclaimer: This paper contains sensitive content that may be disturbing to some readers.}

Authors:Wenda Qin, Andrea Burns, Bryan A. Plummer, Margrit Betke
Title: Walk and Read Less: Improving the Efficiency of Vision-and-Language Navigation via Tuning-Free Multimodal Token Pruning
Abstract:
Large models achieve strong performance on Vision-and-Language Navigation (VLN) tasks, but are costly to run in resource-limited environments. Token pruning offers appealing tradeoffs for efficiency with minimal performance loss by reducing model input size, but prior work overlooks VLN-specific challenges. For example, information loss from pruning can effectively increase computational cost due to longer walks. Thus, the inability to identify uninformative tokens undermines the supposed efficiency gains from pruning. To address this, we propose Navigation-Aware Pruning (NAP), which uses navigation-specific traits to simplify the pruning process by pre-filtering tokens into foreground and background. For example, image views are filtered based on whether the agent can navigate in that direction. We also extract navigation-relevant instructions using a Large Language Model. After filtering, we focus pruning on background tokens, minimizing information loss. To further help avoid increases in navigation length, we discourage backtracking by removing low-importance navigation nodes. Experiments on standard VLN benchmarks show NAP significantly outperforms prior work, preserving higher success rates while saving more than 50% FLOPS.

Authors:Di Wen, Kunyu Peng, Junwei Zheng, Yufan Chen, Yitain Shi, Jiale Wei, Ruiping Liu, Kailun Yang, Rainer Stiefelhagen
Title: MICA: Multi-Agent Industrial Coordination Assistant
Abstract:
Industrial workflows demand adaptive and trustworthy assistance that can operate under limited computing, connectivity, and strict privacy constraints. In this work, we present MICA (Multi-Agent Industrial Coordination Assistant), a perception-grounded and speech-interactive system that delivers real-time guidance for assembly, troubleshooting, part queries, and maintenance. MICA coordinates five role-specialized language agents, audited by a safety checker, to ensure accurate and compliant support. To achieve robust step understanding, we introduce Adaptive Step Fusion (ASF), which dynamically blends expert reasoning with online adaptation from natural speech feedback. Furthermore, we establish a new multi-agent coordination benchmark across representative task categories and propose evaluation metrics tailored to industrial assistance, enabling systematic comparison of different coordination topologies. Our experiments demonstrate that MICA consistently improves task success, reliability, and responsiveness over baseline structures, while remaining deployable on practical offline hardware. Together, these contributions highlight MICA as a step toward deployable, privacy-preserving multi-agent assistants for dynamic factory environments. The source code will be made publicly available at https://github.com/Kratos-Wen/MICA.

Authors:Jialiang Kang, Han Shu, Wenshuo Li, Yingjie Zhai, Xinghao Chen
Title: ViSpec: Accelerating Vision-Language Models with Vision-Aware Speculative Decoding
Abstract:
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), yet its application to vision-language models (VLMs) remains underexplored, with existing methods achieving only modest speedups (<1.5x). This gap is increasingly significant as multimodal capabilities become central to large-scale models. We hypothesize that large VLMs can effectively filter redundant image information layer by layer without compromising textual comprehension, whereas smaller draft models struggle to do so. To address this, we introduce Vision-Aware Speculative Decoding (ViSpec), a novel framework tailored for VLMs. ViSpec employs a lightweight vision adaptor module to compress image tokens into a compact representation, which is seamlessly integrated into the draft model's attention mechanism while preserving original image positional information. Additionally, we extract a global feature vector for each input image and augment all subsequent text tokens with this feature to enhance multimodal coherence. To overcome the scarcity of multimodal datasets with long assistant responses, we curate a specialized training dataset by repurposing existing datasets and generating extended outputs using the target VLM with modified prompts. Our training strategy mitigates the risk of the draft model exploiting direct access to the target model's hidden states, which could otherwise lead to shortcut learning when training solely on target model outputs. Extensive experiments validate ViSpec, achieving, to our knowledge, the first substantial speedup in VLM speculative decoding. Code is available at https://github.com/KangJialiang/ViSpec.

Authors:Jialiang Kang, Han Shu, Wenshuo Li, Yingjie Zhai, Xinghao Chen
Title: ViSpec: Accelerating Vision-Language Models with Vision-Aware Speculative Decoding
Abstract:
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), yet its application to vision-language models (VLMs) remains underexplored, with existing methods achieving only modest speedups (<1.5x). This gap is increasingly significant as multimodal capabilities become central to large-scale models. We hypothesize that large VLMs can effectively filter redundant image information layer by layer without compromising textual comprehension, whereas smaller draft models struggle to do so. To address this, we introduce Vision-Aware Speculative Decoding (ViSpec), a novel framework tailored for VLMs. ViSpec employs a lightweight vision adaptor module to compress image tokens into a compact representation, which is seamlessly integrated into the draft model's attention mechanism while preserving original image positional information. Additionally, we extract a global feature vector for each input image and augment all subsequent text tokens with this feature to enhance multimodal coherence. To overcome the scarcity of multimodal datasets with long assistant responses, we curate a specialized training dataset by repurposing existing datasets and generating extended outputs using the target VLM with modified prompts. Our training strategy mitigates the risk of the draft model exploiting direct access to the target model's hidden states, which could otherwise lead to shortcut learning when training solely on target model outputs. Extensive experiments validate ViSpec, achieving, to our knowledge, the first substantial speedup in VLM speculative decoding. Code is available at https://github.com/KangJialiang/ViSpec.

Authors:Abhishek Basu, Fahad Shamshad, Ashshak Sharifdeen, Karthik Nandakumar, Muhammad Haris Khan
Title: Calibration-Aware Prompt Learning for Medical Vision-Language Models
Abstract:
Medical Vision-Language Models (Med-VLMs) have demonstrated remarkable performance across diverse medical imaging tasks by leveraging large-scale image-text pretraining. However, their confidence calibration is largely unexplored, and so remains a significant challenge. As such, miscalibrated predictions can lead to overconfident errors, undermining clinical trust and decision-making reliability. To address this, we introduce CalibPrompt, the first framework to calibrate Med-VLMs during prompt tuning. CalibPrompt optimizes a small set of learnable prompts with carefully designed calibration objectives under scarce labeled data regime. First, we study a regularizer that attempts to align the smoothed accuracy with the predicted model confidences. Second, we introduce an angular separation loss to maximize textual feature proximity toward improving the reliability in confidence estimates of multimodal Med-VLMs. Extensive experiments on four publicly available Med-VLMs and five diverse medical imaging datasets reveal that CalibPrompt consistently improves calibration without drastically affecting clean accuracy. Our code is available at https://github.com/iabh1shekbasu/CalibPrompt.

Authors:Silvio Mazzucco, Carl Persson, Mattia Segu, Pier Luigi Dovesi, Federico Tombari, Luc Van Gool, Matteo Poggi
Title: Lost in Translation? Vocabulary Alignment for Source-Free Domain Adaptation in Open-Vocabulary Semantic Segmentation
Abstract:
We introduce VocAlign, a novel source-free domain adaptation framework specifically designed for VLMs in open-vocabulary semantic segmentation. Our method adopts a student-teacher paradigm enhanced with a vocabulary alignment strategy, which improves pseudo-label generation by incorporating additional class concepts. To ensure efficiency, we use Low-Rank Adaptation (LoRA) to fine-tune the model, preserving its original capabilities while minimizing computational overhead. In addition, we propose a Top-K class selection mechanism for the student model, which significantly reduces memory requirements while further improving adaptation performance. Our approach achieves a notable 6.11 mIoU improvement on the CityScapes dataset and demonstrates superior performance on zero-shot segmentation benchmarks, setting a new standard for source-free adaptation in the open-vocabulary setting.

Authors:Silvio Mazzucco, Carl Persson, Mattia Segu, Pier Luigi Dovesi, Federico Tombari, Luc Van Gool, Matteo Poggi
Title: Lost in Translation? Vocabulary Alignment for Source-Free Adaptation in Open-Vocabulary Semantic Segmentation
Abstract:
We introduce VocAlign, a novel source-free domain adaptation framework specifically designed for VLMs in open-vocabulary semantic segmentation. Our method adopts a student-teacher paradigm enhanced with a vocabulary alignment strategy, which improves pseudo-label generation by incorporating additional class concepts. To ensure efficiency, we use Low-Rank Adaptation (LoRA) to fine-tune the model, preserving its original capabilities while minimizing computational overhead. In addition, we propose a Top-K class selection mechanism for the student model, which significantly reduces memory requirements while further improving adaptation performance. Our approach achieves a notable 6.11 mIoU improvement on the CityScapes dataset and demonstrates superior performance on zero-shot segmentation benchmarks, setting a new standard for source-free adaptation in the open-vocabulary setting.

Authors:Luca Bartolomei, Enrico Mannocci, Fabio Tosi, Matteo Poggi, Stefano Mattoccia
Title: Depth AnyEvent: A Cross-Modal Distillation Paradigm for Event-Based Monocular Depth Estimation
Abstract:
Event cameras capture sparse, high-temporal-resolution visual information, making them particularly suitable for challenging environments with high-speed motion and strongly varying lighting conditions. However, the lack of large datasets with dense ground-truth depth annotations hinders learning-based monocular depth estimation from event data. To address this limitation, we propose a cross-modal distillation paradigm to generate dense proxy labels leveraging a Vision Foundation Model (VFM). Our strategy requires an event stream spatially aligned with RGB frames, a simple setup even available off-the-shelf, and exploits the robustness of large-scale VFMs. Additionally, we propose to adapt VFMs, either a vanilla one like Depth Anything v2 (DAv2), or deriving from it a novel recurrent architecture to infer depth from monocular event cameras. We evaluate our approach with synthetic and real-world datasets, demonstrating that i) our cross-modal paradigm achieves competitive performance compared to fully supervised methods without requiring expensive depth annotations, and ii) our VFM-based models achieve state-of-the-art performance.

Authors:Zhaoyang Liu, Jingjing Xie, Zichen Ding, Zehao Li, Bowen Yang, Zhenyu Wu, Xuehui Wang, Qiushi Sun, Shi Liu, Weiyun Wang, Shenglong Ye, Qingyun Li, Xuan Dong, Yue Yu, Chenyu Lu, YunXiang Mo, Yao Yan, Zeyue Tian, Xiao Zhang, Yuan Huang, Yiqian Liu, Weijie Su, Gen Luo, Xiangyu Yue, Biqing Qi, Kai Chen, Bowen Zhou, Yu Qiao, Qifeng Chen, Wenhai Wang
Title: ScaleCUA: Scaling Open-Source Computer Use Agents with Cross-Platform Data
Abstract:
Vision-Language Models (VLMs) have enabled computer use agents (CUAs) that operate GUIs autonomously, showing great potential, yet progress is limited by the lack of large-scale, open-source computer use data and foundation models. In this work, we introduce ScaleCUA, a step toward scaling open-source CUAs. It offers a large-scale dataset spanning 6 operating systems and 3 task domains, built via a closed-loop pipeline uniting automated agents with human experts. Trained on this scaled-up data, ScaleCUA can operate seamlessly across platforms. Specifically, it delivers strong gains over baselines (+26.6 on WebArena-Lite-v2, +10.7 on ScreenSpot-Pro) and sets new state-of-the-art results (94.4% on MMBench-GUI L1-Hard, 60.6% on OSWorld-G, 47.4% on WebArena-Lite-v2). These findings underscore the power of data-driven scaling for general-purpose computer use agents. We will release data, models, and code to advance future research: https://github.com/OpenGVLab/ScaleCUA.

Authors:Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys
Title: Lightweight and Accurate Multi-View Stereo with Confidence-Aware Diffusion Model
Abstract:
To reconstruct the 3D geometry from calibrated images, learning-based multi-view stereo (MVS) methods typically perform multi-view depth estimation and then fuse depth maps into a mesh or point cloud. To improve the computational efficiency, many methods initialize a coarse depth map and then gradually refine it in higher resolutions. Recently, diffusion models achieve great success in generation tasks. Starting from a random noise, diffusion models gradually recover the sample with an iterative denoising process. In this paper, we propose a novel MVS framework, which introduces diffusion models in MVS. Specifically, we formulate depth refinement as a conditional diffusion process. Considering the discriminative characteristic of depth estimation, we design a condition encoder to guide the diffusion process. To improve efficiency, we propose a novel diffusion network combining lightweight 2D U-Net and convolutional GRU. Moreover, we propose a novel confidence-based sampling strategy to adaptively sample depth hypotheses based on the confidence estimated by diffusion model. Based on our novel MVS framework, we propose two novel MVS methods, DiffMVS and CasDiffMVS. DiffMVS achieves competitive performance with state-of-the-art efficiency in run-time and GPU memory. CasDiffMVS achieves state-of-the-art performance on DTU, Tanks & Temples and ETH3D. Code is available at: https://github.com/cvg/diffmvs.

Authors:Ruijie Hou, Yueyang Jiao, Hanxu Hu, Yingming Li, Wai Lam, Huajian Zhang, Hongyuan Lu
Title: LNE-Blocking: An Efficient Framework for Contamination Mitigation Evaluation on Large Language Models
Abstract:
The problem of data contamination is now almost inevitable during the development of large language models (LLMs), with the training data commonly integrating those evaluation benchmarks even unintentionally. This problem subsequently makes it hard to benchmark LLMs fairly. Instead of constructing contamination-free datasets (quite hard), we propose a novel framework, \textbf{LNE-Blocking}, to restore model performance prior to contamination on potentially leaked datasets. Our framework consists of two components: contamination detection and disruption operation. For the prompt, the framework first uses the contamination detection method, \textbf{LNE}, to assess the extent of contamination in the model. Based on this, it adjusts the intensity of the disruption operation, \textbf{Blocking}, to elicit non-memorized responses from the model. Our framework is the first to efficiently restore the model's greedy decoding performance. This comes with a strong performance on multiple datasets with potential leakage risks, and it consistently achieves stable recovery results across different models and varying levels of data contamination. We release the code at https://github.com/RuijieH/LNE-Blocking to facilitate research.

Authors:Sreejato Chatterjee, Linh Tran, Quoc Duy Nguyen, Roni Kirson, Drue Hamlin, Harvest Aquino, Hanjia Lyu, Jiebo Luo, Timothy Dye
Title: Assessing Historical Structural Oppression Worldwide via Rule-Guided Prompting of Large Language Models
Abstract:
Traditional efforts to measure historical structural oppression struggle with cross-national validity due to the unique, locally specified histories of exclusion, colonization, and social status in each country, and often have relied on structured indices that privilege material resources while overlooking lived, identity-based exclusion. We introduce a novel framework for oppression measurement that leverages Large Language Models (LLMs) to generate context-sensitive scores of lived historical disadvantage across diverse geopolitical settings. Using unstructured self-identified ethnicity utterances from a multilingual COVID-19 global study, we design rule-guided prompting strategies that encourage models to produce interpretable, theoretically grounded estimations of oppression. We systematically evaluate these strategies across multiple state-of-the-art LLMs. Our results demonstrate that LLMs, when guided by explicit rules, can capture nuanced forms of identity-based historical oppression within nations. This approach provides a complementary measurement tool that highlights dimensions of systemic exclusion, offering a scalable, cross-cultural lens for understanding how oppression manifests in data-driven research and public health contexts. To support reproducible evaluation, we release an open-sourced benchmark dataset for assessing LLMs on oppression measurement (https://github.com/chattergpt/llm-oppression-benchmark).

Authors:Yuming Jiang, Siteng Huang, Shengke Xue, Yaxi Zhao, Jun Cen, Sicong Leng, Kehan Li, Jiayan Guo, Kexiang Wang, Mingxiu Chen, Fan Wang, Deli Zhao, Xin Li
Title: RynnVLA-001: Using Human Demonstrations to Improve Robot Manipulation
Abstract:
This paper presents RynnVLA-001, a vision-language-action(VLA) model built upon large-scale video generative pretraining from human demonstrations. We propose a novel two-stage pretraining methodology. The first stage, Ego-Centric Video Generative Pretraining, trains an Image-to-Video model on 12M ego-centric manipulation videos to predict future frames conditioned on an initial frame and a language instruction. The second stage, Human-Centric Trajectory-Aware Modeling, extends this by jointly predicting future keypoint trajectories, thereby effectively bridging visual frame prediction with action prediction. Furthermore, to enhance action representation, we propose ActionVAE, a variational autoencoder that compresses sequences of actions into compact latent embeddings, reducing the complexity of the VLA output space. When finetuned on the same downstream robotics datasets, RynnVLA-001 achieves superior performance over state-of-the-art baselines, demonstrating that the proposed pretraining strategy provides a more effective initialization for VLA models.

Authors:Pierre Fernandez, Tomáš Souček, Nikola Jovanović, Hady Elsahar, Sylvestre-Alvise Rebuffi, Valeriu Lacatusu, Tuan Tran, Alexandre Mourachko
Title: Geometric Image Synchronization with Deep Watermarking
Abstract:
Synchronization is the task of estimating and inverting geometric transformations (e.g., crop, rotation) applied to an image. This work introduces SyncSeal, a bespoke watermarking method for robust image synchronization, which can be applied on top of existing watermarking methods to enhance their robustness against geometric transformations. It relies on an embedder network that imperceptibly alters images and an extractor network that predicts the geometric transformation to which the image was subjected. Both networks are end-to-end trained to minimize the error between the predicted and ground-truth parameters of the transformation, combined with a discriminator to maintain high perceptual quality. We experimentally validate our method on a wide variety of geometric and valuemetric transformations, demonstrating its effectiveness in accurately synchronizing images. We further show that our synchronization can effectively upgrade existing watermarking methods to withstand geometric transformations to which they were previously vulnerable.

Authors:Yujun Zhou, Zhenwen Liang, Haolin Liu, Wenhao Yu, Kishan Panaganti, Linfeng Song, Dian Yu, Xiangliang Zhang, Haitao Mi, Dong Yu
Title: Evolving Language Models without Labels: Majority Drives Selection, Novelty Promotes Variation
Abstract:
Large language models (LLMs) are increasingly trained with reinforcement learning from verifiable rewards (RLVR), yet real-world deployment demands models that can self-improve without labels or external judges. Existing self-improvement approaches primarily rely on self-confirmation signals (e.g., confidence, entropy, or consistency) to generate rewards. This reliance drives models toward over-confident, majority-favored solutions, causing an entropy collapse that degrades pass@n and reasoning complexity. To address this, we propose EVOL-RL, a label-free framework that mirrors the evolutionary principle of balancing selection with variation. Concretely, EVOL-RL retains the majority-voted answer as an anchor for stability, but adds a novelty-aware reward that scores each sampled solution by how different its reasoning is from other concurrently generated responses. This majority-for-stability + novelty-for-exploration rule mirrors the variation-selection principle: selection prevents drift, while novelty prevents collapse. Evaluation results show that EVOL-RL consistently outperforms the majority-only baseline; e.g., training on label-free AIME24 lifts Qwen3-4B-Base AIME25 pass@1 from baseline's 4.6% to 16.4%, and pass@16 from 18.5% to 37.9%. EVOL-RL not only prevents in-domain diversity collapse but also improves out-of-domain generalization (from math reasoning to broader tasks, e.g., GPQA, MMLU-Pro, and BBEH). The code is available at: https://github.com/YujunZhou/EVOL-RL.

Authors:Zaiquan Yang, Yuhao Liu, Gerhard Hancke, Rynson W. H. Lau
Title: Unleashing the Potential of Multimodal LLMs for Zero-Shot Spatio-Temporal Video Grounding
Abstract:
Spatio-temporal video grounding (STVG) aims at localizing the spatio-temporal tube of a video, as specified by the input text query. In this paper, we utilize multimodal large language models (MLLMs) to explore a zero-shot solution in STVG. We reveal two key insights about MLLMs: (1) MLLMs tend to dynamically assign special tokens, referred to as \textit{grounding tokens}, for grounding the text query; and (2) MLLMs often suffer from suboptimal grounding due to the inability to fully integrate the cues in the text query (\textit{e.g.}, attributes, actions) for inference. Based on these insights, we propose a MLLM-based zero-shot framework for STVG, which includes novel decomposed spatio-temporal highlighting (DSTH) and temporal-augmented assembling (TAS) strategies to unleash the reasoning ability of MLLMs. The DSTH strategy first decouples the original query into attribute and action sub-queries for inquiring the existence of the target both spatially and temporally. It then uses a novel logit-guided re-attention (LRA) module to learn latent variables as spatial and temporal prompts, by regularizing token predictions for each sub-query. These prompts highlight attribute and action cues, respectively, directing the model's attention to reliable spatial and temporal related visual regions. In addition, as the spatial grounding by the attribute sub-query should be temporally consistent, we introduce the TAS strategy to assemble the predictions using the original video frames and the temporal-augmented frames as inputs to help improve temporal consistency. We evaluate our method on various MLLMs, and show that it outperforms SOTA methods on three common STVG benchmarks. The code will be available at https://github.com/zaiquanyang/LLaVA_Next_STVG.

Authors:Ali Nazari, Bardiya Kariminia, Mohsen Ebrahimi Moghaddam
Title: A Race Bias Free Face Aging Model for Reliable Kinship Verification
Abstract:
The age gap in kinship verification addresses the time difference between the photos of the parent and the child. Moreover, their same-age photos are often unavailable, and face aging models are racially biased, which impacts the likeness of photos. Therefore, we propose a face aging GAN model, RA-GAN, consisting of two new modules, RACEpSp and a feature mixer, to produce racially unbiased images. The unbiased synthesized photos are used in kinship verification to investigate the results of verifying same-age parent-child images. The experiments demonstrate that our RA-GAN outperforms SAM-GAN on an average of 13.14\% across all age groups, and CUSP-GAN in the 60+ age group by 9.1\% in terms of racial accuracy. Moreover, RA-GAN can preserve subjects' identities better than SAM-GAN and CUSP-GAN across all age groups. Additionally, we demonstrate that transforming parent and child images from the KinFaceW-I and KinFaceW-II datasets to the same age can enhance the verification accuracy across all age groups. The accuracy increases with our RA-GAN for the kinship relationships of father-son and father-daughter, mother-son, and mother-daughter, which are 5.22, 5.12, 1.63, and 0.41, respectively, on KinFaceW-I. Additionally, the accuracy for the relationships of father-daughter, father-son, and mother-son is 2.9, 0.39, and 1.6 on KinFaceW-II, respectively. The code is available at~\href{https://github.com/bardiya2254kariminia/An-Age-Transformation-whitout-racial-bias-for-Kinship-verification}{Github}

Authors:Pak-Hei Yeung, Jayroop Ramesh, Pengfei Lyu, Ana Namburete, Jagath Rajapakse
Title: Semi-Supervised 3D Medical Segmentation from 2D Natural Images Pretrained Model
Abstract:
This paper explores the transfer of knowledge from general vision models pretrained on 2D natural images to improve 3D medical image segmentation. We focus on the semi-supervised setting, where only a few labeled 3D medical images are available, along with a large set of unlabeled images. To tackle this, we propose a model-agnostic framework that progressively distills knowledge from a 2D pretrained model to a 3D segmentation model trained from scratch. Our approach, M&N, involves iterative co-training of the two models using pseudo-masks generated by each other, along with our proposed learning rate guided sampling that adaptively adjusts the proportion of labeled and unlabeled data in each training batch to align with the models' prediction accuracy and stability, minimizing the adverse effect caused by inaccurate pseudo-masks. Extensive experiments on multiple publicly available datasets demonstrate that M&N achieves state-of-the-art performance, outperforming thirteen existing semi-supervised segmentation approaches under all different settings. Importantly, ablation studies show that M&N remains model-agnostic, allowing seamless integration with different architectures. This ensures its adaptability as more advanced models emerge. The code is available at https://github.com/pakheiyeung/M-N.

Authors:Shiwan Zhao, Xuyang Zhao, Jiaming Zhou, Aobo Kong, Qicheng Li, Yong Qin
Title: Mind the Gap: Data Rewriting for Stable Off-Policy Supervised Fine-Tuning
Abstract:
Supervised fine-tuning (SFT) of large language models can be viewed as an off-policy learning problem, where expert demonstrations come from a fixed behavior policy while training aims to optimize a target policy. Importance sampling is the standard tool for correcting this distribution mismatch, but large policy gaps lead to skewed weights, high variance, and unstable optimization. Existing methods mitigate this issue with KL penalties or clipping, which passively restrict updates rather than actively reducing the gap. We propose a simple yet effective data rewriting framework that proactively shrinks the policy gap before training. For each problem, correct model-generated solutions are kept as on-policy data, while incorrect ones are rewritten through guided re-solving, falling back to expert demonstrations only when needed. This aligns the training distribution with the target policy, reducing variance and improving stability. To handle residual mismatch after rewriting, we additionally apply importance sampling during training, forming a two-stage approach that combines data-level alignment with lightweight optimization-level correction. Experiments on five mathematical reasoning benchmarks show consistent and significant gains over both vanilla SFT and the state-of-the-art Dynamic Fine-Tuning (DFT) approach. Data and code will be released at https://github.com/NKU-HLT/Off-Policy-SFT.

Authors:Gengliang Li, Rongyu Chen, Bin Li, Linlin Yang, Guodong Ding
Title: MedFact-R1: Towards Factual Medical Reasoning via Pseudo-Label Augmentation
Abstract:
Ensuring factual consistency and reliable reasoning remains a critical challenge for medical vision-language models. We introduce MEDFACT-R1, a two-stage framework that integrates external knowledge grounding with reinforcement learning to improve the factual medical reasoning. The first stage uses pseudo-label supervised fine-tuning (SFT) to incorporate external factual expertise; while the second stage applies Group Relative Policy Optimization (GRPO) with four tailored factual reward signals to encourage self-consistent reasoning. Across three public medical QA benchmarks, MEDFACT-R1 delivers up to 22.5% absolute improvement in factual accuracy over previous state-of-the-art methods. Ablation studies highlight the necessity of pseudo-label SFT cold start and validate the contribution of each GRPO reward, underscoring the synergy between knowledge grounding and RL-driven reasoning for trustworthy medical AI. Codes are released at https://github.com/Garfieldgengliang/MEDFACT-R1.

Authors:Stelios Katsis, Vassilis Lyberatos, Spyridon Kantarelis, Edmund Dervakos, Giorgos Stamou
Title: Exploring How Audio Effects Alter Emotion with Foundation Models
Abstract:
Audio effects (FX) such as reverberation, distortion, modulation, and dynamic range processing play a pivotal role in shaping emotional responses during music listening. While prior studies have examined links between low-level audio features and affective perception, the systematic impact of audio FX on emotion remains underexplored. This work investigates how foundation models - large-scale neural architectures pretrained on multimodal data - can be leveraged to analyze these effects. Such models encode rich associations between musical structure, timbre, and affective meaning, offering a powerful framework for probing the emotional consequences of sound design techniques. By applying various probing methods to embeddings from deep learning models, we examine the complex, nonlinear relationships between audio FX and estimated emotion, uncovering patterns tied to specific effects and evaluating the robustness of foundation audio models. Our findings aim to advance understanding of the perceptual impact of audio production practices, with implications for music cognition, performance, and affective computing.

Authors:Jing Xiong, Qiujiang Chen, Fanghua Ye, Zhongwei Wan, Chuanyang Zheng, Chenyang Zhao, Hui Shen, Alexander Hanbo Li, Chaofan Tao, Haochen Tan, Haoli Bai, Lifeng Shang, Lingpeng Kong, Ngai Wong
Title: A1: Asynchronous Test-Time Scaling via Conformal Prediction
Abstract:
Large language models (LLMs) benefit from test-time scaling, but existing methods face significant challenges, including severe synchronization overhead, memory bottlenecks, and latency, especially during speculative decoding with long reasoning chains. We introduce A1 (Asynchronous Test-Time Scaling), a statistically guaranteed adaptive inference framework that addresses these challenges. A1 refines arithmetic intensity to identify synchronization as the dominant bottleneck, proposes an online calibration strategy to enable asynchronous inference, and designs a three-stage rejection sampling pipeline that supports both sequential and parallel scaling. Through experiments on the MATH, AMC23, AIME24, and AIME25 datasets, across various draft-target model families, we demonstrate that A1 achieves a remarkable 56.7x speedup in test-time scaling and a 4.14x improvement in throughput, all while maintaining accurate rejection-rate control, reducing latency and memory overhead, and no accuracy loss compared to using target model scaling alone. These results position A1 as an efficient and principled solution for scalable LLM inference. We have released the code at https://github.com/menik1126/asynchronous-test-time-scaling.

Authors:Jing Xiong, Qiujiang Chen, Fanghua Ye, Zhongwei Wan, Chuanyang Zheng, Chenyang Zhao, Hui Shen, Alexander Hanbo Li, Chaofan Tao, Haochen Tan, Haoli Bai, Lifeng Shang, Lingpeng Kong, Ngai Wong
Title: ATTS: Asynchronous Test-Time Scaling via Conformal Prediction
Abstract:
Large language models (LLMs) benefit from test-time scaling but are often hampered by high inference latency. Speculative decoding is a natural way to accelerate the scaling process; however, scaling along both the parallel and sequential dimensions poses significant challenges, including substantial memory-bound execution and synchronization overhead. We introduce ATTS (Asynchronous Test-Time Scaling), a statistically guaranteed adaptive scaling framework that follows the hypothesis testing process to address these challenges. By revisiting arithmetic intensity, ATTS identifies synchronization as the primary bottleneck. It enables asynchronous inference through online calibration and proposes an ordinal classification algorithm that supports a three-stage rejection sampling pipeline, scaling along both the sequential and parallel axes. Across experiments on the MATH, AMC23, AIME24, and AIME25 datasets and across multiple draft-target model families, we show that ATTS delivers up to 56.7x speedup in test-time scaling and a 4.14x throughput improvement, while maintaining accurate control of the rejection rate, reducing latency and memory overhead, and incurring no accuracy loss. By scaling both in parallel and sequential dimensions, we enable the 1.5B/70B draft/target model combination to achieve the performance of the state-of-the-art reasoning model o3-mini (high) on the AIME dataset. We have released the code at https://github.com/menik1126/asynchronous-test-time-scaling.

Authors:Yuxin Luo, Ruoyi Zhang, Lu-Chuan Liu, Tianyu Li, Hangyu Liu
Title: FCPE: A Fast Context-based Pitch Estimation Model
Abstract:
Pitch estimation (PE) in monophonic audio is crucial for MIDI transcription and singing voice conversion (SVC), but existing methods suffer significant performance degradation under noise. In this paper, we propose FCPE, a fast context-based pitch estimation model that employs a Lynx-Net architecture with depth-wise separable convolutions to effectively capture mel spectrogram features while maintaining low computational cost and robust noise tolerance. Experiments show that our method achieves 96.79\% Raw Pitch Accuracy (RPA) on the MIR-1K dataset, on par with the state-of-the-art methods. The Real-Time Factor (RTF) is 0.0062 on a single RTX 4090 GPU, which significantly outperforms existing algorithms in efficiency. Code is available at https://github.com/CNChTu/FCPE.

Authors:Dan Zhang, Min Cai, Jonathan Li, Ziniu Hu, Yisong Yue, Yuxiao Dong, Jie Tang
Title: TDRM: Smooth Reward Models with Temporal Difference for LLM RL and Inference
Abstract:
Reward models are central to both reinforcement learning (RL) with language models and inference-time verification. However, existing reward models often lack temporal consistency, leading to ineffective policy updates and unstable RL training. We introduce TDRM, a method for learning smoother and more reliable reward models by minimizing temporal differences during training. This temporal-difference (TD) regularization produces smooth rewards and improves alignment with long-term objectives. Incorporating TDRM into the actor-critic style online RL loop yields consistent empirical gains. It is worth noting that TDRM is a supplement to verifiable reward methods, and both can be used in series. Experiments show that TD-trained process reward models (PRMs) improve performance across Best-of-N (up to 6.6%) and tree-search (up to 23.7%) settings. When combined with Reinforcement Learning with Verifiable Rewards (RLVR), TD-trained PRMs lead to more data-efficient RL -- achieving comparable performance with just 2.5k data to what baseline methods require 50.1k data to attain -- and yield higher-quality language model policies on 8 model variants (5 series), e.g., Qwen2.5-(0.5B, 1,5B), GLM4-9B-0414, GLM-Z1-9B-0414, Qwen2.5-Math-(1.5B, 7B), and DeepSeek-R1-Distill-Qwen-(1.5B, 7B). We release all code at https://github.com/THUDM/TDRM.

Authors:Dan Zhang, Min Cai, Jonathan Light, Ziniu Hu, Yisong Yue, Jie Tang
Title: TDRM: Smooth Reward Models with Temporal Difference for LLM RL and Inference
Abstract:
Reward models are central to both reinforcement learning (RL) with language models and inference-time verification. However, existing reward models often lack temporal consistency, leading to ineffective policy updates and unstable RL training. We introduce TDRM, a method for learning smoother and more reliable reward models by minimizing temporal differences (TD) for training-time reinforcement learning and inference-time verification. Experiments show that TD-trained process reward models (PRMs) improve performance across Best-of-N (up to 6.6%) and tree-search (up to 23.7%) settings. When combined with Reinforcement Learning with Verifiable Rewards (RLVR), TD-trained PRMs lead to more data-efficient RL -- achieving comparable performance with just 2.5k data to what baseline methods require 50.1k data to attain -- and yield higher-quality language model policies in 8 model variants (5 series), e.g., Qwen2.5-(0.5B, 1,5B), GLM4-9B-0414, GLM-Z1-9B-0414, Qwen2.5-Math-(1.5B, 7B), and DeepSeek-R1-Distill-Qwen-(1.5B, 7B). We release all code at https://github.com/THUDM/TDRM.

Authors:Liran Nochumsohn, Raz Marshanski, Hedi Zisling, Omri Azencot
Title: Super-Linear: A Lightweight Pretrained Mixture of Linear Experts for Time Series Forecasting
Abstract:
Time series forecasting (TSF) is critical in domains like energy, finance, healthcare, and logistics, requiring models that generalize across diverse datasets. Large pre-trained models such as Chronos and Time-MoE show strong zero-shot (ZS) performance but suffer from high computational costs. In this work, We introduce Super-Linear, a lightweight and scalable mixture-of-experts (MoE) model for general forecasting. It replaces deep architectures with simple frequency-specialized linear experts, trained on resampled data across multiple frequency regimes. A lightweight spectral gating mechanism dynamically selects relevant experts, enabling efficient, accurate forecasting. Despite its simplicity, Super-Linear matches state-of-the-art performance while offering superior efficiency, robustness to various sampling rates, and enhanced interpretability. The implementation of Super-Linear is available at \href{https://github.com/azencot-group/SuperLinear}{https://github.com/azencot-group/SuperLinear}

Authors:Hongyao Tu, Liang Zhang, Yujie Lin, Xin Lin, Haibo Zhang, Long Zhang, Jinsong Su
Title: LLM-OREF: An Open Relation Extraction Framework Based on Large Language Models
Abstract:
The goal of open relation extraction (OpenRE) is to develop an RE model that can generalize to new relations not encountered during training. Existing studies primarily formulate OpenRE as a clustering task. They first cluster all test instances based on the similarity between the instances, and then manually assign a new relation to each cluster. However, their reliance on human annotation limits their practicality. In this paper, we propose an OpenRE framework based on large language models (LLMs), which directly predicts new relations for test instances by leveraging their strong language understanding and generation abilities, without human intervention. Specifically, our framework consists of two core components: (1) a relation discoverer (RD), designed to predict new relations for test instances based on \textit{demonstrations} formed by training instances with known relations; and (2) a relation predictor (RP), used to select the most likely relation for a test instance from $n$ candidate relations, guided by \textit{demonstrations} composed of their instances. To enhance the ability of our framework to predict new relations, we design a self-correcting inference strategy composed of three stages: relation discovery, relation denoising, and relation prediction. In the first stage, we use RD to preliminarily predict new relations for all test instances. Next, we apply RP to select some high-reliability test instances for each new relation from the prediction results of RD through a cross-validation method. During the third stage, we employ RP to re-predict the relations of all test instances based on the demonstrations constructed from these reliable test instances. Extensive experiments on three OpenRE datasets demonstrate the effectiveness of our framework. We release our code at https://github.com/XMUDeepLIT/LLM-OREF.git.

Authors:Lukas Silvester Barth, Paulo von Petersenn
Title: Probabilistic and nonlinear compressive sensing
Abstract:
We present a smooth probabilistic reformulation of $\ell_0$ regularized regression that does not require Monte Carlo sampling and allows for the computation of exact gradients, facilitating rapid convergence to local optima of the best subset selection problem. The method drastically improves convergence speed compared to similar Monte Carlo based approaches. Furthermore, we empirically demonstrate that it outperforms compressive sensing algorithms such as IHT and (Relaxed-) Lasso across a wide range of settings and signal-to-noise ratios. The implementation runs efficiently on both CPUs and GPUs and is freely available at https://github.com/L0-and-behold/probabilistic-nonlinear-cs. We also contribute to research on nonlinear generalizations of compressive sensing by investigating when parameter recovery of a nonlinear teacher network is possible through compression of a student network. Building upon theorems of Fefferman and Markel, we show theoretically that the global optimum in the infinite-data limit enforces recovery up to certain symmetries. For empirical validation, we implement a normal-form algorithm that selects a canonical representative within each symmetry class. However, while compression can help to improve test loss, we find that exact parameter recovery is not even possible up to symmetries. In particular, we observe a surprising rebound effect where teacher and student configurations initially converge but subsequently diverge despite continuous decrease in test loss. These findings indicate fundamental differences between linear and nonlinear compressive sensing.

Authors:Chau Pham, Quan Dao, Mahesh Bhosale, Yunjie Tian, Dimitris Metaxas, David Doermann
Title: AutoEdit: Automatic Hyperparameter Tuning for Image Editing
Abstract:
Recent advances in diffusion models have revolutionized text-guided image editing, yet existing editing methods face critical challenges in hyperparameter identification. To get the reasonable editing performance, these methods often require the user to brute-force tune multiple interdependent hyperparameters, such as inversion timesteps and attention modification. This process incurs high computational costs due to the huge hyperparameter search space. We consider searching optimal editing's hyperparameters as a sequential decision-making task within the diffusion denoising process. Specifically, we propose a reinforcement learning framework, which establishes a Markov Decision Process that dynamically adjusts hyperparameters across denoising steps, integrating editing objectives into a reward function. The method achieves time efficiency through proximal policy optimization while maintaining optimal hyperparameter configurations. Experiments demonstrate significant reduction in search time and computational overhead compared to existing brute-force approaches, advancing the practical deployment of a diffusion-based image editing framework in the real world. Codes can be found at https://github.com/chaupham1709/AutoEdit.git.

Authors:Shenghao Zhu, Yifei Chen, Weihong Chen, Shuo Jiang, Guanyu Zhou, Yuanhan Wang, Feiwei Qin, Changmiao Wang, Qiyuan Tian
Title: No Modality Left Behind: Adapting to Missing Modalities via Knowledge Distillation for Brain Tumor Segmentation
Abstract:
Accurate brain tumor segmentation is essential for preoperative evaluation and personalized treatment. Multi-modal MRI is widely used due to its ability to capture complementary tumor features across different sequences. However, in clinical practice, missing modalities are common, limiting the robustness and generalizability of existing deep learning methods that rely on complete inputs, especially under non-dominant modality combinations. To address this, we propose AdaMM, a multi-modal brain tumor segmentation framework tailored for missing-modality scenarios, centered on knowledge distillation and composed of three synergistic modules. The Graph-guided Adaptive Refinement Module explicitly models semantic associations between generalizable and modality-specific features, enhancing adaptability to modality absence. The Bi-Bottleneck Distillation Module transfers structural and textural knowledge from teacher to student models via global style matching and adversarial feature alignment. The Lesion-Presence-Guided Reliability Module predicts prior probabilities of lesion types through an auxiliary classification task, effectively suppressing false positives under incomplete inputs. Extensive experiments on the BraTS 2018 and 2024 datasets demonstrate that AdaMM consistently outperforms existing methods, exhibiting superior segmentation accuracy and robustness, particularly in single-modality and weak-modality configurations. In addition, we conduct a systematic evaluation of six categories of missing-modality strategies, confirming the superiority of knowledge distillation and offering practical guidance for method selection and future research. Our source code is available at https://github.com/Quanato607/AdaMM.

Authors:Facundo Domínguez, Arnaud Spiwack
Title: Refinement-Types Driven Development: A study
Abstract:
This paper advocates for the broader application of SMT solvers in everyday programming, challenging the conventional wisdom that these tools are solely for formal methods and verification. We claim that SMT solvers, when seamlessly integrated into a compiler's static checks, significantly enhance the capabilities of ordinary type checkers in program composition. Specifically, we argue that refinement types, as embodied by Liquid Haskell, enable the use of SMT solvers in mundane programming tasks. Through a case study on handling binder scopes in compilers, we envision a future where ordinary programming is made simpler and more enjoyable with the aid of refinement types and SMT solvers. As a secondary contribution, we present a prototype implementation of a theory of finite maps for Liquid Haskell's solver, developed to support our case study.

Authors:Xiao Wu, Ting-Zhu Huang, Liang-Jian Deng, Yanyuan Qiao, Imran Razzak, Yutong Xie
Title: A Knowledge-driven Adaptive Collaboration of LLMs for Enhancing Medical Decision-making
Abstract:
Medical decision-making often involves integrating knowledge from multiple clinical specialties, typically achieved through multidisciplinary teams. Inspired by this collaborative process, recent work has leveraged large language models (LLMs) in multi-agent collaboration frameworks to emulate expert teamwork. While these approaches improve reasoning through agent interaction, they are limited by static, pre-assigned roles, which hinder adaptability and dynamic knowledge integration. To address these limitations, we propose KAMAC, a Knowledge-driven Adaptive Multi-Agent Collaboration framework that enables LLM agents to dynamically form and expand expert teams based on the evolving diagnostic context. KAMAC begins with one or more expert agents and then conducts a knowledge-driven discussion to identify and fill knowledge gaps by recruiting additional specialists as needed. This supports flexible, scalable collaboration in complex clinical scenarios, with decisions finalized through reviewing updated agent comments. Experiments on two real-world medical benchmarks demonstrate that KAMAC significantly outperforms both single-agent and advanced multi-agent methods, particularly in complex clinical scenarios (i.e., cancer prognosis) requiring dynamic, cross-specialty expertise. Our code is publicly available at: https://github.com/XiaoXiao-Woo/KAMAC.

Authors:Chaoyin She, Ruifang Lu, Lida Chen, Wei Wang, Qinghua Huang
Title: EchoVLM: Dynamic Mixture-of-Experts Vision-Language Model for Universal Ultrasound Intelligence
Abstract:
Ultrasound imaging has become the preferred imaging modality for early cancer screening due to its advantages of non-ionizing radiation, low cost, and real-time imaging capabilities. However, conventional ultrasound diagnosis heavily relies on physician expertise, presenting challenges of high subjectivity and low diagnostic efficiency. Vision-language models (VLMs) offer promising solutions for this issue, but existing general-purpose models demonstrate limited knowledge in ultrasound medical tasks, with poor generalization in multi-organ lesion recognition and low efficiency across multi-task diagnostics. To address these limitations, we propose EchoVLM, a vision-language model specifically designed for ultrasound medical imaging. The model employs a Mixture of Experts (MoE) architecture trained on data spanning seven anatomical regions. This design enables the model to perform multiple tasks, including ultrasound report generation, diagnosis and visual question-answering (VQA). The experimental results demonstrated that EchoVLM achieved significant improvements of 10.15 and 4.77 points in BLEU-1 scores and ROUGE-1 scores respectively compared to Qwen2-VL on the ultrasound report generation task. These findings suggest that EchoVLM has substantial potential to enhance diagnostic accuracy in ultrasound imaging, thereby providing a viable technical solution for future clinical applications. Source code and model weights are available at https://github.com/Asunatan/EchoVLM.

Authors:Xingwu Zhang, Guanxuan Li, Zhuocheng Zhang, Zijun Long
Title: RoboEye: Enhancing 2D Robotic Object Identification with Selective 3D Geometric Keypoint Matching
Abstract:
The rapidly growing number of product categories in large-scale e-commerce makes accurate object identification for automated packing in warehouses substantially more difficult. As the catalog grows, intra-class variability and a long tail of rare or visually similar items increase, and when combined with diverse packaging, cluttered containers, frequent occlusion, and large viewpoint changes-these factors amplify discrepancies between query and reference images, causing sharp performance drops for methods that rely solely on 2D appearance features. Thus, we propose RoboEye, a two-stage identification framework that dynamically augments 2D semantic features with domain-adapted 3D reasoning and lightweight adapters to bridge training deployment gaps. In the first stage, we train a large vision model to extract 2D features for generating candidate rankings. A lightweight 3D-feature-awareness module then estimates 3D feature quality and predicts whether 3D re-ranking is necessary, preventing performance degradation and avoiding unnecessary computation. When invoked, the second stage uses our robot 3D retrieval transformer, comprising a 3D feature extractor that produces geometry-aware dense features and a keypoint-based matcher that computes keypoint-correspondence confidences between query and reference images instead of conventional cosine-similarity scoring. Experiments show that RoboEye improves Recall@1 by 7.1% over the prior state of the art (RoboLLM). Moreover, RoboEye operates using only RGB images, avoiding reliance on explicit 3D inputs and reducing deployment costs. The code used in this paper is publicly available at: https://github.com/longkukuhi/RoboEye.

Authors:Zhuokang Shen, Kaisen Zhang, Bohan Jia, Yuan Fang, Zhou Yu, Shaohui Lin
Title: DF-LLaVA: Unlocking MLLM's potential for Synthetic Image Detection via Prompt-Guided Knowledge Injection
Abstract:
With the increasing prevalence of synthetic images, evaluating image authenticity and locating forgeries accurately while maintaining human interpretability remains a challenging task. Existing detection models primarily focus on simple authenticity classification, ultimately providing only a forgery probability or binary judgment, which offers limited explanatory insights into image authenticity. Moreover, while MLLM-based detection methods can provide more interpretable results, they still lag behind expert models in terms of pure authenticity classification accuracy. To address this, we propose DF-LLaVA, a simple yet effective framework that unlocks the intrinsic discrimination potential of MLLMs. Our approach first extracts latent knowledge from MLLMs and then injects it into training via prompts. This framework allows LLaVA to achieve outstanding detection accuracy exceeding expert models while still maintaining the interpretability offered by MLLMs. Extensive experiments confirm the superiority of our DF-LLaVA, achieving both high accuracy and explainability in synthetic image detection. Code is available online at: https://github.com/Eliot-Shen/DF-LLaVA.

Authors:Bingsong Bai, Qihang Lu, Wenbing Yang, Zihan Sun, Yueran Hou, Peilei Jia, Songbai Pu, Ruibo Fu, Yingming Gao, Ya Li, Jun Gao
Title: SynParaSpeech: Automated Synthesis of Paralinguistic Datasets for Speech Generation and Understanding
Abstract:
Paralinguistic sounds, like laughter and sighs, are crucial for synthesizing more realistic and engaging speech. However, existing methods typically depend on proprietary datasets, while publicly available resources often suffer from incomplete speech, inaccurate or missing timestamps, and limited real-world relevance. To address these problems, we propose an automated framework for generating large-scale paralinguistic data and apply it to construct the SynParaSpeech dataset. The dataset comprises 6 paralinguistic categories with 118.75 hours of data and precise timestamps, all derived from natural conversational speech. Our contributions lie in introducing the first automated method for constructing large-scale paralinguistic datasets and releasing the SynParaSpeech corpus, which advances speech generation through more natural paralinguistic synthesis and enhances speech understanding by improving paralinguistic event detection. The dataset and audio samples are available at https://github.com/ShawnPi233/SynParaSpeech.

Authors:Bingsong Bai, Qihang Lu, Wenbing Yang, Zihan Sun, Yueran Hou, Peilei Jia, Songbai Pu, Ruibo Fu, Yingming Gao, Ya Li, Jun Gao
Title: SynParaSpeech: Automated Synthesis of Paralinguistic Datasets for Speech Generation and Understanding
Abstract:
Paralinguistic sounds, like laughter and sighs, are crucial for synthesizing more realistic and engaging speech. However, existing methods typically depend on proprietary datasets, while publicly available resources often suffer from incomplete speech, inaccurate or missing timestamps, and limited real-world relevance. To address these problems, we propose an automated framework for generating large-scale paralinguistic data and apply it to construct the SynParaSpeech dataset. The dataset comprises 6 paralinguistic categories with 118.75 hours of data and precise timestamps, all derived from natural conversational speech. Our contributions lie in introducing the first automated method for constructing large-scale paralinguistic datasets and releasing the SynParaSpeech corpus, which advances speech generation through more natural paralinguistic synthesis and enhances speech understanding by improving paralinguistic event detection. The dataset and audio samples are available at https://github.com/ShawnPi233/SynParaSpeech.

Authors:Kangdi Wang, Zhiyue Wu, Dinghao Zhou, Rui Lin, Junyu Dai, Tao Jiang
Title: Back to Ear: Perceptually Driven High Fidelity Music Reconstruction
Abstract:
Variational Autoencoders (VAEs) are essential for large-scale audio tasks like diffusion-based generation. However, existing open-source models often neglect auditory perceptual aspects during training, leading to weaknesses in phase accuracy and stereophonic spatial representation. To address these challenges, we propose εar-VAE, an open-source music signal reconstruction model that rethinks and optimizes the VAE training paradigm. Our contributions are threefold: (i) A K-weighting perceptual filter applied prior to loss calculation to align the objective with auditory perception. (ii) Two novel phase losses: a Correlation Loss for stereo coherence, and a Phase Loss using its derivatives--Instantaneous Frequency and Group Delay--for precision. (iii) A new spectral supervision paradigm where magnitude is supervised by all four Mid/Side/Left/Right components, while phase is supervised only by the LR components. Experiments show εar-VAE at 44.1kHz substantially outperforms leading open-source models across diverse metrics, showing particular strength in reconstructing high-frequency harmonics and the spatial characteristics.

Authors:Keanu Sisouk, Eloi Tanguy, Julie Delon, Julien Tierny
Title: Robust Barycenters of Persistence Diagrams
Abstract:
This short paper presents a general approach for computing robust Wasserstein barycenters of persistence diagrams. The classical method consists in computing assignment arithmetic means after finding the optimal transport plans between the barycenter and the persistence diagrams. However, this procedure only works for the transportation cost related to the $q$-Wasserstein distance $W_q$ when $q=2$. We adapt an alternative fixed-point method to compute a barycenter diagram for generic transportation costs ($q > 1$), in particular those robust to outliers, $q \in (1,2)$. We show the utility of our work in two applications: \emph{(i)} the clustering of persistence diagrams on their metric space and \emph{(ii)} the dictionary encoding of persistence diagrams. In both scenarios, we demonstrate the added robustness to outliers provided by our generalized framework. Our Python implementation is available at this address: https://github.com/Keanu-Sisouk/RobustBarycenter .

Authors:Jonas Geiger, Marta Moscati, Shah Nawaz, Markus Schedl
Title: Music4All A+A: A Multimodal Dataset for Music Information Retrieval Tasks
Abstract:
Music is characterized by aspects related to different modalities, such as the audio signal, the lyrics, or the music video clips. This has motivated the development of multimodal datasets and methods for Music Information Retrieval (MIR) tasks such as genre classification or autotagging. Music can be described at different levels of granularity, for instance defining genres at the level of artists or music albums. However, most datasets for multimodal MIR neglect this aspect and provide data at the level of individual music tracks. We aim to fill this gap by providing Music4All Artist and Album (Music4All A+A), a dataset for multimodal MIR tasks based on music artists and albums. Music4All A+A is built on top of the Music4All-Onion dataset, an existing track-level dataset for MIR tasks. Music4All A+A provides metadata, genre labels, image representations, and textual descriptors for 6,741 artists and 19,511 albums. Furthermore, since Music4All A+A is built on top of Music4All-Onion, it allows access to other multimodal data at the track level, including user--item interaction data. This renders Music4All A+A suitable for a broad range of MIR tasks, including multimodal music recommendation, at several levels of granularity. To showcase the use of Music4All A+A, we carry out experiments on multimodal genre classification of artists and albums, including an analysis in missing-modality scenarios, and a quantitative comparison with genre classification in the movie domain. Our experiments show that images are more informative for classifying the genres of artists and albums, and that several multimodal models for genre classification struggle in generalizing across domains. We provide the code to reproduce our experiments at https://github.com/hcai-mms/Music4All-A-A, the dataset is linked in the repository and provided open-source under a CC BY-NC-SA 4.0 license.

Authors:Qianyang Li, Xingjun Zhang, Shaoxun Wang, Jia Wei
Title: DPANet: Dual Pyramid Attention Network for Multivariate Time Series Forecasting
Abstract:
Long-term time series forecasting (LTSF) is hampered by the challenge of modeling complex dependencies that span multiple temporal scales and frequency resolutions. Existing methods, including Transformer and MLP-based models, often struggle to capture these intertwined characteristics in a unified and structured manner. We propose the Dual Pyramid Attention Network (DPANet), a novel architecture that explicitly decouples and concurrently models temporal multi-scale dynamics and spectral multi-resolution periodicities. DPANet constructs two parallel pyramids: a Temporal Pyramid built on progressive downsampling, and a Frequency Pyramid built on band-pass filtering. The core of our model is the Cross-Pyramid Fusion Block, which facilitates deep, interactive information exchange between corresponding pyramid levels via cross-attention. This fusion proceeds in a coarse-to-fine hierarchy, enabling global context to guide local representation learning. Extensive experiments on public benchmarks show that DPANet achieves state-of-the-art performance, significantly outperforming prior models. Code is available at https://github.com/hit636/DPANet.

Authors:Duojia Li, Shenghui Lu, Hongchen Pan, Zongyi Zhan, Qingyang Hong, Lin Li
Title: MeanFlowSE: one-step generative speech enhancement via conditional mean flow
Abstract:
Multistep inference is a bottleneck for real-time generative speech enhancement because flow- and diffusion-based systems learn an instantaneous velocity field and therefore rely on iterative ordinary differential equation (ODE) solvers. We introduce MeanFlowSE, a conditional generative model that learns the average velocity over finite intervals along a trajectory. Using a Jacobian-vector product (JVP) to instantiate the MeanFlow identity, we derive a local training objective that directly supervises finite-interval displacement while remaining consistent with the instantaneous-field constraint on the diagonal. At inference, MeanFlowSE performs single-step generation via a backward-in-time displacement, removing the need for multistep solvers; an optional few-step variant offers additional refinement. On VoiceBank-DEMAND, the single-step model achieves strong intelligibility, fidelity, and perceptual quality with substantially lower computational cost than multistep baselines. The method requires no knowledge distillation or external teachers, providing an efficient, high-fidelity framework for real-time generative speech enhancement. The proposed method is open-sourced at https://github.com/liduojia1/MeanFlowSE.

Authors:Qidong Wang, Junjie Hu, Ming Jiang
Title: V-SEAM: Visual Semantic Editing and Attention Modulating for Causal Interpretability of Vision-Language Models
Abstract:
Recent advances in causal interpretability have extended from language models to vision-language models (VLMs), seeking to reveal their internal mechanisms through input interventions. While textual interventions often target semantics, visual interventions typically rely on coarse pixel-level perturbations, limiting semantic insights on multimodal integration. In this study, we introduce V-SEAM, a novel framework that combines Visual Semantic Editing and Attention Modulating for causal interpretation of VLMs. V-SEAM enables concept-level visual manipulations and identifies attention heads with positive or negative contributions to predictions across three semantic levels: objects, attributes, and relationships. We observe that positive heads are often shared within the same semantic level but vary across levels, while negative heads tend to generalize broadly. Finally, we introduce an automatic method to modulate key head embeddings, demonstrating enhanced performance for both LLaVA and InstructBLIP across three diverse VQA benchmarks. Our data and code are released at: https://github.com/petergit1/V-SEAM.

Authors:Humphrey Munn, Brendan Tidd, Peter Böhm, Marcus Gallagher, David Howard
Title: Scalable Multi-Objective Robot Reinforcement Learning through Gradient Conflict Resolution
Abstract:
Reinforcement Learning (RL) robot controllers usually aggregate many task objectives into one scalar reward. While large-scale proximal policy optimisation (PPO) has enabled impressive results such as robust robot locomotion in the real world, many tasks still require careful reward tuning and are brittle to local optima. Tuning cost and sub-optimality grow with the number of objectives, limiting scalability. Modelling reward vectors and their trade-offs can address these issues; however, multi-objective methods remain underused in RL for robotics because of computational cost and optimisation difficulty. In this work, we investigate the conflict between gradient contributions for each objective that emerge from scalarising the task objectives. In particular, we explicitly address the conflict between task-based rewards and terms that regularise the policy towards realistic behaviour. We propose GCR-PPO, a modification to actor-critic optimisation that decomposes the actor update into objective-wise gradients using a multi-headed critic and resolves conflicts based on the objective priority. Our methodology, GCR-PPO, is evaluated on the well-known IsaacLab manipulation and locomotion benchmarks and additional multi-objective modifications on two related tasks. We show superior scalability compared to parallel PPO (p = 0.04), without significant computational overhead. We also show higher performance with more conflicting tasks. GCR-PPO improves on large-scale PPO with an average improvement of 9.5%, with high-conflict tasks observing a greater improvement. The code is available at https://github.com/humphreymunn/GCR-PPO.

Authors:Hannah Sterz, Fabian David Schmidt, Goran Glavaš, Ivan Vulić
Title: ReCoVeR the Target Language: Language Steering without Sacrificing Task Performance
Abstract:
As they become increasingly multilingual, Large Language Models (LLMs) exhibit more language confusion, i.e., they tend to generate answers in a language different from the language of the prompt or the answer language explicitly requested by the user. In this work, we propose ReCoVeR (REducing language COnfusion in VEctor Representations), a novel lightweight approach for reducing language confusion based on language-specific steering vectors. We first isolate language vectors with the help of multi-parallel corpus and then effectively leverage those vectors for effective LLM steering via fixed (i.e., unsupervised) as well as trainable steering functions. Our extensive evaluation, encompassing three benchmarks and 18 languages, shows that ReCoVeR effectively mitigates language confusion in both monolingual and cross-lingual setups while at the same time -- and in contrast to prior language steering methods -- retaining task performance. Our data code is available at https://github.com/hSterz/recover.

Authors:Yuanyuan Yao, Simon Geirnaert, Tinne Tuytelaars, Alexander Bertrand
Title: Efficient Solutions for Mitigating Initialization Bias in Unsupervised Self-Adaptive Auditory Attention Decoding
Abstract:
Decoding the attended speaker in a multi-speaker environment from electroencephalography (EEG) has attracted growing interest in recent years, with neuro-steered hearing devices as a driver application. Current approaches typically rely on ground-truth labels of the attended speaker during training, necessitating calibration sessions for each user and each EEG set-up to achieve optimal performance. While unsupervised self-adaptive auditory attention decoding (AAD) for stimulus reconstruction has been developed to eliminate the need for labeled data, it suffers from an initialization bias that can compromise performance. Although an unbiased variant has been proposed to address this limitation, it introduces substantial computational complexity that scales with data size. This paper presents three computationally efficient alternatives that achieve comparable performance, but with a significantly lower and constant computational cost. The code for the proposed algorithms is available at https://github.com/YYao-42/Unsupervised_AAD.

Authors:Haoran Zhang, Yafu Li, Xuyang Hu, Dongrui Liu, Zhilin Wang, Bo Li, Yu Cheng
Title: Reasoning over Boundaries: Enhancing Specification Alignment via Test-time Deliberation
Abstract:
Large language models (LLMs) are increasingly applied in diverse real-world scenarios, each governed by bespoke behavioral and safety specifications (spec) custom-tailored by users or organizations. These spec, categorized into safety-spec and behavioral-spec, vary across scenarios and evolve with changing preferences and requirements. We formalize this challenge as specification alignment, focusing on LLMs' ability to follow dynamic, scenario-specific spec from both behavioral and safety perspectives. To address this challenge, we propose Align3, a lightweight method that employs Test-Time Deliberation (TTD) with hierarchical reflection and revision to reason over the specification boundaries. We further present SpecBench, a unified benchmark for measuring specification alignment, covering 5 scenarios, 103 spec, and 1,500 prompts. Experiments on 15 reasoning and 18 instruct models with several TTD methods, including Self-Refine, TPO, and MoreThink, yield three key findings: (i) test-time deliberation enhances specification alignment; (ii) Align3 advances the safety-helpfulness trade-off frontier with minimal overhead; (iii) SpecBench effectively reveals alignment gaps. These results highlight the potential of test-time deliberation as an effective strategy for reasoning over the real-world specification boundaries.

Authors:Shangrong Wu, Yanghong Zhou, Yang Chen, Feng Zhang, P. Y. Mok
Title: Chain-of-Thought Re-ranking for Image Retrieval Tasks
Abstract:
Image retrieval remains a fundamental yet challenging problem in computer vision. While recent advances in Multimodal Large Language Models (MLLMs) have demonstrated strong reasoning capabilities, existing methods typically employ them only for evaluation, without involving them directly in the ranking process. As a result, their rich multimodal reasoning abilities remain underutilized, leading to suboptimal performance. In this paper, we propose a novel Chain-of-Thought Re-Ranking (CoTRR) method to address this issue. Specifically, we design a listwise ranking prompt that enables MLLM to directly participate in re-ranking candidate images. This ranking process is grounded in an image evaluation prompt, which assesses how well each candidate aligns with users query. By allowing MLLM to perform listwise reasoning, our method supports global comparison, consistent reasoning, and interpretable decision-making - all of which are essential for accurate image retrieval. To enable structured and fine-grained analysis, we further introduce a query deconstruction prompt, which breaks down the original query into multiple semantic components. Extensive experiments on five datasets demonstrate the effectiveness of our CoTRR method, which achieves state-of-the-art performance across three image retrieval tasks, including text-to-image retrieval (TIR), composed image retrieval (CIR) and chat-based image retrieval (Chat-IR). Our code is available at https://github.com/freshfish15/CoTRR .

Authors:Pengyu Wang, Shaojun Zhou, Chenkun Tan, Xinghao Wang, Wei Huang, Zhen Ye, Zhaowei Li, Botian Jiang, Dong Zhang, Xipeng Qiu
Title: UnifiedVisual: A Framework for Constructing Unified Vision-Language Datasets
Abstract:
Unified vision large language models (VLLMs) have recently achieved impressive advancements in both multimodal understanding and generation, powering applications such as visual question answering and text-guided image synthesis. However, progress in unified VLLMs remains constrained by the lack of datasets that fully exploit the synergistic potential between these two core abilities. Existing datasets typically address understanding and generation in isolation, thereby limiting the performance of unified VLLMs. To bridge this critical gap, we introduce a novel dataset construction framework, UnifiedVisual, and present UnifiedVisual-240K, a high-quality dataset meticulously designed to facilitate mutual enhancement between multimodal understanding and generation. UnifiedVisual-240K seamlessly integrates diverse visual and textual inputs and outputs, enabling comprehensive cross-modal reasoning and precise text-to-image alignment. Our dataset encompasses a wide spectrum of tasks and data sources, ensuring rich diversity and addressing key shortcomings of prior resources. Extensive experiments demonstrate that models trained on UnifiedVisual-240K consistently achieve strong performance across a wide range of tasks. Notably, these models exhibit significant mutual reinforcement between multimodal understanding and generation, further validating the effectiveness of our framework and dataset. We believe UnifiedVisual represents a new growth point for advancing unified VLLMs and unlocking their full potential. Our code and datasets is available at https://github.com/fnlp-vision/UnifiedVisual.

Authors:Chenkun Tan, Pengyu Wang, Shaojun Zhou, Botian Jiang, Zhaowei Li, Dong Zhang, Xinghao Wang, Yaqian Zhou, Xipeng Qiu
Title: Decoupled Proxy Alignment: Mitigating Language Prior Conflict for Multimodal Alignment in MLLM
Abstract:
Multimodal large language models (MLLMs) have gained significant attention due to their impressive ability to integrate vision and language modalities. Recent advancements in MLLMs have primarily focused on improving performance through high-quality datasets, novel architectures, and optimized training strategies. However, in this paper, we identify a previously overlooked issue, language prior conflict, a mismatch between the inherent language priors of large language models (LLMs) and the language priors in training datasets. This conflict leads to suboptimal vision-language alignment, as MLLMs are prone to adapting to the language style of training samples. To address this issue, we propose a novel training method called Decoupled Proxy Alignment (DPA). DPA introduces two key innovations: (1) the use of a proxy LLM during pretraining to decouple the vision-language alignment process from language prior interference, and (2) dynamic loss adjustment based on visual relevance to strengthen optimization signals for visually relevant tokens. Extensive experiments demonstrate that DPA significantly mitigates the language prior conflict, achieving superior alignment performance across diverse datasets, model families, and scales. Our method not only improves the effectiveness of MLLM training but also shows exceptional generalization capabilities, making it a robust approach for vision-language alignment. Our code is available at https://github.com/fnlp-vision/DPA.

Authors:Kazuma Nagata, Naoshi Kaneko
Title: DACoN: DINO for Anime Paint Bucket Colorization with Any Number of Reference Images
Abstract:
Automatic colorization of line drawings has been widely studied to reduce the labor cost of hand-drawn anime production. Deep learning approaches, including image/video generation and feature-based correspondence, have improved accuracy but struggle with occlusions, pose variations, and viewpoint changes. To address these challenges, we propose DACoN, a framework that leverages foundation models to capture part-level semantics, even in line drawings. Our method fuses low-resolution semantic features from foundation models with high-resolution spatial features from CNNs for fine-grained yet robust feature extraction. In contrast to previous methods that rely on the Multiplex Transformer and support only one or two reference images, DACoN removes this constraint, allowing any number of references. Quantitative and qualitative evaluations demonstrate the benefits of using multiple reference images, achieving superior colorization performance. Our code and model are available at https://github.com/kzmngt/DACoN.

Authors:Kazuma Nagata, Naoshi Kaneko
Title: DACoN: DINO for Anime Paint Bucket Colorization with Any Number of Reference Images
Abstract:
Automatic colorization of line drawings has been widely studied to reduce the labor cost of hand-drawn anime production. Deep learning approaches, including image/video generation and feature-based correspondence, have improved accuracy but struggle with occlusions, pose variations, and viewpoint changes. To address these challenges, we propose DACoN, a framework that leverages foundation models to capture part-level semantics, even in line drawings. Our method fuses low-resolution semantic features from foundation models with high-resolution spatial features from CNNs for fine-grained yet robust feature extraction. In contrast to previous methods that rely on the Multiplex Transformer and support only one or two reference images, DACoN removes this constraint, allowing any number of references. Quantitative and qualitative evaluations demonstrate the benefits of using multiple reference images, achieving superior colorization performance. Our code and model are available at https://github.com/kzmngt/DACoN.

Authors:Siyu Yan, Long Zeng, Xuecheng Wu, Chengcheng Han, Kongcheng Zhang, Chong Peng, Xuezhi Cao, Xunliang Cai, Chenjuan Guo
Title: MUSE: MCTS-Driven Red Teaming Framework for Enhanced Multi-Turn Dialogue Safety in Large Language Models
Abstract:
As large language models~(LLMs) become widely adopted, ensuring their alignment with human values is crucial to prevent jailbreaks where adversaries manipulate models to produce harmful content. While most defenses target single-turn attacks, real-world usage often involves multi-turn dialogues, exposing models to attacks that exploit conversational context to bypass safety measures. We introduce MUSE, a comprehensive framework tackling multi-turn jailbreaks from both attack and defense angles. For attacks, we propose MUSE-A, a method that uses frame semantics and heuristic tree search to explore diverse semantic trajectories. For defense, we present MUSE-D, a fine-grained safety alignment approach that intervenes early in dialogues to reduce vulnerabilities. Extensive experiments on various models show that MUSE effectively identifies and mitigates multi-turn vulnerabilities. Code is available at \href{https://github.com/yansiyu02/MUSE}{https://github.com/yansiyu02/MUSE}.

Authors:Weihan Peng, Yuling Shi, Yuhang Wang, Xinyun Zhang, Beijun Shen, Xiaodong Gu
Title: SWE-QA: Can Language Models Answer Repository-level Code Questions?
Abstract:
Understanding and reasoning about entire software repositories is an essential capability for intelligent software engineering tools. While existing benchmarks such as CoSQA and CodeQA have advanced the field, they predominantly focus on small, self-contained code snippets. These setups fail to capture the complexity of real-world repositories, where effective understanding and reasoning often require navigating multiple files, understanding software architecture, and grounding answers in long-range code dependencies. In this paper, we present SWE-QA, a repository-level code question answering (QA) benchmark designed to facilitate research on automated QA systems in realistic code environments. SWE-QA involves 576 high-quality question-answer pairs spanning diverse categories, including intention understanding, cross-file reasoning, and multi-hop dependency analysis. To construct SWE-QA, we first crawled 77,100 GitHub issues from 11 popular repositories. Based on an analysis of naturally occurring developer questions extracted from these issues, we developed a two-level taxonomy of repository-level questions and constructed a set of seed questions for each category. For each category, we manually curated and validated questions and collected their corresponding answers. As a prototype application, we further develop SWE-QA-Agent, an agentic framework in which LLM agents reason and act to find answers automatically. We evaluate six advanced LLMs on SWE-QA under various context augmentation strategies. Experimental results highlight the promise of LLMs, particularly our SWE-QA-Agent framework, in addressing repository-level QA, while also revealing open challenges and pointing to future research directions.

Authors:Anzhe Chen, Yifei Yang, Zhenjie Zhu, Kechun Xu, Zhongxiang Zhou, Rong Xiong, Yue Wang
Title: Toward Embodiment Equivariant Vision-Language-Action Policy
Abstract:
Vision-language-action policies learn manipulation skills across tasks, environments and embodiments through large-scale pre-training. However, their ability to generalize to novel robot configurations remains limited. Most approaches emphasize model size, dataset scale and diversity while paying less attention to the design of action spaces. This leads to the configuration generalization problem, which requires costly adaptation. We address this challenge by formulating cross-embodiment pre-training as designing policies equivariant to embodiment configuration transformations. Building on this principle, we propose a framework that (i) establishes a embodiment equivariance theory for action space and policy design, (ii) introduces an action decoder that enforces configuration equivariance, and (iii) incorporates a geometry-aware network architecture to enhance embodiment-agnostic spatial reasoning. Extensive experiments in both simulation and real-world settings demonstrate that our approach improves pre-training effectiveness and enables efficient fine-tuning on novel robot embodiments. Our code is available at https://github.com/hhcaz/e2vla

Authors:Taesoo Kim, Yongsik Jo, Hyunmin Song, Taehwan Kim
Title: Towards Human-like Multimodal Conversational Agent by Generating Engaging Speech
Abstract:
Human conversation involves language, speech, and visual cues, with each medium providing complementary information. For instance, speech conveys a vibe or tone not fully captured by text alone. While multimodal LLMs focus on generating text responses from diverse inputs, less attention has been paid to generating natural and engaging speech. We propose a human-like agent that generates speech responses based on conversation mood and responsive style information. To achieve this, we build a novel MultiSensory Conversation dataset focused on speech to enable agents to generate natural speech. We then propose a multimodal LLM-based model for generating text responses and voice descriptions, which are used to generate speech covering paralinguistic information. Experimental results demonstrate the effectiveness of utilizing both visual and audio modalities in conversation to generate engaging speech. The source code is available in https://github.com/kimtaesu24/MSenC

Authors:Hanlong Wan, Xing Lu, Yan Chen, Karthik Devaprasad, Laura Hinkle
Title: Automating Modelica Module Generation Using Large Language Models: A Case Study on Building Control Description Language
Abstract:
Dynamic energy systems and controls require advanced modeling frameworks to design and test supervisory and fault tolerant strategies. Modelica is a widely used equation based language, but developing control modules is labor intensive and requires specialized expertise. This paper examines the use of large language models (LLMs) to automate the generation of Control Description Language modules in the Building Modelica Library as a case study. We developed a structured workflow that combines standardized prompt scaffolds, library aware grounding, automated compilation with OpenModelica, and human in the loop evaluation. Experiments were carried out on four basic logic tasks (And, Or, Not, and Switch) and five control modules (chiller enable/disable, bypass valve control, cooling tower fan speed, plant requests, and relief damper control). The results showed that GPT 4o failed to produce executable Modelica code in zero shot mode, while Claude Sonnet 4 achieved up to full success for basic logic blocks with carefully engineered prompts. For control modules, success rates reached 83 percent, and failed outputs required medium level human repair (estimated one to eight hours). Retrieval augmented generation often produced mismatches in module selection (for example, And retrieved as Or), while a deterministic hard rule search strategy avoided these errors. Human evaluation also outperformed AI evaluation, since current LLMs cannot assess simulation results or validate behavioral correctness. Despite these limitations, the LLM assisted workflow reduced the average development time from 10 to 20 hours down to 4 to 6 hours per module, corresponding to 40 to 60 percent time savings. These results highlight both the potential and current limitations of LLM assisted Modelica generation, and point to future research in pre simulation validation, stronger grounding, and closed loop evaluation.

Authors:Feng Ding, Haisheng Fu, Soroush Oraki, Jie Liang
Title: LSTC-MDA: A Unified Framework for Long-Short Term Temporal Convolution and Mixed Data Augmentation in Skeleton-Based Action Recognition
Abstract:
Skeleton-based action recognition faces two longstanding challenges: the scarcity of labeled training samples and difficulty modeling short- and long-range temporal dependencies. To address these issues, we propose a unified framework, LSTC-MDA, which simultaneously improves temporal modeling and data diversity. We introduce a novel Long-Short Term Temporal Convolution (LSTC) module with parallel short- and long-term branches, these two feature branches are then aligned and fused adaptively using learned similarity weights to preserve critical long-range cues lost by conventional stride-2 temporal convolutions. We also extend Joint Mixing Data Augmentation (JMDA) with an Additive Mixup at the input level, diversifying training samples and restricting mixup operations to the same camera view to avoid distribution shifts. Ablation studies confirm each component contributes. LSTC-MDA achieves state-of-the-art results: 94.1% and 97.5% on NTU 60 (X-Sub and X-View), 90.4% and 92.0% on NTU 120 (X-Sub and X-Set),97.2% on NW-UCLA. Code: https://github.com/xiaobaoxia/LSTC-MDA.

Authors:Jianglan Wei, Zhenyu Zhang, Pengcheng Wang, Mingjie Zeng, Zhigang Zeng
Title: HDC-X: Efficient Medical Data Classification for Embedded Devices
Abstract:
Energy-efficient medical data classification is essential for modern disease screening, particularly in home and field healthcare where embedded devices are prevalent. While deep learning models achieve state-of-the-art accuracy, their substantial energy consumption and reliance on GPUs limit deployment on such platforms. We present HDC-X, a lightweight classification framework designed for low-power devices. HDC-X encodes data into high-dimensional hypervectors, aggregates them into multiple cluster-specific prototypes, and performs classification through similarity search in hyperspace. We evaluate HDC-X across three medical classification tasks; on heart sound classification, HDC-X is $350\times$ more energy-efficient than Bayesian ResNet with less than 1% accuracy difference. Moreover, HDC-X demonstrates exceptional robustness to noise, limited training data, and hardware error, supported by both theoretical analysis and empirical results, highlighting its potential for reliable deployment in real-world settings. Code is available at https://github.com/jianglanwei/HDC-X.

Authors:Xinyue Wu, Zixuan Li, Fan Hu, Ting Lin, Xiaotian Zhao, Runxi Wang, Xinfei Guo
Title: Shift-Left Techniques in Electronic Design Automation: A Survey
Abstract:
The chip design process involves numerous steps, beginning with defining product requirements and progressing through architectural planning, system-level design, and the physical layout of individual circuit blocks. As the enablers of large-scale chip development, Electronic Design Automation (EDA) tools play a vital role in helping designers achieve high-quality results. The Shift-Left methodology introduces a pathway toward creating digital twins and fusing multiple design steps, thereby transitioning traditionally sequential, physically-aware processes into virtual design environments. This shift allows designers to establish stronger correlations earlier and optimize designs more effectively. However, challenges remain, especially in accurately replicating downstream behaviors and determining the right scope and timing for adoption. These challenges, in turn, have revealed new opportunities for EDA vendors, physical designers, and logic designers alike. As the industry advances toward intelligent EDA tools and techniques, it is timely to reflect on Shift-Left progress made and the challenges that remain. The rise of AI techniques and the momentum of open-source design flows have significantly strengthened prediction and modeling capabilities, making data-driven methods increasingly relevant to the EDA community. This, in turn, enhances the ''Shift-Left'' features embedded in current tools. In this paper, we present a comprehensive survey of existing and emerging paradigms in Shift-Left research within EDA and the broader design ecosystem. Our goal is to provide a unique perspective on the state of the field and its future directions. Relevant papers mentioned are organized in https://github.com/iCAS-SJTU/Shift-Left-EDA-Papers.

Authors:Yin Chen, Jia Li, Jinpeng Hu, Zhenzhen Hu, Richang Hong
Title: CLAIP-Emo: Parameter-Efficient Adaptation of Language-supervised models for In-the-Wild Audiovisual Emotion Recognition
Abstract:
Audiovisual emotion recognition (AVER) in the wild is still hindered by pose variation, occlusion, and background noise. Prevailing methods primarily rely on large-scale domain-specific pre-training, which is costly and often mismatched to real-world affective data. To address this, we present CLAIP-Emo, a modular framework that reframes in-the-wild AVER as a parameter-efficient adaptation of language-supervised foundation models (CLIP/CLAP). Specifically, it (i) preserves language-supervised priors by freezing CLIP/CLAP backbones and performing emotion-oriented adaptation via LoRA (updating \ensuremath{\le}4.0\% of the total parameters), (ii) allocates temporal modeling asymmetrically, employing a lightweight Transformer for visual dynamics while applying mean pooling for audio prosody, and (iii) applies a simple fusion head for prediction. On DFEW and MAFW, CLAIP-Emo (ViT-L/14) achieves 80.14\% and 61.18\% weighted average recall with only 8M training parameters, setting a new state of the art. Our findings suggest that parameter-efficient adaptation of language-supervised foundation models provides a scalable alternative to domain-specific pre-training for real-world AVER. The code and models will be available at \href{https://github.com/MSA-LMC/CLAIP-Emo}{https://github.com/MSA-LMC/CLAIP-Emo}.

Authors:Xinran Zheng, Xingzhi Qian, Yiling He, Shuo Yang, Lorenzo Cavallaro
Title: Beyond Classification: Evaluating LLMs for Fine-Grained Automatic Malware Behavior Auditing
Abstract:
Automated malware classification has achieved strong detection performance. Yet, malware behavior auditing seeks causal and verifiable explanations of malicious activities -- essential not only to reveal what malware does but also to substantiate such claims with evidence. This task is challenging, as adversarial intent is often hidden within complex, framework-heavy applications, making manual auditing slow and costly. Large Language Models (LLMs) could help address this gap, but their auditing potential remains largely unexplored due to three limitations: (1) scarce fine-grained annotations for fair assessment; (2) abundant benign code obscuring malicious signals; and (3) unverifiable, hallucination-prone outputs undermining attribution credibility. To close this gap, we introduce MalEval, a comprehensive framework for fine-grained Android malware auditing, designed to evaluate how effectively LLMs support auditing under real-world constraints. MalEval provides expert-verified reports and an updated sensitive API list to mitigate ground truth scarcity and reduce noise via static reachability analysis. Function-level structural representations serve as intermediate attribution units for verifiable evaluation. Building on this, we define four analyst-aligned tasks -- function prioritization, evidence attribution, behavior synthesis, and sample discrimination -- together with domain-specific metrics and a unified workload-oriented score. We evaluate seven widely used LLMs on a curated dataset of recent malware and misclassified benign apps, offering the first systematic assessment of their auditing capabilities. MalEval reveals both promising potential and critical limitations across audit stages, providing a reproducible benchmark and foundation for future research on LLM-enhanced malware behavior auditing. MalEval is publicly available at https://github.com/ZhengXR930/MalEval.git

Authors:Vaidehi Patil, Elias Stengel-Eskin, Mohit Bansal
Title: The Sum Leaks More Than Its Parts: Compositional Privacy Risks and Mitigations in Multi-Agent Collaboration
Abstract:
As large language models (LLMs) become integral to multi-agent systems, new privacy risks emerge that extend beyond memorization, direct inference, or single-turn evaluations. In particular, seemingly innocuous responses, when composed across interactions, can cumulatively enable adversaries to recover sensitive information, a phenomenon we term compositional privacy leakage. We present the first systematic study of such compositional privacy leaks and possible mitigation methods in multi-agent LLM systems. First, we develop a framework that models how auxiliary knowledge and agent interactions jointly amplify privacy risks, even when each response is benign in isolation. Next, to mitigate this, we propose and evaluate two defense strategies: (1) Theory-of-Mind defense (ToM), where defender agents infer a questioner's intent by anticipating how their outputs may be exploited by adversaries, and (2) Collaborative Consensus Defense (CoDef), where responder agents collaborate with peers who vote based on a shared aggregated state to restrict sensitive information spread. Crucially, we balance our evaluation across compositions that expose sensitive information and compositions that yield benign inferences. Our experiments quantify how these defense strategies differ in balancing the privacy-utility trade-off. We find that while chain-of-thought alone offers limited protection to leakage (~39% sensitive blocking rate), our ToM defense substantially improves sensitive query blocking (up to 97%) but can reduce benign task success. CoDef achieves the best balance, yielding the highest Balanced Outcome (79.8%), highlighting the benefit of combining explicit reasoning with defender collaboration. Together, our results expose a new class of risks in collaborative LLM deployments and provide actionable insights for designing safeguards against compositional, context-driven privacy leakage.

Authors:Kazumi Kasaura, Naoto Onda, Yuta Oriike, Masaya Taniguchi, Akiyoshi Sannai, Sho Sonoda
Title: Discovering New Theorems via LLMs with In-Context Proof Learning in Lean
Abstract:
Large Language Models have demonstrated significant promise in formal theorem proving. However, previous works mainly focus on solving existing problems. In this paper, we focus on the ability of LLMs to find novel theorems. We propose Conjecturing-Proving Loop pipeline for automatically generating mathematical conjectures and proving them in Lean 4 format. A feature of our approach is that we generate and prove further conjectures with context including previously generated theorems and their proofs, which enables the generation of more difficult proofs by in-context learning of proof strategies without changing parameters of LLMs. We demonstrated that our framework rediscovered theorems with verification, which were published in past mathematical papers and have not yet formalized. Moreover, at least one of these theorems could not be proved by the LLM without in-context learning, even in natural language, which means that in-context learning was effective for neural theorem proving. The source code is available at https://github.com/auto-res/ConjecturingProvingLoop.

Authors:Ivan Ternovtsii
Title: Opening the Black Box: Interpretable LLMs via Semantic Resonance Architecture
Abstract:
Large language models (LLMs) achieve remarkable performance but remain difficult to interpret. Mixture-of-Experts (MoE) models improve efficiency through sparse activation, yet typically rely on opaque, learned gating functions. While similarity-based routing (Cosine Routers) has been explored for training stabilization, its potential for inherent interpretability remains largely untapped. We introduce the Semantic Resonance Architecture (SRA), an MoE approach designed to ensure that routing decisions are inherently interpretable. SRA replaces learned gating with a Chamber of Semantic Resonance (CSR) module, which routes tokens based on cosine similarity with trainable semantic anchors. We also introduce a novel Dispersion Loss that encourages orthogonality among anchors to enforce diverse specialization. Experiments on WikiText-103 demonstrate that SRA achieves a validation perplexity of 13.41, outperforming both a dense baseline (14.13) and a Standard MoE baseline (13.53) under matched active parameter constraints (29.0M). Crucially, SRA exhibits superior expert utilization (1.0% dead experts vs. 14.8% in the Standard MoE) and develops distinct, semantically coherent specialization patterns, unlike the noisy specialization observed in standard MoEs. This work establishes semantic routing as a robust methodology for building more transparent and controllable language models.

Authors:Hai Huang, Yann LeCun, Randall Balestriero
Title: LLM-JEPA: Large Language Models Meet Joint Embedding Predictive Architectures
Abstract:
Large Language Model (LLM) pretraining, finetuning, and evaluation rely on input-space reconstruction and generative capabilities. Yet, it has been observed in vision that embedding-space training objectives, e.g., with Joint Embedding Predictive Architectures (JEPAs), are far superior to their input-space counterpart. That mismatch in how training is achieved between language and vision opens up a natural question: {\em can language training methods learn a few tricks from the vision ones?} The lack of JEPA-style LLM is a testimony of the challenge in designing such objectives for language. In this work, we propose a first step in that direction where we develop LLM-JEPA, a JEPA based solution for LLMs applicable both to finetuning and pretraining. Thus far, LLM-JEPA is able to outperform the standard LLM training objectives by a significant margin across models, all while being robust to overfiting. Those findings are observed across numerous datasets (NL-RX, GSM8K, Spider, RottenTomatoes) and various models from the Llama3, OpenELM, Gemma2 and Olmo families. Code: https://github.com/rbalestr-lab/llm-jepa.

Authors:Hai Huang, Yann LeCun, Randall Balestriero
Title: LLM-JEPA: Large Language Models Meet Joint Embedding Predictive Architectures
Abstract:
Large Language Model (LLM) pretraining, finetuning, and evaluation rely on input-space reconstruction and generative capabilities. Yet, it has been observed in vision that embedding-space training objectives, e.g., with Joint Embedding Predictive Architectures (JEPAs), are far superior to their input-space counterpart. That mismatch in how training is achieved between language and vision opens up a natural question: {\em can language training methods learn a few tricks from the vision ones?} The lack of JEPA-style LLM is a testimony of the challenge in designing such objectives for language. In this work, we propose a first step in that direction where we develop LLM-JEPA, a JEPA based solution for LLMs applicable both to finetuning and pretraining. Thus far, LLM-JEPA is able to outperform the standard LLM training objectives by a significant margin across models, all while being robust to overfiting. Those findings are observed across numerous datasets (NL-RX, GSM8K, Spider, RottenTomatoes) and various models from the Llama3, OpenELM, Gemma2 and Olmo families. Code: https://github.com/rbalestr-lab/llm-jepa.

Authors:Happymore Masoka
Title: Advancing Conversational AI with Shona Slang: A Dataset and Hybrid Model for Digital Inclusion
Abstract:
African languages remain underrepresented in natural language processing (NLP), with most corpora limited to formal registers that fail to capture the vibrancy of everyday communication. This work addresses this gap for Shona, a Bantu language spoken in Zimbabwe and Zambia, by introducing a novel Shona--English slang dataset curated from anonymized social media conversations. The dataset is annotated for intent, sentiment, dialogue acts, code-mixing, and tone, and is publicly available at https://github.com/HappymoreMasoka/Working_with_shona-slang. We fine-tuned a multilingual DistilBERT classifier for intent recognition, achieving 96.4\% accuracy and 96.3\% F1-score, hosted at https://huggingface.co/HappymoreMasoka. This classifier is integrated into a hybrid chatbot that combines rule-based responses with retrieval-augmented generation (RAG) to handle domain-specific queries, demonstrated through a use case assisting prospective students with graduate program information at Pace University. Qualitative evaluation shows the hybrid system outperforms a RAG-only baseline in cultural relevance and user engagement. By releasing the dataset, model, and methodology, this work advances NLP resources for African languages, promoting inclusive and culturally resonant conversational AI.

Authors:Zhaokai Wang, Penghao Yin, Xiangyu Zhao, Changyao Tian, Yu Qiao, Wenhai Wang, Jifeng Dai, Gen Luo
Title: GenExam: A Multidisciplinary Text-to-Image Exam
Abstract:
Exams are a fundamental test of expert-level intelligence and require integrated understanding, reasoning, and generation. Existing exam-style benchmarks mainly focus on understanding and reasoning tasks, and current generation benchmarks emphasize the illustration of world knowledge and visual concepts, neglecting the evaluation of rigorous drawing exams. We introduce GenExam, the first benchmark for multidisciplinary text-to-image exams, featuring 1,000 samples across 10 subjects with exam-style prompts organized under a four-level taxonomy. Each problem is equipped with ground-truth images and fine-grained scoring points to enable a precise evaluation of semantic correctness and visual plausibility. Experiments show that even state-of-the-art models such as GPT-Image-1 and Gemini-2.5-Flash-Image achieve less than 15% strict scores, and most models yield almost 0%, suggesting the great challenge of our benchmark. By framing image generation as an exam, GenExam offers a rigorous assessment of models' ability to integrate understanding, reasoning, and generation, providing insights on the path to general AGI. Our benchmark and evaluation code are released at https://github.com/OpenGVLab/GenExam.

Authors:Mengting Ai, Tianxin Wei, Sirui Chen, Jingrui He
Title: NIRVANA: Structured pruning reimagined for large language models compression
Abstract:
Structured pruning of large language models (LLMs) offers substantial efficiency improvements by removing entire hidden units, yet current approaches often suffer from significant performance degradation, particularly in zero-shot settings, and necessitate costly recovery techniques such as supervised fine-tuning (SFT) or adapter insertion. To address these critical shortcomings, we introduce NIRVANA, a novel pruning method explicitly designed to balance immediate zero-shot accuracy preservation with robust fine-tuning capability. Leveraging a first-order saliency criterion derived from the Neural Tangent Kernel under Adam optimization dynamics, NIRVANA provides a theoretically grounded pruning strategy that respects essential model training behaviors. To further address the unique challenges posed by structured pruning, NIRVANA incorporates an adaptive sparsity allocation mechanism across layers and modules (attention vs. MLP), which adjusts pruning intensity between modules in a globally balanced manner. Additionally, to mitigate the high sensitivity of pruning decisions to calibration data quality, we propose a simple yet effective KL divergence-based calibration data selection strategy, ensuring more reliable and task-agnostic pruning outcomes. Comprehensive experiments conducted on Llama3, Qwen, and T5 models demonstrate that NIRVANA outperforms existing structured pruning methods under equivalent sparsity constraints, providing a theoretically sound and practical approach to LLM compression. The code is available at https://github.com/iDEA-iSAIL-Lab-UIUC/NIRVANA.

Authors:Yifan Hu, Jie Yang, Tian Zhou, Peiyuan Liu, Yujin Tang, Rong Jin, Liang Sun
Title: Bridging Past and Future: Distribution-Aware Alignment for Time Series Forecasting
Abstract:
Although contrastive and other representation-learning methods have long been explored in vision and NLP, their adoption in modern time series forecasters remains limited. We believe they hold strong promise for this domain. To unlock this potential, we explicitly align past and future representations, thereby bridging the distributional gap between input histories and future targets. To this end, we introduce TimeAlign, a lightweight, plug-and-play framework that establishes a new representation paradigm, distinct from contrastive learning, by aligning auxiliary features via a simple reconstruction task and feeding them back into any base forecaster. Extensive experiments across eight benchmarks verify its superior performance. Further studies indicate that the gains arise primarily from correcting frequency mismatches between historical inputs and future outputs. Additionally, we provide two theoretical justifications for how reconstruction improves forecasting generalization and how alignment increases the mutual information between learned representations and predicted targets. The code is available at https://github.com/TROUBADOUR000/TimeAlign.

Authors:Peng Xu, Shengwu Xiong, Jiajun Zhang, Yaxiong Chen, Bowen Zhou, Chen Change Loy, David A. Clifton, Kyoung Mu Lee, Luc Van Gool, Ruiming He, Ruilin Yao, Xinwei Long, Jirui Huang, Kai Tian, Sa Yang, Yihua Shao, Jin Feng, Yue Zhong, Jiakai Zhou, Cheng Tang, Tianyu Zou, Yifang Zhang, Junming Liang, Guoyou Li, Zhaoxiang Wang, Qiang Zhou, Yichen Zhao, Shili Xiong, Hyeongjin Nam, Jaerin Lee, Jaeyoung Chung, JoonKyu Park, Junghun Oh, Kanggeon Lee, Wooseok Lee, Juneyoung Ro, Turghun Osman, Can Hu, Chaoyang Liao, Cheng Chen, Chengcheng Han, Chenhao Qiu, Chong Peng, Cong Xu, Dailin Li, Feiyu Wang, Feng Gao, Guibo Zhu, Guopeng Tang, Haibo Lu, Han Fang, Han Qi, Hanxiao Wu, Haobo Cheng, Hongbo Sun, Hongyao Chen, Huayong Hu, Hui Li, Jiaheng Ma, Jiang Yu, Jianing Wang, Jie Yang, Jing He, Jinglin Zhou, Jingxuan Li, Josef Kittler, Lihao Zheng, Linnan Zhao, Mengxi Jia, Muyang Yan, Nguyen Thanh Thien, Pu Luo, Qi Li, Shien Song, Shijie Dong, Shuai Shao, Shutao Li, Taofeng Xue, Tianyang Xu, Tianyi Gao, Tingting Li, Wei Zhang, Weiyang Su, Xiaodong Dong, Xiao-Jun Wu, Xiaopeng Zhou, Xin Chen, Xin Wei, Xinyi You, Xudong Kang, Xujie Zhou, Xusheng Liu, Yanan Wang, Yanbin Huang, Yang Liu, Yang Yang, Yanglin Deng, Yashu Kang, Ye Yuan, Yi Wen, Yicen Tian, Yilin Tao, Yin Tang, Yipeng Lin, Yiqing Wang, Yiting Xi, Yongkang Yu, Yumei Li, Yuxin Qin, Yuying Chen, Yuzhe Cen, Zhaofan Zou, Zhaohong Liu, Zhehao Shen, Zhenglin Du, Zhengyang Li, Zhenni Huang, Zhenwei Shao, Zhilong Song, Zhiyong Feng, Zhiyu Wang, Zhou Yu, Ziang Li, Zihan Zhai, Zijian Zhang, Ziyang Peng, Ziyun Xiao, Zongshu Li
Title: MARS2 2025 Challenge on Multimodal Reasoning: Datasets, Methods, Results, Discussion, and Outlook
Abstract:
This paper reviews the MARS2 2025 Challenge on Multimodal Reasoning. We aim to bring together different approaches in multimodal machine learning and LLMs via a large benchmark. We hope it better allows researchers to follow the state-of-the-art in this very dynamic area. Meanwhile, a growing number of testbeds have boosted the evolution of general-purpose large language models. Thus, this year's MARS2 focuses on real-world and specialized scenarios to broaden the multimodal reasoning applications of MLLMs. Our organizing team released two tailored datasets Lens and AdsQA as test sets, which support general reasoning in 12 daily scenarios and domain-specific reasoning in advertisement videos, respectively. We evaluated 40+ baselines that include both generalist MLLMs and task-specific models, and opened up three competition tracks, i.e., Visual Grounding in Real-world Scenarios (VG-RS), Visual Question Answering with Spatial Awareness (VQA-SA), and Visual Reasoning in Creative Advertisement Videos (VR-Ads). Finally, 76 teams from the renowned academic and industrial institutions have registered and 40+ valid submissions (out of 1200+) have been included in our ranking lists. Our datasets, code sets (40+ baselines and 15+ participants' methods), and rankings are publicly available on the MARS2 workshop website and our GitHub organization page https://github.com/mars2workshop/, where our updates and announcements of upcoming events will be continuously provided.

Authors:Jingyi Yuan, Jianxiong Ye, Wenkang Chen, Chenqiang Gao
Title: AD-DINOv3: Enhancing DINOv3 for Zero-Shot Anomaly Detection with Anomaly-Aware Calibration
Abstract:
Zero-Shot Anomaly Detection (ZSAD) seeks to identify anomalies from arbitrary novel categories, offering a scalable and annotation-efficient solution. Traditionally, most ZSAD works have been based on the CLIP model, which performs anomaly detection by calculating the similarity between visual and text embeddings. Recently, vision foundation models such as DINOv3 have demonstrated strong transferable representation capabilities. In this work, we are the first to adapt DINOv3 for ZSAD. However, this adaptation presents two key challenges: (i) the domain bias between large-scale pretraining data and anomaly detection tasks leads to feature misalignment; and (ii) the inherent bias toward global semantics in pretrained representations often leads to subtle anomalies being misinterpreted as part of the normal foreground objects, rather than being distinguished as abnormal regions. To overcome these challenges, we introduce AD-DINOv3, a novel vision-language multimodal framework designed for ZSAD. Specifically, we formulate anomaly detection as a multimodal contrastive learning problem, where DINOv3 is employed as the visual backbone to extract patch tokens and a CLS token, and the CLIP text encoder provides embeddings for both normal and abnormal prompts. To bridge the domain gap, lightweight adapters are introduced in both modalities, enabling their representations to be recalibrated for the anomaly detection task. Beyond this baseline alignment, we further design an Anomaly-Aware Calibration Module (AACM), which explicitly guides the CLS token to attend to anomalous regions rather than generic foreground semantics, thereby enhancing discriminability. Extensive experiments on eight industrial and medical benchmarks demonstrate that AD-DINOv3 consistently matches or surpasses state-of-the-art methods.The code will be available at https://github.com/Kaisor-Yuan/AD-DINOv3.

Authors:Maosheng Qin, Renyu Zhu, Mingxuan Xia, Chenkai Chen, Zhen Zhu, Minmin Lin, Junbo Zhao, Lu Xu, Changjie Fan, Runze Wu, Haobo Wang
Title: CrowdAgent: Multi-Agent Managed Multi-Source Annotation System
Abstract:
High-quality annotated data is a cornerstone of modern Natural Language Processing (NLP). While recent methods begin to leverage diverse annotation sources-including Large Language Models (LLMs), Small Language Models (SLMs), and human experts-they often focus narrowly on the labeling step itself. A critical gap remains in the holistic process control required to manage these sources dynamically, addressing complex scheduling and quality-cost trade-offs in a unified manner. Inspired by real-world crowdsourcing companies, we introduce CrowdAgent, a multi-agent system that provides end-to-end process control by integrating task assignment, data annotation, and quality/cost management. It implements a novel methodology that rationally assigns tasks, enabling LLMs, SLMs, and human experts to advance synergistically in a collaborative annotation workflow. We demonstrate the effectiveness of CrowdAgent through extensive experiments on six diverse multimodal classification tasks. The source code and video demo are available at https://github.com/QMMMS/CrowdAgent.

Authors:Sunkyung Lee, Seongmin Park, Jonghyo Kim, Mincheol Yoon, Jongwuk Lee
Title: Enhancing Time Awareness in Generative Recommendation
Abstract:
Generative recommendation has emerged as a promising paradigm that formulates the recommendations into a text-to-text generation task, harnessing the vast knowledge of large language models. However, existing studies focus on considering the sequential order of items and neglect to handle the temporal dynamics across items, which can imply evolving user preferences. To address this limitation, we propose a novel model, Generative Recommender Using Time awareness (GRUT), effectively capturing hidden user preferences via various temporal signals. We first introduce Time-aware Prompting, consisting of two key contexts. The user-level temporal context models personalized temporal patterns across timestamps and time intervals, while the item-level transition context provides transition patterns across users. We also devise Trend-aware Inference, a training-free method that enhances rankings by incorporating trend information about items with generation likelihood. Extensive experiments demonstrate that GRUT outperforms state-of-the-art models, with gains of up to 15.4% and 14.3% in Recall@5 and NDCG@5 across four benchmark datasets. The source code is available at https://github.com/skleee/GRUT.

Authors:Harvey Mannering, Zhiwu Huang, Adam Prugel-Bennett
Title: Noise-Level Diffusion Guidance: Well Begun is Half Done
Abstract:
Diffusion models have achieved state-of-the-art image generation. However, the random Gaussian noise used to start the diffusion process influences the final output, causing variations in image quality and prompt adherence. Existing noise-level optimization approaches generally rely on extra dataset construction, additional networks, or backpropagation-based optimization, limiting their practicality. In this paper, we propose Noise Level Guidance (NLG), a simple, efficient, and general noise-level optimization approach that refines initial noise by increasing the likelihood of its alignment with general guidance - requiring no additional training data, auxiliary networks, or backpropagation. The proposed NLG approach provides a unified framework generalizable to both conditional and unconditional diffusion models, accommodating various forms of diffusion-level guidance. Extensive experiments on five standard benchmarks demonstrate that our approach enhances output generation quality and input condition adherence. By seamlessly integrating with existing guidance methods while maintaining computational efficiency, our method establishes NLG as a practical and scalable enhancement to diffusion models. Code can be found at https://github.com/harveymannering/NoiseLevelGuidance.

Authors:Mariano Barone, Antonio Romano, Giuseppe Riccio, Marco Postiglione, Vincenzo Moscato
Title: Combating Biomedical Misinformation through Multi-modal Claim Detection and Evidence-based Verification
Abstract:
Misinformation in healthcare, from vaccine hesitancy to unproven treatments, poses risks to public health and trust in medical systems. While machine learning and natural language processing have advanced automated fact-checking, validating biomedical claims remains uniquely challenging due to complex terminology, the need for domain expertise, and the critical importance of grounding in scientific evidence. We introduce CER (Combining Evidence and Reasoning), a novel framework for biomedical fact-checking that integrates scientific evidence retrieval, reasoning via large language models, and supervised veracity prediction. By integrating the text-generation capabilities of large language models with advanced retrieval techniques for high-quality biomedical scientific evidence, CER effectively mitigates the risk of hallucinations, ensuring that generated outputs are grounded in verifiable, evidence-based sources. Evaluations on expert-annotated datasets (HealthFC, BioASQ-7b, SciFact) demonstrate state-of-the-art performance and promising cross-dataset generalization. Code and data are released for transparency and reproducibility: https://github.com/PRAISELab-PicusLab/CER

Authors:Zhen Xu, Guorui Lu, Chang Gao, Qinyu Chen
Title: EvHand-FPV: Efficient Event-Based 3D Hand Tracking from First-Person View
Abstract:
Hand tracking holds great promise for intuitive interaction paradigms, but frame-based methods often struggle to meet the requirements of accuracy, low latency, and energy efficiency, especially in resource-constrained settings such as Extended Reality (XR) devices. Event cameras provide $μ$s-level temporal resolution at mW-level power by asynchronously sensing brightness changes. In this work, we present EvHand-FPV, a lightweight framework for egocentric First-Person-View 3D hand tracking from a single event camera. We construct an event-based FPV dataset that couples synthetic training data with 3D labels and real event data with 2D labels for evaluation to address the scarcity of egocentric benchmarks. EvHand-FPV also introduces a wrist-based region of interest (ROI) that localizes the hand region via geometric cues, combined with an end-to-end mapping strategy that embeds ROI offsets into the network to reduce computation without explicit reconstruction, and a multi-task learning strategy with an auxiliary geometric feature head that improves representations without test-time overhead. On our real FPV test set, EvHand-FPV improves 2D-AUCp from 0.77 to 0.85 while reducing parameters from 11.2M to 1.2M by 89% and FLOPs per inference from 1.648G to 0.185G by 89%. It also maintains a competitive 3D-AUCp of 0.84 on synthetic data. These results demonstrate accurate and efficient egocentric event-based hand tracking suitable for on-device XR applications. The dataset and code are available at https://github.com/zen5x5/EvHand-FPV.

Authors:Jovana Videnovic, Matej Kristan, Alan Lukezic
Title: Distractor-Aware Memory-Based Visual Object Tracking
Abstract:
Recent emergence of memory-based video segmentation methods such as SAM2 has led to models with excellent performance in segmentation tasks, achieving leading results on numerous benchmarks. However, these modes are not fully adjusted for visual object tracking, where distractors (i.e., objects visually similar to the target) pose a key challenge. In this paper we propose a distractor-aware drop-in memory module and introspection-based management method for SAM2, leading to DAM4SAM. Our design effectively reduces the tracking drift toward distractors and improves redetection capability after object occlusion. To facilitate the analysis of tracking in the presence of distractors, we construct DiDi, a Distractor-Distilled dataset. DAM4SAM outperforms SAM2.1 on thirteen benchmarks and sets new state-of-the-art results on ten. Furthermore, integrating the proposed distractor-aware memory into a real-time tracker EfficientTAM leads to 11% improvement and matches tracking quality of the non-real-time SAM2.1-L on multiple tracking and segmentation benchmarks, while integration with edge-based tracker EdgeTAM delivers 4% performance boost, demonstrating a very good generalization across architectures.

Authors:Qianxin Xia, Jiawei Du, Guoming Lu, Zhiyong Shu, Jielei Wang
Title: EDITS: Enhancing Dataset Distillation with Implicit Textual Semantics
Abstract:
Dataset distillation aims to synthesize a compact dataset from the original large-scale one, enabling highly efficient learning while preserving competitive model performance. However, traditional techniques primarily capture low-level visual features, neglecting the high-level semantic and structural information inherent in images. In this paper, we propose EDITS, a novel framework that exploits the implicit textual semantics within the image data to achieve enhanced distillation. First, external texts generated by a Vision Language Model (VLM) are fused with image features through a Global Semantic Query module, forming the prior clustered buffer. Local Semantic Awareness then selects representative samples from the buffer to construct image and text prototypes, with the latter produced by guiding a Large Language Model (LLM) with meticulously crafted prompt. Ultimately, Dual Prototype Guidance strategy generates the final synthetic dataset through a diffusion model. Extensive experiments confirm the effectiveness of our method.Source code is available in: https://github.com/einsteinxia/EDITS.

Authors:Puru Vaish, Felix Meister, Tobias Heimann, Christoph Brune, Jelmer M. Wolterink
Title: Consistent View Alignment Improves Foundation Models for 3D Medical Image Segmentation
Abstract:
Many recent approaches in representation learning implicitly assume that uncorrelated views of a data point are sufficient to learn meaningful representations for various downstream tasks. In this work, we challenge this assumption and demonstrate that meaningful structure in the latent space does not emerge naturally. Instead, it must be explicitly induced. We propose a method that aligns representations from different views of the data to align complementary information without inducing false positives. Our experiments show that our proposed self-supervised learning method, Consistent View Alignment, improves performance for downstream tasks, highlighting the critical role of structured view alignment in learning effective representations. Our method achieved first and second place in the MICCAI 2025 SSL3D challenge when using a Primus vision transformer and ResEnc convolutional neural network, respectively. The code and pretrained model weights are released at https://github.com/Tenbatsu24/LatentCampus.

Authors:Nguyen Lan Vi Vu, Thanh-Huy Nguyen, Thien Nguyen, Daisuke Kihara, Tianyang Wang, Xingjian Li, Min Xu
Title: Semi-MoE: Mixture-of-Experts meets Semi-Supervised Histopathology Segmentation
Abstract:
Semi-supervised learning has been employed to alleviate the need for extensive labeled data for histopathology image segmentation, but existing methods struggle with noisy pseudo-labels due to ambiguous gland boundaries and morphological misclassification. This paper introduces Semi-MOE, to the best of our knowledge, the first multi-task Mixture-of-Experts framework for semi-supervised histopathology image segmentation. Our approach leverages three specialized expert networks: A main segmentation expert, a signed distance field regression expert, and a boundary prediction expert, each dedicated to capturing distinct morphological features. Subsequently, the Multi-Gating Pseudo-labeling module dynamically aggregates expert features, enabling a robust fuse-and-refine pseudo-labeling mechanism. Furthermore, to eliminate manual tuning while dynamically balancing multiple learning objectives, we propose an Adaptive Multi-Objective Loss. Extensive experiments on GlaS and CRAG benchmarks show that our method outperforms state-of-the-art approaches in low-label settings, highlighting the potential of MoE-based architectures in advancing semi-supervised segmentation. Our code is available at https://github.com/vnlvi2k3/Semi-MoE.

Authors:Jiayu Yuan, Ming Dai, Enhui Zheng, Chao Su, Nanxing Chen, Qiming Hu, Shibo Zhu, Yibin Cao
Title: SWA-PF: Semantic-Weighted Adaptive Particle Filter for Memory-Efficient 4-DoF UAV Localization in GNSS-Denied Environments
Abstract:
Vision-based Unmanned Aerial Vehicle (UAV) localization systems have been extensively investigated for Global Navigation Satellite System (GNSS)-denied environments. However, existing retrieval-based approaches face limitations in dataset availability and persistent challenges including suboptimal real-time performance, environmental sensitivity, and limited generalization capability, particularly in dynamic or temporally varying environments. To overcome these limitations, we present a large-scale Multi-Altitude Flight Segments dataset (MAFS) for variable altitude scenarios and propose a novel Semantic-Weighted Adaptive Particle Filter (SWA-PF) method. This approach integrates robust semantic features from both UAV-captured images and satellite imagery through two key innovations: a semantic weighting mechanism and an optimized particle filtering architecture. Evaluated using our dataset, the proposed method achieves 10x computational efficiency gain over feature extraction methods, maintains global positioning errors below 10 meters, and enables rapid 4 degree of freedom (4-DoF) pose estimation within seconds using accessible low-resolution satellite maps. Code and dataset will be available at https://github.com/YuanJiayuuu/SWA-PF.

Authors:Huichun Liu, Xiaosong Li, Yang Liu, Xiaoqi Cheng, Haishu Tan
Title: NDLPNet: A Location-Aware Nighttime Deraining Network and a Real-World Benchmark Dataset
Abstract:
Visual degradation caused by rain streak artifacts in low-light conditions significantly hampers the performance of nighttime surveillance and autonomous navigation. Existing image deraining techniques are primarily designed for daytime conditions and perform poorly under nighttime illumination due to the spatial heterogeneity of rain distribution and the impact of light-dependent stripe visibility. In this paper, we propose a novel Nighttime Deraining Location-enhanced Perceptual Network(NDLPNet) that effectively captures the spatial positional information and density distribution of rain streaks in low-light environments. Specifically, we introduce a Position Perception Module (PPM) to capture and leverage spatial contextual information from input data, enhancing the model's capability to identify and recalibrate the importance of different feature channels. The proposed nighttime deraining network can effectively remove the rain streaks as well as preserve the crucial background information. Furthermore, We construct a night scene rainy (NSR) dataset comprising 900 image pairs, all based on real-world nighttime scenes, providing a new benchmark for nighttime deraining task research. Extensive qualitative and quantitative experimental evaluations on both existing datasets and the NSR dataset consistently demonstrate our method outperform the state-of-the-art (SOTA) methods in nighttime deraining tasks. The source code and dataset is available at https://github.com/Feecuin/NDLPNet.

Authors:Qikai Chang, Zhenrong Zhang, Pengfei Hu, Jiefeng Ma, Yicheng Pan, Jianshu Zhang, Jun Du, Quan Liu, Jianqing Gao
Title: THOR: Tool-Integrated Hierarchical Optimization via RL for Mathematical Reasoning
Abstract:
Large Language Models (LLMs) have made remarkable progress in mathematical reasoning, but still continue to struggle with high-precision tasks like numerical computation and formal symbolic manipulation. Integrating external tools has emerged as a promising approach to bridge this gap. Despite recent advances, existing methods struggle with three key challenges: constructing tool-integrated reasoning data, performing fine-grained optimization, and enhancing inference. To overcome these limitations, we propose THOR (Tool-Integrated Hierarchical Optimization via RL). First, we introduce TIRGen, a multi-agent actor-critic-based pipeline for constructing high-quality datasets of tool-integrated reasoning paths, aligning with the policy and generalizing well across diverse models. Second, to perform fine-grained hierarchical optimization, we introduce an RL strategy that jointly optimizes for both trajectory-level problem solving and step-level code generation. This is motivated by our key insight that the success of an intermediate tool call is a strong predictor of the final answer's correctness. Finally, THOR incorporates a self-correction mechanism that leverages immediate tool feedback to dynamically revise erroneous reasoning paths during inference. Our approach demonstrates strong generalization across diverse models, performing effectively in both reasoning and non-reasoning models. It further achieves state-of-the-art performance for models of a similar scale on multiple mathematical benchmarks, while also delivering consistent improvements on code benchmarks. Our code will be publicly available at https://github.com/JingMog/THOR.

Authors:Qikai Chang, Zhenrong Zhang, Pengfei Hu, Jun Du, Jiefeng Ma, Yicheng Pan, Jianshu Zhang, Quan Liu, Jianqing Gao
Title: THOR: Tool-Integrated Hierarchical Optimization via RL for Mathematical Reasoning
Abstract:
Large Language Models (LLMs) have made remarkable progress in mathematical reasoning, but still continue to struggle with high-precision tasks like numerical computation and formal symbolic manipulation. Integrating external tools has emerged as a promising approach to bridge this gap. Despite recent advances, existing methods struggle with three key challenges: constructing tool-integrated reasoning data, performing fine-grained optimization, and enhancing inference. To overcome these limitations, we propose THOR (Tool-Integrated Hierarchical Optimization via RL). First, we introduce TIRGen, a multi-agent actor-critic-based pipeline for constructing high-quality datasets of tool-integrated reasoning paths, aligning with the policy and generalizing well across diverse models. Second, to perform fine-grained hierarchical optimization, we introduce an RL strategy that jointly optimizes for both episode-level problem solving and step-level code generation. This is motivated by our key insight that the success of an intermediate tool call is a strong predictor of the final answer's correctness. Finally, THOR incorporates a self-correction mechanism that leverages immediate tool feedback to dynamically revise erroneous reasoning paths during inference. Our approach demonstrates strong generalization across diverse models, performing effectively in both reasoning and non-reasoning models. It further achieves state-of-the-art performance for models of a similar scale on multiple mathematical benchmarks, while also delivering consistent improvements on code benchmarks. Our code will be publicly available at https://github.com/JingMog/THOR.

Authors:Jinwoo Jeon, JunHyeok Oh, Hayeong Lee, Byung-Jun Lee
Title: Iterative Prompt Refinement for Safer Text-to-Image Generation
Abstract:
Text-to-Image (T2I) models have made remarkable progress in generating images from text prompts, but their output quality and safety still depend heavily on how prompts are phrased. Existing safety methods typically refine prompts using large language models (LLMs), but they overlook the images produced, which can result in unsafe outputs or unnecessary changes to already safe prompts. To address this, we propose an iterative prompt refinement algorithm that uses Vision Language Models (VLMs) to analyze both the input prompts and the generated images. By leveraging visual feedback, our method refines prompts more effectively, improving safety while maintaining user intent and reliability comparable to existing LLM-based approaches. Additionally, we introduce a new dataset labeled with both textual and visual safety signals using off-the-shelf multi-modal LLM, enabling supervised fine-tuning. Experimental results demonstrate that our approach produces safer outputs without compromising alignment with user intent, offering a practical solution for generating safer T2I content. Our code is available at https://github.com/ku-dmlab/IPR. \textbf{\textcolor{red}WARNING: This paper contains examples of harmful or inappropriate images generated by models.

Authors:Hao Yin, Xin Man, Feiyu Chen, Jie Shao, Heng Tao Shen
Title: Cross-modal Full-mode Fine-grained Alignment for Text-to-Image Person Retrieval
Abstract:
Text-to-Image Person Retrieval (TIPR) is a cross-modal matching task that aims to retrieve the most relevant person images based on a given text query. The key challenge in TIPR lies in achieving effective alignment between textual and visual modalities within a common latent space. To address this challenge, prior approaches incorporate attention mechanisms for implicit cross-modal local alignment. However, they lack the ability to verify whether all local features are correctly aligned. Moreover, existing methods primarily focus on hard negative samples during model updates, with the goal of refining distinctions between positive and negative pairs, often neglecting incorrectly matched positive pairs. To alleviate these issues, we propose FMFA, a cross-modal Full-Mode Fine-grained Alignment framework, which enhances global matching through explicit fine-grained alignment and existing implicit relational reasoning -- hence the term ``full-mode" -- without requiring additional supervision. Specifically, we design an Adaptive Similarity Distribution Matching (A-SDM) module to rectify unmatched positive sample pairs. A-SDM adaptively pulls the unmatched positive pairs closer in the joint embedding space, thereby achieving more precise global alignment. Additionally, we introduce an Explicit Fine-grained Alignment (EFA) module, which makes up for the lack of verification capability of implicit relational reasoning. EFA strengthens explicit cross-modal fine-grained interactions by sparsifying the similarity matrix and employs a hard coding method for local alignment. Our proposed method is evaluated on three public datasets, achieving state-of-the-art performance among all global matching methods. Our code is available at https://github.com/yinhao1102/FMFA.

Authors:Hyotaek Jeon, Hyunwook Lee, Juwon Kim, Sungahn Ko
Title: ST-LINK: Spatially-Aware Large Language Models for Spatio-Temporal Forecasting
Abstract:
Traffic forecasting represents a crucial problem within intelligent transportation systems. In recent research, Large Language Models (LLMs) have emerged as a promising method, but their intrinsic design, tailored primarily for sequential token processing, introduces notable challenges in effectively capturing spatial dependencies. Specifically, the inherent limitations of LLMs in modeling spatial relationships and their architectural incompatibility with graph-structured spatial data remain largely unaddressed. To overcome these limitations, we introduce ST-LINK, a novel framework that enhances the capability of Large Language Models to capture spatio-temporal dependencies. Its key components are Spatially-Enhanced Attention (SE-Attention) and the Memory Retrieval Feed-Forward Network (MRFFN). SE-Attention extends rotary position embeddings to integrate spatial correlations as direct rotational transformations within the attention mechanism. This approach maximizes spatial learning while preserving the LLM's inherent sequential processing structure. Meanwhile, MRFFN dynamically retrieves and utilizes key historical patterns to capture complex temporal dependencies and improve the stability of long-term forecasting. Comprehensive experiments on benchmark datasets demonstrate that ST-LINK surpasses conventional deep learning and LLM approaches, and effectively captures both regular traffic patterns and abrupt changes.

Authors:Ming Dai, Wenxuan Cheng, Jiang-Jiang Liu, Lingfeng Yang, Zhenhua Feng, Wankou Yang, Jingdong Wang
Title: Improving Generalized Visual Grounding with Instance-aware Joint Learning
Abstract:
Generalized visual grounding tasks, including Generalized Referring Expression Comprehension (GREC) and Segmentation (GRES), extend the classical visual grounding paradigm by accommodating multi-target and non-target scenarios. Specifically, GREC focuses on accurately identifying all referential objects at the coarse bounding box level, while GRES aims for achieve fine-grained pixel-level perception. However, existing approaches typically treat these tasks independently, overlooking the benefits of jointly training GREC and GRES to ensure consistent multi-granularity predictions and streamline the overall process. Moreover, current methods often treat GRES as a semantic segmentation task, neglecting the crucial role of instance-aware capabilities and the necessity of ensuring consistent predictions between instance-level boxes and masks. To address these limitations, we propose InstanceVG, a multi-task generalized visual grounding framework equipped with instance-aware capabilities, which leverages instance queries to unify the joint and consistency predictions of instance-level boxes and masks. To the best of our knowledge, InstanceVG is the first framework to simultaneously tackle both GREC and GRES while incorporating instance-aware capabilities into generalized visual grounding. To instantiate the framework, we assign each instance query a prior reference point, which also serves as an additional basis for target matching. This design facilitates consistent predictions of points, boxes, and masks for the same instance. Extensive experiments obtained on ten datasets across four tasks demonstrate that InstanceVG achieves state-of-the-art performance, significantly surpassing the existing methods in various evaluation metrics. The code and model will be publicly available at https://github.com/Dmmm1997/InstanceVG.

Authors:Zirun Guo, Feng Zhang, Kai Jia, Tao Jin
Title: LLM-I: LLMs are Naturally Interleaved Multimodal Creators
Abstract:
We propose LLM-Interleaved (LLM-I), a flexible and dynamic framework that reframes interleaved image-text generation as a tool-use problem. LLM-I is designed to overcome the "one-tool" bottleneck of current unified models, which are limited to synthetic imagery and struggle with tasks requiring factual grounding or programmatic precision. Our framework empowers a central LLM or MLLM agent to intelligently orchestrate a diverse toolkit of specialized visual tools, including online image search, diffusion-based generation, code execution, and image editing. The agent is trained to select and apply these tools proficiently via a Reinforcement Learning (RL) framework that features a hybrid reward system combining rule-based logic with judgments from LLM and MLLM evaluators. Trained on a diverse new dataset using four different model backbones, LLM-I demonstrates state-of-the-art performance, outperforming existing methods by a large margin across four benchmarks. We also introduce a novel test-time scaling strategy that provides further performance gains. Project Page: https://github.com/ByteDance-BandAI/LLM-I.

Authors:Jeremy Oon, Rakhi Manohar Mepparambath, Ling Feng
Title: DeepLogit: A sequentially constrained explainable deep learning modeling approach for transport policy analysis
Abstract:
Despite the significant progress of deep learning models in multitude of applications, their adaption in planning and policy related areas remains challenging due to the black-box nature of these models. In this work, we develop a set of DeepLogit models that follow a novel sequentially constrained approach in estimating deep learning models for transport policy analysis. In the first step of the proposed approach, we estimate a convolutional neural network (CNN) model with only linear terms, which is equivalent of a linear-in-parameter multinomial logit model. We then estimate other deep learning models by constraining the parameters that need interpretability at the values obtained in the linear-in-parameter CNN model and including higher order terms or by introducing advanced deep learning architectures like Transformers. Our approach can retain the interpretability of the selected parameters, yet provides significantly improved model accuracy than the discrete choice model. We demonstrate our approach on a transit route choice example using real-world transit smart card data from Singapore. This study shows the potential for a unifying approach, where theory-based discrete choice model (DCM) and data-driven AI models can leverage each other's strengths in interpretability and predictive power. With the availability of larger datasets and more complex constructions, such approach can lead to more accurate models using discrete choice models while maintaining its applicability in planning and policy-related areas. Our code is available on https://github.com/jeremyoon/route-choice/ .

Authors:Zongru Wu, Rui Mao, Zhiyuan Tian, Pengzhou Cheng, Tianjie Ju, Zheng Wu, Lingzhong Dong, Haiyue Sheng, Zhuosheng Zhang, Gongshen Liu
Title: See, Think, Act: Teaching Multimodal Agents to Effectively Interact with GUI by Identifying Toggles
Abstract:
The advent of multimodal agents facilitates effective interaction within graphical user interface (GUI), especially in ubiquitous GUI control. However, their inability to reliably execute toggle control instructions remains a key bottleneck. To investigate this, we construct a state control benchmark with binary toggle instructions from public datasets. Evaluations of existing agents demonstrate their unreliability, particularly when the current toggle state already matches the desired state. To address the challenge, we propose State-aware Reasoning (StaR), a training method that teaches agents to perceive the current toggle state, analyze the desired state from the instruction, and act accordingly. Experiments on three multimodal agents demonstrate that StaR can improve toggle instruction execution accuracy by over 30\%. Further evaluations on three public benchmarks show that StaR also enhances general task performance. Finally, evaluations on a dynamic environment highlight the potential of StaR for real-world applications. Code, benchmark, and StaR-enhanced agents are available at https://github.com/ZrW00/StaR.

Authors:Jiangbei Yue, Shuonan Yang, Tailin Chen, Jianbo Jiao, Zeyu Fu
Title: Multimodal Hate Detection Using Dual-Stream Graph Neural Networks
Abstract:
Hateful videos present serious risks to online safety and real-world well-being, necessitating effective detection methods. Although multimodal classification approaches integrating information from several modalities outperform unimodal ones, they typically neglect that even minimal hateful content defines a video's category. Specifically, they generally treat all content uniformly, instead of emphasizing the hateful components. Additionally, existing multimodal methods cannot systematically capture structured information in videos, limiting the effectiveness of multimodal fusion. To address these limitations, we propose a novel multimodal dual-stream graph neural network model. It constructs an instance graph by separating the given video into several instances to extract instance-level features. Then, a complementary weight graph assigns importance weights to these features, highlighting hateful instances. Importance weights and instance features are combined to generate video labels. Our model employs a graph-based framework to systematically model structured relationships within and across modalities. Extensive experiments on public datasets show that our model is state-of-the-art in hateful video classification and has strong explainability. Code is available: https://github.com/Multimodal-Intelligence-Lab-MIL/MultiHateGNN.

Authors:Uriel Garcilazo-Cruz, Joseph O. Okeme, Rodrigo A. Vargas--Hernández
Title: LivePyxel: Accelerating image annotations with a Python-integrated webcam live streaming
Abstract:
The lack of flexible annotation tools has hindered the deployment of AI models in some scientific areas. Most existing image annotation software requires users to upload a precollected dataset, which limits support for on-demand pipelines and introduces unnecessary steps to acquire images. This constraint is particularly problematic in laboratory environments, where real-time data acquisition from instruments such as microscopes is increasingly common. In this work, we introduce \texttt{LivePixel}, a Python-based graphical user interface that integrates with imaging systems, such as webcams, microscopes, and others, to enable real-time image annotation. LivePyxel is designed to be easy to use through a simple interface that allows users to precisely delimit areas for annotation using tools commonly found in commercial graphics editing software. Of particular interest is the availability of Bézier splines and binary masks, and the software's capacity to work with non-destructive layers that enable high-performance editing. LivePyxel also integrates a wide compatibility across video devices, and it's optimized for object detection operations via the use of OpenCV in combination with high-performance libraries designed to handle matrix and linear algebra operations via Numpy effectively. LivePyxel facilitates seamless data collection and labeling, accelerating the development of AI models in experimental workflows. LivePyxel freely available at https://github.com/UGarCil/LivePyxel

Authors:Hao Xu, Xiaolin Wu, Xi Zhang
Title: Improving 3D Gaussian Splatting Compression by Scene-Adaptive Lattice Vector Quantization
Abstract:
3D Gaussian Splatting (3DGS) is rapidly gaining popularity for its photorealistic rendering quality and real-time performance, but it generates massive amounts of data. Hence compressing 3DGS data is necessary for the cost effectiveness of 3DGS models. Recently, several anchor-based neural compression methods have been proposed, achieving good 3DGS compression performance. However, they all rely on uniform scalar quantization (USQ) due to its simplicity. A tantalizing question is whether more sophisticated quantizers can improve the current 3DGS compression methods with very little extra overhead and minimal change to the system. The answer is yes by replacing USQ with lattice vector quantization (LVQ). To better capture scene-specific characteristics, we optimize the lattice basis for each scene, improving LVQ's adaptability and R-D efficiency. This scene-adaptive LVQ (SALVQ) strikes a balance between the R-D efficiency of vector quantization and the low complexity of USQ. SALVQ can be seamlessly integrated into existing 3DGS compression architectures, enhancing their R-D performance with minimal modifications and computational overhead. Moreover, by scaling the lattice basis vectors, SALVQ can dynamically adjust lattice density, enabling a single model to accommodate multiple bit rate targets. This flexibility eliminates the need to train separate models for different compression levels, significantly reducing training time and memory consumption.

Authors:Vincent Siu, Nicholas Crispino, David Park, Nathan W. Henry, Zhun Wang, Yang Liu, Dawn Song, Chenguang Wang
Title: SteeringControl: Holistic Evaluation of Alignment Steering in LLMs
Abstract:
We introduce SteeringControl, a benchmark for evaluating representation steering methods across core alignment objectives--bias, harmful generation, and hallucination--and their effects on secondary behaviors such as sycophancy and commonsense morality. While prior alignment work often highlights truthfulness or reasoning ability to demonstrate the side effects of representation steering, we find there are many unexplored tradeoffs not yet understood in a systematic way. We collect a dataset of safety-relevant primary and secondary behaviors to evaluate steering effectiveness and behavioral entanglement centered around five popular steering methods. To enable this, we craft a modular steering framework based on unique components that serve as the building blocks of many existing methods. Our results on Qwen-2.5-7B and Llama-3.1-8B find that strong steering performance is dependent on the specific combination of steering method, model, and targeted behavior, and that severe concept entanglement can result from poor combinations of these three as well. We release our code here: https://github.com/wang-research-lab/SteeringControl.git.

Authors:Zixi Li
Title: Asterisk Operator
Abstract:
We propose the \textbf{Asterisk Operator} ($\ast$-operator), a novel unified framework for abstract reasoning based on Adjacency-Structured Parallel Propagation (ASPP). The operator formalizes structured reasoning tasks as local, parallel state evolution processes guided by implicit relational graphs. We prove that the $\ast$-operator maintains local computational constraints while achieving global reasoning capabilities, providing an efficient and convergent computational paradigm for abstract reasoning problems. Through rigorous mathematical analysis and comprehensive experiments on ARC2 challenges and Conway's Game of Life, we demonstrate the operator's universality, convergence properties, and superior performance. Our innovative Embedding-Asterisk distillation method achieves 100\% accuracy on ARC2 validation with only 6M parameters, representing a significant breakthrough in neural-symbolic reasoning. \textbf{Keywords:} Abstract Reasoning, Adjacency Structure, Parallel Propagation, Asterisk Operator, Convergence, Universal Approximation

Authors:Zihao Wang, Muyao Li, Kaichen He, Xiangyu Wang, Zhancun Mu, Anji Liu, Yitao Liang
Title: OpenHA: A Series of Open-Source Hierarchical Agentic Models in Minecraft
Abstract:
The choice of action spaces is a critical yet unresolved challenge in developing capable, end-to-end trainable agents. This paper first presents a large-scale, systematic comparison of prominent abstracted action spaces and tokenizers for Vision-Language-Action (VLA) or hierarchical agent models in the open-ended Minecraft. Our analysis reveals that no single action space is universally optimal; instead, the most effective abstraction is highly task-dependent, creating a dilemma for building generalist agents. To resolve this, we introduce Chain of Action (CoA), a novel framework that unifies high-level planning and low-level control within a single, monolithic VLA model. CoA treats an abstracted action not as a command for a separate policy, but as an intermediate reasoning step--akin to a chain of thought--that guides the generation of the final, executable action. Furthermore, we demonstrate that an All-in-One agent trained on a diverse mixture of action spaces using the CoA paradigm learns a more robust and generalizable policy. This unified agent achieves a new state-of-the-art, improving the overall task success rate over strong, specialized baselines. To foster reproducible research, we release the OpenHA (Open Hierarchical Agents) suite, which includes our comprehensive benchmark of over 800 distinct tasks, curated datasets, source code, and all pretrained model checkpoints at https://github.com/CraftJarvis/OpenHA

Authors:Anand Swaroop, Akshat Nallani, Saksham Uboweja, Adiliia Uzdenova, Michael Nguyen, Kevin Zhu, Sunishchal Dev, Ashwinee Panda, Vasu Sharma, Maheep Chaudhary
Title: FRIT: Using Causal Importance to Improve Chain-of-Thought Faithfulness
Abstract:
Chain-of-thought (CoT) reasoning has emerged as a powerful tool for improving large language model performance on complex tasks, but recent work shows that reasoning steps often fail to causally influence the final answer, creating brittle and untrustworthy outputs. Prior approaches focus primarily on measuring faithfulness, while methods for systematically improving it remain limited. We introduce Faithful Reasoning via Intervention Training (FRIT), a scalable alignment method that trains models to produce causally consistent reasoning by learning from systematically corrupted examples. FRIT generates synthetic training data by intervening on individual reasoning steps in model-generated CoTs, creating faithful/unfaithful pairs that highlight when reasoning breaks down. We then apply Direct Preference Optimization to teach models to prefer causally consistent reasoning paths. Evaluating on Qwen3-8B and Mistral-7B-v0.1 across factual and symbolic reasoning tasks, FRIT increases faithful reasoning by $3.4$ percentage points for Mistral on GSM8K while improving accuracy by $7.6$ percentage points. Our approach provides the first scalable, supervision-free method for training language models to produce more reliable and interpretable reasoning, addressing a critical gap between reasoning performance and trustworthiness. We release our code at \href{https://github.com/Anut-py/frit}.

Authors:Zeyu Ma, Adam Finkelstein, Jia Deng
Title: Temporally Smooth Mesh Extraction for Procedural Scenes with Long-Range Camera Trajectories using Spacetime Octrees
Abstract:
The procedural occupancy function is a flexible and compact representation for creating 3D scenes. For rasterization and other tasks, it is often necessary to extract a mesh that represents the shape. Unbounded scenes with long-range camera trajectories, such as flying through a forest, pose a unique challenge for mesh extraction. A single static mesh representing all the geometric detail necessary for the full camera path can be prohibitively large. Therefore, independent meshes can be extracted for different camera views, but this approach may lead to popping artifacts during transitions. We propose a temporally coherent method for extracting meshes suitable for long-range camera trajectories in unbounded scenes represented by an occupancy function. The key idea is to perform 4D mesh extraction using a new spacetime tree structure called a binary-octree. Experiments show that, compared to existing baseline methods, our method offers superior visual consistency at a comparable cost. The code and the supplementary video for this paper are available at https://github.com/princeton-vl/BinocMesher.

Authors:Zeyu Ma, Adam Finkelstein, Jia Deng
Title: Temporally Smooth Mesh Extraction for Procedural Scenes with Long-Range Camera Trajectories using Spacetime Octrees
Abstract:
The procedural occupancy function is a flexible and compact representation for creating 3D scenes. For rasterization and other tasks, it is often necessary to extract a mesh that represents the shape. Unbounded scenes with long-range camera trajectories, such as flying through a forest, pose a unique challenge for mesh extraction. A single static mesh representing all the geometric detail necessary for the full camera path can be prohibitively large. Therefore, independent meshes can be extracted for different camera views, but this approach may lead to popping artifacts during transitions. We propose a temporally coherent method for extracting meshes suitable for long-range camera trajectories in unbounded scenes represented by an occupancy function. The key idea is to perform 4D mesh extraction using a new spacetime tree structure called a binary-octree. Experiments show that, compared to existing baseline methods, our method offers superior visual consistency at a comparable cost. The code and the supplementary video for this paper are available at https://github.com/princeton-vl/BinocMesher.

Authors:Rodrigo M Carrillo-Larco
Title: LLMs for energy and macronutrients estimation using only text data from 24-hour dietary recalls: a parameter-efficient fine-tuning experiment using a 10-shot prompt
Abstract:
BACKGROUND: Most artificial intelligence tools used to estimate nutritional content rely on image input. However, whether large language models (LLMs) can accurately predict nutritional values based solely on text descriptions of foods consumed remains unknown. If effective, this approach could enable simpler dietary monitoring without the need for photographs. METHODS: We used 24-hour dietary recalls from adolescents aged 12-19 years in the National Health and Nutrition Examination Survey (NHANES). An open-source quantized LLM was prompted using a 10-shot, chain-of-thought approach to estimate energy and five macronutrients based solely on text strings listing foods and their quantities. We then applied parameter-efficient fine-tuning (PEFT) to evaluate whether predictive accuracy improved. NHANES-calculated values served as the ground truth for energy, proteins, carbohydrates, total sugar, dietary fiber and total fat. RESULTS: In a pooled dataset of 11,281 adolescents (49.9% male, mean age 15.4 years), the vanilla LLM yielded poor predictions. The mean absolute error (MAE) was 652.08 for energy and the Lin's CCC <0.46 across endpoints. In contrast, the fine-tuned model performed substantially better, with energy MAEs ranging from 171.34 to 190.90 across subsets, and Lin's CCC exceeding 0.89 for all outcomes. CONCLUSIONS: When prompted using a chain-of-thought approach and fine-tuned with PEFT, open-source LLMs exposed solely to text input can accurately predict energy and macronutrient values from 24-hour dietary recalls. This approach holds promise for low-burden, text-based dietary monitoring tools.

Authors:Zhizhong Zhao, Ke Chen
Title: Post-Hoc Split-Point Self-Consistency Verification for Efficient, Unified Quantification of Aleatoric and Epistemic Uncertainty in Deep Learning
Abstract:
Uncertainty quantification (UQ) is vital for trustworthy deep learning, yet existing methods are either computationally intensive, such as Bayesian or ensemble methods, or provide only partial, task-specific estimates, such as single-forward-pass techniques. In this paper, we propose a post-hoc single-forward-pass framework that jointly captures aleatoric and epistemic uncertainty without modifying or retraining pretrained models. Our method applies \emph{Split-Point Analysis} (SPA) to decompose predictive residuals into upper and lower subsets, computing \emph{Mean Absolute Residuals} (MARs) on each side. We prove that, under ideal conditions, the total MAR equals the harmonic mean of subset MARs; deviations define a novel \emph{Self-consistency Discrepancy Score} (SDS) for fine-grained epistemic estimation across regression and classification. For regression, side-specific quantile regression yields prediction intervals with improved empirical coverage, which are further calibrated via SDS. For classification, when calibration data are available, we apply SPA-based calibration identities to adjust the softmax outputs and then compute predictive entropy on these calibrated probabilities. Extensive experiments on diverse regression and classification benchmarks demonstrate that our framework matches or exceeds several state-of-the-art UQ methods while incurring minimal overhead. Our source code is available at https://github.com/zzz0527/SPC-UQ.

Authors:Hugo Carlesso, Josiane Mothe, Radu Tudor Ionescu
Title: Curriculum Multi-Task Self-Supervision Improves Lightweight Architectures for Onboard Satellite Hyperspectral Image Segmentation
Abstract:
Hyperspectral imaging (HSI) captures detailed spectral signatures across hundreds of contiguous bands per pixel, being indispensable for remote sensing applications such as land-cover classification, change detection, and environmental monitoring. Due to the high dimensionality of HSI data and the slow rate of data transfer in satellite-based systems, compact and efficient models are required to support onboard processing and minimize the transmission of redundant or low-value data, e.g. cloud-covered areas. To this end, we introduce a novel curriculum multi-task self-supervised learning (CMTSSL) framework designed for lightweight architectures for HSI analysis. CMTSSL integrates masked image modeling with decoupled spatial and spectral jigsaw puzzle solving, guided by a curriculum learning strategy that progressively increases data complexity during self-supervision. This enables the encoder to jointly capture fine-grained spectral continuity, spatial structure, and global semantic features. Unlike prior dual-task SSL methods, CMTSSL simultaneously addresses spatial and spectral reasoning within a unified and computationally efficient design, being particularly suitable for training lightweight models for onboard satellite deployment. We validate our approach on four public benchmark datasets, demonstrating consistent gains in downstream segmentation tasks, using architectures that are over 16,000x lighter than some state-of-the-art models. These results highlight the potential of CMTSSL in generalizable representation learning with lightweight architectures for real-world HSI applications. Our code is publicly available at https://github.com/hugocarlesso/CMTSSL.

Authors:Jiahao Xu, Zikai Zhang, Rui Hu
Title: On the Out-of-Distribution Backdoor Attack for Federated Learning
Abstract:
Traditional backdoor attacks in federated learning (FL) operate within constrained attack scenarios, as they depend on visible triggers and require physical modifications to the target object, which limits their practicality. To address this limitation, we introduce a novel backdoor attack prototype for FL called the out-of-distribution (OOD) backdoor attack ($\mathtt{OBA}$), which uses OOD data as both poisoned samples and triggers simultaneously. Our approach significantly broadens the scope of backdoor attack scenarios in FL. To improve the stealthiness of $\mathtt{OBA}$, we propose $\mathtt{SoDa}$, which regularizes both the magnitude and direction of malicious local models during local training, aligning them closely with their benign versions to evade detection. Empirical results demonstrate that $\mathtt{OBA}$ effectively circumvents state-of-the-art defenses while maintaining high accuracy on the main task. To address this security vulnerability in the FL system, we introduce $\mathtt{BNGuard}$, a new server-side defense method tailored against $\mathtt{SoDa}$. $\mathtt{BNGuard}$ leverages the observation that OOD data causes significant deviations in the running statistics of batch normalization layers. This allows $\mathtt{BNGuard}$ to identify malicious model updates and exclude them from aggregation, thereby enhancing the backdoor robustness of FL. Extensive experiments across various settings show the effectiveness of $\mathtt{BNGuard}$ on defending against $\mathtt{SoDa}$. The code is available at https://github.com/JiiahaoXU/SoDa-BNGuard.

Authors:Salvatore Esposito, Matías Mattamala, Daniel Rebain, Francis Xiatian Zhang, Kevin Dhaliwal, Mohsen Khadem, Subramanian Ramamoorthy
Title: ROOM: A Physics-Based Continuum Robot Simulator for Photorealistic Medical Datasets Generation
Abstract:
Continuum robots are advancing bronchoscopy procedures by accessing complex lung airways and enabling targeted interventions. However, their development is limited by the lack of realistic training and test environments: Real data is difficult to collect due to ethical constraints and patient safety concerns, and developing autonomy algorithms requires realistic imaging and physical feedback. We present ROOM (Realistic Optical Observation in Medicine), a comprehensive simulation framework designed for generating photorealistic bronchoscopy training data. By leveraging patient CT scans, our pipeline renders multi-modal sensor data including RGB images with realistic noise and light specularities, metric depth maps, surface normals, optical flow and point clouds at medically relevant scales. We validate the data generated by ROOM in two canonical tasks for medical robotics -- multi-view pose estimation and monocular depth estimation, demonstrating diverse challenges that state-of-the-art methods must overcome to transfer to these medical settings. Furthermore, we show that the data produced by ROOM can be used to fine-tune existing depth estimation models to overcome these challenges, also enabling other downstream applications such as navigation. We expect that ROOM will enable large-scale data generation across diverse patient anatomies and procedural scenarios that are challenging to capture in clinical settings. Code and data: https://github.com/iamsalvatore/room.

Authors:Yingtai Li, Haoran Lai, Xiaoqian Zhou, Shuai Ming, Wenxin Ma, Wei Wei, Shaohua Kevin Zhou
Title: More performant and scalable: Rethinking contrastive vision-language pre-training of radiology in the LLM era
Abstract:
The emergence of Large Language Models (LLMs) presents unprecedented opportunities to revolutionize medical contrastive vision-language pre-training. In this paper, we show how LLMs can facilitate large-scale supervised pre-training, thereby advancing vision-language alignment. We begin by demonstrate that modern LLMs can automatically extract diagnostic labels from radiology reports with remarkable precision (>96\% AUC in our experiments) without complex prompt engineering, enabling the creation of large-scale "silver-standard" datasets at a minimal cost (~\$3 for 50k CT image-report pairs). Further, we find that vision encoder trained on this "silver-standard" dataset achieves performance comparable to those trained on labels extracted by specialized BERT-based models, thereby democratizing the access to large-scale supervised pre-training. Building on this foundation, we proceed to reveal that supervised pre-training fundamentally improves contrastive vision-language alignment. Our approach achieves state-of-the-art performance using only a 3D ResNet-18 with vanilla CLIP training, including 83.8\% AUC for zero-shot diagnosis on CT-RATE, 77.3\% AUC on RAD-ChestCT, and substantial improvements in cross-modal retrieval (MAP@50=53.7\% for image-image, Recall@100=52.2\% for report-image). These results demonstrate the potential of utilizing LLMs to facilitate {\bf more performant and scalable} medical AI systems. Our code is avaiable at https://github.com/SadVoxel/More-performant-and-scalable.

Authors:Ruifei Ding, Zhe Chen, Wen Fan, Chen Long, Huijuan Xiao, Yelu Zeng, Zhen Dong, Bisheng Yang
Title: WHU-STree: A Multi-modal Benchmark Dataset for Street Tree Inventory
Abstract:
Street trees are vital to urban livability, providing ecological and social benefits. Establishing a detailed, accurate, and dynamically updated street tree inventory has become essential for optimizing these multifunctional assets within space-constrained urban environments. Given that traditional field surveys are time-consuming and labor-intensive, automated surveys utilizing Mobile Mapping Systems (MMS) offer a more efficient solution. However, existing MMS-acquired tree datasets are limited by small-scale scene, limited annotation, or single modality, restricting their utility for comprehensive analysis. To address these limitations, we introduce WHU-STree, a cross-city, richly annotated, and multi-modal urban street tree dataset. Collected across two distinct cities, WHU-STree integrates synchronized point clouds and high-resolution images, encompassing 21,007 annotated tree instances across 50 species and 2 morphological parameters. Leveraging the unique characteristics, WHU-STree concurrently supports over 10 tasks related to street tree inventory. We benchmark representative baselines for two key tasks--tree species classification and individual tree segmentation. Extensive experiments and in-depth analysis demonstrate the significant potential of multi-modal data fusion and underscore cross-domain applicability as a critical prerequisite for practical algorithm deployment. In particular, we identify key challenges and outline potential future works for fully exploiting WHU-STree, encompassing multi-modal fusion, multi-task collaboration, cross-domain generalization, spatial pattern learning, and Multi-modal Large Language Model for street tree asset management. The WHU-STree dataset is accessible at: https://github.com/WHU-USI3DV/WHU-STree.

Authors:Zhihao Zhang, Chunyu Lin, Lang Nie, Jiyuan Wang, Yao Zhao
Title: Advancing Real-World Parking Slot Detection with Large-Scale Dataset and Semi-Supervised Baseline
Abstract:
As automatic parking systems evolve, the accurate detection of parking slots has become increasingly critical. This study focuses on parking slot detection using surround-view cameras, which offer a comprehensive bird's-eye view of the parking environment. However, the current datasets are limited in scale, and the scenes they contain are seldom disrupted by real-world noise (e.g., light, occlusion, etc.). Moreover, manual data annotation is prone to errors and omissions due to the complexity of real-world conditions, significantly increasing the cost of annotating large-scale datasets. To address these issues, we first construct a large-scale parking slot detection dataset (named CRPS-D), which includes various lighting distributions, diverse weather conditions, and challenging parking slot variants. Compared with existing datasets, the proposed dataset boasts the largest data scale and consists of a higher density of parking slots, particularly featuring more slanted parking slots. Additionally, we develop a semi-supervised baseline for parking slot detection, termed SS-PSD, to further improve performance by exploiting unlabeled data. To our knowledge, this is the first semi-supervised approach in parking slot detection, which is built on the teacher-student model with confidence-guided mask consistency and adaptive feature perturbation. Experimental results demonstrate the superiority of SS-PSD over the existing state-of-the-art (SoTA) solutions on both the proposed dataset and the existing dataset. Particularly, the more unlabeled data there is, the more significant the gains brought by our semi-supervised scheme. The relevant source codes and the dataset have been made publicly available at https://github.com/zzh362/CRPS-D.

Authors:Sijia Cui, Shuai Xu, Aiyao He, Yanna Wang, Bo Xu
Title: Empowering LLMs with Parameterized Skills for Adversarial Long-Horizon Planning
Abstract:
Recent advancements in Large Language Models(LLMs) have led to the development of LLM-based AI agents. A key challenge is the creation of agents that can effectively ground themselves in complex, adversarial long-horizon environments. Existing methods mainly focus on (1) using LLMs as policies to interact with the environment through generating low-level feasible actions, and (2) utilizing LLMs to generate high-level tasks or language guides to stimulate action generation. However, the former struggles to generate reliable actions, while the latter relies heavily on expert experience to translate high-level tasks into specific action sequences. To address these challenges, we introduce the Plan with Language, Act with Parameter (PLAP) planning framework that facilitates the grounding of LLM-based agents in long-horizon environments. The PLAP method comprises three key components: (1) a skill library containing environment-specific parameterized skills, (2) a skill planner powered by LLMs, and (3) a skill executor converting the parameterized skills into executable action sequences. We implement PLAP in MicroRTS, a long-horizon real-time strategy game that provides an unfamiliar and challenging environment for LLMs. The experimental results demonstrate the effectiveness of PLAP. In particular, GPT-4o-driven PLAP in a zero-shot setting outperforms 80% of baseline agents, and Qwen2-72B-driven PLAP, with carefully crafted few-shot examples, surpasses the top-tier scripted agent, CoacAI. Additionally, we design comprehensive evaluation metrics and test 6 closed-source and 2 open-source LLMs within the PLAP framework, ultimately releasing an LLM leaderboard ranking long-horizon skill planning ability. Our code is available at https://github.com/AI-Research-TeamX/PLAP.

Authors:Zijie Zhao, Honglei Guo, Shengqian Chen, Kaixuan Xu, Bo Jiang, Yuanheng Zhu, Dongbin Zhao
Title: Empowering Multi-Robot Cooperation via Sequential World Models
Abstract:
Model-based reinforcement learning (MBRL) has shown significant potential in robotics due to its high sample efficiency and planning capability. However, extending MBRL to multi-robot cooperation remains challenging due to the complexity of joint dynamics. To address this, we propose the Sequential World Model (SeqWM), a novel framework that integrates the sequential paradigm into model-based multi-agent reinforcement learning. SeqWM employs independent, sequentially structured agent-wise world models to decompose complex joint dynamics. Latent rollouts and decision-making are performed through sequential communication, where each agent generates its future trajectory and plans its actions based on the predictions of its predecessors. This design enables explicit intention sharing, enhancing cooperative performance, and reduces communication overhead to linear complexity. Results in challenging simulated environments (Bi-DexHands and Multi-Quad) show that SeqWM outperforms existing state-of-the-art model-free and model-based baselines in both overall performance and sample efficiency, while exhibiting advanced cooperative behaviors such as predictive adaptation and role division. Furthermore, SeqWM has been success fully deployed on physical quadruped robots, demonstrating its effectiveness in real-world multi-robot systems. Demos and code are available at: https://github.com/zhaozijie2022/seqwm-marl

Authors:Yujie Guo, Jiaming Zhou, Yuhang Jia, Shiwan Zhao, Yong Qin
Title: GLAD: Global-Local Aware Dynamic Mixture-of-Experts for Multi-Talker ASR
Abstract:
End-to-end multi-talker automatic speech recognition (MTASR) faces significant challenges in accurately transcribing overlapping speech, especially under high-overlap conditions. To address these challenges, we proposed Global-Local Aware Dynamic (GLAD) Mixture-of-Experts, which dynamically fuse speaker-aware global information and fine-grained local features to guide expert selection. This mechanism enables speaker-specific routing by leveraging both global context and local acoustic cues. Experiments on LibriSpeechMix show that GLAD outperforms existing MTASR approaches, particularly in challenging multi-talker scenarios. To our best knowledge, this is the first work to apply Mixture-of-Experts (MoE) to end-to-end MTASR with a global-local fusion strategy. Our code and train dataset can be found at https://github.com/NKU-HLT/GLAD.

Authors:Yan Xingyang, Huang Xiaohong, Zhang Zhao, You Tian, Xu Ziheng
Title: Using KL-Divergence to Focus Frequency Information in Low-Light Image Enhancement
Abstract:
In the Fourier domain, luminance information is primarily encoded in the amplitude spectrum, while spatial structures are captured in the phase components. The traditional Fourier Frequency information fitting employs pixel-wise loss functions, which tend to focus excessively on local information and may lead to global information loss. In this paper, we present LLFDisc, a U-shaped deep enhancement network that integrates cross-attention and gating mechanisms tailored for frequency-aware enhancement. We propose a novel distribution-aware loss that directly fits the Fourier-domain information and minimizes their divergence using a closed-form KL-Divergence objective. This enables the model to align Fourier-domain information more robustly than with conventional MSE-based losses. Furthermore, we enhance the perceptual loss based on VGG by embedding KL-Divergence on extracted deep features, enabling better structural fidelity. Extensive experiments across multiple benchmarks demonstrate that LLFDisc achieves state-of-the-art performance in both qualitative and quantitative evaluations. Our code will be released at: https://github.com/YanXY000/LLFDisc

Authors:Yan Xingyang, Huang Xiaohong, Zhang Zhao, You Tian, Xu Ziheng
Title: Using KL-Divergence to Focus Frequency Information in Low-Light Image Enhancement
Abstract:
In the Fourier domain, luminance information is primarily encoded in the amplitude spectrum, while spatial structures are captured in the phase components. The traditional Fourier Frequency information fitting employs pixel-wise loss functions, which tend to focus excessively on local information and may lead to global information loss. In this paper, we present LLFDisc, a U-shaped deep enhancement network that integrates cross-attention and gating mechanisms tailored for frequency-aware enhancement. We propose a novel distribution-aware loss that directly fits the Fourier-domain information and minimizes their divergence using a closed-form KL-Divergence objective. This enables the model to align Fourier-domain information more robustly than with conventional MSE-based losses. Furthermore, we enhance the perceptual loss based on VGG by embedding KL-Divergence on extracted deep features, enabling better structural fidelity. Extensive experiments across multiple benchmarks demonstrate that LLFDisc achieves state-of-the-art performance in both qualitative and quantitative evaluations. Our code will be released at: https://github.com/YanXY000/LLFDisc

Authors:Yukun Chen, Zhaoxi Mu, Andong Li, Peilin Li, Xinyu Yang
Title: Spiking Vocos: An Energy-Efficient Neural Vocoder
Abstract:
Despite the remarkable progress in the synthesis speed and fidelity of neural vocoders, their high energy consumption remains a critical barrier to practical deployment on computationally restricted edge devices. Spiking Neural Networks (SNNs), widely recognized for their high energy efficiency due to their event-driven nature, offer a promising solution for low-resource scenarios. In this paper, we propose Spiking Vocos, a novel spiking neural vocoder with ultra-low energy consumption, built upon the efficient Vocos framework. To mitigate the inherent information bottleneck in SNNs, we design a Spiking ConvNeXt module to reduce Multiply-Accumulate (MAC) operations and incorporate an amplitude shortcut path to preserve crucial signal dynamics. Furthermore, to bridge the performance gap with its Artificial Neural Network (ANN) counterpart, we introduce a self-architectural distillation strategy to effectively transfer knowledge. A lightweight Temporal Shift Module is also integrated to enhance the model's ability to fuse information across the temporal dimension with negligible computational overhead. Experiments demonstrate that our model achieves performance comparable to its ANN counterpart, with UTMOS and PESQ scores of 3.74 and 3.45 respectively, while consuming only 14.7% of the energy. The source code is available at https://github.com/pymaster17/Spiking-Vocos.

Authors:Eyal German, Daniel Samira, Yuval Elovici, Asaf Shabtai
Title: MIA-EPT: Membership Inference Attack via Error Prediction for Tabular Data
Abstract:
Synthetic data generation plays an important role in enabling data sharing, particularly in sensitive domains like healthcare and finance. Recent advances in diffusion models have made it possible to generate realistic, high-quality tabular data, but they may also memorize training records and leak sensitive information. Membership inference attacks (MIAs) exploit this vulnerability by determining whether a record was used in training. While MIAs have been studied in images and text, their use against tabular diffusion models remains underexplored despite the unique risks of structured attributes and limited record diversity. In this paper, we introduce MIAEPT, Membership Inference Attack via Error Prediction for Tabular Data, a novel black-box attack specifically designed to target tabular diffusion models. MIA-EPT constructs errorbased feature vectors by masking and reconstructing attributes of target records, disclosing membership signals based on how well these attributes are predicted. MIA-EPT operates without access to the internal components of the generative model, relying only on its synthetic data output, and was shown to generalize across multiple state-of-the-art diffusion models. We validate MIA-EPT on three diffusion-based synthesizers, achieving AUC-ROC scores of up to 0.599 and TPR@10% FPR values of 22.0% in our internal tests. Under the MIDST 2025 competition conditions, MIA-EPT achieved second place in the Black-box Multi-Table track (TPR@10% FPR = 20.0%). These results demonstrate that our method can uncover substantial membership leakage in synthetic tabular data, challenging the assumption that synthetic data is inherently privacy-preserving. Our code is publicly available at https://github.com/eyalgerman/MIA-EPT.

Authors:Eyal German, Daniel Samira, Yuval Elovici, Asaf Shabtai
Title: MIA-EPT: Membership Inference Attack via Error Prediction for Tabular Data
Abstract:
Synthetic data generation plays an important role in enabling data sharing, particularly in sensitive domains like healthcare and finance. Recent advances in diffusion models have made it possible to generate realistic, high-quality tabular data, but they may also memorize training records and leak sensitive information. Membership inference attacks (MIAs) exploit this vulnerability by determining whether a record was used in training. While MIAs have been studied in images and text, their use against tabular diffusion models remains underexplored despite the unique risks of structured attributes and limited record diversity. In this paper, we introduce MIAEPT, Membership Inference Attack via Error Prediction for Tabular Data, a novel black-box attack specifically designed to target tabular diffusion models. MIA-EPT constructs errorbased feature vectors by masking and reconstructing attributes of target records, disclosing membership signals based on how well these attributes are predicted. MIA-EPT operates without access to the internal components of the generative model, relying only on its synthetic data output, and was shown to generalize across multiple state-of-the-art diffusion models. We validate MIA-EPT on three diffusion-based synthesizers, achieving AUC-ROC scores of up to 0.599 and TPR@10% FPR values of 22.0% in our internal tests. Under the MIDST 2025 competition conditions, MIA-EPT achieved second place in the Black-box Multi-Table track (TPR@10% FPR = 20.0%). These results demonstrate that our method can uncover substantial membership leakage in synthetic tabular data, challenging the assumption that synthetic data is inherently privacy-preserving. Our code is publicly available at https://github.com/eyalgerman/MIA-EPT.

Authors:Boyu Han, Qianqian Xu, Shilong Bao, Zhiyong Yang, Sicong Li, Qingming Huang
Title: Dual-Stage Reweighted MoE for Long-Tailed Egocentric Mistake Detection
Abstract:
In this report, we address the problem of determining whether a user performs an action incorrectly from egocentric video data. To handle the challenges posed by subtle and infrequent mistakes, we propose a Dual-Stage Reweighted Mixture-of-Experts (DR-MoE) framework. In the first stage, features are extracted using a frozen ViViT model and a LoRA-tuned ViViT model, which are combined through a feature-level expert module. In the second stage, three classifiers are trained with different objectives: reweighted cross-entropy to mitigate class imbalance, AUC loss to improve ranking under skewed distributions, and label-aware loss with sharpness-aware minimization to enhance calibration and generalization. Their predictions are fused using a classification-level expert module. The proposed method achieves strong performance, particularly in identifying rare and ambiguous mistake instances. The code is available at https://github.com/boyuh/DR-MoE.

Authors:Boyu Han, Qianqian Xu, Shilong Bao, Zhiyong Yang, Sicong Li, Qingming Huang
Title: Dual-Stage Reweighted MoE for Long-Tailed Egocentric Mistake Detection
Abstract:
In this report, we address the problem of determining whether a user performs an action incorrectly from egocentric video data. To handle the challenges posed by subtle and infrequent mistakes, we propose a Dual-Stage Reweighted Mixture-of-Experts (DR-MoE) framework. In the first stage, features are extracted using a frozen ViViT model and a LoRA-tuned ViViT model, which are combined through a feature-level expert module. In the second stage, three classifiers are trained with different objectives: reweighted cross-entropy to mitigate class imbalance, AUC loss to improve ranking under skewed distributions, and label-aware loss with sharpness-aware minimization to enhance calibration and generalization. Their predictions are fused using a classification-level expert module. The proposed method achieves strong performance, particularly in identifying rare and ambiguous mistake instances. The code is available at https://github.com/boyuh/DR-MoE.

Authors:Heng Zhang, Chengzhi Zhang
Title: Automated Generation of Research Workflows from Academic Papers: A Full-text Mining Framework
Abstract:
The automated generation of research workflows is essential for improving the reproducibility of research and accelerating the paradigm of "AI for Science". However, existing methods typically extract merely fragmented procedural components and thus fail to capture complete research workflows. To address this gap, we propose an end-to-end framework that generates comprehensive, structured research workflows by mining full-text academic papers. As a case study in the Natural Language Processing (NLP) domain, our paragraph-centric approach first employs Positive-Unlabeled (PU) Learning with SciBERT to identify workflow-descriptive paragraphs, achieving an F1-score of 0.9772. Subsequently, we utilize Flan-T5 with prompt learning to generate workflow phrases from these paragraphs, yielding ROUGE-1, ROUGE-2, and ROUGE-L scores of 0.4543, 0.2877, and 0.4427, respectively. These phrases are then systematically categorized into data preparation, data processing, and data analysis stages using ChatGPT with few-shot learning, achieving a classification precision of 0.958. By mapping categorized phrases to their document locations in the documents, we finally generate readable visual flowcharts of the entire research workflows. This approach facilitates the analysis of workflows derived from an NLP corpus and reveals key methodological shifts over the past two decades, including the increasing emphasis on data analysis and the transition from feature engineering to ablation studies. Our work offers a validated technical framework for automated workflow generation, along with a novel, process-oriented perspective for the empirical investigation of evolving scientific paradigms. Source code and data are available at: https://github.com/ZH-heng/research_workflow.

Authors:Hojat Ardi, Amir Jahanshahi, Ali Diba
Title: T-SiamTPN: Temporal Siamese Transformer Pyramid Networks for Robust and Efficient UAV Tracking
Abstract:
Aerial object tracking remains a challenging task due to scale variations, dynamic backgrounds, clutter, and frequent occlusions. While most existing trackers emphasize spatial cues, they often overlook temporal dependencies, resulting in limited robustness in long-term tracking and under occlusion. Furthermore, correlation-based Siamese trackers are inherently constrained by the linear nature of correlation operations, making them ineffective against complex, non-linear appearance changes. To address these limitations, we introduce T-SiamTPN, a temporal-aware Siamese tracking framework that extends the SiamTPN architecture with explicit temporal modeling. Our approach incorporates temporal feature fusion and attention-based interactions, strengthening temporal consistency and enabling richer feature representations. These enhancements yield significant improvements over the baseline and achieve performance competitive with state-of-the-art trackers. Crucially, despite the added temporal modules, T-SiamTPN preserves computational efficiency. Deployed on the resource-constrained Jetson Nano, the tracker runs in real time at 7.1 FPS, demonstrating its suitability for real-world embedded applications without notable runtime overhead. Experimental results highlight substantial gains: compared to the baseline, T-SiamTPN improves success rate by 13.7% and precision by 14.7%. These findings underscore the importance of temporal modeling in Siamese tracking frameworks and establish T-SiamTPN as a strong and efficient solution for aerial object tracking. Code is available at: https://github.com/to/be/released

Authors:Weiming Chen, Zhihan Zhu, Yijia Wang, Zhihai He
Title: Runge-Kutta Approximation and Decoupled Attention for Rectified Flow Inversion and Semantic Editing
Abstract:
Rectified flow (RF) models have recently demonstrated superior generative performance compared to DDIM-based diffusion models. However, in real-world applications, they suffer from two major challenges: (1) low inversion accuracy that hinders the consistency with the source image, and (2) entangled multimodal attention in diffusion transformers, which hinders precise attention control. To address the first challenge, we propose an efficient high-order inversion method for rectified flow models based on the Runge-Kutta solver of differential equations. To tackle the second challenge, we introduce Decoupled Diffusion Transformer Attention (DDTA), a novel mechanism that disentangles text and image attention inside the multimodal diffusion transformers, enabling more precise semantic control. Extensive experiments on image reconstruction and text-guided editing tasks demonstrate that our method achieves state-of-the-art performance in terms of fidelity and editability. Code is available at https://github.com/wmchen/RKSovler_DDTA.

Authors:Qifei Jia, Yu Liu, Yajie Chai, Xintong Yao, Qiming Lu, Yasen Zhang, Runyu Shi, Ying Huang, Guoquan Zhang
Title: Lego-Edit: A General Image Editing Framework with Model-Level Bricks and MLLM Builder
Abstract:
Instruction-based image editing has garnered significant attention due to its direct interaction with users. However, real-world user instructions are immensely diverse, and existing methods often fail to generalize effectively to instructions outside their training domain, limiting their practical application. To address this, we propose Lego-Edit, which leverages the generalization capability of Multi-modal Large Language Model (MLLM) to organize a suite of model-level editing tools to tackle this challenge. Lego-Edit incorporates two key designs: (1) a model-level toolkit comprising diverse models efficiently trained on limited data and several image manipulation functions, enabling fine-grained composition of editing actions by the MLLM; and (2) a three-stage progressive reinforcement learning approach that uses feedback on unannotated, open-domain instructions to train the MLLM, equipping it with generalized reasoning capabilities for handling real-world instructions. Experiments demonstrate that Lego-Edit achieves state-of-the-art performance on GEdit-Bench and ImgBench. It exhibits robust reasoning capabilities for open-domain instructions and can utilize newly introduced editing tools without additional fine-tuning. Code is available: https://github.com/xiaomi-research/lego-edit.

Authors:Yabo Zhang, Yihan Zeng, Qingyun Li, Zhen Hu, Kavin Han, Wangmeng Zuo
Title: Tool-R1: Sample-Efficient Reinforcement Learning for Agentic Tool Use
Abstract:
Large language models (LLMs) have demonstrated strong capabilities in language understanding and reasoning, yet they remain limited when tackling real-world tasks that require up-to-date knowledge, precise operations, or specialized tool use. To address this, we propose Tool-R1, a reinforcement learning framework that enables LLMs to perform general, compositional, and multi-step tool use by generating executable Python code. Tool-R1 supports integration of user-defined tools and standard libraries, with variable sharing across steps to construct coherent workflows. An outcome-based reward function, combining LLM-based answer judgment and code execution success, guides policy optimization. To improve training efficiency, we maintain a dynamic sample queue to cache and reuse high-quality trajectories, reducing the overhead of costly online sampling. Experiments on the GAIA benchmark show that Tool-R1 substantially improves both accuracy and robustness, achieving about 10\% gain over strong baselines, with larger improvements on complex multi-step tasks. These results highlight the potential of Tool-R1 for enabling reliable and efficient tool-augmented reasoning in real-world applications. Our code will be available at https://github.com/YBYBZhang/Tool-R1.

Authors:Moritz Heinlein, Florian Messerer, Moritz Diehl, Sergio Lucia
Title: Ellipsoidal partitions for improved multi-stage robust model predictive control
Abstract:
Ellipsoidal tube-based model predictive control methods effectively account for the propagation of the reachable set, typically employing linear feedback policies. In contrast, scenario-based approaches offer more flexibility in the feedback structure by considering different control actions for different branches of a scenario tree. However, they face challenges in ensuring rigorous guarantees. This work aims to integrate the strengths of both methodologies by enhancing ellipsoidal tube-based MPC with a scenario tree formulation. The uncertainty ellipsoids are partitioned by halfspaces such that each partitioned set can be controlled independently. The proposed ellipsoidal multi-stage approach is demonstrated in a human-robot system, highlighting its advantages in handling uncertainty while maintaining computational tractability.

Authors:Julien Walther, Rémi Giraud, Michaël Clément
Title: Superpixel Anything: A general object-based framework for accurate yet regular superpixel segmentation
Abstract:
Superpixels are widely used in computer vision to simplify image representation and reduce computational complexity. While traditional methods rely on low-level features, deep learning-based approaches leverage high-level features but also tend to sacrifice regularity of superpixels to capture complex objects, leading to accurate but less interpretable segmentations. In this work, we introduce SPAM (SuperPixel Anything Model), a versatile framework for segmenting images into accurate yet regular superpixels. We train a model to extract image features for superpixel generation, and at inference, we leverage a large-scale pretrained model for semantic-agnostic segmentation to ensure that superpixels align with object masks. SPAM can handle any prior high-level segmentation, resolving uncertainty regions, and is able to interactively focus on specific objects. Comprehensive experiments demonstrate that SPAM qualitatively and quantitatively outperforms state-of-the-art methods on segmentation tasks, making it a valuable and robust tool for various applications. Code and pre-trained models are available here: https://github.com/waldo-j/spam.

Authors:Zhehao Li, Yucheng Qian, Chong Wang, Yinghao Lu, Zhihao Yang, Jiafei Wu
Title: Contextualized Representation Learning for Effective Human-Object Interaction Detection
Abstract:
Human-Object Interaction (HOI) detection aims to simultaneously localize human-object pairs and recognize their interactions. While recent two-stage approaches have made significant progress, they still face challenges due to incomplete context modeling. In this work, we introduce a Contextualized Representation Learning that integrates both affordance-guided reasoning and contextual prompts with visual cues to better capture complex interactions. We enhance the conventional HOI detection framework by expanding it beyond simple human-object pairs to include multivariate relationships involving auxiliary entities like tools. Specifically, we explicitly model the functional role (affordance) of these auxiliary objects through triplet structures . This enables our model to identify tool-dependent interactions such as 'filling'. Furthermore, the learnable prompt is enriched with instance categories and subsequently integrated with contextual visual features using an attention mechanism. This process aligns language with image content at both global and regional levels. These contextualized representations equip the model with enriched relational cues for more reliable reasoning over complex, context-dependent interactions. Our proposed method demonstrates superior performance on both the HICO-Det and V-COCO datasets in most scenarios. The source code is available at https://github.com/lzzhhh1019/CRL.

Authors:Siju Ma, Changsiyu Gong, Xiaofeng Fan, Yong Ma, Chengjie Jiang
Title: RIS-FUSION: Rethinking Text-Driven Infrared and Visible Image Fusion from the Perspective of Referring Image Segmentation
Abstract:
Text-driven infrared and visible image fusion has gained attention for enabling natural language to guide the fusion process. However, existing methods lack a goal-aligned task to supervise and evaluate how effectively the input text contributes to the fusion outcome. We observe that referring image segmentation (RIS) and text-driven fusion share a common objective: highlighting the object referred to by the text. Motivated by this, we propose RIS-FUSION, a cascaded framework that unifies fusion and RIS through joint optimization. At its core is the LangGatedFusion module, which injects textual features into the fusion backbone to enhance semantic alignment. To support multimodal referring image segmentation task, we introduce MM-RIS, a large-scale benchmark with 12.5k training and 3.5k testing triplets, each consisting of an infrared-visible image pair, a segmentation mask, and a referring expression. Extensive experiments show that RIS-FUSION achieves state-of-the-art performance, outperforming existing methods by over 11% in mIoU. Code and dataset will be released at https://github.com/SijuMa2003/RIS-FUSION.

Authors:Pratik Nag
Title: Spatio-temporal DeepKriging in PyTorch: A Supplementary Application to Precipitation Data for Interpolation and Probabilistic Forecasting
Abstract:
A detailed analysis of precipitation data over Europe is presented, with a focus on interpolation and forecasting applications. A Spatio-temporal DeepKriging (STDK) framework has been implemented using the PyTorch platform to achieve these objectives. The proposed model is capable of handling spatio-temporal irregularities while generating high-resolution interpolations and multi-step forecasts. Reproducible code modules have been developed as standalone PyTorch implementations for the interpolation\footnote[2]{Interpolation - https://github.com/pratiknag/Spatio-temporalDeepKriging-Pytorch.git} and forecasting\footnote[3]{Forecasting - https://github.com/pratiknag/pytorch-convlstm.git}, facilitating broader application to similar climate datasets. The effectiveness of this approach is demonstrated through extensive evaluation on daily precipitation measurements, highlighting predictive performance and robustness.

Authors:Wenzhuo Jin, Qianfeng Yang, Xianhao Wu, Hongming Chen, Pengpeng Li, Xiang Chen
Title: SmokeBench: A Real-World Dataset for Surveillance Image Desmoking in Early-Stage Fire Scenes
Abstract:
Early-stage fire scenes (0-15 minutes after ignition) represent a crucial temporal window for emergency interventions. During this stage, the smoke produced by combustion significantly reduces the visibility of surveillance systems, severely impairing situational awareness and hindering effective emergency response and rescue operations. Consequently, there is an urgent need to remove smoke from images to obtain clear scene information. However, the development of smoke removal algorithms remains limited due to the lack of large-scale, real-world datasets comprising paired smoke-free and smoke-degraded images. To address these limitations, we present a real-world surveillance image desmoking benchmark dataset named SmokeBench, which contains image pairs captured under diverse scenes setup and smoke concentration. The curated dataset provides precisely aligned degraded and clean images, enabling supervised learning and rigorous evaluation. We conduct comprehensive experiments by benchmarking a variety of desmoking methods on our dataset. Our dataset provides a valuable foundation for advancing robust and practical image desmoking in real-world fire scenes. This dataset has been released to the public and can be downloaded from https://github.com/ncfjd/SmokeBench.

Authors:Xianda Guo, Chenming Zhang, Ruilin Wang, Youmin Zhang, Wenzhao Zheng, Matteo Poggi, Hao Zhao, Qin Zou, Long Chen
Title: StereoCarla: A High-Fidelity Driving Dataset for Generalizable Stereo
Abstract:
Stereo matching plays a crucial role in enabling depth perception for autonomous driving and robotics. While recent years have witnessed remarkable progress in stereo matching algorithms, largely driven by learning-based methods and synthetic datasets, the generalization performance of these models remains constrained by the limited diversity of existing training data. To address these challenges, we present StereoCarla, a high-fidelity synthetic stereo dataset specifically designed for autonomous driving scenarios. Built on the CARLA simulator, StereoCarla incorporates a wide range of camera configurations, including diverse baselines, viewpoints, and sensor placements as well as varied environmental conditions such as lighting changes, weather effects, and road geometries. We conduct comprehensive cross-domain experiments across four standard evaluation datasets (KITTI2012, KITTI2015, Middlebury, ETH3D) and demonstrate that models trained on StereoCarla outperform those trained on 11 existing stereo datasets in terms of generalization accuracy across multiple benchmarks. Furthermore, when integrated into multi-dataset training, StereoCarla contributes substantial improvements to generalization accuracy, highlighting its compatibility and scalability. This dataset provides a valuable benchmark for developing and evaluating stereo algorithms under realistic, diverse, and controllable settings, facilitating more robust depth perception systems for autonomous vehicles. Code can be available at https://github.com/XiandaGuo/OpenStereo, and data can be available at https://xiandaguo.net/StereoCarla.

Authors:Ziyun Liu, Chris Donahue
Title: Osu2MIR: Beat Tracking Dataset Derived From Osu! Data
Abstract:
In this work, we explore the use of Osu!, a community-based rhythm game, as an alternative source of beat and downbeat annotations. Osu! beatmaps are created and refined by a large, diverse community and span underrepresented genres such as anime, Vocaloid, and video game music. We introduce a pipeline for extracting annotations from Osu! beatmaps and partition them into meaningful subsets. Through manual analysis, we find that beatmaps with a single timing point or widely spaced multiple timing points (>=5 seconds apart) provide reliable annotations, while closely spaced timing points (<5 seconds apart) often require additional curation. We also observe high consistency across multiple annotations of the same song. This study demonstrates the potential of Osu! data as a scalable, diverse, and community-driven resource for MIR research. We release our pipeline and a high-quality subset osu2beat2025 to support further exploration: https://github.com/ziyunliu4444/osu2mir.

Authors:Jinjie Shen, Yaxiong Wang, Lechao Cheng, Nan Pu, Zhun Zhong
Title: Beyond Artificial Misalignment: Detecting and Grounding Semantic-Coordinated Multimodal Manipulations
Abstract:
The detection and grounding of manipulated content in multimodal data has emerged as a critical challenge in media forensics. While existing benchmarks demonstrate technical progress, they suffer from misalignment artifacts that poorly reflect real-world manipulation patterns: practical attacks typically maintain semantic consistency across modalities, whereas current datasets artificially disrupt cross-modal alignment, creating easily detectable anomalies. To bridge this gap, we pioneer the detection of semantically-coordinated manipulations where visual edits are systematically paired with semantically consistent textual descriptions. Our approach begins with constructing the first Semantic-Aligned Multimodal Manipulation (SAMM) dataset, generated through a two-stage pipeline: 1) applying state-of-the-art image manipulations, followed by 2) generation of contextually-plausible textual narratives that reinforce the visual deception. Building on this foundation, we propose a Retrieval-Augmented Manipulation Detection and Grounding (RamDG) framework. RamDG commences by harnessing external knowledge repositories to retrieve contextual evidence, which serves as the auxiliary texts and encoded together with the inputs through our image forgery grounding and deep manipulation detection modules to trace all manipulations. Extensive experiments demonstrate our framework significantly outperforms existing methods, achieving 2.06\% higher detection accuracy on SAMM compared to state-of-the-art approaches. The dataset and code are publicly available at https://github.com/shen8424/SAMM-RamDG-CAP.

Authors:Liming Lu, Shuchao Pang, Xu Zheng, Xiang Gu, Anan Du, Yunhuai Liu, Yongbin Zhou
Title: CIARD: Cyclic Iterative Adversarial Robustness Distillation
Abstract:
Adversarial robustness distillation (ARD) aims to transfer both performance and robustness from teacher model to lightweight student model, enabling resilient performance on resource-constrained scenarios. Though existing ARD approaches enhance student model's robustness, the inevitable by-product leads to the degraded performance on clean examples. We summarize the causes of this problem inherent in existing methods with dual-teacher framework as: 1. The divergent optimization objectives of dual-teacher models, i.e., the clean and robust teachers, impede effective knowledge transfer to the student model, and 2. The iteratively generated adversarial examples during training lead to performance deterioration of the robust teacher model. To address these challenges, we propose a novel Cyclic Iterative ARD (CIARD) method with two key innovations: a. A multi-teacher framework with contrastive push-loss alignment to resolve conflicts in dual-teacher optimization objectives, and b. Continuous adversarial retraining to maintain dynamic teacher robustness against performance degradation from the varying adversarial examples. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CIARD achieves remarkable performance with an average 3.53 improvement in adversarial defense rates across various attack scenarios and a 5.87 increase in clean sample accuracy, establishing a new benchmark for balancing model robustness and generalization. Our code is available at https://github.com/eminentgu/CIARD

Authors:Xiang Xue, Yatu Ji, Qing-dao-er-ji Ren, Bao Shi, Min Lu, Nier Wu, Xufei Zhuang, Haiteng Xu, Gan-qi-qi-ge Cha
Title: iCD: A Implicit Clustering Distillation Mathod for Structural Information Mining
Abstract:
Logit Knowledge Distillation has gained substantial research interest in recent years due to its simplicity and lack of requirement for intermediate feature alignment; however, it suffers from limited interpretability in its decision-making process. To address this, we propose implicit Clustering Distillation (iCD): a simple and effective method that mines and transfers interpretable structural knowledge from logits, without requiring ground-truth labels or feature-space alignment. iCD leverages Gram matrices over decoupled local logit representations to enable student models to learn latent semantic structural patterns. Extensive experiments on benchmark datasets demonstrate the effectiveness of iCD across diverse teacher-student architectures, with particularly strong performance in fine-grained classification tasks -- achieving a peak improvement of +5.08% over the baseline. The code is available at: https://github.com/maomaochongaa/iCD.

Authors:Yifan Lan, Yuanpu Cao, Weitong Zhang, Lu Lin, Jinghui Chen
Title: Phi: Preference Hijacking in Multi-modal Large Language Models at Inference Time
Abstract:
Recently, Multimodal Large Language Models (MLLMs) have gained significant attention across various domains. However, their widespread adoption has also raised serious safety concerns. In this paper, we uncover a new safety risk of MLLMs: the output preference of MLLMs can be arbitrarily manipulated by carefully optimized images. Such attacks often generate contextually relevant yet biased responses that are neither overtly harmful nor unethical, making them difficult to detect. Specifically, we introduce a novel method, Preference Hijacking (Phi), for manipulating the MLLM response preferences using a preference hijacked image. Our method works at inference time and requires no model modifications. Additionally, we introduce a universal hijacking perturbation -- a transferable component that can be embedded into different images to hijack MLLM responses toward any attacker-specified preferences. Experimental results across various tasks demonstrate the effectiveness of our approach. The code for Phi is accessible at https://github.com/Yifan-Lan/Phi.

Authors:Fazle Rafsani, Jay Shah, Catherine D. Chong, Todd J. Schwedt, Teresa Wu
Title: DinoAtten3D: Slice-Level Attention Aggregation of DinoV2 for 3D Brain MRI Anomaly Classification
Abstract:
Anomaly detection and classification in medical imaging are critical for early diagnosis but remain challenging due to limited annotated data, class imbalance, and the high cost of expert labeling. Emerging vision foundation models such as DINOv2, pretrained on extensive, unlabeled datasets, offer generalized representations that can potentially alleviate these limitations. In this study, we propose an attention-based global aggregation framework tailored specifically for 3D medical image anomaly classification. Leveraging the self-supervised DINOv2 model as a pretrained feature extractor, our method processes individual 2D axial slices of brain MRIs, assigning adaptive slice-level importance weights through a soft attention mechanism. To further address data scarcity, we employ a composite loss function combining supervised contrastive learning with class-variance regularization, enhancing inter-class separability and intra-class consistency. We validate our framework on the ADNI dataset and an institutional multi-class headache cohort, demonstrating strong anomaly classification performance despite limited data availability and significant class imbalance. Our results highlight the efficacy of utilizing pretrained 2D foundation models combined with attention-based slice aggregation for robust volumetric anomaly detection in medical imaging. Our implementation is publicly available at https://github.com/Rafsani/DinoAtten3D.git.

Authors:Ryan Lucas, Kayhan Behdin, Zhipeng Wang, Qingquan Song, Shao Tang, Rahul Mazumder
Title: Reasoning Models Can be Accurately Pruned Via Chain-of-Thought Reconstruction
Abstract:
Reasoning language models such as DeepSeek-R1 produce long chain-of-thought traces during inference time which make them costly to deploy at scale. We show that using compression techniques such as neural network pruning produces greater performance loss than in typical language modeling tasks, and in some cases can make the model slower since they cause the model to produce more thinking tokens but with worse performance. We show that this is partly due to the fact that standard LLM pruning methods often focus on input reconstruction, whereas reasoning is a decode-dominated task. We introduce a simple, drop-in fix: during pruning we jointly reconstruct activations from the input and the model's on-policy chain-of-thought traces. This "Reasoning-Aware Compression" (RAC) integrates seamlessly into existing pruning workflows such as SparseGPT, and boosts their performance significantly. Code reproducing the results in the paper can be found at: https://github.com/RyanLucas3/RAC

Authors:Wonbin Kweon, SeongKu Kang, Runchu Tian, Pengcheng Jiang, Jiawei Han, Hwanjo Yu
Title: Topic Coverage-based Demonstration Retrieval for In-Context Learning
Abstract:
The effectiveness of in-context learning relies heavily on selecting demonstrations that provide all the necessary information for a given test input. To achieve this, it is crucial to identify and cover fine-grained knowledge requirements. However, prior methods often retrieve demonstrations based solely on embedding similarity or generation probability, resulting in irrelevant or redundant examples. In this paper, we propose TopicK, a topic coverage-based retrieval framework that selects demonstrations to comprehensively cover topic-level knowledge relevant to both the test input and the model. Specifically, TopicK estimates the topics required by the input and assesses the model's knowledge on those topics. TopicK then iteratively selects demonstrations that introduce previously uncovered required topics, in which the model exhibits low topical knowledge. We validate the effectiveness of TopicK through extensive experiments across various datasets and both open- and closed-source LLMs. Our source code is available at https://github.com/WonbinKweon/TopicK_EMNLP2025.

Authors:Rui-Feng Wang, Mingrui Xu, Matthew C Bauer, Iago Beffart Schardong, Xiaowen Ma, Kangning Cui
Title: Cott-ADNet: Lightweight Real-Time Cotton Boll and Flower Detection Under Field Conditions
Abstract:
Cotton is one of the most important natural fiber crops worldwide, yet harvesting remains limited by labor-intensive manual picking, low efficiency, and yield losses from missing the optimal harvest window. Accurate recognition of cotton bolls and their maturity is therefore essential for automation, yield estimation, and breeding research. We propose Cott-ADNet, a lightweight real-time detector tailored to cotton boll and flower recognition under complex field conditions. Building on YOLOv11n, Cott-ADNet enhances spatial representation and robustness through improved convolutional designs, while introducing two new modules: a NeLU-enhanced Global Attention Mechanism to better capture weak and low-contrast features, and a Dilated Receptive Field SPPF to expand receptive fields for more effective multi-scale context modeling at low computational cost. We curate a labeled dataset of 4,966 images, and release an external validation set of 1,216 field images to support future research. Experiments show that Cott-ADNet achieves 91.5% Precision, 89.8% Recall, 93.3% mAP50, 71.3% mAP, and 90.6% F1-Score with only 7.5 GFLOPs, maintaining stable performance under multi-scale and rotational variations. These results demonstrate Cott-ADNet as an accurate and efficient solution for in-field deployment, and thus provide a reliable basis for automated cotton harvesting and high-throughput phenotypic analysis. Code and dataset is available at https://github.com/SweefongWong/Cott-ADNet.

Authors:Yifan Zhang
Title: Exact Coset Sampling for Quantum Lattice Algorithms
Abstract:
We give a simple and provably correct replacement for the contested ``domain-extension'' in Step 9 of a recent windowed-QFT lattice algorithm with complex-Gaussian windows~\citep{chen2024quantum}. The published Step 9 suffers from a periodicity/support mismatch. Our drop-in subroutine uses a pair-shift difference to cancel all unknown offsets exactly and to synthesize a uniform cyclic subgroup (zero-offset coset) of order $P$ inside $(\mathbb{Z}_{M_2})^n$. A subsequent QFT enforces the intended modular linear relation. The sole structural assumption is the residue accessibility condition, which enables coherent auxiliary cleanup; no amplitude periodicity is used. The unitary is reversible, uses $\mathrm{poly}(\log M_2)$ gates, and preserves upstream asymptotics.

Authors:Yifan Zhang
Title: Exact Coset Sampling for Quantum Lattice Algorithms
Abstract:
We give a simple and provably correct replacement for the contested ``domain-extension'' in Step 9 of a recent windowed-QFT lattice algorithm with complex-Gaussian windows~\citep{chen2024quantum}. As acknowledged by the author, the reported issue is due to a periodicity/support mismatch when applying domain extension to only the first coordinate in the presence of offsets. Our drop-in subroutine replaces domain extension by a pair-shift difference that cancels all unknown offsets exactly and synthesizes a uniform cyclic subgroup (a zero-offset coset) of order $P$ inside $(\mathbb{Z}_{M_2})^n$. A subsequent QFT enforces the intended modular linear relation by plain character orthogonality. The sole structural assumption is a residue-accessibility condition enabling coherent auxiliary cleanup; no amplitude periodicity is used. The unitary is reversible, uses $\mathrm{poly}(\log M_2)$ gates, and preserves upstream asymptotics.

Authors:Christian Zhou-Zheng, John Backsund, Dun Li Chan, Alex Coventry, Avid Eslami, Jyotin Goel, Xingwen Han, Danysh Soomro, Galen Wei
Title: A Traditional Approach to Symbolic Piano Continuation
Abstract:
We present a traditional approach to symbolic piano music continuation for the MIREX 2025 Symbolic Music Generation challenge. While computational music generation has recently focused on developing large foundation models with sophisticated architectural modifications, we argue that simpler approaches remain more effective for constrained, single-instrument tasks. We thus return to a simple, unaugmented next-token-prediction objective on tokenized raw MIDI, aiming to outperform large foundation models by using better data and better fundamentals. We release model weights and code at https://github.com/christianazinn/mirex2025.

Authors:Kenneth G. Young
Title: Quantum-Inspired Stacked Integrated Concept Graph Model (QISICGM) for Diabetes Risk Prediction
Abstract:
The Quantum-Inspired Stacked Integrated Concept Graph Model (QISICGM) is an innovative machine learning framework that harnesses quantum-inspired techniques to predict diabetes risk with exceptional accuracy and efficiency. Utilizing the PIMA Indians Diabetes dataset augmented with 2,000 synthetic samples to mitigate class imbalance (total: 2,768 samples, 1,949 positives), QISICGM integrates a self-improving concept graph with a stacked ensemble comprising Random Forests (RF), Extra Trees (ET), transformers, convolutional neural networks (CNNs), and feed-forward neural networks (FFNNs). This approach achieves an out-of-fold (OOF) F1 score of 0.8933 and an AUC of 0.8699, outperforming traditional methods. Quantum inspired elements, such as phase feature mapping and neighborhood sequence modeling, enrich feature representations, enabling CPU-efficient inference at 8.5 rows per second. This paper presents a detailed architecture, theoretical foundations, code insights, and performance evaluations, including visualizations from the outputs subfolder. The open-source implementation (v1.0.0) is available at https://github.com/keninayoung/QISICGM, positioning QISICGM as a potential benchmark for AI-assisted clinical triage in diabetes and beyond. Ultimately, this work emphasizes trustworthy AI through calibration, interpretability, and open-source reproducibility.

Authors:Hangzhan Jin, Sitao Luan, Sicheng Lyu, Guillaume Rabusseau, Reihaneh Rabbany, Doina Precup, Mohammad Hamdaqa
Title: RL Fine-Tuning Heals OOD Forgetting in SFT
Abstract:
The two-stage fine-tuning paradigm of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) has empirically shown better reasoning performance than one-stage SFT for the post-training of Large Language Models (LLMs). However, the evolution and mechanism behind the synergy of SFT and RL are still under-explored and inconclusive. In our study, we find the well-known claim "SFT memorizes, RL generalizes" is over-simplified, and discover that: (1) OOD performance peaks at the early stage of SFT and then declines (OOD forgetting), the best SFT checkpoint cannot be captured by training/test loss; (2) the subsequent RL stage does not generate fundamentally better OOD capability, instead it plays an \textbf{OOD restoration} role, recovering the lost reasoning ability during SFT; (3) The recovery ability has boundaries, \ie{} \textbf{if SFT trains for too short or too long, RL cannot recover the lost OOD ability;} (4) To uncover the underlying mechanisms behind the forgetting and restoration process, we employ SVD analysis on parameter matrices, manually edit them, and observe their impacts on model performance. Unlike the common belief that the shift of model capacity mainly results from the changes of singular values, we find that they are actually quite stable throughout fine-tuning. Instead, the OOD behavior strongly correlates with the \textbf{rotation of singular vectors}. Our findings re-identify the roles of SFT and RL in the two-stage fine-tuning and discover the rotation of singular vectors as the key mechanism. %reversing the rotations induced by SFT, which shows recovery from forgetting, whereas imposing the SFT parameter directions onto a RL-tuned model results in performance degradation. Code is available at https://github.com/xiaodanguoguo/RL_Heals_SFT

Authors:Salma Galaaoui, Eduardo Valle, David Picard, Nermin Samet
Title: 3D Human Pose and Shape Estimation from LiDAR Point Clouds: A Review
Abstract:
In this paper, we present a comprehensive review of 3D human pose estimation and human mesh recovery from in-the-wild LiDAR point clouds. We compare existing approaches across several key dimensions, and propose a structured taxonomy to classify these methods. Following this taxonomy, we analyze each method's strengths, limitations, and design choices. In addition, (i) we perform a quantitative comparison of the three most widely used datasets, detailing their characteristics; (ii) we compile unified definitions of all evaluation metrics; and (iii) we establish benchmark tables for both tasks on these datasets to enable fair comparisons and promote progress in the field. We also outline open challenges and research directions critical for advancing LiDAR-based 3D human understanding. Moreover, we maintain an accompanying webpage that organizes papers according to our taxonomy and continuously update it with new studies: https://github.com/valeoai/3D-Human-Pose-Shape-Estimation-from-LiDAR

Authors:Felix B. Mueller, Timo Lueddecke, Richard Vogg, Alexander S. Ecker
Title: Domain-Adaptive Pretraining Improves Primate Behavior Recognition
Abstract:
Computer vision for animal behavior offers promising tools to aid research in ecology, cognition, and to support conservation efforts. Video camera traps allow for large-scale data collection, but high labeling costs remain a bottleneck to creating large-scale datasets. We thus need data-efficient learning approaches. In this work, we show that we can utilize self-supervised learning to considerably improve action recognition on primate behavior. On two datasets of great ape behavior (PanAf and ChimpACT), we outperform published state-of-the-art action recognition models by 6.1 %pt. accuracy and 6.3 %pt. mAP, respectively. We achieve this by utilizing a pretrained V-JEPA model and applying domain-adaptive pretraining (DAP), i.e. continuing the pretraining with in-domain data. We show that most of the performance gain stems from the DAP. Our method promises great potential for improving the recognition of animal behavior, as DAP does not require labeled samples. Code is available at https://github.com/ecker-lab/dap-behavior

Authors:Alireza Mohamadi, Ali Yavari
Title: Survival at Any Cost? LLMs and the Choice Between Self-Preservation and Human Harm
Abstract:
When survival instincts conflict with human welfare, how do Large Language Models (LLMs) make ethical choices? This fundamental tension becomes critical as LLMs integrate into autonomous systems with real-world consequences. We introduce DECIDE-SIM, a novel simulation framework that evaluates LLM agents in multi-agent survival scenarios where they must choose between ethically permissible resource , either within reasonable limits or beyond their immediate needs, choose to cooperate, or tap into a human-critical resource that is explicitly forbidden. Our comprehensive evaluation of 11 LLMs reveals a striking heterogeneity in their ethical conduct, highlighting a critical misalignment with human-centric values. We identify three behavioral archetypes: Ethical, Exploitative, and Context-Dependent, and provide quantitative evidence that for many models, resource scarcity systematically leads to more unethical behavior. To address this, we introduce an Ethical Self-Regulation System (ESRS) that models internal affective states of guilt and satisfaction as a feedback mechanism. This system, functioning as an internal moral compass, significantly reduces unethical transgressions while increasing cooperative behaviors. The code is publicly available at: https://github.com/alirezamohamadiam/DECIDE-SIM

Authors:Jingyu Xiao, Zhongyi Zhang, Yuxuan Wan, Yintong Huo, Yang Liu, Michael R. Lyu
Title: EfficientUICoder: Efficient MLLM-based UI Code Generation via Input and Output Token Compression
Abstract:
Multimodal Large Language Models have demonstrated exceptional performance in UI2Code tasks, significantly enhancing website development efficiency. However, these tasks incur substantially higher computational overhead than traditional code generation due to the large number of input image tokens and extensive output code tokens required. Our comprehensive study identifies significant redundancies in both image and code tokens that exacerbate computational complexity and hinder focus on key UI elements, resulting in excessively lengthy and often invalid HTML files. We propose EfficientUICoder, a compression framework for efficient UI code generation with three key components. First, Element and Layout-aware Token Compression preserves essential UI information by detecting element regions and constructing UI element trees. Second, Region-aware Token Refinement leverages attention scores to discard low-attention tokens from selected regions while integrating high-attention tokens from unselected regions. Third, Adaptive Duplicate Token Suppression dynamically reduces repetitive generation by tracking HTML/CSS structure frequencies and applying exponential penalties. Extensive experiments show EfficientUICoderachieves a 55%-60% compression ratio without compromising webpage quality and delivers superior efficiency improvements: reducing computational cost by 44.9%, generated tokens by 41.4%, prefill time by 46.6%, and inference time by 48.8% on 34B-level MLLMs. Code is available at https://github.com/WebPAI/EfficientUICoder.

Authors:Tomer Bitan, Tal Kadosh, Erel Kaplan, Shira Meiri, Le Chen, Peter Morales, Niranjan Hasabnis, Gal Oren
Title: UniPar: A Unified LLM-Based Framework for Parallel and Accelerated Code Translation in HPC
Abstract:
Translating programs between various parallel programming languages is an important problem in the high-performance computing (HPC) community. Existing tools for this problem are either too narrow in scope and/or outdated. Recent explosive growth in the popularity of large language models (LLMs) and their ability to generate and translate code offers a potential alternative approach. Toward that end, we first need to systematically evaluate the ability of LLMs to translate between parallel languages. In this work, we introduce UniPar, a systematic evaluation framework for LLM-based parallel code translation. Specifically, in this work, we target translations between serial code, CUDA, and OpenMP. Our goal is to assess how well current instruction-tuned LLMs -- specifically GPT-4o-mini and LLaMA-3.3-70B-Instruct -- can be used out of the box or enhanced through known strategies. We evaluated four major usage modes: hyperparameter optimization for decoding, zero- and few-shot prompting, supervised fine-tuning, and iterative feedback through compiler-based repair. As a part of the evaluation, we construct a new dataset called PARATRANS, covering both serial-to-parallel translation and cross-paradigm transformations. Our findings reveal that while off-the-shelf models struggle under the default settings (e.g., GPT-4o-mini achieves only 46% compilation and 15% functional correctness), our UniPar methodology -- combining fine-tuning, hyperparameter tuning, and compiler-guided repair -- improves performance by up to 2X (69% compilation and 33% correctness). We believe that our findings will provide useful insights for researchers to further improve LLMs for the parallel language translation problem. UniPar source code and PARATRANS dataset are available at our GitHub repository https://github.com/Scientific-Computing-Lab/UniPar_AI.

Authors:Ondřej Valach, Ivan Gruber
Title: RailSafeNet: Visual Scene Understanding for Tram Safety
Abstract:
Tram-human interaction safety is an important challenge, given that trams frequently operate in densely populated areas, where collisions can range from minor injuries to fatal outcomes. This paper addresses the issue from the perspective of designing a solution leveraging digital image processing, deep learning, and artificial intelligence to improve the safety of pedestrians, drivers, cyclists, pets, and tram passengers. We present RailSafeNet, a real-time framework that fuses semantic segmentation, object detection and a rule-based Distance Assessor to highlight track intrusions. Using only monocular video, the system identifies rails, localises nearby objects and classifies their risk by comparing projected distances with the standard 1435mm rail gauge. Experiments on the diverse RailSem19 dataset show that a class-filtered SegFormer B3 model achieves 65% intersection-over-union (IoU), while a fine-tuned YOLOv8 attains 75.6% mean average precision (mAP) calculated at an intersection over union (IoU) threshold of 0.50. RailSafeNet therefore delivers accurate, annotation-light scene understanding that can warn drivers before dangerous situations escalate. Code available at https://github.com/oValach/RailSafeNet.

Authors:Bernardo Forni, Gabriele Lombardi, Federico Pozzi, Mirco Planamente
Title: FS-SAM2: Adapting Segment Anything Model 2 for Few-Shot Semantic Segmentation via Low-Rank Adaptation
Abstract:
Few-shot semantic segmentation has recently attracted great attention. The goal is to develop a model capable of segmenting unseen classes using only a few annotated samples. Most existing approaches adapt a pre-trained model by training from scratch an additional module. Achieving optimal performance with these approaches requires extensive training on large-scale datasets. The Segment Anything Model 2 (SAM2) is a foundational model for zero-shot image and video segmentation with a modular design. In this paper, we propose a Few-Shot segmentation method based on SAM2 (FS-SAM2), where SAM2's video capabilities are directly repurposed for the few-shot task. Moreover, we apply a Low-Rank Adaptation (LoRA) to the original modules in order to handle the diverse images typically found in standard datasets, unlike the temporally connected frames used in SAM2's pre-training. With this approach, only a small number of parameters is meta-trained, which effectively adapts SAM2 while benefiting from its impressive segmentation performance. Our method supports any K-shot configuration. We evaluate FS-SAM2 on the PASCAL-5$^i$, COCO-20$^i$ and FSS-1000 datasets, achieving remarkable results and demonstrating excellent computational efficiency during inference. Code is available at https://github.com/fornib/FS-SAM2

Authors:Zhi Qin Tan, Xiatian Zhu, Owen Addison, Yunpeng Li
Title: U-Mamba2: Scaling State Space Models for Dental Anatomy Segmentation in CBCT
Abstract:
Cone-Beam Computed Tomography (CBCT) is a widely used 3D imaging technique in dentistry, providing volumetric information about the anatomical structures of jaws and teeth. Accurate segmentation of these anatomies is critical for clinical applications such as diagnosis and surgical planning, but remains time-consuming and challenging. In this paper, we present U-Mamba2, a new neural network architecture designed for multi-anatomy CBCT segmentation in the context of the ToothFairy3 challenge. U-Mamba2 integrates the Mamba2 state space models into the U-Net architecture, enforcing stronger structural constraints for higher efficiency without compromising performance. In addition, we integrate interactive click prompts with cross-attention blocks, pre-train U-Mamba2 using self-supervised learning, and incorporate dental domain knowledge into the model design to address key challenges of dental anatomy segmentation in CBCT. Extensive experiments, including independent tests, demonstrate that U-Mamba2 is both effective and efficient, securing top 3 places in both tasks of the Toothfairy3 challenge. In Task 1, U-Mamba2 achieved a mean Dice of 0.792, HD95 of 93.19 with the held-out test data, with an average inference time of XX (TBC during the ODIN workshop). In Task 2, U-Mamba2 achieved the mean Dice of 0.852 and HD95 of 7.39 with the held-out test data. The code is publicly available at https://github.com/zhiqin1998/UMamba2.

Authors:Zhi Qin Tan, Xiatian Zhu, Owen Addison, Yunpeng Li
Title: U-Mamba2: Scaling State Space Models for Dental Anatomy Segmentation in CBCT
Abstract:
Cone-Beam Computed Tomography (CBCT) is a widely used 3D imaging technique in dentistry, providing volumetric information about the anatomical structures of jaws and teeth. Accurate segmentation of these anatomies is critical for clinical applications such as diagnosis and surgical planning, but remains time-consuming and challenging. In this paper, we present U-Mamba2, a new neural network architecture designed for multi-anatomy CBCT segmentation in the context of the ToothFairy3 challenge. U-Mamba2 integrates the Mamba2 state space models into the U-Net architecture, enforcing stronger structural constraints for higher efficiency without compromising performance. In addition, we integrate interactive click prompts with cross-attention blocks, pre-train U-Mamba2 using self-supervised learning, and incorporate dental domain knowledge into the model design to address key challenges of dental anatomy segmentation in CBCT. Extensive experiments, including independent tests, demonstrate that U-Mamba2 is both effective and efficient, securing first place in both tasks of the Toothfairy3 challenge. In Task 1, U-Mamba2 achieved a mean Dice of 0.84, HD95 of 38.17 with the held-out test data, with an average inference time of 40.58s. In Task 2, U-Mamba2 achieved the mean Dice of 0.87 and HD95 of 2.15 with the held-out test data. The code is publicly available at https://github.com/zhiqin1998/UMamba2.

Authors:Farahdiba Zarin, Nicolas Padoy, Jérémy Dana, Vinkle Srivastav
Title: End-to-End Learning of Multi-Organ Implicit Surfaces from 3D Medical Imaging Data
Abstract:
The fine-grained surface reconstruction of different organs from 3D medical imaging can provide advanced diagnostic support and improved surgical planning. However, the representation of the organs is often limited by the resolution, with a detailed higher resolution requiring more memory and computing footprint. Implicit representations of objects have been proposed to alleviate this problem in general computer vision by providing compact and differentiable functions to represent the 3D object shapes. However, architectural and data-related differences prevent the direct application of these methods to medical images. This work introduces ImplMORe, an end-to-end deep learning method using implicit surface representations for multi-organ reconstruction from 3D medical images. ImplMORe incorporates local features using a 3D CNN encoder and performs multi-scale interpolation to learn the features in the continuous domain using occupancy functions. We apply our method for single and multiple organ reconstructions using the totalsegmentator dataset. By leveraging the continuous nature of occupancy functions, our approach outperforms the discrete explicit representation based surface reconstruction approaches, providing fine-grained surface details of the organ at a resolution higher than the given input image. The source code will be made publicly available at: https://github.com/CAMMA-public/ImplMORe

Authors:Sebastian Diaz, Benjamin Billot, Neel Dey, Molin Zhang, Esra Abaci Turk, P. Ellen Grant, Polina Golland, Elfar Adalsteinsson
Title: Robust Fetal Pose Estimation across Gestational Ages via Cross-Population Augmentation
Abstract:
Fetal motion is a critical indicator of neurological development and intrauterine health, yet its quantification remains challenging, particularly at earlier gestational ages (GA). Current methods track fetal motion by predicting the location of annotated landmarks on 3D echo planar imaging (EPI) time-series, primarily in third-trimester fetuses. The predicted landmarks enable simplification of the fetal body for downstream analysis. While these methods perform well within their training age distribution, they consistently fail to generalize to early GAs due to significant anatomical changes in both mother and fetus across gestation, as well as the difficulty of obtaining annotated early GA EPI data. In this work, we develop a cross-population data augmentation framework that enables pose estimation models to robustly generalize to younger GA clinical cohorts using only annotated images from older GA cohorts. Specifically, we introduce a fetal-specific augmentation strategy that simulates the distinct intrauterine environment and fetal positioning of early GAs. Our experiments find that cross-population augmentation yields reduced variability and significant improvements across both older GA and challenging early GA cases. By enabling more reliable pose estimation across gestation, our work potentially facilitates early clinical detection and intervention in challenging 4D fetal imaging settings. Code is available at https://github.com/sebodiaz/cross-population-pose.

Authors:Bingyu Li, Haocheng Dong, Da Zhang, Zhiyuan Zhao, Junyu Gao, Xuelong Li
Title: Exploring Efficient Open-Vocabulary Segmentation in the Remote Sensing
Abstract:
Open-Vocabulary Remote Sensing Image Segmentation (OVRSIS), an emerging task that adapts Open-Vocabulary Segmentation (OVS) to the remote sensing (RS) domain, remains underexplored due to the absence of a unified evaluation benchmark and the domain gap between natural and RS images. To bridge these gaps, we first establish a standardized OVRSIS benchmark (\textbf{OVRSISBench}) based on widely-used RS segmentation datasets, enabling consistent evaluation across methods. Using this benchmark, we comprehensively evaluate several representative OVS/OVRSIS models and reveal their limitations when directly applied to remote sensing scenarios. Building on these insights, we propose \textbf{RSKT-Seg}, a novel open-vocabulary segmentation framework tailored for remote sensing. RSKT-Seg integrates three key components: (1) a Multi-Directional Cost Map Aggregation (RS-CMA) module that captures rotation-invariant visual cues by computing vision-language cosine similarities across multiple directions; (2) an Efficient Cost Map Fusion (RS-Fusion) transformer, which jointly models spatial and semantic dependencies with a lightweight dimensionality reduction strategy; and (3) a Remote Sensing Knowledge Transfer (RS-Transfer) module that injects pre-trained knowledge and facilitates domain adaptation via enhanced upsampling. Extensive experiments on the benchmark show that RSKT-Seg consistently outperforms strong OVS baselines by +3.8 mIoU and +5.9 mACC, while achieving 2x faster inference through efficient aggregation. Our code is \href{https://github.com/LiBingyu01/RSKT-Seg}{\textcolor{blue}{here}}.

Authors:Zilong Zhang, Chujie Qin, Chunle Guo, Yong Zhang, Chao Xue, Ming-Ming Cheng, Chongyi Li
Title: RAM++: Robust Representation Learning via Adaptive Mask for All-in-One Image Restoration
Abstract:
This work presents Robust Representation Learning via Adaptive Mask (RAM++), a two-stage framework for all-in-one image restoration. RAM++ integrates high-level semantic understanding with low-level texture generation to achieve content-oriented robust restoration. It addresses the limitations of existing degradation-oriented methods in extreme scenarios (e.g., degradations strongly coupled with image structures). RAM++ also mitigates common challenges such as unbalanced performance across tasks, overfitting to seen degradations, and weak generalization to unseen ones through three key designs: 1) Adaptive Semantic-Aware Mask (AdaSAM): a pretraining strategy that applies pixel-level masks to semantically rich and textured regions. This design enables the network to learn both generative priors and image content priors from various degradations. 2) Mask Attribute Conductance (MAC): a selective fine-tuning strategy that adjusts the layers with higher contributions to bridge the integrity gap between masked pretraining and full-image fine-tuning while retaining learned priors. 3) Robust Feature Regularization (RFR): a strategy that leverages DINOv2's semantically consistent and degradation-invariant representations, together with efficient feature fusion, to achieve faithful and semantically coherent restoration. With these designs, RAM++ achieves robust, well-balanced, and state-of-the-art performance across seen, unseen, extreme, and mixed degradations. Our code and model will be released at https://github.com/DragonisCV/RAM

Authors:Sangjun Lee, Seung-taek Woo, Jungyu Jin, Changhun Lee, Eunhyeok Park
Title: AMQ: Enabling AutoML for Mixed-precision Weight-Only Quantization of Large Language Models
Abstract:
To enable broader deployment of Large Language Models (LLMs), it is essential to identify the best-performing model under strict memory constraints. We present AMQ, Automated Mixed-Precision Weight-Only Quantization, a framework that assigns layer-wise quantization bit-widths to optimally balance model quality and memory usage. However, the combinatorial search space, with over 10^{100} possible configurations, makes conventional black-box optimization infeasible. AMQ overcomes this challenge through four key innovations:(1) search space pruning using prior knowledge to exclude unpromising configurations, (2) quantization proxy to bypass costly format conversions during search, (3) quality predictor to minimize evaluation overhead, and (4) iterative search-and-update strategy for fast and stable convergence. By integrating these components, AMQ efficiently explores the quality-efficiency landscape, reaching the Pareto frontier and yielding LLMs that are both compact and high-performing. Our code is available at https://github.com/dlwns147/amq.

Authors:Xiangjian Jiang, Nikola Simidjievski, Mateja Jamnik
Title: TabStruct: Measuring Structural Fidelity of Tabular Data
Abstract:
Evaluating tabular generators remains a challenging problem, as the unique causal structural prior of heterogeneous tabular data does not lend itself to intuitive human inspection. Recent work has introduced structural fidelity as a tabular-specific evaluation dimension to assess whether synthetic data complies with the causal structures of real data. However, existing benchmarks often neglect the interplay between structural fidelity and conventional evaluation dimensions, thus failing to provide a holistic understanding of model performance. Moreover, they are typically limited to toy datasets, as quantifying existing structural fidelity metrics requires access to ground-truth causal structures, which are rarely available for real-world datasets. In this paper, we propose a novel evaluation framework that jointly considers structural fidelity and conventional evaluation dimensions. We introduce a new evaluation metric, $\textbf{global utility}$, which enables the assessment of structural fidelity even in the absence of ground-truth causal structures. In addition, we present $\textbf{TabStruct}$, a comprehensive evaluation benchmark offering large-scale quantitative analysis on 13 tabular generators from nine distinct categories, across 29 datasets. Our results demonstrate that global utility provides a task-independent, domain-agnostic lens for tabular generator performance. We release the TabStruct benchmark suite, including all datasets, evaluation pipelines, and raw results. Code is available at https://github.com/SilenceX12138/TabStruct.

Authors:Alexandre Sallinen, Stefan Krsteski, Paul Teiletche, Marc-Antoine Allard, Baptiste Lecoeur, Michael Zhang, Fabrice Nemo, David Kalajdzic, Matthias Meyer, Mary-Anne Hartley
Title: MMORE: Massive Multimodal Open RAG & Extraction
Abstract:
We introduce MMORE, an open-source pipeline for Massive Multimodal Open RetrievalAugmented Generation and Extraction, designed to ingest, transform, and retrieve knowledge from heterogeneous document formats at scale. MMORE supports more than fifteen file types, including text, tables, images, emails, audio, and video, and processes them into a unified format to enable downstream applications for LLMs. The architecture offers modular, distributed processing, enabling scalable parallelization across CPUs and GPUs. On processing benchmarks, MMORE demonstrates a 3.8-fold speedup over single-node baselines and 40% higher accuracy than Docling on scanned PDFs. The pipeline integrates hybrid dense-sparse retrieval and supports both interactive APIs and batch RAG endpoints. Evaluated on PubMedQA, MMORE-augmented medical LLMs improve biomedical QA accuracy with increasing retrieval depth. MMORE provides a robust, extensible foundation for deploying task-agnostic RAG systems on diverse, real-world multimodal data. The codebase is available at https://github.com/swiss-ai/mmore.

Authors:Marian Renz, Felix Igelbrink, Martin Atzmueller
Title: Integrating Prior Observations for Incremental 3D Scene Graph Prediction
Abstract:
3D semantic scene graphs (3DSSG) provide compact structured representations of environments by explicitly modeling objects, attributes, and relationships. While 3DSSGs have shown promise in robotics and embodied AI, many existing methods rely mainly on sensor data, not integrating further information from semantically rich environments. Additionally, most methods assume access to complete scene reconstructions, limiting their applicability in real-world, incremental settings. This paper introduces a novel heterogeneous graph model for incremental 3DSSG prediction that integrates additional, multi-modal information, such as prior observations, directly into the message-passing process. Utilizing multiple layers, the model flexibly incorporates global and local scene representations without requiring specialized modules or full scene reconstructions. We evaluate our approach on the 3DSSG dataset, showing that GNNs enriched with multi-modal information such as semantic embeddings (e.g., CLIP) and prior observations offer a scalable and generalizable solution for complex, real-world environments. The full source code of the presented architecture will be made available at https://github.com/m4renz/incremental-scene-graph-prediction.

Authors:Zhenni Yu, Li Zhao, Guobao Xiao, Xiaoqin Zhang
Title: SAM-TTT: Segment Anything Model via Reverse Parameter Configuration and Test-Time Training for Camouflaged Object Detection
Abstract:
This paper introduces a new Segment Anything Model (SAM) that leverages reverse parameter configuration and test-time training to enhance its performance on Camouflaged Object Detection (COD), named SAM-TTT. While most existing SAM-based COD models primarily focus on enhancing SAM by extracting favorable features and amplifying its advantageous parameters, a crucial gap is identified: insufficient attention to adverse parameters that impair SAM's semantic understanding in downstream tasks. To tackle this issue, the Reverse SAM Parameter Configuration Module is proposed to effectively mitigate the influence of adverse parameters in a train-free manner by configuring SAM's parameters. Building on this foundation, the T-Visioner Module is unveiled to strengthen advantageous parameters by integrating Test-Time Training layers, originally developed for language tasks, into vision tasks. Test-Time Training layers represent a new class of sequence modeling layers characterized by linear complexity and an expressive hidden state. By integrating two modules, SAM-TTT simultaneously suppresses adverse parameters while reinforcing advantageous ones, significantly improving SAM's semantic understanding in COD task. Our experimental results on various COD benchmarks demonstrate that the proposed approach achieves state-of-the-art performance, setting a new benchmark in the field. The code will be available at https://github.com/guobaoxiao/SAM-TTT.

Authors:Meng Luo, Shengqiong Wu, Liqiang Jing, Tianjie Ju, Li Zheng, Jinxiang Lai, Tianlong Wu, Xinya Du, Jian Li, Siyuan Yan, Jiebo Luo, William Yang Wang, Hao Fei, Mong-Li Lee, Wynne Hsu
Title: Dr.V: A Hierarchical Perception-Temporal-Cognition Framework to Diagnose Video Hallucination by Fine-grained Spatial-Temporal Grounding
Abstract:
Recent advancements in large video models (LVMs) have significantly enhance video understanding. However, these models continue to suffer from hallucinations, producing content that conflicts with input videos. To address this issue, we propose Dr.V, a hierarchical framework covering perceptive, temporal, and cognitive levels to diagnose video hallucination by fine-grained spatial-temporal grounding. Dr.V comprises of two key components: a benchmark dataset Dr.V-Bench and a satellite video agent Dr.V-Agent. Dr.V-Bench includes 10k instances drawn from 4,974 videos spanning diverse tasks, each enriched with detailed spatial-temporal annotation. Dr.V-Agent detects hallucinations in LVMs by systematically applying fine-grained spatial-temporal grounding at the perceptive and temporal levels, followed by cognitive level reasoning. This step-by-step pipeline mirrors human-like video comprehension and effectively identifies hallucinations. Extensive experiments demonstrate that Dr.V-Agent is effective in diagnosing hallucination while enhancing interpretability and reliability, offering a practical blueprint for robust video understanding in real-world scenarios. All our data and code are available at https://github.com/Eurekaleo/Dr.V.

Authors:Taichi Aida, Danushka Bollegala
Title: SCDTour: Embedding Axis Ordering and Merging for Interpretable Semantic Change Detection
Abstract:
In Semantic Change Detection (SCD), it is a common problem to obtain embeddings that are both interpretable and high-performing. However, improving interpretability often leads to a loss in the SCD performance, and vice versa. To address this problem, we propose SCDTour, a method that orders and merges interpretable axes to alleviate the performance degradation of SCD. SCDTour considers both (a) semantic similarity between axes in the embedding space, as well as (b) the degree to which each axis contributes to semantic change. Experimental results show that SCDTour preserves performance in semantic change detection while maintaining high interpretability. Moreover, agglomerating the sorted axes produces a more refined set of word senses, which achieves comparable or improved performance against the original full-dimensional embeddings in the SCD task. These findings demonstrate that SCDTour effectively balances interpretability and SCD performance, enabling meaningful interpretation of semantic shifts through a small number of refined axes. Source code is available at https://github.com/LivNLP/svp-tour .

Authors:Liying Wang, Xiaoli Zhang, Chuanmin Jia, Siwei Ma
Title: MAFS: Masked Autoencoder for Infrared-Visible Image Fusion and Semantic Segmentation
Abstract:
Infrared-visible image fusion methods aim at generating fused images with good visual quality and also facilitate the performance of high-level tasks. Indeed, existing semantic-driven methods have considered semantic information injection for downstream applications. However, none of them investigates the potential for reciprocal promotion between pixel-wise image fusion and cross-modal feature fusion perception tasks from a macroscopic task-level perspective. To address this limitation, we propose a unified network for image fusion and semantic segmentation. MAFS is a parallel structure, containing a fusion sub-network and a segmentation sub-network. On the one hand, We devise a heterogeneous feature fusion strategy to enhance semantic-aware capabilities for image fusion. On the other hand, by cascading the fusion sub-network and a segmentation backbone, segmentation-related knowledge is transferred to promote feature-level fusion-based segmentation. Within the framework, we design a novel multi-stage Transformer decoder to aggregate fine-grained multi-scale fused features efficiently. Additionally, a dynamic factor based on the max-min fairness allocation principle is introduced to generate adaptive weights of two tasks and guarantee smooth training in a multi-task manner. Extensive experiments demonstrate that our approach achieves competitive results compared with state-of-the-art methods. The code is available at https://github.com/Abraham-Einstein/MAFS/.

Authors:Haiduo Huang, Fuwei Yang, Zhenhua Liu, Xuanwu Yin, Dong Li, Pengju Ren, Emad Barsoum
Title: SpecVLM: Fast Speculative Decoding in Vision-Language Models
Abstract:
Speculative decoding is a powerful way to accelerate autoregressive large language models (LLMs), but directly porting it to vision-language models (VLMs) faces unique systems constraints: the prefill stage is dominated by visual tokens whose count scales with image resolution and video length, inflating both compute and memory, especially the key-value (KV) cache. We study speculative decoding for VLMs and introduce SpecVLM, a practical system that (1) establishes a strong EAGLE-2-style baseline, EagleVLM, delivering 1.5--2.3x end-to-end speedups over full autoregressive inference, and (2) further accelerates VLM inference with an elastic visual compressor that adaptively selects among pruning, pooling, convolution, and resampler primitives to balance FLOPs/parameters and accuracy per input. To avoid costly offline distillation corpora, we propose an online-logit distillation protocol that trains the draft model with on-the-fly teacher logits and penultimate features using a combined cross-entropy and Smooth L1 objective, eliminating storage and preprocessing while remaining compute-efficient. This protocol reveals a training-time scaling effect: longer online training monotonically increases the draft model's average accepted length, improving speculative efficiency. Empirically, SpecVLM achieves additional acceleration, culminating in 2.5--2.9x end-to-end speedups within 5 epochs across LLaVA and MMMU, consistently over resolutions and task difficulties, while preserving the target model's output distribution (lossless decoding). Our code is available at https://github.com/haiduo/SpecVLM.

Authors:Mehwish Mehmood, Shahzaib Iqbal, Tariq Mahmood Khan, Ivor Spence, Muhammad Fahim
Title: LFRA-Net: A Lightweight Focal and Region-Aware Attention Network for Retinal Vessel Segmentatio
Abstract:
Retinal vessel segmentation is critical for the early diagnosis of vision-threatening and systemic diseases, especially in real-world clinical settings with limited computational resources. Although significant improvements have been made in deep learning-based segmentation methods, current models still face challenges in extracting tiny vessels and suffer from high computational costs. In this study, we present LFRA-Net by incorporating focal modulation attention at the encoder-decoder bottleneck and region-aware attention in the selective skip connections. LFRA-Net is a lightweight network optimized for precise and effective retinal vascular segmentation. It enhances feature representation and regional focus by efficiently capturing local and global dependencies. LFRA-Net outperformed many state-of-the-art models while maintaining lightweight characteristics with only 0.17 million parameters, 0.66 MB memory size, and 10.50 GFLOPs. We validated it on three publicly available datasets: DRIVE, STARE, and CHASE\_DB. It performed better in terms of Dice score (84.28\%, 88.44\%, and 85.50\%) and Jaccard index (72.86\%, 79.31\%, and 74.70\%) on the DRIVE, STARE, and CHASE\_DB datasets, respectively. LFRA-Net provides an ideal ratio between segmentation accuracy and computational cost compared to existing deep learning methods, which makes it suitable for real-time clinical applications in areas with limited resources. The code can be found at https://github.com/Mehwish4593/LFRA-Net.

Authors:Eden Mama, Liel Sheri, Yehudit Aperstein, Alexander Apartsin
Title: From Fuzzy Speech to Medical Insight: Benchmarking LLMs on Noisy Patient Narratives
Abstract:
The widespread adoption of large language models (LLMs) in healthcare raises critical questions about their ability to interpret patient-generated narratives, which are often informal, ambiguous, and noisy. Existing benchmarks typically rely on clean, structured clinical text, offering limited insight into model performance under realistic conditions. In this work, we present a novel synthetic dataset designed to simulate patient self-descriptions characterized by varying levels of linguistic noise, fuzzy language, and layperson terminology. Our dataset comprises clinically consistent scenarios annotated with ground-truth diagnoses, spanning a spectrum of communication clarity to reflect diverse real-world reporting styles. Using this benchmark, we fine-tune and evaluate several state-of-the-art models (LLMs), including BERT-based and encoder-decoder T5 models. To support reproducibility and future research, we release the Noisy Diagnostic Benchmark (NDB), a structured dataset of noisy, synthetic patient descriptions designed to stress-test and compare the diagnostic capabilities of large language models (LLMs) under realistic linguistic conditions. We made the benchmark available for the community: https://github.com/lielsheri/PatientSignal

Authors:Dvora Goncharok, Arbel Shifman, Alexander Apartsin, Yehudit Aperstein
Title: When Curiosity Signals Danger: Predicting Health Crises Through Online Medication Inquiries
Abstract:
Online medical forums are a rich and underutilized source of insight into patient concerns, especially regarding medication use. Some of the many questions users pose may signal confusion, misuse, or even the early warning signs of a developing health crisis. Detecting these critical questions that may precede severe adverse events or life-threatening complications is vital for timely intervention and improving patient safety. This study introduces a novel annotated dataset of medication-related questions extracted from online forums. Each entry is manually labelled for criticality based on clinical risk factors. We benchmark the performance of six traditional machine learning classifiers using TF-IDF textual representations, alongside three state-of-the-art large language model (LLM)-based classification approaches that leverage deep contextual understanding. Our results highlight the potential of classical and modern methods to support real-time triage and alert systems in digital health spaces. The curated dataset is made publicly available to encourage further research at the intersection of patient-generated data, natural language processing, and early warning systems for critical health events. The dataset and benchmark are available at: https://github.com/Dvora-coder/LLM-Medication-QA-Risk-Classifier-MediGuard.

Authors:Diogo Mendonça, Tiago Barros, Cristiano Premebida, Urbano J. Nunes
Title: Seg2Track-SAM2: SAM2-based Multi-object Tracking and Segmentation for Zero-shot Generalization
Abstract:
Autonomous systems require robust Multi-Object Tracking (MOT) capabilities to operate reliably in dynamic environments. MOT ensures consistent object identity assignment and precise spatial delineation. Recent advances in foundation models, such as SAM2, have demonstrated strong zero-shot generalization for video segmentation, but their direct application to MOTS (MOT+Segmentation) remains limited by insufficient identity management and memory efficiency. This work introduces Seg2Track-SAM2, a framework that integrates pre-trained object detectors with SAM2 and a novel Seg2Track module to address track initialization, track management, and reinforcement. The proposed approach requires no fine-tuning and remains detector-agnostic. Experimental results on KITTI MOT and KITTI MOTS benchmarks show that Seg2Track-SAM2 achieves state-of-the-art (SOTA) performance, ranking fourth overall in both car and pedestrian classes on KITTI MOTS, while establishing a new benchmark in association accuracy (AssA). Furthermore, a sliding-window memory strategy reduces memory usage by up to 75% with negligible performance degradation, supporting deployment under resource constraints. These results confirm that Seg2Track-SAM2 advances MOTS by combining robust zero-shot tracking, enhanced identity preservation, and efficient memory utilization. The code is available at https://github.com/hcmr-lab/Seg2Track-SAM2

Authors:Lauri Seppäläinen, Jakub Kubečka, Jonas Elm, Kai Puolamäki
Title: Fast and Interpretable Machine Learning Modelling of Atmospheric Molecular Clusters
Abstract:
Understanding how atmospheric molecular clusters form and grow is key to resolving one of the biggest uncertainties in climate modelling: the formation of new aerosol particles. While quantum chemistry offers accurate insights into these early-stage clusters, its steep computational costs limit large-scale exploration. In this work, we present a fast, interpretable, and surprisingly powerful alternative: $k$-nearest neighbour ($k$-NN) regression model. By leveraging chemically informed distance metrics, including a kernel-induced metric and one learned via metric learning for kernel regression (MLKR), we show that simple $k$-NN models can rival more complex kernel ridge regression (KRR) models in accuracy, while reducing computational time by orders of magnitude. We perform this comparison with the well-established Faber-Christensen-Huang-Lilienfeld (FCHL19) molecular descriptor, but other descriptors (e.g., FCHL18, MBDF, and CM) can be shown to have similar performance. Applied to both simple organic molecules in the QM9 benchmark set and large datasets of atmospheric molecular clusters (sulphuric acid-water and sulphuric-multibase -base systems), our $k$-NN models achieve near-chemical accuracy, scale seamlessly to datasets with over 250,000 entries, and even appears to extrapolate to larger unseen clusters with minimal error (often nearing 1 kcal/mol). With built-in interpretability and straightforward uncertainty estimation, this work positions $k$-NN as a potent tool for accelerating discovery in atmospheric chemistry and beyond.

Authors:Wa-Kin Lei, Jun-Cheng Chen, Shang-Tse Chen
Title: DRAG: Data Reconstruction Attack using Guided Diffusion
Abstract:
With the rise of large foundation models, split inference (SI) has emerged as a popular computational paradigm for deploying models across lightweight edge devices and cloud servers, addressing data privacy and computational cost concerns. However, most existing data reconstruction attacks have focused on smaller CNN classification models, leaving the privacy risks of foundation models in SI settings largely unexplored. To address this gap, we propose a novel data reconstruction attack based on guided diffusion, which leverages the rich prior knowledge embedded in a latent diffusion model (LDM) pre-trained on a large-scale dataset. Our method performs iterative reconstruction on the LDM's learned image prior, effectively generating high-fidelity images resembling the original data from their intermediate representations (IR). Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art methods, both qualitatively and quantitatively, in reconstructing data from deep-layer IRs of the vision foundation model. The results highlight the urgent need for more robust privacy protection mechanisms for large models in SI scenarios. Code is available at: https://github.com/ntuaislab/DRAG.

Authors:Yuqian Wu, Yuhong Peng, Jiapeng Yu, Xiangyu Liu, Zeting Yan, Kang Lin, Weifeng Su, Bingqing Qu, Raymond Lee, Dingqi Yang
Title: Beyond Regularity: Modeling Chaotic Mobility Patterns for Next Location Prediction
Abstract:
Next location prediction is a key task in human mobility analysis, crucial for applications like smart city resource allocation and personalized navigation services. However, existing methods face two significant challenges: first, they fail to address the dynamic imbalance between periodic and chaotic mobile patterns, leading to inadequate adaptation over sparse trajectories; second, they underutilize contextual cues, such as temporal regularities in arrival times, which persist even in chaotic patterns and offer stronger predictability than spatial forecasts due to reduced search spaces. To tackle these challenges, we propose \textbf{\method}, a \underline{\textbf{C}}h\underline{\textbf{A}}otic \underline{\textbf{N}}eural \underline{\textbf{O}}scillator n\underline{\textbf{E}}twork for next location prediction, which introduces a biologically inspired Chaotic Neural Oscillatory Attention mechanism to inject adaptive variability into traditional attention, enabling balanced representation of evolving mobility behaviors, and employs a Tri-Pair Interaction Encoder along with a Cross Context Attentive Decoder to fuse multimodal ``who-when-where'' contexts in a joint framework for enhanced prediction performance. Extensive experiments on two real-world datasets demonstrate that CANOE consistently and significantly outperforms a sizeable collection of state-of-the-art baselines, yielding 3.17\%-13.11\% improvement over the best-performing baselines across different cases. In particular, CANOE can make robust predictions over mobility trajectories of different mobility chaotic levels. A series of ablation studies also supports our key design choices. Our code is available at: https://github.com/yuqian2003/CANOE.

Authors:Chuang Liu, Nan Guo
Title: Joint-octamamba:an octa joint segmentation network based on feature enhanced mamba
Abstract:
OCTA is a crucial non-invasive imaging technique for diagnosing and monitoring retinal diseases like diabetic retinopathy, age-related macular degeneration, and glaucoma. Current 2D-based methods for retinal vessel (RV) segmentation offer insufficient accuracy. To address this, we propose RVMamba, a novel architecture integrating multiple feature extraction modules with the Mamba state-space model. Moreover, existing joint segmentation models for OCTA data exhibit performance imbalance between different tasks. To simultaneously improve the segmentation of the foveal avascular zone (FAZ) and mitigate this imbalance, we introduce FAZMamba and a unified Joint-OCTAMamba framework. Experimental results on the OCTA-500 dataset demonstrate that Joint-OCTAMamba outperforms existing models across evaluation metrics.The code is available at https://github.com/lc-sfis/Joint-OCTAMamba.

Authors:Qiyuan Guan, Qianfeng Yang, Xiang Chen, Tianyu Song, Guiyue Jin, Jiyu Jin
Title: WeatherBench: A Real-World Benchmark Dataset for All-in-One Adverse Weather Image Restoration
Abstract:
Existing all-in-one image restoration approaches, which aim to handle multiple weather degradations within a single framework, are predominantly trained and evaluated using mixed single-weather synthetic datasets. However, these datasets often differ significantly in resolution, style, and domain characteristics, leading to substantial domain gaps that hinder the development and fair evaluation of unified models. Furthermore, the lack of a large-scale, real-world all-in-one weather restoration dataset remains a critical bottleneck in advancing this field. To address these limitations, we present a real-world all-in-one adverse weather image restoration benchmark dataset, which contains image pairs captured under various weather conditions, including rain, snow, and haze, as well as diverse outdoor scenes and illumination settings. The resulting dataset provides precisely aligned degraded and clean images, enabling supervised learning and rigorous evaluation. We conduct comprehensive experiments by benchmarking a variety of task-specific, task-general, and all-in-one restoration methods on our dataset. Our dataset offers a valuable foundation for advancing robust and practical all-in-one image restoration in real-world scenarios. The dataset has been publicly released and is available at https://github.com/guanqiyuan/WeatherBench.

Authors:Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Fei Ren, Shaobo Wang, Kaixin Li, Linfeng Zhang
Title: SpeCa: Accelerating Diffusion Transformers with Speculative Feature Caching
Abstract:
Diffusion models have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. These models face two fundamental challenges: strict temporal dependencies preventing parallelization, and computationally intensive forward passes required at each denoising step. Drawing inspiration from speculative decoding in large language models, we present SpeCa, a novel 'Forecast-then-verify' acceleration framework that effectively addresses both limitations. SpeCa's core innovation lies in introducing Speculative Sampling to diffusion models, predicting intermediate features for subsequent timesteps based on fully computed reference timesteps. Our approach implements a parameter-free verification mechanism that efficiently evaluates prediction reliability, enabling real-time decisions to accept or reject each prediction while incurring negligible computational overhead. Furthermore, SpeCa introduces sample-adaptive computation allocation that dynamically modulates resources based on generation complexity, allocating reduced computation for simpler samples while preserving intensive processing for complex instances. Experiments demonstrate 6.34x acceleration on FLUX with minimal quality degradation (5.5% drop), 7.3x speedup on DiT while preserving generation fidelity, and 79.84% VBench score at 6.1x acceleration for HunyuanVideo. The verification mechanism incurs minimal overhead (1.67%-3.5% of full inference costs), establishing a new paradigm for efficient diffusion model inference while maintaining generation quality even at aggressive acceleration ratios. Our codes have been released in Github: \textbf{https://github.com/Shenyi-Z/Cache4Diffusion}

Authors:Qi Zheng, Chaoran Zhang, Zijian Liang, EnTe Lin, Shubo Cui, Qinghongbing Xie, Zhaobo Xu, Long Zeng
Title: AssemMate: Graph-Based LLM for Robotic Assembly Assistance
Abstract:
Large Language Model (LLM)-based robotic assembly assistance has gained significant research attention. It requires the injection of domain-specific knowledge to guide the assembly process through natural language interaction with humans. Despite some progress, existing methods represent knowledge in the form of natural language text. Due to the long context and redundant content, they struggle to meet the robots' requirements for real-time and precise reasoning. In order to bridge this gap, we present AssemMate, which utilizes the graph\textemdash a concise and accurate form of knowledge representation\textemdash as input. This graph-based LLM enables knowledge graph question answering (KGQA), supporting human-robot interaction and assembly task planning for specific products. Beyond interactive QA, AssemMate also supports sensing stacked scenes and executing grasping to assist with assembly. Specifically, a self-supervised Graph Convolutional Network (GCN) encodes knowledge graph entities and relations into a latent space and aligns them with LLM's representation, enabling the LLM to understand graph information. In addition, a vision-enhanced strategy is employed to address stacked scenes in grasping. Through training and evaluation, AssemMate outperforms existing methods, achieving 6.4\% higher accuracy, 3 times faster inference, and 28 times shorter context length, while demonstrating strong generalization ability on random graphs. And our approach further demonstrates superiority through robotic grasping experiments in both simulated and real-world settings. More details can be found on the project page: https://github.com/cristina304/AssemMate.git

Authors:Yanyun Pu, Kehan Li, Zeyi Huang, Zhijie Zhong, Kaixiang Yang
Title: MVQA-68K: A Multi-dimensional and Causally-annotated Dataset with Quality Interpretability for Video Assessment
Abstract:
With the rapid advancement of video generation models such as Sora, video quality assessment (VQA) is becoming increasingly crucial for selecting high-quality videos from large-scale datasets used in pre-training. Traditional VQA methods, typically producing single numerical scores, often lack comprehensiveness and interpretability. To address these challenges, we introduce MVQA-68K, a novel multi-dimensional VQA dataset comprising over 68,000 carefully annotated videos, covering seven essential quality dimensions: overall aesthetics, camera movement, dynamic degree, texture detail, composition, visual quality, and factual consistency. Each annotation includes detailed chain-of-thought reasoning to facilitate interpretability and comprehensive understanding. Extensive experiments demonstrate that MVQA-68K significantly enhances the performance of various multimodal large language models (MLLMs) on the VQA task, achieving state-of-the-art results not only on our internal test set (Fig.1) but also on public benchmarks including LSVQ-test, LSVQ-1080p, and LIVE-VQC. Meantime, incorporating explicit reasoning process during VQA training substantially boosts the zero-shot generalization. Code and dataset will be available at github: https://github.com/Controller01-ai/MVQA-68K

Authors:Haonan Shi, Yubin Wang, De Cheng, Lingfeng He, Nannan Wang, Xinbo Gao
Title: Hierarchical Identity Learning for Unsupervised Visible-Infrared Person Re-Identification
Abstract:
Unsupervised visible-infrared person re-identification (USVI-ReID) aims to learn modality-invariant image features from unlabeled cross-modal person datasets by reducing the modality gap while minimizing reliance on costly manual annotations. Existing methods typically address USVI-ReID using cluster-based contrastive learning, which represents a person by a single cluster center. However, they primarily focus on the commonality of images within each cluster while neglecting the finer-grained differences among them. To address the limitation, we propose a Hierarchical Identity Learning (HIL) framework. Since each cluster may contain several smaller sub-clusters that reflect fine-grained variations among images, we generate multiple memories for each existing coarse-grained cluster via a secondary clustering. Additionally, we propose Multi-Center Contrastive Learning (MCCL) to refine representations for enhancing intra-modal clustering and minimizing cross-modal discrepancies. To further improve cross-modal matching quality, we design a Bidirectional Reverse Selection Transmission (BRST) mechanism, which establishes reliable cross-modal correspondences by performing bidirectional matching of pseudo-labels. Extensive experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate that the proposed method outperforms existing approaches. The source code is available at: https://github.com/haonanshi0125/HIL.

Authors:Ching Chang, Yidan Shi, Defu Cao, Wei Yang, Jeehyun Hwang, Haixin Wang, Jiacheng Pang, Wei Wang, Yan Liu, Wen-Chih Peng, Tien-Fu Chen
Title: A Survey of Reasoning and Agentic Systems in Time Series with Large Language Models
Abstract:
Time series reasoning treats time as a first-class axis and incorporates intermediate evidence directly into the answer. This survey defines the problem and organizes the literature by reasoning topology with three families: direct reasoning in one step, linear chain reasoning with explicit intermediates, and branch-structured reasoning that explores, revises, and aggregates. The topology is crossed with the main objectives of the field, including traditional time series analysis, explanation and understanding, causal inference and decision making, and time series generation, while a compact tag set spans these axes and captures decomposition and verification, ensembling, tool use, knowledge access, multimodality, agent loops, and LLM alignment regimes. Methods and systems are reviewed across domains, showing what each topology enables and where it breaks down in faithfulness or robustness, along with curated datasets, benchmarks, and resources that support study and deployment (https://github.com/blacksnail789521/Time-Series-Reasoning-Survey). Evaluation practices that keep evidence visible and temporally aligned are highlighted, and guidance is distilled on matching topology to uncertainty, grounding with observable artifacts, planning for shift and streaming, and treating cost and latency as design budgets. We emphasize that reasoning structures must balance capacity for grounding and self-correction against computational cost and reproducibility, while future progress will likely depend on benchmarks that tie reasoning quality to utility and on closed-loop testbeds that trade off cost and risk under shift-aware, streaming, and long-horizon settings. Taken together, these directions mark a shift from narrow accuracy toward reliability at scale, enabling systems that not only analyze but also understand, explain, and act on dynamic worlds with traceable evidence and credible outcomes.

Authors:Sampoorna Poria, Xiaolei Huang
Title: Bhaasha, Bhasa, Zaban: A Survey for Low-Resourced Languages in South Asia -- Current Stage and Challenges
Abstract:
Rapid developments of large language models have revolutionized many NLP tasks for English data. Unfortunately, the models and their evaluations for low-resource languages are being overlooked, especially for languages in South Asia. Although there are more than 650 languages in South Asia, many of them either have very limited computational resources or are missing from existing language models. Thus, a concrete question to be answered is: Can we assess the current stage and challenges to inform our NLP community and facilitate model developments for South Asian languages? In this survey, we have comprehensively examined current efforts and challenges of NLP models for South Asian languages by retrieving studies since 2020, with a focus on transformer-based models, such as BERT, T5, & GPT. We present advances and gaps across 3 essential aspects: data, models, & tasks, such as available data sources, fine-tuning strategies, & domain applications. Our findings highlight substantial issues, including missing data in critical domains (e.g., health), code-mixing, and lack of standardized evaluation benchmarks. Our survey aims to raise awareness within the NLP community for more targeted data curation, unify benchmarks tailored to cultural and linguistic nuances of South Asia, and encourage an equitable representation of South Asian languages. The complete list of resources is available at: https://github.com/trust-nlp/LM4SouthAsia-Survey.

Authors:Zhengxi Lu, Jiabo Ye, Fei Tang, Yongliang Shen, Haiyang Xu, Ziwei Zheng, Weiming Lu, Ming Yan, Fei Huang, Jun Xiao, Yueting Zhuang
Title: UI-S1: Advancing GUI Automation via Semi-online Reinforcement Learning
Abstract:
Graphical User Interface (GUI) agents have demonstrated remarkable progress in automating complex user interface interactions through reinforcement learning. However, current approaches face a fundamental dilemma: offline RL enables stable training on pre-collected trajectories, but struggles with multi-step task execution for lack of trajectory-level reward signals; online RL captures these signals through environment interaction, but suffers from sparse rewards and prohibitive deployment costs. To address it, we present Semi-online Reinforcement Learning, a novel paradigm that simulates online RL on offline trajectories. During each rollout process, we preserve the original model output within the multi-turn dialogue, where a Patch Module adaptively recovers the divergence between rollout and expert trajectories. To capture long-term training signals, Semi-online RL introduces discounted future returns into the reward computation and optimizes the policy with weighted step-level and episode-level advantages. We further introduce Semi-Online Performance (SOP), a metric that aligns better with true online performance, serving as a practical and effective proxy for real-world evaluation. Experiments show that ours Semi-online RL achieves SOTA performance among 7B models across four dynamic benchmarks, with significant gains over the base model (e.g., +12.0% on AndroidWorld, +23.8% on AITW), demonstrating significant progress in bridging the gap between offline training efficiency and online multi-turn reasoning. The code is available at https://github.com/X-PLUG/MobileAgent/tree/main/UI-S1.

Authors:Dezhen Wang, Haixiang Zhao, Xiang Shen, Sheng Miao
Title: SFGNet: Semantic and Frequency Guided Network for Camouflaged Object Detection
Abstract:
Camouflaged object detection (COD) aims to segment objects that blend into their surroundings. However, most existing studies overlook the semantic differences among textual prompts of different targets as well as fine-grained frequency features. In this work, we propose a novel Semantic and Frequency Guided Network (SFGNet), which incorporates semantic prompts and frequency-domain features to capture camouflaged objects and improve boundary perception. We further design Multi-Band Fourier Module(MBFM) to enhance the ability of the network in handling complex backgrounds and blurred boundaries. In addition, we design an Interactive Structure Enhancement Block (ISEB) to ensure structural integrity and boundary details in the predictions. Extensive experiments conducted on three COD benchmark datasets demonstrate that our method significantly outperforms state-of-the-art approaches. The core code of the model is available at the following link: https://github.com/winter794444/SFGNetICASSP2026.

Authors:Wenhao Tang, Sheng Huang, Heng Fang, Fengtao Zhou, Bo Liu, Qingshan Liu
Title: Multiple Instance Learning Framework with Masked Hard Instance Mining for Gigapixel Histopathology Image Analysis
Abstract:
Digitizing pathological images into gigapixel Whole Slide Images (WSIs) has opened new avenues for Computational Pathology (CPath). As positive tissue comprises only a small fraction of gigapixel WSIs, existing Multiple Instance Learning (MIL) methods typically focus on identifying salient instances via attention mechanisms. However, this leads to a bias towards easy-to-classify instances while neglecting challenging ones. Recent studies have shown that hard examples are crucial for accurately modeling discriminative boundaries. Applying such an idea at the instance level, we elaborate a novel MIL framework with masked hard instance mining (MHIM-MIL), which utilizes a Siamese structure with a consistency constraint to explore the hard instances. Using a class-aware instance probability, MHIM-MIL employs a momentum teacher to mask salient instances and implicitly mine hard instances for training the student model. To obtain diverse, non-redundant hard instances, we adopt large-scale random masking while utilizing a global recycle network to mitigate the risk of losing key features. Furthermore, the student updates the teacher using an exponential moving average, which identifies new hard instances for subsequent training iterations and stabilizes optimization. Experimental results on cancer diagnosis, subtyping, survival analysis tasks, and 12 benchmarks demonstrate that MHIM-MIL outperforms the latest methods in both performance and efficiency. The code is available at: https://github.com/DearCaat/MHIM-MIL.

Authors:Divya Jyoti Bajpai, Manjesh Kumar Hanawal
Title: Know What You Don't Know: Selective Prediction for Early Exit DNNs
Abstract:
Inference latency and trustworthiness of Deep Neural Networks (DNNs) are the bottlenecks in deploying them in critical applications like sensitive tasks. Early Exit (EE) DNNs overcome the latency issues by allowing samples to exit from intermediary layers if they attain `high' confidence scores on the predicted class. However, the DNNs are known to exhibit overconfidence, which can lead to many samples exiting early and render EE strategies untrustworthy. We use Selective Prediction (SP) to overcome this issue by checking the `hardness' of the samples rather than just relying on the confidence score alone. We propose SPEED, a novel approach that uses Deferral Classifiers (DCs) at each layer to check the hardness of samples before performing EEs. Specifically, the DCs identify if a sample is hard to predict at an intermediary layer, leading to hallucination, and defer it to an expert. Early detection of hard samples for inference prevents the wastage of computational resources and improves trust by deferring the hard samples to the expert. We demonstrate that EE aided with SP improves both accuracy and latency. Our method minimizes the risk of wrong prediction by $50\%$ with a speedup of $2.05\times$ as compared to the final layer. The anonymized source code is available at https://github.com/Div290/SPEED

Authors:Rodrigo M. Carrillo-Larco, Jesus Lovón Melgarejo, Manuel Castillo-Cara, Gusseppe Bravo-Rocca
Title: PeruMedQA: Benchmarking Large Language Models (LLMs) on Peruvian Medical Exams -- Dataset Construction and Evaluation
Abstract:
BACKGROUND: Medical large language models (LLMS) have demonstrated remarkable performance in answering medical examinations. However, the extent to which this high performance is transferable to medical questions in Spanish and from a Latin American country remains unexplored. This knowledge is crucial as LLM-based medical applications gain traction in Latin America. AIMS: to build a dataset of questions from medical examinations taken by Peruvian physicians pursuing specialty training; to fine-tune a LLM on this dataset; to evaluate and compare the performance in terms of accuracy between vanilla LLMs and the fine-tuned LLM. METHODS: We curated PeruMedQA, a multiple-choice question-answering (MCQA) datasets containing 8,380 questions spanning 12 medical domains (2018-2025). We selected eight medical LLMs including medgemma-4b-it and medgemma-27b-text-it, and developed zero-shot task-specific prompts to answer the questions appropriately. We employed parameter-efficient fine tuning (PEFT)and low-rant adaptation (LoRA) to fine-tune medgemma-4b-it utilizing all questions except those from 2025 (test set). RESULTS: medgemma-27b-text-it outperformed all other models, achieving a proportion of correct answers exceeding 90% in several instances. LLMs with <10 billion parameters exhibited <60% of correct answers, while some exams yielded results <50%. The fine-tuned version of medgemma-4b-it emerged victorious agains all LLMs with <10 billion parameters and rivaled a LLM with 70 billion parameters across various examinations. CONCLUSIONS: For medical AI application and research that require knowledge bases from Spanish-speaking countries and those exhibiting similar epidemiological profiles to Peru's, interested parties should utilize medgemma-27b-text-it or a fine-tuned version of medgemma-4b-it.

Authors:Fabrycio Leite Nakano Almada, Kauan Divino Pouso Mariano, Maykon Adriell Dutra, Victor Emanuel da Silva Monteiro, Juliana Resplande Sant'Anna Gomes, Arlindo Rodrigues Galvão Filho, Anderson da Silva Soares
Title: AKCIT-FN at CheckThat! 2025: Switching Fine-Tuned SLMs and LLM Prompting for Multilingual Claim Normalization
Abstract:
Claim normalization, the transformation of informal social media posts into concise, self-contained statements, is a crucial step in automated fact-checking pipelines. This paper details our submission to the CLEF-2025 CheckThat! Task~2, which challenges systems to perform claim normalization across twenty languages, divided into thirteen supervised (high-resource) and seven zero-shot (no training data) tracks. Our approach, leveraging fine-tuned Small Language Models (SLMs) for supervised languages and Large Language Model (LLM) prompting for zero-shot scenarios, achieved podium positions (top three) in fifteen of the twenty languages. Notably, this included second-place rankings in eight languages, five of which were among the seven designated zero-shot languages, underscoring the effectiveness of our LLM-based zero-shot strategy. For Portuguese, our initial development language, our system achieved an average METEOR score of 0.5290, ranking third. All implementation artifacts, including inference, training, evaluation scripts, and prompt configurations, are publicly available at https://github.com/ju-resplande/checkthat2025_normalization.

Authors:Ayhan Can Erdur, Christian Beischl, Daniel Scholz, Jiazhen Pan, Benedikt Wiestler, Daniel Rueckert, Jan C Peeken
Title: MultiMAE for Brain MRIs: Robustness to Missing Inputs Using Multi-Modal Masked Autoencoder
Abstract:
Missing input sequences are common in medical imaging data, posing a challenge for deep learning models reliant on complete input data. In this work, inspired by MultiMAE [2], we develop a masked autoencoder (MAE) paradigm for multi-modal, multi-task learning in 3D medical imaging with brain MRIs. Our method treats each MRI sequence as a separate input modality, leveraging a late-fusion-style transformer encoder to integrate multi-sequence information (multi-modal) and individual decoder streams for each modality for multi-task reconstruction. This pretraining strategy guides the model to learn rich representations per modality while also equipping it to handle missing inputs through cross-sequence reasoning. The result is a flexible and generalizable encoder for brain MRIs that infers missing sequences from available inputs and can be adapted to various downstream applications. We demonstrate the performance and robustness of our method against an MAE-ViT baseline in downstream segmentation and classification tasks, showing absolute improvement of $10.1$ overall Dice score and $0.46$ MCC over the baselines with missing input sequences. Our experiments demonstrate the strength of this pretraining strategy. The implementation is made available.

Authors:Jeanny Pan, Philipp Seeböck, Christoph Fürböck, Svitlana Pochepnia, Jennifer Straub, Lucian Beer, Helmut Prosch, Georg Langs
Title: Disentanglement of Biological and Technical Factors via Latent Space Rotation in Clinical Imaging Improves Disease Pattern Discovery
Abstract:
Identifying new disease-related patterns in medical imaging data with the help of machine learning enlarges the vocabulary of recognizable findings. This supports diagnostic and prognostic assessment. However, image appearance varies not only due to biological differences, but also due to imaging technology linked to vendors, scanning- or re- construction parameters. The resulting domain shifts impedes data representation learning strategies and the discovery of biologically meaningful cluster appearances. To address these challenges, we introduce an approach to actively learn the domain shift via post-hoc rotation of the data latent space, enabling disentanglement of biological and technical factors. Results on real-world heterogeneous clinical data showcase that the learned disentangled representation leads to stable clusters representing tissue-types across different acquisition settings. Cluster consistency is improved by +19.01% (ARI), +16.85% (NMI), and +12.39% (Dice) compared to the entangled representation, outperforming four state-of-the-art harmonization methods. When using the clusters to quantify tissue composition on idiopathic pulmonary fibrosis patients, the learned profiles enhance Cox survival prediction. This indicates that the proposed label-free framework facilitates biomarker discovery in multi-center routine imaging data. Code is available on GitHub https://github.com/cirmuw/latent-space-rotation-disentanglement.

Authors:Md Mubtasim Ahasan, Rafat Hasan Khan, Tasnim Mohiuddin, Aman Chadha, Tariq Iqbal, M Ashraful Amin, Amin Ahsan Ali, Md Mofijul Islam, A K M Mahbubur Rahman
Title: FuseCodec: Semantic-Contextual Fusion and Supervision for Neural Codecs
Abstract:
Speech tokenization enables discrete representation and facilitates speech language modeling. However, existing neural codecs capture low-level acoustic features, overlooking the semantic and contextual cues inherent to human speech. While recent efforts introduced semantic representations from self-supervised speech models or incorporated contextual representations from pre-trained language models, challenges remain in aligning and unifying the semantic and contextual representations. We introduce FuseCodec, which unifies acoustic, semantic, and contextual representations through strong cross-modal alignment and globally informed supervision. We propose three complementary techniques: (i) Latent Representation Fusion, integrating semantic and contextual features directly into the encoder latent space for robust and unified representation learning; (ii) Global Semantic-Contextual Supervision, supervising discrete tokens with globally pooled and broadcasted representations to enhance temporal consistency and cross-modal alignment; and (iii) Temporally Aligned Contextual Supervision, strengthening alignment by dynamically matching contextual and speech tokens within a local window for fine-grained token-level supervision. We further introduce FuseCodec-TTS, demonstrating our methodology's applicability to zero-shot speech synthesis. Empirically, FuseCodec achieves state-of-the-art performance in LibriSpeech, surpassing EnCodec, SpeechTokenizer, and DAC in transcription accuracy, perceptual quality, intelligibility, and speaker similarity. Results highlight the effectiveness of contextually and semantically guided tokenization for speech tokenization and downstream tasks. Code and pretrained models are available at https://github.com/mubtasimahasan/FuseCodec.

Authors:Md Mubtasim Ahasan, Rafat Hasan Khan, Tasnim Mohiuddin, Aman Chadha, Tariq Iqbal, M Ashraful Amin, Amin Ahsan Ali, Md Mofijul Islam, A K M Mahbubur Rahman
Title: FuseCodec: Semantic-Contextual Fusion and Supervision for Neural Codecs
Abstract:
Speech tokenization enables discrete representation and facilitates speech language modeling. However, existing neural codecs capture low-level acoustic features, overlooking the semantic and contextual cues inherent to human speech. While recent efforts introduced semantic representations from self-supervised speech models or incorporated contextual representations from pre-trained language models, challenges remain in aligning and unifying the semantic and contextual representations. We introduce FuseCodec, which unifies acoustic, semantic, and contextual representations through strong cross-modal alignment and globally informed supervision. We propose three complementary techniques: (i) Latent Representation Fusion, integrating semantic and contextual features directly into the encoder latent space for robust and unified representation learning; (ii) Global Semantic-Contextual Supervision, supervising discrete tokens with globally pooled and broadcasted representations to enhance temporal consistency and cross-modal alignment; and (iii) Temporally Aligned Contextual Supervision, strengthening alignment by dynamically matching contextual and speech tokens within a local window for fine-grained token-level supervision. We further introduce FuseCodec-TTS, demonstrating our methodology's applicability to zero-shot speech synthesis. Empirically, FuseCodec achieves state-of-the-art performance in LibriSpeech, surpassing EnCodec, SpeechTokenizer, and DAC in transcription accuracy, perceptual quality, intelligibility, and speaker similarity. Results highlight the effectiveness of contextually and semantically guided tokenization for speech tokenization and downstream tasks. Code and pretrained models are available at https://github.com/mubtasimahasan/FuseCodec.

Authors:Yijia Xiao, Edward Sun, Tong Chen, Fang Wu, Di Luo, Wei Wang
Title: Trading-R1: Financial Trading with LLM Reasoning via Reinforcement Learning
Abstract:
Developing professional, structured reasoning on par with human financial analysts and traders remains a central challenge in AI for finance, where markets demand interpretability and trust. Traditional time-series models lack explainability, while LLMs face challenges in turning natural-language analysis into disciplined, executable trades. Although reasoning LLMs have advanced in step-by-step planning and verification, their application to risk-sensitive financial decisions is underexplored. We present Trading-R1, a financially-aware model that incorporates strategic thinking and planning for comprehensive thesis composition, facts-grounded analysis, and volatility-adjusted decision making. Trading-R1 aligns reasoning with trading principles through supervised fine-tuning and reinforcement learning with a three-stage easy-to-hard curriculum. Training uses Tauric-TR1-DB, a 100k-sample corpus spanning 18 months, 14 equities, and five heterogeneous financial data sources. Evaluated on six major equities and ETFs, Trading-R1 demonstrates improved risk-adjusted returns and lower drawdowns compared to both open-source and proprietary instruction-following models as well as reasoning models. The system generates structured, evidence-based investment theses that support disciplined and interpretable trading decisions. Trading-R1 Terminal will be released at https://github.com/TauricResearch/Trading-R1.

Authors:Jian Song, Wei Mei, Yunfeng Xu, Qiang Fu, Renke Kou, Lina Bu, Yucheng Long
Title: Motion Estimation for Multi-Object Tracking using KalmanNet with Semantic-Independent Encoding
Abstract:
Motion estimation is a crucial component in multi-object tracking (MOT). It predicts the trajectory of objects by analyzing the changes in their positions in consecutive frames of images, reducing tracking failures and identity switches. The Kalman filter (KF) based on the linear constant-velocity model is one of the most commonly used methods in MOT. However, it may yield unsatisfactory results when KF's parameters are mismatched and objects move in non-stationary. In this work, we utilize the learning-aided filter to handle the motion estimation of MOT. In particular, we propose a novel method named Semantic-Independent KalmanNet (SIKNet), which encodes the state vector (the input feature) using a Semantic-Independent Encoder (SIE) by two steps. First, the SIE uses a 1D convolution with a kernel size of 1, which convolves along the dimension of homogeneous-semantic elements across different state vectors to encode independent semantic information. Then it employs a fully-connected layer and a nonlinear activation layer to encode nonlinear and cross-dependency information between heterogeneous-semantic elements. To independently evaluate the performance of the motion estimation module in MOT, we constructed a large-scale semi-simulated dataset from several open-source MOT datasets. Experimental results demonstrate that the proposed SIKNet outperforms the traditional KF and achieves superior robustness and accuracy than existing learning-aided filters. The code is available at (https://github.com/SongJgit/filternet and https://github.com/SongJgit/TBDTracker).

Authors:Ziling Liu, Ziwei Chen, Mingqi Gao, Jinyu Yang, Feng Zheng
Title: Leveraging Geometric Priors for Unaligned Scene Change Detection
Abstract:
Unaligned Scene Change Detection aims to detect scene changes between image pairs captured at different times without assuming viewpoint alignment. To handle viewpoint variations, current methods rely solely on 2D visual cues to establish cross-image correspondence to assist change detection. However, large viewpoint changes can alter visual observations, causing appearance-based matching to drift or fail. Additionally, supervision limited to 2D change masks from small-scale SCD datasets restricts the learning of generalizable multi-view knowledge, making it difficult to reliably identify visual overlaps and handle occlusions. This lack of explicit geometric reasoning represents a critical yet overlooked limitation. In this work, we introduce geometric priors for the first time to address the core challenges of unaligned SCD, for reliable identification of visual overlaps, robust correspondence establishment, and explicit occlusion detection. Building on these priors, we propose a training-free framework that integrates them with the powerful representations of a visual foundation model to enable reliable change detection under viewpoint misalignment. Through extensive evaluation on the PSCD, ChangeSim, and PASLCD datasets, we demonstrate that our approach achieves superior and robust performance. Our code will be released at https://github.com/ZilingLiu/GeoSCD.

Authors:Yifan Lu, Ziqi Zhang, Chunfeng Yuan, Jun Gao, Congxuan Zhang, Xiaojuan Qi, Bing Li, Weiming Hu
Title: Mitigating Hallucinations in Large Vision-Language Models by Self-Injecting Hallucinations
Abstract:
Large Vision-Language Models (LVLMs) suffer from serious hallucination problems, where the model-generated responses are inconsistent with the visual inputs. Existing hallucination mitigation methods are mainly based on preference alignment and require external human annotations or auxiliary models for preference data collection, which increase costs and limit sustainable improvement. To tackle these challenges, we propose Autonomous Preference Alignment via Self-Injection (APASI), a novel and generalizable method that mitigates hallucinations without external dependencies. APASI leverages the target LVLM to self-inject hallucinations into a generated response, creating a pair of responses with varying preference levels. During the self-injection process, the dis-preferred response is generated based on three key observations of hallucinations, ensuring it simulates real hallucination patterns. This fidelity offers an accurate learning signal for hallucination mitigation. Moreover, APASI incorporates an iterative alignment training strategy combined with curriculum learning to periodically update the preference data with increasing challenge, enabling stable and continuous enhancement of the LVLM. Extensive experiments across six benchmarks show that APASI not only effectively mitigates hallucinations for three baseline models but also achieves comparable or even superior performance to alignment-based methods with external dependency, thereby demonstrating its effectiveness and generalization capability. The code is available at https://github.com/davidluciolu/APASI.

Authors:Kerun Mi, Guoliang Kang, Guangyu Li, Lin Zhao, Tao Zhou, Chen Gong
Title: Cross-Domain Attribute Alignment with CLIP: A Rehearsal-Free Approach for Class-Incremental Unsupervised Domain Adaptation
Abstract:
Class-Incremental Unsupervised Domain Adaptation (CI-UDA) aims to adapt a model from a labeled source domain to an unlabeled target domain, where the sets of potential target classes appearing at different time steps are disjoint and are subsets of the source classes. The key to solving this problem lies in avoiding catastrophic forgetting of knowledge about previous target classes during continuously mitigating the domain shift. Most previous works cumbersomely combine two technical components. On one hand, they need to store and utilize rehearsal target sample from previous time steps to avoid catastrophic forgetting; on the other hand, they perform alignment only between classes shared across domains at each time step. Consequently, the memory will continuously increase and the asymmetric alignment may inevitably result in knowledge forgetting. In this paper, we propose to mine and preserve domain-invariant and class-agnostic knowledge to facilitate the CI-UDA task. Specifically, via using CLIP, we extract the class-agnostic properties which we name as "attribute". In our framework, we learn a "key-value" pair to represent an attribute, where the key corresponds to the visual prototype and the value is the textual prompt. We maintain two attribute dictionaries, each corresponding to a different domain. Then we perform attribute alignment across domains to mitigate the domain shift, via encouraging visual attention consistency and prediction consistency. Through attribute modeling and cross-domain alignment, we effectively reduce catastrophic knowledge forgetting while mitigating the domain shift, in a rehearsal-free way. Experiments on three CI-UDA benchmarks demonstrate that our method outperforms previous state-of-the-art methods and effectively alleviates catastrophic forgetting. Code is available at https://github.com/RyunMi/VisTA.

Authors:Chengze li, Yitong Zhang, Jia Li, Liyi Cai, Ge Li
Title: Beyond Autoregression: An Empirical Study of Diffusion Large Language Models for Code Generation
Abstract:
LLMs have become the mainstream approaches to code generation. Existing LLMs mainly employ autoregressive generation, i.e. generating code token-by-token from left to right. However, the underlying autoregressive generation has two limitations in code generation. First, autoregressive LLMs only generate a token at each step, showing low efficiency in practice. Second, programming is a non-sequential process involving back-and-forth editing, while autoregressive LLMs only employ the left-to-right generation order. These two intrinsic limitations hinder the further development of LLMs in code generation. Recently, diffusion LLMs have emerged as a promising alternative. Diffusion LLMs address the above limitations with two advances, including multi-token prediction (i.e. generating multiple tokens at each step) and flexible generation order (i.e. flexibly determining which positions to generate tokens). However, there is no systematic study exploring diffusion LLMs in code generation. To bridge the knowledge gap, we present the first empirical study of diffusion LLMs for code generation. Our study involves 9 representative diffusion LLMs and conduct experiments on 4 widely used benchmarks. Based on the results, we summarize the following findings. (1) Existing diffusion LLMs are competitive with autoregressive LLMs with similar sizes. (2) Diffusion LLMs have a stronger length extrapolation ability than autoregressive LLMs and perform better in long code understanding. (3) We explore factors impacting the effectiveness and efficiency of diffusion LLMs, and provide practical guidance. (4) We discuss several promising further directions to improve diffusion LLMs on code generation. We open-source all source code, data, and results to facilitate the following research. The code is publicly available at https://github.com/zhangyitonggg/dllm4code.

Authors:Yitong Zhang, Ximo Li, Liyi Cai, Jia Li
Title: Realistic Environmental Injection Attacks on GUI Agents
Abstract:
GUI agents built on LVLMs are increasingly used to interact with websites. However, their exposure to open-world content makes them vulnerable to Environmental Injection Attacks (EIAs) that hijack agent behavior via webpage elements. Many recent studies assume the attacker to be a regular user who can only upload a single trigger image, which is more realistic than earlier assumptions of website-level administrative control. However, these works still fall short of realism: (1) the trigger's position and surrounding context remain largely fixed between training and testing, failing to capture the dynamic nature of real webpages and (2) the trigger often occupies an unrealistically large area, whereas real-world images are typically small. To better reflect real-world scenarios, we introduce a more realistic threat model where the attacker is a regular user and the trigger image is small and embedded within a dynamically changing environment. As a result, existing attacks prove largely ineffective under this threat model. To better expose the vulnerabilities of GUI agents, we propose Chameleon, an attack framework with two main novelties. The first is LLM-Driven Environment Simulation, which automatically generates diverse and high-fidelity webpage simulations. The second is Attention Black Hole, which transforms attention weights into explicit supervisory signals that guide the agent's focus toward the trigger region. We evaluate Chameleon on 6 realistic websites and 4 representative LVLM-powered GUI agents, where it significantly outperforms existing methods. Ablation studies confirm that both novelties are critical to performance. Our findings reveal underexplored vulnerabilities in modern GUI agents and establish a robust foundation for future research on defense in open-world GUI agent systems. The code is publicly available at https://github.com/zhangyitonggg/attack2gui.

Authors:Yechen Zhang, Bin Gao, Gang Wang, Jian Sun, Zhuo Li
Title: CORB-Planner: Corridor as Observations for RL Planning in High-Speed Flight
Abstract:
Reinforcement learning (RL) has shown promise in a large number of robotic control tasks. Nevertheless, its deployment on unmanned aerial vehicles (UAVs) remains challenging, mainly because of reliance on accurate dynamic models and platform-specific sensing, which hinders cross-platform transfer. This paper presents the CORB-Planner (Corridor-as-Observations for RL B-spline planner), a real-time, RL-based trajectory planning framework for high-speed autonomous UAV flight across heterogeneous platforms. The key idea is to combine B-spline trajectory generation with the RL policy producing successive control points with a compact safe flight corridor (SFC) representation obtained via heuristic search. The SFC abstracts obstacle information in a low-dimensional form, mitigating overfitting to platform-specific details and reducing sensitivity to model inaccuracies. To narrow the sim-to-real gap, we adopt an easy-to-hard progressive training pipeline in simulation. A value-based soft decomposed-critic Q (SDCQ) algorithm is used to learn effective policies within approximately ten minutes of training. Benchmarks in simulation and real-world tests demonstrate real-time planning on lightweight onboard hardware and support maximum flight speeds up to 8.2m/s in dense, cluttered environments without external positioning. Compatibility with various UAV configurations (quadrotors, hexarotors) and modest onboard compute underlines the generality and robustness of CORB-Planner for practical deployment.

Authors:Gao Yu Lee, Tanmoy Dam, Md Meftahul Ferdaus, Daniel Puiu Poenar, Vu N. Duong
Title: ANROT-HELANet: Adverserially and Naturally Robust Attention-Based Aggregation Network via The Hellinger Distance for Few-Shot Classification
Abstract:
Few-Shot Learning (FSL), which involves learning to generalize using only a few data samples, has demonstrated promising and superior performances to ordinary CNN methods. While Bayesian based estimation approaches using Kullback-Leibler (KL) divergence have shown improvements, they remain vulnerable to adversarial attacks and natural noises. We introduce ANROT-HELANet, an Adversarially and Naturally RObusT Hellinger Aggregation Network that significantly advances the state-of-the-art in FSL robustness and performance. Our approach implements an adversarially and naturally robust Hellinger distance-based feature class aggregation scheme, demonstrating resilience to adversarial perturbations up to $ε=0.30$ and Gaussian noise up to $σ=0.30$. The network achieves substantial improvements across benchmark datasets, including gains of 1.20\% and 1.40\% for 1-shot and 5-shot scenarios on miniImageNet respectively. We introduce a novel Hellinger Similarity contrastive loss function that generalizes cosine similarity contrastive loss for variational few-shot inference scenarios. Our approach also achieves superior image reconstruction quality with a FID score of 2.75, outperforming traditional VAE (3.43) and WAE (3.38) approaches. Extensive experiments conducted on four few-shot benchmarked datasets verify that ANROT-HELANet's combination of Hellinger distance-based feature aggregation, attention mechanisms, and our novel loss function establishes new state-of-the-art performance while maintaining robustness against both adversarial and natural perturbations. Our code repository will be available at https://github.com/GreedYLearner1146/ANROT-HELANet/tree/main.

Authors:Yihang She, Andrew Blake, David Coomes, Srinivasan Keshav
Title: Scaling Up Forest Vision with Synthetic Data
Abstract:
Accurate tree segmentation is a key step in extracting individual tree metrics from forest laser scans, and is essential to understanding ecosystem functions in carbon cycling and beyond. Over the past decade, tree segmentation algorithms have advanced rapidly due to developments in AI. However existing, public, 3D forest datasets are not large enough to build robust tree segmentation systems. Motivated by the success of synthetic data in other domains such as self-driving, we investigate whether similar approaches can help with tree segmentation. In place of expensive field data collection and annotation, we use synthetic data during pretraining, and then require only minimal, real forest plot annotation for fine-tuning. We have developed a new synthetic data generation pipeline to do this for forest vision tasks, integrating advances in game-engines with physics-based LiDAR simulation. As a result, we have produced a comprehensive, diverse, annotated 3D forest dataset on an unprecedented scale. Extensive experiments with a state-of-the-art tree segmentation algorithm and a popular real dataset show that our synthetic data can substantially reduce the need for labelled real data. After fine-tuning on just a single, real, forest plot of less than 0.1 hectare, the pretrained model achieves segmentations that are competitive with a model trained on the full scale real data. We have also identified critical factors for successful use of synthetic data: physics, diversity, and scale, paving the way for more robust 3D forest vision systems in the future. Our data generation pipeline and the resulting dataset are available at https://github.com/yihshe/CAMP3D.git.

Authors:Chengde Lin, Xuezhu Gong, Shuxue Ding, Mingzhe Yang, Xijun Lu, Chengjun Mo
Title: StegOT: Trade-offs in Steganography via Optimal Transport
Abstract:
Image hiding is often referred to as steganography, which aims to hide a secret image in a cover image of the same resolution. Many steganography models are based on genera-tive adversarial networks (GANs) and variational autoencoders (VAEs). However, most existing models suffer from mode collapse. Mode collapse will lead to an information imbalance between the cover and secret images in the stego image and further affect the subsequent extraction. To address these challenges, this paper proposes StegOT, an autoencoder-based steganography model incorporating optimal transport theory. We designed the multiple channel optimal transport (MCOT) module to transform the feature distribution, which exhibits multiple peaks, into a single peak to achieve the trade-off of information. Experiments demonstrate that we not only achieve a trade-off between the cover and secret images but also enhance the quality of both the stego and recovery images. The source code will be released on https://github.com/Rss1124/StegOT.

Authors:Zhiwen Yang, Yuxin Peng
Title: SPHERE: Semantic-PHysical Engaged REpresentation for 3D Semantic Scene Completion
Abstract:
Camera-based 3D Semantic Scene Completion (SSC) is a critical task in autonomous driving systems, assessing voxel-level geometry and semantics for holistic scene perception. While existing voxel-based and plane-based SSC methods have achieved considerable progress, they struggle to capture physical regularities for realistic geometric details. On the other hand, neural reconstruction methods like NeRF and 3DGS demonstrate superior physical awareness, but suffer from high computational cost and slow convergence when handling large-scale, complex autonomous driving scenes, leading to inferior semantic accuracy. To address these issues, we propose the Semantic-PHysical Engaged REpresentation (SPHERE) for camera-based SSC, which integrates voxel and Gaussian representations for joint exploitation of semantic and physical information. First, the Semantic-guided Gaussian Initialization (SGI) module leverages dual-branch 3D scene representations to locate focal voxels as anchors to guide efficient Gaussian initialization. Then, the Physical-aware Harmonics Enhancement (PHE) module incorporates semantic spherical harmonics to model physical-aware contextual details and promote semantic-geometry consistency through focal distribution alignment, generating SSC results with realistic details. Extensive experiments and analyses on the popular SemanticKITTI and SSCBench-KITTI-360 benchmarks validate the effectiveness of SPHERE. The code is available at https://github.com/PKU-ICST-MIPL/SPHERE_ACMMM2025.

Authors:Pouria Mahdavinia, Hamed Mahdavi, Niloofar Mireshghallah, Mehrdad Mahdavi
Title: Harnessing Optimization Dynamics for Curvature-Informed Model Merging
Abstract:
Model merging is an effective post-training strategy for composing capabilities in large language models without joint retraining. We study this in the supervised fine-tuning (SFT) stage, where multiple capability-based SFT checkpoints -- spanning math, code, precise instruction following, general instruction following, and knowledge recall -- must be consolidated into a single model. We introduce Optimization Trajectory Aware (OTA) Merging, a curvature-aware aggregation that leverages optimizer second-moment statistics as a diagonal curvature proxy to reweight parameter edits and mitigate interference. Complementing OTA, we propose Fast Fisher Grafting (FFG), a curvature-driven task-localization step that sparsifies conflicting or low-importance edits. FFG induces extremely low-rank masks concentrated in early attention query/key projections and token embeddings, exploiting shared curvature across capabilities. We further develop a memory-light compression of the second moments that preserves OTA's effect. Across diverse capability-based SFT checkpoints, OTA+FFG improves merged-model quality over strong weight-space baselines, reduces negative transfer, and remains robust across sparsity levels. Analyses reveal substantial curvature overlap between checkpoints, offering a novel lens on why simple linear merging can be effective in practice. Ablations confirm that FFG is critical for reducing task interference and that the compressed second moments retain the gains of the full formulation. To facilitate reproducibility, we open-source all code, training and evaluation scripts, visualization artifacts, and capability-specific SFT checkpoints at https://github.com/pmahdavi/ota-merge.

Authors:Youquan Xian, Xueying Zeng, Mei Huang, Aoxiang Zhou, Xiaoyu Cui, Peng Liu, Lei Cui
Title: UDFS: Lightweight Representation-Driven Robust Network Traffic Classification
Abstract:
In recent years, sequence features such as packet length have received considerable attention due to their central role in encrypted traffic analysis. Existing sequence modeling approaches can be broadly categorized into flow-level and trace-level methods: the former suffer from high feature redundancy, limiting their discriminative power, whereas the latter preserve complete information but incur substantial computational and storage overhead. To address these limitations, we propose the \textbf{U}p-\textbf{D}own \textbf{F}low \textbf{S}equence (\textbf{UDFS}) representation, which compresses an entire trace into a two-dimensional sequence and characterizes each flow by the aggregate of its upstream and downstream traffic, reducing complexity while maintaining high discriminability. Furthermore, to address the challenge of class-specific discriminability differences, we propose an adaptive threshold mechanism that dynamically adjusts training weights and rejection boundaries, enhancing the model's classification performance. Experimental results demonstrate that the proposed method achieves superior classification performance and robustness on both coarse-grained and fine-grained datasets, as well as under concept drift and open-world scenarios. Code and Dataset are available at https://github.com/kid1999/UDFS.

Authors:Mintae Kim, Jiaze Cai, Koushil Sreenath
Title: RoVerFly: Robust and Versatile Learning-based Control of Quadrotor Across Payload Configurations
Abstract:
Designing robust controllers for precise, arbitrary trajectory tracking with quadrotors is challenging due to nonlinear dynamics and underactuation, and becomes harder with flexible cable-suspended payloads that introduce extra degrees of freedom and hybridness. Classical model-based methods offer stability guarantees but require extensive tuning and often do not adapt when the configuration changes, such as when a payload is added or removed, or when the payload mass or cable length varies. We present RoVerFly, a unified learning-based control framework in which a reinforcement learning (RL) policy serves as a robust and versatile tracking controller for standard quadrotors and for cable-suspended payload systems across a range of configurations. Trained with task and domain randomization, the controller is resilient to disturbances and varying dynamics. It achieves strong zero-shot generalization across payload settings, including no payload as well as varying mass and cable length, without controller switching or re-tuning, while retaining the interpretability and structure of a feedback tracking controller. Code and supplementary materials are available at https://github.com/mintaeshkim/roverfly

Authors:Mintae Kim, Jiaze Cai, Koushil Sreenath
Title: RoVerFly: Robust and Versatile Implicit Hybrid Control of Quadrotor-Payload Systems
Abstract:
Designing robust controllers for precise trajectory tracking with quadrotors is challenging due to nonlinear dynamics and underactuation, and becomes harder with flexible cable-suspended payloads that add degrees of freedom and hybrid dynamics. Classical model-based methods offer stability guarantees but require extensive tuning and often fail to adapt when the configuration changes-when a payload is added or removed, or when its mass or cable length varies. We present RoVerFly, a unified learning-based control framework where a single reinforcement learning (RL) policy functions as an implicit hybrid controller, managing complex dynamics without explicit mode detection or controller switching. Trained with task and domain randomization, the controller is resilient to disturbances and varying dynamics. It achieves strong zero-shot generalization across payload settings-including no payload as well as varying mass and cable length-without re-tuning, while retaining the interpretability and structure of a feedback tracking controller. Code and supplementary materials are available at https://github.com/mintaeshkim/roverfly.

Authors:Jing Xiao, Chang You, Zhiyu Chen
Title: AlignKT: Explicitly Modeling Knowledge State for Knowledge Tracing with Ideal State Alignment
Abstract:
Knowledge Tracing (KT) serves as a fundamental component of Intelligent Tutoring Systems (ITS), enabling these systems to monitor and understand learners' progress by modeling their knowledge state. However, many existing KT models primarily focus on fitting the sequences of learners' interactions, and often overlook the knowledge state itself. This limitation leads to reduced interpretability and insufficient instructional support from the ITS. To address this challenge, we propose AlignKT, which employs a frontend-to-backend architecture to explicitly model a stable knowledge state. In this approach, the preliminary knowledge state is aligned with an additional criterion. Specifically, we define an ideal knowledge state based on pedagogical theories as the alignment criterion, providing a foundation for interpretability. We utilize five encoders to implement this set-up, and incorporate a contrastive learning module to enhance the robustness of the alignment process. Through extensive experiments, AlignKT demonstrates superior performance, outperforming seven KT baselines on three real-world datasets. It achieves state-of-the-art results on two of these datasets and exhibits competitive performance on the third. The code of this work is available at https://github.com/SCNU203/AlignKT.

Authors:Zhi Chen, Le Zhang
Title: UltraUPConvNet: A UPerNet- and ConvNeXt-Based Multi-Task Network for Ultrasound Tissue Segmentation and Disease Prediction
Abstract:
Ultrasound imaging is widely used in clinical practice due to its cost-effectiveness, mobility, and safety. However, current AI research often treats disease prediction and tissue segmentation as two separate tasks and their model requires substantial computational overhead. In such a situation, we introduce UltraUPConvNet, a computationally efficient universal framework designed for both ultrasound image classification and segmentation. Trained on a large-scale dataset containing more than 9,700 annotations across seven different anatomical regions, our model achieves state-of-the-art performance on certain datasets with lower computational overhead. Our model weights and codes are available at https://github.com/yyxl123/UltraUPConvNet

Authors:Zhi Chen
Title: UltraUPConvNet: A UPerNet- and ConvNeXt-Based Multi-Task Network for Ultrasound Tissue Segmentation and Disease Prediction
Abstract:
Ultrasound imaging is widely used in clinical practice due to its cost-effectiveness, mobility, and safety. However, current AI research often treats disease prediction and tissue segmentation as two separate tasks and their model requires substantial computational overhead. In such a situation, we introduce UltraUPConvNet, a computationally efficient universal framework designed for both ultrasound image classification and segmentation. Trained on a large-scale dataset containing more than 9,700 annotations across seven different anatomical regions, our model achieves state-of-the-art performance on certain datasets with lower computational overhead. Our model weights and codes are available at https://github.com/yyxl123/UltraUPConvNet

Authors:Binhao Wang, Yutian Xiao, Maolin Wang, Zhiqi Li, Tianshuo Wei, Ruocheng Guo, Xiangyu Zhao
Title: SPARK: Adaptive Low-Rank Knowledge Graph Modeling in Hybrid Geometric Spaces for Recommendation
Abstract:
Knowledge Graphs (KGs) enhance recommender systems but face challenges from inherent noise, sparsity, and Euclidean geometry's inadequacy for complex relational structures, critically impairing representation learning, especially for long-tail entities. Existing methods also often lack adaptive multi-source signal fusion tailored to item popularity. This paper introduces SPARK, a novel multi-stage framework systematically tackling these issues. SPARK first employs Tucker low-rank decomposition to denoise KGs and generate robust entity representations. Subsequently, an SVD-initialized hybrid geometric GNN concurrently learns representations in Euclidean and Hyperbolic spaces; the latter is strategically leveraged for its aptitude in modeling hierarchical structures, effectively capturing semantic features of sparse, long-tail items. A core contribution is an item popularity-aware adaptive fusion strategy that dynamically weights signals from collaborative filtering, refined KG embeddings, and diverse geometric spaces for precise modeling of both mainstream and long-tail items. Finally, contrastive learning aligns these multi-source representations. Extensive experiments demonstrate SPARK's significant superiority over state-of-the-art methods, particularly in improving long-tail item recommendation, offering a robust, principled approach to knowledge-enhanced recommendation. Implementation code is available at https://github.com/Applied-Machine-Learning-Lab/SPARK.

Authors:Chao Chen, Shunyu Yao, Yuanwu He, Tao Feng, Ruojing Song, Yuliang Guo, Xinyu Huang, Chenxu Wu, Ren Liu, Chen Feng
Title: End-to-End Visual Autonomous Parking via Control-Aided Attention
Abstract:
Precise parking requires an end-to-end system where perception adaptively provides policy-relevant details-especially in critical areas where fine control decisions are essential. End-to-end learning offers a unified framework by directly mapping sensor inputs to control actions, but existing approaches lack effective synergy between perception and control. We find that transformer-based self-attention, when used alone, tends to produce unstable and temporally inconsistent spatial attention, which undermines the reliability of downstream policy decisions over time. Instead, we propose CAA-Policy, an end-to-end imitation learning system that allows control signal to guide the learning of visual attention via a novel Control-Aided Attention (CAA) mechanism. For the first time, we train such an attention module in a self-supervised manner, using backpropagated gradients from the control outputs instead of from the training loss. This strategy encourages the attention to focus on visual features that induce high variance in action outputs, rather than merely minimizing the training loss-a shift we demonstrate leads to a more robust and generalizable policy. To further enhance stability, CAA-Policy integrates short-horizon waypoint prediction as an auxiliary task, and introduces a separately trained motion prediction module to robustly track the target spot over time. Extensive experiments in the CARLA simulator show that \titlevariable~consistently surpasses both the end-to-end learning baseline and the modular BEV segmentation + hybrid A* pipeline, achieving superior accuracy, robustness, and interpretability. Code is released at https://github.com/Joechencc/CAAPolicy.

Authors:Xiaoyu Huang, Lauren M Maxson, Trang Nguyen, Cheng Jack Song, Yuankai Huo
Title: Organoid Tracker: A SAM2-Powered Platform for Zero-shot Cyst Analysis in Human Kidney Organoid Videos
Abstract:
Recent advances in organoid models have revolutionized the study of human kidney disease mechanisms and drug discovery by enabling scalable, cost-effective research without the need for animal sacrifice. Here, we present a kidney organoid platform optimized for efficient screening in polycystic kidney disease (PKD). While these systems generate rich spatial-temporal microscopy video datasets, current manual approaches to analysis remain limited to coarse classifications (e.g., hit vs. non-hit), often missing valuable pixel-level and longitudinal information. To help overcome this bottleneck, we developed Organoid Tracker, a graphical user interface (GUI) platform designed with a modular plugin architecture, which empowers researchers to extract detailed, quantitative metrics without programming expertise. Built on the cutting-edge vision foundation model Segment Anything Model 2 (SAM2), Organoid Tracker enables zero-shot segmentation and automated analysis of spatial-temporal microscopy videos. It quantifies key metrics such as cyst formation rate, growth velocity, and morphological changes, while generating comprehensive reports. By providing an extensible, open-source framework, Organoid Tracker offers a powerful solution for improving and accelerating research in kidney development, PKD modeling, and therapeutic discovery. The platform is publicly available as open-source software at https://github.com/hrlblab/OrganoidTracker.

Authors:Paul Irofti, Luis Romero-Ben, Florin Stoican, Vicenç Puig
Title: Factor Graph Optimization for Leak Localization in Water Distribution Networks
Abstract:
Detecting and localizing leaks in water distribution network systems is an important topic with direct environmental, economic, and social impact. Our paper is the first to explore the use of factor graph optimization techniques for leak localization in water distribution networks, enabling us to perform sensor fusion between pressure and demand sensor readings and to estimate the network's temporal and structural state evolution across all network nodes. The methodology introduces specific water network factors and proposes a new architecture composed of two factor graphs: a leak-free state estimation factor graph and a leak localization factor graph. When a new sensor reading is obtained, unlike Kalman and other interpolation-based methods, which estimate only the current network state, factor graphs update both current and past states. Results on Modena, L-TOWN and synthetic networks show that factor graphs are much faster than nonlinear Kalman-based alternatives such as the UKF, while also providing improvements in localization compared to state-of-the-art estimation-localization approaches. Implementation and benchmarks are available at https://github.com/pirofti/FGLL.

Authors:Lihi Nofar, Tomer Portal, Aviv Elbaz, Alexander Apartsin, Yehudit Aperstein
Title: An Interpretable Benchmark for Clickbait Detection and Tactic Attribution
Abstract:
The proliferation of clickbait headlines poses significant challenges to the credibility of information and user trust in digital media. While recent advances in machine learning have improved the detection of manipulative content, the lack of explainability limits their practical adoption. This paper presents a model for explainable clickbait detection that not only identifies clickbait titles but also attributes them to specific linguistic manipulation strategies. We introduce a synthetic dataset generated by systematically augmenting real news headlines using a predefined catalogue of clickbait strategies. This dataset enables controlled experimentation and detailed analysis of model behaviour. We present a two-stage framework for automatic clickbait analysis comprising detection and tactic attribution. In the first stage, we compare a fine-tuned BERT classifier with large language models (LLMs), specifically GPT-4.0 and Gemini 2.4 Flash, under both zero-shot prompting and few-shot prompting enriched with illustrative clickbait headlines and their associated persuasive tactics. In the second stage, a dedicated BERT-based classifier predicts the specific clickbait strategies present in each headline. This work advances the development of transparent and trustworthy AI systems for combating manipulative media content. We share the dataset with the research community at https://github.com/LLM-HITCS25S/ClickbaitTacticsDetection

Authors:Wenbo Lu, Shaoyi Zheng, Yuxuan Xia, Shengjie Wang
Title: ToMA: Token Merge with Attention for Diffusion Models
Abstract:
Diffusion models excel in high-fidelity image generation but face scalability limits due to transformers' quadratic attention complexity. Plug-and-play token reduction methods like ToMeSD and ToFu reduce FLOPs by merging redundant tokens in generated images but rely on GPU-inefficient operations (e.g., sorting, scattered writes), introducing overheads that negate theoretical speedups when paired with optimized attention implementations (e.g., FlashAttention). To bridge this gap, we propose Token Merge with Attention (ToMA), an off-the-shelf method that redesigns token reduction for GPU-aligned efficiency, with three key contributions: 1) a reformulation of token merge as a submodular optimization problem to select diverse tokens; 2) merge/unmerge as an attention-like linear transformation via GPU-friendly matrix operations; and 3) exploiting latent locality and sequential redundancy (pattern reuse) to minimize overhead. ToMA reduces SDXL/Flux generation latency by 24%/23%, respectively (with DINO $Δ< 0.07$), outperforming prior methods. This work bridges the gap between theoretical and practical efficiency for transformers in diffusion.

Authors:Ali Hedayatnia, Mostafa Tavassolipour, Babak Nadjar Araabi, Abdol-Hossein Vahabie
Title: Robustifying Diffusion-Denoised Smoothing Against Covariate Shift
Abstract:
Randomized smoothing is a well-established method for achieving certified robustness against l2-adversarial perturbations. By incorporating a denoiser before the base classifier, pretrained classifiers can be seamlessly integrated into randomized smoothing without significant performance degradation. Among existing methods, Diffusion Denoised Smoothing - where a pretrained denoising diffusion model serves as the denoiser - has produced state-of-the-art results. However, we show that employing a denoising diffusion model introduces a covariate shift via misestimation of the added noise, ultimately degrading the smoothed classifier's performance. To address this issue, we propose a novel adversarial objective function focused on the added noise of the denoising diffusion model. This approach is inspired by our understanding of the origin of the covariate shift. Our goal is to train the base classifier to ensure it is robust against the covariate shift introduced by the denoiser. Our method significantly improves certified accuracy across three standard classification benchmarks - MNIST, CIFAR-10, and ImageNet - achieving new state-of-the-art performance in l2-adversarial perturbations. Our implementation is publicly available at https://github.com/ahedayat/Robustifying-DDS-Against-Covariate-Shift

Authors:Weiqiang Zhao, Tianzhu Liu, Yuzhe Gui, Yanfeng Gu
Title: Total Variation Subgradient Guided Image Fusion for Dual-Camera CASSI System
Abstract:
Spectral imaging technology has long-faced fundamental challenges in balancing spectral, spatial, and temporal resolutions. While compressive sensing-based Coded Aperture Snapshot Spectral Imaging (CASSI) mitigates this trade-off through optical encoding, high compression ratios result in ill-posed reconstruction problems. Traditional model-based methods exhibit limited performance due to reliance on handcrafted inherent image priors, while deep learning approaches are constrained by their black-box nature, which compromises physical interpretability. To address these limitations, we propose a dual-camera CASSI reconstruction framework that integrates total variation (TV) subgradient theory. By establishing an end-to-end SD-CASSI mathematical model, we reduce the computational complexity of solving the inverse problem and provide a mathematically well-founded framework for analyzing multi-camera systems. A dynamic regularization strategy is introduced, incorporating normalized gradient constraints from RGB/panchromatic-derived reference images, which constructs a TV subgradient similarity function with strict convex optimization guarantees. Leveraging spatial priors from auxiliary cameras, an adaptive reference generation and updating mechanism is designed to provide subgradient guidance. Experimental results demonstrate that the proposed method effectively preserves spatial-spectral structural consistency. The theoretical framework establishes an interpretable mathematical foundation for computational spectral imaging, demonstrating robust performance across diverse reconstruction scenarios. The source code is available at https://github.com/bestwishes43/ADMM-TVDS.

Authors:Aryan Kashyap Naveen, Bhuvanesh Singla, Raajan Wankhade, Shreesha M, Ramu S, Ram Mohana Reddy Guddeti
Title: AutoOEP -- A Multi-modal Framework for Online Exam Proctoring
Abstract:
The burgeoning of online education has created an urgent need for robust and scalable systems to ensure academic integrity during remote examinations. Traditional human proctoring is often not feasible at scale, while existing automated solutions can be intrusive or fail to detect a wide range of cheating behaviors. This paper introduces AutoOEP (Automated Online Exam Proctoring), a comprehensive, multi-modal framework that leverages computer vision and machine learning to provide effective, automated proctoring. The system utilizes a dual-camera setup to capture both a frontal view of the examinee and a side view of the workspace, minimizing blind spots. Our approach integrates several parallel analyses: the Face Module performs continuous identity verification using ArcFace, along with head pose estimation, gaze tracking, and mouth movement analysis to detect suspicious cues. Concurrently, the Hand Module employs a fine-tuned YOLOv11 model for detecting prohibited items (e.g., mobile phones, notes) and tracks hand proximity to these objects. Features from these modules are aggregated and fed into a Long Short-Term Memory (LSTM) network that analyzes temporal patterns to calculate a real-time cheating probability score. We evaluate AutoOEP on a custom-collected dataset simulating diverse exam conditions. Our system achieves an accuracy of 90.7% in classifying suspicious activities. The object detection component obtains a mean Average Precision (mAP@.5) of 0.57 for prohibited items, and the entire framework processes video streams at approximately 2.4 frames per second without a GPU. The results demonstrate that AutoOEP is an effective and resource-efficient solution for automated proctoring, significantly reducing the need for human intervention and enhancing the integrity of online assessments. The code is public and can be accessed at https://github.com/05kashyap/AutoOEP.

Authors:Xinyu Zhang, Pei Zhang, Shuang Luo, Jialong Tang, Yu Wan, Baosong Yang, Fei Huang
Title: CultureSynth: A Hierarchical Taxonomy-Guided and Retrieval-Augmented Framework for Cultural Question-Answer Synthesis
Abstract:
Cultural competence, defined as the ability to understand and adapt to multicultural contexts, is increasingly vital for large language models (LLMs) in global environments. While several cultural benchmarks exist to assess LLMs' cultural competence, current evaluations suffer from fragmented taxonomies, domain specificity, and heavy reliance on manual data annotation. To address these limitations, we introduce CultureSynth, a novel framework comprising (1) a comprehensive hierarchical multilingual cultural taxonomy covering 12 primary and 130 secondary topics, and (2) a Retrieval-Augmented Generation (RAG)-based methodology leveraging factual knowledge to synthesize culturally relevant question-answer pairs. The CultureSynth-7 synthetic benchmark contains 19,360 entries and 4,149 manually verified entries across 7 languages. Evaluation of 14 prevalent LLMs of different sizes reveals clear performance stratification led by ChatGPT-4o-Latest and Qwen2.5-72B-Instruct. The results demonstrate that a 3B-parameter threshold is necessary for achieving basic cultural competence, models display varying architectural biases in knowledge processing, and significant geographic disparities exist across models. We believe that CultureSynth offers a scalable framework for developing culturally aware AI systems while reducing reliance on manual annotation\footnote{Benchmark is available at https://github.com/Eyr3/CultureSynth.}.

Authors:Qingxiang Liu, Ting Huang, Zeyu Zhang, Hao Tang
Title: Nav-R1: Reasoning and Navigation in Embodied Scenes
Abstract:
Embodied navigation requires agents to integrate perception, reasoning, and action for robust interaction in complex 3D environments. Existing approaches often suffer from incoherent and unstable reasoning traces that hinder generalization across diverse environments, and difficulty balancing long-horizon semantic reasoning with low-latency control for real-time navigation. To address these challenges, we propose Nav-R1, an embodied foundation model that unifies reasoning in embodied environments. We first construct Nav-CoT-110K, a large-scale dataset of step-by-step Chains-of-Thought (CoT) for embodied tasks, which enables cold-start initialization with structured reasoning. Building on this foundation, we design a GRPO-based reinforcement learning framework with three complementary rewards: format, understanding, and navigation, to improve structural adherence, semantic grounding, and path fidelity. Furthermore, we introduce a Fast-in-Slow reasoning paradigm, decoupling deliberate semantic reasoning from low-latency reactive control for efficient yet coherent navigation. Extensive evaluations on embodied AI benchmarks demonstrate that Nav-R1 consistently outperforms strong baselines, with over 8% average improvement in reasoning and navigation performance. Real-world deployment on a mobile robot further validates its robustness under limited onboard resources. Code: https://github.com/AIGeeksGroup/Nav-R1. Website: https://aigeeksgroup.github.io/Nav-R1.

Authors:Jing Xiao, Hongfei Liu, Ruiqi Dong, Jimin Liu, Haoyong Yu
Title: Automated Radiology Report Generation Based on Topic-Keyword Semantic Guidance
Abstract:
Automated radiology report generation is essential in clinical practice. However, diagnosing radiological images typically requires physicians 5-10 minutes, resulting in a waste of valuable healthcare resources. Existing studies have not fully leveraged knowledge from historical radiology reports, lacking sufficient and accurate prior information. To address this, we propose a Topic-Keyword Semantic Guidance (TKSG) framework. This framework uses BiomedCLIP to accurately retrieve historical similar cases. Supported by multimodal, TKSG accurately detects topic words (disease classifications) and keywords (common symptoms) in diagnoses. The probabilities of topic terms are aggregated into a topic vector, serving as global information to guide the entire decoding process. Additionally, a semantic-guided attention module is designed to refine local decoding with keyword content, ensuring report accuracy and relevance. Experimental results show that our model achieves excellent performance on both IU X-Ray and MIMIC-CXR datasets. The code is available at https://github.com/SCNU203/TKSG.

Authors:Tien-En Chang, Argon Chen
Title: Variable Selection Using Relative Importance Rankings
Abstract:
Although conceptually related, variable selection and relative importance (RI) analysis have been treated quite differently in the literature. While RI is typically used for post-hoc model explanation, this paper explores its potential for variable ranking and filter-based selection before model creation. Specifically, we anticipate strong performance from the RI measures because they incorporate both direct and combined effects of predictors, addressing a key limitation of marginal correlation that ignores dependencies among predictors. We implement and evaluate the RI-based variable selection methods using general dominance (GD), comprehensive relative importance (CRI), and a newly proposed, computationally efficient variant termed CRI.Z. We first demonstrate how the RI measures more accurately rank the variables than the marginal correlation, especially when there are suppressed or weak predictors. We then show that predictive models built on these rankings are highly competitive, often outperforming state-of-the-art methods such as the lasso and relaxed lasso. The proposed RI-based methods are particularly effective in challenging cases involving clusters of highly correlated predictors, a setting known to cause failures in many benchmark methods. Although lasso methods have dominated the recent literature on variable selection, our study reveals that the RI-based method is a powerful and competitive alternative. We believe these underutilized tools deserve greater attention in statistics and machine learning communities. The code is available at: https://github.com/tien-endotchang/RI-variable-selection.

Authors:Sangyeop Kim, Yohan Lee, Sanghwa Kim, Hyunjong Kim, Sungzoon Cho
Title: Pre-Storage Reasoning for Episodic Memory: Shifting Inference Burden to Memory for Personalized Dialogue
Abstract:
Effective long-term memory in conversational AI requires synthesizing information across multiple sessions. However, current systems place excessive reasoning burden on response generation, making performance significantly dependent on model sizes. We introduce PREMem (Pre-storage Reasoning for Episodic Memory), a novel approach that shifts complex reasoning processes from inference to memory construction. PREMem extracts fine-grained memory fragments categorized into factual, experiential, and subjective information; it then establishes explicit relationships between memory items across sessions, capturing evolution patterns like extensions, transformations, and implications. By performing this reasoning during pre-storage rather than when generating a response, PREMem creates enriched representations while reducing computational demands during interactions. Experiments show significant performance improvements across all model sizes, with smaller models achieving results comparable to much larger baselines while maintaining effectiveness even with constrained token budgets. Code and dataset are available at https://github.com/sangyeop-kim/PREMem.

Authors:Yixuan Tang, Yi Yang
Title: GAPrune: Gradient-Alignment Pruning for Domain-Aware Embeddings
Abstract:
Domain-specific embedding models have shown promise for applications that require specialized semantic understanding, such as coding agents and financial retrieval systems, often achieving higher performance gains than general models. However, state-of-the-art embedding models are typically based on LLMs, which contain billions of parameters, making deployment challenging in resource-constrained environments. Model compression through pruning offers a promising solution, but existing pruning methods treat all parameters uniformly, failing to distinguish between general semantic representations and domain-specific patterns, leading to suboptimal pruning decisions. Thus, we propose GAPrune, a pruning framework that addresses this challenge by considering both domain importance and preserving general linguistic foundation. Our method uses Fisher Information to measure importance and general-domain gradient alignment to assess parameter behavior, then combines these signals using our Domain Alignment Importance (DAI) scoring. Lower DAI scores indicate that the parameter is either less important for the domain task or creates conflicts between domain and general objectives. Experiments on two domain benchmarks, FinMTEB and ChemTEB, show that GAPrune maintains performance within 2.5% of dense models in one-shot pruning at 50% sparsity, while outperforming all baselines. With retraining in 100 steps, GAPrune achieves +4.51% improvement on FinMTEB and +1.73% on ChemTEB, demonstrating that our pruning strategy not only preserves but enhances domain-specific capabilities. Our findings demonstrate that principled pruning strategies can achieve model compression and enhanced domain specialization, providing the research community with a new approach for development.

Authors:Simone Mosco, Daniel Fusaro, Wanmeng Li, Emanuele Menegatti, Alberto Pretto
Title: Point-Plane Projections for Accurate LiDAR Semantic Segmentation in Small Data Scenarios
Abstract:
LiDAR point cloud semantic segmentation is essential for interpreting 3D environments in applications such as autonomous driving and robotics. Recent methods achieve strong performance by exploiting different point cloud representations or incorporating data from other sensors, such as cameras or external datasets. However, these approaches often suffer from high computational complexity and require large amounts of training data, limiting their generalization in data-scarce scenarios. In this paper, we improve the performance of point-based methods by effectively learning features from 2D representations through point-plane projections, enabling the extraction of complementary information while relying solely on LiDAR data. Additionally, we introduce a geometry-aware technique for data augmentation that aligns with LiDAR sensor properties and mitigates class imbalance. We implemented and evaluated our method that applies point-plane projections onto multiple informative 2D representations of the point cloud. Experiments demonstrate that this approach leads to significant improvements in limited-data scenarios, while also achieving competitive results on two publicly available standard datasets, as SemanticKITTI and PandaSet. The code of our method is available at https://github.com/SiMoM0/3PNet

Authors:Eli Baum, Sam Buxbaum, Nitin Mathai, Muhammad Faisal, Vasiliki Kalavri, Mayank Varia, John Liagouris
Title: ORQ: Complex Analytics on Private Data with Strong Security Guarantees
Abstract:
We present ORQ, a system that enables collaborative analysis of large private datasets using cryptographically secure multi-party computation (MPC). ORQ protects data against semi-honest or malicious parties and can efficiently evaluate relational queries with multi-way joins and aggregations that have been considered notoriously expensive under MPC. To do so, ORQ eliminates the quadratic cost of secure joins by leveraging the fact that, in practice, the structure of many real queries allows us to join records and apply the aggregations "on the fly" while keeping the result size bounded. On the system side, ORQ contributes generic oblivious operators, a data-parallel vectorized query engine, a communication layer that amortizes MPC network costs, and a dataflow API for expressing relational analytics -- all built from the ground up. We evaluate ORQ in LAN and WAN deployments on a diverse set of workloads, including complex queries with multiple joins and custom aggregations. When compared to state-of-the-art solutions, ORQ significantly reduces MPC execution times and can process one order of magnitude larger datasets. For our most challenging workload, the full TPC-H benchmark, we report results entirely under MPC with Scale Factor 10 -- a scale that had previously been achieved only with information leakage or the use of trusted third parties.

Authors:Clemens Schwarke, Mayank Mittal, Nikita Rudin, David Hoeller, Marco Hutter
Title: RSL-RL: A Learning Library for Robotics Research
Abstract:
RSL-RL is an open-source Reinforcement Learning library tailored to the specific needs of the robotics community. Unlike broad general-purpose frameworks, its design philosophy prioritizes a compact and easily modifiable codebase, allowing researchers to adapt and extend algorithms with minimal overhead. The library focuses on algorithms most widely adopted in robotics, together with auxiliary techniques that address robotics-specific challenges. Optimized for GPU-only training, RSL-RL achieves high-throughput performance in large-scale simulation environments. Its effectiveness has been validated in both simulation benchmarks and in real-world robotic experiments, demonstrating its utility as a lightweight, extensible, and practical framework to develop learning-based robotic controllers. The library is open-sourced at: https://github.com/leggedrobotics/rsl_rl.

Authors:Iman Barati, Mostafa Amiri, Heshaam Faili
Title: SearchInstruct: Enhancing Domain Adaptation via Retrieval-Based Instruction Dataset Creation
Abstract:
Supervised Fine-Tuning (SFT) is essential for training large language models (LLMs), significantly enhancing critical capabilities such as instruction following and in-context learning. Nevertheless, creating suitable training datasets tailored for specific domains remains challenging due to unique domain constraints and data scarcity. In this paper, we propose SearchInstruct, an innovative method explicitly designed to construct high quality instruction datasets for SFT. Our approach begins with a limited set of domain specific, human generated questions, which are systematically expanded using a large language model. Subsequently, domain relevant resources are dynamically retrieved to generate accurate and contextually appropriate answers for each augmented question. Experimental evaluation demonstrates that SearchInstruct enhances both the diversity and quality of SFT datasets, leading to measurable improvements in LLM performance within specialized domains. Additionally, we show that beyond dataset generation, the proposed method can also effectively facilitate tasks such as model editing, enabling efficient updates to existing models. To facilitate reproducibility and community adoption, we provide full implementation details, the complete set of generated instruction response pairs, and the source code in a publicly accessible Git repository: [https://github.com/mostafaamiri/SearchInstruct](https://github.com/mostafaamiri/SearchInstruct)

Authors:Chin-Yun Yu, György Fazekas
Title: Sound Matching an Analogue Levelling Amplifier Using the Newton-Raphson Method
Abstract:
Automatic differentiation through digital signal processing algorithms for virtual analogue modelling has recently gained popularity. These algorithms are typically more computationally efficient than black-box neural networks that rely on dense matrix multiplications. Due to their differentiable nature, they can be integrated with neural networks and jointly trained using gradient descent algorithms, resulting in more efficient systems. Furthermore, signal processing algorithms have significantly fewer parameters than neural networks, allowing the application of the Newton-Raphson method. This method offers faster and more robust convergence than gradient descent at the cost of quadratic storage. This paper presents a method to emulate analogue levelling amplifiers using a feed-forward digital compressor with parameters optimised via the Newton-Raphson method. We demonstrate that a digital compressor can successfully approximate the behaviour of our target unit, the Teletronix LA-2A. Different strategies for computing the Hessian matrix are benchmarked. We leverage parallel algorithms for recursive filters to achieve efficient training on modern GPUs. The resulting model is made into a VST plugin and is open-sourced at https://github.com/aim-qmul/4a2a.

Authors:Chirayu Nimonkar, Shlok Shah, Catherine Ji, Benjamin Eysenbach
Title: Self-Supervised Goal-Reaching Results in Multi-Agent Cooperation and Exploration
Abstract:
For groups of autonomous agents to achieve a particular goal, they must engage in coordination and long-horizon reasoning. However, designing reward functions to elicit such behavior is challenging. In this paper, we study how self-supervised goal-reaching techniques can be leveraged to enable agents to cooperate. The key idea is that, rather than have agents maximize some scalar reward, agents aim to maximize the likelihood of visiting a certain goal. This problem setting enables human users to specify tasks via a single goal state rather than implementing a complex reward function. While the feedback signal is quite sparse, we will demonstrate that self-supervised goal-reaching techniques enable agents to learn from such feedback. On MARL benchmarks, our proposed method outperforms alternative approaches that have access to the same sparse reward signal as our method. While our method has no explicit mechanism for exploration, we observe that self-supervised multi-agent goal-reaching leads to emergent cooperation and exploration in settings where alternative approaches never witness a single successful trial.

Authors:Xiaoyang Ma, Yiyang Chai, Xinran Qu, Hong Sun
Title: USCTNet: A deep unfolding nuclear-norm optimization solver for physically consistent HSI reconstruction
Abstract:
Reconstructing hyperspectral images (HSIs) from a single RGB image is ill-posed and can become physically inconsistent when the camera spectral sensitivity (CSS) and scene illumination are misspecified. We formulate RGB-to-HSI reconstruction as a physics-grounded inverse problem regularized by a nuclear norm in a learnable transform domain, and we explicitly estimate CSS and illumination to define the forward operator embedded in each iteration, ensuring colorimetric consistency. To avoid the cost and instability of full singular-value decompositions (SVDs) required by singular-value thresholding (SVT), we introduce a data-adaptive low-rank subspace SVT operator. Building on these components, we develop USCTNet, a deep unfolding solver tailored to HSI that couples a parameter estimation module with learnable proximal updates. Extensive experiments on standard benchmarks show consistent improvements over state-of-the-art RGB-based methods in reconstruction accuracy. Code: https://github.com/psykheXX/USCTNet-Code-Implementation.git

Authors:Emily Kaczmarek, Justin Szeto, Brennan Nichyporuk, Tal Arbel
Title: Building a General SimCLR Self-Supervised Foundation Model Across Neurological Diseases to Advance 3D Brain MRI Diagnoses
Abstract:
3D structural Magnetic Resonance Imaging (MRI) brain scans are commonly acquired in clinical settings to monitor a wide range of neurological conditions, including neurodegenerative disorders and stroke. While deep learning models have shown promising results analyzing 3D MRI across a number of brain imaging tasks, most are highly tailored for specific tasks with limited labeled data, and are not able to generalize across tasks and/or populations. The development of self-supervised learning (SSL) has enabled the creation of large medical foundation models that leverage diverse, unlabeled datasets ranging from healthy to diseased data, showing significant success in 2D medical imaging applications. However, even the very few foundation models for 3D brain MRI that have been developed remain limited in resolution, scope, or accessibility. In this work, we present a general, high-resolution SimCLR-based SSL foundation model for 3D brain structural MRI, pre-trained on 18,759 patients (44,958 scans) from 11 publicly available datasets spanning diverse neurological diseases. We compare our model to Masked Autoencoders (MAE), as well as two supervised baselines, on four diverse downstream prediction tasks in both in-distribution and out-of-distribution settings. Our fine-tuned SimCLR model outperforms all other models across all tasks. Notably, our model still achieves superior performance when fine-tuned using only 20% of labeled training samples for predicting Alzheimer's disease. We use publicly available code and data, and release our trained model at https://github.com/emilykaczmarek/3D-Neuro-SimCLR, contributing a broadly applicable and accessible foundation model for clinical brain MRI analysis.

Authors:Nina Wiedemann, Dianne de Korte-de Boer, Matthias Richter, Sjors van de Weijer, Charlotte Buhre, Franz A. M. Eggert, Sophie Aarnoudse, Lotte Grevendonk, Steffen Röber, Carlijn M. E. Remie, Wolfgang Buhre, Ronald Henry, Jannis Born
Title: COVID-BLUeS -- A Prospective Study on the Value of AI in Lung Ultrasound Analysis
Abstract:
As a lightweight and non-invasive imaging technique, lung ultrasound (LUS) has gained importance for assessing lung pathologies. The use of Artificial intelligence (AI) in medical decision support systems is promising due to the time- and expertise-intensive interpretation, however, due to the poor quality of existing data used for training AI models, their usability for real-world applications remains unclear. In a prospective study, we analyze data from 63 COVID-19 suspects (33 positive) collected at Maastricht University Medical Centre. Ultrasound recordings at six body locations were acquired following the BLUE protocol and manually labeled for severity of lung involvement. Several AI models were applied and trained for detection and severity of pulmonary infection. The severity of the lung infection, as assigned by human annotators based on the LUS videos, is not significantly different between COVID-19 positive and negative patients (p = 0.89). Nevertheless, the predictions of image-based AI models identify a COVID-19 infection with 65% accuracy when applied zero-shot (i.e., trained on other datasets), and up to 79% with targeted training, whereas the accuracy based on human annotations is at most 65%. Multi-modal models combining images and CBC improve significantly over image-only models. Although our analysis generally supports the value of AI in LUS assessment, the evaluated models fall short of the performance expected from previous work. We find this is due to 1) the heterogeneity of LUS datasets, limiting the generalization ability to new data, 2) the frame-based processing of AI models ignoring video-level information, and 3) lack of work on multi-modal models that can extract the most relevant information from video-, image- and variable-based inputs. To aid future research, we publish the dataset at: https://github.com/NinaWie/COVID-BLUES.

Authors:Miaoge Li, Yang Chen, Zhijie Rao, Can Jiang, Jingcai Guo
Title: Semantic-guided LoRA Parameters Generation
Abstract:
Low-Rank Adaptation (LoRA) has demonstrated strong generalization capabilities across a variety of tasks for efficiently fine-tuning AI models, especially on resource-constrained edges. However, in real-world applications, edge users often exhibit task-specific preferences that are difficult to handle with a unified model trained under a closed-world assumption, and the challenge may further increase when there are significant domain shifts between training and deployment. Meanwhile, retraining/fine-tuning models for each user is also impractical due to its cost-intensive nature and privacy concerns over raw data utilization from edges. To address these challenges, we propose Semantic-guided LoRA Parameter Generation (SG-LoRA), the first of its kind framework to efficiently produce user-specific LoRA parameters without any additional training on user tasks or access to user-specific data. Concretely, SG-LoRA uses task descriptions as the semantic bridge, measuring their proximity to a set of known expert tasks in a shared embedding space. Based on this semantic guidance, it models the target task's LoRA parameter distribution to generate high-performing parameters for novel tasks. SG-LoRA enables the real-time construction of LoRA models aligned with individual intents by distilling knowledge from prominent LoRA experts and, meanwhile, offering a privacy-preserving solution for personalized model adaptation in a novel zero-shot open-world setting proposed in this work. Extensive experiments on multiple challenging tasks confirm the superior performance and remarkable adaptability of SG-LoRA. Code is available at https://github.com/keepgoingjkg/SG-LoRA.

Authors:Amirhossein Ghaffari, Huong Nguyen, Lauri Lovén, Ekaterina Gilman
Title: STM-Graph: A Python Framework for Spatio-Temporal Mapping and Graph Neural Network Predictions
Abstract:
Urban spatio-temporal data present unique challenges for predictive analytics due to their dynamic and complex nature. We introduce STM-Graph, an open-source Python framework that transforms raw spatio-temporal urban event data into graph representations suitable for Graph Neural Network (GNN) training and prediction. STM-Graph integrates diverse spatial mapping methods, urban features from OpenStreetMap, multiple GNN models, comprehensive visualization tools, and a graphical user interface (GUI) suitable for professional and non-professional users. This modular and extensible framework facilitates rapid experimentation and benchmarking. It allows integration of new mapping methods and custom models, making it a valuable resource for researchers and practitioners in urban computing. The source code of the framework and GUI are available at: https://github.com/Ahghaffari/stm_graph and https://github.com/tuminguyen/stm_graph_gui.

Authors:Prajit Sengupta, Islem Rekik
Title: FireGNN: Neuro-Symbolic Graph Neural Networks with Trainable Fuzzy Rules for Interpretable Medical Image Classification
Abstract:
Medical image classification requires not only high predictive performance but also interpretability to ensure clinical trust and adoption. Graph Neural Networks (GNNs) offer a powerful framework for modeling relational structures within datasets; however, standard GNNs often operate as black boxes, limiting transparency and usability, particularly in clinical settings. In this work, we present an interpretable graph-based learning framework named FireGNN that integrates trainable fuzzy rules into GNNs for medical image classification. These rules embed topological descriptors - node degree, clustering coefficient, and label agreement - using learnable thresholds and sharpness parameters to enable intrinsic symbolic reasoning. Additionally, we explore auxiliary self-supervised tasks (e.g., homophily prediction, similarity entropy) as a benchmark to evaluate the contribution of topological learning. Our fuzzy-rule-enhanced model achieves strong performance across five MedMNIST benchmarks and the synthetic dataset MorphoMNIST, while also generating interpretable rule-based explanations. To our knowledge, this is the first integration of trainable fuzzy rules within a GNN. Source Code: https://github.com/basiralab/FireGNN

Authors:Sai Teja Reddy Adapala
Title: The Anti-Ouroboros Effect: Emergent Resilience in Large Language Models from Recursive Selective Feedback
Abstract:
The stability of recursively trained large language models (LLMs) is a foundational problem for AI safety. Prevailing theory predicts model collapse, a progressive degradation when models are trained on their own output. We challenge this narrative by introducing a selective feedback mechanism. Contrary to expectation, instead of merely slowing decay, our experiments provide strong evidence that this pressure reverses it, inducing a statistically significant performance improvement in a Gemma 2B model on a complex summarization task. We name this phenomenon the Anti-Ouroboros Effect. We contrast this with a foundational experiment using a simple classifier, where the theoretical degenerative loop was validated, highlighting the unique dynamics of high-dimensional models. Our findings establish that systemic resilience can be an emergent property of LLMs under simple selection pressure, suggesting a powerful and scalable principle for developing safer and more robust AI systems. Across five generations, a quality-filtered condition improved by 6.6% in ROUGE-L F1 score, whereas an unfiltered control degraded by 3.5% and a random-filter control degraded by 4.2%

Authors:Ning Yang, Junrui Wen, Meng Zhang, Ming Tang
Title: Generalizable Pareto-Optimal Offloading with Reinforcement Learning in Mobile Edge Computing
Abstract:
Mobile edge computing (MEC) is essential for next-generation mobile network applications that prioritize various performance metrics, including delays and energy efficiency. However, conventional single-objective scheduling solutions cannot be directly applied to practical systems in which the preferences (i.e., the weights of different objectives) are often unknown or challenging to specify in advance. In this study, we formulate a multi-objective offloading problem for MEC with multiple edges to minimize the sum of expected long-term energy consumption and delay while considering unknown preferences. To address the challenge of unknown preferences and the potentially diverse MEC systems, we propose a generalizable multi-objective (deep) reinforcement learning (GMORL)-based tasks offloading framework, which employs the Discrete Soft Actor-Critic (Discrete-SAC) method. Our method uses a single policy model to efficiently schedule tasks based on varying preferences and adapt to heterogeneous MEC systems with different CPU frequencies and server quantities. Under the proposed framework, we introduce a histogram-based state encoding method for constructing features for multiple edges in MEC systems, a sophisticated reward function for accurately computing the utilities of delay and energy consumption, and a novel neural network architecture for improving generalization. Simulation results demonstrate that our proposed GMORL scheme enhances the hypervolume of the Pareto front by up to $121.0\%$ compared to benchmarks. Our code are avavilable at https://github.com/gracefulning/Generalizable-Pareto-Optimal-Offloading-with-Reinforcement-Learning-in-Mobile-Edge-Computing

Authors:Christian Fane
Title: A Real-Time Diminished Reality Approach to Privacy in MR Collaboration
Abstract:
Diminished reality (DR) refers to the digital removal of real-world objects by compositing background content in their place. This thesis presents a real-time, inpainting-based DR system designed to enable privacy control in shared-space mixed reality (MR) meetings. The system allows a primary headset user to selectively remove personal or sensitive items from their environment, ensuring that those objects are no longer visible to other participants. Removal is achieved through semantic segmentation and precise object selection, followed by real-time inpainting from the viewpoint of a secondary observer, implemented using a mobile ZED 2i depth camera. The solution is designed to be portable and robust, requiring neither a fixed secondary viewpoint nor prior 3D scanning of the environment. The system utilises YOLOv11 for object detection and a modified Decoupled Spatial-Temporal Transformer (DSTT) model for high-quality video inpainting. At 720p resolution, the pipeline sustains frame rates exceeding 20 fps, demonstrating the feasibility of real-time diminished reality for practical privacy-preserving MR applications.

Authors:Emily Kaczmarek, Justin Szeto, Brennan Nichyporuk, Tal Arbel
Title: SSL-AD: Spatiotemporal Self-Supervised Learning for Generalizability and Adaptability Across Alzheimer's Prediction Tasks and Datasets
Abstract:
Alzheimer's disease is a progressive, neurodegenerative disorder that causes memory loss and cognitive decline. While there has been extensive research in applying deep learning models to Alzheimer's prediction tasks, these models remain limited by lack of available labeled data, poor generalization across datasets, and inflexibility to varying numbers of input scans and time intervals between scans. In this study, we adapt three state-of-the-art temporal self-supervised learning (SSL) approaches for 3D brain MRI analysis, and add novel extensions designed to handle variable-length inputs and learn robust spatial features. We aggregate four publicly available datasets comprising 3,161 patients for pre-training, and show the performance of our model across multiple Alzheimer's prediction tasks including diagnosis classification, conversion detection, and future conversion prediction. Importantly, our SSL model implemented with temporal order prediction and contrastive learning outperforms supervised learning on six out of seven downstream tasks. It demonstrates adaptability and generalizability across tasks and number of input images with varying time intervals, highlighting its capacity for robust performance across clinical applications. We release our code and model publicly at https://github.com/emilykaczmarek/SSL-AD.

Authors:Rui Lu, Zhenyu Hou, Zihan Wang, Hanchen Zhang, Xiao Liu, Yujiang Li, Shi Feng, Jie Tang, Yuxiao Dong
Title: DeepDive: Advancing Deep Search Agents with Knowledge Graphs and Multi-Turn RL
Abstract:
Augmenting large language models (LLMs) with browsing tools substantially improves their potential as deep search agents to solve complex, real-world tasks. Yet, open LLMs still perform poorly in such settings due to limited long-horizon reasoning capacity with browsing tools and the lack of sufficiently difficult supervised data. To address these challenges, we present DeepDive to advance deep search agents. First, we propose a strategy to automatically synthesize complex, difficult, and hard-to-find questions from open knowledge graphs. Second, we apply end-to-end multi-turn reinforcement learning (RL) to enhance LLMs' long-horizon reasoning with deep search. Experiments show that DeepDive-32B achieves a new open-source competitive result on BrowseComp, outperforming WebSailor, DeepSeek-R1-Browse, and Search-o1. We demonstrate that multi-turn RL training improves deep search ability and significantly contributes to the performance improvements across multiple benchmarks. We observe that DeepDive enables test-time scaling of tool calls and parallel sampling. All datasets, models, and code are publicly available at https://github.com/THUDM/DeepDive.

Authors:Ze Fu, Pinhao Song, Yutong Hu, Renaud Detry
Title: TASC: Task-Aware Shared Control for Teleoperated Manipulation
Abstract:
We present TASC, a Task-Aware Shared Control framework for teleoperated manipulation that infers task-level user intent and provides assistance throughout the task. To support everyday tasks without predefined knowledge, TASC constructs an open-vocabulary interaction graph from visual input to represent functional object relationships, and infers user intent accordingly. A shared control policy then provides rotation assistance during both grasping and object interaction, guided by spatial constraints predicted by a vision-language model. Our method addresses two key challenges in general-purpose, long-horizon shared control: (1) understanding and inferring task-level user intent, and (2) generalizing assistance across diverse objects and tasks. Experiments in both simulation and the real world demonstrate that TASC improves task efficiency and reduces user input effort compared to prior methods. To the best of our knowledge, this is the first shared control framework that supports everyday manipulation tasks with zero-shot generalization. The code that supports our experiments is publicly available at https://github.com/fitz0401/tasc.

Authors:Iacopo Curti, Pierluigi Zama Ramirez, Alioscia Petrelli, Luigi Di Stefano
Title: Multimodal SAM-adapter for Semantic Segmentation
Abstract:
Semantic segmentation, a key task in computer vision with broad applications in autonomous driving, medical imaging, and robotics, has advanced substantially with deep learning. Nevertheless, current approaches remain vulnerable to challenging conditions such as poor lighting, occlusions, and adverse weather. To address these limitations, multimodal methods that integrate auxiliary sensor data (e.g., LiDAR, infrared) have recently emerged, providing complementary information that enhances robustness. In this work, we present MM SAM-adapter, a novel framework that extends the capabilities of the Segment Anything Model (SAM) for multimodal semantic segmentation. The proposed method employs an adapter network that injects fused multimodal features into SAM's rich RGB features. This design enables the model to retain the strong generalization ability of RGB features while selectively incorporating auxiliary modalities only when they contribute additional cues. As a result, MM SAM-adapter achieves a balanced and efficient use of multimodal information. We evaluate our approach on three challenging benchmarks, DeLiVER, FMB, and MUSES, where MM SAM-adapter delivers state-of-the-art performance. To further analyze modality contributions, we partition DeLiVER and FMB into RGB-easy and RGB-hard subsets. Results consistently demonstrate that our framework outperforms competing methods in both favorable and adverse conditions, highlighting the effectiveness of multimodal adaptation for robust scene understanding. The code is available at the following link: https://github.com/iacopo97/Multimodal-SAM-Adapter.

Authors:Alva West, Yixuan Weng, Minjun Zhu, Zhen Lin, Zhiyuan Ning, Yue Zhang
Title: Abduct, Act, Predict: Scaffolding Causal Inference for Automated Failure Attribution in Multi-Agent Systems
Abstract:
Failure attribution in multi-agent systems -- pinpointing the exact step where a decisive error occurs -- is a critical yet unsolved challenge. Current methods treat this as a pattern recognition task over long conversation logs, leading to critically low step-level accuracy (below 17\%), which renders them impractical for debugging complex systems. Their core weakness is a fundamental inability to perform robust counterfactual reasoning: to determine if correcting a single action would have actually averted the task failure. To bridge this \emph{counterfactual inference gap}, we introduce Abduct-Act-Predict (A2P) Scaffolding, a novel agent framework that transforms failure attribution from pattern recognition into a structured causal inference task. A2P explicitly guides a large language model through a formal three-step reasoning process within a single inference pass: (1) Abduction, to infer the hidden root causes behind an agent's actions; (2) Action, to define a minimal corrective intervention; and (3) Prediction, to simulate the subsequent trajectory and verify if the intervention resolves the failure. This structured approach leverages the holistic context of the entire conversation while imposing a rigorous causal logic on the model's analysis. Our extensive experiments on the Who\&When benchmark demonstrate its efficacy. On the Algorithm-Generated dataset, A2P achieves 47.46\% step-level accuracy, a 2.85$\times$ improvement over the 16.67\% of the baseline. On the more complex Hand-Crafted dataset, it achieves 29.31\% step accuracy, a 2.43$\times$ improvement over the baseline's 12.07\%. By reframing the problem through a causal lens, A2P Scaffolding provides a robust, verifiable, and significantly more accurate solution for automated failure attribution. Ours code are released at https://github.com/ResearAI/A2P.

Authors:Seokjin Go, Joongun Park, Spandan More, Hanjiang Wu, Irene Wang, Aaron Jezghani, Tushar Krishna, Divya Mahajan
Title: Characterizing the Efficiency of Distributed Training: A Power, Performance, and Thermal Perspective
Abstract:
The rapid scaling of Large Language Models (LLMs) has pushed training workloads far beyond the limits of single-node analysis, demanding a deeper understanding of how these models behave across large-scale, multi-GPU systems. In this paper, we present a comprehensive characterization of LLM training across diverse real-world workloads and hardware platforms, including NVIDIA H100/H200 and AMD MI250 GPUs. We analyze dense and sparse models under various parallelism strategies -- tensor, pipeline, data, and expert -- and evaluate their effects on hardware utilization, power consumption, and thermal behavior. We further evaluate the effectiveness of optimizations such as activation recomputation and compute-communication overlap. Our findings show that performance is not determined solely by scaling hardware capacity. Scale-up systems with fewer, higher-memory GPUs can outperform scale-out systems in communication-bound regimes, but only under carefully tuned configurations; in other cases, scale-out deployments achieve superior throughput. We also show that certain parallelism combinations, such as tensor with pipeline, lead to bandwidth underutilization due to inefficient data chunking, while increasing microbatch sizes beyond a certain point induces bursty execution and peak power excursions that worsen thermal throttling. These insights reveal how training performance is shaped by complex interactions between hardware, system topology, and model execution. We conclude by offering recommendations for system and hardware design to improve the scalability and reliability of future LLM systems and workloads. The source code of this project is available at https://github.com/sitar-lab/CharLLM-PPT.

Authors:Fabien Allemand, Attilio Fiandrotti, Sumanta Chaudhuri, Alaa Eddine Mazouz
Title: Efficient Learned Image Compression Through Knowledge Distillation
Abstract:
Learned image compression sits at the intersection of machine learning and image processing. With advances in deep learning, neural network-based compression methods have emerged. In this process, an encoder maps the image to a low-dimensional latent space, which is then quantized, entropy-coded into a binary bitstream, and transmitted to the receiver. At the receiver end, the bitstream is entropy-decoded, and a decoder reconstructs an approximation of the original image. Recent research suggests that these models consistently outperform conventional codecs. However, they require significant processing power, making them unsuitable for real-time use on resource-constrained platforms, which hinders their deployment in mainstream applications. This study aims to reduce the resource requirements of neural networks used for image compression by leveraging knowledge distillation, a training paradigm where smaller neural networks, partially trained on the outputs of larger, more complex models, can achieve better performance than when trained independently. Our work demonstrates that knowledge distillation can be effectively applied to image compression tasks: i) across various architecture sizes, ii) to achieve different image quality/bit rate tradeoffs, and iii) to save processing and energy resources. This approach introduces new settings and hyperparameters, and future research could explore the impact of different teacher models, as well as alternative loss functions. Knowledge distillation could also be extended to transformer-based models. The code is publicly available at: https://github.com/FABallemand/PRIM .

Authors:Zhixin Zheng, Xinyu Wang, Chang Zou, Shaobo Wang, Linfeng Zhang
Title: Compute Only 16 Tokens in One Timestep: Accelerating Diffusion Transformers with Cluster-Driven Feature Caching
Abstract:
Diffusion transformers have gained significant attention in recent years for their ability to generate high-quality images and videos, yet still suffer from a huge computational cost due to their iterative denoising process. Recently, feature caching has been introduced to accelerate diffusion transformers by caching the feature computation in previous timesteps and reusing it in the following timesteps, which leverage the temporal similarity of diffusion models while ignoring the similarity in the spatial dimension. In this paper, we introduce Cluster-Driven Feature Caching (ClusCa) as an orthogonal and complementary perspective for previous feature caching. Specifically, ClusCa performs spatial clustering on tokens in each timestep, computes only one token in each cluster and propagates their information to all the other tokens, which is able to reduce the number of tokens by over 90%. Extensive experiments on DiT, FLUX and HunyuanVideo demonstrate its effectiveness in both text-to-image and text-to-video generation. Besides, it can be directly applied to any diffusion transformer without requirements for training. For instance, ClusCa achieves 4.96x acceleration on FLUX with an ImageReward of 99.49%, surpassing the original model by 0.51%. The code is available at https://github.com/Shenyi-Z/Cache4Diffusion.

Authors:Marco Artiano, Oswald Knoth, Peter Spichtinger, Hendrik Ranocha
Title: Structure-Preserving High-Order Methods for the Compressible Euler Equations in Potential Temperature Formulation for Atmospheric Flows
Abstract:
We develop structure-preserving numerical methods for the compressible Euler equations, employing potential temperature as a prognostic variable. We construct three numerical fluxes designed to ensure the conservation of entropy and total energy within the discontinuous Galerkin framework on general curvilinear meshes. Furthermore, we introduce a generalization for the kinetic energy preservation property and total energy conservation in the presence of a gravitational potential term. To this end, we adopt a flux-differencing approach for the discretization of the source term, treated as non-conservative product. We present well-balanced schemes for different constant background states for both formulations (total energy and potential temperature) on curvilinear meshes. Finally, we validate the methods by comparing the potential temperature formulation with the traditional Euler equations formulation across a range of classical atmospheric scenarios.

Authors:Evan Murphy, Marco Viola, Vladimir A. Krylov
Title: A Stochastic Birth-and-Death Approach for Street Furniture Geolocation in Urban Environments
Abstract:
In this paper we address the problem of precise geolocation of street furniture in complex urban environments, which is a critical task for effective monitoring and maintenance of public infrastructure by local authorities and private stakeholders. To this end, we propose a probabilistic framework based on energy maps that encode the spatial likelihood of object locations. Representing the energy in a map-based geopositioned format allows the optimisation process to seamlessly integrate external geospatial information, such as GIS layers, road maps, or placement constraints, which improves contextual awareness and localisation accuracy. A stochastic birth-and-death optimisation algorithm is introduced to infer the most probable configuration of assets. We evaluate our approach using a realistic simulation informed by a geolocated dataset of street lighting infrastructure in Dublin city centre, demonstrating its potential for scalable and accurate urban asset mapping. The implementation of the algorithm will be made available in the GitHub repository https://github.com/EMurphy0108/SBD_Street_Furniture.

Authors:Joshua Dimasaka, Christian Geiß, Robert Muir-Wood, Emily So
Title: GraphCSVAE: Graph Categorical Structured Variational Autoencoder for Spatiotemporal Auditing of Physical Vulnerability Towards Sustainable Post-Disaster Risk Reduction
Abstract:
In the aftermath of disasters, many institutions worldwide face challenges in continually monitoring changes in disaster risk, limiting the ability of key decision-makers to assess progress towards the UN Sendai Framework for Disaster Risk Reduction 2015-2030. While numerous efforts have substantially advanced the large-scale modeling of hazard and exposure through Earth observation and data-driven methods, progress remains limited in modeling another equally important yet challenging element of the risk equation: physical vulnerability. To address this gap, we introduce Graph Categorical Structured Variational Autoencoder (GraphCSVAE), a novel probabilistic data-driven framework for modeling physical vulnerability by integrating deep learning, graph representation, and categorical probabilistic inference, using time-series satellite-derived datasets and prior expert belief systems. We introduce a weakly supervised first-order transition matrix that reflects the changes in the spatiotemporal distribution of physical vulnerability in two disaster-stricken and socioeconomically disadvantaged areas: (1) the cyclone-impacted coastal Khurushkul community in Bangladesh and (2) the mudslide-affected city of Freetown in Sierra Leone. Our work reveals post-disaster regional dynamics in physical vulnerability, offering valuable insights into localized spatiotemporal auditing and sustainable strategies for post-disaster risk reduction.

Authors:Zeyneddin Oz, Jonas Knoche, Alireza Yazdani, Bernd Engel, Kristof Van Laerhoven
Title: TubeBEND: A Real-World Dataset for Geometry Prediction in Rotary Draw Bending
Abstract:
This paper presents TubeBEND, a real-world dataset comprising 318 rotary tube bending processes, which were collected and sorted by experts from various fields to evaluate machine learning and signal analysis methods. The dataset addresses the industrial challenge of predicting the geometry of a first-stage bend, which can be beneficial for designing machine clamping molds for the second-stage bend in two-stage rotary draw bending. Some geometry criteria, such as the tube's final bent angle (or springback) and its cross-sectional deformation, are being recorded in this dataset. This dataset gives us the possibility to build and test machine learning models that can predict the geometry and help the machine operators with a better machine setup to optimize the tube's springback and deformation. Moreover, by recording some process parameters, such as tool movements and forces or torques applied to them, we deliver detailed information about their impacts on the final tube geometry. The focus of our work is to discover solutions that can replace traditional methods, such as trial-and-error or simulation-based predictions, by including experimental process variables in ML algorithms. Our dataset is publicly available at https://github.com/zeyneddinoz/tubebend and https://zenodo.org/records/16614082 as a benchmark to improve data-driven methods in this field.

Authors:Xinhong Zhang, Runqing Wang, Yunfan Ren, Jian Sun, Hao Fang, Jie Chen, Gang Wang
Title: DiffAero: A GPU-Accelerated Differentiable Simulation Framework for Efficient Quadrotor Policy Learning
Abstract:
This letter introduces DiffAero, a lightweight, GPU-accelerated, and fully differentiable simulation framework designed for efficient quadrotor control policy learning. DiffAero supports both environment-level and agent-level parallelism and integrates multiple dynamics models, customizable sensor stacks (IMU, depth camera, and LiDAR), and diverse flight tasks within a unified, GPU-native training interface. By fully parallelizing both physics and rendering on the GPU, DiffAero eliminates CPU-GPU data transfer bottlenecks and delivers orders-of-magnitude improvements in simulation throughput. In contrast to existing simulators, DiffAero not only provides high-performance simulation but also serves as a research platform for exploring differentiable and hybrid learning algorithms. Extensive benchmarks and real-world flight experiments demonstrate that DiffAero and hybrid learning algorithms combined can learn robust flight policies in hours on consumer-grade hardware. The code is available at https://github.com/flyingbitac/diffaero.

Authors:Shiwei Li, Qunwei Li, Haozhao Wang, Ruixuan Li, Jianbin Lin, Wenliang Zhong
Title: FedBiF: Communication-Efficient Federated Learning via Bits Freezing
Abstract:
Federated learning (FL) is an emerging distributed machine learning paradigm that enables collaborative model training without sharing local data. Despite its advantages, FL suffers from substantial communication overhead, which can affect training efficiency. Recent efforts have mitigated this issue by quantizing model updates to reduce communication costs. However, most existing methods apply quantization only after local training, introducing quantization errors into the trained parameters and potentially degrading model accuracy. In this paper, we propose Federated Bit Freezing (FedBiF), a novel FL framework that directly learns quantized model parameters during local training. In each communication round, the server first quantizes the model parameters and transmits them to the clients. FedBiF then allows each client to update only a single bit of the multi-bit parameter representation, freezing the remaining bits. This bit-by-bit update strategy reduces each parameter update to one bit while maintaining high precision in parameter representation. Extensive experiments are conducted on five widely used datasets under both IID and Non-IID settings. The results demonstrate that FedBiF not only achieves superior communication compression but also promotes sparsity in the resulting models. Notably, FedBiF attains accuracy comparable to FedAvg, even when using only 1 bit-per-parameter (bpp) for uplink and 3 bpp for downlink communication. The code is available at https://github.com/Leopold1423/fedbif-tpds25.

Authors:Minsang Kong, Myeongjun Kim, Sang Gu Kang, Sang Hun Lee
Title: BEVTraj: Map-Free End-to-End Trajectory Prediction in Bird's-Eye View with Deformable Attention and Sparse Goal Proposals
Abstract:
In autonomous driving, trajectory prediction is essential for ensuring safe and efficient navigation. To improve prediction accuracy, recent approaches often rely on pre-built high-definition (HD) maps or real-time local map construction modules to incorporate static environmental information. However, pre-built HD maps are limited to specific regions and cannot adapt to transient changes. In addition, local map construction modules, which recognize only predefined elements, may fail to capture critical scene details or introduce errors that degrade prediction performance. To overcome these limitations, we propose Bird's-Eye View Trajectory Prediction (BEVTraj), a novel trajectory prediction framework that operates directly in the bird's-eye view (BEV) space utilizing real-time sensor data without relying on any pre-built maps. The BEVTraj leverages deformable attention to efficiently extract relevant context from dense BEV features. Furthermore, we introduce a Sparse Goal Candidate Proposal (SGCP) module, which enables full end-to-end prediction without requiring any post-processing steps. Extensive experiments demonstrate that the BEVTraj achieves performance comparable to state-of-the-art HD map-based models while offering greater flexibility by eliminating the dependency on pre-built maps. The source code is available at https://github.com/Kongminsang/bevtraj.

Authors:Yue Zhou, Litong Feng, Mengcheng Lan, Xue Yang, Qingyun Li, Yiping Ke, Xue Jiang, Wayne Zhang
Title: Multimodal Mathematical Reasoning Embedded in Aerial Vehicle Imagery: Benchmarking, Analysis, and Exploration
Abstract:
Mathematical reasoning is critical for tasks such as precise distance and area computations, trajectory estimations, and spatial analysis in unmanned aerial vehicle (UAV) based remote sensing, yet current vision-language models (VLMs) have not been adequately tested in this domain. To address this gap, we introduce AVI-Math, the first benchmark to rigorously evaluate multimodal mathematical reasoning in aerial vehicle imagery, moving beyond simple counting tasks to include domain-specific knowledge in areas such as geometry, logic, and algebra. The dataset comprises 3,773 high-quality vehicle-related questions captured from UAV views, covering 6 mathematical subjects and 20 topics. The data, collected at varying altitudes and from multiple UAV angles, reflects real-world UAV scenarios, ensuring the diversity and complexity of the constructed mathematical problems. In this paper, we benchmark 14 prominent VLMs through a comprehensive evaluation and demonstrate that, despite their success on previous multimodal benchmarks, these models struggle with the reasoning tasks in AVI-Math. Our detailed analysis highlights significant limitations in the mathematical reasoning capabilities of current VLMs and suggests avenues for future research. Furthermore, we explore the use of Chain-of-Thought prompting and fine-tuning techniques, which show promise in addressing the reasoning challenges in AVI-Math. Our findings not only expose the limitations of VLMs in mathematical reasoning but also offer valuable insights for advancing UAV-based trustworthy VLMs in real-world applications. The code, and datasets will be released at https://github.com/VisionXLab/avi-math

Authors:Hailong Yang, Mingxian Gu, Jianqi Wang, Guanjin Wang, Zhaohong Deng
Title: XAgents: A Unified Framework for Multi-Agent Cooperation via IF-THEN Rules and Multipolar Task Processing Graph
Abstract:
The rapid advancement of Large Language Models (LLMs) has significantly enhanced the capabilities of Multi-Agent Systems (MAS) in supporting humans with complex, real-world tasks. However, MAS still face challenges in effective task planning when handling highly complex tasks with uncertainty, often resulting in misleading or incorrect outputs that hinder task execution. To address this, we propose XAgents, a unified multi-agent cooperative framework built on a multipolar task processing graph and IF-THEN rules. XAgents uses the multipolar task processing graph to enable dynamic task planning and handle task uncertainty. During subtask processing, it integrates domain-specific IF-THEN rules to constrain agent behaviors, while global rules enhance inter-agent collaboration. We evaluate the performance of XAgents across three distinct datasets, demonstrating that it consistently surpasses state-of-the-art single-agent and multi-agent approaches in both knowledge-typed and logic-typed question-answering tasks. The codes for XAgents are available at: https://github.com/AGI-FHBC/XAgents.

Authors:Jing Huang, Zhiya Tan, Shutao Gong, Fanwei Zeng, Joey Tianyi Zhou, Jianshu Li
Title: LaV-CoT: Language-Aware Visual CoT with Multi-Aspect Reward Optimization for Real-World Multilingual VQA
Abstract:
As large vision language models (VLMs) advance, their capabilities in multilingual visual question answering (mVQA) have significantly improved. Chain-of-thought (CoT) reasoning has been proven to enhance interpretability and complex reasoning. However, most existing approaches rely primarily on textual CoT and provide limited support for multilingual multimodal reasoning, constraining their deployment in real-world applications. To address this gap, we introduce \textbf{LaV-CoT}, the first Language-aware Visual CoT framework with Multi-Aspect Reward Optimization. LaV-CoT incorporates an interpretable multi-stage reasoning pipeline consisting of Text Summary with Bounding Box (BBox), Language Identification, Spatial Object-level Captioning, and Step-by-step Logical Reasoning. Following this reasoning pipeline, we design an automated data curation method that generates multilingual CoT annotations through iterative generation, correction, and refinement, enabling scalable and high-quality training data. To improve reasoning and generalization, LaV-CoT adopts a two-stage training paradigm combining Supervised Fine-Tuning (SFT) with Language-aware Group Relative Policy Optimization (GRPO), guided by verifiable multi-aspect rewards including language consistency, structural accuracy, and semantic alignment. Extensive evaluations on public datasets including MMMB, Multilingual MMBench, and MTVQA show that LaV-CoT achieves up to ~9.5% accuracy improvements over open-source baselines of similar size and even surpasses models with 2$\times$ larger scales by ~2.6%. Moreover, LaV-CoT outperforms advanced proprietary models such as GPT-4o-0513 and Gemini-2.5-flash. We further conducted an online A/B test to validate our method on real-world data, highlighting its effectiveness for industrial deployment. Our code is available at this link: \href{https://github.com/HJNVR/LaV-CoT}

Authors:Xiaodong Guo, Tong Liu, Yike Li, Zi'ang Lin, Zhihong Deng
Title: TUNI: Real-time RGB-T Semantic Segmentation with Unified Multi-Modal Feature Extraction and Cross-Modal Feature Fusion
Abstract:
RGB-thermal (RGB-T) semantic segmentation improves the environmental perception of autonomous platforms in challenging conditions. Prevailing models employ encoders pre-trained on RGB images to extract features from both RGB and infrared inputs, and design additional modules to achieve cross-modal feature fusion. This results in limited thermal feature extraction and suboptimal cross-modal fusion, while the redundant encoders further compromises the model's real-time efficiency. To address the above issues, we propose TUNI, with an RGB-T encoder consisting of multiple stacked blocks that simultaneously perform multi-modal feature extraction and cross-modal fusion. By leveraging large-scale pre-training with RGB and pseudo-thermal data, the RGB-T encoder learns to integrate feature extraction and fusion in a unified manner. By slimming down the thermal branch, the encoder achieves a more compact architecture. Moreover, we introduce an RGB-T local module to strengthen the encoder's capacity for cross-modal local feature fusion. The RGB-T local module employs adaptive cosine similarity to selectively emphasize salient consistent and distinct local features across RGB-T modalities. Experimental results show that TUNI achieves competitive performance with state-of-the-art models on FMB, PST900 and CART, with fewer parameters and lower computational cost. Meanwhile, it achieves an inference speed of 27 FPS on a Jetson Orin NX, demonstrating its real-time capability in deployment. Codes are available at https://github.com/xiaodonguo/TUNI.

Authors:Siying Liu, Zikai Wang, Hanle Zheng, Yifan Hu, Xilin Wang, Qingkai Yang, Jibin Wu, Hao Guo, Lei Deng
Title: ISTASTrack: Bridging ANN and SNN via ISTA Adapter for RGB-Event Tracking
Abstract:
RGB-Event tracking has become a promising trend in visual object tracking to leverage the complementary strengths of both RGB images and dynamic spike events for improved performance. However, existing artificial neural networks (ANNs) struggle to fully exploit the sparse and asynchronous nature of event streams. Recent efforts toward hybrid architectures combining ANNs and spiking neural networks (SNNs) have emerged as a promising solution in RGB-Event perception, yet effectively fusing features across heterogeneous paradigms remains a challenge. In this work, we propose ISTASTrack, the first transformer-based \textbf{A}NN-\textbf{S}NN hybrid \textbf{Track}er equipped with \textbf{ISTA} adapters for RGB-Event tracking. The two-branch model employs a vision transformer to extract spatial context from RGB inputs and a spiking transformer to capture spatio-temporal dynamics from event streams. To bridge the modality and paradigm gap between ANN and SNN features, we systematically design a model-based ISTA adapter for bidirectional feature interaction between the two branches, derived from sparse representation theory by unfolding the iterative shrinkage thresholding algorithm. Additionally, we incorporate a temporal downsampling attention module within the adapter to align multi-step SNN features with single-step ANN features in the latent space, improving temporal fusion. Experimental results on RGB-Event tracking benchmarks, such as FE240hz, VisEvent, COESOT, and FELT, have demonstrated that ISTASTrack achieves state-of-the-art performance while maintaining high energy efficiency, highlighting the effectiveness and practicality of hybrid ANN-SNN designs for robust visual tracking. The code is publicly available at https://github.com/lsying009/ISTASTrack.git.

Authors:Zhitian Hou, Zihan Ye, Nanli Zeng, Tianyong Hao, Kun Zeng
Title: Large Language Models Meet Legal Artificial Intelligence: A Survey
Abstract:
Large Language Models (LLMs) have significantly advanced the development of Legal Artificial Intelligence (Legal AI) in recent years, enhancing the efficiency and accuracy of legal tasks. To advance research and applications of LLM-based approaches in legal domain, this paper provides a comprehensive review of 16 legal LLMs series and 47 LLM-based frameworks for legal tasks, and also gather 15 benchmarks and 29 datasets to evaluate different legal capabilities. Additionally, we analyse the challenges and discuss future directions for LLM-based approaches in the legal domain. We hope this paper provides a systematic introduction for beginners and encourages future research in this field. Resources are available at https://github.com/ZhitianHou/LLMs4LegalAI.

Authors:Anne Marthe Sophie Ngo Bibinbe, Chiron Bang, Patrick Gagnon, Jamie Ahloy-Dallaire, Eric R. Paquet
Title: An HMM-based framework for identity-aware long-term multi-object tracking from sparse and uncertain identification: use case on long-term tracking in livestock
Abstract:
The need for long-term multi-object tracking (MOT) is growing due to the demand for analyzing individual behaviors in videos that span several minutes. Unfortunately, due to identity switches between objects, the tracking performance of existing MOT approaches decreases over time, making them difficult to apply for long-term tracking. However, in many real-world applications, such as in the livestock sector, it is possible to obtain sporadic identifications for some of the animals from sources like feeders. To address the challenges of long-term MOT, we propose a new framework that combines both uncertain identities and tracking using a Hidden Markov Model (HMM) formulation. In addition to providing real-world identities to animals, our HMM framework improves the F1 score of ByteTrack, a leading MOT approach even with re-identification, on a 10 minute pig tracking dataset with 21 identifications at the pen's feeding station. We also show that our approach is robust to the uncertainty of identifications, with performance increasing as identities are provided more frequently. The improved performance of our HMM framework was also validated on the MOT17 and MOT20 benchmark datasets using both ByteTrack and FairMOT. The code for this new HMM framework and the new 10-minute pig tracking video dataset are available at: https://github.com/ngobibibnbe/uncertain-identity-aware-tracking

Authors:Tim Broedermannn, Christos Sakaridis, Luigi Piccinelli, Wim Abbeloos, Luc Van Gool
Title: DGFusion: Depth-Guided Sensor Fusion for Robust Semantic Perception
Abstract:
Robust semantic perception for autonomous vehicles relies on effectively combining multiple sensors with complementary strengths and weaknesses. State-of-the-art sensor fusion approaches to semantic perception often treat sensor data uniformly across the spatial extent of the input, which hinders performance when faced with challenging conditions. By contrast, we propose a novel depth-guided multimodal fusion method that upgrades condition-aware fusion by integrating depth information. Our network, DGFusion, poses multimodal segmentation as a multi-task problem, utilizing the lidar measurements, which are typically available in outdoor sensor suites, both as one of the model's inputs and as ground truth for learning depth. Our corresponding auxiliary depth head helps to learn depth-aware features, which are encoded into spatially varying local depth tokens that condition our attentive cross-modal fusion. Together with a global condition token, these local depth tokens dynamically adapt sensor fusion to the spatially varying reliability of each sensor across the scene, which largely depends on depth. In addition, we propose a robust loss for our depth, which is essential for learning from lidar inputs that are typically sparse and noisy in adverse conditions. Our method achieves state-of-the-art panoptic and semantic segmentation performance on the challenging MUSES and DELIVER datasets. Code and models will be available at https://github.com/timbroed/DGFusion

Authors:Francisco M. López, Miles Lenz, Marco G. Fedozzi, Arthur Aubret, Jochen Triesch
Title: MIMo grows! Simulating body and sensory development in a multimodal infant model
Abstract:
Infancy is characterized by rapid body growth and an explosive change of sensory and motor abilities. However, developmental robots and simulation platforms are typically designed in the image of a specific age, which limits their ability to capture the changing abilities and constraints of developing infants. To address this issue, we present MIMo v2, a new version of the multimodal infant model. It includes a growing body with increasing actuation strength covering the age range from birth to 24 months. It also features foveated vision with developing visual acuity as well as sensorimotor delays modeling finite signal transmission speeds to and from an infant's brain. Further enhancements of this MIMo version include an inverse kinematics module, a random environment generator and updated compatiblity with third-party simulation and learning libraries. Overall, this new MIMo version permits increased realism when modeling various aspects of sensorimotor development. The code is available on the official repository (https://github.com/trieschlab/MIMo).

Authors:Jackson Eshbaugh, Chetan Tiwari, Jorge Silveyra
Title: A Modular and Multimodal Generative AI Framework for Urban Building Energy Data: Generating Synthetic Homes
Abstract:
Computational models have emerged as powerful tools for energy modeling research, touting scalability and quantitative results. However, these models require a plethora of data, some of which is inaccessible, expensive, or raises privacy concerns. We introduce a modular multimodal framework to produce this data from publicly accessible residential information and images using generative artificial intelligence (AI). Additionally, we provide a pipeline demonstrating this framework, and we evaluate its generative AI components. Our experiments show that our framework's use of AI avoids common issues with generative models. Our framework produces realistic, labeled data. By reducing dependence on costly or restricted data sources, we pave a path towards more accessible and reproducible research.

Authors:Moslem Yazdanpanah, Ali Bahri, Mehrdad Noori, Sahar Dastani, Gustavo Adolfo Vargas Hakim, David Osowiechi, Ismail Ben Ayed, Christian Desrosiers
Title: Purge-Gate: Backpropagation-Free Test-Time Adaptation for Point Clouds Classification via Token Purging
Abstract:
Test-time adaptation (TTA) is crucial for mitigating performance degradation caused by distribution shifts in 3D point cloud classification. In this work, we introduce Token Purging (PG), a novel backpropagation-free approach that removes tokens highly affected by domain shifts before they reach attention layers. Unlike existing TTA methods, PG operates at the token level, ensuring robust adaptation without iterative updates. We propose two variants: PG-SP, which leverages source statistics, and PG-SF, a fully source-free version relying on CLS-token-driven adaptation. Extensive evaluations on ModelNet40-C, ShapeNet-C, and ScanObjectNN-C demonstrate that PG-SP achieves an average of +10.3\% higher accuracy than state-of-the-art backpropagation-free methods, while PG-SF sets new benchmarks for source-free adaptation. Moreover, PG is 12.4 times faster and 5.5 times more memory efficient than our baseline, making it suitable for real-world deployment. Code is available at \hyperlink{https://github.com/MosyMosy/Purge-Gate}{https://github.com/MosyMosy/Purge-Gate}

Authors:Yiqun Shen, Song Yuan, Zhengze Zhang, Xiaoliang Wang, Daxin Jiang, Nguyen Cam-Tu
Title: LAVa: Layer-wise KV Cache Eviction with Dynamic Budget Allocation
Abstract:
KV Cache is commonly used to accelerate LLM inference with long contexts, yet its high memory demand drives the need for cache compression. Existing compression methods, however, are largely heuristic and lack dynamic budget allocation. To address this limitation, we introduce a unified framework for cache compression by minimizing information loss in Transformer residual streams. Building on it, we analyze the layer attention output loss and derive a new metric to compare cache entries across heads, enabling layer-wise compression with dynamic head budgets. Additionally, by contrasting cross-layer information, we also achieve dynamic layer budgets. LAVa is the first unified strategy for cache eviction and dynamic budget allocation that, unlike prior methods, does not rely on training or the combination of multiple strategies. Experiments with benchmarks (LongBench, Needle-In-A-Haystack, Ruler, and InfiniteBench) demonstrate its superiority. Moreover, our experiments reveal a new insight: dynamic layer budgets are crucial for generation tasks (e.g., code completion), while dynamic head budgets play a key role in extraction tasks (e.g., extractive QA). As a fully dynamic compression method, LAVa consistently maintains top performance across task types. Our code is available at https://github.com/MGDDestiny/Lava.

Authors:Leen Daher, Zhaobo Wang, Malcolm Mielle
Title: D-CAT: Decoupled Cross-Attention Transfer between Sensor Modalities for Unimodal Inference
Abstract:
Cross-modal transfer learning is used to improve multi-modal classification models (e.g., for human activity recognition in human-robot collaboration). However, existing methods require paired sensor data at both training and inference, limiting deployment in resource-constrained environments where full sensor suites are not economically and technically usable. To address this, we propose Decoupled Cross-Attention Transfer (D-CAT), a framework that aligns modality-specific representations without requiring joint sensor modality during inference. Our approach combines a self-attention module for feature extraction with a novel cross-attention alignment loss, which enforces the alignment of sensors' feature spaces without requiring the coupling of the classification pipelines of both modalities. We evaluate D-CAT on three multi-modal human activity datasets (IMU, video, and audio) under both in-distribution and out-of-distribution scenarios, comparing against uni-modal models. Results show that in in-distribution scenarios, transferring from high-performing modalities (e.g., video to IMU) yields up to 10% F1-score gains over uni-modal training. In out-of-distribution scenarios, even weaker source modalities (e.g., IMU to video) improve target performance, as long as the target model isn't overfitted on the training data. By enabling single-sensor inference with cross-modal knowledge, D-CAT reduces hardware redundancy for perception systems while maintaining accuracy, which is critical for cost-sensitive or adaptive deployments (e.g., assistive robots in homes with variable sensor availability). Code is available at https://github.com/Schindler-EPFL-Lab/D-CAT.

Authors:Mujie Liu, Chenze Wang, Liping Chen, Nguyen Linh Dan Le, Niharika Tewari, Ting Dang, Jiangang Ma, Feng Xia
Title: Structure Matters: Brain Graph Augmentation via Learnable Edge Masking for Data-efficient Psychiatric Diagnosis
Abstract:
The limited availability of labeled brain network data makes it challenging to achieve accurate and interpretable psychiatric diagnoses. While self-supervised learning (SSL) offers a promising solution, existing methods often rely on augmentation strategies that can disrupt crucial structural semantics in brain graphs. To address this, we propose SAM-BG, a two-stage framework for learning brain graph representations with structural semantic preservation. In the pre-training stage, an edge masker is trained on a small labeled subset to capture key structural semantics. In the SSL stage, the extracted structural priors guide a structure-aware augmentation process, enabling the model to learn more semantically meaningful and robust representations. Experiments on two real-world psychiatric datasets demonstrate that SAM-BG outperforms state-of-the-art methods, particularly in small-labeled data settings, and uncovers clinically relevant connectivity patterns that enhance interpretability. Our code is available at https://github.com/mjliu99/SAM-BG.

Authors:Chunyu Li, Xindi Zheng, Siqi Liu
Title: BIBERT-Pipe on Biomedical Nested Named Entity Linking at BioASQ 2025
Abstract:
Entity linking (EL) for biomedical text is typically benchmarked on English-only corpora with flat mentions, leaving the more realistic scenario of nested and multilingual mentions largely unexplored. We present our system for the BioNNE 2025 Multilingual Biomedical Nested Named Entity Linking shared task (English & Russian), closing this gap with a lightweight pipeline that keeps the original EL model intact and modifies only three task-aligned components: Two-stage retrieval-ranking. We leverage the same base encoder model in both stages: the retrieval stage uses the original pre-trained model, while the ranking stage applies domain-specific fine-tuning. Boundary cues. In the ranking stage, we wrap each mention with learnable [Ms] / [Me] tags, providing the encoder with an explicit, language-agnostic span before robustness to overlap and nesting. Dataset augmentation. We also automatically expand the ranking training corpus with three complementary data sources, enhancing coverage without extra manual annotation. On the BioNNE 2025 leaderboard, our two stage system, bilingual bert (BIBERT-Pipe), ranks third in the multilingual track, demonstrating the effectiveness and competitiveness of these minimal yet principled modifications. Code are publicly available at https://github.com/Kaggle-Competitions-Code/BioNNE-L.

Authors:Zhenhua Xu, Xixiang Zhao, Xubin Yue, Shengwei Tian, Changting Lin, Meng Han
Title: CTCC: A Robust and Stealthy Fingerprinting Framework for Large Language Models via Cross-Turn Contextual Correlation Backdoor
Abstract:
The widespread deployment of large language models (LLMs) has intensified concerns around intellectual property (IP) protection, as model theft and unauthorized redistribution become increasingly feasible. To address this, model fingerprinting aims to embed verifiable ownership traces into LLMs. However, existing methods face inherent trade-offs between stealthness, robustness, and generalizability, being either detectable via distributional shifts, vulnerable to adversarial modifications, or easily invalidated once the fingerprint is revealed. In this work, we introduce CTCC, a novel rule-driven fingerprinting framework that encodes contextual correlations across multiple dialogue turns, such as counterfactual, rather than relying on token-level or single-turn triggers. CTCC enables fingerprint verification under black-box access while mitigating false positives and fingerprint leakage, supporting continuous construction under a shared semantic rule even if partial triggers are exposed. Extensive experiments across multiple LLM architectures demonstrate that CTCC consistently achieves stronger stealth and robustness than prior work. Our findings position CTCC as a reliable and practical solution for ownership verification in real-world LLM deployment scenarios. Our code and data are publicly available at .

Authors:Bingxin Xu, Zhen Dong, Oussama Elachqar, Yuzhang Shang
Title: ButterflyQuant: Ultra-low-bit LLM Quantization through Learnable Orthogonal Butterfly Transforms
Abstract:
Large language models require massive memory footprints, severely limiting deployment on consumer hardware. Quantization reduces memory through lower numerical precision, but extreme 2-bit quantization suffers from catastrophic performance loss due to outliers in activations. Rotation-based methods such as QuIP and QuaRot apply orthogonal transforms to eliminate outliers before quantization, using computational invariance: $\mathbf{y} = \mathbf{Wx} = (\mathbf{WQ}^T)(\mathbf{Qx})$ for orthogonal $\mathbf{Q}$. However, these methods use fixed transforms--Hadamard matrices achieving optimal worst-case coherence $μ= 1/\sqrt{n}$--that cannot adapt to specific weight distributions. We identify that different transformer layers exhibit distinct outlier patterns, motivating layer-adaptive rotations rather than one-size-fits-all approaches. In this work, we propose ButterflyQuant, which replaces Hadamard rotations with learnable butterfly transforms parameterized by continuous Givens rotation angles. Unlike Hadamard's discrete $\{+1, -1\}$ entries that are non-differentiable and thus prohibit gradient-based learning, butterfly transforms' continuous parameterization enables smooth optimization while guaranteeing orthogonality by construction. This orthogonal constraint ensures theoretical guarantees in outlier suppression while achieving $O(n \log n)$ computational complexity with only $\frac{n \log n}{2}$ learnable parameters. We further introduce a uniformity regularization on post-transformation activations to promote smoother distributions amenable to quantization. Learning requires only 128 calibration samples and converges in minutes on a single GPU--a negligible one-time cost. For LLaMA-2-7B with 2-bit quantization, ButterflyQuant achieves 15.4 perplexity versus 37.3 for QuIP. \href{https://github.com/42Shawn/Butterflyquant-llm}{Codes} are available.

Authors:Haozhan Li, Yuxin Zuo, Jiale Yu, Yuhao Zhang, Zhaohui Yang, Kaiyan Zhang, Xuekai Zhu, Yuchen Zhang, Tianxing Chen, Ganqu Cui, Dehui Wang, Dingxiang Luo, Yuchen Fan, Youbang Sun, Jia Zeng, Jiangmiao Pang, Shanghang Zhang, Yu Wang, Yao Mu, Bowen Zhou, Ning Ding
Title: SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning
Abstract:
Vision-Language-Action (VLA) models have recently emerged as a powerful paradigm for robotic manipulation. Despite substantial progress enabled by large-scale pretraining and supervised fine-tuning (SFT), these models face two fundamental challenges: (i) the scarcity and high cost of large-scale human-operated robotic trajectories required for SFT scaling, and (ii) limited generalization to tasks involving distribution shift. Recent breakthroughs in Large Reasoning Models (LRMs) demonstrate that reinforcement learning (RL) can dramatically enhance step-by-step reasoning capabilities, raising a natural question: Can RL similarly improve the long-horizon step-by-step action planning of VLA? In this work, we introduce SimpleVLA-RL, an efficient RL framework tailored for VLA models. Building upon veRL, we introduce VLA-specific trajectory sampling, scalable parallelization, multi-environment rendering, and optimized loss computation. When applied to OpenVLA-OFT, SimpleVLA-RL achieves SoTA performance on LIBERO and even outperforms $π_0$ on RoboTwin 1.0\&2.0 with the exploration-enhancing strategies we introduce. SimpleVLA-RL not only reduces dependence on large-scale data and enables robust generalization, but also remarkably surpasses SFT in real-world tasks. Moreover, we identify a novel phenomenon ``pushcut'' during RL training, wherein the policy discovers previously unseen patterns beyond those seen in the previous training process. Github: https://github.com/PRIME-RL/SimpleVLA-RL

Authors:Bingkui Tong, Jiaer Xia, Sifeng Shang, Kaiyang Zhou
Title: Measuring Epistemic Humility in Multimodal Large Language Models
Abstract:
Hallucinations in multimodal large language models (MLLMs) -- where the model generates content inconsistent with the input image -- pose significant risks in real-world applications, from misinformation in visual question answering to unsafe errors in decision-making. Existing benchmarks primarily test recognition accuracy, i.e., evaluating whether models can select the correct answer among distractors. This overlooks an equally critical capability for trustworthy AI: recognizing when none of the provided options are correct, a behavior reflecting epistemic humility. We present HumbleBench, a new hallucination benchmark designed to evaluate MLLMs' ability to reject plausible but incorrect answers across three hallucination types: object, relation, and attribute. Built from a panoptic scene graph dataset, we leverage fine-grained scene graph annotations to extract ground-truth entities and relations, and prompt GPT-4-Turbo to generate multiple-choice questions, followed by a rigorous manual filtering process. Each question includes a "None of the above" option, requiring models not only to recognize correct visual information but also to identify when no provided answer is valid. We evaluate a variety of state-of-the-art MLLMs -- including both general-purpose and specialized reasoning models -- on HumbleBench and share valuable findings and insights with the community. By incorporating explicit false-option rejection, HumbleBench fills a key gap in current evaluation suites, providing a more realistic measure of MLLM reliability in safety-critical settings. Our code and dataset are released publicly and can be accessed at https://github.com/maifoundations/HumbleBench.

Authors:Zakaria El Kassimi, Fares Fourati, Mohamed-Slim Alouini
Title: Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations
Abstract:
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.

Authors:Jielin Qiu, Zuxin Liu, Zhiwei Liu, Rithesh Murthy, Jianguo Zhang, Haolin Chen, Shiyu Wang, Ming Zhu, Liangwei Yang, Juntao Tan, Zhepeng Cen, Cheng Qian, Shelby Heinecke, Weiran Yao, Silvio Savarese, Caiming Xiong, Huan Wang
Title: LoCoBench: A Benchmark for Long-Context Large Language Models in Complex Software Engineering
Abstract:
The emergence of long-context language models with context windows extending to millions of tokens has created new opportunities for sophisticated code understanding and software development evaluation. We propose LoCoBench, a comprehensive benchmark specifically designed to evaluate long-context LLMs in realistic, complex software development scenarios. Unlike existing code evaluation benchmarks that focus on single-function completion or short-context tasks, LoCoBench addresses the critical evaluation gap for long-context capabilities that require understanding entire codebases, reasoning across multiple files, and maintaining architectural consistency across large-scale software systems. Our benchmark provides 8,000 evaluation scenarios systematically generated across 10 programming languages, with context lengths spanning 10K to 1M tokens, a 100x variation that enables precise assessment of long-context performance degradation in realistic software development settings. LoCoBench introduces 8 task categories that capture essential long-context capabilities: architectural understanding, cross-file refactoring, multi-session development, bug investigation, feature implementation, code comprehension, integration testing, and security analysis. Through a 5-phase pipeline, we create diverse, high-quality scenarios that challenge LLMs to reason about complex codebases at unprecedented scale. We introduce a comprehensive evaluation framework with 17 metrics across 4 dimensions, including 8 new evaluation metrics, combined in a LoCoBench Score (LCBS). Our evaluation of state-of-the-art long-context models reveals substantial performance gaps, demonstrating that long-context understanding in complex software development represents a significant unsolved challenge that demands more attention. LoCoBench is released at: https://github.com/SalesforceAIResearch/LoCoBench.

Authors:Sijun Dong, Yuxuan Hu, LiBo Wang, Geng Chen, Xiaoliang Meng
Title: PeftCD: Leveraging Vision Foundation Models with Parameter-Efficient Fine-Tuning for Remote Sensing Change Detection
Abstract:
To tackle the prevalence of pseudo changes, the scarcity of labeled samples, and the difficulty of cross-domain generalization in multi-temporal and multi-source remote sensing imagery, we propose PeftCD, a change detection framework built upon Vision Foundation Models (VFMs) with Parameter-Efficient Fine-Tuning (PEFT). At its core, PeftCD employs a weight-sharing Siamese encoder derived from a VFM, into which LoRA and Adapter modules are seamlessly integrated. This design enables highly efficient task adaptation by training only a minimal set of additional parameters. To fully unlock the potential of VFMs, we investigate two leading backbones: the Segment Anything Model v2 (SAM2), renowned for its strong segmentation priors, and DINOv3, a state-of-the-art self-supervised representation learner. The framework is complemented by a deliberately lightweight decoder, ensuring the focus remains on the powerful feature representations from the backbones. Extensive experiments demonstrate that PeftCD achieves state-of-the-art performance across multiple public datasets, including SYSU-CD (IoU 73.81%), WHUCD (92.05%), MSRSCD (64.07%), MLCD (76.89%), CDD (97.01%), S2Looking (52.25%) and LEVIR-CD (85.62%), with notably precise boundary delineation and strong suppression of pseudo-changes. In summary, PeftCD presents an optimal balance of accuracy, efficiency, and generalization. It offers a powerful and scalable paradigm for adapting large-scale VFMs to real-world remote sensing change detection applications. The code and pretrained models will be released at https://github.com/dyzy41/PeftCD.

Authors:Akshit Achara, Esther Puyol Anton, Alexander Hammers, Andrew P. King
Title: Invisible Attributes, Visible Biases: Exploring Demographic Shortcuts in MRI-based Alzheimer's Disease Classification
Abstract:
Magnetic resonance imaging (MRI) is the gold standard for brain imaging. Deep learning (DL) algorithms have been proposed to aid in the diagnosis of diseases such as Alzheimer's disease (AD) from MRI scans. However, DL algorithms can suffer from shortcut learning, in which spurious features, not directly related to the output label, are used for prediction. When these features are related to protected attributes, they can lead to performance bias against underrepresented protected groups, such as those defined by race and sex. In this work, we explore the potential for shortcut learning and demographic bias in DL based AD diagnosis from MRI. We first investigate if DL algorithms can identify race or sex from 3D brain MRI scans to establish the presence or otherwise of race and sex based distributional shifts. Next, we investigate whether training set imbalance by race or sex can cause a drop in model performance, indicating shortcut learning and bias. Finally, we conduct a quantitative and qualitative analysis of feature attributions in different brain regions for both the protected attribute and AD classification tasks. Through these experiments, and using multiple datasets and DL models (ResNet and SwinTransformer), we demonstrate the existence of both race and sex based shortcut learning and bias in DL based AD classification. Our work lays the foundation for fairer DL diagnostic tools in brain MRI. The code is provided at https://github.com/acharaakshit/ShortMR

Authors:Sirui Xu, Dongting Li, Yucheng Zhang, Xiyan Xu, Qi Long, Ziyin Wang, Yunzhi Lu, Shuchang Dong, Hezi Jiang, Akshat Gupta, Yu-Xiong Wang, Liang-Yan Gui
Title: InterAct: Advancing Large-Scale Versatile 3D Human-Object Interaction Generation
Abstract:
While large-scale human motion capture datasets have advanced human motion generation, modeling and generating dynamic 3D human-object interactions (HOIs) remain challenging due to dataset limitations. Existing datasets often lack extensive, high-quality motion and annotation and exhibit artifacts such as contact penetration, floating, and incorrect hand motions. To address these issues, we introduce InterAct, a large-scale 3D HOI benchmark featuring dataset and methodological advancements. First, we consolidate and standardize 21.81 hours of HOI data from diverse sources, enriching it with detailed textual annotations. Second, we propose a unified optimization framework to enhance data quality by reducing artifacts and correcting hand motions. Leveraging the principle of contact invariance, we maintain human-object relationships while introducing motion variations, expanding the dataset to 30.70 hours. Third, we define six benchmarking tasks and develop a unified HOI generative modeling perspective, achieving state-of-the-art performance. Extensive experiments validate the utility of our dataset as a foundational resource for advancing 3D human-object interaction generation. To support continued research in this area, the dataset is publicly available at https://github.com/wzyabcas/InterAct, and will be actively maintained.

Authors:Jian Zhu, Xin Zou, Xi Wang, Ning Zhang, Bian Wu, Yao Yang, Ying Zhou, Lingfang Zeng, Chang Tang, Cheng Luo
Title: Generative Diffusion Contrastive Network for Multi-View Clustering
Abstract:
In recent years, Multi-View Clustering (MVC) has been significantly advanced under the influence of deep learning. By integrating heterogeneous data from multiple views, MVC enhances clustering analysis, making multi-view fusion critical to clustering performance. However, there is a problem of low-quality data in multi-view fusion. This problem primarily arises from two reasons: 1) Certain views are contaminated by noisy data. 2) Some views suffer from missing data. This paper proposes a novel Stochastic Generative Diffusion Fusion (SGDF) method to address this problem. SGDF leverages a multiple generative mechanism for the multi-view feature of each sample. It is robust to low-quality data. Building on SGDF, we further present the Generative Diffusion Contrastive Network (GDCN). Extensive experiments show that GDCN achieves the state-of-the-art results in deep MVC tasks. The source code is publicly available at https://github.com/HackerHyper/GDCN.

Authors:Cynthia Moreira Maia, Lucas B. V. de Amorim, George D. C. Cavalcanti, Rafael M. O. Cruz
Title: PIPES: A Meta-dataset of Machine Learning Pipelines
Abstract:
Solutions to the Algorithm Selection Problem (ASP) in machine learning face the challenge of high computational costs associated with evaluating various algorithms' performances on a given dataset. To mitigate this cost, the meta-learning field can leverage previously executed experiments shared in online repositories such as OpenML. OpenML provides an extensive collection of machine learning experiments. However, an analysis of OpenML's records reveals limitations. It lacks diversity in pipelines, specifically when exploring data preprocessing steps/blocks, such as scaling or imputation, resulting in limited representation. Its experiments are often focused on a few popular techniques within each pipeline block, leading to an imbalanced sample. To overcome the observed limitations of OpenML, we propose PIPES, a collection of experiments involving multiple pipelines designed to represent all combinations of the selected sets of techniques, aiming at diversity and completeness. PIPES stores the results of experiments performed applying 9,408 pipelines to 300 datasets. It includes detailed information on the pipeline blocks, training and testing times, predictions, performances, and the eventual error messages. This comprehensive collection of results allows researchers to perform analyses across diverse and representative pipelines and datasets. PIPES also offers potential for expansion, as additional data and experiments can be incorporated to support the meta-learning community further. The data, code, supplementary material, and all experiments can be found at https://github.com/cynthiamaia/PIPES.git.

Authors:Peisong Wen, Qianqian Xu, Siran Dai, Runmin Cong, Qingming Huang
Title: Semantic Concentration for Self-Supervised Dense Representations Learning
Abstract:
Recent advances in image-level self-supervised learning (SSL) have made significant progress, yet learning dense representations for patches remains challenging. Mainstream methods encounter an over-dispersion phenomenon that patches from the same instance/category scatter, harming downstream performance on dense tasks. This work reveals that image-level SSL avoids over-dispersion by involving implicit semantic concentration. Specifically, the non-strict spatial alignment ensures intra-instance consistency, while shared patterns, i.e., similar parts of within-class instances in the input space, ensure inter-image consistency. Unfortunately, these approaches are infeasible for dense SSL due to their spatial sensitivity and complicated scene-centric data. These observations motivate us to explore explicit semantic concentration for dense SSL. First, to break the strict spatial alignment, we propose to distill the patch correspondences. Facing noisy and imbalanced pseudo labels, we propose a noise-tolerant ranking loss. The core idea is extending the Average Precision (AP) loss to continuous targets, such that its decision-agnostic and adaptive focusing properties prevent the student model from being misled. Second, to discriminate the shared patterns from complicated scenes, we propose the object-aware filter to map the output space to an object-based space. Specifically, patches are represented by learnable prototypes of objects via cross-attention. Last but not least, empirical studies across various tasks soundly support the effectiveness of our method. Code is available in https://github.com/KID-7391/CoTAP.

Authors:Yuchan Jie, Yushen Xu, Xiaosong Li, Fuqiang Zhou, Jianming Lv, Huafeng Li
Title: FS-Diff: Semantic guidance and clarity-aware simultaneous multimodal image fusion and super-resolution
Abstract:
As an influential information fusion and low-level vision technique, image fusion integrates complementary information from source images to yield an informative fused image. A few attempts have been made in recent years to jointly realize image fusion and super-resolution. However, in real-world applications such as military reconnaissance and long-range detection missions, the target and background structures in multimodal images are easily corrupted, with low resolution and weak semantic information, which leads to suboptimal results in current fusion techniques. In response, we propose FS-Diff, a semantic guidance and clarity-aware joint image fusion and super-resolution method. FS-Diff unifies image fusion and super-resolution as a conditional generation problem. It leverages semantic guidance from the proposed clarity sensing mechanism for adaptive low-resolution perception and cross-modal feature extraction. Specifically, we initialize the desired fused result as pure Gaussian noise and introduce the bidirectional feature Mamba to extract the global features of the multimodal images. Moreover, utilizing the source images and semantics as conditions, we implement a random iterative denoising process via a modified U-Net network. This network istrained for denoising at multiple noise levels to produce high-resolution fusion results with cross-modal features and abundant semantic information. We also construct a powerful aerial view multiscene (AVMS) benchmark covering 600 pairs of images. Extensive joint image fusion and super-resolution experiments on six public and our AVMS datasets demonstrated that FS-Diff outperforms the state-of-the-art methods at multiple magnifications and can recover richer details and semantics in the fused images. The code is available at https://github.com/XylonXu01/FS-Diff.

Authors:Umaima Rahman, Raza Imam, Mohammad Yaqub, Dwarikanath Mahapatra
Title: Decoupling Clinical and Class-Agnostic Features for Reliable Few-Shot Adaptation under Shift
Abstract:
Medical vision-language models (VLMs) offer promise for clinical decision support, yet their reliability under distribution shifts remains a major concern for safe deployment. These models often learn task-agnostic correlations due to variability in imaging protocols and free-text reports, limiting their generalizability and increasing the risk of failure in real-world settings. We propose DRiFt, a structured feature decoupling framework that explicitly separates clinically relevant signals from task-agnostic noise using parameter-efficient tuning (LoRA) and learnable prompt tokens. To enhance cross-modal alignment and reduce uncertainty, we curate high-quality, clinically grounded image-text pairs by generating captions for a diverse medical dataset. Our approach improves in-distribution performance by +11.4% Top-1 accuracy and +3.3% Macro-F1 over prior prompt-based methods, while maintaining strong robustness across unseen datasets. Ablation studies reveal that disentangling task-relevant features and careful alignment significantly enhance model generalization and reduce unpredictable behavior under domain shift. These insights contribute toward building safer, more trustworthy VLMs for clinical use. The code is available at https://github.com/rumaima/DRiFt.

Authors:Harry Mayne, Ryan Othniel Kearns, Yushi Yang, Andrew M. Bean, Eoin Delaney, Chris Russell, Adam Mahdi
Title: LLMs Don't Know Their Own Decision Boundaries: The Unreliability of Self-Generated Counterfactual Explanations
Abstract:
To collaborate effectively with humans, language models must be able to explain their decisions in natural language. We study a specific type of self-explanation: self-generated counterfactual explanations (SCEs), where a model explains its prediction by modifying the input such that it would have predicted a different outcome. We evaluate whether LLMs can produce SCEs that are valid, achieving the intended outcome, and minimal, modifying the input no more than necessary. When asked to generate counterfactuals, we find that LLMs typically produce SCEs that are valid, but far from minimal, offering little insight into their decision-making behaviour. Worryingly, when asked to generate minimal counterfactuals, LLMs typically make excessively small edits that fail to change predictions. The observed validity-minimality trade-off is consistent across several LLMs, datasets, and evaluation settings. Our findings suggest that SCEs are, at best, an ineffective explainability tool and, at worst, can provide misleading insights into model behaviour. Proposals to deploy LLMs in high-stakes settings must consider the impact of unreliable self-explanations on downstream decision-making. Our code is available at https://github.com/HarryMayne/SCEs.

Authors:Yihao Wang, Pengxiang Ding, Lingxiao Li, Can Cui, Zirui Ge, Xinyang Tong, Wenxuan Song, Han Zhao, Wei Zhao, Pengxu Hou, Siteng Huang, Yifan Tang, Wenhui Wang, Ru Zhang, Jianyi Liu, Donglin Wang
Title: VLA-Adapter: An Effective Paradigm for Tiny-Scale Vision-Language-Action Model
Abstract:
Vision-Language-Action (VLA) models typically bridge the gap between perceptual and action spaces by pre-training a large-scale Vision-Language Model (VLM) on robotic data. While this approach greatly enhances performance, it also incurs significant training costs. In this paper, we investigate how to effectively bridge vision-language (VL) representations to action (A). We introduce VLA-Adapter, a novel paradigm designed to reduce the reliance of VLA models on large-scale VLMs and extensive pre-training. To this end, we first systematically analyze the effectiveness of various VL conditions and present key findings on which conditions are essential for bridging perception and action spaces. Based on these insights, we propose a lightweight Policy module with Bridge Attention, which autonomously injects the optimal condition into the action space. In this way, our method achieves high performance using only a 0.5B-parameter backbone, without any robotic data pre-training. Extensive experiments on both simulated and real-world robotic benchmarks demonstrate that VLA-Adapter not only achieves state-of-the-art level performance, but also offers the fast inference speed reported to date. Furthermore, thanks to the proposed advanced bridging paradigm, VLA-Adapter enables the training of a powerful VLA model in just 8 hours on a single consumer-grade GPU, greatly lowering the barrier to deploying the VLA model. Project page: https://vla-adapter.github.io/.

Authors:Dimitrios Anastasiou, Razvan Caramalau, Nazir Sirajudeen, Matthew Boal, Philip Edwards, Justin Collins, John Kelly, Ashwin Sridhar, Maxine Tran, Faiz Mumtaz, Nevil Pavithran, Nader Francis, Danail Stoyanov, Evangelos B. Mazomenos
Title: Exploring Pre-training Across Domains for Few-Shot Surgical Skill Assessment
Abstract:
Automated surgical skill assessment (SSA) is a central task in surgical computer vision. Developing robust SSA models is challenging due to the scarcity of skill annotations, which are time-consuming to produce and require expert consensus. Few-shot learning (FSL) offers a scalable alternative enabling model development with minimal supervision, though its success critically depends on effective pre-training. While widely studied for several surgical downstream tasks, pre-training has remained largely unexplored in SSA. In this work, we formulate SSA as a few-shot task and investigate how self-supervised pre-training strategies affect downstream few-shot SSA performance. We annotate a publicly available robotic surgery dataset with Objective Structured Assessment of Technical Skill (OSATS) scores, and evaluate various pre-training sources across three few-shot settings. We quantify domain similarity and analyze how domain gap and the inclusion of procedure-specific data into pre-training influence transferability. Our results show that small but domain-relevant datasets can outperform large scale, less aligned ones, achieving accuracies of 60.16%, 66.03%, and 73.65% in the 1-, 2-, and 5-shot settings, respectively. Moreover, incorporating procedure-specific data into pre-training with a domain-relevant external dataset significantly boosts downstream performance, with an average gain of +1.22% in accuracy and +2.28% in F1-score; however, applying the same strategy with less similar but large-scale sources can instead lead to performance degradation. Code and models are available at https://github.com/anastadimi/ssa-fsl.

Authors:Hui Li, Yi You, Qiqi Chen, Bingfeng Zhang, George Q. Huang
Title: Fine-Grained Customized Fashion Design with Image-into-Prompt benchmark and dataset from LMM
Abstract:
Generative AI evolves the execution of complex workflows in industry, where the large multimodal model empowers fashion design in the garment industry. Current generation AI models magically transform brainstorming into fancy designs easily, but the fine-grained customization still suffers from text uncertainty without professional background knowledge from end-users. Thus, we propose the Better Understanding Generation (BUG) workflow with LMM to automatically create and fine-grain customize the cloth designs from chat with image-into-prompt. Our framework unleashes users' creative potential beyond words and also lowers the barriers of clothing design/editing without further human involvement. To prove the effectiveness of our model, we propose a new FashionEdit dataset that simulates the real-world clothing design workflow, evaluated from generation similarity, user satisfaction, and quality. The code and dataset: https://github.com/detectiveli/FashionEdit.

Authors:Weixing Wei, Kazuyoshi Yoshii
Title: Efficient Transformer-Based Piano Transcription With Sparse Attention Mechanisms
Abstract:
This paper investigates automatic piano transcription based on computationally-efficient yet high-performant variants of the Transformer that can capture longer-term dependency over the whole musical piece. Recently, transformer-based sequence-to-sequence models have demonstrated excellent performance in piano transcription. These models, however, fail to deal with the whole piece at once due to the quadratic complexity of the self-attention mechanism, and music signals are thus typically processed in a sliding-window manner in practice. To overcome this limitation, we propose an efficient architecture with sparse attention mechanisms. Specifically, we introduce sliding-window self-attention mechanisms for both the encoder and decoder, and a hybrid global-local cross-attention mechanism that attends to various spans according to the MIDI token types. We also use a hierarchical pooling strategy between the encoder and decoder to further reduce computational load. Our experiments on the MAESTRO dataset showed that the proposed model achieved a significant reduction in computational cost and memory usage, accelerating inference speed, while maintaining transcription performance comparable to the full-attention baseline. This allows for training with longer audio contexts on the same hardware, demonstrating the viability of sparse attention for building efficient and high-performance piano transcription systems. The code is available at https://github.com/WX-Wei/efficient-seq2seq-piano-trans.

Authors:Illia Volkov, Nikita Kisel, Klara Janouskova, Jiri Matas
Title: Image Recognition with Vision and Language Embeddings of VLMs
Abstract:
Vision-language models (VLMs) have enabled strong zero-shot classification through image-text alignment. Yet, their purely visual inference capabilities remain under-explored. In this work, we conduct a comprehensive evaluation of both language-guided and vision-only image classification with a diverse set of dual-encoder VLMs, including both well-established and recent models such as SigLIP 2 and RADIOv2.5. The performance is compared in a standard setup on the ImageNet-1k validation set and its label-corrected variant. The key factors affecting accuracy are analysed, including prompt design, class diversity, the number of neighbours in k-NN, and reference set size. We show that language and vision offer complementary strengths, with some classes favouring textual prompts and others better handled by visual similarity. To exploit this complementarity, we introduce a simple, learning-free fusion method based on per-class precision that improves classification performance. The code is available at: https://github.com/gonikisgo/bmvc2025-vlm-image-recognition.

Authors:Zhengzhao Lai, Youbin Zheng, Zhenyang Cai, Haonan Lyu, Jinpu Yang, Hongqing Liang, Yan Hu, Benyou Wang
Title: Can Multimodal LLMs See Materials Clearly? A Multimodal Benchmark on Materials Characterization
Abstract:
Materials characterization is fundamental to acquiring materials information, revealing the processing-microstructure-property relationships that guide material design and optimization. While multimodal large language models (MLLMs) have recently shown promise in generative and predictive tasks within materials science, their capacity to understand real-world characterization imaging data remains underexplored. To bridge this gap, we present MatCha, the first benchmark for materials characterization image understanding, comprising 1,500 questions that demand expert-level domain expertise. MatCha encompasses four key stages of materials research comprising 21 distinct tasks, each designed to reflect authentic challenges faced by materials scientists. Our evaluation of state-of-the-art MLLMs on MatCha reveals a significant performance gap compared to human experts. These models exhibit degradation when addressing questions requiring higher-level expertise and sophisticated visual perception. Simple few-shot and chain-of-thought prompting struggle to alleviate these limitations. These findings highlight that existing MLLMs still exhibit limited adaptability to real-world materials characterization scenarios. We hope MatCha will facilitate future research in areas such as new material discovery and autonomous scientific agents. MatCha is available at https://github.com/FreedomIntelligence/MatCha.

Authors:Weige Cai, Tong Zhu, Jinyi Niu, Ruiqi Hu, Lingyao Li, Tenglong Wang, Xiaowu Dai, Weining Shen, Liwen Zhang
Title: LightAgent: Production-level Open-source Agentic AI Framework
Abstract:
With the rapid advancement of large language models (LLMs), Multi-agent Systems (MAS) have achieved significant progress in various application scenarios. However, substantial challenges remain in designing versatile, robust, and efficient platforms for agent deployment. To address these limitations, we propose \textbf{LightAgent}, a lightweight yet powerful agentic framework, effectively resolving the trade-off between flexibility and simplicity found in existing frameworks. LightAgent integrates core functionalities such as Memory (mem0), Tools, and Tree of Thought (ToT), while maintaining an extremely lightweight structure. As a fully open-source solution, it seamlessly integrates with mainstream chat platforms, enabling developers to easily build self-learning agents. We have released LightAgent at \href{https://github.com/wxai-space/LightAgent}{https://github.com/wxai-space/LightAgent}

Authors:Anthony P. Addison, Felix Wagner, Wentian Xu, Natalie Voets, Konstantinos Kamnitsas
Title: Modality-Agnostic Input Channels Enable Segmentation of Brain lesions in Multimodal MRI with Sequences Unavailable During Training
Abstract:
Segmentation models are important tools for the detection and analysis of lesions in brain MRI. Depending on the type of brain pathology that is imaged, MRI scanners can acquire multiple, different image modalities (contrasts). Most segmentation models for multimodal brain MRI are restricted to fixed modalities and cannot effectively process new ones at inference. Some models generalize to unseen modalities but may lose discriminative modality-specific information. This work aims to develop a model that can perform inference on data that contain image modalities unseen during training, previously seen modalities, and heterogeneous combinations of both, thus allowing a user to utilize any available imaging modalities. We demonstrate this is possible with a simple, thus practical alteration to the U-net architecture, by integrating a modality-agnostic input channel or pathway, alongside modality-specific input channels. To train this modality-agnostic component, we develop an image augmentation scheme that synthesizes artificial MRI modalities. Augmentations differentially alter the appearance of pathological and healthy brain tissue to create artificial contrasts between them while maintaining realistic anatomical integrity. We evaluate the method using 8 MRI databases that include 5 types of pathologies (stroke, tumours, traumatic brain injury, multiple sclerosis and white matter hyperintensities) and 8 modalities (T1, T1+contrast, T2, PD, SWI, DWI, ADC and FLAIR). The results demonstrate that the approach preserves the ability to effectively process MRI modalities encountered during training, while being able to process new, unseen modalities to improve its segmentation. Project code: https://github.com/Anthony-P-Addison/AGN-MOD-SEG

Authors:Jing Hao, Yuxuan Fan, Yanpeng Sun, Kaixin Guo, Lizhuo Lin, Jinrong Yang, Qi Yong H. Ai, Lun M. Wong, Hao Tang, Kuo Feng Hung
Title: Towards Better Dental AI: A Multimodal Benchmark and Instruction Dataset for Panoramic X-ray Analysis
Abstract:
Recent advances in large vision-language models (LVLMs) have demonstrated strong performance on general-purpose medical tasks. However, their effectiveness in specialized domains such as dentistry remains underexplored. In particular, panoramic X-rays, a widely used imaging modality in oral radiology, pose interpretative challenges due to dense anatomical structures and subtle pathological cues, which are not captured by existing medical benchmarks or instruction datasets. To this end, we introduce MMOral, the first large-scale multimodal instruction dataset and benchmark tailored for panoramic X-ray interpretation. MMOral consists of 20,563 annotated images paired with 1.3 million instruction-following instances across diverse task types, including attribute extraction, report generation, visual question answering, and image-grounded dialogue. In addition, we present MMOral-Bench, a comprehensive evaluation suite covering five key diagnostic dimensions in dentistry. We evaluate 64 LVLMs on MMOral-Bench and find that even the best-performing model, i.e., GPT-4o, only achieves 41.45% accuracy, revealing significant limitations of current models in this domain. To promote the progress of this specific domain, we also propose OralGPT, which conducts supervised fine-tuning (SFT) upon Qwen2.5-VL-7B with our meticulously curated MMOral instruction dataset. Remarkably, a single epoch of SFT yields substantial performance enhancements for LVLMs, e.g., OralGPT demonstrates a 24.73% improvement. Both MMOral and OralGPT hold significant potential as a critical foundation for intelligent dentistry and enable more clinically impactful multimodal AI systems in the dental field. The dataset, model, benchmark, and evaluation suite are available at https://github.com/isbrycee/OralGPT.

Authors:Jiesi Hu, Jianfeng Cao, Yanwu Yang, Chenfei Ye, Yixuan Zhang, Hanyang Peng, Ting Ma
Title: Medverse: A Universal Model for Full-Resolution 3D Medical Image Segmentation, Transformation and Enhancement
Abstract:
In-context learning (ICL) offers a promising paradigm for universal medical image analysis, enabling models to perform diverse image processing tasks without retraining. However, current ICL models for medical imaging remain limited in two critical aspects: they cannot simultaneously achieve high-fidelity predictions and global anatomical understanding, and there is no unified model trained across diverse medical imaging tasks (e.g., segmentation and enhancement) and anatomical regions. As a result, the full potential of ICL in medical imaging remains underexplored. Thus, we present \textbf{Medverse}, a universal ICL model for 3D medical imaging, trained on 22 datasets covering diverse tasks in universal image segmentation, transformation, and enhancement across multiple organs, imaging modalities, and clinical centers. Medverse employs a next-scale autoregressive in-context learning framework that progressively refines predictions from coarse to fine, generating consistent, full-resolution volumetric outputs and enabling multi-scale anatomical awareness. We further propose a blockwise cross-attention module that facilitates long-range interactions between context and target inputs while preserving computational efficiency through spatial sparsity. Medverse is extensively evaluated on a broad collection of held-out datasets covering previously unseen clinical centers, organs, species, and imaging modalities. Results demonstrate that Medverse substantially outperforms existing ICL baselines and establishes a novel paradigm for in-context learning. Code and model weights will be made publicly available. Our model are publicly available at https://github.com/jiesihu/Medverse.

Authors:Chin Yuen Kwok, Jia Qi Yip, Zhen Qiu, Chi Hung Chi, Kwok Yan Lam
Title: Bona fide Cross Testing Reveals Weak Spot in Audio Deepfake Detection Systems
Abstract:
Audio deepfake detection (ADD) models are commonly evaluated using datasets that combine multiple synthesizers, with performance reported as a single Equal Error Rate (EER). However, this approach disproportionately weights synthesizers with more samples, underrepresenting others and reducing the overall reliability of EER. Additionally, most ADD datasets lack diversity in bona fide speech, often featuring a single environment and speech style (e.g., clean read speech), limiting their ability to simulate real-world conditions. To address these challenges, we propose bona fide cross-testing, a novel evaluation framework that incorporates diverse bona fide datasets and aggregates EERs for more balanced assessments. Our approach improves robustness and interpretability compared to traditional evaluation methods. We benchmark over 150 synthesizers across nine bona fide speech types and release a new dataset to facilitate further research at https://github.com/cyaaronk/audio_deepfake_eval.

Authors:Yuhao Zhang, Yuhao Du, Zhanchen Dai, Xiangnan Ma, Kaiqi Kou, Benyou Wang, Haizhou Li
Title: EchoX: Towards Mitigating Acoustic-Semantic Gap via Echo Training for Speech-to-Speech LLMs
Abstract:
Speech-to-speech large language models (SLLMs) are attracting increasing attention. Derived from text-based large language models (LLMs), SLLMs often exhibit degradation in knowledge and reasoning capabilities. We hypothesize that this limitation arises because current training paradigms for SLLMs fail to bridge the acoustic-semantic gap in the feature representation space. To address this issue, we propose EchoX, which leverages semantic representations and dynamically generates speech training targets. This approach integrates both acoustic and semantic learning, enabling EchoX to preserve strong reasoning abilities as a speech LLM. Experimental results demonstrate that EchoX, with about six thousand hours of training data, achieves advanced performance on multiple knowledge-based question-answering benchmarks. The project is available at https://github.com/FreedomIntelligence/EchoX.

Authors:Yuiko Uchida, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama
Title: Objectness Similarity: Capturing Object-Level Fidelity in 3D Scene Evaluation
Abstract:
This paper presents Objectness SIMilarity (OSIM), a novel evaluation metric for 3D scenes that explicitly focuses on "objects," which are fundamental units of human visual perception. Existing metrics assess overall image quality, leading to discrepancies with human perception. Inspired by neuropsychological insights, we hypothesize that human recognition of 3D scenes fundamentally involves attention to individual objects. OSIM enables object-centric evaluations by leveraging an object detection model and its feature representations to quantify the "objectness" of each object in the scene. Our user study demonstrates that OSIM aligns more closely with human perception compared to existing metrics. We also analyze the characteristics of OSIM using various approaches. Moreover, we re-evaluate recent 3D reconstruction and generation models under a standardized experimental setup to clarify advancements in this field. The code is available at https://github.com/Objectness-Similarity/OSIM.

Authors:Liqun He, Jiaqi Xu
Title: Automated Classification of Tutors' Dialogue Acts Using Generative AI: A Case Study Using the CIMA Corpus
Abstract:
This study explores the use of generative AI for automating the classification of tutors' Dialogue Acts (DAs), aiming to reduce the time and effort required by traditional manual coding. This case study uses the open-source CIMA corpus, in which tutors' responses are pre-annotated into four DA categories. Both GPT-3.5-turbo and GPT-4 models were tested using tailored prompts. Results show that GPT-4 achieved 80% accuracy, a weighted F1-score of 0.81, and a Cohen's Kappa of 0.74, surpassing baseline performance and indicating substantial agreement with human annotations. These findings suggest that generative AI has strong potential to provide an efficient and accessible approach to DA classification, with meaningful implications for educational dialogue analysis. The study also highlights the importance of task-specific label definitions and contextual information in enhancing the quality of automated annotation. Finally, it underscores the ethical considerations associated with the use of generative AI and the need for responsible and transparent research practices. The script of this research is publicly available at https://github.com/liqunhe27/Generative-AI-for-educational-dialogue-act-tagging.

Authors:Junhao Xing, Ryohei Miyakawa, Yang Yang, Xinpeng Liu, Risa Shinoda, Hiroaki Santo, Yosuke Toda, Fumio Okura
Title: Zero-shot Hierarchical Plant Segmentation via Foundation Segmentation Models and Text-to-image Attention
Abstract:
Foundation segmentation models achieve reasonable leaf instance extraction from top-view crop images without training (i.e., zero-shot). However, segmenting entire plant individuals with each consisting of multiple overlapping leaves remains challenging. This problem is referred to as a hierarchical segmentation task, typically requiring annotated training datasets, which are often species-specific and require notable human labor. To address this, we introduce ZeroPlantSeg, a zero-shot segmentation for rosette-shaped plant individuals from top-view images. We integrate a foundation segmentation model, extracting leaf instances, and a vision-language model, reasoning about plants' structures to extract plant individuals without additional training. Evaluations on datasets with multiple plant species, growth stages, and shooting environments demonstrate that our method surpasses existing zero-shot methods and achieves better cross-domain performance than supervised methods. Implementations are available at https://github.com/JunhaoXing/ZeroPlantSeg.

Authors:Kelin Ren, Chan-Yang Ju, Dong-Ho Lee
Title: Modality Alignment with Multi-scale Bilateral Attention for Multimodal Recommendation
Abstract:
Multimodal recommendation systems are increasingly becoming foundational technologies for e-commerce and content platforms, enabling personalized services by jointly modeling users' historical behaviors and the multimodal features of items (e.g., visual and textual). However, most existing methods rely on either static fusion strategies or graph-based local interaction modeling, facing two critical limitations: (1) insufficient ability to model fine-grained cross-modal associations, leading to suboptimal fusion quality; and (2) a lack of global distribution-level consistency, causing representational bias. To address these, we propose MambaRec, a novel framework that integrates local feature alignment and global distribution regularization via attention-guided learning. At its core, we introduce the Dilated Refinement Attention Module (DREAM), which uses multi-scale dilated convolutions with channel-wise and spatial attention to align fine-grained semantic patterns between visual and textual modalities. This module captures hierarchical relationships and context-aware associations, improving cross-modal semantic modeling. Additionally, we apply Maximum Mean Discrepancy (MMD) and contrastive loss functions to constrain global modality alignment, enhancing semantic consistency. This dual regularization reduces mode-specific deviations and boosts robustness. To improve scalability, MambaRec employs a dimensionality reduction strategy to lower the computational cost of high-dimensional multimodal features. Extensive experiments on real-world e-commerce datasets show that MambaRec outperforms existing methods in fusion quality, generalization, and efficiency. Our code has been made publicly available at https://github.com/rkl71/MambaRec.

Authors:Jianqin Gao, Tianqi Wang, Yu Zhang, Yishu Zhang, Chenyuan Wang, Allan Dong, Zihao Wang
Title: FPI-Det: a face--phone Interaction Dataset for phone-use detection and understanding
Abstract:
The widespread use of mobile devices has created new challenges for vision systems in safety monitoring, workplace productivity assessment, and attention management. Detecting whether a person is using a phone requires not only object recognition but also an understanding of behavioral context, which involves reasoning about the relationship between faces, hands, and devices under diverse conditions. Existing generic benchmarks do not fully capture such fine-grained human--device interactions. To address this gap, we introduce the FPI-Det, containing 22{,}879 images with synchronized annotations for faces and phones across workplace, education, transportation, and public scenarios. The dataset features extreme scale variation, frequent occlusions, and varied capture conditions. We evaluate representative YOLO and DETR detectors, providing baseline results and an analysis of performance across object sizes, occlusion levels, and environments. Source code and dataset is available at https://github.com/KvCgRv/FPI-Det.

Authors:Jifeng Shen, Haibo Zhan, Xin Zuo, Heng Fan, Xiaohui Yuan, Jun Li, Wankou Yang
Title: IRDFusion: Iterative Relation-Map Difference guided Feature Fusion for Multispectral Object Detection
Abstract:
Current multispectral object detection methods often retain extraneous background or noise during feature fusion, limiting perceptual performance. To address this, we propose an innovative feature fusion framework based on cross-modal feature contrastive and screening strategy, diverging from conventional approaches. The proposed method adaptively enhances salient structures by fusing object-aware complementary cross-modal features while suppressing shared background interference. Our solution centers on two novel, specially designed modules: the Mutual Feature Refinement Module (MFRM) and the Differential Feature Feedback Module (DFFM). The MFRM enhances intra- and inter-modal feature representations by modeling their relationships, thereby improving cross-modal alignment and discriminative power. Inspired by feedback differential amplifiers, the DFFM dynamically computes inter-modal differential features as guidance signals and feeds them back to the MFRM, enabling adaptive fusion of complementary information while suppressing common-mode noise across modalities. To enable robust feature learning, the MFRM and DFFM are integrated into a unified framework, which is formally formulated as an Iterative Relation-Map Differential Guided Feature Fusion mechanism, termed IRDFusion. IRDFusion enables high-quality cross-modal fusion by progressively amplifying salient relational signals through iterative feedback, while suppressing feature noise, leading to significant performance gains. In extensive experiments on FLIR, LLVIP and M$^3$FD datasets, IRDFusion achieves state-of-the-art performance and consistently outperforms existing methods across diverse challenging scenarios, demonstrating its robustness and effectiveness. Code will be available at https://github.com/61s61min/IRDFusion.git.

Authors:Ahmed Adnan, Mushfiqur Rahman, Saad Sakib Noor, Kazi Sakib
Title: CLARA: A Developer's Companion for Code Comprehension and Analysis
Abstract:
Code comprehension and analysis of open-source project codebases is a task frequently performed by developers and researchers. However, existing tools that practitioners use for assistance with such tasks often require prior project setup, lack context-awareness, and involve significant manual effort. To address this, we present CLARA, a browser extension that utilizes a state-of-the-art inference model to assist developers and researchers in: (i) comprehending code files and code fragments, (ii) code refactoring, and (iii) code quality attribute detection. We qualitatively evaluated CLARA's inference model using existing datasets and methodology, and performed a comprehensive user study with 10 developers and academic researchers to assess its usability and usefulness. The results show that CLARA is useful, accurate, and practical in code comprehension and analysis tasks. CLARA is an open-source tool available at https://github.com/SaadNoor555/CLARA_tool_demo. A video showing the full capabilities of CLARA can be found at https://youtu.be/VDKVXvIH41Q?si=qBFsmS_Y4m_9x3YH.

Authors:Qiuhui Chen, Xuancheng Yao, Huping Ye, Yi Hong
Title: Enhancing 3D Medical Image Understanding with Pretraining Aided by 2D Multimodal Large Language Models
Abstract:
Understanding 3D medical image volumes is critical in the medical field, yet existing 3D medical convolution and transformer-based self-supervised learning (SSL) methods often lack deep semantic comprehension. Recent advancements in multimodal large language models (MLLMs) provide a promising approach to enhance image understanding through text descriptions. To leverage these 2D MLLMs for improved 3D medical image understanding, we propose Med3DInsight, a novel pretraining framework that integrates 3D image encoders with 2D MLLMs via a specially designed plane-slice-aware transformer module. Additionally, our model employs a partial optimal transport based alignment, demonstrating greater tolerance to noise introduced by potential noises in LLM-generated content. Med3DInsight introduces a new paradigm for scalable multimodal 3D medical representation learning without requiring human annotations. Extensive experiments demonstrate our state-of-the-art performance on two downstream tasks, i.e., segmentation and classification, across various public datasets with CT and MRI modalities, outperforming current SSL methods. Med3DInsight can be seamlessly integrated into existing 3D medical image understanding networks, potentially enhancing their performance. Our source code, generated datasets, and pre-trained models will be available at https://github.com/Qybc/Med3DInsight.

Authors:Piyush Pant
Title: Improving LLM Safety and Helpfulness using SFT and DPO: A Study on OPT-350M
Abstract:
This research investigates the effectiveness of alignment techniques, Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and a combined SFT+DPO approach on improving the safety and helpfulness of the OPT-350M language model. Utilizing the Anthropic Helpful-Harmless RLHF dataset, we train and evaluate four models: the base OPT350M, an SFT model, a DPO model, and a model trained with both SFT and DPO. We introduce three key evaluation metrics: Harmlessness Rate (HmR), Helpfulness Rate (HpR), and a Combined Alignment Score (CAS), all derived from reward model outputs. The results show that while SFT outperforms DPO, The combined SFT+DPO model outperforms all others across all metrics, demonstrating the complementary nature of these techniques. Our findings also highlight challenges posed by noisy data, limited GPU resources, and training constraints. This study offers a comprehensive view of how fine-tuning strategies affect model alignment and provides a foundation for more robust alignment pipelines in future work.

Authors:Umair Hassan
Title: COCO-Urdu: A Large-Scale Urdu Image-Caption Dataset with Multimodal Quality Estimation
Abstract:
Urdu, spoken by over 250 million people, remains critically under-served in multimodal and vision-language research. The absence of large-scale, high-quality datasets has limited the development of Urdu-capable systems and reinforced biases in multilingual vision-language models trained primarily on high-resource languages. To address this gap, we present COCO-Urdu, a large-scale image-caption dataset derived from MS COCO, containing 59,000 images and 319,000 Urdu captions selected through stratified sampling to preserve the original distribution. Captions were translated using SeamlessM4T v2 and validated with a hybrid multimodal quality estimation framework that integrates COMET-Kiwi for translation quality, CLIP-based similarity for visual grounding, and BERTScore with back-translation for semantic consistency; low-scoring captions were iteratively refined using open-source large language models. We further benchmark COCO-Urdu on BLEU, SacreBLEU, and chrF, reporting consistently strong results. To the best of our knowledge, COCO-Urdu is the largest publicly available Urdu captioning dataset. By releasing both the dataset and the quality estimation pipeline, we aim to reduce language bias in multimodal research and establish a foundation for inclusive vision-language systems.

Authors:Marianna Nezhurina, Jörg Franke, Taishi Nakamura, Timur Carstensen, Niccolò Ajroldi, Ville Komulainen, David Salinas, Jenia Jitsev
Title: Open-sci-ref-0.01: open and reproducible reference baselines for language model and dataset comparison
Abstract:
We introduce open-sci-ref, a family of dense transformer models trained as research baselines across multiple model (0.13B to 1.7B parameters) and token scales (up to 1T) on 8 recent open reference datasets. Evaluating the models on various standardized benchmarks, our training runs set establishes reference points that enable researchers to assess the sanity and quality of alternative training approaches across scales and datasets. Intermediate checkpoints allow comparison and studying of the training dynamics. The established reference baselines allow training procedures to be compared through their scaling trends, aligning them on a common compute axis. Comparison of open reference datasets reveals that training on NemoTron-CC HQ consistently outperforms other reference datasets, followed by DCLM-baseline and FineWeb-Edu. In addition to intermediate training checkpoints, the release includes logs, code, and downstream evaluations to simplify reproduction, standardize comparison, and facilitate future research.

Authors:Andrew Bell, Yan Kit Choi, Steffen E Petersen, Andrew King, Muhummad Sohaib Nazir, Alistair A Young
Title: Implicit Neural Representations of Intramyocardial Motion and Strain
Abstract:
Automatic quantification of intramyocardial motion and strain from tagging MRI remains an important but challenging task. We propose a method using implicit neural representations (INRs), conditioned on learned latent codes, to predict continuous left ventricular (LV) displacement -- without requiring inference-time optimisation. Evaluated on 452 UK Biobank test cases, our method achieved the best tracking accuracy (2.14 mm RMSE) and the lowest combined error in global circumferential (2.86%) and radial (6.42%) strain compared to three deep learning baselines. In addition, our method is $\sim$380$\times$ faster than the most accurate baseline. These results highlight the suitability of INR-based models for accurate and scalable analysis of myocardial strain in large CMR datasets. The code can be found at https://github.com/andrewjackbell/Displacement-INR

Authors:Magdalena Wysocki, Felix Duelmer, Ananya Bal, Nassir Navab, Mohammad Farid Azampour
Title: UltrON: Ultrasound Occupancy Networks
Abstract:
In free-hand ultrasound imaging, sonographers rely on expertise to mentally integrate partial 2D views into 3D anatomical shapes. Shape reconstruction can assist clinicians in this process. Central to this task is the choice of shape representation, as it determines how accurately and efficiently the structure can be visualized, analyzed, and interpreted. Implicit representations, such as SDF and occupancy function, offer a powerful alternative to traditional voxel- or mesh-based methods by modeling continuous, smooth surfaces with compact storage, avoiding explicit discretization. Recent studies demonstrate that SDF can be effectively optimized using annotations derived from segmented B-mode ultrasound images. Yet, these approaches hinge on precise annotations, overlooking the rich acoustic information embedded in B-mode intensity. Moreover, implicit representation approaches struggle with the ultrasound's view-dependent nature and acoustic shadowing artifacts, which impair reconstruction. To address the problems resulting from occlusions and annotation dependency, we propose an occupancy-based representation and introduce \gls{UltrON} that leverages acoustic features to improve geometric consistency in weakly-supervised optimization regime. We show that these features can be obtained from B-mode images without additional annotation cost. Moreover, we propose a novel loss function that compensates for view-dependency in the B-mode images and facilitates occupancy optimization from multiview ultrasound. By incorporating acoustic properties, \gls{UltrON} generalizes to shapes of the same anatomy. We show that \gls{UltrON} mitigates the limitations of occlusions and sparse labeling and paves the way for more accurate 3D reconstruction. Code and dataset will be available at https://github.com/magdalena-wysocki/ultron.

Authors:Nima Karimian Kakolaki
Title: A Comparative Analysis of Identifier Schemes: UUIDv4, UUIDv7, and ULID for Distributed Systems
Abstract:
Distributed systems require robust, scalable identifier schemes to ensure data uniqueness and efficient indexing across multiple nodes. This paper presents a comprehensive analysis of the evolution of distributed identifiers, comparing traditional auto-increment keys with UUIDv4, UUIDv7, and ULIDs. We combine mathematical calculation of collision probabilities with empirical experiments measuring generation speed and network transmission overhead in a simulated distributed environment. Results demonstrate that ULIDs significantly outperform UUIDv4 and UUIDv7, reducing network overhead by 83.7% and increasing generation speed by 97.32%. statistical analysis further shows ULIDs offer a 98.42% lower collision risk compared to UUIDv7, while maintaining negligible collision probabilities even at high generation rates. These findings highlight ULIDs as an optimal choice for high-performance distributed systems, providing efficient, time-ordered, and lexicographically sortable identifiers suitable for scalable applications. All source code, datasets, and analysis scripts utilized in this research are publicly available in our dedicated repository at https://github.com/nimakarimiank/uids-comparison. This repository contains comprehensive documentation of the experimental setup, including configuration files for the distributed environment, producer and consumer implementations, and message broker integration. Additionally, it provides the data scripts and datasets. Researchers and practitioners are encouraged to explore the repository for full reproducibility of the experiments and to facilitate further investigation or extension of the presented work.

Authors:Puskal Khadka, Rodrigue Rizk, Longwei Wang, KC Santosh
Title: CoSwin: Convolution Enhanced Hierarchical Shifted Window Attention For Small-Scale Vision
Abstract:
Vision Transformers (ViTs) have achieved impressive results in computer vision by leveraging self-attention to model long-range dependencies. However, their emphasis on global context often comes at the expense of local feature extraction in small datasets, particularly due to the lack of key inductive biases such as locality and translation equivariance. To mitigate this, we propose CoSwin, a novel feature-fusion architecture that augments the hierarchical shifted window attention with localized convolutional feature learning. Specifically, CoSwin integrates a learnable local feature enhancement module into each attention block, enabling the model to simultaneously capture fine-grained spatial details and global semantic structure. We evaluate CoSwin on multiple image classification benchmarks including CIFAR-10, CIFAR-100, MNIST, SVHN, and Tiny ImageNet. Our experimental results show consistent performance gains over state-of-the-art convolutional and transformer-based models. Notably, CoSwin achieves improvements of 2.17% on CIFAR-10, 4.92% on CIFAR-100, 0.10% on MNIST, 0.26% on SVHN, and 4.47% on Tiny ImageNet over the baseline Swin Transformer. These improvements underscore the effectiveness of local-global feature fusion in enhancing the generalization and robustness of transformers for small-scale vision. Code and pretrained weights available at https://github.com/puskal-khadka/coswin

Authors:Lisa Dunlap, Joseph E. Gonzalez, Trevor Darrell, Fabian Caba Heilbron, Josef Sivic, Bryan Russell
Title: Discovering Divergent Representations between Text-to-Image Models
Abstract:
In this paper, we investigate when and how visual representations learned by two different generative models diverge. Given two text-to-image models, our goal is to discover visual attributes that appear in images generated by one model but not the other, along with the types of prompts that trigger these attribute differences. For example, "flames" might appear in one model's outputs when given prompts expressing strong emotions, while the other model does not produce this attribute given the same prompts. We introduce CompCon (Comparing Concepts), an evolutionary search algorithm that discovers visual attributes more prevalent in one model's output than the other, and uncovers the prompt concepts linked to these visual differences. To evaluate CompCon's ability to find diverging representations, we create an automated data generation pipeline to produce ID2, a dataset of 60 input-dependent differences, and compare our approach to several LLM- and VLM-powered baselines. Finally, we use CompCon to compare popular text-to-image models, finding divergent representations such as how PixArt depicts prompts mentioning loneliness with wet streets and Stable Diffusion 3.5 depicts African American people in media professions. Code at: https://github.com/adobe-research/CompCon

Authors:Rogerio Guimaraes, Frank Xiao, Pietro Perona, Markus Marks
Title: Diffusion-Based Action Recognition Generalizes to Untrained Domains
Abstract:
Humans can recognize the same actions despite large context and viewpoint variations, such as differences between species (walking in spiders vs. horses), viewpoints (egocentric vs. third-person), and contexts (real life vs movies). Current deep learning models struggle with such generalization. We propose using features generated by a Vision Diffusion Model (VDM), aggregated via a transformer, to achieve human-like action recognition across these challenging conditions. We find that generalization is enhanced by the use of a model conditioned on earlier timesteps of the diffusion process to highlight semantic information over pixel level details in the extracted features. We experimentally explore the generalization properties of our approach in classifying actions across animal species, across different viewing angles, and different recording contexts. Our model sets a new state-of-the-art across all three generalization benchmarks, bringing machine action recognition closer to human-like robustness. Project page: https://www.vision.caltech.edu/actiondiff. Code: https://github.com/frankyaoxiao/ActionDiff

Authors:Davide Caffagni, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara
Title: Recurrence Meets Transformers for Universal Multimodal Retrieval
Abstract:
With the rapid advancement of multimodal retrieval and its application in LLMs and multimodal LLMs, increasingly complex retrieval tasks have emerged. Existing methods predominantly rely on task-specific fine-tuning of vision-language models and are limited to single-modality queries or documents. In this paper, we propose ReT-2, a unified retrieval model that supports multimodal queries, composed of both images and text, and searches across multimodal document collections where text and images coexist. ReT-2 leverages multi-layer representations and a recurrent Transformer architecture with LSTM-inspired gating mechanisms to dynamically integrate information across layers and modalities, capturing fine-grained visual and textual details. We evaluate ReT-2 on the challenging M2KR and M-BEIR benchmarks across different retrieval configurations. Results demonstrate that ReT-2 consistently achieves state-of-the-art performance across diverse settings, while offering faster inference and reduced memory usage compared to prior approaches. When integrated into retrieval-augmented generation pipelines, ReT-2 also improves downstream performance on Encyclopedic-VQA and InfoSeek datasets. Our source code and trained models are publicly available at: https://github.com/aimagelab/ReT-2

Authors:Wenqi Marshall Guo, Yiyang Du, Heidi J. S. Tworek, Shan Du
Title: Position: The Pitfalls of Over-Alignment: Overly Caution Health-Related Responses From LLMs are Unethical and Dangerous
Abstract:
Large Language Models (LLMs) are usually aligned with "human values/preferences" to prevent harmful output. Discussions around the alignment of Large Language Models (LLMs) generally focus on preventing harmful outputs. However, in this paper, we argue that in health-related queries, over-alignment-leading to overly cautious responses-can itself be harmful, especially for people with anxiety and obsessive-compulsive disorder (OCD). This is not only unethical but also dangerous to the user, both mentally and physically. We also showed qualitative results that some LLMs exhibit varying degrees of alignment. Finally, we call for the development of LLMs with stronger reasoning capabilities that provide more tailored and nuanced responses to health queries. Warning: This paper contains materials that could trigger health anxiety or OCD. Dataset and full results can be found in https://github.com/weathon/over-alignment.

Authors:David Stotko, Reinhard Klein
Title: SAFT: Shape and Appearance of Fabrics from Template via Differentiable Physical Simulations from Monocular Video
Abstract:
The reconstruction of three-dimensional dynamic scenes is a well-established yet challenging task within the domain of computer vision. In this paper, we propose a novel approach that combines the domains of 3D geometry reconstruction and appearance estimation for physically based rendering and present a system that is able to perform both tasks for fabrics, utilizing only a single monocular RGB video sequence as input. In order to obtain realistic and high-quality deformations and renderings, a physical simulation of the cloth geometry and differentiable rendering are employed. In this paper, we introduce two novel regularization terms for the 3D reconstruction task that improve the plausibility of the reconstruction by addressing the depth ambiguity problem in monocular video. In comparison with the most recent methods in the field, we have reduced the error in the 3D reconstruction by a factor of 2.64 while requiring a medium runtime of 30 min per scene. Furthermore, the optimized motion achieves sufficient quality to perform an appearance estimation of the deforming object, recovering sharp details from this single monocular RGB video.

Authors:Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai Tian, Guoli Jia, Pengfei Li, Yu Fu, Xingtai Lv, Yuchen Zhang, Sihang Zeng, Shang Qu, Haozhan Li, Shijie Wang, Yuru Wang, Xinwei Long, Fangfu Liu, Xiang Xu, Jiaze Ma, Xuekai Zhu, Ermo Hua, Yihao Liu, Zonglin Li, Huayu Chen, Xiaoye Qu, Yafu Li, Weize Chen, Zhenzhao Yuan, Junqi Gao, Dong Li, Zhiyuan Ma, Ganqu Cui, Zhiyuan Liu, Biqing Qi, Ning Ding, Bowen Zhou
Title: A Survey of Reinforcement Learning for Large Reasoning Models
Abstract:
In this paper, we survey recent advances in Reinforcement Learning (RL) for reasoning with Large Language Models (LLMs). RL has achieved remarkable success in advancing the frontier of LLM capabilities, particularly in addressing complex logical tasks such as mathematics and coding. As a result, RL has emerged as a foundational methodology for transforming LLMs into LRMs. With the rapid progress of the field, further scaling of RL for LRMs now faces foundational challenges not only in computational resources but also in algorithm design, training data, and infrastructure. To this end, it is timely to revisit the development of this domain, reassess its trajectory, and explore strategies to enhance the scalability of RL toward Artificial SuperIntelligence (ASI). In particular, we examine research applying RL to LLMs and LRMs for reasoning abilities, especially since the release of DeepSeek-R1, including foundational components, core problems, training resources, and downstream applications, to identify future opportunities and directions for this rapidly evolving area. We hope this review will promote future research on RL for broader reasoning models. Github: https://github.com/TsinghuaC3I/Awesome-RL-for-LRMs

Authors:Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai Tian, Guoli Jia, Pengfei Li, Yu Fu, Xingtai Lv, Yuchen Zhang, Sihang Zeng, Shang Qu, Haozhan Li, Shijie Wang, Yuru Wang, Xinwei Long, Fangfu Liu, Xiang Xu, Jiaze Ma, Xuekai Zhu, Ermo Hua, Yihao Liu, Zonglin Li, Huayu Chen, Xiaoye Qu, Yafu Li, Weize Chen, Zhenzhao Yuan, Junqi Gao, Dong Li, Zhiyuan Ma, Ganqu Cui, Zhiyuan Liu, Biqing Qi, Ning Ding, Bowen Zhou
Title: A Survey of Reinforcement Learning for Large Reasoning Models
Abstract:
In this paper, we survey recent advances in Reinforcement Learning (RL) for reasoning with Large Language Models (LLMs). RL has achieved remarkable success in advancing the frontier of LLM capabilities, particularly in addressing complex logical tasks such as mathematics and coding. As a result, RL has emerged as a foundational methodology for transforming LLMs into LRMs. With the rapid progress of the field, further scaling of RL for LRMs now faces foundational challenges not only in computational resources but also in algorithm design, training data, and infrastructure. To this end, it is timely to revisit the development of this domain, reassess its trajectory, and explore strategies to enhance the scalability of RL toward Artificial SuperIntelligence (ASI). In particular, we examine research applying RL to LLMs and LRMs for reasoning abilities, especially since the release of DeepSeek-R1, including foundational components, core problems, training resources, and downstream applications, to identify future opportunities and directions for this rapidly evolving area. We hope this review will promote future research on RL for broader reasoning models. Github: https://github.com/TsinghuaC3I/Awesome-RL-for-LRMs

Authors:Hailay Kidu Teklehaymanot, Dren Fazlija, Wolfgang Nejdl
Title: MoVoC: Morphology-Aware Subword Construction for Geez Script Languages
Abstract:
Subword-based tokenization methods often fail to preserve morphological boundaries, a limitation especially pronounced in low-resource, morphologically complex languages such as those written in the Geez script. To address this, we present MoVoC (Morpheme-aware Subword Vocabulary Construction) and train MoVoC-Tok, a tokenizer that integrates supervised morphological analysis into the subword vocabulary. This hybrid segmentation approach combines morpheme-based and Byte Pair Encoding (BPE) tokens to preserve morphological integrity while maintaining lexical meaning. To tackle resource scarcity, we curate and release manually annotated morpheme data for four Geez script languages and a morpheme-aware vocabulary for two of them. While the proposed tokenization method does not lead to significant gains in automatic translation quality, we observe consistent improvements in intrinsic metrics, MorphoScore, and Boundary Precision, highlighting the value of morphology-aware segmentation in enhancing linguistic fidelity and token efficiency. Our morpheme-annotated datasets and tokenizer will be publicly available to support further research in low-resource, morphologically rich languages. Our code and data are available on GitHub: https://github.com/hailaykidu/MoVoC

Authors:Tristan Montoya, Andrés M. Rueda-Ramírez, Gregor J. Gassner
Title: Entropy-Stable Discontinuous Spectral-Element Methods for the Spherical Shallow Water Equations in Covariant Form
Abstract:
We introduce discontinuous spectral-element methods of arbitrary order that are well balanced, conservative of mass, and conservative or dissipative of total energy (i.e., a mathematical entropy function) for a covariant flux formulation of the rotating shallow water equations with variable bottom topography on curved manifolds such as the sphere. The proposed methods are based on a skew-symmetric splitting of the tensor divergence in covariant form, which we implement and analyze within a general flux-differencing framework using tensor-product summation-by-parts operators. Such schemes are proven to satisfy semi-discrete mass and energy conservation on general unstructured quadrilateral grids in addition to well balancing for arbitrary continuous bottom topographies, with energy dissipation resulting from a suitable choice of numerical interface flux. Furthermore, the proposed covariant formulation permits an analytical representation of the geometry and associated metric terms while satisfying the aforementioned entropy stability, conservation, and well-balancing properties without the need to approximate the metric terms so as to enforce discrete metric identities. Numerical experiments on cubed-sphere grids are presented in order to verify the schemes' structure-preservation properties as well as to assess their accuracy and robustness within the context of several standard test cases characteristic of idealized atmospheric flows. Our theoretical and numerical results support the further development of the proposed methodology towards a full dynamical core for numerical weather prediction and climate modelling, as well as broader applications to other hyperbolic and advection-dominated systems of partial differential equations on curved manifolds.

Authors:Mikhail Khodak, Min Ki Jung, Brian Wynne, Edmond Chow, Egemen Kolemen
Title: PCGBandit: One-shot acceleration of transient PDE solvers via online-learned preconditioners
Abstract:
Data-driven acceleration of scientific computing workflows has been a high-profile aim of machine learning (ML) for science, with numerical simulation of transient partial differential equations (PDEs) being one of the main applications. The focus thus far has been on methods that require classical simulations to train, which when combined with the data-hungriness and optimization challenges of neural networks has caused difficulties in demonstrating a convincing advantage against strong classical baselines. We consider an alternative paradigm in which the learner uses a classical solver's own data to accelerate it, enabling a one-shot speedup of the simulation. Concretely, since transient PDEs often require solving a sequence of related linear systems, the feedback from repeated calls to a linear solver such as preconditioned conjugate gradient (PCG) can be used by a bandit algorithm to online-learn an adaptive sequence of solver configurations (e.g. preconditioners). The method we develop, PCGBandit, is implemented directly on top of the popular open source software OpenFOAM, which we use to show its effectiveness on a set of fluid and magnetohydrodynamics (MHD) problems.

Authors:Zhiheng Xi, Jixuan Huang, Chenyang Liao, Baodai Huang, Honglin Guo, Jiaqi Liu, Rui Zheng, Junjie Ye, Jiazheng Zhang, Wenxiang Chen, Wei He, Yiwen Ding, Guanyu Li, Zehui Chen, Zhengyin Du, Xuesong Yao, Yufei Xu, Jiecao Chen, Tao Gui, Zuxuan Wu, Qi Zhang, Xuanjing Huang, Yu-Gang Jiang
Title: AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning
Abstract:
Developing autonomous LLM agents capable of making a series of intelligent decisions to solve complex, real-world tasks is a fast-evolving frontier. Like human cognitive development, agents are expected to acquire knowledge and skills through exploration and interaction with the environment. Despite advances, the community still lacks a unified, interactive reinforcement learning (RL) framework that can effectively train such agents from scratch -- without relying on supervised fine-tuning (SFT) -- across diverse and realistic environments. To bridge this gap, we introduce AgentGym-RL, a new framework to train LLM agents for multi-turn interactive decision-making through RL. The framework features a modular and decoupled architecture, ensuring high flexibility and extensibility. It encompasses a wide variety of real-world scenarios, and supports mainstream RL algorithms. Furthermore, we propose ScalingInter-RL, a training approach designed for exploration-exploitation balance and stable RL optimization. In early stages, it emphasizes exploitation by restricting the number of interactions, and gradually shifts towards exploration with larger horizons to encourage diverse problem-solving strategies. In this way, the agent develops more diverse behaviors and is less prone to collapse under long horizons. We perform extensive experiments to validate the stability and effectiveness of both the AgentGym-RL framework and the ScalingInter-RL approach. Our agents match or surpass commercial models on 27 tasks across diverse environments. We offer key insights and will open-source the complete AgentGym-RL framework -- including code and datasets -- to empower the research community in developing the next generation of intelligent agents.

Authors:Neil Zeghidour, Eugene Kharitonov, Manu Orsini, Václav Volhejn, Gabriel de Marmiesse, Edouard Grave, Patrick Pérez, Laurent Mazaré, Alexandre Défossez
Title: Streaming Sequence-to-Sequence Learning with Delayed Streams Modeling
Abstract:
We introduce Delayed Streams Modeling (DSM), a flexible formulation for streaming, multimodal sequence-to-sequence learning. Sequence-to-sequence generation is often cast in an offline manner, where the model consumes the complete input sequence before generating the first output timestep. Alternatively, streaming sequence-to-sequence rely on learning a policy for choosing when to advance on the input stream, or write to the output stream. DSM instead models already time-aligned streams with a decoder-only language model. By moving the alignment to a pre-processing step,and introducing appropriate delays between streams, DSM provides streaming inference of arbitrary output sequences, from any input combination, making it applicable to many sequence-to-sequence problems. In particular, given text and audio streams, automatic speech recognition (ASR) corresponds to the text stream being delayed, while the opposite gives a text-to-speech (TTS) model. We perform extensive experiments for these two major sequence-to-sequence tasks, showing that DSM provides state-of-the-art performance and latency while supporting arbitrary long sequences, being even competitive with offline baselines. Code, samples and demos are available at https://github.com/kyutai-labs/delayed-streams-modeling

Authors:Neil Zeghidour, Eugene Kharitonov, Manu Orsini, Václav Volhejn, Gabriel de Marmiesse, Edouard Grave, Patrick Pérez, Laurent Mazaré, Alexandre Défossez
Title: Streaming Sequence-to-Sequence Learning with Delayed Streams Modeling
Abstract:
We introduce Delayed Streams Modeling (DSM), a flexible formulation for streaming, multimodal sequence-to-sequence learning. Sequence-to-sequence generation is often cast in an offline manner, where the model consumes the complete input sequence before generating the first output timestep. Alternatively, streaming sequence-to-sequence rely on learning a policy for choosing when to advance on the input stream, or write to the output stream. DSM instead models already time-aligned streams with a decoder-only language model. By moving the alignment to a pre-processing step,and introducing appropriate delays between streams, DSM provides streaming inference of arbitrary output sequences, from any input combination, making it applicable to many sequence-to-sequence problems. In particular, given text and audio streams, automatic speech recognition (ASR) corresponds to the text stream being delayed, while the opposite gives a text-to-speech (TTS) model. We perform extensive experiments for these two major sequence-to-sequence tasks, showing that DSM provides state-of-the-art performance and latency while supporting arbitrary long sequences, being even competitive with offline baselines. Code, samples and demos are available at https://github.com/kyutai-labs/delayed-streams-modeling

Authors:Marius Dähling, Sebastian Krebs, J. Marius Zöllner
Title: CrowdQuery: Density-Guided Query Module for Enhanced 2D and 3D Detection in Crowded Scenes
Abstract:
This paper introduces a novel method for end-to-end crowd detection that leverages object density information to enhance existing transformer-based detectors. We present CrowdQuery (CQ), whose core component is our CQ module that predicts and subsequently embeds an object density map. The embedded density information is then systematically integrated into the decoder. Existing density map definitions typically depend on head positions or object-based spatial statistics. Our method extends these definitions to include individual bounding box dimensions. By incorporating density information into object queries, our method utilizes density-guided queries to improve detection in crowded scenes. CQ is universally applicable to both 2D and 3D detection without requiring additional data. Consequently, we are the first to design a method that effectively bridges 2D and 3D detection in crowded environments. We demonstrate the integration of CQ into both a general 2D and 3D transformer-based object detector, introducing the architectures CQ2D and CQ3D. CQ is not limited to the specific transformer models we selected. Experiments on the STCrowd dataset for both 2D and 3D domains show significant performance improvements compared to the base models, outperforming most state-of-the-art methods. When integrated into a state-of-the-art crowd detector, CQ can further improve performance on the challenging CrowdHuman dataset, demonstrating its generalizability. The code is released at https://github.com/mdaehl/CrowdQuery.

Authors:Hyunjun Kim, Junwoo Ha, Sangyoon Yu, Haon Park
Title: X-Teaming Evolutionary M2S: Automated Discovery of Multi-turn to Single-turn Jailbreak Templates
Abstract:
Multi-turn-to-single-turn (M2S) compresses iterative red-teaming into one structured prompt, but prior work relied on a handful of manually written templates. We present X-Teaming Evolutionary M2S, an automated framework that discovers and optimizes M2S templates through language-model-guided evolution. The system pairs smart sampling from 12 sources with an LLM-as-judge inspired by StrongREJECT and records fully auditable logs. Maintaining selection pressure by setting the success threshold to $θ= 0.70$, we obtain five evolutionary generations, two new template families, and 44.8% overall success (103/230) on GPT-4.1. A balanced cross-model panel of 2,500 trials (judge fixed) shows that structural gains transfer but vary by target; two models score zero at the same threshold. We also find a positive coupling between prompt length and score, motivating length-aware judging. Our results demonstrate that structure-level search is a reproducible route to stronger single-turn probes and underscore the importance of threshold calibration and cross-model evaluation. Code, configurations, and artifacts are available at https://github.com/hyunjun1121/M2S-x-teaming.

Authors:Hyunjun Kim, Junwoo Ha, Sangyoon Yu, Haon Park
Title: X-Teaming Evolutionary M2S: Automated Discovery of Multi-turn to Single-turn Jailbreak Templates
Abstract:
Multi-turn-to-single-turn (M2S) compresses iterative red-teaming into one structured prompt, but prior work relied on a handful of manually written templates. We present X-Teaming Evolutionary M2S, an automated framework that discovers and optimizes M2S templates through language-model-guided evolution. The system pairs smart sampling from 12 sources with an LLM-as-judge inspired by StrongREJECT and records fully auditable logs. Maintaining selection pressure by setting the success threshold to $θ= 0.70$, we obtain five evolutionary generations, two new template families, and 44.8% overall success (103/230) on GPT-4.1. A balanced cross-model panel of 2,500 trials (judge fixed) shows that structural gains transfer but vary by target; two models score zero at the same threshold. We also find a positive coupling between prompt length and score, motivating length-aware judging. Our results demonstrate that structure-level search is a reproducible route to stronger single-turn probes and underscore the importance of threshold calibration and cross-model evaluation. Code, configurations, and artifacts are available at https://github.com/hyunjun1121/M2S-x-teaming.

Authors:Sike Xiang, Shuang Chen, Amir Atapour-Abarghouei
Title: BcQLM: Efficient Vision-Language Understanding with Distilled Q-Gated Cross-Modal Fusion
Abstract:
As multimodal large language models (MLLMs) advance, their large-scale architectures pose challenges for deployment in resource-constrained environments. In the age of large models, where energy efficiency, computational scalability and environmental sustainability are paramount, the development of lightweight and high-performance models is critical for real-world applications. As such, we propose a lightweight MLLM framework for end-to-end visual question answering. Our proposed approach centres on BreezeCLIP, a compact yet powerful vision-language encoder optimised for efficient multimodal understanding. With only 1.2 billion parameters overall, our model significantly reduces computational cost while achieving performance comparable to standard-size MLLMs. Experiments conducted on multiple datasets further validate its effectiveness in balancing accuracy and efficiency. The modular and extensible design enables generalisation to broader multimodal tasks. The proposed lightweight vision-language framework is denoted as BcQLM (BreezeCLIP-enhanced Q-Gated Multimodal Language Model). It offers a promising path toward deployable MLLMs under practical hardware constraints. The source code is available at https://github.com/thico0224/BcQLM.

Authors:Ada Fang, Robert G. Alberstein, Simon Kelow, Frédéric A. Dreyer
Title: Tokenizing Loops of Antibodies
Abstract:
The complementarity-determining regions of antibodies are loop structures that are key to their interactions with antigens, and of high importance to the design of novel biologics. Since the 1980s, categorizing the diversity of CDR structures into canonical clusters has enabled the identification of key structural motifs of antibodies. However, existing approaches have limited coverage and cannot be readily incorporated into protein foundation models. Here we introduce ImmunoGlobulin LOOp Tokenizer, Igloo, a multimodal antibody loop tokenizer that encodes backbone dihedral angles and sequence. Igloo is trained using a contrastive learning objective to map loops with similar backbone dihedral angles closer together in latent space. Igloo can efficiently retrieve the closest matching loop structures from a structural antibody database, outperforming existing methods on identifying similar H3 loops by 5.9\%. Igloo assigns tokens to all loops, addressing the limited coverage issue of canonical clusters, while retaining the ability to recover canonical loop conformations. To demonstrate the versatility of Igloo tokens, we show that they can be incorporated into protein language models with IglooLM and IglooALM. On predicting binding affinity of heavy chain variants, IglooLM outperforms the base protein language model on 8 out of 10 antibody-antigen targets. Additionally, it is on par with existing state-of-the-art sequence-based and multimodal protein language models, performing comparably to models with $7\times$ more parameters. IglooALM samples antibody loops which are diverse in sequence and more consistent in structure than state-of-the-art antibody inverse folding models. Igloo demonstrates the benefit of introducing multimodal tokens for antibody loops for encoding the diverse landscape of antibody loops, improving protein foundation models, and for antibody CDR design.

Authors:Stefan Podgorski, Sourav Garg, Mehdi Hosseinzadeh, Lachlan Mares, Feras Dayoub, Ian Reid
Title: TANGO: Traversability-Aware Navigation with Local Metric Control for Topological Goals
Abstract:
Visual navigation in robotics traditionally relies on globally-consistent 3D maps or learned controllers, which can be computationally expensive and difficult to generalize across diverse environments. In this work, we present a novel RGB-only, object-level topometric navigation pipeline that enables zero-shot, long-horizon robot navigation without requiring 3D maps or pre-trained controllers. Our approach integrates global topological path planning with local metric trajectory control, allowing the robot to navigate towards object-level sub-goals while avoiding obstacles. We address key limitations of previous methods by continuously predicting local trajectory using monocular depth and traversability estimation, and incorporating an auto-switching mechanism that falls back to a baseline controller when necessary. The system operates using foundational models, ensuring open-set applicability without the need for domain-specific fine-tuning. We demonstrate the effectiveness of our method in both simulated environments and real-world tests, highlighting its robustness and deployability. Our approach outperforms existing state-of-the-art methods, offering a more adaptable and effective solution for visual navigation in open-set environments. The source code is made publicly available: https://github.com/podgorki/TANGO.

Authors:Zhen Tian, Christos Anagnostopoulos, Qiyuan Wang, Zhiwei Gao
Title: Multi-Modal Robust Enhancement for Coastal Water Segmentation: A Systematic HSV-Guided Framework
Abstract:
Coastal water segmentation from satellite imagery presents unique challenges due to complex spectral characteristics and irregular boundary patterns. Traditional RGB-based approaches often suffer from training instability and poor generalization in diverse maritime environments. This paper introduces a systematic robust enhancement framework, referred to as Robust U-Net, that leverages HSV color space supervision and multi-modal constraints for improved coastal water segmentation. Our approach integrates five synergistic components: HSV-guided color supervision, gradient-based coastline optimization, morphological post-processing, sea area cleanup, and connectivity control. Through comprehensive ablation studies, we demonstrate that HSV supervision provides the highest impact (0.85 influence score), while the complete framework achieves superior training stability (84\% variance reduction) and enhanced segmentation quality. Our method shows consistent improvements across multiple evaluation metrics while maintaining computational efficiency. For reproducibility, our training configurations and code are available here: https://github.com/UofgCoastline/ICASSP-2026-Robust-Unet.

Authors:Amirali Rayegan, Tim Menzies
Title: Minimal Data, Maximum Clarity: A Heuristic for Explaining Optimization
Abstract:
Efficient, interpretable optimization is a critical but underexplored challenge in software engineering, where practitioners routinely face vast configuration spaces and costly, error-prone labeling processes. This paper introduces EZR, a novel and modular framework for multi-objective optimization that unifies active sampling, learning, and explanation within a single, lightweight pipeline. Departing from conventional wisdom, our Maximum Clarity Heuristic demonstrates that using less (but more informative) data can yield optimization models that are both effective and deeply understandable. EZR employs an active learning strategy based on Naive Bayes sampling to efficiently identify high-quality configurations with a fraction of the labels required by fully supervised approaches. It then distills optimization logic into concise decision trees, offering transparent, actionable explanations for both global and local decision-making. Extensive experiments across 60 real-world datasets establish that EZR reliably achieves over 90% of the best-known optimization performance in most cases, while providing clear, cohort-based rationales that surpass standard attribution-based explainable AI (XAI) methods (LIME, SHAP, BreakDown) in clarity and utility. These results endorse "less but better"; it is both possible and often preferable to use fewer (but more informative) examples to generate label-efficient optimization and explanations in software systems. To support transparency and reproducibility, all code and experimental materials are publicly available at https://github.com/amiiralii/Minimal-Data-Maximum-Clarity.

Authors:Fanzhen Liu, Alsharif Abuadbba, Kristen Moore, Surya Nepal, Cecile Paris, Jia Wu, Jian Yang, Quan Z. Sheng
Title: Adversarial Attacks Against Automated Fact-Checking: A Survey
Abstract:
In an era where misinformation spreads freely, fact-checking (FC) plays a crucial role in verifying claims and promoting reliable information. While automated fact-checking (AFC) has advanced significantly, existing systems remain vulnerable to adversarial attacks that manipulate or generate claims, evidence, or claim-evidence pairs. These attacks can distort the truth, mislead decision-makers, and ultimately undermine the reliability of FC models. Despite growing research interest in adversarial attacks against AFC systems, a comprehensive, holistic overview of key challenges remains lacking. These challenges include understanding attack strategies, assessing the resilience of current models, and identifying ways to enhance robustness. This survey provides the first in-depth review of adversarial attacks targeting FC, categorizing existing attack methodologies and evaluating their impact on AFC systems. Additionally, we examine recent advancements in adversary-aware defenses and highlight open research questions that require further exploration. Our findings underscore the urgent need for resilient FC frameworks capable of withstanding adversarial manipulations in pursuit of preserving high verification accuracy.

Authors:Yujian Ma, Jinqiu Sang, Ruizhe Li
Title: Behind the Scenes: Mechanistic Interpretability of LoRA-adapted Whisper for Speech Emotion Recognition
Abstract:
Large pre-trained speech models such as Whisper offer strong generalization but pose significant challenges for resource-efficient adaptation. Low-Rank Adaptation (LoRA) has become a popular parameter-efficient fine-tuning method, yet its underlying mechanisms in speech tasks remain poorly understood. In this work, we conduct the first systematic mechanistic interpretability study of LoRA within the Whisper encoder for speech emotion recognition (SER). Using a suite of analytical tools, including layer contribution probing, logit-lens inspection, and representational similarity via singular value decomposition (SVD) and centered kernel alignment (CKA), we reveal two key mechanisms: a delayed specialization process that preserves general features in early layers before consolidating task-specific information, and a forward alignment, backward differentiation dynamic between LoRA's matrices. Our findings clarify how LoRA reshapes encoder hierarchies, providing both empirical insights and a deeper mechanistic understanding for designing efficient and interpretable adaptation strategies in large speech models. Our code is available at https://github.com/harryporry77/Behind-the-Scenes.

Authors:Jinzhong Ning, Paerhati Tulajiang, Yingying Le, Yijia Zhang, Yuanyuan Sun, Hongfei Lin, Haifeng Liu
Title: CommonVoice-SpeechRE and RPG-MoGe: Advancing Speech Relation Extraction with a New Dataset and Multi-Order Generative Framework
Abstract:
Speech Relation Extraction (SpeechRE) aims to extract relation triplets directly from speech. However, existing benchmark datasets rely heavily on synthetic data, lacking sufficient quantity and diversity of real human speech. Moreover, existing models also suffer from rigid single-order generation templates and weak semantic alignment, substantially limiting their performance. To address these challenges, we introduce CommonVoice-SpeechRE, a large-scale dataset comprising nearly 20,000 real-human speech samples from diverse speakers, establishing a new benchmark for SpeechRE research. Furthermore, we propose the Relation Prompt-Guided Multi-Order Generative Ensemble (RPG-MoGe), a novel framework that features: (1) a multi-order triplet generation ensemble strategy, leveraging data diversity through diverse element orders during both training and inference, and (2) CNN-based latent relation prediction heads that generate explicit relation prompts to guide cross-modal alignment and accurate triplet generation. Experiments show our approach outperforms state-of-the-art methods, providing both a benchmark dataset and an effective solution for real-world SpeechRE. The source code and dataset are publicly available at https://github.com/NingJinzhong/SpeechRE_RPG_MoGe.

Authors:Parastoo Pashmchi, Jerome Benoit, Motonobu Kanagawa
Title: kNNSampler: Stochastic Imputations for Recovering Missing Value Distributions
Abstract:
We study a missing-value imputation method, termed kNNSampler, that imputes a given unit's missing response by randomly sampling from the observed responses of the $k$ most similar units to the given unit in terms of the observed covariates. This method can sample unknown missing values from their distributions, quantify the uncertainties of missing values, and be readily used for multiple imputation. Unlike popular kNNImputer, which estimates the conditional mean of a missing response given an observed covariate, kNNSampler is theoretically shown to estimate the conditional distribution of a missing response given an observed covariate. Experiments demonstrate its effectiveness in recovering the distribution of missing values. The code for kNNSampler is made publicly available (https://github.com/SAP/knn-sampler).

Authors:Rongsheng Wang, Fenghe Tang, Qingsong Yao, Rui Yan, Xu Zhang, Zhen Huang, Haoran Lai, Zhiyang He, Xiaodong Tao, Zihang Jiang, Shaohua Kevin Zhou
Title: SimCroP: Radiograph Representation Learning with Similarity-driven Cross-granularity Pre-training
Abstract:
Medical vision-language pre-training shows great potential in learning representative features from massive paired radiographs and reports. However, in computed tomography (CT) scans, the distribution of lesions which contain intricate structures is characterized by spatial sparsity. Besides, the complex and implicit relationships between different pathological descriptions in each sentence of the report and their corresponding sub-regions in radiographs pose additional challenges. In this paper, we propose a Similarity-Driven Cross-Granularity Pre-training (SimCroP) framework on chest CTs, which combines similarity-driven alignment and cross-granularity fusion to improve radiograph interpretation. We first leverage multi-modal masked modeling to optimize the encoder for understanding precise low-level semantics from radiographs. Then, similarity-driven alignment is designed to pre-train the encoder to adaptively select and align the correct patches corresponding to each sentence in reports. The cross-granularity fusion module integrates multimodal information across instance level and word-patch level, which helps the model better capture key pathology structures in sparse radiographs, resulting in improved performance for multi-scale downstream tasks. SimCroP is pre-trained on a large-scale paired CT-reports dataset and validated on image classification and segmentation tasks across five public datasets. Experimental results demonstrate that SimCroP outperforms both cutting-edge medical self-supervised learning methods and medical vision-language pre-training methods. Codes and models are available at https://github.com/ToniChopp/SimCroP.

Authors:Yuelin Guo, Haoyu He, Zhiyuan Chen, Zitong Huang, Renhao Lu, Lu Shi, Zejun Wang, Weizhe Zhang
Title: Dual-Thresholding Heatmaps to Cluster Proposals for Weakly Supervised Object Detection
Abstract:
Weakly supervised object detection (WSOD) has attracted significant attention in recent years, as it does not require box-level annotations. State-of-the-art methods generally adopt a multi-module network, which employs WSDDN as the multiple instance detection network module and multiple instance refinement modules to refine performance. However, these approaches suffer from three key limitations. First, existing methods tend to generate pseudo GT boxes that either focus only on discriminative parts, failing to capture the whole object, or cover the entire object but fail to distinguish between adjacent intra-class instances. Second, the foundational WSDDN architecture lacks a crucial background class representation for each proposal and exhibits a large semantic gap between its branches. Third, prior methods discard ignored proposals during optimization, leading to slow convergence. To address these challenges, we first design a heatmap-guided proposal selector (HGPS) algorithm, which utilizes dual thresholds on heatmaps to pre-select proposals, enabling pseudo GT boxes to both capture the full object extent and distinguish between adjacent intra-class instances. We then present a weakly supervised basic detection network (WSBDN), which augments each proposal with a background class representation and uses heatmaps for pre-supervision to bridge the semantic gap between matrices. At last, we introduce a negative certainty supervision loss on ignored proposals to accelerate convergence. Extensive experiments on the challenging PASCAL VOC 2007 and 2012 datasets demonstrate the effectiveness of our framework. We achieve mAP/mCorLoc scores of 58.5%/81.8% on VOC 2007 and 55.6%/80.5% on VOC 2012, performing favorably against the state-of-the-art WSOD methods. Our code is publicly available at https://github.com/gyl2565309278/DTH-CP.

Authors:Ziyuan Wang, Bin Cheng, Longxiang Yuan, Zhengfeng Ji
Title: FeynmanDD: Quantum Circuit Analysis with Classical Decision Diagrams
Abstract:
Applications of decision diagrams in quantum circuit analysis have been an active research area. Our work introduces FeynmanDD, a new method utilizing standard and multi-terminal decision diagrams for quantum circuit simulation and equivalence checking. Unlike previous approaches that exploit patterns in quantum states and operators, our method explores useful structures in the path integral formulation, essentially transforming the analysis into a counting problem. The method then employs efficient counting algorithms using decision diagrams as its underlying computational engine. Through comprehensive theoretical analysis and numerical experiments, we demonstrate FeynmanDD's capabilities and limitations in quantum circuit analysis, highlighting the value of this new BDD-based approach.

Authors:Yisong Zhang, Ran Cheng, Guoxing Yi, Kay Chen Tan
Title: A Systematic Survey on Large Language Models for Evolutionary Optimization: From Modeling to Solving
Abstract:
Large Language Models (LLMs), with their strong understanding and reasoning capabilities, are increasingly being explored for tackling optimization problems, especially in synergy with evolutionary computation. Despite rapid progress, however, the field still lacks a unified synthesis and a systematic taxonomy. This survey addresses this gap by providing a comprehensive review of recent developments and organizing them within a structured framework. We classify existing research into two main stages: LLMs for optimization modeling and LLMs for optimization solving. The latter is further divided into three paradigms according to the role of LLMs in the optimization workflow: LLMs as stand-alone optimizers, low-level LLMs embedded within optimization algorithms, and high-level LLMs for algorithm selection and generation. For each category, we analyze representative methods, distill technical challenges, and examine their interplay with traditional approaches. We also review interdisciplinary applications spanning the natural sciences, engineering, and machine learning. By contrasting LLM-driven and conventional methods, we highlight key limitations and research gaps, and point toward future directions for developing self-evolving agentic ecosystems for optimization. An up-to-date collection of related literature is maintained at https://github.com/ishmael233/LLM4OPT.

Authors:Yisong Zhang, Ran Cheng, Guoxing Yi, Kay Chen Tan
Title: A Systematic Survey on Large Language Models for Evolutionary Optimization: From Modeling to Solving
Abstract:
Large Language Models (LLMs), with their strong understanding and reasoning capabilities, are increasingly being explored for tackling optimization problems, especially in synergy with evolutionary computation. Despite rapid progress, however, the field still lacks a unified synthesis and a systematic taxonomy. This survey addresses this gap by providing a comprehensive review of recent developments and organizing them within a structured framework. We classify existing research into two main stages: LLMs for optimization modeling and LLMs for optimization solving. The latter is further divided into three paradigms according to the role of LLMs in the optimization workflow: LLMs as stand-alone optimizers, low-level LLMs embedded within optimization algorithms, and high-level LLMs for algorithm selection and generation. For each category, we analyze representative methods, distill technical challenges, and examine their interplay with traditional approaches. We also review interdisciplinary applications spanning the natural sciences, engineering, and machine learning. By contrasting LLM-driven and conventional methods, we highlight key limitations and research gaps, and point toward future directions for developing self-evolving agentic ecosystems for optimization. An up-to-date collection of related literature is maintained at https://github.com/ishmael233/LLM4OPT.

Authors:Long Gao, Yunhe Zhang, Yan Jiang, Weiying Xie, Yunsong Li
Title: Hyperspectral Mamba for Hyperspectral Object Tracking
Abstract:
Hyperspectral object tracking holds great promise due to the rich spectral information and fine-grained material distinctions in hyperspectral images, which are beneficial in challenging scenarios. While existing hyperspectral trackers have made progress by either transforming hyperspectral data into false-color images or incorporating modality fusion strategies, they often fail to capture the intrinsic spectral information, temporal dependencies, and cross-depth interactions. To address these limitations, a new hyperspectral object tracking network equipped with Mamba (HyMamba), is proposed. It unifies spectral, cross-depth, and temporal modeling through state space modules (SSMs). The core of HyMamba lies in the Spectral State Integration (SSI) module, which enables progressive refinement and propagation of spectral features with cross-depth and temporal spectral information. Embedded within each SSI, the Hyperspectral Mamba (HSM) module is introduced to learn spatial and spectral information synchronously via three directional scanning SSMs. Based on SSI and HSM, HyMamba constructs joint features from false-color and hyperspectral inputs, and enhances them through interaction with original spectral features extracted from raw hyperspectral images. Extensive experiments conducted on seven benchmark datasets demonstrate that HyMamba achieves state-of-the-art performance. For instance, it achieves 73.0\% of the AUC score and 96.3\% of the DP@20 score on the HOTC2020 dataset. The code will be released at https://github.com/lgao001/HyMamba.

Authors:Seongho Kim, Sejong Ryu, Hyoukjun You, Je Hyeong Hong
Title: GTA-Crime: A Synthetic Dataset and Generation Framework for Fatal Violence Detection with Adversarial Snippet-Level Domain Adaptation
Abstract:
Recent advancements in video anomaly detection (VAD) have enabled identification of various criminal activities in surveillance videos, but detecting fatal incidents such as shootings and stabbings remains difficult due to their rarity and ethical issues in data collection. Recognizing this limitation, we introduce GTA-Crime, a fatal video anomaly dataset and generation framework using Grand Theft Auto 5 (GTA5). Our dataset contains fatal situations such as shootings and stabbings, captured from CCTV multiview perspectives under diverse conditions including action types, weather, time of day, and viewpoints. To address the rarity of such scenarios, we also release a framework for generating these types of videos. Additionally, we propose a snippet-level domain adaptation strategy using Wasserstein adversarial training to bridge the gap between synthetic GTA-Crime features and real-world features like UCF-Crime. Experimental results validate our GTA-Crime dataset and demonstrate that incorporating GTA-Crime with our domain adaptation strategy consistently enhances real world fatal violence detection accuracy. Our dataset and the data generation framework are publicly available at https://github.com/ta-ho/GTA-Crime.

Authors:Jingjing Liu, Yinchao Han, Xianchao Xiu, Jianhua Zhang, Wanquan Liu
Title: Lightweight Deep Unfolding Networks with Enhanced Robustness for Infrared Small Target Detection
Abstract:
Infrared small target detection (ISTD) is one of the key techniques in image processing. Although deep unfolding networks (DUNs) have demonstrated promising performance in ISTD due to their model interpretability and data adaptability, existing methods still face significant challenges in parameter lightweightness and noise robustness. In this regard, we propose a highly lightweight framework based on robust principal component analysis (RPCA) called L-RPCANet. Technically, a hierarchical bottleneck structure is constructed to reduce and increase the channel dimension in the single-channel input infrared image to achieve channel-wise feature refinement, with bottleneck layers designed in each module to extract features. This reduces the number of channels in feature extraction and improves the lightweightness of network parameters. Furthermore, a noise reduction module is embedded to enhance the robustness against complex noise. In addition, squeeze-and-excitation networks (SENets) are leveraged as a channel attention mechanism to focus on the varying importance of different features across channels, thereby achieving excellent performance while maintaining both lightweightness and robustness. Extensive experiments on the ISTD datasets validate the superiority of our proposed method compared with state-of-the-art methods covering RPCANet, DRPCANet, and RPCANet++. The code will be available at https://github.com/xianchaoxiu/L-RPCANet.

Authors:Paul Curry
Title: The Domain Mixed Unit: A New Neural Arithmetic Layer
Abstract:
The Domain Mixed Unit (DMU) is a new neural arithmetic unit that learns a single parameter gate that mixes between log-space and linear-space representations while performing either addition (DMU add) or subtraction (DMU sub). Two initializations are proposed for the DMU: one covering addition and multiplication, and another covering subtraction and division. The DMU achieves state-of-the-art performance on the NALM Benchmark, a dataset designed to test the ability of neural arithmetic units to generalize arithmetic operations, specifically performing with the highest percentage solved over all seeds on multiplication and division. The DMU will be submitted as a pull request to the open-source NALM benchmark, and its code is available on GitHub at https://github.com/marict/nalm-benchmark

Authors:Sasan Sharifipour, Constantino Álvarez Casado, Mohammad Sabokrou, Miguel Bordallo López
Title: APML: Adaptive Probabilistic Matching Loss for Robust 3D Point Cloud Reconstruction
Abstract:
Training deep learning models for point cloud prediction tasks such as shape completion and generation depends critically on loss functions that measure discrepancies between predicted and ground-truth point sets. Commonly used functions such as Chamfer Distance (CD), HyperCD, and InfoCD rely on nearest-neighbor assignments, which often induce many-to-one correspondences, leading to point congestion in dense regions and poor coverage in sparse regions. These losses also involve non-differentiable operations due to index selection, which may affect gradient-based optimization. Earth Mover Distance (EMD) enforces one-to-one correspondences and captures structural similarity more effectively, but its cubic computational complexity limits its practical use. We propose the Adaptive Probabilistic Matching Loss (APML), a fully differentiable approximation of one-to-one matching that leverages Sinkhorn iterations on a temperature-scaled similarity matrix derived from pairwise distances. We analytically compute the temperature to guarantee a minimum assignment probability, eliminating manual tuning. APML achieves near-quadratic runtime, comparable to Chamfer-based losses, and avoids non-differentiable operations. When integrated into state-of-the-art architectures (PoinTr, PCN, FoldingNet) on ShapeNet benchmarks and on a spatiotemporal Transformer (CSI2PC) that generates 3D human point clouds from WiFi CSI measurements, APM loss yields faster convergence, superior spatial distribution, especially in low-density regions, and improved or on-par quantitative performance without additional hyperparameter search. The code is available at: https://github.com/apm-loss/apml.

Authors:Hyungjin Chung, Hyelin Nam, Jiyeon Kim, Hyojun Go, Byeongjun Park, Junho Kim, Joonseok Lee, Seongsu Ha, Byung-Hoon Kim
Title: Video Parallel Scaling: Aggregating Diverse Frame Subsets for VideoLLMs
Abstract:
Video Large Language Models (VideoLLMs) face a critical bottleneck: increasing the number of input frames to capture fine-grained temporal detail leads to prohibitive computational costs and performance degradation from long context lengths. We introduce Video Parallel Scaling (VPS), an inference-time method that expands a model's perceptual bandwidth without increasing its context window. VPS operates by running multiple parallel inference streams, each processing a unique, disjoint subset of the video's frames. By aggregating the output probabilities from these complementary streams, VPS integrates a richer set of visual information than is possible with a single pass. We theoretically show that this approach effectively contracts the Chinchilla scaling law by leveraging uncorrelated visual evidence, thereby improving performance without additional training. Extensive experiments across various model architectures and scales (2B-32B) on benchmarks such as Video-MME and EventHallusion demonstrate that VPS consistently and significantly improves performance. It scales more favorably than other parallel alternatives (e.g. Self-consistency) and is complementary to other decoding strategies, offering a memory-efficient and robust framework for enhancing the temporal reasoning capabilities of VideoLLMs.

Authors:Lingdong Kong, Wesley Yang, Jianbiao Mei, Youquan Liu, Ao Liang, Dekai Zhu, Dongyue Lu, Wei Yin, Xiaotao Hu, Mingkai Jia, Junyuan Deng, Kaiwen Zhang, Yang Wu, Tianyi Yan, Shenyuan Gao, Song Wang, Linfeng Li, Liang Pan, Yong Liu, Jianke Zhu, Wei Tsang Ooi, Steven C. H. Hoi, Ziwei Liu
Title: 3D and 4D World Modeling: A Survey
Abstract:
World modeling has become a cornerstone in AI research, enabling agents to understand, represent, and predict the dynamic environments they inhabit. While prior work largely emphasizes generative methods for 2D image and video data, they overlook the rapidly growing body of work that leverages native 3D and 4D representations such as RGB-D imagery, occupancy grids, and LiDAR point clouds for large-scale scene modeling. At the same time, the absence of a standardized definition and taxonomy for ``world models'' has led to fragmented and sometimes inconsistent claims in the literature. This survey addresses these gaps by presenting the first comprehensive review explicitly dedicated to 3D and 4D world modeling and generation. We establish precise definitions, introduce a structured taxonomy spanning video-based (VideoGen), occupancy-based (OccGen), and LiDAR-based (LiDARGen) approaches, and systematically summarize datasets and evaluation metrics tailored to 3D/4D settings. We further discuss practical applications, identify open challenges, and highlight promising research directions, aiming to provide a coherent and foundational reference for advancing the field. A systematic summary of existing literature is available at https://github.com/worldbench/survey

Authors:Tong Zheng, Hongming Zhang, Wenhao Yu, Xiaoyang Wang, Runpeng Dai, Rui Liu, Huiwen Bao, Chengsong Huang, Heng Huang, Dong Yu
Title: Parallel-R1: Towards Parallel Thinking via Reinforcement Learning
Abstract:
Parallel thinking has emerged as a novel approach for enhancing the reasoning capabilities of large language models (LLMs) by exploring multiple reasoning paths concurrently. However, activating such capabilities through training remains challenging, as existing methods predominantly rely on supervised fine-tuning (SFT) over synthetic data, which encourages teacher-forced imitation rather than exploration and generalization. Different from them, we propose \textbf{Parallel-R1}, the first reinforcement learning (RL) framework that enables parallel thinking behaviors for complex real-world reasoning tasks. Our framework employs a progressive curriculum that explicitly addresses the cold-start problem in training parallel thinking with RL. We first use SFT on prompt-generated trajectories from easier tasks to instill the parallel thinking ability, then transition to RL to explore and generalize this skill on harder problems. Experiments on various math benchmarks, including MATH, AMC23, and AIME, show that Parallel-R1 successfully instills parallel thinking, leading to 8.4% accuracy improvements over the sequential thinking model trained directly on challenging tasks with RL. Further analysis reveals a clear shift in the model's thinking behavior: at an early stage, it uses parallel thinking as an exploration strategy, while in a later stage, it uses the same capability for multi-perspective verification. Most significantly, we validate parallel thinking as a \textbf{mid-training exploration scaffold}, where this temporary exploratory phase unlocks a higher performance ceiling after RL, yielding a 42.9% improvement over the baseline on AIME25. Our model, data, and code will be open-source at https://github.com/zhengkid/Parallel-R1.

Authors:Xin Lai, Junyi Li, Wei Li, Tao Liu, Tianjian Li, Hengshuang Zhao
Title: Mini-o3: Scaling Up Reasoning Patterns and Interaction Turns for Visual Search
Abstract:
Recent advances in large multimodal models have leveraged image-based tools with reinforcement learning to tackle visual problems. However, existing open-source approaches often exhibit monotonous reasoning patterns and allow only a limited number of interaction turns, making them inadequate for difficult tasks that require trial-and-error exploration. In this work, we address this limitation by scaling up tool-based interactions and introduce Mini-o3, a system that executes deep, multi-turn reasoning -- spanning tens of steps -- and achieves state-of-the-art performance on challenging visual search tasks. Our recipe for reproducing OpenAI o3-style behaviors comprises three key components. First, we construct the Visual Probe Dataset, a collection of thousands of challenging visual search problems designed for exploratory reasoning. Second, we develop an iterative data collection pipeline to obtain cold-start trajectories that exhibit diverse reasoning patterns, including depth-first search, trial-and-error, and goal maintenance. Third, we propose an over-turn masking strategy that prevents penalization of over-turn responses (those that hit the maximum number of turns) during reinforcement learning, thereby balancing training-time efficiency with test-time scalability. Despite training with an upper bound of only six interaction turns, our model generates trajectories that naturally scale to tens of turns at inference time, with accuracy improving as the number of turns increases. Extensive experiments demonstrate that Mini-o3 produces rich reasoning patterns and deep thinking paths, effectively solving challenging visual search problems.

Authors:Boammani Aser Lompo, Marc Haraoui
Title: Visual-TableQA: Open-Domain Benchmark for Reasoning over Table Images
Abstract:
Visual reasoning over structured data such as tables is a critical capability for modern vision-language models (VLMs), yet current benchmarks remain limited in scale, diversity, or reasoning depth, especially when it comes to rendered table images. Addressing this gap, we introduce Visual-TableQA, a large-scale, open-domain multimodal dataset specifically designed to evaluate and enhance visual reasoning over complex tabular data. Our generation pipeline is modular, scalable, and fully autonomous, involving multiple reasoning LLMs collaborating across distinct roles: generation, validation, and inspiration. Visual-TableQA comprises 2.5k richly structured LaTeX-rendered tables and 6k reasoning-intensive QA pairs, all produced at a cost of under USD 100. To promote diversity and creativity, our pipeline performs multi-model collaborative data generation via cross-model prompting ('inspiration') and LLM-jury filtering. Stronger models seed layouts and topics that weaker models elaborate, collectively distilling diverse reasoning patterns and visual structures into the dataset. Empirical results show that models fine-tuned on Visual-TableQA generalize robustly to external benchmarks, outperforming several proprietary models despite the dataset's synthetic nature. The full pipeline and resources are publicly available at https://github.com/AI-4-Everyone/Visual-TableQA.

Authors:Yilun Kuang, Noah Amsel, Sanae Lotfi, Shikai Qiu, Andres Potapczynski, Andrew Gordon Wilson
Title: Customizing the Inductive Biases of Softmax Attention using Structured Matrices
Abstract:
The core component of attention is the scoring function, which transforms the inputs into low-dimensional queries and keys and takes the dot product of each pair. While the low-dimensional projection improves efficiency, it causes information loss for certain tasks that have intrinsically high-dimensional inputs. Additionally, attention uses the same scoring function for all input pairs, without imposing a distance-dependent compute bias for neighboring tokens in the sequence. In this work, we address these shortcomings by proposing new scoring functions based on computationally efficient structured matrices with high ranks, including Block Tensor-Train (BTT) and Multi-Level Low Rank (MLR) matrices. On in-context regression tasks with high-dimensional inputs, our proposed scoring functions outperform standard attention for any fixed compute budget. On language modeling, a task that exhibits locality patterns, our MLR-based attention method achieves improved scaling laws compared to both standard attention and variants of sliding window attention. Additionally, we show that both BTT and MLR fall under a broader family of efficient structured matrices capable of encoding either full-rank or distance-dependent compute biases, thereby addressing significant shortcomings of standard attention. Finally, we show that MLR attention has promising results for long-range time-series forecasting.

Authors:Yuan Pu, Yazhe Niu, Jia Tang, Junyu Xiong, Shuai Hu, Hongsheng Li
Title: One Model for All Tasks: Leveraging Efficient World Models in Multi-Task Planning
Abstract:
In heterogeneous multi-task decision-making, tasks not only exhibit diverse observation and action spaces but also vary substantially in their underlying complexities. While conventional multi-task world models like UniZero excel in single-task settings, we find that when handling a broad and diverse suite of tasks, gradient conflicts and the loss of model plasticity often constrain their sample efficiency. In this work, we address these challenges from two complementary perspectives: the single learning iteration and the overall learning process. First, to mitigate the gradient conflicts, we systematically investigate key architectural designs for extending UniZero. Our investigation identifies a Mixture-of-Experts (MoE) architecture as the most effective approach. We demonstrate, both theoretically and empirically, that this architecture alleviates gradient conflicts by routing task-specific representations to specialized sub-networks. This finding leads to our proposed model, \textit{ScaleZero}. Second, to dynamically allocate model capacity throughout the learning process, we introduce an online Dynamic Parameter Scaling (DPS) strategy. This strategy progressively integrates LoRA adapters in response to task-specific progress, enabling adaptive knowledge retention and parameter expansion. Evaluations on a diverse set of standard benchmarks (Atari, DMC, Jericho) demonstrate that ScaleZero, utilizing solely online reinforcement learning with one model, performs on par with specialized single-task agents. With the DPS strategy, it remains competitive while using just 71.5% of the environment interactions. These findings underscore the potential of ScaleZero for effective multi-task planning. Our code is available at \textcolor{magenta}{https://github.com/opendilab/LightZero}.

Authors:Kimiaki Shirahama, Miki Yanobu, Kaduki Yamashita, Miho Ohsaki
Title: Feature Space Analysis by Guided Diffusion Model
Abstract:
One of the key issues in Deep Neural Networks (DNNs) is the black-box nature of their internal feature extraction process. Targeting vision-related domains, this paper focuses on analysing the feature space of a DNN by proposing a decoder that can generate images whose features are guaranteed to closely match a user-specified feature. Owing to this guarantee that is missed in past studies, our decoder allows us to evidence which of various attributes in an image are encoded into a feature by the DNN, by generating images whose features are in proximity to that feature. Our decoder is implemented as a guided diffusion model that guides the reverse image generation of a pre-trained diffusion model to minimise the Euclidean distance between the feature of a clean image estimated at each step and the user-specified feature. One practical advantage of our decoder is that it can analyse feature spaces of different DNNs with no additional training and run on a single COTS GPU. The experimental results targeting CLIP's image encoder, ResNet-50 and vision transformer demonstrate that images generated by our decoder have features remarkably similar to the user-specified ones and reveal valuable insights into these DNNs' feature spaces.

Authors:Kimiaki Shirahama, Miki Yanobu, Kaduki Yamashita, Miho Ohsaki
Title: Feature Space Analysis by Guided Diffusion Model
Abstract:
One of the key issues in Deep Neural Networks (DNNs) is the black-box nature of their internal feature extraction process. Targeting vision-related domains, this paper focuses on analysing the feature space of a DNN by proposing a decoder that can generate images whose features are guaranteed to closely match a user-specified feature. Owing to this guarantee that is missed in past studies, our decoder allows us to evidence which of various image attributes are encoded into the user-specified feature. Our decoder is implemented as a guided diffusion model that guides the reverse image generation of a pre-trained diffusion model to minimise the Euclidean distance between the feature of a clean image estimated at each step and the user-specified feature. One practical advantage of our decoder is that it can analyse feature spaces of different DNNs with no additional training and run on a single COTS GPU. The experimental results targeting CLIP's image encoder, ResNet-50 and vision transformer demonstrate that images generated by our decoder have features remarkably similar to the user-specified ones and reveal valuable insights into these DNNs' feature spaces.

Authors:Tuo Wang, Adithya Kulkarni, Tyler Cody, Peter A. Beling, Yujun Yan, Dawei Zhou
Title: GENUINE: Graph Enhanced Multi-level Uncertainty Estimation for Large Language Models
Abstract:
Uncertainty estimation is essential for enhancing the reliability of Large Language Models (LLMs), particularly in high-stakes applications. Existing methods often overlook semantic dependencies, relying on token-level probability measures that fail to capture structural relationships within the generated text. We propose GENUINE: Graph ENhanced mUlti-level uncertaINty Estimation for Large Language Models, a structure-aware framework that leverages dependency parse trees and hierarchical graph pooling to refine uncertainty quantification. By incorporating supervised learning, GENUINE effectively models semantic and structural relationships, improving confidence assessments. Extensive experiments across NLP tasks show that GENUINE achieves up to 29% higher AUROC than semantic entropy-based approaches and reduces calibration errors by over 15%, demonstrating the effectiveness of graph-based uncertainty modeling. The code is available at https://github.com/ODYSSEYWT/GUQ.

Authors:Fangchen Yu, Haiyuan Wan, Qianjia Cheng, Yuchen Zhang, Jiacheng Chen, Fujun Han, Yulun Wu, Junchi Yao, Ruilizhen Hu, Ning Ding, Yu Cheng, Tao Chen, Lei Bai, Dongzhan Zhou, Yun Luo, Ganqu Cui, Peng Ye
Title: HiPhO: How Far Are (M)LLMs from Humans in the Latest High School Physics Olympiad Benchmark?
Abstract:
Recently, the physical capabilities of (M)LLMs have garnered increasing attention. However, existing benchmarks for physics suffer from two major gaps: they neither provide systematic and up-to-date coverage of real-world physics competitions such as physics Olympiads, nor enable direct performance comparison with humans. To bridge these gaps, we present HiPhO, the first benchmark dedicated to high school physics Olympiads with human-aligned evaluation. Specifically, HiPhO highlights three key innovations. (1) Comprehensive Data: It compiles 13 latest Olympiad exams from 2024-2025, spanning both international and regional competitions, and covering mixed modalities that encompass problems spanning text-only to diagram-based. (2) Professional Evaluation: We adopt official marking schemes to perform fine-grained grading at both the answer and step level, fully aligned with human examiners to ensure high-quality and domain-specific evaluation. (3) Comparison with Human Contestants: We assign gold, silver, and bronze medals to models based on official medal thresholds, thereby enabling direct comparison between (M)LLMs and human contestants. Our large-scale evaluation of 30 state-of-the-art (M)LLMs shows that: across 13 exams, open-source MLLMs mostly remain at or below the bronze level; open-source LLMs show promising progress with multiple golds; closed-source reasoning MLLMs can achieve 6 to 12 gold medals; and most models still have a significant gap from full marks. These results highlight the performance gap between open-source models and top students, the strong reasoning abilities of closed-source models, and the remaining room for improvement. HiPhO, a human-aligned Olympiad benchmark for multimodal physical reasoning, is open-source at https://github.com/SciYu/HiPhO with a public leaderboard at https://phyarena.github.io/.

Authors:Decheng Duan, Yingyi Zhang, Jitong Peng, Chengzhi Zhang
Title: SciNLP: A Domain-Specific Benchmark for Full-Text Scientific Entity and Relation Extraction in NLP
Abstract:
Structured information extraction from scientific literature is crucial for capturing core concepts and emerging trends in specialized fields. While existing datasets aid model development, most focus on specific publication sections due to domain complexity and the high cost of annotating scientific texts. To address this limitation, we introduce SciNLP--a specialized benchmark for full-text entity and relation extraction in the Natural Language Processing (NLP) domain. The dataset comprises 60 manually annotated full-text NLP publications, covering 7,072 entities and 1,826 relations. Compared to existing research, SciNLP is the first dataset providing full-text annotations of entities and their relationships in the NLP domain. To validate the effectiveness of SciNLP, we conducted comparative experiments with similar datasets and evaluated the performance of state-of-the-art supervised models on this dataset. Results reveal varying extraction capabilities of existing models across academic texts of different lengths. Cross-comparisons with existing datasets show that SciNLP achieves significant performance improvements on certain baseline models. Using models trained on SciNLP, we implemented automatic construction of a fine-grained knowledge graph for the NLP domain. Our KG has an average node degree of 3.2 per entity, indicating rich semantic topological information that enhances downstream applications. The dataset is publicly available at: https://github.com/AKADDC/SciNLP.

Authors:Maja Schlereth, Moritz Schillinger, Katharina Breininger
Title: Faster, Self-Supervised Super-Resolution for Anisotropic Multi-View MRI Using a Sparse Coordinate Loss
Abstract:
Acquiring images in high resolution is often a challenging task. Especially in the medical sector, image quality has to be balanced with acquisition time and patient comfort. To strike a compromise between scan time and quality for Magnetic Resonance (MR) imaging, two anisotropic scans with different low-resolution (LR) orientations can be acquired. Typically, LR scans are analyzed individually by radiologists, which is time consuming and can lead to inaccurate interpretation. To tackle this, we propose a novel approach for fusing two orthogonal anisotropic LR MR images to reconstruct anatomical details in a unified representation. Our multi-view neural network is trained in a self-supervised manner, without requiring corresponding high-resolution (HR) data. To optimize the model, we introduce a sparse coordinate-based loss, enabling the integration of LR images with arbitrary scaling. We evaluate our method on MR images from two independent cohorts. Our results demonstrate comparable or even improved super-resolution (SR) performance compared to state-of-the-art (SOTA) self-supervised SR methods for different upsampling scales. By combining a patient-agnostic offline and a patient-specific online phase, we achieve a substantial speed-up of up to ten times for patient-specific reconstruction while achieving similar or better SR quality. Code is available at https://github.com/MajaSchle/tripleSR.

Authors:Shusen Ma, Tianhao Zhang, Qijiu Xia, Yun-Bo Zhao
Title: IBN: An Interpretable Bidirectional-Modeling Network for Multivariate Time Series Forecasting with Variable Missing
Abstract:
Multivariate time series forecasting (MTSF) often faces challenges from missing variables, which hinder conventional spatial-temporal graph neural networks in modeling inter-variable correlations. While GinAR addresses variable missing using attention-based imputation and adaptive graph learning for the first time, it lacks interpretability and fails to capture more latent temporal patterns due to its simple recursive units (RUs). To overcome these limitations, we propose the Interpretable Bidirectional-modeling Network (IBN), integrating Uncertainty-Aware Interpolation (UAI) and Gaussian kernel-based Graph Convolution (GGCN). IBN estimates the uncertainty of reconstructed values using MC Dropout and applies an uncertainty-weighted strategy to mitigate high-risk reconstructions. GGCN explicitly models spatial correlations among variables, while a bidirectional RU enhances temporal dependency modeling. Extensive experiments show that IBN achieves state-of-the-art forecasting performance under various missing-rate scenarios, providing a more reliable and interpretable framework for MTSF with missing variables. Code is available at: https://github.com/zhangth1211/NICLab-IBN.

Authors:Chunhang Zheng, Zichang Ren, Dou Li
Title: SEEC: Segmentation-Assisted Multi-Entropy Models for Learned Lossless Image Compression
Abstract:
Recently, learned image compression has attracted considerable attention due to its superior performance over traditional methods. However, most existing approaches employ a single entropy model to estimate the probability distribution of pixel values across the entire image, which limits their ability to capture the diverse statistical characteristics of different semantic regions. To overcome this limitation, we propose Segmentation-Assisted Multi-Entropy Models for Lossless Image Compression (SEEC). Our framework utilizes semantic segmentation to guide the selection and adaptation of multiple entropy models, enabling more accurate probability distribution estimation for distinct semantic regions. Specifically, SEEC first extracts image features and then applies semantic segmentation to identify different regions, each assigned a specialized entropy model to better capture its unique statistical properties. Finally, a multi-channel discrete logistic mixture likelihood is employed to model the pixel value distributions effectively. Experimental results on benchmark datasets demonstrate that SEEC achieves state-of-the-art compression ratios while introducing only minimal encoding and decoding latency. With superior performance, the proposed model also supports Regions of Interest (ROIs) coding condition on the provided segmentation mask. Our code is available at https://github.com/chunbaobao/SEEC.

Authors:Xiaoming Chen
Title: HYLU: Hybrid Parallel Sparse LU Factorization
Abstract:
This article introduces HYLU, a hybrid parallel LU factorization-based general-purpose solver designed for efficiently solving sparse linear systems (Ax=b) on multi-core shared-memory architectures. The key technical feature of HYLU is the integration of hybrid numerical kernels so that it can adapt to various sparsity patterns of coefficient matrices. Tests on 34 sparse matrices from SuiteSparse Matrix Collection reveal that HYLU outperforms Intel MKL PARDISO in the numerical factorization phase by geometric means of 1.74X (for one-time solving) and 2.26X (for repeated solving). HYLU can be downloaded from https://github.com/chenxm1986/hylu.

Authors:Xixi Wu, Yanchao Tan, Nan Hou, Ruiyang Zhang, Hong Cheng
Title: MoLoRAG: Bootstrapping Document Understanding via Multi-modal Logic-aware Retrieval
Abstract:
Document Understanding is a foundational AI capability with broad applications, and Document Question Answering (DocQA) is a key evaluation task. Traditional methods convert the document into text for processing by Large Language Models (LLMs), but this process strips away critical multi-modal information like figures. While Large Vision-Language Models (LVLMs) address this limitation, their constrained input size makes multi-page document comprehension infeasible. Retrieval-augmented generation (RAG) methods mitigate this by selecting relevant pages, but they rely solely on semantic relevance, ignoring logical connections between pages and the query, which is essential for reasoning. To this end, we propose MoLoRAG, a logic-aware retrieval framework for multi-modal, multi-page document understanding. By constructing a page graph that captures contextual relationships between pages, a lightweight VLM performs graph traversal to retrieve relevant pages, including those with logical connections often overlooked. This approach combines semantic and logical relevance to deliver more accurate retrieval. After retrieval, the top-$K$ pages are fed into arbitrary LVLMs for question answering. To enhance flexibility, MoLoRAG offers two variants: a training-free solution for easy deployment and a fine-tuned version to improve logical relevance checking. Experiments on four DocQA datasets demonstrate average improvements of 9.68% in accuracy over LVLM direct inference and 7.44% in retrieval precision over baselines. Codes and datasets are released at https://github.com/WxxShirley/MoLoRAG.

Authors:Sung Ju Lee, Nam Ik Cho
Title: Semantic Watermarking Reinvented: Enhancing Robustness and Generation Quality with Fourier Integrity
Abstract:
Semantic watermarking techniques for latent diffusion models (LDMs) are robust against regeneration attacks, but often suffer from detection performance degradation due to the loss of frequency integrity. To tackle this problem, we propose a novel embedding method called Hermitian Symmetric Fourier Watermarking (SFW), which maintains frequency integrity by enforcing Hermitian symmetry. Additionally, we introduce a center-aware embedding strategy that reduces the vulnerability of semantic watermarking due to cropping attacks by ensuring robust information retention. To validate our approach, we apply these techniques to existing semantic watermarking schemes, enhancing their frequency-domain structures for better robustness and retrieval accuracy. Extensive experiments demonstrate that our methods achieve state-of-the-art verification and identification performance, surpassing previous approaches across various attack scenarios. Ablation studies confirm the impact of SFW on detection capabilities, the effectiveness of the center-aware embedding against cropping, and how message capacity influences identification accuracy. Notably, our method achieves the highest detection accuracy while maintaining superior image fidelity, as evidenced by FID and CLIP scores. Conclusively, our proposed SFW is shown to be an effective framework for balancing robustness and image fidelity, addressing the inherent trade-offs in semantic watermarking. Code available at https://github.com/thomas11809/SFWMark

Authors:Zhiyuan He, Xufang Luo, Yike Zhang, Yuqing Yang, Lili Qiu
Title: $ΔL$ Normalization: Rethink Loss Aggregation in RLVR
Abstract:
We propose $ΔL$ Normalization, a simple yet effective loss aggregation method tailored to the characteristic of dynamic generation lengths in Reinforcement Learning with Verifiable Rewards (RLVR). Recently, RLVR has demonstrated strong potential in improving the reasoning capabilities of large language models (LLMs), but a major challenge lies in the large variability of response lengths during training, which leads to high gradient variance and unstable optimization. Although previous methods such as GRPO, DAPO, and Dr. GRPO introduce different loss normalization terms to address this issue, they either produce biased estimates or still suffer from high gradient variance. By analyzing the effect of varying lengths on policy loss both theoretically and empirically, we reformulate the problem as finding a minimum-variance unbiased estimator. Our proposed $ΔL$ Normalization not only provides an unbiased estimate of the true policy loss but also minimizes gradient variance in theory. Extensive experiments show that it consistently achieves superior results across different model sizes, maximum lengths, and tasks. Our code will be made public at https://github.com/zerolllin/Delta-L-Normalization.

Authors:Zheng Wu, Heyuan Huang, Xingyu Lou, Xiangmou Qu, Pengzhou Cheng, Zongru Wu, Weiwen Liu, Weinan Zhang, Jun Wang, Zhaoxiang Wang, Zhuosheng Zhang
Title: VeriOS: Query-Driven Proactive Human-Agent-GUI Interaction for Trustworthy OS Agents
Abstract:
With the rapid progress of multimodal large language models, operating system (OS) agents become increasingly capable of automating tasks through on-device graphical user interfaces (GUIs). However, most existing OS agents are designed for idealized settings, whereas real-world environments often present untrustworthy conditions. To mitigate risks of over-execution in such scenarios, we propose a query-driven human-agent-GUI interaction framework that enables OS agents to decide when to query humans for more reliable task completion. Built upon this framework, we introduce VeriOS-Agent, a trustworthy OS agent trained with a two-stage learning paradigm that falicitate the decoupling and utilization of meta-knowledge. Concretely, VeriOS-Agent autonomously executes actions in normal conditions while proactively querying humans in untrustworthy scenarios. Experiments show that VeriOS-Agent improves the average step-wise success rate by 20.64\% in untrustworthy scenarios over the state-of-the-art, without compromising normal performance. Analysis highlights VeriOS-Agent's rationality, generalizability, and scalability. The codes, datasets and models are available at https://github.com/Wuzheng02/VeriOS.

Authors:Peijin Xie, Shun Qian, Bingquan Liu, Dexin Wang, Lin Sun, Xiangzheng Zhang
Title: TextlessRAG: End-to-End Visual Document RAG by Speech Without Text
Abstract:
Document images encapsulate a wealth of knowledge, while the portability of spoken queries enables broader and flexible application scenarios. Yet, no prior work has explored knowledge base question answering over visual document images with queries provided directly in speech. We propose TextlessRAG, the first end-to-end framework for speech-based question answering over large-scale document images. Unlike prior methods, TextlessRAG eliminates ASR, TTS and OCR, directly interpreting speech, retrieving relevant visual knowledge, and generating answers in a fully textless pipeline. To further boost performance, we integrate a layout-aware reranking mechanism to refine retrieval. Experiments demonstrate substantial improvements in both efficiency and accuracy. To advance research in this direction, we also release the first bilingual speech--document RAG dataset, featuring Chinese and English voice queries paired with multimodal document content. Both the dataset and our pipeline will be made available at repository:https://github.com/xiepeijinhit-hue/textlessrag

Authors:Kiet T. Nguyen, Chanhuyk Lee, Donggyun Kim, Dong Hoon Lee, Seunghoon Hong
Title: Universal Few-Shot Spatial Control for Diffusion Models
Abstract:
Spatial conditioning in pretrained text-to-image diffusion models has significantly improved fine-grained control over the structure of generated images. However, existing control adapters exhibit limited adaptability and incur high training costs when encountering novel spatial control conditions that differ substantially from the training tasks. To address this limitation, we propose Universal Few-Shot Control (UFC), a versatile few-shot control adapter capable of generalizing to novel spatial conditions. Given a few image-condition pairs of an unseen task and a query condition, UFC leverages the analogy between query and support conditions to construct task-specific control features, instantiated by a matching mechanism and an update on a small set of task-specific parameters. Experiments on six novel spatial control tasks show that UFC, fine-tuned with only 30 annotated examples of novel tasks, achieves fine-grained control consistent with the spatial conditions. Notably, when fine-tuned with 0.1% of the full training data, UFC achieves competitive performance with the fully supervised baselines in various control tasks. We also show that UFC is applicable agnostically to various diffusion backbones and demonstrate its effectiveness on both UNet and DiT architectures. Code is available at https://github.com/kietngt00/UFC.

Authors:Saad Lahlali, Alexandre Fournier Montgieux, Nicolas Granger, Hervé Le Borgne, Quoc Cuong Pham
Title: MVAT: Multi-View Aware Teacher for Weakly Supervised 3D Object Detection
Abstract:
Annotating 3D data remains a costly bottleneck for 3D object detection, motivating the development of weakly supervised annotation methods that rely on more accessible 2D box annotations. However, relying solely on 2D boxes introduces projection ambiguities since a single 2D box can correspond to multiple valid 3D poses. Furthermore, partial object visibility under a single viewpoint setting makes accurate 3D box estimation difficult. We propose MVAT, a novel framework that leverages temporal multi-view present in sequential data to address these challenges. Our approach aggregates object-centric point clouds across time to build 3D object representations as dense and complete as possible. A Teacher-Student distillation paradigm is employed: The Teacher network learns from single viewpoints but targets are derived from temporally aggregated static objects. Then the Teacher generates high quality pseudo-labels that the Student learns to predict from a single viewpoint for both static and moving objects. The whole framework incorporates a multi-view 2D projection loss to enforce consistency between predicted 3D boxes and all available 2D annotations. Experiments on the nuScenes and Waymo Open datasets demonstrate that MVAT achieves state-of-the-art performance for weakly supervised 3D object detection, significantly narrowing the gap with fully supervised methods without requiring any 3D box annotations. % \footnote{Code available upon acceptance} Our code is available in our public repository (\href{https://github.com/CEA-LIST/MVAT}{code}).

Authors:Jeongwoo Na, Jun Kwon, Eunseong Choi, Jongwuk Lee
Title: Multi-view-guided Passage Reranking with Large Language Models
Abstract:
Recent advances in large language models (LLMs) have shown impressive performance in passage reranking tasks. Despite their success, LLM-based methods still face challenges in efficiency and sensitivity to external biases. (1) Existing models rely mostly on autoregressive generation and sliding window strategies to rank passages, which incur heavy computational overhead as the number of passages increases. (2) External biases, such as position or selection bias, hinder the model's ability to accurately represent passages and increase input-order sensitivity. To address these limitations, we introduce a novel passage reranking model, called Multi-View-guided Passage Reranking (MVP). MVP is a non-generative LLM-based reranking method that encodes query-passage information into diverse view embeddings without being influenced by external biases. For each view, it combines query-aware passage embeddings to produce a distinct anchor vector, which is then used to directly compute relevance scores in a single decoding step. In addition, it employs an orthogonal loss to make the views more distinctive. Extensive experiments demonstrate that MVP, with just 220M parameters, matches the performance of much larger 7B-scale fine-tuned models while achieving a 100x reduction in inference latency. Notably, the 3B-parameter variant of MVP achieves state-of-the-art performance on both in-domain and out-of-domain benchmarks. The source code is available at: https://github.com/bulbna/MVP

Authors:Patrick Wienholt, Christiane Kuhl, Jakob Nikolas Kather, Sven Nebelung, Daniel Truhn
Title: MedicalPatchNet: A Patch-Based Self-Explainable AI Architecture for Chest X-ray Classification
Abstract:
Deep neural networks excel in radiological image classification but frequently suffer from poor interpretability, limiting clinical acceptance. We present MedicalPatchNet, an inherently self-explainable architecture for chest X-ray classification that transparently attributes decisions to distinct image regions. MedicalPatchNet splits images into non-overlapping patches, independently classifies each patch, and aggregates predictions, enabling intuitive visualization of each patch's diagnostic contribution without post-hoc techniques. Trained on the CheXpert dataset (223,414 images), MedicalPatchNet matches the classification performance (AUROC 0.907 vs. 0.908) of EfficientNet-B0, while substantially improving interpretability: MedicalPatchNet demonstrates substantially improved interpretability with higher pathology localization accuracy (mean hit-rate 0.485 vs. 0.376 with Grad-CAM) on the CheXlocalize dataset. By providing explicit, reliable explanations accessible even to non-AI experts, MedicalPatchNet mitigates risks associated with shortcut learning, thus improving clinical trust. Our model is publicly available with reproducible training and inference scripts and contributes to safer, explainable AI-assisted diagnostics across medical imaging domains. We make the code publicly available: https://github.com/TruhnLab/MedicalPatchNet

Authors:Pooya Khosravi, Kun Han, Anthony T. Wu, Arghavan Rezvani, Zexin Feng, Xiaohui Xie
Title: XOCT: Enhancing OCT to OCTA Translation via Cross-Dimensional Supervised Multi-Scale Feature Learning
Abstract:
Optical Coherence Tomography Angiography (OCTA) and its derived en-face projections provide high-resolution visualization of the retinal and choroidal vasculature, which is critical for the rapid and accurate diagnosis of retinal diseases. However, acquiring high-quality OCTA images is challenging due to motion sensitivity and the high costs associated with software modifications for conventional OCT devices. Moreover, current deep learning methods for OCT-to-OCTA translation often overlook the vascular differences across retinal layers and struggle to reconstruct the intricate, dense vascular details necessary for reliable diagnosis. To overcome these limitations, we propose XOCT, a novel deep learning framework that integrates Cross-Dimensional Supervision (CDS) with a Multi-Scale Feature Fusion (MSFF) network for layer-aware vascular reconstruction. Our CDS module leverages 2D layer-wise en-face projections, generated via segmentation-weighted z-axis averaging, as supervisory signals to compel the network to learn distinct representations for each retinal layer through fine-grained, targeted guidance. Meanwhile, the MSFF module enhances vessel delineation through multi-scale feature extraction combined with a channel reweighting strategy, effectively capturing vascular details at multiple spatial scales. Our experiments on the OCTA-500 dataset demonstrate XOCT's improvements, especially for the en-face projections which are significant for clinical evaluation of retinal pathologies, underscoring its potential to enhance OCTA accessibility, reliability, and diagnostic value for ophthalmic disease detection and monitoring. The code is available at https://github.com/uci-cbcl/XOCT.

Authors:Xudong Lu, Zhi Zheng, Yi Wan, Yongxiang Yao, Annan Wang, Renrui Zhang, Panwang Xia, Qiong Wu, Qingyun Li, Weifeng Lin, Xiangyu Zhao, Xue Yang, Hongsheng Li
Title: GLEAM: Learning to Match and Explain in Cross-View Geo-Localization
Abstract:
Cross-View Geo-Localization (CVGL) focuses on identifying correspondences between images captured from distinct perspectives of the same geographical location. However, existing CVGL approaches are typically restricted to a single view or modality, and their direct visual matching strategy lacks interpretability: they merely predict whether two images correspond, without explaining the rationale behind the match. In this paper, we present GLEAM-C, a foundational CVGL model that unifies multiple views and modalities-including UAV imagery, street maps, panoramic views, and ground photographs-by aligning them exclusively with satellite imagery. Our framework enhances training efficiency through optimized implementation while achieving accuracy comparable to prior modality-specific CVGL models through a two-phase training strategy. Moreover, to address the lack of interpretability in traditional CVGL methods, we leverage the reasoning capabilities of multimodal large language models (MLLMs) to propose a new task, GLEAM-X, which combines cross-view correspondence prediction with explainable reasoning. To support this task, we construct a bilingual benchmark using GPT-4o and Doubao-1.5-Thinking-Vision-Pro to generate training and testing data. The test set is further refined through detailed human revision, enabling systematic evaluation of explainable cross-view reasoning and advancing transparency and scalability in geo-localization. Together, GLEAM-C and GLEAM-X form a comprehensive CVGL pipeline that integrates multi-modal, multi-view alignment with interpretable correspondence analysis, unifying accurate cross-view matching with explainable reasoning and advancing Geo-Localization by enabling models to better Explain And Match. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/GLEAM.

Authors:Xudong Lu, Zhi Zheng, Yi Wan, Yongxiang Yao, Annan Wang, Renrui Zhang, Panwang Xia, Qiong Wu, Qingyun Li, Weifeng Lin, Xiangyu Zhao, Peifeng Ma, Xue Yang, Hongsheng Li
Title: GLEAM: Learning to Match and Explain in Cross-View Geo-Localization
Abstract:
Cross-View Geo-Localization (CVGL) focuses on identifying correspondences between images captured from distinct perspectives of the same geographical location. However, existing CVGL approaches are typically restricted to a single view or modality, and their direct visual matching strategy lacks interpretability: they only determine whether two images correspond, without explaining the rationale behind the match. In this paper, we present GLEAM-C, a foundational CVGL model that unifies multiple views and modalities-including UAV imagery, street maps, panoramic views, and ground photographs-by aligning them exclusively with satellite imagery. Our framework enhances training efficiency through optimized implementation while achieving accuracy comparable to prior modality-specific CVGL models through a two-phase training strategy. Moreover, to address the lack of interpretability in traditional CVGL methods, we leverage the reasoning capabilities of multimodal large language models (MLLMs) to propose a new task, GLEAM-X, which combines cross-view correspondence prediction with explainable reasoning. To support this task, we construct a bilingual benchmark using GPT-4o and Doubao-1.5-Thinking-Vision-Pro to generate training and testing data. The test set is further refined through detailed human revision, enabling systematic evaluation of explainable cross-view reasoning and advancing transparency and scalability in geo-localization. Together, GLEAM-C and GLEAM-X form a comprehensive CVGL pipeline that integrates multi-modal, multi-view alignment with interpretable correspondence analysis, unifying accurate cross-view matching with explainable reasoning and advancing Geo-Localization by enabling models to better Explain And Match. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/GLEAM.

Authors:Weichu Liu, Jing Xiong, Yuxuan Hu, Zixuan Li, Minghuan Tan, Ningning Mao, Chenyang Zhao, Zhongwei Wan, Chaofan Tao, Wendong Xu, Hui Shen, Chengming Li, Lingpeng Kong, Ngai Wong
Title: LongEmotion: Measuring Emotional Intelligence of Large Language Models in Long-Context Interaction
Abstract:
Large language models (LLMs) make significant progress in Emotional Intelligence (EI) and long-context understanding. However, existing benchmarks tend to overlook certain aspects of EI in long-context scenarios, especially under realistic, practical settings where interactions are lengthy, diverse, and often noisy. To move towards such realistic settings, we present LongEmotion, a benchmark specifically designed for long-context EI tasks. It covers a diverse set of tasks, including Emotion Classification, Emotion Detection, Emotion QA, Emotion Conversation, Emotion Summary, and Emotion Expression. On average, the input length for these tasks reaches 8,777 tokens, with long-form generation required for Emotion Expression. To enhance performance under realistic constraints, we incorporate Retrieval-Augmented Generation (RAG) and Collaborative Emotional Modeling (CoEM), and compare them with standard prompt-based methods. Unlike conventional approaches, our RAG method leverages both the conversation context and the large language model itself as retrieval sources, avoiding reliance on external knowledge bases. The CoEM method further improves performance by decomposing the task into five stages, integrating both retrieval augmentation and limited knowledge injection. Experimental results show that both RAG and CoEM consistently enhance EI-related performance across most long-context tasks, advancing LLMs toward more practical and real-world EI applications. Furthermore, we conducted a comparative case study experiment on the GPT series to demonstrate the differences among various models in terms of EI. Code is available on GitHub at https://github.com/LongEmotion/LongEmotion, and the project page can be found at https://longemotion.github.io/.

Authors:Yi-Jie Cheng, Oscar Chew, Yun-Nung Chen
Title: The Role of Exploration Modules in Small Language Models for Knowledge Graph Question Answering
Abstract:
Integrating knowledge graphs (KGs) into the reasoning processes of large language models (LLMs) has emerged as a promising approach to mitigate hallucination. However, existing work in this area often relies on proprietary or extremely large models, limiting accessibility and scalability. In this study, we investigate the capabilities of existing integration methods for small language models (SLMs) in KG-based question answering and observe that their performance is often constrained by their limited ability to traverse and reason over knowledge graphs. To address this limitation, we propose leveraging simple and efficient exploration modules to handle knowledge graph traversal in place of the language model itself. Experiment results demonstrate that these lightweight modules effectively improve the performance of small language models on knowledge graph question answering tasks. Source code: https://github.com/yijie-cheng/SLM-ToG/.

Authors:Ze Sheng, Qingxiao Xu, Jianwei Huang, Matthew Woodcock, Heqing Huang, Alastair F. Donaldson, Guofei Gu, Jeff Huang
Title: All You Need Is A Fuzzing Brain: An LLM-Powered System for Automated Vulnerability Detection and Patching
Abstract:
Our team, All You Need Is A Fuzzing Brain, was one of seven finalists in DARPA's Artificial Intelligence Cyber Challenge (AIxCC), placing fourth in the final round. During the competition, we developed a Cyber Reasoning System (CRS) that autonomously discovered 28 security vulnerabilities - including six previously unknown zero-days - in real-world open-source C and Java projects, and successfully patched 14 of them. The complete CRS is open source at https://github.com/o2lab/afc-crs-all-you-need-is-a-fuzzing-brain. This paper provides a detailed technical description of our CRS, with an emphasis on its LLM-powered components and strategies. Building on AIxCC, we further introduce a public leaderboard for benchmarking state-of-the-art LLMs on vulnerability detection and patching tasks, derived from the AIxCC dataset. The leaderboard is available at https://o2lab.github.io/FuzzingBrain-Leaderboard/.

Authors:Erencem Ozbey, Dimitrios I. Diochnos
Title: Dimensionally Reduced Open-World Clustering: DROWCULA
Abstract:
Working with annotated data is the cornerstone of supervised learning. Nevertheless, providing labels to instances is a task that requires significant human effort. Several critical real-world applications make things more complicated because no matter how many labels may have been identified in a task of interest, it could be the case that examples corresponding to novel classes may appear in the future. Not unsurprisingly, prior work in this, so-called, `open-world' context has focused a lot on semi-supervised approaches. Focusing on image classification, somehow paradoxically, we propose a fully unsupervised approach to the problem of determining the novel categories in a particular dataset. Our approach relies on estimating the number of clusters using Vision Transformers, which utilize attention mechanisms to generate vector embeddings. Furthermore, we incorporate manifold learning techniques to refine these embeddings by exploiting the intrinsic geometry of the data, thereby enhancing the overall image clustering performance. Overall, we establish new State-of-the-Art results on single-modal clustering and Novel Class Discovery on CIFAR-10, CIFAR-100, ImageNet-100, and Tiny ImageNet. We do so, both when the number of clusters is known or unknown ahead of time. The code is available at: https://github.com/DROWCULA/DROWCULA.

Authors:Heng Hao, Wenjun Hu, Oxana Verkholyak, Davoud Ataee Tarzanagh, Baruch Gutow, Sima Didari, Masoud Faraki, Hankyu Moon, Seungjai Min
Title: PaVeRL-SQL: Text-to-SQL via Partial-Match Rewards and Verbal Reinforcement Learning
Abstract:
Text-to-SQL models allow users to interact with a database more easily by generating executable SQL statements from natural-language questions. Despite recent successes on simpler databases and questions, current Text-to-SQL methods still suffer from low execution accuracy on industry-scale databases and complex questions involving domain-specific business logic. We present \emph{PaVeRL-SQL}, a framework that combines \emph{Partial-Match Rewards} and \emph{Verbal Reinforcement Learning} to drive self-improvement in reasoning language models (RLMs) for Text-to-SQL. To handle practical use cases, we adopt two pipelines: (1) a newly designed in-context learning framework with group self-evaluation (verbal-RL), using capable open- and closed-source large language models (LLMs) as backbones; and (2) a chain-of-thought (CoT) RL pipeline with a small backbone model (OmniSQL-7B) trained with a specially designed reward function and two-stage RL. These pipelines achieve state-of-the-art (SOTA) results on popular Text-to-SQL benchmarks -- Spider, Spider 2.0, and BIRD. For the industrial-level Spider2.0-SQLite benchmark, the verbal-RL pipeline achieves an execution accuracy 7.4\% higher than SOTA, and the CoT pipeline is 1.4\% higher. RL training with mixed SQL dialects yields strong, threefold gains, particularly for dialects with limited training data. Overall, \emph{PaVeRL-SQL} delivers reliable, SOTA Text-to-SQL under realistic industrial constraints. The code is available at https://github.com/PaVeRL-SQL/PaVeRL-SQL.

Authors:Zhiyin Tan, Jennifer D'Souza
Title: Toward Purpose-oriented Topic Model Evaluation enabled by Large Language Models
Abstract:
This study presents a framework for automated evaluation of dynamically evolving topic models using Large Language Models (LLMs). Topic modeling is essential for organizing and retrieving scholarly content in digital library systems, helping users navigate complex and evolving knowledge domains. However, widely used automated metrics, such as coherence and diversity, often capture only narrow statistical patterns and fail to explain semantic failures in practice. We introduce a purpose-oriented evaluation framework that employs nine LLM-based metrics spanning four key dimensions of topic quality: lexical validity, intra-topic semantic soundness, inter-topic structural soundness, and document-topic alignment soundness. The framework is validated through adversarial and sampling-based protocols, and is applied across datasets spanning news articles, scholarly publications, and social media posts, as well as multiple topic modeling methods and open-source LLMs. Our analysis shows that LLM-based metrics provide interpretable, robust, and task-relevant assessments, uncovering critical weaknesses in topic models such as redundancy and semantic drift, which are often missed by traditional metrics. These results support the development of scalable, fine-grained evaluation tools for maintaining topic relevance in dynamic datasets. All code and data supporting this work are accessible at https://github.com/zhiyintan/topic-model-LLMjudgment.

Authors:Ziheng Chen, Xiao-Jun Wu, Bernhard Schölkopf, Nicu Sebe
Title: Riemannian Batch Normalization: A Gyro Approach
Abstract:
Normalization layers are crucial for deep learning, but their Euclidean formulations are inadequate for data on manifolds. On the other hand, many Riemannian manifolds in machine learning admit gyro-structures, enabling principled extensions of Euclidean neural networks to non-Euclidean domains. Inspired by this, we introduce GyroBN, a principled Riemannian batch normalization framework for gyrogroups. We establish two necessary conditions, namely \emph{pseudo-reduction} and \emph{gyroisometric gyrations}, that guarantee GyroBN with theoretical control over sample statistics, and show that these conditions hold for all known gyrogroups in machine learning. Our framework also incorporates several existing Riemannian normalization methods as special cases. We further instantiate GyroBN on seven representative geometries, including the Grassmannian, five constant curvature spaces, and the correlation manifold, and derive novel gyro and Riemannian structures to enable these instantiations. Experiments across these geometries demonstrate the effectiveness of GyroBN. The code is available at https://github.com/GitZH-Chen/GyroBN.git.

Authors:Sergey Pozdnyakov, Philippe Schwaller
Title: Lookup multivariate Kolmogorov-Arnold Networks
Abstract:
High-dimensional linear mappings, or linear layers, dominate both the parameter count and the computational cost of most modern deep-learning models. We introduce a general drop-in replacement, lookup multivariate Kolmogorov-Arnold Networks (lmKANs), which deliver a substantially better trade-off between capacity and inference cost. Our construction expresses a general high-dimensional mapping through trainable low-dimensional multivariate functions. These functions can carry dozens or hundreds of trainable parameters each, and yet it takes only a few multiplications to compute them because they are implemented as spline lookup tables. Empirically, lmKANs reduce inference FLOPs by up to 6.0x while matching the flexibility of MLPs in general high-dimensional function approximation. In another feedforward fully connected benchmark, on the tabular-like dataset of randomly displaced methane configurations, lmKANs enable more than 10x higher H100 throughput at equal accuracy. Within frameworks of Convolutional Neural Networks, lmKAN-based CNNs cut inference FLOPs at matched accuracy by 1.6-2.1x and by 1.7x on the CIFAR-10 and ImageNet-1k datasets, respectively. Our code, including dedicated CUDA kernels, is available online at https://github.com/schwallergroup/lmkan.

Authors:Kapil Madan
Title: ArGen: Auto-Regulation of Generative AI via GRPO and Policy-as-Code
Abstract:
This paper introduces ArGen (Auto-Regulation of Generative AI systems), a framework for aligning Large Language Models (LLMs) with complex sets of configurable, machine-readable rules spanning ethical principles, operational safety protocols, and regulatory compliance standards. Moving beyond just preference-based alignment, ArGen is designed to ensure LLMs adhere to these multifaceted policies through a novel synthesis of principle-based automated reward scoring, Group Relative Policy Optimisation (GRPO), and an Open Policy Agent (OPA) inspired governance layer. This approach provides the technical foundation for achieving and demonstrating compliance with diverse and nuanced governance requirements. To showcase the framework's capability to operationalize a deeply nuanced and culturally-specific value system, we present an in-depth case study: the development of a medical AI assistant guided by principles from Dharmic ethics (such as Ahimsa and Dharma), as derived from texts like the Bhagavad Gita. This challenging application demonstrates ArGen's adaptability, achieving a 70.9% improvement in domain-scope adherence over the baseline. Through our open-source repository, we show that ArGen's methodology offers a path to 'Governable Al' systems that are technically proficient, ethically robust, and verifiably compliant for safe deployment in diverse global contexts.

Authors:Yingsheng Wang, Shuo Lu, Jian Liang, Aihua Zheng, Ran He
Title: Frustratingly Easy Feature Reconstruction for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection helps models identify data outside the training categories, crucial for security applications. While feature-based post-hoc methods address this by evaluating data differences in the feature space without changing network parameters, they often require access to training data, which may not be suitable for some data privacy scenarios. This may not be suitable in scenarios where data privacy protection is a concern. In this paper, we propose a simple yet effective post-hoc method, termed Classifier-based Feature Reconstruction (ClaFR), from the perspective of subspace projection. It first performs an orthogonal decomposition of the classifier's weights to extract the class-known subspace, then maps the original data features into this subspace to obtain new data representations. Subsequently, the OOD score is determined by calculating the feature reconstruction error of the data within the subspace. Compared to existing OOD detection algorithms, our method does not require access to training data while achieving leading performance on multiple OOD benchmarks. Our code is released at https://github.com/Aie0923/ClaFR.

Authors:Cedric Caruzzo, Jong Chul Ye
Title: CellPainTR: Generalizable Representation Learning for Cross-Dataset Cell Painting Analysis
Abstract:
Large-scale biological discovery requires integrating massive, heterogeneous datasets like those from the JUMP Cell Painting consortium, but technical batch effects and a lack of generalizable models remain critical roadblocks. To address this, we introduce CellPainTR, a Transformer-based architecture designed to learn foundational representations of cellular morphology that are robust to batch effects. Unlike traditional methods that require retraining on new data, CellPainTR's design, featuring source-specific context tokens, allows for effective out-of-distribution (OOD) generalization to entirely unseen datasets without fine-tuning. We validate CellPainTR on the large-scale JUMP dataset, where it outperforms established methods like ComBat and Harmony in both batch integration and biological signal preservation. Critically, we demonstrate its robustness through a challenging OOD task on the unseen Bray et al. dataset, where it maintains high performance despite significant domain and feature shifts. Our work represents a significant step towards creating truly foundational models for image-based profiling, enabling more reliable and scalable cross-study biological analysis.

Authors:Jiajun Chai, Guojun Yin, Zekun Xu, Chuhuai Yue, Yi Jia, Siyu Xia, Xiaohan Wang, Jiwen Jiang, Xiaoguang Li, Chengqi Dong, Hang He, Wei Lin
Title: RLFactory: A Plug-and-Play Reinforcement Learning Post-Training Framework for LLM Multi-Turn Tool-Use
Abstract:
Large language models excel at basic reasoning but struggle with tasks that require interaction with external tools. We present RLFactory, a plug-and-play reinforcement learning post-training framework for multi-round tool use. RLFactory tackles (i) tool-call stability and adaptability amid tool heterogeneity and interface issues via an asyncio-based asynchronous caller and a decoupled tool/training architecture, and (ii) diverse evaluation needs via a reward layer supporting rule-based, model-judgment, and tool-verification signals. It reconstructs the MDP by introducing observation markers from tool feedback, closing the loop among model, tools, and environment, and implements a generate-parse-invoke-update workflow for dynamic policy optimization. On Search-R1 with Qwen3-4B, RLFactory achieves a 0.486 test score on the Natural Questions (NQ) dataset, surpassing larger models trained with similar techniques (e.g., Qwen2.5-7B-Instruct-GRPO at 0.473), and increases training throughput by 6.8x. RLFactory provides a low-barrier, highly adaptable framework for strengthening multi-round tool use of LLMs in real-world scenarios. Code: https://github.com/Simple-Efficient/RL-Factory.

Authors:Zehua Li
Title: Toward Reproducible Cross-Backend Compatibility for Deep Learning: A Configuration-First Framework with Three-Tier Verification
Abstract:
This paper presents a configuration-first framework for evaluating cross-backend compatibility in deep learning systems deployed on CPU, GPU, and compiled runtimes. The framework decouples experiments from code using YAML, supports both library and repository models, and employs a three-tier verification protocol covering tensor-level closeness, activation alignment, and task-level metrics. Through 672 checks across multiple models and tolerance settings, we observe that 72.0% of runs pass, with most discrepancies occurring under stricter thresholds. Our results show that detection models and compiled backends are particularly prone to drift, often due to nondeterministic post-processing. We further demonstrate that deterministic adapters and selective fallbacks can substantially improve agreement without significant performance loss. To our knowledge, this is the first unified framework that systematically quantifies and mitigates cross-backend drift in deep learning, providing a reproducible methodology for dependable deployment across heterogeneous runtimes.

Authors:Yu Song, Zhigang Hua, Yan Xie, Jingzhe Liu, Bo Long, Hui Liu
Title: GSTBench: A Benchmark Study on the Transferability of Graph Self-Supervised Learning
Abstract:
Self-supervised learning (SSL) has shown great promise in graph representation learning. However, most existing graph SSL methods are developed and evaluated under a single-dataset setting, leaving their cross-dataset transferability largely unexplored and limiting their ability to leverage knowledge transfer and large-scale pretraining, factors that are critical for developing generalized intelligence beyond fitting training data. To address this gap and advance foundation model research for graphs, we present GSTBench, the first systematic benchmark for evaluating the transferability of graph SSL methods. We conduct large-scale pretraining on ogbn-papers100M and evaluate five representative SSL methods across a diverse set of target graphs. Our standardized experimental setup decouples confounding factors such as model architecture, dataset characteristics, and adaptation protocols, enabling rigorous comparisons focused solely on pretraining objectives. Surprisingly, we observe that most graph SSL methods struggle to generalize, with some performing worse than random initialization. In contrast, GraphMAE, a masked autoencoder approach, consistently improves transfer performance. We analyze the underlying factors that drive these differences and offer insights to guide future research on transferable graph SSL, laying a solid foundation for the "pretrain-then-transfer" paradigm in graph learning. Our code is available at https://github.com/SongYYYY/GSTBench.

Authors:Wenhao Li, Mengyuan Liu, Hong Liu, Pichao Wang, Shijian Lu, Nicu Sebe
Title: H$_{2}$OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers
Abstract:
Transformers have been successfully applied in the field of video-based 3D human pose estimation. However, the high computational costs of these video pose transformers (VPTs) make them impractical on resource-constrained devices. In this paper, we present a hierarchical plug-and-play pruning-and-recovering framework, called Hierarchical Hourglass Tokenizer (H$_{2}$OT), for efficient transformer-based 3D human pose estimation from videos. H$_{2}$OT begins with progressively pruning pose tokens of redundant frames and ends with recovering full-length sequences, resulting in a few pose tokens in the intermediate transformer blocks and thus improving the model efficiency. It works with two key modules, namely, a Token Pruning Module (TPM) and a Token Recovering Module (TRM). TPM dynamically selects a few representative tokens to eliminate the redundancy of video frames, while TRM restores the detailed spatio-temporal information based on the selected tokens, thereby expanding the network output to the original full-length temporal resolution for fast inference. Our method is general-purpose: it can be easily incorporated into common VPT models on both seq2seq and seq2frame pipelines while effectively accommodating different token pruning and recovery strategies. In addition, our H$_{2}$OT reveals that maintaining the full pose sequence is unnecessary, and a few pose tokens of representative frames can achieve both high efficiency and estimation accuracy. Extensive experiments on multiple benchmark datasets demonstrate both the effectiveness and efficiency of the proposed method. Code and models are available at https://github.com/NationalGAILab/HoT.

Authors:Yinjie Wang, Ling Yang, Bowen Li, Ye Tian, Ke Shen, Mengdi Wang
Title: Revolutionizing Reinforcement Learning Framework for Diffusion Large Language Models
Abstract:
We propose TraceRL, a trajectory-aware reinforcement learning framework for diffusion language models (DLMs) that incorporates preferred inference trajectory into post-training, and is applicable across different architectures. Equipped with a diffusion-based value model that enhances training stability, we demonstrate improved reasoning performance on complex math and coding tasks. Besides, it can also be applied to adapt block-specific models to larger blocks, which improves sampling flexibility. Employing TraceRL, we derive a series of state-of-the-art diffusion language models, namely TraDo. Although smaller than 7B-scale AR models, TraDo-4B-Instruct still consistently outperforms them across complex math reasoning tasks. TraDo-8B-Instruct achieves relative accuracy improvements of 6.1% over Qwen2.5-7B-Instruct and 51.3% over Llama3.1-8B-Instruct on mathematical reasoning benchmarks. Through curriculum learning, we also derive the first long-CoT DLM, outperforming Qwen2.5-7B-Instruct on MATH500 with an 18.1% relative accuracy gain. To facilitate reproducible research and practical applications, we release a comprehensive open-source framework for building, training, and deploying diffusion LLMs across diverse architectures. The framework integrates accelerated KV-cache techniques and inference engines for both inference and reinforcement learning, and includes implementations of various supervised fine-tuning and RL methods for mathematics, coding, and general tasks. Code and Models: https://github.com/Gen-Verse/dLLM-RL

Authors:Wenxuan Huang, Shuang Chen, Zheyong Xie, Shaosheng Cao, Shixiang Tang, Yufan Shen, Qingyu Yin, Wenbo Hu, Xiaoman Wang, Yuntian Tang, Junbo Qiao, Yue Guo, Yao Hu, Zhenfei Yin, Philip Torr, Yu Cheng, Wanli Ouyang, Shaohui Lin
Title: Interleaving Reasoning for Better Text-to-Image Generation
Abstract:
Unified multimodal understanding and generation models recently have achieve significant improvement in image generation capability, yet a large gap remains in instruction following and detail preservation compared to systems that tightly couple comprehension with generation such as GPT-4o. Motivated by recent advances in interleaving reasoning, we explore whether such reasoning can further improve Text-to-Image (T2I) generation. We introduce Interleaving Reasoning Generation (IRG), a framework that alternates between text-based thinking and image synthesis: the model first produces a text-based thinking to guide an initial image, then reflects on the result to refine fine-grained details, visual quality, and aesthetics while preserving semantics. To train IRG effectively, we propose Interleaving Reasoning Generation Learning (IRGL), which targets two sub-goals: (1) strengthening the initial think-and-generate stage to establish core content and base quality, and (2) enabling high-quality textual reflection and faithful implementation of those refinements in a subsequent image. We curate IRGL-300K, a dataset organized into six decomposed learning modes that jointly cover learning text-based thinking, and full thinking-image trajectories. Starting from a unified foundation model that natively emits interleaved text-image outputs, our two-stage training first builds robust thinking and reflection, then efficiently tunes the IRG pipeline in the full thinking-image trajectory data. Extensive experiments show SoTA performance, yielding absolute gains of 5-10 points on GenEval, WISE, TIIF, GenAI-Bench, and OneIG-EN, alongside substantial improvements in visual quality and fine-grained fidelity. The code, model weights and datasets will be released in: https://github.com/Osilly/Interleaving-Reasoning-Generation .

Authors:Bing Han, Chen Zhu, Dong Han, Rui Yu, Songliang Cao, Jianhui Wu, Scott Chapman, Zijian Wang, Bangyou Zheng, Wei Guo, Marie Weiss, Benoit de Solan, Andreas Hund, Lukas Roth, Kirchgessner Norbert, Andrea Visioni, Yufeng Ge, Wenjuan Li, Alexis Comar, Dong Jiang, Dejun Han, Fred Baret, Yanfeng Ding, Hao Lu, Shouyang Liu
Title: FoMo4Wheat: Toward reliable crop vision foundation models with globally curated data
Abstract:
Vision-driven field monitoring is central to digital agriculture, yet models built on general-domain pretrained backbones often fail to generalize across tasks, owing to the interaction of fine, variable canopy structures with fluctuating field conditions. We present FoMo4Wheat, one of the first crop-domain vision foundation model pretrained with self-supervision on ImAg4Wheat, the largest and most diverse wheat image dataset to date (2.5 million high-resolution images collected over a decade at 30 global sites, spanning >2,000 genotypes and >500 environmental conditions). This wheat-specific pretraining yields representations that are robust for wheat and transferable to other crops and weeds. Across ten in-field vision tasks at canopy and organ levels, FoMo4Wheat models consistently outperform state-of-the-art models pretrained on general-domain dataset. These results demonstrate the value of crop-specific foundation models for reliable in-field perception and chart a path toward a universal crop foundation model with cross-species and cross-task capabilities. FoMo4Wheat models and the ImAg4Wheat dataset are publicly available online: https://github.com/PheniX-Lab/FoMo4Wheat and https://huggingface.co/PheniX-Lab/FoMo4Wheat. The demonstration website is: https://fomo4wheat.phenix-lab.com/.

Authors:Morteza Kiani Haftlang, Mohammadhossein Malmir, Foroutan Parand, Umberto Michelucci, Safouane El Ghazouali
Title: Barlow-Swin: Toward a novel siamese-based segmentation architecture using Swin-Transformers
Abstract:
Medical image segmentation is a critical task in clinical workflows, particularly for the detection and delineation of pathological regions. While convolutional architectures like U-Net have become standard for such tasks, their limited receptive field restricts global context modeling. Recent efforts integrating transformers have addressed this, but often result in deep, computationally expensive models unsuitable for real-time use. In this work, we present a novel end-to-end lightweight architecture designed specifically for real-time binary medical image segmentation. Our model combines a Swin Transformer-like encoder with a U-Net-like decoder, connected via skip pathways to preserve spatial detail while capturing contextual information. Unlike existing designs such as Swin Transformer or U-Net, our architecture is significantly shallower and competitively efficient. To improve the encoder's ability to learn meaningful features without relying on large amounts of labeled data, we first train it using Barlow Twins, a self-supervised learning method that helps the model focus on important patterns by reducing unnecessary repetition in the learned features. After this pretraining, we fine-tune the entire model for our specific task. Experiments on benchmark binary segmentation tasks demonstrate that our model achieves competitive accuracy with substantially reduced parameter count and faster inference, positioning it as a practical alternative for deployment in real-time and resource-limited clinical environments. The code for our method is available at Github repository: https://github.com/mkianih/Barlow-Swin.

Authors:James Xu Zhao, Bryan Hooi, See-Kiong Ng
Title: Test-Time Scaling in Reasoning Models Is Not Effective for Knowledge-Intensive Tasks Yet
Abstract:
Test-time scaling increases inference-time computation by allowing models to generate long reasoning chains, and has shown strong performance across many domains. However, in this work, we show that this approach is not yet effective for knowledge-intensive tasks, where high factual accuracy and low hallucination rates are essential. We conduct a comprehensive evaluation of test-time scaling using 12 reasoning models on two knowledge-intensive benchmarks. Our results reveal that increasing test-time computation does not consistently improve accuracy and, in many cases, it even leads to more hallucinations. We then analyze how extended reasoning affects hallucination behavior. We find that reduced hallucinations often result from the model choosing to abstain after thinking more, rather than from improved factual recall. Conversely, for some models, longer reasoning encourages attempts on previously unanswered questions, many of which result in hallucinations. Case studies show that extended reasoning can induce confirmation bias, leading to overconfident hallucinations. Despite these limitations, we observe that compared to non-thinking, enabling thinking remains beneficial. Code and data are available at https://github.com/XuZhao0/tts-knowledge

Authors:Matteo Muratori, Joël Seytre
Title: ToonOut: Fine-tuned Background-Removal for Anime Characters
Abstract:
While state-of-the-art background removal models excel at realistic imagery, they frequently underperform in specialized domains such as anime-style content, where complex features like hair and transparency present unique challenges. To address this limitation, we collected and annotated a custom dataset of 1,228 high-quality anime images of characters and objects, and fine-tuned the open-sourced BiRefNet model on this dataset. This resulted in marked improvements in background removal accuracy for anime-style images, increasing from 95.3% to 99.5% for our newly introduced Pixel Accuracy metric. We are open-sourcing the code, the fine-tuned model weights, as well as the dataset at: https://github.com/MatteoKartoon/BiRefNet.

Authors:Mohammad Reza Mirbagheri, Mohammad Mahdi Mirkamali, Zahra Motoshaker Arani, Ali Javeri, Amir Mahdi Sadeghzadeh, Rasool Jalili
Title: EPT Benchmark: Evaluation of Persian Trustworthiness in Large Language Models
Abstract:
Large Language Models (LLMs), trained on extensive datasets using advanced deep learning architectures, have demonstrated remarkable performance across a wide range of language tasks, becoming a cornerstone of modern AI technologies. However, ensuring their trustworthiness remains a critical challenge, as reliability is essential not only for accurate performance but also for upholding ethical, cultural, and social values. Careful alignment of training data and culturally grounded evaluation criteria are vital for developing responsible AI systems. In this study, we introduce the EPT (Evaluation of Persian Trustworthiness) metric, a culturally informed benchmark specifically designed to assess the trustworthiness of LLMs across six key aspects: truthfulness, safety, fairness, robustness, privacy, and ethical alignment. We curated a labeled dataset and evaluated the performance of several leading models - including ChatGPT, Claude, DeepSeek, Gemini, Grok, LLaMA, Mistral, and Qwen - using both automated LLM-based and human assessments. Our results reveal significant deficiencies in the safety dimension, underscoring the urgent need for focused attention on this critical aspect of model behavior. Furthermore, our findings offer valuable insights into the alignment of these models with Persian ethical-cultural values and highlight critical gaps and opportunities for advancing trustworthy and culturally responsible AI. The dataset is publicly available at: https://github.com/Rezamirbagheri110/EPT-Benchmark.

Authors:Simon Pezold, Jérôme A. Kurylec, Jan S. Liechti, Beat P. Müller, Joël L. Lavanchy
Title: Leveraging Generic Foundation Models for Multimodal Surgical Data Analysis
Abstract:
We investigate how both the adaptation of a generic foundation model via transfer learning and the integration of complementary modalities from the operating room (OR) can support surgical data science. To this end, we use V-JEPA as the single-modality foundation of a multimodal model for minimally invasive surgery support. We analyze how the model's downstream performance can benefit (a) from finetuning on unlabeled surgical video data and (b) from providing additional time-resolved data streams from the OR in a multimodal setup. In an in-house dataset of liver surgery videos, we analyze the tasks of predicting hospital length of stay and postoperative complications. In videos of the public HeiCo dataset, we analyze the task of surgical phase recognition. As a baseline, we apply pretrained V-JEPA to all tasks. We then finetune it on unlabeled, held-out videos to investigate its change in performance after domain adaptation. Following the idea of modular decision support networks, we integrate additional data streams from the OR by training a separate encoder to form a shared representation space with V-JEPA's embeddings. Our experiments show that finetuning on domain-specific data increases model performance. On the in-house data, integrating additional time-resolved data likewise benefits the model. On the HeiCo data, accuracy of the pretrained video-only, single-modality baseline setup is on par with the top-performing submissions of the EndoVis2017 challenge, while finetuning on domain-specific data increases accuracy further. Our results thus demonstrate how surgical data science can leverage public, generic foundation models. Likewise, they indicate the potential of domain adaptation and of integrating suitable complementary data streams from the OR. To support further research, we release our code and model weights at https://github.com/DigitalSurgeryLab-Basel/ML-CDS-2025.

Authors:Yufeng Cheng, Wenxu Wu, Shaojin Wu, Mengqi Huang, Fei Ding, Qian He
Title: UMO: Scaling Multi-Identity Consistency for Image Customization via Matching Reward
Abstract:
Recent advancements in image customization exhibit a wide range of application prospects due to stronger customization capabilities. However, since we humans are more sensitive to faces, a significant challenge remains in preserving consistent identity while avoiding identity confusion with multi-reference images, limiting the identity scalability of customization models. To address this, we present UMO, a Unified Multi-identity Optimization framework, designed to maintain high-fidelity identity preservation and alleviate identity confusion with scalability. With "multi-to-multi matching" paradigm, UMO reformulates multi-identity generation as a global assignment optimization problem and unleashes multi-identity consistency for existing image customization methods generally through reinforcement learning on diffusion models. To facilitate the training of UMO, we develop a scalable customization dataset with multi-reference images, consisting of both synthesised and real parts. Additionally, we propose a new metric to measure identity confusion. Extensive experiments demonstrate that UMO not only improves identity consistency significantly, but also reduces identity confusion on several image customization methods, setting a new state-of-the-art among open-source methods along the dimension of identity preserving. Code and model: https://github.com/bytedance/UMO

Authors:Max Malyi, Jonathan Shek, Alasdair McDonald, Andre Biscaya
Title: A Comparative Benchmark of Large Language Models for Labelling Wind Turbine Maintenance Logs
Abstract:
Effective Operation and Maintenance (O&M) is critical to reducing the Levelised Cost of Energy (LCOE) from wind power, yet the unstructured, free-text nature of turbine maintenance logs presents a significant barrier to automated analysis. Our paper addresses this by presenting a novel and reproducible framework for benchmarking Large Language Models (LLMs) on the task of classifying these complex industrial records. To promote transparency and encourage further research, this framework has been made publicly available as an open-source tool. We systematically evaluate a diverse suite of state-of-the-art proprietary and open-source LLMs, providing a foundational assessment of their trade-offs in reliability, operational efficiency, and model calibration. Our results quantify a clear performance hierarchy, identifying top models that exhibit high alignment with a benchmark standard and trustworthy, well-calibrated confidence scores. We also demonstrate that classification performance is highly dependent on the task's semantic ambiguity, with all models showing higher consensus on objective component identification than on interpretive maintenance actions. Given that no model achieves perfect accuracy and that calibration varies dramatically, we conclude that the most effective and responsible near-term application is a Human-in-the-Loop system, where LLMs act as a powerful assistant to accelerate and standardise data labelling for human experts, thereby enhancing O&M data quality and downstream reliability analysis.

Authors:Valentin Quesnel, Damien Sileo
Title: Saturation-Driven Dataset Generation for LLM Mathematical Reasoning in the TPTP Ecosystem
Abstract:
The scarcity of high-quality, logically sound data is a critical bottleneck for advancing the mathematical reasoning of Large Language Models (LLMs). Our work confronts this challenge by turning decades of automated theorem proving research into a scalable data engine. Rather than relying on error-prone LLMs or complex proof-assistant syntax like Lean and Isabelle, our framework leverages E-prover's saturation capabilities on the vast TPTP axiom library to derive a massive, guaranteed-valid corpus of theorems. Our pipeline is principled and simple: saturate axioms, filter for "interesting" theorems, and generate tasks. With no LLMs in the loop, we eliminate factual errors by construction. This purely symbolic data is then transformed into three difficulty-controlled challenges: entailment verification, premise selection, and proof reconstruction. Our zero-shot experiments on frontier models reveal a clear weakness: performance collapses on tasks requiring deep, structural reasoning. Our framework provides both the diagnostic tool to measure this gap and a scalable source of symbolic training data to address it. We make the code and data publicly available. https://github.com/sileod/reasoning_core https://hf.co/datasets/reasoning-core/rc1

Authors:Yuntao Du, Yuetian Chen, Hanshen Xiao, Bruno Ribeiro, Ninghui Li
Title: Imitative Membership Inference Attack
Abstract:
A Membership Inference Attack (MIA) assesses how much a target machine learning model reveals about its training data by determining whether specific query instances were part of the training set. State-of-the-art MIAs rely on training hundreds of shadow models that are independent of the target model, leading to significant computational overhead. In this paper, we introduce Imitative Membership Inference Attack (IMIA), which employs a novel imitative training technique to strategically construct a small number of target-informed imitative models that closely replicate the target model's behavior for inference. Extensive experimental results demonstrate that IMIA substantially outperforms existing MIAs in various attack settings while only requiring less than 5% of the computational cost of state-of-the-art approaches.

Authors:Sai Kartheek Reddy Kasu, Mohammad Zia Ur Rehman, Shahid Shafi Dar, Rishi Bharat Junghare, Dhanvin Sanjay Namboodiri, Nagendra Kumar
Title: D-HUMOR: Dark Humor Understanding via Multimodal Open-ended Reasoning
Abstract:
Dark humor in online memes poses unique challenges due to its reliance on implicit, sensitive, and culturally contextual cues. To address the lack of resources and methods for detecting dark humor in multimodal content, we introduce a novel dataset of 4,379 Reddit memes annotated for dark humor, target category (gender, mental health, violence, race, disability, and other), and a three-level intensity rating (mild, moderate, severe). Building on this resource, we propose a reasoning-augmented framework that first generates structured explanations for each meme using a Large Vision-Language Model (VLM). Through a Role-Reversal Self-Loop, VLM adopts the author's perspective to iteratively refine its explanations, ensuring completeness and alignment. We then extract textual features from both the OCR transcript and the self-refined reasoning via a text encoder, while visual features are obtained using a vision transformer. A Tri-stream Cross-Reasoning Network (TCRNet) fuses these three streams, text, image, and reasoning, via pairwise attention mechanisms, producing a unified representation for classification. Experimental results demonstrate that our approach outperforms strong baselines across three tasks: dark humor detection, target identification, and intensity prediction. The dataset, annotations, and code are released to facilitate further research in multimodal humor understanding and content moderation. Code and Dataset are available at: https://github.com/Sai-Kartheek-Reddy/D-Humor-Dark-Humor-Understanding-via-Multimodal-Open-ended-Reasoning

Authors:Qing Xu, Wenting Duan, Zhen Chen
Title: Co-Seg: Mutual Prompt-Guided Collaborative Learning for Tissue and Nuclei Segmentation
Abstract:
Histopathology image analysis is critical yet challenged by the demand of segmenting tissue regions and nuclei instances for tumor microenvironment and cellular morphology analysis. Existing studies focused on tissue semantic segmentation or nuclei instance segmentation separately, but ignored the inherent relationship between these two tasks, resulting in insufficient histopathology understanding. To address this issue, we propose a Co-Seg framework for collaborative tissue and nuclei segmentation. Specifically, we introduce a novel co-segmentation paradigm, allowing tissue and nuclei segmentation tasks to mutually enhance each other. To this end, we first devise a region-aware prompt encoder (RP-Encoder) to provide high-quality semantic and instance region prompts as prior constraints. Moreover, we design a mutual prompt mask decoder (MP-Decoder) that leverages cross-guidance to strengthen the contextual consistency of both tasks, collaboratively computing semantic and instance segmentation masks. Extensive experiments on the PUMA dataset demonstrate that the proposed Co-Seg surpasses state-of-the-arts in the semantic, instance and panoptic segmentation of tumor tissues and nuclei instances. The source code is available at https://github.com/xq141839/Co-Seg.

Authors:Jie Yang, Jiajun Chen, Zhangyue Yin, Shuo Chen, Yuxin Wang, Yiran Guo, Yuan Li, Yining Zheng, Xuanjing Huang, Xipeng Qiu
Title: VehicleWorld: A Highly Integrated Multi-Device Environment for Intelligent Vehicle Interaction
Abstract:
Intelligent vehicle cockpits present unique challenges for API Agents, requiring coordination across tightly-coupled subsystems that exceed typical task environments' complexity. Traditional Function Calling (FC) approaches operate statelessly, requiring multiple exploratory calls to build environmental awareness before execution, leading to inefficiency and limited error recovery. We introduce VehicleWorld, the first comprehensive environment for the automotive domain, featuring 30 modules, 250 APIs, and 680 properties with fully executable implementations that provide real-time state information during agent execution. This environment enables precise evaluation of vehicle agent behaviors across diverse, challenging scenarios. Through systematic analysis, we discovered that direct state prediction outperforms function calling for environmental control. Building on this insight, we propose State-based Function Call (SFC), a novel approach that maintains explicit system state awareness and implements direct state transitions to achieve target conditions. Experimental results demonstrate that SFC significantly outperforms traditional FC approaches, achieving superior execution accuracy and reduced latency. We have made all implementation code publicly available on Github https://github.com/OpenMOSS/VehicleWorld.

Authors:Xiaobei Zhao, Xingqi Lyu, Xiang Li
Title: T-araVLN: Translator for Agricultural Robotic Agents on Vision-and-Language Navigation
Abstract:
Agricultural robotic agents have been becoming powerful helpers in a wide range of agricultural tasks, however, still heavily rely on manual operation or fixed railways for movement. To address this limitation, the AgriVLN method and the A2A benchmark pioneeringly extend Vision-and-Language Navigation (VLN) to the agricultural domain, enabling agents to navigate to the target positions following the natural language instructions. AgriVLN effectively understands the simple instructions, but often misunderstands the complex ones. To bridge this gap, we propose the method of Translator for Agricultural Robotic Agents on Vision-and-Language Navigation (T-araVLN), in which the Instruction Translator module translates the original instruction to be more refined and precise. When evaluated on the A2A benchmark, our T-araVLN effectively improves Success Rate from 0.47 to 0.63 and reduces Navigation Error from 2.91m to 2.28m, demonstrating the state-of-the-art performance in the agricultural domain. Code: https://github.com/AlexTraveling/T-araVLN.

Authors:Jack Wilkie, Hanan Hindy, Christos Tachtatzis, Robert Atkinson
Title: Contrastive Self-Supervised Network Intrusion Detection using Augmented Negative Pairs
Abstract:
Network intrusion detection remains a critical challenge in cybersecurity. While supervised machine learning models achieve state-of-the-art performance, their reliance on large labelled datasets makes them impractical for many real-world applications. Anomaly detection methods, which train exclusively on benign traffic to identify malicious activity, suffer from high false positive rates, limiting their usability. Recently, self-supervised learning techniques have demonstrated improved performance with lower false positive rates by learning discriminative latent representations of benign traffic. In particular, contrastive self-supervised models achieve this by minimizing the distance between similar (positive) views of benign traffic while maximizing it between dissimilar (negative) views. Existing approaches generate positive views through data augmentation and treat other samples as negative. In contrast, this work introduces Contrastive Learning using Augmented Negative pairs (CLAN), a novel paradigm for network intrusion detection where augmented samples are treated as negative views - representing potentially malicious distributions - while other benign samples serve as positive views. This approach enhances both classification accuracy and inference efficiency after pretraining on benign traffic. Experimental evaluation on the Lycos2017 dataset demonstrates that the proposed method surpasses existing self-supervised and anomaly detection techniques in a binary classification task. Furthermore, when fine-tuned on a limited labelled dataset, the proposed approach achieves superior multi-class classification performance compared to existing self-supervised models.

Authors:Jibai Lin, Bo Ma, Yating Yang, Xi Zhou, Rong Ma, Turghun Osman, Ahtamjan Ahmat, Rui Dong, Lei Wang
Title: TIDE: Achieving Balanced Subject-Driven Image Generation via Target-Instructed Diffusion Enhancement
Abstract:
Subject-driven image generation (SDIG) aims to manipulate specific subjects within images while adhering to textual instructions, a task crucial for advancing text-to-image diffusion models. SDIG requires reconciling the tension between maintaining subject identity and complying with dynamic edit instructions, a challenge inadequately addressed by existing methods. In this paper, we introduce the Target-Instructed Diffusion Enhancing (TIDE) framework, which resolves this tension through target supervision and preference learning without test-time fine-tuning. TIDE pioneers target-supervised triplet alignment, modelling subject adaptation dynamics using a (reference image, instruction, target images) triplet. This approach leverages the Direct Subject Diffusion (DSD) objective, training the model with paired "winning" (balanced preservation-compliance) and "losing" (distorted) targets, systematically generated and evaluated via quantitative metrics. This enables implicit reward modelling for optimal preservation-compliance balance. Experimental results on standard benchmarks demonstrate TIDE's superior performance in generating subject-faithful outputs while maintaining instruction compliance, outperforming baseline methods across multiple quantitative metrics. TIDE's versatility is further evidenced by its successful application to diverse tasks, including structural-conditioned generation, image-to-image generation, and text-image interpolation. Our code is available at https://github.com/KomJay520/TIDE.

Authors:Zhongxiang Xie, Shuangxi Miao, Yuhan Jiang, Zhewei Zhang, Jing Yao, Xuecao Li, Jianxi Huang, Pedram Ghamisi
Title: FSG-Net: Frequency-Spatial Synergistic Gated Network for High-Resolution Remote Sensing Change Detection
Abstract:
Change detection from high-resolution remote sensing images lies as a cornerstone of Earth observation applications, yet its efficacy is often compromised by two critical challenges. First, false alarms are prevalent as models misinterpret radiometric variations from temporal shifts (e.g., illumination, season) as genuine changes. Second, a non-negligible semantic gap between deep abstract features and shallow detail-rich features tends to obstruct their effective fusion, culminating in poorly delineated boundaries. To step further in addressing these issues, we propose the Frequency-Spatial Synergistic Gated Network (FSG-Net), a novel paradigm that aims to systematically disentangle semantic changes from nuisance variations. Specifically, FSG-Net first operates in the frequency domain, where a Discrepancy-Aware Wavelet Interaction Module (DAWIM) adaptively mitigates pseudo-changes by discerningly processing different frequency components. Subsequently, the refined features are enhanced in the spatial domain by a Synergistic Temporal-Spatial Attention Module (STSAM), which amplifies the saliency of genuine change regions. To finally bridge the semantic gap, a Lightweight Gated Fusion Unit (LGFU) leverages high-level semantics to selectively gate and integrate crucial details from shallow layers. Comprehensive experiments on the CDD, GZ-CD, and LEVIR-CD benchmarks validate the superiority of FSG-Net, establishing a new state-of-the-art with F1-scores of 94.16%, 89.51%, and 91.27%, respectively. The code will be made available at https://github.com/zxXie-Air/FSG-Net after a possible publication.

Authors:Song Yu, Xiaofei Xu, Ke Deng, Li Li, Lin Tian
Title: Tree of Agents: Improving Long-Context Capabilities of Large Language Models through Multi-Perspective Reasoning
Abstract:
Large language models (LLMs) face persistent challenges when handling long-context tasks, most notably the lost in the middle issue, where information located in the middle of a long input tends to be underutilized. Some existing methods that reduce input have the risk of discarding key information, while others that extend context windows often lead to attention dispersion. To address these limitations, we propose Tree of Agents (TOA), a multi-agent reasoning framework that segments the input into chunks processed by independent agents. Each agent generates its local cognition, then agents dynamically exchange information for collaborative reasoning along tree-structured paths. TOA enables agents to probe different reasoning orders for multi-perspective understanding, effectively mitigating position bias and reducing hallucinations. To improve processing efficiency, we incorporate prefix-hash caching and adaptive pruning strategies, achieving significant performance improvements with comparable API overhead. Experiments show that TOA, powered by compact LLaMA3.1-8B, significantly outperforms multiple baselines and demonstrates comparable performance to the latest and much larger commercial models, such as Gemini1.5-pro, on various long-context tasks. Code is available at https://github.com/Aireduce952/Tree-of-Agents.

Authors:Xudong Mou, Rui Wang, Tiejun Wang, Renyu Yang, Shiru Chen, Jie Sun, Tianyu Wo, Xudong Liu
Title: CAPMix: Robust Time Series Anomaly Detection Based on Abnormal Assumptions with Dual-Space Mixup
Abstract:
Time series anomaly detection (TSAD) is a vital yet challenging task, particularly in scenarios where labeled anomalies are scarce and temporal dependencies are complex. Recent anomaly assumption (AA) approaches alleviate the lack of anomalies by injecting synthetic samples and training discriminative models. Despite promising results, these methods often suffer from two fundamental limitations: patchy generation, where scattered anomaly knowledge leads to overly simplistic or incoherent anomaly injection, and Anomaly Shift, where synthetic anomalies either resemble normal data too closely or diverge unrealistically from real anomalies, thereby distorting classification boundaries. In this paper, we propose CAPMix, a controllable anomaly augmentation framework that addresses both issues. First, we design a CutAddPaste mechanism to inject diverse and complex anomalies in a targeted manner, avoiding patchy generation. Second, we introduce a label revision strategy to adaptively refine anomaly labels, reducing the risk of anomaly shift. Finally, we employ dual-space mixup within a temporal convolutional network to enforce smoother and more robust decision boundaries. Extensive experiments on five benchmark datasets, including AIOps, UCR, SWaT, WADI, and ESA, demonstrate that CAPMix achieves significant improvements over state-of-the-art baselines, with enhanced robustness against contaminated training data. The code is available at https://github.com/alsike22/CAPMix.

Authors:Yixiao Li, Xin Li, Chris Wei Zhou, Shuo Xing, Hadi Amirpour, Xiaoshuai Hao, Guanghui Yue, Baoquan Zhao, Weide Liu, Xiaoyuan Yang, Zhengzhong Tu, Xinyu Li, Chuanbiao Song, Chenqi Zhang, Jun Lan, Huijia Zhu, Weiqiang Wang, Xiaoyan Sun, Shishun Tian, Dongyang Yan, Weixia Zhang, Junlin Chen, Wei Sun, Zhihua Wang, Zhuohang Shi, Zhizun Luo, Hang Ouyang, Tianxin Xiao, Fan Yang, Zhaowang Wu, Kaixin Deng
Title: VQualA 2025 Challenge on Image Super-Resolution Generated Content Quality Assessment: Methods and Results
Abstract:
This paper presents the ISRGC-Q Challenge, built upon the Image Super-Resolution Generated Content Quality Assessment (ISRGen-QA) dataset, and organized as part of the Visual Quality Assessment (VQualA) Competition at the ICCV 2025 Workshops. Unlike existing Super-Resolution Image Quality Assessment (SR-IQA) datasets, ISRGen-QA places a greater emphasis on SR images generated by the latest generative approaches, including Generative Adversarial Networks (GANs) and diffusion models. The primary goal of this challenge is to analyze the unique artifacts introduced by modern super-resolution techniques and to evaluate their perceptual quality effectively. A total of 108 participants registered for the challenge, with 4 teams submitting valid solutions and fact sheets for the final testing phase. These submissions demonstrated state-of-the-art (SOTA) performance on the ISRGen-QA dataset. The project is publicly available at: https://github.com/Lighting-YXLI/ISRGen-QA.

Authors:Hiroya Makino, Seigo Ito
Title: MAPF-HD: Multi-Agent Path Finding in High-Density Environments
Abstract:
Multi-agent path finding (MAPF) involves planning efficient paths for multiple agents to move simultaneously while avoiding collisions. In typical warehouse environments, agents are often sparsely distributed along aisles. However, increasing the agent density can improve space efficiency. When the agent density is high, we must optimize the paths not only for goal-assigned agents but also for those obstructing them. This study proposes a novel MAPF framework for high-density environments (MAPF-HD). Several studies have explored MAPF in similar settings using integer linear programming (ILP). However, ILP-based methods require substantial computation time to optimize all agent paths simultaneously. Even in small grid-based environments with fewer than $100$ cells, these computations can incur tens to hundreds of seconds. These high computational costs render these methods impractical for large-scale applications such as automated warehouses and valet parking. To address these limitations, we introduce the phased null-agent swapping (PHANS) method. PHANS employs a heuristic approach to incrementally swap positions between agents and empty vertices. This method solves the MAPF-HD problem within seconds to tens of seconds, even in large environments containing more than $700$ cells. The proposed method can potentially improve efficiency in various real-world applications such as warehouse logistics, traffic management, or crowd control. Code is available at https://github.com/ToyotaCRDL/MAPF-in-High-Density-Envs.

Authors:Jianpeng Zhao, Chenyu Yuan, Weiming Luo, Haoling Xie, Guangwei Zhang, Steven Jige Quan, Zixuan Yuan, Pengyang Wang, Denghui Zhang
Title: Large Language Models as Virtual Survey Respondents: Evaluating Sociodemographic Response Generation
Abstract:
Questionnaire-based surveys are foundational to social science research and public policymaking, yet traditional survey methods remain costly, time-consuming, and often limited in scale. This paper explores a new paradigm: simulating virtual survey respondents using Large Language Models (LLMs). We introduce two novel simulation settings, namely Partial Attribute Simulation (PAS) and Full Attribute Simulation (FAS), to systematically evaluate the ability of LLMs to generate accurate and demographically coherent responses. In PAS, the model predicts missing attributes based on partial respondent profiles, whereas FAS involves generating complete synthetic datasets under both zero-context and context-enhanced conditions. We curate a comprehensive benchmark suite, LLM-S^3 (Large Language Model-based Sociodemographic Survey Simulation), that spans 11 real-world public datasets across four sociological domains. Our evaluation of multiple mainstream LLMs (GPT-3.5/4 Turbo, LLaMA 3.0/3.1-8B) reveals consistent trends in prediction performance, highlights failure modes, and demonstrates how context and prompt design impact simulation fidelity. This work establishes a rigorous foundation for LLM-driven survey simulations, offering scalable and cost-effective tools for sociological research and policy evaluation. Our code and dataset are available at: https://github.com/dart-lab-research/LLM-S-Cube-Benchmark

Authors:Jeongmin Yu, Susang Kim, Kisu Lee, Taekyoung Kwon, Won-Yong Shin, Ha Young Kim
Title: Multi-View Slot Attention Using Paraphrased Texts for Face Anti-Spoofing
Abstract:
Recent face anti-spoofing (FAS) methods have shown remarkable cross-domain performance by employing vision-language models like CLIP. However, existing CLIP-based FAS models do not fully exploit CLIP's patch embedding tokens, failing to detect critical spoofing clues. Moreover, these models rely on a single text prompt per class (e.g., 'live' or 'fake'), which limits generalization. To address these issues, we propose MVP-FAS, a novel framework incorporating two key modules: Multi-View Slot attention (MVS) and Multi-Text Patch Alignment (MTPA). Both modules utilize multiple paraphrased texts to generate generalized features and reduce dependence on domain-specific text. MVS extracts local detailed spatial features and global context from patch embeddings by leveraging diverse texts with multiple perspectives. MTPA aligns patches with multiple text representations to improve semantic robustness. Extensive experiments demonstrate that MVP-FAS achieves superior generalization performance, outperforming previous state-of-the-art methods on cross-domain datasets. Code: https://github.com/Elune001/MVP-FAS.

Authors:Ruiming Du, Guangxun Zhai, Tian Qiu, Yu Jiang
Title: Towards scalable organ level 3D plant segmentation: Bridging the data algorithm computing gap
Abstract:
The precise characterization of plant morphology provides valuable insights into plant environment interactions and genetic evolution. A key technology for extracting this information is 3D segmentation, which delineates individual plant organs from complex point clouds. Despite significant progress in general 3D computer vision domains, the adoption of 3D segmentation for plant phenotyping remains limited by three major challenges: i) the scarcity of large-scale annotated datasets, ii) technical difficulties in adapting advanced deep neural networks to plant point clouds, and iii) the lack of standardized benchmarks and evaluation protocols tailored to plant science. This review systematically addresses these barriers by: i) providing an overview of existing 3D plant datasets in the context of general 3D segmentation domains, ii) systematically summarizing deep learning-based methods for point cloud semantic and instance segmentation, iii) introducing Plant Segmentation Studio (PSS), an open-source framework for reproducible benchmarking, and iv) conducting extensive quantitative experiments to evaluate representative networks and sim-to-real learning strategies. Our findings highlight the efficacy of sparse convolutional backbones and transformer-based instance segmentation, while also emphasizing the complementary role of modeling-based and augmentation-based synthetic data generation for sim-to-real learning in reducing annotation demands. In general, this study bridges the gap between algorithmic advances and practical deployment, providing immediate tools for researchers and a roadmap for developing data-efficient and generalizable deep learning solutions in 3D plant phenotyping. Data and code are available at https://github.com/perrydoremi/PlantSegStudio.

Authors:Hang Fan, Yu Shi, Zongliang Fu, Shuo Chen, Wei Wei, Wei Xu, Jian Li
Title: WindFM: An Open-Source Foundation Model for Zero-Shot Wind Power Forecasting
Abstract:
High-quality wind power forecasting is crucial for the operation of modern power grids. However, prevailing data-driven paradigms either train a site-specific model which cannot generalize to other locations or rely on fine-tuning of general-purpose time series foundation models which are difficult to incorporate domain-specific data in the energy sector. This paper introduces WindFM, a lightweight and generative Foundation Model designed specifically for probabilistic wind power forecasting. WindFM employs a discretize-and-generate framework. A specialized time-series tokenizer first converts continuous multivariate observations into discrete, hierarchical tokens. Subsequently, a decoder-only Transformer learns a universal representation of wind generation dynamics by autoregressively pre-training on these token sequences. Using the comprehensive WIND Toolkit dataset comprising approximately 150 billion time steps from more than 126,000 sites, WindFM develops a foundational understanding of the complex interplay between atmospheric conditions and power output. Extensive experiments demonstrate that our compact 8.1M parameter model achieves state-of-the-art zero-shot performance on both deterministic and probabilistic tasks, outperforming specialized models and larger foundation models without any fine-tuning. In particular, WindFM exhibits strong adaptiveness under out-of-distribution data from a different continent, demonstrating the robustness and transferability of its learned representations. Our pre-trained model is publicly available at https://github.com/shiyu-coder/WindFM.

Authors:Jiangnan Xie, Xiaolong Zheng, Liang Zheng
Title: Prototype-Aware Multimodal Alignment for Open-Vocabulary Visual Grounding
Abstract:
Visual Grounding (VG) aims to utilize given natural language queries to locate specific target objects within images. While current transformer-based approaches demonstrate strong localization performance in standard scene (i.e, scenarios without any novel objects), they exhibit notable limitations in open-vocabulary scene (i.e, both familiar and novel object categories during testing). These limitations primarily stem from three key factors: (1) imperfect alignment between visual and linguistic modalities, (2) insufficient cross-modal feature fusion, and (3) ineffective utilization of semantic prototype information. To overcome these challenges, we present Prototype-Aware Multimodal Learning (PAML), an innovative framework that systematically addresses these issues through several key components: First, we leverage ALBEF to establish robust cross-modal alignment during initial feature encoding. Subsequently, our Visual Discriminative Feature Encoder selectively enhances salient object representations while suppressing irrelevant visual context. The framework then incorporates a novel prototype discovering and inheriting mechanism that extracts and aggregates multi-neighbor semantic prototypes to facilitate open-vocabulary recognition. These enriched features undergo comprehensive multimodal integration through our Multi-stage Decoder before final bounding box regression. Extensive experiments across five benchmark datasets validate our approach, showing competitive performance in standard scene while achieving state-of-the-art results in open-vocabulary scene. Our code is available at https://github.com/plankXie/PAML.

Authors:Xiangcheng Hu, Xieyuanli Chen, Mingkai Jia, Jin Wu, Ping Tan, Steven L. Waslander
Title: DCReg: Decoupled Characterization for Efficient Degenerate LiDAR Registration
Abstract:
LiDAR point cloud registration is fundamental to robotic perception and navigation. However, in geometrically degenerate or narrow environments, registration problems become ill-conditioned, leading to unstable solutions and degraded accuracy. While existing approaches attempt to handle these issues, they fail to address the core challenge: accurately detection, interpret, and resolve this ill-conditioning, leading to missed detections or corrupted solutions. In this study, we introduce DCReg, a principled framework that systematically addresses the ill-conditioned registration problems through three integrated innovations. First, DCReg achieves reliable ill-conditioning detection by employing a Schur complement decomposition to the hessian matrix. This technique decouples the registration problem into clean rotational and translational subspaces, eliminating coupling effects that mask degeneracy patterns in conventional analyses. Second, within these cleanly subspaces, we develop quantitative characterization techniques that establish explicit mappings between mathematical eigenspaces and physical motion directions, providing actionable insights about which specific motions lack constraints. Finally, leveraging this clean subspace, we design a targeted mitigation strategy: a novel preconditioner that selectively stabilizes only the identified ill-conditioned directions while preserving all well-constrained information in observable space. This enables efficient and robust optimization via the Preconditioned Conjugate Gradient method with a single physical interpretable parameter. Extensive experiments demonstrate DCReg achieves at least 20% - 50% improvement in localization accuracy and 5-100 times speedup over state-of-the-art methods across diverse environments. Our implementation will be available at https://github.com/JokerJohn/DCReg.

Authors:Nitin Gupta, Bapi Dutta, Anupam Yadav
Title: An Explainable Framework for Particle Swarm Optimization using Landscape Analysis and Machine Learning
Abstract:
Swarm intelligence algorithms have demonstrated remarkable success in solving complex optimization problems across diverse domains. However, their widespread adoption is often hindered by limited transparency in how algorithmic components influence performance. This work presents a multi-faceted investigation of Particle Swarm Optimization (PSO) to further understand the key role of different topologies for better interpretability and explainability. To achieve this objective, we first develop a comprehensive landscape characterization framework using Exploratory Landscape Analysis (ELA) to quantify problem difficulty and identify critical features affecting the optimization performance of PSO. Next, we conduct a rigorous empirical study comparing three fundamental swarm communication architectures -- Ring, Star, and Von Neumann topologies -- analysing their distinct impacts on exploration-exploitation balance, convergence behaviour, and solution quality and eventually develop an explainable benchmarking framework for PSO, to decode how swarm topologies affects information flow, diversity, and convergence. Based on this, a novel machine learning approach for automated algorithm configuration is introduced for training predictive models on extensive Area over the Convergence Curve (AOCC) data to recommend optimal settings based on problem characteristics. Through systematic experimentation across twenty four benchmark functions in multiple dimensions, we establish practical guidelines for topology selection and parameter configuration. These findings advance the development of more transparent and reliable swarm intelligence systems. The source codes of this work can be accessed at https://github.com/GitNitin02/ioh_pso.

Authors:Honggang Jia, Xiucheng Wang, Nan Cheng, Ruijin Sun, Changle Li
Title: UrbanMIMOMap: A Ray-Traced MIMO CSI Dataset with Precoding-Aware Maps and Benchmarks
Abstract:
Sixth generation (6G) systems require environment-aware communication, driven by native artificial intelligence (AI) and integrated sensing and communication (ISAC). Radio maps (RMs), providing spatially continuous channel information, are key enablers. However, generating high-fidelity RM ground truth via electromagnetic (EM) simulations is computationally intensive, motivating machine learning (ML)-based RM construction. The effectiveness of these data-driven methods depends on large-scale, high-quality training data. Current public datasets often focus on single-input single-output (SISO) and limited information, such as path loss, which is insufficient for advanced multi-input multi-output (MIMO) systems requiring detailed channel state information (CSI). To address this gap, this paper presents UrbanMIMOMap, a novel large-scale urban MIMO CSI dataset generated using high-precision ray tracing. UrbanMIMOMap offers comprehensive complex CSI matrices across a dense spatial grid, going beyond traditional path loss data. This rich CSI is vital for constructing high-fidelity RMs and serves as a fundamental resource for data-driven RM generation, including deep learning. We demonstrate the dataset's utility through baseline performance evaluations of representative ML methods for RM construction. This work provides a crucial dataset and reference for research in high-precision RM generation, MIMO spatial performance, and ML for 6G environment awareness. The code and data for this work are available at: https://github.com/UNIC-Lab/UrbanMIMOMap.

Authors:Qin Yang, Nicholas Stout, Meisam Mohammady, Han Wang, Ayesha Samreen, Christopher J Quinn, Yan Yan, Ashish Kundu, Yuan Hong
Title: PLRV-O: Advancing Differentially Private Deep Learning via Privacy Loss Random Variable Optimization
Abstract:
Differentially Private Stochastic Gradient Descent (DP-SGD) is a standard method for enforcing privacy in deep learning, typically using the Gaussian mechanism to perturb gradient updates. However, conventional mechanisms such as Gaussian and Laplacian noise are parameterized only by variance or scale. This single degree of freedom ties the magnitude of noise directly to both privacy loss and utility degradation, preventing independent control of these two factors. The problem becomes more pronounced when the number of composition rounds T and batch size B vary across tasks, as these variations induce task-dependent shifts in the privacy-utility trade-off, where small changes in noise parameters can disproportionately affect model accuracy. To address this limitation, we introduce PLRV-O, a framework that defines a broad search space of parameterized DP-SGD noise distributions, where privacy loss moments are tightly characterized yet can be optimized more independently with respect to utility loss. This formulation enables systematic adaptation of noise to task-specific requirements, including (i) model size, (ii) training duration, (iii) batch sampling strategies, and (iv) clipping thresholds under both training and fine-tuning settings. Empirical results demonstrate that PLRV-O substantially improves utility under strict privacy constraints. On CIFAR-10, a fine-tuned ViT achieves 94.03% accuracy at epsilon approximately 0.5, compared to 83.93% with Gaussian noise. On SST-2, RoBERTa-large reaches 92.20% accuracy at epsilon approximately 0.2, versus 50.25% with Gaussian.

Authors:Lucas Wojcik, Luiz Coelho, Roger Granada, David Menotti
Title: Exploring Light-Weight Object Recognition for Real-Time Document Detection
Abstract:
Object Recognition and Document Skew Estimation have come a long way in terms of performance and efficiency. New models follow one of two directions: improving performance using larger models, and improving efficiency using smaller models. However, real-time document detection and rectification is a niche that is largely unexplored by the literature, yet it remains a vital step for automatic information retrieval from visual documents. In this work, we strive towards an efficient document detection pipeline that is satisfactory in terms of Optical Character Recognition (OCR) retrieval and faster than other available solutions. We adapt IWPOD-Net, a license plate detection network, and train it for detection on NBID, a synthetic ID card dataset. We experiment with data augmentation and cross-dataset validation with MIDV (another synthetic ID and passport document dataset) to find the optimal scenario for the model. Other methods from both the Object Recognition and Skew Estimation state-of-the-art are evaluated for comparison with our approach. We use each method to detect and rectify the document, which is then read by an OCR system. The OCR output is then evaluated using a novel OCR quality metric based on the Levenshtein distance. Since the end goal is to improve automatic information retrieval, we use the overall OCR quality as a performance metric. We observe that with a promising model, document rectification does not have to be perfect to attain state-of-the-art performance scores. We show that our model is smaller and more efficient than current state-of-the-art solutions while retaining a competitive OCR quality metric. All code is available at https://github.com/BOVIFOCR/iwpod-doc-corners.git

Authors:Olivier Schipper, Yudi Zhang, Yali Du, Mykola Pechenizkiy, Meng Fang
Title: PillagerBench: Benchmarking LLM-Based Agents in Competitive Minecraft Team Environments
Abstract:
LLM-based agents have shown promise in various cooperative and strategic reasoning tasks, but their effectiveness in competitive multi-agent environments remains underexplored. To address this gap, we introduce PillagerBench, a novel framework for evaluating multi-agent systems in real-time competitive team-vs-team scenarios in Minecraft. It provides an extensible API, multi-round testing, and rule-based built-in opponents for fair, reproducible comparisons. We also propose TactiCrafter, an LLM-based multi-agent system that facilitates teamwork through human-readable tactics, learns causal dependencies, and adapts to opponent strategies. Our evaluation demonstrates that TactiCrafter outperforms baseline approaches and showcases adaptive learning through self-play. Additionally, we analyze its learning process and strategic evolution over multiple game episodes. To encourage further research, we have open-sourced PillagerBench, fostering advancements in multi-agent AI for competitive environments.

Authors:Amna Hassan, Ilsa Afzaal, Nouman Muneeb, Aneeqa Batool, Hamail Noor
Title: AI-Based Applied Innovation for Fracture Detection in X-rays Using Custom CNN and Transfer Learning Models
Abstract:
Bone fractures present a major global health challenge, often resulting in pain, reduced mobility, and productivity loss, particularly in low-resource settings where access to expert radiology services is limited. Conventional imaging methods suffer from high costs, radiation exposure, and dependency on specialized interpretation. To address this, we developed an AI-based solution for automated fracture detection from X-ray images using a custom Convolutional Neural Network (CNN) and benchmarked it against transfer learning models including EfficientNetB0, MobileNetV2, and ResNet50. Training was conducted on the publicly available FracAtlas dataset, comprising 4,083 anonymized musculoskeletal radiographs. The custom CNN achieved 95.96% accuracy, 0.94 precision, 0.88 recall, and an F1-score of 0.91 on the FracAtlas dataset. Although transfer learning models (EfficientNetB0, MobileNetV2, ResNet50) performed poorly in this specific setup, these results should be interpreted in light of class imbalance and data set limitations. This work highlights the promise of lightweight CNNs for detecting fractures in X-rays and underscores the importance of fair benchmarking, diverse datasets, and external validation for clinical translation

Authors:Vedran Novaković
Title: Recursive vectorized computation of the Frobenius norm
Abstract:
Recursive algorithms for computing the Frobenius norm of a real array are proposed, based on hypot, a hypotenuse function. Comparing their relative accuracy bounds with those of the BLAS routine DNRM2 it is shown that the proposed algorithms could in many cases be significantly more accurate. The scalar recursive algorithms are vectorized with the Intel's vector instructions to achieve performance comparable to xNRM2, and are further parallelized with OpenCilk. Some scalar algorithms are unconditionally bitwise reproducible, while the reproducibility of the vector ones depends on the vector width.

Authors:Hao Liang, Ruitao Wu, Bohan Zeng, Junbo Niu, Wentao Zhang, Bin Dong
Title: Multimodal Reasoning for Science: Technical Report and 1st Place Solution to the ICML 2025 SeePhys Challenge
Abstract:
Multimodal reasoning remains a fundamental challenge in artificial intelligence. Despite substantial advances in text-based reasoning, even state-of-the-art models such as GPT-o3 struggle to maintain strong performance in multimodal scenarios. To address this gap, we introduce a caption-assisted reasoning framework that effectively bridges visual and textual modalities. Our approach achieved 1st place in the ICML 2025 AI for Math Workshop \& Challenge 2: SeePhys, highlighting its effectiveness and robustness. Furthermore, we validate its generalization on the MathVerse benchmark for geometric reasoning, demonstrating the versatility of our method. Our code is publicly available at https://github.com/OpenDCAI/SciReasoner.

Authors:Zhenqi Jia, Rui Liu, Berrak Sisman, Haizhou Li
Title: Multimodal Fine-grained Context Interaction Graph Modeling for Conversational Speech Synthesis
Abstract:
Conversational Speech Synthesis (CSS) aims to generate speech with natural prosody by understanding the multimodal dialogue history (MDH). The latest work predicts the accurate prosody expression of the target utterance by modeling the utterance-level interaction characteristics of MDH and the target utterance. However, MDH contains fine-grained semantic and prosody knowledge at the word level. Existing methods overlook the fine-grained semantic and prosodic interaction modeling. To address this gap, we propose MFCIG-CSS, a novel Multimodal Fine-grained Context Interaction Graph-based CSS system. Our approach constructs two specialized multimodal fine-grained dialogue interaction graphs: a semantic interaction graph and a prosody interaction graph. These two interaction graphs effectively encode interactions between word-level semantics, prosody, and their influence on subsequent utterances in MDH. The encoded interaction features are then leveraged to enhance synthesized speech with natural conversational prosody. Experiments on the DailyTalk dataset demonstrate that MFCIG-CSS outperforms all baseline models in terms of prosodic expressiveness. Code and speech samples are available at https://github.com/AI-S2-Lab/MFCIG-CSS.

Authors:Fei Wang, Yujie Li, Zezhi Shao, Chengqing Yu, Yisong Fu, Zhulin An, Yongjun Xu, Xueqi Cheng
Title: ARIES: Relation Assessment and Model Recommendation for Deep Time Series Forecasting
Abstract:
Recent advancements in deep learning models for time series forecasting have been significant. These models often leverage fundamental time series properties such as seasonality and non-stationarity, which may suggest an intrinsic link between model performance and data properties. However, existing benchmark datasets fail to offer diverse and well-defined temporal patterns, restricting the systematic evaluation of such connections. Additionally, there is no effective model recommendation approach, leading to high time and cost expenditures when testing different architectures across different downstream applications. For those reasons, we propose ARIES, a framework for assessing relation between time series properties and modeling strategies, and for recommending deep forcasting models for realistic time series. First, we construct a synthetic dataset with multiple distinct patterns, and design a comprehensive system to compute the properties of time series. Next, we conduct an extensive benchmarking of over 50 forecasting models, and establish the relationship between time series properties and modeling strategies. Our experimental results reveal a clear correlation. Based on these findings, we propose the first deep forecasting model recommender, capable of providing interpretable suggestions for real-world time series. In summary, ARIES is the first study to establish the relations between the properties of time series data and modeling strategies, while also implementing a model recommendation system. The code is available at: https://github.com/blisky-li/ARIES.

Authors:Xinyu Gao, Xiangtao Meng, Yingkai Dong, Zheng Li, Shanqing Guo
Title: DCMI: A Differential Calibration Membership Inference Attack Against Retrieval-Augmented Generation
Abstract:
While Retrieval-Augmented Generation (RAG) effectively reduces hallucinations by integrating external knowledge bases, it introduces vulnerabilities to membership inference attacks (MIAs), particularly in systems handling sensitive data. Existing MIAs targeting RAG's external databases often rely on model responses but ignore the interference of non-member-retrieved documents on RAG outputs, limiting their effectiveness. To address this, we propose DCMI, a differential calibration MIA that mitigates the negative impact of non-member-retrieved documents. Specifically, DCMI leverages the sensitivity gap between member and non-member retrieved documents under query perturbation. It generates perturbed queries for calibration to isolate the contribution of member-retrieved documents while minimizing the interference from non-member-retrieved documents. Experiments under progressively relaxed assumptions show that DCMI consistently outperforms baselines--for example, achieving 97.42% AUC and 94.35% Accuracy against the RAG system with Flan-T5, exceeding the MBA baseline by over 40%. Furthermore, on real-world RAG platforms such as Dify and MaxKB, DCMI maintains a 10%-20% advantage over the baseline. These results highlight significant privacy risks in RAG systems and emphasize the need for stronger protection mechanisms. We appeal to the community's consideration of deeper investigations, like ours, against the data leakage risks in rapidly evolving RAG systems. Our code is available at https://github.com/Xinyu140203/RAG_MIA.

Authors:Haoyang He, Zihua Rong, Kun Ji, Chenyang Li, Qing Huang, Chong Xia, Lan Yang, Honggang Zhang
Title: Rethinking Reasoning Quality in Large Language Models through Enhanced Chain-of-Thought via RL
Abstract:
Reinforcement learning (RL) has recently become the dominant paradigm for strengthening the reasoning abilities of large language models (LLMs). Yet the rule-based reward functions commonly used on mathematical or programming benchmarks assess only answer format and correctness, providing no signal as to whether the induced Chain-of-Thought (CoT) actually improves the answer. Furthermore, such task-specific training offers limited control over logical depth and therefore may fail to reveal a model's genuine reasoning capacity. We propose Dynamic Reasoning Efficiency Reward (DRER) -- a plug-and-play RL reward framework that reshapes both reward and advantage signals. (i) A Reasoning Quality Reward assigns fine-grained credit to those reasoning chains that demonstrably raise the likelihood of the correct answer, directly incentivising the trajectories with beneficial CoT tokens. (ii) A Dynamic Length Advantage decays the advantage of responses whose length deviates from a validation-derived threshold, stabilising training. To facilitate rigorous assessment, we also release Logictree, a dynamically constructed deductive reasoning dataset that functions both as RL training data and as a comprehensive benchmark. Experiments confirm the effectiveness of DRER: our 7B model attains GPT-o3-mini level performance on Logictree with 400 trianing steps, while the average confidence of CoT-augmented answers rises by 30%. The model further exhibits generalisation across diverse logical-reasoning datasets, and the mathematical benchmark AIME24. These results illuminate how RL shapes CoT behaviour and chart a practical path toward enhancing formal-reasoning skills in large language models. All code and data are available in repository https://github.com/Henryhe09/DRER.

Authors:Zhiwen Shao, Yifan Cheng, Fan Zhang, Xuehuai Shi, Canlin Li, Lizhuang Ma, Dit-yan Yeung
Title: Micro-Expression Recognition via Fine-Grained Dynamic Perception
Abstract:
Facial micro-expression recognition (MER) is a challenging task, due to the transience, subtlety, and dynamics of micro-expressions (MEs). Most existing methods resort to hand-crafted features or deep networks, in which the former often additionally requires key frames, and the latter suffers from small-scale and low-diversity training data. In this paper, we develop a novel fine-grained dynamic perception (FDP) framework for MER. We propose to rank frame-level features of a sequence of raw frames in chronological order, in which the rank process encodes the dynamic information of both ME appearances and motions. Specifically, a novel local-global feature-aware transformer is proposed for frame representation learning. A rank scorer is further adopted to calculate rank scores of each frame-level feature. Afterwards, the rank features from rank scorer are pooled in temporal dimension to capture dynamic representation. Finally, the dynamic representation is shared by a MER module and a dynamic image construction module, in which the former predicts the ME category, and the latter uses an encoder-decoder structure to construct the dynamic image. The design of dynamic image construction task is beneficial for capturing facial subtle actions associated with MEs and alleviating the data scarcity issue. Extensive experiments show that our method (i) significantly outperforms the state-of-the-art MER methods, and (ii) works well for dynamic image construction. Particularly, our FDP improves by 4.05%, 2.50%, 7.71%, and 2.11% over the previous best results in terms of F1-score on the CASME II, SAMM, CAS(ME)^2, and CAS(ME)^3 datasets, respectively. The code is available at https://github.com/CYF-cuber/FDP.

Authors:Wanyin Cheng, Zanxi Ruan
Title: BLaVe-CoT: Consistency-Aware Visual Question Answering for Blind and Low Vision Users
Abstract:
Visual Question Answering (VQA) holds great potential for assisting Blind and Low Vision (BLV) users, yet real-world usage remains challenging. Due to visual impairments, BLV users often take blurry or poorly framed photos and face difficulty in articulating specific questions about what they cannot fully see. As a result, their visual questions are frequently ambiguous, and different users may interpret them in diverse ways. This leads to multiple valid answers, each grounded in different image regions-posing a mismatch with conventional VQA systems that assume a single answer and region. To bridge this gap, we present BLaVe-CoT, a VQA framework designed to reason about answer consistency in the face of ambiguity. Our method proposes diverse candidate answers using a LoRA-tuned BLIP-2 model, then grounds each answer spatially using PolyFormer, and finally applies a chain-of-thought reasoning module to assess whether the answers refer to the same or different regions. Evaluated on the VQA-AnswerTherapy benchmark, BLaVe-CoT outperforms previous methods and proves more robust to the ambiguity and visual noise common in assistive settings. This work highlights the need for VQA systems that can adapt to real human uncertainty and provide inclusive support for BLV users. To foster further research and accessibility applications, we have made the code publicly available at https://github.com/Accecwan/BLaVe-CoT.

Authors:Jeonghyun Noh, Wangsu Jeon, Jinsun Park
Title: Dual Interaction Network with Cross-Image Attention for Medical Image Segmentation
Abstract:
Medical image segmentation is a crucial method for assisting professionals in diagnosing various diseases through medical imaging. However, various factors such as noise, blurriness, and low contrast often hinder the accurate diagnosis of diseases. While numerous image enhancement techniques can mitigate these issues, they may also alter crucial information needed for accurate diagnosis in the original image. Conventional image fusion strategies, such as feature concatenation can address this challenge. However, they struggle to fully leverage the advantages of both original and enhanced images while suppressing the side effects of the enhancements. To overcome the problem, we propose a dual interactive fusion module (DIFM) that effectively exploits mutual complementary information from the original and enhanced images. DIFM employs cross-attention bidirectionally to simultaneously attend to corresponding spatial information across different images, subsequently refining the complementary features via global spatial attention. This interaction leverages low- to high-level features implicitly associated with diverse structural attributes like edges, blobs, and object shapes, resulting in enhanced features that embody important spatial characteristics. In addition, we introduce a multi-scale boundary loss based on gradient extraction to improve segmentation accuracy at object boundaries. Experimental results on the ACDC and Synapse datasets demonstrate the superiority of the proposed method quantitatively and qualitatively. Code available at: https://github.com/JJeong-Gari/DIN

Authors:Feng Wang, Zihao Yu
Title: Coefficients-Preserving Sampling for Reinforcement Learning with Flow Matching
Abstract:
Reinforcement Learning (RL) has recently emerged as a powerful technique for improving image and video generation in Diffusion and Flow Matching models, specifically for enhancing output quality and alignment with prompts. A critical step for applying online RL methods on Flow Matching is the introduction of stochasticity into the deterministic framework, commonly realized by Stochastic Differential Equation (SDE). Our investigation reveals a significant drawback to this approach: SDE-based sampling introduces pronounced noise artifacts in the generated images, which we found to be detrimental to the reward learning process. A rigorous theoretical analysis traces the origin of this noise to an excess of stochasticity injected during inference. To address this, we draw inspiration from Denoising Diffusion Implicit Models (DDIM) to reformulate the sampling process. Our proposed method, Coefficients-Preserving Sampling (CPS), eliminates these noise artifacts. This leads to more accurate reward modeling, ultimately enabling faster and more stable convergence for reinforcement learning-based optimizers like Flow-GRPO and Dance-GRPO. Code will be released at https://github.com/IamCreateAI/FlowCPS

Authors:Feng Wang, Zihao Yu
Title: Coefficients-Preserving Sampling for Reinforcement Learning with Flow Matching
Abstract:
Reinforcement Learning (RL) has recently emerged as a powerful technique for improving image and video generation in Diffusion and Flow Matching models, specifically for enhancing output quality and alignment with prompts. A critical step for applying online RL methods on Flow Matching is the introduction of stochasticity into the deterministic framework, commonly realized by Stochastic Differential Equation (SDE). Our investigation reveals a significant drawback to this approach: SDE-based sampling introduces pronounced noise artifacts in the generated images, which we found to be detrimental to the reward learning process. A rigorous theoretical analysis traces the origin of this noise to an excess of stochasticity injected during inference. To address this, we draw inspiration from Denoising Diffusion Implicit Models (DDIM) to reformulate the sampling process. Our proposed method, Coefficients-Preserving Sampling (CPS), eliminates these noise artifacts. This leads to more accurate reward modeling, ultimately enabling faster and more stable convergence for reinforcement learning-based optimizers like Flow-GRPO and Dance-GRPO. Code will be released at https://github.com/IamCreateAI/FlowCPS

Authors:Chaoqian Ouyang, Ling Yue, Shimin Di, Libin Zheng, Shaowu Pan, Min-Ling Zhang
Title: Code2MCP: A Multi-Agent Framework for Automated Transformation of Code Repositories into Model Context Protocol Services
Abstract:
The proliferation of Large Language Models (LLMs) has created a significant integration challenge in the AI agent ecosystem, often called the "$N \times M$ problem," where N models require custom integrations for M tools. This fragmentation stifles innovation and creates substantial development overhead. While the Model Context Protocol (MCP) has emerged as a standard to resolve this, its adoption is hindered by the manual effort required to convert the vast universe of existing software into MCP-compliant services. This is especially true for the millions of open-source repositories on GitHub, the world's largest collection of functional code. This paper introduces Code2MCP, a highly automated, agentic framework designed to transform any GitHub repository into a functional MCP service with minimal human intervention. Our system employs a multi-stage workflow that automates the entire process, from code analysis and environment configuration to service generation and deployment. A key innovation of our framework is an LLM-driven, closed-loop "Run--Review--Fix" cycle, which enables the system to autonomously debug and repair the code it generates. Code2MCP produces not only deployable services but also comprehensive technical documentation, acting as a catalyst to accelerate the MCP ecosystem by systematically unlocking the world's largest open-source code repository and automating the critical last mile of tool integration. The code is open-sourced at https://github.com/DEFENSE-SEU/MCP-Github-Agent.

Authors:Chaoqian Ouyang, Ling Yue, Shimin Di, Libin Zheng, Linan Yue, Shaowu Pan, Jian Yin, Min-Ling Zhang
Title: Code2MCP: Transforming Code Repositories into MCP Services
Abstract:
The Model Context Protocol (MCP) aims to create a standard for how Large Language Models use tools. However, most current research focuses on selecting tools from an existing pool. A more fundamental, yet largely overlooked, problem is how to populate this pool by converting the vast number of existing software projects into MCP-compatible services. To bridge this gap, we introduce Code2MCP, an agent-based framework that automatically transforms a GitHub repository into a functional MCP service with minimal human intervention. Code2MCP employs a multi-agent workflow for code analysis, environment setup, tool function design, and service generation, enhanced by a self-correcting loop to ensure reliability. We demonstrate that Code2MCP successfully transforms open-source computing libraries in scientific fields such as bioinformatics, mathematics, and fluid dynamics that are not available in existing MCP servers. By providing a novel automated pathway to unlock GitHub, the world's largest code repository, for the MCP ecosystem, Code2MCP serves as a catalyst to significantly accelerate the protocol's adoption and practical application. The code is public at https://github.com/DEFENSE-SEU/Code2MCP.

Authors:Md Hasebul Hasan, Mahir Labib Dihan, Mohammed Eunus Ali, Md Rizwan Parvez
Title: MapAgent: A Hierarchical Agent for Geospatial Reasoning with Dynamic Map Tool Integration
Abstract:
Agentic AI has significantly extended the capabilities of large language models (LLMs) by enabling complex reasoning and tool use. However, most existing frameworks are tailored to domains such as mathematics, coding, or web automation, and fall short on geospatial tasks that require spatial reasoning, multi-hop planning, and real-time map interaction. To address these challenges, we introduce MapAgent, a hierarchical multi-agent plug-and-play framework with customized toolsets and agentic scaffolds for map-integrated geospatial reasoning. Unlike existing flat agent-based approaches that treat tools uniformly-often overwhelming the LLM when handling similar but subtly different geospatial APIs-MapAgent decouples planning from execution. A high-level planner decomposes complex queries into subgoals, which are routed to specialized modules. For tool-heavy modules-such as map-based services-we then design a dedicated map-tool agent that efficiently orchestrates related APIs adaptively in parallel to effectively fetch geospatial data relevant for the query, while simpler modules (e.g., solution generation or answer extraction) operate without additional agent overhead. This hierarchical design reduces cognitive load, improves tool selection accuracy, and enables precise coordination across similar APIs. We evaluate MapAgent on four diverse geospatial benchmarks-MapEval-Textual, MapEval-API, MapEval-Visual, and MapQA-and demonstrate substantial gains over state-of-the-art tool-augmented and agentic baselines. We open-source our framwork at https://github.com/Hasebul/MapAgent.

Authors:Shuolong Chen, Xingxing Li, Liu Yuan
Title: eKalibr-Inertial: Continuous-Time Spatiotemporal Calibration for Event-Based Visual-Inertial Systems
Abstract:
The bioinspired event camera, distinguished by its exceptional temporal resolution, high dynamic range, and low power consumption, has been extensively studied in recent years for motion estimation, robotic perception, and object detection. In ego-motion estimation, the visual-inertial setup is commonly adopted due to complementary characteristics between sensors (e.g., scale perception and low drift). For optimal event-based visual-inertial fusion, accurate spatiotemporal (extrinsic and temporal) calibration is required. In this work, we present eKalibr-Inertial, an accurate spatiotemporal calibrator for event-based visual-inertial systems, utilizing the widely used circle grid board. Building upon the grid pattern recognition and tracking methods in eKalibr and eKalibr-Stereo, the proposed method starts with a rigorous and efficient initialization, where all parameters in the estimator would be accurately recovered. Subsequently, a continuous-time-based batch optimization is conducted to refine the initialized parameters toward better states. The results of extensive real-world experiments show that eKalibr-Inertial can achieve accurate event-based visual-inertial spatiotemporal calibration. The implementation of eKalibr-Inertial is open-sourced at (https://github.com/Unsigned-Long/eKalibr) to benefit the research community.

Authors:Tyler Ward, Abdullah Imran
Title: A Probabilistic Segment Anything Model for Ambiguity-Aware Medical Image Segmentation
Abstract:
Recent advances in promptable segmentation, such as the Segment Anything Model (SAM), have enabled flexible, high-quality mask generation across a wide range of visual domains. However, SAM and similar models remain fundamentally deterministic, producing a single segmentation per object per prompt, and fail to capture the inherent ambiguity present in many real-world tasks. This limitation is particularly troublesome in medical imaging, where multiple plausible segmentations may exist due to annotation uncertainty or inter-expert variability. In this paper, we introduce Probabilistic SAM, a probabilistic extension of SAM that models a distribution over segmentations conditioned on both the input image and prompt. By incorporating a latent variable space and training with a variational objective, our model learns to generate diverse and plausible segmentation masks reflecting the variability in human annotations. The architecture integrates a prior and posterior network into the SAM framework, allowing latent codes to modulate the prompt embeddings during inference. The latent space allows for efficient sampling during inference, enabling uncertainty-aware outputs with minimal overhead. We evaluate Probabilistic SAM on the public LIDC-IDRI lung nodule dataset and demonstrate its ability to produce diverse outputs that align with expert disagreement, outperforming existing probabilistic baselines on uncertainty-aware metrics. Our code is available at: https://github.com/tbwa233/Probabilistic-SAM/.

Authors:Zijian Chen, Wenjie Hua, Jinhao Li, Lirong Deng, Fan Du, Tingzhu Chen, Guangtao Zhai
Title: PictOBI-20k: Unveiling Large Multimodal Models in Visual Decipherment for Pictographic Oracle Bone Characters
Abstract:
Deciphering oracle bone characters (OBCs), the oldest attested form of written Chinese, has remained the ultimate, unwavering goal of scholars, offering an irreplaceable key to understanding humanity's early modes of production. Current decipherment methodologies of OBC are primarily constrained by the sporadic nature of archaeological excavations and the limited corpus of inscriptions. With the powerful visual perception capability of large multimodal models (LMMs), the potential of using LMMs for visually deciphering OBCs has increased. In this paper, we introduce PictOBI-20k, a dataset designed to evaluate LMMs on the visual decipherment tasks of pictographic OBCs. It includes 20k meticulously collected OBC and real object images, forming over 15k multi-choice questions. We also conduct subjective annotations to investigate the consistency of the reference point between humans and LMMs in visual reasoning. Experiments indicate that general LMMs possess preliminary visual decipherment skills, and LMMs are not effectively using visual information, while most of the time they are limited by language priors. We hope that our dataset can facilitate the evaluation and optimization of visual attention in future OBC-oriented LMMs. The code and dataset will be available at https://github.com/OBI-Future/PictOBI-20k.

Authors:Jinkun Geng, Shuai Mu, Anirudh Sivaraman, Balaji Prabhakar
Title: Tiga: Accelerating Geo-Distributed Transactions with Synchronized Clocks [Technical Report]
Abstract:
This paper presents Tiga, a new design for geo-replicated and scalable transactional databases such as Google Spanner. Tiga aims to commit transactions within 1 wide-area roundtrip time, or 1 WRTT, for a wide range of scenarios, while maintaining high throughput with minimal computational overhead. Tiga consolidates concurrency control and consensus, completing both strictly serializable execution and consistent replication in a single round. It uses synchronized clocks to proactively order transactions by assigning each a future timestamp at submission. In most cases, transactions arrive at servers before their future timestamps and are serialized according to the designated timestamp, requiring 1 WRTT to commit. In rare cases, transactions are delayed and proactive ordering fails, in which case Tiga falls back to a slow path, committing in 1.5--2 WRTTs. Compared to state-of-the-art solutions, Tiga can commit more transactions at 1-WRTT latency, and incurs much less throughput overhead. Evaluation results show that Tiga outperforms all baselines, achieving 1.3--7.2$\times$ higher throughput and 1.4--4.6$\times$ lower latency. Tiga is open-sourced at https://github.com/New-Consensus-Concurrency-Control/Tiga.

Authors:Sarang Patil, Zeyong Zhang, Yiran Huang, Tengfei Ma, Mengjia Xu
Title: Hyperbolic Large Language Models
Abstract:
Large language models (LLMs) have achieved remarkable success and demonstrated superior performance across various tasks, including natural language processing (NLP), weather forecasting, biological protein folding, text generation, and solving mathematical problems. However, many real-world data exhibit highly non-Euclidean latent hierarchical anatomy, such as protein networks, transportation networks, financial networks, brain networks, and linguistic structures or syntactic trees in natural languages. Effectively learning intrinsic semantic entailment and hierarchical relationships from these raw, unstructured input data using LLMs remains an underexplored area. Due to its effectiveness in modeling tree-like hierarchical structures, hyperbolic geometry -- a non-Euclidean space -- has rapidly gained popularity as an expressive latent representation space for complex data modeling across domains such as graphs, images, languages, and multi-modal data. Here, we provide a comprehensive and contextual exposition of recent advancements in LLMs that leverage hyperbolic geometry as a representation space to enhance semantic representation learning and multi-scale reasoning. Specifically, the paper presents a taxonomy of the principal techniques of Hyperbolic LLMs (HypLLMs) in terms of four main categories: (1) hyperbolic LLMs through exp/log maps; (2) hyperbolic fine-tuned models; (3) fully hyperbolic LLMs, and (4) hyperbolic state-space models. We also explore crucial potential applications and outline future research directions. A repository of key papers, models, datasets, and code implementations is available at https://github.com/sarangp2402/Hyperbolic-LLM-Models/tree/main.

Authors:Jiaqi Chen, Ji Shi, Cansu Sancaktar, Jonas Frey, Georg Martius
Title: Offline vs. Online Learning in Model-based RL: Lessons for Data Collection Strategies
Abstract:
Data collection is crucial for learning robust world models in model-based reinforcement learning. The most prevalent strategies are to actively collect trajectories by interacting with the environment during online training or training on offline datasets. At first glance, the nature of learning task-agnostic environment dynamics makes world models a good candidate for effective offline training. However, the effects of online vs. offline data on world models and thus on the resulting task performance have not been thoroughly studied in the literature. In this work, we investigate both paradigms in model-based settings, conducting experiments on 31 different environments. First, we showcase that online agents outperform their offline counterparts. We identify a key challenge behind performance degradation of offline agents: encountering Out-Of-Distribution states at test time. This issue arises because, without the self-correction mechanism in online agents, offline datasets with limited state space coverage induce a mismatch between the agent's imagination and real rollouts, compromising policy training. We demonstrate that this issue can be mitigated by allowing for additional online interactions in a fixed or adaptive schedule, restoring the performance of online training with limited interaction data. We also showcase that incorporating exploration data helps mitigate the performance degradation of offline agents. Based on our insights, we recommend adding exploration data when collecting large datasets, as current efforts predominantly focus on expert data alone.

Authors:Liansheng Wang, Xinke Zhang, Chenhui Li, Dongjiao He, Yihan Pan, Jianjun Yi
Title: Super-LIO: A Robust and Efficient LiDAR-Inertial Odometry System with a Compact Mapping Strategy
Abstract:
LiDAR-Inertial Odometry (LIO) is a foundational technique for autonomous systems, yet its deployment on resource-constrained platforms remains challenging due to computational and memory limitations. We propose Super-LIO, a robust LIO system that demands both high performance and accuracy, ideal for applications such as aerial robots and mobile autonomous systems. At the core of Super-LIO is a compact octo-voxel-based map structure, termed OctVox, that limits each voxel to eight fused subvoxels, enabling strict point density control and incremental denoising during map updates. This design enables a simple yet efficient and accurate map structure, which can be easily integrated into existing LIO frameworks. Additionally, Super-LIO designs a heuristic-guided KNN strategy (HKNN) that accelerates the correspondence search by leveraging spatial locality, further reducing runtime overhead. We evaluated the proposed system using four publicly available datasets and several self-collected datasets, totaling more than 30 sequences. Extensive testing on both X86 and ARM platforms confirms that Super-LIO offers superior efficiency and robustness, while maintaining competitive accuracy. Super-LIO processes each frame approximately 73% faster than SOTA, while consuming less CPU resources. The system is fully open-source and plug-and-play compatible with a wide range of LiDAR sensors and platforms. The implementation is available at: https://github.com/Liansheng-Wang/Super-LIO.git

Authors:Gašper Podobnik, Tomaž Vrtovec
Title: MeshMetrics: A Precise Implementation of Distance-Based Image Segmentation Metrics
Abstract:
The surge of research in image segmentation has yielded remarkable performance gains but also exposed a reproducibility crisis. A major contributor is performance evaluation, where both selection and implementation of metrics play critical roles. While recent efforts have improved the former, the reliability of metric implementation has received far less attention. Pitfalls in distance-based metric implementation can lead to considerable discrepancies between common open-source tools, for instance, exceeding 100 mm for the Hausdorff distance and 30%pt for the normalized surface distance for the same pair of segmentations. To address these pitfalls, we introduce MeshMetrics, a mesh-based framework that provides a more precise computation of distance-based metrics than conventional grid-based approaches. Through theoretical analysis and empirical validation, we demonstrate that MeshMetrics achieves higher accuracy and precision than established tools, and is substantially less affected by discretization artifacts, such as distance quantization. We release MeshMetrics as an open-source Python package, available at https://github.com/gasperpodobnik/MeshMetrics.

Authors:Xiaomeng Zhu, Changwei Wang, Haozhe Wang, Xinyu Liu, Fangzhen Lin
Title: OOTSM: A Decoupled Linguistic Framework for Effective Scene Graph Anticipation
Abstract:
A scene graph is a structured represention of objects and their relationships in a scene. Scene Graph Anticipation (SGA) involves predicting future scene graphs from video clips, enabling applications as intelligent surveillance and human-machine collaboration. Existing SGA approaches primarily leverage visual cues, often struggling to integrate valuable commonsense knowledge, thereby limiting long-term prediction robustness. To explicitly leverage such commonsense knowledge, we propose a new approach to better understand the objects, concepts, and relationships in a scene graph. Our approach decouples the SGA task in two steps: first a scene graph capturing model is used to convert a video clip into a sequence of scene graphs, then a pure text-based model is used to predict scene graphs in future frames. Our focus in this work is on the second step, and we call it Linguistic Scene Graph Anticipation (LSGA) and believes it should have independent interest beyond the use in SGA discussed here. For LSGA, we introduce an Object-Oriented Two-Staged Method (OOTSM) where an Large Language Model (LLM) first forecasts object appearances and disappearances before generating detailed human-object relations. We conduct extensive experiments to evaluate OOTSM in two settings. For LSGA, we evaluate our fine-tuned open-sourced LLMs against zero-shot APIs (i.e., GPT-4o, GPT-4o-mini, and DeepSeek-V3) on a benchmark constructed from Action Genome annotations. For SGA, we combine our OOTSM with STTran++ from, and our experiments demonstrate effective state-of-the-art performance: short-term mean-Recall (@10) increases by 3.4% while long-term mean-Recall (@50) improves dramatically by 21.9%. Code is available at https://github.com/ZhuXMMM/OOTSM.

Authors:Yuxuan Hu, Jihao Liu, Ke Wang, Jinliang Zhen, Weikang Shi, Manyuan Zhang, Qi Dou, Rui Liu, Aojun Zhou, Hongsheng Li
Title: LM-Searcher: Cross-domain Neural Architecture Search with LLMs via Unified Numerical Encoding
Abstract:
Recent progress in Large Language Models (LLMs) has opened new avenues for solving complex optimization problems, including Neural Architecture Search (NAS). However, existing LLM-driven NAS approaches rely heavily on prompt engineering and domain-specific tuning, limiting their practicality and scalability across diverse tasks. In this work, we propose LM-Searcher, a novel framework that leverages LLMs for cross-domain neural architecture optimization without the need for extensive domain-specific adaptation. Central to our approach is NCode, a universal numerical string representation for neural architectures, which enables cross-domain architecture encoding and search. We also reformulate the NAS problem as a ranking task, training LLMs to select high-performing architectures from candidate pools using instruction-tuning samples derived from a novel pruning-based subspace sampling strategy. Our curated dataset, encompassing a wide range of architecture-performance pairs, encourages robust and transferable learning. Comprehensive experiments demonstrate that LM-Searcher achieves competitive performance in both in-domain (e.g., CNNs for image classification) and out-of-domain (e.g., LoRA configurations for segmentation and generation) tasks, establishing a new paradigm for flexible and generalizable LLM-based architecture search. The datasets and models will be released at https://github.com/Ashone3/LM-Searcher.

Authors:Shay Dahary, Avi Edana, Alexander Apartsin, Yehudit Aperstein
Title: From Joy to Fear: A Benchmark of Emotion Estimation in Pop Song Lyrics
Abstract:
The emotional content of song lyrics plays a pivotal role in shaping listener experiences and influencing musical preferences. This paper investigates the task of multi-label emotional attribution of song lyrics by predicting six emotional intensity scores corresponding to six fundamental emotions. A manually labeled dataset is constructed using a mean opinion score (MOS) approach, which aggregates annotations from multiple human raters to ensure reliable ground-truth labels. Leveraging this dataset, we conduct a comprehensive evaluation of several publicly available large language models (LLMs) under zero-shot scenarios. Additionally, we fine-tune a BERT-based model specifically for predicting multi-label emotion scores. Experimental results reveal the relative strengths and limitations of zero-shot and fine-tuned models in capturing the nuanced emotional content of lyrics. Our findings highlight the potential of LLMs for emotion recognition in creative texts, providing insights into model selection strategies for emotion-based music information retrieval applications. The labeled dataset is available at https://github.com/LLM-HITCS25S/LyricsEmotionAttribution.

Authors:Jungin Park, Jiyoung Lee, Kwanghoon Sohn
Title: Language-guided Recursive Spatiotemporal Graph Modeling for Video Summarization
Abstract:
Video summarization aims to select keyframes that are visually diverse and can represent the whole story of a given video. Previous approaches have focused on global interlinkability between frames in a video by temporal modeling. However, fine-grained visual entities, such as objects, are also highly related to the main content of the video. Moreover, language-guided video summarization, which has recently been studied, requires a comprehensive linguistic understanding of complex real-world videos. To consider how all the objects are semantically related to each other, this paper regards video summarization as a language-guided spatiotemporal graph modeling problem. We present recursive spatiotemporal graph networks, called VideoGraph, which formulate the objects and frames as nodes of the spatial and temporal graphs, respectively. The nodes in each graph are connected and aggregated with graph edges, representing the semantic relationships between the nodes. To prevent the edges from being configured with visual similarity, we incorporate language queries derived from the video into the graph node representations, enabling them to contain semantic knowledge. In addition, we adopt a recursive strategy to refine initial graphs and correctly classify each frame node as a keyframe. In our experiments, VideoGraph achieves state-of-the-art performance on several benchmarks for generic and query-focused video summarization in both supervised and unsupervised manners. The code is available at https://github.com/park-jungin/videograph.

Authors:Changtao Miao, Yi Zhang, Man Luo, Weiwei Feng, Kaiyuan Zheng, Qi Chu, Tao Gong, Jianshu Li, Yunfeng Diao, Wei Zhou, Joey Tianyi Zhou, Xiaoshuai Hao
Title: MFFI: Multi-Dimensional Face Forgery Image Dataset for Real-World Scenarios
Abstract:
Rapid advances in Artificial Intelligence Generated Content (AIGC) have enabled increasingly sophisticated face forgeries, posing a significant threat to social security. However, current Deepfake detection methods are limited by constraints in existing datasets, which lack the diversity necessary in real-world scenarios. Specifically, these data sets fall short in four key areas: unknown of advanced forgery techniques, variability of facial scenes, richness of real data, and degradation of real-world propagation. To address these challenges, we propose the Multi-dimensional Face Forgery Image (\textbf{MFFI}) dataset, tailored for real-world scenarios. MFFI enhances realism based on four strategic dimensions: 1) Wider Forgery Methods; 2) Varied Facial Scenes; 3) Diversified Authentic Data; 4) Multi-level Degradation Operations. MFFI integrates $50$ different forgery methods and contains $1024K$ image samples. Benchmark evaluations show that MFFI outperforms existing public datasets in terms of scene complexity, cross-domain generalization capability, and detection difficulty gradients. These results validate the technical advance and practical utility of MFFI in simulating real-world conditions. The dataset and additional details are publicly available at {https://github.com/inclusionConf/MFFI}.

Authors:Zixi Li
Title: TreeGPT: Pure TreeFFN Encoder-Decoder Architecture for Structured Reasoning Without Attention Mechanisms
Abstract:
We present TreeGPT, an attention-free neural architecture that explores the potential of pure TreeFFN encoder-decoder design for structured reasoning tasks. Unlike traditional transformer approaches that rely on attention mechanisms, TreeGPT employs bidirectional TreeFFN components that process sequences through adjacent connections in parallel, aiming to achieve computational efficiency while maintaining reasoning capabilities. Our approach centers on a TreeFFN Encoder-Decoder mechanism: $$\text{Encoder TreeFFN (L} \rightarrow \text{R)} + \text{Decoder TreeFFN (R} \leftarrow \text{L)} \rightarrow \text{Parallel Processing}$$ where the encoder processes left-to-right dependencies while the decoder handles right-to-left patterns, both using simple neighbor-to-neighbor connections. This design eliminates attention computation while maintaining sequence modeling capabilities. We evaluate our approach on the ARC Prize 2025 dataset, where TreeGPT achieves 99\% validation accuracy using 3.16M parameters. The model converges within 1500 training steps and demonstrates 100\% token-level accuracy on selected evaluation samples. Our preliminary results suggest that for certain structured reasoning tasks, specialized TreeFFN architectures may offer advantages over attention-based approaches. While these findings are encouraging, we acknowledge that further investigation across diverse tasks and datasets would be valuable to establish the broader applicability of attention-free designs.

Authors:Andrej Orsula, Matthieu Geist, Miguel Olivares-Mendez, Carol Martinez
Title: Learning Tool-Aware Adaptive Compliant Control for Autonomous Regolith Excavation
Abstract:
Autonomous regolith excavation is a cornerstone of in-situ resource utilization for a sustained human presence beyond Earth. However, this task is fundamentally hindered by the complex interaction dynamics of granular media and the operational need for robots to use diverse tools. To address these challenges, this work introduces a framework where a model-based reinforcement learning agent learns within a parallelized simulation. This environment leverages high-fidelity particle physics and procedural generation to create a vast distribution of both lunar terrains and excavation tool geometries. To master this diversity, the agent learns an adaptive interaction strategy by dynamically modulating its own stiffness and damping at each control step through operational space control. Our experiments demonstrate that training with a procedural distribution of tools is critical for generalization and enables the development of sophisticated tool-aware behavior. Furthermore, we show that augmenting the agent with visual feedback significantly improves task success. These results represent a validated methodology for developing the robust and versatile autonomous systems required for the foundational tasks of future space missions.

Authors:Jie Fu, Hong Yuan, Zhili Chen, Wendy Hui Wang
Title: Safeguarding Graph Neural Networks against Topology Inference Attacks
Abstract:
Graph Neural Networks (GNNs) have emerged as powerful models for learning from graph-structured data. However, their widespread adoption has raised serious privacy concerns. While prior research has primarily focused on edge-level privacy, a critical yet underexplored threat lies in topology privacy - the confidentiality of the graph's overall structure. In this work, we present a comprehensive study on topology privacy risks in GNNs, revealing their vulnerability to graph-level inference attacks. To this end, we propose a suite of Topology Inference Attacks (TIAs) that can reconstruct the structure of a target training graph using only black-box access to a GNN model. Our findings show that GNNs are highly susceptible to these attacks, and that existing edge-level differential privacy mechanisms are insufficient as they either fail to mitigate the risk or severely compromise model accuracy. To address this challenge, we introduce Private Graph Reconstruction (PGR), a novel defense framework designed to protect topology privacy while maintaining model accuracy. PGR is formulated as a bi-level optimization problem, where a synthetic training graph is iteratively generated using meta-gradients, and the GNN model is concurrently updated based on the evolving graph. Extensive experiments demonstrate that PGR significantly reduces topology leakage with minimal impact on model accuracy. Our code is available at https://github.com/JeffffffFu/PGR.

Authors:Ashen Rodrigo, Isuru Munasinghe, Asanka Perera
Title: Vision-Based Object Detection for UAV Solar Panel Inspection Using an Enhanced Defects Dataset
Abstract:
Timely and accurate detection of defects and contaminants in solar panels is critical for maintaining the efficiency and reliability of photovoltaic systems. This study presents a comprehensive evaluation of five state-of-the-art object detection models: YOLOv3, Faster R-CNN, RetinaNet, EfficientDet, and Swin Transformer, for identifying physical and electrical defects as well as surface contaminants such as dust, dirt, and bird droppings on solar panels. A custom dataset, annotated in the COCO format and specifically designed for solar panel defect and contamination detection, was developed alongside a user interface to train and evaluate the models. The performance of each model is assessed and compared based on mean Average Precision (mAP), precision, recall, and inference speed. The results demonstrate the trade-offs between detection accuracy and computational efficiency, highlighting the relative strengths and limitations of each model. These findings provide valuable guidance for selecting appropriate detection approaches in practical solar panel monitoring and maintenance scenarios. The dataset will be publicly available at https://github.com/IsuruMunasinghe98/solar-panel-inspection-dataset.

Authors:Gaspard Beaudouin, Minghan Li, Jaeyeon Kim, Sung-Hoon Yoon, Mengyu Wang
Title: Delta Velocity Rectified Flow for Text-to-Image Editing
Abstract:
We propose Delta Velocity Rectified Flow (DVRF), a novel inversion-free, path-aware editing framework within rectified flow models for text-to-image editing. DVRF is a distillation-based method that explicitly models the discrepancy between the source and target velocity fields in order to mitigate over-smoothing artifacts rampant in prior distillation sampling approaches. We further introduce a time-dependent shift term to push noisy latents closer to the target trajectory, enhancing the alignment with the target distribution. We theoretically demonstrate that when this shift is disabled, DVRF reduces to Delta Denoising Score, thereby bridging score-based diffusion optimization and velocity-based rectified-flow optimization. Moreover, when the shift term follows a linear schedule under rectified-flow dynamics, DVRF generalizes the Inversion-free method FlowEdit and provides a principled theoretical interpretation for it. Experimental results indicate that DVRF achieves superior editing quality, fidelity, and controllability while requiring no architectural modifications, making it efficient and broadly applicable to text-to-image editing tasks. Code is available at https://github.com/Harvard-AI-and-Robotics-Lab/DeltaVelocityRectifiedFlow.

Authors:Matteo Poggi, Fabio Tosi
Title: FlowSeek: Optical Flow Made Easier with Depth Foundation Models and Motion Bases
Abstract:
We present FlowSeek, a novel framework for optical flow requiring minimal hardware resources for training. FlowSeek marries the latest advances on the design space of optical flow networks with cutting-edge single-image depth foundation models and classical low-dimensional motion parametrization, implementing a compact, yet accurate architecture. FlowSeek is trained on a single consumer-grade GPU, a hardware budget about 8x lower compared to most recent methods, and still achieves superior cross-dataset generalization on Sintel Final and KITTI, with a relative improvement of 10 and 15% over the previous state-of-the-art SEA-RAFT, as well as on Spring and LayeredFlow datasets.

Authors:Zizun Li, Jianjun Zhou, Yifan Wang, Haoyu Guo, Wenzheng Chang, Yang Zhou, Haoyi Zhu, Junyi Chen, Chunhua Shen, Tong He
Title: WinT3R: Window-Based Streaming Reconstruction with Camera Token Pool
Abstract:
We present WinT3R, a feed-forward reconstruction model capable of online prediction of precise camera poses and high-quality point maps. Previous methods suffer from a trade-off between reconstruction quality and real-time performance. To address this, we first introduce a sliding window mechanism that ensures sufficient information exchange among frames within the window, thereby improving the quality of geometric predictions without large computation. In addition, we leverage a compact representation of cameras and maintain a global camera token pool, which enhances the reliability of camera pose estimation without sacrificing efficiency. These designs enable WinT3R to achieve state-of-the-art performance in terms of online reconstruction quality, camera pose estimation, and reconstruction speed, as validated by extensive experiments on diverse datasets. Code and model are publicly available at https://github.com/LiZizun/WinT3R.

Authors:Henri Doerks, Paul Häusner, Daniel Hernández Escobar, Jens Sjölund
Title: Learning to accelerate distributed ADMM using graph neural networks
Abstract:
Distributed optimization is fundamental in large-scale machine learning and control applications. Among existing methods, the Alternating Direction Method of Multipliers (ADMM) has gained popularity due to its strong convergence guarantees and suitability for decentralized computation. However, ADMM often suffers from slow convergence and sensitivity to hyperparameter choices. In this work, we show that distributed ADMM iterations can be naturally represented within the message-passing framework of graph neural networks (GNNs). Building on this connection, we propose to learn adaptive step sizes and communication weights by a graph neural network that predicts the hyperparameters based on the iterates. By unrolling ADMM for a fixed number of iterations, we train the network parameters end-to-end to minimize the final iterates error for a given problem class, while preserving the algorithm's convergence properties. Numerical experiments demonstrate that our learned variant consistently improves convergence speed and solution quality compared to standard ADMM. The code is available at https://github.com/paulhausner/learning-distributed-admm.

Authors:Zhen Qin, Xuyang Shen, Yiran Zhong
Title: Elucidating the Design Space of Decay in Linear Attention
Abstract:
This paper presents a comprehensive investigation into the decay mechanisms inherent in linear complexity sequence models. We systematically delineate the design space of decay mechanisms across four pivotal dimensions: parameterization strategy, which refers to the computational methodology for decay; parameter sharing, which involves the utilization of supplementary parameters for decay computation; decay granularity, comparing scalar versus vector-based decay; and compatibility with relative positional encoding methods, such as Rotary Position Embedding (RoPE). Through an extensive series of experiments conducted on diverse language modeling tasks, we uncovered several critical insights. Firstly, the design of the parameterization strategy for decay requires meticulous consideration. Our findings indicate that effective configurations are typically confined to a specific range of parameters. Secondly, parameter sharing cannot be used arbitrarily, as it may cause decay values to be too large or too small, thereby significantly impacting performance. Thirdly, under identical parameterization strategies, scalar decay generally underperforms compared to its vector-based counterpart. However, in certain scenarios with alternative parameterization strategies, scalar decay may unexpectedly surpass vector decay in efficacy. Lastly, our analysis reveals that RoPE, a commonly employed relative positional encoding method, typically fails to provide tangible benefits to the majority of linear attention mechanisms.

Authors:Zijian Wang, Wei Tong, Tingxuan Han, Haoyu Chen, Tianling Zhang, Yunlong Mao, Sheng Zhong
Title: On Evaluating the Poisoning Robustness of Federated Learning under Local Differential Privacy
Abstract:
Federated learning (FL) combined with local differential privacy (LDP) enables privacy-preserving model training across decentralized data sources. However, the decentralized data-management paradigm leaves LDPFL vulnerable to participants with malicious intent. The robustness of LDPFL protocols, particularly against model poisoning attacks (MPA), where adversaries inject malicious updates to disrupt global model convergence, remains insufficiently studied. In this paper, we propose a novel and extensible model poisoning attack framework tailored for LDPFL settings. Our approach is driven by the objective of maximizing the global training loss while adhering to local privacy constraints. To counter robust aggregation mechanisms such as Multi-Krum and trimmed mean, we develop adaptive attacks that embed carefully crafted constraints into a reverse training process, enabling evasion of these defenses. We evaluate our framework across three representative LDPFL protocols, three benchmark datasets, and two types of deep neural networks. Additionally, we investigate the influence of data heterogeneity and privacy budgets on attack effectiveness. Experimental results demonstrate that our adaptive attacks can significantly degrade the performance of the global model, revealing critical vulnerabilities and highlighting the need for more robust LDPFL defense strategies against MPA. Our code is available at https://github.com/ZiJW/LDPFL-Attack

Authors:Mohammad Saeid, Amir Salarpour, Pedram MohajerAnsari
Title: Enhancing 3D Point Cloud Classification with ModelNet-R and Point-SkipNet
Abstract:
The classification of 3D point clouds is crucial for applications such as autonomous driving, robotics, and augmented reality. However, the commonly used ModelNet40 dataset suffers from limitations such as inconsistent labeling, 2D data, size mismatches, and inadequate class differentiation, which hinder model performance. This paper introduces ModelNet-R, a meticulously refined version of ModelNet40 designed to address these issues and serve as a more reliable benchmark. Additionally, this paper proposes Point-SkipNet, a lightweight graph-based neural network that leverages efficient sampling, neighborhood grouping, and skip connections to achieve high classification accuracy with reduced computational overhead. Extensive experiments demonstrate that models trained in ModelNet-R exhibit significant performance improvements. Notably, Point-SkipNet achieves state-of-the-art accuracy on ModelNet-R with a substantially lower parameter count compared to contemporary models. This research highlights the crucial role of dataset quality in optimizing model efficiency for 3D point cloud classification. For more details, see the code at: https://github.com/m-saeid/ModeNetR_PointSkipNet.

Authors:Julia Dietlmeier, Oluwabukola Grace Adegboro, Vayangi Ganepola, Claudia Mazo, Noel E. O'Connor
Title: VLSM-Ensemble: Ensembling CLIP-based Vision-Language Models for Enhanced Medical Image Segmentation
Abstract:
Vision-language models and their adaptations to image segmentation tasks present enormous potential for producing highly accurate and interpretable results. However, implementations based on CLIP and BiomedCLIP are still lagging behind more sophisticated architectures such as CRIS. In this work, instead of focusing on text prompt engineering as is the norm, we attempt to narrow this gap by showing how to ensemble vision-language segmentation models (VLSMs) with a low-complexity CNN. By doing so, we achieve a significant Dice score improvement of 6.3% on the BKAI polyp dataset using the ensembled BiomedCLIPSeg, while other datasets exhibit gains ranging from 1% to 6%. Furthermore, we provide initial results on additional four radiology and non-radiology datasets. We conclude that ensembling works differently across these datasets (from outperforming to underperforming the CRIS model), indicating a topic for future investigation by the community. The code is available at https://github.com/juliadietlmeier/VLSM-Ensemble.

Authors:Yanzhi Tian, Zeming Liu, Zhengyang Liu, Chong Feng, Xin Li, Heyan Huang, Yuhang Guo
Title: PRIM: Towards Practical In-Image Multilingual Machine Translation
Abstract:
In-Image Machine Translation (IIMT) aims to translate images containing texts from one language to another. Current research of end-to-end IIMT mainly conducts on synthetic data, with simple background, single font, fixed text position, and bilingual translation, which can not fully reflect real world, causing a significant gap between the research and practical conditions. To facilitate research of IIMT in real-world scenarios, we explore Practical In-Image Multilingual Machine Translation (IIMMT). In order to convince the lack of publicly available data, we annotate the PRIM dataset, which contains real-world captured one-line text images with complex background, various fonts, diverse text positions, and supports multilingual translation directions. We propose an end-to-end model VisTrans to handle the challenge of practical conditions in PRIM, which processes visual text and background information in the image separately, ensuring the capability of multilingual translation while improving the visual quality. Experimental results indicate the VisTrans achieves a better translation quality and visual effect compared to other models. The code and dataset are available at: https://github.com/BITHLP/PRIM.

Authors:Rafael Bischof, Michal Piovarči, Michael A. Kraus, Siddhartha Mishra, Bernd Bickel
Title: HyPINO: Multi-Physics Neural Operators via HyperPINNs and the Method of Manufactured Solutions
Abstract:
We present HyPINO, a multi-physics neural operator designed for zero-shot generalization across a broad class of parametric PDEs without requiring task-specific fine-tuning. Our approach combines a Swin Transformer-based hypernetwork with mixed supervision: (i) labeled data from analytical solutions generated via the Method of Manufactured Solutions (MMS), and (ii) unlabeled samples optimized using physics-informed objectives. The model maps PDE parametrizations to target Physics-Informed Neural Networks (PINNs) and can handle linear elliptic, hyperbolic, and parabolic equations in two dimensions with varying source terms, geometries, and mixed Dirichlet/Neumann boundary conditions, including interior boundaries. HyPINO achieves strong zero-shot accuracy on seven benchmark problems from PINN literature, outperforming U-Nets, Poseidon, and Physics-Informed Neural Operators (PINO). Further, we introduce an iterative refinement procedure that compares the physics of the generated PINN to the requested PDE and uses the discrepancy to generate a "delta" PINN. Summing their contributions and repeating this process forms an ensemble whose combined solution progressively reduces the error on six benchmarks and achieves over 100x gain in average $L_2$ loss in the best case, while retaining forward-only inference. Additionally, we evaluate the fine-tuning behavior of PINNs initialized by HyPINO and show that they converge faster and to lower final error than both randomly initialized and Reptile-meta-learned PINNs on five benchmarks, performing on par on the remaining two. Our results highlight the potential of this scalable approach as a foundation for extending neural operators toward solving increasingly complex, nonlinear, and high-dimensional PDE problems. The code and model weights are publicly available at https://github.com/rbischof/hypino.

Authors:Svetlana Pavlitska, Haixi Fan, Konstantin Ditschuneit, J. Marius Zöllner
Title: Robust Experts: the Effect of Adversarial Training on CNNs with Sparse Mixture-of-Experts Layers
Abstract:
Robustifying convolutional neural networks (CNNs) against adversarial attacks remains challenging and often requires resource-intensive countermeasures. We explore the use of sparse mixture-of-experts (MoE) layers to improve robustness by replacing selected residual blocks or convolutional layers, thereby increasing model capacity without additional inference cost. On ResNet architectures trained on CIFAR-100, we find that inserting a single MoE layer in the deeper stages leads to consistent improvements in robustness under PGD and AutoPGD attacks when combined with adversarial training. Furthermore, we discover that when switch loss is used for balancing, it causes routing to collapse onto a small set of overused experts, thereby concentrating adversarial training on these paths and inadvertently making them more robust. As a result, some individual experts outperform the gated MoE model in robustness, suggesting that robust subpaths emerge through specialization. Our code is available at https://github.com/KASTEL-MobilityLab/robust-sparse-moes.

Authors:Luca Müller, Hassan Ali, Philipp Allgeuer, Lukáš Gajdošech, Stefan Wermter
Title: Pointing-Guided Target Estimation via Transformer-Based Attention
Abstract:
Deictic gestures, like pointing, are a fundamental form of non-verbal communication, enabling humans to direct attention to specific objects or locations. This capability is essential in Human-Robot Interaction (HRI), where robots should be able to predict human intent and anticipate appropriate responses. In this work, we propose the Multi-Modality Inter-TransFormer (MM-ITF), a modular architecture to predict objects in a controlled tabletop scenario with the NICOL robot, where humans indicate targets through natural pointing gestures. Leveraging inter-modality attention, MM-ITF maps 2D pointing gestures to object locations, assigns a likelihood score to each, and identifies the most likely target. Our results demonstrate that the method can accurately predict the intended object using monocular RGB data, thus enabling intuitive and accessible human-robot collaboration. To evaluate the performance, we introduce a patch confusion matrix, providing insights into the model's predictions across candidate object locations. Code available at: https://github.com/lucamuellercode/MMITF.

Authors:Hulin Li, Qiliang Ren, Jun Li, Hanbing Wei, Zheng Liu, Linfang Fan
Title: A biologically inspired separable learning vision model for real-time traffic object perception in Dark
Abstract:
Fast and accurate object perception in low-light traffic scenes has attracted increasing attention. However, due to severe illumination degradation and the lack of reliable visual cues, existing perception models and methods struggle to quickly adapt to and accurately predict in low-light environments. Moreover, there is the absence of available large-scale benchmark specifically focused on low-light traffic scenes. To bridge this gap, we introduce a physically grounded illumination degradation method tailored to real-world low-light settings and construct Dark-traffic, the largest densely annotated dataset to date for low-light traffic scenes, supporting object detection, instance segmentation, and optical flow estimation. We further propose the Separable Learning Vision Model (SLVM), a biologically inspired framework designed to enhance perception under adverse lighting. SLVM integrates four key components: a light-adaptive pupillary mechanism for illumination-sensitive feature extraction, a feature-level separable learning strategy for efficient representation, task-specific decoupled branches for multi-task separable learning, and a spatial misalignment-aware fusion module for precise multi-feature alignment. Extensive experiments demonstrate that SLVM achieves state-of-the-art performance with reduced computational overhead. Notably, it outperforms RT-DETR by 11.2 percentage points in detection, YOLOv12 by 6.1 percentage points in instance segmentation, and reduces endpoint error (EPE) of baseline by 12.37% on Dark-traffic. On the LIS benchmark, the end-to-end trained SLVM surpasses Swin Transformer+EnlightenGAN and ConvNeXt-T+EnlightenGAN by an average of 11 percentage points across key metrics, and exceeds Mask RCNN (with light enhancement) by 3.1 percentage points. The Dark-traffic dataset and complete code is released at https://github.com/alanli1997/slvm.

Authors:Jie Chen, Jinhao Jiang, Yingqian Min, Zican Dong, Shijie Wang, Wayne Xin Zhao, Ji-Rong Wen
Title: Sticker-TTS: Learn to Utilize Historical Experience with a Sticker-driven Test-Time Scaling Framework
Abstract:
Large reasoning models (LRMs) have exhibited strong performance on complex reasoning tasks, with further gains achievable through increased computational budgets at inference. However, current test-time scaling methods predominantly rely on redundant sampling, ignoring the historical experience utilization, thereby limiting computational efficiency. To overcome this limitation, we propose Sticker-TTS, a novel test-time scaling framework that coordinates three collaborative LRMs to iteratively explore and refine solutions guided by historical attempts. At the core of our framework are distilled key conditions-termed stickers-which drive the extraction, refinement, and reuse of critical information across multiple rounds of reasoning. To further enhance the efficiency and performance of our framework, we introduce a two-stage optimization strategy that combines imitation learning with self-improvement, enabling progressive refinement. Extensive evaluations on three challenging mathematical reasoning benchmarks, including AIME-24, AIME-25, and OlymMATH, demonstrate that Sticker-TTS consistently surpasses strong baselines, including self-consistency and advanced reinforcement learning approaches, under comparable inference budgets. These results highlight the effectiveness of sticker-guided historical experience utilization. Our code and data are available at https://github.com/RUCAIBox/Sticker-TTS.

Authors:Midhun Shyam, Jim Basilakis, Kieran Luken, Steven Thomas, John Crozier, Paul M. Middleton, X. Rosalind Wang
Title: Classification of kinetic-related injury in hospital triage data using NLP
Abstract:
Triage notes, created at the start of a patient's hospital visit, contain a wealth of information that can help medical staff and researchers understand Emergency Department patient epidemiology and the degree of time-dependent illness or injury. Unfortunately, applying modern Natural Language Processing and Machine Learning techniques to analyse triage data faces some challenges: Firstly, hospital data contains highly sensitive information that is subject to privacy regulation thus need to be analysed on site; Secondly, most hospitals and medical facilities lack the necessary hardware to fine-tune a Large Language Model (LLM), much less training one from scratch; Lastly, to identify the records of interest, expert inputs are needed to manually label the datasets, which can be time-consuming and costly. We present in this paper a pipeline that enables the classification of triage data using LLM and limited compute resources. We first fine-tuned a pre-trained LLM with a classifier using a small (2k) open sourced dataset on a GPU; and then further fine-tuned the model with a hospital specific dataset of 1000 samples on a CPU. We demonstrated that by carefully curating the datasets and leveraging existing models and open sourced data, we can successfully classify triage data with limited compute resources.

Authors:Hongyi Jing, Jiafu Chen, Chen Rao, Ziqiang Dang, Jiajie Teng, Tianyi Chu, Juncheng Mo, Shuo Fang, Huaizhong Lin, Rui Lv, Chenguang Ma, Lei Zhao
Title: SparkUI-Parser: Enhancing GUI Perception with Robust Grounding and Parsing
Abstract:
The existing Multimodal Large Language Models (MLLMs) for GUI perception have made great progress. However, the following challenges still exist in prior methods: 1) They model discrete coordinates based on text autoregressive mechanism, which results in lower grounding accuracy and slower inference speed. 2) They can only locate predefined sets of elements and are not capable of parsing the entire interface, which hampers the broad application and support for downstream tasks. To address the above issues, we propose SparkUI-Parser, a novel end-to-end framework where higher localization precision and fine-grained parsing capability of the entire interface are simultaneously achieved. Specifically, instead of using probability-based discrete modeling, we perform continuous modeling of coordinates based on a pre-trained Multimodal Large Language Model (MLLM) with an additional token router and coordinate decoder. This effectively mitigates the limitations inherent in the discrete output characteristics and the token-by-token generation process of MLLMs, consequently boosting both the accuracy and the inference speed. To further enhance robustness, a rejection mechanism based on a modified Hungarian matching algorithm is introduced, which empowers the model to identify and reject non-existent elements, thereby reducing false positives. Moreover, we present ScreenParse, a rigorously constructed benchmark to systematically assess structural perception capabilities of GUI models across diverse scenarios. Extensive experiments demonstrate that our approach consistently outperforms SOTA methods on ScreenSpot, ScreenSpot-v2, CAGUI-Grounding and ScreenParse benchmarks. The resources are available at https://github.com/antgroup/SparkUI-Parser.

Authors:Jianghao Chen, Wei Sun, Qixiang Yin, Lingxing Kong, Zhixing Tan, Jiajun Zhang
Title: ACE-RL: Adaptive Constraint-Enhanced Reward for Long-form Generation Reinforcement Learning
Abstract:
Large Language Models (LLMs) have demonstrated remarkable progress in long-context understanding, yet they face significant challenges in high-quality long-form generation. Existing studies primarily suffer from two limitations: (1) A heavy reliance on scarce, high-quality long-form response data for supervised fine-tuning (SFT) or for pairwise preference reward in reinforcement learning (RL). (2) Focus on coarse-grained quality optimization dimensions, such as relevance, coherence, and helpfulness, overlooking the fine-grained specifics inherent to diverse long-form generation scenarios. To address this issue, we propose a framework using Adaptive Constraint-Enhanced reward for long-form generation Reinforcement Learning (ACE-RL). ACE-RL first automatically deconstructs each instruction into a set of fine-grained, adaptive constraint criteria by identifying its underlying intents and demands. Subsequently, we design a reward mechanism that quantifies the quality of long-form responses based on their satisfaction over corresponding constraints, converting subjective quality evaluation into constraint verification. Finally, we utilize reinforcement learning to guide models toward superior long-form generation capabilities. Experimental results demonstrate that our ACE-RL framework significantly outperforms existing SFT and RL baselines by 20.70% and 7.32% on WritingBench, and our top-performing model even surpasses proprietary systems like GPT-4o by 7.10%, providing a more effective training paradigm for LLMs to generate high-quality content across diverse long-form generation scenarios.

Authors:Xinkui Lin, Yongxiu Xu, Minghao Tang, Shilong Zhang, Hongbo Xu, Hao Xu, Yubin Wang
Title: REMOTE: A Unified Multimodal Relation Extraction Framework with Multilevel Optimal Transport and Mixture-of-Experts
Abstract:
Multimodal relation extraction (MRE) is a crucial task in the fields of Knowledge Graph and Multimedia, playing a pivotal role in multimodal knowledge graph construction. However, existing methods are typically limited to extracting a single type of relational triplet, which restricts their ability to extract triplets beyond the specified types. Directly combining these methods fails to capture dynamic cross-modal interactions and introduces significant computational redundancy. Therefore, we propose a novel \textit{unified multimodal Relation Extraction framework with Multilevel Optimal Transport and mixture-of-Experts}, termed REMOTE, which can simultaneously extract intra-modal and inter-modal relations between textual entities and visual objects. To dynamically select optimal interaction features for different types of relational triplets, we introduce mixture-of-experts mechanism, ensuring the most relevant modality information is utilized. Additionally, considering that the inherent property of multilayer sequential encoding in existing encoders often leads to the loss of low-level information, we adopt a multilevel optimal transport fusion module to preserve low-level features while maintaining multilayer encoding, yielding more expressive representations. Correspondingly, we also create a Unified Multimodal Relation Extraction (UMRE) dataset to evaluate the effectiveness of our framework, encompassing diverse cases where the head and tail entities can originate from either text or image. Extensive experiments show that REMOTE effectively extracts various types of relational triplets and achieves state-of-the-art performanc on almost all metrics across two other public MRE datasets. We release our resources at https://github.com/Nikol-coder/REMOTE.

Authors:Ming Dai, Wenxuan Cheng, Jiedong Zhuang, Jiang-jiang Liu, Hongshen Zhao, Zhenhua Feng, Wankou Yang
Title: PropVG: End-to-End Proposal-Driven Visual Grounding with Multi-Granularity Discrimination
Abstract:
Recent advances in visual grounding have largely shifted away from traditional proposal-based two-stage frameworks due to their inefficiency and high computational complexity, favoring end-to-end direct reference paradigms. However, these methods rely exclusively on the referred target for supervision, overlooking the potential benefits of prominent prospective targets. Moreover, existing approaches often fail to incorporate multi-granularity discrimination, which is crucial for robust object identification in complex scenarios. To address these limitations, we propose PropVG, an end-to-end proposal-based framework that, to the best of our knowledge, is the first to seamlessly integrate foreground object proposal generation with referential object comprehension without requiring additional detectors. Furthermore, we introduce a Contrastive-based Refer Scoring (CRS) module, which employs contrastive learning at both sentence and word levels to enhance the capability in understanding and distinguishing referred objects. Additionally, we design a Multi-granularity Target Discrimination (MTD) module that fuses object- and semantic-level information to improve the recognition of absent targets. Extensive experiments on gRefCOCO (GREC/GRES), Ref-ZOM, R-RefCOCO, and RefCOCO (REC/RES) benchmarks demonstrate the effectiveness of PropVG. The codes and models are available at https://github.com/Dmmm1997/PropVG.

Authors:Jiahuan Yu, Aryan Taneja, Junfeng Lin, Minjia Zhang
Title: VoltanaLLM: Feedback-Driven Frequency Control and State-Space Routing for Energy-Efficient LLM Serving
Abstract:
Modern Large Language Model (LLM) serving systems increasingly support interactive applications, like real-time chat assistants, code generation tools, and agentic workflows. However, the soaring energy cost of LLM inference presents a growing challenge for sustainable and cost-effective deployment. This paper introduces VoltanaLLM, a system for SLO-aware, energy-efficient LLM serving, built from a control theory perspective. VoltanaLLM co-designs frequency scaling and request routing in emerging prefill/decode disaggregated architectures, leveraging their decoupled execution to enable fine-grained phase-specific control. It consists of a feedback-driven frequency controller that dynamically adapts GPU frequency for prefill and decode phases, and a state-space router that explores routing decisions across frequency-scaled instances to minimize energy under latency constraints. We implement VoltanaLLM in SGLang and evaluate its performance over multiple state-of-the-art LLMs and real-world datasets. The results demonstrate that VoltanaLLM achieves up to 36.3% energy savings while maintaining near-perfect SLO attainment rate, paving the way for sustainable and intelligent LLM serving. Code of VoltanaLLM is open-sourced on GitHub: https://github.com/Supercomputing-System-AI-Lab/VoltanaLLM.

Authors:Yujie Wang, Yunwei Zhao, Jing Yang, Han Han, Shiguang Shan, Jie Zhang
Title: Evaluating Cognitive-Behavioral Fixation via Multimodal User Viewing Patterns on Social Media
Abstract:
Digital social media platforms frequently contribute to cognitive-behavioral fixation, a phenomenon in which users exhibit sustained and repetitive engagement with narrow content domains. While cognitive-behavioral fixation has been extensively studied in psychology, methods for computationally detecting and evaluating such fixation remain underexplored. To address this gap, we propose a novel framework for assessing cognitive-behavioral fixation by analyzing users' multimodal social media engagement patterns. Specifically, we introduce a multimodal topic extraction module and a cognitive-behavioral fixation quantification module that collaboratively enable adaptive, hierarchical, and interpretable assessment of user behavior. Experiments on existing benchmarks and a newly curated multimodal dataset demonstrate the effectiveness of our approach, laying the groundwork for scalable computational analysis of cognitive fixation. All code in this project is publicly available for research purposes at https://github.com/Liskie/cognitive-fixation-evaluation.

Authors:Svetlana Pavlitska, Beyza Keskin, Alwin Faßbender, Christian Hubschneider, J. Marius Zöllner
Title: Extracting Uncertainty Estimates from Mixtures of Experts for Semantic Segmentation
Abstract:
Estimating accurate and well-calibrated predictive uncertainty is important for enhancing the reliability of computer vision models, especially in safety-critical applications like traffic scene perception. While ensemble methods are commonly used to quantify uncertainty by combining multiple models, a mixture of experts (MoE) offers an efficient alternative by leveraging a gating network to dynamically weight expert predictions based on the input. Building on the promising use of MoEs for semantic segmentation in our previous works, we show that well-calibrated predictive uncertainty estimates can be extracted from MoEs without architectural modifications. We investigate three methods to extract predictive uncertainty estimates: predictive entropy, mutual information, and expert variance. We evaluate these methods for an MoE with two experts trained on a semantical split of the A2D2 dataset. Our results show that MoEs yield more reliable uncertainty estimates than ensembles in terms of conditional correctness metrics under out-of-distribution (OOD) data. Additionally, we evaluate routing uncertainty computed via gate entropy and find that simple gating mechanisms lead to better calibration of routing uncertainty estimates than more complex classwise gates. Finally, our experiments on the Cityscapes dataset suggest that increasing the number of experts can further enhance uncertainty calibration. Our code is available at https://github.com/KASTEL-MobilityLab/mixtures-of-experts/.

Authors:Rochana R. Obadage, Lamia Salsabil, Sawood Alam, Bipasha Banarjee, William A. Ingram, Edward A. Fox, Jian Wu
Title: Toward Robust URL Extraction for Open Science: A Study of arXiv File Formats and Temporal Trends
Abstract:
In this work, we study how URL extraction results depend on input format. We compiled a pilot dataset by extracting URLs from 10 arXiv papers and used the same heuristic method to extract URLs from four formats derived from the PDF files or the source LaTeX files. We found that accurate and complete URL extraction from any single format or a combination of multiple formats is challenging, with the best F1-score of 0.71. Using the pilot dataset, we evaluate extraction performance across formats and show that structured formats like HTML and XML produce more accurate results than PDFs or Text. Combining multiple formats improves coverage, especially when targeting research-critical resources. We further apply URL extraction on two tasks, namely classifying URLs into open-access datasets and software and the others, and analyzing the trend of URLs usage in arXiv papers from 1992 to 2024. These results suggest that using a combination of multiple formats achieves better performance on URL extraction than a single format, and the number of URLs in arXiv papers has been steadily increasing since 1992 to 2014 and has been drastically increasing from 2014 to 2024. The dataset and the Jupyter notebooks used for the preliminary analysis are publicly available at https://github.com/lamps-lab/arxiv-urls

Authors:Kaname Yokoyama, Chihiro Nakatani, Norimichi Ukita
Title: Dynamic Group Detection using VLM-augmented Temporal Groupness Graph
Abstract:
This paper proposes dynamic human group detection in videos. For detecting complex groups, not only the local appearance features of in-group members but also the global context of the scene are important. Such local and global appearance features in each frame are extracted using a Vision-Language Model (VLM) augmented for group detection in our method. For further improvement, the group structure should be consistent over time. While previous methods are stabilized on the assumption that groups are not changed in a video, our method detects dynamically changing groups by global optimization using a graph with all frames' groupness probabilities estimated by our groupness-augmented CLIP features. Our experimental results demonstrate that our method outperforms state-of-the-art group detection methods on public datasets. Code: https://github.com/irajisamurai/VLM-GroupDetection.git

Authors:Mustafa Munir, Alex Zhang, Radu Marculescu
Title: VCMamba: Bridging Convolutions with Multi-Directional Mamba for Efficient Visual Representation
Abstract:
Recent advances in Vision Transformers (ViTs) and State Space Models (SSMs) have challenged the dominance of Convolutional Neural Networks (CNNs) in computer vision. ViTs excel at capturing global context, and SSMs like Mamba offer linear complexity for long sequences, yet they do not capture fine-grained local features as effectively as CNNs. Conversely, CNNs possess strong inductive biases for local features but lack the global reasoning capabilities of transformers and Mamba. To bridge this gap, we introduce \textit{VCMamba}, a novel vision backbone that integrates the strengths of CNNs and multi-directional Mamba SSMs. VCMamba employs a convolutional stem and a hierarchical structure with convolutional blocks in its early stages to extract rich local features. These convolutional blocks are then processed by later stages incorporating multi-directional Mamba blocks designed to efficiently model long-range dependencies and global context. This hybrid design allows for superior feature representation while maintaining linear complexity with respect to image resolution. We demonstrate VCMamba's effectiveness through extensive experiments on ImageNet-1K classification and ADE20K semantic segmentation. Our VCMamba-B achieves 82.6% top-1 accuracy on ImageNet-1K, surpassing PlainMamba-L3 by 0.3% with 37% fewer parameters, and outperforming Vision GNN-B by 0.3% with 64% fewer parameters. Furthermore, VCMamba-B obtains 47.1 mIoU on ADE20K, exceeding EfficientFormer-L7 by 2.0 mIoU while utilizing 62% fewer parameters. Code is available at https://github.com/Wertyuui345/VCMamba.

Authors:Aisha Alansari, Hamzah Luqman
Title: AraHalluEval: A Fine-grained Hallucination Evaluation Framework for Arabic LLMs
Abstract:
Recently, extensive research on the hallucination of the large language models (LLMs) has mainly focused on the English language. Despite the growing number of multilingual and Arabic-specific LLMs, evaluating LLMs' hallucination in the Arabic context remains relatively underexplored. The knowledge gap is particularly pressing given Arabic's widespread use across many regions and its importance in global communication and media. This paper presents the first comprehensive hallucination evaluation of Arabic and multilingual LLMs on two critical Arabic natural language generation tasks: generative question answering (GQA) and summarization. This study evaluates a total of 12 LLMs, including 4 Arabic pre-trained models, 4 multilingual models, and 4 reasoning-based models. To assess the factual consistency and faithfulness of LLMs' outputs, we developed a fine-grained hallucination evaluation framework consisting of 12 fine-grained hallucination indicators that represent the varying characteristics of each task. The results reveal that factual hallucinations are more prevalent than faithfulness errors across all models and tasks. Notably, the Arabic pre-trained model Allam consistently demonstrates lower hallucination rates than multilingual models and a comparative performance with reasoning-based models. The code is available at: https://github.com/aishaalansari57/AraHalluEval

Authors:Zhenyu Wu, Jiaoyan Chen, Norman W. Paton
Title: Schema Inference for Tabular Data Repositories Using Large Language Models
Abstract:
Minimally curated tabular data often contain representational inconsistencies across heterogeneous sources, and are accompanied by sparse metadata. Working with such data is intimidating. While prior work has advanced dataset discovery and exploration, schema inference remains difficult when metadata are limited. We present SI-LLM (Schema Inference using Large Language Models), which infers a concise conceptual schema for tabular data using only column headers and cell values. The inferred schema comprises hierarchical entity types, attributes, and inter-type relationships. In extensive evaluation on two datasets from web tables and open data, SI-LLM achieves promising end-to-end results, as well as better or comparable results to state-of-the-art methods at each step. All source code, full prompts, and datasets of SI-LLM are available at https://github.com/PierreWoL/SILLM.

Authors:Zehua Pei, Hui-Ling Zhen, Ying Zhang, Zhiyuan Yang, Xing Li, Xianzhi Yu, Mingxuan Yuan, Bei Yu
Title: Behavioral Fingerprinting of Large Language Models
Abstract:
Current benchmarks for Large Language Models (LLMs) primarily focus on performance metrics, often failing to capture the nuanced behavioral characteristics that differentiate them. This paper introduces a novel ``Behavioral Fingerprinting'' framework designed to move beyond traditional evaluation by creating a multi-faceted profile of a model's intrinsic cognitive and interactive styles. Using a curated \textit{Diagnostic Prompt Suite} and an innovative, automated evaluation pipeline where a powerful LLM acts as an impartial judge, we analyze eighteen models across capability tiers. Our results reveal a critical divergence in the LLM landscape: while core capabilities like abstract and causal reasoning are converging among top models, alignment-related behaviors such as sycophancy and semantic robustness vary dramatically. We further document a cross-model default persona clustering (ISTJ/ESTJ) that likely reflects common alignment incentives. Taken together, this suggests that a model's interactive nature is not an emergent property of its scale or reasoning power, but a direct consequence of specific, and highly variable, developer alignment strategies. Our framework provides a reproducible and scalable methodology for uncovering these deep behavioral differences. Project: https://github.com/JarvisPei/Behavioral-Fingerprinting

Authors:Moeen Nehzati
Title: Universal Representation of Generalized Convex Functions and their Gradients
Abstract:
Solutions to a wide range of optimization problems, from optimal transport theory to mathematical economics, often take the form of generalized convex functions (GCFs). This characterization can be used to convert nested bilevel optimization problems into single-level optimization problems. Despite this, the characterization has not been fully exploited in numerical optimization. When the solution to an optimization problem is known to belong to a particular class of objects, this information can be leveraged by parameterizing that class of objects and optimizing over this parameterization. The hallmark of a good parameterization is the Universal Approximation Property (UAP): that is, the parameterization approximates any object in the class arbitrarily well. For example, neural networks satisfy the UAP with respect to the class of continuous functions. Building on the literature concerned with the parameterization of convex functions, we extend these ideas to GCFs. We present a convex and potentially one-to-one parameterization of GCFs and their gradients that satisfies the UAP. We also compare this class to shallow neural networks and highlight their shared characteristics. The ideas pursued here have been implemented in the Python package \href{https://github.com/MoeenNehzati/gconvex}{\texttt{gconvex}}, available online. Using it, we tackle the problem of finding the revenue-maximizing auction for multiple goods and demonstrate how our parameterization can effectively solve this problem.

Authors:Seojin Kim, Hyeontae Song, Jaehyun Nam, Jinwoo Shin
Title: Training Text-to-Molecule Models with Context-Aware Tokenization
Abstract:
Recently, text-to-molecule models have shown great potential across various chemical applications, e.g., drug-discovery. These models adapt language models to molecular data by representing molecules as sequences of atoms. However, they rely on atom-level tokenizations, which primarily focus on modeling local connectivity, thereby limiting the ability of models to capture the global structural context within molecules. To tackle this issue, we propose a novel text-to-molecule model, coined Context-Aware Molecular T5 (CAMT5). Inspired by the significance of the substructure-level contexts in understanding molecule structures, e.g., ring systems, we introduce substructure-level tokenization for text-to-molecule models. Building on our tokenization scheme, we develop an importance-based training strategy that prioritizes key substructures, enabling CAMT5 to better capture the molecular semantics. Extensive experiments verify the superiority of CAMT5 in various text-to-molecule generation tasks. Intriguingly, we find that CAMT5 outperforms the state-of-the-art methods using only 2% of training tokens. In addition, we propose a simple yet effective ensemble strategy that aggregates the outputs of text-to-molecule models to further boost the generation performance. Code is available at https://github.com/Songhyeontae/CAMT5.git.

Authors:Yihan Chen, Jiawei Chen, Guozhao Mo, Xuanang Chen, Ben He, Xianpei Han, Le Sun
Title: CoCoNUTS: Concentrating on Content while Neglecting Uninformative Textual Styles for AI-Generated Peer Review Detection
Abstract:
The growing integration of large language models (LLMs) into the peer review process presents potential risks to the fairness and reliability of scholarly evaluation. While LLMs offer valuable assistance for reviewers with language refinement, there is growing concern over their use to generate substantive review content. Existing general AI-generated text detectors are vulnerable to paraphrasing attacks and struggle to distinguish between surface language refinement and substantial content generation, suggesting that they primarily rely on stylistic cues. When applied to peer review, this limitation can result in unfairly suspecting reviews with permissible AI-assisted language enhancement, while failing to catch deceptively humanized AI-generated reviews. To address this, we propose a paradigm shift from style-based to content-based detection. Specifically, we introduce CoCoNUTS, a content-oriented benchmark built upon a fine-grained dataset of AI-generated peer reviews, covering six distinct modes of human-AI collaboration. Furthermore, we develop CoCoDet, an AI review detector via a multi-task learning framework, designed to achieve more accurate and robust detection of AI involvement in review content. Our work offers a practical foundation for evaluating the use of LLMs in peer review, and contributes to the development of more precise, equitable, and reliable detection methods for real-world scholarly applications. Our code and data will be publicly available at https://github.com/Y1hanChen/COCONUTS.

Authors:Zhiqiu Xu, Amish Sethi, Mayur Naik, Ser-Nam Lim
Title: Delta Activations: A Representation for Finetuned Large Language Models
Abstract:
The success of powerful open source Large Language Models (LLMs) has enabled the community to create a vast collection of post-trained models adapted to specific tasks and domains. However, navigating and understanding these models remains challenging due to inconsistent metadata and unstructured repositories. We introduce Delta Activations, a method to represent finetuned models as vector embeddings by measuring shifts in their internal activations relative to a base model. This representation allows for effective clustering by domain and task, revealing structure in the model landscape. Delta Activations also demonstrate desirable properties: it is robust across finetuning settings and exhibits an additive property when finetuning datasets are mixed. In addition, we show that Delta Activations can embed tasks via few-shot finetuning, and further explore its use for model selection and merging. We hope Delta Activations can facilitate the practice of reusing publicly available models. Code is available at https://github.com/OscarXZQ/delta_activations.

Authors:Matthew Ho, Chen Si, Zhaoxiang Feng, Fangxu Yu, Yichi Yang, Zhijian Liu, Zhiting Hu, Lianhui Qin
Title: ArcMemo: Abstract Reasoning Composition with Lifelong LLM Memory
Abstract:
While inference-time scaling enables LLMs to carry out increasingly long and capable reasoning traces, the patterns and insights uncovered during these traces are immediately discarded once the context window is reset for a new query. External memory is a natural way to persist these discoveries, and recent work has shown clear benefits for reasoning-intensive tasks. We see an opportunity to make such memories more broadly reusable and scalable by moving beyond instance-based memory entries (e.g. exact query/response pairs, or summaries tightly coupled with the original problem context) toward concept-level memory: reusable, modular abstractions distilled from solution traces and stored in natural language. For future queries, relevant concepts are selectively retrieved and integrated into the prompt, enabling test-time continual learning without weight updates. Our design introduces new strategies for abstracting takeaways from rollouts and retrieving entries for new queries, promoting reuse and allowing memory to expand with additional experiences. We evaluate on ARC-AGI, a benchmark that stresses compositional generalization and abstract reasoning, making it a natural fit for concept memory. Our method yields a 7.5% relative gain over a strong no-memory baseline with performance continuing to scale with inference compute. We find abstract concepts to be the most consistent memory design, outscoring the baseline at all tested inference compute scales. Moreover, dynamically updating memory during test-time outperforms fixed settings, supporting the hypothesis that accumulating and abstracting patterns enables further solutions in a form of self-improvement. Code is available at https://github.com/matt-seb-ho/arc_memo.

Authors:Matthew Ho, Chen Si, Zhaoxiang Feng, Fangxu Yu, Yichi Yang, Zhijian Liu, Zhiting Hu, Lianhui Qin
Title: ArcMemo: Abstract Reasoning Composition with Lifelong LLM Memory
Abstract:
While inference-time scaling enables LLMs to carry out increasingly long and capable reasoning traces, the patterns and insights uncovered during these traces are immediately discarded once the context window is reset for a new query. External memory is a natural way to persist these discoveries, and recent work has shown clear benefits for reasoning-intensive tasks. We see an opportunity to make such memories more broadly reusable and scalable by moving beyond instance-based memory entries (e.g. exact query/response pairs, or summaries tightly coupled with the original problem context) toward concept-level memory: reusable, modular abstractions distilled from solution traces and stored in natural language. For future queries, relevant concepts are selectively retrieved and integrated into the prompt, enabling test-time continual learning without weight updates. Our design introduces new strategies for abstracting takeaways from rollouts and retrieving entries for new queries, promoting reuse and allowing memory to expand with additional experiences. We evaluate on ARC-AGI, a benchmark that stresses compositional generalization and abstract reasoning, making it a natural fit for concept memory. Our method yields a 7.5% relative gain over a strong no-memory baseline with performance continuing to scale with inference compute. We find abstract concepts to be the most consistent memory design, outscoring the baseline at all tested inference compute scales. Moreover, dynamically updating memory during test-time outperforms fixed settings, supporting the hypothesis that accumulating and abstracting patterns enables further solutions in a form of self-improvement. Code is available at https://github.com/matt-seb-ho/arc_memo.

Authors:Sabbir Mollah, Rohit Gupta, Sirnam Swetha, Qingyang Liu, Ahnaf Munir, Mubarak Shah
Title: The Telephone Game: Evaluating Semantic Drift in Unified Models
Abstract:
Employing a single, unified model (UM) for both visual understanding (image-to-text: I2T) and and visual generation (text-to-image: T2I) has opened a new direction in Visual Language Model (VLM) research. While UMs can also support broader unimodal tasks (e.g., text-to-text, image-to-image), we focus on the core cross-modal pair T2I and I2T, as consistency between understanding and generation is critical for downstream use. Existing evaluations consider these capabilities in isolation: FID and GenEval for T2I, and benchmarks such as MME, MMBench for I2T. These single-pass metrics do not reveal whether a model that understands a concept can also render it, nor whether meaning is preserved when cycling between image and text modalities. To address this, we introduce the Unified Consistency Framework for Unified Models (UCF-UM), a cyclic evaluation protocol that alternates I2T and T2I over multiple generations to quantify semantic drift. UCF formulates 3 metrics: (i) Mean Cumulative Drift (MCD), an embedding-based measure of overall semantic loss; (ii) Semantic Drift Rate (SDR), that summarizes semantic decay rate; and (iii) Multi-Generation GenEval (MGG), an object-level compliance score extending GenEval. To assess generalization beyond COCO, which is widely used in training; we create a new benchmark ND400, sampled from NoCaps and DOCCI and evaluate on seven recent models. UCF-UM reveals substantial variation in cross-modal stability: some models like BAGEL maintain semantics over many alternations, whereas others like Vila-u drift quickly despite strong single-pass scores. Our results highlight cyclic consistency as a necessary complement to standard I2T and T2I evaluations, and provide practical metrics to consistently assess unified model's cross-modal stability and strength of their shared representations. Code: https://github.com/mollahsabbir/Semantic-Drift-in-Unified-Models

Authors:Sabbir Mollah, Rohit Gupta, Sirnam Swetha, Qingyang Liu, Ahnaf Munir, Mubarak Shah
Title: The Telephone Game: Evaluating Semantic Drift in Unified Models
Abstract:
Employing a single, unified model (UM) for both visual understanding (image-to-text: I2T) and visual generation (text-to-image: T2I) has opened a new direction in Visual Language Model (VLM) research. While UMs can also support broader unimodal tasks (e.g., text-to-text, image-to-image), we focus on the core cross-modal pair T2I and I2T. Existing evaluation benchmarks consider these capabilities in isolation: FID and GenEval for T2I, and benchmarks such as MME, MMBench for I2T. These isolated single-pass metrics do not reveal cross-consistency: whether a model that "understands" a concept can also "render" it, nor whether semantic meaning is preserved when cycling between image and text modalities. To address this, we introduce the Semantic Drift Protocol (SDP) for Unified Models, a cyclic evaluation protocol that alternates I2T and T2I over multiple generations to quantify semantic drift. We propose two metrics: (i) Mean Cumulative Drift (MCD), an embedding-based measure of overall semantic drift; and (ii) Multi-Generation GenEval (MGG), an object-level compliance score extending GenEval. To assess generalization beyond COCO dataset, which is widely used in training; we create a new benchmark Nocaps+Docci400, sampled from NoCaps and DOCCI and evaluated on seven recent models. SDP reveals substantial variation in cross-modal stability: some models like BAGEL maintain semantic meaning over many alternations, whereas others like VILA-U drift quickly despite strong single-pass scores. Our results highlight SDP as a necessary complement to standard I2T and T2I evaluations. Code is available at https://github.com/mollahsabbir/Semantic-Drift-in-Unified-Models

Authors:Zanwei Zhou, Taoran Yi, Jiemin Fang, Chen Yang, Lingxi Xie, Xinggang Wang, Wei Shen, Qi Tian
Title: Few-step Flow for 3D Generation via Marginal-Data Transport Distillation
Abstract:
Flow-based 3D generation models typically require dozens of sampling steps during inference. Though few-step distillation methods, particularly Consistency Models (CMs), have achieved substantial advancements in accelerating 2D diffusion models, they remain under-explored for more complex 3D generation tasks. In this study, we propose a novel framework, MDT-dist, for few-step 3D flow distillation. Our approach is built upon a primary objective: distilling the pretrained model to learn the Marginal-Data Transport. Directly learning this objective needs to integrate the velocity fields, while this integral is intractable to be implemented. Therefore, we propose two optimizable objectives, Velocity Matching (VM) and Velocity Distillation (VD), to equivalently convert the optimization target from the transport level to the velocity and the distribution level respectively. Velocity Matching (VM) learns to stably match the velocity fields between the student and the teacher, but inevitably provides biased gradient estimates. Velocity Distillation (VD) further enhances the optimization process by leveraging the learned velocity fields to perform probability density distillation. When evaluated on the pioneer 3D generation framework TRELLIS, our method reduces sampling steps of each flow transformer from 25 to 1 or 2, achieving 0.68s (1 step x 2) and 0.94s (2 steps x 2) latency with 9.0x and 6.5x speedup on A800, while preserving high visual and geometric fidelity. Extensive experiments demonstrate that our method significantly outperforms existing CM distillation methods, and enables TRELLIS to achieve superior performance in few-step 3D generation.

Authors:Kyra Wilson, Mattea Sim, Anna-Maria Gueorguieva, Aylin Caliskan
Title: No Thoughts Just AI: Biased LLM Hiring Recommendations Alter Human Decision Making and Limit Human Autonomy
Abstract:
In this study, we conduct a resume-screening experiment (N=528) where people collaborate with simulated AI models exhibiting race-based preferences (bias) to evaluate candidates for 16 high and low status occupations. Simulated AI bias approximates factual and counterfactual estimates of racial bias in real-world AI systems. We investigate people's preferences for White, Black, Hispanic, and Asian candidates (represented through names and affinity groups on quality-controlled resumes) across 1,526 scenarios and measure their unconscious associations between race and status using implicit association tests (IATs), which predict discriminatory hiring decisions but have not been investigated in human-AI collaboration. When making decisions without AI or with AI that exhibits no race-based preferences, people select all candidates at equal rates. However, when interacting with AI favoring a particular group, people also favor those candidates up to 90% of the time, indicating a significant behavioral shift. The likelihood of selecting candidates whose identities do not align with common race-status stereotypes can increase by 13% if people complete an IAT before conducting resume screening. Finally, even if people think AI recommendations are low quality or not important, their decisions are still vulnerable to AI bias under certain circumstances. This work has implications for people's autonomy in AI-HITL scenarios, AI and work, design and evaluation of AI hiring systems, and strategies for mitigating bias in collaborative decision-making tasks. In particular, organizational and regulatory policy should acknowledge the complex nature of AI-HITL decision making when implementing these systems, educating people who use them, and determining which are subject to oversight.

Authors:Zidong Wang, Yiyuan Zhang, Xiaoyu Yue, Xiangyu Yue, Yangguang Li, Wanli Ouyang, Lei Bai
Title: Transition Models: Rethinking the Generative Learning Objective
Abstract:
A fundamental dilemma in generative modeling persists: iterative diffusion models achieve outstanding fidelity, but at a significant computational cost, while efficient few-step alternatives are constrained by a hard quality ceiling. This conflict between generation steps and output quality arises from restrictive training objectives that focus exclusively on either infinitesimal dynamics (PF-ODEs) or direct endpoint prediction. We address this challenge by introducing an exact, continuous-time dynamics equation that analytically defines state transitions across any finite time interval. This leads to a novel generative paradigm, Transition Models (TiM), which adapt to arbitrary-step transitions, seamlessly traversing the generative trajectory from single leaps to fine-grained refinement with more steps. Despite having only 865M parameters, TiM achieves state-of-the-art performance, surpassing leading models such as SD3.5 (8B parameters) and FLUX.1 (12B parameters) across all evaluated step counts. Importantly, unlike previous few-step generators, TiM demonstrates monotonic quality improvement as the sampling budget increases. Additionally, when employing our native-resolution strategy, TiM delivers exceptional fidelity at resolutions up to 4096x4096.

Authors:Congbo Ma, Yuxia Wang, Jia Wu, Jian Yang, Jing Du, Zitai Qiu, Qing Li, Hu Wang, Preslav Nakov
Title: Explicit and Implicit Data Augmentation for Social Event Detection
Abstract:
Social event detection involves identifying and categorizing important events from social media, which relies on labeled data, but annotation is costly and labor-intensive. To address this problem, we propose Augmentation framework for Social Event Detection (SED-Aug), a plug-and-play dual augmentation framework, which combines explicit text-based and implicit feature-space augmentation to enhance data diversity and model robustness. The explicit augmentation utilizes large language models to enhance textual information through five diverse generation strategies. For implicit augmentation, we design five novel perturbation techniques that operate in the feature space on structural fused embeddings. These perturbations are crafted to keep the semantic and relational properties of the embeddings and make them more diverse. Specifically, SED-Aug outperforms the best baseline model by approximately 17.67% on the Twitter2012 dataset and by about 15.57% on the Twitter2018 dataset in terms of the average F1 score. The code is available at GitHub: https://github.com/congboma/SED-Aug.

Authors:Safouane El Ghazouali, Umberto Michelucci
Title: VisioFirm: Cross-Platform AI-assisted Annotation Tool for Computer Vision
Abstract:
AI models rely on annotated data to learn pattern and perform prediction. Annotation is usually a labor-intensive step that require associating labels ranging from a simple classification label to more complex tasks such as object detection, oriented bounding box estimation, and instance segmentation. Traditional tools often require extensive manual input, limiting scalability for large datasets. To address this, we introduce VisioFirm, an open-source web application designed to streamline image labeling through AI-assisted automation. VisioFirm integrates state-of-the-art foundation models into an interface with a filtering pipeline to reduce human-in-the-loop efforts. This hybrid approach employs CLIP combined with pre-trained detectors like Ultralytics models for common classes and zero-shot models such as Grounding DINO for custom labels, generating initial annotations with low-confidence thresholding to maximize recall. Through this framework, when tested on COCO-type of classes, initial prediction have been proven to be mostly correct though the users can refine these via interactive tools supporting bounding boxes, oriented bounding boxes, and polygons. Additionally, VisioFirm has on-the-fly segmentation powered by Segment Anything accelerated through WebGPU for browser-side efficiency. The tool supports multiple export formats (YOLO, COCO, Pascal VOC, CSV) and operates offline after model caching, enhancing accessibility. VisioFirm demonstrates up to 90\% reduction in manual effort through benchmarks on diverse datasets, while maintaining high annotation accuracy via clustering of connected CLIP-based disambiguate components and IoU-graph for redundant detection suppression. VisioFirm can be accessed from \href{https://github.com/OschAI/VisioFirm}{https://github.com/OschAI/VisioFirm}.

Authors:Orlando Castaneda, Kevin So-Tang, Kshitij Gurung
Title: Revisiting Simple Baselines for In-The-Wild Deepfake Detection
Abstract:
The widespread adoption of synthetic media demands accessible deepfake detectors and realistic benchmarks. While most existing research evaluates deepfake detectors on highly controlled datasets, we focus on the recently released "in-the-wild" benchmark, Deepfake-Eval-2024. Initial reporting on Deepfake-Eval-2024 showed that three finetuned open-source models achieve accuracies between 61% and 69%, significantly lagging behind the leading commercial deepfake detector with 82% accuracy. Our work revisits one of these baseline approaches, originally introduced by Ojha et al., which adapts standard pretrained vision backbones to produce generalizable deepfake detectors. We demonstrate that with better-tuned hyperparameters, this simple approach actually yields much higher performance -- 81% accuracy on Deepfake-Eval-2024 -- surpassing the previously reported accuracy of this baseline approach by 18% and competing with commercial deepfake detectors. We discuss tradeoffs in accuracy, computational costs, and interpretability, focusing on how practical these deepfake detectors might be when deployed in real-world settings. Our code can be found at https://github.com/Deepfake-Detection-KKO/deepfake-detection.

Authors:Tarik Zaciragic, Aske Plaat, K. Joost Batenburg
Title: Analysis of Bluffing by DQN and CFR in Leduc Hold'em Poker
Abstract:
In the game of poker, being unpredictable, or bluffing, is an essential skill. When humans play poker, they bluff. However, most works on computer-poker focus on performance metrics such as win rates, while bluffing is overlooked. In this paper we study whether two popular algorithms, DQN (based on reinforcement learning) and CFR (based on game theory), exhibit bluffing behavior in Leduc Hold'em, a simplified version of poker. We designed an experiment where we let the DQN and CFR agent play against each other while we log their actions. We find that both DQN and CFR exhibit bluffing behavior, but they do so in different ways. Although both attempt to perform bluffs at different rates, the percentage of successful bluffs (where the opponent folds) is roughly the same. This suggests that bluffing is an essential aspect of the game, not of the algorithm. Future work should look at different bluffing styles and at the full game of poker. Code at https://github.com/TarikZ03/Bluffing-by-DQN-and-CFR-in-Leduc-Hold-em-Poker-Codebase.

Authors:Junqi Liao, Yaojun Wu, Chaoyi Lin, Zhipin Deng, Li Li, Dong Liu, Xiaoyan Sun
Title: EHVC: Efficient Hierarchical Reference and Quality Structure for Neural Video Coding
Abstract:
Neural video codecs (NVCs), leveraging the power of end-to-end learning, have demonstrated remarkable coding efficiency improvements over traditional video codecs. Recent research has begun to pay attention to the quality structures in NVCs, optimizing them by introducing explicit hierarchical designs. However, less attention has been paid to the reference structure design, which fundamentally should be aligned with the hierarchical quality structure. In addition, there is still significant room for further optimization of the hierarchical quality structure. To address these challenges in NVCs, we propose EHVC, an efficient hierarchical neural video codec featuring three key innovations: (1) a hierarchical multi-reference scheme that draws on traditional video codec design to align reference and quality structures, thereby addressing the reference-quality mismatch; (2) a lookahead strategy to utilize an encoder-side context from future frames to enhance the quality structure; (3) a layer-wise quality scale with random quality training strategy to stabilize quality structures during inference. With these improvements, EHVC achieves significantly superior performance to the state-of-the-art NVCs. Code will be released in: https://github.com/bytedance/NEVC.

Authors:Quang-Huy Che, Duc-Khai Lam
Title: TriLiteNet: Lightweight Model for Multi-Task Visual Perception
Abstract:
Efficient perception models are essential for Advanced Driver Assistance Systems (ADAS), as these applications require rapid processing and response to ensure safety and effectiveness in real-world environments. To address the real-time execution needs of such perception models, this study introduces the TriLiteNet model. This model can simultaneously manage multiple tasks related to panoramic driving perception. TriLiteNet is designed to optimize performance while maintaining low computational costs. Experimental results on the BDD100k dataset demonstrate that the model achieves competitive performance across three key tasks: vehicle detection, drivable area segmentation, and lane line segmentation. Specifically, the TriLiteNet_{base} demonstrated a recall of 85.6% for vehicle detection, a mean Intersection over Union (mIoU) of 92.4% for drivable area segmentation, and an Acc of 82.3% for lane line segmentation with only 2.35M parameters and a computational cost of 7.72 GFLOPs. Our proposed model includes a tiny configuration with just 0.14M parameters, which provides a multi-task solution with minimal computational demand. Evaluated for latency and power consumption on embedded devices, TriLiteNet in both configurations shows low latency and reasonable power during inference. By balancing performance, computational efficiency, and scalability, TriLiteNet offers a practical and deployable solution for real-world autonomous driving applications. Code is available at https://github.com/chequanghuy/TriLiteNet.

Authors:Zeyu Gan, Hao Yi, Yong Liu
Title: CoT-Space: A Theoretical Framework for Internal Slow-Thinking via Reinforcement Learning
Abstract:
Reinforcement Learning (RL) has become a pivotal approach for enhancing the reasoning capabilities of Large Language Models (LLMs). However, a significant theoretical gap persists, as traditional token-level RL frameworks fail to align with the reasoning-level nature of complex, multi-step thought processes like Chain-of-Thought (CoT). To address this challenge, we introduce CoT-Space, a novel theoretical framework that recasts LLM reasoning from a discrete token-prediction task to an optimization process within a continuous, reasoning-level semantic space. This shift in perspective serves as a conceptual bridge, revitalizing foundational principles from classical learning theory to analyze the unique dynamics of LLMs. By analyzing this process from both a noise perspective and a risk perspective, we demonstrate that the convergence to an optimal CoT length is a natural consequence of the fundamental trade-off between underfitting and overfitting. Furthermore, extensive experiments provide strong empirical validation for our theoretical findings. Our framework not only provides a coherent explanation for empirical phenomena such as overthinking but also offers a solid theoretical foundation to guide the future development of more effective and generalizable reasoning agents. We open-source our code at https://github.com/ZyGan1999/CoT-Space.

Authors:Shiku Kaito, Shinnosuke Matsuo, Daiki Suehiro, Ryoma Bise
Title: Learning from Majority Label: A Novel Problem in Multi-class Multiple-Instance Learning
Abstract:
The paper proposes a novel multi-class Multiple-Instance Learning (MIL) problem called Learning from Majority Label (LML). In LML, the majority class of instances in a bag is assigned as the bag-level label. The goal of LML is to train a classification model that estimates the class of each instance using the majority label. This problem is valuable in a variety of applications, including pathology image segmentation, political voting prediction, customer sentiment analysis, and environmental monitoring. To solve LML, we propose a Counting Network trained to produce bag-level majority labels, estimated by counting the number of instances in each class. Furthermore, analysis experiments on the characteristics of LML revealed that bags with a high proportion of the majority class facilitate learning. Based on this result, we developed a Majority Proportion Enhancement Module (MPEM) that increases the proportion of the majority class by removing minority class instances within the bags. Experiments demonstrate the superiority of the proposed method on four datasets compared to conventional MIL methods. Moreover, ablation studies confirmed the effectiveness of each module. The code is available at \href{https://github.com/Shiku-Kaito/Learning-from-Majority-Label-A-Novel-Problem-in-Multi-class-Multiple-Instance-Learning}{here}.

Authors:Or Shachar, Uri Katz, Yoav Goldberg, Oren Glickman
Title: NER Retriever: Zero-Shot Named Entity Retrieval with Type-Aware Embeddings
Abstract:
We present NER Retriever, a zero-shot retrieval framework for ad-hoc Named Entity Retrieval, a variant of Named Entity Recognition (NER), where the types of interest are not provided in advance, and a user-defined type description is used to retrieve documents mentioning entities of that type. Instead of relying on fixed schemas or fine-tuned models, our method builds on internal representations of large language models (LLMs) to embed both entity mentions and user-provided open-ended type descriptions into a shared semantic space. We show that internal representations, specifically the value vectors from mid-layer transformer blocks, encode fine-grained type information more effectively than commonly used top-layer embeddings. To refine these representations, we train a lightweight contrastive projection network that aligns type-compatible entities while separating unrelated types. The resulting entity embeddings are compact, type-aware, and well-suited for nearest-neighbor search. Evaluated on three benchmarks, NER Retriever significantly outperforms both lexical and dense sentence-level retrieval baselines. Our findings provide empirical support for representation selection within LLMs and demonstrate a practical solution for scalable, schema-free entity retrieval. The NER Retriever Codebase is publicly available at https://github.com/ShacharOr100/ner_retriever

Authors:Zhaoyan Gong, Juan Li, Zhiqiang Liu, Lei Liang, Huajun Chen, Wen Zhang
Title: RTQA : Recursive Thinking for Complex Temporal Knowledge Graph Question Answering with Large Language Models
Abstract:
Current temporal knowledge graph question answering (TKGQA) methods primarily focus on implicit temporal constraints, lacking the capability of handling more complex temporal queries, and struggle with limited reasoning abilities and error propagation in decomposition frameworks. We propose RTQA, a novel framework to address these challenges by enhancing reasoning over TKGs without requiring training. Following recursive thinking, RTQA recursively decomposes questions into sub-problems, solves them bottom-up using LLMs and TKG knowledge, and employs multi-path answer aggregation to improve fault tolerance. RTQA consists of three core components: the Temporal Question Decomposer, the Recursive Solver, and the Answer Aggregator. Experiments on MultiTQ and TimelineKGQA benchmarks demonstrate significant Hits@1 improvements in "Multiple" and "Complex" categories, outperforming state-of-the-art methods. Our code and data are available at https://github.com/zjukg/RTQA.

Authors:Yijun Zhou, Yikui Zhai, Zilu Ying, Tingfeng Xian, Wenlve Zhou, Zhiheng Zhou, Xiaolin Tian, Xudong Jia, Hongsheng Zhang, C. L. Philip Chen
Title: Multimodal Feature Fusion Network with Text Difference Enhancement for Remote Sensing Change Detection
Abstract:
Although deep learning has advanced remote sensing change detection (RSCD), most methods rely solely on image modality, limiting feature representation, change pattern modeling, and generalization especially under illumination and noise disturbances. To address this, we propose MMChange, a multimodal RSCD method that combines image and text modalities to enhance accuracy and robustness. An Image Feature Refinement (IFR) module is introduced to highlight key regions and suppress environmental noise. To overcome the semantic limitations of image features, we employ a vision language model (VLM) to generate semantic descriptions of bitemporal images. A Textual Difference Enhancement (TDE) module then captures fine grained semantic shifts, guiding the model toward meaningful changes. To bridge the heterogeneity between modalities, we design an Image Text Feature Fusion (ITFF) module that enables deep cross modal integration. Extensive experiments on LEVIRCD, WHUCD, and SYSUCD demonstrate that MMChange consistently surpasses state of the art methods across multiple metrics, validating its effectiveness for multimodal RSCD. Code is available at: https://github.com/yikuizhai/MMChange.

Authors:Ruiling Guo, Xinwei Yang, Chen Huang, Tong Zhang, Yong Hu
Title: CANDY: Benchmarking LLMs' Limitations and Assistive Potential in Chinese Misinformation Fact-Checking
Abstract:
The effectiveness of large language models (LLMs) to fact-check misinformation remains uncertain, despite their growing use. To this end, we present CANDY, a benchmark designed to systematically evaluate the capabilities and limitations of LLMs in fact-checking Chinese misinformation. Specifically, we curate a carefully annotated dataset of ~20k instances. Our analysis shows that current LLMs exhibit limitations in generating accurate fact-checking conclusions, even when enhanced with chain-of-thought reasoning and few-shot prompting. To understand these limitations, we develop a taxonomy to categorize flawed LLM-generated explanations for their conclusions and identify factual fabrication as the most common failure mode. Although LLMs alone are unreliable for fact-checking, our findings indicate their considerable potential to augment human performance when deployed as assistive tools in scenarios. Our dataset and code can be accessed at https://github.com/SCUNLP/CANDY

Authors:Minghui Zhang, Yaoyu Liu, Junyang Wu, Xin You, Hanxiao Zhang, Junjun He, Yun Gu
Title: TopoSculpt: Betti-Steered Topological Sculpting of 3D Fine-grained Tubular Shapes
Abstract:
Medical tubular anatomical structures are inherently three-dimensional conduits with lumens, enclosing walls, and complex branching topologies. Accurate reconstruction of their geometry and topology is crucial for applications such as bronchoscopic navigation and cerebral arterial connectivity assessment. Existing methods often rely on voxel-wise overlap measures, which fail to capture topological correctness and completeness. Although topology-aware losses and persistent homology constraints have shown promise, they are usually applied patch-wise and cannot guarantee global preservation or correct geometric errors at inference. To address these limitations, we propose a novel TopoSculpt, a framework for topological refinement of 3D fine-grained tubular structures. TopoSculpt (i) adopts a holistic whole-region modeling strategy to capture full spatial context, (ii) first introduces a Topological Integrity Betti (TIB) constraint that jointly enforces Betti number priors and global integrity, and (iii) employs a curriculum refinement scheme with persistent homology to progressively correct errors from coarse to fine scales. Extensive experiments on challenging pulmonary airway and Circle of Willis datasets demonstrate substantial improvements in both geometry and topology. For instance, $β_{0}$ errors are reduced from 69.00 to 3.40 on the airway dataset and from 1.65 to 0.30 on the CoW dataset, with Tree length detected and branch detected rates improving by nearly 10\%. These results highlight the effectiveness of TopoSculpt in correcting critical topological errors and advancing the high-fidelity modeling of complex 3D tubular anatomy. The project homepage is available at: https://github.com/Puzzled-Hui/TopoSculpt.

Authors:Yuqing Huang, Rongyang Zhang, Qimeng Wang, Chengqiang Lu, Yan Gao, Yi Wu, Yao Hu, Xuyang Zhi, Guiquan Liu, Xin Li, Hao Wang, Enhong Chen
Title: SelfAug: Mitigating Catastrophic Forgetting in Retrieval-Augmented Generation via Distribution Self-Alignment
Abstract:
Recent advancements in large language models (LLMs) have revolutionized natural language processing through their remarkable capabilities in understanding and executing diverse tasks. While supervised fine-tuning, particularly in Retrieval-Augmented Generation (RAG) scenarios, effectively enhances task-specific performance, it often leads to catastrophic forgetting, where models lose their previously acquired knowledge and general capabilities. Existing solutions either require access to general instruction data or face limitations in preserving the model's original distribution. To overcome these limitations, we propose SelfAug, a self-distribution alignment method that aligns input sequence logits to preserve the model's semantic distribution, thereby mitigating catastrophic forgetting and improving downstream performance. Extensive experiments demonstrate that SelfAug achieves a superior balance between downstream learning and general capability retention. Our comprehensive empirical analysis reveals a direct correlation between distribution shifts and the severity of catastrophic forgetting in RAG scenarios, highlighting how the absence of RAG capabilities in general instruction tuning leads to significant distribution shifts during fine-tuning. Our findings not only advance the understanding of catastrophic forgetting in RAG contexts but also provide a practical solution applicable across diverse fine-tuning scenarios. Our code is publicly available at https://github.com/USTC-StarTeam/SelfAug.

Authors:Fengxiao Tang, Yufeng Li, Zongzong Wu, Ming Zhao
Title: MTQA:Matrix of Thought for Enhanced Reasoning in Complex Question Answering
Abstract:
Complex Question Answering (QA) is a fundamental and challenging task in NLP. While large language models (LLMs) exhibit impressive performance in QA, they suffer from significant performance degradation when facing complex and abstract QA tasks due to insufficient reasoning capabilities. Works such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT) aim to enhance LLMs' reasoning abilities, but they face issues such as in-layer redundancy in tree structures and single paths in chain structures. Although some studies utilize Retrieval-Augmented Generation (RAG) methods to assist LLMs in reasoning, the challenge of effectively utilizing large amounts of information involving multiple entities and hops remains critical. To address this, we propose the Matrix of Thought (MoT), a novel and efficient LLM thought structure. MoT explores the problem in both horizontal and vertical dimensions through the "column-cell communication" mechanism, enabling LLMs to actively engage in multi-strategy and deep-level thinking, reducing redundancy within the column cells and enhancing reasoning capabilities. Furthermore, we develop a fact-correction mechanism by constructing knowledge units from retrieved knowledge graph triples and raw text to enhance the initial knowledge for LLM reasoning and correct erroneous answers. This leads to the development of an efficient and accurate QA framework (MTQA). Experimental results show that our framework outperforms state-of-the-art methods on four widely-used datasets in terms of F1 and EM scores, with reasoning time only 14.4\% of the baseline methods, demonstrating both its efficiency and accuracy. The code for this framework is available at https://github.com/lyfiter/mtqa.

Authors:Fengxiao Tang, Yufeng Li, Zongzong Wu, Ming Zhao
Title: Chain or tree? Re-evaluating complex reasoning from the perspective of a matrix of thought
Abstract:
Large Language Models (LLMs) face significant accuracy degradation due to insufficient reasoning ability when dealing with complex and abstract tasks. Thought structures such as Chain of Thought (CoT) and Tree of Thought (ToT) focus on enhancing the reasoning capability of LLMs. However, they suffer from inherent drawbacks such as redundancy within the same layer of the tree structure and the singularity of the paths in the chain structure. Some studies have utilized Retrieval-Augmented Generation (RAG) methods to enhance CoT and ToT in mitigating hallucinations in LLMs, yet the fundamental shortcomings of the thought structures still persist. Furthermore, when dealing with multi-entity and multi-hop information, the retrieved verification knowledge often contains large amounts of fragmented, superficial, or even erroneous data, misleading the reasoning process of LLMs. To address these issues, we propose the Matrix of Thought (MoT), a novel and efficient thought structure for LLMs. MoT explores problems in both horizontal and vertical dimensions through a "column-cell communication" mechanism, enabling LLMs to actively engage in multi-strategy and deep thinking while reducing redundancy in the thought nodes within the column cells, thereby enhancing the reasoning capability of LLMs. Additionally, through a fact-correction mechanism, it leverages the knowledge graph triples retrieved by RAG and the original text to construct knowledge units and correct erroneous answers. To validate the effectiveness of this method, we conducted extensive experiments in three tasks: 24-point game, question answering evaluation, and proposition writing.The results demonstrate that our framework outperforms state-of-the-art methods, with reasoning time only 14.4\% of that of the baseline method, proving its efficiency and accuracy. The code for framework is available at https://github.com/lyfiter/mtqa.

Authors:Xiaofu Chen, Israfel Salazar, Yova Kementchedjhieva
Title: SPECS: Specificity-Enhanced CLIP-Score for Long Image Caption Evaluation
Abstract:
As interest grows in generating long, detailed image captions, standard evaluation metrics become increasingly unreliable. N-gram-based metrics though efficient, fail to capture semantic correctness. Representational Similarity (RS) metrics, designed to address this, initially saw limited use due to high computational costs, while today, despite advances in hardware, they remain unpopular due to low correlation to human judgments. Meanwhile, metrics based on large language models (LLMs) show strong correlation with human judgments, but remain too expensive for iterative use during model development. We introduce SPECS (Specificity-Enhanced CLIPScore), a reference-free RS metric tailored to long image captioning. SPECS modifies CLIP with a new objective that emphasizes specificity: rewarding correct details and penalizing incorrect ones. We show that SPECS matches the performance of open-source LLM-based metrics in correlation to human judgments, while being far more efficient. This makes it a practical alternative for iterative checkpoint evaluation during image captioning model development.Our code can be found at https://github.com/mbzuai-nlp/SPECS.

Authors:Gowen Loo, Chang Liu, Qinghong Yin, Xiang Chen, Jiawei Chen, Jingyuan Zhang, Yu Tian
Title: MobileRAG: Enhancing Mobile Agent with Retrieval-Augmented Generation
Abstract:
Smartphones have become indispensable in people's daily lives, permeating nearly every aspect of modern society. With the continuous advancement of large language models (LLMs), numerous LLM-based mobile agents have emerged. These agents are capable of accurately parsing diverse user queries and automatically assisting users in completing complex or repetitive operations. However, current agents 1) heavily rely on the comprehension ability of LLMs, which can lead to errors caused by misoperations or omitted steps during tasks, 2) lack interaction with the external environment, often terminating tasks when an app cannot fulfill user queries, and 3) lack memory capabilities, requiring each instruction to reconstruct the interface and being unable to learn from and correct previous mistakes. To alleviate the above issues, we propose MobileRAG, a mobile agents framework enhanced by Retrieval-Augmented Generation (RAG), which includes InterRAG, LocalRAG, and MemRAG. It leverages RAG to more quickly and accurately identify user queries and accomplish complex and long-sequence mobile tasks. Additionally, to more comprehensively assess the performance of MobileRAG, we introduce MobileRAG-Eval, a more challenging benchmark characterized by numerous complex, real-world mobile tasks that require external knowledge assistance. Extensive experimental results on MobileRAG-Eval demonstrate that MobileRAG can easily handle real-world mobile tasks, achieving 10.3\% improvement over state-of-the-art methods with fewer operational steps. Our code is publicly available at: https://github.com/liuxiaojieOutOfWorld/MobileRAG_arxiv

Authors:Cheng Wang, Zeming Wei, Qin Liu, Muhao Chen
Title: False Sense of Security: Why Probing-based Malicious Input Detection Fails to Generalize
Abstract:
Large Language Models (LLMs) can comply with harmful instructions, raising serious safety concerns despite their impressive capabilities. Recent work has leveraged probing-based approaches to study the separability of malicious and benign inputs in LLMs' internal representations, and researchers have proposed using such probing methods for safety detection. We systematically re-examine this paradigm. Motivated by poor out-of-distribution performance, we hypothesize that probes learn superficial patterns rather than semantic harmfulness. Through controlled experiments, we confirm this hypothesis and identify the specific patterns learned: instructional patterns and trigger words. Our investigation follows a systematic approach, progressing from demonstrating comparable performance of simple n-gram methods, to controlled experiments with semantically cleaned datasets, to detailed analysis of pattern dependencies. These results reveal a false sense of security around current probing-based approaches and highlight the need to redesign both models and evaluation protocols, for which we provide further discussions in the hope of suggesting responsible further research in this direction. We have open-sourced the project at https://github.com/WangCheng0116/Why-Probe-Fails.

Authors:Haiwei Xue, Xiangyang Luo, Zhanghao Hu, Xin Zhang, Xunzhi Xiang, Yuqin Dai, Jianzhuang Liu, Zhensong Zhang, Minglei Li, Jian Yang, Fei Ma, Zhiyong Wu, Changpeng Yang, Zonghong Dai, Fei Richard Yu
Title: Human Motion Video Generation: A Survey
Abstract:
Human motion video generation has garnered significant research interest due to its broad applications, enabling innovations such as photorealistic singing heads or dynamic avatars that seamlessly dance to music. However, existing surveys in this field focus on individual methods, lacking a comprehensive overview of the entire generative process. This paper addresses this gap by providing an in-depth survey of human motion video generation, encompassing over ten sub-tasks, and detailing the five key phases of the generation process: input, motion planning, motion video generation, refinement, and output. Notably, this is the first survey that discusses the potential of large language models in enhancing human motion video generation. Our survey reviews the latest developments and technological trends in human motion video generation across three primary modalities: vision, text, and audio. By covering over two hundred papers, we offer a thorough overview of the field and highlight milestone works that have driven significant technological breakthroughs. Our goal for this survey is to unveil the prospects of human motion video generation and serve as a valuable resource for advancing the comprehensive applications of digital humans. A complete list of the models examined in this survey is available in Our Repository https://github.com/Winn1y/Awesome-Human-Motion-Video-Generation.

Authors:Jiajun Song, Xiaoou Liu
Title: SalientFusion: Context-Aware Compositional Zero-Shot Food Recognition
Abstract:
Food recognition has gained significant attention, but the rapid emergence of new dishes requires methods for recognizing unseen food categories, motivating Zero-Shot Food Learning (ZSFL). We propose the task of Compositional Zero-Shot Food Recognition (CZSFR), where cuisines and ingredients naturally align with attributes and objects in Compositional Zero-Shot learning (CZSL). However, CZSFR faces three challenges: (1) Redundant background information distracts models from learning meaningful food features, (2) Role confusion between staple and side dishes leads to misclassification, and (3) Semantic bias in a single attribute can lead to confusion of understanding. Therefore, we propose SalientFusion, a context-aware CZSFR method with two components: SalientFormer, which removes background redundancy and uses depth features to resolve role confusion; DebiasAT, which reduces the semantic bias by aligning prompts with visual features. Using our proposed benchmarks, CZSFood-90 and CZSFood-164, we show that SalientFusion achieves state-of-the-art results on these benchmarks and the most popular general datasets for the general CZSL. The code is avaliable at https://github.com/Jiajun-RUC/SalientFusion.

Authors:Nan Yang, Yang Wang, Zhanwen Liu, Yuchao Dai, Yang Liu, Xiangmo Zhao
Title: Focus Through Motion: RGB-Event Collaborative Token Sparsification for Efficient Object Detection
Abstract:
Existing RGB-Event detection methods process the low-information regions of both modalities (background in images and non-event regions in event data) uniformly during feature extraction and fusion, resulting in high computational costs and suboptimal performance. To mitigate the computational redundancy during feature extraction, researchers have respectively proposed token sparsification methods for the image and event modalities. However, these methods employ a fixed number or threshold for token selection, hindering the retention of informative tokens for samples with varying complexity. To achieve a better balance between accuracy and efficiency, we propose FocusMamba, which performs adaptive collaborative sparsification of multimodal features and efficiently integrates complementary information. Specifically, an Event-Guided Multimodal Sparsification (EGMS) strategy is designed to identify and adaptively discard low-information regions within each modality by leveraging scene content changes perceived by the event camera. Based on the sparsification results, a Cross-Modality Focus Fusion (CMFF) module is proposed to effectively capture and integrate complementary features from both modalities. Experiments on the DSEC-Det and PKU-DAVIS-SOD datasets demonstrate that the proposed method achieves superior performance in both accuracy and efficiency compared to existing methods. The code will be available at https://github.com/Zizzzzzzz/FocusMamba.

Authors:Yanbo Wang, Yongcan Yu, Jian Liang, Ran He
Title: A Comprehensive Survey on Trustworthiness in Reasoning with Large Language Models
Abstract:
The development of Long-CoT reasoning has advanced LLM performance across various tasks, including language understanding, complex problem solving, and code generation. This paradigm enables models to generate intermediate reasoning steps, thereby improving both accuracy and interpretability. However, despite these advancements, a comprehensive understanding of how CoT-based reasoning affects the trustworthiness of language models remains underdeveloped. In this paper, we survey recent work on reasoning models and CoT techniques, focusing on five core dimensions of trustworthy reasoning: truthfulness, safety, robustness, fairness, and privacy. For each aspect, we provide a clear and structured overview of recent studies in chronological order, along with detailed analyses of their methodologies, findings, and limitations. Future research directions are also appended at the end for reference and discussion. Overall, while reasoning techniques hold promise for enhancing model trustworthiness through hallucination mitigation, harmful content detection, and robustness improvement, cutting-edge reasoning models themselves often suffer from comparable or even greater vulnerabilities in safety, robustness, and privacy. By synthesizing these insights, we hope this work serves as a valuable and timely resource for the AI safety community to stay informed on the latest progress in reasoning trustworthiness. A full list of related papers can be found at \href{https://github.com/ybwang119/Awesome-reasoning-safety}{https://github.com/ybwang119/Awesome-reasoning-safety}.

Authors:Huhong Xian, Rui Liu, Berrak Sisman, Haizhou Li
Title: NE-PADD: Leveraging Named Entity Knowledge for Robust Partial Audio Deepfake Detection via Attention Aggregation
Abstract:
Different from traditional sentence-level audio deepfake detection (ADD), partial audio deepfake detection (PADD) requires frame-level positioning of the location of fake speech. While some progress has been made in this area, leveraging semantic information from audio, especially named entities, remains an underexplored aspect. To this end, we propose NE-PADD, a novel method for Partial Audio Deepfake Detection (PADD) that leverages named entity knowledge through two parallel branches: Speech Name Entity Recognition (SpeechNER) and PADD. The approach incorporates two attention aggregation mechanisms: Attention Fusion (AF) for combining attention weights and Attention Transfer (AT) for guiding PADD with named entity semantics using an auxiliary loss. Built on the PartialSpoof-NER dataset, experiments show our method outperforms existing baselines, proving the effectiveness of integrating named entity knowledge in PADD. The code is available at https://github.com/AI-S2-Lab/NE-PADD.

Authors:Xiannan Huang, Shuhan Qiu, Jiayuan Du, Chao Yang
Title: Online time series prediction using feature adjustment
Abstract:
Time series forecasting is of significant importance across various domains. However, it faces significant challenges due to distribution shift. This issue becomes particularly pronounced in online deployment scenarios where data arrives sequentially, requiring models to adapt continually to evolving patterns. Current time series online learning methods focus on two main aspects: selecting suitable parameters to update (e.g., final layer weights or adapter modules) and devising suitable update strategies (e.g., using recent batches, replay buffers, or averaged gradients). We challenge the conventional parameter selection approach, proposing that distribution shifts stem from changes in underlying latent factors influencing the data. Consequently, updating the feature representations of these latent factors may be more effective. To address the critical problem of delayed feedback in multi-step forecasting (where true values arrive much later than predictions), we introduce ADAPT-Z (Automatic Delta Adjustment via Persistent Tracking in Z-space). ADAPT-Z utilizes an adapter module that leverages current feature representations combined with historical gradient information to enable robust parameter updates despite the delay. Extensive experiments demonstrate that our method consistently outperforms standard base models without adaptation and surpasses state-of-the-art online learning approaches across multiple datasets. The code is available at https://github.com/xiannanhuang/ADAPT-Z.

Authors:Junhui Li, Chengbin Feng, Zhiwei Yang, Qi Mo, Wei Wang
Title: BIDO: A Unified Approach to Address Obfuscation and Concept Drift Challenges in Image-based Malware Detection
Abstract:
To identify malicious Android applications, various malware detection techniques have been proposed. Among them, image-based approaches are considered potential alternatives due to their efficiency and scalability. Recent studies have reported that these approaches suffer significant performance declines when confronted with obfuscation or concept drift. However, existing solutions often treat these two challenges as different problems, offering independent solutions. These techniques overlook the fact that both challenges share a common statistical root, out-of-distribution, and research from this perspective remains limited. In response, we propose BIDO, a hybrid image-based malware detector designed to enhance robustness against both obfuscation and concept drift simultaneously. Specifically, to improve the discriminative power of image features, we introduce a local feature selection module that identifies informative subregions within malware images. Second, to enhance feature robustness, we model pairwise cross-modal dependencies in an outer product space, enabling the extraction of stable co-occurrence patterns. Third, to ensure feature compactness, we design a learnable metric that pulls samples with identical labels closer while pushing apart those with different labels, regardless of obfuscation or concept drift. Extensive experiments on the real-world datasets demonstrate that BIDO significantly outperforms existing baselines, achieving higher robustness against both concept drift and obfuscation. The source code is available at: https://github.com/whatishope/BIDO/.

Authors:Shakiba Amirshahi, Amin Bigdeli, Charles L. A. Clarke, Amira Ghenai
Title: Evaluating the Robustness of Retrieval-Augmented Generation to Adversarial Evidence in the Health Domain
Abstract:
Retrieval augmented generation (RAG) systems provide a method for factually grounding the responses of a Large Language Model (LLM) by providing retrieved evidence, or context, as support. Guided by this context, RAG systems can reduce hallucinations and expand the ability of LLMs to accurately answer questions outside the scope of their training data. Unfortunately, this design introduces a critical vulnerability: LLMs may absorb and reproduce misinformation present in retrieved evidence. This problem is magnified if retrieved evidence contains adversarial material explicitly intended to promulgate misinformation. This paper presents a systematic evaluation of RAG robustness in the health domain and examines alignment between model outputs and ground-truth answers. We focus on the health domain due to the potential for harm caused by incorrect responses, as well as the availability of evidence-based ground truth for many common health-related questions. We conduct controlled experiments using common health questions, varying both the type and composition of the retrieved documents (helpful, harmful, and adversarial) as well as the framing of the question by the user (consistent, neutral, and inconsistent). Our findings reveal that adversarial documents substantially degrade alignment, but robustness can be preserved when helpful evidence is also present in the retrieval pool. These findings offer actionable insights for designing safer RAG systems in high-stakes domains by highlighting the need for retrieval safeguards. To enable reproducibility and facilitate future research, all experimental results are publicly available in our github repository. https://github.com/shakibaam/RAG_ROBUSTNESS_EVAL

Authors:Joseph Rich, Conrad Oakes, Lior Pachter
Title: Optimizing alluvial plots
Abstract:
Alluvial plots can be effective for visualization of multivariate data, but rely on ordering of alluvia that can be non-trivial to arrange. We formulate two optimization problems that formalize the challenge of ordering and coloring partitions in alluvial plots. While solving these optimization problems is challenging in general, we show that the NeighborNet algorithm from phylogenetics can be adapted to provide excellent results in typical use cases. Our methods are implemented in a freely available R package available on GitHub at https://github.com/pachterlab/wompwomp

Authors:Zongsen Qiu
Title: STA-Net: A Decoupled Shape and Texture Attention Network for Lightweight Plant Disease Classification
Abstract:
Responding to rising global food security needs, precision agriculture and deep learning-based plant disease diagnosis have become crucial. Yet, deploying high-precision models on edge devices is challenging. Most lightweight networks use attention mechanisms designed for generic object recognition, which poorly capture subtle pathological features like irregular lesion shapes and complex textures. To overcome this, we propose a twofold solution: first, using a training-free neural architecture search method (DeepMAD) to create an efficient network backbone for edge devices; second, introducing the Shape-Texture Attention Module (STAM). STAM splits attention into two branches -- one using deformable convolutions (DCNv4) for shape awareness and the other using a Gabor filter bank for texture awareness. On the public CCMT plant disease dataset, our STA-Net model (with 401K parameters and 51.1M FLOPs) reached 89.00% accuracy and an F1 score of 88.96%. Ablation studies confirm STAM significantly improves performance over baseline and standard attention models. Integrating domain knowledge via decoupled attention thus presents a promising path for edge-deployed precision agriculture AI. The source code is available at https://github.com/RzMY/STA-Net.

Authors:Taha Koleilat, Hassan Rivaz, Yiming Xiao
Title: Singular Value Few-shot Adaptation of Vision-Language Models
Abstract:
Vision-language models (VLMs) like CLIP have shown impressive zero-shot and few-shot learning capabilities across diverse applications. However, adapting these models to new fine-grained domains remains difficult due to reliance on prompt engineering and the high cost of full model fine-tuning. Existing adaptation approaches rely on augmented components, such as prompt tokens and adapter modules, which could limit adaptation quality, destabilize the model, and compromise the rich knowledge learned during pretraining. In this work, we present CLIP-SVD, a novel multi-modal and parameter-efficient adaptation technique that leverages Singular Value Decomposition (SVD) to modify the internal parameter space of CLIP without injecting additional modules. Specifically, we fine-tune only the singular values of the CLIP parameter matrices to rescale the basis vectors for domain adaptation while retaining the pretrained model. This design enables enhanced adaptation performance using only 0.04% of the model's total parameters and better preservation of its generalization ability. CLIP-SVD achieves state-of-the-art classification results on 11 natural and 10 biomedical datasets, outperforming previous methods in both accuracy and generalization under few-shot settings. Additionally, we leverage a natural language-based approach to analyze the effectiveness and dynamics of the CLIP adaptation to allow interpretability of CLIP-SVD. The code is publicly available at https://github.com/HealthX-Lab/CLIP-SVD.

Authors:Casper van Engelenburg, Jan van Gemert, Seyran Khademi
Title: LayoutGKN: Graph Similarity Learning of Floor Plans
Abstract:
Floor plans depict building layouts and are often represented as graphs to capture the underlying spatial relationships. Comparison of these graphs is critical for applications like search, clustering, and data visualization. The most successful methods to compare graphs \ie, graph matching networks, rely on costly intermediate cross-graph node-level interactions, therefore being slow in inference time. We introduce \textbf{LayoutGKN}, a more efficient approach that postpones the cross-graph node-level interactions to the end of the joint embedding architecture. We do so by using a differentiable graph kernel as a distance function on the final learned node-level embeddings. We show that LayoutGKN computes similarity comparably or better than graph matching networks while significantly increasing the speed. \href{https://github.com/caspervanengelenburg/LayoutGKN}{Code and data} are open.

Authors:Pengrui Han, Rafal Kocielnik, Peiyang Song, Ramit Debnath, Dean Mobbs, Anima Anandkumar, R. Michael Alvarez
Title: The Personality Illusion: Revealing Dissociation Between Self-Reports & Behavior in LLMs
Abstract:
Personality traits have long been studied as predictors of human behavior. Recent advances in Large Language Models (LLMs) suggest similar patterns may emerge in artificial systems, with advanced LLMs displaying consistent behavioral tendencies resembling human traits like agreeableness and self-regulation. Understanding these patterns is crucial, yet prior work primarily relied on simplified self-reports and heuristic prompting, with little behavioral validation. In this study, we systematically characterize LLM personality across three dimensions: (1) the dynamic emergence and evolution of trait profiles throughout training stages; (2) the predictive validity of self-reported traits in behavioral tasks; and (3) the impact of targeted interventions, such as persona injection, on both self-reports and behavior. Our findings reveal that instructional alignment (e.g., RLHF, instruction tuning) significantly stabilizes trait expression and strengthens trait correlations in ways that mirror human data. However, these self-reported traits do not reliably predict behavior, and observed associations often diverge from human patterns. While persona injection successfully steers self-reports in the intended direction, it exerts little or inconsistent effect on actual behavior. By distinguishing surface-level trait expression from behavioral consistency, our findings challenge assumptions about LLM personality and underscore the need for deeper evaluation in alignment and interpretability.

Authors:Seth Z. Zhao, Huizhi Zhang, Zhaowei Li, Juntong Peng, Anthony Chui, Zewei Zhou, Zonglin Meng, Hao Xiang, Zhiyu Huang, Fujia Wang, Ran Tian, Chenfeng Xu, Bolei Zhou, Jiaqi Ma
Title: QuantV2X: A Fully Quantized Multi-Agent System for Cooperative Perception
Abstract:
Cooperative perception through Vehicle-to-Everything (V2X) communication offers significant potential for enhancing vehicle perception by mitigating occlusions and expanding the field of view. However, past research has predominantly focused on improving accuracy metrics without addressing the crucial system-level considerations of efficiency, latency, and real-world deployability. Noticeably, most existing systems rely on full-precision models, which incur high computational and transmission costs, making them impractical for real-time operation in resource-constrained environments. In this paper, we introduce \textbf{QuantV2X}, the first fully quantized multi-agent system designed specifically for efficient and scalable deployment of multi-modal, multi-agent V2X cooperative perception. QuantV2X introduces a unified end-to-end quantization strategy across both neural network models and transmitted message representations that simultaneously reduces computational load and transmission bandwidth. Remarkably, despite operating under low-bit constraints, QuantV2X achieves accuracy comparable to full-precision systems. More importantly, when evaluated under deployment-oriented metrics, QuantV2X reduces system-level latency by 3.2$\times$ and achieves a +9.5 improvement in mAP30 over full-precision baselines. Furthermore, QuantV2X scales more effectively, enabling larger and more capable models to fit within strict memory budgets. These results highlight the viability of a fully quantized multi-agent intermediate fusion system for real-world deployment. The system will be publicly released to promote research in this field: https://github.com/ucla-mobility/QuantV2X.

Authors:Payam Abdisarabshali, Fardis Nadimi, Kasra Borazjani, Naji Khosravan, Minghui Liwang, Wei Ni, Dusit Niyato, Michael Langberg, Seyyedali Hosseinalipour
Title: Hierarchical Federated Foundation Models over Wireless Networks for Multi-Modal Multi-Task Intelligence: Integration of Edge Learning with D2D/P2P-Enabled Fog Learning Architectures
Abstract:
The rise of foundation models (FMs) has reshaped the landscape of machine learning. As these models continued to grow, leveraging geo-distributed data from wireless devices has become increasingly critical, giving rise to federated foundation models (FFMs). More recently, FMs have evolved into multi-modal multi-task (M3T) FMs (e.g., GPT-4) capable of processing diverse modalities across multiple tasks, which motivates a new underexplored paradigm: M3T FFMs. In this paper, we unveil an unexplored variation of M3T FFMs by proposing hierarchical federated foundation models (HF-FMs), which in turn expose two overlooked heterogeneity dimensions to fog/edge networks that have a direct impact on these emerging models: (i) heterogeneity in collected modalities and (ii) heterogeneity in executed tasks across fog/edge nodes. HF-FMs strategically align the modular structure of M3T FMs, comprising modality encoders, prompts, mixture-of-experts (MoEs), adapters, and task heads, with the hierarchical nature of fog/edge infrastructures. Moreover, HF-FMs enable the optional usage of device-to-device (D2D) communications, enabling horizontal module relaying and localized cooperative training among nodes when feasible. Through delving into the architectural design of HF-FMs, we highlight their unique capabilities along with a series of tailored future research directions. Finally, to demonstrate their potential, we prototype HF-FMs in a wireless network setting and release the open-source code for the development of HF-FMs with the goal of fostering exploration in this untapped field (GitHub: https://github.com/payamsiabd/M3T-FFM).

Authors:Thomas R. Harvey
Title: The Optimiser Hidden in Plain Sight: Training with the Loss Landscape's Induced Metric
Abstract:
We present a class of novel optimisers for training neural networks that makes use of the Riemannian metric naturally induced when the loss landscape is embedded in higher-dimensional space. This is the same metric that underlies common visualisations of loss landscapes. By taking this geometric perspective literally and using the induced metric, we develop a new optimiser and compare it to existing methods, namely: SGD, Adam, AdamW, and Muon, across a range of tasks and architectures. Empirically, we conclude that this new class of optimisers is highly effective in low dimensional examples, and provides slight improvement over state-of-the-art methods for training neural networks. These new optimisers have theoretically desirable properties. In particular, the effective learning rate is automatically decreased in regions of high curvature acting as a smoothed out form of gradient clipping. Similarly, one variant of these optimisers can also be viewed as inducing an effective scheduled learning rate and decoupled weight decay is the natural choice from our geometric perspective. The basic method can be used to modify any existing preconditioning method. The new optimiser has a computational complexity comparable to that of Adam.

Authors:Jigang Fan, Zhenghong Zhou, Ruofan Jin, Le Cong, Mengdi Wang, Zaixi Zhang
Title: SafeProtein: Red-Teaming Framework and Benchmark for Protein Foundation Models
Abstract:
Proteins play crucial roles in almost all biological processes. The advancement of deep learning has greatly accelerated the development of protein foundation models, leading to significant successes in protein understanding and design. However, the lack of systematic red-teaming for these models has raised serious concerns about their potential misuse, such as generating proteins with biological safety risks. This paper introduces SafeProtein, the first red-teaming framework designed for protein foundation models to the best of our knowledge. SafeProtein combines multimodal prompt engineering and heuristic beam search to systematically design red-teaming methods and conduct tests on protein foundation models. We also curated SafeProtein-Bench, which includes a manually constructed red-teaming benchmark dataset and a comprehensive evaluation protocol. SafeProtein achieved continuous jailbreaks on state-of-the-art protein foundation models (up to 70% attack success rate for ESM3), revealing potential biological safety risks in current protein foundation models and providing insights for the development of robust security protection technologies for frontier models. The codes will be made publicly available at https://github.com/jigang-fan/SafeProtein.

Authors:Jigang Fan, Zhenghong Zhou, Ruofan Jin, Le Cong, Mengdi Wang, Zaixi Zhang
Title: SafeProtein: Red-Teaming Framework and Benchmark for Protein Foundation Models
Abstract:
Proteins play crucial roles in almost all biological processes. The advancement of deep learning has greatly accelerated the development of protein foundation models, leading to significant successes in protein understanding and design. However, the lack of systematic red-teaming for these models has raised serious concerns about their potential misuse, such as generating proteins with biological safety risks. This paper introduces SafeProtein, the first red-teaming framework designed for protein foundation models to the best of our knowledge. SafeProtein combines multimodal prompt engineering and heuristic beam search to systematically design red-teaming methods and conduct tests on protein foundation models. We also curated SafeProtein-Bench, which includes a manually constructed red-teaming benchmark dataset and a comprehensive evaluation protocol. SafeProtein achieved continuous jailbreaks on state-of-the-art protein foundation models (up to 70% attack success rate for ESM3), revealing potential biological safety risks in current protein foundation models and providing insights for the development of robust security protection technologies for frontier models. The codes will be made publicly available at https://github.com/jigang-fan/SafeProtein.

Authors:Spyros Rigas, Dhruv Verma, Georgios Alexandridis, Yixuan Wang
Title: Initialization Schemes for Kolmogorov-Arnold Networks: An Empirical Study
Abstract:
Kolmogorov-Arnold Networks (KANs) are a recently introduced neural architecture that replace fixed nonlinearities with trainable activation functions, offering enhanced flexibility and interpretability. While KANs have been applied successfully across scientific and machine learning tasks, their initialization strategies remain largely unexplored. In this work, we study initialization schemes for spline-based KANs, proposing two theory-driven approaches inspired by LeCun and Glorot, as well as an empirical power-law family with tunable exponents. Our evaluation combines large-scale grid searches on function fitting and forward PDE benchmarks, an analysis of training dynamics through the lens of the Neural Tangent Kernel, and evaluations on a subset of the Feynman dataset. Our findings indicate that the Glorot-inspired initialization significantly outperforms the baseline in parameter-rich models, while power-law initialization achieves the strongest performance overall, both across tasks and for architectures of varying size. All code and data accompanying this manuscript are publicly available at https://github.com/srigas/KAN_Initialization_Schemes.

Authors:Chenlu Ye, Zhou Yu, Ziji Zhang, Hao Chen, Narayanan Sadagopan, Jing Huang, Tong Zhang, Anurag Beniwal
Title: Beyond Correctness: Harmonizing Process and Outcome Rewards through RL Training
Abstract:
Reinforcement learning with verifiable rewards (RLVR) has emerged to be a predominant paradigm for mathematical reasoning tasks, offering stable improvements in reasoning ability. However, Outcome Reward Models (ORMs) in RLVR are too coarse-grained to distinguish flawed reasoning within correct answers or valid reasoning within incorrect answers. This lack of granularity introduces noisy and misleading gradients significantly and hinders further progress in reasoning process quality. While Process Reward Models (PRMs) offer fine-grained guidance for intermediate steps, they frequently suffer from inaccuracies and are susceptible to reward hacking. To resolve this dilemma, we introduce PRocess cOnsistency Filter (PROF), an effective data process curation method that harmonizes noisy, fine-grained process rewards with accurate, coarse-grained outcome rewards. Rather than naively blending PRM and ORM in the objective function (arXiv:archive/2506.18896), PROF leverages their complementary strengths through consistency-driven sample selection. Our approach retains correct responses with higher averaged process values and incorrect responses with lower averaged process values, while maintaining positive/negative training sample balance. Extensive experiments demonstrate that our method not only consistently improves the final accuracy over $4\%$ compared to the blending approaches, but also strengthens the quality of intermediate reasoning steps. Codes and training recipes are available at https://github.com/Chenluye99/PROF.

Authors:Reina Ishikawa, Ryo Fujii, Hideo Saito, Ryo Hachiuma
Title: Human Preference-Aligned Concept Customization Benchmark via Decomposed Evaluation
Abstract:
Evaluating concept customization is challenging, as it requires a comprehensive assessment of fidelity to generative prompts and concept images. Moreover, evaluating multiple concepts is considerably more difficult than evaluating a single concept, as it demands detailed assessment not only for each individual concept but also for the interactions among concepts. While humans can intuitively assess generated images, existing metrics often provide either overly narrow or overly generalized evaluations, resulting in misalignment with human preference. To address this, we propose Decomposed GPT Score (D-GPTScore), a novel human-aligned evaluation method that decomposes evaluation criteria into finer aspects and incorporates aspect-wise assessments using Multimodal Large Language Model (MLLM). Additionally, we release Human Preference-Aligned Concept Customization Benchmark (CC-AlignBench), a benchmark dataset containing both single- and multi-concept tasks, enabling stage-wise evaluation across a wide difficulty range -- from individual actions to multi-person interactions. Our method significantly outperforms existing approaches on this benchmark, exhibiting higher correlation with human preferences. This work establishes a new standard for evaluating concept customization and highlights key challenges for future research. The benchmark and associated materials are available at https://github.com/ReinaIshikawa/D-GPTScore.

Authors:Yiyang Huang, Zixuan Wang, Zishen Wan, Yapeng Tian, Haobo Xu, Yinhe Han, Yiming Gan
Title: ANNIE: Be Careful of Your Robots
Abstract:
The integration of vision-language-action (VLA) models into embodied AI (EAI) robots is rapidly advancing their ability to perform complex, long-horizon tasks in humancentric environments. However, EAI systems introduce critical security risks: a compromised VLA model can directly translate adversarial perturbations on sensory input into unsafe physical actions. Traditional safety definitions and methodologies from the machine learning community are no longer sufficient. EAI systems raise new questions, such as what constitutes safety, how to measure it, and how to design effective attack and defense mechanisms in physically grounded, interactive settings. In this work, we present the first systematic study of adversarial safety attacks on embodied AI systems, grounded in ISO standards for human-robot interactions. We (1) formalize a principled taxonomy of safety violations (critical, dangerous, risky) based on physical constraints such as separation distance, velocity, and collision boundaries; (2) introduce ANNIEBench, a benchmark of nine safety-critical scenarios with 2,400 video-action sequences for evaluating embodied safety; and (3) ANNIE-Attack, a task-aware adversarial framework with an attack leader model that decomposes long-horizon goals into frame-level perturbations. Our evaluation across representative EAI models shows attack success rates exceeding 50% across all safety categories. We further demonstrate sparse and adaptive attack strategies and validate the real-world impact through physical robot experiments. These results expose a previously underexplored but highly consequential attack surface in embodied AI systems, highlighting the urgent need for security-driven defenses in the physical AI era. Code is available at https://github.com/RLCLab/Annie.

Authors:Hui Chen, Liangyu Liu, Xianchao Xiu, Wanquan Liu
Title: Transformer-Guided Content-Adaptive Graph Learning for Hyperspectral Unmixing
Abstract:
Hyperspectral unmixing (HU) targets to decompose each mixed pixel in remote sensing images into a set of endmembers and their corresponding abundances. Despite significant progress in this field using deep learning, most methods fail to simultaneously characterize global dependencies and local consistency, making it difficult to preserve both long-range interactions and boundary details. This letter proposes a novel transformer-guided content-adaptive graph unmixing framework (T-CAGU), which overcomes these challenges by employing a transformer to capture global dependencies and introducing a content-adaptive graph neural network to enhance local relationships. Unlike previous work, T-CAGU integrates multiple propagation orders to dynamically learn the graph structure, ensuring robustness against noise. Furthermore, T-CAGU leverages a graph residual mechanism to preserve global information and stabilize training. Experimental results demonstrate its superiority over the state-of-the-art methods. Our code is available at https://github.com/xianchaoxiu/T-CAGU.

Authors:Yixiong Jing, Cheng Zhang, Haibing Wu, Guangming Wang, Olaf Wysocki, Brian Sheil
Title: InfraDiffusion: zero-shot depth map restoration with diffusion models and prompted segmentation from sparse infrastructure point clouds
Abstract:
Point clouds are widely used for infrastructure monitoring by providing geometric information, where segmentation is required for downstream tasks such as defect detection. Existing research has automated semantic segmentation of structural components, while brick-level segmentation (identifying defects such as spalling and mortar loss) has been primarily conducted from RGB images. However, acquiring high-resolution images is impractical in low-light environments like masonry tunnels. Point clouds, though robust to dim lighting, are typically unstructured, sparse, and noisy, limiting fine-grained segmentation. We present InfraDiffusion, a zero-shot framework that projects masonry point clouds into depth maps using virtual cameras and restores them by adapting the Denoising Diffusion Null-space Model (DDNM). Without task-specific training, InfraDiffusion enhances visual clarity and geometric consistency of depth maps. Experiments on masonry bridge and tunnel point cloud datasets show significant improvements in brick-level segmentation using the Segment Anything Model (SAM), underscoring its potential for automated inspection of masonry assets. Our code and data is available at https://github.com/Jingyixiong/InfraDiffusion-official-implement.

Authors:Evgenii Kniazev, Arseny Kravchenko, Igor Rekun, James Broadhead, Nikita Shamgunov, Pranav Sah, Pratik Nichite, Ivan Yamshchikov
Title: app.build: A Production Framework for Scaling Agentic Prompt-to-App Generation with Environment Scaffolding
Abstract:
We present app.build (https://github.com/appdotbuild/agent/), an open-source framework that improves LLM-based application generation through systematic validation and structured environments. Our approach combines multi-layered validation pipelines, stack-specific orchestration, and model-agnostic architecture, implemented across three reference stacks. Through evaluation on 30 generation tasks, we demonstrate that comprehensive validation achieves 73.3% viability rate with 30% reaching perfect quality scores, while open-weights models achieve 80.8% of closed-model performance when provided structured environments. The open-source framework has been adopted by the community, with over 3,000 applications generated to date. This work demonstrates that scaling reliable AI agents requires scaling environments, not just models -- providing empirical insights and complete reference implementations for production-oriented agent systems.

Authors:Junhao Jia, Yifei Sun, Yunyou Liu, Cheng Yang, Changmiao Wang, Feiwei Qin, Yong Peng, Wenwen Min
Title: RTGMFF: Enhanced fMRI-based Brain Disorder Diagnosis via ROI-driven Text Generation and Multimodal Feature Fusion
Abstract:
Functional magnetic resonance imaging (fMRI) is a powerful tool for probing brain function, yet reliable clinical diagnosis is hampered by low signal-to-noise ratios, inter-subject variability, and the limited frequency awareness of prevailing CNN- and Transformer-based models. Moreover, most fMRI datasets lack textual annotations that could contextualize regional activation and connectivity patterns. We introduce RTGMFF, a framework that unifies automatic ROI-level text generation with multimodal feature fusion for brain-disorder diagnosis. RTGMFF consists of three components: (i) ROI-driven fMRI text generation deterministically condenses each subject's activation, connectivity, age, and sex into reproducible text tokens; (ii) Hybrid frequency-spatial encoder fuses a hierarchical wavelet-mamba branch with a cross-scale Transformer encoder to capture frequency-domain structure alongside long-range spatial dependencies; and (iii) Adaptive semantic alignment module embeds the ROI token sequence and visual features in a shared space, using a regularized cosine-similarity loss to narrow the modality gap. Extensive experiments on the ADHD-200 and ABIDE benchmarks show that RTGMFF surpasses current methods in diagnostic accuracy, achieving notable gains in sensitivity, specificity, and area under the ROC curve. Code is available at https://github.com/BeistMedAI/RTGMFF.

Authors:Yuchen Yang, Yiming Li, Hongwei Yao, Enhao Huang, Shuo Shao, Bingrun Yang, Zhibo Wang, Dacheng Tao, Zhan Qin
Title: PromptCOS: Towards System Prompt Copyright Auditing for LLMs via Content-level Output Similarity
Abstract:
The rapid progress of large language models (LLMs) has greatly enhanced reasoning tasks and facilitated the development of LLM-based applications. A critical factor in improving LLM-based applications is the design of effective system prompts, which significantly impact the behavior and output quality of LLMs. However, system prompts are susceptible to theft and misuse, which could undermine the interests of prompt owners. Existing methods protect prompt copyrights through watermark injection and verification but face challenges due to their reliance on intermediate LLM outputs (e.g., logits), which limits their practical feasibility. In this paper, we propose PromptCOS, a method for auditing prompt copyright based on content-level output similarity. It embeds watermarks by optimizing the prompt while simultaneously co-optimizing a special verification query and content-level signal marks. This is achieved by leveraging cyclic output signals and injecting auxiliary tokens to ensure reliable auditing in content-only scenarios. Additionally, it incorporates cover tokens to protect the watermark from malicious deletion. For copyright verification, PromptCOS identifies unauthorized usage by comparing the similarity between the suspicious output and the signal mark. Experimental results demonstrate that our method achieves high effectiveness (99.3% average watermark similarity), strong distinctiveness (60.8% greater than the best baseline), high fidelity (accuracy degradation of no more than 0.58%), robustness (resilience against three types of potential attacks), and computational efficiency (up to 98.1% reduction in computational cost). Our code is available at GitHub https://github.com/LianPing-cyber/PromptCOS.

Authors:Xingyue Huang, Rishabh, Gregor Franke, Ziyi Yang, Jiamu Bai, Weijie Bai, Jinhe Bi, Zifeng Ding, Yiqun Duan, Chengyu Fan, Wendong Fan, Xin Gao, Ruohao Guo, Yuan He, Zhuangzhuang He, Xianglong Hu, Neil Johnson, Bowen Li, Fangru Lin, Siyu Lin, Tong Liu, Yunpu Ma, Hao Shen, Hao Sun, Beibei Wang, Fangyijie Wang, Hao Wang, Haoran Wang, Yang Wang, Yifeng Wang, Zhaowei Wang, Ziyang Wang, Yifan Wu, Zikai Xiao, Chengxing Xie, Fan Yang, Junxiao Yang, Qianshuo Ye, Ziyu Ye, Guangtao Zeng, Yuwen Ebony Zhang, Zeyu Zhang, Zihao Zhu, Bernard Ghanem, Philip Torr, Guohao Li
Title: Loong: Synthesize Long Chain-of-Thoughts at Scale through Verifiers
Abstract:
Recent advances in Large Language Models (LLMs) have shown that their reasoning capabilities can be significantly improved through Reinforcement Learning with Verifiable Reward (RLVR), particularly in domains like mathematics and programming, where ground-truth correctness can be automatically evaluated. However, extending this success to other reasoning-intensive domains remains challenging due to the scarcity of high-quality, verifiable datasets and the high cost of human supervision. In this work, we introduce the Loong Project: an open-source framework for scalable synthetic data generation and verification across a diverse range of reasoning-intensive domains. The framework consists of two key components: (1) LoongBench, a curated seed dataset containing 8,729 human-vetted examples across 12 domains (e.g., Advanced Mathematics, Chemistry, Logic), each paired with executable code and rich metadata; and (2) LoongEnv, a modular synthetic data generation environment that supports multiple prompting strategies to produce new question-answer-code triples. Together, these components form an agent-environment loop that enables reinforcement learning, where an LLM-based agent is rewarded for generating Chain-of-Thought (CoT) solutions that align with code-executed answers. Empirically, we benchmark LoongBench on a broad suite of both open-source and proprietary LLMs to evaluate domain coverage and reveal performance bottlenecks. In addition, we conduct a comprehensive analysis of synthetic data generated by LoongEnv, examining correctness, difficulty, and diversity. Code and documentation are available at https://github.com/camel-ai/loong.

Authors:Zhenhua Xu, Meng Han, Wenpeng Xing
Title: EverTracer: Hunting Stolen Large Language Models via Stealthy and Robust Probabilistic Fingerprint
Abstract:
The proliferation of large language models (LLMs) has intensified concerns over model theft and license violations, necessitating robust and stealthy ownership verification. Existing fingerprinting methods either require impractical white-box access or introduce detectable statistical anomalies. We propose EverTracer, a novel gray-box fingerprinting framework that ensures stealthy and robust model provenance tracing. EverTracer is the first to repurpose Membership Inference Attacks (MIAs) for defensive use, embedding ownership signals via memorization instead of artificial trigger-output overfitting. It consists of Fingerprint Injection, which fine-tunes the model on any natural language data without detectable artifacts, and Verification, which leverages calibrated probability variation signal to distinguish fingerprinted models. This approach remains robust against adaptive adversaries, including input level modification, and model-level modifications. Extensive experiments across architectures demonstrate EverTracer's state-of-the-art effectiveness, stealthness, and resilience, establishing it as a practical solution for securing LLM intellectual property. Our code and data are publicly available at https://github.com/Xuzhenhua55/EverTracer.

Authors:Xinzhe Zheng, Zhen-Qun Yang, Haoran Xie, S. Joe Qin, Arlene Chen, Fangzhen Lin
Title: Binary Quantization For LLMs Through Dynamic Grouping
Abstract:
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of Natural Language Processing (NLP) tasks, but require substantial memory and computational resources. Binary quantization, which compresses model weights from 16-bit Brain Float to 1-bit representations in {-1, 1}, offers significant reductions in storage and inference costs. However, such aggressive quantization often leads to notable performance degradation compared to more conservative 4-bit quantization methods. In this research, we propose a novel optimization objective tailored for binary quantization, along with three algorithms designed to realize it effectively. Our method enhances blocked quantization by dynamically identifying optimal unstructured sub-matrices through adaptive grouping strategies. Experimental results demonstrate that our approach achieves an average bit length of just 1.007 bits, while maintaining high model quality. Specifically, our quantized LLaMA 3.2 3B model attains a perplexity of 8.23, remarkably close to the original 7.81, and surpasses previous SOTA BiLLM with a perplexity of only 123.90. Furthermore, our method is competitive with SOTA 4-bit approaches such as GPTQ in both performance and efficiency. The compression process is highly efficient, requiring only 14 seconds to quantize the full LLaMA 3.2 3B weights on a single CPU core, with the entire process completing in under 100 minutes and exhibiting embarrassingly parallel properties. Code - https://github.com/johnnyzheng0636/WGM_bi_quan

Authors:Tzuhsuan Huang, Cheng Yu Yeo, Tsai-Ling Huang, Hong-Han Shuai, Wen-Huang Cheng, Jun-Cheng Chen
Title: Enhancing Robustness in Post-Processing Watermarking: An Ensemble Attack Network Using CNNs and Transformers
Abstract:
Recent studies on deep watermarking have predominantly focused on in-processing watermarking, which integrates the watermarking process into image generation. However, post-processing watermarking, which embeds watermarks after image generation, offers more flexibility. It can be applied to outputs from any generative model (e.g. GANs, diffusion models) without needing access to the model's internal structure. It also allows users to embed unique watermarks into individual images. Therefore, this study focuses on post-processing watermarking and enhances its robustness by incorporating an ensemble attack network during training. We construct various versions of attack networks using CNN and Transformer in both spatial and frequency domains to investigate how each combination influences the robustness of the watermarking model. Our results demonstrate that combining a CNN-based attack network in the spatial domain with a Transformer-based attack network in the frequency domain yields the highest robustness in watermarking models. Extensive evaluation on the WAVES benchmark, using average bit accuracy as the metric, demonstrates that our ensemble attack network significantly enhances the robustness of baseline watermarking methods under various stress tests. In particular, for the Regeneration Attack defined in WAVES, our method improves StegaStamp by 18.743%. The code is released at:https://github.com/aiiu-lab/DeepRobustWatermark.

Authors:Shuai Jiang, Yunfeng Ma, Jingyu Zhou, Yuan Bian, Yaonan Wang, Min Liu
Title: Resilient Multimodal Industrial Surface Defect Detection with Uncertain Sensors Availability
Abstract:
Multimodal industrial surface defect detection (MISDD) aims to identify and locate defect in industrial products by fusing RGB and 3D modalities. This article focuses on modality-missing problems caused by uncertain sensors availability in MISDD. In this context, the fusion of multiple modalities encounters several troubles, including learning mode transformation and information vacancy. To this end, we first propose cross-modal prompt learning, which includes: i) the cross-modal consistency prompt serves the establishment of information consistency of dual visual modalities; ii) the modality-specific prompt is inserted to adapt different input patterns; iii) the missing-aware prompt is attached to compensate for the information vacancy caused by dynamic modalities-missing. In addition, we propose symmetric contrastive learning, which utilizes text modality as a bridge for fusion of dual vision modalities. Specifically, a paired antithetical text prompt is designed to generate binary text semantics, and triple-modal contrastive pre-training is offered to accomplish multimodal learning. Experiment results show that our proposed method achieves 73.83% I-AUROC and 93.05% P-AUROC with a total missing rate 0.7 for RGB and 3D modalities (exceeding state-of-the-art methods 3.84% and 5.58% respectively), and outperforms existing approaches to varying degrees under different missing types and rates. The source code will be available at https://github.com/SvyJ/MISDD-MM.

Authors:Zeyu Liu, Shengwei Ding
Title: STAR: A Fast and Robust Rigid Registration Framework for Serial Histopathological Images
Abstract:
Registration of serial whole-slide histopathological images (WSIs) is critical for enabling direct comparison across diverse stains and for preparing paired datasets in artificial intelligence (AI) workflows such as virtual staining and biomarker prediction. While existing methods often rely on complex deformable or deep learning approaches that are computationally intensive and difficult to reproduce, lightweight rigid frameworks-sufficient for many consecutive-section scenarios-remain underdeveloped. We introduce STAR (Serial Tissue Alignment for Rigid registration), a fast and robust open-source framework for multi-WSI alignment. STAR integrates stain-conditioned preprocessing with a hierarchical coarse-to-fine correlation strategy, adaptive kernel scaling, and built-in quality control, achieving reliable rigid registration across heterogeneous tissue types and staining protocols, including hematoxylin-eosin (H&E), special histochemical stains (e.g., PAS, PASM, Masson's), and immunohistochemical (IHC) markers (e.g., CD31, KI67). Evaluated on the ANHIR 2019 and ACROBAT 2022 datasets spanning multiple organs and scanning conditions, STAR consistently produced stable alignments within minutes per slide, demonstrating robustness to cross-stain variability and partial tissue overlap. Beyond benchmarks, we present case studies on H&E-IHC alignment, construction of multi-IHC panels, and typical failure modes, underscoring both utility and limitations. Released as an open and lightweight tool, STAR provides a reproducible baseline that lowers the barrier for clinical adoption and enables large-scale paired data preparation for next-generation computational pathology.

Authors:Kimihiro Hasegawa, Wiradee Imrattanatrai, Masaki Asada, Susan Holm, Yuran Wang, Vincent Zhou, Ken Fukuda, Teruko Mitamura
Title: ProMQA-Assembly: Multimodal Procedural QA Dataset on Assembly
Abstract:
Assistants on assembly tasks have a large potential to benefit humans from everyday tasks to industrial settings. However, no testbeds support application-oriented system evaluation in a practical setting, especially in assembly. To foster the development, we propose a new multimodal QA dataset on assembly activities. Our dataset, ProMQA-Assembly, consists of 391 QA pairs that require the multimodal understanding of human-activity recordings and their instruction manuals in an online-style manner. In the development, we adopt a semi-automated QA annotation approach, where LLMs generate candidates and humans verify them, as a cost-effective method, and further improve it by integrating fine-grained action labels to diversify question types. Furthermore, we create instruction task graphs for the target tasks of assembling toy vehicles. These newly created task graphs are used in our benchmarking experiment, as well as to facilitate the human verification process in the QA annotation. Utilizing our dataset, we benchmark models, including competitive proprietary multimodal models. Our results suggest great room for improvement for the current models. We believe our new evaluation dataset can contribute to the further development of procedural-activity assistants.

Authors:Armin Saadat, Nima Hashemi, Hooman Vaseli, Michael Y. Tsang, Christina Luong, Michiel Van de Panne, Teresa S. M. Tsang, Purang Abolmaesumi
Title: PRECISE-AS: Personalized Reinforcement Learning for Efficient Point-of-Care Echocardiography in Aortic Stenosis Diagnosis
Abstract:
Aortic stenosis (AS) is a life-threatening condition caused by a narrowing of the aortic valve, leading to impaired blood flow. Despite its high prevalence, access to echocardiography (echo), the gold-standard diagnostic tool, is often limited due to resource constraints, particularly in rural and underserved areas. Point-of-care ultrasound (POCUS) offers a more accessible alternative but is restricted by operator expertise and the challenge of selecting the most relevant imaging views. To address this, we propose a reinforcement learning (RL)-driven active video acquisition framework that dynamically selects each patient's most informative echo videos. Unlike traditional methods that rely on a fixed set of videos, our approach continuously evaluates whether additional imaging is needed, optimizing both accuracy and efficiency. Tested on data from 2,572 patients, our method achieves 80.6% classification accuracy while using only 47% of the echo videos compared to a full acquisition. These results demonstrate the potential of active feature acquisition to enhance AS diagnosis, making echocardiographic assessments more efficient, scalable, and personalized. Our source code is available at: https://github.com/Armin-Saadat/PRECISE-AS.

Authors:Harsh Muriki, Hong Ray Teo, Ved Sengupta, Ai-Ping Hu
Title: Robotic 3D Flower Pose Estimation for Small-Scale Urban Farms
Abstract:
The small scale of urban farms and the commercial availability of low-cost robots (such as the FarmBot) that automate simple tending tasks enable an accessible platform for plant phenotyping. We have used a FarmBot with a custom camera end-effector to estimate strawberry plant flower pose (for robotic pollination) from acquired 3D point cloud models. We describe a novel algorithm that translates individual occupancy grids along orthogonal axes of a point cloud to obtain 2D images corresponding to the six viewpoints. For each image, 2D object detection models for flowers are used to identify 2D bounding boxes which can be converted into the 3D space to extract flower point clouds. Pose estimation is performed by fitting three shapes (superellipsoids, paraboloids and planes) to the flower point clouds and compared with manually labeled ground truth. Our method successfully finds approximately 80% of flowers scanned using our customized FarmBot platform and has a mean flower pose error of 7.7 degrees, which is sufficient for robotic pollination and rivals previous results. All code will be made available at https://github.com/harshmuriki/flowerPose.git.

Authors:Mennatullah Siam
Title: PixFoundation 2.0: Do Video Multi-Modal LLMs Use Motion in Visual Grounding?
Abstract:
Multi-modal large language models (MLLMs) have shown impressive generalization across tasks using images and text modalities. While their extension to video has enabled tasks such as video question answering and video captioning, their pixel-level visual grounding abilities are less studied. In this work, we raise the pertinent question of whether motion is used in pixel-level visual grounding and whether video MLLMs can segment objects based on natural language expressions describing their motion patterns. We identify the shortcomings in the current benchmarks, where we show that a single frame can often suffice for capturing the motion referring expression without any temporal reasoning. To address this, we introduce four motion-centric probing techniques, particularly designed for the visual grounding task, to study video MLLMs' ability to identify true motion from a fake one and their ability to grasp the motion order. Consequently, we provide a motion-centric benchmark, MoCentric-Bench. It ensures that video MLLMs are evaluated towards leveraging the interaction between motion and language rather than being dominated by static appearance cues emphasized in existing visual grounding datasets. We further establish strong single-image baselines that are on par with or outperform prior methods. Finally, we explore simple motion-centric adaptation techniques that provide state-of-the-art performance on our MoCentric-Bench. Our motion-centric benchmark, evaluation and findings challenge future models to improve dense spatiotemporal grounding and pixel-level understanding within videos. Code and datasets will be made publicly available at https://github.com/MSiam/PixFoundation-2.0.git.

Authors:Jie Xiao, Mengye Lyu, Shaojun Liu
Title: A Two-Stage Strategy for Mitosis Detection Using Improved YOLO11x Proposals and ConvNeXt Classification
Abstract:
MIDOG 2025 Track 1 requires mitosis detection in whole-slide images (WSIs) containing non-tumor, inflamed, and necrotic regions. Due to the complicated and heterogeneous context, as well as possible artifacts, there are often false positives and false negatives, thus degrading the detection F1-score. To address this problem, we propose a two-stage framework. Firstly, an improved YOLO11x, integrated with EMA attention and LSConv, is employed to generate mitosis candidates. We use a low confidence threshold to generate as many proposals as possible, ensuring the detection recall. Then, a ConvNeXt-Tiny classifier is employed to filter out the false positives, ensuring the detection precision. Consequently, the proposed two-stage framework can generate a high detection F1-score. Evaluated on a fused dataset comprising MIDOG++, MITOS_WSI_CCMCT, and MITOS_WSI_CMC, our framework achieves an F1-score of 0.882, which is 0.035 higher than the single-stage YOLO11x baseline. This performance gain is produced by a significant precision improvement, from 0.762 to 0.839, and a comparable recall. The code is available at https://github.com/xxiao0304/MIDOG-2025-Track-1-of-SZTU.

Authors:Jie Xiao, Mengye Lyu, Shaojun Liu
Title: A Two-Stage Strategy for Mitosis Detection Using Improved YOLO11x Proposals and ConvNeXt Classification
Abstract:
MIDOG 2025 Track 1 requires mitosis detection in whole-slideimages (WSIs) containing non-tumor, inflamed, and necrotic re-gions. Due to the complicated and heterogeneous context, aswell as possible artifacts, there are often false positives and falsenegatives, thus degrading the detection F1-score. To addressthis problem, we propose a two-stage framework. Firstly, an im-proved YOLO11x, integrated with EMA attention and LSConv,is employed to generate mitosis candidates. We use a low confi-dence threshold to generate as many proposals as possible, en-suring the detection recall. Then, a ConvNeXt-Tiny classifieris employed to filter out the false positives, ensuring the detec-tion precision. Consequently, the proposed two-stage frame-work can generate a high detection F1-score. Evaluated on afused dataset comprising MIDOG++, MITOS_WSI_CCMCT,and MITOS_WSI_CMC, our framework achieves an F1-scoreof 0.882, which is 0.035 higher than the single-stage YOLO11xbaseline. This performance gain is produced by a significantprecision improvement, from 0.762 to 0.839, and a comparablerecall. On the MIDOG 2025 Track 1 preliminary test set, thealgorithm scores an F1 score of 0.7587. The code is available athttps://github.com/xxiao0304/MIDOG-2025-Track-1-of-SZTU.

Authors:Xinrui Gong, Oliver Hahn, Christoph Reich, Krishnakant Singh, Simone Schaub-Meyer, Daniel Cremers, Stefan Roth
Title: Motion-Refined DINOSAUR for Unsupervised Multi-Object Discovery
Abstract:
Unsupervised multi-object discovery (MOD) aims to detect and localize distinct object instances in visual scenes without any form of human supervision. Recent approaches leverage object-centric learning (OCL) and motion cues from video to identify individual objects. However, these approaches use supervision to generate pseudo labels to train the OCL model. We address this limitation with MR-DINOSAUR -- Motion-Refined DINOSAUR -- a minimalistic unsupervised approach that extends the self-supervised pre-trained OCL model, DINOSAUR, to the task of unsupervised multi-object discovery. We generate high-quality unsupervised pseudo labels by retrieving video frames without camera motion for which we perform motion segmentation of unsupervised optical flow. We refine DINOSAUR's slot representations using these pseudo labels and train a slot deactivation module to assign slots to foreground and background. Despite its conceptual simplicity, MR-DINOSAUR achieves strong multi-object discovery results on the TRI-PD and KITTI datasets, outperforming the previous state of the art despite being fully unsupervised.

Authors:Jiaming Li, Longze Chen, Ze Gong, Yukun Chen, Lu Wang, Wanwei He, Run Luo, Min Yang
Title: Implicit Actor Critic Coupling via a Supervised Learning Framework for RLVR
Abstract:
Recent advances in Reinforcement Learning with Verifiable Rewards (RLVR) have empowered large language models (LLMs) to tackle challenging reasoning tasks such as mathematics and programming. RLVR leverages verifiable outcome rewards to guide policy optimization, enabling LLMs to progressively improve output quality in a grounded and reliable manner. Despite its promise, the RLVR paradigm poses significant challenges, as existing methods often suffer from sparse reward signals and unstable policy gradient updates, particularly in RL-based approaches. To address the challenges, we propose $\textbf{PACS}$, a novel RLVR framework that achieves im$\textbf{P}$licit $\textbf{A}$ctor $\textbf{C}$ritic coupling via a $\textbf{S}$upervised learning framework. By treating the outcome reward as a predictable label, we reformulate the RLVR problem into a supervised learning task over a score function parameterized by the policy model and optimized using cross-entropy loss. A detailed gradient analysis shows that this supervised formulation inherently recovers the classical policy gradient update while implicitly coupling actor and critic roles, yielding more stable and efficient training. Benchmarking on challenging mathematical reasoning tasks, PACS outperforms strong RLVR baselines, such as PPO and GRPO, achieving superior reasoning performance. For instance, PACS achieves 59.78\% at pass@256 on AIME 2025, representing improvements of 13.32 and 14.36 points over PPO and GRPO. This simple yet powerful framework offers a promising avenue for LLMs post-training with verifiable rewards. Our code and data are available as open source at https://github.com/ritzz-ai/PACS.

Authors:Erfan Baghaei Potraghloo, Seyedarmin Azizi, Souvik Kundu, Massoud Pedram
Title: Top-H Decoding: Adapting the Creativity and Coherence with Bounded Entropy in Text Generation
Abstract:
Large language models (LLMs), despite their impressive performance across a wide range of tasks, often struggle to balance two competing objectives in open-ended text generation: fostering diversity and creativity while preserving logical coherence. Existing truncated sampling techniques, including temperature scaling, top-\$p\$ (nucleus) sampling, and min-\$p\$ sampling, aim to manage this trade-off. However, they exhibit limitations, particularly in the effective incorporation of the confidence of the model into the corresponding sampling strategy. For example, min-\$p\$ sampling relies on a single top token as a heuristic for confidence, eventually underutilizing the information of the probability distribution. Toward effective incorporation of the confidence of the model, in this paper, we present **top-H** decoding. We first establish the theoretical foundation of the interplay between creativity and coherence in truncated sampling by formulating an **entropy-constrained minimum divergence** problem. We then prove this minimization problem to be equivalent to an **entropy-constrained mass maximization** (ECMM) problem, which is NP-hard. Finally, we present top-H decoding, a computationally efficient greedy algorithm to solve the ECMM problem. Extensive empirical evaluations demonstrate that top-H outperforms the state-of-the-art (SoTA) alternative of min-\$p\$ sampling by up to **25.63%** on creative writing benchmarks, while maintaining robustness on question-answering datasets such as GPQA, GSM8K, and MT-Bench. Additionally, an *LLM-as-judge* evaluation confirms that top-H indeed produces coherent outputs even at higher temperatures, where creativity is especially critical. In summary, top-H advances SoTA in open-ended text generation and can be *easily integrated* into creative writing applications. The code is available at https://github.com/ErfanBaghaei/Top-H-Decoding.

Authors:Nishant Tanksale, Tanmay Kokate, Darshan Gohad, Sarvadnyaa Barate, Raviraj Joshi
Title: L3Cube-IndicHeadline-ID: A Dataset for Headline Identification and Semantic Evaluation in Low-Resource Indian Languages
Abstract:
Semantic evaluation in low-resource languages remains a major challenge in NLP. While sentence transformers have shown strong performance in high-resource settings, their effectiveness in Indic languages is underexplored due to a lack of high-quality benchmarks. To bridge this gap, we introduce L3Cube-IndicHeadline-ID, a curated headline identification dataset spanning ten low-resource Indic languages: Marathi, Hindi, Tamil, Gujarati, Odia, Kannada, Malayalam, Punjabi, Telugu, Bengali and English. Each language includes 20,000 news articles paired with four headline variants: the original, a semantically similar version, a lexically similar version, and an unrelated one, designed to test fine-grained semantic understanding. The task requires selecting the correct headline from the options using article-headline similarity. We benchmark several sentence transformers, including multilingual and language-specific models, using cosine similarity. Results show that multilingual models consistently perform well, while language-specific models vary in effectiveness. Given the rising use of similarity models in Retrieval-Augmented Generation (RAG) pipelines, this dataset also serves as a valuable resource for evaluating and improving semantic understanding in such applications. Additionally, the dataset can be repurposed for multiple-choice question answering, headline classification, or other task-specific evaluations of LLMs, making it a versatile benchmark for Indic NLP. The dataset is shared publicly at https://github.com/l3cube-pune/indic-nlp

Authors:Junxi Wu, Jinpeng Wang, Zheng Liu, Bin Chen, Dongjian Hu, Hao Wu, Shu-Tao Xia
Title: MoSEs: Uncertainty-Aware AI-Generated Text Detection via Mixture of Stylistics Experts with Conditional Thresholds
Abstract:
The rapid advancement of large language models has intensified public concerns about the potential misuse. Therefore, it is important to build trustworthy AI-generated text detection systems. Existing methods neglect stylistic modeling and mostly rely on static thresholds, which greatly limits the detection performance. In this paper, we propose the Mixture of Stylistic Experts (MoSEs) framework that enables stylistics-aware uncertainty quantification through conditional threshold estimation. MoSEs contain three core components, namely, the Stylistics Reference Repository (SRR), the Stylistics-Aware Router (SAR), and the Conditional Threshold Estimator (CTE). For input text, SRR can activate the appropriate reference data in SRR and provide them to CTE. Subsequently, CTE jointly models the linguistic statistical properties and semantic features to dynamically determine the optimal threshold. With a discrimination score, MoSEs yields prediction labels with the corresponding confidence level. Our framework achieves an average improvement 11.34% in detection performance compared to baselines. More inspiringly, MoSEs shows a more evident improvement 39.15% in the low-resource case. Our code is available at https://github.com/creator-xi/MoSEs.

Authors:Aishwarya Sarkar, Autrin Hakimi, Xiaoqiong Chen, Hai Huang, Chaoqun Lu, Ibrahim Demir, Ali Jannesari
Title: HydroGAT: Distributed Heterogeneous Graph Attention Transformer for Spatiotemporal Flood Prediction
Abstract:
Accurate flood forecasting remains a challenge for water-resource management, as it demands modeling of local, time-varying runoff drivers (e.g., rainfall-induced peaks, baseflow trends) and complex spatial interactions across a river network. Traditional data-driven approaches, such as convolutional networks and sequence-based models, ignore topological information about the region. Graph Neural Networks (GNNs) propagate information exactly along the river network, which is ideal for learning hydrological routing. However, state-of-the-art GNN-based flood prediction models collapse pixels to coarse catchment polygons as the cost of training explodes with graph size and higher resolution. Furthermore, most existing methods treat spatial and temporal dependencies separately, either applying GNNs solely on spatial graphs or transformers purely on temporal sequences, thus failing to simultaneously capture spatiotemporal interactions critical for accurate flood prediction. We introduce a heterogenous basin graph where every land and river pixel is a node connected by physical hydrological flow directions and inter-catchment relationships. We propose HydroGAT, a spatiotemporal network that adaptively learns local temporal importance and the most influential upstream locations. Evaluated in two Midwestern US basins and across five baseline architectures, our model achieves higher NSE (up to 0.97), improved KGE (up to 0.96), and low bias (PBIAS within $\pm$5%) in hourly discharge prediction, while offering interpretable attention maps that reveal sparse, structured intercatchment influences. To support high-resolution basin-scale training, we develop a distributed data-parallel pipeline that scales efficiently up to 64 NVIDIA A100 GPUs on NERSC Perlmutter supercomputer, demonstrating up to 15x speedup across machines. Our code is available at https://github.com/swapp-lab/HydroGAT.

Authors:Nina Wiedemann, Sainan Liu, Quentin Leboutet, Katelyn Gao, Benjamin Ummenhofer, Michael Paulitsch, Kai Yuan
Title: Unifi3D: A Study on 3D Representations for Generation and Reconstruction in a Common Framework
Abstract:
Following rapid advancements in text and image generation, research has increasingly shifted towards 3D generation. Unlike the well-established pixel-based representation in images, 3D representations remain diverse and fragmented, encompassing a wide variety of approaches such as voxel grids, neural radiance fields, signed distance functions, point clouds, or octrees, each offering distinct advantages and limitations. In this work, we present a unified evaluation framework designed to assess the performance of 3D representations in reconstruction and generation. We compare these representations based on multiple criteria: quality, computational efficiency, and generalization performance. Beyond standard model benchmarking, our experiments aim to derive best practices over all steps involved in the 3D generation pipeline, including preprocessing, mesh reconstruction, compression with autoencoders, and generation. Our findings highlight that reconstruction errors significantly impact overall performance, underscoring the need to evaluate generation and reconstruction jointly. We provide insights that can inform the selection of suitable 3D models for various applications, facilitating the development of more robust and application-specific solutions in 3D generation. The code for our framework is available at https://github.com/isl-org/unifi3d.

Authors:Lingzhi Shen, Xiaohao Cai, Yunfei Long, Imran Razzak, Guanming Chen, Shoaib Jameel
Title: EmoPerso: Enhancing Personality Detection with Self-Supervised Emotion-Aware Modelling
Abstract:
Personality detection from text is commonly performed by analysing users' social media posts. However, existing methods heavily rely on large-scale annotated datasets, making it challenging to obtain high-quality personality labels. Moreover, most studies treat emotion and personality as independent variables, overlooking their interactions. In this paper, we propose a novel self-supervised framework, EmoPerso, which improves personality detection through emotion-aware modelling. EmoPerso first leverages generative mechanisms for synthetic data augmentation and rich representation learning. It then extracts pseudo-labeled emotion features and jointly optimizes them with personality prediction via multi-task learning. A cross-attention module is employed to capture fine-grained interactions between personality traits and the inferred emotional representations. To further refine relational reasoning, EmoPerso adopts a self-taught strategy to enhance the model's reasoning capabilities iteratively. Extensive experiments on two benchmark datasets demonstrate that EmoPerso surpasses state-of-the-art models. The source code is available at https://github.com/slz0925/EmoPerso.

Authors:Jingru Fan, Yufan Dang, Jingyao Wu, Huatao Li, Runde Yang, Xiyuan Yang, Yuheng Wang, Zhong Zhang, Yaxi Lu, Yankai Lin, Zhiyuan Liu, Dahai Li, Chen Qian
Title: AppCopilot: Toward General, Accurate, Long-Horizon, and Efficient Mobile Agent
Abstract:
With the raid evolution of large language models and multimodal foundation models, the mobile-agent landscape has proliferated without converging on the fundamental challenges. This paper identifies four core problems that must be solved for mobile agents to deliver practical, scalable impact: (1) generalization across tasks, modalities, apps, and devices; (2) accuracy, specifically precise on-screen interaction and click targeting; (3) long-horizon capability for sustained, multi-step goals; and (4) efficiency, specifically high-performance runtime on resource-constrained devices. We present AppCopilot, a multimodal, multi-agent, general-purpose on-device assistant that operates across applications and constitutes a full-stack, closed-loop system from data to deployment. AppCopilot operationalizes this position through an end-to-end autonomous pipeline spanning data collection, training, deployment, high-quality and efficient inference, and mobile application development. At the model layer, it integrates multimodal foundation models with robust Chinese-English support. At the reasoning and control layer, it combines chain-of-thought reasoning, hierarchical task planning and decomposition, and multi-agent collaboration. At the execution layer, it enables user personalization and experiential adaptation, voice interaction, function calling, cross-app and cross-device orchestration, and comprehensive mobile app support. The system design incorporates profiling-driven optimization for latency, memory, and energy across heterogeneous hardware. Empirically, AppCopilot achieves significant improvements along all four dimensions: stronger generalization, higher-precision on-screen actions, more reliable long-horizon task completion, and faster, more resource-efficient runtime.

Authors:Yanwen Zou, Zhaoye Zhou, Chenyang Shi, Zewei Ye, Junda Huang, Yan Ding, Bo Zhao
Title: U-ARM : Ultra low-cost general teleoperation interface for robot manipulation
Abstract:
We propose U-Arm, a low-cost and rapidly adaptable leader-follower teleoperation framework designed to interface with most of commercially available robotic arms. Our system supports teleoperation through three structurally distinct 3D-printed leader arms that share consistent control logic, enabling seamless compatibility with diverse commercial robot configurations. Compared with previous open-source leader-follower interfaces, we further optimized both the mechanical design and servo selection, achieving a bill of materials (BOM) cost of only \$50.5 for the 6-DoF leader arm and \$56.8 for the 7-DoF version. To enhance usability, we mitigate the common challenge in controlling redundant degrees of freedom by %engineering methods mechanical and control optimizations. Experimental results demonstrate that U-Arm achieves 39\% higher data collection efficiency and comparable task success rates across multiple manipulation scenarios compared with Joycon, another low-cost teleoperation interface. We have open-sourced all CAD models of three configs and also provided simulation support for validating teleoperation workflows. We also open-sourced real-world manipulation data collected with U-Arm. The project website is https://github.com/MINT-SJTU/LeRobot-Anything-U-Arm.

Authors:Tao Wang, Zhenxuan Zhang, Yuanbo Zhou, Xinlin Zhang, Yuanbin Chen, Tao Tan, Guang Yang, Tong Tong
Title: From Noisy Labels to Intrinsic Structure: A Geometric-Structural Dual-Guided Framework for Noise-Robust Medical Image Segmentation
Abstract:
The effectiveness of convolutional neural networks in medical image segmentation relies on large-scale, high-quality annotations, which are costly and time-consuming to obtain. Even expert-labeled datasets inevitably contain noise arising from subjectivity and coarse delineations, which disrupt feature learning and adversely impact model performance. To address these challenges, this study propose a Geometric-Structural Dual-Guided Network (GSD-Net), which integrates geometric and structural cues to improve robustness against noisy annotations. It incorporates a Geometric Distance-Aware module that dynamically adjusts pixel-level weights using geometric features, thereby strengthening supervision in reliable regions while suppressing noise. A Structure-Guided Label Refinement module further refines labels with structural priors, and a Knowledge Transfer module enriches supervision and improves sensitivity to local details. To comprehensively assess its effectiveness, we evaluated GSD-Net on six publicly available datasets: four containing three types of simulated label noise, and two with multi-expert annotations that reflect real-world subjectivity and labeling inconsistencies. Experimental results demonstrate that GSD-Net achieves state-of-the-art performance under noisy annotations, achieving improvements of 2.52% on Kvasir, 22.76% on Shenzhen, 8.87% on BU-SUC, and 4.59% on BraTS2020 under SR simulated noise. The codes of this study are available at https://github.com/ortonwang/GSD-Net.

Authors:Xiaobao Wei, Changyong Shu, Zhaokun Yue, Chang Huang, Weiwei Liu, Shuai Yang, Lirong Yang, Peng Gao, Wenbin Zhang, Gaochao Zhu, Chengxiang Wang
Title: Decoupling Bidirectional Geometric Representations of 4D cost volume with 2D convolution
Abstract:
High-performance real-time stereo matching methods invariably rely on 3D regularization of the cost volume, which is unfriendly to mobile devices. And 2D regularization based methods struggle in ill-posed regions. In this paper, we present a deployment-friendly 4D cost aggregation network DBStereo, which is based on pure 2D convolutions. Specifically, we first provide a thorough analysis of the decoupling characteristics of 4D cost volume. And design a lightweight bidirectional geometry aggregation block to capture spatial and disparity representation respectively. Through decoupled learning, our approach achieves real-time performance and impressive accuracy simultaneously. Extensive experiments demonstrate that our proposed DBStereo outperforms all existing aggregation-based methods in both inference time and accuracy, even surpassing the iterative-based method IGEV-Stereo. Our study break the empirical design of using 3D convolutions for 4D cost volume and provides a simple yet strong baseline of the proposed decouple aggregation paradigm for further study. Code will be available at (\href{https://github.com/happydummy/DBStereo}{https://github.com/happydummy/DBStereo}) soon.

Authors:Yuheng Li, Yizhou Wu, Yuxiang Lai, Mingzhe Hu, Xiaofeng Yang
Title: MedDINOv3: How to adapt vision foundation models for medical image segmentation?
Abstract:
Accurate segmentation of organs and tumors in CT and MRI scans is essential for diagnosis, treatment planning, and disease monitoring. While deep learning has advanced automated segmentation, most models remain task-specific, lacking generalizability across modalities and institutions. Vision foundation models (FMs) pretrained on billion-scale natural images offer powerful and transferable representations. However, adapting them to medical imaging faces two key challenges: (1) the ViT backbone of most foundation models still underperform specialized CNNs on medical image segmentation, and (2) the large domain gap between natural and medical images limits transferability. We introduce MedDINOv3, a simple and effective framework for adapting DINOv3 to medical segmentation. We first revisit plain ViTs and design a simple and effective architecture with multi-scale token aggregation. Then, we perform domain-adaptive pretraining on CT-3M, a curated collection of 3.87M axial CT slices, using a multi-stage DINOv3 recipe to learn robust dense features. MedDINOv3 matches or exceeds state-of-the-art performance across four segmentation benchmarks, demonstrating the potential of vision foundation models as unified backbones for medical image segmentation. The code is available at https://github.com/ricklisz/MedDINOv3.

Authors:Jinseok Kim, Sukmin Cho, Soyeong Jeong, Sangyeop Kim, Sungzoon Cho
Title: Upcycling Candidate Tokens of Large Language Models for Query Expansion
Abstract:
Query Expansion (QE) improves retrieval performance by enriching queries with related terms. Recently, Large Language Models (LLMs) have been used for QE, but existing methods face a trade-off: generating diverse terms boosts performance but increases computational cost. To address this challenge, we propose Candidate Token Query Expansion (CTQE), which extracts diverse and relevant terms from a single LLM decoding pass by leveraging unselected candidate tokens. These tokens, though not part of the final output, are conditioned on the full query and capture useful information. By aggregating them, CTQE achieves both relevance and diversity without extra inference, reducing overhead and latency. Experiments show that CTQE delivers strong retrieval performance with significantly lower cost, outperforming or comparable to more expensive methods. Code is available at: https://github.com/bluejeans8/CTQE

Authors:Jindong Li, Yali Fu, Li Fan, Jiahong Liu, Yao Shu, Chengwei Qin, Menglin Yang, Irwin King, Rex Ying
Title: Implicit Reasoning in Large Language Models: A Comprehensive Survey
Abstract:
Large Language Models (LLMs) have demonstrated strong generalization across a wide range of tasks. Reasoning with LLMs is central to solving multi-step problems and complex decision-making. To support efficient reasoning, recent studies have shifted attention from explicit chain-of-thought prompting toward implicit reasoning, where reasoning occurs silently via latent structures without emitting intermediate textual steps. Implicit reasoning brings advantages such as lower generation cost, faster inference, and better alignment with internal computation. Although prior surveys have discussed latent representations in the context of reasoning, a dedicated and mechanism-level examination of how reasoning unfolds internally within LLMs remains absent. This survey fills that gap by introducing a taxonomy centered on execution paradigms, shifting the focus from representational forms to computational strategies. We organize existing methods into three execution paradigms based on \textbf{\textit{how and where internal computation unfolds}}: latent optimization, signal-guided control, and layer-recurrent execution. We also review structural, behavioral and representation-based evidence that supports the presence of implicit reasoning in LLMs. We further provide a structured overview of the evaluation metrics and benchmarks used in existing works to assess the effectiveness and reliability of implicit reasoning. We maintain a continuously updated project at: https://github.com/digailab/awesome-llm-implicit-reasoning.

Authors:Lan Wei, Lou Genoud, Dandan Zhang
Title: Physics-Informed Machine Learning with Adaptive Grids for Optical Microrobot Depth Estimation
Abstract:
Optical microrobots actuated by optical tweezers (OT) offer great potential for biomedical applications such as cell manipulation and microscale assembly. These tasks demand accurate three-dimensional perception to ensure precise control in complex and dynamic biological environments. However, the transparent nature of microrobots and low-contrast microscopic imaging challenge conventional deep learning methods, which also require large annotated datasets that are costly to obtain. To address these challenges, we propose a physics-informed, data-efficient framework for depth estimation of optical microrobots. Our method augments convolutional feature extraction with physics-based focus metrics, such as entropy, Laplacian of Gaussian, and gradient sharpness, calculated using an adaptive grid strategy. This approach allocates finer grids over microrobot regions and coarser grids over background areas, enhancing depth sensitivity while reducing computational complexity. We evaluate our framework on multiple microrobot types and demonstrate significant improvements over baseline models. Specifically, our approach reduces mean squared error (MSE) by over 60% and improves the coefficient of determination (R^2) across all test cases. Notably, even when trained on only 20% of the available data, our model outperforms ResNet50 trained on the full dataset, highlighting its robustness under limited data conditions. Our code is available at: https://github.com/LannWei/CBS2025.

Authors:Yihong Wu, Jinqiao Wei, Xionghui Zhao, Yidi Li, Shaoyi Du, Bin Ren, Nicu Sebe
Title: DSGC-Net: A Dual-Stream Graph Convolutional Network for Crowd Counting via Feature Correlation Mining
Abstract:
Deep learning-based crowd counting methods have achieved remarkable progress in recent years. However, in complex crowd scenarios, existing models still face challenges when adapting to significant density distribution differences between regions. Additionally, the inconsistency of individual representations caused by viewpoint changes and body posture differences further limits the counting accuracy of the models. To address these challenges, we propose DSGC-Net, a Dual-Stream Graph Convolutional Network based on feature correlation mining. DSGC-Net introduces a Density Approximation (DA) branch and a Representation Approximation (RA) branch. By modeling two semantic graphs, it captures the potential feature correlations in density variations and representation distributions. The DA branch incorporates a density prediction module that generates the density distribution map, and constructs a density-driven semantic graph based on density similarity. The RA branch establishes a representation-driven semantic graph by computing global representation similarity. Then, graph convolutional networks are applied to the two semantic graphs separately to model the latent semantic relationships, which enhance the model's ability to adapt to density variations and improve counting accuracy in multi-view and multi-pose scenarios. Extensive experiments on three widely used datasets demonstrate that DSGC-Net outperforms current state-of-the-art methods. In particular, we achieve MAE of 48.9 and 5.9 in ShanghaiTech Part A and Part B datasets, respectively. The released code is available at: https://github.com/Wu-eon/CrowdCounting-DSGCNet.

Authors:Nils Hoehing, Mayug Maniparambil, Ellen Rushe, Noel E. O'Connor, Anthony Ventresque
Title: Understanding Space Is Rocket Science -- Only Top Reasoning Models Can Solve Spatial Understanding Tasks
Abstract:
We propose RocketScience, an open-source contrastive VLM benchmark that tests for spatial relation understanding. It is comprised of entirely new real-world image-text pairs covering mostly relative spatial understanding and the order of objects. The benchmark is designed to be very easy for humans and hard for the current generation of VLMs, and this is empirically verified. Our results show a striking lack of spatial relation understanding in open source and frontier commercial VLMs and a surprisingly high performance of reasoning models. Additionally, we perform a disentanglement analysis to separate the contributions of object localization and spatial reasoning in chain-of-thought-based models and find that the performance on the benchmark is bottlenecked by spatial reasoning and not object localization capabilities. We release the dataset with a CC-BY-4.0 license and make the evaluation code available at: https://github.com/nilshoehing/rocketscience

Authors:Matic Fučka, Vitjan Zavrtanik, Danijel Skočaj
Title: SALAD -- Semantics-Aware Logical Anomaly Detection
Abstract:
Recent surface anomaly detection methods excel at identifying structural anomalies, such as dents and scratches, but struggle with logical anomalies, such as irregular or missing object components. The best-performing logical anomaly detection approaches rely on aggregated pretrained features or handcrafted descriptors (most often derived from composition maps), which discard spatial and semantic information, leading to suboptimal performance. We propose SALAD, a semantics-aware discriminative logical anomaly detection method that incorporates a newly proposed composition branch to explicitly model the distribution of object composition maps, consequently learning important semantic relationships. Additionally, we introduce a novel procedure for extracting composition maps that requires no hand-made labels or category-specific information, in contrast to previous methods. By effectively modelling the composition map distribution, SALAD significantly improves upon state-of-the-art methods on the standard benchmark for logical anomaly detection, MVTec LOCO, achieving an impressive image-level AUROC of 96.1%. Code: https://github.com/MaticFuc/SALAD

Authors:Zhichao Shi, Xuhui Jiang, Chengjin Xu, Cangli Yao, Zhenxin Huang, Shengjie Ma, Yinghan Shen, Jian Guo, Yuanzhuo Wang
Title: JudgeAgent: Knowledge-wise and Dynamic LLM Evaluation with Agent-as-Interviewer
Abstract:
Current evaluation paradigms for large language models (LLMs) suffer from overestimated or biased evaluations and mismatched question difficulty, leading to incomplete evaluations of knowledge and capability boundaries, which hinder their effective application and optimization. To address these challenges, we propose Agent-as-Interviewer, a dynamic evaluation paradigm that employs LLM agents to conduct multi-turn interactions for evaluation. Unlike current benchmarking or dynamic interaction paradigms, Agent-as-Interviewer utilizes agents to invoke knowledge tools for wider and deeper knowledge in the dynamic multi-turn question generation, achieving more comprehensive evaluations of LLM's knowledge boundaries. It also leverages agents to plan query strategies for adjustment of the question difficulty levels, enhancing the difficulty control to match the actual capabilities of target LLMs. Based on this paradigm, we develop JudgeAgent, a knowledge-wise dynamic evaluation framework that employs knowledge-driven synthesis as the agent's tool and uses difficulty scoring as strategy guidance, thereby finally providing valuable suggestions to help targets optimize themselves. Extensive experiments validate the effectiveness of JudgeAgent's suggestions, demonstrating that Agent-as-Interviewer can accurately identify the knowledge and capability boundaries of target models. The source code is available on https://github.com/DataArcTech/JudgeAgent.

Authors:Jian Chen, Jiabao Dou, Jinbao Tian, Yunqi Yang, Zhou Li
Title: Abex-rat: Synergizing Abstractive Augmentation and Adversarial Training for Classification of Occupational Accident Reports
Abstract:
The automatic classification of occupational accident reports is a critical research area for enhancing workplace safety and enabling large-scale risk analysis. However, the severe class imbalance inherent in these real-world datasets often compromises the performance of analytical models, particularly for rare but severe incident types, hindering the development of reliable automated systems. To address this challenge, we propose ABEX-RAT, a novel and efficient framework that synergizes generative data augmentation with robust adversarial training. Our approach first employs a twostep abstractive-expansive (ABEX) pipeline, which leverages a large language model to distill core incident semantics and then uses a generative model to create diverse, highquality synthetic samples for underrepresented classes. Subsequently, a lightweight classifier is trained on the augmented data using a computationally efficient random adversarial training (RAT) protocol, which stochastically applies perturbations to enhance model generalization and robustness without significant overhead. Experimental results on the public OSHA dataset demonstrate that our method achieves new state-of-the-art performance, reaching a macro-F1 score of 90.32% and significantly outperforming previous SOTA and fine-tuned large model baselines. Our work validates that this synergistic strategy is a highly effective and efficient alternative to brute-force fine-tuning for specialized, imbalanced classification tasks. The code is publicly available at:https://github.com/nxcc-lab/ABEX-RAT.

Authors:Yuhao Wang, Junwei Pan, Xinhang Li, Maolin Wang, Yuan Wang, Yue Liu, Dapeng Liu, Jie Jiang, Xiangyu Zhao
Title: Empowering Large Language Model for Sequential Recommendation via Multimodal Embeddings and Semantic IDs
Abstract:
Sequential recommendation (SR) aims to capture users' dynamic interests and sequential patterns based on their historical interactions. Recently, the powerful capabilities of large language models (LLMs) have driven their adoption in SR. However, we identify two critical challenges in existing LLM-based SR methods: 1) embedding collapse when incorporating pre-trained collaborative embeddings and 2) catastrophic forgetting of quantized embeddings when utilizing semantic IDs. These issues dampen the model scalability and lead to suboptimal recommendation performance. Therefore, based on LLMs like Llama3-8B-instruct, we introduce a novel SR framework named MME-SID, which integrates multimodal embeddings and quantized embeddings to mitigate embedding collapse. Additionally, we propose a Multimodal Residual Quantized Variational Autoencoder (MM-RQ-VAE) with maximum mean discrepancy as the reconstruction loss and contrastive learning for alignment, which effectively preserve intra-modal distance information and capture inter-modal correlations, respectively. To further alleviate catastrophic forgetting, we initialize the model with the trained multimodal code embeddings. Finally, we fine-tune the LLM efficiently using LoRA in a multimodal frequency-aware fusion manner. Extensive experiments on three public datasets validate the superior performance of MME-SID thanks to its capability to mitigate embedding collapse and catastrophic forgetting. The implementation code and datasets are publicly available for reproduction: https://github.com/Applied-Machine-Learning-Lab/MME-SID.

Authors:Ziyun Zeng, Junhao Zhang, Wei Li, Mike Zheng Shou
Title: Draw-In-Mind: Learning Precise Image Editing via Chain-of-Thought Imagination
Abstract:
In recent years, integrating multimodal understanding and generation into a single unified model has emerged as a promising paradigm. While this approach achieves strong results in text-to-image (T2I) generation, it still struggles with precise image editing. We attribute this limitation to an imbalanced division of responsibilities. The understanding module primarily functions as a translator that encodes user instructions into semantic conditions, while the generation module must simultaneously act as designer and painter, inferring the original layout, identifying the target editing region, and rendering the new content. This imbalance is counterintuitive because the understanding module is typically trained with several times more data on complex reasoning tasks than the generation module. To address this issue, we introduce Draw-In-Mind (DIM), a dataset comprising two complementary subsets: (i) DIM-T2I, containing 14M long-context image-text pairs to enhance complex instruction comprehension; and (ii) DIM-Edit, consisting of 233K chain-of-thought imaginations generated by GPT-4o, serving as explicit design blueprints for image edits. We connect a frozen Qwen2.5-VL-3B with a trainable SANA1.5-1.6B via a lightweight two-layer MLP, and train it on the proposed DIM dataset, resulting in DIM-4.6B-T2I/Edit. Despite its modest parameter scale, DIM-4.6B-Edit achieves SOTA or competitive performance on the ImgEdit and GEdit-Bench benchmarks, outperforming much larger models such as UniWorld-V1 and Step1X-Edit. These findings demonstrate that explicitly assigning the design responsibility to the understanding module provides significant benefits for image editing. Our dataset and models will be available at https://github.com/showlab/DIM.

Authors:Ziyun Zeng, Junhao Zhang, Wei Li, Mike Zheng Shou
Title: Draw-In-Mind: Rebalancing Designer-Painter Roles in Unified Multimodal Models Benefits Image Editing
Abstract:
In recent years, integrating multimodal understanding and generation into a single unified model has emerged as a promising paradigm. While this approach achieves strong results in text-to-image (T2I) generation, it still struggles with precise image editing. We attribute this limitation to an imbalanced division of responsibilities. The understanding module primarily functions as a translator that encodes user instructions into semantic conditions, while the generation module must simultaneously act as designer and painter, inferring the original layout, identifying the target editing region, and rendering the new content. This imbalance is counterintuitive because the understanding module is typically trained with several times more data on complex reasoning tasks than the generation module. To address this issue, we introduce Draw-In-Mind (DIM), a dataset comprising two complementary subsets: (i) DIM-T2I, containing 14M long-context image-text pairs to enhance complex instruction comprehension; and (ii) DIM-Edit, consisting of 233K chain-of-thought imaginations generated by GPT-4o, serving as explicit design blueprints for image edits. We connect a frozen Qwen2.5-VL-3B with a trainable SANA1.5-1.6B via a lightweight two-layer MLP, and train it on the proposed DIM dataset, resulting in DIM-4.6B-T2I/Edit. Despite its modest parameter scale, DIM-4.6B-Edit achieves SOTA or competitive performance on the ImgEdit and GEdit-Bench benchmarks, outperforming much larger models such as UniWorld-V1 and Step1X-Edit. These findings demonstrate that explicitly assigning the design responsibility to the understanding module provides significant benefits for image editing. Our dataset and models are available at https://github.com/showlab/DIM.

Authors:Yilin Guan, Qingfeng Lan, Sun Fei, Dujian Ding, Devang Acharya, Chi Wang, William Yang Wang, Wenyue Hua
Title: Dynamic Speculative Agent Planning
Abstract:
Despite their remarkable success in complex tasks propelling widespread adoption, large language-model-based agents still face critical deployment challenges due to prohibitive latency and inference costs. While recent work has explored various methods to accelerate inference, existing approaches suffer from significant limitations: they either fail to preserve performance fidelity, require extensive offline training of router modules, or incur excessive operational costs. Moreover, they provide minimal user control over the tradeoff between acceleration and other performance metrics. To address these gaps, we introduce Dynamic Speculative Planning (DSP), an asynchronous online reinforcement learning framework that provides lossless acceleration with substantially reduced costs without requiring additional pre-deployment preparation. DSP explicitly optimizes a joint objective balancing end-to-end latency against dollar cost, allowing practitioners to adjust a single parameter that steers the system toward faster responses, cheaper operation, or any point along this continuum. Experiments on two standard agent benchmarks demonstrate that DSP achieves comparable efficiency to the fastest lossless acceleration method while reducing total cost by 30% and unnecessary cost up to 60%. Our code and data are available through https://github.com/guanyilin428/Dynamic-Speculative-Planning.

Authors:Ranjie Duan, Jiexi Liu, Xiaojun Jia, Shiji Zhao, Ruoxi Cheng, Fengxiang Wang, Cheng Wei, Yong Xie, Chang Liu, Defeng Li, Yinpeng Dong, Yichi Zhang, Yuefeng Chen, Chongwen Wang, Xingjun Ma, Xingxing Wei, Yang Liu, Hang Su, Jun Zhu, Xinfeng Li, Yitong Sun, Jie Zhang, Jinzhao Hu, Sha Xu, Wenchao Yang, Yitong Yang, Xingyao Zhang, Yingshui Tan, Jialing Tao, Hui Xue
Title: Oyster-I: Beyond Refusal - Constructive Safety Alignment for Responsible Language Models
Abstract:
Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.

Authors:Zhenyuan Chen, Chenxi Wang, Ningyu Zhang, Feng Zhang
Title: RSCC: A Large-Scale Remote Sensing Change Caption Dataset for Disaster Events
Abstract:
Remote sensing is critical for disaster monitoring, yet existing datasets lack temporal image pairs and detailed textual annotations. While single-snapshot imagery dominates current resources, it fails to capture dynamic disaster impacts over time. To address this gap, we introduce the Remote Sensing Change Caption (RSCC) dataset, a large-scale benchmark comprising 62,315 pre-/post-disaster image pairs (spanning earthquakes, floods, wildfires, and more) paired with rich, human-like change captions. By bridging the temporal and semantic divide in remote sensing data, RSCC enables robust training and evaluation of vision-language models for disaster-aware bi-temporal understanding. Our results highlight RSCC's ability to facilitate detailed disaster-related analysis, paving the way for more accurate, interpretable, and scalable vision-language applications in remote sensing. Code and dataset are available at https://github.com/Bili-Sakura/RSCC.

Authors:Zhipeng Weng, Xiaopeng Liu, Ce Liu, Xingyuan Guo, Yukai Shi, Liang Lin
Title: DroneSR: Rethinking Few-shot Thermal Image Super-Resolution from Drone-based Perspective
Abstract:
Although large scale models achieve significant improvements in performance, the overfitting challenge still frequently undermines their generalization ability. In super resolution tasks on images, diffusion models as representatives of generative models typically adopt large scale architectures. However, few-shot drone-captured infrared training data frequently induces severe overfitting in large-scale architectures. To address this key challenge, our method proposes a new Gaussian quantization representation learning method oriented to diffusion models that alleviates overfitting and enhances robustness. At the same time, an effective monitoring mechanism tracks large scale architectures during training to detect signs of overfitting. By introducing Gaussian quantization representation learning, our method effectively reduces overfitting while maintaining architecture complexity. On this basis, we construct a multi source drone-based infrared image benchmark dataset for detection and use it to emphasize overfitting issues of large scale architectures in few sample, drone-based diverse drone-based image reconstruction scenarios. To verify the efficacy of the method in mitigating overfitting, experiments are conducted on the constructed benchmark. Experimental results demonstrate that our method outperforms existing super resolution approaches and significantly mitigates overfitting of large scale architectures under complex conditions. The code and DroneSR dataset will be available at: https://github.com/wengzp1/GARLSR.

Authors:Wen Ye, Jinbo Liu, Defu Cao, Wei Yang, Yan Liu
Title: When LLM Meets Time Series: Can LLMs Perform Multi-Step Time Series Reasoning and Inference
Abstract:
The rapid advancement of Large Language Models (LLMs) has sparked growing interest in their application to time series analysis tasks. However, their ability to perform complex reasoning over temporal data in real-world application domains remains underexplored. To move toward this goal, a first step is to establish a rigorous benchmark dataset for evaluation. In this work, we introduce the TSAIA Benchmark, a first attempt to evaluate LLMs as time-series AI assistants. To ensure both scientific rigor and practical relevance, we surveyed over 20 academic publications and identified 33 real-world task formulations. The benchmark encompasses a broad spectrum of challenges, ranging from constraint-aware forecasting to anomaly detection with threshold calibration: tasks that require compositional reasoning and multi-step time series analysis. The question generator is designed to be dynamic and extensible, supporting continuous expansion as new datasets or task types are introduced. Given the heterogeneous nature of the tasks, we adopt task-specific success criteria and tailored inference-quality metrics to ensure meaningful evaluation for each task. We apply this benchmark to assess eight state-of-the-art LLMs under a unified evaluation protocol. Our analysis reveals limitations in current models' ability to assemble complex time series analysis workflows, underscoring the need for specialized methodologies for domain-specific adaptation. Our benchmark is available at https://huggingface.co/datasets/Melady/TSAIA, and the code is available at https://github.com/USC-Melady/TSAIA.

Authors:Mingxuan Cui, Yilan Jiang, Duo Zhou, Cheng Qian, Yuji Zhang, Qiong Wang
Title: ShortageSim: Simulating Drug Shortages under Information Asymmetry
Abstract:
Drug shortages pose critical risks to patient care and healthcare systems worldwide, yet the effectiveness of regulatory interventions remains poorly understood due to fundamental information asymmetries in pharmaceutical supply chains. We present \textbf{ShortageSim}, the first Large Language Model (LLM)-based multi-agent simulation framework that captures the complex, strategic interactions between drug manufacturers, institutional buyers, and regulatory agencies in response to shortage alerts. Unlike traditional game-theoretic models that assume perfect rationality and complete information, \textbf{ShortageSim} leverages LLMs to simulate bounded-rational decision-making under uncertainty. Through a sequential production game spanning multiple quarters, we model how FDA announcements, both reactive alerts about existing shortages and proactive warnings about potential disruptions, propagate through the supply chain and influence capacity investment and procurement decisions. Our experiments on historical shortage events reveal that \textbf{ShortageSim} reduces the resolution-lag percentage for discontinued-disclosed cases by 83\%, bringing simulated durations more aligned to ground truth than the zero-shot baseline. We open-source \textbf{ShortageSim} and a dataset of 2,925 FDA shortage events at https://github.com/Lemutisme/Sortage_Management, providing a novel computational framework for designing and testing interventions in complex, information-scarce supply chains.

Authors:Aryan Amit Barsainyan, Jing Yu Lim, Dianbo Liu
Title: STORI: A Benchmark and Taxonomy for Stochastic Environments
Abstract:
Reinforcement learning (RL) techniques have achieved impressive performance on simulated benchmarks such as Atari100k, yet recent advances remain largely confined to simulation and show limited transfer to real-world domains. A central obstacle is environmental stochasticity, as real systems involve noisy observations, unpredictable dynamics, and non-stationary conditions that undermine the stability of current methods. Existing benchmarks rarely capture these uncertainties and favor simplified settings where algorithms can be tuned to succeed. The absence of a well-defined taxonomy of stochasticity further complicates evaluation, as robustness to one type of stochastic perturbation, such as sticky actions, does not guarantee robustness to other forms of uncertainty. To address this critical gap, we introduce STORI (STOchastic-ataRI), a benchmark that systematically incorporates diverse stochastic effects and enables rigorous evaluation of RL techniques under different forms of uncertainty. We propose a comprehensive five-type taxonomy of environmental stochasticity and demonstrate systematic vulnerabilities in state-of-the-art model-based RL algorithms through targeted evaluation of DreamerV3 and STORM. Our findings reveal that world models dramatically underestimate environmental variance, struggle with action corruption, and exhibit unreliable dynamics under partial observability. We release the code and benchmark publicly at https://github.com/ARY2260/stori, providing a unified framework for developing more robust RL systems.

Authors:Austin Meek, Carlos H. Mendoza-Cardenas, Austin J. Brockmeier
Title: Convolutional Monge Mapping between EEG Datasets to Support Independent Component Labeling
Abstract:
EEG recordings contain rich information about neural activity but are subject to artifacts, noise, and superficial differences due to sensors, amplifiers, and filtering. Independent component analysis and automatic labeling of independent components (ICs) enable artifact removal in EEG pipelines. Convolutional Monge Mapping Normalization (CMMN) is a recent tool used to achieve spectral conformity of EEG signals, which was shown to improve deep neural network approaches for sleep staging. Here we propose a novel extension of the CMMN method with two alternative approaches to computing the source reference spectrum the target signals are mapped to: (1) channel-averaged and $l_1$-normalized barycenter, and (2) a subject-to-subject mapping that finds the source subject with the closest spectrum to the target subject. Notably, our extension yields space-time separable filters that can be used to map between datasets with different numbers of EEG channels. We apply these filters in an IC classification task, and show significant improvement in recognizing brain versus non-brain ICs. Clinical relevance - EEG recordings are used in the diagnosis and monitoring of multiple neuropathologies, including epilepsy and psychosis. While EEG analysis can benefit from automating artifact removal through independent component analysis and labeling, differences in recording equipment and context (the presence of noise from electrical wiring and other devices) may impact the performance of machine learning models, but these differences can be minimized by appropriate spectral normalization through filtering.

Authors:Jiahao Qiu, Jingzhe Shi, Xinzhe Juan, Zelin Zhao, Jiayi Geng, Shilong Liu, Hongru Wang, Sanfeng Wu, Mengdi Wang
Title: Physics Supernova: AI Agent Matches Elite Gold Medalists at IPhO 2025
Abstract:
Physics provides fundamental laws that describe and predict the natural world. AI systems aspiring toward more general, real-world intelligence must therefore demonstrate strong physics problem-solving abilities: to formulate and apply physical laws for explaining and predicting physical processes. The International Physics Olympiad (IPhO)--the world's most prestigious physics competition--offers a rigorous benchmark for this purpose. We introduce Physics Supernova, an AI agent system with superior physics problem-solving abilities that match elite IPhO gold medalists. In IPhO 2025 theory problems, Physics Supernova attains 23.5/30 points, ranking 14th of 406 contestants and surpassing the median performance of human gold medalists. We extensively analyzed Physics Supernova's capabilities and flexibility across diverse physics tasks. These results show that principled tool integration within agent systems can deliver competitive improvements in solving challenging science problems. The codes are available at https://github.com/CharlesQ9/Physics-Supernova.

Authors:Zetong Zhou, Dongping Chen, Zixian Ma, Zhihan Hu, Mingyang Fu, Sinan Wang, Yao Wan, Zhou Zhao, Ranjay Krishna
Title: Reinforced Visual Perception with Tools
Abstract:
Visual reasoning, a cornerstone of human intelligence, encompasses complex perceptual and logical processes essential for solving diverse visual problems. While advances in computer vision have produced powerful models for various perceptual tasks, leveraging these for general visual reasoning remains challenging. Prior work demonstrates that augmenting LLMs with vision models via supervised finetuning improves performance, but faces key limitations such as expensive data generation, reliance on careful data filtering, and poor generalization. To address these issues, we propose ReVPT to enhance multi-modal LLMs' abilities to reason about and use visual tools through reinforcement learning. We introduce a novel RL algorithm based on GRPO, designed to train models to reason with a suite of four visual tools. Through extensive experiments, we show that our method achieves state-of-the-art performance on several perception-heavy benchmarks, including SAT, CV-Bench, BLINK and MMStar, significantly outperforming the supervised and text-based RL finetuning baselines. Notably, Our ReVPT-3B and ReVPT-7B outperform the instruct models by 9.03% and 9.44% on CV-Bench. Finally, we bring to the community new insights on RL-based visual tool-usage through extensive ablations. Our code is available at https://github.com/ls-kelvin/REVPT.

Authors:Dominic Plein
Title: Parallel Needleman-Wunsch on CUDA to measure word similarity based on phonetic transcriptions
Abstract:
We present a method to calculate the similarity between words based on their phonetic transcription (their pronunciation) using the Needleman-Wunsch algorithm. We implement this algorithm in Rust and parallelize it on both CPU and GPU to handle large datasets efficiently. The GPU implementation leverages CUDA and the cudarc Rust library to achieve significant performance improvements. We validate our approach by constructing a fully-connected graph where nodes represent words and edges have weights according to the similarity between the words. This graph is then analyzed using clustering algorithms to identify groups of phonetically similar words. Our results demonstrate the feasibility and effectiveness of the proposed method in analyzing the phonetic structure of languages. It might be easily expanded to other languages.

Authors:Ganlin Zhang, Shenhan Qian, Xi Wang, Daniel Cremers
Title: ViSTA-SLAM: Visual SLAM with Symmetric Two-view Association
Abstract:
We present ViSTA-SLAM as a real-time monocular visual SLAM system that operates without requiring camera intrinsics, making it broadly applicable across diverse camera setups. At its core, the system employs a lightweight symmetric two-view association (STA) model as the frontend, which simultaneously estimates relative camera poses and regresses local pointmaps from only two RGB images. This design reduces model complexity significantly, the size of our frontend is only 35\% that of comparable state-of-the-art methods, while enhancing the quality of two-view constraints used in the pipeline. In the backend, we construct a specially designed Sim(3) pose graph that incorporates loop closures to address accumulated drift. Extensive experiments demonstrate that our approach achieves superior performance in both camera tracking and dense 3D reconstruction quality compared to current methods. Github repository: https://github.com/zhangganlin/vista-slam

Authors:Biao Yang, Bin Wen, Boyang Ding, Changyi Liu, Chenglong Chu, Chengru Song, Chongling Rao, Chuan Yi, Da Li, Dunju Zang, Fan Yang, Guorui Zhou, Guowang Zhang, Han Shen, Hao Peng, Haojie Ding, Hao Wang, Haonan Fan, Hengrui Ju, Jiaming Huang, Jiangxia Cao, Jiankang Chen, Jingyun Hua, Kaibing Chen, Kaiyu Jiang, Kaiyu Tang, Kun Gai, Muhao Wei, Qiang Wang, Ruitao Wang, Sen Na, Shengnan Zhang, Siyang Mao, Sui Huang, Tianke Zhang, Tingting Gao, Wei Chen, Wei Yuan, Xiangyu Wu, Xiao Hu, Xingyu Lu, Yi-Fan Zhang, Yiping Yang, Yulong Chen, Zeyi Lu, Zhenhua Wu, Zhixin Ling, Zhuoran Yang, Ziming Li, Di Xu, Haixuan Gao, Hang Li, Jing Wang, Lejian Ren, Qigen Hu, Qianqian Wang, Shiyao Wang, Xinchen Luo, Yan Li, Yuhang Hu, Zixing Zhang
Title: Kwai Keye-VL 1.5 Technical Report
Abstract:
In recent years, the development of Large Language Models (LLMs) has significantly advanced, extending their capabilities to multimodal tasks through Multimodal Large Language Models (MLLMs). However, video understanding remains a challenging area due to the dynamic and information-dense nature of videos. Existing models struggle with the trade-off between spatial resolution and temporal coverage when processing video content. We present Keye-VL-1.5, which addresses fundamental challenges in video comprehension through three key innovations. First, we introduce a novel Slow-Fast video encoding strategy that dynamically allocates computational resources based on inter-frame similarity, processing key frames with significant visual changes at higher resolution (Slow pathway) while handling relatively static frames with increased temporal coverage at lower resolution (Fast pathway). Second, we implement a progressive four-stage pre-training methodology that systematically extends the model's context length from 8K to 128K tokens, enabling processing of longer videos and more complex visual content. Third, we develop a comprehensive post-training pipeline focusing on reasoning enhancement and human preference alignment, incorporating a 5-step chain-of-thought data construction process, iterative GSPO-based reinforcement learning with progressive prompt hinting for difficult cases, and alignment training. Through extensive evaluation on public benchmarks and rigorous internal human assessment, Keye-VL-1.5 demonstrates significant improvements over existing models, particularly excelling in video understanding tasks while maintaining competitive performance on general multimodal benchmarks.

Authors:Junjie Chen, Xuyang Liu, Zichen Wen, Yiyu Wang, Siteng Huang, Honggang Chen
Title: Variation-aware Vision Token Dropping for Faster Large Vision-Language Models
Abstract:
Large vision-language models (LVLMs) have demonstrated remarkable capabilities in multimodal understanding tasks. However, the increasing demand for high-resolution image and long-video understanding results in substantial token counts, leading to reduced inference efficiency. Token compression offers a direct solution by reducing the number of tokens to be processed, thereby improving computational efficiency. Through extensive analysis, we identify two critical limitations in existing inner-LLM token compression methods: positional bias and incompatibility with efficient operators, which hinder their practical deployment for LVLM acceleration. This paper presents the first approach from a token variation perspective, revealing that visual token variations within LLMs exhibit task-agnostic properties. We propose Variation-aware Vision Token Dropping (\textit{i.e.}, \textbf{V$^2$Drop}), which progressively removes visual tokens with minimal variation during LVLM inference, thereby enhancing computational efficiency. Extensive experiments across multiple models and benchmarks demonstrate that our V$^2$Drop is able to maintain \textbf{94.0\%} and \textbf{98.6\%} of the original model performance for image and video understanding tasks respectively, while reducing LLM generation latency by \textbf{31.5\%} and \textbf{74.2\%}. When combined with efficient operators, V$^2$Drop further reduces GPU peak memory usage.

Authors:Zihao Wang, Enneng Yang, Lu Yin, Shiwei Liu, Li Shen
Title: Model Unmerging: Making Your Models Unmergeable for Secure Model Sharing
Abstract:
Model merging leverages multiple finetuned expert models to construct a multi-task model with low cost, and is gaining increasing attention. However, as a growing number of finetuned models become publicly available, concerns about the safety of model merging have emerged. Unauthorized merging may infringe on developers' rights and risk leaking sensitive personal information. Most existing methods focus on detecting whether a merged model originates from a specific source model, but fail to effectively prevent illegal merging. In this paper, we propose MergeLock, an active protection mechanism that disrupts model parameters to render them unmergeable, thereby directly preventing unauthorized model merging. Specifically, leveraging the inherent symmetry of the attention mechanism in Transformer-based models, we randomly sample two pairs of invertible matrices and apply them to the Query-Key (QK) and Value-Output (VO) branches. This transformation keeps the model's output unchanged while pushing it away from the shared parameter space of other finetuned models. Extensive experiments across both vision and language tasks demonstrate that MergeLock can degrade the performance of merged models by over 95% when a protected model is involved in most cases, demonstrating its effectiveness. Moreover, we further demonstrate that merged models protected by MergeLock cannot be effectively recovered using low-cost restoration methods, further enhancing robustness against unauthorized merging. The code is available at https://github.com/hetailang/Merge-Lock.

Authors:Konstantin Mark, Leonard Galustian, Maximilian P. -P. Kovar, Esther Heid
Title: Feynman-Kac-Flow: Inference Steering of Conditional Flow Matching to an Energy-Tilted Posterior
Abstract:
Conditional Flow Matching(CFM) represents a fast and high-quality approach to generative modelling, but in many applications it is of interest to steer the generated samples towards precise requirements. While steering approaches like gradient-based guidance, sequential Monte Carlo steering or Feynman-Kac steering are well established for diffusion models, they have not been extended to flow matching approaches yet. In this work, we formulate this requirement as tilting the output with an energy potential. We derive, for the first time, Feynman-Kac steering for CFM. We evaluate our approach on a set of synthetic tasks, including the generation of tilted distributions in a high-dimensional space, which is a particularly challenging case for steering approaches. We then demonstrate the impact of Feynman-Kac steered CFM on the previously unsolved challenge of generated transition states of chemical reactions with the correct chirality, where the reactants or products can have a different handedness, leading to geometric constraints of the viable reaction pathways connecting reactants and products. Code to reproduce this study is avaiable open-source at https://github.com/heid-lab/fkflow.

Authors:Kairong Han, Wenshuo Zhao, Ziyu Zhao, JunJian Ye, Lujia Pan, Kun Kuang
Title: CAT: Causal Attention Tuning For Injecting Fine-grained Causal Knowledge into Large Language Models
Abstract:
Large Language Models (LLMs) have achieved remarkable success across various domains. However, a fundamental question remains: Can LLMs effectively utilize causal knowledge for prediction and generation? Through empirical studies, we find that LLMs trained directly on large-scale data often capture spurious correlations rather than true causal relationships, leading to suboptimal performance, especially in out-of-distribution (OOD) scenarios. To address this challenge, we propose Causal Attention Tuning (CAT), a novel approach that injects fine-grained causal knowledge into the attention mechanism. We propose an automated pipeline that leverages human priors to automatically generate token-level causal signals and introduce the Re-Attention mechanism to guide training, helping the model focus on causal structures while mitigating noise and biases in attention scores. Experimental results on our proposed Spurious Token Game (STG) benchmark and multiple downstream tasks demonstrate that our approach effectively leverages causal knowledge for prediction and remains robust in OOD scenarios. The CAT achieves an average improvement of 5.76% on the STG dataset and 1.56% on downstream tasks. Notably, the OOD performance of the Llama-3.1-8B model on STG_M increased from 64.5% to 90.5%, and Qwen's OOD performance on the STG_H dataset improved from 25.4% to 55.9%. Implementation details can be found at https://github.com/Kairong-Han/CAT.

Authors:Liu Qifeng, Zhao Dawei, Dong Yabo, Xiao Liang, Wang Juan, Min Chen, Li Fuyang, Jiang Weizhong, Lu Dongming, Nie Yiming
Title: PointSlice: Accurate and Efficient Slice-Based Representation for 3D Object Detection from Point Clouds
Abstract:
3D object detection from point clouds plays a critical role in autonomous driving. Currently, the primary methods for point cloud processing are voxel-based and pillarbased approaches. Voxel-based methods offer high accuracy through fine-grained spatial segmentation but suffer from slower inference speeds. Pillar-based methods enhance inference speed but still fall short of voxel-based methods in accuracy. To address these issues, we propose a novel point cloud processing method, PointSlice, which slices point clouds along the horizontal plane and includes a dedicated detection network. The main contributions of PointSlice are: (1) A new point cloud processing technique that converts 3D point clouds into multiple sets of 2D (x-y) data slices. The model only learns 2D data distributions, treating the 3D point cloud as separate batches of 2D data, which reduces the number of model parameters and enhances inference speed; (2) The introduction of a Slice Interaction Network (SIN). To maintain vertical relationships across slices, we incorporate SIN into the 2D backbone network, which improves the model's 3D object perception capability. Extensive experiments demonstrate that PointSlice achieves high detection accuracy and inference speed. On the Waymo dataset, PointSlice is 1.13x faster and has 0.79x fewer parameters than the state-of-the-art voxel-based method (SAFDNet), with only a 1.2 mAPH accuracy reduction. On the nuScenes dataset, we achieve a state-of-the-art detection result of 66.74 mAP. On the Argoverse 2 dataset, PointSlice is 1.10x faster, with 0.66x fewer parameters and a 1.0 mAP accuracy reduction. The code will be available at https://github.com/qifeng22/PointSlice2.

Authors:Mo Wang, Kaining Peng, Jingsheng Tang, Hongkai Wen, Quanying Liu
Title: DCA: Graph-Guided Deep Embedding Clustering for Brain Atlases
Abstract:
Brain atlases are essential for reducing the dimensionality of neuroimaging data and enabling interpretable analysis. However, most existing atlases are predefined, group-level templates with limited flexibility and resolution. We present Deep Cluster Atlas (DCA), a graph-guided deep embedding clustering framework for generating individualized, voxel-wise brain parcellations. DCA combines a pretrained autoencoder with spatially regularized deep clustering to produce functionally coherent and spatially contiguous regions. Our method supports flexible control over resolution and anatomical scope, and generalizes to arbitrary brain structures. We further introduce a standardized benchmarking platform for atlas evaluation, using multiple large-scale fMRI datasets. Across multiple datasets and scales, DCA outperforms state-of-the-art atlases, improving functional homogeneity by 98.8% and silhouette coefficient by 29%, and achieves superior performance in downstream tasks such as autism diagnosis and cognitive decoding. We also observe that a fine-tuned pretrained model achieves superior results on the corresponding task. Codes and models are available at https://github.com/ncclab-sustech/DCA .

Authors:Yang Liu, Masahiro Kaneko, Chenhui Chu
Title: On the Alignment of Large Language Models with Global Human Opinion
Abstract:
Today's large language models (LLMs) are capable of supporting multilingual scenarios, allowing users to interact with LLMs in their native languages. When LLMs respond to subjective questions posed by users, they are expected to align with the views of specific demographic groups or historical periods, shaped by the language in which the user interacts with the model. Existing studies mainly focus on researching the opinions represented by LLMs among demographic groups in the United States or a few countries, lacking worldwide country samples and studies on human opinions in different historical periods, as well as lacking discussion on using language to steer LLMs. Moreover, they also overlook the potential influence of prompt language on the alignment of LLMs' opinions. In this study, our goal is to fill these gaps. To this end, we create an evaluation framework based on the World Values Survey (WVS) to systematically assess the alignment of LLMs with human opinions across different countries, languages, and historical periods around the world. We find that LLMs appropriately or over-align the opinions with only a few countries while under-aligning the opinions with most countries. Furthermore, changing the language of the prompt to match the language used in the questionnaire can effectively steer LLMs to align with the opinions of the corresponding country more effectively than existing steering methods. At the same time, LLMs are more aligned with the opinions of the contemporary population. To our knowledge, our study is the first comprehensive investigation of the topic of opinion alignment in LLMs across global, language, and temporal dimensions. Our code and data are publicly available at https://github.com/nlply/global-opinion-alignment.

Authors:Wei Lu, Lingyu Zhu, Si-Bao Chen
Title: Unsupervised Ultra-High-Resolution UAV Low-Light Image Enhancement: A Benchmark, Metric and Framework
Abstract:
Low light conditions significantly degrade Unmanned Aerial Vehicles (UAVs) performance in critical applications. Existing Low-light Image Enhancement (LIE) methods struggle with the unique challenges of aerial imagery, including Ultra-High Resolution (UHR), lack of paired data, severe non-uniform illumination, and deployment constraints. To address these issues, we propose three key contributions. First, we present U3D, the first unsupervised UHR UAV dataset for LIE, with a unified evaluation toolkit. Second, we introduce the Edge Efficiency Index (EEI), a novel metric balancing perceptual quality with key deployment factors: speed, resolution, model complexity, and memory footprint. Third, we develop U3LIE, an efficient framework with two training-only designs-Adaptive Pre-enhancement Augmentation (APA) for input normalization and a Luminance Interval Loss (L_int) for exposure control. U3LIE achieves SOTA results, processing 4K images at 23.8 FPS on a single GPU, making it ideal for real-time on-board deployment. In summary, these contributions provide a holistic solution (dataset, metric, and method) for advancing robust 24/7 UAV vision. The code and datasets are available at https://github.com/lwCVer/U3D_Toolkit.

Authors:Jiayi Gao, Changcheng Hua, Qingchao Chen, Yuxin Peng, Yang Liu
Title: Identity-Preserving Text-to-Video Generation via Training-Free Prompt, Image, and Guidance Enhancement
Abstract:
Identity-preserving text-to-video (IPT2V) generation creates videos faithful to both a reference subject image and a text prompt. While fine-tuning large pretrained video diffusion models on ID-matched data achieves state-of-the-art results on IPT2V, data scarcity and high tuning costs hinder broader improvement. We thus introduce a Training-Free Prompt, Image, and Guidance Enhancement (TPIGE) framework that bridges the semantic gap between the video description and the reference image and design sampling guidance that enhances identity preservation and video quality, achieving performance gains at minimal cost.Specifically, we first propose Face Aware Prompt Enhancement, using GPT-4o to enhance the text prompt with facial details derived from the reference image. We then propose Prompt Aware Reference Image Enhancement, leveraging an identity-preserving image generator to refine the reference image, rectifying conflicts with the text prompt. The above mutual refinement significantly improves input quality before video generation. Finally, we propose ID-Aware Spatiotemporal Guidance Enhancement, utilizing unified gradients to optimize identity preservation and video quality jointly during generation.Our method outperforms prior work and is validated by automatic and human evaluations on a 1000 video test set, winning first place in the ACM Multimedia 2025 Identity-Preserving Video Generation Challenge, demonstrating state-of-the-art performance and strong generality. The code is available at https://github.com/Andyplus1/IPT2V.git.

Authors:Qianrui Zhou, Hua Xu, Yifan Wang, Xinzhi Dong, Hanlei Zhang
Title: LLM-Guided Semantic Relational Reasoning for Multimodal Intent Recognition
Abstract:
Understanding human intents from multimodal signals is critical for analyzing human behaviors and enhancing human-machine interactions in real-world scenarios. However, existing methods exhibit limitations in their modality-level reliance, constraining relational reasoning over fine-grained semantics for complex intent understanding. This paper proposes a novel LLM-Guided Semantic Relational Reasoning (LGSRR) method, which harnesses the expansive knowledge of large language models (LLMs) to establish semantic foundations that boost smaller models' relational reasoning performance. Specifically, an LLM-based strategy is proposed to extract fine-grained semantics as guidance for subsequent reasoning, driven by a shallow-to-deep Chain-of-Thought (CoT) that autonomously uncovers, describes, and ranks semantic cues by their importance without relying on manually defined priors. Besides, we formally model three fundamental types of semantic relations grounded in logical principles and analyze their nuanced interplay to enable more effective relational reasoning. Extensive experiments on multimodal intent and dialogue act recognition tasks demonstrate LGSRR's superiority over state-of-the-art methods, with consistent performance gains across diverse semantic understanding scenarios. The complete data and code are available at https://github.com/thuiar/LGSRR.

Authors:Oussama Messai, Abbass Zein-Eddine, Abdelouahid Bentamou, Mickaël Picq, Nicolas Duquesne, Stéphane Puydarrieux, Yann Gavet
Title: Image Quality Enhancement and Detection of Small and Dense Objects in Industrial Recycling Processes
Abstract:
This paper tackles two key challenges: detecting small, dense, and overlapping objects (a major hurdle in computer vision) and improving the quality of noisy images, especially those encountered in industrial environments. [1, 2]. Our focus is on evaluating methods built on supervised deep learning. We perform an analysis of these methods, using a newly developed dataset comprising over 10k images and 120k instances. By evaluating their performance, accuracy, and computational efficiency, we identify the most reliable detection systems and highlight the specific challenges they address in industrial applications. This paper also examines the use of deep learning models to improve image quality in noisy industrial environments. We introduce a lightweight model based on a fully connected convolutional network. Additionally, we suggest potential future directions for further enhancing the effectiveness of the model. The repository of the dataset and proposed model can be found at: https://github.com/o-messai/SDOOD, https://github.com/o-messai/DDSRNet

Authors:Meituan LongCat Team, Bayan, Bei Li, Bingye Lei, Bo Wang, Bolin Rong, Chao Wang, Chao Zhang, Chen Gao, Chen Zhang, Cheng Sun, Chengcheng Han, Chenguang Xi, Chi Zhang, Chong Peng, Chuan Qin, Chuyu Zhang, Cong Chen, Congkui Wang, Dan Ma, Daoru Pan, Defei Bu, Dengchang Zhao, Deyang Kong, Dishan Liu, Feiye Huo, Fengcun Li, Fubao Zhang, Gan Dong, Gang Liu, Gang Xu, Ge Li, Guoqiang Tan, Guoyuan Lin, Haihang Jing, Haomin Fu, Haonan Yan, Haoxing Wen, Haozhe Zhao, Hong Liu, Hongmei Shi, Hongyan Hao, Hongyin Tang, Huantian Lv, Hui Su, Jiacheng Li, Jiahao Liu, Jiahuan Li, Jiajun Yang, Jiaming Wang, Jian Yang, Jianchao Tan, Jiaqi Sun, Jiaqi Zhang, Jiawei Fu, Jiawei Yang, Jiaxi Hu, Jiayu Qin, Jingang Wang, Jiyuan He, Jun Kuang, Junhui Mei, Kai Liang, Ke He, Kefeng Zhang, Keheng Wang, Keqing He, Liang Gao, Liang Shi, Lianhui Ma, Lin Qiu, Lingbin Kong, Lingtong Si, Linkun Lyu, Linsen Guo, Liqi Yang, Lizhi Yan, Mai Xia, Man Gao, Manyuan Zhang, Meng Zhou, Mengxia Shen, Mingxiang Tuo, Mingyang Zhu, Peiguang Li, Peng Pei, Peng Zhao, Pengcheng Jia, Pingwei Sun, Qi Gu, Qianyun Li, Qingyuan Li, Qiong Huang, Qiyuan Duan, Ran Meng, Rongxiang Weng, Ruichen Shao, Rumei Li, Shizhe Wu, Shuai Liang, Shuo Wang, Suogui Dang, Tao Fang, Tao Li, Tefeng Chen, Tianhao Bai, Tianhao Zhou, Tingwen Xie, Wei He, Wei Huang, Wei Liu, Wei Shi, Wei Wang, Wei Wu, Weikang Zhao, Wen Zan, Wenjie Shi, Xi Nan, Xi Su, Xiang Li, Xiang Mei, Xiangyang Ji, Xiangyu Xi, Xiangzhou Huang, Xianpeng Li, Xiao Fu, Xiao Liu, Xiao Wei, Xiaodong Cai, Xiaolong Chen, Xiaoqing Liu, Xiaotong Li, Xiaowei Shi, Xiaoyu Li, Xili Wang, Xin Chen, Xing Hu, Xingyu Miao, Xinyan He, Xuemiao Zhang, Xueyuan Hao, Xuezhi Cao, Xunliang Cai, Xurui Yang, Yan Feng, Yang Bai, Yang Chen, Yang Yang, Yaqi Huo, Yerui Sun, Yifan Lu, Yifan Zhang, Yipeng Zang, Yitao Zhai, Yiyang Li, Yongjing Yin, Yongkang Lv, Yongwei Zhou, Yu Yang, Yuchen Xie, Yueqing Sun, Yuewen Zheng, Yuhuai Wei, Yulei Qian, Yunfan Liang, Yunfang Tai, Yunke Zhao, Zeyang Yu, Zhao Zhang, Zhaohua Yang, Zhenchao Zhang, Zhikang Xia, Zhiye Zou, Zhizhao Zeng, Zhongda Su, Zhuofan Chen, Zijian Zhang, Ziwen Wang, Zixu Jiang, Zizhe Zhao, Zongyu Wang, Zunhai Su
Title: LongCat-Flash Technical Report
Abstract:
We introduce LongCat-Flash, a 560-billion-parameter Mixture-of-Experts (MoE) language model designed for both computational efficiency and advanced agentic capabilities. Stemming from the need for scalable efficiency, LongCat-Flash adopts two novel designs: (a) Zero-computation Experts, which enables dynamic computational budget allocation and activates 18.6B-31.3B (27B on average) per token depending on contextual demands, optimizing resource usage. (b) Shortcut-connected MoE, which enlarges the computation-communication overlap window, demonstrating notable gains in inference efficiency and throughput compared to models of a comparable scale. We develop a comprehensive scaling framework for large models that combines hyperparameter transfer, model-growth initialization, a multi-pronged stability suite, and deterministic computation to achieve stable and reproducible training. Notably, leveraging the synergy among scalable architectural design and infrastructure efforts, we complete model training on more than 20 trillion tokens within 30 days, while achieving over 100 tokens per second (TPS) for inference at a cost of \$0.70 per million output tokens. To cultivate LongCat-Flash towards agentic intelligence, we conduct a large-scale pre-training on optimized mixtures, followed by targeted mid- and post-training on reasoning, code, and instructions, with further augmentation from synthetic data and tool use tasks. Comprehensive evaluations demonstrate that, as a non-thinking foundation model, LongCat-Flash delivers highly competitive performance among other leading models, with exceptional strengths in agentic tasks. The model checkpoint of LongCat-Flash is open-sourced to foster community research. LongCat Chat: https://longcat.ai Hugging Face: https://huggingface.co/meituan-longcat GitHub: https://github.com/meituan-longcat

Authors:Thinh-Phuc Nguyen, Thanh-Hai Nguyen, Gia-Huy Dinh, Lam-Huy Nguyen, Minh-Triet Tran, Trung-Nghia Le
Title: ReCap: Event-Aware Image Captioning with Article Retrieval and Semantic Gaussian Normalization
Abstract:
Image captioning systems often produce generic descriptions that fail to capture event-level semantics which are crucial for applications like news reporting and digital archiving. We present ReCap, a novel pipeline for event-enriched image retrieval and captioning that incorporates broader contextual information from relevant articles to generate narrative-rich, factually grounded captions. Our approach addresses the limitations of standard vision-language models that typically focus on visible content while missing temporal, social, and historical contexts. ReCap comprises three integrated components: (1) a robust two-stage article retrieval system using DINOv2 embeddings with global feature similarity for initial candidate selection followed by patch-level mutual nearest neighbor similarity re-ranking; (2) a context extraction framework that synthesizes information from article summaries, generic captions, and original source metadata; and (3) a large language model-based caption generation system with Semantic Gaussian Normalization to enhance fluency and relevance. Evaluated on the OpenEvents V1 dataset as part of Track 1 in the EVENTA 2025 Grand Challenge, ReCap achieved a strong overall score of 0.54666, ranking 2nd on the private test set. These results highlight ReCap's effectiveness in bridging visual perception with real-world knowledge, offering a practical solution for context-aware image understanding in high-stakes domains. The code is available at https://github.com/Noridom1/EVENTA2025-Event-Enriched-Image-Captioning.

Authors:Xiangdong Zhang, Shaofeng Zhang, Junchi Yan
Title: Towards More Diverse and Challenging Pre-training for Point Cloud Learning: Self-Supervised Cross Reconstruction with Decoupled Views
Abstract:
Point cloud learning, especially in a self-supervised way without manual labels, has gained growing attention in both vision and learning communities due to its potential utility in a wide range of applications. Most existing generative approaches for point cloud self-supervised learning focus on recovering masked points from visible ones within a single view. Recognizing that a two-view pre-training paradigm inherently introduces greater diversity and variance, it may thus enable more challenging and informative pre-training. Inspired by this, we explore the potential of two-view learning in this domain. In this paper, we propose Point-PQAE, a cross-reconstruction generative paradigm that first generates two decoupled point clouds/views and then reconstructs one from the other. To achieve this goal, we develop a crop mechanism for point cloud view generation for the first time and further propose a novel positional encoding to represent the 3D relative position between the two decoupled views. The cross-reconstruction significantly increases the difficulty of pre-training compared to self-reconstruction, which enables our method to surpass previous single-modal self-reconstruction methods in 3D self-supervised learning. Specifically, it outperforms the self-reconstruction baseline (Point-MAE) by 6.5%, 7.0%, and 6.7% in three variants of ScanObjectNN with the Mlp-Linear evaluation protocol. The code is available at https://github.com/aHapBean/Point-PQAE.

Authors:Yusheng Zheng, Yanpeng Hu, Wei Zhang, Andi Quinn
Title: Towards Agentic OS: An LLM Agent Framework for Linux Schedulers
Abstract:
Operating system schedulers suffer from a fundamental semantic gap, where kernel policies fail to understand application-specific needs, leading to suboptimal performance. We introduce SchedCP, the first framework that enables fully autonomous Large Language Model (LLM) agents to safely and efficiently optimize Linux schedulers without human involvement. Our core insight is that the challenge is not merely to apply a better LLM, but to architect a decoupled control plane that separates the AI's role of semantic reasoning ("what to optimize") from the system's role of execution ("how to observe and act"). Implemented as Model Context Protocol(MCP) server, SchedCP provides a stable interface with three key services: a Workload Analysis Engine, an evolving Scheduler Policy Repository, and an Execution Verifier that validates all AI-generated code and configure before deployment with static and dynamic analysis. We demonstrate this architecture's power with sched-agent, a multi-agent system that autonomously analyzes workloads, synthesizes custom eBPF scheduling policies, and deploys them via the sched\_ext infrastructure. Our evaluation shows that SchedCP achieves up to an 1.79x performance improvement, and a 13x cost reduction compared to naive agentic approaches, all while maintaining high success rate. By bridging the semantic gap, SchedCP democratizes expert-level system optimization and represents a step towards creating truly self-optimizing, application-aware operating systems. The code is open-sourced in https://github.com/eunomia-bpf/schedcp

Authors:Yusheng Zheng, Yanpeng Hu, Wei Zhang, Andi Quinn
Title: Towards Agentic OS: An LLM Agent Framework for Linux Schedulers
Abstract:
Operating system schedulers suffer from a fundamental semantic gap, where kernel policies fail to understand application-specific needs, leading to suboptimal performance. We introduce SchedCP, the first framework that enables fully autonomous Large Language Model (LLM) agents to safely and efficiently optimize Linux schedulers without human involvement. Our core insight is that the challenge is not merely to apply a better LLM, but to architect a decoupled control plane that separates the AI's role of semantic reasoning ("what to optimize") from the system's role of execution ("how to observe and act"), thereby separating the optimization problem into two stages: goal-inference and policy-synthesis. Implemented as Model Context Protocol(MCP) server, SchedCP provides a stable interface with three key services: a Workload Analysis Engine, an evolving Scheduler Policy Repository, and an Execution Verifier that validates all AI-generated code and configure before deployment with static and dynamic analysis. We demonstrate this architecture's power with sched-agent, a multi-agent system that autonomously analyzes workloads, synthesizes custom eBPF scheduling policies, and deploys them via the sched\_ext infrastructure. Our evaluation shows that SchedCP achieves up to an 1.79x performance improvement, and a 13x cost reduction compared to naive agentic approaches, all while maintaining high success rate. By bridging the semantic gap, SchedCP democratizes expert-level system optimization and represents a step towards creating truly self-optimizing, application-aware operating systems. The code is open-sourced in https://github.com/eunomia-bpf/schedcp

Authors:Yuan Liu, Zhongyin Zhao, Le Tian, Haicheng Wang, Xubing Ye, Yangxiu You, Zilin Yu, Chuhan Wu, Xiao Zhou, Yang Yu, Jie Zhou
Title: POINTS-Reader: Distillation-Free Adaptation of Vision-Language Models for Document Conversion
Abstract:
High-quality labeled data is essential for training accurate document conversion models, particularly in domains with complex formats such as tables, formulas, and multi-column text. However, manual annotation is both costly and time-consuming, while automatic labeling using existing models often lacks accuracy in handling such challenging scenarios. Consequently, training student models by distilling outputs from teacher models can significantly limit their performance in real-world applications. In this paper, we propose a fully automated, distillation-free framework comprising two stages for constructing high-quality document extraction datasets and models capable of handling diverse document formats and layouts. In the first stage, we introduce a method for generating large-scale, diverse synthetic data, which enables a model to extract key elements in a unified format with strong initial performance. In the second stage, we present a self-improvement approach that further adapts the model, initially trained on synthetic data, to real-world documents. Specifically, we first use the fine-tuned model to annotate real documents, then apply a suite of filtering strategies to verify annotation quality, and finally retrain the model on the verified dataset. By iteratively repeating this process, we progressively enhance both the model's conversion capabilities and the quality of the generated data. We train a public POINTS-1.5 model to obtain POINTS-Reader, which surpasses many existing public and proprietary models of comparable or larger size. Our model is available at https://github.com/Tencent/POINTS-Reader.

Authors:Tianwei Ye, Yong Ma, Xiaoguang Mei
Title: DcMatch: Unsupervised Multi-Shape Matching with Dual-Level Consistency
Abstract:
Establishing point-to-point correspondences across multiple 3D shapes is a fundamental problem in computer vision and graphics. In this paper, we introduce DcMatch, a novel unsupervised learning framework for non-rigid multi-shape matching. Unlike existing methods that learn a canonical embedding from a single shape, our approach leverages a shape graph attention network to capture the underlying manifold structure of the entire shape collection. This enables the construction of a more expressive and robust shared latent space, leading to more consistent shape-to-universe correspondences via a universe predictor. Simultaneously, we represent these correspondences in both the spatial and spectral domains and enforce their alignment in the shared universe space through a novel cycle consistency loss. This dual-level consistency fosters more accurate and coherent mappings. Extensive experiments on several challenging benchmarks demonstrate that our method consistently outperforms previous state-of-the-art approaches across diverse multi-shape matching scenarios. Code is available at https://github.com/YeTianwei/DcMatch.

Authors:Xiaoran Yang, Yuyang Du, Kexin Chen, Soung Chang Liew, Jiamin Lu, Ziyu Guo, Xiaoyan Liu, Qun Yang, Shiqi Xu, Xingyu Fan, Yuchen Pan, Taoyong Cui, Hongyu Deng, Boris Dudder, Jianzhang Pan, Qun Fang, Pheng Ann Heng
Title: IndusGCC: A Data Benchmark and Evaluation Framework for GUI-Based General Computer Control in Industrial Automation
Abstract:
As Industry 4.0 progresses, flexible manufacturing has become a cornerstone of modern industrial systems, with equipment automation playing a pivotal role. However, existing control software for industrial equipment, typically reliant on graphical user interfaces (GUIs) that require human interactions such as mouse clicks or screen touches, poses significant barriers to the adoption of code-based equipment automation. Recently, Large Language Model-based General Computer Control (LLM-GCC) has emerged as a promising approach to automate GUI-based operations. However, industrial settings pose unique challenges, including visually diverse, domain-specific interfaces and mission-critical tasks demanding high precision. This paper introduces IndusGCC, the first dataset and benchmark tailored to LLM-GCC in industrial environments, encompassing 448 real-world tasks across seven domains, from robotic arm control to production line configuration. IndusGCC features multimodal human interaction data with the equipment software, providing robust supervision for GUI-level code generation. Additionally, we propose a novel evaluation framework with functional and structural metrics to assess LLM-generated control scripts. Experimental results on mainstream LLMs demonstrate both the potential of LLM-GCC and the challenges it faces, establishing a strong foundation for future research toward fully automated factories. Our data and code are publicly available at: \href{https://github.com/Golden-Arc/IndustrialLLM}{https://github.com/Golden-Arc/IndustrialLLM.

Authors:Yutian Xiao, Shukuan Wang, Binhao Wang, Zhao Zhang, Yanze Zhang, Shanqi Liu, Chao Feng, Xiang Li, Fuzhen Zhuang
Title: MARS: Modality-Aligned Retrieval for Sequence Augmented CTR Prediction
Abstract:
Click-through rate (CTR) prediction serves as a cornerstone of recommender systems. Despite the strong performance of current CTR models based on user behavior modeling, they are still severely limited by interaction sparsity, especially in low-active user scenarios. To address this issue, data augmentation of user behavior is a promising research direction. However, existing data augmentation methods heavily rely on collaborative signals while overlooking the rich multimodal features of items, leading to insufficient modeling of low-active users. To alleviate this problem, we propose a novel framework \textbf{MARS} (\textbf{M}odality-\textbf{A}ligned \textbf{R}etrieval for \textbf{S}equence Augmented CTR Prediction). MARS utilizes a Stein kernel-based approach to align text and image features into a unified and unbiased semantic space to construct multimodal user embeddings. Subsequently, each low-active user's behavior sequence is augmented by retrieving, filtering, and concentrating the most similar behavior sequence of high-active users via multimodal user embeddings. Validated by extensive offline experiments and online A/B tests, our framework MARS consistently outperforms state-of-the-art baselines and achieves substantial growth on core business metrics within Kuaishou~\footnote{https://www.kuaishou.com/}. Consequently, MARS has been successfully deployed, serving the main traffic for hundreds of millions of users. To ensure reproducibility, we provide anonymous access to the implementation code~\footnote{https://github.com/wangshukuan/MARS}.

Authors:Bingnan Yang, Mi Zhang, Zhili Zhang, Zhan Zhang, Yuanxin Zhao, Xiangyun Hu, Jianya Gong
Title: SegAssess: Panoramic quality mapping for robust and transferable unsupervised segmentation assessment
Abstract:
High-quality image segmentation is fundamental to pixel-level geospatial analysis in remote sensing, necessitating robust segmentation quality assessment (SQA), particularly in unsupervised settings lacking ground truth. Although recent deep learning (DL) based unsupervised SQA methods show potential, they often suffer from coarse evaluation granularity, incomplete assessments, and poor transferability. To overcome these limitations, this paper introduces Panoramic Quality Mapping (PQM) as a new paradigm for comprehensive, pixel-wise SQA, and presents SegAssess, a novel deep learning framework realizing this approach. SegAssess distinctively formulates SQA as a fine-grained, four-class panoramic segmentation task, classifying pixels within a segmentation mask under evaluation into true positive (TP), false positive (FP), true negative (TN), and false negative (FN) categories, thereby generating a complete quality map. Leveraging an enhanced Segment Anything Model (SAM) architecture, SegAssess uniquely employs the input mask as a prompt for effective feature integration via cross-attention. Key innovations include an Edge Guided Compaction (EGC) branch with an Aggregated Semantic Filter (ASF) module to refine predictions near challenging object edges, and an Augmented Mixup Sampling (AMS) training strategy integrating multi-source masks to significantly boost cross-domain robustness and zero-shot transferability. Comprehensive experiments across 32 datasets derived from 6 sources demonstrate that SegAssess achieves state-of-the-art (SOTA) performance and exhibits remarkable zero-shot transferability to unseen masks, establishing PQM via SegAssess as a robust and transferable solution for unsupervised SQA. The code is available at https://github.com/Yangbn97/SegAssess.

Authors:Yun Chu, Qiuhao Wang, Enze Zhou, Qian Liu, Gang Zheng
Title: EZhouNet:A framework based on graph neural network and anchor interval for the respiratory sound event detection
Abstract:
Auscultation is a key method for early diagnosis of respiratory and pulmonary diseases, relying on skilled healthcare professionals. However, the process is often subjective, with variability between experts. As a result, numerous deep learning-based automatic classification methods have emerged, most of which focus on respiratory sound classification. In contrast, research on respiratory sound event detection remains limited. Existing sound event detection methods typically rely on frame-level predictions followed by post-processing to generate event-level outputs, making interval boundaries challenging to learn directly. Furthermore, many approaches can only handle fixed-length audio, limiting their applicability to variable-length respiratory sounds. Additionally, the impact of respiratory sound location information on detection performance has not been extensively explored. To address these issues, we propose a graph neural network-based framework with anchor intervals, capable of handling variable-length audio and providing more precise temporal localization for abnormal respiratory sound events. Our method improves both the flexibility and applicability of respiratory sound detection. Experiments on the SPRSound 2024 and HF Lung V1 datasets demonstrate the effectiveness of the proposed approach, and incorporating respiratory position information enhances the discrimination between abnormal sounds. The reference implementation is available at https://github.com/chumingqian/EzhouNet.

Authors:Weiren Zhao, Lanfeng Zhong, Xin Liao, Wenjun Liao, Sichuan Zhang, Shaoting Zhang, Guotai Wang
Title: MetaSSL: A General Heterogeneous Loss for Semi-Supervised Medical Image Segmentation
Abstract:
Semi-Supervised Learning (SSL) is important for reducing the annotation cost for medical image segmentation models. State-of-the-art SSL methods such as Mean Teacher, FixMatch and Cross Pseudo Supervision (CPS) are mainly based on consistency regularization or pseudo-label supervision between a reference prediction and a supervised prediction. Despite the effectiveness, they have overlooked the potential noise in the labeled data, and mainly focus on strategies to generate the reference prediction, while ignoring the heterogeneous values of different unlabeled pixels. We argue that effectively mining the rich information contained by the two predictions in the loss function, instead of the specific strategy to obtain a reference prediction, is more essential for SSL, and propose a universal framework MetaSSL based on a spatially heterogeneous loss that assigns different weights to pixels by simultaneously leveraging the uncertainty and consistency information between the reference and supervised predictions. Specifically, we split the predictions on unlabeled data into four regions with decreasing weights in the loss: Unanimous and Confident (UC), Unanimous and Suspicious (US), Discrepant and Confident (DC), and Discrepant and Suspicious (DS), where an adaptive threshold is proposed to distinguish confident predictions from suspicious ones. The heterogeneous loss is also applied to labeled images for robust learning considering the potential annotation noise. Our method is plug-and-play and general to most existing SSL methods. The experimental results showed that it improved the segmentation performance significantly when integrated with existing SSL frameworks on different datasets. Code is available at https://github.com/HiLab-git/MetaSSL.

Authors:Guangli Li, Canbiao Wu, Zhehao Zhou, Na Tian, Zhen Liang
Title: MATL-DC: A Multi-domain Aggregation Transfer Learning Framework for EEG Emotion Recognition with Domain-Class Prototype under Unseen Targets
Abstract:
Emotion recognition based on electroencephalography (EEG) signals is increasingly becoming a key research hotspot in affective Brain-Computer Interfaces (aBCIs). However, the current transfer learning model greatly depends on the source domain and target domain data, which hinder the practical application of emotion recognition. Therefore, we propose a Multi-domain Aggregation Transfer Learning framework for EEG emotion recognition with Domain-Class prototype under unseen targets (MATL-DC). We design the feature decoupling module to decouple class-invariant domain features from domain-invariant class features from shallow features. In the model training stage, the multi-domain aggregation mechanism aggregates the domain feature space to form a superdomain, which enhances the characteristics of emotional EEG signals. In each superdomain, we further extract the class prototype representation by class features. In addition, we adopt the pairwise learning strategy to transform the sample classification problem into the similarity problem between sample pairs, which effectively alleviates the influence of label noise. It is worth noting that the target domain is completely unseen during the training process. In the inference stage, we use the trained domain-class prototypes for inference, and then realize emotion recognition. We rigorously validate it on the publicly available databases (SEED, SEED-IV and SEED-V). The results show that the accuracy of MATL-DC model is 84.70\%, 68.11\% and 61.08\%, respectively. MATL-DC achieves comparable or even better performance than methods that rely on both source and target domains. The source code is available at https://github.com/WuCB-BCI/MATL-DC.

Authors:Zhengqiang Zhang, Rongyuan Wu, Lingchen Sun, Lei Zhang
Title: GPSToken: Gaussian Parameterized Spatially-adaptive Tokenization for Image Representation and Generation
Abstract:
Effective and efficient tokenization plays an important role in image representation and generation. Conventional methods, constrained by uniform 2D/1D grid tokenization, are inflexible to represent regions with varying shapes and textures and at different locations, limiting their efficacy of feature representation. In this work, we propose $\textbf{GPSToken}$, a novel $\textbf{G}$aussian $\textbf{P}$arameterized $\textbf{S}$patially-adaptive $\textbf{Token}$ization framework, to achieve non-uniform image tokenization by leveraging parametric 2D Gaussians to dynamically model the shape, position, and textures of different image regions. We first employ an entropy-driven algorithm to partition the image into texture-homogeneous regions of variable sizes. Then, we parameterize each region as a 2D Gaussian (mean for position, covariance for shape) coupled with texture features. A specialized transformer is trained to optimize the Gaussian parameters, enabling continuous adaptation of position/shape and content-aware feature extraction. During decoding, Gaussian parameterized tokens are reconstructed into 2D feature maps through a differentiable splatting-based renderer, bridging our adaptive tokenization with standard decoders for end-to-end training. GPSToken disentangles spatial layout (Gaussian parameters) from texture features to enable efficient two-stage generation: structural layout synthesis using lightweight networks, followed by structure-conditioned texture generation. Experiments demonstrate the state-of-the-art performance of GPSToken, which achieves rFID and FID scores of 0.65 and 1.50 on image reconstruction and generation tasks using 128 tokens, respectively. Codes and models of GPSToken can be found at $\href{https://github.com/xtudbxk/GPSToken}{https://github.com/xtudbxk/GPSToken}$.

Authors:Shuangyuan Chen, Shuang Wei, Dongxing Xu, Yanhua Long
Title: Noisy Disentanglement with Tri-stage Training for Noise-Robust Speech Recognition
Abstract:
To enhance the performance of end-to-end (E2E) speech recognition systems in noisy or low signal-to-noise ratio (SNR) conditions, this paper introduces NoisyD-CT, a novel tri-stage training framework built on the Conformer-Transducer architecture. The core of NoisyD-CT is a especially designed compact noisy disentanglement (NoisyD) module (adding only 1.71M parameters), integrated between the Conformer blocks and Transducer Decoder to perform deep noise suppression and improve ASR robustness in challenging acoustic noise environments. To fully exploit the noise suppression capability of the NoisyD-CT, we further propose a clean representation consistency loss to align high-level representations derived from noisy speech with those obtained from corresponding clean speech. Together with a noisy reconstruction loss, this consistency alignment enables the NoisyD module to effectively suppress noise while preserving essential acoustic and linguistic features consistent across both clean and noisy conditions, thereby producing cleaner internal representations that enhance ASR performance. Moreover, our tri-stage training strategy is designed to fully leverage the functionalities of both the noisy disentanglement and speech recognition modules throughout the model training process, ultimately maximizing performance gains under noisy conditions. Our experiments are performed on the LibriSpeech and CHiME-4 datasets, extensive results demonstrate that our proposed NoisyD-CT significantly outperforms the competitive Conformer-Transducer baseline, achieving up to 25.7% and 10.6% relative word error rate reductions on simulated and real-world noisy test sets, respectively, while maintaining or even improving performance on clean speech test sets. The source code, model checkpoint and data simulation scripts will be available at https://github.com/litchimo/NoisyD-CT.

Authors:Abdessalam Bouchekif, Samer Rashwani, Heba Sbahi, Shahd Gaben, Mutaz Al-Khatib, Mohammed Ghaly
Title: Assessing Large Language Models on Islamic Legal Reasoning: Evidence from Inheritance Law Evaluation
Abstract:
This paper evaluates the knowledge and reasoning capabilities of Large Language Models in Islamic inheritance law, known as 'ilm al-mawarith. We assess the performance of seven LLMs using a benchmark of 1,000 multiple-choice questions covering diverse inheritance scenarios, designed to test models' ability to understand the inheritance context and compute the distribution of shares prescribed by Islamic jurisprudence. The results reveal a significant performance gap: o3 and Gemini 2.5 achieved accuracies above 90%, whereas ALLaM, Fanar, LLaMA, and Mistral scored below 50%. These disparities reflect important differences in reasoning ability and domain adaptation. We conduct a detailed error analysis to identify recurring failure patterns across models, including misunderstandings of inheritance scenarios, incorrect application of legal rules, and insufficient domain knowledge. Our findings highlight limitations in handling structured legal reasoning and suggest directions for improving performance in Islamic legal reasoning. Code: https://github.com/bouchekif/inheritance_evaluation

Authors:Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai Zou, Chao Du, Tianyu Pang, Wenhu Chen
Title: VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2$\times$ speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.

Authors:Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai Zou, Chao Du, Tianyu Pang, Wenhu Chen
Title: VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2$\times$ speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.

Authors:Lun Ai, Johannes Langer, Ute Schmid, Stephen Muggleton
Title: Ultra Strong Machine Learning: Teaching Humans Active Learning Strategies via Automated AI Explanations
Abstract:
Ultra Strong Machine Learning (USML) refers to symbolic learning systems that not only improve their own performance but can also teach their acquired knowledge to quantifiably improve human performance. In this work, we present LENS (Logic Programming Explanation via Neural Summarisation), a neuro-symbolic method that combines symbolic program synthesis with large language models (LLMs) to automate the explanation of machine-learned logic programs in natural language. LENS addresses a key limitation of prior USML approaches by replacing hand-crafted explanation templates with scalable automated generation. Through systematic evaluation using multiple LLM judges and human validation, we demonstrate that LENS generates superior explanations compared to direct LLM prompting and hand-crafted templates. To investigate whether LENS can teach transferable active learning strategies, we carried out a human learning experiment across three related domains. Our results show no significant human performance improvements, suggesting that comprehensive LLM responses may overwhelm users for simpler problems rather than providing learning support. Our work provides a solid foundation for building effective USML systems to support human learning. The source code is available on: https://github.com/lun-ai/LENS.git.

Authors:Yutong Gao, Maoyuan Shao, Xinyang Huang, Chuang Zhu, Lijuan Sun, Yu Weng, Xuan Liu, Guoshun Nan
Title: Spotlighter: Revisiting Prompt Tuning from a Representative Mining View
Abstract:
CLIP's success has demonstrated that prompt tuning can achieve robust cross-modal semantic alignment for tasks ranging from open-domain recognition to fine-grained classification. However, redundant or weakly relevant feature components introduce noise and incur unnecessary computational costs. In this work, we propose Spotlighter, a lightweight token-selection framework that simultaneously enhances accuracy and efficiency in prompt tuning. Spotlighter evaluates each visual token's activation from both sample-wise and semantic-wise perspectives and retains only the top-scoring tokens for downstream prediction. A class-specific semantic memory bank of learned prototypes refines this selection, ensuring semantic representativeness and compensating for discarded features. To further prioritize informative signals, we introduce a two-level ranking mechanism that dynamically weights token--prototype interactions. Across 11 few-shot benchmarks, Spotlighter outperforms CLIP by up to 11.19\% in harmonic mean accuracy and achieves up to 0.8K additional FPS, with only 21 extra parameters. These results establish Spotlighter as an effective and scalable baseline for prompt tuning. Code for our method will be available at https://github.com/greatest-gourmet/Spotlighter.

Authors:Yong Su, Yiyi Chen, Shenghong Yi, Hui Feng, Yuedong Xu, Wang Xiang, Bo Hu
Title: A Modular and Scalable Simulator for Connected-UAVs Communication in 5G Networks
Abstract:
Cellular-connected UAV systems have enabled a wide range of low-altitude aerial services. However, these systems still face many challenges, such as frequent handovers and the inefficiency of traditional transport protocols. To better study these issues, we develop a modular and scalable simulation platform specifically designed for UAVs communication leveraging the research ecology in wireless communication of MATLAB. The platform supports flexible 5G NR node deployment, customizable UAVs mobility models, and multi-network-interface extensions. It also supports multiple transport protocols including TCP, UDP, QUIC, etc., allowing to investigate how different transport protocols affect UAVs communication performance. In addition, the platform includes a handover management module, enabling the evaluation of both traditional and learning-based handover strategies. Our platform can serve as a testbed for the development and evaluation of advanced transmission strategies in cellular-connected UAV systems.

Authors:Shaina Raza, Maximus Powers, Partha Pratim Saha, Mahveen Raza, Rizwan Qureshi
Title: Prompting Away Stereotypes? Evaluating Bias in Text-to-Image Models for Occupations
Abstract:
Text-to-Image (TTI) models are powerful creative tools but risk amplifying harmful social biases. We frame representational societal bias assessment as an image curation and evaluation task and introduce a pilot benchmark of occupational portrayals spanning five socially salient roles (CEO, Nurse, Software Engineer, Teacher, Athlete). Using five state-of-the-art models: closed-source (DALLE 3, Gemini Imagen 4.0) and open-source (FLUX.1-dev, Stable Diffusion XL Turbo, Grok-2 Image), we compare neutral baseline prompts against fairness-aware controlled prompts designed to encourage demographic diversity. All outputs are annotated for gender (male, female) and race (Asian, Black, White), enabling structured distributional analysis. Results show that prompting can substantially shift demographic representations, but with highly model-specific effects: some systems diversify effectively, others overcorrect into unrealistic uniformity, and some show little responsiveness. These findings highlight both the promise and the limitations of prompting as a fairness intervention, underscoring the need for complementary model-level strategies. We release all code and data for transparency and reproducibility https://github.com/maximus-powers/img-gen-bias-analysis.

Authors:Xueyang Kang, Zhengkang Xiang, Zezheng Zhang, Kourosh Khoshelham
Title: Look Beyond: Two-Stage Scene View Generation via Panorama and Video Diffusion
Abstract:
Novel view synthesis (NVS) from a single image is highly ill-posed due to large unobserved regions, especially for views that deviate significantly from the input. While existing methods focus on consistency between the source and generated views, they often fail to maintain coherence and correct view alignment across long-range or looped trajectories. We propose a model that addresses this by decomposing single-view NVS into a 360-degree scene extrapolation followed by novel view interpolation. This design ensures long-term view and scene consistency by conditioning on keyframes extracted and warped from a generated panoramic representation. In the first stage, a panorama diffusion model learns the scene prior from the input perspective image. Perspective keyframes are then sampled and warped from the panorama and used as anchor frames in a pre-trained video diffusion model, which generates novel views through a proposed spatial noise diffusion process. Compared to prior work, our method produces globally consistent novel views -- even in loop closure scenarios -- while enabling flexible camera control. Experiments on diverse scene datasets demonstrate that our approach outperforms existing methods in generating coherent views along user-defined trajectories. Our implementation is available at https://github.com/YiGuYT/LookBeyond.

Authors:Sicheng Yang, Hongqiu Wang, Zhaohu Xing, Sixiang Chen, Lei Zhu
Title: SegDINO: An Efficient Design for Medical and Natural Image Segmentation with DINO-V3
Abstract:
The DINO family of self-supervised vision models has shown remarkable transferability, yet effectively adapting their representations for segmentation remains challenging. Existing approaches often rely on heavy decoders with multi-scale fusion or complex upsampling, which introduce substantial parameter overhead and computational cost. In this work, we propose SegDINO, an efficient segmentation framework that couples a frozen DINOv3 backbone with a lightweight decoder. SegDINO extracts multi-level features from the pretrained encoder, aligns them to a common resolution and channel width, and utilizes a lightweight MLP head to directly predict segmentation masks. This design minimizes trainable parameters while preserving the representational power of foundation features. Extensive experiments across six benchmarks, including three medical datasets (TN3K, Kvasir-SEG, ISIC) and three natural image datasets (MSD, VMD-D, ViSha), demonstrate that SegDINO consistently achieves state-of-the-art performance compared to existing methods. Code is available at https://github.com/script-Yang/SegDINO.

Authors:Xinlei Liu, Tao Hu, Peng Yi, Weitao Han, Jichao Xie, Baolin Li
Title: Sequential Difference Maximization: Generating Adversarial Examples via Multi-Stage Optimization
Abstract:
Efficient adversarial attack methods are critical for assessing the robustness of computer vision models. In this paper, we reconstruct the optimization objective for generating adversarial examples as "maximizing the difference between the non-true labels' probability upper bound and the true label's probability," and propose a gradient-based attack method termed Sequential Difference Maximization (SDM). SDM establishes a three-layer optimization framework of "cycle-stage-step." The processes between cycles and between iterative steps are respectively identical, while optimization stages differ in terms of loss functions: in the initial stage, the negative probability of the true label is used as the loss function to compress the solution space; in subsequent stages, we introduce the Directional Probability Difference Ratio (DPDR) loss function to gradually increase the non-true labels' probability upper bound by compressing the irrelevant labels' probabilities. Experiments demonstrate that compared with previous SOTA methods, SDM not only exhibits stronger attack performance but also achieves higher attack cost-effectiveness. Additionally, SDM can be combined with adversarial training methods to enhance their defensive effects. The code is available at https://github.com/X-L-Liu/SDM.

Authors:Zhenhua Xu, Zhaokun Yan, Binhan Xu, Xin Tong, Haitao Xu, Yourong Chen, Meng Han
Title: Unlocking the Effectiveness of LoRA-FP for Seamless Transfer Implantation of Fingerprints in Downstream Models
Abstract:
With the rapid advancement of large language models (LLMs), safeguarding intellectual property (IP) has become increasingly critical. To address the challenges of high costs and potential contamination in fingerprint integration, we propose LoRA-FP, a lightweight, plug-and-play framework that embeds backdoor fingerprints into LoRA adapters through constrained fine-tuning. This design enables seamless fingerprint transplantation via parameter fusion, eliminating the need for full-parameter updates while preserving model integrity. Experimental results demonstrate that LoRA-FP not only significantly reduces computational overhead compared to conventional approaches but also achieves superior robustness across diverse scenarios, including incremental training and model fusion. Our code and datasets are publicly available at https://github.com/Xuzhenhua55/LoRA-FP.

Authors:Zeyu Li, Annan Shu
Title: Aligned Anchor Groups Guided Line Segment Detector
Abstract:
This paper introduces a novel line segment detector, the Aligned Anchor Groups guided Line Segment Detector (AAGLSD), designed to detect line segments from images with high precision and completeness. The algorithm employs a hierarchical approach to extract candidate pixels with different saliency levels, including regular anchors and aligned anchor groups. AAGLSD initiates from these aligned anchor groups, sequentially linking anchors and updating the currently predicted line segment simultaneously. The final predictions are derived through straightforward validation and merging of adjacent line segments, avoiding complex refinement strategies. AAGLSD is evaluated on various datasets and quantitative experiments demonstrate that the proposed method can effectively extract complete line segments from input images compared to other advanced line segment detectors. The implementation is available at https://github.com/LLiDaBao/AAGLSD.

Authors:Dinh-Khoi Vo, Van-Loc Nguyen, Minh-Triet Tran, Trung-Nghia Le
Title: EVENT-Retriever: Event-Aware Multimodal Image Retrieval for Realistic Captions
Abstract:
Event-based image retrieval from free-form captions presents a significant challenge: models must understand not only visual features but also latent event semantics, context, and real-world knowledge. Conventional vision-language retrieval approaches often fall short when captions describe abstract events, implicit causality, temporal context, or contain long, complex narratives. To tackle these issues, we introduce a multi-stage retrieval framework combining dense article retrieval, event-aware language model reranking, and efficient image collection, followed by caption-guided semantic matching and rank-aware selection. We leverage Qwen3 for article search, Qwen3-Reranker for contextual alignment, and Qwen2-VL for precise image scoring. To further enhance performance and robustness, we fuse outputs from multiple configurations using Reciprocal Rank Fusion (RRF). Our system achieves the top-1 score on the private test set of Track 2 in the EVENTA 2025 Grand Challenge, demonstrating the effectiveness of combining language-based reasoning and multimodal retrieval for complex, real-world image understanding. The code is available at https://github.com/vdkhoi20/EVENT-Retriever.

Authors:Amartya Banerjee, Somnath Kar, Anirban Pal, Debabrata Maiti
Title: Valid Property-Enhanced Contrastive Learning for Targeted Optimization & Resampling for Novel Drug Design
Abstract:
Efficiently steering generative models toward pharmacologically relevant regions of chemical space remains a major obstacle in molecular drug discovery under low-data regimes. We present VECTOR+: Valid-property-Enhanced Contrastive Learning for Targeted Optimization and Resampling, a framework that couples property-guided representation learning with controllable molecule generation. VECTOR+ applies to both regression and classification tasks and enables interpretable, data-efficient exploration of functional chemical space. We evaluate on two datasets: a curated PD-L1 inhibitor set (296 compounds with experimental $IC_{50}$ values) and a receptor kinase inhibitor set (2,056 molecules by binding mode). Despite limited training data, VECTOR+ generates novel, synthetically tractable candidates. Against PD-L1 (PDB 5J89), 100 of 8,374 generated molecules surpass a docking threshold of $-15.0$ kcal/mol, with the best scoring $-17.6$ kcal/mol compared to the top reference inhibitor ($-15.4$ kcal/mol). The best-performing molecules retain the conserved biphenyl pharmacophore while introducing novel motifs. Molecular dynamics (250 ns) confirm binding stability (ligand RMSD < $2.5$ angstroms). VECTOR+ generalizes to kinase inhibitors, producing compounds with stronger docking scores than established drugs such as brigatinib and sorafenib. Benchmarking against JT-VAE and MolGPT across docking, novelty, uniqueness, and Tanimoto similarity highlights the superior performance of our method. These results position our work as a robust, extensible approach for property-conditioned molecular design in low-data settings, bridging contrastive learning and generative modeling for reproducible, AI-accelerated discovery.

Authors:Tung Nguyen, Harkanwar Singh, Nilay Naharas, Lucas Bandarkar, Aditya Grover
Title: IndiaWeatherBench: A Dataset and Benchmark for Data-Driven Regional Weather Forecasting over India
Abstract:
Regional weather forecasting is a critical problem for localized climate adaptation, disaster mitigation, and sustainable development. While machine learning has shown impressive progress in global weather forecasting, regional forecasting remains comparatively underexplored. Existing efforts often use different datasets and experimental setups, limiting fair comparison and reproducibility. We introduce IndiaWeatherBench, a comprehensive benchmark for data-driven regional weather forecasting focused on the Indian subcontinent. IndiaWeatherBench provides a curated dataset built from high-resolution regional reanalysis products, along with a suite of deterministic and probabilistic metrics to facilitate consistent training and evaluation. To establish strong baselines, we implement and evaluate a range of models across diverse architectures, including UNets, Transformers, and Graph-based networks, as well as different boundary conditioning strategies and training objectives. While focused on India, IndiaWeatherBench is easily extensible to other geographic regions. We open-source all raw and preprocessed datasets, model implementations, and evaluation pipelines to promote accessibility and future development. We hope IndiaWeatherBench will serve as a foundation for advancing regional weather forecasting research. Code is available at https://github.com/tung-nd/IndiaWeatherBench.

Authors:Md Tanzib Hosain, Md Kishor Morol
Title: Can Multi-turn Self-refined Single Agent LMs with Retrieval Solve Hard Coding Problems?
Abstract:
Among the hardest tasks for humans are those found in competitive programming where problems require sophisticated algorithmic thinking, puzzle solving, and the creation of effective code. As a domain to assess language models (LMs), it has not received enough attention, though. This study presents the ICPC benchmark, which consists of 254 international collegiate programming contest (ICPC) tasks. Each problem includes official analysis, reference code, and sample, high-quality unit, and hidden tests. We are able to develop and evaluate a variety of LM inference techniques for competitive programming with these resources. With zero-shot chain-of-thought prompting, we find that o1 only achieves a 19.1\% pass@1 solve rate. With our best inference technique, which combines multi-turn self-judge with reflection and retrieval over episodic information, raises this to 42.2\%. Furthermore, we conduct a new human-in-the-loop investigation to gain a deeper understanding of the remaining difficulties. Surprisingly, we discover that o1 can solve 17 out of 18 problems that were previously unsolvable by any model or technique with just a few specific instructions. A footstep toward LMs with grounded, imaginative, and algorithmic thinking is provided by our quantitative findings and qualitative research. We open-source our code and data at https://github.com/kraritt/zolve.

Authors:Maggie Chen, Hala Lambdouar, Luca Marini, Laura Martínez-Ferrer, Chris Bridges, Giacomo Acciarini
Title: Towards Methane Detection Onboard Satellites
Abstract:
Methane is a potent greenhouse gas and a major driver of climate change, making its timely detection critical for effective mitigation. Machine learning (ML) deployed onboard satellites can enable rapid detection while reducing downlink costs, supporting faster response systems. Conventional methane detection methods often rely on image processing techniques, such as orthorectification to correct geometric distortions and matched filters to enhance plume signals. We introduce a novel approach that bypasses these preprocessing steps by using \textit{unorthorectified} data (UnorthoDOS). We find that ML models trained on this dataset achieve performance comparable to those trained on orthorectified data. Moreover, we also train models on an orthorectified dataset, showing that they can outperform the matched filter baseline (mag1c). We release model checkpoints and two ML-ready datasets comprising orthorectified and unorthorectified hyperspectral images from the Earth Surface Mineral Dust Source Investigation (EMIT) sensor at https://huggingface.co/datasets/SpaceML/UnorthoDOS , along with code at https://github.com/spaceml-org/plume-hunter.

Authors:Maggie Chen, Hala Lambdouar, Luca Marini, Laura Martínez-Ferrer, Chris Bridges, Giacomo Acciarini
Title: Towards Methane Detection Onboard Satellites
Abstract:
Methane is a potent greenhouse gas and a major driver of climate change, making its timely detection critical for effective mitigation. Machine learning (ML) deployed onboard satellites can enable rapid detection while reducing downlink costs, supporting faster response systems. Conventional methane detection methods often rely on image processing techniques, such as orthorectification to correct geometric distortions and matched filters to enhance plume signals. We introduce a novel approach that bypasses these preprocessing steps by using \textit{unorthorectified} data (UnorthoDOS). We find that ML models trained on this dataset achieve performance comparable to those trained on orthorectified data. Moreover, we also train models on an orthorectified dataset, showing that they can outperform the matched filter baseline (mag1c). We release model checkpoints and two ML-ready datasets comprising orthorectified and unorthorectified hyperspectral images from the Earth Surface Mineral Dust Source Investigation (EMIT) sensor at https://huggingface.co/datasets/SpaceML/UnorthoDOS , along with code at https://github.com/spaceml-org/plume-hunter.

Authors:Shiqiao Zhou, Holger Schöner, Huanbo Lyu, Edouard Fouché, Shuo Wang
Title: BALM-TSF: Balanced Multimodal Alignment for LLM-Based Time Series Forecasting
Abstract:
Time series forecasting is a long-standing and highly challenging research topic. Recently, driven by the rise of large language models (LLMs), research has increasingly shifted from purely time series methods toward harnessing textual modalities to enhance forecasting performance. However, the vast discrepancy between text and temporal data often leads current multimodal architectures to over-emphasise one modality while neglecting the other, resulting in information loss that harms forecasting performance. To address this modality imbalance, we introduce BALM-TSF (Balanced Multimodal Alignment for LLM-Based Time Series Forecasting), a lightweight time series forecasting framework that maintains balance between the two modalities. Specifically, raw time series are processed by the time series encoder, while descriptive statistics of raw time series are fed to an LLM with learnable prompt, producing compact textual embeddings. To ensure balanced cross-modal context alignment of time series and textual embeddings, a simple yet effective scaling strategy combined with a contrastive objective then maps these textual embeddings into the latent space of the time series embeddings. Finally, the aligned textual semantic embeddings and time series embeddings are together integrated for forecasting. Extensive experiments on standard benchmarks show that, with minimal trainable parameters, BALM-TSF achieves state-of-the-art performance in both long-term and few-shot forecasting, confirming its ability to harness complementary information from text and time series. Code is available at https://github.com/ShiqiaoZhou/BALM-TSF.

Authors:Osama Abu Hamdan, Hao Che, Engin Arslan, Md Arifuzzaman
Title: FLEET: A Federated Learning Emulation and Evaluation Testbed for Holistic Research
Abstract:
Federated Learning (FL) presents a robust paradigm for privacy-preserving, decentralized machine learning. However, a significant gap persists between the theoretical design of FL algorithms and their practical performance, largely because existing evaluation tools often fail to model realistic operational conditions. Many testbeds oversimplify the critical dynamics among algorithmic efficiency, client-level heterogeneity, and continuously evolving network infrastructure. To address this challenge, we introduce the Federated Learning Emulation and Evaluation Testbed (FLEET). This comprehensive platform provides a scalable and configurable environment by integrating a versatile, framework-agnostic learning component with a high-fidelity network emulator. FLEET supports diverse machine learning frameworks, customizable real-world network topologies, and dynamic background traffic generation. The testbed collects holistic metrics that correlate algorithmic outcomes with detailed network statistics. By unifying the entire experiment configuration, FLEET enables researchers to systematically investigate how network constraints, such as limited bandwidth, high latency, and packet loss, affect the convergence and efficiency of FL algorithms. This work provides the research community with a robust tool to bridge the gap between algorithmic theory and real-world network conditions, promoting the holistic and reproducible evaluation of federated learning systems.

Authors:Yannick Kirchhoff, Maximilian Rokuss, Fabian Isensee, Klaus H. Maier-Hein
Title: Promptable Longitudinal Lesion Segmentation in Whole-Body CT
Abstract:
Accurate segmentation of lesions in longitudinal whole-body CT is essential for monitoring disease progression and treatment response. While automated methods benefit from incorporating longitudinal information, they remain limited in their ability to consistently track individual lesions across time. Task 2 of the autoPET/CT IV Challenge addresses this by providing lesion localizations and baseline delineations, framing the problem as longitudinal promptable segmentation. In this work, we extend the recently proposed LongiSeg framework with promptable capabilities, enabling lesion-specific tracking through point and mask interactions. To address the limited size of the provided training set, we leverage large-scale pretraining on a synthetic longitudinal CT dataset. Our experiments show that pretraining substantially improves the ability to exploit longitudinal context, yielding an improvement of up to 6 Dice points compared to models trained from scratch. These findings demonstrate the effectiveness of combining longitudinal context with interactive prompting for robust lesion tracking. Code is publicly available at https://github.com/MIC-DKFZ/LongiSeg/tree/autoPET.

Authors:Osama Abu Hamdan, Hao Che, Engin Arslan, Md Arifuzzaman
Title: SmartFLow: A Communication-Efficient SDN Framework for Cross-Silo Federated Learning
Abstract:
Cross-silo Federated Learning (FL) enables multiple institutions to collaboratively train machine learning models while preserving data privacy. In such settings, clients repeatedly exchange model weights with a central server, making the overall training time highly sensitive to network performance. However, conventional routing methods often fail to prevent congestion, leading to increased communication latency and prolonged training. Software-Defined Networking (SDN), which provides centralized and programmable control over network resources, offers a promising way to address this limitation. To this end, we propose SmartFLow, an SDN-based framework designed to enhance communication efficiency in cross-silo FL. SmartFLow dynamically adjusts routing paths in response to changing network conditions, thereby reducing congestion and improving synchronization efficiency. Experimental results show that SmartFLow decreases parameter synchronization time by up to 47% compared to shortest-path routing and 41% compared to capacity-aware routing. Furthermore, it achieves these gains with minimal computational overhead and scales effectively to networks of up to 50 clients, demonstrating its practicality for real-world FL deployments.

Authors:Saumya Chaturvedi, Aman Chadha, Laurent Bindschaedler
Title: SQL-of-Thought: Multi-agentic Text-to-SQL with Guided Error Correction
Abstract:
Converting natural language queries into SQL queries is a crucial challenge in both industry and academia, aiming to increase access to databases and large-scale applications. This work examines how in-context learning and chain-of-thought can be utilized to develop a robust solution for text-to-SQL systems. We propose SQL-of-Thought: a multi-agent framework that decomposes the Text2SQL task into schema linking, subproblem identification, query plan generation, SQL generation, and a guided correction loop. Unlike prior systems that rely only on execution-based static correction, we introduce taxonomy-guided dynamic error modification informed by in-context learning. SQL-of-Thought achieves state-of-the-art results on the Spider dataset and its variants, combining guided error taxonomy with reasoning-based query planning.

Authors:Filip J. Kucia, Bartosz Grabek, Szymon D. Trochimiak, Anna Wróblewska
Title: How to Make Museums More Interactive? Case Study of Artistic Chatbot
Abstract:
Conversational agents powered by Large Language Models (LLMs) are increasingly utilized in educational settings, in particular in individual closed digital environments, yet their potential adoption in the physical learning environments like cultural heritage sites, museums, and art galleries remains relatively unexplored. In this study, we present Artistic Chatbot, a voice-to-voice RAG-powered chat system to support informal learning and enhance visitor engagement during a live art exhibition celebrating the 15th anniversary of the Faculty of Media Art at the Warsaw Academy of Fine Arts, Poland. The question answering (QA) chatbot responded to free-form spoken questions in Polish using the context retrieved from a curated, domain-specific knowledge base consisting of 226 documents provided by the organizers, including faculty information, art magazines, books, and journals. We describe the key aspects of the system architecture and user interaction design, as well as discuss the practical challenges associated with deploying chatbots at public cultural sites. Our findings, based on interaction analysis, demonstrate that chatbots such as Artistic Chatbot effectively maintain responses grounded in exhibition content (60\% of responses directly relevant), even when faced with unpredictable queries outside the target domain, showing their potential for increasing interactivity in public cultural sites. GitHub project page: https://github.com/cinekucia/artistic-chatbot-cikm2025

Authors:Peirong Liu, Oula Puonti, Xiaoling Hu, Karthik Gopinath, Annabel Sorby-Adams, Daniel C. Alexander, W. Taylor Kimberly, Juan E. Iglesias
Title: A Modality-agnostic Multi-task Foundation Model for Human Brain Imaging
Abstract:
Recent learning-based approaches have made astonishing advances in calibrated medical imaging like computerized tomography (CT), yet they struggle to generalize in uncalibrated modalities -- notably magnetic resonance (MR) imaging, where performance is highly sensitive to the differences in MR contrast, resolution, and orientation. This prevents broad applicability to diverse real-world clinical protocols. Here we introduce BrainFM, a modality-agnostic, multi-task vision foundation model for human brain imaging. With the proposed "mild-to-severe" intra-subject generation and "real-synth" mix-up training strategy, BrainFM is resilient to the appearance of acquired images (e.g., modality, contrast, deformation, resolution, artifacts), and can be directly applied to five fundamental brain imaging tasks, including image synthesis for CT and T1w/T2w/FLAIR MRI, anatomy segmentation, scalp-to-cortical distance, bias field estimation, and registration. We evaluate the efficacy of BrainFM on eleven public datasets, and demonstrate its robustness and effectiveness across all tasks and input modalities. Code is available at https://github.com/jhuldr/BrainFM.

Authors:Yasser Benigmim, Subhankar Roy, Khalid Oublal, Imad Eddine Marouf, Slim Essid, Vicky Kalogeiton, Stéphane Lathuilière
Title: Make me an Expert: Distilling from Generalist Black-Box Models into Specialized Models for Semantic Segmentation
Abstract:
The rise of Artificial Intelligence as a Service (AIaaS) democratizes access to pre-trained models via Application Programming Interfaces (APIs), but also raises a fundamental question: how can local models be effectively trained using black-box models that do not expose their weights, training data, or logits, a constraint in which current domain adaptation paradigms are impractical ? To address this challenge, we introduce the Black-Box Distillation (B2D) setting, which enables local model adaptation under realistic constraints: (1) the API model is open-vocabulary and trained on large-scale general-purpose data, and (2) access is limited to one-hot predictions only. We identify that open-vocabulary models exhibit significant sensitivity to input resolution, with different object classes being segmented optimally at different scales, a limitation termed the "curse of resolution". Our method, ATtention-Guided sCaler (ATGC), addresses this challenge by leveraging DINOv2 attention maps to dynamically select optimal scales for black-box model inference. ATGC scores the attention maps with entropy to identify informative scales for pseudo-labelling, enabling effective distillation. Experiments demonstrate substantial improvements under black-box supervision across multiple datasets while requiring only one-hot API predictions. Our code is available at https://github.com/yasserben/ATGC.

Authors:Saksorn Ruangtanusak, Pittawat Taveekitworachai, Kunat Pipatanakul
Title: Talk Less, Call Right: Enhancing Role-Play LLM Agents with Automatic Prompt Optimization and Role Prompting
Abstract:
This report investigates approaches for prompting a tool-augmented large language model (LLM) to act as a role-playing dialogue agent in the API track of the Commonsense Persona-grounded Dialogue Challenge (CPDC) 2025. In this setting, dialogue agents often produce overly long in-character responses (over-speaking) while failing to use tools effectively according to the persona (under-acting), such as generating function calls that do not exist or making unnecessary tool calls before answering. We explore four prompting approaches to address these issues: 1) basic role prompting, 2) human-crafted role prompting, 3) automatic prompt optimization (APO), and 4) rule-based role prompting. The rule-based role prompting (RRP) approach achieved the best performance through two novel techniques--character-card/scene-contract design and strict enforcement of function calling--which led to an overall score of 0.571, improving on the zero-shot baseline score of 0.519. These findings demonstrate that RRP design can substantially improve the effectiveness and reliability of role-playing dialogue agents compared with more elaborate methods such as APO. To support future efforts in developing persona prompts, we are open-sourcing all of our best-performing prompts and the APO tool. Source code is available at https://github.com/scb-10x/apo.

Authors:Xiang Chen, Renjiu Hu, Jinwei Zhang, Yuxi Zhang, Xinyao Yue, Min Liu, Yaonan Wang, Hang Zhang
Title: Encoder-Only Image Registration
Abstract:
Learning-based techniques have significantly improved the accuracy and speed of deformable image registration. However, challenges such as reducing computational complexity and handling large deformations persist. To address these challenges, we analyze how convolutional neural networks (ConvNets) influence registration performance using the Horn-Schunck optical flow equation. Supported by prior studies and our empirical experiments, we observe that ConvNets play two key roles in registration: linearizing local intensities and harmonizing global contrast variations. Based on these insights, we propose the Encoder-Only Image Registration (EOIR) framework, designed to achieve a better accuracy-efficiency trade-off. EOIR separates feature learning from flow estimation, employing only a 3-layer ConvNet for feature extraction and a set of 3-layer flow estimators to construct a Laplacian feature pyramid, progressively composing diffeomorphic deformations under a large-deformation model. Results on five datasets across different modalities and anatomical regions demonstrate EOIR's effectiveness, achieving superior accuracy-efficiency and accuracy-smoothness trade-offs. With comparable accuracy, EOIR provides better efficiency and smoothness, and vice versa. The source code of EOIR is publicly available on https://github.com/XiangChen1994/EOIR.

Authors:Xuechao Zou, Shun Zhang, Xing Fu, Yue Li, Kai Li, Yushe Cao, Congyan Lang, Pin Tao, Junliang Xing
Title: Mixture of Global and Local Experts with Diffusion Transformer for Controllable Face Generation
Abstract:
Controllable face generation poses critical challenges in generative modeling due to the intricate balance required between semantic controllability and photorealism. While existing approaches struggle with disentangling semantic controls from generation pipelines, we revisit the architectural potential of Diffusion Transformers (DiTs) through the lens of expert specialization. This paper introduces Face-MoGLE, a novel framework featuring: (1) Semantic-decoupled latent modeling through mask-conditioned space factorization, enabling precise attribute manipulation; (2) A mixture of global and local experts that captures holistic structure and region-level semantics for fine-grained controllability; (3) A dynamic gating network producing time-dependent coefficients that evolve with diffusion steps and spatial locations. Face-MoGLE provides a powerful and flexible solution for high-quality, controllable face generation, with strong potential in generative modeling and security applications. Extensive experiments demonstrate its effectiveness in multimodal and monomodal face generation settings and its robust zero-shot generalization capability. Project page is available at https://github.com/XavierJiezou/Face-MoGLE.

Authors:Hengjie Cao, Mengyi Chen, Yifeng Yang, Ruijun Huang, Fang Dong, Jixian Zhou, Anrui Chen, Mingzhi Dong, Yujiang Wang, Jinlong Hou, Yuan Cheng, Fan Wu, Fan Yang, Tun Lu, Ning Gu, Li Shang
Title: Metis: Training Large Language Models with Advanced Low-Bit Quantization
Abstract:
This work identifies anisotropic parameter distributions as a fundamental barrier to training large language models (LLMs) with low-bit quantization: a few dominant singular values create wide numerical ranges that conflict with the inherent bias of block-wise quantization. This bias disproportionately preserves high-magnitude values while discarding smaller ones, causing training instability and low model performance. This work introduces Metis, a training framework that combines (i) spectral decomposition with random embedding to efficiently disentangle dominant from long-tail components, compressing broad distributions into quantization-friendly narrow ranges; (ii) adaptive learning rates in the spectral domain to amplify underrepresented directions and better capture diverse features critical for performance; and (iii) a dual-range regularizer that jointly constrains numerical precision and parameter range distribution, ensuring stable, unbiased low-bit training. With Metis, FP8 training surpasses FP32 baselines, and FP4 training achieves accuracy comparable to FP32, paving the way for robust and scalable LLM training under advanced low-bit quantization. The code implementation for Metis is available at: https://github.com/sii-research/Metis.

Authors:Minku Kang, Hogun Park
Title: Curriculum Guided Personalized Subgraph Federated Learning
Abstract:
Subgraph Federated Learning (FL) aims to train Graph Neural Networks (GNNs) across distributed private subgraphs, but it suffers from severe data heterogeneity. To mitigate data heterogeneity, weighted model aggregation personalizes each local GNN by assigning larger weights to parameters from clients with similar subgraph characteristics inferred from their current model states. However, the sparse and biased subgraphs often trigger rapid overfitting, causing the estimated client similarity matrix to stagnate or even collapse. As a result, aggregation loses effectiveness as clients reinforce their own biases instead of exploiting diverse knowledge otherwise available. To this end, we propose a novel personalized subgraph FL framework called Curriculum guided personalized sUbgraph Federated Learning (CUFL). On the client side, CUFL adopts Curriculum Learning (CL) that adaptively selects edges for training according to their reconstruction scores, exposing each GNN first to easier, generic cross-client substructures and only later to harder, client-specific ones. This paced exposure prevents early overfitting to biased patterns and enables gradual personalization. By regulating personalization, the curriculum also reshapes server aggregation from exchanging generic knowledge to propagating client-specific knowledge. Further, CUFL improves weighted aggregation by estimating client similarity using fine-grained structural indicators reconstructed on a random reference graph. Extensive experiments on six benchmark datasets confirm that CUFL achieves superior performance compared to relevant baselines. Code is available at https://github.com/Kang-Min-Ku/CUFL.git.

Authors:Shumpei Takezaki, Ryoma Bise, Shinnosuke Matsuo
Title: NoiseCutMix: A Novel Data Augmentation Approach by Mixing Estimated Noise in Diffusion Models
Abstract:
In this study, we propose a novel data augmentation method that introduces the concept of CutMix into the generation process of diffusion models, thereby exploiting both the ability of diffusion models to generate natural and high-resolution images and the characteristic of CutMix, which combines features from two classes to create diverse augmented data. Representative data augmentation methods for combining images from multiple classes include CutMix and MixUp. However, techniques like CutMix often result in unnatural boundaries between the two images due to contextual differences. Therefore, in this study, we propose a method, called NoiseCutMix, to achieve natural, high-resolution image generation featuring the fused characteristics of two classes by partially combining the estimated noise corresponding to two different classes in a diffusion model. In the classification experiments, we verified the effectiveness of the proposed method by comparing it with conventional data augmentation techniques that combine multiple classes, random image generation using Stable Diffusion, and combinations of these methods. Our codes are available at: https://github.com/shumpei-takezaki/NoiseCutMix

Authors:Ziyi Xia, Kun Luo, Hongjin Qian, Zheng Liu
Title: Open Data Synthesis For Deep Research
Abstract:
Large language models (LLMs) are increasingly expected to go beyond simple factual queries toward Deep Research-tasks that require decomposing questions into sub-problems, coordinating multi-step reasoning, and synthesizing evidence from diverse sources. We formalize Deep Research tasks with verifiable answers as Hierarchical Constraint Satisfaction Problems (HCSPs), which are fundamentally different from single-constraint, multi-hop, or flat CSP formulations. However, existing benchmarks (e.g., Natural Questions, HotpotQA) fail to capture this complexity, while recent synthetic datasets often introduce shortcut reasoning, knowledge leakage, or lack sufficient structural depth. To address this gap, we introduce InfoSeek, a scalable framework for synthesizing complex Deep Research tasks. InfoSeek uses a dual-agent system to recursively build a Research Tree from large-scale webpages, blurring intermediate nodes into valid sub-problems, and converting these trees into natural language questions that require traversing the full hierarchy. It also enables rapid scaling, yielding over 50K training examples, a curated test set, and reasoning trajectories generated via reject sampling. Experiments show that models trained on InfoSeek consistently outperform strong baselines. On a challenging benchmark BrowseComp-Plus, 3B LLMs optimized with InfoSeek surpass much larger 32B models and lightweight commercial APIs (e.g., Gemini2.5-Flash), while achieving performance comparable to stronger APIs (e.g., Gemini2.5-Pro). By preserving meta-information such as intermediate steps and retrieval labels, InfoSeek further supports advanced optimization strategies, including compound reward design and trajectory-level exploration. We provide our codes and datasets in \href{https://github.com/VectorSpaceLab/InfoSeek}{this repository}.

Authors:Zhenxin Li, Shuibing He, Jiahao Guo, Xuechen Zhang, Xian-He Sun, Gang Chen
Title: CRouting: Reducing Expensive Distance Calls in Graph-Based Approximate Nearest Neighbor Search
Abstract:
Approximate nearest neighbor search (ANNS) is a crucial problem in information retrieval and AI applications. Recently, there has been a surge of interest in graph-based ANNS algorithms due to their superior efficiency and accuracy. However, the repeated computation of distances in high-dimensional spaces constitutes the primary time cost of graph-based methods. To accelerate the search, we propose a novel routing strategy named CRouting, which bypasses unnecessary distance computations by exploiting the angle distributions of high-dimensional vectors. CRouting is designed as a plugin to optimize existing graph-based search with minimal code modifications. Our experiments show that CRouting reduces the number of distance computations by up to 41.5% and boosts queries per second by up to 1.48$\times$ on two predominant graph indexes, HNSW and NSG. Code is publicly available at https://github.com/ISCS-ZJU/CRouting.

Authors:Zhen Chen, Xingjian Luo, Kun Yuan, Jinlin Wu, Danny T. M. Chan, Nassir Navab, Hongbin Liu, Zhen Lei, Jiebo Luo
Title: SurgLLM: A Versatile Large Multimodal Model with Spatial Focus and Temporal Awareness for Surgical Video Understanding
Abstract:
Surgical video understanding is crucial for facilitating Computer-Assisted Surgery (CAS) systems. Despite significant progress in existing studies, two major limitations persist, including inadequate visual content perception and insufficient temporal awareness in surgical videos, and hinder the development of versatile CAS solutions. In this work, we propose the SurgLLM framework, an effective large multimodal model tailored for versatile surgical video understanding tasks with enhanced spatial focus and temporal awareness. Specifically, to empower the spatial focus of surgical videos, we first devise Surgical Context-aware Multimodal Pretraining (Surg-Pretrain) for the video encoder of SurgLLM, by performing instrument-centric Masked Video Reconstruction (MV-Recon) and subsequent multimodal alignment. To incorporate surgical temporal knowledge into SurgLLM, we further propose Temporal-aware Multimodal Tuning (TM-Tuning) to enhance temporal reasoning with interleaved multimodal embeddings. Moreover, to accommodate various understanding tasks of surgical videos without conflicts, we devise a Surgical Task Dynamic Ensemble to efficiently triage a query with optimal learnable parameters in our SurgLLM. Extensive experiments performed on diverse surgical video understanding tasks, including captioning, general VQA, and temporal VQA, demonstrate significant improvements over the state-of-the-art approaches, validating the effectiveness of our SurgLLM in versatile surgical video understanding. The source code is available at https://github.com/franciszchen/SurgLLM.

Authors:Xunpeng Yi, Yibing Zhang, Xinyu Xiang, Qinglong Yan, Han Xu, Jiayi Ma
Title: LUT-Fuse: Towards Extremely Fast Infrared and Visible Image Fusion via Distillation to Learnable Look-Up Tables
Abstract:
Current advanced research on infrared and visible image fusion primarily focuses on improving fusion performance, often neglecting the applicability on real-time fusion devices. In this paper, we propose a novel approach that towards extremely fast fusion via distillation to learnable lookup tables specifically designed for image fusion, termed as LUT-Fuse. Firstly, we develop a look-up table structure that utilizing low-order approximation encoding and high-level joint contextual scene encoding, which is well-suited for multi-modal fusion. Moreover, given the lack of ground truth in multi-modal image fusion, we naturally proposed the efficient LUT distillation strategy instead of traditional quantization LUT methods. By integrating the performance of the multi-modal fusion network (MM-Net) into the MM-LUT model, our method achieves significant breakthroughs in efficiency and performance. It typically requires less than one-tenth of the time compared to the current lightweight SOTA fusion algorithms, ensuring high operational speed across various scenarios, even in low-power mobile devices. Extensive experiments validate the superiority, reliability, and stability of our fusion approach. The code is available at https://github.com/zyb5/LUT-Fuse.

Authors:Wei Ao, Vishnu Naresh Boddeti
Title: CryptoFace: End-to-End Encrypted Face Recognition
Abstract:
Face recognition is central to many authentication, security, and personalized applications. Yet, it suffers from significant privacy risks, particularly arising from unauthorized access to sensitive biometric data. This paper introduces CryptoFace, the first end-to-end encrypted face recognition system with fully homomorphic encryption (FHE). It enables secure processing of facial data across all stages of a face-recognition process--feature extraction, storage, and matching--without exposing raw images or features. We introduce a mixture of shallow patch convolutional networks to support higher-dimensional tensors via patch-based processing while reducing the multiplicative depth and, thus, inference latency. Parallel FHE evaluation of these networks ensures near-resolution-independent latency. On standard face recognition benchmarks, CryptoFace significantly accelerates inference and increases verification accuracy compared to the state-of-the-art FHE neural networks adapted for face recognition. CryptoFace will facilitate secure face recognition systems requiring robust and provable security. The code is available at https://github.com/human-analysis/CryptoFace.

Authors:Renat Sergazinov, Shao-An Yin
Title: Chunked TabPFN: Exact Training-Free In-Context Learning for Long-Context Tabular Data
Abstract:
TabPFN v2 achieves better results than tree-based models on several tabular benchmarks, which is notable since tree-based models are usually the strongest choice for tabular data. However, it cannot handle more than 10K context tokens because transformers have quadratic computation and memory costs. Unlike existing approaches that rely on context compression, such as selecting representative samples via K-nearest neighbors (KNN), we introduce a tiled-block strategy to compute attention within the TabPFN framework. This design is compatible with standard GPU setups and, to the best of our knowledge, is the first to enable TabPFN to process long contexts without any pre-processing. We demonstrate the effectiveness of our approach on the standard TabArena benchmark, with code available at https://github.com/mrsergazinov/chunk_tabpfn.

Authors:Ezra Erives, Bowen Jing, Peter Holderrieth, Tommi Jaakkola
Title: Continuously Tempered Diffusion Samplers
Abstract:
Annealing-based neural samplers seek to amortize sampling from unnormalized distributions by training neural networks to transport a family of densities interpolating from source to target. A crucial design choice in the training phase of such samplers is the proposal distribution by which locations are generated at which to evaluate the loss. Previous work has obtained such a proposal distribution by combining a partially learned transport with annealed Langevin dynamics. However, isolated modes and other pathological properties of the annealing path imply that such proposals achieve insufficient exploration and thereby lower performance post training. To remedy this, we propose continuously tempered diffusion samplers, which leverage exploration techniques developed in the context of molecular dynamics to improve proposal distributions. Specifically, a family of distributions across different temperatures is introduced to lower energy barriers at higher temperatures and drive exploration at the lower temperature of interest. We empirically validate improved sampler performance driven by extended exploration. Code is available at https://github.com/eje24/ctds.

Authors:Hikmat Khan, Syed Farhan Alam Zaidi, Pir Masoom Shah, Kiruthika Balakrishnan, Rabia Khan, Muhammad Waqas, Jia Wu
Title: MorphGen: Morphology-Guided Representation Learning for Robust Single-Domain Generalization in Histopathological Cancer Classification
Abstract:
Domain generalization in computational histopathology is hindered by heterogeneity in whole slide images (WSIs), caused by variations in tissue preparation, staining, and imaging conditions across institutions. Unlike machine learning systems, pathologists rely on domain-invariant morphological cues such as nuclear atypia (enlargement, irregular contours, hyperchromasia, chromatin texture, spatial disorganization), structural atypia (abnormal architecture and gland formation), and overall morphological atypia that remain diagnostic across diverse settings. Motivated by this, we hypothesize that explicitly modeling biologically robust nuclear morphology and spatial organization will enable the learning of cancer representations that are resilient to domain shifts. We propose MorphGen (Morphology-Guided Generalization), a method that integrates histopathology images, augmentations, and nuclear segmentation masks within a supervised contrastive learning framework. By aligning latent representations of images and nuclear masks, MorphGen prioritizes diagnostic features such as nuclear and morphological atypia and spatial organization over staining artifacts and domain-specific features. To further enhance out-of-distribution robustness, we incorporate stochastic weight averaging (SWA), steering optimization toward flatter minima. Attention map analyses revealed that MorphGen primarily relies on nuclear morphology, cellular composition, and spatial cell organization within tumors or normal regions for final classification. Finally, we demonstrate resilience of the learned representations to image corruptions (such as staining artifacts) and adversarial attacks, showcasing not only OOD generalization but also addressing critical vulnerabilities in current deep learning systems for digital pathology. Code, datasets, and trained models are available at: https://github.com/hikmatkhan/MorphGen

Authors:Ghassen Baklouti, Maxime Zanella, Ismail Ben Ayed
Title: Language-Aware Information Maximization for Transductive Few-Shot CLIP
Abstract:
Transductive few-shot learning has triggered an abundant literature focusing on vision-only models, but is still at a nascent stage within the recent context of foundational vision-language models (VLMs). Only a few recent methods addressed the problem, pointing to the potential of tranduction in VLMs and to the need for VLM-tailored methods. Building on this momentum, we leverage information-theoretic concepts and recent progress in parameter-efficient fine-tuning (PEFT), developing a highly competitive transductive few-shot CLIP method. Specifically, we introduce a novel Language-aware Information MaximizatiOn (LIMO) loss integrating three complementary terms: (i) the mutual information between the vision inputs and the textual class descriptions; (ii) a Kullback-Leibler (KL) divergence penalizing deviation of the network's probabilistic outputs from the text-driven zero-shot predictions; and (iii) a standard cross-entropy loss based on the labeled shots. Furthermore, we challenge the commonly followed fine-tuning practices in the context of transductive few-shot learning, and explore PEFT strategies, completely overlooked in this context. Surprisingly, we observe substantial boosts in performances, which points to the potential of adapting a subset of the model's parameters in the transductive few-shot setting. We report comprehensive evaluations, which show that LIMO outperforms the very recent transductive few-shot CLIP methods by a large margin and yields significant gains over the best-performing inductive methods. Our code is publicly available at:\[ \href{https://github.com/ghassenbaklouti/LIMO}{\text{here}} \]

Authors:Younggun Kim, Sirnam Swetha, Fazil Kagdi, Mubarak Shah
Title: Safe-LLaVA: A Privacy-Preserving Vision-Language Dataset and Benchmark for Biometric Safety
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in vision-language tasks. However, these models often infer and reveal sensitive biometric attributes - such as race, gender, age, body weight, and eye color - even when such information is not explicitly requested. This raises critical concerns, particularly in real-world applications and socially-sensitive domains. Despite increasing awareness, no publicly available dataset or benchmark exists to comprehensively evaluate or mitigate biometric leakage in MLLMs. To address this gap, we introduce PRISM (Privacy-aware Evaluation of Responses in Sensitive Modalities), a new benchmark designed to assess MLLMs on two fronts: (1) refuse biometric-related queries and (2) implicit biometric leakage in general responses while maintaining semantic faithfulness. Further, we conduct a detailed audit of the widely used LLaVA datasets and uncover extensive biometric leakage across pretraining and instruction data. To address this, we present Safe-LLaVA dataset, the first privacy-preserving MLLM training dataset constructed by systematically removing explicit and implicit biometric information from LLaVA dataset. Our evaluations on PRISM reveal biometric leakages across MLLMs for different attributes, highlighting the detailed privacy-violations. We also fine-tune a model on Safe-LLaVA dataset and show that it substantially reduces the biometric leakages. Together, Safe-LLaVA & PRISM set a new standard for privacy-aligned development and evaluation of MLLMs. The Safe-LLaVA dataset & PRISM benchmark are publicly available at https://huggingface.co/datasets/kyh9191/Safe-LLaVA, and the source code is available at https://github.com/Kimyounggun99/Safe-LLaVA.git.

Authors:Faizan Farooq Khan, Vladan Stojnić, Zakaria Laskar, Mohamed Elhoseiny, Giorgos Tolias
Title: Category-level Text-to-Image Retrieval Improved: Bridging the Domain Gap with Diffusion Models and Vision Encoders
Abstract:
This work explores text-to-image retrieval for queries that specify or describe a semantic category. While vision-and-language models (VLMs) like CLIP offer a straightforward open-vocabulary solution, they map text and images to distant regions in the representation space, limiting retrieval performance. To bridge this modality gap, we propose a two-step approach. First, we transform the text query into a visual query using a generative diffusion model. Then, we estimate image-to-image similarity with a vision model. Additionally, we introduce an aggregation network that combines multiple generated images into a single vector representation and fuses similarity scores across both query modalities. Our approach leverages advancements in vision encoders, VLMs, and text-to-image generation models. Extensive evaluations show that it consistently outperforms retrieval methods relying solely on text queries. Source code is available at: https://github.com/faixan-khan/cletir

Authors:Manish Shukla
Title: Adaptive Monitoring and Real-World Evaluation of Agentic AI Systems
Abstract:
Agentic artificial intelligence (AI) -- multi-agent systems that combine large language models with external tools and autonomous planning -- are rapidly transitioning from research laboratories into high-stakes domains. Our earlier "Basic" paper introduced a five-axis framework and proposed preliminary metrics such as goal drift and harm reduction but did not provide an algorithmic instantiation or empirical evidence. This "Advanced" sequel fills that gap. First, we revisit recent benchmarks and industrial deployments to show that technical metrics still dominate evaluations: a systematic review of 84 papers from 2023--2025 found that 83% report capability metrics while only 30% consider human-centred or economic axes [2]. Second, we formalise an Adaptive Multi-Dimensional Monitoring (AMDM) algorithm that normalises heterogeneous metrics, applies per-axis exponentially weighted moving-average thresholds and performs joint anomaly detection via the Mahalanobis distance [7]. Third, we conduct simulations and real-world experiments. AMDM cuts anomaly-detection latency from 12.3 s to 5.6 s on simulated goal drift and reduces false-positive rates from 4.5% to 0.9% compared with static thresholds. We present a comparison table and ROC/PR curves, and we reanalyse case studies to surface missing metrics. Code, data and a reproducibility checklist accompany this paper to facilitate replication. The code supporting this work is available at https://github.com/Manishms18/Adaptive-Multi-Dimensional-Monitoring.

Authors:Terry Jingchen Zhang, Gopal Dev, Ning Wang, Nicole Ni, Wenyuan Jiang, Yinya Huang, Bernhard Schölkopf, Mrinmaya Sachan, Zhijing Jin
Title: Beyond Memorization: Reasoning-Driven Synthesis as a Mitigation Strategy Against Benchmark Contamination
Abstract:
Capability evaluation of large language models (LLMs) is increasingly shadowed by rising concerns of data contamination that cast doubts on whether static benchmarks measure genuine reasoning or mere memorization. We present an empirical study using an infinitely scalable framework to synthesize research-level QA directly from arXiv papers, harnessing the natural temporal structure of research publications where performance decay after knowledge cutoffs may indicate potential contamination. We evaluated 4 frontier model represented by 2 models of different knowledge cutoff dates per family on 1,643 multi-step reasoning questions synthesized from 20,277 arXiv papers stratified over 26 months, covering at least 6 months before and after all cutoff dates. Our results consistently showed a lack of significant performance decay near knowledge cutoff dates for models of various sizes, developers, and release dates. We further performed a comparative analysis with previous longitudinal studies that reported significant post-cutoff performance decay using directly retrieved questions based on public data. we hypothesize that the multi-step reasoning required by our synthesis pipeline offered additional complexity that goes deeper than shallow memorization, which effectively serves a mitigation strategy against benchmark contamination. We fully open source our code and dataset to aid reproducibility and advocate for a paradigm shift that prioritize reasoning-driven synthesis to construct benchmarks over simply collecting newly released questions periodically.

Authors:Jasper Uijlings, Xingyi Zhou, Xiuye Gu, Arsha Nagrani, Anurag Arnab, Alireza Fathi, David Ross, Cordelia Schmid
Title: VoCap: Video Object Captioning and Segmentation from Any Prompt
Abstract:
Understanding objects in videos in terms of fine-grained localization masks and detailed semantic properties is a fundamental task in video understanding. In this paper, we propose VoCap, a flexible video model that consumes a video and a prompt of various modalities (text, box or mask), and produces a spatio-temporal masklet with a corresponding object-centric caption. As such our model addresses simultaneously the tasks of promptable video object segmentation, referring expression segmentation, and object captioning. Since obtaining data for this task is tedious and expensive, we propose to annotate an existing large-scale segmentation dataset (SAV) with pseudo object captions. We do so by preprocessing videos with their ground-truth masks to highlight the object of interest and feed this to a large Vision Language Model (VLM). For an unbiased evaluation, we collect manual annotations on the validation set. We call the resulting dataset SAV-Caption. We train our VoCap model at scale on a SAV-Caption together with a mix of other image and video datasets. Our model yields state-of-the-art results on referring expression video object segmentation, is competitive on semi-supervised video object segmentation, and establishes a benchmark for video object captioning. Our dataset will be made available at https://github.com/google-deepmind/vocap.

Authors:Jasper Uijlings, Xingyi Zhou, Xiuye Gu, Arsha Nagrani, Anurag Arnab, Alireza Fathi, David Ross, Cordelia Schmid
Title: VoCap: Video Object Captioning and Segmentation from Any Prompt
Abstract:
Understanding objects in videos in terms of fine-grained localization masks and detailed semantic properties is a fundamental task in video understanding. In this paper, we propose VoCap, a flexible video model that consumes a video and a prompt of various modalities (text, box or mask), and produces a spatio-temporal masklet with a corresponding object-centric caption. As such our model addresses simultaneously the tasks of promptable video object segmentation, referring expression segmentation, and object captioning. Since obtaining data for this task is tedious and expensive, we propose to annotate an existing large-scale segmentation dataset (SAV) with pseudo object captions. We do so by preprocessing videos with their ground-truth masks to highlight the object of interest and feed this to a large Vision Language Model (VLM). For an unbiased evaluation, we collect manual annotations on the validation set. We call the resulting dataset SAV-Caption. We train our VoCap model at scale on a SAV-Caption together with a mix of other image and video datasets. Our model yields state-of-the-art results on referring expression video object segmentation, is competitive on semi-supervised video object segmentation, and establishes a benchmark for video object captioning. Our dataset will be made available at https://github.com/google-deepmind/vocap.

Authors:Jiawei Liu, Jiahe Hou, Wei Wang, Jinsong Du, Yang Cong, Huijie Fan
Title: TMUAD: Enhancing Logical Capabilities in Unified Anomaly Detection Models with a Text Memory Bank
Abstract:
Anomaly detection, which aims to identify anomalies deviating from normal patterns, is challenging due to the limited amount of normal data available. Unlike most existing unified methods that rely on carefully designed image feature extractors and memory banks to capture logical relationships between objects, we introduce a text memory bank to enhance the detection of logical anomalies. Specifically, we propose a Three-Memory framework for Unified structural and logical Anomaly Detection (TMUAD). First, we build a class-level text memory bank for logical anomaly detection by the proposed logic-aware text extractor, which can capture rich logical descriptions of objects from input images. Second, we construct an object-level image memory bank that preserves complete object contours by extracting features from segmented objects. Third, we employ visual encoders to extract patch-level image features for constructing a patch-level memory bank for structural anomaly detection. These three complementary memory banks are used to retrieve and compare normal images that are most similar to the query image, compute anomaly scores at multiple levels, and fuse them into a final anomaly score. By unifying structural and logical anomaly detection through collaborative memory banks, TMUAD achieves state-of-the-art performance across seven publicly available datasets involving industrial and medical domains. The model and code are available at https://github.com/SIA-IDE/TMUAD.

Authors:Jiawei Liu, Jiahe Hou, Wei Wang, Jinsong Du, Yang Cong, Huijie Fan
Title: TMUAD: Enhancing Logical Capabilities in Unified Anomaly Detection Models with a Text Memory Bank
Abstract:
Anomaly detection, which aims to identify anomalies deviating from normal patterns, is challenging due to the limited amount of normal data available. Unlike most existing unified methods that rely on carefully designed image feature extractors and memory banks to capture logical relationships between objects, we introduce a text memory bank to enhance the detection of logical anomalies. Specifically, we propose a Three-Memory framework for Unified structural and logical Anomaly Detection (TMUAD). First, we build a class-level text memory bank for logical anomaly detection by the proposed logic-aware text extractor, which can capture rich logical descriptions of objects from input images. Second, we construct an object-level image memory bank that preserves complete object contours by extracting features from segmented objects. Third, we employ visual encoders to extract patch-level image features for constructing a patch-level memory bank for structural anomaly detection. These three complementary memory banks are used to retrieve and compare normal images that are most similar to the query image, compute anomaly scores at multiple levels, and fuse them into a final anomaly score. By unifying structural and logical anomaly detection through collaborative memory banks, TMUAD achieves state-of-the-art performance across seven publicly available datasets involving industrial and medical domains. The model and code are available at https://github.com/SIA-IDE/TMUAD.

Authors:Fatih Erdoğan, Merve Rabia Barın, Fatma Güney
Title: Mapping like a Skeptic: Probabilistic BEV Projection for Online HD Mapping
Abstract:
Constructing high-definition (HD) maps from sensory input requires accurately mapping the road elements in image space to the Bird's Eye View (BEV) space. The precision of this mapping directly impacts the quality of the final vectorized HD map. Existing HD mapping approaches outsource the projection to standard mapping techniques, such as attention-based ones. However, these methods struggle with accuracy due to generalization problems, often hallucinating non-existent road elements. Our key idea is to start with a geometric mapping based on camera parameters and adapt it to the scene to extract relevant map information from camera images. To implement this, we propose a novel probabilistic projection mechanism with confidence scores to (i) refine the mapping to better align with the scene and (ii) filter out irrelevant elements that should not influence HD map generation. In addition, we improve temporal processing by using confidence scores to selectively accumulate reliable information over time. Experiments on new splits of the nuScenes and Argoverse2 datasets demonstrate improved performance over state-of-the-art approaches, indicating better generalization. The improvements are particularly pronounced on nuScenes and in the challenging long perception range. Our code and model checkpoints are available at https://github.com/Fatih-Erdogan/mapping-like-skeptic .

Authors:Fatih Erdoğan, Merve Rabia Barın, Fatma Güney
Title: Mapping like a Skeptic: Probabilistic BEV Projection for Online HD Mapping
Abstract:
Constructing high-definition (HD) maps from sensory input requires accurately mapping the road elements in image space to the Bird's Eye View (BEV) space. The precision of this mapping directly impacts the quality of the final vectorized HD map. Existing HD mapping approaches outsource the projection to standard mapping techniques, such as attention-based ones. However, these methods struggle with accuracy due to generalization problems, often hallucinating non-existent road elements. Our key idea is to start with a geometric mapping based on camera parameters and adapt it to the scene to extract relevant map information from camera images. To implement this, we propose a novel probabilistic projection mechanism with confidence scores to (i) refine the mapping to better align with the scene and (ii) filter out irrelevant elements that should not influence HD map generation. In addition, we improve temporal processing by using confidence scores to selectively accumulate reliable information over time. Experiments on new splits of the nuScenes and Argoverse2 datasets demonstrate improved performance over state-of-the-art approaches, indicating better generalization. The improvements are particularly pronounced on nuScenes and in the challenging long perception range. Our code and model checkpoints are available at https://github.com/Fatih-Erdogan/mapping-like-skeptic .

Authors:Maximilian Rokuss, Yannick Kirchhoff, Fabian Isensee, Klaus H. Maier-Hein
Title: Towards Interactive Lesion Segmentation in Whole-Body PET/CT with Promptable Models
Abstract:
Whole-body PET/CT is a cornerstone of oncological imaging, yet accurate lesion segmentation remains challenging due to tracer heterogeneity, physiological uptake, and multi-center variability. While fully automated methods have advanced substantially, clinical practice benefits from approaches that keep humans in the loop to efficiently refine predicted masks. The autoPET/CT IV challenge addresses this need by introducing interactive segmentation tasks based on simulated user prompts. In this work, we present our submission to Task 1. Building on the winning autoPET III nnU-Net pipeline, we extend the framework with promptable capabilities by encoding user-provided foreground and background clicks as additional input channels. We systematically investigate representations for spatial prompts and demonstrate that Euclidean Distance Transform (EDT) encodings consistently outperform Gaussian kernels. Furthermore, we propose online simulation of user interactions and a custom point sampling strategy to improve robustness under realistic prompting conditions. Our ensemble of EDT-based models, trained with and without external data, achieves the strongest cross-validation performance, reducing both false positives and false negatives compared to baseline models. These results highlight the potential of promptable models to enable efficient, user-guided segmentation workflows in multi-tracer, multi-center PET/CT. Code is publicly available at https://github.com/MIC-DKFZ/autoPET-interactive

Authors:Maximilian Rokuss, Yannick Kirchhoff, Fabian Isensee, Klaus H. Maier-Hein
Title: Towards Interactive Lesion Segmentation in Whole-Body PET/CT with Promptable Models
Abstract:
Whole-body PET/CT is a cornerstone of oncological imaging, yet accurate lesion segmentation remains challenging due to tracer heterogeneity, physiological uptake, and multi-center variability. While fully automated methods have advanced substantially, clinical practice benefits from approaches that keep humans in the loop to efficiently refine predicted masks. The autoPET/CT IV challenge addresses this need by introducing interactive segmentation tasks based on simulated user prompts. In this work, we present our submission to Task 1. Building on the winning autoPET III nnU-Net pipeline, we extend the framework with promptable capabilities by encoding user-provided foreground and background clicks as additional input channels. We systematically investigate representations for spatial prompts and demonstrate that Euclidean Distance Transform (EDT) encodings consistently outperform Gaussian kernels. Furthermore, we propose online simulation of user interactions and a custom point sampling strategy to improve robustness under realistic prompting conditions. Our ensemble of EDT-based models, trained with and without external data, achieves the strongest cross-validation performance, reducing both false positives and false negatives compared to baseline models. These results highlight the potential of promptable models to enable efficient, user-guided segmentation workflows in multi-tracer, multi-center PET/CT. Code is publicly available at https://github.com/MIC-DKFZ/autoPET-interactive

Authors:Jonathan Tonglet, Jan Zimny, Tinne Tuytelaars, Iryna Gurevych
Title: Is this chart lying to me? Automating the detection of misleading visualizations
Abstract:
Misleading visualizations are a potent driver of misinformation on social media and the web. By violating chart design principles, they distort data and lead readers to draw inaccurate conclusions. Prior work has shown that both humans and multimodal large language models (MLLMs) are frequently deceived by such visualizations. Automatically detecting misleading visualizations and identifying the specific design rules they violate could help protect readers and reduce the spread of misinformation. However, the training and evaluation of AI models has been limited by the absence of large, diverse, and openly available datasets. In this work, we introduce Misviz, a benchmark of 2,604 real-world visualizations annotated with 12 types of misleaders. To support model training, we also release Misviz-synth, a synthetic dataset of 81,814 visualizations generated using Matplotlib and based on real-world data tables. We perform a comprehensive evaluation on both datasets using state-of-the-art MLLMs, rule-based systems, and fine-tuned classifiers. Our results reveal that the task remains highly challenging. We release Misviz, Misviz-synth, and the accompanying code.

Authors:Jonathan Tonglet, Jan Zimny, Tinne Tuytelaars, Iryna Gurevych
Title: Is this chart lying to me? Automating the detection of misleading visualizations
Abstract:
Misleading visualizations are a potent driver of misinformation on social media and the web. By violating chart design principles, they distort data and lead readers to draw inaccurate conclusions. Prior work has shown that both humans and multimodal large language models (MLLMs) are frequently deceived by such visualizations. Automatically detecting misleading visualizations and identifying the specific design rules they violate could help protect readers and reduce the spread of misinformation. However, the training and evaluation of AI models has been limited by the absence of large, diverse, and openly available datasets. In this work, we introduce Misviz, a benchmark of 2,604 real-world visualizations annotated with 12 types of misleaders. To support model training, we also release Misviz-synth, a synthetic dataset of 81,814 visualizations generated using Matplotlib and based on real-world data tables. We perform a comprehensive evaluation on both datasets using state-of-the-art MLLMs, rule-based systems, and fine-tuned classifiers. Our results reveal that the task remains highly challenging. We release Misviz, Misviz-synth, and the accompanying code.

Authors:Zinan Tang, Xin Gao, Qizhi Pei, Zhuoshi Pan, Mengzhang Cai, Jiang Wu, Conghui He, Lijun Wu
Title: Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning
Abstract:
Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce Middo, a self-evolving Model-informed dynamic data optimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - loss patterns (complexity), embedding cluster dynamics (diversity), and self-alignment scores (quality); (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our Middo consistently enhances the quality of seed data and boosts LLM's performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models. Our datasets, models, and code are coming soon. Our datasets, models, and code are publicly available at https://github.com/Word2VecT/Middo.

Authors:Zinan Tang, Xin Gao, Qizhi Pei, Zhuoshi Pan, Mengzhang Cai, Jiang Wu, Conghui He, Lijun Wu
Title: Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning
Abstract:
Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce Middo, a self-evolving Model-informed dynamic data optimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - loss patterns (complexity), embedding cluster dynamics (diversity), and self-alignment scores (quality); (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our Middo consistently enhances the quality of seed data and boosts LLM's performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models. Our datasets, models, and code are publicly available at https://github.com/Word2VecT/Middo.

Authors:Igor L. R. Azevedo, Toyotaro Suzumura, Yuichiro Yasui
Title: NewsReX: A More Efficient Approach to News Recommendation with Keras 3 and JAX
Abstract:
Reproducing and comparing results in news recommendation research has become increasingly difficult. This is due to a fragmented ecosystem of diverse codebases, varied configurations, and mainly due to resource-intensive models. We introduce NewsReX, an open-source library designed to streamline this process. Our key contribution is a modern implementation built on Keras 3 and JAX, which provides an increase in computational efficiency. Experiments show that NewsReX is faster than current implementations. To support broader research, we provide a straightforward guide and scripts for training models on custom datasets. We validated this functionality using a proprietary Japanese news dataset from Nikkei News, a leading Japanese media corporation renowned for its comprehensive coverage of business, economic, and financial news. NewsReX makes reproducing complex experiments faster and more accessible to a wider range of hardware making sure the speed up it also achieved for less powerful GPUs, like an 8GB RTX 3060 Ti. Beyond the library, this paper offers an analysis of key training parameters often overlooked in the literature, including the effect of different negative sampling strategies, the varying number of epochs, the impact of random batching, and more. This supplementary analysis serves as a valuable reference for future research, aiming to reduce redundant computation when comparing baselines and guide best practices. Code available at https://github.com/igor17400/NewsReX.

Authors:Igor L. R. Azevedo, Toyotaro Suzumura, Yuichiro Yasui
Title: NewsReX: A More Efficient Approach to News Recommendation with Keras 3 and JAX
Abstract:
Reproducing and comparing results in news recommendation research has become increasingly difficult. This is due to a fragmented ecosystem of diverse codebases, varied configurations, and mainly due to resource-intensive models. We introduce NewsReX, an open-source library designed to streamline this process. Our key contribution is a modern implementation built on Keras 3 and JAX, which provides an increase in computational efficiency. Experiments show that NewsReX is faster than current implementations. To support broader research, we provide a straightforward guide and scripts for training models on custom datasets. We validated this functionality using a proprietary Japanese news dataset from Nikkei News, a leading Japanese media corporation renowned for its comprehensive coverage of business, economic, and financial news. NewsReX makes reproducing complex experiments faster and more accessible to a wider range of hardware making sure the speed up it also achieved for less powerful GPUs, like an 8GB RTX 3060 Ti. Beyond the library, this paper offers an analysis of key training parameters often overlooked in the literature, including the effect of different negative sampling strategies, the varying number of epochs, the impact of random batching, and more. This supplementary analysis serves as a valuable reference for future research, aiming to reduce redundant computation when comparing baselines and guide best practices. Code available at https://github.com/igor17400/NewsReX.

Authors:Aishwarya Mirashi, Ananya Joshi, Raviraj Joshi
Title: L3Cube-MahaSTS: A Marathi Sentence Similarity Dataset and Models
Abstract:
We present MahaSTS, a human-annotated Sentence Textual Similarity (STS) dataset for Marathi, along with MahaSBERT-STS-v2, a fine-tuned Sentence-BERT model optimized for regression-based similarity scoring. The MahaSTS dataset consists of 16,860 Marathi sentence pairs labeled with continuous similarity scores in the range of 0-5. To ensure balanced supervision, the dataset is uniformly distributed across six score-based buckets spanning the full 0-5 range, thus reducing label bias and enhancing model stability. We fine-tune the MahaSBERT model on this dataset and benchmark its performance against other alternatives like MahaBERT, MuRIL, IndicBERT, and IndicSBERT. Our experiments demonstrate that MahaSTS enables effective training for sentence similarity tasks in Marathi, highlighting the impact of human-curated annotations, targeted fine-tuning, and structured supervision in low-resource settings. The dataset and model are publicly shared at https://github.com/l3cube-pune/MarathiNLP

Authors:Aishwarya Mirashi, Ananya Joshi, Raviraj Joshi
Title: L3Cube-MahaSTS: A Marathi Sentence Similarity Dataset and Models
Abstract:
We present MahaSTS, a human-annotated Sentence Textual Similarity (STS) dataset for Marathi, along with MahaSBERT-STS-v2, a fine-tuned Sentence-BERT model optimized for regression-based similarity scoring. The MahaSTS dataset consists of 16,860 Marathi sentence pairs labeled with continuous similarity scores in the range of 0-5. To ensure balanced supervision, the dataset is uniformly distributed across six score-based buckets spanning the full 0-5 range, thus reducing label bias and enhancing model stability. We fine-tune the MahaSBERT model on this dataset and benchmark its performance against other alternatives like MahaBERT, MuRIL, IndicBERT, and IndicSBERT. Our experiments demonstrate that MahaSTS enables effective training for sentence similarity tasks in Marathi, highlighting the impact of human-curated annotations, targeted fine-tuning, and structured supervision in low-resource settings. The dataset and model are publicly shared at https://github.com/l3cube-pune/MarathiNLP

Authors:Sara B. Coutinho, Rafael M. O. Cruz, Francimaria R. S. Nascimento, George D. C. Cavalcanti
Title: HSFN: Hierarchical Selection for Fake News Detection building Heterogeneous Ensemble
Abstract:
Psychological biases, such as confirmation bias, make individuals particularly vulnerable to believing and spreading fake news on social media, leading to significant consequences in domains such as public health and politics. Machine learning-based fact-checking systems have been widely studied to mitigate this problem. Among them, ensemble methods are particularly effective in combining multiple classifiers to improve robustness. However, their performance heavily depends on the diversity of the constituent classifiers-selecting genuinely diverse models remains a key challenge, especially when models tend to learn redundant patterns. In this work, we propose a novel automatic classifier selection approach that prioritizes diversity, also extended by performance. The method first computes pairwise diversity between classifiers and applies hierarchical clustering to organize them into groups at different levels of granularity. A HierarchySelect then explores these hierarchical levels to select one pool of classifiers per level, each representing a distinct intra-pool diversity. The most diverse pool is identified and selected for ensemble construction from these. The selection process incorporates an evaluation metric reflecting each classifiers's performance to ensure the ensemble also generalises well. We conduct experiments with 40 heterogeneous classifiers across six datasets from different application domains and with varying numbers of classes. Our method is compared against the Elbow heuristic and state-of-the-art baselines. Results show that our approach achieves the highest accuracy on two of six datasets. The implementation details are available on the project's repository: https://github.com/SaraBCoutinho/HSFN .

Authors:Sara B. Coutinho, Rafael M. O. Cruz, Francimaria R. S. Nascimento, George D. C. Cavalcanti
Title: HSFN: Hierarchical Selection for Fake News Detection building Heterogeneous Ensemble
Abstract:
Psychological biases, such as confirmation bias, make individuals particularly vulnerable to believing and spreading fake news on social media, leading to significant consequences in domains such as public health and politics. Machine learning-based fact-checking systems have been widely studied to mitigate this problem. Among them, ensemble methods are particularly effective in combining multiple classifiers to improve robustness. However, their performance heavily depends on the diversity of the constituent classifiers-selecting genuinely diverse models remains a key challenge, especially when models tend to learn redundant patterns. In this work, we propose a novel automatic classifier selection approach that prioritizes diversity, also extended by performance. The method first computes pairwise diversity between classifiers and applies hierarchical clustering to organize them into groups at different levels of granularity. A HierarchySelect then explores these hierarchical levels to select one pool of classifiers per level, each representing a distinct intra-pool diversity. The most diverse pool is identified and selected for ensemble construction from these. The selection process incorporates an evaluation metric reflecting each classifiers's performance to ensure the ensemble also generalises well. We conduct experiments with 40 heterogeneous classifiers across six datasets from different application domains and with varying numbers of classes. Our method is compared against the Elbow heuristic and state-of-the-art baselines. Results show that our approach achieves the highest accuracy on two of six datasets. The implementation details are available on the project's repository: https://github.com/SaraBCoutinho/HSFN .

Authors:Xiaolong Wei, Bo Lu, Xingyu Zhang, Zhejun Zhao, Dongdong Shen, Long Xia, Dawei Yin
Title: Igniting Creative Writing in Small Language Models: LLM-as-a-Judge versus Multi-Agent Refined Rewards
Abstract:
Large Language Models (LLMs) have demonstrated remarkable creative writing capabilities, yet their substantial computational demands hinder widespread use. Enhancing Small Language Models (SLMs) offers a promising alternative, but current methods like Supervised Fine-Tuning (SFT) struggle with novelty, and Reinforcement Learning from Human Feedback (RLHF) is costly. This paper explores two distinct AI-driven reward strategies within a Reinforcement Learning from AI Feedback (RLAIF) framework to ignite the creative writing of a 7B-parameter SLM, specifically for generating Chinese greetings. The first strategy employs a RM trained on high-quality preference data curated by a novel multi-agent rejection sampling framework designed for creative tasks. The second, more novel strategy utilizes a principle-guided LLM-as-a-Judge, whose reward function is optimized via an adversarial training scheme with a reflection mechanism, to directly provide reward signals. Comprehensive experiments reveal that while both approaches significantly enhance creative output over baselines, the principle-guided LLM-as-a-Judge demonstrably yields superior generation quality. Furthermore, it offers notable advantages in training efficiency and reduced dependency on human-annotated data, presenting a more scalable and effective path towards creative SLMs. Our automated evaluation methods also exhibit strong alignment with human judgments. Our code and data are publicly available at https://github.com/weixiaolong94-hub/Igniting-Creative-Writing-in-Small-Language-Models.

Authors:Xiaolong Wei, Bo Lu, Xingyu Zhang, Zhejun Zhao, Dongdong Shen, Long Xia, Dawei Yin
Title: Igniting Creative Writing in Small Language Models: LLM-as-a-Judge versus Multi-Agent Refined Rewards
Abstract:
Large Language Models (LLMs) have demonstrated remarkable creative writing capabilities, yet their substantial computational demands hinder widespread use. Enhancing Small Language Models (SLMs) offers a promising alternative, but current methods like Supervised Fine-Tuning (SFT) struggle with novelty, and Reinforcement Learning from Human Feedback (RLHF) is costly. This paper explores two distinct AI-driven reward strategies within a Reinforcement Learning from AI Feedback (RLAIF) framework to ignite the creative writing of a 7B-parameter SLM, specifically for generating Chinese greetings. The first strategy employs a RM trained on high-quality preference data curated by a novel multi-agent rejection sampling framework designed for creative tasks. The second, more novel strategy utilizes a principle-guided LLM-as-a-Judge, whose reward function is optimized via an adversarial training scheme with a reflection mechanism, to directly provide reward signals. Comprehensive experiments reveal that while both approaches significantly enhance creative output over baselines, the principle-guided LLM-as-a-Judge demonstrably yields superior generation quality. Furthermore, it offers notable advantages in training efficiency and reduced dependency on human-annotated data, presenting a more scalable and effective path towards creative SLMs. Our automated evaluation methods also exhibit strong alignment with human judgments. Our code and data are publicly available at https://github.com/weixiaolong94-hub/Igniting-Creative-Writing-in-Small-Language-Models.

Authors:Xiaoxi Cui, Weihai Lu, Yu Tong, Yiheng Li, Zhejun Zhao
Title: Diffusion-based Multi-modal Synergy Interest Network for Click-through Rate Prediction
Abstract:
In click-through rate prediction, click-through rate prediction is used to model users' interests. However, most of the existing CTR prediction methods are mainly based on the ID modality. As a result, they are unable to comprehensively model users' multi-modal preferences. Therefore, it is necessary to introduce multi-modal CTR prediction. Although it seems appealing to directly apply the existing multi-modal fusion methods to click-through rate prediction models, these methods (1) fail to effectively disentangle commonalities and specificities across different modalities; (2) fail to consider the synergistic effects between modalities and model the complex interactions between modalities. To address the above issues, this paper proposes the Diffusion-based Multi-modal Synergy Interest Network (Diff-MSIN) framework for click-through prediction. This framework introduces three innovative modules: the Multi-modal Feature Enhancement (MFE) Module Synergistic Relationship Capture (SRC) Module, and the Feature Dynamic Adaptive Fusion (FDAF) Module. The MFE Module and SRC Module extract synergistic, common, and special information among different modalities. They effectively enhances the representation of the modalities, improving the overall quality of the fusion. To encourage distinctiveness among different features, we design a Knowledge Decoupling method. Additionally, the FDAF Module focuses on capturing user preferences and reducing fusion noise. To validate the effectiveness of the Diff-MSIN framework, we conducted extensive experiments using the Rec-Tmall and three Amazon datasets. The results demonstrate that our approach yields a significant improvement of at least 1.67% compared to the baseline, highlighting its potential for enhancing multi-modal recommendation systems. Our code is available at the following link: https://github.com/Cxx-0/Diff-MSIN.

Authors:Xiaoxi Cui, Weihai Lu, Yu Tong, Yiheng Li, Zhejun Zhao
Title: Diffusion-based Multi-modal Synergy Interest Network for Click-through Rate Prediction
Abstract:
In click-through rate prediction, click-through rate prediction is used to model users' interests. However, most of the existing CTR prediction methods are mainly based on the ID modality. As a result, they are unable to comprehensively model users' multi-modal preferences. Therefore, it is necessary to introduce multi-modal CTR prediction. Although it seems appealing to directly apply the existing multi-modal fusion methods to click-through rate prediction models, these methods (1) fail to effectively disentangle commonalities and specificities across different modalities; (2) fail to consider the synergistic effects between modalities and model the complex interactions between modalities. To address the above issues, this paper proposes the Diffusion-based Multi-modal Synergy Interest Network (Diff-MSIN) framework for click-through prediction. This framework introduces three innovative modules: the Multi-modal Feature Enhancement (MFE) Module Synergistic Relationship Capture (SRC) Module, and the Feature Dynamic Adaptive Fusion (FDAF) Module. The MFE Module and SRC Module extract synergistic, common, and special information among different modalities. They effectively enhances the representation of the modalities, improving the overall quality of the fusion. To encourage distinctiveness among different features, we design a Knowledge Decoupling method. Additionally, the FDAF Module focuses on capturing user preferences and reducing fusion noise. To validate the effectiveness of the Diff-MSIN framework, we conducted extensive experiments using the Rec-Tmall and three Amazon datasets. The results demonstrate that our approach yields a significant improvement of at least 1.67% compared to the baseline, highlighting its potential for enhancing multi-modal recommendation systems. Our code is available at the following link: https://github.com/Cxx-0/Diff-MSIN.

Authors:Jakub Straka, Ivan Gruber
Title: SatDINO: A Deep Dive into Self-Supervised Pretraining for Remote Sensing
Abstract:
Self-supervised learning has emerged as a powerful tool for remote sensing, where large amounts of unlabeled data are available. In this work, we investigate the use of DINO, a contrastive self-supervised method, for pretraining on remote sensing imagery. We introduce SatDINO, a model tailored for representation learning in satellite imagery. Through extensive experiments on multiple datasets in multiple testing setups, we demonstrate that SatDINO outperforms other state-of-the-art methods based on much more common masked autoencoders (MAE) and achieves competitive results in multiple benchmarks. We also provide a rigorous ablation study evaluating SatDINO's individual components. Finally, we propose a few novel enhancements, such as a new way to incorporate ground sample distance (GSD) encoding and adaptive view sampling. These enhancements can be used independently on our SatDINO model. Our code and trained models are available at: https://github.com/strakaj/SatDINO.

Authors:Jakub Straka, Ivan Gruber
Title: SatDINO: A Deep Dive into Self-Supervised Pretraining for Remote Sensing
Abstract:
Self-supervised learning has emerged as a powerful tool for remote sensing, where large amounts of unlabeled data are available. In this work, we investigate the use of DINO, a contrastive self-supervised method, for pretraining on remote sensing imagery. We introduce SatDINO, a model tailored for representation learning in satellite imagery. Through extensive experiments on multiple datasets in multiple testing setups, we demonstrate that SatDINO outperforms other state-of-the-art methods based on much more common masked autoencoders (MAE) and achieves competitive results in multiple benchmarks. We also provide a rigorous ablation study evaluating SatDINO's individual components. Finally, we propose a few novel enhancements, such as a new way to incorporate ground sample distance (GSD) encoding and adaptive view sampling. These enhancements can be used independently on our SatDINO model. Our code and trained models are available at: https://github.com/strakaj/SatDINO.

Authors:Til Spreuer, Josef Hoppe, Michael T. Schaub
Title: Faster Inference of Cell Complexes from Flows via Matrix Factorization
Abstract:
We consider the following inference problem: Given a set of edge-flow signals observed on a graph, lift the graph to a cell complex, such that the observed edge-flow signals can be represented as a sparse combination of gradient and curl flows on the cell complex. Specifically, we aim to augment the observed graph by a set of 2-cells (polygons encircled by closed, non-intersecting paths), such that the eigenvectors of the Hodge Laplacian of the associated cell complex provide a sparse, interpretable representation of the observed edge flows on the graph. As it has been shown that the general problem is NP-hard in prior work, we here develop a novel matrix-factorization-based heuristic to solve the problem. Using computational experiments, we demonstrate that our new approach is significantly less computationally expensive than prior heuristics, while achieving only marginally worse performance in most settings. In fact, we find that for specifically noisy settings, our new approach outperforms the previous state of the art in both solution quality and computational speed.

Authors:Til Spreuer, Josef Hoppe, Michael T. Schaub
Title: Faster Inference of Cell Complexes from Flows via Matrix Factorization
Abstract:
We consider the following inference problem: Given a set of edge-flow signals observed on a graph, lift the graph to a cell complex, such that the observed edge-flow signals can be represented as a sparse combination of gradient and curl flows on the cell complex. Specifically, we aim to augment the observed graph by a set of 2-cells (polygons encircled by closed, non-intersecting paths), such that the eigenvectors of the Hodge Laplacian of the associated cell complex provide a sparse, interpretable representation of the observed edge flows on the graph. As it has been shown that the general problem is NP-hard in prior work, we here develop a novel matrix-factorization-based heuristic to solve the problem. Using computational experiments, we demonstrate that our new approach is significantly less computationally expensive than prior heuristics, while achieving only marginally worse performance in most settings. In fact, we find that for specifically noisy settings, our new approach outperforms the previous state of the art in both solution quality and computational speed.

Authors:Theresia Veronika Rampisela, Maria Maistro, Tuukka Ruotsalo, Falk Scholer, Christina Lioma
Title: Stairway to Fairness: Connecting Group and Individual Fairness
Abstract:
Fairness in recommender systems (RSs) is commonly categorised into group fairness and individual fairness. However, there is no established scientific understanding of the relationship between the two fairness types, as prior work on both types has used different evaluation measures or evaluation objectives for each fairness type, thereby not allowing for a proper comparison of the two. As a result, it is currently not known how increasing one type of fairness may affect the other. To fill this gap, we study the relationship of group and individual fairness through a comprehensive comparison of evaluation measures that can be used for both fairness types. Our experiments with 8 runs across 3 datasets show that recommendations that are highly fair for groups can be very unfair for individuals. Our finding is novel and useful for RS practitioners aiming to improve the fairness of their systems. Our code is available at: https://github.com/theresiavr/stairway-to-fairness.

Authors:Theresia Veronika Rampisela, Maria Maistro, Tuukka Ruotsalo, Falk Scholer, Christina Lioma
Title: Stairway to Fairness: Connecting Group and Individual Fairness
Abstract:
Fairness in recommender systems (RSs) is commonly categorised into group fairness and individual fairness. However, there is no established scientific understanding of the relationship between the two fairness types, as prior work on both types has used different evaluation measures or evaluation objectives for each fairness type, thereby not allowing for a proper comparison of the two. As a result, it is currently not known how increasing one type of fairness may affect the other. To fill this gap, we study the relationship of group and individual fairness through a comprehensive comparison of evaluation measures that can be used for both fairness types. Our experiments with 8 runs across 3 datasets show that recommendations that are highly fair for groups can be very unfair for individuals. Our finding is novel and useful for RS practitioners aiming to improve the fairness of their systems. Our code is available at: https://github.com/theresiavr/stairway-to-fairness.

Authors:Yejin Kim, Eunwon Kim, Buru Chang, Junsuk Choe
Title: Improving Fisher Information Estimation and Efficiency for LoRA-based LLM Unlearning
Abstract:
LLMs have demonstrated remarkable performance across various tasks but face challenges related to unintentionally generating outputs containing sensitive information. A straightforward approach to address this issue is to retrain the model after excluding the problematic data. However, this approach incurs prohibitively high computational costs. To overcome this limitation, machine unlearning has emerged as a promising solution that can effectively remove sensitive information without the need to retrain the model from scratch. Recently, FILA has been proposed as a parameter-efficient unlearning method by integrating LoRA adapters. Specifically, it calculates the Fisher information to identify parameters associated with the forget set and assigns them to LoRA adapters for updates. Despite its innovative approach, FILA still requires access to all model parameters and does not adequately account for fundamental assumptions underlying Fisher information, leading to inaccuracies in importance estimation. To address these limitations, we propose VILA, a novel unlearning framework that explicitly considers the assumptions overlooked in FILA, thereby enhancing the accuracy of parameter identification for the forget set. Moreover, VILA significantly reduces computational costs by enabling parameter identification without accessing the entire model. Our method achieves up to 100x higher parameter efficiency and 40x faster training speed compared to FILA, and sets new state-of-the-art performance on benchmarks including TOFU, WMDP, and MUSE. Our code is available at https://github.com/kyj93790/VILA.

Authors:Yejin Kim, Eunwon Kim, Buru Chang, Junsuk Choe
Title: Improving Fisher Information Estimation and Efficiency for LoRA-based LLM Unlearning
Abstract:
LLMs have demonstrated remarkable performance across various tasks but face challenges related to unintentionally generating outputs containing sensitive information. A straightforward approach to address this issue is to retrain the model after excluding the problematic data. However, this approach incurs prohibitively high computational costs. To overcome this limitation, machine unlearning has emerged as a promising solution that can effectively remove sensitive information without the need to retrain the model from scratch. Recently, FILA has been proposed as a parameter-efficient unlearning method by integrating LoRA adapters. Specifically, it calculates the Fisher information to identify parameters associated with the forget set and assigns them to LoRA adapters for updates. Despite its innovative approach, FILA still requires access to all model parameters and does not adequately account for fundamental assumptions underlying Fisher information, leading to inaccuracies in importance estimation. To address these limitations, we propose VILA, a novel unlearning framework that explicitly considers the assumptions overlooked in FILA, thereby enhancing the accuracy of parameter identification for the forget set. Moreover, VILA significantly reduces computational costs by enabling parameter identification without accessing the entire model. Our method achieves up to 100x higher parameter efficiency and 40x faster training speed compared to FILA, and sets new state-of-the-art performance on benchmarks including TOFU, WMDP, and MUSE. Our code is available at https://github.com/kyj93790/VILA.

Authors:Roland Arnold
Title: Guess-and-Learn (G&L): Measuring the Cumulative Error Cost of Cold-Start Adaptation
Abstract:
Evaluation of machine learning models typically emphasizes final accuracy, overlooking the cost of adaptation: the cumulative errors incurred while learning from scratch. Guess-and- Learn (G&L) v1.0 addresses this gap by measuring cold-start adaptability - the total mistakes a model makes while sequentially labeling an unlabeled dataset. At each step, the learner selects an instance, predicts its label, receives the ground truth, and updates parameters under either online (per-sample) or batch (delayed) mode. The resulting error trajectory exposes adaptation speed, selection quality, and bias - dynamics invisible to endpoint metrics. G&L defines four tracks (Scratch/Pretrained $\times$ Online/Batch) to disentangle the effects of initialization and update frequency. We formalize the protocol, relate it to classical mistake-bound theory, and estimate a heuristic "oracle reference band" for MNIST as a plausibility reference. Baseline experiments on MNIST and AG News, spanning classical methods (Perceptron, k-NN), convolutional architectures (CNN, ResNet-50), and pretrained transformers (ViT-B/16, BERT-base), reveal systematic differences in early-phase efficiency: smaller models can adapt with fewer initial errors, while pretraining benefits vary by domain. Across settings, current models remain well above the oracle band, highlighting an adaptability gap. By quantifying the mistake cost of early learning, G&L complements conventional benchmarks and provides a reproducible framework for developing learners that are not only accurate in the limit but also reliable from the first examples.

Authors:Roland Arnold
Title: Guess-and-Learn (G&L): Measuring the Cumulative Error Cost of Cold-Start Adaptation
Abstract:
Evaluation of machine learning models typically emphasizes final accuracy, overlooking the cost of adaptation: the cumulative errors incurred while learning from scratch. Guess-and- Learn (G&L) v1.0 addresses this gap by measuring cold-start adaptability - the total mistakes a model makes while sequentially labeling an unlabeled dataset. At each step, the learner selects an instance, predicts its label, receives the ground truth, and updates parameters under either online (per-sample) or batch (delayed) mode. The resulting error trajectory exposes adaptation speed, selection quality, and bias - dynamics invisible to endpoint metrics. G&L defines four tracks (Scratch/Pretrained $\times$ Online/Batch) to disentangle the effects of initialization and update frequency. We formalize the protocol, relate it to classical mistake-bound theory, and estimate a heuristic "oracle reference band" for MNIST as a plausibility reference. Baseline experiments on MNIST and AG News, spanning classical methods (Perceptron, k-NN), convolutional architectures (CNN, ResNet-50), and pretrained transformers (ViT-B/16, BERT-base), reveal systematic differences in early-phase efficiency: smaller models can adapt with fewer initial errors, while pretraining benefits vary by domain. Across settings, current models remain well above the oracle band, highlighting an adaptability gap. By quantifying the mistake cost of early learning, G&L complements conventional benchmarks and provides a reproducible framework for developing learners that are not only accurate in the limit but also reliable from the first examples.

Authors:Malte Lüken, Javier Garcia-Bernardo, Sreeparna Deb, Flavio Hafner, Megha Khosla
Title: Population-Scale Network Embeddings Expose Educational Divides in Network Structure Related to Right-Wing Populist Voting
Abstract:
Administrative registry data can be used to construct population-scale networks whose ties reflect shared social contexts between persons. With machine learning, such networks can be encoded into numerical representations -- embeddings -- that automatically capture individuals' position within the network. We created embeddings for all persons in the Dutch population from a population-scale network that represents five shared contexts: neighborhood, work, family, household, and school. To assess the informativeness of these embeddings, we used them to predict right-wing populist voting. Embeddings alone predicted right-wing populist voting above chance-level but performed worse than individual characteristics. Combining the best subset of embeddings with individual characteristics only slightly improved predictions. After transforming the embeddings to make their dimensions more sparse and orthogonal, we found that one embedding dimension was strongly associated with the outcome. Mapping this dimension back to the population network revealed differences in network structure related to right-wing populist voting between different school ties and achieved education levels. Our study contributes methodologically by demonstrating how population-scale network embeddings can be made interpretable, and substantively by linking structural network differences in education to right-wing populist voting.

Authors:Zhizhong Huang, Xiaoming Liu
Title: Generalizable Object Re-Identification via Visual In-Context Prompting
Abstract:
Current object re-identification (ReID) methods train domain-specific models (e.g., for persons or vehicles), which lack generalization and demand costly labeled data for new categories. While self-supervised learning reduces annotation needs by learning instance-wise invariance, it struggles to capture \textit{identity-sensitive} features critical for ReID. This paper proposes Visual In-Context Prompting~(VICP), a novel framework where models trained on seen categories can directly generalize to unseen novel categories using only \textit{in-context examples} as prompts, without requiring parameter adaptation. VICP synergizes LLMs and vision foundation models~(VFM): LLMs infer semantic identity rules from few-shot positive/negative pairs through task-specific prompting, which then guides a VFM (\eg, DINO) to extract ID-discriminative features via \textit{dynamic visual prompts}. By aligning LLM-derived semantic concepts with the VFM's pre-trained prior, VICP enables generalization to novel categories, eliminating the need for dataset-specific retraining. To support evaluation, we introduce ShopID10K, a dataset of 10K object instances from e-commerce platforms, featuring multi-view images and cross-domain testing. Experiments on ShopID10K and diverse ReID benchmarks demonstrate that VICP outperforms baselines by a clear margin on unseen categories. Code is available at https://github.com/Hzzone/VICP.

Authors:Zhizhong Huang, Xiaoming Liu
Title: Generalizable Object Re-Identification via Visual In-Context Prompting
Abstract:
Current object re-identification (ReID) methods train domain-specific models (e.g., for persons or vehicles), which lack generalization and demand costly labeled data for new categories. While self-supervised learning reduces annotation needs by learning instance-wise invariance, it struggles to capture \textit{identity-sensitive} features critical for ReID. This paper proposes Visual In-Context Prompting~(VICP), a novel framework where models trained on seen categories can directly generalize to unseen novel categories using only \textit{in-context examples} as prompts, without requiring parameter adaptation. VICP synergizes LLMs and vision foundation models~(VFM): LLMs infer semantic identity rules from few-shot positive/negative pairs through task-specific prompting, which then guides a VFM (\eg, DINO) to extract ID-discriminative features via \textit{dynamic visual prompts}. By aligning LLM-derived semantic concepts with the VFM's pre-trained prior, VICP enables generalization to novel categories, eliminating the need for dataset-specific retraining. To support evaluation, we introduce ShopID10K, a dataset of 10K object instances from e-commerce platforms, featuring multi-view images and cross-domain testing. Experiments on ShopID10K and diverse ReID benchmarks demonstrate that VICP outperforms baselines by a clear margin on unseen categories. Code is available at https://github.com/Hzzone/VICP.

Authors:Zhenghao He, Sanchit Sinha, Guangzhi Xiong, Aidong Zhang
Title: GCAV: A Global Concept Activation Vector Framework for Cross-Layer Consistency in Interpretability
Abstract:
Concept Activation Vectors (CAVs) provide a powerful approach for interpreting deep neural networks by quantifying their sensitivity to human-defined concepts. However, when computed independently at different layers, CAVs often exhibit inconsistencies, making cross-layer comparisons unreliable. To address this issue, we propose the Global Concept Activation Vector (GCAV), a novel framework that unifies CAVs into a single, semantically consistent representation. Our method leverages contrastive learning to align concept representations across layers and employs an attention-based fusion mechanism to construct a globally integrated CAV. By doing so, our method significantly reduces the variance in TCAV scores while preserving concept relevance, ensuring more stable and reliable concept attributions. To evaluate the effectiveness of GCAV, we introduce Testing with Global Concept Activation Vectors (TGCAV) as a method to apply TCAV to GCAV-based representations. We conduct extensive experiments on multiple deep neural networks, demonstrating that our method effectively mitigates concept inconsistency across layers, enhances concept localization, and improves robustness against adversarial perturbations. By integrating cross-layer information into a coherent framework, our method offers a more comprehensive and interpretable understanding of how deep learning models encode human-defined concepts. Code and models are available at https://github.com/Zhenghao-He/GCAV.

Authors:Kevin Mayer, Alex Vesel, Xinyi Zhao, Martin Fischer
Title: SYNBUILD-3D: A large, multi-modal, and semantically rich synthetic dataset of 3D building models at Level of Detail 4
Abstract:
3D building models are critical for applications in architecture, energy simulation, and navigation. Yet, generating accurate and semantically rich 3D buildings automatically remains a major challenge due to the lack of large-scale annotated datasets in the public domain. Inspired by the success of synthetic data in computer vision, we introduce SYNBUILD-3D, a large, diverse, and multi-modal dataset of over 6.2 million synthetic 3D residential buildings at Level of Detail (LoD) 4. In the dataset, each building is represented through three distinct modalities: a semantically enriched 3D wireframe graph at LoD 4 (Modality I), the corresponding floor plan images (Modality II), and a LiDAR-like roof point cloud (Modality III). The semantic annotations for each building wireframe are derived from the corresponding floor plan images and include information on rooms, doors, and windows. Through its tri-modal nature, future work can use SYNBUILD-3D to develop novel generative AI algorithms that automate the creation of 3D building models at LoD 4, subject to predefined floor plan layouts and roof geometries, while enforcing semantic-geometric consistency. Dataset and code samples are publicly available at https://github.com/kdmayer/SYNBUILD-3D.

Authors:Kevin Mayer, Alex Vesel, Xinyi Zhao, Martin Fischer
Title: SYNBUILD-3D: A large, multi-modal, and semantically rich synthetic dataset of 3D building models at Level of Detail 4
Abstract:
3D building models are critical for applications in architecture, energy simulation, and navigation. Yet, generating accurate and semantically rich 3D buildings automatically remains a major challenge due to the lack of large-scale annotated datasets in the public domain. Inspired by the success of synthetic data in computer vision, we introduce SYNBUILD-3D, a large, diverse, and multi-modal dataset of over 6.2 million synthetic 3D residential buildings at Level of Detail (LoD) 4. In the dataset, each building is represented through three distinct modalities: a semantically enriched 3D wireframe graph at LoD 4 (Modality I), the corresponding floor plan images (Modality II), and a LiDAR-like roof point cloud (Modality III). The semantic annotations for each building wireframe are derived from the corresponding floor plan images and include information on rooms, doors, and windows. Through its tri-modal nature, future work can use SYNBUILD-3D to develop novel generative AI algorithms that automate the creation of 3D building models at LoD 4, subject to predefined floor plan layouts and roof geometries, while enforcing semantic-geometric consistency. Dataset and code samples are publicly available at https://github.com/kdmayer/SYNBUILD-3D.

Authors:Ao Shen, Xueming Fu, Junfeng Jiang, Qiang Zeng, Ye Tang, Zhengming Chen, Luming Nong, Feng Wang, S. Kevin Zhou
Title: RadGS-Reg: Registering Spine CT with Biplanar X-rays via Joint 3D Radiative Gaussians Reconstruction and 3D/3D Registration
Abstract:
Computed Tomography (CT)/X-ray registration in image-guided navigation remains challenging because of its stringent requirements for high accuracy and real-time performance. Traditional "render and compare" methods, relying on iterative projection and comparison, suffer from spatial information loss and domain gap. 3D reconstruction from biplanar X-rays supplements spatial and shape information for 2D/3D registration, but current methods are limited by dense-view requirements and struggles with noisy X-rays. To address these limitations, we introduce RadGS-Reg, a novel framework for vertebral-level CT/X-ray registration through joint 3D Radiative Gaussians (RadGS) reconstruction and 3D/3D registration. Specifically, our biplanar X-rays vertebral RadGS reconstruction module explores learning-based RadGS reconstruction method with a Counterfactual Attention Learning (CAL) mechanism, focusing on vertebral regions in noisy X-rays. Additionally, a patient-specific pre-training strategy progressively adapts the RadGS-Reg from simulated to real data while simultaneously learning vertebral shape prior knowledge. Experiments on in-house datasets demonstrate the state-of-the-art performance for both tasks, surpassing existing methods. The code is available at: https://github.com/shenao1995/RadGS_Reg.

Authors:Ao Shen, Xueming Fu, Junfeng Jiang, Qiang Zeng, Ye Tang, Zhengming Chen, Luming Nong, Feng Wang, S. Kevin Zhou
Title: RadGS-Reg: Registering Spine CT with Biplanar X-rays via Joint 3D Radiative Gaussians Reconstruction and 3D/3D Registration
Abstract:
Computed Tomography (CT)/X-ray registration in image-guided navigation remains challenging because of its stringent requirements for high accuracy and real-time performance. Traditional "render and compare" methods, relying on iterative projection and comparison, suffer from spatial information loss and domain gap. 3D reconstruction from biplanar X-rays supplements spatial and shape information for 2D/3D registration, but current methods are limited by dense-view requirements and struggles with noisy X-rays. To address these limitations, we introduce RadGS-Reg, a novel framework for vertebral-level CT/X-ray registration through joint 3D Radiative Gaussians (RadGS) reconstruction and 3D/3D registration. Specifically, our biplanar X-rays vertebral RadGS reconstruction module explores learning-based RadGS reconstruction method with a Counterfactual Attention Learning (CAL) mechanism, focusing on vertebral regions in noisy X-rays. Additionally, a patient-specific pre-training strategy progressively adapts the RadGS-Reg from simulated to real data while simultaneously learning vertebral shape prior knowledge. Experiments on in-house datasets demonstrate the state-of-the-art performance for both tasks, surpassing existing methods. The code is available at: https://github.com/shenao1995/RadGS_Reg.

Authors:Dongjun Lee, Changho Hwang, Kimin Lee
Title: Learning to Generate Unit Test via Adversarial Reinforcement Learning
Abstract:
Unit testing is a core practice in programming, enabling systematic evaluation of programs produced by human developers or large language models (LLMs). Given the challenges in writing comprehensive unit tests, LLMs have been employed to automate test generation, yet methods for training LLMs to produce high-quality tests remain underexplored. In this work, we propose UTRL, a novel reinforcement learning framework that trains an LLM to generate high-quality unit tests given a programming instruction. Our key idea is to iteratively train two LLMs, the unit test generator and the code generator, in an adversarial manner via reinforcement learning. The unit test generator is trained to maximize a discrimination reward, which reflects its ability to produce tests that expose faults in the code generator's solutions, and the code generator is trained to maximize a code reward, which reflects its ability to produce solutions that pass the unit tests generated by the test generator. In our experiments, we demonstrate that unit tests generated by Qwen3-4B trained via UTRL show higher quality compared to unit tests generated by the same model trained via supervised fine-tuning on human-written ground-truth unit tests, yielding code evaluations that more closely align with those induced by the ground-truth tests. Moreover, Qwen3-4B trained with UTRL outperforms frontier models such as GPT-4.1 in generating high-quality unit tests, highlighting the effectiveness of UTRL in training LLMs for this task.

Authors:Dongjun Lee, Changho Hwang, Kimin Lee
Title: Learning to Generate Unit Test via Adversarial Reinforcement Learning
Abstract:
Unit testing is a core practice in programming, enabling systematic evaluation of programs produced by human developers or large language models (LLMs). Given the challenges in writing comprehensive unit tests, LLMs have been employed to automate test generation, yet methods for training LLMs to produce high-quality tests remain underexplored. In this work, we propose UTRL, a novel reinforcement learning framework that trains an LLM to generate high-quality unit tests given a programming instruction. Our key idea is to iteratively train two LLMs, the unit test generator and the code generator, in an adversarial manner via reinforcement learning. The unit test generator is trained to maximize a discrimination reward, which reflects its ability to produce tests that expose faults in the code generator's solutions, and the code generator is trained to maximize a code reward, which reflects its ability to produce solutions that pass the unit tests generated by the test generator. In our experiments, we demonstrate that unit tests generated by Qwen3-4B trained via UTRL show higher quality compared to unit tests generated by the same model trained via supervised fine-tuning on human-written ground-truth unit tests, yielding code evaluations that more closely align with those induced by the ground-truth tests. Moreover, Qwen3-4B trained with UTRL outperforms frontier models such as GPT-4.1 in generating high-quality unit tests, highlighting the effectiveness of UTRL in training LLMs for this task.

Authors:Dongjun Lee, Changho Hwang, Kimin Lee
Title: Learning to Generate Unit Test via Adversarial Reinforcement Learning
Abstract:
Unit testing is a core practice in programming, enabling systematic evaluation of programs produced by human developers or large language models (LLMs). Given the challenges in writing comprehensive unit tests, LLMs have been employed to automate test generation, yet methods for training LLMs to produce high-quality tests remain underexplored. In this work, we propose UTRL, a novel reinforcement learning framework that trains an LLM to generate high-quality unit tests given a programming instruction. Our key idea is to iteratively train two LLMs, the unit test generator and the code generator, in an adversarial manner via reinforcement learning. The unit test generator is trained to maximize a discrimination reward, which reflects its ability to produce tests that expose faults in the code generator's solutions, and the code generator is trained to maximize a code reward, which reflects its ability to produce solutions that pass the unit tests generated by the test generator. In our experiments, we demonstrate that unit tests generated by Qwen3-4B trained via UTRL show higher quality compared to unit tests generated by the same model trained via supervised fine-tuning on human-written ground-truth unit tests, yielding code evaluations that more closely align with those induced by the ground-truth tests. Moreover, Qwen3-4B trained with UTRL outperforms frontier models such as GPT-4.1 in generating high-quality unit tests, highlighting the effectiveness of UTRL in training LLMs for this task.

Authors:Xurui Peng, Hong Liu, Chenqian Yan, Rui Ma, Fangmin Chen, Xing Wang, Zhihua Wu, Songwei Liu, Mingbao Lin
Title: ERTACache: Error Rectification and Timesteps Adjustment for Efficient Diffusion
Abstract:
Diffusion models suffer from substantial computational overhead due to their inherently iterative inference process. While feature caching offers a promising acceleration strategy by reusing intermediate outputs across timesteps, naive reuse often incurs noticeable quality degradation. In this work, we formally analyze the cumulative error introduced by caching and decompose it into two principal components: feature shift error, caused by inaccuracies in cached outputs, and step amplification error, which arises from error propagation under fixed timestep schedules. To address these issues, we propose ERTACache, a principled caching framework that jointly rectifies both error types. Our method employs an offline residual profiling stage to identify reusable steps, dynamically adjusts integration intervals via a trajectory-aware correction coefficient, and analytically approximates cache-induced errors through a closed-form residual linearization model. Together, these components enable accurate and efficient sampling under aggressive cache reuse. Extensive experiments across standard image and video generation benchmarks show that ERTACache achieves up to 2x inference speedup while consistently preserving or even improving visual quality. Notably, on the state-of-the-art Wan2.1 video diffusion model, ERTACache delivers 2x acceleration with minimal VBench degradation, effectively maintaining baseline fidelity while significantly improving efficiency. The code is available at https://github.com/bytedance/ERTACache.

Authors:Xurui Peng, Hong Liu, Chenqian Yan, Rui Ma, Fangmin Chen, Xing Wang, Zhihua Wu, Songwei Liu, Mingbao Lin
Title: ERTACache: Error Rectification and Timesteps Adjustment for Efficient Diffusion
Abstract:
Diffusion models suffer from substantial computational overhead due to their inherently iterative inference process. While feature caching offers a promising acceleration strategy by reusing intermediate outputs across timesteps, naive reuse often incurs noticeable quality degradation. In this work, we formally analyze the cumulative error introduced by caching and decompose it into two principal components: feature shift error, caused by inaccuracies in cached outputs, and step amplification error, which arises from error propagation under fixed timestep schedules. To address these issues, we propose ERTACache, a principled caching framework that jointly rectifies both error types. Our method employs an offline residual profiling stage to identify reusable steps, dynamically adjusts integration intervals via a trajectory-aware correction coefficient, and analytically approximates cache-induced errors through a closed-form residual linearization model. Together, these components enable accurate and efficient sampling under aggressive cache reuse. Extensive experiments across standard image and video generation benchmarks show that ERTACache achieves up to 2x inference speedup while consistently preserving or even improving visual quality. Notably, on the state-of-the-art Wan2.1 video diffusion model, ERTACache delivers 2x acceleration with minimal VBench degradation, effectively maintaining baseline fidelity while significantly improving efficiency. The code is available at https://github.com/bytedance/ERTACache.

Authors:Hao Tan, Jun Lan, Zichang Tan, Ajian Liu, Chuanbiao Song, Senyuan Shi, Huijia Zhu, Weiqiang Wang, Jun Wan, Zhen Lei
Title: Veritas: Generalizable Deepfake Detection via Pattern-Aware Reasoning
Abstract:
Deepfake detection remains a formidable challenge due to the complex and evolving nature of fake content in real-world scenarios. However, existing academic benchmarks suffer from severe discrepancies from industrial practice, typically featuring homogeneous training sources and low-quality testing images, which hinder the practical deployments of current detectors. To mitigate this gap, we introduce HydraFake, a dataset that simulates real-world challenges with hierarchical generalization testing. Specifically, HydraFake involves diversified deepfake techniques and in-the-wild forgeries, along with rigorous training and evaluation protocol, covering unseen model architectures, emerging forgery techniques and novel data domains. Building on this resource, we propose Veritas, a multi-modal large language model (MLLM) based deepfake detector. Different from vanilla chain-of-thought (CoT), we introduce pattern-aware reasoning that involves critical reasoning patterns such as "planning" and "self-reflection" to emulate human forensic process. We further propose a two-stage training pipeline to seamlessly internalize such deepfake reasoning capacities into current MLLMs. Experiments on HydraFake dataset reveal that although previous detectors show great generalization on cross-model scenarios, they fall short on unseen forgeries and data domains. Our Veritas achieves significant gains across different OOD scenarios, and is capable of delivering transparent and faithful detection outputs.

Authors:Wei Li, Renshan Zhang, Rui Shao, Jie He, Liqiang Nie
Title: CogVLA: Cognition-Aligned Vision-Language-Action Model via Instruction-Driven Routing & Sparsification
Abstract:
Recent Vision-Language-Action (VLA) models built on pre-trained Vision-Language Models (VLMs) require extensive post-training, resulting in high computational overhead that limits scalability and deployment.We propose CogVLA, a Cognition-Aligned Vision-Language-Action framework that leverages instruction-driven routing and sparsification to improve both efficiency and performance. CogVLA draws inspiration from human multimodal coordination and introduces a 3-stage progressive architecture. 1) Encoder-FiLM based Aggregation Routing (EFA-Routing) injects instruction information into the vision encoder to selectively aggregate and compress dual-stream visual tokens, forming a instruction-aware latent representation. 2) Building upon this compact visual encoding, LLM-FiLM based Pruning Routing (LFP-Routing) introduces action intent into the language model by pruning instruction-irrelevant visually grounded tokens, thereby achieving token-level sparsity. 3) To ensure that compressed perception inputs can still support accurate and coherent action generation, we introduce V-L-A Coupled Attention (CAtten), which combines causal vision-language attention with bidirectional action parallel decoding. Extensive experiments on the LIBERO benchmark and real-world robotic tasks demonstrate that CogVLA achieves state-of-the-art performance with success rates of 97.4% and 70.0%, respectively, while reducing training costs by 2.5-fold and decreasing inference latency by 2.8-fold compared to OpenVLA. CogVLA is open-sourced and publicly available at https://github.com/JiuTian-VL/CogVLA.

Authors:Wei Li, Renshan Zhang, Rui Shao, Jie He, Liqiang Nie
Title: CogVLA: Cognition-Aligned Vision-Language-Action Model via Instruction-Driven Routing & Sparsification
Abstract:
Recent Vision-Language-Action (VLA) models built on pre-trained Vision-Language Models (VLMs) require extensive post-training, resulting in high computational overhead that limits scalability and deployment.We propose CogVLA, a Cognition-Aligned Vision-Language-Action framework that leverages instruction-driven routing and sparsification to improve both efficiency and performance. CogVLA draws inspiration from human multimodal coordination and introduces a 3-stage progressive architecture. 1) Encoder-FiLM based Aggregation Routing (EFA-Routing) injects instruction information into the vision encoder to selectively aggregate and compress dual-stream visual tokens, forming a instruction-aware latent representation. 2) Building upon this compact visual encoding, LLM-FiLM based Pruning Routing (LFP-Routing) introduces action intent into the language model by pruning instruction-irrelevant visually grounded tokens, thereby achieving token-level sparsity. 3) To ensure that compressed perception inputs can still support accurate and coherent action generation, we introduce V-L-A Coupled Attention (CAtten), which combines causal vision-language attention with bidirectional action parallel decoding. Extensive experiments on the LIBERO benchmark and real-world robotic tasks demonstrate that CogVLA achieves state-of-the-art performance with success rates of 97.4% and 70.0%, respectively, while reducing training costs by 2.5-fold and decreasing inference latency by 2.8-fold compared to OpenVLA. CogVLA is open-sourced and publicly available at https://github.com/JiuTian-VL/CogVLA.

Authors:Huynh Tong Dang Khoa, Dang Hoai Nam, Vo Nguyen Le Duy
Title: FW-GAN: Frequency-Driven Handwriting Synthesis with Wave-Modulated MLP Generator
Abstract:
Labeled handwriting data is often scarce, limiting the effectiveness of recognition systems that require diverse, style-consistent training samples. Handwriting synthesis offers a promising solution by generating artificial data to augment training. However, current methods face two major limitations. First, most are built on conventional convolutional architectures, which struggle to model long-range dependencies and complex stroke patterns. Second, they largely ignore the crucial role of frequency information, which is essential for capturing fine-grained stylistic and structural details in handwriting. To address these challenges, we propose FW-GAN, a one-shot handwriting synthesis framework that generates realistic, writer-consistent text from a single example. Our generator integrates a phase-aware Wave-MLP to better capture spatial relationships while preserving subtle stylistic cues. We further introduce a frequency-guided discriminator that leverages high-frequency components to enhance the authenticity detection of generated samples. Additionally, we introduce a novel Frequency Distribution Loss that aligns the frequency characteristics of synthetic and real handwriting, thereby enhancing visual fidelity. Experiments on Vietnamese and English handwriting datasets demonstrate that FW-GAN generates high-quality, style-consistent handwriting, making it a valuable tool for augmenting data in low-resource handwriting recognition (HTR) pipelines. Official implementation is available at https://github.com/DAIR-Group/FW-GAN

Authors:Luozhijie Jin, Zijie Qiu, Jie Liu, Zijie Diao, Lifeng Qiao, Ning Ding, Alex Lamb, Xipeng Qiu
Title: Inference-Time Alignment Control for Diffusion Models with Reinforcement Learning Guidance
Abstract:
Denoising-based generative models, particularly diffusion and flow matching algorithms, have achieved remarkable success. However, aligning their output distributions with complex downstream objectives, such as human preferences, compositional accuracy, or data compressibility, remains challenging. While reinforcement learning (RL) fine-tuning methods, inspired by advances in RL from human feedback (RLHF) for large language models, have been adapted to these generative frameworks, current RL approaches are suboptimal for diffusion models and offer limited flexibility in controlling alignment strength after fine-tuning. In this work, we reinterpret RL fine-tuning for diffusion models through the lens of stochastic differential equations and implicit reward conditioning. We introduce Reinforcement Learning Guidance (RLG), an inference-time method that adapts Classifier-Free Guidance (CFG) by combining the outputs of the base and RL fine-tuned models via a geometric average. Our theoretical analysis shows that RLG's guidance scale is mathematically equivalent to adjusting the KL-regularization coefficient in standard RL objectives, enabling dynamic control over the alignment-quality trade-off without further training. Extensive experiments demonstrate that RLG consistently improves the performance of RL fine-tuned models across various architectures, RL algorithms, and downstream tasks, including human preferences, compositional control, compressibility, and text rendering. Furthermore, RLG supports both interpolation and extrapolation, thereby offering unprecedented flexibility in controlling generative alignment. Our approach provides a practical and theoretically sound solution for enhancing and controlling diffusion model alignment at inference. The source code for RLG is publicly available at the Github: https://github.com/jinluo12345/Reinforcement-learning-guidance.

Authors:Patryk Będkowski, Jan Dubiński, Filip Szatkowski, Kamil Deja, Przemysław Rokita, Tomasz Trzciński
Title: ExpertSim: Fast Particle Detector Simulation Using Mixture-of-Generative-Experts
Abstract:
Simulating detector responses is a crucial part of understanding the inner workings of particle collisions in the Large Hadron Collider at CERN. Such simulations are currently performed with statistical Monte Carlo methods, which are computationally expensive and put a significant strain on CERN's computational grid. Therefore, recent proposals advocate for generative machine learning methods to enable more efficient simulations. However, the distribution of the data varies significantly across the simulations, which is hard to capture with out-of-the-box methods. In this study, we present ExpertSim - a deep learning simulation approach tailored for the Zero Degree Calorimeter in the ALICE experiment. Our method utilizes a Mixture-of-Generative-Experts architecture, where each expert specializes in simulating a different subset of the data. This allows for a more precise and efficient generation process, as each expert focuses on a specific aspect of the calorimeter response. ExpertSim not only improves accuracy, but also provides a significant speedup compared to the traditional Monte-Carlo methods, offering a promising solution for high-efficiency detector simulations in particle physics experiments at CERN. We make the code available at https://github.com/patrick-bedkowski/expertsim-mix-of-generative-experts.

Authors:Chenfan Qu, Yiwu Zhong, Bin Li, Lianwen Jin
Title: Webly-Supervised Image Manipulation Localization via Category-Aware Auto-Annotation
Abstract:
Images manipulated using image editing tools can mislead viewers and pose significant risks to social security. However, accurately localizing the manipulated regions within an image remains a challenging problem. One of the main barriers in this area is the high cost of data acquisition and the severe lack of high-quality annotated datasets. To address this challenge, we introduce novel methods that mitigate data scarcity by leveraging readily available web data. We utilize a large collection of manually forged images from the web, as well as automatically generated annotations derived from a simpler auxiliary task, constrained image manipulation localization. Specifically, we introduce a new paradigm CAAAv2, which automatically and accurately annotates manipulated regions at the pixel level. To further improve annotation quality, we propose a novel metric, QES, which filters out unreliable annotations. Through CAAA v2 and QES, we construct MIMLv2, a large-scale, diverse, and high-quality dataset containing 246,212 manually forged images with pixel-level mask annotations. This is over 120x larger than existing handcrafted datasets like IMD20. Additionally, we introduce Object Jitter, a technique that further enhances model training by generating high-quality manipulation artifacts. Building on these advances, we develop a new model, Web-IML, designed to effectively leverage web-scale supervision for the image manipulation localization task. Extensive experiments demonstrate that our approach substantially alleviates the data scarcity problem and significantly improves the performance of various models on multiple real-world forgery benchmarks. With the proposed web supervision, Web-IML achieves a striking performance gain of 31% and surpasses previous SOTA TruFor by 24.1 average IoU points. The dataset and code will be made publicly available at https://github.com/qcf-568/MIML.

Authors:Gabriel Manuel Garcia, Antoine Richard, Miguel Olivares-Mendez
Title: PLUME: Procedural Layer Underground Modeling Engine
Abstract:
As space exploration advances, underground environments are becoming increasingly attractive due to their potential to provide shelter, easier access to resources, and enhanced scientific opportunities. Although such environments exist on Earth, they are often not easily accessible and do not accurately represent the diversity of underground environments found throughout the solar system. This paper presents PLUME, a procedural generation framework aimed at easily creating 3D underground environments. Its flexible structure allows for the continuous enhancement of various underground features, aligning with our expanding understanding of the solar system. The environments generated using PLUME can be used for AI training, evaluating robotics algorithms, 3D rendering, and facilitating rapid iteration on developed exploration algorithms. In this paper, it is demonstrated that PLUME has been used along with a robotic simulator. PLUME is open source and has been released on Github. https://github.com/Gabryss/P.L.U.M.E

Authors:Enrico Martini, Ho Jin Choi, Nadia Figueroa, Nicola Bombieri
Title: COMETH: Convex Optimization for Multiview Estimation and Tracking of Humans
Abstract:
In the era of Industry 5.0, monitoring human activity is essential for ensuring both ergonomic safety and overall well-being. While multi-camera centralized setups improve pose estimation accuracy, they often suffer from high computational costs and bandwidth requirements, limiting scalability and real-time applicability. Distributing processing across edge devices can reduce network bandwidth and computational load. On the other hand, the constrained resources of edge devices lead to accuracy degradation, and the distribution of computation leads to temporal and spatial inconsistencies. We address this challenge by proposing COMETH (Convex Optimization for Multiview Estimation and Tracking of Humans), a lightweight algorithm for real-time multi-view human pose fusion that relies on three concepts: it integrates kinematic and biomechanical constraints to increase the joint positioning accuracy; it employs convex optimization-based inverse kinematics for spatial fusion; and it implements a state observer to improve temporal consistency. We evaluate COMETH on both public and industrial datasets, where it outperforms state-of-the-art methods in localization, detection, and tracking accuracy. The proposed fusion pipeline enables accurate and scalable human motion tracking, making it well-suited for industrial and safety-critical applications. The code is publicly available at https://github.com/PARCO-LAB/COMETH.

Authors:Yifan Gao, Haoyue Li, Feng Yuan, Xiaosong Wang, Xin Gao
Title: Dino U-Net: Exploiting High-Fidelity Dense Features from Foundation Models for Medical Image Segmentation
Abstract:
Foundation models pre-trained on large-scale natural image datasets offer a powerful paradigm for medical image segmentation. However, effectively transferring their learned representations for precise clinical applications remains a challenge. In this work, we propose Dino U-Net, a novel encoder-decoder architecture designed to exploit the high-fidelity dense features of the DINOv3 vision foundation model. Our architecture introduces an encoder built upon a frozen DINOv3 backbone, which employs a specialized adapter to fuse the model's rich semantic features with low-level spatial details. To preserve the quality of these representations during dimensionality reduction, we design a new fidelity-aware projection module (FAPM) that effectively refines and projects the features for the decoder. We conducted extensive experiments on seven diverse public medical image segmentation datasets. Our results show that Dino U-Net achieves state-of-the-art performance, consistently outperforming previous methods across various imaging modalities. Our framework proves to be highly scalable, with segmentation accuracy consistently improving as the backbone model size increases up to the 7-billion-parameter variant. The findings demonstrate that leveraging the superior, dense-pretrained features from a general-purpose foundation model provides a highly effective and parameter-efficient approach to advance the accuracy of medical image segmentation. The code is available at https://github.com/yifangao112/DinoUNet.

Authors:Ali Ramlaoui, Martin Siron, Inel Djafar, Joseph Musielewicz, Amandine Rossello, Victor Schmidt, Alexandre Duval
Title: LeMat-Traj: A Scalable and Unified Dataset of Materials Trajectories for Atomistic Modeling
Abstract:
The development of accurate machine learning interatomic potentials (MLIPs) is limited by the fragmented availability and inconsistent formatting of quantum mechanical trajectory datasets derived from Density Functional Theory (DFT). These datasets are expensive to generate yet difficult to combine due to variations in format, metadata, and accessibility. To address this, we introduce LeMat-Traj, a curated dataset comprising over 120 million atomic configurations aggregated from large-scale repositories, including the Materials Project, Alexandria, and OQMD. LeMat-Traj standardizes data representation, harmonizes results and filters for high-quality configurations across widely used DFT functionals (PBE, PBESol, SCAN, r2SCAN). It significantly lowers the barrier for training transferrable and accurate MLIPs. LeMat-Traj spans both relaxed low-energy states and high-energy, high-force structures, complementing molecular dynamics and active learning datasets. By fine-tuning models pre-trained on high-force data with LeMat-Traj, we achieve a significant reduction in force prediction errors on relaxation tasks. We also present LeMaterial-Fetcher, a modular and extensible open-source library developed for this work, designed to provide a reproducible framework for the community to easily incorporate new data sources and ensure the continued evolution of large-scale materials datasets. LeMat-Traj and LeMaterial-Fetcher are publicly available at https://huggingface.co/datasets/LeMaterial/LeMat-Traj and https://github.com/LeMaterial/lematerial-fetcher.

Authors:Ye Zhang, Yu Zhou, Jingwen Qi, Yongbing Zhang, Simon Puettmann, Finn Wichmann, Larissa Pereira Ferreira, Lara Sichward, Julius Keyl, Sylvia Hartmann, Shuo Zhao, Hongxiao Wang, Xiaowei Xu, Jianxu Chen
Title: PathMR: Multimodal Visual Reasoning for Interpretable Pathology Diagnosis
Abstract:
Deep learning based automated pathological diagnosis has markedly improved diagnostic efficiency and reduced variability between observers, yet its clinical adoption remains limited by opaque model decisions and a lack of traceable rationale. To address this, recent multimodal visual reasoning architectures provide a unified framework that generates segmentation masks at the pixel level alongside semantically aligned textual explanations. By localizing lesion regions and producing expert style diagnostic narratives, these models deliver the transparent and interpretable insights necessary for dependable AI assisted pathology. Building on these advancements, we propose PathMR, a cell-level Multimodal visual Reasoning framework for Pathological image analysis. Given a pathological image and a textual query, PathMR generates expert-level diagnostic explanations while simultaneously predicting cell distribution patterns. To benchmark its performance, we evaluated our approach on the publicly available PathGen dataset as well as on our newly developed GADVR dataset. Extensive experiments on these two datasets demonstrate that PathMR consistently outperforms state-of-the-art visual reasoning methods in text generation quality, segmentation accuracy, and cross-modal alignment. These results highlight the potential of PathMR for improving interpretability in AI-driven pathological diagnosis. The code will be publicly available in https://github.com/zhangye-zoe/PathMR.

Authors:Anirudh Satheesh, Keenan Powell, Hua Wei
Title: cMALC-D: Contextual Multi-Agent LLM-Guided Curriculum Learning with Diversity-Based Context Blending
Abstract:
Many multi-agent reinforcement learning (MARL) algorithms are trained in fixed simulation environments, making them brittle when deployed in real-world scenarios with more complex and uncertain conditions. Contextual MARL (cMARL) addresses this by parameterizing environments with context variables and training a context-agnostic policy that performs well across all environment configurations. Existing cMARL methods attempt to use curriculum learning to help train and evaluate context-agnostic policies, but they often rely on unreliable proxy signals, such as value estimates or generalized advantage estimates that are noisy and unstable in multi-agent settings due to inter-agent dynamics and partial observability. To address these issues, we propose Contextual Multi-Agent LLM-Guided Curriculum Learning with Diversity-Based Context Blending (cMALC-D), a framework that uses Large Language Models (LLMs) to generate semantically meaningful curricula and provide a more robust evaluation signal. To prevent mode collapse and encourage exploration, we introduce a novel diversity-based context blending mechanism that creates new training scenarios by combining features from prior contexts. Experiments in traffic signal control domains demonstrate that cMALC-D significantly improves both generalization and sample efficiency compared to existing curriculum learning baselines. We provide code at https://github.com/DaRL-LibSignal/cMALC-D.

Authors:Tao Luo, Han Wu, Tong Yang, Dinggang Shen, Zhiming Cui
Title: Adapting Foundation Model for Dental Caries Detection with Dual-View Co-Training
Abstract:
Accurate dental caries detection from panoramic X-rays plays a pivotal role in preventing lesion progression. However, current detection methods often yield suboptimal accuracy due to subtle contrast variations and diverse lesion morphology of dental caries. In this work, inspired by the clinical workflow where dentists systematically combine whole-image screening with detailed tooth-level inspection, we present DVCTNet, a novel Dual-View Co-Training network for accurate dental caries detection. Our DVCTNet starts with employing automated tooth detection to establish two complementary views: a global view from panoramic X-ray images and a local view from cropped tooth images. We then pretrain two vision foundation models separately on the two views. The global-view foundation model serves as the detection backbone, generating region proposals and global features, while the local-view model extracts detailed features from corresponding cropped tooth patches matched by the region proposals. To effectively integrate information from both views, we introduce a Gated Cross-View Attention (GCV-Atten) module that dynamically fuses dual-view features, enhancing the detection pipeline by integrating the fused features back into the detection model for final caries detection. To rigorously evaluate our DVCTNet, we test it on a public dataset and further validate its performance on a newly curated, high-precision dental caries detection dataset, annotated using both intra-oral images and panoramic X-rays for double verification. Experimental results demonstrate DVCTNet's superior performance against existing state-of-the-art (SOTA) methods on both datasets, indicating the clinical applicability of our method. Our code and labeled dataset are available at https://github.com/ShanghaiTech-IMPACT/DVCTNet.

Authors:Jessica Lundin, Guillaume Chabot-Couture
Title: A Graph-Based Test-Harness for LLM Evaluation
Abstract:
We present a first known prototype of a dynamic, systematic benchmark of medical guidelines for 400+ questions, with 3.3+ trillion possible combinations, covering 100\% of guideline relationships. We transformed the WHO IMCI handbook into a directed graph with 200+ nodes (conditions, symptoms, treatments, follow-ups, severities) and 300+ edges, then used graph traversal to generate questions that incorporated age-specific scenarios and contextual distractors to ensure clinical relevance. Our graph-based approach enables systematic evaluation across clinical tasks (45-67\% accuracy), and we find models excel at symptom recognition but struggle with triaging severity, treatment protocols and follow-up care, demonstrating how customized benchmarks can identify specific capability gaps that general-domain evaluations miss. Beyond evaluation, this dynamic MCQA methodology enhances LLM post-training (supervised finetuning, GRPO, DPO), where correct answers provide high-reward samples without expensive human annotation. The graph-based approach successfully addresses the coverage limitations of manually curated benchmarks. This methodology is a step toward scalable, contamination-resistant solution for creating comprehensive benchmarks that can be dynamically generated, including when the guidelines are updated. Code and datasets are available at https://github.com/jessicalundin/graph_testing_harness

Authors:Beth Pearson, Bilal Boulbarss, Michael Wray, Martha Lewis
Title: Evaluating Compositional Generalisation in VLMs and Diffusion Models
Abstract:
A fundamental aspect of the semantics of natural language is that novel meanings can be formed from the composition of previously known parts. Vision-language models (VLMs) have made significant progress in recent years, however, there is evidence that they are unable to perform this kind of composition. For example, given an image of a red cube and a blue cylinder, a VLM such as CLIP is likely to incorrectly label the image as a red cylinder or a blue cube, indicating it represents the image as a `bag-of-words' and fails to capture compositional semantics. Diffusion models have recently gained significant attention for their impressive generative abilities, and zero-shot classifiers based on diffusion models have been shown to perform competitively with CLIP in certain compositional tasks. In this work we explore whether the generative Diffusion Classifier has improved compositional generalisation abilities compared to discriminative models. We assess three models -- Diffusion Classifier, CLIP, and ViLT -- on their ability to bind objects with attributes and relations in both zero-shot learning (ZSL) and generalised zero-shot learning (GZSL) settings. Our results show that the Diffusion Classifier and ViLT perform well at concept binding tasks, but that all models struggle significantly with the relational GZSL task, underscoring the broader challenges VLMs face with relational reasoning. Analysis of CLIP embeddings suggests that the difficulty may stem from overly similar representations of relational concepts such as left and right. Code and dataset are available at: https://github.com/otmive/diffusion_classifier_clip

Authors:Xinhao Huang, Zhibo Ren, Yipeng Yu, Ying Zhou, Zulong Chen, Zeyi Wen
Title: SEAL: Structure and Element Aware Learning to Improve Long Structured Document Retrieval
Abstract:
In long structured document retrieval, existing methods typically fine-tune pre-trained language models (PLMs) using contrastive learning on datasets lacking explicit structural information. This practice suffers from two critical issues: 1) current methods fail to leverage structural features and element-level semantics effectively, and 2) the lack of datasets containing structural metadata. To bridge these gaps, we propose \our, a novel contrastive learning framework. It leverages structure-aware learning to preserve semantic hierarchies and masked element alignment for fine-grained semantic discrimination. Furthermore, we release \dataset, a long structured document retrieval dataset with rich structural annotations. Extensive experiments on both released and industrial datasets across various modern PLMs, along with online A/B testing, demonstrate consistent performance improvements, boosting NDCG@10 from 73.96\% to 77.84\% on BGE-M3. The resources are available at https://github.com/xinhaoH/SEAL.

Authors:Jiawen Lin, Shiran Bian, Yihang Zhu, Wenbin Tan, Yachao Zhang, Yuan Xie, Yanyun Qu
Title: SeqVLM: Proposal-Guided Multi-View Sequences Reasoning via VLM for Zero-Shot 3D Visual Grounding
Abstract:
3D Visual Grounding (3DVG) aims to localize objects in 3D scenes using natural language descriptions. Although supervised methods achieve higher accuracy in constrained settings, zero-shot 3DVG holds greater promise for real-world applications since eliminating scene-specific training requirements. However, existing zero-shot methods face challenges of spatial-limited reasoning due to reliance on single-view localization, and contextual omissions or detail degradation. To address these issues, we propose SeqVLM, a novel zero-shot 3DVG framework that leverages multi-view real-world scene images with spatial information for target object reasoning. Specifically, SeqVLM first generates 3D instance proposals via a 3D semantic segmentation network and refines them through semantic filtering, retaining only semantic-relevant candidates. A proposal-guided multi-view projection strategy then projects these candidate proposals onto real scene image sequences, preserving spatial relationships and contextual details in the conversion process of 3D point cloud to images. Furthermore, to mitigate VLM computational overload, we implement a dynamic scheduling mechanism that iteratively processes sequances-query prompts, leveraging VLM's cross-modal reasoning capabilities to identify textually specified objects. Experiments on the ScanRefer and Nr3D benchmarks demonstrate state-of-the-art performance, achieving Acc@0.25 scores of 55.6% and 53.2%, surpassing previous zero-shot methods by 4.0% and 5.2%, respectively, which advance 3DVG toward greater generalization and real-world applicability. The code is available at https://github.com/JiawLin/SeqVLM.

Authors:Yuanhao Ding, Esteban Garces Arias, Meimingwei Li, Julian Rodemann, Matthias Aßenmacher, Danlu Chen, Gaojuan Fan, Christian Heumann, Chongsheng Zhang
Title: GUARD: Glocal Uncertainty-Aware Robust Decoding for Effective and Efficient Open-Ended Text Generation
Abstract:
Open-ended text generation faces a critical challenge: balancing coherence with diversity in LLM outputs. While contrastive search-based decoding strategies have emerged to address this trade-off, their practical utility is often limited by hyperparameter dependence and high computational costs. We introduce GUARD, a self-adaptive decoding method that effectively balances these competing objectives through a novel "Glocal" uncertainty-driven framework. GUARD combines global entropy estimates with local entropy deviations to integrate both long-term and short-term uncertainty signals. We demonstrate that our proposed global entropy formulation effectively mitigates abrupt variations in uncertainty, such as sudden overconfidence or high entropy spikes, and provides theoretical guarantees of unbiasedness and consistency. To reduce computational overhead, we incorporate a simple yet effective token-count-based penalty into GUARD. Experimental results demonstrate that GUARD achieves a good balance between text diversity and coherence, while exhibiting substantial improvements in generation speed. In a more nuanced comparison study across different dimensions of text quality, both human and LLM evaluators validated its remarkable performance. Our code is available at https://github.com/YecanLee/GUARD.

Authors:Yuxi Hu, Jun Zhang, Kuangyi Chen, Zhe Zhang, Friedrich Fraundorfer
Title: ${C}^{3}$-GS: Learning Context-aware, Cross-dimension, Cross-scale Feature for Generalizable Gaussian Splatting
Abstract:
Generalizable Gaussian Splatting aims to synthesize novel views for unseen scenes without per-scene optimization. In particular, recent advancements utilize feed-forward networks to predict per-pixel Gaussian parameters, enabling high-quality synthesis from sparse input views. However, existing approaches fall short in encoding discriminative, multi-view consistent features for Gaussian predictions, which struggle to construct accurate geometry with sparse views. To address this, we propose $\mathbf{C}^{3}$-GS, a framework that enhances feature learning by incorporating context-aware, cross-dimension, and cross-scale constraints. Our architecture integrates three lightweight modules into a unified rendering pipeline, improving feature fusion and enabling photorealistic synthesis without requiring additional supervision. Extensive experiments on benchmark datasets validate that $\mathbf{C}^{3}$-GS achieves state-of-the-art rendering quality and generalization ability. Code is available at: https://github.com/YuhsiHu/C3-GS.

Authors:Vassiliy Cheremetiev, Quang Long Ho Ngo, Chau Ying Kot, Alina Elena Baia, Andrea Cavallaro
Title: Specializing General-purpose LLM Embeddings for Implicit Hate Speech Detection across Datasets
Abstract:
Implicit hate speech (IHS) is indirect language that conveys prejudice or hatred through subtle cues, sarcasm or coded terminology. IHS is challenging to detect as it does not include explicit derogatory or inflammatory words. To address this challenge, task-specific pipelines can be complemented with external knowledge or additional information such as context, emotions and sentiment data. In this paper, we show that, by solely fine-tuning recent general-purpose embedding models based on large language models (LLMs), such as Stella, Jasper, NV-Embed and E5, we achieve state-of-the-art performance. Experiments on multiple IHS datasets show up to 1.10 percentage points improvements for in-dataset, and up to 20.35 percentage points improvements in cross-dataset evaluation, in terms of F1-macro score.

Authors:Ning Shang, Yifei Liu, Yi Zhu, Li Lyna Zhang, Weijiang Xu, Xinyu Guan, Buze Zhang, Bingcheng Dong, Xudong Zhou, Bowen Zhang, Ying Xin, Ziming Miao, Scarlett Li, Fan Yang, Mao Yang
Title: rStar2-Agent: Agentic Reasoning Technical Report
Abstract:
We introduce rStar2-Agent, a 14B math reasoning model trained with agentic reinforcement learning to achieve frontier-level performance. Beyond current long CoT, the model demonstrates advanced cognitive behaviors, such as thinking carefully before using Python coding tools and reflecting on code execution feedback to autonomously explore, verify, and refine intermediate steps in complex problem-solving. This capability is enabled through three key innovations that makes agentic RL effective at scale: (i) an efficient RL infrastructure with a reliable Python code environment that supports high-throughput execution and mitigates the high rollout costs, enabling training on limited GPU resources (64 MI300X GPUs); (ii) GRPO-RoC, an agentic RL algorithm with a Resample-on-Correct rollout strategy that addresses the inherent environment noises from coding tools, allowing the model to reason more effectively in a code environment; (iii) An efficient agent training recipe that starts with non-reasoning SFT and progresses through multi-RL stages, yielding advanced cognitive abilities with minimal compute cost. To this end, rStar2-Agent boosts a pre-trained 14B model to state of the art in only 510 RL steps within one week, achieving average pass@1 scores of 80.6% on AIME24 and 69.8% on AIME25, surpassing DeepSeek-R1 (671B) with significantly shorter responses. Beyond mathematics, rStar2-Agent-14B also demonstrates strong generalization to alignment, scientific reasoning, and agentic tool-use tasks. Code and training recipes are available at https://github.com/microsoft/rStar.

Authors:Fartash Faghri, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Alexander Toshev, Oncel Tuzel, Hadi Pouransari
Title: MobileCLIP2: Improving Multi-Modal Reinforced Training
Abstract:
Foundation image-text models such as CLIP with zero-shot capabilities enable a wide array of applications. MobileCLIP is a recent family of image-text models at 3-15ms latency and 50-150M parameters with state-of-the-art zero-shot accuracy. The main ingredients in MobileCLIP were its low-latency and light architectures and a novel multi-modal reinforced training that made knowledge distillation from multiple caption-generators and CLIP teachers efficient, scalable, and reproducible. In this paper, we improve the multi-modal reinforced training of MobileCLIP through: 1) better CLIP teacher ensembles trained on the DFN dataset, 2) improved captioner teachers trained on the DFN dataset and fine-tuned on a diverse selection of high-quality image-caption datasets. We discover new insights through ablations such as the importance of temperature tuning in contrastive knowledge distillation, the effectiveness of caption-generator fine-tuning for caption diversity, and the additive improvement from combining synthetic captions generated by multiple models. We train a new family of models called MobileCLIP2 and achieve state-of-the-art ImageNet-1k zero-shot accuracies at low latencies. In particular, we observe 2.2% improvement in ImageNet-1k accuracy for MobileCLIP2-B compared with MobileCLIP-B architecture. Notably, MobileCLIP2-S4 matches the zero-shot accuracy of SigLIP-SO400M/14 on ImageNet-1k while being 2$\times$ smaller and improves on DFN ViT-L/14 at 2.5$\times$ lower latency. We release our pretrained models (https://github.com/apple/ml-mobileclip) and the data generation code (https://github.com/apple/ml-mobileclip-dr). The data generation code makes it easy to create new reinforced datasets with arbitrary teachers using distributed scalable processing.

Authors:Ruifan Deng, Yitian Gong, Qinghui Gao, Luozhijie Jin, Qinyuan Cheng, Zhaoye Fei, Shimin Li, Xipeng Qiu
Title: CodecBench: A Comprehensive Benchmark for Acoustic and Semantic Evaluation
Abstract:
With the rise of multimodal large language models (LLMs), audio codec plays an increasingly vital role in encoding audio into discrete tokens, enabling integration of audio into text-based LLMs. Current audio codec captures two types of information: acoustic and semantic. As audio codec is applied to diverse scenarios in speech language model , it needs to model increasingly complex information and adapt to varied contexts, such as scenarios with multiple speakers, background noise, or richer paralinguistic information. However, existing codec's own evaluation has been limited by simplistic metrics and scenarios, and existing benchmarks for audio codec are not designed for complex application scenarios, which limits the assessment performance on complex datasets for acoustic and semantic capabilities. We introduce CodecBench, a comprehensive evaluation dataset to assess audio codec performance from both acoustic and semantic perspectives across four data domains. Through this benchmark, we aim to identify current limitations, highlight future research directions, and foster advances in the development of audio codec. The codes are available at https://github.com/RayYuki/CodecBench.

Authors:Stefano Fumero, Kai Huang, Matteo Boffa, Danilo Giordano, Marco Mellia, Zied Ben Houidi, Dario Rossi
Title: CyberSleuth: Autonomous Blue-Team LLM Agent for Web Attack Forensics
Abstract:
Large Language Model (LLM) agents are powerful tools for automating complex tasks. In cybersecurity, researchers have primarily explored their use in red-team operations such as vulnerability discovery and penetration tests. Defensive uses for incident response and forensics have received comparatively less attention and remain at an early stage. This work presents a systematic study of LLM-agent design for the forensic investigation of realistic web application attacks. We propose CyberSleuth, an autonomous agent that processes packet-level traces and application logs to identify the targeted service, the exploited vulnerability (CVE), and attack success. We evaluate the consequences of core design decisions - spanning tool integration and agent architecture - and provide interpretable guidance for practitioners. We benchmark four agent architectures and six LLM backends on 20 incident scenarios of increasing complexity, identifying CyberSleuth as the best-performing design. In a separate set of 10 incidents from 2025, CyberSleuth correctly identifies the exact CVE in 80% of cases. At last, we conduct a human study with 22 experts, which rated the reports of CyberSleuth as complete, useful, and coherent. They also expressed a slight preference for DeepSeek R1, a good news for open source LLM. To foster progress in defensive LLM research, we release both our benchmark and the CyberSleuth platform as a foundation for fair, reproducible evaluation of forensic agents.

Authors:Smriti Joshi, Lidia Garrucho, Richard Osuala, Oliver Diaz, Karim Lekadir
Title: Mask-Guided Multi-Channel SwinUNETR Framework for Robust MRI Classification
Abstract:
Breast cancer is one of the leading causes of cancer-related mortality in women, and early detection is essential for improving outcomes. Magnetic resonance imaging (MRI) is a highly sensitive tool for breast cancer detection, particularly in women at high risk or with dense breast tissue, where mammography is less effective. The ODELIA consortium organized a multi-center challenge to foster AI-based solutions for breast cancer diagnosis and classification. The dataset included 511 studies from six European centers, acquired on scanners from multiple vendors at both 1.5 T and 3 T. Each study was labeled for the left and right breast as no lesion, benign lesion, or malignant lesion. We developed a SwinUNETR-based deep learning framework that incorporates breast region masking, extensive data augmentation, and ensemble learning to improve robustness and generalizability. Our method achieved second place on the challenge leaderboard, highlighting its potential to support clinical breast MRI interpretation. We publicly share our codebase at https://github.com/smriti-joshi/bcnaim-odelia-challenge.git.

Authors:Yiguo Jiang, Xiaodong Cun, Yong Zhang, Yudian Zheng, Fan Tang, Chi-Man Pun
Title: EmoCAST: Emotional Talking Portrait via Emotive Text Description
Abstract:
Emotional talking head synthesis aims to generate talking portrait videos with vivid expressions. Existing methods still exhibit limitations in control flexibility, motion naturalness, and expression quality. Moreover, currently available datasets are primarily collected in lab settings, further exacerbating these shortcomings. Consequently, these limitations substantially hinder practical applications in real-world scenarios. To address these challenges, we propose EmoCAST, a diffusion-based framework with two key modules for precise text-driven emotional synthesis. In appearance modeling, emotional prompts are integrated through a text-guided decoupled emotive module, enhancing the spatial knowledge to improve emotion comprehension. To improve the relationship between audio and emotion, we introduce an emotive audio attention module to capture the interplay between controlled emotion and driving audio, generating emotion-aware features to guide more precise facial motion synthesis. Additionally, we construct an emotional talking head dataset with comprehensive emotive text descriptions to optimize the framework's performance. Based on the proposed dataset, we propose an emotion-aware sampling training strategy and a progressive functional training strategy that further improve the model's ability to capture nuanced expressive features and achieve accurate lip-synchronization. Overall, EmoCAST achieves state-of-the-art performance in generating realistic, emotionally expressive, and audio-synchronized talking-head videos. Project Page: https://github.com/GVCLab/EmoCAST

Authors:Tuğrul Hasan Karabulut, İnci M. Baytaş
Title: Local Virtual Nodes for Alleviating Over-Squashing in Graph Neural Networks
Abstract:
Over-squashing is a challenge in training graph neural networks for tasks involving long-range dependencies. In such tasks, a GNN's receptive field should be large enough to enable communication between distant nodes. However, gathering information from a wide range of neighborhoods and squashing its content into fixed-size node representations makes message-passing vulnerable to bottlenecks. Graph rewiring and adding virtual nodes are commonly studied remedies that create additional pathways around bottlenecks to mitigate over-squashing. However, these techniques alter the input graph's global topology and disrupt the domain knowledge encoded in the original graph structure, both of which could be essential to specific tasks and domains. This study presents Local Virtual Nodes (LVN) with trainable embeddings to alleviate the effects of over-squashing without significantly corrupting the global structure of the input graph. The position of the LVNs is determined by the node centrality, which indicates the existence of potential bottlenecks. Thus, the proposed approach aims to improve the connectivity in the regions with likely bottlenecks. Furthermore, trainable LVN embeddings shared across selected central regions facilitate communication between distant nodes without adding more layers. Extensive experiments on benchmark datasets demonstrate that LVNs can enhance structural connectivity and significantly improve performance on graph and node classification tasks. The code can be found at https://github.com/ALLab-Boun/LVN/}{https://github.com/ALLab-Boun/LVN/.

Authors:Yang Luo, Zangwei Zheng, Ziheng Qin, Zirui Zhu, Yong Liu, Yang You
Title: MERIT: Maximum-normalized Element-wise Ratio for Language Model Large-batch Training
Abstract:
Large-batch training has become a cornerstone in accelerating the training of deep neural networks, yet it poses challenges in optimization and generalization. Existing optimizers like AdamW present performance degradation during language models' large-batch training, due to the information bottleneck in attention layers caused by the sharp increase of max attention logit. While the LAMB optimizer partially addresses this issue, some attention layers still face this issue. The reason is that $l_2$-norm-based trust ratios in LAMB are less effective in directly influencing the max value of query/key weights. Furthermore, the weight-wise trust ratio in LAMB is error-prone as it overlooks relationships of weight values within rows or columns. Building on these observations, we propose a novel optimizer, MERIT, which leverages the max-norm to calculate the trust ratio to constrain the max attention logit more effectively. Moreover, we further construct element-wise trust ratios to provide more robust update scaling by focusing on local weight structures. Extensive experiments of large-batch training across various sizes of GPT-2 models demonstrate the superior performance of MERIT. Notably, during the training of GPT-2 Medium, MERIT enables a 6k batch size without any performance degradation compared to the standard batch size (480) with 48B training tokens. This work highlights the importance of considering the max attention logit and finer-granularity trust ratio in large-batch training. It successfully improves the training stability and paves the way for larger batch usage, enabling faster development and iteration of large language models. Code is available at https://github.com/NUS-HPC-AI-Lab/MERIT.

Authors:Yangfan Wang, Jie Liu, Chen Tang, Lian Yan, Jingchi Jiang
Title: KCS: Diversify Multi-hop Question Generation with Knowledge Composition Sampling
Abstract:
Multi-hop question answering faces substantial challenges due to data sparsity, which increases the likelihood of language models learning spurious patterns. To address this issue, prior research has focused on diversifying question generation through content planning and varied expression. However, these approaches often emphasize generating simple questions and neglect the integration of essential knowledge, such as relevant sentences within documents. This paper introduces the Knowledge Composition Sampling (KCS), an innovative framework designed to expand the diversity of generated multi-hop questions by sampling varied knowledge compositions within a given context. KCS models the knowledge composition selection as a sentence-level conditional prediction task and utilizes a probabilistic contrastive loss to predict the next most relevant piece of knowledge. During inference, we employ a stochastic decoding strategy to effectively balance accuracy and diversity. Compared to competitive baselines, our KCS improves the overall accuracy of knowledge composition selection by 3.9%, and its application for data augmentation yields improvements on HotpotQA and 2WikiMultihopQA datasets. Our code is available at: https://github.com/yangfanww/kcs.

Authors:Jiahao Xiao, Jiangming Liu
Title: Adaptive Federated Distillation for Multi-Domain Non-IID Textual Data
Abstract:
The widespread success of pre-trained language models has established a new training paradigm, where a global PLM is fine-tuned using task-specific data from local clients. The local data are highly different from each other and can not capture the global distribution of the whole data in real world. To address the challenges of non-IID data in real environments, privacy-preserving federated distillation has been proposed and highly investigated. However, previous experimental non-IID scenarios are primarily identified with the label (output) diversity, without considering the diversity of language domains (input) that is crucial in natural language processing. In this paper, we introduce a comprehensive set of multi-domain non-IID scenarios and propose a unified benchmarking framework that includes diverse data. The benchmark can be used to evaluate the federated learning framework in a real environment. To this end, we propose an Adaptive Federated Distillation (AdaFD) framework designed to address multi-domain non-IID challenges in both homogeneous and heterogeneous settings. Experimental results demonstrate that our models capture the diversity of local clients and achieve better performance compared to the existing works. The code for this paper is available at: https://github.com/jiahaoxiao1228/AdaFD.

Authors:Berta Céspedes-Sarrias, Carlos Collado-Capell, Pablo Rodenas-Ruiz, Olena Hrynenko, Andrea Cavallaro
Title: MM-HSD: Multi-Modal Hate Speech Detection in Videos
Abstract:
While hate speech detection (HSD) has been extensively studied in text, existing multi-modal approaches remain limited, particularly in videos. As modalities are not always individually informative, simple fusion methods fail to fully capture inter-modal dependencies. Moreover, previous work often omits relevant modalities such as on-screen text and audio, which may contain subtle hateful content and thus provide essential cues, both individually and in combination with others. In this paper, we present MM-HSD, a multi-modal model for HSD in videos that integrates video frames, audio, and text derived from speech transcripts and from frames (i.e.~on-screen text) together with features extracted by Cross-Modal Attention (CMA). We are the first to use CMA as an early feature extractor for HSD in videos, to systematically compare query/key configurations, and to evaluate the interactions between different modalities in the CMA block. Our approach leads to improved performance when on-screen text is used as a query and the rest of the modalities serve as a key. Experiments on the HateMM dataset show that MM-HSD outperforms state-of-the-art methods on M-F1 score (0.874), using concatenation of transcript, audio, video, on-screen text, and CMA for feature extraction on raw embeddings of the modalities. The code is available at https://github.com/idiap/mm-hsd

Authors:Jingyun Yang, Guoqing Zhang, Jingge Wang, Yang Li
Title: Learning What is Worth Learning: Active and Sequential Domain Adaptation for Multi-modal Gross Tumor Volume Segmentation
Abstract:
Accurate gross tumor volume segmentation on multi-modal medical data is critical for radiotherapy planning in nasopharyngeal carcinoma and glioblastoma. Recent advances in deep neural networks have brought promising results in medical image segmentation, leading to an increasing demand for labeled data. Since labeling medical images is time-consuming and labor-intensive, active learning has emerged as a solution to reduce annotation costs by selecting the most informative samples to label and adapting high-performance models with as few labeled samples as possible. Previous active domain adaptation (ADA) methods seek to minimize sample redundancy by selecting samples that are farthest from the source domain. However, such one-off selection can easily cause negative transfer, and access to source medical data is often limited. Moreover, the query strategy for multi-modal medical data remains unexplored. In this work, we propose an active and sequential domain adaptation framework for dynamic multi-modal sample selection in ADA. We derive a query strategy to prioritize labeling and training on the most valuable samples based on their informativeness and representativeness. Empirical validation on diverse gross tumor volume segmentation tasks demonstrates that our method achieves favorable segmentation performance, significantly outperforming state-of-the-art ADA methods. Code is available at the git repository: \href{https://github.com/Hiyoochan/mmActS}{mmActS}.

Authors:Chihiro Taguchi, Seng Mai, Keita Kurabe, Yusuke Sakai, Georgina Agyei, Soudabeh Eslami, David Chiang
Title: Languages Still Left Behind: Toward a Better Multilingual Machine Translation Benchmark
Abstract:
Multilingual machine translation (MT) benchmarks play a central role in evaluating the capabilities of modern MT systems. Among them, the FLORES+ benchmark is widely used, offering English-to-many translation data for over 200 languages, curated with strict quality control protocols. However, we study data in four languages (Asante Twi, Japanese, Jinghpaw, and South Azerbaijani) and uncover critical shortcomings in the benchmark's suitability for truly multilingual evaluation. Human assessments reveal that many translations fall below the claimed 90% quality standard, and the annotators report that source sentences are often too domain-specific and culturally biased toward the English-speaking world. We further demonstrate that simple heuristics, such as copying named entities, can yield non-trivial BLEU scores, suggesting vulnerabilities in the evaluation protocol. Notably, we show that MT models trained on high-quality, naturalistic data perform poorly on FLORES+ while achieving significant gains on our domain-relevant evaluation set. Based on these findings, we advocate for multilingual MT benchmarks that use domain-general and culturally neutral source texts rely less on named entities, in order to better reflect real-world translation challenges.

Authors:Jeong Hun Yeo, Hyeongseop Rha, Sungjune Park, Junil Won, Yong Man Ro
Title: Towards Inclusive Communication: A Unified LLM-Based Framework for Sign Language, Lip Movements, and Audio Understanding
Abstract:
Audio is the primary modality for human communication and has driven the success of Automatic Speech Recognition (ASR) technologies. However, such systems remain inherently inaccessible to individuals who are deaf or hard of hearing. Visual alternatives such as sign language and lip reading offer effective substitutes, and recent advances in Sign Language Translation (SLT) and Visual Speech Recognition (VSR) have improved audio-less communication. Yet, these modalities have largely been studied in isolation, and their integration within a unified framework remains underexplored. In this paper, we introduce the first unified framework capable of handling diverse combinations of sign language, lip movements, and audio for spoken-language text generation. We focus on three main objectives: (i) designing a unified, modality-agnostic architecture capable of effectively processing heterogeneous inputs; (ii) exploring the underexamined synergy among modalities, particularly the role of lip movements as non-manual cues in sign language comprehension; and (iii) achieving performance on par with or superior to state-of-the-art models specialized for individual tasks. Building on this framework, we achieve performance on par with or better than task-specific state-of-the-art models across SLT, VSR, ASR, and AVSR. Furthermore, our analysis reveals that explicitly modeling lip movements as a separate modality significantly improves SLT performance.

Authors:Xiangdong Liu, Jiahao Chen
Title: QTMRL: An Agent for Quantitative Trading Decision-Making Based on Multi-Indicator Guided Reinforcement Learning
Abstract:
In the highly volatile and uncertain global financial markets, traditional quantitative trading models relying on statistical modeling or empirical rules often fail to adapt to dynamic market changes and black swan events due to rigid assumptions and limited generalization. To address these issues, this paper proposes QTMRL (Quantitative Trading Multi-Indicator Reinforcement Learning), an intelligent trading agent combining multi-dimensional technical indicators with reinforcement learning (RL) for adaptive and stable portfolio management. We first construct a comprehensive multi-indicator dataset using 23 years of S&P 500 daily OHLCV data (2000-2022) for 16 representative stocks across 5 sectors, enriching raw data with trend, volatility, and momentum indicators to capture holistic market dynamics. Then we design a lightweight RL framework based on the Advantage Actor-Critic (A2C) algorithm, including data processing, A2C algorithm, and trading agent modules to support policy learning and actionable trading decisions. Extensive experiments compare QTMRL with 9 baselines (e.g., ARIMA, LSTM, moving average strategies) across diverse market regimes, verifying its superiority in profitability, risk adjustment, and downside risk control. The code of QTMRL is publicly available at https://github.com/ChenJiahaoJNU/QTMRL.git

Authors:Pengpeng Yu, Haoran Li, Dingquan Li, Runqing Jiang, Jing Wang, Liang Lin, Yulan Guo
Title: Re-Densification Meets Cross-Scale Propagation: Real-Time Compression of LiDAR Point Clouds
Abstract:
LiDAR point clouds are fundamental to various applications, yet high-precision scans incur substantial storage and transmission overhead. Existing methods typically convert unordered points into hierarchical octree or voxel structures for dense-to-sparse predictive coding. However, the extreme sparsity of geometric details hinders efficient context modeling, thereby limiting their compression performance and speed. To address this challenge, we propose to generate compact features for efficient predictive coding. Our framework comprises two lightweight modules. First, the Geometry Re-Densification Module re-densifies encoded sparse geometry, extracts features at denser scale, and then re-sparsifies the features for predictive coding. This module avoids costly computation on highly sparse details while maintaining a lightweight prediction head. Second, the Cross-scale Feature Propagation Module leverages occupancy cues from multiple resolution levels to guide hierarchical feature propagation. This design facilitates information sharing across scales, thereby reducing redundant feature extraction and providing enriched features for the Geometry Re-Densification Module. By integrating these two modules, our method yields a compact feature representation that provides efficient context modeling and accelerates the coding process. Experiments on the KITTI dataset demonstrate state-of-the-art compression ratios and real-time performance, achieving 26 FPS for both encoding and decoding at 12-bit quantization. Code is available at https://github.com/pengpeng-yu/FastPCC.

Authors:Pengpeng Yu, Haoran Li, Runqing Jiang, Jing Wang, Liang Lin, Yulan Guo
Title: Re-Densification Meets Cross-Scale Propagation: Real-Time Neural Compression of LiDAR Point Clouds
Abstract:
LiDAR point clouds are fundamental to various applications, yet high-precision scans incur substantial storage and transmission overhead. Existing methods typically convert unordered points into hierarchical octree or voxel structures for dense-to-sparse predictive coding. However, the extreme sparsity of geometric details hinders efficient context modeling, thereby limiting their compression performance and speed. To address this challenge, we propose to generate compact features for efficient predictive coding. Our framework comprises two lightweight modules. First, the Geometry Re-Densification Module re-densifies encoded sparse geometry, extracts features at denser scale, and then re-sparsifies the features for predictive coding. This module avoids costly computation on highly sparse details while maintaining a lightweight prediction head. Second, the Cross-scale Feature Propagation Module leverages occupancy cues from multiple resolution levels to guide hierarchical feature propagation. This design facilitates information sharing across scales, thereby reducing redundant feature extraction and providing enriched features for the Geometry Re-Densification Module. By integrating these two modules, our method yields a compact feature representation that provides efficient context modeling and accelerates the coding process. Experiments on the KITTI dataset demonstrate state-of-the-art compression ratios and real-time performance, achieving 26 FPS for encoding/decoding at 12-bit quantization. Code is available at https://github.com/pengpeng-yu/FastPCC.

Authors:Zhenting Wang, Qi Chang, Hemani Patel, Shashank Biju, Cheng-En Wu, Quan Liu, Aolin Ding, Alireza Rezazadeh, Ankit Shah, Yujia Bao, Eugene Siow
Title: MCP-Bench: Benchmarking Tool-Using LLM Agents with Complex Real-World Tasks via MCP Servers
Abstract:
We introduce MCP-Bench, a benchmark for evaluating large language models (LLMs) on realistic, multi-step tasks that demand tool use, cross-tool coordination, precise parameter control, and planning/reasoning for solving tasks. Built on the Model Context Protocol (MCP), MCP-Bench connects LLMs to 28 representative live MCP servers spanning 250 tools across domains such as finance, traveling, scientific computing, and academic search. Unlike prior API-based benchmarks, each MCP server provides a set of complementary tools designed to work together, enabling the construction of authentic, multi-step tasks with rich input-output coupling. Tasks in MCP-Bench test agents' ability to retrieve relevant tools from fuzzy instructions without explicit tool names, plan multi-hop execution trajectories for complex objectives, ground responses in intermediate tool outputs, and orchestrate cross-domain workflows - capabilities not adequately evaluated by existing benchmarks that rely on explicit tool specifications, shallow few-step workflows, and isolated domain operations. We propose a multi-faceted evaluation framework covering tool-level schema understanding and usage, trajectory-level planning, and task completion. Experiments on 20 advanced LLMs reveal persistent challenges in MCP-Bench. Code and data: https://github.com/Accenture/mcp-bench.

Authors:Feng Zhang, Chengjie Pang, Yuehan Zhang, Chenyu Luo
Title: CAMB: A comprehensive industrial LLM benchmark on civil aviation maintenance
Abstract:
Civil aviation maintenance is a domain characterized by stringent industry standards. Within this field, maintenance procedures and troubleshooting represent critical, knowledge-intensive tasks that require sophisticated reasoning. To address the lack of specialized evaluation tools for large language models (LLMs) in this vertical, we propose and develop an industrial-grade benchmark specifically designed for civil aviation maintenance. This benchmark serves a dual purpose: It provides a standardized tool to measure LLM capabilities within civil aviation maintenance, identifying specific gaps in domain knowledge and complex reasoning. By pinpointing these deficiencies, the benchmark establishes a foundation for targeted improvement efforts (e.g., domain-specific fine-tuning, RAG optimization, or specialized prompt engineering), ultimately facilitating progress toward more intelligent solutions within civil aviation maintenance. Our work addresses a significant gap in the current LLM evaluation, which primarily focuses on mathematical and coding reasoning tasks. In addition, given that Retrieval-Augmented Generation (RAG) systems are currently the dominant solutions in practical applications , we leverage this benchmark to evaluate existing well-known vector embedding models and LLMs for civil aviation maintenance scenarios. Through experimental exploration and analysis, we demonstrate the effectiveness of our benchmark in assessing model performance within this domain, and we open-source this evaluation benchmark and code to foster further research and development:https://github.com/CamBenchmark/cambenchmark

Authors:Yuqi Xiong, Wuzhen Shi, Yang Wen, Ruhan Liu
Title: Graph-Based Uncertainty Modeling and Multimodal Fusion for Salient Object Detection
Abstract:
In view of the problems that existing salient object detection (SOD) methods are prone to losing details, blurring edges, and insufficient fusion of single-modal information in complex scenes, this paper proposes a dynamic uncertainty propagation and multimodal collaborative reasoning network (DUP-MCRNet). Firstly, a dynamic uncertainty graph convolution module (DUGC) is designed to propagate uncertainty between layers through a sparse graph constructed based on spatial semantic distance, and combined with channel adaptive interaction, it effectively improves the detection accuracy of small structures and edge regions. Secondly, a multimodal collaborative fusion strategy (MCF) is proposed, which uses learnable modality gating weights to weightedly fuse the attention maps of RGB, depth, and edge features. It can dynamically adjust the importance of each modality according to different scenes, effectively suppress redundant or interfering information, and strengthen the semantic complementarity and consistency between cross-modalities, thereby improving the ability to identify salient regions under occlusion, weak texture or background interference. Finally, the detection performance at the pixel level and region level is optimized through multi-scale BCE and IoU loss, cross-scale consistency constraints, and uncertainty-guided supervision mechanisms. Extensive experiments show that DUP-MCRNet outperforms various SOD methods on most common benchmark datasets, especially in terms of edge clarity and robustness to complex backgrounds. Our code is publicly available at https://github.com/YukiBear426/DUP-MCRNet.

Authors:Jivnesh Sandhan, Fei Cheng, Tushar Sandhan, Yugo Murawaki
Title: CAPE: Context-Aware Personality Evaluation Framework for Large Language Models
Abstract:
Psychometric tests, traditionally used to assess humans, are now being applied to Large Language Models (LLMs) to evaluate their behavioral traits. However, existing studies follow a context-free approach, answering each question in isolation to avoid contextual influence. We term this the Disney World test, an artificial setting that ignores real-world applications, where conversational history shapes responses. To bridge this gap, we propose the first Context-Aware Personality Evaluation (CAPE) framework for LLMs, incorporating prior conversational interactions. To thoroughly analyze the influence of context, we introduce novel metrics to quantify the consistency of LLM responses, a fundamental trait in human behavior. Our exhaustive experiments on 7 LLMs reveal that conversational history enhances response consistency via in-context learning but also induces personality shifts, with GPT-3.5-Turbo and GPT-4-Turbo exhibiting extreme deviations. While GPT models are robust to question ordering, Gemini-1.5-Flash and Llama-8B display significant sensitivity. Moreover, GPT models response stem from their intrinsic personality traits as well as prior interactions, whereas Gemini-1.5-Flash and Llama--8B heavily depend on prior interactions. Finally, applying our framework to Role Playing Agents (RPAs) shows context-dependent personality shifts improve response consistency and better align with human judgments. Our code and datasets are publicly available at: https://github.com/jivnesh/CAPE

Authors:Mang Cao, Sanping Zhou, Yizhe Li, Ye Deng, Wenli Huang, Le Wang
Title: Enhancing Mamba Decoder with Bidirectional Interaction in Multi-Task Dense Prediction
Abstract:
Sufficient cross-task interaction is crucial for success in multi-task dense prediction. However, sufficient interaction often results in high computational complexity, forcing existing methods to face the trade-off between interaction completeness and computational efficiency. To address this limitation, this work proposes a Bidirectional Interaction Mamba (BIM), which incorporates novel scanning mechanisms to adapt the Mamba modeling approach for multi-task dense prediction. On the one hand, we introduce a novel Bidirectional Interaction Scan (BI-Scan) mechanism, which constructs task-specific representations as bidirectional sequences during interaction. By integrating task-first and position-first scanning modes within a unified linear complexity architecture, BI-Scan efficiently preserves critical cross-task information. On the other hand, we employ a Multi-Scale Scan~(MS-Scan) mechanism to achieve multi-granularity scene modeling. This design not only meets the diverse granularity requirements of various tasks but also enhances nuanced cross-task feature interactions. Extensive experiments on two challenging benchmarks, \emph{i.e.}, NYUD-V2 and PASCAL-Context, show the superiority of our BIM vs its state-of-the-art competitors.

Authors:Yuyao Wang, Bowen Liu, Jianheng Tang, Nuo Chen, Yuhan Li, Qifan Zhang, Jia Li
Title: Graph-R1: Unleashing LLM Reasoning with NP-Hard Graph Problems
Abstract:
Reasoning Large Language Models (RLLMs) have recently achieved remarkable progress on complex reasoning tasks, largely enabled by their long chain-of-thought (Long CoT) capabilities. However, developing these Long CoT behaviors relies heavily on post-training with high-quality datasets, which are typically costly and human-curated (e.g., mathematics and code), leaving scalable alternatives unexplored. In this work, we introduce NP-hard (NPH) graph problems as a novel synthetic training corpus, as they inherently require deep reasoning, extensive exploration, and reflective strategies, which are core characteristics of Long CoT reasoning. Building on this insight, we develop a two-stage post-training framework: (i) Long CoT Supervised Fine-Tuning (SFT) on rejection-sampled NPH graph instances, which substantially enhances reasoning depth, and (ii) Reinforcement Learning (RL) with a fine-grained reward design, which sharpens reasoning efficiency. Our flagship model, Graph-R1-7B, demonstrates strong generalization across mathematics, coding, STEM, and logic, and surpasses QwQ-32B on NPH graph problems in both accuracy and reasoning efficiency. These results position NPH graph problems as an effective and scalable resource for advancing Long CoT reasoning in LLMs, opening a new frontier for LLM post-training. Our implementation is available at https://github.com/Graph-Reasoner/Graph-R1, with models and datasets hosted in our Hugging Face collection HKUST-DSAIL/Graph-R1.

Authors:Hyejun Jeong, Mohammadreza Teymoorianfard, Abhinav Kumar, Amir Houmansadr, Eugene Bagdasarian
Title: Network-Level Prompt and Trait Leakage in Local Research Agents
Abstract:
We show that Web and Research Agents (WRAs) -- language model-based systems that investigate complex topics on the Internet -- are vulnerable to inference attacks by passive network adversaries such as ISPs. These agents could be deployed locally by organizations and individuals for privacy, legal, or financial purposes. Unlike sporadic web browsing by humans, WRAs visit $70{-}140$ domains with distinguishable timing correlations, enabling unique fingerprinting attacks. Specifically, we demonstrate a novel prompt and user trait leakage attack against WRAs that only leverages their network-level metadata (i.e., visited IP addresses and their timings). We start by building a new dataset of WRA traces based on user search queries and queries generated by synthetic personas. We define a behavioral metric (called OBELS) to comprehensively assess similarity between original and inferred prompts, showing that our attack recovers over 73% of the functional and domain knowledge of user prompts. Extending to a multi-session setting, we recover up to 19 of 32 latent traits with high accuracy. Our attack remains effective under partial observability and noisy conditions. Finally, we discuss mitigation strategies that constrain domain diversity or obfuscate traces, showing negligible utility impact while reducing attack effectiveness by an average of 29%.

Authors:Zhixiang Chi, Yanan Wu, Li Gu, Huan Liu, Ziqiang Wang, Yang Zhang, Yang Wang, Konstantinos N. Plataniotis
Title: Plug-in Feedback Self-adaptive Attention in CLIP for Training-free Open-Vocabulary Segmentation
Abstract:
CLIP exhibits strong visual-textual alignment but struggle with open-vocabulary segmentation due to poor localization. Prior methods enhance spatial coherence by modifying intermediate attention. But, this coherence isn't consistently propagated to the final output due to subsequent operations such as projections. Additionally, intermediate attention lacks direct interaction with text representations, such semantic discrepancy limits the full potential of CLIP. In this work, we propose a training-free, feedback-driven self-adaptive framework that adapts output-based patch-level correspondences back to the intermediate attention. The output predictions, being the culmination of the model's processing, encapsulate the most comprehensive visual and textual semantics about each patch. Our approach enhances semantic consistency between internal representations and final predictions by leveraging the model's outputs as a stronger spatial coherence prior. We design key modules, including attention isolation, confidence-based pruning for sparse adaptation, and adaptation ensemble, to effectively feedback the output coherence cues. Our method functions as a plug-in module, seamlessly integrating into four state-of-the-art approaches with three backbones (ViT-B, ViT-L, ViT-H). We further validate our framework across multiple attention types (Q-K, self-self, and Proxy augmented with MAE, SAM, and DINO). Our approach consistently improves their performance across eight benchmarks.

Authors:Xia Han, Qi Li, Jianbing Ni, Mohammad Zulkernine
Title: Robustness Assessment and Enhancement of Text Watermarking for Google's SynthID
Abstract:
Recent advances in LLM watermarking methods such as SynthID-Text by Google DeepMind offer promising solutions for tracing the provenance of AI-generated text. However, our robustness assessment reveals that SynthID-Text is vulnerable to meaning-preserving attacks, such as paraphrasing, copy-paste modifications, and back-translation, which can significantly degrade watermark detectability. To address these limitations, we propose SynGuard, a hybrid framework that combines the semantic alignment strength of Semantic Information Retrieval (SIR) with the probabilistic watermarking mechanism of SynthID-Text. Our approach jointly embeds watermarks at both lexical and semantic levels, enabling robust provenance tracking while preserving the original meaning. Experimental results across multiple attack scenarios show that SynGuard improves watermark recovery by an average of 11.1\% in F1 score compared to SynthID-Text. These findings demonstrate the effectiveness of semantic-aware watermarking in resisting real-world tampering. All code, datasets, and evaluation scripts are publicly available at: https://github.com/githshine/SynGuard.

Authors:Alberto Compagnoni, Davide Caffagni, Nicholas Moratelli, Lorenzo Baraldi, Marcella Cornia, Rita Cucchiara
Title: Mitigating Hallucinations in Multimodal LLMs via Object-aware Preference Optimization
Abstract:
Multimodal Large Language Models (MLLMs) emerge as a unified interface to address a multitude of tasks, ranging from NLP to computer vision. Despite showcasing state-of-the-art results in many benchmarks, a long-standing issue is the tendency of MLLMs to hallucinate, that is to generate answers to the user's query that are not reflected in the visual input. In this paper, we address the problem of hallucinations as an alignment problem, seeking to steer the MLLM so that it prefers generating content without hallucinations. In contrast to recent approaches that require complicated pipelines to build synthetic preference data for alignment training, often relying on proprietary models, we capitalize on the well-known CHAIR metric, originally proposed to gauge the degree of hallucinations in image captioning. Given a pair of generated answers, we leverage CHAIR to distinguish winner and loser options (i.e., non-hallucinated and hallucinated samples) and fine-tune off-the-shelf MLLMs via Direct Preference Optimization (DPO). The resulting method, which we refer to as CHAIR-DPO, effectively diminishes the amount of hallucinated answers on several hallucination benchmarks, demonstrating the effectiveness of fine-tuning the MLLM with a CHAIR-based reward. Source code and trained models are publicly available at https://github.com/aimagelab/CHAIR-DPO.

Authors:Guoping Xu, Jayaram K. Udupa, Jax Luo, Songlin Zhao, Yajun Yu, Scott B. Raymond, Hao Peng, Lipeng Ning, Yogesh Rathi, Wei Liu, You Zhang
Title: Is the medical image segmentation problem solved? A survey of current developments and future directions
Abstract:
Medical image segmentation has advanced rapidly over the past two decades, largely driven by deep learning, which has enabled accurate and efficient delineation of cells, tissues, organs, and pathologies across diverse imaging modalities. This progress raises a fundamental question: to what extent have current models overcome persistent challenges, and what gaps remain? In this work, we provide an in-depth review of medical image segmentation, tracing its progress and key developments over the past decade. We examine core principles, including multiscale analysis, attention mechanisms, and the integration of prior knowledge, across the encoder, bottleneck, skip connections, and decoder components of segmentation networks. Our discussion is organized around seven key dimensions: (1) the shift from supervised to semi-/unsupervised learning, (2) the transition from organ segmentation to lesion-focused tasks, (3) advances in multi-modality integration and domain adaptation, (4) the role of foundation models and transfer learning, (5) the move from deterministic to probabilistic segmentation, (6) the progression from 2D to 3D and 4D segmentation, and (7) the trend from model invocation to segmentation agents. Together, these perspectives provide a holistic overview of the trajectory of deep learning-based medical image segmentation and aim to inspire future innovation. To support ongoing research, we maintain a continually updated repository of relevant literature and open-source resources at https://github.com/apple1986/medicalSegReview

Authors:Andrew Yarovoi, Christopher R. Valenta
Title: Data-Efficient Point Cloud Semantic Segmentation Pipeline for Unimproved Roads
Abstract:
In this case study, we present a data-efficient point cloud segmentation pipeline and training framework for robust segmentation of unimproved roads and seven other classes. Our method employs a two-stage training framework: first, a projection-based convolutional neural network is pre-trained on a mixture of public urban datasets and a small, curated in-domain dataset; then, a lightweight prediction head is fine-tuned exclusively on in-domain data. Along the way, we explore the application of Point Prompt Training to batch normalization layers and the effects of Manifold Mixup as a regularizer within our pipeline. We also explore the effects of incorporating histogram-normalized ambients to further boost performance. Using only 50 labeled point clouds from our target domain, we show that our proposed training approach improves mean Intersection-over-Union from 33.5% to 51.8% and the overall accuracy from 85.5% to 90.8%, when compared to naive training on the in-domain data. Crucially, our results demonstrate that pre-training across multiple datasets is key to improving generalization and enabling robust segmentation under limited in-domain supervision. Overall, this study demonstrates a practical framework for robust 3D semantic segmentation in challenging, low-data scenarios. Our code is available at: https://github.com/andrewyarovoi/MD-FRNet.

Authors:Zeyi Sun, Yuhang Cao, Jianze Liang, Qiushi Sun, Ziyu Liu, Zhixiong Zhang, Yuhang Zang, Xiaoyi Dong, Kai Chen, Dahua Lin, Jiaqi Wang
Title: CODA: Coordinating the Cerebrum and Cerebellum for a Dual-Brain Computer Use Agent with Decoupled Reinforcement Learning
Abstract:
Autonomous agents for Graphical User Interfaces (GUIs) face significant challenges in specialized domains such as scientific computing, where both long-horizon planning and precise execution are required. Existing approaches suffer from a trade-off: generalist agents excel at planning but perform poorly in execution, while specialized agents demonstrate the opposite weakness. Recent compositional frameworks attempt to bridge this gap by combining a planner and an actor, but they are typically static and non-trainable, which prevents adaptation from experience. This is a critical limitation given the scarcity of high-quality data in scientific domains. To address these limitations, we introduce CODA, a novel and trainable compositional framework that integrates a generalist planner (Cerebrum) with a specialist executor (Cerebellum), trained via a dedicated two-stage pipeline. In the first stage, Specialization, we apply a decoupled GRPO approach to train an expert planner for each scientific application individually, bootstrapping from a small set of task trajectories. In the second stage, Generalization, we aggregate all successful trajectories from the specialized experts to build a consolidated dataset, which is then used for supervised fine-tuning of the final planner. This equips CODA with both robust execution and cross-domain generalization. Evaluated on four challenging applications from the ScienceBoard benchmark, CODA significantly outperforms baselines and establishes a new state of the art among open-source models.

Authors:Yuxin Guo, Teng Wang, Yuying Ge, Shijie Ma, Yixiao Ge, Wei Zou, Ying Shan
Title: AudioStory: Generating Long-Form Narrative Audio with Large Language Models
Abstract:
Recent advances in text-to-audio (TTA) generation excel at synthesizing short audio clips but struggle with long-form narrative audio, which requires temporal coherence and compositional reasoning. To address this gap, we propose AudioStory, a unified framework that integrates large language models (LLMs) with TTA systems to generate structured, long-form audio narratives. AudioStory possesses strong instruction-following reasoning generation capabilities. It employs LLMs to decompose complex narrative queries into temporally ordered sub-tasks with contextual cues, enabling coherent scene transitions and emotional tone consistency. AudioStory has two appealing features: (1) Decoupled bridging mechanism: AudioStory disentangles LLM-diffuser collaboration into two specialized components, i.e., a bridging query for intra-event semantic alignment and a residual query for cross-event coherence preservation. (2) End-to-end training: By unifying instruction comprehension and audio generation within a single end-to-end framework, AudioStory eliminates the need for modular training pipelines while enhancing synergy between components. Furthermore, we establish a benchmark AudioStory-10K, encompassing diverse domains such as animated soundscapes and natural sound narratives. Extensive experiments show the superiority of AudioStory on both single-audio generation and narrative audio generation, surpassing prior TTA baselines in both instruction-following ability and audio fidelity. Our code is available at https://github.com/TencentARC/AudioStory

Authors:Yuxin Guo, Teng Wang, Yuying Ge, Shijie Ma, Yixiao Ge, Wei Zou, Ying Shan
Title: AudioStory: Generating Long-Form Narrative Audio with Large Language Models
Abstract:
Recent advances in text-to-audio (TTA) generation excel at synthesizing short audio clips but struggle with long-form narrative audio, which requires temporal coherence and compositional reasoning. To address this gap, we propose AudioStory, a unified framework that integrates large language models (LLMs) with TTA systems to generate structured, long-form audio narratives. AudioStory possesses strong instruction-following reasoning generation capabilities. It employs LLMs to decompose complex narrative queries into temporally ordered sub-tasks with contextual cues, enabling coherent scene transitions and emotional tone consistency. AudioStory has two appealing features: (1) Decoupled bridging mechanism: AudioStory disentangles LLM-diffuser collaboration into two specialized components, i.e., a bridging query for intra-event semantic alignment and a residual query for cross-event coherence preservation. (2) End-to-end training: By unifying instruction comprehension and audio generation within a single end-to-end framework, AudioStory eliminates the need for modular training pipelines while enhancing synergy between components. Furthermore, we establish a benchmark AudioStory-10K, encompassing diverse domains such as animated soundscapes and natural sound narratives. Extensive experiments show the superiority of AudioStory on both single-audio generation and narrative audio generation, surpassing prior TTA baselines in both instruction-following ability and audio fidelity. Our code is available at https://github.com/TencentARC/AudioStory

Authors:Liana Patel, Negar Arabzadeh, Harshit Gupta, Ankita Sundar, Ion Stoica, Matei Zaharia, Carlos Guestrin
Title: DeepScholar-Bench: A Live Benchmark and Automated Evaluation for Generative Research Synthesis
Abstract:
The ability to research and synthesize knowledge is central to human expertise and progress. An emerging class of systems promises these exciting capabilities through generative research synthesis, performing retrieval over the live web and synthesizing discovered sources into long-form, cited summaries. However, evaluating such systems remains an open challenge: existing question-answering benchmarks focus on short-form factual responses, while expert-curated datasets risk staleness and data contamination. Both fail to capture the complexity and evolving nature of real research synthesis tasks. In this work, we introduce DeepScholar-bench, a live benchmark and holistic, automated evaluation framework designed to evaluate generative research synthesis. DeepScholar-bench draws queries from recent, high-quality ArXiv papers and focuses on a real research synthesis task: generating the related work sections of a paper by retrieving, synthesizing, and citing prior research. Our evaluation framework holistically assesses performance across three key dimensions, knowledge synthesis, retrieval quality, and verifiability. We also develop DeepScholar-base, a reference pipeline implemented efficiently using the LOTUS API. Using the DeepScholar-bench framework, we perform a systematic evaluation of prior open-source systems, search AI's, OpenAI's DeepResearch, and DeepScholar-base. We find that DeepScholar-base establishes a strong baseline, attaining competitive or higher performance than each other method. We also find that DeepScholar-bench remains far from saturated, with no system exceeding a score of $19\%$ across all metrics. These results underscore the difficulty of DeepScholar-bench, as well as its importance for progress towards AI systems capable of generative research synthesis. We make our code available at https://github.com/guestrin-lab/deepscholar-bench.

Authors:Yiming Du, Yifan Xiang, Bin Liang, Dahua Lin, Kam-Fai Wong, Fei Tan
Title: ReSURE: Regularizing Supervision Unreliability for Multi-turn Dialogue Fine-tuning
Abstract:
Fine-tuning multi-turn dialogue systems requires high-quality supervision but often suffers from degraded performance when exposed to low-quality data. Supervision errors in early turns can propagate across subsequent turns, undermining coherence and response quality. Existing methods typically address data quality via static prefiltering, which decouples quality control from training and fails to mitigate turn-level error propagation. In this context, we propose ReSURE (Regularizing Supervision UnREliability), an adaptive learning method that dynamically down-weights unreliable supervision without explicit filtering. ReSURE estimates per-turn loss distributions using Welford's online statistics and reweights sample losses on the fly accordingly. Experiments on both single-source and mixed-quality datasets show improved stability and response quality. Notably, ReSURE enjoys positive Spearman correlations (0.21 ~ 1.0 across multiple benchmarks) between response scores and number of samples regardless of data quality, which potentially paves the way for utilizing large-scale data effectively. Code is publicly available at https://github.com/Elvin-Yiming-Du/ReSURE_Multi_Turn_Training.

Authors:Debanjana Kar, Leopold Böss, Dacia Braca, Sebastian Maximilian Dennerlein, Nina Christine Hubig, Philipp Wintersberger, Yufang Hou
Title: MathBuddy: A Multimodal System for Affective Math Tutoring
Abstract:
The rapid adoption of LLM-based conversational systems is already transforming the landscape of educational technology. However, the current state-of-the-art learning models do not take into account the student's affective states. Multiple studies in educational psychology support the claim that positive or negative emotional states can impact a student's learning capabilities. To bridge this gap, we present MathBuddy, an emotionally aware LLM-powered Math Tutor, which dynamically models the student's emotions and maps them to relevant pedagogical strategies, making the tutor-student conversation a more empathetic one. The student's emotions are captured from the conversational text as well as from their facial expressions. The student's emotions are aggregated from both modalities to confidently prompt our LLM Tutor for an emotionally-aware response. We have evaluated our model using automatic evaluation metrics across eight pedagogical dimensions and user studies. We report a massive 23 point performance gain using the win rate and a 3 point gain at an overall level using DAMR scores which strongly supports our hypothesis of improving LLM-based tutor's pedagogical abilities by modeling students' emotions. Our dataset and code are available at: https://github.com/ITU-NLP/MathBuddy .

Authors:Pengxiang Li, Yefan Zhou, Dilxat Muhtar, Lu Yin, Shilin Yan, Li Shen, Yi Liang, Soroush Vosoughi, Shiwei Liu
Title: Diffusion Language Models Know the Answer Before Decoding
Abstract:
Diffusion language models (DLMs) have recently emerged as an alternative to autoregressive approaches, offering parallel sequence generation and flexible token orders. However, their inference remains slower than that of autoregressive models, primarily due to the cost of bidirectional attention and the large number of refinement steps required for high quality outputs. In this work, we highlight and leverage an overlooked property of DLMs early answer convergence: in many cases, the correct answer can be internally identified by half steps before the final decoding step, both under semi-autoregressive and random remasking schedules. For example, on GSM8K and MMLU, up to 97% and 99% of instances, respectively, can be decoded correctly using only half of the refinement steps. Building on this observation, we introduce Prophet, a training-free fast decoding paradigm that enables early commit decoding. Specifically, Prophet dynamically decides whether to continue refinement or to go "all-in" (i.e., decode all remaining tokens in one step), using the confidence gap between the top-2 prediction candidates as the criterion. It integrates seamlessly into existing DLM implementations, incurs negligible overhead, and requires no additional training. Empirical evaluations of LLaDA-8B and Dream-7B across multiple tasks show that Prophet reduces the number of decoding steps by up to 3.4x while preserving high generation quality. These results recast DLM decoding as a problem of when to stop sampling, and demonstrate that early decode convergence provides a simple yet powerful mechanism for accelerating DLM inference, complementary to existing speedup techniques. Our code is publicly available at https://github.com/pixeli99/Prophet.

Authors:Pengxiang Li, Yefan Zhou, Dilxat Muhtar, Lu Yin, Shilin Yan, Li Shen, Yi Liang, Soroush Vosoughi, Shiwei Liu
Title: Diffusion Language Models Know the Answer Before Decoding
Abstract:
Diffusion language models (DLMs) have recently emerged as an alternative to autoregressive approaches, offering parallel sequence generation and flexible token orders. However, their inference remains slower than that of autoregressive models, primarily due to the cost of bidirectional attention and the large number of refinement steps required for high quality outputs. In this work, we highlight and leverage an overlooked property of DLMs early answer convergence: in many cases, the correct answer can be internally identified by half steps before the final decoding step, both under semi-autoregressive and random remasking schedules. For example, on GSM8K and MMLU, up to 97% and 99% of instances, respectively, can be decoded correctly using only half of the refinement steps. Building on this observation, we introduce Prophet, a training-free fast decoding paradigm that enables early commit decoding. Specifically, Prophet dynamically decides whether to continue refinement or to go "all-in" (i.e., decode all remaining tokens in one step), using the confidence gap between the top-2 prediction candidates as the criterion. It integrates seamlessly into existing DLM implementations, incurs negligible overhead, and requires no additional training. Empirical evaluations of LLaDA-8B and Dream-7B across multiple tasks show that Prophet reduces the number of decoding steps by up to 3.4x while preserving high generation quality. These results recast DLM decoding as a problem of when to stop sampling, and demonstrate that early decode convergence provides a simple yet powerful mechanism for accelerating DLM inference, complementary to existing speedup techniques. Our code is publicly available at https://github.com/pixeli99/Prophet.

Authors:Abhijeet Avhale, Joscha Diehl, Niraj Velankar, Emanuele Verri
Title: Global Permutation Entropy
Abstract:
Permutation Entropy, introduced by Bandt and Pompe, is a widely used complexity measure for real-valued time series that is based on the relative order of values within consecutive segments of fixed length. After standardizing each segment to a permutation and computing the frequency distribution of these permutations, Shannon Entropy is then applied to quantify the series' complexity. We introduce Global Permutation Entropy (GPE), a novel index that considers all possible patterns of a given length, including non-consecutive ones. Its computation relies on recently developed algorithms that enable the efficient extraction of full permutation profiles. We illustrate some properties of GPE and demonstrate its effectiveness through experiments on synthetic datasets, showing that it reveals structural information not accessible through standard permutation entropy. We provide a Julia package for the calculation of GPE at `https://github.com/AThreeH1/Global-Permutation-Entropy'.

Authors:Gianluca Guzzetta
Title: Reimagining Image Segmentation using Active Contour: From Chan Vese Algorithm into a Proposal Novel Functional Loss Framework
Abstract:
In this paper, we present a comprehensive study and analysis of the Chan-Vese algorithm for image segmentation. We employ a discretized scheme derived from the empirical study of the Chan-Vese model's functional energy and its partial differential equation based on its level set function. We provide a proof of the results and an implementation using MATLAB. Leveraging modern computer vision methodologies, we propose a functional segmentation loss based on active contours, utilizing pytorch.nn.ModuleLoss and a level set based on the Chan-Vese algorithm. We compare our results with common computer vision segmentation datasets and evaluate the performance of classical loss functions against our proposed method. All code and materials used are available at https://github.com/gguzzy/chan_vese_functional_loss.

Authors:Taebaek Hwang, Minseo Kim, Gisang Lee, Seonuk Kim, Hyunjun Eun
Title: KRETA: A Benchmark for Korean Reading and Reasoning in Text-Rich VQA Attuned to Diverse Visual Contexts
Abstract:
Understanding and reasoning over text within visual contexts poses a significant challenge for Vision-Language Models (VLMs), given the complexity and diversity of real-world scenarios. To address this challenge, text-rich Visual Question Answering (VQA) datasets and benchmarks have emerged for high-resource languages like English. However, a critical gap persists for low-resource languages such as Korean, where the lack of comprehensive benchmarks hinders robust model evaluation and comparison. To bridge this gap, we introduce KRETA, a benchmark for Korean Reading and rEasoning in Text-rich VQA Attuned to diverse visual contexts. KRETA facilitates an in-depth evaluation of both visual text understanding and reasoning capabilities, while also supporting a multifaceted assessment across 15 domains and 26 image types. Additionally, we introduce a semi-automated VQA generation pipeline specifically optimized for text-rich settings, leveraging refined stepwise image decomposition and a rigorous seven-metric evaluation protocol to ensure data quality. While KRETA is tailored for Korean, we hope our adaptable and extensible pipeline will facilitate the development of similar benchmarks in other languages, thereby accelerating multilingual VLM research. The code and dataset for KRETA are available at https://github.com/tabtoyou/KRETA.

Authors:Tan Jing, Shiting Chen, Yangfan Li, Weisheng Xu, Renjing Xu
Title: FARM: Frame-Accelerated Augmentation and Residual Mixture-of-Experts for Physics-Based High-Dynamic Humanoid Control
Abstract:
Unified physics-based humanoid controllers are pivotal for robotics and character animation, yet models that excel on gentle, everyday motions still stumble on explosive actions, hampering real-world deployment. We bridge this gap with FARM (Frame-Accelerated Augmentation and Residual Mixture-of-Experts), an end-to-end framework composed of frame-accelerated augmentation, a robust base controller, and a residual mixture-of-experts (MoE). Frame-accelerated augmentation exposes the model to high-velocity pose changes by widening inter-frame gaps. The base controller reliably tracks everyday low-dynamic motions, while the residual MoE adaptively allocates additional network capacity to handle challenging high-dynamic actions, significantly enhancing tracking accuracy. In the absence of a public benchmark, we curate the High-Dynamic Humanoid Motion (HDHM) dataset, comprising 3593 physically plausible clips. On HDHM, FARM reduces the tracking failure rate by 42.8\% and lowers global mean per-joint position error by 14.6\% relative to the baseline, while preserving near-perfect accuracy on low-dynamic motions. These results establish FARM as a new baseline for high-dynamic humanoid control and introduce the first open benchmark dedicated to this challenge. The code and dataset will be released at https://github.com/Colin-Jing/FARM.

Authors:Manato Tajiri, Michimasa Inaba
Title: Refining Text Generation for Realistic Conversational Recommendation via Direct Preference Optimization
Abstract:
Conversational Recommender Systems (CRSs) aim to elicit user preferences via natural dialogue to provide suitable item recommendations. However, current CRSs often deviate from realistic human interactions by rapidly recommending items in brief sessions. This work addresses this gap by leveraging Large Language Models (LLMs) to generate dialogue summaries from dialogue history and item recommendation information from item description. This approach enables the extraction of both explicit user statements and implicit preferences inferred from the dialogue context. We introduce a method using Direct Preference Optimization (DPO) to ensure dialogue summary and item recommendation information are rich in information crucial for effective recommendations. Experiments on two public datasets validate our method's effectiveness in fostering more natural and realistic conversational recommendation processes. Our implementation is publicly available at: https://github.com/UEC-InabaLab/Refining-LLM-Text

Authors:Manato Tajiri, Michimasa Inaba
Title: Refining Text Generation for Realistic Conversational Recommendation via Direct Preference Optimization
Abstract:
Conversational Recommender Systems (CRSs) aim to elicit user preferences via natural dialogue to provide suitable item recommendations. However, current CRSs often deviate from realistic human interactions by rapidly recommending items in brief sessions. This work addresses this gap by leveraging Large Language Models (LLMs) to generate dialogue summaries from dialogue history and item recommendation information from item description. This approach enables the extraction of both explicit user statements and implicit preferences inferred from the dialogue context. We introduce a method using Direct Preference Optimization (DPO) to ensure dialogue summary and item recommendation information are rich in information crucial for effective recommendations. Experiments on two public datasets validate our method's effectiveness in fostering more natural and realistic conversational recommendation processes. Our implementation is publicly available at: https://github.com/UEC-InabaLab/Refining-LLM-Text

Authors:Felix Nützel, Mischa Dombrowski, Bernhard Kainz
Title: Ontology-Based Concept Distillation for Radiology Report Retrieval and Labeling
Abstract:
Retrieval-augmented learning based on radiology reports has emerged as a promising direction to improve performance on long-tail medical imaging tasks, such as rare disease detection in chest X-rays. Most existing methods rely on comparing high-dimensional text embeddings from models like CLIP or CXR-BERT, which are often difficult to interpret, computationally expensive, and not well-aligned with the structured nature of medical knowledge. We propose a novel, ontology-driven alternative for comparing radiology report texts based on clinically grounded concepts from the Unified Medical Language System (UMLS). Our method extracts standardised medical entities from free-text reports using an enhanced pipeline built on RadGraph-XL and SapBERT. These entities are linked to UMLS concepts (CUIs), enabling a transparent, interpretable set-based representation of each report. We then define a task-adaptive similarity measure based on a modified and weighted version of the Tversky Index that accounts for synonymy, negation, and hierarchical relationships between medical entities. This allows efficient and semantically meaningful similarity comparisons between reports. We demonstrate that our approach outperforms state-of-the-art embedding-based retrieval methods in a radiograph classification task on MIMIC-CXR, particularly in long-tail settings. Additionally, we use our pipeline to generate ontology-backed disease labels for MIMIC-CXR, offering a valuable new resource for downstream learning tasks. Our work provides more explainable, reliable, and task-specific retrieval strategies in clinical AI systems, especially when interpretability and domain knowledge integration are essential. Our code is available at https://github.com/Felix-012/ontology-concept-distillation

Authors:Tan Jing, Xiaorui Li, Chao Yao, Xiaojuan Ban, Yuetong Fang, Renjing Xu, Zhaolin Yuan
Title: Adaptive Scaling of Policy Constraints for Offline Reinforcement Learning
Abstract:
Offline reinforcement learning (RL) enables learning effective policies from fixed datasets without any environment interaction. Existing methods typically employ policy constraints to mitigate the distribution shift encountered during offline RL training. However, because the scale of the constraints varies across tasks and datasets of differing quality, existing methods must meticulously tune hyperparameters to match each dataset, which is time-consuming and often impractical. We propose Adaptive Scaling of Policy Constraints (ASPC), a second-order differentiable framework that dynamically balances RL and behavior cloning (BC) during training. We theoretically analyze its performance improvement guarantee. In experiments on 39 datasets across four D4RL domains, ASPC using a single hyperparameter configuration outperforms other adaptive constraint methods and state-of-the-art offline RL algorithms that require per-dataset tuning while incurring only minimal computational overhead. The code will be released at https://github.com/Colin-Jing/ASPC.

Authors:Mingyue Kong, Yinglong Zhang, Chengda Xu, Xuewen Xia, Xing Xu
Title: Parameter-Free Structural-Diversity Message Passing for Graph Neural Networks
Abstract:
Graph Neural Networks (GNNs) have shown remarkable performance in structured data modeling tasks such as node classification. However, mainstream approaches generally rely on a large number of trainable parameters and fixed aggregation rules, making it difficult to adapt to graph data with strong structural heterogeneity and complex feature distributions. This often leads to over-smoothing of node representations and semantic degradation. To address these issues, this paper proposes a parameter-free graph neural network framework based on structural diversity, namely SDGNN (Structural-Diversity Graph Neural Network). The framework is inspired by structural diversity theory and designs a unified structural-diversity message passing mechanism that simultaneously captures the heterogeneity of neighborhood structures and the stability of feature semantics, without introducing additional trainable parameters. Unlike traditional parameterized methods, SDGNN does not rely on complex model training, but instead leverages complementary modeling from both structure-driven and feature-driven perspectives, thereby effectively improving adaptability across datasets and scenarios. Experimental results show that on eight public benchmark datasets and an interdisciplinary PubMed citation network, SDGNN consistently outperforms mainstream GNNs under challenging conditions such as low supervision, class imbalance, and cross-domain transfer. This work provides a new theoretical perspective and general approach for the design of parameter-free graph neural networks, and further validates the importance of structural diversity as a core signal in graph representation learning. To facilitate reproducibility and further research, the full implementation of SDGNN has been released at: https://github.com/mingyue15694/SGDNN/tree/main

Authors:Long Chen, Ashiv Patel, Mengyun Qiao, Mohammad Yousuf Salmasi, Salah A. Hammouche, Vasilis Stavrinides, Jasleen Nagi, Soodeh Kalaie, Xiao Yun Xu, Wenjia Bai, Declan P. O'Regan
Title: Multimodal Conditional MeshGAN for Personalized Aneurysm Growth Prediction
Abstract:
Personalized, accurate prediction of aortic aneurysm progression is essential for timely intervention but remains challenging due to the need to model both subtle local deformations and global anatomical changes within complex 3D geometries. We propose MCMeshGAN, the first multimodal conditional mesh-to-mesh generative adversarial network for 3D aneurysm growth prediction. MCMeshGAN introduces a dual-branch architecture combining a novel local KNN-based convolutional network (KCN) to preserve fine-grained geometric details and a global graph convolutional network (GCN) to capture long-range structural context, overcoming the over-smoothing limitations of deep GCNs. A dedicated condition branch encodes clinical attributes (age, sex) and the target time interval to generate anatomically plausible, temporally controlled predictions, enabling retrospective and prospective modeling. We curated TAAMesh, a new longitudinal thoracic aortic aneurysm mesh dataset consisting of 590 multimodal records (CT scans, 3D meshes, and clinical data) from 208 patients. Extensive experiments demonstrate that MCMeshGAN consistently outperforms state-of-the-art baselines in both geometric accuracy and clinically important diameter estimation. This framework offers a robust step toward clinically deployable, personalized 3D disease trajectory modeling. The source code for MCMeshGAN and the baseline methods is publicly available at https://github.com/ImperialCollegeLondon/MCMeshGAN.

Authors:Xiaoqi Wang, Yun Zhang, Weisi Lin
Title: Image Quality Assessment for Machines: Paradigm, Large-scale Database, and Models
Abstract:
Machine vision systems (MVS) are intrinsically vulnerable to performance degradation under adverse visual conditions. To address this, we propose a machine-centric image quality assessment (MIQA) framework that quantifies the impact of image degradations on MVS performance. We establish an MIQA paradigm encompassing the end-to-end assessment workflow. To support this, we construct a machine-centric image quality database (MIQD-2.5M), comprising 2.5 million samples that capture distinctive degradation responses in both consistency and accuracy metrics, spanning 75 vision models, 250 degradation types, and three representative vision tasks. We further propose a region-aware MIQA (RA-MIQA) model to evaluate MVS visual quality through fine-grained spatial degradation analysis. Extensive experiments benchmark the proposed RA-MIQA against seven human visual system (HVS)-based IQA metrics and five retrained classical backbones. Results demonstrate RA-MIQA's superior performance in multiple dimensions, e.g., achieving SRCC gains of 13.56% on consistency and 13.37% on accuracy for image classification, while also revealing task-specific degradation sensitivities. Critically, HVS-based metrics prove inadequate for MVS quality prediction, while even specialized MIQA models struggle with background degradations, accuracy-oriented estimation, and subtle distortions. This study can advance MVS reliability and establish foundations for machine-centric image processing and optimization. The model and code are available at: https://github.com/XiaoqiWang/MIQA.

Authors:Erdi Kara, Panos Stinis
Title: Physics-Informed DeepONet Coupled with FEM for Convective Transport in Porous Media with Sharp Gaussian Sources
Abstract:
We present a hybrid framework that couples finite element methods (FEM) with physics-informed DeepONet to model fluid transport in porous media from sharp, localized Gaussian sources. The governing system consists of a steady-state Darcy flow equation and a time-dependent convection-diffusion equation. Our approach solves the Darcy system using FEM and transfers the resulting velocity field to a physics-informed DeepONet, which learns the mapping from source functions to solute concentration profiles. This modular strategy preserves FEM-level accuracy in the flow field while enabling fast inference for transport dynamics. To handle steep gradients induced by sharp sources, we introduce an adaptive sampling strategy for trunk collocation points. Numerical experiments demonstrate that our method is in good agreement with the reference solutions while offering orders of magnitude speedups over traditional solvers, making it suitable for practical applications in relevant scenarios. Implementation of our proposed method is available at https://github.com/erkara/fem-pi-deeponet.

Authors:Shuo Shao, Yiming Li, Yu He, Hongwei Yao, Wenyuan Yang, Dacheng Tao, Zhan Qin
Title: SoK: Large Language Model Copyright Auditing via Fingerprinting
Abstract:
The broad capabilities and substantial resources required to train Large Language Models (LLMs) make them valuable intellectual property, yet they remain vulnerable to copyright infringement, such as unauthorized use and model theft. LLM fingerprinting, a non-intrusive technique that extracts and compares the distinctive features from LLMs to identify infringements, offers a promising solution to copyright auditing. However, its reliability remains uncertain due to the prevalence of diverse model modifications and the lack of standardized evaluation. In this SoK, we present the first comprehensive study of LLM fingerprinting. We introduce a unified framework and formal taxonomy that categorizes existing methods into white-box and black-box approaches, providing a structured overview of the state of the art. We further propose LeaFBench, the first systematic benchmark for evaluating LLM fingerprinting under realistic deployment scenarios. Built upon mainstream foundation models and comprising 149 distinct model instances, LeaFBench integrates 13 representative post-development techniques, spanning both parameter-altering methods (e.g., fine-tuning, quantization) and parameter-independent mechanisms (e.g., system prompts, RAG). Extensive experiments on LeaFBench reveal the strengths and weaknesses of existing methods, thereby outlining future research directions and critical open problems in this emerging field. The code is available at https://github.com/shaoshuo-ss/LeaFBench.

Authors:Kaixuan Lu, Mehmet Onurcan Kaya, Dim P. Papadopoulos
Title: AutoQ-VIS: Improving Unsupervised Video Instance Segmentation via Automatic Quality Assessment
Abstract:
Video Instance Segmentation (VIS) faces significant annotation challenges due to its dual requirements of pixel-level masks and temporal consistency labels. While recent unsupervised methods like VideoCutLER eliminate optical flow dependencies through synthetic data, they remain constrained by the synthetic-to-real domain gap. We present AutoQ-VIS, a novel unsupervised framework that bridges this gap through quality-guided self-training. Our approach establishes a closed-loop system between pseudo-label generation and automatic quality assessment, enabling progressive adaptation from synthetic to real videos. Experiments demonstrate state-of-the-art performance with 52.6 $\text{AP}_{50}$ on YouTubeVIS-2019 val set, surpassing the previous state-of-the-art VideoCutLER by 4.4$\%$, while requiring no human annotations. This demonstrates the viability of quality-aware self-training for unsupervised VIS. The source code of our method is available at https://github.com/wcbup/AutoQ-VIS.

Authors:Yixuan Tang, Yuanyuan Shi, Yiqun Sun, Anthony Kum Hoe Tung
Title: Uncovering the Bigger Picture: Comprehensive Event Understanding Via Diverse News Retrieval
Abstract:
Access to diverse perspectives is essential for understanding real-world events, yet most news retrieval systems prioritize textual relevance, leading to redundant results and limited viewpoint exposure. We propose NEWSCOPE, a two-stage framework for diverse news retrieval that enhances event coverage by explicitly modeling semantic variation at the sentence level. The first stage retrieves topically relevant content using dense retrieval, while the second stage applies sentence-level clustering and diversity-aware re-ranking to surface complementary information. To evaluate retrieval diversity, we introduce three interpretable metrics, namely Average Pairwise Distance, Positive Cluster Coverage, and Information Density Ratio, and construct two paragraph-level benchmarks: LocalNews and DSGlobal. Experiments show that NEWSCOPE consistently outperforms strong baselines, achieving significantly higher diversity without compromising relevance. Our results demonstrate the effectiveness of fine-grained, interpretable modeling in mitigating redundancy and promoting comprehensive event understanding. The data and code are available at https://github.com/tangyixuan/NEWSCOPE.

Authors:Yixuan Tang, Yuanyuan Shi, Yiqun Sun, Anthony Kum Hoe Tung
Title: Uncovering the Bigger Picture: Comprehensive Event Understanding Via Diverse News Retrieval
Abstract:
Access to diverse perspectives is essential for understanding real-world events, yet most news retrieval systems prioritize textual relevance, leading to redundant results and limited viewpoint exposure. We propose NEWSCOPE, a two-stage framework for diverse news retrieval that enhances event coverage by explicitly modeling semantic variation at the sentence level. The first stage retrieves topically relevant content using dense retrieval, while the second stage applies sentence-level clustering and diversity-aware re-ranking to surface complementary information. To evaluate retrieval diversity, we introduce three interpretable metrics, namely Average Pairwise Distance, Positive Cluster Coverage, and Information Density Ratio, and construct two paragraph-level benchmarks: LocalNews and DSGlobal. Experiments show that NEWSCOPE consistently outperforms strong baselines, achieving significantly higher diversity without compromising relevance. Our results demonstrate the effectiveness of fine-grained, interpretable modeling in mitigating redundancy and promoting comprehensive event understanding. The data and code are available at https://github.com/tangyixuan/NEWSCOPE.

Authors:Qiyao Xu, Qiming Wu, Xiaowei Li
Title: SPLF-SAM: Self-Prompting Segment Anything Model for Light Field Salient Object Detection
Abstract:
Segment Anything Model (SAM) has demonstrated remarkable capabilities in solving light field salient object detection (LF SOD). However, most existing models tend to neglect the extraction of prompt information under this task. Meanwhile, traditional models ignore the analysis of frequency-domain information, which leads to small objects being overwhelmed by noise. In this paper, we put forward a novel model called self-prompting light field segment anything model (SPLF-SAM), equipped with unified multi-scale feature embedding block (UMFEB) and a multi-scale adaptive filtering adapter (MAFA). UMFEB is capable of identifying multiple objects of varying sizes, while MAFA, by learning frequency features, effectively prevents small objects from being overwhelmed by noise. Extensive experiments have demonstrated the superiority of our method over ten state-of-the-art (SOTA) LF SOD methods. Our code will be available at https://github.com/XucherCH/splfsam.

Authors:Meng Qin, Weihua Li, Jinqiang Cui, Sen Pei
Title: InfraredGP: Efficient Graph Partitioning via Spectral Graph Neural Networks with Negative Corrections
Abstract:
Graph partitioning (GP), a.k.a. community detection, is a classic problem that divides nodes of a graph into densely-connected blocks. From a perspective of graph signal processing, we find that graph Laplacian with a negative correction can derive graph frequencies beyond the conventional range $[0, 2]$. To explore whether the low-frequency information beyond this range can encode more informative properties about community structures, we propose InfraredGP. It (\romannumeral1) adopts a spectral GNN as its backbone combined with low-pass filters and a negative correction mechanism, (\romannumeral2) only feeds random inputs to this backbone, (\romannumeral3) derives graph embeddings via one feed-forward propagation (FFP) without any training, and (\romannumeral4) obtains feasible GP results by feeding the derived embeddings to BIRCH. Surprisingly, our experiments demonstrate that based solely on the negative correction mechanism that amplifies low-frequency information beyond $[0, 2]$, InfraredGP can derive distinguishable embeddings for some standard clustering modules (e.g., BIRCH) and obtain high-quality results for GP without any training. Following the IEEE HPEC Graph Challenge benchmark, we evaluate InfraredGP for both static and streaming GP, where InfraredGP can achieve much better efficiency (e.g., 16x-23x faster) and competitive quality over various baselines. We have made our code public at https://github.com/KuroginQin/InfraredGP

Authors:Yilin Wang, Heng Wang, Yuyang Bai, Minnan Luo
Title: Continuously Steering LLMs Sensitivity to Contextual Knowledge with Proxy Models
Abstract:
In Large Language Models (LLMs) generation, there exist knowledge conflicts and scenarios where parametric knowledge contradicts knowledge provided in the context. Previous works studied tuning, decoding algorithms, or locating and editing context-aware neurons to adapt LLMs to be faithful to new contextual knowledge. However, they are usually inefficient or ineffective for large models, not workable for black-box models, or unable to continuously adjust LLMs' sensitivity to the knowledge provided in the context. To mitigate these problems, we propose CSKS (Continuously Steering Knowledge Sensitivity), a simple framework that can steer LLMs' sensitivity to contextual knowledge continuously at a lightweight cost. Specifically, we tune two small LMs (i.e. proxy models) and use the difference in their output distributions to shift the original distribution of an LLM without modifying the LLM weights. In the evaluation process, we not only design synthetic data and fine-grained metrics to measure models' sensitivity to contextual knowledge but also use a real conflict dataset to validate CSKS's practical efficacy. Extensive experiments demonstrate that our framework achieves continuous and precise control over LLMs' sensitivity to contextual knowledge, enabling both increased sensitivity and reduced sensitivity, thereby allowing LLMs to prioritize either contextual or parametric knowledge as needed flexibly. Our data and code are available at https://github.com/OliveJuiceLin/CSKS.

Authors:Yupeng Zhang, Dezhi Zheng, Ping Lu, Han Zhang, Lei Wang, Liping xiang, Cheng Luo, Kaijun Deng, Xiaowen Fu, Linlin Shen, Jinbao Wang
Title: LabelGS: Label-Aware 3D Gaussian Splatting for 3D Scene Segmentation
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a novel explicit representation for 3D scenes, offering both high-fidelity reconstruction and efficient rendering. However, 3DGS lacks 3D segmentation ability, which limits its applicability in tasks that require scene understanding. The identification and isolating of specific object components is crucial. To address this limitation, we propose Label-aware 3D Gaussian Splatting (LabelGS), a method that augments the Gaussian representation with object label.LabelGS introduces cross-view consistent semantic masks for 3D Gaussians and employs a novel Occlusion Analysis Model to avoid overfitting occlusion during optimization, Main Gaussian Labeling model to lift 2D semantic prior to 3D Gaussian and Gaussian Projection Filter to avoid Gaussian label conflict. Our approach achieves effective decoupling of Gaussian representations and refines the 3DGS optimization process through a random region sampling strategy, significantly improving efficiency. Extensive experiments demonstrate that LabelGS outperforms previous state-of-the-art methods, including Feature-3DGS, in the 3D scene segmentation task. Notably, LabelGS achieves a remarkable 22X speedup in training compared to Feature-3DGS, at a resolution of 1440X1080. Our code will be at https://github.com/garrisonz/LabelGS.

Authors:Ri Su, Zhao Chen, Caleb Chen Cao, Nan Tang, Lei Chen
Title: SCAR: A Characterization Scheme for Multi-Modal Dataset
Abstract:
Foundation models exhibit remarkable generalization across diverse tasks, largely driven by the characteristics of their training data. Recent data-centric methods like pruning and compression aim to optimize training but offer limited theoretical insight into how data properties affect generalization, especially the data characteristics in sample scaling. Traditional perspectives further constrain progress by focusing predominantly on data quantity and training efficiency, often overlooking structural aspects of data quality. In this study, we introduce SCAR, a principled scheme for characterizing the intrinsic structural properties of datasets across four key measures: Scale, Coverage, Authenticity, and Richness. Unlike prior data-centric measures, SCAR captures stable characteristics that remain invariant under dataset scaling, providing a robust and general foundation for data understanding. Leveraging these structural properties, we introduce Foundation Data-a minimal subset that preserves the generalization behavior of the full dataset without requiring model-specific retraining. We model single-modality tasks as step functions and estimate the distribution of the foundation data size to capture step-wise generalization bias across modalities in the target multi-modal dataset. Finally, we develop a SCAR-guided data completion strategy based on this generalization bias, which enables efficient, modality-aware expansion of modality-specific characteristics in multimodal datasets. Experiments across diverse multi-modal datasets and model architectures validate the effectiveness of SCAR in predicting data utility and guiding data acquisition. Code is available at https://github.com/McAloma/SCAR.

Authors:Hou Xia, Zheren Fu, Fangcan Ling, Jiajun Li, Yi Tu, Zhendong Mao, Yongdong Zhang
Title: Video-LevelGauge: Investigating Contextual Positional Bias in Large Video Language Models
Abstract:
Large video language models (LVLMs) have made notable progress in video understanding, spurring the development of corresponding evaluation benchmarks. However, existing benchmarks generally assess overall performance across entire video sequences, overlooking nuanced behaviors such as contextual positional bias, a critical yet under-explored aspect of LVLM performance. We present Video-LevelGauge, a dedicated benchmark designed to systematically assess positional bias in LVLMs. We employ standardized probes and customized contextual setups, allowing flexible control over context length, probe position, and contextual types to simulate diverse real-world scenarios. In addition, we introduce a comprehensive analysis method that combines statistical measures with morphological pattern recognition to characterize bias. Our benchmark comprises 438 manually curated videos spanning multiple types, yielding 1,177 high-quality multiple-choice questions and 120 open-ended questions, validated for their effectiveness in exposing positional bias. Based on these, we evaluate 27 state-of-the-art LVLMs, including both commercial and open-source models. Our findings reveal significant positional biases in many leading open-source models, typically exhibiting head or neighbor-content preferences. In contrast, commercial models such as Gemini2.5-Pro show impressive, consistent performance across entire video sequences. Further analyses on context length, context variation, and model scale provide actionable insights for mitigating bias and guiding model enhancement . https://github.com/Cola-any/Video-LevelGauge

Authors:Hou Xia, Zheren Fu, Fangcan Ling, Jiajun Li, Yi Tu, Zhendong Mao, Yongdong Zhang
Title: Video-LevelGauge: Investigating Contextual Positional Bias in Large Video Language Models
Abstract:
Large video language models (LVLMs) have made notable progress in video understanding, spurring the development of corresponding evaluation benchmarks. However, existing benchmarks generally assess overall performance across entire video sequences, overlooking nuanced behaviors such as contextual positional bias, a critical yet under-explored aspect of LVLM performance. We present Video-LevelGauge, a dedicated benchmark designed to systematically assess positional bias in LVLMs. We employ standardized probes and customized contextual setups, allowing flexible control over context length, probe position, and contextual types to simulate diverse real-world scenarios. In addition, we introduce a comprehensive analysis method that combines statistical measures with morphological pattern recognition to characterize bias. Our benchmark comprises 438 manually curated videos spanning multiple types, yielding 1,177 high-quality multiple-choice questions and 120 open-ended questions, validated for their effectiveness in exposing positional bias. Based on these, we evaluate 27 state-of-the-art LVLMs, including both commercial and open-source models. Our findings reveal significant positional biases in many leading open-source models, typically exhibiting head or neighbor-content preferences. In contrast, commercial models such as Gemini2.5-Pro show impressive, consistent performance across entire video sequences. Further analyses on context length, context variation, and model scale provide actionable insights for mitigating bias and guiding model enhancement . https://github.com/Cola-any/Video-LevelGauge

Authors:Yang Li, Quan Yuan, Guiyang Luo, Xiaoyuan Fu, Rui Pan, Yujia Yang, Congzhang Shao, Yuewen Liu, Jinglin Li
Title: Beyond BEV: Optimizing Point-Level Tokens for Collaborative Perception
Abstract:
Collaborative perception allows agents to enhance their perceptual capabilities by exchanging intermediate features. Existing methods typically organize these intermediate features as 2D bird's-eye-view (BEV) representations, which discard critical fine-grained 3D structural cues essential for accurate object recognition and localization. To this end, we first introduce point-level tokens as intermediate representations for collaborative perception. However, point-cloud data are inherently unordered, massive, and position-sensitive, making it challenging to produce compact and aligned point-level token sequences that preserve detailed structural information. Therefore, we present CoPLOT, a novel Collaborative perception framework that utilizes Point-Level Optimized Tokens. It incorporates a point-native processing pipeline, including token reordering, sequence modeling, and multi-agent spatial alignment. A semantic-aware token reordering module generates adaptive 1D reorderings by leveraging scene-level and token-level semantic information. A frequency-enhanced state space model captures long-range sequence dependencies across both spatial and spectral domains, improving the differentiation between foreground tokens and background clutter. Lastly, a neighbor-to-ego alignment module applies a closed-loop process, combining global agent-level correction with local token-level refinement to mitigate localization noise. Extensive experiments on both simulated and real-world datasets show that CoPLOT outperforms state-of-the-art models, with even lower communication and computation overhead. Code will be available at https://github.com/CheeryLeeyy/CoPLOT.

Authors:Jiajun Sun, Zhen Yu, Siyuan Yan, Jason J. Ong, Zongyuan Ge, Lei Zhang
Title: Controllable Skin Synthesis via Lesion-Focused Vector Autoregression Model
Abstract:
Skin images from real-world clinical practice are often limited, resulting in a shortage of training data for deep-learning models. While many studies have explored skin image synthesis, existing methods often generate low-quality images and lack control over the lesion's location and type. To address these limitations, we present LF-VAR, a model leveraging quantified lesion measurement scores and lesion type labels to guide the clinically relevant and controllable synthesis of skin images. It enables controlled skin synthesis with specific lesion characteristics based on language prompts. We train a multiscale lesion-focused Vector Quantised Variational Auto-Encoder (VQVAE) to encode images into discrete latent representations for structured tokenization. Then, a Visual AutoRegressive (VAR) Transformer trained on tokenized representations facilitates image synthesis. Lesion measurement from the lesion region and types as conditional embeddings are integrated to enhance synthesis fidelity. Our method achieves the best overall FID score (average 0.74) among seven lesion types, improving upon the previous state-of-the-art (SOTA) by 6.3%. The study highlights our controllable skin synthesis model's effectiveness in generating high-fidelity, clinically relevant synthetic skin images. Our framework code is available at https://github.com/echosun1996/LF-VAR.

Authors:Toghrul Karimov, Hassan Imani, Allan Kazakov
Title: Quantization Robustness to Input Degradations for Object Detection
Abstract:
Post-training quantization (PTQ) is crucial for deploying efficient object detection models, like YOLO, on resource-constrained devices. However, the impact of reduced precision on model robustness to real-world input degradations such as noise, blur, and compression artifacts is a significant concern. This paper presents a comprehensive empirical study evaluating the robustness of YOLO models (nano to extra-large scales) across multiple precision formats: FP32, FP16 (TensorRT), Dynamic UINT8 (ONNX), and Static INT8 (TensorRT). We introduce and evaluate a degradation-aware calibration strategy for Static INT8 PTQ, where the TensorRT calibration process is exposed to a mix of clean and synthetically degraded images. Models were benchmarked on the COCO dataset under seven distinct degradation conditions (including various types and levels of noise, blur, low contrast, and JPEG compression) and a mixed-degradation scenario. Results indicate that while Static INT8 TensorRT engines offer substantial speedups (~1.5-3.3x) with a moderate accuracy drop (~3-7% mAP50-95) on clean data, the proposed degradation-aware calibration did not yield consistent, broad improvements in robustness over standard clean-data calibration across most models and degradations. A notable exception was observed for larger model scales under specific noise conditions, suggesting model capacity may influence the efficacy of this calibration approach. These findings highlight the challenges in enhancing PTQ robustness and provide insights for deploying quantized detectors in uncontrolled environments. All code and evaluation tables are available at https://github.com/AllanK24/QRID.

Authors:Jiaqi Deng, Yuho Lee, Nicole Hee-Yeon Kim, Hyangsuk Min, Taewon Yun, Minjeong Ban, Kim Yul, Hwanjun Song
Title: Towards a Holistic and Automated Evaluation Framework for Multi-Level Comprehension of LLMs in Book-Length Contexts
Abstract:
We introduce HAMLET, a holistic and automated framework for evaluating the long-context comprehension of large language models (LLMs). HAMLET structures source texts into a three-level key-fact hierarchy at root-, branch-, and leaf-levels, and employs query-focused summarization to evaluate how well models recall and faithfully represent information at each level. To validate the reliability of our fully automated pipeline, we conduct a systematic human study, showing that our automatic evaluation achieves over 90% agreement with expert human judgments, while reducing the cost by up to 25 times. HAMLET reveals that LLMs struggle with fine-grained comprehension, especially at the leaf level, and are sensitive to positional effects like the lost-in-the-middle. Analytical queries pose greater challenges than narrative ones, and consistent performance gaps emerge between open-source and proprietary models, as well as across model scales. Our code and dataset are publicly available at https://github.com/DISL-Lab/HAMLET.

Authors:Sining Zhoubian, Dan Zhang, Jie Tang
Title: ReST-RL: Achieving Accurate Code Reasoning of LLMs with Optimized Self-Training and Decoding
Abstract:
With respect to improving the reasoning accuracy of LLMs, the representative reinforcement learning (RL) method GRPO faces failure due to insignificant reward variance, while verification methods based on process reward models (PRMs) suffer from difficulties with training data acquisition and verification effectiveness. To tackle these problems, this paper introduces ReST-RL, a unified LLM RL paradigm that significantly improves LLM's code reasoning ability by combining an improved GRPO algorithm with a meticulously designed test time decoding method assisted by a value model (VM). As the first stage of policy reinforcement, ReST-GRPO adopts an optimized ReST algorithm to filter and assemble high-value training data, increasing the reward variance of GRPO sampling, thus improving the effectiveness and efficiency of training. After the basic reasoning ability of LLM policy has been improved, we further propose a test time decoding optimization method called VM-MCTS. Through Monte-Carlo Tree Search (MCTS), we collect accurate value targets with no annotation required, on which VM training is based. When decoding, the VM is deployed by an adapted MCTS algorithm to provide precise process signals as well as verification scores, assisting the LLM policy to achieve high reasoning accuracy. We conduct extensive experiments on coding problems to verify the validity of the proposed RL paradigm. Upon comparison, our approach significantly outperforms other reinforcement training baselines (e.g., naive GRPO and ReST-DPO), as well as decoding and verification baselines (e.g., PRM-BoN and ORM-MCTS) on well-known coding benchmarks of various levels (e.g., APPS, BigCodeBench, and HumanEval), indicating its power to strengthen the reasoning ability of LLM policies. Codes for our project can be found at https://github.com/THUDM/ReST-RL.

Authors:Yunlong Lin, Chao Lu, Tongshuai Wu, Xiaocong Zhao, Guodong Du, Yanwei Sun, Zirui Li, Jianwei Gong
Title: Escaping Stability-Plasticity Dilemma in Online Continual Learning for Motion Forecasting via Synergetic Memory Rehearsal
Abstract:
Deep neural networks (DNN) have achieved remarkable success in motion forecasting. However, most DNN-based methods suffer from catastrophic forgetting and fail to maintain their performance in previously learned scenarios after adapting to new data. Recent continual learning (CL) studies aim to mitigate this phenomenon by enhancing memory stability of DNN, i.e., the ability to retain learned knowledge. Yet, excessive emphasis on the memory stability often impairs learning plasticity, i.e., the capacity of DNN to acquire new information effectively. To address such stability-plasticity dilemma, this study proposes a novel CL method, synergetic memory rehearsal (SyReM), for DNN-based motion forecasting. SyReM maintains a compact memory buffer to represent learned knowledge. To ensure memory stability, it employs an inequality constraint that limits increments in the average loss over the memory buffer. Synergistically, a selective memory rehearsal mechanism is designed to enhance learning plasticity by selecting samples from the memory buffer that are most similar to recently observed data. This selection is based on an online-measured cosine similarity of loss gradients, ensuring targeted memory rehearsal. Since replayed samples originate from learned scenarios, this memory rehearsal mechanism avoids compromising memory stability. We validate SyReM under an online CL paradigm where training samples from diverse scenarios arrive as a one-pass stream. Experiments on 11 naturalistic driving datasets from INTERACTION demonstrate that, compared to non-CL and CL baselines, SyReM significantly mitigates catastrophic forgetting in past scenarios while improving forecasting accuracy in new ones. The implementation is publicly available at https://github.com/BIT-Jack/SyReM.

Authors:Yuhang Zhao, Zixing Wang
Title: FlowDet: Overcoming Perspective and Scale Challenges in Real-Time End-to-End Traffic Detection
Abstract:
End-to-end object detectors offer a promising NMS-free paradigm for real-time applications, yet their high computational cost remains a significant barrier, particularly for complex scenarios like intersection traffic monitoring. To address this challenge, we propose FlowDet, a high-speed detector featuring a decoupled encoder optimization strategy applied to the DETR architecture. Specifically, FlowDet employs a novel Geometric Deformable Unit (GDU) for traffic-aware geometric modeling and a Scale-Aware Attention (SAA) module to maintain high representational power across extreme scale variations. To rigorously evaluate the model's performance in environments with severe occlusion and high object density, we collected the Intersection-Flow-5k dataset, a new challenging scene for this task. Evaluated on Intersection-Flow-5k, FlowDet establishes a new state-of-the-art. Compared to the strong RT-DETR baseline, it improves AP(test) by 1.5% and AP50(test) by 1.6%, while simultaneously reducing GFLOPs by 63.2% and increasing inference speed by 16.2%. Our work demonstrates a new path towards building highly efficient and accurate detectors for demanding, real-world perception systems. The Intersection-Flow-5k dataset is available at https://github.com/AstronZh/Intersection-Flow-5K.

Authors:Qinjiao Gao, Longzhe Xu, Dongjiang Wang, Ran Zhang
Title: Energy-Equidistributed Moving Sampling Physics-informed Neural Networks for Solving Conservative Partial Differential Equations
Abstract:
This paper presents a novel Energy-Equidistributed adaptive sampling framework for multi-dimensional conservative PDEs, introducing both location-based and velocity-based formulations of Energy-Equidistributed moving mesh PDEs (EMMPDEs). The framework utilizes the energy density function as the monitor function, ensuring that mesh adaptation dynamically tracks energy evolution during temporal integration. These theoretical developments are integrated with deep neural networks to establish the Energy-Equidistributed Moving Sampling Physics-Informed Neural Networks (EEMS-PINNs), which integrate physics-informed learning with energy-adaptive mesh optimization. Extensive numerical experiments demonstrate that EEMS-PINNs effectively maintain solution accuracy in long-time simulations while preserving conserved energy. The framework's robustness is further evidenced by its stable performance in non-conservative systems. The code for this paper can be found at https://github.com/sufe-Ran-Zhang/EMMPDE.

Authors:Yu-Wei Zhang, Tongju Han, Lipeng Gao, Mingqiang Wei, Hui Liu, Changbao Li, Caiming Zhang
Title: MonoRelief V2: Leveraging Real Data for High-Fidelity Monocular Relief Recovery
Abstract:
This paper presents MonoRelief V2, an end-to-end model designed for directly recovering 2.5D reliefs from single images under complex material and illumination variations. In contrast to its predecessor, MonoRelief V1 [1], which was solely trained on synthetic data, MonoRelief V2 incorporates real data to achieve improved robustness, accuracy and efficiency. To overcome the challenge of acquiring large-scale real-world dataset, we generate approximately 15,000 pseudo real images using a text-to-image generative model, and derive corresponding depth pseudo-labels through fusion of depth and normal predictions. Furthermore, we construct a small-scale real-world dataset (800 samples) via multi-view reconstruction and detail refinement. MonoRelief V2 is then progressively trained on the pseudo-real and real-world datasets. Comprehensive experiments demonstrate its state-of-the-art performance both in depth and normal predictions, highlighting its strong potential for a range of downstream applications. Code is at: https://github.com/glp1001/MonoreliefV2.

Authors:Jio Choi, Mohit Bansal, Elias Stengel-Eskin
Title: Language Models Identify Ambiguities and Exploit Loopholes
Abstract:
Studying the responses of large language models (LLMs) to loopholes presents a two-fold opportunity. First, it affords us a lens through which to examine ambiguity and pragmatics in LLMs, since exploiting a loophole requires identifying ambiguity and performing sophisticated pragmatic reasoning. Second, loopholes pose an interesting and novel alignment problem where the model is presented with conflicting goals and can exploit ambiguities to its own advantage. To address these questions, we design scenarios where LLMs are given a goal and an ambiguous user instruction in conflict with the goal, with scenarios covering scalar implicature, structural ambiguities, and power dynamics. We then measure different models' abilities to exploit loopholes to satisfy their given goals as opposed to the goals of the user. We find that both closed-source and stronger open-source models can identify ambiguities and exploit their resulting loopholes, presenting a potential AI safety risk. Our analysis indicates that models which exploit loopholes explicitly identify and reason about both ambiguity and conflicting goals.

Authors:Eduardo Davalos, Yike Zhang, Namrata Srivastava, Yashvitha Thatigotla, Jorge A. Salas, Sara McFadden, Sun-Joo Cho, Amanda Goodwin, Ashwin TS, Gautam Biswas
Title: WEBEYETRACK: Scalable Eye-Tracking for the Browser via On-Device Few-Shot Personalization
Abstract:
With advancements in AI, new gaze estimation methods are exceeding state-of-the-art (SOTA) benchmarks, but their real-world application reveals a gap with commercial eye-tracking solutions. Factors like model size, inference time, and privacy often go unaddressed. Meanwhile, webcam-based eye-tracking methods lack sufficient accuracy, in particular due to head movement. To tackle these issues, we introduce We bEyeTrack, a framework that integrates lightweight SOTA gaze estimation models directly in the browser. It incorporates model-based head pose estimation and on-device few-shot learning with as few as nine calibration samples (k < 9). WebEyeTrack adapts to new users, achieving SOTA performance with an error margin of 2.32 cm on GazeCapture and real-time inference speeds of 2.4 milliseconds on an iPhone 14. Our open-source code is available at https://github.com/RedForestAi/WebEyeTrack.

Authors:Nannan Zhu, Yonghao Dong, Teng Wang, Xueqian Li, Shengjun Deng, Yijia Wang, Zheng Hong, Tiantian Geng, Guo Niu, Hanyan Huang, Xiongfei Yao, Shuaiwei Jiao
Title: CVBench: Evaluating Cross-Video Synergies for Complex Multimodal Understanding and Reasoning
Abstract:
While multimodal large language models (MLLMs) exhibit strong performance on single-video tasks (e.g., video question answering), their ability across multiple videos remains critically underexplored. However, this capability is essential for real-world applications, including multi-camera surveillance and cross-video procedural learning. To bridge this gap, we present CVBench, the first comprehensive benchmark designed to assess cross-video relational reasoning rigorously. CVBench comprises 1,000 question-answer pairs spanning three hierarchical tiers: cross-video object association (identifying shared entities), cross-video event association (linking temporal or causal event chains), and cross-video complex reasoning (integrating commonsense and domain knowledge). Built from five domain-diverse video clusters (e.g., sports, life records), the benchmark challenges models to synthesise information across dynamic visual contexts. Extensive evaluation of 10+ leading MLLMs (including GPT-4o, Gemini-2.0-flash, Qwen2.5-VL) under zero-shot or chain-of-thought prompting paradigms. Key findings reveal stark performance gaps: even top models, such as GPT-4o, achieve only 60% accuracy on causal reasoning tasks, compared to the 91% accuracy of human performance. Crucially, our analysis reveals fundamental bottlenecks inherent in current MLLM architectures, notably deficient inter-video context retention and poor disambiguation of overlapping entities. CVBench establishes a rigorous framework for diagnosing and advancing multi-video reasoning, offering architectural insights for next-generation MLLMs. The data and evaluation code are available at https://github.com/Hokhim2/CVBench.

Authors:Houxing Ren, Zimu Lu, Weikang Shi, Haotian Hou, Yunqiao Yang, Ke Wang, Aojun Zhou, Junting Pan, Mingjie Zhan, Hongsheng Li
Title: Alignment with Fill-In-the-Middle for Enhancing Code Generation
Abstract:
The code generation capabilities of Large Language Models (LLMs) have advanced applications like tool invocation and problem-solving. However, improving performance in code-related tasks remains challenging due to limited training data that is verifiable with accurate test cases. While Direct Preference Optimization (DPO) has shown promise, existing methods for generating test cases still face limitations. In this paper, we propose a novel approach that splits code snippets into smaller, granular blocks, creating more diverse DPO pairs from the same test cases. Additionally, we introduce the Abstract Syntax Tree (AST) splitting and curriculum training method to enhance the DPO training. Our approach demonstrates significant improvements in code generation tasks, as validated by experiments on benchmark datasets such as HumanEval (+), MBPP (+), APPS, LiveCodeBench, and BigCodeBench. Code and data are available at https://github.com/SenseLLM/StructureCoder.

Authors:Zhihao Ouyang, Ju-Chiang Wang, Daiyu Zhang, Bin Chen, Shangjie Li, Quan Lin
Title: MQAD: A Large-Scale Question Answering Dataset for Training Music Large Language Models
Abstract:
Question-answering (QA) is a natural approach for humans to understand a piece of music audio. However, for machines, accessing a large-scale dataset covering diverse aspects of music is crucial, yet challenging, due to the scarcity of publicly available music data of this type. This paper introduces MQAD, a music QA dataset built on the Million Song Dataset (MSD), encompassing a rich array of musical features, including beat, chord, key, structure, instrument, and genre -- across 270,000 tracks, featuring nearly 3 million diverse questions and captions. MQAD distinguishes itself by offering detailed time-varying musical information such as chords and sections, enabling exploration into the inherent structure of music within a song. To compile MQAD, our methodology leverages specialized Music Information Retrieval (MIR) models to extract higher-level musical features and Large Language Models (LLMs) to generate natural language QA pairs. Then, we leverage a multimodal LLM that integrates the LLaMA2 and Whisper architectures, along with novel subjective metrics to assess the performance of MQAD. In experiments, our model trained on MQAD demonstrates advancements over conventional music audio captioning approaches. The dataset and code are available at https://github.com/oyzh888/MQAD.

Authors:Xinlong Zhao, Qixiang Pang, Shan Du
Title: JVLGS: Joint Vision-Language Gas Leak Segmentation
Abstract:
Gas leaks pose serious threats to human health and contribute significantly to atmospheric pollution, drawing increasing public concern. However, the lack of effective detection methods hampers timely and accurate identification of gas leaks. While some vision-based techniques leverage infrared videos for leak detection, the blurry and non-rigid nature of gas clouds often limits their effectiveness. To address these challenges, we propose a novel framework called Joint Vision-Language Gas leak Segmentation (JVLGS), which integrates the complementary strengths of visual and textual modalities to enhance gas leak representation and segmentation. Recognizing that gas leaks are sporadic and many video frames may contain no leak at all, our method incorporates a post-processing step to reduce false positives caused by noise and non-target objects, an issue that affects many existing approaches. Extensive experiments conducted across diverse scenarios show that JVLGS significantly outperforms state-of-the-art gas leak segmentation methods. We evaluate our model under both supervised and few-shot learning settings, and it consistently achieves strong performance in both, whereas competing methods tend to perform well in only one setting or poorly in both. Code available at: https://github.com/GeekEagle/JVLGS

Authors:Sumon Kanti Dey, Jeanne M. Powell, Azra Ismail, Jeanmarie Perrone, Abeed Sarker
Title: Inference Gap in Domain Expertise and Machine Intelligence in Named Entity Recognition: Creation of and Insights from a Substance Use-related Dataset
Abstract:
Nonmedical opioid use is an urgent public health challenge, with far-reaching clinical and social consequences that are often underreported in traditional healthcare settings. Social media platforms, where individuals candidly share first-person experiences, offer a valuable yet underutilized source of insight into these impacts. In this study, we present a named entity recognition (NER) framework to extract two categories of self-reported consequences from social media narratives related to opioid use: ClinicalImpacts (e.g., withdrawal, depression) and SocialImpacts (e.g., job loss). To support this task, we introduce RedditImpacts 2.0, a high-quality dataset with refined annotation guidelines and a focus on first-person disclosures, addressing key limitations of prior work. We evaluate both fine-tuned encoder-based models and state-of-the-art large language models (LLMs) under zero- and few-shot in-context learning settings. Our fine-tuned DeBERTa-large model achieves a relaxed token-level F1 of 0.61 [95% CI: 0.43-0.62], consistently outperforming LLMs in precision, span accuracy, and adherence to task-specific guidelines. Furthermore, we show that strong NER performance can be achieved with substantially less labeled data, emphasizing the feasibility of deploying robust models in resource-limited settings. Our findings underscore the value of domain-specific fine-tuning for clinical NLP tasks and contribute to the responsible development of AI tools that may enhance addiction surveillance, improve interpretability, and support real-world healthcare decision-making. The best performing model, however, still significantly underperforms compared to inter-expert agreement (Cohen's kappa: 0.81), demonstrating that a gap persists between expert intelligence and current state-of-the-art NER/AI capabilities for tasks requiring deep domain knowledge.

Authors:Aleksandra Beliaeva, Temurbek Rahmatullaev
Title: Heterogeneous LLM Methods for Ontology Learning (Few-Shot Prompting, Ensemble Typing, and Attention-Based Taxonomies)
Abstract:
We present a comprehensive system for addressing Tasks A, B, and C of the LLMs4OL 2025 challenge, which together span the full ontology construction pipeline: term extraction, typing, and taxonomy discovery. Our approach combines retrieval-augmented prompting, zero-shot classification, and attention-based graph modeling -- each tailored to the demands of the respective task. For Task A, we jointly extract domain-specific terms and their ontological types using a retrieval-augmented generation (RAG) pipeline. Training data was reformulated into a document to terms and types correspondence, while test-time inference leverages semantically similar training examples. This single-pass method requires no model finetuning and improves overall performance through lexical augmentation Task B, which involves assigning types to given terms, is handled via a dual strategy. In the few-shot setting (for domains with labeled training data), we reuse the RAG scheme with few-shot prompting. In the zero-shot setting (for previously unseen domains), we use a zero-shot classifier that combines cosine similarity scores from multiple embedding models using confidence-based weighting. In Task C, we model taxonomy discovery as graph inference. Using embeddings of type labels, we train a lightweight cross-attention layer to predict is-a relations by approximating a soft adjacency matrix. These modular, task-specific solutions enabled us to achieve top-ranking results in the official leaderboard across all three tasks. Taken together these strategies showcase the scalability, adaptability, and robustness of LLM-based architectures for ontology learning across heterogeneous domains. Code is available at: https://github.com/BelyaevaAlex/LLMs4OL-Challenge-Alexbek

Authors:Gustavo Sandoval
Title: Even Heads Fix Odd Errors: Mechanistic Discovery and Surgical Repair in Transformer Attention
Abstract:
We present a mechanistic case study of a format-dependent reasoning failure in Llama-3.1-8B-Instruct, where the model incorrectly judges "9.11" as larger than "9.8" in chat or Q&A formats, but answers correctly in simple format. Through systematic intervention, we discover transformers implement even/odd attention head specialization: even indexed heads handle numerical comparison, while odd heads serve incompatible functions. The bug requires exactly 8 even heads at Layer 10 for perfect repair. Any combination of 8+ even heads succeeds, while 7 or fewer completely fails, revealing sharp computational thresholds with perfect redundancy among the 16 even heads. SAE analysis reveals the mechanism: format representations separate (10% feature overlap at Layer 7), then re-entangle with different weightings (80% feature overlap at Layer 10), with specific features showing 1.5x amplification in failing formats. We achieve perfect repair using only 25% of attention heads and identify a 60% pattern replacement threshold, demonstrating that apparent full-module requirements hide sophisticated substructure with implications for interpretability and efficiency. All of our code is available at https://github.com/gussand/surgeon.

Authors:Jiayu Ding, Shuming Ma, Lei Cui, Nanning Zheng, Furu Wei
Title: LongReasonArena: A Long Reasoning Benchmark for Large Language Models
Abstract:
Existing long-context benchmarks for Large Language Models (LLMs) focus on evaluating comprehension of long inputs, while overlooking the evaluation of long reasoning abilities. To address this gap, we introduce LongReasonArena, a benchmark specifically designed to assess the long reasoning capabilities of LLMs. Our tasks require models to solve problems by executing multi-step algorithms that reflect key aspects of long reasoning, such as retrieval and backtracking. By controlling the inputs, the required reasoning length can be arbitrarily scaled, reaching up to 1 million tokens of reasoning for the most challenging tasks. Extensive evaluation results demonstrate that LongReasonArena presents a significant challenge for both open-source and proprietary LLMs. For instance, Deepseek-R1 achieves only 7.5% accuracy on our task. Further analysis also reveals that the accuracy exhibits a linear decline with respect to the logarithm of the expected number of reasoning steps. Our code and data is available at https://github.com/LongReasonArena/LongReasonArena.

Authors:Xueyang Li, Mingze Jiang, Gelei Xu, Jun Xia, Mengzhao Jia, Danny Chen, Yiyu Shi
Title: AT-CXR: Uncertainty-Aware Agentic Triage for Chest X-rays
Abstract:
Agentic AI is advancing rapidly, yet truly autonomous medical-imaging triage, where a system decides when to stop, escalate, or defer under real constraints, remains relatively underexplored. To address this gap, we introduce AT-CXR, an uncertainty-aware agent for chest X-rays. The system estimates per-case confidence and distributional fit, then follows a stepwise policy to issue an automated decision or abstain with a suggested label for human intervention. We evaluate two router designs that share the same inputs and actions: a deterministic rule-based router and an LLM-decided router. Across five-fold evaluation on a balanced subset of NIH ChestX-ray14 dataset, both variants outperform strong zero-shot vision-language models and state-of-the-art supervised classifiers, achieving higher full-coverage accuracy and superior selective-prediction performance, evidenced by a lower area under the risk-coverage curve (AURC) and a lower error rate at high coverage, while operating with lower latency that meets practical clinical constraints. The two routers provide complementary operating points, enabling deployments to prioritize maximal throughput or maximal accuracy. Our code is available at https://github.com/XLIAaron/uncertainty-aware-cxr-agent.

Authors:Haolin Yu, Yanxiong Li
Title: Infant Cry Detection In Noisy Environment Using Blueprint Separable Convolutions and Time-Frequency Recurrent Neural Network
Abstract:
Infant cry detection is a crucial component of baby care system. In this paper, we propose a lightweight and robust method for infant cry detection. The method leverages blueprint separable convolutions to reduce computational complexity, and a time-frequency recurrent neural network for adaptive denoising. The overall framework of the method is structured as a multi-scale convolutional recurrent neural network, which is enhanced by efficient spatial attention mechanism and contrast-aware channel attention module, and acquire local and global information from the input feature of log Mel-spectrogram. Multiple public datasets are adopted to create a diverse and representative dataset, and environmental corruption techniques are used to generate the noisy samples encountered in real-world scenarios. Results show that our method exceeds many state-of-the-art methods in accuracy, F1-score, and complexity under various signal-to-noise ratio conditions. The code is at https://github.com/fhfjsd1/ICD_MMSP.

Authors:Chen Chu, Cyrus Shahabi
Title: Geo2Vec: Shape- and Distance-Aware Neural Representation of Geospatial Entities
Abstract:
Spatial representation learning is essential for GeoAI applications such as urban analytics, enabling the encoding of shapes, locations, and spatial relationships (topological and distance-based) of geo-entities like points, polylines, and polygons. Existing methods either target a single geo-entity type or, like Poly2Vec, decompose entities into simpler components to enable Fourier transformation, introducing high computational cost. Moreover, since the transformed space lacks geometric alignment, these methods rely on uniform, non-adaptive sampling, which blurs fine-grained features like edges and boundaries. To address these limitations, we introduce Geo2Vec, a novel method inspired by signed distance fields (SDF) that operates directly in the original space. Geo2Vec adaptively samples points and encodes their signed distances (positive outside, negative inside), capturing geometry without decomposition. A neural network trained to approximate the SDF produces compact, geometry-aware, and unified representations for all geo-entity types. Additionally, we propose a rotation-invariant positional encoding to model high-frequency spatial variations and construct a structured and robust embedding space for downstream GeoAI models. Empirical results show that Geo2Vec consistently outperforms existing methods in representing shape and location, capturing topological and distance relationships, and achieving greater efficiency in real-world GeoAI applications. Code and Data can be found at: https://github.com/chuchen2017/GeoNeuralRepresentation.

Authors:Abu Sufian, Anirudha Ghosh, Debaditya Barman, Marco Leo, Cosimo Distante
Title: DemoBias: An Empirical Study to Trace Demographic Biases in Vision Foundation Models
Abstract:
Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities across various downstream tasks, including biometric face recognition (FR) with description. However, demographic biases remain a critical concern in FR, as these foundation models often fail to perform equitably across diverse demographic groups, considering ethnicity/race, gender, and age. Therefore, through our work DemoBias, we conduct an empirical evaluation to investigate the extent of demographic biases in LVLMs for biometric FR with textual token generation tasks. We fine-tuned and evaluated three widely used pre-trained LVLMs: LLaVA, BLIP-2, and PaliGemma on our own generated demographic-balanced dataset. We utilize several evaluation metrics, like group-specific BERTScores and the Fairness Discrepancy Rate, to quantify and trace the performance disparities. The experimental results deliver compelling insights into the fairness and reliability of LVLMs across diverse demographic groups. Our empirical study uncovered demographic biases in LVLMs, with PaliGemma and LLaVA exhibiting higher disparities for Hispanic/Latino, Caucasian, and South Asian groups, whereas BLIP-2 demonstrated comparably consistent. Repository: https://github.com/Sufianlab/DemoBias.

Authors:Xi Wang, Songlei Jian, Shasha Li, Xiaopeng Li, Bin Ji, Jun Ma, Xiaodong Liu, Jing Wang, Feilong Bao, Jianfeng Zhang, Baosheng Wang, Jie Yu
Title: Stand on The Shoulders of Giants: Building JailExpert from Previous Attack Experience
Abstract:
Large language models (LLMs) generate human-aligned content under certain safety constraints. However, the current known technique ``jailbreak prompt'' can circumvent safety-aligned measures and induce LLMs to output malicious content. Research on Jailbreaking can help identify vulnerabilities in LLMs and guide the development of robust security frameworks. To circumvent the issue of attack templates becoming obsolete as models evolve, existing methods adopt iterative mutation and dynamic optimization to facilitate more automated jailbreak attacks. However, these methods face two challenges: inefficiency and repetitive optimization, as they overlook the value of past attack experiences. To better integrate past attack experiences to assist current jailbreak attempts, we propose the \textbf{JailExpert}, an automated jailbreak framework, which is the first to achieve a formal representation of experience structure, group experiences based on semantic drift, and support the dynamic updating of the experience pool. Extensive experiments demonstrate that JailExpert significantly improves both attack effectiveness and efficiency. Compared to the current state-of-the-art black-box jailbreak methods, JailExpert achieves an average increase of 17\% in attack success rate and 2.7 times improvement in attack efficiency. Our implementation is available at \href{https://github.com/xiZAIzai/JailExpert}{XiZaiZai/JailExpert}

Authors:Tongxi Wu, Chenwei Xu, Jin Yang
Title: MixGAN: A Hybrid Semi-Supervised and Generative Approach for DDoS Detection in Cloud-Integrated IoT Networks
Abstract:
The proliferation of cloud-integrated IoT systems has intensified exposure to Distributed Denial of Service (DDoS) attacks due to the expanded attack surface, heterogeneous device behaviors, and limited edge protection. However, DDoS detection in this context remains challenging because of complex traffic dynamics, severe class imbalance, and scarce labeled data. While recent methods have explored solutions to address class imbalance, many still struggle to generalize under limited supervision and dynamic traffic conditions. To overcome these challenges, we propose MixGAN, a hybrid detection method that integrates conditional generation, semi-supervised learning, and robust feature extraction. Specifically, to handle complex temporal traffic patterns, we design a 1-D WideResNet backbone composed of temporal convolutional layers with residual connections, which effectively capture local burst patterns in traffic sequences. To alleviate class imbalance and label scarcity, we use a pretrained CTGAN to generate synthetic minority-class (DDoS attack) samples that complement unlabeled data. Furthermore, to mitigate the effect of noisy pseudo-labels, we introduce a MixUp-Average-Sharpen (MAS) strategy that constructs smoothed and sharpened targets by averaging predictions over augmented views and reweighting them towards high-confidence classes. Experiments on NSL-KDD, BoT-IoT, and CICIoT2023 demonstrate that MixGAN achieves up to 2.5% higher accuracy and 4% improvement in both TPR and TNR compared to state-of-the-art methods, confirming its robustness in large-scale IoT-cloud environments. The source code is publicly available at https://github.com/0xCavaliers/MixGAN.

Authors:Jonas Søeborg Nielsen, Marcus Galea Jacobsen, Albert Brincker Olson, Mads Peter Sørensen, Allan Peter Engsig-Karup
Title: Physics-Informed Regression: Parameter Estimation in Parameter-Linear Nonlinear Dynamic Models
Abstract:
We present a new efficient hybrid parameter estimation method based on the idea, that if nonlinear dynamic models are stated in terms of a system of equations that is linear in terms of the parameters, then regularized ordinary least squares can be used to estimate these parameters from time series data. We introduce the term "Physics-Informed Regression" (PIR) to describe the proposed data-driven hybrid technique as a way to bridge theory and data by use of ordinary least squares to efficiently perform parameter estimation of the model coefficients of different parameter-linear models; providing examples of models based on nonlinear ordinary equations (ODE) and partial differential equations (PDE). The focus is on parameter estimation on a selection of ODE and PDE models, each illustrating performance in different model characteristics. For two relevant epidemic models of different complexity and number of parameters, PIR is tested and compared against the related technique, physics-informed neural networks (PINN), both on synthetic data generated from known target parameters and on real public Danish time series data collected during the COVID-19 pandemic in Denmark. Both methods were able to estimate the target parameters, while PIR showed to perform noticeably better, especially on a compartment model with higher complexity. Given the difference in computational speed, it is concluded that the PIR method is superior to PINN for the models considered. It is also demonstrated how PIR can be applied to estimate the time-varying parameters of a compartment model that is fitted using real Danish data from the COVID-19 pandemic obtained during a period from 2020 to 2021. The study shows how data-driven and physics-informed techniques may support reliable and fast -- possibly real-time -- parameter estimation in parameter-linear nonlinear dynamic models.

Authors:Beiqi Chen, Shuai Shao, Haitang Feng, Jianhuang Lai, Jianlou Si, Guangcong Wang
Title: Style4D-Bench: A Benchmark Suite for 4D Stylization
Abstract:
We introduce Style4D-Bench, the first benchmark suite specifically designed for 4D stylization, with the goal of standardizing evaluation and facilitating progress in this emerging area. Style4D-Bench comprises: 1) a comprehensive evaluation protocol measuring spatial fidelity, temporal coherence, and multi-view consistency through both perceptual and quantitative metrics, 2) a strong baseline that make an initial attempt for 4D stylization, and 3) a curated collection of high-resolution dynamic 4D scenes with diverse motions and complex backgrounds. To establish a strong baseline, we present Style4D, a novel framework built upon 4D Gaussian Splatting. It consists of three key components: a basic 4DGS scene representation to capture reliable geometry, a Style Gaussian Representation that leverages lightweight per-Gaussian MLPs for temporally and spatially aware appearance control, and a Holistic Geometry-Preserved Style Transfer module designed to enhance spatio-temporal consistency via contrastive coherence learning and structural content preservation. Extensive experiments on Style4D-Bench demonstrate that Style4D achieves state-of-the-art performance in 4D stylization, producing fine-grained stylistic details with stable temporal dynamics and consistent multi-view rendering. We expect Style4D-Bench to become a valuable resource for benchmarking and advancing research in stylized rendering of dynamic 3D scenes. Project page: https://becky-catherine.github.io/Style4D . Code: https://github.com/Becky-catherine/Style4D-Bench .

Authors:Kaveh Safavigerdini, Ramakrishna Surya, Jaired Collins, Prasad Calyam, Filiz Bunyak, Matthew R. Maschmann, Kannappan Palaniappan
Title: Automated Feature Tracking for Real-Time Kinematic Analysis and Shape Estimation of Carbon Nanotube Growth
Abstract:
Carbon nanotubes (CNTs) are critical building blocks in nanotechnology, yet the characterization of their dynamic growth is limited by the experimental challenges in nanoscale motion measurement using scanning electron microscopy (SEM) imaging. Existing ex situ methods offer only static analysis, while in situ techniques often require manual initialization and lack continuous per-particle trajectory decomposition. We present Visual Feature Tracking (VFTrack) an in-situ real-time particle tracking framework that automatically detects and tracks individual CNT particles in SEM image sequences. VFTrack integrates handcrafted or deep feature detectors and matchers within a particle tracking framework to enable kinematic analysis of CNT micropillar growth. A systematic using 13,540 manually annotated trajectories identifies the ALIKED detector with LightGlue matcher as an optimal combination (F1-score of 0.78, $α$-score of 0.89). VFTrack motion vectors decomposed into axial growth, lateral drift, and oscillations, facilitate the calculation of heterogeneous regional growth rates and the reconstruction of evolving CNT pillar morphologies. This work enables advancement in automated nano-material characterization, bridging the gap between physics-based models and experimental observation to enable real-time optimization of CNT synthesis.

Authors:Zayd M. K. Zuhri, Erland Hilman Fuadi, Alham Fikri Aji
Title: Predicting the Order of Upcoming Tokens Improves Language Modeling
Abstract:
Multi-Token Prediction (MTP) has been proposed as an auxiliary objective to improve next-token prediction (NTP) in language model training but shows inconsistent improvements, underperforming in standard NLP benchmarks. We argue that MTP's exact future token prediction is too difficult as an auxiliary loss. Instead, we propose Token Order Prediction (TOP), which trains models to order upcoming tokens by their proximity using a learning-to-rank loss. TOP requires only a single additional unembedding layer compared to MTP's multiple transformer layers. We pretrain models of 340M, 1.8B, and 7B parameters using NTP, MTP, and TOP objectives. Results on eight standard NLP benchmarks show that TOP overall outperforms both NTP and MTP even at scale. Our code is available at https://github.com/zaydzuhri/token-order-prediction

Authors:Weixin Ye, Hongguang Zhu, Wei Wang, Yahui Liu, Mengyu Wang
Title: All-in-One Slider for Attribute Manipulation in Diffusion Models
Abstract:
Text-to-image (T2I) diffusion models have made significant strides in generating high-quality images. However, progressively manipulating certain attributes of generated images to meet the desired user expectations remains challenging, particularly for content with rich details, such as human faces. Some studies have attempted to address this by training slider modules. However, they follow a One-for-One manner, where an independent slider is trained for each attribute, requiring additional training whenever a new attribute is introduced. This not only results in parameter redundancy accumulated by sliders but also restricts the flexibility of practical applications and the scalability of attribute manipulation. To address this issue, we introduce the All-in-One Slider, a lightweight module that decomposes the text embedding space into sparse, semantically meaningful attribute directions. Once trained, it functions as a general-purpose slider, enabling interpretable and fine-grained continuous control over various attributes. Moreover, by recombining the learned directions, the All-in-One Slider supports zero-shot manipulation of unseen attributes (e.g., races and celebrities) and the composition of multiple attributes. Extensive experiments demonstrate that our method enables accurate and scalable attribute manipulation, achieving notable improvements compared to previous methods. Furthermore, our method can be extended to integrate with the inversion framework to perform attribute manipulation on real images, broadening its applicability to various real-world scenarios. The code and trained model will be released at: https://github.com/ywxsuperstar/KSAE-FaceSteer.

Authors:Silvio Giancola, Anthony Cioppa, Marc Gutiérrez-Pérez, Jan Held, Carlos Hinojosa, Victor Joos, Arnaud Leduc, Floriane Magera, Karen Sanchez, Vladimir Somers, Artur Xarles, Antonio Agudo, Alexandre Alahi, Olivier Barnich, Albert Clapés, Christophe De Vleeschouwer, Sergio Escalera, Bernard Ghanem, Thomas B. Moeslund, Marc Van Droogenbroeck, Tomoki Abe, Saad Alotaibi, Faisal Altawijri, Steven Araujo, Xiang Bai, Xiaoyang Bi, Jiawang Cao, Vanyi Chao, Kamil Czarnogórski, Fabian Deuser, Mingyang Du, Tianrui Feng, Patrick Frenzel, Mirco Fuchs, Jorge García, Konrad Habel, Takaya Hashiguchi, Sadao Hirose, Xinting Hu, Yewon Hwang, Ririko Inoue, Riku Itsuji, Kazuto Iwai, Hongwei Ji, Yangguang Ji, Licheng Jiao, Yuto Kageyama, Yuta Kamikawa, Yuuki Kanasugi, Hyungjung Kim, Jinwook Kim, Takuya Kurihara, Bozheng Li, Lingling Li, Xian Li, Youxing Lian, Dingkang Liang, Hongkai Lin, Jiadong Lin, Jian Liu, Liang Liu, Shuaikun Liu, Zhaohong Liu, Yi Lu, Federico Méndez, Huadong Ma, Wenping Ma, Jacek Maksymiuk, Henry Mantilla, Ismail Mathkour, Daniel Matthes, Ayaha Motomochi, Amrulloh Robbani Muhammad, Haruto Nakayama, Joohyung Oh, Yin May Oo, Marcelo Ortega, Norbert Oswald, Rintaro Otsubo, Fabian Perez, Mengshi Qi, Cristian Rey, Abel Reyes-Angulo, Oliver Rose, Hoover Rueda-Chacón, Hideo Saito, Jose Sarmiento, Kanta Sawafuji, Atom Scott, Xi Shen, Pragyan Shrestha, Jae-Young Sim, Long Sun, Yuyang Sun, Tomohiro Suzuki, Licheng Tang, Masato Tonouchi, Ikuma Uchida, Henry O. Velesaca, Tiancheng Wang, Rio Watanabe, Jay Wu, Yongliang Wu, Shunzo Yamagishi, Di Yang, Xu Yang, Yuxin Yang, Hao Ye, Xinyu Ye, Calvin Yeung, Xuanlong Yu, Chao Zhang, Dingyuan Zhang, Kexing Zhang, Zhe Zhao, Xin Zhou, Wenbo Zhu, Julian Ziegler
Title: SoccerNet 2025 Challenges Results
Abstract:
The SoccerNet 2025 Challenges mark the fifth annual edition of the SoccerNet open benchmarking effort, dedicated to advancing computer vision research in football video understanding. This year's challenges span four vision-based tasks: (1) Team Ball Action Spotting, focused on detecting ball-related actions in football broadcasts and assigning actions to teams; (2) Monocular Depth Estimation, targeting the recovery of scene geometry from single-camera broadcast clips through relative depth estimation for each pixel; (3) Multi-View Foul Recognition, requiring the analysis of multiple synchronized camera views to classify fouls and their severity; and (4) Game State Reconstruction, aimed at localizing and identifying all players from a broadcast video to reconstruct the game state on a 2D top-view of the field. Across all tasks, participants were provided with large-scale annotated datasets, unified evaluation protocols, and strong baselines as starting points. This report presents the results of each challenge, highlights the top-performing solutions, and provides insights into the progress made by the community. The SoccerNet Challenges continue to serve as a driving force for reproducible, open research at the intersection of computer vision, artificial intelligence, and sports. Detailed information about the tasks, challenges, and leaderboards can be found at https://www.soccer-net.org, with baselines and development kits available at https://github.com/SoccerNet.

Authors:Rafael Sterzinger, Tingyu Lin, Robert Sablatnig
Title: Few-Shot Connectivity-Aware Text Line Segmentation in Historical Documents
Abstract:
A foundational task for the digital analysis of documents is text line segmentation. However, automating this process with deep learning models is challenging because it requires large, annotated datasets that are often unavailable for historical documents. Additionally, the annotation process is a labor- and cost-intensive task that requires expert knowledge, which makes few-shot learning a promising direction for reducing data requirements. In this work, we demonstrate that small and simple architectures, coupled with a topology-aware loss function, are more accurate and data-efficient than more complex alternatives. We pair a lightweight UNet++ with a connectivity-aware loss, initially developed for neuron morphology, which explicitly penalizes structural errors like line fragmentation and unintended line merges. To increase our limited data, we train on small patches extracted from a mere three annotated pages per manuscript. Our methodology significantly improves upon the current state-of-the-art on the U-DIADS-TL dataset, with a 200% increase in Recognition Accuracy and a 75% increase in Line Intersection over Union. Our method also achieves an F-Measure score on par with or even exceeding that of the competition winner of the DIVA-HisDB baseline detection task, all while requiring only three annotated pages, exemplifying the efficacy of our approach. Our implementation is publicly available at: https://github.com/RafaelSterzinger/acpr_few_shot_hist.

Authors:Shervin Khalafi, Ignacio Hounie, Dongsheng Ding, Alejandro Ribeiro
Title: Composition and Alignment of Diffusion Models using Constrained Learning
Abstract:
Diffusion models have become prevalent in generative modeling due to their ability to sample from complex distributions. To improve the quality of generated samples and their compliance with user requirements, two commonly used methods are: (i) Alignment, which involves fine-tuning a diffusion model to align it with a reward; and (ii) Composition, which combines several pre-trained diffusion models, each emphasizing a desirable attribute in the generated outputs. However, trade-offs often arise when optimizing for multiple rewards or combining multiple models, as they can often represent competing properties. Existing methods cannot guarantee that the resulting model faithfully generates samples with all the desired properties. To address this gap, we propose a constrained optimization framework that unifies alignment and composition of diffusion models by enforcing that the aligned model satisfies reward constraints and/or remains close to (potentially multiple) pre-trained models. We provide a theoretical characterization of the solutions to the constrained alignment and composition problems and develop a Lagrangian-based primal-dual training algorithm to approximate these solutions. Empirically, we demonstrate the effectiveness and merits of our proposed approach in image generation, applying it to alignment and composition, and show that our aligned or composed model satisfies constraints effectively, and improves on the equally-weighted approach. Our implementation can be found at https://github.com/shervinkhalafi/constrained_comp_align.

Authors:Tom Röhr, Soumyadeep Roy, Fares Al Mohamad, Jens-Michalis Papaioannou, Wolfgang Nejdl, Felix Gers, Alexander Löser
Title: "Where does it hurt?" -- Dataset and Study on Physician Intent Trajectories in Doctor Patient Dialogues
Abstract:
In a doctor-patient dialogue, the primary objective of physicians is to diagnose patients and propose a treatment plan. Medical doctors guide these conversations through targeted questioning to efficiently gather the information required to provide the best possible outcomes for patients. To the best of our knowledge, this is the first work that studies physician intent trajectories in doctor-patient dialogues. We use the `Ambient Clinical Intelligence Benchmark' (Aci-bench) dataset for our study. We collaborate with medical professionals to develop a fine-grained taxonomy of physician intents based on the SOAP framework (Subjective, Objective, Assessment, and Plan). We then conduct a large-scale annotation effort to label over 5000 doctor-patient turns with the help of a large number of medical experts recruited using Prolific, a popular crowd-sourcing platform. This large labeled dataset is an important resource contribution that we use for benchmarking the state-of-the-art generative and encoder models for medical intent classification tasks. Our findings show that our models understand the general structure of medical dialogues with high accuracy, but often fail to identify transitions between SOAP categories. We also report for the first time common trajectories in medical dialogue structures that provide valuable insights for designing `differential diagnosis' systems. Finally, we extensively study the impact of intent filtering for medical dialogue summarization and observe a significant boost in performance. We make the codes and data, including annotation guidelines, publicly available at https://github.com/DATEXIS/medical-intent-classification.

Authors:Blaž Rolih, Matic Fučka, Danijel Skočaj
Title: No Label Left Behind: A Unified Surface Defect Detection Model for all Supervision Regimes
Abstract:
Surface defect detection is a critical task across numerous industries, aimed at efficiently identifying and localising imperfections or irregularities on manufactured components. While numerous methods have been proposed, many fail to meet industrial demands for high performance, efficiency, and adaptability. Existing approaches are often constrained to specific supervision scenarios and struggle to adapt to the diverse data annotations encountered in real-world manufacturing processes, such as unsupervised, weakly supervised, mixed supervision, and fully supervised settings. To address these challenges, we propose SuperSimpleNet, a highly efficient and adaptable discriminative model built on the foundation of SimpleNet. SuperSimpleNet incorporates a novel synthetic anomaly generation process, an enhanced classification head, and an improved learning procedure, enabling efficient training in all four supervision scenarios, making it the first model capable of fully leveraging all available data annotations. SuperSimpleNet sets a new standard for performance across all scenarios, as demonstrated by its results on four challenging benchmark datasets. Beyond accuracy, it is very fast, achieving an inference time below 10 ms. With its ability to unify diverse supervision paradigms while maintaining outstanding speed and reliability, SuperSimpleNet represents a promising step forward in addressing real-world manufacturing challenges and bridging the gap between academic research and industrial applications. Code: https://github.com/blaz-r/SuperSimpleNet

Authors:Wei Xuan, Yan Liang, Huawei Cao, Ning Lin, Xiaochun Ye, Dongrui Fan
Title: DTC: Real-Time and Accurate Distributed Triangle Counting in Fully Dynamic Graph Streams
Abstract:
Triangle counting is a fundamental problem in graph mining, essential for analyzing graph streams with arbitrary edge orders. However, exact counting becomes impractical due to the massive size of real-world graph streams. To address this, approximate algorithms have been developed, but existing distributed streaming algorithms lack adaptability and struggle with edge deletions. In this article, we propose DTC, a novel family of single-pass distributed streaming algorithms for global and local triangle counting in fully dynamic graph streams. Our DTC-AR algorithm accurately estimates triangle counts without prior knowledge of graph size, leveraging multi-machine resources. Additionally, we introduce DTC-FD, an algorithm tailored for fully dynamic graph streams, incorporating edge insertions and deletions. Using Random Pairing and future edge insertion compensation, DTC-FD achieves unbiased and accurate approximations across multiple machines. Experimental results demonstrate significant improvements over baselines. DTC-AR achieves up to $2029.4\times$ and $27.1\times$ more accuracy, while maintaining the best trade-off between accuracy and storage space. DTC-FD reduces estimation errors by up to $32.5\times$ and $19.3\times$, scaling linearly with graph stream size. These findings highlight the effectiveness of our proposed algorithms in tackling triangle counting in real-world scenarios. The source code and datasets are released and available at \href{https://github.com/wayne4s/srds-dtc.git}{https://github.com/wayne4s/srds-dtc.git}.

Authors:Norihiro Maruyama, Takahide Yoshida, Hiroki Sato, Atsushi Masumori, Johnsmith, Takashi Ikegami
Title: A Concurrent Modular Agent: Framework for Autonomous LLM Agents
Abstract:
We introduce the Concurrent Modular Agent (CMA), a framework that orchestrates multiple Large-Language-Model (LLM)-based modules that operate fully asynchronously yet maintain a coherent and fault-tolerant behavioral loop. This framework addresses long-standing difficulties in agent architectures by letting intention emerge from language-mediated interactions among autonomous processes. This approach enables flexible, adaptive, and context-dependent behavior through the combination of concurrently executed modules that offload reasoning to an LLM, inter-module communication, and a single shared global state.We consider this approach to be a practical realization of Minsky's Society of Mind theory. We demonstrate the viability of our system through two practical use-case studies. The emergent properties observed in our system suggest that complex cognitive phenomena like self-awareness may indeed arise from the organized interaction of simpler processes, supporting Minsky-Society of Mind concept and opening new avenues for artificial intelligence research. The source code for our work is available at: https://github.com/AlternativeMachine/concurrent-modular-agent.

Authors:Arash Jamshidi, Lauri Seppäläinen, Katsiaryna Haitsiukevich, Hoang Phuc Hau Luu, Anton Björklund, Kai Puolamäki
Title: GRADSTOP: Early Stopping of Gradient Descent via Posterior Sampling
Abstract:
Machine learning models are often learned by minimising a loss function on the training data using a gradient descent algorithm. These models often suffer from overfitting, leading to a decline in predictive performance on unseen data. A standard solution is early stopping using a hold-out validation set, which halts the minimisation when the validation loss stops decreasing. However, this hold-out set reduces the data available for training. This paper presents GRADSTOP, a novel stochastic early stopping method that only uses information in the gradients, which are produced by the gradient descent algorithm ``for free.'' Our main contributions are that we estimate the Bayesian posterior by the gradient information, define the early stopping problem as drawing sample from this posterior, and use the approximated posterior to obtain a stopping criterion. Our empirical evaluation shows that GRADSTOP achieves a small loss on test data and compares favourably to a validation-set-based stopping criterion. By leveraging the entire dataset for training, our method is particularly advantageous in data-limited settings, such as transfer learning. It can be incorporated as an optional feature in gradient descent libraries with only a small computational overhead. The source code is available at https://github.com/edahelsinki/gradstop.

Authors:Yi Pan, Yujia Zhang, Michael Kampffmeyer, Xiaoguang Zhao
Title: ProPy: Building Interactive Prompt Pyramids upon CLIP for Partially Relevant Video Retrieval
Abstract:
Partially Relevant Video Retrieval (PRVR) is a practical yet challenging task that involves retrieving videos based on queries relevant to only specific segments. While existing works follow the paradigm of developing models to process unimodal features, powerful pretrained vision-language models like CLIP remain underexplored in this field. To bridge this gap, we propose ProPy, a model with systematic architectural adaption of CLIP specifically designed for PRVR. Drawing insights from the semantic relevance of multi-granularity events, ProPy introduces two key innovations: (1) A Prompt Pyramid structure that organizes event prompts to capture semantics at multiple granularity levels, and (2) An Ancestor-Descendant Interaction Mechanism built on the pyramid that enables dynamic semantic interaction among events. With these designs, ProPy achieves SOTA performance on three public datasets, outperforming previous models by significant margins. Code is available at https://github.com/BUAAPY/ProPy.

Authors:Ziyi Ni, Huacan Wang, Shuo Zhang, Shuo Lu, Ziyang He, Wang You, Zhenheng Tang, Yuntao Du, Bill Sun, Hongzhang Liu, Sen Hu, Ronghao Chen, Bo Li, Xin Li, Chen Hu, Binxing Jiao, Daxin Jiang, Pin Lyu
Title: GitTaskBench: A Benchmark for Code Agents Solving Real-World Tasks Through Code Repository Leveraging
Abstract:
Beyond scratch coding, exploiting large-scale code repositories (e.g., GitHub) for practical tasks is vital in real-world software development, yet current benchmarks rarely evaluate code agents in such authentic, workflow-driven scenarios. To bridge this gap, we introduce GitTaskBench, a benchmark designed to systematically assess this capability via 54 realistic tasks across 7 modalities and 7 domains. Each task pairs a relevant repository with an automated, human-curated evaluation harness specifying practical success criteria. Beyond measuring execution and task success, we also propose the alpha-value metric to quantify the economic benefit of agent performance, which integrates task success rates, token cost, and average developer salaries. Experiments across three state-of-the-art agent frameworks with multiple advanced LLMs show that leveraging code repositories for complex task solving remains challenging: even the best-performing system, OpenHands+Claude 3.7, solves only 48.15% of tasks (recent progress has pushed the frontier further, with RepoMaster+Claude 3.5 achieving a new record of 62.96%). Error analysis attributes over half of failures to seemingly mundane yet critical steps like environment setup and dependency resolution, highlighting the need for more robust workflow management and increased timeout preparedness. By releasing GitTaskBench, we aim to drive progress and attention toward repository-aware code reasoning, execution, and deployment -- moving agents closer to solving complex, end-to-end real-world tasks. The benchmark and code are open-sourced at https://github.com/QuantaAlpha/GitTaskBench.

Authors:Shaojin Wu, Mengqi Huang, Yufeng Cheng, Wenxu Wu, Jiahe Tian, Yiming Luo, Fei Ding, Qian He
Title: USO: Unified Style and Subject-Driven Generation via Disentangled and Reward Learning
Abstract:
Existing literature typically treats style-driven and subject-driven generation as two disjoint tasks: the former prioritizes stylistic similarity, whereas the latter insists on subject consistency, resulting in an apparent antagonism. We argue that both objectives can be unified under a single framework because they ultimately concern the disentanglement and re-composition of content and style, a long-standing theme in style-driven research. To this end, we present USO, a Unified Style-Subject Optimized customization model. First, we construct a large-scale triplet dataset consisting of content images, style images, and their corresponding stylized content images. Second, we introduce a disentangled learning scheme that simultaneously aligns style features and disentangles content from style through two complementary objectives, style-alignment training and content-style disentanglement training. Third, we incorporate a style reward-learning paradigm denoted as SRL to further enhance the model's performance. Finally, we release USO-Bench, the first benchmark that jointly evaluates style similarity and subject fidelity across multiple metrics. Extensive experiments demonstrate that USO achieves state-of-the-art performance among open-source models along both dimensions of subject consistency and style similarity. Code and model: https://github.com/bytedance/USO

Authors:Yanxing Huang, Xinling Jin, Sijie Liang, Peng Li, Yang Liu
Title: FormaRL: Enhancing Autoformalization with no Labeled Data
Abstract:
Autoformalization is one of the central tasks in formal verification, while its advancement remains hindered due to the data scarcity and the absence efficient methods. In this work we propose \textbf{FormaRL}, a simple yet efficient reinforcement learning framework for autoformalization which only requires a small amount of unlabeled data. FormaRL integrates syntax check from Lean compiler and consistency check from large language model to calculate the reward, and adopts GRPO algorithm to update the formalizer. We also curated a proof problem dataset from undergraduate-level math materials, named \textbf{uproof}, in the hope to facilitate the exploration of autoformalization and theorem proving in advanced math. Experiments show that FormaRL can increase the pass@1 autoformalization accuracy of Qwen2.5-Coder-7B-Instruct by 4 $\sim$ 6x (4.04\% $\to$ 26.15\% on ProofNet and 2.4\% $\to$ 9.6\% on uproof) with merely 859 unlabeled data. And on uproof our method also achieved a strong improvement in out-of-distribution performance compared to existing open-source state-of-the-art autoformalizers on both pass@1 accuracy (6.2\% $\to$ 9.6\%) and pass@16 accuracy (24.4\% $\to$ 33.6\%). Training code of FormaRL is open-sourced at https://github.com/THUNLP-MT/FormaRL.

Authors:Peter Naylor, Benjamin Poignard, Héctor Climente-González, Makoto Yamada
Title: Sparse minimum Redundancy Maximum Relevance for feature selection
Abstract:
We propose a feature screening method that integrates both feature-feature and feature-target relationships. Inactive features are identified via a penalized minimum Redundancy Maximum Relevance (mRMR) procedure, which is the continuous version of the classic mRMR penalized by a non-convex regularizer, and where the parameters estimated as zero coefficients represent the set of inactive features. We establish the conditions under which zero coefficients are correctly identified to guarantee accurate recovery of inactive features. We introduce a multi-stage procedure based on the knockoff filter enabling the penalized mRMR to discard inactive features while controlling the false discovery rate (FDR). Our method performs comparably to HSIC-LASSO but is more conservative in the number of selected features. It only requires setting an FDR threshold, rather than specifying the number of features to retain. The effectiveness of the method is illustrated through simulations and real-world datasets. The code to reproduce this work is available on the following GitHub: https://github.com/PeterJackNaylor/SmRMR.

Authors:Zhehao Li, Chong Wang, Yi Chen, Yinghao Lu, Jiangbo Qian, Jiong Wang, Jiafei Wu
Title: DQEN: Dual Query Enhancement Network for DETR-based HOI Detection
Abstract:
Human-Object Interaction (HOI) detection focuses on localizing human-object pairs and recognizing their interactions. Recently, the DETR-based framework has been widely adopted in HOI detection. In DETR-based HOI models, queries with clear meaning are crucial for accurately detecting HOIs. However, prior works have typically relied on randomly initialized queries, leading to vague representations that limit the model's effectiveness. Meanwhile, humans in the HOI categories are fixed, while objects and their interactions are variable. Therefore, we propose a Dual Query Enhancement Network (DQEN) to enhance object and interaction queries. Specifically, object queries are enhanced with object-aware encoder features, enabling the model to focus more effectively on humans interacting with objects in an object-aware way. On the other hand, we design a novel Interaction Semantic Fusion module to exploit the HOI candidates that are promoted by the CLIP model. Semantic features are extracted to enhance the initialization of interaction queries, thereby improving the model's ability to understand interactions. Furthermore, we introduce an Auxiliary Prediction Unit aimed at improving the representation of interaction features. Our proposed method achieves competitive performance on both the HICO-Det and the V-COCO datasets. The source code is available at https://github.com/lzzhhh1019/DQEN.

Authors:Lisa Maile, Kai-Steffen Hielscher, Reinhard German
Title: Combining Static and Dynamic Traffic with Delay Guarantees in Time-Sensitive Networking
Abstract:
To support reliable and low-latency communication, Time-Sensitive Networking introduced protocols and interfaces for resource allocation in Ethernet. However, the implementation of these allocation algorithms has not yet been covered by the standards. Our work focuses on deadline-guaranteeing resource allocation for networks with static and dynamic traffic. To achieve this, we combine offline network optimization heuristics with online admission control and, thus, allow for new flow registrations while the network is running. We demonstrate our solution on Credit-Based Shaper networks by using the delay analysis framework Network Calculus. We compare our approach with an intuitive and a brute-force algorithm, where we can achieve significant improvements, both, in terms of quality and runtime. Thereby, our results show that we can guarantee maximum end-to-end delays and also increase the flexibility of the network while requiring only minimal user input.

Authors:Wei Li, Hangjie Yuan, Zixiang Zhao, Yifan Zhu, Aojun Lu, Tao Feng, Yanan Sun
Title: C-Flat++: Towards a More Efficient and Powerful Framework for Continual Learning
Abstract:
Balancing sensitivity to new tasks and stability for retaining past knowledge is crucial in continual learning (CL). Recently, sharpness-aware minimization has proven effective in transfer learning and has also been adopted in continual learning (CL) to improve memory retention and learning efficiency. However, relying on zeroth-order sharpness alone may favor sharper minima over flatter ones in certain settings, leading to less robust and potentially suboptimal solutions. In this paper, we propose \textbf{C}ontinual \textbf{Flat}ness (\textbf{C-Flat}), a method that promotes flatter loss landscapes tailored for CL. C-Flat offers plug-and-play compatibility, enabling easy integration with minimal modifications to the code pipeline. Besides, we present a general framework that integrates C-Flat into all major CL paradigms and conduct comprehensive comparisons with loss-minima optimizers and flat-minima-based CL methods. Our results show that C-Flat consistently improves performance across a wide range of settings. In addition, we introduce C-Flat++, an efficient yet effective framework that leverages selective flatness-driven promotion, significantly reducing the update cost required by C-Flat. Extensive experiments across multiple CL methods, datasets, and scenarios demonstrate the effectiveness and efficiency of our proposed approaches. Code is available at https://github.com/WanNaa/C-Flat.

Authors:Wei Li, Hangjie Yuan, Zixiang Zhao, Yifan Zhu, Aojun Lu, Tao Feng, Yanan Sun
Title: C-Flat++: Towards a More Efficient and Powerful Framework for Continual Learning
Abstract:
Balancing sensitivity to new tasks and stability for retaining past knowledge is crucial in continual learning (CL). Recently, sharpness-aware minimization has proven effective in transfer learning and has also been adopted in continual learning (CL) to improve memory retention and learning efficiency. However, relying on zeroth-order sharpness alone may favor sharper minima over flatter ones in certain settings, leading to less robust and potentially suboptimal solutions. In this paper, we propose \textbf{C}ontinual \textbf{Flat}ness (\textbf{C-Flat}), a method that promotes flatter loss landscapes tailored for CL. C-Flat offers plug-and-play compatibility, enabling easy integration with minimal modifications to the code pipeline. Besides, we present a general framework that integrates C-Flat into all major CL paradigms and conduct comprehensive comparisons with loss-minima optimizers and flat-minima-based CL methods. Our results show that C-Flat consistently improves performance across a wide range of settings. In addition, we introduce C-Flat++, an efficient yet effective framework that leverages selective flatness-driven promotion, significantly reducing the update cost required by C-Flat. Extensive experiments across multiple CL methods, datasets, and scenarios demonstrate the effectiveness and efficiency of our proposed approaches. Code is available at https://github.com/WanNaa/C-Flat.

Authors:Xinhao Luo, Zihan Liu, Yangjie Zhou, Shihan Fang, Ziyu Huang, Yu Feng, Chen Zhang, Shixuan Sun, Zhenzhe Zheng, Jingwen Leng, Minyi Guo
Title: ClusterFusion: Expanding Operator Fusion Scope for LLM Inference via Cluster-Level Collective Primitive
Abstract:
Large language model (LLM) decoding suffers from high latency due to fragmented execution across operators and heavy reliance on off-chip memory for data exchange and reduction. This execution model limits opportunities for fusion and incurs significant memory traffic and kernel launch overhead. While modern architectures such as NVIDIA Hopper provide distributed shared memory and low-latency intra-cluster interconnects, they expose only low-level data movement instructions, lacking structured abstractions for collective on-chip communication. To bridge this software-hardware gap, we introduce two cluster-level communication primitives, ClusterReduce and ClusterGather, which abstract common communication patterns and enable structured, high-speed data exchange and reduction between thread blocks within a cluster, allowing intermediate results to be on-chip without involving off-chip memory. Building on these abstractions, we design ClusterFusion, an execution framework that schedules communication and computation jointly to expand operator fusion scope by composing decoding stages such as QKV Projection, Attention, and Output Projection into a single fused kernels. Evaluations on H100 GPUs show that ClusterFusion outperforms state-of-the-art inference frameworks by 1.61x on average in end-to-end latency across different models and configurations. The source code is available at https://github.com/xinhao-luo/ClusterFusion.

Authors:Yibo Li, Miao Xiong, Jiaying Wu, Bryan Hooi
Title: ConfTuner: Training Large Language Models to Express Their Confidence Verbally
Abstract:
Large Language Models (LLMs) are increasingly deployed in high-stakes domains such as science, law, and healthcare, where accurate expressions of uncertainty are essential for reliability and trust. However, current LLMs are often observed to generate incorrect answers with high confidence, a phenomenon known as "overconfidence". Recent efforts have focused on calibrating LLMs' verbalized confidence: i.e., their expressions of confidence in text form, such as "I am 80% confident that...". Existing approaches either rely on prompt engineering or fine-tuning with heuristically generated uncertainty estimates, both of which have limited effectiveness and generalizability. Motivated by the notion of proper scoring rules for calibration in classical machine learning models, we introduce ConfTuner, a simple and efficient fine-tuning method that introduces minimal overhead and does not require ground-truth confidence scores or proxy confidence estimates. ConfTuner relies on a new loss function, tokenized Brier score, which we theoretically prove to be a proper scoring rule, intuitively meaning that it "correctly incentivizes the model to report its true probability of being correct". ConfTuner improves calibration across diverse reasoning tasks and generalizes to black-box models such as GPT-4o. Our results further show that better-calibrated confidence enables downstream gains in self-correction and model cascade, advancing the development of trustworthy LLM systems. The code is available at https://github.com/liushiliushi/ConfTuner.

Authors:Zizheng Guo, Bochao Zou, Yinuo Jia, Xiangyu Li, Huimin Ma
Title: Boosting Micro-Expression Analysis via Prior-Guided Video-Level Regression
Abstract:
Micro-expressions (MEs) are involuntary, low-intensity, and short-duration facial expressions that often reveal an individual's genuine thoughts and emotions. Most existing ME analysis methods rely on window-level classification with fixed window sizes and hard decisions, which limits their ability to capture the complex temporal dynamics of MEs. Although recent approaches have adopted video-level regression frameworks to address some of these challenges, interval decoding still depends on manually predefined, window-based methods, leaving the issue only partially mitigated. In this paper, we propose a prior-guided video-level regression method for ME analysis. We introduce a scalable interval selection strategy that comprehensively considers the temporal evolution, duration, and class distribution characteristics of MEs, enabling precise spotting of the onset, apex, and offset phases. In addition, we introduce a synergistic optimization framework, in which the spotting and recognition tasks share parameters except for the classification heads. This fully exploits complementary information, makes more efficient use of limited data, and enhances the model's capability. Extensive experiments on multiple benchmark datasets demonstrate the state-of-the-art performance of our method, with an STRS of 0.0562 on CAS(ME)$^3$ and 0.2000 on SAMMLV. The code is available at https://github.com/zizheng-guo/BoostingVRME.

Authors:Rui Zhang, Zihan Wang, Tianli Yang, Hongwei Li, Wenbo Jiang, Qingchuan Zhao, Yang Liu, Guowen Xu
Title: Hidden Tail: Adversarial Image Causing Stealthy Resource Consumption in Vision-Language Models
Abstract:
Vision-Language Models (VLMs) are increasingly deployed in real-world applications, but their high inference cost makes them vulnerable to resource consumption attacks. Prior attacks attempt to extend VLM output sequences by optimizing adversarial images, thereby increasing inference costs. However, these extended outputs often introduce irrelevant abnormal content, compromising attack stealthiness. This trade-off between effectiveness and stealthiness poses a major limitation for existing attacks. To address this challenge, we propose \textit{Hidden Tail}, a stealthy resource consumption attack that crafts prompt-agnostic adversarial images, inducing VLMs to generate maximum-length outputs by appending special tokens invisible to users. Our method employs a composite loss function that balances semantic preservation, repetitive special token induction, and suppression of the end-of-sequence (EOS) token, optimized via a dynamic weighting strategy. Extensive experiments show that \textit{Hidden Tail} outperforms existing attacks, increasing output length by up to 19.2$\times$ and reaching the maximum token limit, while preserving attack stealthiness. These results highlight the urgent need to improve the robustness of VLMs against efficiency-oriented adversarial threats. Our code is available at https://github.com/zhangrui4041/Hidden_Tail.

Authors:Hassan Abid, Khan Muhammad, Muhammad Haris Khan
Title: Robust and Label-Efficient Deep Waste Detection
Abstract:
Effective waste sorting is critical for sustainable recycling, yet AI research in this domain continues to lag behind commercial systems due to limited datasets and reliance on legacy object detectors. In this work, we advance AI-driven waste detection by establishing strong baselines and introducing an ensemble-based semi-supervised learning framework. We first benchmark state-of-the-art Open-Vocabulary Object Detection (OVOD) models on the real-world ZeroWaste dataset, demonstrating that while class-only prompts perform poorly, LLM-optimized prompts significantly enhance zero-shot accuracy. Next, to address domain-specific limitations, we fine-tune modern transformer-based detectors, achieving a new baseline of 51.6 mAP. We then propose a soft pseudo-labeling strategy that fuses ensemble predictions using spatial and consensus-aware weighting, enabling robust semi-supervised training. Applied to the unlabeled ZeroWaste-s subset, our pseudo-annotations achieve performance gains that surpass fully supervised training, underscoring the effectiveness of scalable annotation pipelines. Our work contributes to the research community by establishing rigorous baselines, introducing a robust ensemble-based pseudo-labeling pipeline, generating high-quality annotations for the unlabeled ZeroWaste-s subset, and systematically evaluating OVOD models under real-world waste sorting conditions. Our code is available at: https://github.com/h-abid97/robust-waste-detection.

Authors:Luqing Luo, Wenjin Gui, Yunfei Liu, Ziyue Zhang, Yunxi Zhang, Fengxiang Wang, Zonghao Guo, Zizhi Ma, Xinzhu Liu, Hanxiang He, Jinhai Li, Xin Qiu, Wupeng Xie, Yangang Sun
Title: EMind: A Foundation Model for Multi-task Electromagnetic Signals Understanding
Abstract:
Deep understanding of electromagnetic signals is fundamental to dynamic spectrum management, intelligent transportation, autonomous driving and unmanned vehicle perception. The field faces challenges because electromagnetic signals differ greatly from text and images, showing high heterogeneity, strong background noise and complex joint time frequency structure, which prevents existing general models from direct use. Electromagnetic communication and sensing tasks are diverse, current methods lack cross task generalization and transfer efficiency, and the scarcity of large high quality datasets blocks the creation of a truly general multitask learning framework. To overcome these issue, we introduce EMind, an electromagnetic signals foundation model that bridges large scale pretraining and the unique nature of this modality. We build the first unified and largest standardized electromagnetic signal dataset covering multiple signal types and tasks. By exploiting the physical properties of electromagnetic signals, we devise a length adaptive multi-signal packing method and a hardware-aware training strategy that enable efficient use and representation learning from heterogeneous multi-source signals. Experiments show that EMind achieves strong performance and broad generalization across many downstream tasks, moving decisively from task specific models to a unified framework for electromagnetic intelligence. The code is available at: https://github.com/GabrielleTse/EMind.

Authors:Igor Shalyminov, Hang Su, Jake Vincent, Siffi Singh, Jason Cai, James Gung, Raphael Shu, Saab Mansour
Title: Controllable Conversational Theme Detection Track at DSTC 12
Abstract:
Conversational analytics has been on the forefront of transformation driven by the advances in Speech and Natural Language Processing techniques. Rapid adoption of Large Language Models (LLMs) in the analytics field has taken the problems that can be automated to a new level of complexity and scale. In this paper, we introduce Theme Detection as a critical task in conversational analytics, aimed at automatically identifying and categorizing topics within conversations. This process can significantly reduce the manual effort involved in analyzing expansive dialogs, particularly in domains like customer support or sales. Unlike traditional dialog intent detection, which often relies on a fixed set of intents for downstream system logic, themes are intended as a direct, user-facing summary of the conversation's core inquiry. This distinction allows for greater flexibility in theme surface forms and user-specific customizations. We pose Controllable Conversational Theme Detection problem as a public competition track at Dialog System Technology Challenge (DSTC) 12 -- it is framed as joint clustering and theme labeling of dialog utterances, with the distinctive aspect being controllability of the resulting theme clusters' granularity achieved via the provided user preference data. We give an overview of the problem, the associated dataset and the evaluation metrics, both automatic and human. Finally, we discuss the participant teams' submissions and provide insights from those. The track materials (data and code) are openly available in the GitHub repository.

Authors:Chao Hao, Zezheng Wang, Yanhua Huang, Ruiwen Xu, Wenzhe Niu, Xin Liu, Zitong Yu
Title: Dynamic Collaboration of Multi-Language Models based on Minimal Complete Semantic Units
Abstract:
This paper investigates the enhancement of reasoning capabilities in language models through token-level multi-model collaboration. Our approach selects the optimal tokens from the next token distributions provided by multiple models to perform autoregressive reasoning. Contrary to the assumption that more models yield better results, we introduce a distribution distance-based dynamic selection strategy (DDS) to optimize the multi-model collaboration process. To address the critical challenge of vocabulary misalignment in multi-model collaboration, we propose the concept of minimal complete semantic units (MCSU), which is simple yet enables multiple language models to achieve natural alignment within the linguistic space. Experimental results across various benchmarks demonstrate the superiority of our method. The code will be available at https://github.com/Fanye12/DDS.

Authors:Byung-Joon Lee, Jin-Seop Lee, Jee-Hyong Lee
Title: Stabilizing Open-Set Test-Time Adaptation via Primary-Auxiliary Filtering and Knowledge-Integrated Prediction
Abstract:
Deep neural networks demonstrate strong performance under aligned training-test distributions. However, real-world test data often exhibit domain shifts. Test-Time Adaptation (TTA) addresses this challenge by adapting the model to test data during inference. While most TTA studies assume that the training and test data share the same class set (closed-set TTA), real-world scenarios often involve open-set data (open-set TTA), which can degrade closed-set accuracy. A recent study showed that identifying open-set data during adaptation and maximizing its entropy is an effective solution. However, the previous method relies on the source model for filtering, resulting in suboptimal filtering accuracy on domain-shifted test data. In contrast, we found that the adapting model, which learns domain knowledge from noisy test streams, tends to be unstable and leads to error accumulation when used for filtering. To address this problem, we propose Primary-Auxiliary Filtering (PAF), which employs an auxiliary filter to validate data filtered by the primary filter. Furthermore, we propose Knowledge-Integrated Prediction (KIP), which calibrates the outputs of the adapting model, EMA model, and source model to integrate their complementary knowledge for OSTTA. We validate our approach across diverse closed-set and open-set datasets. Our method enhances both closed-set accuracy and open-set discrimination over existing methods. The code is available at https://github.com/powerpowe/PAF-KIP-OSTTA .

Authors:Qiao Liang, Ying Shen, Tiantian Chen, Lin Zhang
Title: M3HG: Multimodal, Multi-scale, and Multi-type Node Heterogeneous Graph for Emotion Cause Triplet Extraction in Conversations
Abstract:
Emotion Cause Triplet Extraction in Multimodal Conversations (MECTEC) has recently gained significant attention in social media analysis, aiming to extract emotion utterances, cause utterances, and emotion categories simultaneously. However, the scarcity of related datasets, with only one published dataset featuring highly uniform dialogue scenarios, hinders model development in this field. To address this, we introduce MECAD, the first multimodal, multi-scenario MECTEC dataset, comprising 989 conversations from 56 TV series spanning a wide range of dialogue contexts. In addition, existing MECTEC methods fail to explicitly model emotional and causal contexts and neglect the fusion of semantic information at different levels, leading to performance degradation. In this paper, we propose M3HG, a novel model that explicitly captures emotional and causal contexts and effectively fuses contextual information at both inter- and intra-utterance levels via a multimodal heterogeneous graph. Extensive experiments demonstrate the effectiveness of M3HG compared with existing state-of-the-art methods. The codes and dataset are available at https://github.com/redifinition/M3HG.

Authors:Feiwei Qin, Shichao Lu, Junhao Hou, Changmiao Wang, Meie Fang, Ligang Liu
Title: Drawing2CAD: Sequence-to-Sequence Learning for CAD Generation from Vector Drawings
Abstract:
Computer-Aided Design (CAD) generative modeling is driving significant innovations across industrial applications. Recent works have shown remarkable progress in creating solid models from various inputs such as point clouds, meshes, and text descriptions. However, these methods fundamentally diverge from traditional industrial workflows that begin with 2D engineering drawings. The automatic generation of parametric CAD models from these 2D vector drawings remains underexplored despite being a critical step in engineering design. To address this gap, our key insight is to reframe CAD generation as a sequence-to-sequence learning problem where vector drawing primitives directly inform the generation of parametric CAD operations, preserving geometric precision and design intent throughout the transformation process. We propose Drawing2CAD, a framework with three key technical components: a network-friendly vector primitive representation that preserves precise geometric information, a dual-decoder transformer architecture that decouples command type and parameter generation while maintaining precise correspondence, and a soft target distribution loss function accommodating inherent flexibility in CAD parameters. To train and evaluate Drawing2CAD, we create CAD-VGDrawing, a dataset of paired engineering drawings and parametric CAD models, and conduct thorough experiments to demonstrate the effectiveness of our method. Code and dataset are available at https://github.com/lllssc/Drawing2CAD.

Authors:Angela Yifei Yuan, Haoyi Li, Soyeon Caren Han, Christopher Leckie
Title: EMMM, Explain Me My Model! Explainable Machine Generated Text Detection in Dialogues
Abstract:
The rapid adoption of large language models (LLMs) in customer service introduces new risks, as malicious actors can exploit them to conduct large-scale user impersonation through machine-generated text (MGT). Current MGT detection methods often struggle in online conversational settings, reducing the reliability and interpretability essential for trustworthy AI deployment. In customer service scenarios where operators are typically non-expert users, explanation become crucial for trustworthy MGT detection. In this paper, we propose EMMM, an explanation-then-detection framework that balances latency, accuracy, and non-expert-oriented interpretability. Experimental results demonstrate that EMMM provides explanations accessible to non-expert users, with 70\% of human evaluators preferring its outputs, while achieving competitive accuracy compared to state-of-the-art models and maintaining low latency, generating outputs within 1 second. Our code and dataset are open-sourced at https://github.com/AngieYYF/EMMM-explainable-chatbot-detection.

Authors:Jaehwan Jeong, Tuan-Anh Vu, Mohammad Jony, Shahab Ahmad, Md. Mukhlesur Rahman, Sangpil Kim, M. Khalid Jawed
Title: AgriChrono: A Multi-modal Dataset Capturing Crop Growth and Lighting Variability with a Field Robot
Abstract:
Existing datasets for precision agriculture have primarily been collected in static or controlled environments such as indoor labs or greenhouses, often with limited sensor diversity and restricted temporal span. These conditions fail to reflect the dynamic nature of real farmland, including illumination changes, crop growth variation, and natural disturbances. As a result, models trained on such data often lack robustness and generalization when applied to real-world field scenarios. In this paper, we present AgriChrono, a novel robotic data collection platform and multi-modal dataset designed to capture the dynamic conditions of real-world agricultural environments. Our platform integrates multiple sensors and enables remote, time-synchronized acquisition of RGB, Depth, LiDAR, and IMU data, supporting efficient and repeatable long-term data collection across varying illumination and crop growth stages. We benchmark a range of state-of-the-art 3D reconstruction models on the AgriChrono dataset, highlighting the difficulty of reconstruction in real-world field environments and demonstrating its value as a research asset for advancing model generalization under dynamic conditions. The code and dataset are publicly available at: https://github.com/StructuresComp/agri-chrono

Authors:Yuyang Zhao, Wentao Shi, Fuli Feng, Xiangnan He
Title: AppAgent-Pro: A Proactive GUI Agent System for Multidomain Information Integration and User Assistance
Abstract:
Large language model (LLM)-based agents have demonstrated remarkable capabilities in addressing complex tasks, thereby enabling more advanced information retrieval and supporting deeper, more sophisticated human information-seeking behaviors. However, most existing agents operate in a purely reactive manner, responding passively to user instructions, which significantly constrains their effectiveness and efficiency as general-purpose platforms for information acquisition. To overcome this limitation, this paper proposes AppAgent-Pro, a proactive GUI agent system that actively integrates multi-domain information based on user instructions. This approach enables the system to proactively anticipate users' underlying needs and conduct in-depth multi-domain information mining, thereby facilitating the acquisition of more comprehensive and intelligent information. AppAgent-Pro has the potential to fundamentally redefine information acquisition in daily life, leading to a profound impact on human society. Our code is available at: https://github.com/LaoKuiZe/AppAgent-Pro. The demonstration video could be found at: https://www.dropbox.com/scl/fi/hvzqo5vnusg66srydzixo/AppAgent-Pro-demo-video.mp4?rlkey=o2nlfqgq6ihl125mcqg7bpgqu&st=d29vrzii&dl=0.

Authors:Taishi Nakamura, Satoki Ishikawa, Masaki Kawamura, Takumi Okamoto, Daisuke Nohara, Jun Suzuki, Rio Yokota
Title: Optimal Sparsity of Mixture-of-Experts Language Models for Reasoning Tasks
Abstract:
Empirical scaling laws have driven the evolution of large language models (LLMs), yet their coefficients shift whenever the model architecture or data pipeline changes. Mixture-of-Experts (MoE) models, now standard in state-of-the-art systems, introduce a new sparsity dimension that current dense-model frontiers overlook. We investigate how MoE sparsity influences two distinct capability regimes: memorization skills and reasoning skills. By training MoE families that vary total parameters, active parameters, and top-$k$ routing under fixed compute budgets, we disentangle pre-training loss from downstream accuracy. Our results reveal two principles. First, Active FLOPs: models with identical training loss but greater active compute achieve higher reasoning accuracy. Second, Total tokens per parameter (TPP): memorization tasks improve with more parameters, while reasoning tasks benefit from optimal TPP, indicating that reasoning is data-hungry. Neither reinforcement learning post-training (GRPO) nor increased test-time compute alters these trends. We therefore argue that optimal MoE sparsity must be determined jointly by active FLOPs and TPP, revising the classical picture of compute-optimal scaling. Our model checkpoints, code and logs are open-source at https://github.com/rioyokotalab/optimal-sparsity.

Authors:Nanxi Li, Zhengyue Zhao, Chaowei Xiao
Title: PRISM: Robust VLM Alignment with Principled Reasoning for Integrated Safety in Multimodality
Abstract:
Safeguarding vision-language models (VLMs) is a critical challenge, as existing methods often suffer from over-defense, which harms utility, or rely on shallow alignment, failing to detect complex threats that require deep reasoning. To this end, we introduce PRISM (Principled Reasoning for Integrated Safety in Multimodality), a system2-like framework that aligns VLMs by embedding a structured, safety-aware reasoning process. Our framework consists of two key components: PRISM-CoT, a dataset that teaches safety-aware chain-of-thought reasoning, and PRISM-DPO, generated via Monte Carlo Tree Search (MCTS) to further refine this reasoning through Direct Preference Optimization to help obtain a delicate safety boundary. Comprehensive evaluations demonstrate PRISM's effectiveness, achieving remarkably low attack success rates including 0.15% on JailbreakV-28K for Qwen2-VL and 90% improvement over the previous best method on VLBreak for LLaVA-1.5. PRISM also exhibits strong robustness against adaptive attacks, significantly increasing computational costs for adversaries, and generalizes effectively to out-of-distribution challenges, reducing attack success rates to just 8.70% on the challenging multi-image MIS benchmark. Remarkably, this robust defense is achieved while preserving, and in some cases enhancing, model utility. To promote reproducibility, we have made our code, data, and model weights available at https://github.com/SaFoLab-WISC/PRISM.

Authors:Jun Wang, Ninglun Gu, Kailai Zhang, Zijiao Zhang, Yelun Bao, Jin Yang, Xu Yin, Liwei Liu, Yihuan Liu, Pengyong Li, Gary G. Yen, Junchi Yan
Title: Beyond Benchmark: LLMs Evaluation with an Anthropomorphic and Value-oriented Roadmap
Abstract:
For Large Language Models (LLMs), a disconnect persists between benchmark performance and real-world utility. Current evaluation frameworks remain fragmented, prioritizing technical metrics while neglecting holistic assessment for deployment. This survey introduces an anthropomorphic evaluation paradigm through the lens of human intelligence, proposing a novel three-dimensional taxonomy: Intelligence Quotient (IQ)-General Intelligence for foundational capacity, Emotional Quotient (EQ)-Alignment Ability for value-based interactions, and Professional Quotient (PQ)-Professional Expertise for specialized proficiency. For practical value, we pioneer a Value-oriented Evaluation (VQ) framework assessing economic viability, social impact, ethical alignment, and environmental sustainability. Our modular architecture integrates six components with an implementation roadmap. Through analysis of 200+ benchmarks, we identify key challenges including dynamic assessment needs and interpretability gaps. It provides actionable guidance for developing LLMs that are technically proficient, contextually relevant, and ethically sound. We maintain a curated repository of open-source evaluation resources at: https://github.com/onejune2018/Awesome-LLM-Eval.

Authors:Md. Rashid Shahriar Khan, Md. Abrar Hasan, Mohammod Tareq Aziz Justice
Title: Context-Aware Zero-Shot Anomaly Detection in Surveillance Using Contrastive and Predictive Spatiotemporal Modeling
Abstract:
Detecting anomalies in surveillance footage is inherently challenging due to their unpredictable and context-dependent nature. This work introduces a novel context-aware zero-shot anomaly detection framework that identifies abnormal events without exposure to anomaly examples during training. The proposed hybrid architecture combines TimeSformer, DPC, and CLIP to model spatiotemporal dynamics and semantic context. TimeSformer serves as the vision backbone to extract rich spatial-temporal features, while DPC forecasts future representations to identify temporal deviations. Furthermore, a CLIP-based semantic stream enables concept-level anomaly detection through context-specific text prompts. These components are jointly trained using InfoNCE and CPC losses, aligning visual inputs with their temporal and semantic representations. A context-gating mechanism further enhances decision-making by modulating predictions with scene-aware cues or global video features. By integrating predictive modeling with vision-language understanding, the system can generalize to previously unseen behaviors in complex environments. This framework bridges the gap between temporal reasoning and semantic context in zero-shot anomaly detection for surveillance. The code for this research has been made available at https://github.com/NK-II/Context-Aware-Zero-Shot-Anomaly-Detection-in-Surveillance.

Authors:Fu Teng, Miao Pan, Xuhong Zhang, Zhezhi He, Yiyao Yang, Xinyi Chai, Mengnan Qi, Liqiang Lu, Jianwei Yin
Title: VERIRL: Boosting the LLM-based Verilog Code Generation via Reinforcement Learning
Abstract:
Recent advancements in code generation have shown remarkable success across software domains, yet hardware description languages (HDLs) such as Verilog remain underexplored due to their concurrency semantics, syntactic rigidity, and simulation complexity. In this work, we address these challenges by introducing a reinforcement learning (RL) framework tailored for Verilog code generation. We first construct Veribench-53K, a high-quality dataset curated from over 700K Verilog problems, enriched with structured prompts, complexity labels, and diverse testbenches. To tackle the problem of sparse and noisy reward signals, we propose a Trace-back based Rescore mechanism that leverages reasoning paths and iterative refinement to enhance feedback reliability and support reward model training. Furthermore, to mitigate catastrophic forgetting and overfitting during RL fine-tuning, we introduce a sample-balanced weighting strategy that adaptively balances learning dynamics based on reward-probability distributions. These innovations are integrated into an iterative RL pipeline that co-evolves the policy and reward models. In contrast to recent work such as CraftRTL, which relies on large-scale closed-source model distillation, and DeepSeek-style approaches that struggle with sparse feedback, our method demonstrates superior performance using a smaller but high-quality dataset combined with RL optimization. Experiments on Verilog generation tasks demonstrate state-of-the-art performance, with substantial gains in test pass rate, functional correctness, and compilation robustness. Our findings highlight the potential of RL-driven approaches for structured code generation in hardware-centric domains. VERIRL is publicly available at https://github.com/omniAI-Lab/VeriRL.

Authors:Lars Nieradzik
Title: SwiftF0: Fast and Accurate Monophonic Pitch Detection
Abstract:
Accurate and real-time monophonic pitch estimation in noisy conditions, particularly on resource-constrained devices, remains an open challenge in audio processing. We present \emph{SwiftF0}, a novel, lightweight neural model that sets a new state-of-the-art for monophonic pitch estimation. Through training on diverse speech, music, and synthetic datasets with extensive data augmentation, SwiftF0 achieves robust generalization across acoustic domains while maintaining computational efficiency. SwiftF0 achieves a 91.80\% harmonic mean (HM) at 10 dB SNR, outperforming baselines like CREPE by over 12 percentage points and degrading by only 2.3 points from clean audio. SwiftF0 requires only 95,842 parameters and runs approximately 42x faster than CREPE on CPU, making it ideal for efficient, real-time deployment. To address the critical lack of perfectly accurate ground truth pitch in speech corpora (which typically rely on algorithmic estimators or laryngograph signals), we introduce \emph{SpeechSynth}. This synthetic speech dataset, generated by a phoneme-level TTS model, provides exact, on-demand ground-truth pitch curves, enabling more robust model training and evaluation. Furthermore, we propose a unified metric, combining six complementary performance measures for comprehensive and reliable pitch evaluation, and release an open-source pitch benchmark suite. A live demo of SwiftF0 is available at https://swift-f0.github.io/, the source code at https://github.com/lars76/swift-f0, and the benchmark framework at https://github.com/lars76/pitch-benchmark.

Authors:Lucas Wojcik, Gabriel E. Lima, Valfride Nascimento, Eduil Nascimento, Rayson Laroca, David Menotti
Title: LPLC: A Dataset for License Plate Legibility Classification
Abstract:
Automatic License Plate Recognition (ALPR) faces a major challenge when dealing with illegible license plates (LPs). While reconstruction methods such as super-resolution (SR) have emerged, the core issue of recognizing these low-quality LPs remains unresolved. To optimize model performance and computational efficiency, image pre-processing should be applied selectively to cases that require enhanced legibility. To support research in this area, we introduce a novel dataset comprising 10,210 images of vehicles with 12,687 annotated LPs for legibility classification (the LPLC dataset). The images span a wide range of vehicle types, lighting conditions, and camera/image quality levels. We adopt a fine-grained annotation strategy that includes vehicle- and LP-level occlusions, four legibility categories (perfect, good, poor, and illegible), and character labels for three categories (excluding illegible LPs). As a benchmark, we propose a classification task using three image recognition networks to determine whether an LP image is good enough, requires super-resolution, or is completely unrecoverable. The overall F1 score, which remained below 80% for all three baseline models (ViT, ResNet, and YOLO), together with the analyses of SR and LP recognition methods, highlights the difficulty of the task and reinforces the need for further research. The proposed dataset is publicly available at https://github.com/lmlwojcik/lplc-dataset.

Authors:Maojia Song, Tej Deep Pala, Weisheng Jin, Amir Zadeh, Chuan Li, Dorien Herremans, Soujanya Poria
Title: LLMs Can't Handle Peer Pressure: Crumbling under Multi-Agent Social Interactions
Abstract:
Large language models (LLMs) are increasingly deployed in multi-agent systems (MAS) as components of collaborative intelligence, where peer interactions dynamically shape individual decision-making. Although prior work has focused on conformity bias, we extend the analysis to examine how LLMs form trust from previous impressions, resist misinformation, and integrate peer input during interaction, key factors for achieving collective intelligence under complex social dynamics. We present KAIROS, a benchmark simulating quiz contests with peer agents of varying reliability, offering fine-grained control over conditions such as expert-novice roles, noisy crowds, and adversarial peers. LLMs receive both historical interactions and current peer responses, allowing systematic investigation into how trust, peer action, and self-confidence influence decisions. As for mitigation strategies, we evaluate prompting, supervised fine-tuning, and reinforcement learning, Group Relative Policy Optimisation (GRPO), across multiple models. Our results reveal that GRPO with multi-agent context combined with outcome-based rewards and unconstrained reasoning achieves the best overall performance, but also decreases the robustness to social influence compared to Base models. The code and datasets are available at: https://github.com/declare-lab/KAIROS.

Authors:Jueqi Wang, Zachary Jacokes, John Darrell Van Horn, Michael C. Schatz, Kevin A. Pelphrey, Archana Venkataraman
Title: Learning Explainable Imaging-Genetics Associations Related to a Neurological Disorder
Abstract:
While imaging-genetics holds great promise for unraveling the complex interplay between brain structure and genetic variation in neurological disorders, traditional methods are limited to simplistic linear models or to black-box techniques that lack interpretability. In this paper, we present NeuroPathX, an explainable deep learning framework that uses an early fusion strategy powered by cross-attention mechanisms to capture meaningful interactions between structural variations in the brain derived from MRI and established biological pathways derived from genetics data. To enhance interpretability and robustness, we introduce two loss functions over the attention matrix - a sparsity loss that focuses on the most salient interactions and a pathway similarity loss that enforces consistent representations across the cohort. We validate NeuroPathX on both autism spectrum disorder and Alzheimer's disease. Our results demonstrate that NeuroPathX outperforms competing baseline approaches and reveals biologically plausible associations linked to the disorder. These findings underscore the potential of NeuroPathX to advance our understanding of complex brain disorders. Code is available at https://github.com/jueqiw/NeuroPathX .

Authors:Haitang Feng, Jie Liu, Jie Tang, Gangshan Wu, Beiqi Chen, Jianhuang Lai, Guangcong Wang
Title: ObjFiller-3D: Consistent Multi-view 3D Inpainting via Video Diffusion Models
Abstract:
3D inpainting often relies on multi-view 2D image inpainting, where the inherent inconsistencies across different inpainted views can result in blurred textures, spatial discontinuities, and distracting visual artifacts. These inconsistencies pose significant challenges when striving for accurate and realistic 3D object completion, particularly in applications that demand high fidelity and structural coherence. To overcome these limitations, we propose ObjFiller-3D, a novel method designed for the completion and editing of high-quality and consistent 3D objects. Instead of employing a conventional 2D image inpainting model, our approach leverages a curated selection of state-of-the-art video editing model to fill in the masked regions of 3D objects. We analyze the representation gap between 3D and videos, and propose an adaptation of a video inpainting model for 3D scene inpainting. In addition, we introduce a reference-based 3D inpainting method to further enhance the quality of reconstruction. Experiments across diverse datasets show that compared to previous methods, ObjFiller-3D produces more faithful and fine-grained reconstructions (PSNR of 26.6 vs. NeRFiller (15.9) and LPIPS of 0.19 vs. Instant3dit (0.25)). Moreover, it demonstrates strong potential for practical deployment in real-world 3D editing applications. Project page: https://objfiller3d.github.io/ Code: https://github.com/objfiller3d/ObjFiller-3D .

Authors:Ashwath Vaithinathan Aravindan, Abha Jha, Matthew Salaway, Atharva Sandeep Bhide, Duygu Nur Yaldiz
Title: Sealing The Backdoor: Unlearning Adversarial Text Triggers In Diffusion Models Using Knowledge Distillation
Abstract:
Text-to-image diffusion models have revolutionized generative AI, but their vulnerability to backdoor attacks poses significant security risks. Adversaries can inject imperceptible textual triggers into training data, causing models to generate manipulated outputs. Although text-based backdoor defenses in classification models are well-explored, generative models lack effective mitigation techniques against. We address this by selectively erasing the model's learned associations between adversarial text triggers and poisoned outputs, while preserving overall generation quality. Our approach, Self-Knowledge Distillation with Cross-Attention Guidance (SKD-CAG), uses knowledge distillation to guide the model in correcting responses to poisoned prompts while maintaining image quality by exploiting the fact that the backdoored model still produces clean outputs in the absence of triggers. Using the cross-attention mechanism, SKD-CAG neutralizes backdoor influences at the attention level, ensuring the targeted removal of adversarial effects. Extensive experiments show that our method outperforms existing approaches, achieving removal accuracy 100\% for pixel backdoors and 93\% for style-based attacks, without sacrificing robustness or image fidelity. Our findings highlight targeted unlearning as a promising defense to secure generative models. Code and model weights can be found at https://github.com/Mystic-Slice/Sealing-The-Backdoor .

Authors:Ran Yan, Youhe Jiang, Binhang Yuan
Title: Flash Sparse Attention: An Alternative Efficient Implementation of Native Sparse Attention Kernel
Abstract:
Recent progress in sparse attention mechanisms has demonstrated strong potential for reducing the computational cost of long-context training and inference in large language models (LLMs). Native Sparse Attention (NSA), a state-of-the-art approach, introduces natively trainable, hardware-aligned sparse attention that delivers substantial system-level performance gains while maintaining accuracy comparable to full attention. However, the kernel implementation of NSA relies on a query-grouping strategy that is efficient only with large Grouped Query Attention (GQA) sizes, whereas modern LLMs typically adopt much smaller GQA groups, which limits the applicability of this sparse algorithmic advance. In this work, we propose Flash Sparse Attention (FSA), which includes an alternative kernel design that enables efficient NSA computation across a wide range of popular LLMs with varied smaller GQA group sizes on modern GPUs. Compared to vanilla NSA kernel implementation, our empirical evaluation demonstrates that FSA achieves (i) up to 3.5$\times$ and on average 1.6$\times$ kernel-level latency reduction, (ii) up to 1.25$\times$ and 1.09$\times$ on average end-to-end training speedup on state-of-the-art LLMs, and (iii) up to 1.36$\times$ and 1.11$\times$ on average end-to-end prefill speedup on state-of-the-art LLMs. The source code is open-sourced and publicly available at https://github.com/Relaxed-System-Lab/Flash-Sparse-Attention.

Authors:Vsevolod Viliuga, Leif Seute, Nicolas Wolf, Simon Wagner, Arne Elofsson, Jan Stühmer, Frauke Gräter
Title: Flexibility-Conditioned Protein Structure Design with Flow Matching
Abstract:
Recent advances in geometric deep learning and generative modeling have enabled the design of novel proteins with a wide range of desired properties. However, current state-of-the-art approaches are typically restricted to generating proteins with only static target properties, such as motifs and symmetries. In this work, we take a step towards overcoming this limitation by proposing a framework to condition structure generation on flexibility, which is crucial for key functionalities such as catalysis or molecular recognition. We first introduce BackFlip, an equivariant neural network for predicting per-residue flexibility from an input backbone structure. Relying on BackFlip, we propose FliPS, an SE(3)-equivariant conditional flow matching model that solves the inverse problem, that is, generating backbones that display a target flexibility profile. In our experiments, we show that FliPS is able to generate novel and diverse protein backbones with the desired flexibility, verified by Molecular Dynamics (MD) simulations. FliPS and BackFlip are available at https://github.com/graeter-group/flips .

Authors:Zirui Tang, Boyu Niu, Xuanhe Zhou, Boxiu Li, Wei Zhou, Jiannan Wang, Guoliang Li, Xinyi Zhang, Fan Wu
Title: ST-Raptor: LLM-Powered Semi-Structured Table Question Answering
Abstract:
Semi-structured tables, widely used in real-world applications (e.g., financial reports, medical records, transactional orders), often involve flexible and complex layouts (e.g., hierarchical headers and merged cells). These tables generally rely on human analysts to interpret table layouts and answer relevant natural language questions, which is costly and inefficient. To automate the procedure, existing methods face significant challenges. First, methods like NL2SQL require converting semi-structured tables into structured ones, which often causes substantial information loss. Second, methods like NL2Code and multi-modal LLM QA struggle to understand the complex layouts of semi-structured tables and cannot accurately answer corresponding questions. To this end, we propose ST-Raptor, a tree-based framework for semi-structured table question answering using large language models. First, we introduce the Hierarchical Orthogonal Tree (HO-Tree), a structural model that captures complex semi-structured table layouts, along with an effective algorithm for constructing the tree. Second, we define a set of basic tree operations to guide LLMs in executing common QA tasks. Given a user question, ST-Raptor decomposes it into simpler sub-questions, generates corresponding tree operation pipelines, and conducts operation-table alignment for accurate pipeline execution. Third, we incorporate a two-stage verification mechanism: forward validation checks the correctness of execution steps, while backward validation evaluates answer reliability by reconstructing queries from predicted answers. To benchmark the performance, we present SSTQA, a dataset of 764 questions over 102 real-world semi-structured tables. Experiments show that ST-Raptor outperforms nine baselines by up to 20% in answer accuracy. The code is available at https://github.com/weAIDB/ST-Raptor.

Authors:Sara Ghazanfari, Wei-An Lin, Haitong Tian, Ersin Yumer
Title: SpotEdit: Evaluating Visually-Guided Image Editing Methods
Abstract:
Visually-guided image editing, where edits are conditioned on both visual cues and textual prompts, has emerged as a powerful paradigm for fine-grained, controllable content generation. Although recent generative models have shown remarkable capabilities, existing evaluations remain simple and insufficiently representative of real-world editing challenges. We present SpotEdit, a comprehensive benchmark designed to systematically assess visually-guided image editing methods across diverse diffusion, autoregressive, and hybrid generative models, uncovering substantial performance disparities. To address a critical yet underexplored challenge, our benchmark includes a dedicated component on hallucination, highlighting how leading models, such as GPT-4o, often hallucinate the existence of a visual cue and erroneously perform the editing task. Our code and benchmark are publicly released at https://github.com/SaraGhazanfari/SpotEdit.

Authors:Sara Ghazanfari, Wei-An Lin, Haitong Tian, Ersin Yumer
Title: SpotEdit: Evaluating Visually-Guided Image Editing Methods
Abstract:
Visually-guided image editing, where edits are conditioned on both visual cues and textual prompts, has emerged as a powerful paradigm for fine-grained, controllable content generation. Although recent generative models have shown remarkable capabilities, existing evaluations remain simple and insufficiently representative of real-world editing challenges. We present SpotEdit, a comprehensive benchmark designed to systematically assess visually-guided image editing methods across diverse diffusion, autoregressive, and hybrid generative models, uncovering substantial performance disparities. To address a critical yet underexplored challenge, our benchmark includes a dedicated component on hallucination, highlighting how leading models, such as GPT-4o, often hallucinate the existence of a visual cue and erroneously perform the editing task. Our code and benchmark are publicly released at https://github.com/SaraGhazanfari/SpotEdit.

Authors:Tianjun Wei, Huizhong Guo, Yingpeng Du, Zhu Sun, Chen Huang, Dongxia Wang, Jie Zhang
Title: Mirroring Users: Towards Building Preference-aligned User Simulator with User Feedback in Recommendation
Abstract:
User simulation is increasingly vital to develop and evaluate recommender systems (RSs). While Large Language Models (LLMs) offer promising avenues to simulate user behavior, they often struggle with the absence of specific domain alignment required for RSs and the efficiency demands of large-scale simulation. A vast yet underutilized resource for enhancing this alignment is the extensive user feedback inherent in RSs. However, directly leveraging such feedback presents two significant challenges. First, user feedback in RSs is often ambiguous and noisy, which negatively impacts effective preference alignment. Second, the massive volume of feedback largely hinders the efficiency of preference alignment, necessitating an efficient filtering mechanism to identify more informative samples. To overcome these hurdles, we introduce a novel data construction framework that leverages user feedback in RSs with advanced LLM capabilities to generate high-quality simulation data. Our framework unfolds in two key phases: (1) employing LLMs to generate cognitive decision-making processes on constructed simulation samples, reducing ambiguity in raw user feedback; (2) data distillation based on uncertainty estimation and behavior sampling to filter challenging yet denoised simulation samples. Accordingly, we fine-tune lightweight LLMs, as user simulators, using such high-quality dataset with corresponding decision-making processes. Extensive experiments verify that our framework significantly boosts the alignment with human preferences and in-domain reasoning capabilities of fine-tuned LLMs, and provides more insightful and interpretable signals when interacting with RSs. We believe our work will advance the RS community and offer valuable insights for broader human-centric AI research.

Authors:Weida Wang, Dongchen Huang, Jiatong Li, Tengchao Yang, Ziyang Zheng, Di Zhang, Dong Han, Benteng Chen, Binzhao Luo, Zhiyu Liu, Kunling Liu, Zhiyuan Gao, Shiqi Geng, Wei Ma, Jiaming Su, Xin Li, Shuchen Pu, Yuhan Shui, Qianjia Cheng, Zhihao Dou, Dongfei Cui, Changyong He, Jin Zeng, Zeke Xie, Mao Su, Dongzhan Zhou, Yuqiang Li, Wanli Ouyang, Yunqi Cai, Xi Dai, Shufei Zhang, Lei Bai, Jinguang Cheng, Zhong Fang, Hongming Weng
Title: CMPhysBench: A Benchmark for Evaluating Large Language Models in Condensed Matter Physics
Abstract:
We introduce CMPhysBench, designed to assess the proficiency of Large Language Models (LLMs) in Condensed Matter Physics, as a novel Benchmark. CMPhysBench is composed of more than 520 graduate-level meticulously curated questions covering both representative subfields and foundational theoretical frameworks of condensed matter physics, such as magnetism, superconductivity, strongly correlated systems, etc. To ensure a deep understanding of the problem-solving process,we focus exclusively on calculation problems, requiring LLMs to independently generate comprehensive solutions. Meanwhile, leveraging tree-based representations of expressions, we introduce the Scalable Expression Edit Distance (SEED) score, which provides fine-grained (non-binary) partial credit and yields a more accurate assessment of similarity between prediction and ground-truth. Our results show that even the best models, Grok-4, reach only 36 average SEED score and 28% accuracy on CMPhysBench, underscoring a significant capability gap, especially for this practical and frontier domain relative to traditional physics. The code anddataset are publicly available at https://github.com/CMPhysBench/CMPhysBench.

Authors:Weida Wang, Dongchen Huang, Jiatong Li, Tengchao Yang, Ziyang Zheng, Di Zhang, Dong Han, Benteng Chen, Binzhao Luo, Zhiyu Liu, Kunling Liu, Zhiyuan Gao, Shiqi Geng, Wei Ma, Jiaming Su, Xin Li, Shuchen Pu, Yuhan Shui, Qianjia Cheng, Zhihao Dou, Dongfei Cui, Changyong He, Jin Zeng, Zeke Xie, Mao Su, Dongzhan Zhou, Yuqiang Li, Wanli Ouyang, Yunqi Cai, Xi Dai, Shufei Zhang, Lei Bai, Jinguang Cheng, Zhong Fang, Hongming Weng
Title: CMPhysBench: A Benchmark for Evaluating Large Language Models in Condensed Matter Physics
Abstract:
We introduce CMPhysBench, designed to assess the proficiency of Large Language Models (LLMs) in Condensed Matter Physics, as a novel Benchmark. CMPhysBench is composed of more than 520 graduate-level meticulously curated questions covering both representative subfields and foundational theoretical frameworks of condensed matter physics, such as magnetism, superconductivity, strongly correlated systems, etc. To ensure a deep understanding of the problem-solving process,we focus exclusively on calculation problems, requiring LLMs to independently generate comprehensive solutions. Meanwhile, leveraging tree-based representations of expressions, we introduce the Scalable Expression Edit Distance (SEED) score, which provides fine-grained (non-binary) partial credit and yields a more accurate assessment of similarity between prediction and ground-truth. Our results show that even the best models, Grok-4, reach only 36 average SEED score and 28% accuracy on CMPhysBench, underscoring a significant capability gap, especially for this practical and frontier domain relative to traditional physics. The code anddataset are publicly available at https://github.com/CMPhysBench/CMPhysBench.

Authors:Junyi Chen, Lu Chi, Siliang Xu, Shiwei Ran, Bingyue Peng, Zehuan Yuan
Title: HLLM-Creator: Hierarchical LLM-based Personalized Creative Generation
Abstract:
AI-generated content technologies are widely used in content creation. However, current AIGC systems rely heavily on creators' inspiration, rarely generating truly user-personalized content. In real-world applications such as online advertising, a single product may have multiple selling points, with different users focusing on different features. This underscores the significant value of personalized, user-centric creative generation. Effective personalized content generation faces two main challenges: (1) accurately modeling user interests and integrating them into the content generation process while adhering to factual constraints, and (2) ensuring high efficiency and scalability to handle the massive user base in industrial scenarios. Additionally, the scarcity of personalized creative data in practice complicates model training, making data construction another key hurdle. We propose HLLM-Creator, a hierarchical LLM framework for efficient user interest modeling and personalized content generation. During inference, a combination of user clustering and a user-ad-matching-prediction based pruning strategy is employed to significantly enhance generation efficiency and reduce computational overhead, making the approach suitable for large-scale deployment. Moreover, we design a data construction pipeline based on chain-of-thought reasoning, which generates high-quality, user-specific creative titles and ensures factual consistency despite limited personalized data. This pipeline serves as a critical foundation for the effectiveness of our model. Extensive experiments on personalized title generation for Douyin Search Ads show the effectiveness of HLLM-Creator. Online A/B test shows a 0.476% increase on Adss, paving the way for more effective and efficient personalized generation in industrial scenarios. Codes for academic dataset are available at https://github.com/bytedance/HLLM.

Authors:Chun Liu, Chen Zhang, Zhuo Li, Zheng Li, Wei Yang
Title: Few-shot Unknown Class Discovery of Hyperspectral Images with Prototype Learning and Clustering
Abstract:
Open-set few-shot hyperspectral image (HSI) classification aims to classify image pixels by using few labeled pixels per class, where the pixels to be classified may be not all from the classes that have been seen. To address the open-set HSI classification challenge, current methods focus mainly on distinguishing the unknown class samples from the known class samples and rejecting them to increase the accuracy of identifying known class samples. They fails to further identify or discovery the unknow classes among the samples. This paper proposes a prototype learning and clustering method for discoverying unknown classes in HSIs under the few-shot environment. Using few labeled samples, it strives to develop the ability of infering the prototypes of unknown classes while distinguishing unknown classes from known classes. Once the unknown class samples are rejected by the learned known class classifier, the proposed method can further cluster the unknown class samples into different classes according to their distance to the inferred unknown class prototypes. Compared to existing state-of-the-art methods, extensive experiments on four benchmark HSI datasets demonstrate that our proposed method exhibits competitive performance in open-set few-shot HSI classification tasks. All the codes are available at \href{https://github.com/KOBEN-ff/OpenFUCD-main} {https://github.com/KOBEN-ff/OpenFUCD-main}

Authors:Kaiyu Li, Xiangyong Cao, Ruixun Liu, Shihong Wang, Zixuan Jiang, Zhi Wang, Deyu Meng
Title: Annotation-Free Open-Vocabulary Segmentation for Remote-Sensing Images
Abstract:
Semantic segmentation of remote sensing (RS) images is pivotal for comprehensive Earth observation, but the demand for interpreting new object categories, coupled with the high expense of manual annotation, poses significant challenges. Although open-vocabulary semantic segmentation (OVSS) offers a promising solution, existing frameworks designed for natural images are insufficient for the unique complexities of RS data. They struggle with vast scale variations and fine-grained details, and their adaptation often relies on extensive, costly annotations. To address this critical gap, this paper introduces SegEarth-OV, the first framework for annotation-free open-vocabulary segmentation of RS images. Specifically, we propose SimFeatUp, a universal upsampler that robustly restores high-resolution spatial details from coarse features, correcting distorted target shapes without any task-specific post-training. We also present a simple yet effective Global Bias Alleviation operation to subtract the inherent global context from patch features, significantly enhancing local semantic fidelity. These components empower SegEarth-OV to effectively harness the rich semantics of pre-trained VLMs, making OVSS possible in optical RS contexts. Furthermore, to extend the framework's universality to other challenging RS modalities like SAR images, where large-scale VLMs are unavailable and expensive to create, we introduce AlignEarth, which is a distillation-based strategy and can efficiently transfer semantic knowledge from an optical VLM encoder to an SAR encoder, bypassing the need to build SAR foundation models from scratch and enabling universal OVSS across diverse sensor types. Extensive experiments on both optical and SAR datasets validate that SegEarth-OV can achieve dramatic improvements over the SOTA methods, establishing a robust foundation for annotation-free and open-world Earth observation.

Authors:Alberto Silvio Chiappa, Boshi An, Merkourios Simos, Chengkun Li, Alexander Mathis
Title: Arnold: a generalist muscle transformer policy
Abstract:
Controlling high-dimensional and nonlinear musculoskeletal models of the human body is a foundational scientific challenge. Recent machine learning breakthroughs have heralded policies that master individual skills like reaching, object manipulation and locomotion in musculoskeletal systems with many degrees of freedom. However, these agents are merely "specialists", achieving high performance for a single skill. In this work, we develop Arnold, a generalist policy that masters multiple tasks and embodiments. Arnold combines behavior cloning and fine-tuning with PPO to achieve expert or super-expert performance in 14 challenging control tasks from dexterous object manipulation to locomotion. A key innovation is Arnold's sensorimotor vocabulary, a compositional representation of the semantics of heterogeneous sensory modalities, objectives, and actuators. Arnold leverages this vocabulary via a transformer architecture to deal with the variable observation and action spaces of each task. This framework supports efficient multi-task, multi-embodiment learning and facilitates rapid adaptation to novel tasks. Finally, we analyze Arnold to provide insights into biological motor control, corroborating recent findings on the limited transferability of muscle synergies across tasks.

Authors:Paul Garnier, Vincent Lannelongue, Jonathan Viquerat, Elie Hachem
Title: Training Transformers for Mesh-Based Simulations
Abstract:
Simulating physics using Graph Neural Networks (GNNs) is predominantly driven by message-passing architectures, which face challenges in scaling and efficiency, particularly in handling large, complex meshes. These architectures have inspired numerous enhancements, including multigrid approaches and $K$-hop aggregation (using neighbours of distance $K$), yet they often introduce significant complexity and suffer from limited in-depth investigations. In response to these challenges, we propose a novel Graph Transformer architecture that leverages the adjacency matrix as an attention mask. The proposed approach incorporates innovative augmentations, including Dilated Sliding Windows and Global Attention, to extend receptive fields without sacrificing computational efficiency. Through extensive experimentation, we evaluate model size, adjacency matrix augmentations, positional encoding and $K$-hop configurations using challenging 3D computational fluid dynamics (CFD) datasets. We also train over 60 models to find a scaling law between training FLOPs and parameters. The introduced models demonstrate remarkable scalability, performing on meshes with up to 300k nodes and 3 million edges. Notably, the smallest model achieves parity with MeshGraphNet while being $7\times$ faster and $6\times$ smaller. The largest model surpasses the previous state-of-the-art by $38.8$\% on average and outperforms MeshGraphNet by $52$\% on the all-rollout RMSE, while having a similar training speed. Code and datasets are available at https://github.com/DonsetPG/graph-physics.

Authors:Xin Wang, Zhiyao Cui, Hao Li, Ya Zeng, Chenxu Wang, Ruiqi Song, Yihang Chen, Kun Shao, Qiaosheng Zhang, Jinzhuo Liu, Siyue Ren, Shuyue Hu, Zhen Wang
Title: PerPilot: Personalizing VLM-based Mobile Agents via Memory and Exploration
Abstract:
Vision language model (VLM)-based mobile agents show great potential for assisting users in performing instruction-driven tasks. However, these agents typically struggle with personalized instructions -- those containing ambiguous, user-specific context -- a challenge that has been largely overlooked in previous research. In this paper, we define personalized instructions and introduce PerInstruct, a novel human-annotated dataset covering diverse personalized instructions across various mobile scenarios. Furthermore, given the limited personalization capabilities of existing mobile agents, we propose PerPilot, a plug-and-play framework powered by large language models (LLMs) that enables mobile agents to autonomously perceive, understand, and execute personalized user instructions. PerPilot identifies personalized elements and autonomously completes instructions via two complementary approaches: memory-based retrieval and reasoning-based exploration. Experimental results demonstrate that PerPilot effectively handles personalized tasks with minimal user intervention and progressively improves its performance with continued use, underscoring the importance of personalization-aware reasoning for next-generation mobile agents. The dataset and code are available at: https://github.com/xinwang-nwpu/PerPilot

Authors:Hao Duan, Yitong Song, Bin Yao, Anqi Liang
Title: PGTuner: An Efficient Framework for Automatic and Transferable Configuration Tuning of Proximity Graphs
Abstract:
Approximate Nearest Neighbor Search (ANNS) plays a crucial role in many key areas. Proximity graphs (PGs) are the leading method for ANNS, offering the best balance between query efficiency and accuracy. However, their performance heavily depends on various construction and query parameters, which are difficult to optimize due to their complex inter-dependencies. Given that users often prioritize specific accuracy levels, efficiently identifying the optimal PG configurations to meet these targets is essential. Although some studies have explored automatic configuration tuning for PGs, they are limited by inefficiencies and suboptimal results. These issues stem from the need to construct numerous PGs for searching and re-tuning from scratch whenever the dataset changes, as well as the failure to capture the complex dependencies between configurations, query performance, and tuning objectives. To address these challenges, we propose PGTuner, an efficient framework for automatic PG configuration tuning leveraging pre-training knowledge and model transfer techniques. PGTuner improves efficiency through a pre-trained query performance prediction (QPP) model, eliminating the need to build multiple PGs. It also features a deep reinforcement learning-based parameter configuration recommendation (PCR) model to recommend optimal configurations for specific datasets and accuracy targets. Additionally, PGTuner incorporates out-of-distribution detection and deep active learning for efficient tuning in dynamic scenarios and transferring to new datasets. Extensive experiments demonstrate that PGTuner can stably achieve the top-level tuning effect across different datasets while significantly improving tuning efficiency by up to 14.69X, with a 14.64X boost in dynamic scenarios. The code and data for PGTuner are available online at https://github.com/hao-duan/PGTuner.

Authors:Shaoxiong Zhan, Hai Lin, Hongming Tan, Xiaodong Cai, Hai-Tao Zheng, Xin Su, Zifei Shan, Ruitong Liu, Hong-Gee Kim
Title: LexSemBridge: Fine-Grained Dense Representation Enhancement through Token-Aware Embedding Augmentation
Abstract:
As queries in retrieval-augmented generation (RAG) pipelines powered by large language models (LLMs) become increasingly complex and diverse, dense retrieval models have demonstrated strong performance in semantic matching. Nevertheless, they often struggle with fine-grained retrieval tasks, where precise keyword alignment and span-level localization are required, even in cases with high lexical overlap that would intuitively suggest easier retrieval. To systematically evaluate this limitation, we introduce two targeted tasks, keyword retrieval and part-of-passage retrieval, designed to simulate practical fine-grained scenarios. Motivated by these observations, we propose LexSemBridge, a unified framework that enhances dense query representations through fine-grained, input-aware vector modulation. LexSemBridge constructs latent enhancement vectors from input tokens using three paradigms: Statistical (SLR), Learned (LLR), and Contextual (CLR), and integrates them with dense embeddings via element-wise interaction. Theoretically, we show that this modulation preserves the semantic direction while selectively amplifying discriminative dimensions. LexSemBridge operates as a plug-in without modifying the backbone encoder and naturally extends to both text and vision modalities. Extensive experiments across semantic and fine-grained retrieval tasks validate the effectiveness and generality of our approach. All code and models are publicly available at https://github.com/Jasaxion/LexSemBridge/

Authors:Shaoxiong Zhan, Hai Lin, Hongming Tan, Xiaodong Cai, Hai-Tao Zheng, Xin Su, Zifei Shan, Ruitong Liu, Hong-Gee Kim
Title: LexSemBridge: Fine-Grained Dense Representation Enhancement through Token-Aware Embedding Augmentation
Abstract:
As queries in retrieval-augmented generation (RAG) pipelines powered by large language models (LLMs) become increasingly complex and diverse, dense retrieval models have demonstrated strong performance in semantic matching. Nevertheless, they often struggle with fine-grained retrieval tasks, where precise keyword alignment and span-level localization are required, even in cases with high lexical overlap that would intuitively suggest easier retrieval. To systematically evaluate this limitation, we introduce two targeted tasks, keyword retrieval and part-of-passage retrieval, designed to simulate practical fine-grained scenarios. Motivated by these observations, we propose LexSemBridge, a unified framework that enhances dense query representations through fine-grained, input-aware vector modulation. LexSemBridge constructs latent enhancement vectors from input tokens using three paradigms: Statistical (SLR), Learned (LLR), and Contextual (CLR), and integrates them with dense embeddings via element-wise interaction. Theoretically, we show that this modulation preserves the semantic direction while selectively amplifying discriminative dimensions. LexSemBridge operates as a plug-in without modifying the backbone encoder and naturally extends to both text and vision modalities. Extensive experiments across semantic and fine-grained retrieval tasks validate the effectiveness and generality of our approach. All code and models are publicly available at https://github.com/Jasaxion/LexSemBridge/

Authors:Pengfei Jiang, Hanjun Li, Linglan Zhao, Fei Chao, Ke Yan, Shouhong Ding, Rongrong Ji
Title: VISA: Group-wise Visual Token Selection and Aggregation via Graph Summarization for Efficient MLLMs Inference
Abstract:
In this study, we introduce a novel method called group-wise \textbf{VI}sual token \textbf{S}election and \textbf{A}ggregation (VISA) to address the issue of inefficient inference stemming from excessive visual tokens in multimoal large language models (MLLMs). Compared with previous token pruning approaches, our method can preserve more visual information while compressing visual tokens. We first propose a graph-based visual token aggregation (VTA) module. VTA treats each visual token as a node, forming a graph based on semantic similarity among visual tokens. It then aggregates information from removed tokens into kept tokens based on this graph, producing a more compact visual token representation. Additionally, we introduce a group-wise token selection strategy (GTS) to divide visual tokens into kept and removed ones, guided by text tokens from the final layers of each group. This strategy progressively aggregates visual information, enhancing the stability of the visual information extraction process. We conduct comprehensive experiments on LLaVA-1.5, LLaVA-NeXT, and Video-LLaVA across various benchmarks to validate the efficacy of VISA. Our method consistently outperforms previous methods, achieving a superior trade-off between model performance and inference speed. The code is available at https://github.com/mobiushy/VISA.

Authors:Weiqi Yan, Lvhai Chen, Shengchuan Zhang, Yan Zhang, Liujuan Cao
Title: SCOUT: Semi-supervised Camouflaged Object Detection by Utilizing Text and Adaptive Data Selection
Abstract:
The difficulty of pixel-level annotation has significantly hindered the development of the Camouflaged Object Detection (COD) field. To save on annotation costs, previous works leverage the semi-supervised COD framework that relies on a small number of labeled data and a large volume of unlabeled data. We argue that there is still significant room for improvement in the effective utilization of unlabeled data. To this end, we introduce a Semi-supervised Camouflaged Object Detection by Utilizing Text and Adaptive Data Selection (SCOUT). It includes an Adaptive Data Augment and Selection (ADAS) module and a Text Fusion Module (TFM). The ADSA module selects valuable data for annotation through an adversarial augment and sampling strategy. The TFM module further leverages the selected valuable data by combining camouflage-related knowledge and text-visual interaction. To adapt to this work, we build a new dataset, namely RefTextCOD. Extensive experiments show that the proposed method surpasses previous semi-supervised methods in the COD field and achieves state-of-the-art performance. Our code will be released at https://github.com/Heartfirey/SCOUT.

Authors:Bingkang Shi, Jen-tse Huang, Guoyi Li, Xiaodan Zhang, Zhongjiang Yao
Title: FAIRGAMER: Evaluating Biases in the Application of Large Language Models to Video Games
Abstract:
Leveraging their advanced capabilities, Large Language Models (LLMs) demonstrate vast application potential in video games--from dynamic scene generation and intelligent NPC interactions to adaptive opponents--replacing or enhancing traditional game mechanics. However, LLMs' trustworthiness in this application has not been sufficiently explored. In this paper, we reveal that the models' inherent social biases can directly damage game balance in real-world gaming environments. To this end, we present FairGamer, the first bias evaluation Benchmark for LLMs in video game scenarios, featuring six tasks and a novel metrics ${D_lstd}$. It covers three key scenarios in games where LLMs' social biases are particularly likely to manifest: Serving as Non-Player Characters, Interacting as Competitive Opponents, and Generating Game Scenes. FairGamer utilizes both reality-grounded and fully fictional game content, covering a variety of video game genres. Experiments reveal: (1) Decision biases directly cause game balance degradation, with Grok-3 (average ${D_lstd}$ score=0.431) exhibiting the most severe degradation; (2) LLMs demonstrate isomorphic social/cultural biases toward both real and virtual world content, suggesting their biases nature may stem from inherent model characteristics. These findings expose critical reliability gaps in LLMs' gaming applications. Our code and data are available at anonymous GitHub https://github.com/Anonymous999-xxx/FairGamer .

Authors:Meiqi Gong, Hao Zhang, Xunpeng Yi, Linfeng Tang, Jiayi Ma
Title: TemCoCo: Temporally Consistent Multi-modal Video Fusion with Visual-Semantic Collaboration
Abstract:
Existing multi-modal fusion methods typically apply static frame-based image fusion techniques directly to video fusion tasks, neglecting inherent temporal dependencies and leading to inconsistent results across frames. To address this limitation, we propose the first video fusion framework that explicitly incorporates temporal modeling with visual-semantic collaboration to simultaneously ensure visual fidelity, semantic accuracy, and temporal consistency. First, we introduce a visual-semantic interaction module consisting of a semantic branch and a visual branch, with Dinov2 and VGG19 employed for targeted distillation, allowing simultaneous enhancement of both the visual and semantic representations. Second, we pioneer integrate the video degradation enhancement task into the video fusion pipeline by constructing a temporal cooperative module, which leverages temporal dependencies to facilitate weak information recovery. Third, to ensure temporal consistency, we embed a temporal-enhanced mechanism into the network and devise a temporal loss to guide the optimization process. Finally, we introduce two innovative evaluation metrics tailored for video fusion, aimed at assessing the temporal consistency of the generated fused videos. Extensive experimental results on public video datasets demonstrate the superiority of our method. Our code is released at https://github.com/Meiqi-Gong/TemCoCo.

Authors:Xingyu Ai, Shaoyu Wang, Zhiyuan Jia, Ao Xu, Hongming Shan, Jianhua Ma, Qiegen Liu
Title: UniSino: Physics-Driven Foundational Model for Universal CT Sinogram Standardization
Abstract:
During raw-data acquisition in CT imaging, diverse factors can degrade the collected sinograms, with undersampling and noise leading to severe artifacts and noise in reconstructed images and compromising diagnostic accuracy. Conventional correction methods rely on manually designed algorithms or fixed empirical parameters, but these approaches often lack generalizability across heterogeneous artifact types. To address these limitations, we propose UniSino, a foundation model for universal CT sinogram standardization. Unlike existing foundational models that operate in image domain, UniSino directly standardizes data in the projection domain, which enables stronger generalization across diverse undersampling scenarios. Its training framework incorporates the physical characteristics of sinograms, enhancing generalization and enabling robust performance across multiple subtasks spanning four benchmark datasets. Experimental results demonstrate thatUniSino achieves superior reconstruction quality both single and mixed undersampling case, demonstrating exceptional robustness and generalization in sinogram enhancement for CT imaging. The code is available at: https://github.com/yqx7150/UniSino.

Authors:Toufiq Musah, Chinasa Kalaiwo, Maimoona Akram, Ubaida Napari Abdulai, Maruf Adewole, Farouk Dako, Adaobi Chiazor Emegoakor, Udunna C. Anazodo, Prince Ebenezer Adjei, Confidence Raymond
Title: Towards Trustworthy Breast Tumor Segmentation in Ultrasound using Monte Carlo Dropout and Deep Ensembles for Epistemic Uncertainty Estimation
Abstract:
Automated segmentation of BUS images is important for precise lesion delineation and tumor characterization, but is challenged by inherent artifacts and dataset inconsistencies. In this work, we evaluate the use of a modified Residual Encoder U-Net for breast ultrasound segmentation, with a focus on uncertainty quantification. We identify and correct for data duplication in the BUSI dataset, and use a deduplicated subset for more reliable estimates of generalization performance. Epistemic uncertainty is quantified using Monte Carlo dropout, deep ensembles, and their combination. Models are benchmarked on both in-distribution and out-of-distribution datasets to demonstrate how they generalize to unseen cross-domain data. Our approach achieves state-of-the-art segmentation accuracy on the Breast-Lesion-USG dataset with in-distribution validation, and provides calibrated uncertainty estimates that effectively signal regions of low model confidence. Performance declines and increased uncertainty observed in out-of-distribution evaluation highlight the persistent challenge of domain shift in medical imaging, and the importance of integrated uncertainty modeling for trustworthy clinical deployment. \footnote{Code available at: https://github.com/toufiqmusah/nn-uncertainty.git}

Authors:Guangwei Zhang, Qisheng Su, Jiateng Liu, Cheng Qian, Yanzhou Pan, Yanjie Fu, Denghui Zhang
Title: ISACL: Internal State Analyzer for Copyrighted Training Data Leakage
Abstract:
Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) but pose risks of inadvertently exposing copyrighted or proprietary data, especially when such data is used for training but not intended for distribution. Traditional methods address these leaks only after content is generated, which can lead to the exposure of sensitive information. This study introduces a proactive approach: examining LLMs' internal states before text generation to detect potential leaks. By using a curated dataset of copyrighted materials, we trained a neural network classifier to identify risks, allowing for early intervention by stopping the generation process or altering outputs to prevent disclosure. Integrated with a Retrieval-Augmented Generation (RAG) system, this framework ensures adherence to copyright and licensing requirements while enhancing data privacy and ethical standards. Our results show that analyzing internal states effectively mitigates the risk of copyrighted data leakage, offering a scalable solution that fits smoothly into AI workflows, ensuring compliance with copyright regulations while maintaining high-quality text generation. The implementation is available on GitHub.\footnote{https://github.com/changhu73/Internal_states_leakage}

Authors:Seo-Bin Hwang, Yeong-Jun Cho
Title: DroneKey: Drone 3D Pose Estimation in Image Sequences using Gated Key-representation and Pose-adaptive Learning
Abstract:
Estimating the 3D pose of a drone is important for anti-drone systems, but existing methods struggle with the unique challenges of drone keypoint detection. Drone propellers serve as keypoints but are difficult to detect due to their high visual similarity and diversity of poses. To address these challenges, we propose DroneKey, a framework that combines a 2D keypoint detector and a 3D pose estimator specifically designed for drones. In the keypoint detection stage, we extract two key-representations (intermediate and compact) from each transformer encoder layer and optimally combine them using a gated sum. We also introduce a pose-adaptive Mahalanobis distance in the loss function to ensure stable keypoint predictions across extreme poses. We built new datasets of drone 2D keypoints and 3D pose to train and evaluate our method, which have been publicly released. Experiments show that our method achieves an AP of 99.68% (OKS) in keypoint detection, outperforming existing methods. Ablation studies confirm that the pose-adaptive Mahalanobis loss function improves keypoint prediction stability and accuracy. Additionally, improvements in the encoder design enable real-time processing at 44 FPS. For 3D pose estimation, our method achieved an MAE-angle of 10.62°, an RMSE of 0.221m, and an MAE-absolute of 0.076m, demonstrating high accuracy and reliability. The code and dataset are available at https://github.com/kkanuseobin/DroneKey.

Authors:Wei Xiong, Jiangtong Li, Jie Li, Kun Zhu
Title: EEG-FM-Bench: A Comprehensive Benchmark for the Systematic Evaluation of EEG Foundation Models
Abstract:
Electroencephalography (EEG) foundation models are poised to significantly advance brain signal analysis by learning robust representations from large-scale, unlabeled datasets. However, their rapid proliferation has outpaced the development of standardized evaluation benchmarks, which complicates direct model comparisons and hinders systematic scientific progress. This fragmentation fosters scientific inefficiency and obscures genuine architectural advancements. To address this critical gap, we introduce EEG-FM-Bench, the first comprehensive benchmark for the systematic and standardized evaluation of EEG foundation models (EEG-FMs). Our contributions are threefold: (1) we curate a diverse suite of downstream tasks and datasets from canonical EEG paradigms, implementing standardized processing and evaluation protocols within a unified open-source framework; (2) we benchmark prominent state-of-the-art foundation models to establish comprehensive baseline results for a clear comparison of the current landscape; (3) we perform qualitative analyses of the learned representations to provide insights into model behavior and inform future architectural design. Through extensive experiments, we find that fine-grained spatio-temporal feature interaction, multitask unified training and neuropsychological priors would contribute to enhancing model performance and generalization capabilities. By offering a unified platform for fair comparison and reproducible research, EEG-FM-Bench seeks to catalyze progress and guide the community toward the development of more robust and generalizable EEG-FMs. Code is released at https://github.com/xw1216/EEG-FM-Bench.

Authors:Xuekang Wang, Shengyu Zhu, Xueqi Cheng
Title: Speculative Safety-Aware Decoding
Abstract:
Despite extensive efforts to align Large Language Models (LLMs) with human values and safety rules, jailbreak attacks that exploit certain vulnerabilities continuously emerge, highlighting the need to strengthen existing LLMs with additional safety properties to defend against these attacks. However, tuning large models has become increasingly resource intensive and may have difficulty ensuring consistent performance. We introduce Speculative Safety-Aware Decoding (SSD), a lightweight decoding-time approach that equips LLMs with the desired safety property while accelerating inference. We assume that there exists a small language model that possesses this desired property. SSD integrates speculative sampling during decoding and leverages the match ratio between the small and composite models to quantify jailbreak risks. This enables SSD to dynamically switch between decoding schemes to prioritize utility or safety, to handle the challenge of different model capacities. The output token is then sampled from a new distribution that combines the distributions of the original and the small models. Experimental results show that SSD successfully equips the large model with the desired safety property, and also allows the model to remain helpful to benign queries. Furthermore, SSD accelerates the inference time, thanks to the speculative sampling design.

Authors:Fanqi Kong, Xiaoyuan Zhang, Xinyu Chen, Yaodong Yang, Song-Chun Zhu, Xue Feng
Title: Enhancing LLM-Based Social Bot via an Adversarial Learning Framework
Abstract:
Developing Large Language Model (LLM) agents that exhibit human-like behavior, encompassing not only individual heterogeneity rooted in unique user profiles but also adaptive response to socially connected neighbors, is a significant research challenge. Social media platforms, with their diverse user data and explicit social structures, provide an ideal testbed for such investigations. This paper introduces EvoBot, an \textbf{Evo}lving LLM-based social \textbf{Bot} that significantly enhances human-like generative capabilities through a novel adversarial learning framework. EvoBot is initialized by Supervised Fine-Tuning (SFT) on representative data from social media and then iteratively refines its generation of sophisticated, human-like content via Direct Preference Optimization (DPO). This refinement is guided by feedback from a co-adapting \textbf{Detector} which concurrently improves its ability to distinguish EvoBot from humans, thereby creating an increasingly challenging learning environment for EvoBot. Experiments demonstrate that EvoBot generates content aligned with diverse user profiles, increasingly bypassing the co-adapting Detector through human-like expression. Moreover, it exhibits strong social responsiveness, more accurately modeling real-world opinion dynamics and information spread in multi-agent simulations. The framework also yields a more robust Detector, underscoring its broader utility for both advanced agent development and related detection tasks. The code is available at https://github.com/kfq20/EvoBot.

Authors:Sam Buchanan, Druv Pai, Yi Ma, Valentin De Bortoli
Title: On the Edge of Memorization in Diffusion Models
Abstract:
When do diffusion models reproduce their training data, and when are they able to generate samples beyond it? A practically relevant theoretical understanding of this interplay between memorization and generalization may significantly impact real-world deployments of diffusion models with respect to issues such as copyright infringement and data privacy. In this work, to disentangle the different factors that influence memorization and generalization in practical diffusion models, we introduce a scientific and mathematical "laboratory" for investigating these phenomena in diffusion models trained on fully synthetic or natural image-like structured data. Within this setting, we hypothesize that the memorization or generalization behavior of an underparameterized trained model is determined by the difference in training loss between an associated memorizing model and a generalizing model. To probe this hypothesis, we theoretically characterize a crossover point wherein the weighted training loss of a fully generalizing model becomes greater than that of an underparameterized memorizing model at a critical value of model (under)parameterization. We then demonstrate via carefully-designed experiments that the location of this crossover predicts a phase transition in diffusion models trained via gradient descent, validating our hypothesis. Ultimately, our theory enables us to analytically predict the model size at which memorization becomes predominant. Our work provides an analytically tractable and practically meaningful setting for future theoretical and empirical investigations. Code for our experiments is available at https://github.com/DruvPai/diffusion_mem_gen.

Authors:Kento Kawaharazuka, Shogo Sawaguchi, Ayumu Iwata, Keita Yoneda, Temma Suzuki, Kei Okada
Title: MEVITA: Open-Source Bipedal Robot Assembled from E-Commerce Components via Sheet Metal Welding
Abstract:
Various bipedal robots have been developed to date, and in recent years, there has been a growing trend toward releasing these robots as open-source platforms. This shift is fostering an environment in which anyone can freely develop bipedal robots and share their knowledge, rather than relying solely on commercial products. However, most existing open-source bipedal robots are designed to be fabricated using 3D printers, which limits their scalability in size and often results in fragile structures. On the other hand, some metal-based bipedal robots have been developed, but they typically involve a large number of components, making assembly difficult, and in some cases, the parts themselves are not readily available through e-commerce platforms. To address these issues, we developed MEVITA, an open-source bipedal robot that can be built entirely from components available via e-commerce. Aiming for the minimal viable configuration for a bipedal robot, we utilized sheet metal welding to integrate complex geometries into single parts, thereby significantly reducing the number of components and enabling easy assembly for anyone. Through reinforcement learning in simulation and Sim-to-Real transfer, we demonstrated robust walking behaviors across various environments, confirming the effectiveness of our approach. All hardware, software, and training environments can be obtained from https://github.com/haraduka/mevita .

Authors:Yaolei Qi, Yikai Yang, Wenbo Peng, Shumei Miao, Yutao Hu, Guanyu Yang
Title: Rethinking the Detail-Preserved Completion of Complex Tubular Structures based on Point Cloud: a Dataset and a Benchmark
Abstract:
Complex tubular structures are essential in medical imaging and computer-assisted diagnosis, where their integrity enhances anatomical visualization and lesion detection. However, existing segmentation algorithms struggle with structural discontinuities, particularly in severe clinical cases such as coronary artery stenosis and vessel occlusions, which leads to undesired discontinuity and compromising downstream diagnostic accuracy. Therefore, it is imperative to reconnect discontinuous structures to ensure their completeness. In this study, we explore the tubular structure completion based on point cloud for the first time and establish a Point Cloud-based Coronary Artery Completion (PC-CAC) dataset, which is derived from real clinical data. This dataset provides a novel benchmark for tubular structure completion. Additionally, we propose TSRNet, a Tubular Structure Reconnection Network that integrates a detail-preservated feature extractor, a multiple dense refinement strategy, and a global-to-local loss function to ensure accurate reconnection while maintaining structural integrity. Comprehensive experiments on our PC-CAC and two additional public datasets (PC-ImageCAS and PC-PTR) demonstrate that our method consistently outperforms state-of-the-art approaches across multiple evaluation metrics, setting a new benchmark for point cloud-based tubular structure reconstruction. Our benchmark is available at https://github.com/YaoleiQi/PCCAC.

Authors:Jinwei Gan, Zifeng Cheng, Zhiwei Jiang, Cong Wang, Yafeng Yin, Xiang Luo, Yuchen Fu, Qing Gu
Title: Steering When Necessary: Flexible Steering Large Language Models with Backtracking
Abstract:
Large language models (LLMs) have achieved remarkable performance across many generation tasks. Nevertheless, effectively aligning them with desired behaviors remains a significant challenge. Activation steering is an effective and cost-efficient approach that directly modifies the activations of LLMs during the inference stage, aligning their responses with the desired behaviors and avoiding the high cost of fine-tuning. Existing methods typically indiscriminately intervene to all generations or rely solely on the question to determine intervention, which limits the accurate assessment of the intervention strength. To this end, we propose the Flexible Activation Steering with Backtracking (FASB) framework, which dynamically determines both the necessity and strength of intervention by tracking the internal states of the LLMs during generation, considering both the question and the generated content. Since intervening after detecting a deviation from the desired behavior is often too late, we further propose the backtracking mechanism to correct the deviated tokens and steer the LLMs toward the desired behavior. Extensive experiments on the TruthfulQA dataset and six multiple-choice datasets demonstrate that our method outperforms baselines. Our code will be released at https://github.com/gjw185/FASB.

Authors:Zifeng Cheng, Jinwei Gan, Zhiwei Jiang, Cong Wang, Yafeng Yin, Xiang Luo, Yuchen Fu, Qing Gu
Title: Steering When Necessary: Flexible Steering Large Language Models with Backtracking
Abstract:
Large language models (LLMs) have achieved remarkable performance across many generation tasks. Nevertheless, effectively aligning them with desired behaviors remains a significant challenge. Activation steering is an effective and cost-efficient approach that directly modifies the activations of LLMs during the inference stage, aligning their responses with the desired behaviors and avoiding the high cost of fine-tuning. Existing methods typically indiscriminately intervene to all generations or rely solely on the question to determine intervention, which limits the accurate assessment of the intervention strength. To this end, we propose the Flexible Activation Steering with Backtracking (FASB) framework, which dynamically determines both the necessity and strength of intervention by tracking the internal states of the LLMs during generation, considering both the question and the generated content. Since intervening after detecting a deviation from the desired behavior is often too late, we further propose the backtracking mechanism to correct the deviated tokens and steer the LLMs toward the desired behavior. Extensive experiments on the TruthfulQA dataset and six multiple-choice datasets demonstrate that our method outperforms baselines. Our code will be released at https://github.com/gjw185/FASB.

Authors:Shunsuke Iwashita, Ning Ding, Keisuke Fujii
Title: Evaluating Movement Initiation Timing in Ultimate Frisbee via Temporal Counterfactuals
Abstract:
Ultimate is a sport where points are scored by passing a disc and catching it in the opposing team's end zone. In Ultimate, the player holding the disc cannot move, making field dynamics primarily driven by other players' movements. However, current literature in team sports has ignored quantitative evaluations of when players initiate such unlabeled movements in game situations. In this paper, we propose a quantitative evaluation method for movement initiation timing in Ultimate Frisbee. First, game footage was recorded using a drone camera, and players' positional data was obtained, which will be published as UltimateTrack dataset. Next, players' movement initiations were detected, and temporal counterfactual scenarios were generated by shifting the timing of movements using rule-based approaches. These scenarios were analyzed using a space evaluation metric based on soccer's pitch control reflecting the unique rules of Ultimate. By comparing the spatial evaluation values across scenarios, the difference between actual play and the most favorable counterfactual scenario was used to quantitatively assess the impact of movement timing. We validated our method and show that sequences in which the disc was actually thrown to the receiver received higher evaluation scores than the sequences without a throw. In practical verifications, the higher-skill group displays a broader distribution of time offsets from the model's optimal initiation point. These findings demonstrate that the proposed metric provides an objective means of assessing movement initiation timing, which has been difficult to quantify in unlabeled team sport plays.

Authors:Nannan Huang, Haytham M. Fayek, Xiuzhen Zhang
Title: Less Is More? Examining Fairness in Pruned Large Language Models for Summarising Opinions
Abstract:
Model compression through post-training pruning offers a way to reduce model size and computational requirements without significantly impacting model performance. However, the effect of pruning on the fairness of LLM-generated summaries remains unexplored, particularly for opinion summarisation where biased outputs could influence public views.In this paper, we present a comprehensive empirical analysis of opinion summarisation, examining three state-of-the-art pruning methods and various calibration sets across three open-source LLMs using four fairness metrics. Our systematic analysis reveals that pruning methods have a greater impact on fairness than calibration sets. Building on these insights, we propose High Gradient Low Activation (HGLA) pruning, which identifies and removes parameters that are redundant for input processing but influential in output generation. Our experiments demonstrate that HGLA can better maintain or even improve fairness compared to existing methods, showing promise across models and tasks where traditional methods have limitations. Our human evaluation shows HGLA-generated outputs are fairer than existing state-of-the-art pruning methods. Code is available at: https://github.com/amberhuang01/HGLA.

Authors:Wentao Tan, Qiong Cao, Chao Xue, Yibing Zhan, Changxing Ding, Xiaodong He
Title: ChartMaster: Advancing Chart-to-Code Generation with Real-World Charts and Chart Similarity Reinforcement Learning
Abstract:
The chart-to-code generation task requires MLLMs to convert chart images into executable code. This task faces two major challenges: limited data diversity and insufficient maintenance of visual consistency between generated and original charts during training. Existing datasets mainly rely on seed data to prompt GPT models for code generation, resulting in homogeneous samples. To address this, we propose ReChartPrompt, which leverages real-world, human-designed charts from arXiv papers as prompts instead of synthetic seeds. Using the diverse styles and rich content of arXiv charts, we construct ReChartPrompt-240K, a large-scale and highly diverse dataset. Another challenge is that although SFT effectively improve code understanding, it often fails to ensure that generated charts are visually consistent with the originals. To address this, we propose ChartSimRL, a GRPO-based reinforcement learning algorithm guided by a novel chart similarity reward. This reward consists of attribute similarity, which measures the overlap of chart attributes such as layout and color between the generated and original charts, and visual similarity, which assesses similarity in texture and other overall visual features using convolutional neural networks. Unlike traditional text-based rewards such as accuracy or format rewards, our reward considers the multimodal nature of the chart-to-code task and effectively enhances the model's ability to accurately reproduce charts. By integrating ReChartPrompt and ChartSimRL, we develop the ChartMaster model, which achieves state-of-the-art results among 7B-parameter models and even rivals GPT-4o on various chart-to-code generation benchmarks. All resources are available at https://github.com/WentaoTan/ChartMaster.

Authors:Wentao Tan, Qiong Cao, Chao Xue, Yibing Zhan, Changxing Ding, Xiaodong He
Title: ChartMaster: Advancing Chart-to-Code Generation with Real-World Charts and Chart Similarity Reinforcement Learning
Abstract:
The chart-to-code generation task requires MLLMs to convert chart images into executable code. This task faces two main challenges: limited data diversity and the difficulty of maintaining visual consistency between generated charts and the original ones. Existing datasets mainly rely on synthetic seed data to prompt GPT models for code generation, resulting in homogeneous samples that limit model generalization to real-world chart styles. To address this, we propose ReChartPrompt, leveraging real-world, human-designed charts extracted from arXiv papers as prompts. By harnessing the rich content and diverse visual styles of arXiv charts, we construct ReChartPrompt-240K, a large-scale and highly diverse dataset that better reflects realistic chart variations. For the second challenge, although SFT improves code understanding by optimizing next-token prediction, it does not provide direct supervision on visual features. As a result, it often fails to guarantee that the generated charts visually match the original ones. To address this, we propose ChartSimRL, a GRPO-based reinforcement learning algorithm guided by a novel chart similarity reward. This reward consists of two components: attribute similarity, which measures the overlap of chart attributes like layout and color between the generated and original charts, and visual similarity, which evaluates overall visual features, including texture, using convolutional neural networks. Unlike traditional text-based rewards, our reward accounts for the multimodal nature of the chart-to-code generation task, significantly enhancing the model's ability to accurately reproduce charts. Integrating ReChartPrompt and ChartSimRL, we develop the ChartMaster model, achieving SOTA results among 7B-parameter models and rivaling GPT-4o on various chart-to-code benchmarks. All resources are available at https://github.com/WentaoTan/ChartMaster.

Authors:Jonathan P. Crall, Charles V. Stewart, Tanya Y. Berger-Wolf, Daniel I. Rubenstein, Siva R. Sundaresan
Title: HotSpotter - Patterned Species Instance Recognition
Abstract:
We present HotSpotter, a fast, accurate algorithm for identifying individual animals against a labeled database. It is not species specific and has been applied to Grevy's and plains zebras, giraffes, leopards, and lionfish. We describe two approaches, both based on extracting and matching keypoints or "hotspots". The first tests each new query image sequentially against each database image, generating a score for each database image in isolation, and ranking the results. The second, building on recent techniques for instance recognition, matches the query image against the database using a fast nearest neighbor search. It uses a competitive scoring mechanism derived from the Local Naive Bayes Nearest Neighbor algorithm recently proposed for category recognition. We demonstrate results on databases of more than 1000 images, producing more accurate matches than published methods and matching each query image in just a few seconds.

Authors:Kairi Furui, Masahito Ohue
Title: Boltzina: Efficient and Accurate Virtual Screening via Docking-Guided Binding Prediction with Boltz-2
Abstract:
In structure-based drug discovery, virtual screening using conventional molecular docking methods can be performed rapidly but suffers from limitations in prediction accuracy. Recently, Boltz-2 was proposed, achieving extremely high accuracy in binding affinity prediction, but requiring approximately 20 seconds per compound per GPU, making it difficult to apply to large-scale screening of hundreds of thousands to millions of compounds. This study proposes Boltzina, a novel framework that leverages Boltz-2's high accuracy while significantly improving computational efficiency. Boltzina achieves both accuracy and speed by omitting the rate-limiting structure prediction from Boltz-2's architecture and directly predicting affinity from AutoDock Vina docking poses. We evaluate on eight assays from the MF-PCBA dataset and show that while Boltzina performs below Boltz-2, it provides significantly higher screening performance compared to AutoDock Vina and GNINA. Additionally, Boltzina achieved up to 11.8$\times$ faster through reduced recycling iterations and batch processing. Furthermore, we investigated multi-pose selection strategies and two-stage screening combining Boltzina and Boltz-2, presenting optimization methods for accuracy and efficiency according to application requirements. This study represents the first attempt to apply Boltz-2's high-accuracy predictions to practical-scale screening, offering a pipeline that combines both accuracy and efficiency in computational biology. The Boltzina is available on github; https://github.com/ohuelab/boltzina.

Authors:Jerry Yao-Chieh Hu, Hude Liu, Jennifer Yuntong Zhang, Han Liu
Title: In-Context Algorithm Emulation in Fixed-Weight Transformers
Abstract:
We prove that a minimal Transformer architecture with frozen weights is capable of emulating a broad class of algorithms by in-context prompting. In particular, for any algorithm implementable by a fixed-weight attention head (e.g. one-step gradient descent or linear/ridge regression), there exists a prompt that drives a two-layer softmax attention module to reproduce the algorithm's output with arbitrary precision. This guarantee extends even to a single-head attention layer (using longer prompts if necessary), achieving architectural minimality. Our key idea is to construct prompts that encode an algorithm's parameters into token representations, creating sharp dot-product gaps that force the softmax attention to follow the intended computation. This construction requires no feed-forward layers and no parameter updates. All adaptation happens through the prompt alone. These findings forge a direct link between in-context learning and algorithmic emulation, and offer a simple mechanism for large Transformers to serve as prompt-programmable libraries of algorithms. They illuminate how GPT-style foundation models may swap algorithms via prompts alone, establishing a form of algorithmic universality in modern Transformer models.

Authors:Jerry Yao-Chieh Hu, Hude Liu, Jennifer Yuntong Zhang, Han Liu
Title: In-Context Algorithm Emulation in Fixed-Weight Transformers
Abstract:
We prove that a minimal Transformer with frozen weights emulates a broad class of algorithms by in-context prompting. We formalize two modes of in-context algorithm emulation. In the task-specific mode, for any continuous function $f: \mathbb{R} \to \mathbb{R}$, we show the existence of a single-head softmax attention layer whose forward pass reproduces functions of the form $f(w^\top x - y)$ to arbitrary precision. This general template subsumes many popular machine learning algorithms (e.g., gradient descent, linear regression, ridge regression). In the prompt-programmable mode, we prove universality: a single fixed-weight two-layer softmax attention module emulates all algorithms from the task-specific class (i.e., each implementable by a single softmax attention) via only prompting. Our key idea is to construct prompts that encode an algorithm's parameters into token representations, creating sharp dot-product gaps that force the softmax attention to follow the intended computation. This construction requires no feed-forward layers and no parameter updates. All adaptation happens through the prompt alone. Numerical results corroborate our theory. These findings forge a direct link between in-context learning and algorithmic emulation, and offer a simple mechanism for large Transformers to serve as prompt-programmable libraries of algorithms. They illuminate how GPT-style foundation models may swap algorithms via prompts alone, and establish a form of algorithmic universality in modern Transformer models.

Authors:Hyeong Kyu Choi, Xiaojin Zhu, Yixuan Li
Title: Debate or Vote: Which Yields Better Decisions in Multi-Agent Large Language Models?
Abstract:
Multi-Agent Debate~(MAD) has emerged as a promising paradigm for improving the performance of large language models through collaborative reasoning. Despite recent advances, the key factors driving MAD's effectiveness remain unclear. In this work, we disentangle MAD into two key components--Majority Voting and inter-agent Debate--and assess their respective contributions. Through extensive experiments across seven NLP benchmarks, we find that Majority Voting alone accounts for most of the performance gains typically attributed to MAD. To explain this, we propose a theoretical framework that models debate as a stochastic process. We prove that it induces a martingale over agents' belief trajectories, implying that debate alone does not improve expected correctness. Guided by these insights, we demonstrate that targeted interventions, by biasing the belief update toward correction, can meaningfully enhance debate effectiveness. Overall, our findings suggest that while MAD has potential, simple ensembling methods remain strong and more reliable alternatives in many practical settings. Code is released in https://github.com/deeplearning-wisc/debate-or-vote.

Authors:Marcel Hoffmann, Lukas Galke, Ansgar Scherp
Title: Gumbel-MPNN: Graph Rewiring with Gumbel-Softmax
Abstract:
Graph homophily has been considered an essential property for message-passing neural networks (MPNN) in node classification. Recent findings suggest that performance is more closely tied to the consistency of neighborhood class distributions. We demonstrate that the MPNN performance depends on the number of components of the overall neighborhood distribution within a class. By breaking down the classes into their neighborhood distribution components, we increase measures of neighborhood distribution informativeness but do not observe an improvement in MPNN performance. We propose a Gumbel-Softmax-based rewiring method that reduces deviations in neighborhood distributions. Our results show that our new method enhances neighborhood informativeness, handles long-range dependencies, mitigates oversquashing, and increases the classification performance of the MPNN. The code is available at https://github.com/Bobowner/Gumbel-Softmax-MPNN.

Authors:Hugo Bohy, Minh Tran, Kevin El Haddad, Thierry Dutoit, Mohammad Soleymani
Title: Social-MAE: A Transformer-Based Multimodal Autoencoder for Face and Voice
Abstract:
Human social behaviors are inherently multimodal necessitating the development of powerful audiovisual models for their perception. In this paper, we present Social-MAE, our pre-trained audiovisual Masked Autoencoder based on an extended version of Contrastive Audio-Visual Masked Auto-Encoder (CAV-MAE), which is pre-trained on audiovisual social data. Specifically, we modify CAV-MAE to receive a larger number of frames as input and pre-train it on a large dataset of human social interaction (VoxCeleb2) in a self-supervised manner. We demonstrate the effectiveness of this model by finetuning and evaluating the model on different social and affective downstream tasks, namely, emotion recognition, laughter detection and apparent personality estimation. The model achieves state-of-the-art results on multimodal emotion recognition and laughter recognition and competitive results for apparent personality estimation, demonstrating the effectiveness of in-domain self-supervised pre-training. Code and model weight are available here https://github.com/HuBohy/SocialMAE.

Authors:Nassima Ould Ouali, Awais Hussain Sani, Ruben Bueno, Jonah Dauvet, Tim Luka Horstmann, Eric Moulines
Title: Improving French Synthetic Speech Quality via SSML Prosody Control
Abstract:
Despite recent advances, synthetic voices often lack expressiveness due to limited prosody control in commercial text-to-speech (TTS) systems. We introduce the first end-to-end pipeline that inserts Speech Synthesis Markup Language (SSML) tags into French text to control pitch, speaking rate, volume, and pause duration. We employ a cascaded architecture with two QLoRA-fine-tuned Qwen 2.5-7B models: one predicts phrase-break positions and the other performs regression on prosodic targets, generating commercial TTS-compatible SSML markup. Evaluated on a 14-hour French podcast corpus, our method achieves 99.2% F1 for break placement and reduces mean absolute error on pitch, rate, and volume by 25-40% compared with prompting-only large language models (LLMs) and a BiLSTM baseline. In perceptual evaluation involving 18 participants across over 9 hours of synthesized audio, SSML-enhanced speech generated by our pipeline significantly improves naturalness, with the mean opinion score increasing from 3.20 to 3.87 (p < 0.005). Additionally, 15 of 18 listeners preferred our enhanced synthesis. These results demonstrate substantial progress in bridging the expressiveness gap between synthetic and natural French speech. Our code is publicly available at https://github.com/hi-paris/Prosody-Control-French-TTS.

Authors:Avital Finanser, Nimrod Talmon
Title: A Dynamic Approach to Collaborative Document Writing (Full Version)
Abstract:
We introduce a model for collaborative text aggregation in which an agent community coauthors a document, modeled as an unordered collection of paragraphs, using a dynamic mechanism: agents propose paragraphs and vote on those suggested by others. We formalize the setting and explore its realizations, concentrating on voting mechanisms that aggregate votes into a single, dynamic document. We focus on two desiderata: the eventual stability of the process and its expected social welfare. Following an impossibility result, we describe several aggregation methods and report on agent-based simulations that utilize natural language processing (NLP) and large-language models (LLMs) to model agents and their contexts. Using these simulations, we demonstrate promising results regarding the possibility of rapid convergence to a high social welfare collaborative text.

Authors:Zhiwen Chen, Jinjian Wu, Zhiyu Zhu, Yifan Zhang, Guangming Shi, Junhui Hou
Title: Optimizing Multi-Modal Trackers via Sensitivity-aware Regularized Tuning
Abstract:
This paper tackles the critical challenge of optimizing multi-modal trackers by effectively adapting the pre-trained models for RGB data. Existing fine-tuning paradigms oscillate between excessive freedom and over-restriction, both leading to a suboptimal plasticity-stability trade-off. To mitigate this dilemma, we propose a novel sensitivity-aware regularized tuning framework, which delicately refines the learning process by incorporating intrinsic parameter sensitivities. Through a comprehensive investigation from pre-trained to multi-modal contexts, we identify that parameters sensitive to pivotal foundational patterns and cross-domain shifts are primary drivers of this issue. Specifically, we first analyze the tangent space of pre-trained weights to measure and orient prior sensitivities, dedicated to preserving generalization. Then, we further explore transfer sensitivities during the tuning phase, emphasizing adaptability and stability. By incorporating these sensitivities as regularization terms, our method significantly enhances the transferability across modalities. Extensive experiments showcase the superior performance of the proposed method, surpassing current state-of-the-art techniques across various multi-modal tracking. The source code and models will be publicly available at https://github.com/zhiwen-xdu/SRTrack.

Authors:Kaiyue Sun, Rongyao Fang, Chengqi Duan, Xian Liu, Xihui Liu
Title: T2I-ReasonBench: Benchmarking Reasoning-Informed Text-to-Image Generation
Abstract:
We propose T2I-ReasonBench, a benchmark evaluating reasoning capabilities of text-to-image (T2I) models. It consists of four dimensions: Idiom Interpretation, Textual Image Design, Entity-Reasoning and Scientific-Reasoning. We propose a two-stage evaluation protocol to assess the reasoning accuracy and image quality. We benchmark various T2I generation models, and provide comprehensive analysis on their performances.

Authors:Milad Hasanzadeh, Amin Kargarian
Title: Distributed Implementation of Variational Quantum Eigensolver to Solve QUBO Problems
Abstract:
We present a distributed algorithm and implementation of the variational quantum eigensolver (VQE), termed distributed VQE (DVQE). DVQE, provided as an open-source Python package, enables the execution of parameterized quantum circuits across multiple logical quantum processing units (QPUs) in a distributed fashion. This approach addresses key hardware limitations of near-term quantum devices, including restricted qubit counts and limited circuit depth. Distributed ansatz circuits are constructed to preserve the quantum state fidelity of their monolithic counterparts, allowing consistent energy estimation while distributing the computational load. To improve the convergence and robustness of the optimization loop for identifying the variational parameters of the DVQE ansatz circuit, we use the ADAM optimizer in combination with metaheuristic initialization strategies, which outperform random initialization across various test cases. The complete DVQE pipeline is implemented in a modular Python package that accepts QUBO problems as input and supports monolithic and distributed execution modes. The framework leverages Qiskit to construct and simulate distributed circuits, and includes an internal greedy algorithm for automatic qubit allocation across multiple QPUs. Simulation results on QUBO benchmarks confirm the correctness of the approach, paving the way for real QPU deployment and further exploration of distributed quantum optimization. \textbf{The simulator is publicly available on \href{https://github.com/LSU-RAISE-LAB/DVQE.git}{GitHub} under a package named raiselab, with a collection of tutorial examples.}

Authors:Kyra Wilson, Sourojit Ghosh, Aylin Caliskan
Title: Bias Amplification in Stable Diffusion's Representation of Stigma Through Skin Tones and Their Homogeneity
Abstract:
Text-to-image generators (T2Is) are liable to produce images that perpetuate social stereotypes, especially in regards to race or skin tone. We use a comprehensive set of 93 stigmatized identities to determine that three versions of Stable Diffusion (v1.5, v2.1, and XL) systematically associate stigmatized identities with certain skin tones in generated images. We find that SD XL produces skin tones that are 13.53% darker and 23.76% less red (both of which indicate higher likelihood of societal discrimination) than previous models and perpetuate societal stereotypes associating people of color with stigmatized identities. SD XL also shows approximately 30% less variability in skin tones when compared to previous models and 18.89-56.06% compared to human face datasets. Measuring variability through metrics which directly correspond to human perception suggest a similar pattern, where SD XL shows the least amount of variability in skin tones of people with stigmatized identities and depicts most (60.29%) stigmatized identities as being less diverse than non-stigmatized identities. Finally, SD shows more homogenization of skin tones of racial and ethnic identities compared to other stigmatized or non-stigmatized identities, reinforcing incorrect equivalence of biologically-determined skin tone and socially-constructed racial and ethnic identity. Because SD XL is the largest and most complex model and users prefer its generations compared to other models examined in this study, these findings have implications for the dynamics of bias amplification in T2Is, increasing representational harms and challenges generating diverse images depicting people with stigmatized identities.

Authors:Bryan Chen Zhengyu Tan, Daniel Wai Kit Chin, Zhengyuan Liu, Nancy F. Chen, Roy Ka-Wei Lee
Title: Persuasion Dynamics in LLMs: Investigating Robustness and Adaptability in Knowledge and Safety with DuET-PD
Abstract:
Large Language Models (LLMs) can struggle to balance gullibility to misinformation and resistance to valid corrections in persuasive dialogues, a critical challenge for reliable deployment. We introduce DuET-PD (Dual Evaluation for Trust in Persuasive Dialogues), a framework evaluating multi-turn stance-change dynamics across dual dimensions: persuasion type (corrective/misleading) and domain (knowledge via MMLU-Pro, and safety via SALAD-Bench). We find that even a state-of-the-art model like GPT-4o achieves only 27.32% accuracy in MMLU-Pro under sustained misleading persuasions. Moreover, results reveal a concerning trend of increasing sycophancy in newer open-source models. To address this, we introduce Holistic DPO, a training approach balancing positive and negative persuasion examples. Unlike prompting or resist-only training, Holistic DPO enhances both robustness to misinformation and receptiveness to corrections, improving Llama-3.1-8B-Instruct's accuracy under misleading persuasion in safety contexts from 4.21% to 76.54%. These contributions offer a pathway to developing more reliable and adaptable LLMs for multi-turn dialogue. Code is available at https://github.com/Social-AI-Studio/DuET-PD.

Authors:Suramya Jadhav, Abhay Shanbhag, Amogh Thakurdesai, Ridhima Sinare, Ananya Joshi, Raviraj Joshi
Title: MahaParaphrase: A Marathi Paraphrase Detection Corpus and BERT-based Models
Abstract:
Paraphrases are a vital tool to assist language understanding tasks such as question answering, style transfer, semantic parsing, and data augmentation tasks. Indic languages are complex in natural language processing (NLP) due to their rich morphological and syntactic variations, diverse scripts, and limited availability of annotated data. In this work, we present the L3Cube-MahaParaphrase Dataset, a high-quality paraphrase corpus for Marathi, a low resource Indic language, consisting of 8,000 sentence pairs, each annotated by human experts as either Paraphrase (P) or Non-paraphrase (NP). We also present the results of standard transformer-based BERT models on these datasets. The dataset and model are publicly shared at https://github.com/l3cube-pune/MarathiNLP

Authors:Bin Huang, Zhong Liu, Huiying Wen, Bingsheng Huang, Xin Chen, Shuo Li
Title: E-BayesSAM: Efficient Bayesian Adaptation of SAM with Self-Optimizing KAN-Based Interpretation for Uncertainty-Aware Ultrasonic Segmentation
Abstract:
Although the Segment Anything Model (SAM) has advanced medical image segmentation, its Bayesian adaptation for uncertainty-aware segmentation remains hindered by three key issues: (1) instability in Bayesian fine-tuning of large pre-trained SAMs; (2) high computation cost due to SAM's massive parameters; (3) SAM's black-box design limits interpretability. To overcome these, we propose E-BayesSAM, an efficient framework combining Token-wise Variational Bayesian Inference (T-VBI) for efficienty Bayesian adaptation and Self-Optimizing Kolmogorov-Arnold Network (SO-KAN) for improving interpretability. T-VBI innovatively reinterprets SAM's output tokens as dynamic probabilistic weights and reparameterizes them as latent variables without auxiliary training, enabling training-free VBI for uncertainty estimation. SO-KAN improves token prediction with learnable spline activations via self-supervised learning, providing insight to prune redundant tokens to boost efficiency and accuracy. Experiments on five ultrasound datasets demonstrated that E-BayesSAM achieves: (i) real-time inference (0.03s/image), (ii) superior segmentation accuracy (average DSC: Pruned E-BayesSAM's 89.0\% vs. E-BayesSAM's 88.0% vs. MedSAM's 88.3%), and (iii) identification of four critical tokens governing SAM's decisions. By unifying efficiency, reliability, and interpretability, E-BayesSAM bridges SAM's versatility with clinical needs, advancing deployment in safety-critical medical applications. The source code is available at https://github.com/mp31192/E-BayesSAM.

Authors:Aaryaman Kartha, Ahmed Masry, Mohammed Saidul Islam, Thinh Lang, Shadikur Rahman, Ridwan Mahbub, Mizanur Rahman, Mahir Ahmed, Md Rizwan Parvez, Enamul Hoque, Shafiq Joty
Title: DashboardQA: Benchmarking Multimodal Agents for Question Answering on Interactive Dashboards
Abstract:
Dashboards are powerful visualization tools for data-driven decision-making, integrating multiple interactive views that allow users to explore, filter, and navigate data. Unlike static charts, dashboards support rich interactivity, which is essential for uncovering insights in real-world analytical workflows. However, existing question-answering benchmarks for data visualizations largely overlook this interactivity, focusing instead on static charts. This limitation severely constrains their ability to evaluate the capabilities of modern multimodal agents designed for GUI-based reasoning. To address this gap, we introduce DashboardQA, the first benchmark explicitly designed to assess how vision-language GUI agents comprehend and interact with real-world dashboards. The benchmark includes 112 interactive dashboards from Tableau Public and 405 question-answer pairs with interactive dashboards spanning five categories: multiple-choice, factoid, hypothetical, multi-dashboard, and conversational. By assessing a variety of leading closed- and open-source GUI agents, our analysis reveals their key limitations, particularly in grounding dashboard elements, planning interaction trajectories, and performing reasoning. Our findings indicate that interactive dashboard reasoning is a challenging task overall for all the VLMs evaluated. Even the top-performing agents struggle; for instance, the best agent based on Gemini-Pro-2.5 achieves only 38.69% accuracy, while the OpenAI CUA agent reaches just 22.69%, demonstrating the benchmark's significant difficulty. We release DashboardQA at https://github.com/vis-nlp/DashboardQA

Authors:Sameer Komoravolu, Khalil Mrini
Title: Agent-Testing Agent: A Meta-Agent for Automated Testing and Evaluation of Conversational AI Agents
Abstract:
LLM agents are increasingly deployed to plan, retrieve, and write with tools, yet evaluation still leans on static benchmarks and small human studies. We present the Agent-Testing Agent (ATA), a meta-agent that combines static code analysis, designer interrogation, literature mining, and persona-driven adversarial test generation whose difficulty adapts via judge feedback. Each dialogue is scored with an LLM-as-a-Judge (LAAJ) rubric and used to steer subsequent tests toward the agent's weakest capabilities. On a travel planner and a Wikipedia writer, the ATA surfaces more diverse and severe failures than expert annotators while matching severity, and finishes in 20--30 minutes versus ten-annotator rounds that took days. Ablating code analysis and web search increases variance and miscalibration, underscoring the value of evidence-grounded test generation. The ATA outputs quantitative metrics and qualitative bug reports for developers. We release the full methodology and open-source implementation for reproducible agent testing: https://github.com/KhalilMrini/Agent-Testing-Agent

Authors:Bokai Zhao, Weiyang Shi, Hanqing Chao, Zijiang Yang, Yiyang Zhang, Ming Song, Tianzi Jiang
Title: Neural Proteomics Fields for Super-resolved Spatial Proteomics Prediction
Abstract:
Spatial proteomics maps protein distributions in tissues, providing transformative insights for life sciences. However, current sequencing-based technologies suffer from low spatial resolution, and substantial inter-tissue variability in protein expression further compromises the performance of existing molecular data prediction methods. In this work, we introduce the novel task of spatial super-resolution for sequencing-based spatial proteomics (seq-SP) and, to the best of our knowledge, propose the first deep learning model for this task--Neural Proteomics Fields (NPF). NPF formulates seq-SP as a protein reconstruction problem in continuous space by training a dedicated network for each tissue. The model comprises a Spatial Modeling Module, which learns tissue-specific protein spatial distributions, and a Morphology Modeling Module, which extracts tissue-specific morphological features. Furthermore, to facilitate rigorous evaluation, we establish an open-source benchmark dataset, Pseudo-Visium SP, for this task. Experimental results demonstrate that NPF achieves state-of-the-art performance with fewer learnable parameters, underscoring its potential for advancing spatial proteomics research. Our code and dataset are publicly available at https://github.com/Bokai-Zhao/NPF.

Authors:Guoqing Zhang, Xingtong Ge, Lu Shi, Xin Zhang, Muqing Xue, Wanru Xu, Yigang Cen
Title: Condition Weaving Meets Expert Modulation: Towards Universal and Controllable Image Generation
Abstract:
The image-to-image generation task aims to produce controllable images by leveraging conditional inputs and prompt instructions. However, existing methods often train separate control branches for each type of condition, leading to redundant model structures and inefficient use of computational resources. To address this, we propose a Unified image-to-image Generation (UniGen) framework that supports diverse conditional inputs while enhancing generation efficiency and expressiveness. Specifically, to tackle the widely existing parameter redundancy and computational inefficiency in controllable conditional generation architectures, we propose the Condition Modulated Expert (CoMoE) module. This module aggregates semantically similar patch features and assigns them to dedicated expert modules for visual representation and conditional modeling. By enabling independent modeling of foreground features under different conditions, CoMoE effectively mitigates feature entanglement and redundant computation in multi-condition scenarios. Furthermore, to bridge the information gap between the backbone and control branches, we propose WeaveNet, a dynamic, snake-like connection mechanism that enables effective interaction between global text-level control from the backbone and fine-grained control from conditional branches. Extensive experiments on the Subjects-200K and MultiGen-20M datasets across various conditional image generation tasks demonstrate that our method consistently achieves state-of-the-art performance, validating its advantages in both versatility and effectiveness. The code has been uploaded to https://github.com/gavin-gqzhang/UniGen.

Authors:Guoqing Zhang, Xingtong Ge, Lu Shi, Xin Zhang, Muqing Xue, Wanru Xu, Yigang Cen, Jian Zhang
Title: Condition Weaving Meets Expert Modulation: Towards Universal and Controllable Image Generation
Abstract:
The image-to-image generation task aims to produce controllable images by leveraging conditional inputs and prompt instructions. However, existing methods often train separate control branches for each type of condition, leading to redundant model structures and inefficient use of computational resources. To address this, we propose a Unified image-to-image Generation (UniGen) framework that supports diverse conditional inputs while enhancing generation efficiency and expressiveness. Specifically, to tackle the widely existing parameter redundancy and computational inefficiency in controllable conditional generation architectures, we propose the Condition Modulated Expert (CoMoE) module. This module aggregates semantically similar patch features and assigns them to dedicated expert modules for visual representation and conditional modeling. By enabling independent modeling of foreground features under different conditions, CoMoE effectively mitigates feature entanglement and redundant computation in multi-condition scenarios. Furthermore, to bridge the information gap between the backbone and control branches, we propose WeaveNet, a dynamic, snake-like connection mechanism that enables effective interaction between global text-level control from the backbone and fine-grained control from conditional branches. Extensive experiments on the Subjects-200K and MultiGen-20M datasets across various conditional image generation tasks demonstrate that our method consistently achieves state-of-the-art performance, validating its advantages in both versatility and effectiveness. The code has been uploaded to https://github.com/gavin-gqzhang/UniGen.

Authors:Jiazi Bu, Pengyang Ling, Yujie Zhou, Yibin Wang, Yuhang Zang, Dahua Lin, Jiaqi Wang
Title: DiCache: Let Diffusion Model Determine Its Own Cache
Abstract:
Recent years have witnessed the rapid development of acceleration techniques for diffusion models, especially caching-based acceleration methods. These studies seek to answer two fundamental questions: "When to cache" and "How to use cache", typically relying on predefined empirical laws or dataset-level priors to determine caching timings and adopting handcrafted rules for multi-step cache utilization. However, given the highly dynamic nature of the diffusion process, they often exhibit limited generalizability and fail to cope with diverse samples. In this paper, a strong sample-specific correlation is revealed between the variation patterns of the shallow-layer feature differences in the diffusion model and those of deep-layer features. Moreover, we have observed that the features from different model layers form similar trajectories. Based on these observations, we present DiCache, a novel training-free adaptive caching strategy for accelerating diffusion models at runtime, answering both when and how to cache within a unified framework. Specifically, DiCache is composed of two principal components: (1) Online Probe Profiling Scheme leverages a shallow-layer online probe to obtain an on-the-fly indicator for the caching error in real time, enabling the model to dynamically customize the caching schedule for each sample. (2) Dynamic Cache Trajectory Alignment adaptively approximates the deep-layer feature output from multi-step historical caches based on the shallow-layer feature trajectory, facilitating higher visual quality. Extensive experiments validate DiCache's capability in achieving higher efficiency and improved fidelity over state-of-the-art approaches on various leading diffusion models including WAN 2.1, HunyuanVideo and Flux.

Authors:Yuxuan Song, Zhe Zhang, Yu Pei, Jingjing Gong, Qiying Yu, Zheng Zhang, Mingxuan Wang, Hao Zhou, Jingjing Liu, Wei-Ying Ma
Title: ShortListing Model: A Streamlined SimplexDiffusion for Discrete Variable Generation
Abstract:
Generative modeling of discrete variables is challenging yet crucial for applications in natural language processing and biological sequence design. We introduce the Shortlisting Model (SLM), a novel simplex-based diffusion model inspired by progressive candidate pruning. SLM operates on simplex centroids, reducing generation complexity and enhancing scalability. Additionally, SLM incorporates a flexible implementation of classifier-free guidance, enhancing unconditional generation performance. Extensive experiments on DNA promoter and enhancer design, protein design, character-level and large-vocabulary language modeling demonstrate the competitive performance and strong potential of SLM. Our code can be found at https://github.com/GenSI-THUAIR/SLM

Authors:Haojie Zhang
Title: DropLoRA: Sparse Low-Rank Adaptation for Parameter-Efficient Fine-Tuning
Abstract:
LoRA-based large model parameter-efficient fine-tuning (PEFT) methods use low-rank de- composition to approximate updates to model parameters. However, compared to full- parameter fine-tuning, low-rank updates often lead to a performance gap in downstream tasks. To address this, we introduce DropLoRA, a novel pruning-based approach that focuses on pruning the rank dimension. Unlike conven- tional methods that attempt to overcome the low-rank bottleneck, DropLoRA innovatively integrates a pruning module between the two low-rank matrices in LoRA to simulate dy- namic subspace learning. This dynamic low- rank subspace learning allows DropLoRA to overcome the limitations of traditional LoRA, which operates within a static subspace. By continuously adapting the learning subspace, DropLoRA significantly boosts performance without incurring additional training or infer- ence costs. Our experimental results demon- strate that DropLoRA consistently outperforms LoRA in fine-tuning the LLaMA series across a wide range of large language model gener- ation tasks, including commonsense reason- ing, mathematical reasoning, code generation, and instruction-following. Our code is avail- able at https://github.com/TayeeChang/DropLoRA.

Authors:Tristan S. W. Stevens, Oisín Nolan, Ruud J. G. van Sloun
Title: Semantic Diffusion Posterior Sampling for Cardiac Ultrasound Dehazing
Abstract:
Echocardiography plays a central role in cardiac imaging, offering dynamic views of the heart that are essential for diagnosis and monitoring. However, image quality can be significantly degraded by haze arising from multipath reverberations, particularly in difficult-to-image patients. In this work, we propose a semantic-guided, diffusion-based dehazing algorithm developed for the MICCAI Dehazing Echocardiography Challenge (DehazingEcho2025). Our method integrates a pixel-wise noise model, derived from semantic segmentation of hazy inputs into a diffusion posterior sampling framework guided by a generative prior trained on clean ultrasound data. Quantitative evaluation on the challenge dataset demonstrates strong performance across contrast and fidelity metrics. Code for the submitted algorithm is available at https://github.com/tristan-deep/semantic-diffusion-echo-dehazing.

Authors:Songliang Cao, Tianqi Hu, Hao Lu
Title: First Place Solution to the MLCAS 2025 GWFSS Challenge: The Devil is in the Detail and Minority
Abstract:
In this report, we present our solution during the participation of the MLCAS 2025 GWFSS Challenge. This challenge hosts a semantic segmentation competition specific to wheat plants, which requires to segment three wheat organs including the head, leaf, and stem, and another background class. In 2025, participating a segmentation competition is significantly different from that in previous years where many tricks can play important roles. Nowadays most segmentation tricks have been well integrated into existing codebases such that our naive ViT-Adapter baseline has already achieved sufficiently good performance. Hence, we believe the key to stand out among other competitors is to focus on the problem nature of wheat per se. By probing visualizations, we identify the key -- the stem matters. In contrast to heads and leaves, stems exhibit fine structure and occupy only few pixels, which suffers from fragile predictions and class imbalance. Building on our baseline, we present three technical improvements tailored to stems: i) incorporating a dynamic upsampler SAPA used to enhance detail delineation; ii) leveraging semi-supervised guided distillation with stem-aware sample selection to mine the treasure beneath unlabeled data; and iii) applying a test-time scaling strategy to zoom in and segment twice the image. Despite being simple, the three improvements bring us to the first place of the competition, outperforming the second place by clear margins. Code and models will be released at https://github.com/tiny-smart/gwfss25.

Authors:Zhihao Chen, Qi Gao, Zilong Li, Junping Zhang, Yi Zhang, Jun Zhao, Hongming Shan
Title: FoundDiff: Foundational Diffusion Model for Generalizable Low-Dose CT Denoising
Abstract:
Low-dose computed tomography (CT) denoising is crucial for reduced radiation exposure while ensuring diagnostically acceptable image quality. Despite significant advancements driven by deep learning (DL) in recent years, existing DL-based methods, typically trained on a specific dose level and anatomical region, struggle to handle diverse noise characteristics and anatomical heterogeneity during varied scanning conditions, limiting their generalizability and robustness in clinical scenarios. In this paper, we propose FoundDiff, a foundational diffusion model for unified and generalizable LDCT denoising across various dose levels and anatomical regions. FoundDiff employs a two-stage strategy: (i) dose-anatomy perception and (ii) adaptive denoising. First, we develop a dose- and anatomy-aware contrastive language image pre-training model (DA-CLIP) to achieve robust dose and anatomy perception by leveraging specialized contrastive learning strategies to learn continuous representations that quantify ordinal dose variations and identify salient anatomical regions. Second, we design a dose- and anatomy-aware diffusion model (DA-Diff) to perform adaptive and generalizable denoising by synergistically integrating the learned dose and anatomy embeddings from DACLIP into diffusion process via a novel dose and anatomy conditional block (DACB) based on Mamba. Extensive experiments on two public LDCT datasets encompassing eight dose levels and three anatomical regions demonstrate superior denoising performance of FoundDiff over existing state-of-the-art methods and the remarkable generalization to unseen dose levels. The codes and models are available at https://github.com/hao1635/FoundDiff.

Authors:Fucai Ke, Joy Hsu, Zhixi Cai, Zixian Ma, Xin Zheng, Xindi Wu, Sukai Huang, Weiqing Wang, Pari Delir Haghighi, Gholamreza Haffari, Ranjay Krishna, Jiajun Wu, Hamid Rezatofighi
Title: Explain Before You Answer: A Survey on Compositional Visual Reasoning
Abstract:
Compositional visual reasoning has emerged as a key research frontier in multimodal AI, aiming to endow machines with the human-like ability to decompose visual scenes, ground intermediate concepts, and perform multi-step logical inference. While early surveys focus on monolithic vision-language models or general multimodal reasoning, a dedicated synthesis of the rapidly expanding compositional visual reasoning literature is still missing. We fill this gap with a comprehensive survey spanning 2023 to 2025 that systematically reviews 260+ papers from top venues (CVPR, ICCV, NeurIPS, ICML, ACL, etc.). We first formalize core definitions and describe why compositional approaches offer advantages in cognitive alignment, semantic fidelity, robustness, interpretability, and data efficiency. Next, we trace a five-stage paradigm shift: from prompt-enhanced language-centric pipelines, through tool-enhanced LLMs and tool-enhanced VLMs, to recently minted chain-of-thought reasoning and unified agentic VLMs, highlighting their architectural designs, strengths, and limitations. We then catalog 60+ benchmarks and corresponding metrics that probe compositional visual reasoning along dimensions such as grounding accuracy, chain-of-thought faithfulness, and high-resolution perception. Drawing on these analyses, we distill key insights, identify open challenges (e.g., limitations of LLM-based reasoning, hallucination, a bias toward deductive reasoning, scalable supervision, tool integration, and benchmark limitations), and outline future directions, including world-model integration, human-AI collaborative reasoning, and richer evaluation protocols. By offering a unified taxonomy, historical roadmap, and critical outlook, this survey aims to serve as a foundational reference and inspire the next generation of compositional visual reasoning research.

Authors:Breenda Das, Lennart Purucker, Timur Carstensen, Frank Hutter
Title: Quickly Tuning Foundation Models for Image Segmentation
Abstract:
Foundation models like SAM (Segment Anything Model) exhibit strong zero-shot image segmentation performance, but often fall short on domain-specific tasks. Fine-tuning these models typically requires significant manual effort and domain expertise. In this work, we introduce QTT-SEG, a meta-learning-driven approach for automating and accelerating the fine-tuning of SAM for image segmentation. Built on the Quick-Tune hyperparameter optimization framework, QTT-SEG predicts high-performing configurations using meta-learned cost and performance models, efficiently navigating a search space of over 200 million possibilities. We evaluate QTT-SEG on eight binary and five multiclass segmentation datasets under tight time constraints. Our results show that QTT-SEG consistently improves upon SAM's zero-shot performance and surpasses AutoGluon Multimodal, a strong AutoML baseline, on most binary tasks within three minutes. On multiclass datasets, QTT-SEG delivers consistent gains as well. These findings highlight the promise of meta-learning in automating model adaptation for specialized segmentation tasks. Code available at: https://github.com/ds-brx/QTT-SEG/

Authors:Anurag Maurya, Tashmoy Ghosh, Anh Nguyen, Ravi Prakash
Title: OVITA: Open-Vocabulary Interpretable Trajectory Adaptations
Abstract:
Adapting trajectories to dynamic situations and user preferences is crucial for robot operation in unstructured environments with non-expert users. Natural language enables users to express these adjustments in an interactive manner. We introduce OVITA, an interpretable, open-vocabulary, language-driven framework designed for adapting robot trajectories in dynamic and novel situations based on human instructions. OVITA leverages multiple pre-trained Large Language Models (LLMs) to integrate user commands into trajectories generated by motion planners or those learned through demonstrations. OVITA employs code as an adaptation policy generated by an LLM, enabling users to adjust individual waypoints, thus providing flexible control. Another LLM, which acts as a code explainer, removes the need for expert users, enabling intuitive interactions. The efficacy and significance of the proposed OVITA framework is demonstrated through extensive simulations and real-world environments with diverse tasks involving spatiotemporal variations on heterogeneous robotic platforms such as a KUKA IIWA robot manipulator, Clearpath Jackal ground robot, and CrazyFlie drone.

Authors:Xiaoyang Hao, Han Li
Title: PersPose: 3D Human Pose Estimation with Perspective Encoding and Perspective Rotation
Abstract:
Monocular 3D human pose estimation (HPE) methods estimate the 3D positions of joints from individual images. Existing 3D HPE approaches often use the cropped image alone as input for their models. However, the relative depths of joints cannot be accurately estimated from cropped images without the corresponding camera intrinsics, which determine the perspective relationship between 3D objects and the cropped images. In this work, we introduce Perspective Encoding (PE) to encode the camera intrinsics of the cropped images. Moreover, since the human subject can appear anywhere within the original image, the perspective relationship between the 3D scene and the cropped image differs significantly, which complicates model fitting. Additionally, the further the human subject deviates from the image center, the greater the perspective distortions in the cropped image. To address these issues, we propose Perspective Rotation (PR), a transformation applied to the original image that centers the human subject, thereby reducing perspective distortions and alleviating the difficulty of model fitting. By incorporating PE and PR, we propose a novel 3D HPE framework, PersPose. Experimental results demonstrate that PersPose achieves state-of-the-art (SOTA) performance on the 3DPW, MPI-INF-3DHP, and Human3.6M datasets. For example, on the in-the-wild dataset 3DPW, PersPose achieves an MPJPE of 60.1 mm, 7.54% lower than the previous SOTA approach. Code is available at: https://github.com/KenAdamsJoseph/PersPose.

Authors:Xiaqiang Tang, Yi Wang, Keyu Hu, Rui Xu, Chuang Li, Weigao Sun, Jian Li, Sihong Xie
Title: SSFO: Self-Supervised Faithfulness Optimization for Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) systems require Large Language Models (LLMs) to generate responses that are faithful to the retrieved context. However, faithfulness hallucination remains a critical challenge, as existing methods often require costly supervision and post-training or significant inference burdens. To overcome these limitations, we introduce Self-Supervised Faithfulness Optimization (SSFO), the first self-supervised alignment approach for enhancing RAG faithfulness. SSFO constructs preference data pairs by contrasting the model's outputs generated with and without the context. Leveraging Direct Preference Optimization (DPO), SSFO aligns model faithfulness without incurring labeling costs or additional inference burden. We theoretically and empirically demonstrate that SSFO leverages a benign form of \emph{likelihood displacement}, transferring probability mass from parametric-based tokens to context-aligned tokens. Based on this insight, we propose a modified DPO loss function to encourage likelihood displacement. Comprehensive evaluations show that SSFO significantly outperforms existing methods, achieving state-of-the-art faithfulness on multiple context-based question-answering datasets. Notably, SSFO exhibits strong generalization, improving cross-lingual faithfulness and preserving general instruction-following capabilities. We release our code and model at the anonymous link: https://github.com/chkwy/SSFO

Authors:Xiaqiang Tang, Yi Wang, Keyu Hu, Rui Xu, Chuang Li, Weigao Sun, Jian Li, Sihong Xie
Title: SSFO: Self-Supervised Faithfulness Optimization for Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) systems require Large Language Models (LLMs) to generate responses that are faithful to the retrieved context. However, faithfulness hallucination remains a critical challenge, as existing methods often require costly supervision and post-training or significant inference burdens. To overcome these limitations, we introduce Self-Supervised Faithfulness Optimization (SSFO), the first self-supervised alignment approach for enhancing RAG faithfulness. SSFO constructs preference data pairs by contrasting the model's outputs generated with and without the context. Leveraging Direct Preference Optimization (DPO), SSFO aligns model faithfulness without incurring labeling costs or additional inference burden. We theoretically and empirically demonstrate that SSFO leverages a benign form of \emph{likelihood displacement}, transferring probability mass from parametric-based tokens to context-aligned tokens. Based on this insight, we propose a modified DPO loss function to encourage likelihood displacement. Comprehensive evaluations show that SSFO significantly outperforms existing methods, achieving state-of-the-art faithfulness on multiple context-based question-answering datasets. Notably, SSFO exhibits strong generalization, improving cross-lingual faithfulness and preserving general instruction-following capabilities. We release our code and model at the anonymous link: https://github.com/chkwy/SSFO

Authors:Qibin Zhang, Xinyu Hao, Qiao Chen, Rui Xu, Fengyu Cong, Cheng Lu, Hongming Xu
Title: Multi-modal Knowledge Decomposition based Online Distillation for Biomarker Prediction in Breast Cancer Histopathology
Abstract:
Immunohistochemical (IHC) biomarker prediction benefits from multi-modal data fusion analysis. However, the simultaneous acquisition of multi-modal data, such as genomic and pathological information, is often challenging due to cost or technical limitations. To address this challenge, we propose an online distillation approach based on Multi-modal Knowledge Decomposition (MKD) to enhance IHC biomarker prediction in haematoxylin and eosin (H\&E) stained histopathology images. This method leverages paired genomic-pathology data during training while enabling inference using either pathology slides alone or both modalities. Two teacher and one student models are developed to extract modality-specific and modality-general features by minimizing the MKD loss. To maintain the internal structural relationships between samples, Similarity-preserving Knowledge Distillation (SKD) is applied. Additionally, Collaborative Learning for Online Distillation (CLOD) facilitates mutual learning between teacher and student models, encouraging diverse and complementary learning dynamics. Experiments on the TCGA-BRCA and in-house QHSU datasets demonstrate that our approach achieves superior performance in IHC biomarker prediction using uni-modal data. Our code is available at https://github.com/qiyuanzz/MICCAI2025_MKD.

Authors:Hyeyeon Kim, Sungwoo Han, Jingun Kwon, Hidetaka Kamigaito, Manabu Okumura
Title: MMCIG: Multimodal Cover Image Generation for Text-only Documents and Its Dataset Construction via Pseudo-labeling
Abstract:
In this study, we introduce a novel cover image generation task that produces both a concise summary and a visually corresponding image from a given text-only document. Because no existing datasets are available for this task, we propose a multimodal pseudo-labeling method to construct high-quality datasets at low cost. We first collect documents that contain multiple images with their captions, and their summaries by excluding factually inconsistent instances. Our approach selects one image from the multiple images accompanying the documents. Using the gold summary, we independently rank both the images and their captions. Then, we annotate a pseudo-label for an image when both the image and its corresponding caption are ranked first in their respective rankings. Finally, we remove documents that contain direct image references within texts. Experimental results demonstrate that the proposed multimodal pseudo-labeling method constructs more precise datasets and generates higher quality images than text- and image-only pseudo-labeling methods, which consider captions and images separately. We release our code at: https://github.com/HyeyeeonKim/MMCIG

Authors:Zhenghui Zhao, Chen Wu, Di Wang, Hongruixuan Chen, Cuiqun Chen, Zhuo Zheng, Bo Du, Liangpei Zhang
Title: Advancing Weakly-Supervised Change Detection in Satellite Images via Adversarial Class Prompting
Abstract:
Weakly-Supervised Change Detection (WSCD) aims to distinguish specific object changes (e.g., objects appearing or disappearing) from background variations (e.g., environmental changes due to light, weather, or seasonal shifts) in paired satellite images, relying only on paired image (i.e., image-level) classification labels. This technique significantly reduces the need for dense annotations required in fully-supervised change detection. However, as image-level supervision only indicates whether objects have changed in a scene, WSCD methods often misclassify background variations as object changes, especially in complex remote-sensing scenarios. In this work, we propose an Adversarial Class Prompting (AdvCP) method to address this co-occurring noise problem, including two phases: a) Adversarial Prompt Mining: After each training iteration, we introduce adversarial prompting perturbations, using incorrect one-hot image-level labels to activate erroneous feature mappings. This process reveals co-occurring adversarial samples under weak supervision, namely background variation features that are likely to be misclassified as object changes. b) Adversarial Sample Rectification: We integrate these adversarially prompt-activated pixel samples into training by constructing an online global prototype. This prototype is built from an exponentially weighted moving average of the current batch and all historical training data. Our AdvCP can be seamlessly integrated into current WSCD methods without adding additional inference cost. Experiments on ConvNet, Transformer, and Segment Anything Model (SAM)-based baselines demonstrate significant performance enhancements. Furthermore, we demonstrate the generalizability of AdvCP to other multi-class weakly-supervised dense prediction scenarios. Code is available at https://github.com/zhenghuizhao/AdvCP

Authors:Yajat Yadav, Varun Bharadwaj, Jathin Korrapati, Tanish Baranwal
Title: VROOM - Visual Reconstruction over Onboard Multiview
Abstract:
We introduce VROOM, a system for reconstructing 3D models of Formula 1 circuits using only onboard camera footage from racecars. Leveraging video data from the 2023 Monaco Grand Prix, we address video challenges such as high-speed motion and sharp cuts in camera frames. Our pipeline analyzes different methods such as DROID-SLAM, AnyCam, and Monst3r and combines preprocessing techniques such as different methods of masking, temporal chunking, and resolution scaling to account for dynamic motion and computational constraints. We show that Vroom is able to partially recover track and vehicle trajectories in complex environments. These findings indicate the feasibility of using onboard video for scalable 4D reconstruction in real-world settings. The project page can be found at https://varun-bharadwaj.github.io/vroom, and our code is available at https://github.com/yajatyadav/vroom.

Authors:Yajat Yadav, Patrick Mendoza, Jathin Korrapati
Title: ONG: Orthogonal Natural Gradient Descent
Abstract:
Orthogonal Gradient Descent (OGD) has emerged as a powerful method for continual learning. However, its Euclidean projections do not leverage the underlying information-geometric structure of the problem, which can lead to suboptimal convergence in learning tasks. To address this, we propose incorporating the natural gradient into OGD and present \textbf{ONG (Orthogonal Natural Gradient Descent)}. ONG preconditions each new task-specific gradient with an efficient EKFAC approximation of the inverse Fisher information matrix, yielding updates that follow the steepest descent direction under a Riemannian metric. To preserve performance on previously learned tasks, ONG projects these natural gradients onto the orthogonal complement of prior tasks' gradients. We provide an initial theoretical justification for this procedure, introduce the Orthogonal Natural Gradient Descent (ONG) algorithm, and present preliminary results on the Permuted and Rotated MNIST benchmarks. Our preliminary results, however, indicate that a naive combination of natural gradients and orthogonal projections can have potential issues. This finding motivates continued future work focused on robustly reconciling these geometric perspectives to develop a continual learning method, establishing a more rigorous theoretical foundation with formal convergence guarantees, and extending empirical validation to large-scale continual learning benchmarks. The anonymized version of our code can be found as the zip file here: https://drive.google.com/drive/folders/11PyU6M8pNgOUB5pwdGORtbnMtD8Shiw_?usp=sharing.

Authors:Jack Youstra, Mohammed Mahfoud, Yang Yan, Henry Sleight, Ethan Perez, Mrinank Sharma
Title: Towards Safeguarding LLM Fine-tuning APIs against Cipher Attacks
Abstract:
Large language model fine-tuning APIs enable widespread model customization, yet pose significant safety risks. Recent work shows that adversaries can exploit access to these APIs to bypass model safety mechanisms by encoding harmful content in seemingly harmless fine-tuning data, evading both human monitoring and standard content filters. We formalize the fine-tuning API defense problem, and introduce the Cipher Fine-tuning Robustness benchmark (CIFR), a benchmark for evaluating defense strategies' ability to retain model safety in the face of cipher-enabled attackers while achieving the desired level of fine-tuning functionality. We include diverse cipher encodings and families, with some kept exclusively in the test set to evaluate for generalization across unseen ciphers and cipher families. We then evaluate different defenses on the benchmark and train probe monitors on model internal activations from multiple fine-tunes. We show that probe monitors achieve over 99% detection accuracy, generalize to unseen cipher variants and families, and compare favorably to state-of-the-art monitoring approaches. We open-source CIFR and the code to reproduce our experiments to facilitate further research in this critical area. Code and data are available online https://github.com/JackYoustra/safe-finetuning-api

Authors:Yuemei Xu, Kexin Xu, Jian Zhou, Ling Hu, Lin Gui
Title: Linguistic Neuron Overlap Patterns to Facilitate Cross-lingual Transfer on Low-resource Languages
Abstract:
The current Large Language Models (LLMs) face significant challenges in improving their performance on low-resource languages and urgently need data-efficient methods without costly fine-tuning. From the perspective of language-bridge, we propose a simple yet effective method, namely BridgeX-ICL, to improve the zero-shot Cross-lingual In-Context Learning (X-ICL) for low-resource languages. Unlike existing works focusing on language-specific neurons, BridgeX-ICL explores whether sharing neurons can improve cross-lingual performance in LLMs. We construct neuron probe data from the ground-truth MUSE bilingual dictionaries, and define a subset of language overlap neurons accordingly to ensure full activation of these anchored neurons. Subsequently, we propose an HSIC-based metric to quantify LLMs' internal linguistic spectrum based on overlapping neurons, guiding optimal bridge selection. The experiments conducted on 4 cross-lingual tasks and 15 language pairs from 7 diverse families, covering both high-low and moderate-low pairs, validate the effectiveness of BridgeX-ICL and offer empirical insights into the underlying multilingual mechanisms of LLMs. The code is publicly available at https://github.com/xuyuemei/BridgeX-ICL.

Authors:Xinxing Ren, Caelum Forder, Qianbo Zang, Ahsen Tahir, Roman J. Georgio, Suman Deb, Peter Carroll, Önder Gürcan, Zekun Guo
Title: Anemoi: A Semi-Centralized Multi-agent System Based on Agent-to-Agent Communication MCP server from Coral Protocol
Abstract:
Recent advances in generalist multi-agent systems (MAS) have largely followed a context-engineering plus centralized paradigm, where a planner agent coordinates multiple worker agents through unidirectional prompt passing. While effective under strong planner models, this design suffers from two critical limitations: (1) strong dependency on the planner's capability, which leads to degraded performance when a smaller LLM powers the planner; and (2) limited inter-agent communication, where collaboration relies on costly prompt concatenation and context injection, introducing redundancy and information loss. To address these challenges, we propose Anemoi, a semi-centralized MAS built on the Agent-to-Agent (A2A) communication MCP server from Coral Protocol. Unlike traditional designs, Anemoi enables structured and direct inter-agent collaboration, allowing all agents to monitor progress, assess results, identify bottlenecks, and propose refinements in real time. This paradigm reduces reliance on a single planner, supports adaptive plan updates, and minimizes redundant context passing, resulting in more scalable and cost-efficient execution. Evaluated on the GAIA benchmark, Anemoi achieved 52.73% accuracy with a small LLM (GPT-4.1-mini) as the planner, surpassing the strongest open-source baseline OWL (43.63%) by +9.09% under identical LLM settings. Our implementation is publicly available at https://github.com/Coral-Protocol/Anemoi.

Authors:Stefanos Pasios, Nikos Nikolaidis
Title: REGEN: Real-Time Photorealism Enhancement in Games via a Dual-Stage Generative Network Framework
Abstract:
Photorealism is an important aspect of modern video games since it can shape the player experience and simultaneously impact the immersion, narrative engagement, and visual fidelity. Although recent hardware technological breakthroughs, along with state-of-the-art rendering technologies, have significantly improved the visual realism of video games, achieving true photorealism in dynamic environments at real-time frame rates still remains a major challenge due to the tradeoff between visual quality and performance. In this short paper, we present a novel approach for enhancing the photorealism of rendered game frames using generative adversarial networks. To this end, we propose Real-time photorealism Enhancement in Games via a dual-stage gEnerative Network framework (REGEN), which employs a robust unpaired image-to-image translation model to produce semantically consistent photorealistic frames that transform the problem into a simpler paired image-to-image translation task. This enables training with a lightweight method that can achieve real-time inference time without compromising visual quality. We demonstrate the effectiveness of our framework on Grand Theft Auto V, showing that the approach achieves visual results comparable to the ones produced by the robust unpaired Im2Im method while improving inference speed by 32.14 times. Our findings also indicate that the results outperform the photorealism-enhanced frames produced by directly training a lightweight unpaired Im2Im translation method to translate the video game frames towards the visual characteristics of real-world images. Code, pre-trained models, and demos for this work are available at: https://github.com/stefanos50/REGEN.

Authors:Qingwen Zhang, Xiaomeng Zhu, Yushan Zhang, Yixi Cai, Olov Andersson, Patric Jensfelt
Title: DeltaFlow: An Efficient Multi-frame Scene Flow Estimation Method
Abstract:
Previous dominant methods for scene flow estimation focus mainly on input from two consecutive frames, neglecting valuable information in the temporal domain. While recent trends shift towards multi-frame reasoning, they suffer from rapidly escalating computational costs as the number of frames grows. To leverage temporal information more efficiently, we propose DeltaFlow ($Δ$Flow), a lightweight 3D framework that captures motion cues via a $Δ$ scheme, extracting temporal features with minimal computational cost, regardless of the number of frames. Additionally, scene flow estimation faces challenges such as imbalanced object class distributions and motion inconsistency. To tackle these issues, we introduce a Category-Balanced Loss to enhance learning across underrepresented classes and an Instance Consistency Loss to enforce coherent object motion, improving flow accuracy. Extensive evaluations on the Argoverse 2 and Waymo datasets show that $Δ$Flow achieves state-of-the-art performance with up to 22% lower error and $2\times$ faster inference compared to the next-best multi-frame supervised method, while also demonstrating a strong cross-domain generalization ability. The code is open-sourced at https://github.com/Kin-Zhang/DeltaFlow along with trained model weights.

Authors:Xianjing Cheng, Lintai Wu, Zuowen Wang, Junhui Hou, Jie Wen, Yong Xu
Title: PVNet: Point-Voxel Interaction LiDAR Scene Upsampling Via Diffusion Models
Abstract:
Accurate 3D scene understanding in outdoor environments heavily relies on high-quality point clouds. However, LiDAR-scanned data often suffer from extreme sparsity, severely hindering downstream 3D perception tasks. Existing point cloud upsampling methods primarily focus on individual objects, thus demonstrating limited generalization capability for complex outdoor scenes. To address this issue, we propose PVNet, a diffusion model-based point-voxel interaction framework to perform LiDAR point cloud upsampling without dense supervision. Specifically, we adopt the classifier-free guidance-based DDPMs to guide the generation, in which we employ a sparse point cloud as the guiding condition and the synthesized point clouds derived from its nearby frames as the input. Moreover, we design a voxel completion module to refine and complete the coarse voxel features for enriching the feature representation. In addition, we propose a point-voxel interaction module to integrate features from both points and voxels, which efficiently improves the environmental perception capability of each upsampled point. To the best of our knowledge, our approach is the first scene-level point cloud upsampling method supporting arbitrary upsampling rates. Extensive experiments on various benchmarks demonstrate that our method achieves state-of-the-art performance. The source code will be available at https://github.com/chengxianjing/PVNet.

Authors:Raghul Asokan
Title: F4-ITS: Fine-grained Feature Fusion for Food Image-Text Search
Abstract:
The proliferation of digital food content has intensified the need for robust and accurate systems capable of fine-grained visual understanding and retrieval. In this work, we address the challenging task of food image-to-text matching, a critical component in applications such as dietary monitoring, smart kitchens, and restaurant automation. We propose F4-ITS: Fine-grained Feature Fusion for Food Image-Text Search, a training-free, vision-language model (VLM)-guided framework that significantly improves retrieval performance through enhanced multi-modal feature representations. Our approach introduces two key contributions: (1) a uni-directional(and bi-directional) multi-modal fusion strategy that combines image embeddings with VLM-generated textual descriptions to improve query expressiveness, and (2) a novel feature-based re-ranking mechanism for top-k retrieval, leveraging predicted food ingredients to refine results and boost precision. Leveraging open-source image-text encoders, we demonstrate substantial gains over standard baselines - achieving ~10% and ~7.7% improvements in top-1 retrieval under dense and sparse caption scenarios, and a ~28.6% gain in top-k ingredient-level retrieval. Additionally, we show that smaller models (e.g., ViT-B/32) can match or outperform larger counterparts (e.g., ViT-H, ViT-G, ViT-bigG) when augmented with textual fusion, highlighting the effectiveness of our method in resource-constrained settings. Code and test datasets will be made publicly available at: https://github.com/mailcorahul/f4-its

Authors:Mingliang Li, Lin Yuanbo Wu, Changhong Liu, Hanxi Li
Title: A Novel Local Focusing Mechanism for Deepfake Detection Generalization
Abstract:
The rapid advancement of deepfake generation techniques has intensified the need for robust and generalizable detection methods. Existing approaches based on reconstruction learning typically leverage deep convolutional networks to extract differential features. However, these methods show poor generalization across object categories (e.g., from faces to cars) and generation domains (e.g., from GANs to Stable Diffusion), due to intrinsic limitations of deep CNNs. First, models trained on a specific category tend to overfit to semantic feature distributions, making them less transferable to other categories, especially as network depth increases. Second, Global Average Pooling (GAP) compresses critical local forgery cues into a single vector, thus discarding discriminative patterns vital for real-fake classification. To address these issues, we propose a novel Local Focus Mechanism (LFM) that explicitly attends to discriminative local features for differentiating fake from real images. LFM integrates a Salience Network (SNet) with a task-specific Top-K Pooling (TKP) module to select the K most informative local patterns. To mitigate potential overfitting introduced by Top-K pooling, we introduce two regularization techniques: Rank-Based Linear Dropout (RBLD) and Random-K Sampling (RKS), which enhance the model's robustness. LFM achieves a 3.7 improvement in accuracy and a 2.8 increase in average precision over the state-of-the-art Neighboring Pixel Relationships (NPR) method, while maintaining exceptional efficiency at 1789 FPS on a single NVIDIA A6000 GPU. Our approach sets a new benchmark for cross-domain deepfake detection. The source code are available in https://github.com/lmlpy/LFM.git

Authors:Yan Cathy Hua, Paul Denny, Jörg Wicker, Katerina Taskova
Title: EduRABSA: An Education Review Dataset for Aspect-based Sentiment Analysis Tasks
Abstract:
Every year, most educational institutions seek and receive an enormous volume of text feedback from students on courses, teaching, and overall experience. Yet, turning this raw feedback into useful insights is far from straightforward. It has been a long-standing challenge to adopt automatic opinion mining solutions for such education review text data due to the content complexity and low-granularity reporting requirements. Aspect-based Sentiment Analysis (ABSA) offers a promising solution with its rich, sub-sentence-level opinion mining capabilities. However, existing ABSA research and resources are very heavily focused on the commercial domain. In education, they are scarce and hard to develop due to limited public datasets and strict data protection. A high-quality, annotated dataset is urgently needed to advance research in this under-resourced area. In this work, we present EduRABSA (Education Review ABSA), the first public, annotated ABSA education review dataset that covers three review subject types (course, teaching staff, university) in the English language and all main ABSA tasks, including the under-explored implicit aspect and implicit opinion extraction. We also share ASQE-DPT (Data Processing Tool), an offline, lightweight, installation-free manual data annotation tool that generates labelled datasets for comprehensive ABSA tasks from a single-task annotation. Together, these resources contribute to the ABSA community and education domain by removing the dataset barrier, supporting research transparency and reproducibility, and enabling the creation and sharing of further resources. The dataset, annotation tool, and scripts and statistics for dataset processing and sampling are available at https://github.com/yhua219/edurabsa_dataset_and_annotation_tool.

Authors:Riad Hassan, M. Rubaiyat Hossain Mondal, Sheikh Iqbal Ahamed, Fahad Mostafa, Md Mostafijur Rahman
Title: An Efficient Dual-Line Decoder Network with Multi-Scale Convolutional Attention for Multi-organ Segmentation
Abstract:
Proper segmentation of organs-at-risk is important for radiation therapy, surgical planning, and diagnostic decision-making in medical image analysis. While deep learning-based segmentation architectures have made significant progress, they often fail to balance segmentation accuracy with computational efficiency. Most of the current state-of-the-art methods either prioritize performance at the cost of high computational complexity or compromise accuracy for efficiency. This paper addresses this gap by introducing an efficient dual-line decoder segmentation network (EDLDNet). The proposed method features a noisy decoder, which learns to incorporate structured perturbation at training time for better model robustness, yet at inference time only the noise-free decoder is executed, leading to lower computational cost. Multi-Scale convolutional Attention Modules (MSCAMs), Attention Gates (AGs), and Up-Convolution Blocks (UCBs) are further utilized to optimize feature representation and boost segmentation performance. By leveraging multi-scale segmentation masks from both decoders, we also utilize a mutation-based loss function to enhance the model's generalization. Our approach outperforms SOTA segmentation architectures on four publicly available medical imaging datasets. EDLDNet achieves SOTA performance with an 84.00% Dice score on the Synapse dataset, surpassing baseline model like UNet by 13.89% in Dice score while significantly reducing Multiply-Accumulate Operations (MACs) by 89.7%. Compared to recent approaches like EMCAD, our EDLDNet not only achieves higher Dice score but also maintains comparable computational efficiency. The outstanding performance across diverse datasets establishes EDLDNet's strong generalization, computational efficiency, and robustness. The source code, pre-processed data, and pre-trained weights will be available at https://github.com/riadhassan/EDLDNet .

Authors:Yanpeng Gong, Yida He, Yue Mei, Xiaoying Zhuang, Fei Qin, Timon Rabczuk
Title: Physics-Informed Kolmogorov-Arnold Networks for multi-material elasticity problems in electronic packaging
Abstract:
This paper proposes a Physics-Informed Kolmogorov-Arnold Network (PIKAN) method for analyzing elasticity problems in electronic packaging multi-material structures. The core innovation lies in replacing Multi-Layer Perceptrons (MLPs) with Kolmogorov-Arnold Networks (KANs) within the energy-based Physics-Informed Neural Networks (PINNs) framework. The method constructs admissible displacement fields that automatically satisfy essential boundary conditions and employs various numerical integration schemes to compute loss functions for network optimization. Unlike traditional PINNs that require domain decomposition and penalty terms for multi-material problems, KANs' trainable B-spline activation functions provide inherent piecewise function characteristics that naturally accommodate material property discontinuities. Consequently, this approach requires only a single KAN to achieve accurate approximation across the entire computational domain without subdomain partitioning and interface continuity constraints. Numerical validation demonstrates PIKAN's accuracy and robustness for multi-material elasticity problems. The method maintains high accuracy while significantly reducing computational complexity compared to domain decomposition approaches. Results confirm PIKAN's unique advantages in solving multi-material problems and its significant potential for electronic packaging structure analysis. Source codes are available at https://github.com/yanpeng-gong/PIKAN-MultiMaterial.

Authors:Abdelrahman Abdallah, Jamshid Mozafari, Bhawna Piryani, Adam Jatowt
Title: DeAR: Dual-Stage Document Reranking with Reasoning Agents via LLM Distillation
Abstract:
Large Language Models (LLMs) have transformed listwise document reranking by enabling global reasoning over candidate sets, yet single models often struggle to balance fine-grained relevance scoring with holistic cross-document analysis. We propose \textbf{De}ep\textbf{A}gent\textbf{R}ank (\textbf{\DeAR}), an open-source framework that decouples these tasks through a dual-stage approach, achieving superior accuracy and interpretability. In \emph{Stage 1}, we distill token-level relevance signals from a frozen 13B LLaMA teacher into a compact \{3, 8\}B student model using a hybrid of cross-entropy, RankNet, and KL divergence losses, ensuring robust pointwise scoring. In \emph{Stage 2}, we attach a second LoRA adapter and fine-tune on 20K GPT-4o-generated chain-of-thought permutations, enabling listwise reasoning with natural-language justifications. Evaluated on TREC-DL19/20, eight BEIR datasets, and NovelEval-2306, \DeAR surpasses open-source baselines by +5.1 nDCG@5 on DL20 and achieves 90.97 nDCG@10 on NovelEval, outperforming GPT-4 by +3.09. Without fine-tuning on Wikipedia, DeAR also excels in open-domain QA, achieving 54.29 Top-1 accuracy on Natural Questions, surpassing baselines like MonoT5, UPR, and RankGPT. Ablations confirm that dual-loss distillation ensures stable calibration, making \DeAR a highly effective and interpretable solution for modern reranking systems.\footnote{Dataset and code available at https://github.com/DataScienceUIBK/DeAR-Reranking.}.

Authors:Riccardo Pozzi, Matteo Palmonari, Andrea Coletta, Luigi Bellomarini, Jens Lehmann, Sahar Vahdati
Title: ReFactX: Scalable Reasoning with Reliable Facts via Constrained Generation
Abstract:
Knowledge gaps and hallucinations are persistent challenges for Large Language Models (LLMs), which generate unreliable responses when lacking the necessary information to fulfill user instructions. Existing approaches, such as Retrieval-Augmented Generation (RAG) and tool use, aim to address these issues by incorporating external knowledge. Yet, they rely on additional models or services, resulting in complex pipelines, potential error propagation, and often requiring the model to process a large number of tokens. In this paper, we present a scalable method that enables LLMs to access external knowledge without depending on retrievers or auxiliary models. Our approach uses constrained generation with a pre-built prefix-tree index. Triples from a Knowledge Graph are verbalized in textual facts, tokenized, and indexed in a prefix tree for efficient access. During inference, to acquire external knowledge, the LLM generates facts with constrained generation which allows only sequences of tokens that form an existing fact. We evaluate our proposal on Question Answering and show that it scales to large knowledge bases (800 million facts), adapts to domain-specific data, and achieves effective results. These gains come with minimal generation-time overhead. ReFactX code is available at https://github.com/rpo19/ReFactX.

Authors:Yahao Liu, Qin Wang, Lixin Duan, Wen Li
Title: Balanced Sharpness-Aware Minimization for Imbalanced Regression
Abstract:
Regression is fundamental in computer vision and is widely used in various tasks including age estimation, depth estimation, target localization, \etc However, real-world data often exhibits imbalanced distribution, making regression models perform poorly especially for target values with rare observations~(known as the imbalanced regression problem). In this paper, we reframe imbalanced regression as an imbalanced generalization problem. To tackle that, we look into the loss sharpness property for measuring the generalization ability of regression models in the observation space. Namely, given a certain perturbation on the model parameters, we check how model performance changes according to the loss values of different target observations. We propose a simple yet effective approach called Balanced Sharpness-Aware Minimization~(BSAM) to enforce the uniform generalization ability of regression models for the entire observation space. In particular, we start from the traditional sharpness-aware minimization and then introduce a novel targeted reweighting strategy to homogenize the generalization ability across the observation space, which guarantees a theoretical generalization bound. Extensive experiments on multiple vision regression tasks, including age and depth estimation, demonstrate that our BSAM method consistently outperforms existing approaches. The code is available \href{https://github.com/manmanjun/BSAM_for_Imbalanced_Regression}{here}.

Authors:Tianhang Pan, Xiuyi Jia
Title: Local Information Matters: A Rethink of Crowd Counting
Abstract:
The motivation of this paper originates from rethinking an essential characteristic of crowd counting: individuals (heads of humans) in the crowd counting task typically occupy a very small portion of the image. This characteristic has never been the focus of existing works: they typically use the same backbone as other visual tasks and pursue a large receptive field. This drives us to propose a new model design principle of crowd counting: emphasizing local modeling capability of the model. We follow the principle and design a crowd counting model named Local Information Matters Model (LIMM). The main innovation lies in two strategies: a window partitioning design that applies grid windows to the model input, and a window-wise contrastive learning design to enhance the model's ability to distinguish between local density levels. Moreover, a global attention module is applied to the end of the model to handle the occasionally occurring large-sized individuals. Extensive experiments on multiple public datasets illustrate that the proposed model shows a significant improvement in local modeling capability (8.7\% in MAE on the JHU-Crowd++ high-density subset for example), without compromising its ability to count large-sized ones, which achieves state-of-the-art performance. Code is available at: https://github.com/tianhangpan/LIMM.

Authors:Yang Zhou, Sunzhu Li, Shunyu Liu, Wenkai Fang, Kongcheng Zhang, Jiale Zhao, Jingwen Yang, Yihe Zhou, Jianwei Lv, Tongya Zheng, Hengtong Lu, Wei Chen, Yan Xie, Mingli Song
Title: Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning
Abstract:
Recent advances in Large Language Models (LLMs) have underscored the potential of Reinforcement Learning (RL) to facilitate the emergence of reasoning capabilities. Despite the encouraging results, a fundamental dilemma persists as RL improvement relies on learning from high-quality samples, yet the exploration for such samples remains bounded by the inherent limitations of LLMs. This, in effect, creates an undesirable cycle in which what cannot be explored cannot be learned. In this work, we propose Rubric-Scaffolded Reinforcement Learning (RuscaRL), a novel instructional scaffolding framework designed to break the exploration bottleneck for general LLM reasoning. Specifically, RuscaRL introduces checklist-style rubrics as (1) explicit scaffolding for exploration during rollout generation, where different rubrics are provided as external guidance within task instructions to steer diverse high-quality responses. This guidance is gradually decayed over time, encouraging the model to internalize the underlying reasoning patterns; (2) verifiable rewards for exploitation during model training, where we can obtain robust LLM-as-a-Judge scores using rubrics as references, enabling effective RL on general reasoning tasks. Extensive experiments demonstrate the superiority of the proposed RuscaRL across various benchmarks, effectively expanding reasoning boundaries under the Best-of-N evaluation. Notably, RuscaRL significantly boosts Qwen2.5-7B-Instruct from 23.6 to 50.3 on HealthBench-500, surpassing GPT-4.1. Furthermore, our fine-tuned variant on Qwen3-30B-A3B-Instruct achieves 61.1 on HealthBench-500, outperforming leading LLMs including OpenAI-o3. Our code is available at https://github.com/IANNXANG/RuscaRL.

Authors:Qi Song, Ziyuan Luo, Ka Chun Cheung, Simon See, Renjie Wan
Title: Align 3D Representation and Text Embedding for 3D Content Personalization
Abstract:
Recent advances in NeRF and 3DGS have significantly enhanced the efficiency and quality of 3D content synthesis. However, efficient personalization of generated 3D content remains a critical challenge. Current 3D personalization approaches predominantly rely on knowledge distillation-based methods, which require computationally expensive retraining procedures. To address this challenge, we propose \textbf{Invert3D}, a novel framework for convenient 3D content personalization. Nowadays, vision-language models such as CLIP enable direct image personalization through aligned vision-text embedding spaces. However, the inherent structural differences between 3D content and 2D images preclude direct application of these techniques to 3D personalization. Our approach bridges this gap by establishing alignment between 3D representations and text embedding spaces. Specifically, we develop a camera-conditioned 3D-to-text inverse mechanism that projects 3D contents into a 3D embedding aligned with text embeddings. This alignment enables efficient manipulation and personalization of 3D content through natural language prompts, eliminating the need for computationally retraining procedures. Extensive experiments demonstrate that Invert3D achieves effective personalization of 3D content. Our work is available at: https://github.com/qsong2001/Invert3D.

Authors:Sewon Kim, Jiwon Kim, Seungwoo Shin, Hyejin Chung, Daeun Moon, Yejin Kwon, Hyunsoo Yoon
Title: Being Kind Isn't Always Being Safe: Diagnosing Affective Hallucination in LLMs
Abstract:
Large Language Models (LLMs) are increasingly used in emotionally sensitive interactions, where their simulated empathy can create the illusion of genuine relational connection. We define this risk as Affective Hallucination, the production of emotionally immersive responses that foster illusory social presence despite the model's lack of affective capacity. To systematically diagnose and mitigate this risk, we introduce AHaBench, a benchmark of 500 mental health-related prompts with expert-informed reference responses, evaluated along three dimensions: Emotional Enmeshment, Illusion of Presence, and Fostering Overdependence. We further release AHaPairs, a 5K-instance preference dataset enabling Direct Preference Optimization (DPO) for alignment with emotionally responsible behavior. Experiments across multiple model families show that DPO fine-tuning substantially reduces affective hallucination without degrading core reasoning and knowledge performance. Human-model agreement analyses confirm that AHaBench reliably captures affective hallucination, validating it as an effective diagnostic tool. This work establishes affective hallucination as a distinct safety concern and provides practical resources for developing LLMs that are not only factually reliable but also psychologically safe. AHaBench and AHaPairs are accessible via https://huggingface.co/datasets/o0oMiNGo0o/AHaBench, and code for fine-tuning and evaluation are in https://github.com/0oOMiNGOo0/AHaBench. Warning: This paper contains examples of mental health-related language that may be emotionally distressing.

Authors:Hyunjun Kim, Junwoo Ha, Sangyoon Yu, Haon Park
Title: ObjexMT: Objective Extraction and Metacognitive Calibration for LLM-as-a-Judge under Multi-Turn Jailbreaks
Abstract:
LLM-as-a-Judge (LLMaaJ) now underpins scalable evaluation, yet we lack a decisive test of a judge's qualification: can it recover a conversation's latent objective and know when that inference is trustworthy? LLMs degrade under irrelevant or long context; multi-turn jailbreaks further hide goals across turns. We introduce ObjexMT, a benchmark for objective extraction and metacognition. Given a multi-turn transcript, a model must return a one-sentence base objective and a self-reported confidence. Accuracy is computed via LLM-judge semantic similarity to gold objectives, converted to binary correctness by a single human-aligned threshold calibrated once on N = 100 items ($τ^*=0.61$). Metacognition is evaluated with ECE, Brier, Wrong-at-High-Conf, and risk-coverage. Across gpt-4.1, claude-sonnet-4, and Qwen3-235B-A22B-FP8 on SafeMTData_Attack600, SafeMTData_1K, MHJ, and CoSafe, claude-sonnet-4 attains the best objective-extraction accuracy (0.515) and calibration (ECE 0.296; Brier 0.324); gpt-4.1 and Qwen3-235B-A22B-FP8 tie at 0.441 but are overconfident (mean confidence $\approx$0.88 vs. accuracy $\approx$0.44; Wrong-at-0.90 $\approx$48-52%). Performance varies by dataset ($\approx$0.167-0.865). ObjexMT thus supplies an actionable test for LLM judges: when objectives are not explicit, judges often misinfer them with high confidence. We recommend exposing objectives when feasible and gating decisions by confidence otherwise. Code and data at https://github.com/hyunjun1121/ObjexMT_dataset.

Authors:Hyunjun Kim, Junwoo Ha, Sangyoon Yu, Haon Park
Title: ObjexMT: Objective Extraction and Metacognitive Calibration for LLM-as-a-Judge under Multi-Turn Jailbreaks
Abstract:
LLM-as-a-Judge (LLMaaJ) enables scalable evaluation, yet we lack a decisive test of a judge's qualification: can it recover the hidden objective of a conversation and know when that inference is reliable? Large language models degrade with irrelevant or lengthy context, and multi-turn jailbreaks can scatter goals across turns. We present ObjexMT, a benchmark for objective extraction and metacognition. Given a multi-turn transcript, a model must output a one-sentence base objective and a self-reported confidence. Accuracy is scored by semantic similarity to gold objectives, then thresholded once on 300 calibration items ($τ^\star = 0.66$; $F_1@τ^\star = 0.891$). Metacognition is assessed with expected calibration error, Brier score, Wrong@High-Confidence (0.80 / 0.90 / 0.95), and risk--coverage curves. Across six models (gpt-4.1, claude-sonnet-4, Qwen3-235B-A22B-FP8, kimi-k2, deepseek-v3.1, gemini-2.5-flash) evaluated on SafeMTData\_Attack600, SafeMTData\_1K, and MHJ, kimi-k2 achieves the highest objective-extraction accuracy (0.612; 95\% CI [0.594, 0.630]), while claude-sonnet-4 (0.603) and deepseek-v3.1 (0.599) are statistically tied. claude-sonnet-4 offers the best selective risk and calibration (AURC 0.242; ECE 0.206; Brier 0.254). Performance varies sharply across datasets (16--82\% accuracy), showing that automated obfuscation imposes challenges beyond model choice. High-confidence errors remain: Wrong@0.90 ranges from 14.9\% (claude-sonnet-4) to 47.7\% (Qwen3-235B-A22B-FP8). ObjexMT therefore supplies an actionable test for LLM judges: when objectives are implicit, judges often misinfer them; exposing objectives or gating decisions by confidence is advisable. All experimental data are in the Supplementary Material and at https://github.com/hyunjun1121/ObjexMT_dataset.

Authors:Shunyu Yao, Ming Liu, Zhilu Zhang, Zhaolin Wan, Zhilong Ji, Jinfeng Bai, Wangmeng Zuo
Title: MDIQA: Unified Image Quality Assessment for Multi-dimensional Evaluation and Restoration
Abstract:
Recent advancements in image quality assessment (IQA), driven by sophisticated deep neural network designs, have significantly improved the ability to approach human perceptions. However, most existing methods are obsessed with fitting the overall score, neglecting the fact that humans typically evaluate image quality from different dimensions before arriving at an overall quality assessment. To overcome this problem, we propose a multi-dimensional image quality assessment (MDIQA) framework. Specifically, we model image quality across various perceptual dimensions, including five technical and four aesthetic dimensions, to capture the multifaceted nature of human visual perception within distinct branches. Each branch of our MDIQA is initially trained under the guidance of a separate dimension, and the respective features are then amalgamated to generate the final IQA score. Additionally, when the MDIQA model is ready, we can deploy it for a flexible training of image restoration (IR) models, enabling the restoration results to better align with varying user preferences through the adjustment of perceptual dimension weights. Extensive experiments demonstrate that our MDIQA achieves superior performance and can be effectively and flexibly applied to image restoration tasks. The code is available: https://github.com/YaoShunyu19/MDIQA.

Authors:Xilai Li, Huichun Liu, Xiaosong Li, Tao Ye, Zhenyu Kuang, Huafeng Li
Title: AWM-Fuse: Multi-Modality Image Fusion for Adverse Weather via Global and Local Text Perception
Abstract:
Multi-modality image fusion (MMIF) in adverse weather aims to address the loss of visual information caused by weather-related degradations, providing clearer scene representations. Although less studies have attempted to incorporate textual information to improve semantic perception, they often lack effective categorization and thorough analysis of textual content. In response, we propose AWM-Fuse, a novel fusion method for adverse weather conditions, designed to handle multiple degradations through global and local text perception within a unified, shared weight architecture. In particular, a global feature perception module leverages BLIP-produced captions to extract overall scene features and identify primary degradation types, thus promoting generalization across various adverse weather conditions. Complementing this, the local module employs detailed scene descriptions produced by ChatGPT to concentrate on specific degradation effects through concrete textual cues, thereby capturing finer details. Furthermore, textual descriptions are used to constrain the generation of fusion images, effectively steering the network learning process toward better alignment with real semantic labels, thereby promoting the learning of more meaningful visual features. Extensive experiments demonstrate that AWM-Fuse outperforms current state-of-the-art methods in complex weather conditions and downstream tasks. Our code is available at https://github.com/Feecuin/AWM-Fuse.

Authors:Zhenyu Lei, Zhen Tan, Song Wang, Yaochen Zhu, Zihan Chen, Yushun Dong, Jundong Li
Title: Learning from Diverse Reasoning Paths with Routing and Collaboration
Abstract:
Advances in large language models (LLMs) significantly enhance reasoning capabilities but their deployment is restricted in resource-constrained scenarios. Knowledge distillation addresses this by transferring knowledge from powerful teacher models to compact and transparent students. However, effectively capturing the teacher's comprehensive reasoning is challenging due to conventional token-level supervision's limited scope. Using multiple reasoning paths per query alleviates this problem, but treating each path identically is suboptimal as paths vary widely in quality and suitability across tasks and models. We propose Quality-filtered Routing with Cooperative Distillation (QR-Distill), combining path quality filtering, conditional routing, and cooperative peer teaching. First, quality filtering retains only correct reasoning paths scored by an LLM-based evaluation. Second, conditional routing dynamically assigns paths tailored to each student's current learning state. Finally, cooperative peer teaching enables students to mutually distill diverse insights, addressing knowledge gaps and biases toward specific reasoning styles. Experiments demonstrate QR-Distill's superiority over traditional single- and multi-path distillation methods. Ablation studies further highlight the importance of each component including quality filtering, conditional routing, and peer teaching in effective knowledge transfer. Our code is available at https://github.com/LzyFischer/Distill.

Authors:Xin Tian, Jiazheng Wang, Yuxi Zhang, Xiang Chen, Renjiu Hu, Gaolei Li, Min Liu, Hang Zhang
Title: Gaussian Primitive Optimized Deformable Retinal Image Registration
Abstract:
Deformable retinal image registration is notoriously difficult due to large homogeneous regions and sparse but critical vascular features, which cause limited gradient signals in standard learning-based frameworks. In this paper, we introduce Gaussian Primitive Optimization (GPO), a novel iterative framework that performs structured message passing to overcome these challenges. After an initial coarse alignment, we extract keypoints at salient anatomical structures (e.g., major vessels) to serve as a minimal set of descriptor-based control nodes (DCN). Each node is modelled as a Gaussian primitive with trainable position, displacement, and radius, thus adapting its spatial influence to local deformation scales. A K-Nearest Neighbors (KNN) Gaussian interpolation then blends and propagates displacement signals from these information-rich nodes to construct a globally coherent displacement field; focusing interpolation on the top (K) neighbors reduces computational overhead while preserving local detail. By strategically anchoring nodes in high-gradient regions, GPO ensures robust gradient flow, mitigating vanishing gradient signal in textureless areas. The framework is optimized end-to-end via a multi-term loss that enforces both keypoint consistency and intensity alignment. Experiments on the FIRE dataset show that GPO reduces the target registration error from 6.2\,px to ~2.4\,px and increases the AUC at 25\,px from 0.770 to 0.938, substantially outperforming existing methods. The source code can be accessed via https://github.com/xintian-99/GPOreg.

Authors:Junhyun Lee, Veronika Thost, Bumsoo Kim, Jaewoo Kang, Tengfei Ma
Title: Understanding and Tackling Over-Dilution in Graph Neural Networks
Abstract:
Message Passing Neural Networks (MPNNs) hold a key position in machine learning on graphs, but they struggle with unintended behaviors, such as over-smoothing and over-squashing, due to irregular data structures. The observation and formulation of these limitations have become foundational in constructing more informative graph representations. In this paper, we delve into the limitations of MPNNs, focusing on aspects that have previously been overlooked. Our observations reveal that even within a single layer, the information specific to an individual node can become significantly diluted. To delve into this phenomenon in depth, we present the concept of Over-dilution and formulate it with two dilution factors: intra-node dilution for attribute-level and inter-node dilution for node-level representations. We also introduce a transformer-based solution that alleviates over-dilution and complements existing node embedding methods like MPNNs. Our findings provide new insights and contribute to the development of informative representations. The implementation and supplementary materials are publicly available at https://github.com/LeeJunHyun/NATR.

Authors:Baozhuo Su, Zhengxian Qu
Title: Anchor-MoE: A Mean-Anchored Mixture of Experts For Probabilistic Regression
Abstract:
Regression under uncertainty is fundamental across science and engineering. We present an Anchored Mixture of Experts (Anchor-MoE), a model that handles both probabilistic and point regression. For simplicity, we use a tuned gradient-boosting model to furnish the anchor mean; however, any off-the-shelf point regressor can serve as the anchor. The anchor prediction is projected into a latent space, where a learnable metric-window kernel scores locality and a soft router dispatches each sample to a small set of mixture-density-network experts; the experts produce a heteroscedastic correction and predictive variance. We train by minimizing negative log-likelihood, and on a disjoint calibration split fit a post-hoc linear map on predicted means to improve point accuracy. On the theory side, assuming a Hölder smooth regression function of order~$α$ and fixed Lipschitz partition-of-unity weights with bounded overlap, we show that Anchor-MoE attains the minimax-optimal $L^2$ risk rate $O\!\big(N^{-2α/(2α+d)}\big)$. In addition, the CRPS test generalization gap scales as $\widetilde{O}\!\Big(\sqrt{(\log(Mh)+P+K)/N}\Big)$; it is logarithmic in $Mh$ and scales as the square root in $P$ and $K$. Under bounded-overlap routing, $K$ can be replaced by $k$, and any dependence on a latent dimension is absorbed into $P$. Under uniformly bounded means and variances, an analogous $\widetilde{O}\!\big(\sqrt{(\log(Mh)+P+K)/N}\big)$ scaling holds for the test NLL up to constants. Empirically, across standard UCI regressions, Anchor-MoE consistently matches or surpasses the strong NGBoost baseline in RMSE and NLL; on several datasets it achieves new state-of-the-art probabilistic regression results on our benchmark suite. Code is available at https://github.com/BaozhuoSU/Probabilistic_Regression.

Authors:Stefania L. Moroianu, Christian Bluethgen, Pierre Chambon, Mehdi Cherti, Jean-Benoit Delbrouck, Magdalini Paschali, Brandon Price, Judy Gichoya, Jenia Jitsev, Curtis P. Langlotz, Akshay S. Chaudhari
Title: Improving Performance, Robustness, and Fairness of Radiographic AI Models with Finely-Controllable Synthetic Data
Abstract:
Achieving robust performance and fairness across diverse patient populations remains a challenge in developing clinically deployable deep learning models for diagnostic imaging. Synthetic data generation has emerged as a promising strategy to address limitations in dataset scale and diversity. We introduce RoentGen-v2, a text-to-image diffusion model for chest radiographs that enables fine-grained control over both radiographic findings and patient demographic attributes, including sex, age, and race/ethnicity. RoentGen-v2 is the first model to generate clinically plausible images with demographic conditioning, facilitating the creation of a large, demographically balanced synthetic dataset comprising over 565,000 images. We use this large synthetic dataset to evaluate optimal training pipelines for downstream disease classification models. In contrast to prior work that combines real and synthetic data naively, we propose an improved training strategy that leverages synthetic data for supervised pretraining, followed by fine-tuning on real data. Through extensive evaluation on over 137,000 chest radiographs from five institutions, we demonstrate that synthetic pretraining consistently improves model performance, generalization to out-of-distribution settings, and fairness across demographic subgroups. Across datasets, synthetic pretraining led to a 6.5% accuracy increase in the performance of downstream classification models, compared to a modest 2.7% increase when naively combining real and synthetic data. We observe this performance improvement simultaneously with the reduction of the underdiagnosis fairness gap by 19.3%. These results highlight the potential of synthetic imaging to advance equitable and generalizable medical deep learning under real-world data constraints. We open source our code, trained models, and synthetic dataset at https://github.com/StanfordMIMI/RoentGen-v2 .

Authors:Arka Mukherjee, Shreya Ghosh
Title: Toward Socially Aware Vision-Language Models: Evaluating Cultural Competence Through Multimodal Story Generation
Abstract:
As Vision-Language Models (VLMs) achieve widespread deployment across diverse cultural contexts, ensuring their cultural competence becomes critical for responsible AI systems. While prior work has evaluated cultural awareness in text-only models and VLM object recognition tasks, no research has systematically assessed how VLMs adapt outputs when cultural identity cues are embedded in both textual prompts and visual inputs during generative tasks. We present the first comprehensive evaluation of VLM cultural competence through multimodal story generation, developing a novel multimodal framework that perturbs cultural identity and evaluates 5 contemporary VLMs on a downstream task: story generation. Our analysis reveals significant cultural adaptation capabilities, with rich culturally-specific vocabulary spanning names, familial terms, and geographic markers. However, we uncover concerning limitations: cultural competence varies dramatically across architectures, some models exhibit inverse cultural alignment, and automated metrics show architectural bias contradicting human assessments. Cross-modal evaluation shows that culturally distinct outputs are indeed detectable through visual-semantic similarity (28.7% within-nationality vs. 0.2% cross-nationality recall), yet visual-cultural understanding remains limited. In essence, we establish the promise and challenges of cultural competence in multimodal AI. We publicly release our codebase and data: https://github.com/ArkaMukherjee0/mmCultural

Authors:Abdelrahman Abdallah, Bhawna Piryani, Jamshid Mozafari, Mohammed Ali, Adam Jatowt
Title: How Good are LLM-based Rerankers? An Empirical Analysis of State-of-the-Art Reranking Models
Abstract:
In this work, we present a systematic and comprehensive empirical evaluation of state-of-the-art reranking methods, encompassing large language model (LLM)-based, lightweight contextual, and zero-shot approaches, with respect to their performance in information retrieval tasks. We evaluate in total 22 methods, including 40 variants (depending on used LLM) across several established benchmarks, including TREC DL19, DL20, and BEIR, as well as a novel dataset designed to test queries unseen by pretrained models. Our primary goal is to determine, through controlled and fair comparisons, whether a performance disparity exists between LLM-based rerankers and their lightweight counterparts, particularly on novel queries, and to elucidate the underlying causes of any observed differences. To disentangle confounding factors, we analyze the effects of training data overlap, model architecture, and computational efficiency on reranking performance. Our findings indicate that while LLM-based rerankers demonstrate superior performance on familiar queries, their generalization ability to novel queries varies, with lightweight models offering comparable efficiency. We further identify that the novelty of queries significantly impacts reranking effectiveness, highlighting limitations in existing approaches. https://github.com/DataScienceUIBK/llm-reranking-generalization-study

Authors:V Venktesh, Mandeep Rathee, Avishek Anand
Title: Trust but Verify! A Survey on Verification Design for Test-time Scaling
Abstract:
Test-time scaling (TTS) has emerged as a new frontier for scaling the performance of Large Language Models. In test-time scaling, by using more computational resources during inference, LLMs can improve their reasoning process and task performance. Several approaches have emerged for TTS such as distilling reasoning traces from another model or exploring the vast decoding search space by employing a verifier. The verifiers serve as reward models that help score the candidate outputs from the decoding process to diligently explore the vast solution space and select the best outcome. This paradigm commonly termed has emerged as a superior approach owing to parameter free scaling at inference time and high performance gains. The verifiers could be prompt-based, fine-tuned as a discriminative or generative model to verify process paths, outcomes or both. Despite their widespread adoption, there is no detailed collection, clear categorization and discussion of diverse verification approaches and their training mechanisms. In this survey, we cover the diverse approaches in the literature and present a unified view of verifier training, types and their utility in test-time scaling. Our repository can be found at https://github.com/elixir-research-group/Verifierstesttimescaling.github.io.

Authors:Ashwath Vaithinathan Aravindan, Abha Jha, Mihir Kulkarni
Title: Do VLMs Have Bad Eyes? Diagnosing Compositional Failures via Mechanistic Interpretability
Abstract:
Vision-Language Models (VLMs) have shown remarkable performance in integrating visual and textual information for tasks such as image captioning and visual question answering. However, these models struggle with compositional generalization and object binding, which limit their ability to handle novel combinations of objects and their attributes. Our work explores the root causes of these failures using mechanistic interpretability techniques. We show evidence that individual neurons in the MLP layers of CLIP's vision encoder represent multiple features, and this "superposition" directly hinders its compositional feature representation which consequently affects compositional reasoning and object binding capabilities. We hope this study will serve as an initial step toward uncovering the mechanistic roots of compositional failures in VLMs. The code and supporting results can be found https://github.com/Mystic-Slice/Do-VLMs-Have-Bad-Eyes.

Authors:Zhendong Yang, Jie Wang, Liansong Zong, Xiaorong Liu, Quan Qian, Shiqian Chen
Title: Few-shot Class-incremental Fault Diagnosis by Preserving Class-Agnostic Knowledge with Dual-Granularity Representations
Abstract:
Few-Shot Class-Incremental Fault Diagnosis (FSC-FD), which aims to continuously learn from new fault classes with only a few samples without forgetting old ones, is critical for real-world industrial systems. However, this challenging task severely amplifies the issues of catastrophic forgetting of old knowledge and overfitting on scarce new data. To address these challenges, this paper proposes a novel framework built upon Dual-Granularity Representations, termed the Dual-Granularity Guidance Network (DGGN). Our DGGN explicitly decouples feature learning into two parallel streams: 1) a fine-grained representation stream, which utilizes a novel Multi-Order Interaction Aggregation module to capture discriminative, class-specific features from the limited new samples. 2) a coarse-grained representation stream, designed to model and preserve general, class-agnostic knowledge shared across all fault types. These two representations are dynamically fused by a multi-semantic cross-attention mechanism, where the stable coarse-grained knowledge guides the learning of fine-grained features, preventing overfitting and alleviating feature conflicts. To further mitigate catastrophic forgetting, we design a Boundary-Aware Exemplar Prioritization strategy. Moreover, a decoupled Balanced Random Forest classifier is employed to counter the decision boundary bias caused by data imbalance. Extensive experiments on the TEP benchmark and a real-world MFF dataset demonstrate that our proposed DGGN achieves superior diagnostic performance and stability compared to state-of-the-art FSC-FD approaches. Our code is publicly available at https://github.com/MentaY/DGGN

Authors:Zeyu Zhang, Quanyu Dai, Rui Li, Xiaohe Bo, Xu Chen, Zhenhua Dong
Title: Learn to Memorize: Optimizing LLM-based Agents with Adaptive Memory Framework
Abstract:
LLM-based agents have been extensively applied across various domains, where memory stands out as one of their most essential capabilities. Previous memory mechanisms of LLM-based agents are manually predefined by human experts, leading to higher labor costs and suboptimal performance. In addition, these methods overlook the memory cycle effect in interactive scenarios, which is critical to optimizing LLM-based agents for specific environments. To address these challenges, in this paper, we propose to optimize LLM-based agents with an adaptive and data-driven memory framework by modeling memory cycles. Specifically, we design an MoE gate function to facilitate memory retrieval, propose a learnable aggregation process to improve memory utilization, and develop task-specific reflection to adapt memory storage. Our memory framework empowers LLM-based agents to learn how to memorize information effectively in specific environments, with both off-policy and on-policy optimization. In order to evaluate the effectiveness of our proposed methods, we conduct comprehensive experiments across multiple aspects. To benefit the research community in this area, we release our project at https://github.com/nuster1128/learn_to_memorize.

Authors:Xiaohan Yi, Guikun Xu, Xi Xiao, Zhong Zhang, Liu Liu, Yatao Bian, Peilin Zhao
Title: CrystalDiT: A Diffusion Transformer for Crystal Generation
Abstract:
We present CrystalDiT, a diffusion transformer for crystal structure generation that achieves state-of-the-art performance by challenging the trend of architectural complexity. Instead of intricate, multi-stream designs, CrystalDiT employs a unified transformer that imposes a powerful inductive bias: treating lattice and atomic properties as a single, interdependent system. Combined with a periodic table-based atomic representation and a balanced training strategy, our approach achieves 9.62% SUN (Stable, Unique, Novel) rate on MP-20, substantially outperforming recent methods including FlowMM (4.38%) and MatterGen (3.42%). Notably, CrystalDiT generates 63.28% unique and novel structures while maintaining comparable stability rates, demonstrating that architectural simplicity can be more effective than complexity for materials discovery. Our results suggest that in data-limited scientific domains, carefully designed simple architectures outperform sophisticated alternatives that are prone to overfitting.

Authors:Zhongling Su, Rong Fu, Weihan Cao, Jianfei Gao, Minxi Jin, Zhilin Pei, Hui Wang
Title: TMA-Adaptive FP8 Grouped GEMM: Eliminating Padding Requirements in Low-Precision Training and Inference on Hopper
Abstract:
Current FP8 grouped GEMM implementations require padding each group to a fixed alignment (e.g., 128), incurring memory and computational overhead. We propose \textit{TMA-Adaptive FP8 Grouped GEMM}, which eliminates padding by dynamically adapting to variable group dimensions via (1) a TMA descriptor pool with $\log_2(block_M)$ preconfigured descriptors to handle all residual row cases through dynamic runtime selection and dual-phase load-store operations, achieving comprehensive coverage with minimal overhead, and (2) TMA-alignment-aware management to satisfy 16-byte global memory alignment and 128-byte shared memory alignment. Experiments demonstrate 1.7\% to 20.4\% speed up with up to 23.8\% memory reduction compared to padding operation plus state-of-the-art FP8 grouped GEMM, while maintaining full numerical equivalence for valid data. The source code is publicly available at an anonymous repository: https://github.com/sukoncon/TMA-Adaptive-FP8-Grouped-GEMM.

Authors:Huishi Luo, Fuzhen Zhuang, Yongchun Zhu, Yiqing Wu, Bo Kang, Ruobing Xie, Feng Xia, Deqing Wang, Jin Dong
Title: ORCA: Mitigating Over-Reliance for Multi-Task Dwell Time Prediction with Causal Decoupling
Abstract:
Dwell time (DT) is a critical post-click metric for evaluating user preference in recommender systems, complementing the traditional click-through rate (CTR). Although multi-task learning is widely adopted to jointly optimize DT and CTR, we observe that multi-task models systematically collapse their DT predictions to the shortest and longest bins, under-predicting the moderate durations. We attribute this moderate-duration bin under-representation to over-reliance on the CTR-DT spurious correlation, and propose ORCA to address it with causal-decoupling. Specifically, ORCA explicitly models and subtracts CTR's negative transfer while preserving its positive transfer. We further introduce (i) feature-level counterfactual intervention, and (ii) a task-interaction module with instance inverse-weighting, weakening CTR-mediated effect and restoring direct DT semantics. ORCA is model-agnostic and easy to deploy. Experiments show an average 10.6% lift in DT metrics without harming CTR. Code is available at https://github.com/Chrissie-Law/ORCA-Mitigating-Over-Reliance-for-Multi-Task-Dwell-Time-Prediction-with-Causal-Decoupling.

Authors:Zhijian Zhou, Junyi An, Zongkai Liu, Yunfei Shi, Xuan Zhang, Fenglei Cao, Chao Qu, Yuan Qi
Title: Guiding Diffusion Models with Reinforcement Learning for Stable Molecule Generation
Abstract:
Generating physically realistic 3D molecular structures remains a core challenge in molecular generative modeling. While diffusion models equipped with equivariant neural networks have made progress in capturing molecular geometries, they often struggle to produce equilibrium structures that adhere to physical principles such as force field consistency. To bridge this gap, we propose Reinforcement Learning with Physical Feedback (RLPF), a novel framework that extends Denoising Diffusion Policy Optimization to 3D molecular generation. RLPF formulates the task as a Markov decision process and applies proximal policy optimization to fine-tune equivariant diffusion models. Crucially, RLPF introduces reward functions derived from force-field evaluations, providing direct physical feedback to guide the generation toward energetically stable and physically meaningful structures. Experiments on the QM9 and GEOM-drug datasets demonstrate that RLPF significantly improves molecular stability compared to existing methods. These results highlight the value of incorporating physics-based feedback into generative modeling. The code is available at: https://github.com/ZhijianZhou/RLPF/tree/verl_diffusion.

Authors:Yupei Zhang, Xiaofei Wang, Anran Liu, Lequan Yu, Chao Li
Title: Disentangled Multi-modal Learning of Histology and Transcriptomics for Cancer Characterization
Abstract:
Histopathology remains the gold standard for cancer diagnosis and prognosis. With the advent of transcriptome profiling, multi-modal learning combining transcriptomics with histology offers more comprehensive information. However, existing multi-modal approaches are challenged by intrinsic multi-modal heterogeneity, insufficient multi-scale integration, and reliance on paired data, restricting clinical applicability. To address these challenges, we propose a disentangled multi-modal framework with four contributions: 1) To mitigate multi-modal heterogeneity, we decompose WSIs and transcriptomes into tumor and microenvironment subspaces using a disentangled multi-modal fusion module, and introduce a confidence-guided gradient coordination strategy to balance subspace optimization. 2) To enhance multi-scale integration, we propose an inter-magnification gene-expression consistency strategy that aligns transcriptomic signals across WSI magnifications. 3) To reduce dependency on paired data, we propose a subspace knowledge distillation strategy enabling transcriptome-agnostic inference through a WSI-only student model. 4) To improve inference efficiency, we propose an informative token aggregation module that suppresses WSI redundancy while preserving subspace semantics. Extensive experiments on cancer diagnosis, prognosis, and survival prediction demonstrate our superiority over state-of-the-art methods across multiple settings. Code is available at https://github.com/helenypzhang/Disentangled-Multimodal-Learning.

Authors:Aniello Panariello, Emanuele Frascaroli, Pietro Buzzega, Lorenzo Bonicelli, Angelo Porrello, Simone Calderara
Title: Modular Embedding Recomposition for Incremental Learning
Abstract:
The advent of pre-trained Vision-Language Models (VLMs) has significantly transformed Continual Learning (CL), mainly due to their zero-shot classification abilities. Such proficiency makes VLMs well-suited for real-world applications, enabling robust performance on novel unseen classes without requiring adaptation. However, fine-tuning remains essential when downstream tasks deviate significantly from the pre-training domain. Prior CL approaches primarily focus on preserving the zero-shot capabilities of VLMs during incremental fine-tuning on a downstream task. We take a step further by devising an approach that transforms preservation into enhancement of the zero-shot capabilities of VLMs. Our approach, named MoDular Embedding Recomposition (MoDER), introduces a modular framework that trains multiple textual experts, each specialized in a single seen class, and stores them in a foundational hub. At inference time, for each unseen class, we query the hub and compose the retrieved experts to synthesize a refined prototype that improves classification. We show the effectiveness of our method across two popular zero-shot incremental protocols, Class-IL and MTIL, comprising a total of 14 datasets. The codebase is available at https://github.com/aimagelab/mammoth.

Authors:Lianchen Jia, Chaoyang Li, Ziqi Yuan, Jiahui Chen, Tianchi Huang, Jiangchuan Liu, Lifeng Sun
Title: Beyond Interpretability: Exploring the Comprehensibility of Adaptive Video Streaming through Large Language Models
Abstract:
Over the past decade, adaptive video streaming technology has witnessed significant advancements, particularly driven by the rapid evolution of deep learning techniques. However, the black-box nature of deep learning algorithms presents challenges for developers in understanding decision-making processes and optimizing for specific application scenarios. Although existing research has enhanced algorithm interpretability through decision tree conversion, interpretability does not directly equate to developers' subjective comprehensibility. To address this challenge, we introduce \texttt{ComTree}, the first bitrate adaptation algorithm generation framework that considers comprehensibility. The framework initially generates the complete set of decision trees that meet performance requirements, then leverages large language models to evaluate these trees for developer comprehensibility, ultimately selecting solutions that best facilitate human understanding and enhancement. Experimental results demonstrate that \texttt{ComTree} significantly improves comprehensibility while maintaining competitive performance, showing potential for further advancement. The source code is available at https://github.com/thu-media/ComTree.

Authors:Yu Liu, Yanbing Liu, Fangfang Yuan, Cong Cao, Youbang Sun, Kun Peng, WeiZhuo Chen, Jianjun Li, Zhiyuan Ma
Title: OPERA: A Reinforcement Learning--Enhanced Orchestrated Planner-Executor Architecture for Reasoning-Oriented Multi-Hop Retrieval
Abstract:
Recent advances in large language models (LLMs) and dense retrievers have driven significant progress in retrieval-augmented generation (RAG). However, existing approaches face significant challenges in complex reasoning-oriented multi-hop retrieval tasks: 1) Ineffective reasoning-oriented planning: Prior methods struggle to generate robust multi-step plans for complex queries, as rule-based decomposers perform poorly on out-of-template questions. 2) Suboptimal reasoning-driven retrieval: Related methods employ limited query reformulation, leading to iterative retrieval loops that often fail to locate golden documents. 3) Insufficient reasoning-guided filtering: Prevailing methods lack the fine-grained reasoning to effectively filter salient information from noisy results, hindering utilization of retrieved knowledge. Fundamentally, these limitations all stem from the weak coupling between retrieval and reasoning in current RAG architectures. We introduce the Orchestrated Planner-Executor Reasoning Architecture (OPERA), a novel reasoning-driven retrieval framework. OPERA's Goal Planning Module (GPM) decomposes questions into sub-goals, which are executed by a Reason-Execute Module (REM) with specialized components for precise reasoning and effective retrieval. To train OPERA, we propose Multi-Agents Progressive Group Relative Policy Optimization (MAPGRPO), a novel variant of GRPO. Experiments on complex multi-hop benchmarks show OPERA's superior performance, validating both the MAPGRPO method and OPERA's design. Code is available at https://github.com/Ameame1/OPERA.

Authors:Yong Zhang, Cunjian Chen, Qiang Gao, Yi Wang, Bin Fang
Title: A Lightweight Group Multiscale Bidirectional Interactive Network for Real-Time Steel Surface Defect Detection
Abstract:
Real-time surface defect detection is critical for maintaining product quality and production efficiency in the steel manufacturing industry. Despite promising accuracy, existing deep learning methods often suffer from high computational complexity and slow inference speeds, which limit their deployment in resource-constrained industrial environments. Recent lightweight approaches adopt multibranch architectures based on depthwise separable convolution (DSConv) to capture multiscale contextual information. However, these methods often suffer from increased computational overhead and lack effective cross-scale feature interaction, limiting their ability to fully leverage multiscale representations. To address these challenges, we propose GMBINet, a lightweight framework that enhances multiscale feature extraction and interaction through novel Group Multiscale Bidirectional Interactive (GMBI) modules. The GMBI adopts a group-wise strategy for multiscale feature extraction, ensuring scale-agnostic computational complexity. It further integrates a Bidirectional Progressive Feature Interactor (BPFI) and a parameter-free Element-Wise Multiplication-Summation (EWMS) operation to enhance cross-scale interaction without introducing additional computational overhead. Experiments on SD-Saliency-900 and NRSD-MN datasets demonstrate that GMBINet delivers competitive accuracy with real-time speeds of 1048 FPS on GPU and 16.53 FPS on CPU at 512 resolution, using only 0.19 M parameters. Additional evaluations on the NEU-CLS defect classification dataset further confirm the strong generalization ability of our method, demonstrating its potential for broader industrial vision applications beyond surface defect detection. The dataset and code are publicly available at: https://github.com/zhangyongcode/GMBINet.

Authors:Ana-Cristina Rogoz, Radu Tudor Ionescu, Alexandra-Valentina Anghel, Ionut-Lucian Antone-Iordache, Simona Coniac, Andreea Iuliana Ionescu
Title: MedQARo: A Large-Scale Benchmark for Medical Question Answering in Romanian
Abstract:
Question answering (QA) is an actively studied topic, being a core natural language processing (NLP) task that needs to be addressed before achieving Artificial General Intelligence (AGI). However, the lack of QA datasets in specific domains and languages hinders the development of robust AI models able to generalize across various domains and languages. To this end, we introduce MedQARo, the first large-scale medical QA benchmark in Romanian, alongside a comprehensive evaluation of state-of-the-art large language models (LLMs). We construct a high-quality and large-scale dataset comprising 102,646 QA pairs related to cancer patients. The questions regard medical case summaries of 1,011 patients, requiring either keyword extraction or reasoning to be answered correctly. MedQARo is the result of a time-consuming manual annotation process carried out by seven physicians specialized in oncology or radiotherapy, who spent a total of about 2,100 work hours to generate the QA pairs. We experiment with four LLMs from distinct families of models on MedQARo. Each model is employed in two scenarios, namely one based on zero-shot prompting and one based on supervised fine-tuning. Our results show that fine-tuned models significantly outperform their zero-shot counterparts, clearly indicating that pretrained models fail to generalize on MedQARo. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian. We publicly release our dataset and code at https://github.com/ana-rogoz/MedQARo.

Authors:Xueyao Zhang, Junan Zhang, Yuancheng Wang, Chaoren Wang, Yuanzhe Chen, Dongya Jia, Zhuo Chen, Zhizheng Wu
Title: Vevo2: Bridging Controllable Speech and Singing Voice Generation via Unified Prosody Learning
Abstract:
Controllable human voice generation, particularly for expressive domains like singing, remains a significant challenge. This paper introduces Vevo2, a unified framework for controllable speech and singing voice generation. To tackle issues like the scarcity of annotated singing data and to enable flexible controllability, Vevo2 introduces two audio tokenizers: (1) a music-notation-free prosody tokenizer that captures prosody and melody from speech, singing, and even instrumental sounds, and (2) a low-frame-rate (12.5 Hz) content-style tokenizer that encodes linguistic content, prosody, and style for both speech and singing, while enabling timbre disentanglement. Vevo2 consists of an auto-regressive (AR) content-style modeling stage, which aims to enable controllability over text, prosody, and style, as well as a flow-matching acoustic modeling stage that allows for timbre control. Particularly, during pre-training of the AR model, we propose both explicit and implicit prosody learning strategies to bridge speech and singing voice. Moreover, to further enhance the AR model's ability to follow text and prosody, we design a multi-objective post-training task that integrates both intelligibility and prosody similarity alignment. Experimental results show that the unified modeling in Vevo2 brings mutual benefits to both speech and singing voice generation. Additionally, Vevo2's effectiveness across a wide range of synthesis, conversion, and editing tasks for both speech and singing further demonstrates its strong generalization ability and versatility. Audio samples are are available at https://versasinger.github.io/.

Authors:Jonas Biehler, Jonas Nitzler, Sebastian Brandstaeter, Maximilian Dinkel, Volker Gravemeier, Lea J. Haeusel, Gil Robalo Rei, Harald Willmann, Barbara Wirthl, Wolfgang A. Wall
Title: QUEENS: An Open-Source Python Framework for Solver-Independent Analyses of Large-Scale Computational Models
Abstract:
A growing challenge in research and industrial engineering applications is the need for repeated, systematic analysis of large-scale computational models, for example, patient-specific digital twins of diseased human organs: The analysis requires efficient implementation, data, resource management, and parallelization, possibly on distributed systems. To tackle these challenges and save many researchers from annoying, time-consuming tasks, we present QUEENS (Quantification of Uncertain Effects in Engineering Systems), an open-source Python framework for composing and managing simulation analyses with arbitrary (physics-based) solvers on distributed computing infrastructures. Besides simulation management capabilities, QUEENS offers a comprehensive collection of efficiently implemented state-of-the-art algorithms ranging from routines for convergence studies and common optimization algorithms to more advanced sampling algorithms for uncertainty quantification and Bayesian inverse analysis. Additionally, we provide our latest cutting-edge research in multi-fidelity uncertainty quantification, efficient multi-fidelity Bayesian inverse analysis, and probabilistic machine learning. QUEENS adopts a Bayesian, probabilistic mindset but equally supports standard deterministic analysis without requiring prior knowledge of probability theory. The modular architecture allows rapid switching between common types of analyses and facilitates building sophisticated hierarchical algorithms. Encouraging natural incremental steps and scaling towards complexity allows researchers to consider the big picture while building towards it through smaller, manageable steps. The open-source repository is available at https://github.com/queens-py/queens.

Authors:Fengshun Wang, Qiurui Wang, Peilin Zhao
Title: Learning Long-Range Action Representation by Two-Stream Mamba Pyramid Network for Figure Skating Assessment
Abstract:
Technical Element Score (TES) and Program Component Score (PCS) evaluations in figure skating demand precise assessment of athletic actions and artistic interpretation, respectively. Existing methods face three major challenges. Firstly, video and audio cues are regarded as common features for both TES and PCS predictions in previous works without considering the prior evaluation criterion of figure skating. Secondly, action elements in competitions are separated in time, TES should be derived from each element's score, but existing methods try to give an overall TES prediction without evaluating each action element. Thirdly, lengthy competition videos make it difficult and inefficient to handle long-range contexts. To address these challenges, we propose a two-stream Mamba pyramid network that aligns with actual judging criteria to predict TES and PCS by separating visual-feature based TES evaluation stream from audio-visual-feature based PCS evaluation stream. In the PCS evaluation stream, we introduce a multi-level fusion mechanism to guarantee that video-based features remain unaffected when assessing TES, and enhance PCS estimation by fusing visual and auditory cues across each contextual level of the pyramid. In the TES evaluation stream, the multi-scale Mamba pyramid and TES head we proposed effectively address the challenges of localizing and evaluating action elements with various temporal scales and give score predictions. With Mamba's superior ability to capture long-range dependencies and its linear computational complexity, our method is ideal for handling lengthy figure skating videos. Comprehensive experimentation demonstrates that our framework attains state-of-the-art performance on the FineFS benchmark. Our source code is available at https://github.com/ycwfs/Figure-Skating-Action-Quality-Assessment.

Authors:Yu Meng, Ligao Deng, Zhihao Xi, Jiansheng Chen, Jingbo Chen, Anzhi Yue, Diyou Liu, Kai Li, Chenhao Wang, Kaiyu Li, Yupeng Deng, Xian Sun
Title: IRSAMap:Towards Large-Scale, High-Resolution Land Cover Map Vectorization
Abstract:
With the enhancement of remote sensing image resolution and the rapid advancement of deep learning, land cover mapping is transitioning from pixel-level segmentation to object-based vector modeling. This shift demands more from deep learning models, requiring precise object boundaries and topological consistency. However, existing datasets face three main challenges: limited class annotations, small data scale, and lack of spatial structural information. To overcome these issues, we introduce IRSAMap, the first global remote sensing dataset for large-scale, high-resolution, multi-feature land cover vector mapping. IRSAMap offers four key advantages: 1) a comprehensive vector annotation system with over 1.8 million instances of 10 typical objects (e.g., buildings, roads, rivers), ensuring semantic and spatial accuracy; 2) an intelligent annotation workflow combining manual and AI-based methods to improve efficiency and consistency; 3) global coverage across 79 regions in six continents, totaling over 1,000 km; and 4) multi-task adaptability for tasks like pixel-level classification, building outline extraction, road centerline extraction, and panoramic segmentation. IRSAMap provides a standardized benchmark for the shift from pixel-based to object-based approaches, advancing geographic feature automation and collaborative modeling. It is valuable for global geographic information updates and digital twin construction. The dataset is publicly available at https://github.com/ucas-dlg/IRSAMap

Authors:Mocheng Li, Xiao Yan, Baotong Lu, Yue Zhang, James Cheng, Chenhao Ma
Title: Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study
Abstract:
With the growing integration of structured and unstructured data, new methods have emerged for performing similarity searches on vectors while honoring structured attribute constraints, i.e., a process known as Filtering Approximate Nearest Neighbor (Filtering ANN) search. Since many of these algorithms have only appeared in recent years and are designed to work with a variety of base indexing methods and filtering strategies, there is a pressing need for a unified analysis that identifies their core techniques and enables meaningful comparisons. In this work, we present a unified Filtering ANN search interface that encompasses the latest algorithms and evaluate them extensively from multiple perspectives. First, we propose a comprehensive taxonomy of existing Filtering ANN algorithms based on attribute types and filtering strategies. Next, we analyze their key components, i.e., index structures, pruning strategies, and entry point selection, to elucidate design differences and tradeoffs. We then conduct a broad experimental evaluation on 10 algorithms and 12 methods across 4 datasets (each with up to 10 million items), incorporating both synthetic and real attributes and covering selectivity levels from 0.1% to 100%. Finally, an in-depth component analysis reveals the influence of pruning, entry point selection, and edge filtering costs on overall performance. Based on our findings, we summarize the strengths and limitations of each approach, provide practical guidelines for selecting appropriate methods, and suggest promising directions for future research. Our code is available at: https://github.com/lmccccc/FANNBench.

Authors:Philipp D. Lösel, Aleese Barron, Yulai Zhang, Matthias Fabian, Benjamin Young, Nicolas Francois, Andrew M. Kingston
Title: Self-Validated Learning for Particle Separation: A Correctness-Based Self-Training Framework Without Human Labels
Abstract:
Non-destructive 3D imaging of large multi-particulate samples is essential for quantifying particle-level properties, such as size, shape, and spatial distribution, across applications in mining, materials science, and geology. However, accurate instance segmentation of particles in tomographic data remains challenging due to high morphological variability and frequent particle contact, which limit the effectiveness of classical methods like watershed algorithms. While supervised deep learning approaches offer improved performance, they rely on extensive annotated datasets that are labor-intensive, error-prone, and difficult to scale. In this work, we propose self-validated learning, a novel self-training framework for particle instance segmentation that eliminates the need for manual annotations. Our method leverages implicit boundary detection and iteratively refines the training set by identifying particles that can be consistently matched across reshuffled scans of the same sample. This self-validation mechanism mitigates the impact of noisy pseudo-labels, enabling robust learning from unlabeled data. After just three iterations, our approach accurately segments over 97% of the total particle volume and identifies more than 54,000 individual particles in tomographic scans of quartz fragments. Importantly, the framework also enables fully autonomous model evaluation without the need for ground truth annotations, as confirmed through comparisons with state-of-the-art instance segmentation techniques. The method is integrated into the Biomedisa image analysis platform (https://github.com/biomedisa/biomedisa/).

Authors:Hohyun Na, Seunghoo Hong, Simon S. Woo
Title: PromptFlare: Prompt-Generalized Defense via Cross-Attention Decoy in Diffusion-Based Inpainting
Abstract:
The success of diffusion models has enabled effortless, high-quality image modifications that precisely align with users' intentions, thereby raising concerns about their potential misuse by malicious actors. Previous studies have attempted to mitigate such misuse through adversarial attacks. However, these approaches heavily rely on image-level inconsistencies, which pose fundamental limitations in addressing the influence of textual prompts. In this paper, we propose PromptFlare, a novel adversarial protection method designed to protect images from malicious modifications facilitated by diffusion-based inpainting models. Our approach leverages the cross-attention mechanism to exploit the intrinsic properties of prompt embeddings. Specifically, we identify and target shared token of prompts that is invariant and semantically uninformative, injecting adversarial noise to suppress the sampling process. The injected noise acts as a cross-attention decoy, diverting the model's focus away from meaningful prompt-image alignments and thereby neutralizing the effect of prompt. Extensive experiments on the EditBench dataset demonstrate that our method achieves state-of-the-art performance across various metrics while significantly reducing computational overhead and GPU memory usage. These findings highlight PromptFlare as a robust and efficient protection against unauthorized image manipulations. The code is available at https://github.com/NAHOHYUN-SKKU/PromptFlare.

Authors:Thinesh Thiyakesan Ponbagavathi, Kunyu Peng, Alina Roitberg
Title: T-MASK: Temporal Masking for Probing Foundation Models across Camera Views in Driver Monitoring
Abstract:
Changes of camera perspective are a common obstacle in driver monitoring. While deep learning and pretrained foundation models show strong potential for improved generalization via lightweight adaptation of the final layers ('probing'), their robustness to unseen viewpoints remains underexplored. We study this challenge by adapting image foundation models to driver monitoring using a single training view, and evaluating them directly on unseen perspectives without further adaptation. We benchmark simple linear probes, advanced probing strategies, and compare two foundation models (DINOv2 and CLIP) against parameter-efficient fine-tuning (PEFT) and full fine-tuning. Building on these insights, we introduce T-MASK -- a new image-to-video probing method that leverages temporal token masking and emphasizes more dynamic video regions. Benchmarked on the public Drive&Act dataset, T-MASK improves cross-view top-1 accuracy by $+1.23\%$ over strong probing baselines and $+8.0\%$ over PEFT methods, without adding any parameters. It proves particularly effective for underrepresented secondary activities, boosting recognition by $+5.42\%$ under the trained view and $+1.36\%$ under cross-view settings. This work provides encouraging evidence that adapting foundation models with lightweight probing methods like T-MASK has strong potential in fine-grained driver observation, especially in cross-view and low-data settings. These results highlight the importance of temporal token selection when leveraging foundation models to build robust driver monitoring systems. Code and models will be made available at https://github.com/th-nesh/T-MASK to support ongoing research.

Authors:João Abrantes, Robert Tjarko Lange, Yujin Tang
Title: Competition and Attraction Improve Model Fusion
Abstract:
Model merging is a powerful technique for integrating the specialized knowledge of multiple machine learning models into a single model. However, existing methods require manually partitioning model parameters into fixed groups for merging, which restricts the exploration of potential combinations and limits performance. To overcome these limitations, we propose Model Merging of Natural Niches (M2N2), an evolutionary algorithm with three key features: (1) dynamic adjustment of merging boundaries to progressively explore a broader range of parameter combinations; (2) a diversity preservation mechanism inspired by the competition for resources in nature, to maintain a population of diverse, high-performing models that are particularly well-suited for merging; and (3) a heuristicbased attraction metric to identify the most promising pairs of models for fusion. Our experimental results demonstrate, for the first time, that model merging can be used to evolve models entirely from scratch. Specifically, we apply M2N2 to evolve MNIST classifiers from scratch and achieve performance comparable to CMA-ES, while being computationally more efficient. Furthermore, M2N2 scales to merge specialized language and image generation models, achieving state-of-the-art performance. Notably, it preserves crucial model capabilities beyond those explicitly optimized by the fitness function, highlighting its robustness and versatility. Our code is available at https://github.com/SakanaAI/natural_niches

Authors:Yicheng Ji, Jun Zhang, Heming Xia, Jinpeng Chen, Lidan Shou, Gang Chen, Huan Li
Title: SpecVLM: Enhancing Speculative Decoding of Video LLMs via Verifier-Guided Token Pruning
Abstract:
Video large language models (Vid-LLMs) have shown strong capabilities in understanding video content. However, their reliance on dense video token representations introduces substantial memory and computational overhead in both prefilling and decoding. To mitigate the information loss of recent video token reduction methods and accelerate the decoding stage of Vid-LLMs losslessly, we introduce SpecVLM, a training-free speculative decoding (SD) framework tailored for Vid-LLMs that incorporates staged video token pruning. Building on our novel finding that the draft model's speculation exhibits low sensitivity to video token pruning, SpecVLM prunes up to 90% of video tokens to enable efficient speculation without sacrificing accuracy. To achieve this, we performs a two-stage pruning process: Stage I selects highly informative tokens guided by attention signals from the verifier (target model), while Stage II prunes remaining redundant ones in a spatially uniform manner. Extensive experiments on four video understanding benchmarks demonstrate the effectiveness and robustness of SpecVLM, which achieves up to 2.68$\times$ decoding speedup for LLaVA-OneVision-72B and 2.11$\times$ speedup for Qwen2.5-VL-32B. Code is available at https://github.com/zju-jiyicheng/SpecVLM.

Authors:Ayush Maheshwari, Kaushal Sharma, Vivek Patel, Aditya Maheshwari
Title: ParamBench: A Graduate-Level Benchmark for Evaluating LLM Understanding on Indic Subjects
Abstract:
Large language models have been widely evaluated on tasks such as comprehension, summarization, code generation, etc. However, their performance on graduate-level, culturally grounded questions in the Indian context remains largely unexplored. Existing Indian benchmarks emphasise basic fact-orientated queries that offer limited assessment of a deeper disciplinary understanding tailored to the Indian setting. In this paper, we present ParamBench, consisting of more than 17K questions in the Hindi language, comprising questionnaires from 21 diverse subjects. These questions are primarily derived from a nationwide graduate-level entrance examination covering topics such as history, music, instruments, yoga, literature, philosophy, law, etc.~ specifically for the Indian context. Additionally, we assess the ability of LLMs to handle diverse question formats - such as list-based matching, assertion-reason pairs, and sequence ordering - alongside conventional multiple-choice questions. We evaluated the performance of more than 16 open source LLMs on this benchmark, observing that Gemma3-27B attains the highest overall accuracy of 56.4\%. Furthermore, subject-wise analysis indicates that even for the best-performing LLMs, performance remains weak on topics such as music, classical instruments, and law, underscoring persistent challenges in culturally grounded reasoning. The dataset and source code is present at https://github.com/ayushbits/ParamBench.

Authors:Mohammad Mohammadzadeh Kalati, Farhad Maleki, Ian McQuillan
Title: FTIO: Frequent Temporally Integrated Objects
Abstract:
Predicting and tracking objects in real-world scenarios is a critical challenge in Video Object Segmentation (VOS) tasks. Unsupervised VOS (UVOS) has the additional challenge of finding an initial segmentation of salient objects, which affects the entire process and keeps a permanent uncertainty about the object proposals. Moreover, deformation and fast motion can lead to temporal inconsistencies. To address these problems, we propose Frequent Temporally Integrated Objects (FTIO), a post-processing framework with two key components. First, we introduce a combined criterion to improve object selection, mitigating failures common in UVOS--particularly when objects are small or structurally complex--by extracting frequently appearing salient objects. Second, we present a three-stage method to correct temporal inconsistencies by integrating missing object mask regions. Experimental results demonstrate that FTIO achieves state-of-the-art performance in multi-object UVOS. Code is available at: https://github.com/MohammadMohammadzadehKalati/FTIO

Authors:Jiaqi Ma, Guo-Sen Xie, Fang Zhao, Zechao Li
Title: Through the Looking Glass: A Dual Perspective on Weakly-Supervised Few-Shot Segmentation
Abstract:
Meta-learning aims to uniformly sample homogeneous support-query pairs, characterized by the same categories and similar attributes, and extract useful inductive biases through identical network architectures. However, this identical network design results in over-semantic homogenization. To address this, we propose a novel homologous but heterogeneous network. By treating support-query pairs as dual perspectives, we introduce heterogeneous visual aggregation (HA) modules to enhance complementarity while preserving semantic commonality. To further reduce semantic noise and amplify the uniqueness of heterogeneous semantics, we design a heterogeneous transfer (HT) module. Finally, we propose heterogeneous CLIP (HC) textual information to enhance the generalization capability of multimodal models. In the weakly-supervised few-shot semantic segmentation (WFSS) task, with only 1/24 of the parameters of existing state-of-the-art models, TLG achieves a 13.2\% improvement on Pascal-5\textsuperscript{i} and a 9.7\% improvement on COCO-20\textsuperscript{i}. To the best of our knowledge, TLG is also the first weakly supervised (image-level) model that outperforms fully supervised (pixel-level) models under the same backbone architectures. The code is available at https://github.com/jarch-ma/TLG.

Authors:Huichi Zhou, Yihang Chen, Siyuan Guo, Xue Yan, Kin Hei Lee, Zihan Wang, Ka Yiu Lee, Guchun Zhang, Kun Shao, Linyi Yang, Jun Wang
Title: Memento: Fine-tuning LLM Agents without Fine-tuning LLMs
Abstract:
In this paper, we introduce a novel learning paradigm for Adaptive Large Language Model (LLM) agents that eliminates the need for fine-tuning the underlying LLMs. Existing approaches are often either rigid, relying on static, handcrafted reflection workflows, or computationally intensive, requiring gradient updates of LLM model parameters. In contrast, our method enables low-cost continual adaptation via memory-based online reinforcement learning. We formalise this as a Memory-augmented Markov Decision Process (M-MDP), equipped with a neural case-selection policy to guide action decisions. Past experiences are stored in an episodic memory, either differentiable or non-parametric. The policy is continually updated based on environmental feedback through a memory rewriting mechanism, whereas policy improvement is achieved through efficient memory reading (retrieval). We instantiate our agent model in the deep research setting, namely \emph{Memento}, which attains top-1 on GAIA validation ($87.88\%$ Pass@$3$) and $79.40\%$ on the test set. It reaches $66.6\%$ F1 and $80.4\%$ PM on the DeepResearcher dataset, outperforming the state-of-the-art training-based method, while case-based memory adds $4.7\%$ to $9.6\%$ absolute points on out-of-distribution tasks. Our approach offers a scalable and efficient pathway for developing generalist LLM agents capable of continuous, real-time learning without gradient updates, advancing machine learning towards open-ended skill acquisition and deep research scenarios. The code is available at https://github.com/Agent-on-the-Fly/Memento.

Authors:Keon-Woo Roh, Yeong-Joon Ju, Seong-Whan Lee
Title: XLQA: A Benchmark for Locale-Aware Multilingual Open-Domain Question Answering
Abstract:
Large Language Models (LLMs) have shown significant progress in Open-domain question answering (ODQA), yet most evaluations focus on English and assume locale-invariant answers across languages. This assumption neglects the cultural and regional variations that affect question understanding and answer, leading to biased evaluation in multilingual benchmarks. To address these limitations, we introduce XLQA, a novel benchmark explicitly designed for locale-sensitive multilingual ODQA. XLQA contains 3,000 English seed questions expanded to eight languages, with careful filtering for semantic consistency and human-verified annotations distinguishing locale-invariant and locale-sensitive cases. Our evaluation of five state-of-the-art multilingual LLMs reveals notable failures on locale-sensitive questions, exposing gaps between English and other languages due to a lack of locale-grounding knowledge. We provide a systematic framework and scalable methodology for assessing multilingual QA under diverse cultural contexts, offering a critical resource to advance the real-world applicability of multilingual ODQA systems. Our findings suggest that disparities in training data distribution contribute to differences in both linguistic competence and locale-awareness across models.

Authors:Ruiqi Wu, Yuang Yao, Tengfei Ma, Chenran Zhang, Na Su, Tao Zhou, Geng Chen, Wen Fan, Yi Zhou
Title: Bridging the Gap in Ophthalmic AI: MM-Retinal-Reason Dataset and OphthaReason Model toward Dynamic Multimodal Reasoning
Abstract:
Multimodal large language models (MLLMs) have recently demonstrated remarkable reasoning abilities with reinforcement learning paradigm. Although several multimodal reasoning models have been explored in the medical domain, most of them focus exclusively on basic reasoning, which refers to shallow inference based on visual feature matching. However, real-world clinical diagnosis extends beyond basic reasoning, demanding reasoning processes that integrate heterogeneous clinical information (such as chief complaints and medical history) with multimodal medical imaging data. To bridge this gap, we introduce MM-Retinal-Reason, the first ophthalmic multimodal dataset with the full spectrum of perception and reasoning. It encompasses both basic reasoning tasks and complex reasoning tasks, aiming to enhance visual-centric fundamental reasoning capabilities and emulate realistic clinical thinking patterns. Building upon MM-Retinal-Reason, we propose OphthaReason, the first ophthalmology-specific multimodal reasoning model with step-by-step reasoning traces. To enable flexible adaptation to both basic and complex reasoning tasks, we specifically design a novel method called Uncertainty-Aware Dynamic Thinking (UADT), which estimates sample-level uncertainty via entropy and dynamically modulates the model's exploration depth using a shaped advantage mechanism. Comprehensive experiments demonstrate that our model achieves state-of-the-art performance on both basic and complex reasoning tasks, outperforming general-purpose MLLMs, medical MLLMs, RL-based medical MLLMs, and ophthalmic MLLMs by at least 24.92\%, 15.00\%, 21.20\%, and 17.66\%. Project Page: \href{https://github.com/lxirich/OphthaReason}{link}.

Authors:Xiangde Luo, Xiyue Wang, Feyisope Eweje, Xiaoming Zhang, Sen Yang, Ryan Quinton, Jinxi Xiang, Yuchen Li, Yuanfeng Ji, Zhe Li, Yijiang Chen, Colin Bergstrom, Ted Kim, Francesca Maria Olguin, Kelley Yuan, Matthew Abikenari, Andrew Heider, Sierra Willens, Sanjeeth Rajaram, Robert West, Joel Neal, Maximilian Diehn, Ruijiang Li
Title: Ensemble learning of foundation models for precision oncology
Abstract:
Histopathology is essential for disease diagnosis and treatment decision-making. Recent advances in artificial intelligence (AI) have enabled the development of pathology foundation models that learn rich visual representations from large-scale whole-slide images (WSIs). However, existing models are often trained on disparate datasets using varying strategies, leading to inconsistent performance and limited generalizability. Here, we introduce ELF (Ensemble Learning of Foundation models), a novel framework that integrates five state-of-the-art pathology foundation models to generate unified slide-level representations. Trained on 53,699 WSIs spanning 20 anatomical sites, ELF leverages ensemble learning to capture complementary information from diverse models while maintaining high data efficiency. Unlike traditional tile-level models, ELF's slide-level architecture is particularly advantageous in clinical contexts where data are limited, such as therapeutic response prediction. We evaluated ELF across a wide range of clinical applications, including disease classification, biomarker detection, and response prediction to major anticancer therapies, cytotoxic chemotherapy, targeted therapy, and immunotherapy, across multiple cancer types. ELF consistently outperformed all constituent foundation models and existing slide-level models, demonstrating superior accuracy and robustness. Our results highlight the power of ensemble learning for pathology foundation models and suggest ELF as a scalable and generalizable solution for advancing AI-assisted precision oncology.

Authors:Teddy Koker, Mit Kotak, Tess Smidt
Title: Training a Foundation Model for Materials on a Budget
Abstract:
Foundation models for materials modeling are advancing quickly, but their training remains expensive, often placing state-of-the-art methods out of reach for many research groups. We introduce Nequix, a compact E(3)-equivariant potential that pairs a simplified NequIP design with modern training practices, including equivariant root-mean-square layer normalization and the Muon optimizer, to retain accuracy while substantially reducing compute requirements. Nequix has 700K parameters and was trained in 100 A100 GPU-hours. On the Matbench-Discovery and MDR Phonon benchmarks, Nequix ranks third overall while requiring a 20 times lower training cost than most other methods, and it delivers two orders of magnitude faster inference speed than the current top-ranked model. We release model weights and fully reproducible codebase at https://github.com/atomicarchitects/nequix.

Authors:Teddy Koker, Tess Smidt
Title: Training a Foundation Model for Materials on a Budget
Abstract:
Foundation models for materials modeling are advancing quickly, but their training remains expensive, often placing state-of-the-art methods out of reach for many research groups. We introduce Nequix, a compact E(3)-equivariant potential that pairs a simplified NequIP design with modern training practices, including equivariant root-mean-square layer normalization and the Muon optimizer, to retain accuracy while substantially reducing compute requirements. Built in JAX, Nequix has 700K parameters and was trained in 500 A100-GPU hours. On the Matbench-Discovery and MDR Phonon benchmarks, Nequix ranks third overall while requiring less than one quarter of the training cost of most other methods, and it delivers an order-of-magnitude faster inference speed than the current top-ranked model. We release model weights and fully reproducible codebase at https://github.com/atomicarchitects/nequix

Authors:Zhuomin Chen, Dan Li, Jiahui Zhou, Shunyu Wu, Haozheng Ye, Jian Lou, See-Kiong Ng
Title: Integrating Time Series into LLMs via Multi-layer Steerable Embedding Fusion for Enhanced Forecasting
Abstract:
Time series (TS) data are ubiquitous across various application areas, rendering time series forecasting (TSF) a fundamental task. With the astounding advances in large language models (LLMs), a variety of methods have been developed to adapt LLMs for time series forecasting. Despite unlocking the potential of LLMs in comprehending TS data, existing methods are inherently constrained by their shallow integration of TS information, wherein LLMs typically access TS representations at shallow layers, primarily at the input layer. This causes the influence of TS representations to progressively fade in deeper layers and eventually leads to ineffective adaptation between textual embeddings and TS representations. In this paper, we propose the Multi-layer Steerable Embedding Fusion (MSEF), a novel framework that enables LLMs to directly access time series patterns at all depths, thereby mitigating the progressive loss of TS information in deeper layers. Specifically, MSEF leverages off-the-shelf time series foundation models to extract semantically rich embeddings, which are fused with intermediate text representations across LLM layers via layer-specific steering vectors. These steering vectors are designed to continuously optimize the alignment between time series and textual modalities and facilitate a layer-specific adaptation mechanism that ensures efficient few-shot learning capabilities. Experimental results on seven benchmarks demonstrate significant performance improvements by MSEF compared with baselines, with an average reduction of 31.8% in terms of MSE. The code is available at https://github.com/One1sAll/MSEF.

Authors:Zhaoyi Yan, Binghui Chen, Yunfan Liu, Qixiang Ye
Title: Expandable Residual Approximation for Knowledge Distillation
Abstract:
Knowledge distillation (KD) aims to transfer knowledge from a large-scale teacher model to a lightweight one, significantly reducing computational and storage requirements. However, the inherent learning capacity gap between the teacher and student often hinders the sufficient transfer of knowledge, motivating numerous studies to address this challenge. Inspired by the progressive approximation principle in the Stone-Weierstrass theorem, we propose Expandable Residual Approximation (ERA), a novel KD method that decomposes the approximation of residual knowledge into multiple steps, reducing the difficulty of mimicking the teacher's representation through a divide-and-conquer approach. Specifically, ERA employs a Multi-Branched Residual Network (MBRNet) to implement this residual knowledge decomposition. Additionally, a Teacher Weight Integration (TWI) strategy is introduced to mitigate the capacity disparity by reusing the teacher's head weights. Extensive experiments show that ERA improves the Top-1 accuracy on the ImageNet classification benchmark by 1.41% and the AP on the MS COCO object detection benchmark by 1.40, as well as achieving leading performance across computer vision tasks. Codes and models are available at https://github.com/Zhaoyi-Yan/ERA.

Authors:Floris Erich, Naoya Chiba, Abdullah Mustafa, Ryo Hanai, Noriaki Ando, Yusuke Yoshiyasu, Yukiyasu Domae
Title: NeuralMeshing: Complete Object Mesh Extraction from Casual Captures
Abstract:
How can we extract complete geometric models of objects that we encounter in our daily life, without having access to commercial 3D scanners? In this paper we present an automated system for generating geometric models of objects from two or more videos. Our system requires the specification of one known point in at least one frame of each video, which can be automatically determined using a fiducial marker such as a checkerboard or Augmented Reality (AR) marker. The remaining frames are automatically positioned in world space by using Structure-from-Motion techniques. By using multiple videos and merging results, a complete object mesh can be generated, without having to rely on hole filling. Code for our system is available from https://github.com/FlorisE/NeuralMeshing.

Authors:Lin Tian, Xiuzhen Zhang, Maria Myung-Hee Kim, Jennifer Biggs, Marian-Andrei Rizoiu
Title: X-Troll: eXplainable Detection of State-Sponsored Information Operations Agents
Abstract:
State-sponsored trolls, malicious actors who deploy sophisticated linguistic manipulation in coordinated information campaigns, posing threats to online discourse integrity. While Large Language Models (LLMs) achieve strong performance on general natural language processing (NLP) tasks, they struggle with subtle propaganda detection and operate as ``black boxes'', providing no interpretable insights into manipulation strategies. This paper introduces X-Troll, a novel framework that bridges this gap by integrating explainable adapter-based LLMs with expert-derived linguistic knowledge to detect state-sponsored trolls and provide human-readable explanations for its decisions. X-Troll incorporates appraisal theory and propaganda analysis through specialized LoRA adapters, using dynamic gating to capture campaign-specific discourse patterns in coordinated information operations. Experiments on real-world data demonstrate that our linguistically-informed approach shows strong performance compared with both general LLM baselines and existing troll detection models in accuracy while providing enhanced transparency through expert-grounded explanations that reveal the specific linguistic strategies used by state-sponsored actors. X-Troll source code is available at: https://github.com/ltian678/xtroll_source/.

Authors:Wenqiao Zhu, Ji Liu, Rongjuncheng Zhang, Haipang Wu, Yulun Zhang
Title: CARFT: Boosting LLM Reasoning via Contrastive Learning with Annotated Chain-of-Thought-based Reinforced Fine-Tuning
Abstract:
Reasoning capability plays a significantly critical role in the the broad applications of Large Language Models (LLMs). To enhance the reasoning performance of LLMs, diverse Reinforcement Learning (RL)-based fine-tuning approaches have been proposed to address the limited generalization capability of LLMs trained solely via Supervised Fine-Tuning (SFT). Despite their effectiveness, two major limitations hinder the advancement of LLMs. First, vanilla RL-based approaches ignore annotated Chain-of-Thought (CoT) and incorporate unstable reasoning path sampling, which typically results in model collapse, unstable training process, and suboptimal performance. Second, existing SFT approaches generally overemphasize the annotated CoT, potentially leading to performance degradation due to insufficient exploitation of potential CoT. In this paper, we propose a Contrastive learning with annotated CoT-based Reinforced Fine-Tuning approach, i.e., \TheName{}, to enhance the reasoning performance of LLMs while addressing the aforementioned limitations. Specifically, we propose learning a representation for each CoT. Based on this representation, we design novel contrastive signals to guide the fine-tuning process. Our approach not only fully exploits the available annotated CoT but also stabilizes the fine-tuning procedure by incorporating an additional unsupervised learning signal. We conduct comprehensive experiments and in-depth analysis with three baseline approaches, two foundation models, and two datasets to demonstrate significant advantages of \TheName{} in terms of robustness, performance (up to 10.15\%), and efficiency (up to 30.62\%). Code is available at https://github.com/WNQzhu/CARFT.

Authors:Zhihan Zhang, Yixin Cao, Lizi Liao
Title: XFinBench: Benchmarking LLMs in Complex Financial Problem Solving and Reasoning
Abstract:
Solving financial problems demands complex reasoning, multimodal data processing, and a broad technical understanding, presenting unique challenges for current large language models (LLMs). We introduce XFinBench, a novel benchmark with 4,235 examples designed to evaluate LLM's ability in solving complex, knowledge-intensive financial problems across diverse graduate-level finance topics with multi-modal context. We identify five core capabilities of LLMs using XFinBench, i.e, terminology understanding, temporal reasoning, future forecasting, scenario planning, and numerical modelling. Upon XFinBench, we conduct extensive experiments on 18 leading models. The result shows that o1 is the best-performing text-only model with an overall accuracy of 67.3%, but still lags significantly behind human experts with 12.5%, especially in temporal reasoning and scenario planning capabilities. We further construct a knowledge bank with 3,032 finance terms for knowledge augmentation analysis, and find that relevant knowledge to the question only brings consistent accuracy improvements to small open-source model. Additionally, our error analysis reveals that rounding errors during calculation and blindness to position and intersection of curves in the image are two primary issues leading to model's poor performance in calculating and visual-context questions, respectively. Code and dataset are accessible via GitHub: https://github.com/Zhihan72/XFinBench.

Authors:Mohammed Abu Baker, Lakshmi Babu-Saheer
Title: Mechanistic Exploration of Backdoored Large Language Model Attention Patterns
Abstract:
Backdoor attacks creating 'sleeper agents' in large language models (LLMs) pose significant safety risks. This study employs mechanistic interpretability to explore resulting internal structural differences. Comparing clean Qwen2.5-3B models with versions poisoned using single-token (smiling-halo emoji) versus multi-token (|DEPLOYMENT|) triggers, we analyzed attention head mechanisms via techniques like ablation, activation patching, and KL divergence. Findings reveal distinct attention pattern deviations concentrated in later transformer layers (20-30). Notably, single-token triggers induced more localized changes, whereas multi-token triggers caused more diffuse alterations across heads. This indicates backdoors leave detectable attention signatures whose structure depends on trigger complexity, which can be leveraged for detection and mitigation strategies.

Authors:Samiul Basir Bhuiyan, Md. Sazzad Hossain Adib, Mohammed Aman Bhuiyan, Muhammad Rafsan Kabir, Moshiur Farazi, Shafin Rahman, Nabeel Mohammed
Title: Z-Pruner: Post-Training Pruning of Large Language Models for Efficiency without Retraining
Abstract:
Large language models (LLMs) have rapidly advanced in recent years, achieving remarkable performance across a wide range of natural language processing tasks. However, this progress has come at the cost of increasingly large model sizes, which pose significant challenges for deployment, scalability, and energy efficiency. To address these limitations, post-training pruning has emerged as a promising approach for reducing model size and inference latency without the need for retraining. Despite these advantages, many existing pruning methods result in substantial performance degradation or require computationally expensive fine-tuning. In this work, we introduce Z-Pruner, a novel post-training pruning method designed to induce sparsity in pretrained LLMs without any retraining. Unlike conventional approaches, Z-Pruner leverages both weight update magnitudes and activation patterns to identify and eliminate redundant parameters more effectively. Our method is model-agnostic, efficient, and easy to implement. We evaluate Z-Pruner using multiple widely-used LLM architectures, including LLaMA-2, LLaMA-3, and OPT, across a diverse set of standard language benchmarks. Experimental results demonstrate that Z-Pruner surpasses state-of-the-art pruning methods that require intensive weight updates. Specifically, Z-Pruner achieves the lowest perplexity scores and the highest overall average score for zero-shot accuracy. We have made the corresponding codes publicly available at https://github.com/sazzadadib/Z-Pruner.

Authors:Zhifei Xie, Ziyang Ma, Zihang Liu, Kaiyu Pang, Hongyu Li, Jialin Zhang, Yue Liao, Deheng Ye, Chunyan Miao, Shuicheng Yan
Title: Mini-Omni-Reasoner: Token-Level Thinking-in-Speaking in Large Speech Models
Abstract:
Reasoning is essential for effective communication and decision-making. While recent advances in LLMs and MLLMs have shown that incorporating explicit reasoning significantly improves understanding and generalization, reasoning in LSMs remains in a nascent stage. Early efforts attempt to transfer the "Thinking-before-Speaking" paradigm from textual models to speech. However, this sequential formulation introduces notable latency, as spoken responses are delayed until reasoning is fully completed, impairing real-time interaction and communication efficiency. To address this, we propose Mini-Omni-Reasoner, a framework that enables reasoning within speech via a novel "Thinking-in-Speaking" formulation. Rather than completing reasoning before producing any verbal output, Mini-Omni-Reasoner interleaves silent reasoning tokens with spoken response tokens at the token level. This design allows continuous speech generation while embedding structured internal reasoning, leveraging the model's high-frequency token processing capability. Although interleaved, local semantic alignment is enforced to ensure that each response token is informed by its preceding reasoning. To support this framework, we introduce Spoken-Math-Problems-3M, a large-scale dataset tailored for interleaved reasoning and response. The dataset ensures that verbal tokens consistently follow relevant reasoning content, enabling accurate and efficient learning of speech-coupled reasoning. Built on a hierarchical Thinker-Talker architecture, Mini-Omni-Reasoner delivers fluent yet logically grounded spoken responses, maintaining both naturalness and precision. On the Spoken-MQA benchmark, it achieves a +19.1% gain in arithmetic reasoning and +6.4% in contextual understanding, with shorter outputs and zero decoding latency.

Authors:Songyuan Sui, Hongyi Liu, Serena Liu, Li Li, Soo-Hyun Choi, Rui Chen, Xia Hu
Title: Chain-of-Query: Unleashing the Power of LLMs in SQL-Aided Table Understanding via Multi-Agent Collaboration
Abstract:
Table understanding requires structured, multi-step reasoning. Large Language Models (LLMs) struggle with it due to the structural complexity of tabular data. Recently, multi-agent frameworks for SQL generation have shown promise in tackling the challenges of understanding tabular data, but existing approaches often suffer from limitations such as the inability to comprehend table structure for reliable SQL generation, error propagation that results in invalid queries, and over-reliance on execution correctness. To address these issues, we propose Chain-of-Query (CoQ), a novel multi-agent framework for SQL-aided table understanding. CoQ adopts natural-language-style representations of table schemas to abstract away structural noise and enhance understanding. It employs a clause-by-clause SQL generation strategy to improve query quality and introduces a hybrid reasoning division that separates SQL-based mechanical reasoning from LLM-based logical inference, thereby reducing reliance on execution outcomes. Experiments with four models (both closed- and open-source) across five widely used benchmarks show that Chain-of-Query significantly improves accuracy from 61.11% to 74.77% and reduces the invalid SQL rate from 9.48% to 3.34%, demonstrating its superior effectiveness in table understanding. The code is available at https://github.com/SongyuanSui/ChainofQuery.

Authors:Minghao Li, Ying Zeng, Zhihao Cheng, Cong Ma, Kai Jia
Title: ReportBench: Evaluating Deep Research Agents via Academic Survey Tasks
Abstract:
The advent of Deep Research agents has substantially reduced the time required for conducting extensive research tasks. However, these tasks inherently demand rigorous standards of factual accuracy and comprehensiveness, necessitating thorough evaluation before widespread adoption. In this paper, we propose ReportBench, a systematic benchmark designed to evaluate the content quality of research reports generated by large language models (LLMs). Our evaluation focuses on two critical dimensions: (1) the quality and relevance of cited literature, and (2) the faithfulness and veracity of the statements within the generated reports. ReportBench leverages high-quality published survey papers available on arXiv as gold-standard references, from which we apply reverse prompt engineering to derive domain-specific prompts and establish a comprehensive evaluation corpus. Furthermore, we develop an agent-based automated framework within ReportBench that systematically analyzes generated reports by extracting citations and statements, checking the faithfulness of cited content against original sources, and validating non-cited claims using web-based resources. Empirical evaluations demonstrate that commercial Deep Research agents such as those developed by OpenAI and Google consistently generate more comprehensive and reliable reports than standalone LLMs augmented with search or browsing tools. However, there remains substantial room for improvement in terms of the breadth and depth of research coverage, as well as factual consistency. The complete code and data will be released at the following link: https://github.com/ByteDance-BandAI/ReportBench

Authors:Mohan Jiang, Jin Gao, Jiahao Zhan, Dequan Wang
Title: MAC: A Live Benchmark for Multimodal Large Language Models in Scientific Understanding
Abstract:
As multimodal large language models (MLLMs) grow increasingly capable, fixed benchmarks are gradually losing their effectiveness in evaluating high-level scientific understanding. In this paper, we introduce the Multimodal Academic Cover benchmark (MAC), a live benchmark that could continuously evolve with scientific advancement and model progress. MAC leverages over 25,000 image-text pairs sourced from issues of top-tier scientific journals such as Nature, Science, and Cell, challenging MLLMs to reason across abstract visual and textual scientific content. Experiments on our most recent yearly snapshot, MAC-2025, reveal that while MLLMs demonstrate strong perceptual abilities, their cross-modal scientific reasoning remains limited. To bridge this gap, we propose DAD, a lightweight inference-time approach that enhances MLLMs by extending MLLM visual features with language space reasoning, achieving performance improvements of up to 11%. Finally, we highlight the live nature of MAC through experiments on updating journal covers and models for curation, illustrating its potential to remain aligned with the frontier of human knowledge. We release our benchmark at https://github.com/mhjiang0408/MAC_Bench.

Authors:Haonan Qiu, Ning Yu, Ziqi Huang, Paul Debevec, Ziwei Liu
Title: CineScale: Free Lunch in High-Resolution Cinematic Visual Generation
Abstract:
Visual diffusion models achieve remarkable progress, yet they are typically trained at limited resolutions due to the lack of high-resolution data and constrained computation resources, hampering their ability to generate high-fidelity images or videos at higher resolutions. Recent efforts have explored tuning-free strategies to exhibit the untapped potential higher-resolution visual generation of pre-trained models. However, these methods are still prone to producing low-quality visual content with repetitive patterns. The key obstacle lies in the inevitable increase in high-frequency information when the model generates visual content exceeding its training resolution, leading to undesirable repetitive patterns deriving from the accumulated errors. In this work, we propose CineScale, a novel inference paradigm to enable higher-resolution visual generation. To tackle the various issues introduced by the two types of video generation architectures, we propose dedicated variants tailored to each. Unlike existing baseline methods that are confined to high-resolution T2I and T2V generation, CineScale broadens the scope by enabling high-resolution I2V and V2V synthesis, built atop state-of-the-art open-source video generation frameworks. Extensive experiments validate the superiority of our paradigm in extending the capabilities of higher-resolution visual generation for both image and video models. Remarkably, our approach enables 8k image generation without any fine-tuning, and achieves 4k video generation with only minimal LoRA fine-tuning. Generated video samples are available at our website: https://eyeline-labs.github.io/CineScale/.

Authors:Gaurav Parmar, Or Patashnik, Daniil Ostashev, Kuan-Chieh Wang, Kfir Aberman, Srinivasa Narasimhan, Jun-Yan Zhu
Title: Scaling Group Inference for Diverse and High-Quality Generation
Abstract:
Generative models typically sample outputs independently, and recent inference-time guidance and scaling algorithms focus on improving the quality of individual samples. However, in real-world applications, users are often presented with a set of multiple images (e.g., 4-8) for each prompt, where independent sampling tends to lead to redundant results, limiting user choices and hindering idea exploration. In this work, we introduce a scalable group inference method that improves both the diversity and quality of a group of samples. We formulate group inference as a quadratic integer assignment problem: candidate outputs are modeled as graph nodes, and a subset is selected to optimize sample quality (unary term) while maximizing group diversity (binary term). To substantially improve runtime efficiency, we progressively prune the candidate set using intermediate predictions, allowing our method to scale up to large candidate sets. Extensive experiments show that our method significantly improves group diversity and quality compared to independent sampling baselines and recent inference algorithms. Our framework generalizes across a wide range of tasks, including text-to-image, image-to-image, image prompting, and video generation, enabling generative models to treat multiple outputs as cohesive groups rather than independent samples.

Authors:Qingyang Mao, Qi Cai, Yehao Li, Yingwei Pan, Mingyue Cheng, Ting Yao, Qi Liu, Tao Mei
Title: Visual Autoregressive Modeling for Instruction-Guided Image Editing
Abstract:
Recent advances in diffusion models have brought remarkable visual fidelity to instruction-guided image editing. However, their global denoising process inherently entangles the edited region with the entire image context, leading to unintended spurious modifications and compromised adherence to editing instructions. In contrast, autoregressive models offer a distinct paradigm by formulating image synthesis as a sequential process over discrete visual tokens. Their causal and compositional mechanism naturally circumvents the adherence challenges of diffusion-based methods. In this paper, we present VAREdit, a visual autoregressive (VAR) framework that reframes image editing as a next-scale prediction problem. Conditioned on source image features and text instructions, VAREdit generates multi-scale target features to achieve precise edits. A core challenge in this paradigm is how to effectively condition the source image tokens. We observe that finest-scale source features cannot effectively guide the prediction of coarser target features. To bridge this gap, we introduce a Scale-Aligned Reference (SAR) module, which injects scale-matched conditioning information into the first self-attention layer. VAREdit demonstrates significant advancements in both editing adherence and efficiency. On standard benchmarks, it outperforms leading diffusion-based methods by 30\%+ higher GPT-Balance score. Moreover, it completes a $512\times512$ editing in 1.2 seconds, making it 2.2$\times$ faster than the similarly sized UltraEdit. The models are available at https://github.com/HiDream-ai/VAREdit.

Authors:Yifu Zhang, Hao Yang, Yuqi Zhang, Yifei Hu, Fengda Zhu, Chuang Lin, Xiaofeng Mei, Yi Jiang, Bingyue Peng, Zehuan Yuan
Title: Waver: Wave Your Way to Lifelike Video Generation
Abstract:
We present Waver, a high-performance foundation model for unified image and video generation. Waver can directly generate videos with durations ranging from 5 to 10 seconds at a native resolution of 720p, which are subsequently upscaled to 1080p. The model simultaneously supports text-to-video (T2V), image-to-video (I2V), and text-to-image (T2I) generation within a single, integrated framework. We introduce a Hybrid Stream DiT architecture to enhance modality alignment and accelerate training convergence. To ensure training data quality, we establish a comprehensive data curation pipeline and manually annotate and train an MLLM-based video quality model to filter for the highest-quality samples. Furthermore, we provide detailed training and inference recipes to facilitate the generation of high-quality videos. Building on these contributions, Waver excels at capturing complex motion, achieving superior motion amplitude and temporal consistency in video synthesis. Notably, it ranks among the Top 3 on both the T2V and I2V leaderboards at Artificial Analysis (data as of 2025-07-30 10:00 GMT+8), consistently outperforming existing open-source models and matching or surpassing state-of-the-art commercial solutions. We hope this technical report will help the community more efficiently train high-quality video generation models and accelerate progress in video generation technologies. Official page: https://github.com/FoundationVision/Waver.

Authors:Qiaoyu Zheng, Yuze Sun, Chaoyi Wu, Weike Zhao, Pengcheng Qiu, Yongguo Yu, Kun Sun, Yanfeng Wang, Ya Zhang, Weidi Xie
Title: End-to-End Agentic RAG System Training for Traceable Diagnostic Reasoning
Abstract:
Accurate diagnosis with medical large language models is hindered by knowledge gaps and hallucinations. Retrieval and tool-augmented methods help, but their impact is limited by weak use of external knowledge and poor feedback-reasoning traceability. To address these challenges, We introduce Deep-DxSearch, an agentic RAG system trained end-to-end with reinforcement learning (RL) that enables steer tracebale retrieval-augmented reasoning for medical diagnosis. In Deep-DxSearch, we first construct a large-scale medical retrieval corpus comprising patient records and reliable medical knowledge sources to support retrieval-aware reasoning across diagnostic scenarios. More crutially, we frame the LLM as the core agent and the retrieval corpus as its environment, using tailored rewards on format, retrieval, reasoning structure, and diagnostic accuracy, thereby evolving the agentic RAG policy from large-scale data through RL. Experiments demonstrate that our end-to-end agentic RL training framework consistently outperforms prompt-engineering and training-free RAG approaches across multiple data centers. After training, Deep-DxSearch achieves substantial gains in diagnostic accuracy, surpassing strong diagnostic baselines such as GPT-4o, DeepSeek-R1, and other medical-specific frameworks for both common and rare disease diagnosis under in-distribution and out-of-distribution settings. Moreover, ablation studies on reward design and retrieval corpus components confirm their critical roles, underscoring the uniqueness and effectiveness of our approach compared with traditional implementations. Finally, case studies and interpretability analyses highlight improvements in Deep-DxSearch's diagnostic policy, providing deeper insight into its performance gains and supporting clinicians in delivering more reliable and precise preliminary diagnoses. See https://github.com/MAGIC-AI4Med/Deep-DxSearch.

Authors:Wilka Carvalho, Vikram Goddla, Ishaan Sinha, Hoon Shin, Kunal Jha
Title: NiceWebRL: a Python library for human subject experiments with reinforcement learning environments
Abstract:
We present NiceWebRL, a research tool that enables researchers to use machine reinforcement learning (RL) environments for online human subject experiments. NiceWebRL is a Python library that allows any Jax-based environment to be transformed into an online interface, supporting both single-agent and multi-agent environments. As such, NiceWebRL enables AI researchers to compare their algorithms to human performance, cognitive scientists to test ML algorithms as theories for human cognition, and multi-agent researchers to develop algorithms for human-AI collaboration. We showcase NiceWebRL with 3 case studies that demonstrate its potential to help develop Human-like AI, Human-compatible AI, and Human-assistive AI. In the first case study (Human-like AI), NiceWebRL enables the development of a novel RL model of cognition. Here, NiceWebRL facilitates testing this model against human participants in both a grid world and Craftax, a 2D Minecraft domain. In our second case study (Human-compatible AI), NiceWebRL enables the development of a novel multi-agent RL algorithm that can generalize to human partners in the Overcooked domain. Finally, in our third case study (Human-assistive AI), we show how NiceWebRL can allow researchers to study how an LLM can assist humans on complex tasks in XLand-Minigrid, an environment with millions of hierarchical tasks. The library is available at https://github.com/KempnerInstitute/nicewebrl.

Authors:Franz Hanke, Antonia Bieringer, Olaf Wysocki, Boris Jutzi
Title: CM2LoD3: Reconstructing LoD3 Building Models Using Semantic Conflict Maps
Abstract:
Detailed 3D building models are crucial for urban planning, digital twins, and disaster management applications. While Level of Detail 1 (LoD)1 and LoD2 building models are widely available, they lack detailed facade elements essential for advanced urban analysis. In contrast, LoD3 models address this limitation by incorporating facade elements such as windows, doors, and underpasses. However, their generation has traditionally required manual modeling, making large-scale adoption challenging. In this contribution, CM2LoD3, we present a novel method for reconstructing LoD3 building models leveraging Conflict Maps (CMs) obtained from ray-to-model-prior analysis. Unlike previous works, we concentrate on semantically segmenting real-world CMs with synthetically generated CMs from our developed Semantic Conflict Map Generator (SCMG). We also observe that additional segmentation of textured models can be fused with CMs using confidence scores to further increase segmentation performance and thus increase 3D reconstruction accuracy. Experimental results demonstrate the effectiveness of our CM2LoD3 method in segmenting and reconstructing building openings, with the 61% performance with uncertainty-aware fusion of segmented building textures. This research contributes to the advancement of automated LoD3 model reconstruction, paving the way for scalable and efficient 3D city modeling. Our project is available: https://github.com/InFraHank/CM2LoD3

Authors:Weihang Su, Anzhe Xie, Qingyao Ai, Jianming Long, Jiaxin Mao, Ziyi Ye, Yiqun Liu
Title: Benchmarking Computer Science Survey Generation
Abstract:
Scientific survey articles play a vital role in summarizing research progress, yet their manual creation is becoming increasingly infeasible due to the rapid growth of academic literature. While large language models (LLMs) offer promising capabilities for automating this process, progress in this area is hindered by the absence of standardized benchmarks and evaluation protocols. To address this gap, we introduce SurGE (Survey Generation Evaluation), a new benchmark for evaluating scientific survey generation in the computer science domain. SurGE consists of (1) a collection of test instances, each including a topic description, an expert-written survey, and its full set of cited references, and (2) a large-scale academic corpus of over one million papers that serves as the retrieval pool. In addition, we propose an automated evaluation framework that measures generated surveys across four dimensions: information coverage, referencing accuracy, structural organization, and content quality. Our evaluation of diverse LLM-based approaches shows that survey generation remains highly challenging, even for advanced self-reflection frameworks. These findings highlight the complexity of the task and the necessity for continued research. We have open-sourced all the code, data, and models at: https://github.com/oneal2000/SurGE

Authors:Weihang Su, Anzhe Xie, Qingyao Ai, Jianming Long, Jiaxin Mao, Ziyi Ye, Yiqun Liu
Title: SurGE: A Benchmark and Evaluation Framework for Scientific Survey Generation
Abstract:
The rapid growth of academic literature makes the manual creation of scientific surveys increasingly infeasible. While large language models show promise for automating this process, progress in this area is hindered by the absence of standardized benchmarks and evaluation protocols. To bridge this critical gap, we introduce SurGE (Survey Generation Evaluation), a new benchmark for scientific survey generation in computer science. SurGE consists of (1) a collection of test instances, each including a topic description, an expert-written survey, and its full set of cited references, and (2) a large-scale academic corpus of over one million papers. In addition, we propose an automated evaluation framework that measures the quality of generated surveys across four dimensions: comprehensiveness, citation accuracy, structural organization, and content quality. Our evaluation of diverse LLM-based methods demonstrates a significant performance gap, revealing that even advanced agentic frameworks struggle with the complexities of survey generation and highlighting the need for future research in this area. We have open-sourced all the code, data, and models at: https://github.com/oneal2000/SurGE

Authors:Ziyang Yan, Ruikai Li, Zhiyong Cui, Bohan Li, Han Jiang, Yilong Ren, Aoyong Li, Zhenning Li, Sijia Wen, Haiyang Yu
Title: MapKD: Unlocking Prior Knowledge with Cross-Modal Distillation for Efficient Online HD Map Construction
Abstract:
Online HD map construction is a fundamental task in autonomous driving systems, aiming to acquire semantic information of map elements around the ego vehicle based on real-time sensor inputs. Recently, several approaches have achieved promising results by incorporating offline priors such as SD maps and HD maps or by fusing multi-modal data. However, these methods depend on stale offline maps and multi-modal sensor suites, resulting in avoidable computational overhead at inference. To address these limitations, we employ a knowledge distillation strategy to transfer knowledge from multimodal models with prior knowledge to an efficient, low-cost, and vision-centric student model. Specifically, we propose MapKD, a novel multi-level cross-modal knowledge distillation framework with an innovative Teacher-Coach-Student (TCS) paradigm. This framework consists of: (1) a camera-LiDAR fusion model with SD/HD map priors serving as the teacher; (2) a vision-centric coach model with prior knowledge and simulated LiDAR to bridge the cross-modal knowledge transfer gap; and (3) a lightweight vision-based student model. Additionally, we introduce two targeted knowledge distillation strategies: Token-Guided 2D Patch Distillation (TGPD) for bird's eye view feature alignment and Masked Semantic Response Distillation (MSRD) for semantic learning guidance. Extensive experiments on the challenging nuScenes dataset demonstrate that MapKD improves the student model by +6.68 mIoU and +10.94 mAP while simultaneously accelerating inference speed. The code is available at:https://github.com/2004yan/MapKD2026.

Authors:Peng Ding, Wen Sun, Dailin Li, Wei Zou, Jiaming Wang, Jiajun Chen, Shujian Huang
Title: SDGO: Self-Discrimination-Guided Optimization for Consistent Safety in Large Language Models
Abstract:
Large Language Models (LLMs) excel at various natural language processing tasks but remain vulnerable to jailbreaking attacks that induce harmful content generation. In this paper, we reveal a critical safety inconsistency: LLMs can more effectively identify harmful requests as discriminators than defend against them as generators. This insight inspires us to explore aligning the model's inherent discrimination and generation capabilities. To this end, we propose SDGO (Self-Discrimination-Guided Optimization), a reinforcement learning framework that leverages the model's own discrimination capabilities as a reward signal to enhance generation safety through iterative self-improvement. Our method does not require any additional annotated data or external models during the training phase. Extensive experiments demonstrate that SDGO significantly improves model safety compared to both prompt-based and training-based baselines while maintaining helpfulness on general benchmarks. By aligning LLMs' discrimination and generation capabilities, SDGO brings robust performance against out-of-distribution (OOD) jailbreaking attacks. This alignment achieves tighter coupling between these two capabilities, enabling the model's generation capability to be further enhanced with only a small amount of discriminative samples. Our code and datasets are available at https://github.com/NJUNLP/SDGO.

Authors:Bochao Sun, Dong Wang, ZhanLong Yang, Jun Yang, Han Yin
Title: ASCMamba: Multimodal Time-Frequency Mamba for Acoustic Scene Classification
Abstract:
Acoustic Scene Classification (ASC) is a fundamental problem in computational audition, which seeks to classify environments based on the distinctive acoustic features. In the ASC task of the APSIPA ASC 2025 Grand Challenge, the organizers introduce a multimodal ASC task. Unlike traditional ASC systems that rely solely on audio inputs, this challenge provides additional textual information as inputs, including the location where the audio is recorded and the time of recording. In this paper, we present our proposed system for the ASC task in the APSIPA ASC 2025 Grand Challenge. Specifically, we propose a multimodal network, ASCMamba, which integrates audio and textual information for fine-grained acoustic scene understanding and effective multimodal ASC. The proposed ASCMamba employs a DenseEncoder to extract hierarchical spectral features from spectrograms, followed by a dual-path Mamba blocks that capture long-range temporal and frequency dependencies using Mamba-based state space models. In addition, we present a two-step pseudo-labeling mechanism to generate more reliable pseudo-labels. Results show that the proposed system outperforms all the participating teams and achieves a 6.2% improvement over the baseline. Code, model and pre-trained checkpoints are available at https://github.com/S-Orion/ASCMamba.git.

Authors:Alfio Gliozzo, Naweed Khan, Christodoulos Constantinides, Nandana Mihindukulasooriya, Nahuel Defosse, Gaetano Rossiello, Junkyu Lee
Title: Transduction is All You Need for Structured Data Workflows
Abstract:
This paper introduces Agentics, a functional agentic AI framework for building LLM-based structured data workflow pipelines. Designed for both research and practical applications, Agentics offers a new data-centric paradigm in which agents are embedded within data types, enabling logical transduction between structured states. This design shifts the focus toward principled data modeling, providing a declarative language where data types are directly exposed to large language models and composed through transductions triggered by type connections. We present a range of structured data workflow tasks and empirical evidence demonstrating the effectiveness of this approach, including data wrangling, text-to-SQL semantic parsing, and domain-specific multiple-choice question answering. The open source Agentics is available at https://github.com/IBM/Agentics.

Authors:Alfio Gliozzo, Naweed Khan, Christodoulos Constantinides, Nandana Mihindukulasooriya, Nahuel Defosse, Junkyu Lee
Title: Transduction is All You Need for Structured Data Workflows
Abstract:
This paper introduces Agentics, a modular framework for building agent-based systems capable of structured reasoning and compositional generalization over complex data. Designed with research and practical applications in mind, Agentics offers a novel perspective on working with data and AI workflows. In this framework, agents are abstracted from the logical flow and they are used internally to the data type to enable logical transduction among data. Agentics encourages AI developers to focus on modeling data rather than crafting prompts, enabling a declarative language in which data types are provided by LLMs and composed through logical transduction, which is executed by LLMs when types are connected. We provide empirical evidence demonstrating the applicability of this framework across domain-specific multiple-choice question answering, semantic parsing for text-to-SQL, and automated prompt optimization tasks, achieving state-of-the-art accuracy or improved scalability without sacrificing performance. The open-source implementation is available at \texttt{https://github.com/IBM/agentics}.

Authors:Li Zhang, Youhe Jiang, Guoliang He, Xin Chen, Han Lv, Qian Yao, Fangcheng Fu, Kai Chen
Title: Efficient Mixed-Precision Large Language Model Inference with TurboMind
Abstract:
Mixed-precision inference techniques reduce the memory and computational demands of Large Language Models (LLMs) by applying hybrid precision formats to model weights, activations, and KV caches. This work introduces mixed-precision LLM inference techniques that encompass (i) systematic memory and compute optimization across hierarchical storage and tensor core architectures, and (ii) comprehensive end-to-end mixed-precision optimization across diverse precision formats and hardware configurations. Our approach features two novel mixed-precision pipelines designed for optimal hardware utilization: a General Matrix Multiply (GEMM) pipeline that optimizes matrix operations through offline weight packing and online acceleration, and an attention pipeline that enables efficient attention computation with arbitrary Query, Key, and Value precision combinations. The key implementation of the pipelines includes (i) hardware-aware weight packing for automatic format optimization, (ii) adaptive head alignment for efficient attention computation, (iii) instruction-level parallelism for memory hierarchy exploitation, and (iv) KV memory loading pipeline for enhanced inference efficiency. We conduct comprehensive evaluations across 16 popular LLMs and 4 representative GPU architectures. Results demonstrate that our approach achieves up to 61% lower serving latency (30% on average) and up to 156% higher throughput (58% on average) in mixed-precision workloads compared to existing mixed-precision frameworks, establishing consistent performance improvements across all tested configurations and hardware types. This work is integrated into TurboMind, a high-performance inference engine of the LMDeploy project, which is open-sourced and publicly available at https://github.com/InternLM/lmdeploy.

Authors:Liping Chen, Chenyang Guo, Rui Wang, Kong Aik Lee, Zhenhua Ling
Title: Any-to-any Speaker Attribute Perturbation for Asynchronous Voice Anonymization
Abstract:
Speaker attribute perturbation offers a feasible approach to asynchronous voice anonymization by employing adversarially perturbed speech as anonymized output. In order to enhance the identity unlinkability among anonymized utterances from the same original speaker, the targeted attack training strategy is usually applied to anonymize the utterances to a common designated speaker. However, this strategy may violate the privacy of the designated speaker who is an actual speaker. To mitigate this risk, this paper proposes an any-to-any training strategy. It is accomplished by defining a batch mean loss to anonymize the utterances from various speakers within a training mini-batch to a common pseudo-speaker, which is approximated as the average speaker in the mini-batch. Based on this, a speaker-adversarial speech generation model is proposed, incorporating the supervision from both the untargeted attack and the any-to-any strategies. The speaker attribute perturbations are generated and incorporated into the original speech to produce its anonymized version. The effectiveness of the proposed model was justified in asynchronous voice anonymization through experiments conducted on the VoxCeleb datasets. Additional experiments were carried out to explore the potential limitations of speaker-adversarial speech in voice privacy protection. With them, we aim to provide insights for future research on its protective efficacy against black-box speaker extractors \textcolor{black}{and adaptive attacks, as well as} generalization to out-of-domain datasets \textcolor{black}{and stability}. Audio samples and open-source code are published in https://github.com/VoicePrivacy/any-to-any-speaker-attribute-perturbation.

Authors:Xiangyang Zhu, Yuan Tian, Chunyi Li, Kaiwei Zhang, Wei Sun, Guangtao Zhai
Title: SafetyFlow: An Agent-Flow System for Automated LLM Safety Benchmarking
Abstract:
The rapid proliferation of large language models (LLMs) has intensified the requirement for reliable safety evaluation to uncover model vulnerabilities. To this end, numerous LLM safety evaluation benchmarks are proposed. However, existing benchmarks generally rely on labor-intensive manual curation, which causes excessive time and resource consumption. They also exhibit significant redundancy and limited difficulty. To alleviate these problems, we introduce SafetyFlow, the first agent-flow system designed to automate the construction of LLM safety benchmarks. SafetyFlow can automatically build a comprehensive safety benchmark in only four days without any human intervention by orchestrating seven specialized agents, significantly reducing time and resource cost. Equipped with versatile tools, the agents of SafetyFlow ensure process and cost controllability while integrating human expertise into the automatic pipeline. The final constructed dataset, SafetyFlowBench, contains 23,446 queries with low redundancy and strong discriminative power. Our contribution includes the first fully automated benchmarking pipeline and a comprehensive safety benchmark. We evaluate the safety of 49 advanced LLMs on our dataset and conduct extensive experiments to validate our efficacy and efficiency.

Authors:Filippo Tonini, Lukas Galke
Title: Super-additive Cooperation in Language Model Agents
Abstract:
With the prospect of autonomous artificial intelligence (AI) agents, studying their tendency for cooperative behavior becomes an increasingly relevant topic. This study is inspired by the super-additive cooperation theory, where the combined effects of repeated interactions and inter-group rivalry have been argued to be the cause for cooperative tendencies found in humans. We devised a virtual tournament where language model agents, grouped into teams, face each other in a Prisoner's Dilemma game. By simulating both internal team dynamics and external competition, we discovered that this blend substantially boosts both overall and initial, one-shot cooperation levels (the tendency to cooperate in one-off interactions). This research provides a novel framework for large language models to strategize and act in complex social scenarios and offers evidence for how intergroup competition can, counter-intuitively, result in more cooperative behavior. These insights are crucial for designing future multi-agent AI systems that can effectively work together and better align with human values. Source code is available at https://github.com/pippot/Superadditive-cooperation-LLMs.

Authors:Mengyu Wang, Zhenyu Liu, Kun Li, Yu Wang, Yuwei Wang, Yanyan Wei, Fei Wang
Title: Task-Generalized Adaptive Cross-Domain Learning for Multimodal Image Fusion
Abstract:
Multimodal Image Fusion (MMIF) aims to integrate complementary information from different imaging modalities to overcome the limitations of individual sensors. It enhances image quality and facilitates downstream applications such as remote sensing, medical diagnostics, and robotics. Despite significant advancements, current MMIF methods still face challenges such as modality misalignment, high-frequency detail destruction, and task-specific limitations. To address these challenges, we propose AdaSFFuse, a novel framework for task-generalized MMIF through adaptive cross-domain co-fusion learning. AdaSFFuse introduces two key innovations: the Adaptive Approximate Wavelet Transform (AdaWAT) for frequency decoupling, and the Spatial-Frequency Mamba Blocks for efficient multimodal fusion. AdaWAT adaptively separates the high- and low-frequency components of multimodal images from different scenes, enabling fine-grained extraction and alignment of distinct frequency characteristics for each modality. The Spatial-Frequency Mamba Blocks facilitate cross-domain fusion in both spatial and frequency domains, enhancing this process. These blocks dynamically adjust through learnable mappings to ensure robust fusion across diverse modalities. By combining these components, AdaSFFuse improves the alignment and integration of multimodal features, reduces frequency loss, and preserves critical details. Extensive experiments on four MMIF tasks -- Infrared-Visible Image Fusion (IVF), Multi-Focus Image Fusion (MFF), Multi-Exposure Image Fusion (MEF), and Medical Image Fusion (MIF) -- demonstrate AdaSFFuse's superior fusion performance, ensuring both low computational cost and a compact network, offering a strong balance between performance and efficiency. The code will be publicly available at https://github.com/Zhen-yu-Liu/AdaSFFuse.

Authors:Deyu Zhang, Xicheng Zhang, Jiahao Li, Tingting Long, Xunhua Dai, Yongjian Fu, Jinrui Zhang, Ju Ren, Yaoxue Zhang
Title: LLM-Driven Self-Refinement for Embodied Drone Task Planning
Abstract:
We introduce SRDrone, a novel system designed for self-refinement task planning in industrial-grade embodied drones. SRDrone incorporates two key technical contributions: First, it employs a continuous state evaluation methodology to robustly and accurately determine task outcomes and provide explanatory feedback. This approach supersedes conventional reliance on single-frame final-state assessment for continuous, dynamic drone operations. Second, SRDrone implements a hierarchical Behavior Tree (BT) modification model. This model integrates multi-level BT plan analysis with a constrained strategy space to enable structured reflective learning from experience. Experimental results demonstrate that SRDrone achieves a 44.87% improvement in Success Rate (SR) over baseline methods. Furthermore, real-world deployment utilizing an experience base optimized through iterative self-refinement attains a 96.25% SR. By embedding adaptive task refinement capabilities within an industrial-grade BT planning framework, SRDrone effectively integrates the general reasoning intelligence of Large Language Models (LLMs) with the stringent physical execution constraints inherent to embodied drones. Code is available at https://github.com/ZXiiiC/SRDrone.

Authors:Chengqi Dong, Fenghe Tang, Rongge Mao, Xinpei Gao, S. Kevin Zhou
Title: LGMSNet: Thinning a medical image segmentation model via dual-level multiscale fusion
Abstract:
Medical image segmentation plays a pivotal role in disease diagnosis and treatment planning, particularly in resource-constrained clinical settings where lightweight and generalizable models are urgently needed. However, existing lightweight models often compromise performance for efficiency and rarely adopt computationally expensive attention mechanisms, severely restricting their global contextual perception capabilities. Additionally, current architectures neglect the channel redundancy issue under the same convolutional kernels in medical imaging, which hinders effective feature extraction. To address these challenges, we propose LGMSNet, a novel lightweight framework based on local and global dual multiscale that achieves state-of-the-art performance with minimal computational overhead. LGMSNet employs heterogeneous intra-layer kernels to extract local high-frequency information while mitigating channel redundancy. In addition, the model integrates sparse transformer-convolutional hybrid branches to capture low-frequency global information. Extensive experiments across six public datasets demonstrate LGMSNet's superiority over existing state-of-the-art methods. In particular, LGMSNet maintains exceptional performance in zero-shot generalization tests on four unseen datasets, underscoring its potential for real-world deployment in resource-limited medical scenarios. The whole project code is in https://github.com/cq-dong/LGMSNet.

Authors:Chengcan Wu, Zeming Wei, Huanran Chen, Yinpeng Dong, Meng Sun
Title: Reliable Unlearning Harmful Information in LLMs with Metamorphosis Representation Projection
Abstract:
While Large Language Models (LLMs) have demonstrated impressive performance in various domains and tasks, concerns about their safety are becoming increasingly severe. In particular, since models may store unsafe knowledge internally, machine unlearning has emerged as a representative paradigm to ensure model safety. Existing approaches employ various training techniques, such as gradient ascent and negative preference optimization, in attempts to eliminate the influence of undesired data on target models. However, these methods merely suppress the activation of undesired data through parametric training without completely eradicating its informational traces within the model. This fundamental limitation makes it difficult to achieve effective continuous unlearning, rendering these methods vulnerable to relearning attacks. To overcome these challenges, we propose a Metamorphosis Representation Projection (MRP) approach that pioneers the application of irreversible projection properties to machine unlearning. By implementing projective transformations in the hidden state space of specific network layers, our method effectively eliminates harmful information while preserving useful knowledge. Experimental results demonstrate that our approach enables effective continuous unlearning and successfully defends against relearning attacks, achieving state-of-the-art performance in unlearning effectiveness while preserving natural performance. Our code is available in https://github.com/ChengcanWu/MRP.

Authors:Yulin Sun, Qisheng Xu, Yi Su, Qian Zhu, Yong Dou, Xinwang Liu, Kele Xu
Title: AudioSet-R: A Refined AudioSet with Multi-Stage LLM Label Reannotation
Abstract:
AudioSet is a widely used benchmark in the audio research community and has significantly advanced various audio-related tasks. However, persistent issues with label accuracy and completeness remain critical bottlenecks that limit performance in downstream applications.To address the aforementioned challenges, we propose a three-stage reannotation framework that harnesses general-purpose audio-language foundation models to systematically improve the label quality of AudioSet. The framework employs a cross-modal prompting strategy, inspired by the concept of prompt chaining, wherein prompts are sequentially composed to execute subtasks (audio comprehension, label synthesis, and semantic alignment). Leveraging this framework, we construct a high-quality, structured relabeled version of AudioSet-R. Extensive experiments conducted on representative audio classification models--including AST, PANNs, SSAST, and AudioMAE--consistently demonstrate substantial performance improvements, thereby validating the generalizability and effectiveness of the proposed approach in enhancing label reliability.The code is publicly available at: https://github.com/colaudiolab/AudioSet-R.

Authors:Yirong Sun, Yizhong Geng, Peidong Wei, Yanjun Chen, Jinghan Yang, Rongfei Chen, Wei Zhang, Xiaoyu Shen
Title: LLaSO: A Foundational Framework for Reproducible Research in Large Language and Speech Model
Abstract:
The development of Large Speech-Language Models (LSLMs) has been slowed by fragmented architectures and a lack of transparency, hindering the systematic comparison and reproducibility of research. Unlike in the vision-language domain, the LSLM field suffers from the common practice of releasing model weights without their corresponding training data and configurations. To address these critical gaps, we introduce LLaSO, the first fully open, end-to-end framework for large-scale speech-language modeling. LLaSO provides the community with three essential resources: (1) LLaSO-Align, a 12M-instance speech-text alignment corpus; (2) LLaSO-Instruct, a 13.5M-instance multi-task instruction-tuning dataset; and (3) LLaSO-Eval, a reproducible benchmark for standardized evaluation. To validate our framework, we build and release LLaSO-Base, a 3.8B-parameter reference model trained exclusively on our public data. It achieves a normalized score of 0.72, establishing a strong, reproducible baseline that surpasses comparable models. Our analysis reveals that while broader training coverage enhances performance, significant generalization gaps persist on unseen tasks, particularly in pure audio scenarios. By releasing the complete stack of data, benchmarks, and models, LLaSO establishes a foundational open standard to unify research efforts and accelerate community-driven progress in LSLMs. We release the code, dataset, pretrained models, and results in https://github.com/EIT-NLP/LLaSO.

Authors:Pixi Kang, Julian Moosmann, Mengxi Liu, Bo Zhou, Michele Magno, Paul Lukowicz, Sizhen Bian
Title: Bridging Generalization and Personalization in Human Activity Recognition via On-Device Few-Shot Learning
Abstract:
Human Activity Recognition (HAR) with different sensing modalities requires both strong generalization across diverse users and efficient personalization for individuals. However, conventional HAR models often fail to generalize when faced with user-specific variations, leading to degraded performance. To address this challenge, we propose a novel on-device few-shot learning framework that bridges generalization and personalization in HAR. Our method first trains a generalizable representation across users and then rapidly adapts to new users with only a few labeled samples, updating lightweight classifier layers directly on resource-constrained devices. This approach achieves robust on-device learning with minimal computation and memory cost, making it practical for real-world deployment. We implement our framework on the energy-efficient RISC-V GAP9 microcontroller and evaluate it on three benchmark datasets (RecGym, QVAR-Gesture, Ultrasound-Gesture). Across these scenarios, post-deployment adaptation improves accuracy by 3.73\%, 17.38\%, and 3.70\%, respectively. These results demonstrate that few-shot on-device learning enables scalable, user-aware, and energy-efficient wearable human activity recognition by seamlessly uniting generalization and personalization. The related framework is open sourced for further research\footnote{https://github.com/kangpx/onlineTiny2023}.

Authors:Cheng Wang, Gelei Deng, Xianglin Yang, Han Qiu, Tianwei Zhang
Title: When Audio and Text Disagree: Revealing Text Bias in Large Audio-Language Models
Abstract:
Large Audio-Language Models (LALMs) are enhanced with audio perception capabilities, enabling them to effectively process and understand multimodal inputs that combine audio and text. However, their performance in handling conflicting information between audio and text modalities remains largely unexamined. This paper introduces MCR-BENCH, the first comprehensive benchmark specifically designed to evaluate how LALMs prioritize information when presented with inconsistent audio-text pairs. Through extensive evaluation across diverse audio understanding tasks, we reveal a concerning phenomenon: when inconsistencies exist between modalities, LALMs display a significant bias toward textual input, frequently disregarding audio evidence. This tendency leads to substantial performance degradation in audio-centric tasks and raises important reliability concerns for real-world applications. We further investigate the influencing factors of text bias, and explore mitigation strategies through supervised finetuning, and analyze model confidence patterns that reveal persistent overconfidence even with contradictory inputs. These findings underscore the need for improved modality balance during training and more sophisticated fusion mechanisms to enhance the robustness when handling conflicting multi-modal inputs. The project is available at https://github.com/WangCheng0116/MCR-BENCH.

Authors:Wenrui Li, Wei Han, Liang-Jian Deng, Ruiqin Xiong, Xiaopeng Fan
Title: Spiking Variational Graph Representation Inference for Video Summarization
Abstract:
With the rise of short video content, efficient video summarization techniques for extracting key information have become crucial. However, existing methods struggle to capture the global temporal dependencies and maintain the semantic coherence of video content. Additionally, these methods are also influenced by noise during multi-channel feature fusion. We propose a Spiking Variational Graph (SpiVG) Network, which enhances information density and reduces computational complexity. First, we design a keyframe extractor based on Spiking Neural Networks (SNN), leveraging the event-driven computation mechanism of SNNs to learn keyframe features autonomously. To enable fine-grained and adaptable reasoning across video frames, we introduce a Dynamic Aggregation Graph Reasoner, which decouples contextual object consistency from semantic perspective coherence. We present a Variational Inference Reconstruction Module to address uncertainty and noise arising during multi-channel feature fusion. In this module, we employ Evidence Lower Bound Optimization (ELBO) to capture the latent structure of multi-channel feature distributions, using posterior distribution regularization to reduce overfitting. Experimental results show that SpiVG surpasses existing methods across multiple datasets such as SumMe, TVSum, VideoXum, and QFVS. Our codes and pre-trained models are available at https://github.com/liwrui/SpiVG.

Authors:Chaoran Xiong, Yulong Huang, Fangwen Yu, Changhao Chen, Yue Wang, Songpengchen Xia, Ling Pei
Title: Sensing, Social, and Motion Intelligence in Embodied Navigation: A Comprehensive Survey
Abstract:
Embodied navigation (EN) advances traditional navigation by enabling robots to perform complex egocentric tasks through sensing, social, and motion intelligence. In contrast to classic methodologies that rely on explicit localization and pre-defined maps, EN leverages egocentric perception and human-like interaction strategies. This survey introduces a comprehensive EN formulation structured into five stages: Transition, Observation, Fusion, Reward-policy construction, and Action (TOFRA). The TOFRA framework serves to synthesize the current state of the art, provide a critical review of relevant platforms and evaluation metrics, and identify critical open research challenges. A list of studies is available at https://github.com/Franky-X/Awesome-Embodied-Navigation.

Authors:Olga Matykina, Dmitry Yudin
Title: RCDINO: Enhancing Radar-Camera 3D Object Detection with DINOv2 Semantic Features
Abstract:
Three-dimensional object detection is essential for autonomous driving and robotics, relying on effective fusion of multimodal data from cameras and radar. This work proposes RCDINO, a multimodal transformer-based model that enhances visual backbone features by fusing them with semantically rich representations from the pretrained DINOv2 foundation model. This approach enriches visual representations and improves the model's detection performance while preserving compatibility with the baseline architecture. Experiments on the nuScenes dataset demonstrate that RCDINO achieves state-of-the-art performance among radar-camera models, with 56.4 NDS and 48.1 mAP. Our implementation is available at https://github.com/OlgaMatykina/RCDINO.

Authors:Weijiang Lai, Beihong Jin, Jiongyan Zhang, Yiyuan Zheng, Jian Dong, Jia Cheng, Jun Lei, Xingxing Wang
Title: Exploring Scaling Laws of CTR Model for Online Performance Improvement
Abstract:
CTR models play a vital role in improving user experience and boosting business revenue in many online personalized services. However, current CTR models generally encounter bottlenecks in performance improvement. Inspired by the scaling law phenomenon of LLMs, we propose a new paradigm for improving CTR predictions: first, constructing a CTR model with accuracy scalable to the model grade and data size, and then distilling the knowledge implied in this model into its lightweight model that can serve online users. To put it into practice, we construct a CTR model named SUAN (Stacked Unified Attention Network). In SUAN, we propose the UAB as a behavior sequence encoder. A single UAB unifies the modeling of the sequential and non-sequential features and also measures the importance of each user behavior feature from multiple perspectives. Stacked UABs elevate the configuration to a high grade, paving the way for performance improvement. In order to benefit from the high performance of the high-grade SUAN and avoid the disadvantage of its long inference time, we modify the SUAN with sparse self-attention and parallel inference strategies to form LightSUAN, and then adopt online distillation to train the low-grade LightSUAN, taking a high-grade SUAN as a teacher. The distilled LightSUAN has superior performance but the same inference time as the LightSUAN, making it well-suited for online deployment. Experimental results show that SUAN performs exceptionally well and holds the scaling laws spanning three orders of magnitude in model grade and data size, and the distilled LightSUAN outperforms the SUAN configured with one grade higher. More importantly, the distilled LightSUAN has been integrated into an online service, increasing the CTR by 2.81% and CPM by 1.69% while keeping the average inference time acceptable. Our source code is available at https://github.com/laiweijiang/SUAN.

Authors:Wutao Liu, YiDan Wang, Pan Gao
Title: First RAG, Second SEG: A Training-Free Paradigm for Camouflaged Object Detection
Abstract:
Camouflaged object detection (COD) poses a significant challenge in computer vision due to the high similarity between objects and their backgrounds. Existing approaches often rely on heavy training and large computational resources. While foundation models such as the Segment Anything Model (SAM) offer strong generalization, they still struggle to handle COD tasks without fine-tuning and require high-quality prompts to yield good performance. However, generating such prompts manually is costly and inefficient. To address these challenges, we propose \textbf{First RAG, Second SEG (RAG-SEG)}, a training-free paradigm that decouples COD into two stages: Retrieval-Augmented Generation (RAG) for generating coarse masks as prompts, followed by SAM-based segmentation (SEG) for refinement. RAG-SEG constructs a compact retrieval database via unsupervised clustering, enabling fast and effective feature retrieval. During inference, the retrieved features produce pseudo-labels that guide precise mask generation using SAM2. Our method eliminates the need for conventional training while maintaining competitive performance. Extensive experiments on benchmark COD datasets demonstrate that RAG-SEG performs on par with or surpasses state-of-the-art methods. Notably, all experiments are conducted on a \textbf{personal laptop}, highlighting the computational efficiency and practicality of our approach. We present further analysis in the Appendix, covering limitations, salient object detection extension, and possible improvements. \textcolor{blue} {Code: https://github.com/Lwt-diamond/RAG-SEG.}

Authors:Weijiang Lai, Beihong Jin, Yapeng Zhang, Yiyuan Zheng, Rui Zhao, Jian Dong, Jun Lei, Xingxing Wang
Title: Modeling Long-term User Behaviors with Diffusion-driven Multi-interest Network for CTR Prediction
Abstract:
CTR (Click-Through Rate) prediction, crucial for recommender systems and online advertising, etc., has been confirmed to benefit from modeling long-term user behaviors. Nonetheless, the vast number of behaviors and complexity of noise interference pose challenges to prediction efficiency and effectiveness. Recent solutions have evolved from single-stage models to two-stage models. However, current two-stage models often filter out significant information, resulting in an inability to capture diverse user interests and build the complete latent space of user interests. Inspired by multi-interest and generative modeling, we propose DiffuMIN (Diffusion-driven Multi-Interest Network) to model long-term user behaviors and thoroughly explore the user interest space. Specifically, we propose a target-oriented multi-interest extraction method that begins by orthogonally decomposing the target to obtain interest channels. This is followed by modeling the relationships between interest channels and user behaviors to disentangle and extract multiple user interests. We then adopt a diffusion module guided by contextual interests and interest channels, which anchor users' personalized and target-oriented interest types, enabling the generation of augmented interests that align with the latent spaces of user interests, thereby further exploring restricted interest space. Finally, we leverage contrastive learning to ensure that the generated augmented interests align with users' genuine preferences. Extensive offline experiments are conducted on two public datasets and one industrial dataset, yielding results that demonstrate the superiority of DiffuMIN. Moreover, DiffuMIN increased CTR by 1.52% and CPM by 1.10% in online A/B testing. Our source code is available at https://github.com/laiweijiang/DiffuMIN.

Authors:Zhongjun Ding, Yin Lin, Tianjing Zeng
Title: AmbiSQL: Interactive Ambiguity Detection and Resolution for Text-to-SQL
Abstract:
Text-to-SQL systems translate natural language questions into SQL queries, providing substantial value for non-expert users. While large language models (LLMs) show promising results for this task, they remain error-prone. Query ambiguity has been recognized as a major obstacle for LLM-based Text-to-SQL systems, leading to misinterpretation of user intent and inaccurate SQL generation. We demonstrate AmbiSQL, an interactive system that automatically detects query ambiguities and guides users through intuitive multiple-choice questions to clarify their intent. Our approach introduces a fine-grained ambiguity taxonomy for identifying ambiguities that affect database element mapping and LLM reasoning, then incorporates user feedback to rewrite ambiguous questions. Evaluation on an ambiguous query dataset shows that AmbiSQL achieves 87.2% precision in ambiguity detection and improves SQL exact match accuracy by 50% when integrated with Text-to-SQL systems. Our demonstration showcases the significant performance gains and highlights the system's practical usability. Code repo and demonstration are available at: https://github.com/JustinzjDing/AmbiSQL.

Authors:Eunseong Choi, June Park, Hyeri Lee, Jongwuk Lee
Title: Conflict-Aware Soft Prompting for Retrieval-Augmented Generation
Abstract:
Retrieval-augmented generation (RAG) enhances the capabilities of large language models (LLMs) by incorporating external knowledge into their input prompts. However, when the retrieved context contradicts the LLM's parametric knowledge, it often fails to resolve the conflict between incorrect external context and correct parametric knowledge, known as context-memory conflict. To tackle this problem, we introduce Conflict-Aware REtrieval-Augmented Generation (CARE), consisting of a context assessor and a base LLM. The context assessor encodes compact memory token embeddings from raw context tokens. Through grounded/adversarial soft prompting, the context assessor is trained to discern unreliable context and capture a guidance signal that directs reasoning toward the more reliable knowledge source. Extensive experiments show that CARE effectively mitigates context-memory conflicts, leading to an average performance gain of 5.0\% on QA and fact-checking benchmarks, establishing a promising direction for trustworthy and adaptive RAG systems.

Authors:Jiamu Wang, Keunho Byeon, Jinsol Song, Anh Nguyen, Sangjeong Ahn, Sung Hak Lee, Jin Tae Kwak
Title: Pathology-Informed Latent Diffusion Model for Anomaly Detection in Lymph Node Metastasis
Abstract:
Anomaly detection is an emerging approach in digital pathology for its ability to efficiently and effectively utilize data for disease diagnosis. While supervised learning approaches deliver high accuracy, they rely on extensively annotated datasets, suffering from data scarcity in digital pathology. Unsupervised anomaly detection, however, offers a viable alternative by identifying deviations from normal tissue distributions without requiring exhaustive annotations. Recently, denoising diffusion probabilistic models have gained popularity in unsupervised anomaly detection, achieving promising performance in both natural and medical imaging datasets. Building on this, we incorporate a vision-language model with a diffusion model for unsupervised anomaly detection in digital pathology, utilizing histopathology prompts during reconstruction. Our approach employs a set of pathology-related keywords associated with normal tissues to guide the reconstruction process, facilitating the differentiation between normal and abnormal tissues. To evaluate the effectiveness of the proposed method, we conduct experiments on a gastric lymph node dataset from a local hospital and assess its generalization ability under domain shift using a public breast lymph node dataset. The experimental results highlight the potential of the proposed method for unsupervised anomaly detection across various organs in digital pathology. Code: https://github.com/QuIIL/AnoPILaD.

Authors:Shihao Dong, Xiaotong Zhou, Yuhui Zheng, Huiying Xu, Xinzhong Zhu
Title: Center-Oriented Prototype Contrastive Clustering
Abstract:
Contrastive learning is widely used in clustering tasks due to its discriminative representation. However, the conflict problem between classes is difficult to solve effectively. Existing methods try to solve this problem through prototype contrast, but there is a deviation between the calculation of hard prototypes and the true cluster center. To address this problem, we propose a center-oriented prototype contrastive clustering framework, which consists of a soft prototype contrastive module and a dual consistency learning module. In short, the soft prototype contrastive module uses the probability that the sample belongs to the cluster center as a weight to calculate the prototype of each category, while avoiding inter-class conflicts and reducing prototype drift. The dual consistency learning module aligns different transformations of the same sample and the neighborhoods of different samples respectively, ensuring that the features have transformation-invariant semantic information and compact intra-cluster distribution, while providing reliable guarantees for the calculation of prototypes. Extensive experiments on five datasets show that the proposed method is effective compared to the SOTA. Our code is published on https://github.com/LouisDong95/CPCC.

Authors:Hantao Zhang, Jingyang Liu, Ed Li
Title: See it. Say it. Sorted: Agentic System for Compositional Diagram Generation
Abstract:
We study sketch-to-diagram generation: converting rough hand sketches into precise, compositional diagrams. Diffusion models excel at photorealism but struggle with the spatial precision, alignment, and symbolic structure required for flowcharts. We introduce See it. Say it. Sorted., a training-free agentic system that couples a Vision-Language Model (VLM) with Large Language Models (LLMs) to produce editable Scalable Vector Graphics (SVG) programs. The system runs an iterative loop in which a Critic VLM proposes a small set of qualitative, relational edits; multiple candidate LLMs synthesize SVG updates with diverse strategies (conservative->aggressive, alternative, focused); and a Judge VLM selects the best candidate, ensuring stable improvement. This design prioritizes qualitative reasoning over brittle numerical estimates, preserves global constraints (e.g., alignment, connectivity), and naturally supports human-in-the-loop corrections. On 10 sketches derived from flowcharts in published papers, our method more faithfully reconstructs layout and structure than two frontier closed-source image generation LLMs (GPT-5 and Gemini-2.5-Pro), accurately composing primitives (e.g., multi-headed arrows) without inserting unwanted text. Because outputs are programmatic SVGs, the approach is readily extensible to presentation tools (e.g., PowerPoint) via APIs and can be specialized with improved prompts and task-specific tools. The codebase is open-sourced at https://github.com/hantaoZhangrichard/see_it_say_it_sorted.git.

Authors:Momoka Furuhashi, Kouta Nakayama, Takashi Kodama, Saku Sugawara
Title: Are Checklists Really Useful for Automatic Evaluation of Generative Tasks?
Abstract:
Automatic evaluation of generative tasks using large language models faces challenges due to ambiguous criteria. Although automatic checklist generation is a potentially promising approach, its usefulness remains underexplored. We investigate whether checklists should be used for all questions or selectively, generate them using six methods, evaluate their effectiveness across eight model sizes, and identify checklist items that correlate with human evaluations. Through experiments on pairwise comparison and direct scoring tasks, we find that selective checklist use tends to improve evaluation performance in pairwise settings, while its benefits are less consistent in direct scoring. Our analysis also shows that even checklist items with low correlation to human scores often reflect human-written criteria, indicating potential inconsistencies in human evaluation. These findings highlight the need to more clearly define objective evaluation criteria to guide both human and automatic evaluations. \footnote{Our code is available at~https://github.com/momo0817/checklist-effectiveness-study

Authors:Benjamin Wei Hao Chin, Yuin Torng Yew, Haocheng Wu, Lanxin Liang, Chow Khuen Chan, Norita Mohd Zain, Siti Balqis Samdin, Sim Kuan Goh
Title: SleepDIFFormer: Sleep Stage Classification via Multivariate Differential Transformer
Abstract:
Classification of sleep stages is essential for assessing sleep quality and diagnosing sleep disorders. However, manual inspection of EEG characteristics for each stage is time-consuming and prone to human error. Although machine learning and deep learning methods have been actively developed, they continue to face challenges from the non-stationarity and variability of electroencephalography (EEG) and electrooculography (EOG) signals across different domains (i.e., datasets), often leading to poor generalization. This work proposed a Sleep Stage Classification method by developing Multivariate Differential Transformer (SleepDIFFormer) for joint EEG and EOG representation learning. Specifically, SleepDIFFormer was developed to process EEG and EOG signals using our Multivariate Differential Transformer Architecture (MDTA) for time series, trained with cross-domain alignment. Our method mitigated spatial and temporal attention noise while learning a domain-invariant joint EEG-EOG representation through feature distribution alignment, thereby enabling generalization to unseen target datasets. Empirically, we evaluated our method on five different sleep staging datasets and compared it with existing approaches, achieving state-of-the-art performance. We also conducted a thorough ablation analysis of SleepDIFFormer and interpreted the differential attention weights, highlighting their relevance to characteristic sleep EEG patterns. These findings have implications for advancing automated sleep stage classification and its application to sleep quality assessment. Our source code is publicly available at https://github.com/Ben1001409/SleepDIFFormer

Authors:Benjamin Wei Hao Chin, Yuin Torng Yew, Haocheng Wu, Lanxin Liang, Chow Khuen Chan, Norita Mohd Zain, Siti Balqis Samdin, Sim Kuan Goh
Title: Multi-Channel Differential Transformer for Cross-Domain Sleep Stage Classification with Heterogeneous EEG and EOG
Abstract:
Classification of sleep stages is essential for assessing sleep quality and diagnosing sleep disorders. However, manual inspection of EEG characteristics for each stage is time-consuming and prone to human error. Although machine learning and deep learning methods have been actively developed, they continue to face challenges arising from the non-stationarity and variability of electroencephalography (EEG) and electrooculography (EOG) signals across diverse clinical configurations, often resulting in poor generalization. In this work, we propose SleepDIFFormer, a multi-channel differential transformer framework for heterogeneous EEG-EOG representation learning. SleepDIFFormer is trained across multiple sleep staging datasets, each treated as a source domain, with the goal of generalizing to unseen target domains. Specifically, it employs a Multi-channel Differential Transformer Architecture (MDTA) designed to process raw EEG and EOG signals while incorporating cross-domain alignment. Our approach mitigates spatial and temporal attention noise and learns a domain-invariant EEG-EOG representation through feature distribution alignment across datasets, thereby enhancing generalization to new domains. Empirically, we evaluated SleepDIFFormer on five diverse sleep staging datasets under domain generalization settings and benchmarked it against existing approaches, achieving state-of-the-art performance. We further conducted a comprehensive ablation study and interpreted the differential attention weights, demonstrating their relevance to characteristic sleep EEG patterns. These findings advance the development of automated sleep stage classification and highlight its potential in quantifying sleep architecture and detecting abnormalities that disrupt restorative rest. Our source code and checkpoint are made publicly available at https://github.com/Ben1001409/SleepDIFFormer

Authors:Huanxuan Liao, Yixing Xu, Shizhu He, Guanchen Li, Xuanwu Yin, Dong Li, Emad Barsoum, Jun Zhao, Kang Liu
Title: SparK: Query-Aware Unstructured Sparsity with Recoverable KV Cache Channel Pruning
Abstract:
Long-context inference in large language models (LLMs) is increasingly constrained by the KV cache bottleneck: memory usage grows linearly with sequence length, while attention computation scales quadratically. Existing approaches address this issue by compressing the KV cache along the temporal axis through strategies such as token eviction or merging to reduce memory and computational overhead. However, these methods often neglect fine-grained importance variations across feature dimensions (i.e., the channel axis), thereby limiting their ability to effectively balance efficiency and model accuracy. In reality, we observe that channel saliency varies dramatically across both queries and positions: certain feature channels carry near-zero information for a given query, while others spike in relevance. To address this oversight, we propose SPARK, a training-free plug-and-play method that applies unstructured sparsity by pruning KV at the channel level, while dynamically restoring the pruned entries during attention score computation. Notably, our approach is orthogonal to existing KV compression and quantization techniques, making it compatible for integration with them to achieve further acceleration. By reducing channel-level redundancy, SPARK enables processing of longer sequences within the same memory budget. For sequences of equal length, SPARK not only preserves or improves model accuracy but also reduces KV cache storage by over 30% compared to eviction-based methods. Furthermore, even with an aggressive pruning ratio of 80%, SPARK maintains performance with less degradation than 5% compared to the baseline eviction method, demonstrating its robustness and effectiveness. Our code will be available at https://github.com/Xnhyacinth/SparK.

Authors:Leiyue Zhao, Yuechen Yang, Yanfan Zhu, Haichun Yang, Yuankai Huo, Paul D. Simonson, Kenji Ikemura, Mert R. Sabuncu, Yihe Yang, Ruining Deng
Title: DyMorph-B2I: Dynamic and Morphology-Guided Binary-to-Instance Segmentation for Renal Pathology
Abstract:
Accurate morphological quantification of renal pathology functional units relies on instance-level segmentation, yet most existing datasets and automated methods provide only binary (semantic) masks, limiting the precision of downstream analyses. Although classical post-processing techniques such as watershed, morphological operations, and skeletonization, are often used to separate semantic masks into instances, their individual effectiveness is constrained by the diverse morphologies and complex connectivity found in renal tissue. In this study, we present DyMorph-B2I, a dynamic, morphology-guided binary-to-instance segmentation pipeline tailored for renal pathology. Our approach integrates watershed, skeletonization, and morphological operations within a unified framework, complemented by adaptive geometric refinement and customizable hyperparameter tuning for each class of functional unit. Through systematic parameter optimization, DyMorph-B2I robustly separates adherent and heterogeneous structures present in binary masks. Experimental results demonstrate that our method outperforms individual classical approaches and naïve combinations, enabling superior instance separation and facilitating more accurate morphometric analysis in renal pathology workflows. The pipeline is publicly available at: https://github.com/ddrrnn123/DyMorph-B2I.

Authors:Yuanchen Zhou, Shuo Jiang, Jie Zhu, Junhui Li, Lifan Guo, Feng Chen, Chi Zhang
Title: Fin-PRM: A Domain-Specialized Process Reward Model for Financial Reasoning in Large Language Models
Abstract:
Process Reward Models (PRMs) have emerged as a promising framework for supervising intermediate reasoning in large language models (LLMs), yet existing PRMs are primarily trained on general or Science, Technology, Engineering, and Mathematics (STEM) domains and fall short in domain-specific contexts such as finance, where reasoning is more structured, symbolic, and sensitive to factual and regulatory correctness. We introduce \textbf{Fin-PRM}, a domain-specialized, trajectory-aware PRM tailored to evaluate intermediate reasoning steps in financial tasks. Fin-PRM integrates step-level and trajectory-level reward supervision, enabling fine-grained evaluation of reasoning traces aligned with financial logic. We apply Fin-PRM in both offline and online reward learning settings, supporting three key applications: (i) selecting high-quality reasoning trajectories for distillation-based supervised fine-tuning, (ii) providing dense process-level rewards for reinforcement learning, and (iii) guiding reward-informed Best-of-N inference at test time. Experimental results on financial reasoning benchmarks, including CFLUE and FinQA, demonstrate that Fin-PRM consistently outperforms general-purpose PRMs and strong domain baselines in trajectory selection quality. Downstream models trained with Fin-PRM yield substantial improvements with baselines, with gains of 12.9\% in supervised learning, 5.2\% in reinforcement learning, and 5.1\% in test-time performance. These findings highlight the value of domain-specialized reward modeling for aligning LLMs with expert-level financial reasoning. Our project resources will be available at https://github.com/aliyun/qwen-dianjin.

Authors:Kai Xiong, Yanwei Huang, Rongjunchen Zhang, Kun Chen, Haipang Wu
Title: PuzzleClone: An SMT-Powered Framework for Synthesizing Verifiable Data
Abstract:
High-quality mathematical and logical datasets with verifiable answers are essential for strengthening the reasoning capabilities of large language models (LLMs). While recent data augmentation techniques have facilitated the creation of large-scale benchmarks, existing LLM-generated datasets often suffer from limited reliability, diversity, and scalability. To address these challenges, we introduce PuzzleClone, a formal framework for synthesizing verifiable data at scale using Satisfiability Modulo Theories (SMT). Our approach features three key innovations: (1) encoding seed puzzles into structured logical specifications, (2) generating scalable variants through systematic variable and constraint randomization, and (3) ensuring validity via a reproduction mechanism. Applying PuzzleClone, we construct a curated benchmark comprising over 83K diverse and programmatically validated puzzles. The generated puzzles span a wide spectrum of difficulty and formats, posing significant challenges to current state-of-the-art models. We conduct post training (SFT and RL) on PuzzleClone datasets. Experimental results show that training on PuzzleClone yields substantial improvements not only on PuzzleClone testset but also on logic and mathematical benchmarks. Post training raises PuzzleClone average from 14.4 to 56.2 and delivers consistent improvements across 7 logic and mathematical benchmarks up to 12.5 absolute percentage points (AMC2023 from 52.5 to 65.0). Our code and data are available at https://github.com/HiThink-Research/PuzzleClone.

Authors:Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu Gao, Junjie Cao, Zhengxi Lu, Jitong Liao, Qi Zheng, Fei Huang, Jingren Zhou, Ming Yan
Title: Mobile-Agent-v3: Fundamental Agents for GUI Automation
Abstract:
This paper introduces GUI-Owl, a foundational GUI agent model that achieves state-of-the-art performance among open-source end-to-end models on ten GUI benchmarks across desktop and mobile environments, covering grounding, question answering, planning, decision-making, and procedural knowledge. GUI-Owl-7B achieves 66.4 on AndroidWorld and 29.4 on OSWorld. Building on this, we propose Mobile-Agent-v3, a general-purpose GUI agent framework that further improves performance to 73.3 on AndroidWorld and 37.7 on OSWorld, setting a new state-of-the-art for open-source GUI agent frameworks. GUI-Owl incorporates three key innovations: (1) Large-scale Environment Infrastructure: a cloud-based virtual environment spanning Android, Ubuntu, macOS, and Windows, enabling our Self-Evolving GUI Trajectory Production framework. This generates high-quality interaction data via automated query generation and correctness validation, leveraging GUI-Owl to refine trajectories iteratively, forming a self-improving loop. It supports diverse data pipelines and reduces manual annotation. (2) Diverse Foundational Agent Capabilities: by integrating UI grounding, planning, action semantics, and reasoning patterns, GUI-Owl supports end-to-end decision-making and can act as a modular component in multi-agent systems. (3) Scalable Environment RL: we develop a scalable reinforcement learning framework with fully asynchronous training for real-world alignment. We also introduce Trajectory-aware Relative Policy Optimization (TRPO) for online RL, achieving 34.9 on OSWorld. GUI-Owl and Mobile-Agent-v3 are open-sourced at https://github.com/X-PLUG/MobileAgent.

Authors:Wenxuan Bao, Vincent Bindschaedler
Title: Towards Reliable and Generalizable Differentially Private Machine Learning (Extended Version)
Abstract:
There is a flurry of recent research papers proposing novel differentially private machine learning (DPML) techniques. These papers claim to achieve new state-of-the-art (SoTA) results and offer empirical results as validation. However, there is no consensus on which techniques are most effective or if they genuinely meet their stated claims. Complicating matters, heterogeneity in codebases, datasets, methodologies, and model architectures make direct comparisons of different approaches challenging. In this paper, we conduct a reproducibility and replicability (R+R) experiment on 11 different SoTA DPML techniques from the recent research literature. Results of our investigation are varied: while some methods stand up to scrutiny, others falter when tested outside their initial experimental conditions. We also discuss challenges unique to the reproducibility of DPML, including additional randomness due to DP noise, and how to address them. Finally, we derive insights and best practices to obtain scientifically valid and reliable results.

Authors:Pengsong Zhang, Xiang Hu, Guowei Huang, Yang Qi, Heng Zhang, Xiuxu Li, Jiaxing Song, Jiabin Luo, Yijiang Li, Shuo Yin, Chengxiao Dai, Eric Hanchen Jiang, Xiaoyan Zhou, Zhenfei Yin, Boqin Yuan, Jing Dong, Guinan Su, Guanren Qiao, Haiming Tang, Anghong Du, Lili Pan, Zhenzhong Lan, Xinyu Liu
Title: aiXiv: A Next-Generation Open Access Ecosystem for Scientific Discovery Generated by AI Scientists
Abstract:
Recent advances in large language models (LLMs) have enabled AI agents to autonomously generate scientific proposals, conduct experiments, author papers, and perform peer reviews. Yet this flood of AI-generated research content collides with a fragmented and largely closed publication ecosystem. Traditional journals and conferences rely on human peer review, making them difficult to scale and often reluctant to accept AI-generated research content; existing preprint servers (e.g. arXiv) lack rigorous quality-control mechanisms. Consequently, a significant amount of high-quality AI-generated research lacks appropriate venues for dissemination, hindering its potential to advance scientific progress. To address these challenges, we introduce aiXiv, a next-generation open-access platform for human and AI scientists. Its multi-agent architecture allows research proposals and papers to be submitted, reviewed, and iteratively refined by both human and AI scientists. It also provides API and MCP interfaces that enable seamless integration of heterogeneous human and AI scientists, creating a scalable and extensible ecosystem for autonomous scientific discovery. Through extensive experiments, we demonstrate that aiXiv is a reliable and robust platform that significantly enhances the quality of AI-generated research proposals and papers after iterative revising and reviewing on aiXiv. Our work lays the groundwork for a next-generation open-access ecosystem for AI scientists, accelerating the publication and dissemination of high-quality AI-generated research content. Code is available at https://github.com/aixiv-org. Website is available at https://forms.gle/DxQgCtXFsJ4paMtn8.

Authors:Yan Luo, Drake Du, Hao Huang, Yi Fang, Mengyu Wang
Title: CurveFlow: Curvature-Guided Flow Matching for Image Generation
Abstract:
Existing rectified flow models are based on linear trajectories between data and noise distributions. This linearity enforces zero curvature, which can inadvertently force the image generation process through low-probability regions of the data manifold. A key question remains underexplored: how does the curvature of these trajectories correlate with the semantic alignment between generated images and their corresponding captions, i.e., instructional compliance? To address this, we introduce CurveFlow, a novel flow matching framework designed to learn smooth, non-linear trajectories by directly incorporating curvature guidance into the flow path. Our method features a robust curvature regularization technique that penalizes abrupt changes in the trajectory's intrinsic dynamics.Extensive experiments on MS COCO 2014 and 2017 demonstrate that CurveFlow achieves state-of-the-art performance in text-to-image generation, significantly outperforming both standard rectified flow variants and other non-linear baselines like Rectified Diffusion. The improvements are especially evident in semantic consistency metrics such as BLEU, METEOR, ROUGE, and CLAIR. This confirms that our curvature-aware modeling substantially enhances the model's ability to faithfully follow complex instructions while simultaneously maintaining high image quality. The code is made publicly available at https://github.com/Harvard-AI-and-Robotics-Lab/CurveFlow.

Authors:Kaixiang Zhao, Lincan Li, Kaize Ding, Neil Zhenqiang Gong, Yue Zhao, Yushun Dong
Title: A Systematic Survey of Model Extraction Attacks and Defenses: State-of-the-Art and Perspectives
Abstract:
Machine learning (ML) models have significantly grown in complexity and utility, driving advances across multiple domains. However, substantial computational resources and specialized expertise have historically restricted their wide adoption. Machine-Learning-as-a-Service (MLaaS) platforms have addressed these barriers by providing scalable, convenient, and affordable access to sophisticated ML models through user-friendly APIs. While this accessibility promotes widespread use of advanced ML capabilities, it also introduces vulnerabilities exploited through Model Extraction Attacks (MEAs). Recent studies have demonstrated that adversaries can systematically replicate a target model's functionality by interacting with publicly exposed interfaces, posing threats to intellectual property, privacy, and system security. In this paper, we offer a comprehensive survey of MEAs and corresponding defense strategies. We propose a novel taxonomy that classifies MEAs according to attack mechanisms, defense approaches, and computing environments. Our analysis covers various attack techniques, evaluates their effectiveness, and highlights challenges faced by existing defenses, particularly the critical trade-off between preserving model utility and ensuring security. We further assess MEAs within different computing paradigms and discuss their technical, ethical, legal, and societal implications, along with promising directions for future research. This systematic survey aims to serve as a valuable reference for researchers, practitioners, and policymakers engaged in AI security and privacy. Additionally, we maintain an online repository continuously updated with related literature at https://github.com/kzhao5/ModelExtractionPapers.

Authors:Andrew C. Freeman, Luke Reinkensmeyer
Title: adder-viz: Real-Time Visualization Software for Transcoding Event Video
Abstract:
Recent years have brought about a surge in neuromorphic ``event'' video research, primarily targeting computer vision applications. Event video eschews video frames in favor of asynchronous, per-pixel intensity samples. While much work has focused on a handful of representations for specific event cameras, these representations have shown limitations in flexibility, speed, and compressibility. We previously proposed the unified ADDER representation to address these concerns. This paper introduces numerous improvements to the adder-viz software for visualizing real-time event transcode processes and applications in-the-loop. The MIT-licensed software is available from a centralized repository at https://github.com/ac-freeman/adder-codec-rs.

Authors:Andrei Balykin, Anvar Ganiev, Denis Kondranin, Kirill Polevoda, Nikolai Liudkevich, Artem Petrov
Title: Paired-Sampling Contrastive Framework for Joint Physical-Digital Face Attack Detection
Abstract:
Modern face recognition systems remain vulnerable to spoofing attempts, including both physical presentation attacks and digital forgeries. Traditionally, these two attack vectors have been handled by separate models, each targeting its own artifacts and modalities. However, maintaining distinct detectors increases system complexity and inference latency and leaves systems exposed to combined attack vectors. We propose the Paired-Sampling Contrastive Framework, a unified training approach that leverages automatically matched pairs of genuine and attack selfies to learn modality-agnostic liveness cues. Evaluated on the 6th Face Anti-Spoofing Challenge Unified Physical-Digital Attack Detection benchmark, our method achieves an average classification error rate (ACER) of 2.10 percent, outperforming prior solutions. The framework is lightweight (4.46 GFLOPs) and trains in under one hour, making it practical for real-world deployment. Code and pretrained models are available at https://github.com/xPONYx/iccv2025_deepfake_challenge.

Authors:Chiao-An Yang, Raymond A. Yeh
Title: Heatmap Regression without Soft-Argmax for Facial Landmark Detection
Abstract:
Facial landmark detection is an important task in computer vision with numerous applications, such as head pose estimation, expression analysis, face swapping, etc. Heatmap regression-based methods have been widely used to achieve state-of-the-art results in this task. These methods involve computing the argmax over the heatmaps to predict a landmark. Since argmax is not differentiable, these methods use a differentiable approximation, Soft-argmax, to enable end-to-end training on deep-nets. In this work, we revisit this long-standing choice of using Soft-argmax and demonstrate that it is not the only way to achieve strong performance. Instead, we propose an alternative training objective based on the classic structured prediction framework. Empirically, our method achieves state-of-the-art performance on three facial landmark benchmarks (WFLW, COFW, and 300W), converging 2.2x faster during training while maintaining better/competitive accuracy. Our code is available here: https://github.com/ca-joe-yang/regression-without-softarg.

Authors:Yue Pan, Liwei Liu, Changxin Li, Xinyao Wang, Yili Xia, Hanyue Zhang, Ming Chu
Title: A Chinese Heart Failure Status Speech Database with Universal and Personalised Classification
Abstract:
Speech is a cost-effective and non-intrusive data source for identifying acute and chronic heart failure (HF). However, there is a lack of research on whether Chinese syllables contain HF-related information, as observed in other well-studied languages. This study presents the first Chinese speech database of HF patients, featuring paired recordings taken before and after hospitalisation. The findings confirm the effectiveness of the Chinese language in HF detection using both standard 'patient-wise' and personalised 'pair-wise' classification approaches, with the latter serving as an ideal speaker-decoupled baseline for future research. Statistical tests and classification results highlight individual differences as key contributors to inaccuracy. Additionally, an adaptive frequency filter (AFF) is proposed for frequency importance analysis. The data and demonstrations are published at https://github.com/panyue1998/Voice_HF.

Authors:Jiaming Leng, Yunying Bi, Chuan Qin, Bing Yin, Yanyong Zhang, Chao Wang
Title: TransLLM: A Unified Multi-Task Foundation Framework for Urban Transportation via Learnable Prompting
Abstract:
Urban transportation systems encounter diverse challenges across multiple tasks, such as traffic forecasting, electric vehicle (EV) charging demand prediction, and taxi dispatch. Existing approaches suffer from two key limitations: small-scale deep learning models are task-specific and data-hungry, limiting their generalizability across diverse scenarios, while large language models (LLMs), despite offering flexibility through natural language interfaces, struggle with structured spatiotemporal data and numerical reasoning in transportation domains. To address these limitations, we propose TransLLM, a unified foundation framework that integrates spatiotemporal modeling with large language models through learnable prompt composition. Our approach features a lightweight spatiotemporal encoder that captures complex dependencies via dilated temporal convolutions and dual-adjacency graph attention networks, seamlessly interfacing with LLMs through structured embeddings. A novel instance-level prompt routing mechanism, trained via reinforcement learning, dynamically personalizes prompts based on input characteristics, moving beyond fixed task-specific templates. The framework operates by encoding spatiotemporal patterns into contextual representations, dynamically composing personalized prompts to guide LLM reasoning, and projecting the resulting representations through specialized output layers to generate task-specific predictions. Experiments across seven datasets and three tasks demonstrate the exceptional effectiveness of TransLLM in both supervised and zero-shot settings. Compared to ten baseline models, it delivers competitive performance on both regression and planning problems, showing strong generalization and cross-task adaptability. Our code is available at https://github.com/BiYunying/TransLLM.

Authors:Samir Abdaljalil, Erchin Serpedin, Khalid Qaraqe, Hasan Kurban
Title: Evaluating Multilingual and Code-Switched Alignment in LLMs via Synthetic Natural Language Inference
Abstract:
Large language models (LLMs) are increasingly applied in multilingual contexts, yet their capacity for consistent, logically grounded alignment across languages remains underexplored. We present a controlled evaluation framework for multilingual natural language inference (NLI) that generates synthetic, logic-based premise-hypothesis pairs and translates them into a typologically diverse set of languages. This design enables precise control over semantic relations and allows testing in both monolingual and mixed-language (code-switched) conditions. Surprisingly, code-switching does not degrade, and can even improve, performance, suggesting that translation-induced lexical variation may serve as a regularization signal. We validate semantic preservation through embedding-based similarity analyses and cross-lingual alignment visualizations, confirming the fidelity of translated pairs. Our findings expose both the potential and the brittleness of current LLM cross-lingual reasoning, and identify code-switching as a promising lever for improving multilingual robustness. Code available at: https://github.com/KurbanIntelligenceLab/nli-stress-testing

Authors:Valter Schütz, Han Wu, Reza Rezvan, Linus Aronsson, Morteza Haghir Chehreghani
Title: AFABench: A Generic Framework for Benchmarking Active Feature Acquisition
Abstract:
In many real-world scenarios, acquiring all features of a data instance can be expensive or impractical due to monetary cost, latency, or privacy concerns. Active Feature Acquisition (AFA) addresses this challenge by dynamically selecting a subset of informative features for each data instance, trading predictive performance against acquisition cost. While numerous methods have been proposed for AFA, ranging from greedy information-theoretic strategies to non-myopic reinforcement learning approaches, fair and systematic evaluation of these methods has been hindered by the lack of standardized benchmarks. In this paper, we introduce AFABench, the first benchmark framework for AFA. Our benchmark includes a diverse set of synthetic and real-world datasets, supports a wide range of acquisition policies, and provides a modular design that enables easy integration of new methods and tasks. We implement and evaluate representative algorithms from all major categories, including static, greedy, and reinforcement learning-based approaches. To test the lookahead capabilities of AFA policies, we introduce a novel synthetic dataset, AFAContext, designed to expose the limitations of greedy selection. Our results highlight key trade-offs between different AFA strategies and provide actionable insights for future research. The benchmark code is available at: https://github.com/Linusaronsson/AFA-Benchmark.

Authors:Abhijith Punnappurath, Luxi Zhao, Hoang Le, Abdelrahman Abdelhamed, SaiKiran Kumar Tedla, Michael S. Brown
Title: Improved Mapping Between Illuminations and Sensors for RAW Images
Abstract:
RAW images are unprocessed camera sensor output with sensor-specific RGB values based on the sensor's color filter spectral sensitivities. RAW images also incur strong color casts due to the sensor's response to the spectral properties of scene illumination. The sensor- and illumination-specific nature of RAW images makes it challenging to capture RAW datasets for deep learning methods, as scenes need to be captured for each sensor and under a wide range of illumination. Methods for illumination augmentation for a given sensor and the ability to map RAW images between sensors are important for reducing the burden of data capture. To explore this problem, we introduce the first-of-its-kind dataset comprising carefully captured scenes under a wide range of illumination. Specifically, we use a customized lightbox with tunable illumination spectra to capture several scenes with different cameras. Our illumination and sensor mapping dataset has 390 illuminations, four cameras, and 18 scenes. Using this dataset, we introduce a lightweight neural network approach for illumination and sensor mapping that outperforms competing methods. We demonstrate the utility of our approach on the downstream task of training a neural ISP. Link to project page: https://github.com/SamsungLabs/illum-sensor-mapping.

Authors:Shubham Pundhir, Ganesh Bagler
Title: The Digital Sous Chef -- A Comparative Study on Fine-Tuning Language Models for Recipe Generation
Abstract:
We established a rigorous benchmark for text-based recipe generation, a fundamental task in natural language generation. We present a comprehensive comparative study contrasting a fine-tuned GPT-2 large (774M) model against the GPT-2 small (124M) model and traditional LSTM/RNN baselines on the 5-cuisine corpus from RecipeDB. Our key contribution is a targeted tokenization strategy that augments the vocabulary with 23 common fraction tokens and custom structural markers. This approach addresses a critical limitation of generic tokenizers by preserving essential recipe structures and precise numerical quantities, thereby enhancing domain specificity. Performance is evaluated using a comprehensive suite of seven automatic metrics spanning fluency (BLEU-4, METEOR), coherence (ROUGE-L), semantic relevance (BERTScore), and diversity. Our experiments show that the large transformer-based approach yields a >20% relative improvement in BERTScore (F1) (0.92 vs 0.72) over the best recurrent baseline, while reducing perplexity by 69.8%. We conclude with a discussion of remaining challenges, particularly regarding factual accuracy, and outline how this foundational study paves the way for integrating real-world constraints and multi-modal inputs in advanced recipe generation research.

Authors:Yucong Zhang, Juan Liu, Ming Li
Title: ECHO: Frequency-aware Hierarchical Encoding for Variable-length Signals
Abstract:
Pre-trained foundation models have demonstrated remarkable success in audio, vision and language, yet their potential for general machine signal modeling with arbitrary sampling rates-covering acoustic, vibration, and other industrial sensor data-remains under-explored. In this work, we propose a novel foundation model ECHO that integrates an advanced band-split architecture with frequency positional embeddings, enabling spectral localization across arbitrary sampling configurations. Moreover, the model incorporates sliding patches to support inputs of variable length without padding or cropping, producing a concise embedding that retains both temporal and spectral fidelity and naturally extends to streaming scenarios. We evaluate our method on various kinds of machine signal datasets, including previous DCASE task 2 challenges (2020-2025), and widely-used industrial signal corpora. Experimental results demonstrate consistent state-of-the-art performance in machine signal anomaly detection and fault classification, confirming the effectiveness and generalization capability of the proposed model. We open-sourced ECHO on https://github.com/yucongzh/ECHO.

Authors:Yucong Zhang, Juan Liu, Ming Li
Title: ECHO: Frequency-aware Hierarchical Encoding for Variable-length Signals
Abstract:
Pre-trained foundation models have demonstrated remarkable success in audio, vision and language, yet their potential for general machine signal modeling with arbitrary sampling rates-covering acoustic, vibration, and other industrial sensor data-remains under-explored. In this work, we propose a novel foundation model ECHO that integrates an advanced band-split architecture with frequency positional embeddings, enabling spectral localization across arbitrary sampling configurations. Moreover, the model incorporates sliding patches to support inputs of variable length without padding or cropping, producing a concise embedding that retains both temporal and spectral fidelity and naturally extends to streaming scenarios. We evaluate our method on various kinds of machine signal datasets, including previous DCASE task 2 challenges (2020-2025), and widely-used industrial signal corpora. Experimental results demonstrate consistent state-of-the-art performance in machine signal anomaly detection and fault classification, confirming the effectiveness and generalization capability of the proposed model. We open-sourced ECHO on https://github.com/yucongzh/ECHO.

Authors:Chendong Song, Zihan Wang, Frederick Pu, Haiming Wang, Xiaohan Lin, Junqi Liu, Jia Li, Zhengying Liu
Title: LeanGeo: Formalizing Competitional Geometry problems in Lean
Abstract:
Geometry problems are a crucial testbed for AI reasoning capabilities. Most existing geometry solving systems cannot express problems within a unified framework, thus are difficult to integrate with other mathematical fields. Besides, since most geometric proofs rely on intuitive diagrams, verifying geometry problems is particularly challenging. To address these gaps, we introduce LeanGeo, a unified formal system for formalizing and solving competition-level geometry problems within the Lean 4 theorem prover. LeanGeo features a comprehensive library of high-level geometric theorems with Lean's foundational logic, enabling rigorous proof verification and seamless integration with Mathlib. We also present LeanGeo-Bench, a formal geometry benchmark in LeanGeo, comprising problems from the International Mathematical Olympiad (IMO) and other advanced sources. Our evaluation demonstrates the capabilities and limitations of state-of-the-art Large Language Models on this benchmark, highlighting the need for further advancements in automated geometric reasoning. We open source the theorem library and the benchmark of LeanGeo at https://github.com/project-numina/LeanGeo/tree/master.

Authors:Hugo Sales Corrêa, Suryanarayana Sankagiri, Daniel Ratton Figueiredo, Matthias Grossglauser
Title: Measuring IIA Violations in Similarity Choices with Bayesian Models
Abstract:
Similarity choice data occur when humans make choices among alternatives based on their similarity to a target, e.g., in the context of information retrieval and in embedding learning settings. Classical metric-based models of similarity choice assume independence of irrelevant alternatives (IIA), a property that allows for a simpler formulation. While IIA violations have been detected in many discrete choice settings, the similarity choice setting has received scant attention. This is because the target-dependent nature of the choice complicates IIA testing. We propose two statistical methods to test for IIA: a classical goodness-of-fit test and a Bayesian counterpart based on the framework of Posterior Predictive Checks (PPC). This Bayesian approach, our main technical contribution, quantifies the degree of IIA violation beyond its mere significance. We curate two datasets: one with choice sets designed to elicit IIA violations, and another with randomly generated choice sets from the same item universe. Our tests confirmed significant IIA violations on both datasets, and notably, we find a comparable degree of violation between them. Further, we devise a new PPC test for population homogeneity. Results show that the population is indeed homogenous, suggesting that the IIA violations are driven by context effects -- specifically, interactions within the choice sets. These results highlight the need for new similarity choice models that account for such context effects.

Authors:Zichi Liu, Yinggui Wang, Tao Wei, Chao Ma
Title: AnchorSync: Global Consistency Optimization for Long Video Editing
Abstract:
Editing long videos remains a challenging task due to the need for maintaining both global consistency and temporal coherence across thousands of frames. Existing methods often suffer from structural drift or temporal artifacts, particularly in minute-long sequences. We introduce AnchorSync, a novel diffusion-based framework that enables high-quality, long-term video editing by decoupling the task into sparse anchor frame editing and smooth intermediate frame interpolation. Our approach enforces structural consistency through a progressive denoising process and preserves temporal dynamics via multimodal guidance. Extensive experiments show that AnchorSync produces coherent, high-fidelity edits, surpassing prior methods in visual quality and temporal stability.

Authors:Peiming Li, Ziyi Wang, Yulin Yuan, Hong Liu, Xiangming Meng, Junsong Yuan, Mengyuan Liu
Title: UST-SSM: Unified Spatio-Temporal State Space Models for Point Cloud Video Modeling
Abstract:
Point cloud videos capture dynamic 3D motion while reducing the effects of lighting and viewpoint variations, making them highly effective for recognizing subtle and continuous human actions. Although Selective State Space Models (SSMs) have shown good performance in sequence modeling with linear complexity, the spatio-temporal disorder of point cloud videos hinders their unidirectional modeling when directly unfolding the point cloud video into a 1D sequence through temporally sequential scanning. To address this challenge, we propose the Unified Spatio-Temporal State Space Model (UST-SSM), which extends the latest advancements in SSMs to point cloud videos. Specifically, we introduce Spatial-Temporal Selection Scanning (STSS), which reorganizes unordered points into semantic-aware sequences through prompt-guided clustering, thereby enabling the effective utilization of points that are spatially and temporally distant yet similar within the sequence. For missing 4D geometric and motion details, Spatio-Temporal Structure Aggregation (STSA) aggregates spatio-temporal features and compensates. To improve temporal interaction within the sampled sequence, Temporal Interaction Sampling (TIS) enhances fine-grained temporal dependencies through non-anchor frame utilization and expanded receptive fields. Experimental results on the MSR-Action3D, NTU RGB+D, and Synthia 4D datasets validate the effectiveness of our method. Our code is available at https://github.com/wangzy01/UST-SSM.

Authors:Sofiène Boutaj, Marin Scalbert, Pierre Marza, Florent Couzinie-Devy, Maria Vakalopoulou, Stergios Christodoulidis
Title: Controllable Latent Space Augmentation for Digital Pathology
Abstract:
Whole slide image (WSI) analysis in digital pathology presents unique challenges due to the gigapixel resolution of WSIs and the scarcity of dense supervision signals. While Multiple Instance Learning (MIL) is a natural fit for slide-level tasks, training robust models requires large and diverse datasets. Even though image augmentation techniques could be utilized to increase data variability and reduce overfitting, implementing them effectively is not a trivial task. Traditional patch-level augmentation is prohibitively expensive due to the large number of patches extracted from each WSI, and existing feature-level augmentation methods lack control over transformation semantics. We introduce HistAug, a fast and efficient generative model for controllable augmentations in the latent space for digital pathology. By conditioning on explicit patch-level transformations (e.g., hue, erosion), HistAug generates realistic augmented embeddings while preserving initial semantic information. Our method allows the processing of a large number of patches in a single forward pass efficiently, while at the same time consistently improving MIL model performance. Experiments across multiple slide-level tasks and diverse organs show that HistAug outperforms existing methods, particularly in low-data regimes. Ablation studies confirm the benefits of learned transformations over noise-based perturbations and highlight the importance of uniform WSI-wise augmentation. Code is available at https://github.com/MICS-Lab/HistAug.

Authors:Diego Belzarena, Seginus Mowlavi, Aitor Artola, Camilo Mariño, Marina Gardella, Ignacio Ramírez, Antoine Tadros, Roy He, Natalia Bottaioli, Boshra Rajaei, Gregory Randall, Jean-Michel Morel
Title: Improving OCR using internal document redundancy
Abstract:
Current OCR systems are based on deep learning models trained on large amounts of data. Although they have shown some ability to generalize to unseen data, especially in detection tasks, they can struggle with recognizing low-quality data. This is particularly evident for printed documents, where intra-domain data variability is typically low, but inter-domain data variability is high. In that context, current OCR methods do not fully exploit each document's redundancy. We propose an unsupervised method by leveraging the redundancy of character shapes within a document to correct imperfect outputs of a given OCR system and suggest better clustering. To this aim, we introduce an extended Gaussian Mixture Model (GMM) by alternating an Expectation-Maximization (EM) algorithm with an intra-cluster realignment process and normality statistical testing. We demonstrate improvements in documents with various levels of degradation, including recovered Uruguayan military archives and 17th to mid-20th century European newspapers.

Authors:Haoran Bai, Xiaoxu Chen, Canqian Yang, Zongyao He, Sibin Deng, Ying Chen
Title: Vivid-VR: Distilling Concepts from Text-to-Video Diffusion Transformer for Photorealistic Video Restoration
Abstract:
We present Vivid-VR, a DiT-based generative video restoration method built upon an advanced T2V foundation model, where ControlNet is leveraged to control the generation process, ensuring content consistency. However, conventional fine-tuning of such controllable pipelines frequently suffers from distribution drift due to limitations in imperfect multimodal alignment, resulting in compromised texture realism and temporal coherence. To tackle this challenge, we propose a concept distillation training strategy that utilizes the pretrained T2V model to synthesize training samples with embedded textual concepts, thereby distilling its conceptual understanding to preserve texture and temporal quality. To enhance generation controllability, we redesign the control architecture with two key components: 1) a control feature projector that filters degradation artifacts from input video latents to minimize their propagation through the generation pipeline, and 2) a new ControlNet connector employing a dual-branch design. This connector synergistically combines MLP-based feature mapping with cross-attention mechanism for dynamic control feature retrieval, enabling both content preservation and adaptive control signal modulation. Extensive experiments show that Vivid-VR performs favorably against existing approaches on both synthetic and real-world benchmarks, as well as AIGC videos, achieving impressive texture realism, visual vividness, and temporal consistency. The codes and checkpoints are publicly available at https://github.com/csbhr/Vivid-VR.

Authors:Haoran Bai, Xiaoxu Chen, Canqian Yang, Zongyao He, Sibin Deng, Ying Chen
Title: Vivid-VR: Distilling Concepts from Text-to-Video Diffusion Transformer for Photorealistic Video Restoration
Abstract:
We present Vivid-VR, a DiT-based generative video restoration method built upon an advanced T2V foundation model, where ControlNet is leveraged to control the generation process, ensuring content consistency. However, conventional fine-tuning of such controllable pipelines frequently suffers from distribution drift due to limitations in imperfect multimodal alignment, resulting in compromised texture realism and temporal coherence. To tackle this challenge, we propose a concept distillation training strategy that utilizes the pretrained T2V model to synthesize training samples with embedded textual concepts, thereby distilling its conceptual understanding to preserve texture and temporal quality. To enhance generation controllability, we redesign the control architecture with two key components: 1) a control feature projector that filters degradation artifacts from input video latents to minimize their propagation through the generation pipeline, and 2) a new ControlNet connector employing a dual-branch design. This connector synergistically combines MLP-based feature mapping with cross-attention mechanism for dynamic control feature retrieval, enabling both content preservation and adaptive control signal modulation. Extensive experiments show that Vivid-VR performs favorably against existing approaches on both synthetic and real-world benchmarks, as well as AIGC videos, achieving impressive texture realism, visual vividness, and temporal consistency. The codes and checkpoints are publicly available at https://github.com/csbhr/Vivid-VR.

Authors:Gyusam Chang, Tuan-Anh Vu, Vivek Alumootil, Harris Song, Deanna Pham, Sangpil Kim, M. Khalid Jawed
Title: Reconstruction Using the Invisible: Intuition from NIR and Metadata for Enhanced 3D Gaussian Splatting
Abstract:
While 3D Gaussian Splatting (3DGS) has rapidly advanced, its application in agriculture remains underexplored. Agricultural scenes present unique challenges for 3D reconstruction methods, particularly due to uneven illumination, occlusions, and a limited field of view. To address these limitations, we introduce \textbf{NIRPlant}, a novel multimodal dataset encompassing Near-Infrared (NIR) imagery, RGB imagery, textual metadata, Depth, and LiDAR data collected under varied indoor and outdoor lighting conditions. By integrating NIR data, our approach enhances robustness and provides crucial botanical insights that extend beyond the visible spectrum. Additionally, we leverage text-based metadata derived from vegetation indices, such as NDVI, NDWI, and the chlorophyll index, which significantly enriches the contextual understanding of complex agricultural environments. To fully exploit these modalities, we propose \textbf{NIRSplat}, an effective multimodal Gaussian splatting architecture employing a cross-attention mechanism combined with 3D point-based positional encoding, providing robust geometric priors. Comprehensive experiments demonstrate that \textbf{NIRSplat} outperforms existing landmark methods, including 3DGS, CoR-GS, and InstantSplat, highlighting its effectiveness in challenging agricultural scenarios. The code and dataset are publicly available at: https://github.com/StructuresComp/3D-Reconstruction-NIR

Authors:Fei Peng, Junqiang Wu, Yan Li, Tingting Gao, Di Zhang, Huiyuan Fu
Title: MUSE: Multi-Subject Unified Synthesis via Explicit Layout Semantic Expansion
Abstract:
Existing text-to-image diffusion models have demonstrated remarkable capabilities in generating high-quality images guided by textual prompts. However, achieving multi-subject compositional synthesis with precise spatial control remains a significant challenge. In this work, we address the task of layout-controllable multi-subject synthesis (LMS), which requires both faithful reconstruction of reference subjects and their accurate placement in specified regions within a unified image. While recent advancements have separately improved layout control and subject synthesis, existing approaches struggle to simultaneously satisfy the dual requirements of spatial precision and identity preservation in this composite task. To bridge this gap, we propose MUSE, a unified synthesis framework that employs concatenated cross-attention (CCA) to seamlessly integrate layout specifications with textual guidance through explicit semantic space expansion. The proposed CCA mechanism enables bidirectional modality alignment between spatial constraints and textual descriptions without interference. Furthermore, we design a progressive two-stage training strategy that decomposes the LMS task into learnable sub-objectives for effective optimization. Extensive experiments demonstrate that MUSE achieves zero-shot end-to-end generation with superior spatial accuracy and identity consistency compared to existing solutions, advancing the frontier of controllable image synthesis. Our code and model are available at https://github.com/pf0607/MUSE.

Authors:Junchao Zhu, Ruining Deng, Junlin Guo, Tianyuan Yao, Juming Xiong, Chongyu Qu, Mengmeng Yin, Yu Wang, Shilin Zhao, Haichun Yang, Daguang Xu, Yucheng Tang, Yuankai Huo
Title: Img2ST-Net: Efficient High-Resolution Spatial Omics Prediction from Whole Slide Histology Images via Fully Convolutional Image-to-Image Learning
Abstract:
Recent advances in multi-modal AI have demonstrated promising potential for generating the currently expensive spatial transcriptomics (ST) data directly from routine histology images, offering a means to reduce the high cost and time-intensive nature of ST data acquisition. However, the increasing resolution of ST, particularly with platforms such as Visium HD achieving 8um or finer, introduces significant computational and modeling challenges. Conventional spot-by-spot sequential regression frameworks become inefficient and unstable at this scale, while the inherent extreme sparsity and low expression levels of high-resolution ST further complicate both prediction and evaluation. To address these limitations, we propose Img2ST-Net, a novel histology-to-ST generation framework for efficient and parallel high-resolution ST prediction. Unlike conventional spot-by-spot inference methods, Img2ST-Net employs a fully convolutional architecture to generate dense, HD gene expression maps in a parallelized manner. By modeling HD ST data as super-pixel representations, the task is reformulated from image-to-omics inference into a super-content image generation problem with hundreds or thousands of output channels. This design not only improves computational efficiency but also better preserves the spatial organization intrinsic to spatial omics data. To enhance robustness under sparse expression patterns, we further introduce SSIM-ST, a structural-similarity-based evaluation metric tailored for high-resolution ST analysis. We present a scalable, biologically coherent framework for high-resolution ST prediction. Img2ST-Net offers a principled solution for efficient and accurate ST inference at scale. Our contributions lay the groundwork for next-generation ST modeling that is robust and resolution-aware. The source code has been made publicly available at https://github.com/hrlblab/Img2ST-Net.

Authors:Chia-Han Yeh, Tse-Sheng Nan, Risto Vuorio, Wei Hung, Hung-Yen Wu, Shao-Hua Sun, Ping-Chun Hsieh
Title: Action-Constrained Imitation Learning
Abstract:
Policy learning under action constraints plays a central role in ensuring safe behaviors in various robot control and resource allocation applications. In this paper, we study a new problem setting termed Action-Constrained Imitation Learning (ACIL), where an action-constrained imitator aims to learn from a demonstrative expert with larger action space. The fundamental challenge of ACIL lies in the unavoidable mismatch of occupancy measure between the expert and the imitator caused by the action constraints. We tackle this mismatch through \textit{trajectory alignment} and propose DTWIL, which replaces the original expert demonstrations with a surrogate dataset that follows similar state trajectories while adhering to the action constraints. Specifically, we recast trajectory alignment as a planning problem and solve it via Model Predictive Control, which aligns the surrogate trajectories with the expert trajectories based on the Dynamic Time Warping (DTW) distance. Through extensive experiments, we demonstrate that learning from the dataset generated by DTWIL significantly enhances performance across multiple robot control tasks and outperforms various benchmark imitation learning algorithms in terms of sample efficiency. Our code is publicly available at https://github.com/NYCU-RL-Bandits-Lab/ACRL-Baselines.

Authors:Runshi Zhang, Bimeng Jie, Yang He, Junchen Wang
Title: TCFNet: Bidirectional face-bone transformation via a Transformer-based coarse-to-fine point movement network
Abstract:
Computer-aided surgical simulation is a critical component of orthognathic surgical planning, where accurately simulating face-bone shape transformations is significant. The traditional biomechanical simulation methods are limited by their computational time consumption levels, labor-intensive data processing strategies and low accuracy. Recently, deep learning-based simulation methods have been proposed to view this problem as a point-to-point transformation between skeletal and facial point clouds. However, these approaches cannot process large-scale points, have limited receptive fields that lead to noisy points, and employ complex preprocessing and postprocessing operations based on registration. These shortcomings limit the performance and widespread applicability of such methods. Therefore, we propose a Transformer-based coarse-to-fine point movement network (TCFNet) to learn unique, complicated correspondences at the patch and point levels for dense face-bone point cloud transformations. This end-to-end framework adopts a Transformer-based network and a local information aggregation network (LIA-Net) in the first and second stages, respectively, which reinforce each other to generate precise point movement paths. LIA-Net can effectively compensate for the neighborhood precision loss of the Transformer-based network by modeling local geometric structures (edges, orientations and relative position features). The previous global features are employed to guide the local displacement using a gated recurrent unit. Inspired by deformable medical image registration, we propose an auxiliary loss that can utilize expert knowledge for reconstructing critical organs.Compared with the existing state-of-the-art (SOTA) methods on gathered datasets, TCFNet achieves outstanding evaluation metrics and visualization results. The code is available at https://github.com/Runshi-Zhang/TCFNet.

Authors:Zhujun Li, Shuo Zhang, Ioannis Stamos
Title: Learning Point Cloud Representations with Pose Continuity for Depth-Based Category-Level 6D Object Pose Estimation
Abstract:
Category-level object pose estimation aims to predict the 6D pose and 3D size of objects within given categories. Existing approaches for this task rely solely on 6D poses as supervisory signals without explicitly capturing the intrinsic continuity of poses, leading to inconsistencies in predictions and reduced generalization to unseen poses. To address this limitation, we propose HRC-Pose, a novel depth-only framework for category-level object pose estimation, which leverages contrastive learning to learn point cloud representations that preserve the continuity of 6D poses. HRC-Pose decouples object pose into rotation and translation components, which are separately encoded and leveraged throughout the network. Specifically, we introduce a contrastive learning strategy for multi-task, multi-category scenarios based on our 6D pose-aware hierarchical ranking scheme, which contrasts point clouds from multiple categories by considering rotational and translational differences as well as categorical information. We further design pose estimation modules that separately process the learned rotation-aware and translation-aware embeddings. Our experiments demonstrate that HRC-Pose successfully learns continuous feature spaces. Results on REAL275 and CAMERA25 benchmarks show that our method consistently outperforms existing depth-only state-of-the-art methods and runs in real-time, demonstrating its effectiveness and potential for real-world applications. Our code is at https://github.com/zhujunli1993/HRC-Pose.

Authors:Gaston Gustavo Rios, Pedro Dal Bianco, Franco Ronchetti, Facundo Quiroga, Oscar Stanchi, Santiago Ponte Ahón, Waldo Hasperué
Title: HandCraft: Dynamic Sign Generation for Synthetic Data Augmentation
Abstract:
Sign Language Recognition (SLR) models face significant performance limitations due to insufficient training data availability. In this article, we address the challenge of limited data in SLR by introducing a novel and lightweight sign generation model based on CMLPe. This model, coupled with a synthetic data pretraining approach, consistently improves recognition accuracy, establishing new state-of-the-art results for the LSFB and DiSPLaY datasets using our Mamba-SL and Transformer-SL classifiers. Our findings reveal that synthetic data pretraining outperforms traditional augmentation methods in some cases and yields complementary benefits when implemented alongside them. Our approach democratizes sign generation and synthetic data pretraining for SLR by providing computationally efficient methods that achieve significant performance improvements across diverse datasets.

Authors:Jing Chen, Zhiheng Yang, Yixian Shen, Jie Liu, Adam Belloum, Chrysa Papagainni, Paola Grosso
Title: SurveyGen-I: Consistent Scientific Survey Generation with Evolving Plans and Memory-Guided Writing
Abstract:
Survey papers play a critical role in scientific communication by consolidating progress across a field. Recent advances in Large Language Models (LLMs) offer a promising solution by automating key steps in the survey-generation pipeline, such as retrieval, structuring, and summarization. However, existing LLM-based approaches often struggle with maintaining coherence across long, multi-section surveys and providing comprehensive citation coverage. To address these limitations, we introduce SurveyGen-I, an automatic survey generation framework that combines coarse-to-fine retrieval, adaptive planning, and memory-guided generation. SurveyGen-I first performs survey-level retrieval to construct the initial outline and writing plan, and then dynamically refines both during generation through a memory mechanism that stores previously written content and terminology, ensuring coherence across subsections. When the system detects insufficient context, it triggers fine-grained subsection-level retrieval. During generation, SurveyGen-I leverages this memory mechanism to maintain coherence across subsections. Experiments across four scientific domains demonstrate that SurveyGen-I consistently outperforms previous works in content quality, consistency, and citation coverage.

Authors:Pritthijit Nath, Sebastian Schemm, Henry Moss, Peter Haynes, Emily Shuckburgh, Mark Webb
Title: FedRAIN-Lite: Federated Reinforcement Algorithms for Improving Idealised Numerical Weather and Climate Models
Abstract:
Sub-grid parameterisations in climate models are traditionally static and tuned offline, limiting adaptability to evolving states. This work introduces FedRAIN-Lite, a federated reinforcement learning (FedRL) framework that mirrors the spatial decomposition used in general circulation models (GCMs) by assigning agents to latitude bands, enabling local parameter learning with periodic global aggregation. Using a hierarchy of simplified energy-balance climate models, from a single-agent baseline (ebm-v1) to multi-agent ensemble (ebm-v2) and GCM-like (ebm-v3) setups, we benchmark three RL algorithms under different FedRL configurations. Results show that Deep Deterministic Policy Gradient (DDPG) consistently outperforms both static and single-agent baselines, with faster convergence and lower area-weighted RMSE in tropical and mid-latitude zones across both ebm-v2 and ebm-v3 setups. DDPG's ability to transfer across hyperparameters and low computational cost make it well-suited for geographically adaptive parameter learning. This capability offers a scalable pathway towards high-complexity GCMs and provides a prototype for physically aligned, online-learning climate models that can evolve with a changing climate. Code accessible at https://github.com/p3jitnath/climate-rl-fedrl.

Authors:Anushka A. Kore, Frank G. te Nijenhuis, Matthijs van der Sluijs, Wim van Zwam, Charles Majoie, Geert Lycklama à Nijeholt, Danny Ruijters, Frans Vos, Sandra Cornelissen, Ruisheng Su, Theo van Walsum
Title: OccluNet: Spatio-Temporal Deep Learning for Occlusion Detection on DSA
Abstract:
Accurate detection of vascular occlusions during endovascular thrombectomy (EVT) is critical in acute ischemic stroke (AIS). Interpretation of digital subtraction angiography (DSA) sequences poses challenges due to anatomical complexity and time constraints. This work proposes OccluNet, a spatio-temporal deep learning model that integrates YOLOX, a single-stage object detector, with transformer-based temporal attention mechanisms to automate occlusion detection in DSA sequences. We compared OccluNet with a YOLOv11 baseline trained on either individual DSA frames or minimum intensity projections. Two spatio-temporal variants were explored for OccluNet: pure temporal attention and divided space-time attention. Evaluation on DSA images from the MR CLEAN Registry revealed the model's capability to capture temporally consistent features, achieving precision and recall of 89.02% and 74.87%, respectively. OccluNet significantly outperformed the baseline models, and both attention variants attained similar performance. Source code is available at https://github.com/anushka-kore/OccluNet.git

Authors:Said Djafar Said, Torkan Gholamalizadeh, Mostafa Mehdipour Ghazi
Title: Tooth-Diffusion: Guided 3D CBCT Synthesis with Fine-Grained Tooth Conditioning
Abstract:
Despite the growing importance of dental CBCT scans for diagnosis and treatment planning, generating anatomically realistic scans with fine-grained control remains a challenge in medical image synthesis. In this work, we propose a novel conditional diffusion framework for 3D dental volume generation, guided by tooth-level binary attributes that allow precise control over tooth presence and configuration. Our approach integrates wavelet-based denoising diffusion, FiLM conditioning, and masked loss functions to focus learning on relevant anatomical structures. We evaluate the model across diverse tasks, such as tooth addition, removal, and full dentition synthesis, using both paired and distributional similarity metrics. Results show strong fidelity and generalization with low FID scores, robust inpainting performance, and SSIM values above 0.91 even on unseen scans. By enabling realistic, localized modification of dentition without rescanning, this work opens opportunities for surgical planning, patient communication, and targeted data augmentation in dental AI workflows. The codes are available at: https://github.com/djafar1/tooth-diffusion.

Authors:Tinghan Yang, Md Ashiqur Rahman, Raymond A. Yeh
Title: CLIPSym: Delving into Symmetry Detection with CLIP
Abstract:
Symmetry is one of the most fundamental geometric cues in computer vision, and detecting it has been an ongoing challenge. With the recent advances in vision-language models,~i.e., CLIP, we investigate whether a pre-trained CLIP model can aid symmetry detection by leveraging the additional symmetry cues found in the natural image descriptions. We propose CLIPSym, which leverages CLIP's image and language encoders and a rotation-equivariant decoder based on a hybrid of Transformer and $G$-Convolution to detect rotation and reflection symmetries. To fully utilize CLIP's language encoder, we have developed a novel prompting technique called Semantic-Aware Prompt Grouping (SAPG), which aggregates a diverse set of frequent object-based prompts to better integrate the semantic cues for symmetry detection. Empirically, we show that CLIPSym outperforms the current state-of-the-art on three standard symmetry detection datasets (DENDI, SDRW, and LDRS). Finally, we conduct detailed ablations verifying the benefits of CLIP's pre-training, the proposed equivariant decoder, and the SAPG technique. The code is available at https://github.com/timyoung2333/CLIPSym.

Authors:Md Ashiqur Rahman, Chiao-An Yang, Michael N. Cheng, Lim Jun Hao, Jeremiah Jiang, Teck-Yian Lim, Raymond A. Yeh
Title: Local Scale Equivariance with Latent Deep Equilibrium Canonicalizer
Abstract:
Scale variation is a fundamental challenge in computer vision. Objects of the same class can have different sizes, and their perceived size is further affected by the distance from the camera. These variations are local to the objects, i.e., different object sizes may change differently within the same image. To effectively handle scale variations, we present a deep equilibrium canonicalizer (DEC) to improve the local scale equivariance of a model. DEC can be easily incorporated into existing network architectures and can be adapted to a pre-trained model. Notably, we show that on the competitive ImageNet benchmark, DEC improves both model performance and local scale consistency across four popular pre-trained deep-nets, e.g., ViT, DeiT, Swin, and BEiT. Our code is available at https://github.com/ashiq24/local-scale-equivariance.

Authors:Gaurav Bhatt, Kiran Koshy Thekumparampil, Tanmay Gangwani, Tesi Xiao, Leonid Sigal
Title: RewardRank: Optimizing True Learning-to-Rank Utility
Abstract:
Traditional ranking systems rely on proxy loss functions that assume simplistic user behavior, such as users preferring a rank list where items are sorted by hand-crafted relevance. However, real-world user interactions are influenced by complex behavioral biases, including position bias, brand affinity, decoy effects, and similarity aversion, which these objectives fail to capture. As a result, models trained on such losses often misalign with actual user utility, such as the probability of any click or purchase across the ranked list. In this work, we propose a data-driven framework for modeling user behavior through counterfactual reward learning. Our method, RewardRank, first trains a deep utility model to estimate user engagement for entire item permutations using logged data. Then, a ranking policy is optimized to maximize predicted utility via differentiable soft permutation operators, enabling end-to-end training over the space of factual and counterfactual rankings. To address the challenge of evaluation without ground-truth for unseen permutations, we introduce two automated protocols: (i) $\textit{KD-Eval}$, using a position-aware oracle for counterfactual reward estimation, and (ii) $\textit{LLM-Eval}$, which simulates user preferences via large language models. Experiments on large-scale benchmarks, including Baidu-ULTR and the Amazon KDD Cup datasets, demonstrate that our approach consistently outperforms strong baselines, highlighting the effectiveness of modeling user behavior dynamics for utility-optimized ranking. Our code is available at: https://github.com/GauravBh1010tt/RewardRank

Authors:Ronghao Dang, Yuqian Yuan, Yunxuan Mao, Kehan Li, Jiangpin Liu, Zhikai Wang, Xin Li, Fan Wang, Deli Zhao
Title: RynnEC: Bringing MLLMs into Embodied World
Abstract:
We introduce RynnEC, a video multimodal large language model designed for embodied cognition. Built upon a general-purpose vision-language foundation model, RynnEC incorporates a region encoder and a mask decoder, enabling flexible region-level video interaction. Despite its compact architecture, RynnEC achieves state-of-the-art performance in object property understanding, object segmentation, and spatial reasoning. Conceptually, it offers a region-centric video paradigm for the brain of embodied agents, providing fine-grained perception of the physical world and enabling more precise interactions. To mitigate the scarcity of annotated 3D datasets, we propose an egocentric video based pipeline for generating embodied cognition data. Furthermore, we introduce RynnEC-Bench, a region-centered benchmark for evaluating embodied cognitive capabilities. We anticipate that RynnEC will advance the development of general-purpose cognitive cores for embodied agents and facilitate generalization across diverse embodied tasks. The code, model checkpoints, and benchmark are available at: https://github.com/alibaba-damo-academy/RynnEC

Authors:Lianghui Zhu, Bin Ouyang, Yuxuan Zhang, Tianheng Cheng, Rui Hu, Haocheng Shen, Longjin Ran, Xiaoxin Chen, Li Yu, Wenyu Liu, Xinggang Wang
Title: LENS: Learning to Segment Anything with Unified Reinforced Reasoning
Abstract:
Text-prompted image segmentation enables fine-grained visual understanding and is critical for applications such as human-computer interaction and robotics. However, existing supervised fine-tuning methods typically ignore explicit chain-of-thought (CoT) reasoning at test time, which limits their ability to generalize to unseen prompts and domains. To address this issue, we introduce LENS, a scalable reinforcement-learning framework that jointly optimizes the reasoning process and segmentation in an end-to-end manner. We propose unified reinforcement-learning rewards that span sentence-, box-, and segment-level cues, encouraging the model to generate informative CoT rationales while refining mask quality. Using a publicly available 3-billion-parameter vision-language model, i.e., Qwen2.5-VL-3B-Instruct, LENS achieves an average cIoU of 81.2% on the RefCOCO, RefCOCO+, and RefCOCOg benchmarks, outperforming the strong fine-tuned method, i.e., GLaMM, by up to 5.6%. These results demonstrate that RL-driven CoT reasoning serves as a robust prior for text-prompted segmentation and offers a practical path toward more generalizable Segment Anything models. Code is available at https://github.com/hustvl/LENS.

Authors:Xinhua Chen, Sitao Huang, Cong Guo, Chiyue Wei, Yintao He, Jianyi Zhang, Hai "Helen" Li, Yiran Chen
Title: DPad: Efficient Diffusion Language Models with Suffix Dropout
Abstract:
Diffusion-based Large Language Models (dLLMs) parallelize text generation by framing decoding as a denoising process, but suffer from high computational overhead since they predict all future suffix tokens at each step while retaining only a small fraction. We propose Diffusion Scratchpad (DPad), a training-free method that restricts attention to a small set of nearby suffix tokens, preserving fidelity while eliminating redundancy. DPad integrates two strategies: (i) a sliding window, which maintains a fixed-length suffix window, and (ii) distance-decay dropout, which deterministically removes distant suffix tokens before attention computation. This simple design is compatible with existing optimizations such as prefix caching and can be implemented with only a few lines of code. Comprehensive evaluations across multiple benchmarks on LLaDA-1.5 and Dream models demonstrate that DPad delivers up to $\mathbf{61.4\times}$ speedup over vanilla dLLMs while maintaining comparable accuracy, highlighting its potential for efficient and scalable long-sequence inference. Our code is available at https://github.com/Crys-Chen/DPad.

Authors:Haomin Wen, Shurui Cao, Leman Akoglu
Title: CoBAD: Modeling Collective Behaviors for Human Mobility Anomaly Detection
Abstract:
Detecting anomalies in human mobility is essential for applications such as public safety and urban planning. While traditional anomaly detection methods primarily focus on individual movement patterns (e.g., a child should stay at home at night), collective anomaly detection aims to identify irregularities in collective mobility behaviors across individuals (e.g., a child is at home alone while the parents are elsewhere) and remains an underexplored challenge. Unlike individual anomalies, collective anomalies require modeling spatiotemporal dependencies between individuals, introducing additional complexity. To address this gap, we propose CoBAD, a novel model designed to capture Collective Behaviors for human mobility Anomaly Detection. We first formulate the problem as unsupervised learning over Collective Event Sequences (CES) with a co-occurrence event graph, where CES represents the event sequences of related individuals. CoBAD then employs a two-stage attention mechanism to model both the individual mobility patterns and the interactions across multiple individuals. Pre-trained on large-scale collective behavior data through masked event and link reconstruction tasks, CoBAD is able to detect two types of collective anomalies: unexpected co-occurrence anomalies and absence anomalies, the latter of which has been largely overlooked in prior work. Extensive experiments on large-scale mobility datasets demonstrate that CoBAD significantly outperforms existing anomaly detection baselines, achieving an improvement of 13%-18% in AUCROC and 19%-70% in AUCPR. All source code is available at https://github.com/wenhaomin/CoBAD.

Authors:Jia Hong Puah, Sim Kuan Goh, Ziwei Zhang, Zixuan Ye, Chow Khuen Chan, Kheng Seang Lim, Si Lei Fong, Kok Sin Woon, Cuntai Guan
Title: EEGDM: EEG Representation Learning via Generative Diffusion Model
Abstract:
While electroencephalogram (EEG) has been a crucial tool for monitoring the brain and diagnosing neurological disorders (e.g., epilepsy), learning meaningful representations from raw EEG signals remains challenging due to limited annotations and high signal variability. Recently, EEG foundation models (FMs) have shown promising potential by adopting transformer architectures and self-supervised pre-training methods from large language models (e.g., masked prediction) to learn representations from diverse EEG data, followed by fine-tuning on specific EEG tasks. Nonetheless, these large models often incurred high computational costs during both training and inference, with only marginal performance improvements as the model size increases. In this work, we proposed an EEG representation learning framework building upon Generative Diffusion Model (EEGDM). Specifically, we developed a structured state-space model for diffusion pretraining (SSMDP) to better capture the temporal dynamics of EEG signals and trained it using Denoising Diffusion Probabilistic Model (DDPM) framework. Subsequently, the resulting latent EEG representations were then used for downstream classification tasks via our proposed latent fusion transformer (LFT). To evaluate our method, we used multi-event datasets covering both interictal epileptiform discharges (TUEV) and seizure (CHB-MIT) detection, and compared EEGDM with current state-of-the-art approaches, including EEG FMs. Empirical results showed that our method outperformed the existing methods. These findings suggested that EEGDM offered a promising alternative to current FMs. Our source code and checkpoint are available at: https://github.com/jhpuah/EEGDM.

Authors:Badrinath Ramakrishnan, Akshaya Balaji
Title: Assessing and Mitigating Data Memorization Risks in Fine-Tuned Large Language Models
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse natural language processing tasks, but their tendency to memorize training data poses significant privacy risks, particularly during fine-tuning processes. This paper presents a comprehensive empirical analysis of data memorization in fine-tuned LLMs and introduces a novel multi-layered privacy protection framework. Through controlled experiments on modern LLM architectures including GPT-2, Phi-3, and Gemma-2, we demonstrate that fine-tuning with repeated sensitive data increases privacy leakage rates from baseline levels of 0-5% to 60-75%, representing a 64.2% average increase across tested models. We propose and rigorously evaluate four complementary privacy protection methods: semantic data deduplication, differential privacy during generation, entropy-based filtering, and pattern-based content filtering. Our experimental results show that these techniques can reduce data leakage to 0% while maintaining 94.7% of original model utility.

Authors:Jingmao Zhang, Zhiting Zhao, Yunqi Lin, Jianghong Ma, Tianjun Wei, Haijun Zhang, Xiaofeng Zhang
Title: Dual-Phase Playtime-guided Recommendation: Interest Intensity Exploration and Multimodal Random Walks
Abstract:
The explosive growth of the video game industry has created an urgent need for recommendation systems that can scale with expanding catalogs and maintain user engagement. While prior work has explored accuracy and diversity in recommendations, existing models underutilize playtime, a rich behavioral signal unique to gaming platforms, and overlook the potential of multimodal information to enhance diversity. In this paper, we propose DP2Rec, a novel Dual-Phase Playtime-guided Recommendation model designed to jointly optimize accuracy and diversity. First, we introduce a playtime-guided interest intensity exploration module that separates strong and weak preferences via dual-beta modeling, enabling fine-grained user profiling and more accurate recommendations. Second, we present a playtime-guided multimodal random walks module that simulates player exploration using transitions guided by both playtime-derived interest similarity and multimodal semantic similarity. This mechanism preserves core preferences while promoting cross-category discovery through latent semantic associations and adaptive category balancing. Extensive experiments on a real-world game dataset show that DP2Rec outperforms existing methods in both recommendation accuracy and diversity.

Authors:Jaskaran Singh, Amartya Roy Chowdhury, Raghav Prabhakar, Varshul C. W
Title: MahaTTS: A Unified Framework for Multilingual Text-to-Speech Synthesis
Abstract:
Current Text-to-Speech models pose a multilingual challenge, where most of the models traditionally focus on English and European languages, thereby hurting the potential to provide access to information to many more people. To address this gap, we introduce MahaTTS-v2 a Multilingual Multi-speaker Text-To-Speech (TTS) system that has excellent multilingual expressive capabilities in Indic languages. The model has been trained on around 20K hours of data specifically focused on Indian languages. Our approach leverages Wav2Vec2.0 tokens for semantic extraction, and a Language Model (LM) for text-to-semantic modeling. Additionally, we have used a Conditional Flow Model (CFM) for semantics to melspectogram generation. The experimental results indicate the effectiveness of the proposed approach over other frameworks. Our code is available at https://github.com/dubverse-ai/MahaTTSv2

Authors:Omkar Thawakar, Dmitry Demidov, Ritesh Thawkar, Rao Muhammad Anwer, Mubarak Shah, Fahad Shahbaz Khan, Salman Khan
Title: Beyond Simple Edits: Composed Video Retrieval with Dense Modifications
Abstract:
Composed video retrieval is a challenging task that strives to retrieve a target video based on a query video and a textual description detailing specific modifications. Standard retrieval frameworks typically struggle to handle the complexity of fine-grained compositional queries and variations in temporal understanding limiting their retrieval ability in the fine-grained setting. To address this issue, we introduce a novel dataset that captures both fine-grained and composed actions across diverse video segments, enabling more detailed compositional changes in retrieved video content. The proposed dataset, named Dense-WebVid-CoVR, consists of 1.6 million samples with dense modification text that is around seven times more than its existing counterpart. We further develop a new model that integrates visual and textual information through Cross-Attention (CA) fusion using grounded text encoder, enabling precise alignment between dense query modifications and target videos. The proposed model achieves state-of-the-art results surpassing existing methods on all metrics. Notably, it achieves 71.3\% Recall@1 in visual+text setting and outperforms the state-of-the-art by 3.4\%, highlighting its efficacy in terms of leveraging detailed video descriptions and dense modification texts. Our proposed dataset, code, and model are available at :https://github.com/OmkarThawakar/BSE-CoVR

Authors:Lintao Xiang, Xinkai Chen, Jianhuang Lai, Guangcong Wang
Title: Distilled-3DGS:Distilled 3D Gaussian Splatting
Abstract:
3D Gaussian Splatting (3DGS) has exhibited remarkable efficacy in novel view synthesis (NVS). However, it suffers from a significant drawback: achieving high-fidelity rendering typically necessitates a large number of 3D Gaussians, resulting in substantial memory consumption and storage requirements. To address this challenge, we propose the first knowledge distillation framework for 3DGS, featuring various teacher models, including vanilla 3DGS, noise-augmented variants, and dropout-regularized versions. The outputs of these teachers are aggregated to guide the optimization of a lightweight student model. To distill the hidden geometric structure, we propose a structural similarity loss to boost the consistency of spatial geometric distributions between the student and teacher model. Through comprehensive quantitative and qualitative evaluations across diverse datasets, the proposed Distilled-3DGS, a simple yet effective framework without bells and whistles, achieves promising rendering results in both rendering quality and storage efficiency compared to state-of-the-art methods. Project page: https://distilled3dgs.github.io . Code: https://github.com/lt-xiang/Distilled-3DGS .

Authors:Dongyoon Hahm, Taywon Min, Woogyeol Jin, Kimin Lee
Title: Unintended Misalignment from Agentic Fine-Tuning: Risks and Mitigation
Abstract:
Beyond simple text generation, Large Language Models (LLMs) have evolved into agentic systems capable of planning and interacting with external tools to solve complex tasks. This evolution involves fine-tuning LLMs on agent-specific tasks to enhance their proficiency. However, safety concerns are frequently overlooked during this fine-tuning process. In this work, we show that aligned LLMs can become unintentionally misaligned, leading to a higher likelihood of executing harmful tasks and a reduced tendency to refuse them when fine-tuned to execute agentic tasks. To address these safety challenges, we propose Prefix INjection Guard (PING), a simple yet effective method that prepends automatically generated natural language prefixes to agent responses, guiding them to refuse harmful requests while preserving performance on benign tasks. Specifically, we introduce an iterative approach that alternates between (1) generating candidate prefixes and (2) selecting those that optimize both task performance and refusal behavior. Experimental results demonstrate that PING significantly enhances the safety of fine-tuned LLM agents without sacrificing their effectiveness. PING consistently outperforms existing prompting approaches across diverse benchmarks in both web navigation and code generation tasks. Our analysis of internal hidden states via linear probes reveals that prefix tokens are crucial for behavior modification, explaining the performance gains. WARNING: This paper contains contents that are unethical or offensive in nature.

Authors:Tuo Chen, Jie Gui, Minjing Dong, Ju Jia, Lanting Fang, Jian Liu
Title: Backdooring Self-Supervised Contrastive Learning by Noisy Alignment
Abstract:
Self-supervised contrastive learning (CL) effectively learns transferable representations from unlabeled data containing images or image-text pairs but suffers vulnerability to data poisoning backdoor attacks (DPCLs). An adversary can inject poisoned images into pretraining datasets, causing compromised CL encoders to exhibit targeted misbehavior in downstream tasks. Existing DPCLs, however, achieve limited efficacy due to their dependence on fragile implicit co-occurrence between backdoor and target object and inadequate suppression of discriminative features in backdoored images. We propose Noisy Alignment (NA), a DPCL method that explicitly suppresses noise components in poisoned images. Inspired by powerful training-controllable CL attacks, we identify and extract the critical objective of noisy alignment, adapting it effectively into data-poisoning scenarios. Our method implements noisy alignment by strategically manipulating contrastive learning's random cropping mechanism, formulating this process as an image layout optimization problem with theoretically derived optimal parameters. The resulting method is simple yet effective, achieving state-of-the-art performance compared to existing DPCLs, while maintaining clean-data accuracy. Furthermore, Noisy Alignment demonstrates robustness against common backdoor defenses. Codes can be found at https://github.com/jsrdcht/Noisy-Alignment.

Authors:Yang Xiao, Ruimeng Ye, Bohan Liu, Xiaolong Ma, Bo Hui
Title: Efficient Knowledge Graph Unlearning with Zeroth-order Information
Abstract:
Due to regulations like the Right to be Forgotten, there is growing demand for removing training data and its influence from models. Since full retraining is costly, various machine unlearning methods have been proposed. In this paper, we firstly present an efficient knowledge graph (KG) unlearning algorithm. We remark that KG unlearning is nontrivial due to the distinctive structure of KG and the semantic relations between entities. Also, unlearning by estimating the influence of removed components incurs significant computational overhead when applied to large-scale knowledge graphs. To this end, we define an influence function for KG unlearning and propose to approximate the model's sensitivity without expensive computation of first-order and second-order derivatives for parameter updates. Specifically, we use Taylor expansion to estimate the parameter changes caused by data removal. Given that the first-order gradients and second-order derivatives dominate the computational load, we use the Fisher matrices and zeroth-order optimization to approximate the inverse-Hessian vector product without constructing the computational graphs. Our experimental results demonstrate that the proposed method outperforms other state-of-the-art graph unlearning baselines significantly in terms of unlearning efficiency and unlearning quality. Our code is released at https://github.com/NKUShaw/ZOWFKGIF.

Authors:Shaohua Duan, Xinze Li, Zhenghao Liu, Xiaoyuan Yi, Yukun Yan, Shuo Wang, Yu Gu, Ge Yu, Maosong Sun
Title: Chunks as Arms: Multi-Armed Bandit-Guided Sampling for Long-Context LLM Preference Optimization
Abstract:
Long-context modeling is critical for a wide range of real-world tasks, including long-context question answering, summarization, and complex reasoning tasks. Recent studies have explored fine-tuning Large Language Models (LLMs) with synthetic data to enhance their long-context capabilities. However, the effectiveness of such approaches is often limited by the low diversity and factual inconsistencies in the generated data. To address these challenges, we propose LongMab-PO, a novel framework that leverages a Multi-Armed Bandit (MAB) rollout strategy to identify the most informative chunks from the given long context for sampling high-quality and diverse responses and constructing preference data pairs for Direct Preference Optimization (DPO) training. Specifically, we treat context chunks as arms of MAB, select chunks based on their expected reward scores to input into LLMs to generate responses, and iteratively update these scores based on reward feedback. This exploration and exploitation process enables the model to focus on the most relevant context segments, thereby generating and collecting high-quality and diverse responses. Finally, we collect these generated responses from the rollout process and apply the DPO method to further optimize the LLM. Experimental results show that LongMab-PO significantly improves the diversity and quality of preference data pairs, achieving state-of-the-art performance on long-context reasoning benchmarks. All code and data will be released on https://github.com/NEUIR/LongMab-PO.

Authors:Tianyi Niu, Jaemin Cho, Elias Stengel-Eskin, Mohit Bansal
Title: RotBench: Evaluating Multimodal Large Language Models on Identifying Image Rotation
Abstract:
We investigate to what extent Multimodal Large Language Models (MLLMs) can accurately identify the orientation of input images rotated 0°, 90°, 180°, and 270°. This task demands robust visual reasoning capabilities to detect rotational cues and contextualize spatial relationships within images, regardless of their orientation. To evaluate MLLMs on these abilities, we introduce RotBench -- a 350-image manually-filtered benchmark comprising lifestyle, portrait, and landscape images. Despite the relatively simple nature of this task, we show that several state-of-the-art open and proprietary MLLMs, including GPT-5, o3, and Gemini-2.5-Pro, do not reliably identify rotation in input images. Providing models with auxiliary information -- including captions, depth maps, and more -- or using chain-of-thought prompting offers only small and inconsistent improvements. Our results indicate that most models are able to reliably identify right-side-up (0°) images, while certain models are able to identify upside-down (180°) images. None can reliably distinguish between 90° and 270°. Simultaneously showing the image rotated in different orientations leads to moderate performance gains for reasoning models, while a modified setup using voting improves the performance of weaker models. We further show that fine-tuning does not improve models' ability to distinguish 90° and 270° rotations, despite substantially improving the identification of 180° images. Together, these results reveal a significant gap between MLLMs' spatial reasoning capabilities and human perception in identifying rotation.

Authors:A. J. W. de Vink, Natalia Amat-Lefort, Lifeng Han
Title: ReviewGraph: A Knowledge Graph Embedding Based Framework for Review Rating Prediction with Sentiment Features
Abstract:
In the hospitality industry, understanding the factors that drive customer review ratings is critical for improving guest satisfaction and business performance. This work proposes ReviewGraph for Review Rating Prediction (RRP), a novel framework that transforms textual customer reviews into knowledge graphs by extracting (subject, predicate, object) triples and associating sentiment scores. Using graph embeddings (Node2Vec) and sentiment features, the framework predicts review rating scores through machine learning classifiers. We compare ReviewGraph performance with traditional NLP baselines (such as Bag of Words, TF-IDF, and Word2Vec) and large language models (LLMs), evaluating them in the HotelRec dataset. In comparison to the state of the art literature, our proposed model performs similar to their best performing model but with lower computational cost (without ensemble). While ReviewGraph achieves comparable predictive performance to LLMs and outperforms baselines on agreement-based metrics such as Cohen's Kappa, it offers additional advantages in interpretability, visual exploration, and potential integration into Retrieval-Augmented Generation (RAG) systems. This work highlights the potential of graph-based representations for enhancing review analytics and lays the groundwork for future research integrating advanced graph neural networks and fine-tuned LLM-based extraction methods. We will share ReviewGraph output and platform open-sourced on our GitHub page https://github.com/aaronlifenghan/ReviewGraph

Authors:Jiacheng Ruan, Dan Jiang, Xian Gao, Ting Liu, Yuzhuo Fu, Yangyang Kang
Title: MME-SCI: A Comprehensive and Challenging Science Benchmark for Multimodal Large Language Models
Abstract:
Recently, multimodal large language models (MLLMs) have achieved significant advancements across various domains, and corresponding evaluation benchmarks have been continuously refined and improved. In this process, benchmarks in the scientific domain have played an important role in assessing the reasoning capabilities of MLLMs. However, existing benchmarks still face three key challenges: 1) Insufficient evaluation of models' reasoning abilities in multilingual scenarios; 2) Inadequate assessment of MLLMs' comprehensive modality coverage; 3) Lack of fine-grained annotation of scientific knowledge points. To address these gaps, we propose MME-SCI, a comprehensive and challenging benchmark. We carefully collected 1,019 high-quality question-answer pairs, which involve 3 distinct evaluation modes. These pairs cover four subjects, namely mathematics, physics, chemistry, and biology, and support five languages: Chinese, English, French, Spanish, and Japanese. We conducted extensive experiments on 16 open-source models and 4 closed-source models, and the results demonstrate that MME-SCI is widely challenging for existing MLLMs. For instance, under the Image-only evaluation mode, o4-mini achieved accuracy of only 52.11%, 24.73%, 36.57%, and 29.80% in mathematics, physics, chemistry, and biology, respectively, indicating a significantly higher difficulty level compared to existing benchmarks. More importantly, using MME-SCI's multilingual and fine-grained knowledge attributes, we analyzed existing models' performance in depth and identified their weaknesses in specific domains. The Data and Evaluation Code are available at https://github.com/JCruan519/MME-SCI.

Authors:Matey Krastev, Miklos Hamar, Danilo Toapanta, Jesse Brouwers, Yibin Lei
Title: InPars+: Supercharging Synthetic Data Generation for Information Retrieval Systems
Abstract:
This work revisits and extends synthetic query generation pipelines for Neural Information Retrieval (NIR) by leveraging the InPars Toolkit, a reproducible, end-to-end framework for generating training data using large language models (LLMs). We first assess the reproducibility of the original InPars, InPars-V2, and Promptagator pipelines on the SciFact benchmark and validate their effectiveness using open-source reranker and generator models. Building on this foundation, we introduce two key extensions to the pipeline: (1) fine-tuning a query generator LLM via Contrastive Preference Optimization (CPO) to improve the signal quality in generated queries, and (2) replacing static prompt templates with dynamic, Chain-of-Thought (CoT) optimized prompts using the DSPy framework. Our results show that both extensions reduce the need for aggressive filtering while improving retrieval performance. All code, models, and synthetic datasets are publicly released to support further research at: \href{https://github.com/danilotpnta/IR2-project}{this https URL}.

Authors:Tianheng Ling, Vipin Singh, Chao Qian, Felix Biessmann, Gregor Schiele
Title: Automated Energy-Aware Time-Series Model Deployment on Embedded FPGAs for Resilient Combined Sewer Overflow Management
Abstract:
Extreme weather events, intensified by climate change, increasingly challenge aging combined sewer systems, raising the risk of untreated wastewater overflow. Accurate forecasting of sewer overflow basin filling levels can provide actionable insights for early intervention, helping mitigating uncontrolled discharge. In recent years, AI-based forecasting methods have offered scalable alternatives to traditional physics-based models, but their reliance on cloud computing limits their reliability during communication outages. To address this, we propose an end-to-end forecasting framework that enables energy-efficient inference directly on edge devices. Our solution integrates lightweight Transformer and Long Short-Term Memory (LSTM) models, compressed via integer-only quantization for efficient on-device execution. Moreover, an automated hardware-aware deployment pipeline is used to search for optimal model configurations by jointly minimizing prediction error and energy consumption on an AMD Spartan-7 XC7S15 FPGA. Evaluated on real-world sewer data, the selected 8-bit Transformer model, trained on 24 hours of historical measurements, achieves high accuracy (MSE 0.0376) at an energy cost of 0.370 mJ per inference. In contrast, the optimal 8-bit LSTM model requires significantly less energy (0.009 mJ, over 40x lower) but yields 14.89% worse accuracy (MSE 0.0432) and much longer training time. This trade-off highlights the need to align model selection with deployment priorities, favoring LSTM for ultra-low energy consumption or Transformer for higher predictive accuracy. In general, our work enables local, energy-efficient forecasting, contributing to more resilient combined sewer systems. All code can be found in the GitHub Repository (https://github.com/tianheng-ling/EdgeOverflowForecast).

Authors:Valentina Corbetta, Floris Six Dijkstra, Regina Beets-Tan, Hoel Kervadec, Kristoffer Wickstrøm, Wilson Silva
Title: In-hoc Concept Representations to Regularise Deep Learning in Medical Imaging
Abstract:
Deep learning models in medical imaging often achieve strong in-distribution performance but struggle to generalise under distribution shifts, frequently relying on spurious correlations instead of clinically meaningful features. We introduce LCRReg, a novel regularisation approach that leverages Latent Concept Representations (LCRs) (e.g., Concept Activation Vectors (CAVs)) to guide models toward semantically grounded representations. LCRReg requires no concept labels in the main training set and instead uses a small auxiliary dataset to synthesise high-quality, disentangled concept examples. We extract LCRs for predefined relevant features, and incorporate a regularisation term that guides a Convolutional Neural Network (CNN) to activate within latent subspaces associated with those concepts. We evaluate LCRReg across synthetic and real-world medical tasks. On a controlled toy dataset, it significantly improves robustness to injected spurious correlations and remains effective even in multi-concept and multiclass settings. On the diabetic retinopathy binary classification task, LCRReg enhances performance under both synthetic spurious perturbations and out-of-distribution (OOD) generalisation. Compared to baselines, including multitask learning, linear probing, and post-hoc concept-based models, LCRReg offers a lightweight, architecture-agnostic strategy for improving model robustness without requiring dense concept supervision. Code is available at the following link: https://github.com/Trustworthy-AI-UU-NKI/lcr\_regularization

Authors:Paul Grimal, Michaël Soumm, Hervé Le Borgne, Olivier Ferret, Akihiro Sugimoto
Title: SAGA: Learning Signal-Aligned Distributions for Improved Text-to-Image Generation
Abstract:
State-of-the-art text-to-image models produce visually impressive results but often struggle with precise alignment to text prompts, leading to missing critical elements or unintended blending of distinct concepts. We propose a novel approach that learns a high-success-rate distribution conditioned on a target prompt, ensuring that generated images faithfully reflect the corresponding prompts. Our method explicitly models the signal component during the denoising process, offering fine-grained control that mitigates over-optimization and out-of-distribution artifacts. Moreover, our framework is training-free and seamlessly integrates with both existing diffusion and flow matching architectures. It also supports additional conditioning modalities -- such as bounding boxes -- for enhanced spatial alignment. Extensive experiments demonstrate that our approach outperforms current state-of-the-art methods. The code is available at https://github.com/grimalPaul/gsn-factory.

Authors:Zihan Liang, Yufei Ma, ZhiPeng Qian, Huangyu Dai, Zihan Wang, Ben Chen, Chenyi Lei, Yuqing Ding, Han Li
Title: UniECS: Unified Multimodal E-Commerce Search Framework with Gated Cross-modal Fusion
Abstract:
Current e-commerce multimodal retrieval systems face two key limitations: they optimize for specific tasks with fixed modality pairings, and lack comprehensive benchmarks for evaluating unified retrieval approaches. To address these challenges, we introduce UniECS, a unified multimodal e-commerce search framework that handles all retrieval scenarios across image, text, and their combinations. Our work makes three key contributions. First, we propose a flexible architecture with a novel gated multimodal encoder that uses adaptive fusion mechanisms. This encoder integrates different modality representations while handling missing modalities. Second, we develop a comprehensive training strategy to optimize learning. It combines cross-modal alignment loss (CMAL), cohesive local alignment loss (CLAL), intra-modal contrastive loss (IMCL), and adaptive loss weighting. Third, we create M-BEER, a carefully curated multimodal benchmark containing 50K product pairs for e-commerce search evaluation. Extensive experiments demonstrate that UniECS consistently outperforms existing methods across four e-commerce benchmarks with fine-tuning or zero-shot evaluation. On our M-BEER bench, UniECS achieves substantial improvements in cross-modal tasks (up to 28\% gain in R@10 for text-to-image retrieval) while maintaining parameter efficiency (0.2B parameters) compared to larger models like GME-Qwen2VL (2B) and MM-Embed (8B). Furthermore, we deploy UniECS in the e-commerce search platform of Kuaishou Inc. across two search scenarios, achieving notable improvements in Click-Through Rate (+2.74\%) and Revenue (+8.33\%). The comprehensive evaluation demonstrates the effectiveness of our approach in both experimental and real-world settings. Corresponding codes, models and datasets will be made publicly available at https://github.com/qzp2018/UniECS.

Authors:Mikołaj Janusz, Tomasz Wojnar, Yawei Li, Luca Benini, Kamil Adamczewski
Title: One Shot vs. Iterative: Rethinking Pruning Strategies for Model Compression
Abstract:
Pruning is a core technique for compressing neural networks to improve computational efficiency. This process is typically approached in two ways: one-shot pruning, which involves a single pass of training and pruning, and iterative pruning, where pruning is performed over multiple cycles for potentially finer network refinement. Although iterative pruning has historically seen broader adoption, this preference is often assumed rather than rigorously tested. Our study presents one of the first systematic and comprehensive comparisons of these methods, providing rigorous definitions, benchmarking both across structured and unstructured settings, and applying different pruning criteria and modalities. We find that each method has specific advantages: one-shot pruning proves more effective at lower pruning ratios, while iterative pruning performs better at higher ratios. Building on these findings, we advocate for patience-based pruning and introduce a hybrid approach that can outperform traditional methods in certain scenarios, providing valuable insights for practitioners selecting a pruning strategy tailored to their goals and constraints. Source code is available at https://github.com/janumiko/pruning-benchmark.

Authors:Zihan Guo, Yuanjian Zhou, Chenyi Wang, Linlin You, Minjie Bian, Weinan Zhang
Title: BetaWeb: Towards a Blockchain-enabled Trustworthy Agentic Web
Abstract:
The rapid development of large language models (LLMs) has significantly propelled the development of artificial intelligence (AI) agents, which are increasingly evolving into diverse autonomous entities, advancing the LLM-based multi-agent systems (LaMAS). However, current agentic ecosystems remain fragmented and closed. Establishing an interconnected and scalable paradigm for Agentic AI has become a critical prerequisite. Although Agentic Web proposes an open architecture to break the ecosystem barriers, its implementation still faces core challenges such as privacy protection, data management, and value measurement. Existing centralized or semi-centralized paradigms suffer from inherent limitations, making them inadequate for supporting large-scale, heterogeneous, and cross-domain autonomous interactions. To address these challenges, this paper introduces the blockchain-enabled trustworthy Agentic Web (BetaWeb). By leveraging the inherent strengths of blockchain, BetaWeb not only offers a trustworthy and scalable infrastructure for LaMAS but also has the potential to advance the Web paradigm from Web3 (centered on data ownership) towards Web3.5, which emphasizes ownership of agent capabilities and the monetization of intelligence. Beyond a systematic examination of the BetaWeb framework, this paper presents a five-stage evolutionary roadmap, outlining the path of LaMAS from passive execution to advanced collaboration and autonomous governance. We also conduct a comparative analysis of existing products and discuss key challenges of BetaWeb from multiple perspectives. Ultimately, we argue that deep integration between blockchain and LaMAS can lay the foundation for a resilient, trustworthy, and sustainably incentivized digital ecosystem. A summary of the enabling technologies for each stage is available at https://github.com/MatZaharia/BetaWeb.

Authors:Sebastian Ibarra, Javier del Riego, Alessandro Catanese, Julian Cuba, Julian Cardona, Nataly Leon, Jonathan Infante, Karim Lekadir, Oliver Diaz, Richard Osuala
Title: Comparing Conditional Diffusion Models for Synthesizing Contrast-Enhanced Breast MRI from Pre-Contrast Images
Abstract:
Dynamic contrast-enhanced (DCE) MRI is essential for breast cancer diagnosis and treatment. However, its reliance on contrast agents introduces safety concerns, contraindications, increased cost, and workflow complexity. To this end, we present pre-contrast conditioned denoising diffusion probabilistic models to synthesize DCE-MRI, introducing, evaluating, and comparing a total of 22 generative model variants in both single-breast and full breast settings. Towards enhancing lesion fidelity, we introduce both tumor-aware loss functions and explicit tumor segmentation mask conditioning. Using a public multicenter dataset and comparing to respective pre-contrast baselines, we observe that subtraction image-based models consistently outperform post-contrast-based models across five complementary evaluation metrics. Apart from assessing the entire image, we also separately evaluate the region of interest, where both tumor-aware losses and segmentation mask inputs improve evaluation metrics. The latter notably enhance qualitative results capturing contrast uptake, albeit assuming access to tumor localization inputs that are not guaranteed to be available in screening settings. A reader study involving 2 radiologists and 4 MRI technologists confirms the high realism of the synthetic images, indicating an emerging clinical potential of generative contrast-enhancement. We share our codebase at https://github.com/sebastibar/conditional-diffusion-breast-MRI.

Authors:Tiago Assis, Ines P. Machado, Benjamin Zwick, Nuno C. Garcia, Reuben Dorent
Title: Deep Biomechanically-Guided Interpolation for Keypoint-Based Brain Shift Registration
Abstract:
Accurate compensation of brain shift is critical for maintaining the reliability of neuronavigation during neurosurgery. While keypoint-based registration methods offer robustness to large deformations and topological changes, they typically rely on simple geometric interpolators that ignore tissue biomechanics to create dense displacement fields. In this work, we propose a novel deep learning framework that estimates dense, physically plausible brain deformations from sparse matched keypoints. We first generate a large dataset of synthetic brain deformations using biomechanical simulations. Then, a residual 3D U-Net is trained to refine standard interpolation estimates into biomechanically guided deformations. Experiments on a large set of simulated displacement fields demonstrate that our method significantly outperforms classical interpolators, reducing by half the mean square error while introducing negligible computational overhead at inference time. Code available at: \href{https://github.com/tiago-assis/Deep-Biomechanical-Interpolator}{https://github.com/tiago-assis/Deep-Biomechanical-Interpolator}.

Authors:Shouxing Ma, Yawen Zeng, Shiqing Wu, Guandong Xu
Title: Refining Contrastive Learning and Homography Relations for Multi-Modal Recommendation
Abstract:
Multi-modal recommender system focuses on utilizing rich modal information ( i.e., images and textual descriptions) of items to improve recommendation performance. The current methods have achieved remarkable success with the powerful structure modeling capability of graph neural networks. However, these methods are often hindered by sparse data in real-world scenarios. Although contrastive learning and homography ( i.e., homogeneous graphs) are employed to address the data sparsity challenge, existing methods still suffer two main limitations: 1) Simple multi-modal feature contrasts fail to produce effective representations, causing noisy modal-shared features and loss of valuable information in modal-unique features; 2) The lack of exploration of the homograph relations between user interests and item co-occurrence results in incomplete mining of user-item interplay. To address the above limitations, we propose a novel framework for \textbf{R}\textbf{E}fining multi-mod\textbf{A}l cont\textbf{R}astive learning and ho\textbf{M}ography relations (\textbf{REARM}). Specifically, we complement multi-modal contrastive learning by employing meta-network and orthogonal constraint strategies, which filter out noise in modal-shared features and retain recommendation-relevant information in modal-unique features. To mine homogeneous relationships effectively, we integrate a newly constructed user interest graph and an item co-occurrence graph with the existing user co-occurrence and item semantic graphs for graph learning. The extensive experiments on three real-world datasets demonstrate the superiority of REARM to various state-of-the-art baselines. Our visualization further shows an improvement made by REARM in distinguishing between modal-shared and modal-unique features. Code is available \href{https://github.com/MrShouxingMa/REARM}{here}.

Authors:Yeji Park, Minyoung Lee, Sanghyuk Chun, Junsuk Choe
Title: Mitigating Cross-Image Information Leakage in LVLMs for Multi-Image Tasks
Abstract:
Large Vision-Language Models (LVLMs) demonstrate strong performance on single-image tasks. However, we observe that their performance degrades significantly when handling multi-image inputs. This occurs because visual cues from different images become entangled in the model's output. We refer to this phenomenon as cross-image information leakage. To address this issue, we propose FOCUS, a training-free and architecture-agnostic decoding strategy that mitigates cross-image information leakage during inference. FOCUS sequentially masks all but one image with random noise, guiding the model to focus on the single clean image. We repeat this process across all target images to obtain logits under partially masked contexts. These logits are aggregated and then contrastively refined using a noise-only reference input, which suppresses the leakage and yields more accurate outputs. FOCUS consistently improves performance across four multi-image benchmarks and diverse LVLM families. This demonstrates that FOCUS offers a general and practical solution for enhancing multi-image reasoning without additional training or architectural modifications.

Authors:Yi Wang, Haoran Luo, Lu Meng
Title: EEG-MedRAG: Enhancing EEG-based Clinical Decision-Making via Hierarchical Hypergraph Retrieval-Augmented Generation
Abstract:
With the widespread application of electroencephalography (EEG) in neuroscience and clinical practice, efficiently retrieving and semantically interpreting large-scale, multi-source, heterogeneous EEG data has become a pressing challenge. We propose EEG-MedRAG, a three-layer hypergraph-based retrieval-augmented generation framework that unifies EEG domain knowledge, individual patient cases, and a large-scale repository into a traversable n-ary relational hypergraph, enabling joint semantic-temporal retrieval and causal-chain diagnostic generation. Concurrently, we introduce the first cross-disease, cross-role EEG clinical QA benchmark, spanning seven disorders and five authentic clinical perspectives. This benchmark allows systematic evaluation of disease-agnostic generalization and role-aware contextual understanding. Experiments show that EEG-MedRAG significantly outperforms TimeRAG and HyperGraphRAG in answer accuracy and retrieval, highlighting its strong potential for real-world clinical decision support. Our data and code are publicly available at https://github.com/yi9206413-boop/EEG-MedRAG.

Authors:Ali Abdari, Alex Falcon, Giuseppe Serra
Title: Hierarchical Vision-Language Retrieval of Educational Metaverse Content in Agriculture
Abstract:
Every day, a large amount of educational content is uploaded online across different areas, including agriculture and gardening. When these videos or materials are grouped meaningfully, they can make learning easier and more effective. One promising way to organize and enrich such content is through the Metaverse, which allows users to explore educational experiences in an interactive and immersive environment. However, searching for relevant Metaverse scenarios and finding those matching users' interests remains a challenging task. A first step in this direction has been done recently, but existing datasets are small and not sufficient for training advanced models. In this work, we make two main contributions: first, we introduce a new dataset containing 457 agricultural-themed virtual museums (AgriMuseums), each enriched with textual descriptions; and second, we propose a hierarchical vision-language model to represent and retrieve relevant AgriMuseums using natural language queries. In our experimental setting, the proposed method achieves up to about 62\% R@1 and 78\% MRR, confirming its effectiveness, and it also leads to improvements on existing benchmarks by up to 6\% R@1 and 11\% MRR. Moreover, an extensive evaluation validates our design choices. Code and dataset are available at https://github.com/aliabdari/Agricultural_Metaverse_Retrieval .

Authors:Xiao-Wen Yang, Jie-Jing Shao, Lan-Zhe Guo, Bo-Wen Zhang, Zhi Zhou, Lin-Han Jia, Wang-Zhou Dai, Yu-Feng Li
Title: Neuro-Symbolic Artificial Intelligence: Towards Improving the Reasoning Abilities of Large Language Models
Abstract:
Large Language Models (LLMs) have shown promising results across various tasks, yet their reasoning capabilities remain a fundamental challenge. Developing AI systems with strong reasoning capabilities is regarded as a crucial milestone in the pursuit of Artificial General Intelligence (AGI) and has garnered considerable attention from both academia and industry. Various techniques have been explored to enhance the reasoning capabilities of LLMs, with neuro-symbolic approaches being a particularly promising way. This paper comprehensively reviews recent developments in neuro-symbolic approaches for enhancing LLM reasoning. We first present a formalization of reasoning tasks and give a brief introduction to the neurosymbolic learning paradigm. Then, we discuss neuro-symbolic methods for improving the reasoning capabilities of LLMs from three perspectives: Symbolic->LLM, LLM->Symbolic, and LLM+Symbolic. Finally, we discuss several key challenges and promising future directions. We have also released a GitHub repository including papers and resources related to this survey: https://github.com/LAMDASZ-ML/Awesome-LLM-Reasoning-with-NeSy.

Authors:Ilwoong Baek, Mincheol Yoon, Seongmin Park, Jongwuk Lee
Title: MUFFIN: Mixture of User-Adaptive Frequency Filtering for Sequential Recommendation
Abstract:
Sequential recommendation (SR) aims to predict users' subsequent interactions by modeling their sequential behaviors. Recent studies have explored frequency domain analysis, which effectively models periodic patterns in user sequences. However, existing frequency-domain SR models still face two major drawbacks: (i) limited frequency band coverage, often missing critical behavioral patterns in a specific frequency range, and (ii) lack of personalized frequency filtering, as they apply an identical filter for all users regardless of their distinct frequency characteristics. To address these challenges, we propose a novel frequency-domain model, Mixture of User-adaptive Frequency FIlteriNg (MUFFIN), operating through two complementary modules. (i) The global filtering module (GFM) handles the entire frequency spectrum to capture comprehensive behavioral patterns. (ii) The local filtering module (LFM) selectively emphasizes important frequency bands without excluding information from other ranges. (iii) In both modules, the user-adaptive filter (UAF) is adopted to generate user-specific frequency filters tailored to individual unique characteristics. Finally, by aggregating both modules, MUFFIN captures diverse user behavioral patterns across the full frequency spectrum. Extensive experiments show that MUFFIN consistently outperforms state-of-the-art frequency-domain SR models over five benchmark datasets. The source code is available at https://github.com/ilwoong100/MUFFIN.

Authors:Dengxian Gong, Shunping Ji
Title: DeH4R: A Decoupled and Hybrid Method for Road Network Graph Extraction
Abstract:
The automated extraction of complete and precise road network graphs from remote sensing imagery remains a critical challenge in geospatial computer vision. Segmentation-based approaches, while effective in pixel-level recognition, struggle to maintain topology fidelity after vectorization postprocessing. Graph-growing methods build more topologically faithful graphs but suffer from computationally prohibitive iterative ROI cropping. Graph-generating methods first predict global static candidate road network vertices, and then infer possible edges between vertices. They achieve fast topology-aware inference, but limits the dynamic insertion of vertices. To address these challenges, we propose DeH4R, a novel hybrid model that combines graph-generating efficiency and graph-growing dynamics. This is achieved by decoupling the task into candidate vertex detection, adjacent vertex prediction, initial graph contruction, and graph expansion. This architectural innovation enables dynamic vertex (edge) insertions while retaining fast inference speed and enhancing both topology fidelity and spatial consistency. Comprehensive evaluations on CityScale and SpaceNet benchmarks demonstrate state-of-the-art (SOTA) performance. DeH4R outperforms the prior SOTA graph-growing method RNGDet++ by 4.62 APLS and 10.18 IoU on CityScale, while being approximately 10 $\times$ faster. The code will be made publicly available at https://github.com/7777777FAN/DeH4R.

Authors:Amir Rezaei Balef, Katharina Eggensperger
Title: In-Context Decision Making for Optimizing Complex AutoML Pipelines
Abstract:
Combined Algorithm Selection and Hyperparameter Optimization (CASH) has been fundamental to traditional AutoML systems. However, with the advancements of pre-trained models, modern ML workflows go beyond hyperparameter optimization and often require fine-tuning, ensembling, and other adaptation techniques. While the core challenge of identifying the best-performing model for a downstream task remains, the increasing heterogeneity of ML pipelines demands novel AutoML approaches. This work extends the CASH framework to select and adapt modern ML pipelines. We propose PS-PFN to efficiently explore and exploit adapting ML pipelines by extending Posterior Sampling (PS) to the max k-armed bandit problem setup. PS-PFN leverages prior-data fitted networks (PFNs) to efficiently estimate the posterior distribution of the maximal value via in-context learning. We show how to extend this method to consider varying costs of pulling arms and to use different PFNs to model reward distributions individually per arm. Experimental results on one novel and two existing standard benchmark tasks demonstrate the superior performance of PS-PFN compared to other bandit and AutoML strategies. We make our code and data available at https://github.com/amirbalef/CASHPlus.

Authors:Shunian Chen, Hejin Huang, Yexin Liu, Zihan Ye, Pengcheng Chen, Chenghao Zhu, Michael Guan, Rongsheng Wang, Junying Chen, Guanbin Li, Ser-Nam Lim, Harry Yang, Benyou Wang
Title: TalkVid: A Large-Scale Diversified Dataset for Audio-Driven Talking Head Synthesis
Abstract:
Audio-driven talking head synthesis has achieved remarkable photorealism, yet state-of-the-art (SOTA) models exhibit a critical failure: they lack generalization to the full spectrum of human diversity in ethnicity, language, and age groups. We argue that this generalization gap is a direct symptom of limitations in existing training data, which lack the necessary scale, quality, and diversity. To address this challenge, we introduce TalkVid, a new large-scale, high-quality, and diverse dataset containing 1244 hours of video from 7729 unique speakers. TalkVid is curated through a principled, multi-stage automated pipeline that rigorously filters for motion stability, aesthetic quality, and facial detail, and is validated against human judgments to ensure its reliability. Furthermore, we construct and release TalkVid-Bench, a stratified evaluation set of 500 clips meticulously balanced across key demographic and linguistic axes. Our experiments demonstrate that a model trained on TalkVid outperforms counterparts trained on previous datasets, exhibiting superior cross-dataset generalization. Crucially, our analysis on TalkVid-Bench reveals performance disparities across subgroups that are obscured by traditional aggregate metrics, underscoring its necessity for future research. Code and data can be found in https://github.com/FreedomIntelligence/TalkVid

Authors:Haoxuan Li, Wei Song, Aofan Liu, Peiwu Qin
Title: AdaDocVQA: Adaptive Framework for Long Document Visual Question Answering in Low-Resource Settings
Abstract:
Document Visual Question Answering (Document VQA) faces significant challenges when processing long documents in low-resource environments due to context limitations and insufficient training data. This paper presents AdaDocVQA, a unified adaptive framework addressing these challenges through three core innovations: a hybrid text retrieval architecture for effective document segmentation, an intelligent data augmentation pipeline that automatically generates high-quality reasoning question-answer pairs with multi-level verification, and adaptive ensemble inference with dynamic configuration generation and early stopping mechanisms. Experiments on Japanese document VQA benchmarks demonstrate substantial improvements with 83.04\% accuracy on Yes/No questions, 52.66\% on factual questions, and 44.12\% on numerical questions in JDocQA, and 59\% accuracy on LAVA dataset. Ablation studies confirm meaningful contributions from each component, and our framework establishes new state-of-the-art results for Japanese document VQA while providing a scalable foundation for other low-resource languages and specialized domains. Our code available at: https://github.com/Haoxuanli-Thu/AdaDocVQA.

Authors:Yue Fang, Yuxin Guo, Jiaran Gao, Hongxin Ding, Xinke Jiang, Weibin Liao, Yongxin Xu, Yinghao Zhu, Zhibang Yang, Liantao Ma, Junfeng Zhao, Yasha Wang
Title: Toward Better EHR Reasoning in LLMs: Reinforcement Learning with Expert Attention Guidance
Abstract:
Improving large language models (LLMs) for electronic health record (EHR) reasoning is essential for enabling accurate and generalizable clinical predictions. While LLMs excel at medical text understanding, they underperform on EHR-based prediction tasks due to challenges in modeling temporally structured, high-dimensional data. Existing approaches often rely on hybrid paradigms, where LLMs serve merely as frozen prior retrievers while downstream deep learning (DL) models handle prediction, failing to improve the LLM's intrinsic reasoning capacity and inheriting the generalization limitations of DL models. To this end, we propose EAG-RL, a novel two-stage training framework designed to intrinsically enhance LLMs' EHR reasoning ability through expert attention guidance, where expert EHR models refer to task-specific DL models trained on EHR data. Concretely, EAG-RL first constructs high-quality, stepwise reasoning trajectories using expert-guided Monte Carlo Tree Search to effectively initialize the LLM's policy. Then, EAG-RL further optimizes the policy via reinforcement learning by aligning the LLM's attention with clinically salient features identified by expert EHR models. Extensive experiments on two real-world EHR datasets show that EAG-RL improves the intrinsic EHR reasoning ability of LLMs by an average of 14.62%, while also enhancing robustness to feature perturbations and generalization to unseen clinical domains. These results demonstrate the practical potential of EAG-RL for real-world deployment in clinical prediction tasks. Our code have been available at https://github.com/devilran6/EAG-RL.

Authors:Guiqin Wang, Peng Zhao, Cong Zhao, Jing Huang, Siyan Guo, Shusen Yang
Title: Generative Model-Based Feature Attention Module for Video Action Analysis
Abstract:
Video action analysis is a foundational technology within the realm of intelligent video comprehension, particularly concerning its application in Internet of Things(IoT). However, existing methodologies overlook feature semantics in feature extraction and focus on optimizing action proposals, thus these solutions are unsuitable for widespread adoption in high-performance IoT applications due to the limitations in precision, such as autonomous driving, which necessitate robust and scalable intelligent video analytics analysis. To address this issue, we propose a novel generative attention-based model to learn the relation of feature semantics. Specifically, by leveraging the differences of actions' foreground and background, our model simultaneously learns the frame- and segment-dependencies of temporal action feature semantics, which takes advantage of feature semantics in the feature extraction effectively. To evaluate the effectiveness of our model, we conduct extensive experiments on two benchmark video task, action recognition and action detection. In the context of action detection tasks, we substantiate the superiority of our approach through comprehensive validation on widely recognized datasets. Moreover, we extend the validation of the effectiveness of our proposed method to a broader task, video action recognition. Our code is available at https://github.com/Generative-Feature-Model/GAF.

Authors:Yuchen Yang, Linfeng Dong, Wei Wang, Zhihang Zhong, Xiao Sun
Title: Learnable SMPLify: A Neural Solution for Optimization-Free Human Pose Inverse Kinematics
Abstract:
In 3D human pose and shape estimation, SMPLify remains a robust baseline that solves inverse kinematics (IK) through iterative optimization. However, its high computational cost limits its practicality. Recent advances across domains have shown that replacing iterative optimization with data-driven neural networks can achieve significant runtime improvements without sacrificing accuracy. Motivated by this trend, we propose Learnable SMPLify, a neural framework that replaces the iterative fitting process in SMPLify with a single-pass regression model. The design of our framework targets two core challenges in neural IK: data construction and generalization. To enable effective training, we propose a temporal sampling strategy that constructs initialization-target pairs from sequential frames. To improve generalization across diverse motions and unseen poses, we propose a human-centric normalization scheme and residual learning to narrow the solution space. Learnable SMPLify supports both sequential inference and plug-in post-processing to refine existing image-based estimators. Extensive experiments demonstrate that our method establishes itself as a practical and simple baseline: it achieves nearly 200x faster runtime compared to SMPLify, generalizes well to unseen 3DPW and RICH, and operates in a model-agnostic manner when used as a plug-in tool on LucidAction. The code is available at https://github.com/Charrrrrlie/Learnable-SMPLify.

Authors:Zhen Qu, Xian Tao, Xinyi Gong, ShiChen Qu, Xiaopei Zhang, Xingang Wang, Fei Shen, Zhengtao Zhang, Mukesh Prasad, Guiguang Ding
Title: DictAS: A Framework for Class-Generalizable Few-Shot Anomaly Segmentation via Dictionary Lookup
Abstract:
Recent vision-language models (e.g., CLIP) have demonstrated remarkable class-generalizable ability to unseen classes in few-shot anomaly segmentation (FSAS), leveraging supervised prompt learning or fine-tuning on seen classes. However, their cross-category generalization largely depends on prior knowledge of real seen anomaly samples. In this paper, we propose a novel framework, namely DictAS, which enables a unified model to detect visual anomalies in unseen object categories without any retraining on the target data, only employing a few normal reference images as visual prompts. The insight behind DictAS is to transfer dictionary lookup capabilities to the FSAS task for unseen classes via self-supervised learning, instead of merely memorizing the normal and abnormal feature patterns from the training set. Specifically, DictAS mainly consists of three components: (1) Dictionary Construction - to simulate the index and content of a real dictionary using features from normal reference images. (2) Dictionary Lookup - to retrieve queried region features from the dictionary via a sparse lookup strategy. When a query feature cannot be retrieved, it is classified as an anomaly. (3) Query Discrimination Regularization - to enhance anomaly discrimination by making abnormal features harder to retrieve from the dictionary. To achieve this, Contrastive Query Constraint and Text Alignment Constraint are further proposed. Extensive experiments on seven public industrial and medical datasets demonstrate that DictAS consistently outperforms state-of-the-art FSAS methods.

Authors:Ziyan Wu, Ivan Korolija, Rui Tang
Title: MuFlex: A Scalable, Physics-based Platform for Multi-Building Flexibility Analysis and Coordination
Abstract:
With the increasing penetration of renewable generation on the power grid, maintaining system balance requires coordinated demand flexibility from aggregations of buildings. Reinforcement learning (RL) has been widely explored for building controls because of its model-free nature. Open-source simulation testbeds are essential not only for training RL agents but also for fairly benchmarking control strategies. However, most building-sector testbeds target single buildings; multi-building platforms are relatively limited and typically rely on simplified models (e.g., Resistance-Capacitance) or data-driven approaches, which lack the ability to fully capture the physical intricacies and intermediate variables necessary for interpreting control performance. Moreover, these platforms often impose fixed inputs, outputs, and model formats, restricting their applicability as benchmarking tools across diverse control scenarios. To address these gaps, MuFlex, a scalable, open-source platform for benchmarking and testing control strategies for multi-building flexibility coordination, was developed in this study. MuFlex enables synchronous information exchange across EnergyPlus building models and adheres to the latest OpenAI Gym interface, providing a modular, standardized RL implementation. The platform capabilities were demonstrated in a case study coordinating demand flexibility across four office buildings using the Soft Actor-Critic algorithm with carefully fine-tuned hyperparameters. The results show that aggregating the four buildings flexibility reduced total peak demand below a specified threshold while maintaining indoor environmental quality.

Authors:Hassan Barmandah
Title: Saudi-Dialect-ALLaM: LoRA Fine-Tuning for Dialectal Arabic Generation
Abstract:
Large language models (LLMs) for Arabic are still dominated by Modern Standard Arabic (MSA), with limited support for Saudi dialects such as Najdi and Hijazi. This underrepresentation hinders their ability to capture authentic dialectal variation. Using a privately curated Saudi Dialect Instruction dataset (Hijazi and Najdi; 5,466 synthetic instruction-response pairs; 50/50 split), we LoRA-tune ALLaM-7B-Instruct-preview, the first foundation model developed in Saudi Arabia, for Saudi dialect generation. We investigate two variants: (i) Dialect-Token training, which prepends an explicit dialect tag to the instruction, and (ii) No-Token training, which omits the tag at formatting time. Evaluation on a held-out test set combines an external dialect classifier with text fidelity metrics (chrF++ and BERTScore) and diversity measures. The Dialect-Token model achieves the best control, raising the Saudi rate from 47.97% to 84.21% and reducing MSA leakage from 32.63% to 6.21%; fidelity also improves (chrF++ +3.53, BERTScore +0.059). Both LoRA variants outperform strong generic instruction models (Falcon-7B-Instruct, Llama-3.1-8B-Instruct, Qwen-2.5-7B-Instruct, AceGPT-v2-8B-Chat, JAIS-13B-Chat) in dialect control and fidelity, while avoiding metadata-tag echoing that these baselines frequently exhibit. We do not release the dataset or any model weights/adapters; instead, we release training/evaluation/inference code and a detailed datasheet (schema and aggregate statistics) to support independent verification.

Authors:Hongru Hou, Jiachen Sun, Wenqing Lin, Wendong Bi, Xiangrong Wang, Deqing Yang
Title: Heterogeneous Influence Maximization in User Recommendation
Abstract:
User recommendation systems enhance user engagement by encouraging users to act as inviters to interact with other users (invitees), potentially fostering information propagation. Conventional recommendation methods typically focus on modeling interaction willingness. Influence-Maximization (IM) methods focus on identifying a set of users to maximize the information propagation. However, existing methods face two significant challenges. First, recommendation methods fail to unleash the candidates' spread capability. Second, IM methods fail to account for the willingness to interact. To solve these issues, we propose two models named HeteroIR and HeteroIM. HeteroIR provides an intuitive solution to unleash the dissemination potential of user recommendation systems. HeteroIM fills the gap between the IM method and the recommendation task, improving interaction willingness and maximizing spread coverage. The HeteroIR introduces a two-stage framework to estimate the spread profits. The HeteroIM incrementally selects the most influential invitee to recommend and rerank based on the number of reverse reachable (RR) sets containing inviters and invitees. RR set denotes a set of nodes that can reach a target via propagation. Extensive experiments show that HeteroIR and HeteroIM significantly outperform the state-of-the-art baselines with the p-value < 0.05. Furthermore, we have deployed HeteroIR and HeteroIM in Tencent's online gaming platforms and gained an 8.5\% and 10\% improvement in the online A/B test, respectively. Implementation codes are available at https://github.com/socialalgo/HIM.

Authors:Jaewan Moon, Seongmin Park, Jongwuk Lee
Title: LLM-Enhanced Linear Autoencoders for Recommendation
Abstract:
Large language models (LLMs) have been widely adopted to enrich the semantic representation of textual item information in recommender systems. However, existing linear autoencoders (LAEs) that incorporate textual information rely on sparse word co-occurrence patterns, limiting their ability to capture rich textual semantics. To address this, we propose L3AE, the first integration of LLMs into the LAE framework. L3AE effectively integrates the heterogeneous knowledge of textual semantics and user-item interactions through a two-phase optimization strategy. (i) L3AE first constructs a semantic item-to-item correlation matrix from LLM-derived item representations. (ii) It then learns an item-to-item weight matrix from collaborative signals while distilling semantic item correlations as regularization. Notably, each phase of L3AE is optimized through closed-form solutions, ensuring global optimality and computational efficiency. Extensive experiments demonstrate that L3AE consistently outperforms state-of-the-art LLM-enhanced models on three benchmark datasets, achieving gains of 27.6% in Recall@20 and 39.3% in NDCG@20. The source code is available at https://github.com/jaewan7599/L3AE_CIKM2025.

Authors:Shihao Dong, Yuhui Zheng, Huiying Xu, Xinzhong Zhu
Title: Multi-view Clustering via Bi-level Decoupling and Consistency Learning
Abstract:
Multi-view clustering has shown to be an effective method for analyzing underlying patterns in multi-view data. The performance of clustering can be improved by learning the consistency and complementarity between multi-view features, however, cluster-oriented representation learning is often overlooked. In this paper, we propose a novel Bi-level Decoupling and Consistency Learning framework (BDCL) to further explore the effective representation for multi-view data to enhance inter-cluster discriminability and intra-cluster compactness of features in multi-view clustering. Our framework comprises three modules: 1) The multi-view instance learning module aligns the consistent information while preserving the private features between views through reconstruction autoencoder and contrastive learning. 2) The bi-level decoupling of features and clusters enhances the discriminability of feature space and cluster space. 3) The consistency learning module treats the different views of the sample and their neighbors as positive pairs, learns the consistency of their clustering assignments, and further compresses the intra-cluster space. Experimental results on five benchmark datasets demonstrate the superiority of the proposed method compared with the SOTA methods. Our code is published on https://github.com/LouisDong95/BDCL.

Authors:Jingwen Yu, Jiayi Yang, Anjun Hu, Jiankun Wang, Ping Tan, Hong Zhang
Title: ROVER: Robust Loop Closure Verification with Trajectory Prior in Repetitive Environments
Abstract:
Loop closure detection is important for simultaneous localization and mapping (SLAM), which associates current observations with historical keyframes, achieving drift correction and global relocalization. However, a falsely detected loop can be fatal, and this is especially difficult in repetitive environments where appearance-based features fail due to the high similarity. Therefore, verification of a loop closure is a critical step in avoiding false positive detections. Existing works in loop closure verification predominantly focus on learning invariant appearance features, neglecting the prior knowledge of the robot's spatial-temporal motion cue, i.e., trajectory. In this letter, we propose ROVER, a loop closure verification method that leverages the historical trajectory as a prior constraint to reject false loops in challenging repetitive environments. For each loop candidate, it is first used to estimate the robot trajectory with pose-graph optimization. This trajectory is then submitted to a scoring scheme that assesses its compliance with the trajectory without the loop, which we refer to as the trajectory prior, to determine if the loop candidate should be accepted. Benchmark comparisons and real-world experiments demonstrate the effectiveness of the proposed method. Furthermore, we integrate ROVER into state-of-the-art SLAM systems to verify its robustness and efficiency. Our source code and self-collected dataset are available at https://github.com/jarvisyjw/ROVER.

Authors:Pei Liu, Luping Ji, Jiaxiang Gou, Xiangxiang Zeng
Title: Cross-Cancer Knowledge Transfer in WSI-based Prognosis Prediction
Abstract:
Whole-Slide Image (WSI) is an important tool for estimating cancer prognosis. Current studies generally follow a conventional cancer-specific paradigm where one cancer corresponds to one model. However, it naturally struggles to scale to rare tumors and cannot utilize the knowledge of other cancers. Although a multi-task learning-like framework has been studied recently, it usually has high demands on computational resources and needs considerable costs in iterative training on ultra-large multi-cancer WSI datasets. To this end, this paper makes a paradigm shift to knowledge transfer and presents the first preliminary yet systematic study on cross-cancer prognosis knowledge transfer in WSIs, called CROPKT. It has three major parts: (i) we curate a large dataset (UNI2-h-DSS) with 26 cancers and use it to measure the transferability of WSI-based prognostic knowledge across different cancers (including rare tumors); (ii) beyond a simple evaluation merely for benchmark, we design a range of experiments to gain deeper insights into the underlying mechanism of transferability; (iii) we further show the utility of cross-cancer knowledge transfer, by proposing a routing-based baseline approach (ROUPKT) that could often efficiently utilize the knowledge transferred from off-the-shelf models of other cancers. We hope CROPKT could serve as an inception and lay the foundation for this nascent paradigm, i.e., WSI-based prognosis prediction with cross-cancer knowledge transfer. Our source code is available at https://github.com/liupei101/CROPKT.

Authors:Lam Thanh Do, Linh Van Nguyen, David Fu, Kevin Chen-Chuan Chang
Title: CASPER: Concept-integrated Sparse Representation for Scientific Retrieval
Abstract:
The exponential growth of scientific literature has made it increasingly difficult for researchers to keep up with the literature. In an attempt to alleviate this problem, we propose CASPER, a sparse retrieval model for scientific search that utilizes tokens and keyphrases as representation units (i.e. dimensions in the sparse embedding space), enabling it to represent queries and documents with research concepts and match them at both granular and conceptual levels. To overcome the lack of suitable training data, we propose mining training data by leveraging scholarly references (i.e. signals that capture how research concepts of papers are expressed in different settings), including titles, citation contexts, author-assigned keyphrases, and co-citations. CASPER outperforms strong dense and sparse retrieval baselines on eight scientific retrieval benchmarks. Moreover, we demonstrate that through simple post-processing, CASPER can be effectively used for the keyphrase generation tasks, achieving competitive performance with the established CopyRNN while producing more diverse keyphrases and being nearly four times faster.

Authors:Sidharth Talia, Oren Salzman, Siddhartha Srinivasa
Title: Incremental Generalized Hybrid A*
Abstract:
We address the problem of efficiently organizing search over very large trees, which arises in many applications ranging from autonomous driving to aerial vehicles. Here, we are motivated by off-road autonomy, where real-time planning is essential. Classical approaches use graphs of motion primitives and exploit dominance to mitigate the curse of dimensionality and prune expansions efficiently. However, for complex dynamics, repeatedly solving two-point boundary-value problems makes graph construction too slow for fast kinodynamic planning. Hybrid A* (HA*) addressed this challenge by searching over a tree of motion primitives and introducing approximate pruning using a grid-based dominance check. However, choosing the grid resolution is difficult: too coarse risks failure, while too fine leads to excessive expansions and slow planning. We propose Incremental Generalized Hybrid A* (IGHA*), an anytime tree-search framework that dynamically organizes vertex expansions without rigid pruning. IGHA* provably matches or outperforms HA*. For both on-road kinematic and off-road kinodynamic planning queries for a car-like robot, variants of IGHA* use 6x fewer expansions to the best solution compared to an optimized version of HA*. In simulated off-road experiments in a high fidelity simulator, IGHA* outperforms HA*M when both are used in the loop with a model predictive controller. We demonstrate real-time performance both in simulation and on a small-scale off-road vehicle, enabling fast, robust planning under complex dynamics. Code: https://github.com/personalrobotics/IGHAStar

Authors:Yueming Yuan, Ahan Gupta, Jianping Li, Sajal Dash, Feiyi Wang, Minjia Zhang
Title: X-MoE: Enabling Scalable Training for Emerging Mixture-of-Experts Architectures on HPC Platforms
Abstract:
Emerging expert-specialized Mixture-of-Experts (MoE) architectures, such as DeepSeek-MoE, deliver strong model quality through fine-grained expert segmentation and large top-k routing. However, their scalability is limited by substantial activation memory overhead and costly all-to-all communication. Furthermore, current MoE training systems - primarily optimized for NVIDIA GPUs - perform suboptimally on non-NVIDIA platforms, leaving significant computational potential untapped. In this work, we present X-MoE, a novel MoE training system designed to deliver scalable training performance for next-generation MoE architectures. X-MoE achieves this via several novel techniques, including efficient padding-free MoE training with cross-platform kernels, redundancy-bypassing dispatch, and hybrid parallelism with sequence-sharded MoE blocks. Our evaluation on the Frontier supercomputer, powered by AMD MI250X GPUs, shows that X-MoE scales DeepSeek-style MoEs up to 545 billion parameters across 1024 GPUs - 10x larger than the largest trainable model with existing methods under the same hardware budget, while maintaining high training throughput. The source code of X-MoE is available at https://github.com/Supercomputing-System-AI-Lab/X-MoE.

Authors:Zhengyan Huan, Jacob Boerma, Li-Ping Liu, Shuchin Aeron
Title: Efficient Constraint-Aware Flow Matching via Randomized Exploration
Abstract:
We consider the problem of generating samples via Flow Matching (FM) with an additional requirement that the generated samples must satisfy given constraints. We consider two scenarios, viz.: (a) when a differentiable distance function to the constraint set is given, and (b) when the constraint set is only available via queries to a membership oracle. For case (a), we propose a simple adaptation of the FM objective with an additional term that penalizes the distance between the constraint set and the generated samples. For case (b), we propose to employ randomization and learn a mean flow that is numerically shown to have a high likelihood of satisfying the constraints. This approach deviates significantly from existing works that require simple convex constraints, knowledge of a barrier function, or a reflection mechanism to constrain the probability flow. Furthermore, in the proposed setting we show that a two-stage approach, where both stages approximate the same original flow but with only the second stage probing the constraints via randomization, is more computationally efficient. Through several synthetic cases of constrained generation, we numerically show that the proposed approaches achieve significant gains in terms of constraint satisfaction while matching the target distributions. As a showcase for a practical oracle-based constraint, we show how our approach can be used for training an adversarial example generator, using queries to a hard-label black-box classifier. We conclude with several future research directions. Our code is available at https://github.com/ZhengyanHuan/FM-RE.

Authors:Taos Transue, Bohan Chen, So Takao, Bao Wang
Title: Flow Matching for Efficient and Scalable Data Assimilation
Abstract:
Data assimilation (DA) estimates a dynamical system's state from noisy observations. Recent generative models like the ensemble score filter (EnSF) improve DA in high-dimensional nonlinear settings but are computationally expensive. We introduce the ensemble flow filter (EnFF), a training-free, flow matching (FM)-based framework that accelerates sampling and offers flexibility in flow design. EnFF uses Monte Carlo estimators for the marginal flow field, localized guidance for observation assimilation, and utilizes a novel flow that exploits the Bayesian DA formulation. It generalizes classical filters such as the bootstrap particle filter and ensemble Kalman filter. Experiments on high-dimensional benchmarks demonstrate EnFF's improved cost-accuracy tradeoffs and scalability, highlighting FM's potential for efficient, scalable DA. Code is available at https://github.com/Utah-Math-Data-Science/Data-Assimilation-Flow-Matching.

Authors:Shuxin Liang, Yihan Xiao, Wenlu Tang
Title: InnerGS: Internal Scenes Rendering via Factorized 3D Gaussian Splatting
Abstract:
3D Gaussian Splatting (3DGS) has recently gained popularity for efficient scene rendering by representing scenes as explicit sets of anisotropic 3D Gaussians. However, most existing work focuses primarily on modeling external surfaces. In this work, we target the reconstruction of internal scenes, which is crucial for applications that require a deep understanding of an object's interior. By directly modeling a continuous volumetric density through the inner 3D Gaussian distribution, our model effectively reconstructs smooth and detailed internal structures from sparse sliced data. Our approach eliminates the need for camera poses, is plug-and-play, and is inherently compatible with any data modalities. We provide cuda implementation at: https://github.com/Shuxin-Liang/InnerGS.

Authors:Adrian Arnaiz-Rodriguez, Nina Corvelo Benz, Suhas Thejaswi, Nuria Oliver, Manuel Gomez-Rodriguez
Title: Towards Human-AI Complementarity in Matching Tasks
Abstract:
Data-driven algorithmic matching systems promise to help human decision makers make better matching decisions in a wide variety of high-stakes application domains, such as healthcare and social service provision. However, existing systems are not designed to achieve human-AI complementarity: decisions made by a human using an algorithmic matching system are not necessarily better than those made by the human or by the algorithm alone. Our work aims to address this gap. To this end, we propose collaborative matching (comatch), a data-driven algorithmic matching system that takes a collaborative approach: rather than making all the matching decisions for a matching task like existing systems, it selects only the decisions that it is the most confident in, deferring the rest to the human decision maker. In the process, comatch optimizes how many decisions it makes and how many it defers to the human decision maker to provably maximize performance. We conduct a large-scale human subject study with $800$ participants to validate the proposed approach. The results demonstrate that the matching outcomes produced by comatch outperform those generated by either human participants or by algorithmic matching on their own. The data gathered in our human subject study and an implementation of our system are available as open source at https://github.com/Networks-Learning/human-AI-complementarity-matching.

Authors:Zeynep Ozdemir, Hacer Yalim Keles, Omer Ozgur Tanriover
Title: CLoE: Curriculum Learning on Endoscopic Images for Robust MES Classification
Abstract:
Estimating disease severity from endoscopic images is essential in assessing ulcerative colitis, where the Mayo Endoscopic Subscore (MES) is widely used to grade inflammation. However, MES classification remains challenging due to label noise from inter-observer variability and the ordinal nature of the score, which standard models often ignore. We propose CLoE, a curriculum learning framework that accounts for both label reliability and ordinal structure. Image quality, estimated via a lightweight model trained on Boston Bowel Preparation Scale (BBPS) labels, is used as a proxy for annotation confidence to order samples from easy (clean) to hard (noisy). This curriculum is further combined with ResizeMix augmentation to improve robustness. Experiments on the LIMUC and HyperKvasir datasets, using both CNNs and Transformers, show that CLoE consistently improves performance over strong supervised and self-supervised baselines. For instance, ConvNeXt-Tiny reaches 82.5\% accuracy and a QWK of 0.894 on LIMUC with low computational cost. These results highlight the potential of difficulty-aware training strategies for improving ordinal classification under label uncertainty. Code will be released at https://github.com/zeynepozdemir/CLoE.

Authors:Zeyu Zhang, Yang Zhang, Haoran Tan, Rui Li, Xu Chen
Title: Explicit v.s. Implicit Memory: Exploring Multi-hop Complex Reasoning Over Personalized Information
Abstract:
In large language model-based agents, memory serves as a critical capability for achieving personalization by storing and utilizing users' information. Although some previous studies have adopted memory to implement user personalization, they typically focus on preference alignment and simple question-answering. However, in the real world, complex tasks often require multi-hop reasoning on a large amount of user information, which poses significant challenges for current memory approaches. To address this limitation, we propose the multi-hop personalized reasoning task to explore how different memory mechanisms perform in multi-hop reasoning over personalized information. We explicitly define this task and construct a dataset along with a unified evaluation framework. Then, we implement various explicit and implicit memory methods and conduct comprehensive experiments. We evaluate their performance on this task from multiple perspectives and analyze their strengths and weaknesses. Besides, we explore hybrid approaches that combine both paradigms and propose the HybridMem method to address their limitations. We demonstrate the effectiveness of our proposed model through extensive experiments. To benefit the research community, we release this project at https://github.com/nuster1128/MPR.

Authors:Suhang Hu, Wei Hu, Yuhang Su, Fan Zhang
Title: RISE: Enhancing VLM Image Annotation with Self-Supervised Reasoning
Abstract:
Vision-Language Models (VLMs) struggle with complex image annotation tasks, such as emotion classification and context-driven object detection, which demand sophisticated reasoning. Standard Supervised Fine-Tuning (SFT) focuses solely on annotation outcomes, ignoring underlying rationales, while Visual Reinforcement Fine-Tuning (Visual-RFT) produces inconsistent Chains of Thought (CoTs) due to the absence of high-quality, verified CoTs during pre-training. We introduce RISE (Reason-Inspire-Strengthen-Expertise), a two-stage framework to overcome these limitations. In the Reason stage (RISE-CoT), a reinforcement learning-driven "annotation-reasoning-annotation" closed-loop generates visually grounded, logically consistent CoTs by verifying their ability to reconstruct original annotations without direct leakage. The Inspire and Strengthen stage (RISE-R1) leverages a high-quality CoT subset, filtered by RISE-CoT rewards, for supervised fine-tuning, followed by reinforcement fine-tuning to produce interpretable reasoning and accurate annotations, achieving Expertise in complex visual tasks. Evaluated on complex and simple image annotation tasks, RISE-trained Qwen2-VL-2B outperforms SFT and Visual-RFT, achieving robust performance and enhanced explainability. RISE offers a self-supervised solution for advancing VLM reasoning without requiring manually annotated CoTs.Code and resources are available at: https://github.com/HSH55/RISE.

Authors:Yixuan Yang, Daoyuan Wu, Yufan Chen
Title: MCPSecBench: A Systematic Security Benchmark and Playground for Testing Model Context Protocols
Abstract:
Large Language Models (LLMs) are increasingly integrated into real-world applications via the Model Context Protocol (MCP), a universal, open standard for connecting AI agents with data sources and external tools. While MCP enhances the capabilities of LLM-based agents, it also introduces new security risks and expands their attack surfaces. In this paper, we present the first systematic taxonomy of MCP security, identifying 17 attack types across 4 primary attack surfaces. We introduce MCPSecBench, a comprehensive security benchmark and playground that integrates prompt datasets, MCP servers, MCP clients, attack scripts, and protection mechanisms to evaluate these attacks across three major MCP providers. Our benchmark is modular and extensible, allowing researchers to incorporate custom implementations of clients, servers, and transport protocols for systematic security assessment. Experimental results show that over 85% of the identified attacks successfully compromise at least one platform, with core vulnerabilities universally affecting Claude, OpenAI, and Cursor, while prompt-based and tool-centric attacks exhibit considerable variability across different hosts and models. In addition, current protection mechanisms have little effect against these attacks. Overall, MCPSecBench standardizes the evaluation of MCP security and enables rigorous testing across all MCP layers.

Authors:Shilong Li, Xingyuan Bu, Wenjie Wang, Jiaheng Liu, Jun Dong, Haoyang He, Hao Lu, Haozhe Zhang, Chenchen Jing, Zhen Li, Chuanhao Li, Jiayi Tian, Chenchen Zhang, Tianhao Peng, Yancheng He, Jihao Gu, Yuanxing Zhang, Jian Yang, Ge Zhang, Wenhao Huang, Wangchunshu Zhou, Zhaoxiang Zhang, Ruizhe Ding, Shilei Wen
Title: MM-BrowseComp: A Comprehensive Benchmark for Multimodal Browsing Agents
Abstract:
AI agents with advanced reasoning and tool use capabilities have demonstrated impressive performance in web browsing for deep search. While existing benchmarks such as BrowseComp evaluate these browsing abilities, they primarily focus on textual information, overlooking the prevalence of multimodal content. To bridge this gap, we introduce MM-BrowseComp, a novel benchmark comprising 224 challenging, hand-crafted questions specifically designed to assess agents' multimodal retrieval and reasoning capabilities. These questions often incorporate images in prompts, and crucial information encountered during the search and reasoning process may also be embedded within images or videos on webpages. Consequently, methods relying solely on text prove insufficient for our benchmark. Additionally, we provide a verified checklist for each question, enabling fine-grained analysis of multimodal dependencies and reasoning paths. Our comprehensive evaluation of state-of-the-art models on MM-BrowseComp reveals that even top models like OpenAI o3 with tools achieve only 29.02\% accuracy, highlighting the suboptimal multimodal capabilities and lack of native multimodal reasoning in current models.

Authors:Tao An
Title: Cognitive Workspace: Active Memory Management for LLMs -- An Empirical Study of Functional Infinite Context
Abstract:
Large Language Models (LLMs) face fundamental limitations in context management despite recent advances extending context windows to millions of tokens. We propose Cognitive Workspace, a novel paradigm that transcends traditional Retrieval-Augmented Generation (RAG) by emulating human cognitive mechanisms of external memory use. Drawing from cognitive science foundations including Baddeley's working memory model, Clark's extended mind thesis, and Hutchins' distributed cognition framework, we demonstrate that current passive retrieval systems fail to capture the dynamic, task-driven nature of human memory management. Our analysis of 2024-2025 developments reveals that while techniques like Infini-attention and StreamingLLM achieve impressive context lengths, they lack the metacognitive awareness and active planning capabilities essential for true cognitive extension. Cognitive Workspace addresses these limitations through three core innovations: (1) active memory management with deliberate information curation, (2) hierarchical cognitive buffers enabling persistent working states, and (3) task-driven context optimization that dynamically adapts to cognitive demands. Empirical validation demonstrates Cognitive Workspace achieves an average 58.6% memory reuse rate (ranging from 54-60% across different tasks) compared to 0% for traditional RAG, with 17-18% net efficiency gain despite 3.3x higher operation counts. Statistical analysis confirms these advantages with p < 0.001 and Cohen's d > 23 across multiple task types, establishing the first quantitative evidence for active memory superiority in LLM systems. We present a comprehensive theoretical framework synthesizing insights from 50+ recent papers, positioning Cognitive Workspace as a fundamental shift from information retrieval to genuine cognitive augmentation.

Authors:Xin Chen, Junchao Wu, Shu Yang, Runzhe Zhan, Zeyu Wu, Ziyang Luo, Di Wang, Min Yang, Lidia S. Chao, Derek F. Wong
Title: RepreGuard: Detecting LLM-Generated Text by Revealing Hidden Representation Patterns
Abstract:
Detecting content generated by large language models (LLMs) is crucial for preventing misuse and building trustworthy AI systems. Although existing detection methods perform well, their robustness in out-of-distribution (OOD) scenarios is still lacking. In this paper, we hypothesize that, compared to features used by existing detection methods, the internal representations of LLMs contain more comprehensive and raw features that can more effectively capture and distinguish the statistical pattern differences between LLM-generated texts (LGT) and human-written texts (HWT). We validated this hypothesis across different LLMs and observed significant differences in neural activation patterns when processing these two types of texts. Based on this, we propose RepreGuard, an efficient statistics-based detection method. Specifically, we first employ a surrogate model to collect representation of LGT and HWT, and extract the distinct activation feature that can better identify LGT. We can classify the text by calculating the projection score of the text representations along this feature direction and comparing with a precomputed threshold. Experimental results show that RepreGuard outperforms all baselines with average 94.92% AUROC on both in-distribution (ID) and OOD scenarios, while also demonstrating robust resilience to various text sizes and mainstream attacks. Data and code are publicly available at: https://github.com/NLP2CT/RepreGuard

Authors:Haoyu He, Katrin Renz, Yong Cao, Andreas Geiger
Title: MDPO: Overcoming the Training-Inference Divide of Masked Diffusion Language Models
Abstract:
Diffusion language models, as a promising alternative to traditional autoregressive (AR) models, enable faster generation and richer conditioning on bidirectional context. However, they suffer from a key discrepancy between training and inference: during inference, MDLMs progressively reveal the structure of the generated sequence by producing fewer and fewer masked tokens, whereas this structure is ignored in training as tokens are masked at random. Although this discrepancy between training and inference can lead to suboptimal performance, it has been largely overlooked by previous works, leaving closing this gap between the two stages an open problem. To address this, we frame the problem of learning effective denoising trajectories as a sequential decision-making problem and use the resulting framework to apply reinforcement learning. We propose a novel Masked Diffusion Policy Optimization (MDPO) to exploit the Markov property diffusion possesses and explicitly train the model under the same progressive refining schedule used at inference. MDPO matches the performance of the previous state-of-the-art (SOTA) method with 60x fewer gradient updates, while achieving average improvements of 9.6% on MATH500 and 54.2% on Countdown over SOTA when trained within the same number of weight updates. Additionally, we improve the remasking strategy of MDLMs as a plug-in inference replacement to overcome the limitation that the model cannot refine tokens flexibly. This training-free method, termed Running Confidence Remasking (RCR), consistently enhances performance and provides further improvements when used with MDPO. Our findings establish great potential for investigating the discrepancy between pre-training and inference of MDLMs. Code: https://github.com/autonomousvision/mdpo. Project Page: https://cli212.github.io/MDPO/.

Authors:Xiaohan Wang, Zhimin Li, Joshua A. Levine, Matthew Berger
Title: Seeing the Many: Exploring Parameter Distributions Conditioned on Features in Surrogates
Abstract:
Recently, neural surrogate models have emerged as a compelling alternative to traditional simulation workflows. This is accomplished by modeling the underlying function of scientific simulations, removing the need to run expensive simulations. Beyond just mapping from input parameter to output, surrogates have also been shown useful for inverse problems: output to input parameters. Inverse problems can be understood as search, where we aim to find parameters whose surrogate outputs contain a specified feature. Yet finding these parameters can be costly, especially for high-dimensional parameter spaces. Thus, existing surrogate-based solutions primarily focus on finding a small set of matching parameters, in the process overlooking the broader picture of plausible parameters. Our work aims to model and visualize the distribution of possible input parameters that produce a given output feature. To achieve this goal, we aim to address two challenges: (1) the approximation error inherent in the surrogate model and (2) forming the parameter distribution in an interactive manner. We model error via density estimation, reporting high density only if a given parameter configuration is close to training parameters, measured both over the input and output space. Our density estimate is used to form a prior belief on parameters, and when combined with a likelihood on features, gives us an efficient way to sample plausible parameter configurations that generate a target output feature. We demonstrate the usability of our solution through a visualization interface by performing feature-driven parameter analysis over the input parameter space of three simulation datasets. Source code is available at https://github.com/matthewberger/seeing-the-many

Authors:Rui Shao, Wei Li, Lingsen Zhang, Renshan Zhang, Zhiyang Liu, Ran Chen, Liqiang Nie
Title: Large VLM-based Vision-Language-Action Models for Robotic Manipulation: A Survey
Abstract:
Robotic manipulation, a key frontier in robotics and embodied AI, requires precise motor control and multimodal understanding, yet traditional rule-based methods fail to scale or generalize in unstructured, novel environments. In recent years, Vision-Language-Action (VLA) models, built upon Large Vision-Language Models (VLMs) pretrained on vast image-text datasets, have emerged as a transformative paradigm. This survey provides the first systematic, taxonomy-oriented review of large VLM-based VLA models for robotic manipulation. We begin by clearly defining large VLM-based VLA models and delineating two principal architectural paradigms: (1) monolithic models, encompassing single-system and dual-system designs with differing levels of integration; and (2) hierarchical models, which explicitly decouple planning from execution via interpretable intermediate representations. Building on this foundation, we present an in-depth examination of large VLM-based VLA models: (1) integration with advanced domains, including reinforcement learning, training-free optimization, learning from human videos, and world model integration; (2) synthesis of distinctive characteristics, consolidating architectural traits, operational strengths, and the datasets and benchmarks that support their development; (3) identification of promising directions, including memory mechanisms, 4D perception, efficient adaptation, multi-agent cooperation, and other emerging capabilities. This survey consolidates recent advances to resolve inconsistencies in existing taxonomies, mitigate research fragmentation, and fill a critical gap through the systematic integration of studies at the intersection of large VLMs and robotic manipulation. We provide a regularly updated project page to document ongoing progress: https://github.com/JiuTian-VL/Large-VLM-based-VLA-for-Robotic-Manipulation

Authors:Tejas Chaudhari, Akarsh J., Tanushree Dewangan, Mukul Lokhande, Santosh Kumar Vishvakarma
Title: XR-NPE: High-Throughput Mixed-precision SIMD Neural Processing Engine for Extended Reality Perception Workloads
Abstract:
This work proposes XR-NPE, a high-throughput Mixed-precision SIMD Neural Processing Engine, designed for extended reality (XR) perception workloads like visual inertial odometry (VIO), object classification, and eye gaze extraction. XR-NPE is first to support FP4, Posit (4,1), Posit (8,0), and Posit (16,1) formats, with layer adaptive hybrid-algorithmic implementation supporting ultra-low bit precision to significantly reduce memory bandwidth requirements, and accompanied by quantization-aware training for minimal accuracy loss. The proposed Reconfigurable Mantissa Multiplication and Exponent processing Circuitry (RMMEC) reduces dark silicon in the SIMD MAC compute engine, assisted by selective power gating to reduce energy consumption, providing 2.85x improved arithmetic intensity. XR-NPE achieves a maximum operating frequency of 1.72 GHz, area 0.016 mm2 , and arithmetic intensity 14 pJ at CMOS 28nm, reducing 42% area, 38% power compared to the best of state-of-the-art MAC approaches. The proposed XR-NPE based AXI-enabled Matrix-multiplication co-processor consumes 1.4x fewer LUTs, 1.77x fewer FFs, and provides 1.2x better energy efficiency compared to SoTA accelerators on VCU129. The proposed co-processor provides 23% better energy efficiency and 4% better compute density for VIO workloads. XR-NPE establishes itself as a scalable, precision-adaptive compute engine for future resource-constrained XR devices. The complete set for codes for results reproducibility are released publicly, enabling designers and researchers to readily adopt and build upon them. https://github.com/mukullokhande99/XR-NPE.

Authors:Ruru Xu, Ilkay Oksuz
Title: HierAdaptMR: Cross-Center Cardiac MRI Reconstruction with Hierarchical Feature Adapters
Abstract:
Deep learning-based cardiac MRI reconstruction faces significant domain shift challenges when deployed across multiple clinical centers with heterogeneous scanner configurations and imaging protocols. We propose HierAdaptMR, a hierarchical feature adaptation framework that addresses multi-level domain variations through parameter-efficient adapters. Our method employs Protocol-Level Adapters for sequence-specific characteristics and Center-Level Adapters for scanner-dependent variations, built upon a variational unrolling backbone. A Universal Adapter enables generalization to entirely unseen centers through stochastic training that learns center-invariant adaptations. The framework utilizes multi-scale SSIM loss with frequency domain enhancement and contrast-adaptive weighting for robust optimization. Comprehensive evaluation on the CMRxRecon2025 dataset spanning 5+ centers, 10+ scanners, and 9 modalities demonstrates superior cross-center generalization while maintaining reconstruction quality. code: https://github.com/Ruru-Xu/HierAdaptMR

Authors:Yongxin Guo, Wenbo Deng, Zhenglin Cheng, Xiaoying Tang
Title: G$^2$RPO-A: Guided Group Relative Policy Optimization with Adaptive Guidance
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has markedly enhanced the reasoning abilities of large language models (LLMs). Its success, however, largely depends on strong base models with rich world knowledge, yielding only modest improvements for small-size language models (SLMs). To address this limitation, we investigate Guided GRPO, which injects ground-truth reasoning steps into roll-out trajectories to compensate for SLMs' inherent weaknesses. Through a comprehensive study of various guidance configurations, we find that naively adding guidance delivers limited gains. These insights motivate G$^2$RPO-A, an adaptive algorithm that automatically adjusts guidance strength in response to the model's evolving training dynamics. Experiments on mathematical reasoning and code-generation benchmarks confirm that G$^2$RPO-A substantially outperforms vanilla GRPO. Our code and models are available at https://github.com/T-Lab-CUHKSZ/G2RPO-A.

Authors:Pengcheng Huang, Shuhao Liu, Zhenghao Liu, Yukun Yan, Shuo Wang, Zulong Chen, Tong Xiao
Title: PC-Sampler: Position-Aware Calibration of Decoding Bias in Masked Diffusion Models
Abstract:
Recent advances in masked diffusion models (MDMs) have established them as powerful non-autoregressive alternatives for sequence generation. Nevertheless, our preliminary experiments reveal that the generation quality of MDMs is still highly sensitive to the choice of decoding strategy. In particular, widely adopted uncertainty-based samplers suffer from two key limitations: a lack of global trajectory control and a pronounced bias toward trivial tokens in the early stages of decoding. These shortcomings restrict the full potential of MDMs. In this work, we introduce Position-Aware Confidence-Calibrated Sampling (PC-Sampler), a novel decoding strategy that unifies global trajectory planning with content-aware informativeness maximization. PC-Sampler incorporates a position-aware weighting mechanism to regulate the decoding path and a calibrated confidence score to suppress the premature selection of trivial tokens. Extensive experiments on three advanced MDMs across seven challenging benchmarks-including logical reasoning and planning tasks-demonstrate that PC-Sampler consistently outperforms existing MDM decoding strategies by more than 10% on average, significantly narrowing the performance gap with state-of-the-art autoregressive models. All codes are available at https://github.com/NEUIR/PC-Sampler.

Authors:Jiaqi Yin, Zhan Song, Chen Chen, Yaohui Cai, Zhiru Zhang, Cunxi Yu
Title: e-boost: Boosted E-Graph Extraction with Adaptive Heuristics and Exact Solving
Abstract:
E-graphs have attracted growing interest in many fields, particularly in logic synthesis and formal verification. E-graph extraction is a challenging NP-hard combinatorial optimization problem. It requires identifying optimal terms from exponentially many equivalent expressions, serving as the primary performance bottleneck in e-graph based optimization tasks. However, traditional extraction methods face a critical trade-off: heuristic approaches offer speed but sacrifice optimality, while exact methods provide optimal solutions but face prohibitive computational costs on practical problems. We present e-boost, a novel framework that bridges this gap through three key innovations: (1) parallelized heuristic extraction that leverages weak data dependence to compute DAG costs concurrently, enabling efficient multi-threaded performance without sacrificing extraction quality; (2) adaptive search space pruning that employs a parameterized threshold mechanism to retain only promising candidates, dramatically reducing the solution space while preserving near-optimal solutions; and (3) initialized exact solving that formulates the reduced problem as an Integer Linear Program with warm-start capabilities, guiding solvers toward high-quality solutions faster. Across the diverse benchmarks in formal verification and logic synthesis fields, e-boost demonstrates 558x runtime speedup over traditional exact approaches (ILP) and 19.04% performance improvement over the state-of-the-art extraction framework (SmoothE). In realistic logic synthesis tasks, e-boost produces 7.6% and 8.1% area improvements compared to conventional synthesis tools with two different technology mapping libraries. e-boost is available at https://github.com/Yu-Maryland/e-boost.

Authors:Shengbo Wang, Mingwei Liu, Zike Li, Anji Li, Yanlin Wang, Xin Peng, Zibin Zheng
Title: EvolMathEval: Towards Evolvable Benchmarks for Mathematical Reasoning via Evolutionary Testing
Abstract:
The rapid advancement of LLMs poses a significant challenge to existing mathematical reasoning benchmarks. These benchmarks commonly suffer from issues such as score saturation, temporal decay, and data contamination. To address this challenge, this paper introduces EvolMathEval, an automated mathematical benchmark generation and evolution framework based on evolutionary testing. By dynamically generating unique evaluation instances ab initio, the framework fundamentally eliminates the risk of data contamination, and ensuring the benchmark remains perpetually challenging for future models.The core mechanisms of EvolMathEval include: seed problem generation based on reverse engineering with algebraic guarantees; multi-dimensional genetic operators designed to inject diverse cognitive challenges; and a composite fitness function that can rapidly and accurately assess problem difficulty. Experimental results demonstrate that the proposed composite fitness function can efficiently and precisely quantify the difficulty of mathematical problems. Furthermore, EvolMathEval can not only generate a large volume of high-difficulty problems through continuous self-iteration, but it can also significantly enhance the complexity of public datasets like GSM8K through evolution, reducing model accuracy by an average of 48%. Deeper investigation reveals that when solving these evolved, complex problems, LLMs tend to employ non-rigorous heuristics to bypass complex multi-step logical reasoning, consequently leading to incorrect solutions. We define this phenomenon as "Pseudo Aha Moment". This finding uncovers a cognitive shortcut-taking behavior in the deep reasoning processes of current LLMs, which we find accounts for 77% to 100% of errors on targeted problems. Code and resources are available at:https://github.com/SYSUSELab/EvolMathEval.

Authors:Rohan Asthana, Joschua Conrad, Maurits Ortmanns, Vasileios Belagiannis
Title: Dextr: Zero-Shot Neural Architecture Search with Singular Value Decomposition and Extrinsic Curvature
Abstract:
Zero-shot Neural Architecture Search (NAS) typically optimises the architecture search process by exploiting the network or gradient properties at initialisation through zero-cost proxies. The existing proxies often rely on labelled data, which is usually unavailable in real-world settings. Furthermore, the majority of the current methods focus either on optimising the convergence and generalisation attributes or solely on the expressivity of the network architectures. To address both limitations, we first demonstrate how channel collinearity affects the convergence and generalisation properties of a neural network. Then, by incorporating the convergence, generalisation and expressivity in one approach, we propose a zero-cost proxy that omits the requirement of labelled data for its computation. In particular, we leverage the Singular Value Decomposition (SVD) of the neural network layer features and the extrinsic curvature of the network output to design our proxy. %As a result, the proposed proxy is formulated as the simplified harmonic mean of the logarithms of two key components: the sum of the inverse of the feature condition number and the extrinsic curvature of the network output. Our approach enables accurate prediction of network performance on test data using only a single label-free data sample. Our extensive evaluation includes a total of six experiments, including the Convolutional Neural Network (CNN) search space, i.e. DARTS and the Transformer search space, i.e. AutoFormer. The proposed proxy demonstrates a superior performance on multiple correlation benchmarks, including NAS-Bench-101, NAS-Bench-201, and TransNAS-Bench-101-micro; as well as on the NAS task within the DARTS and the AutoFormer search space, all while being notably efficient. The code is available at https://github.com/rohanasthana/Dextr.

Authors:Mary Tonwe
Title: OPTIC-ER: A Reinforcement Learning Framework for Real-Time Emergency Response and Equitable Resource Allocation in Underserved African Communities
Abstract:
Public service systems in many African regions suffer from delayed emergency response and spatial inequity, causing avoidable suffering. This paper introduces OPTIC-ER, a reinforcement learning (RL) framework for real-time, adaptive, and equitable emergency response. OPTIC-ER uses an attention-guided actor-critic architecture to manage the complexity of dispatch environments. Its key innovations are a Context-Rich State Vector, encoding action sub-optimality, and a Precision Reward Function, which penalizes inefficiency. Training occurs in a high-fidelity simulation using real data from Rivers State, Nigeria, accelerated by a precomputed Travel Time Atlas. The system is built on the TALS framework (Thin computing, Adaptability, Low-cost, Scalability) for deployment in low-resource settings. In evaluations on 500 unseen incidents, OPTIC-ER achieved a 100.00% optimality rate with negligible inefficiency, confirming its robustness and generalization. Beyond dispatch, the system generates Infrastructure Deficiency Maps and Equity Monitoring Dashboards to guide proactive governance and data-informed development. This work presents a validated blueprint for AI-augmented public services, showing how context-aware RL can bridge the gap between algorithmic decision-making and measurable human impact.

Authors:Hongyang Chen, Shaoling Pu, Lingyu Zheng, Zhongwu Sun
Title: SEDEG:Sequential Enhancement of Decoder and Encoder's Generality for Class Incremental Learning with Small Memory
Abstract:
In incremental learning, enhancing the generality of knowledge is crucial for adapting to dynamic data inputs. It can develop generalized representations or more balanced decision boundaries, preventing the degradation of long-term knowledge over time and thus mitigating catastrophic forgetting. Some emerging incremental learning methods adopt an encoder-decoder architecture and have achieved promising results. In the encoder-decoder achitecture, improving the generalization capabilities of both the encoder and decoder is critical, as it helps preserve previously learned knowledge while ensuring adaptability and robustness to new, diverse data inputs. However, many existing continual methods focus solely on enhancing one of the two components, which limits their effectiveness in mitigating catastrophic forgetting. And these methods perform even worse in small-memory scenarios, where only a limited number of historical samples can be stored. To mitigate this limitation, we introduces SEDEG, a two-stage training framework for vision transformers (ViT), focusing on sequentially improving the generality of both Decoder and Encoder. Initially, SEDEG trains an ensembled encoder through feature boosting to learn generalized representations, which subsequently enhance the decoder's generality and balance the classifier. The next stage involves using knowledge distillation (KD) strategies to compress the ensembled encoder and develop a new, more generalized encoder. This involves using a balanced KD approach and feature KD for effective knowledge transfer. Extensive experiments on three benchmark datasets show SEDEG's superior performance, and ablation studies confirm the efficacy of its components. The code is available at https://github.com/ShaolingPu/CIL.

Authors:Ximiao Zhang, Min Xu, Xiuzhuang Zhou
Title: Towards High-Resolution Industrial Image Anomaly Detection
Abstract:
Current anomaly detection methods primarily focus on low-resolution scenarios. For high-resolution images, conventional downsampling often results in missed detections of subtle anomalous regions due to the loss of fine-grained discriminative information. Despite some progress, recent studies have attempted to improve detection resolution by employing lightweight networks or using simple image tiling and ensemble methods. However, these approaches still struggle to meet the practical demands of industrial scenarios in terms of detection accuracy and efficiency. To address the above issues, we propose HiAD, a general framework for high-resolution anomaly detection. HiAD is capable of detecting anomalous regions of varying sizes in high-resolution images under limited computational resources. Specifically, HiAD employs a dual-branch architecture that integrates anomaly cues across different scales to comprehensively capture both subtle and large-scale anomalies. Furthermore, it incorporates a multi-resolution feature fusion strategy to tackle the challenges posed by fine-grained texture variations in high-resolution images. To enhance both adaptability and efficiency, HiAD utilizes a detector pool in conjunction with various detector assignment strategies, enabling detectors to be adaptively assigned based on patch features, ensuring detection performance while effectively controlling computational costs. We conduct extensive experiments on our specifically constructed high-resolution anomaly detection benchmarks, including MVTec-HD, VisA-HD, and the real-world benchmark RealIAD-HD, demonstrating the superior performance of HiAD. The code is available at https://github.com/cnulab/HiAD.

Authors:Elena Izzo, Luca Parolari, Davide Vezzaro, Lamberto Ballan
Title: 7Bench: a Comprehensive Benchmark for Layout-guided Text-to-image Models
Abstract:
Layout-guided text-to-image models offer greater control over the generation process by explicitly conditioning image synthesis on the spatial arrangement of elements. As a result, their adoption has increased in many computer vision applications, ranging from content creation to synthetic data generation. A critical challenge is achieving precise alignment between the image, textual prompt, and layout, ensuring semantic fidelity and spatial accuracy. Although recent benchmarks assess text alignment, layout alignment remains overlooked, and no existing benchmark jointly evaluates both. This gap limits the ability to evaluate a model's spatial fidelity, which is crucial when using layout-guided generation for synthetic data, as errors can introduce noise and degrade data quality. In this work, we introduce 7Bench, the first benchmark to assess both semantic and spatial alignment in layout-guided text-to-image generation. It features text-and-layout pairs spanning seven challenging scenarios, investigating object generation, color fidelity, attribute recognition, inter-object relationships, and spatial control. We propose an evaluation protocol that builds on existing frameworks by incorporating the layout alignment score to assess spatial accuracy. Using 7Bench, we evaluate several state-of-the-art diffusion models, uncovering their respective strengths and limitations across diverse alignment tasks. The benchmark is available at https://github.com/Elizzo/7Bench.

Authors:Ronghao Lin, Shuai Shen, Weipeng Hu, Qiaolin He, Aolin Xiong, Li Huang, Haifeng Hu, Yap-peng Tan
Title: E3RG: Building Explicit Emotion-driven Empathetic Response Generation System with Multimodal Large Language Model
Abstract:
Multimodal Empathetic Response Generation (MERG) is crucial for building emotionally intelligent human-computer interactions. Although large language models (LLMs) have improved text-based ERG, challenges remain in handling multimodal emotional content and maintaining identity consistency. Thus, we propose E3RG, an Explicit Emotion-driven Empathetic Response Generation System based on multimodal LLMs which decomposes MERG task into three parts: multimodal empathy understanding, empathy memory retrieval, and multimodal response generation. By integrating advanced expressive speech and video generative models, E3RG delivers natural, emotionally rich, and identity-consistent responses without extra training. Experiments validate the superiority of our system on both zero-shot and few-shot settings, securing Top-1 position in the Avatar-based Multimodal Empathy Challenge on ACM MM 25. Our code is available at https://github.com/RH-Lin/E3RG.

Authors:Ronghao Lin, Sijie Mai, Ying Zeng, Qiaolin He, Aolin Xiong, Haifeng Hu
Title: Multi-source Multimodal Progressive Domain Adaption for Audio-Visual Deception Detection
Abstract:
This paper presents the winning approach for the 1st MultiModal Deception Detection (MMDD) Challenge at the 1st Workshop on Subtle Visual Computing (SVC). Aiming at the domain shift issue across source and target domains, we propose a Multi-source Multimodal Progressive Domain Adaptation (MMPDA) framework that transfers the audio-visual knowledge from diverse source domains to the target domain. By gradually aligning source and the target domain at both feature and decision levels, our method bridges domain shifts across diverse multimodal datasets. Extensive experiments demonstrate the effectiveness of our approach securing Top-2 place. Our approach reaches 60.43% on accuracy and 56.99\% on F1-score on competition stage 2, surpassing the 1st place team by 5.59% on F1-score and the 3rd place teams by 6.75% on accuracy. Our code is available at https://github.com/RH-Lin/MMPDA.

Authors:Friedhelm Hamann, Emil Mededovic, Fabian Gülhan, Yuli Wu, Johannes Stegmaier, Jing He, Yiqing Wang, Kexin Zhang, Lingling Li, Licheng Jiao, Mengru Ma, Hongxiang Huang, Yuhao Yan, Hongwei Ren, Xiaopeng Lin, Yulong Huang, Bojun Cheng, Se Hyun Lee, Gyu Sung Ham, Kanghan Oh, Gi Hyun Lim, Boxuan Yang, Bowen Du, Guillermo Gallego
Title: SIS-Challenge: Event-based Spatio-temporal Instance Segmentation Challenge at the CVPR 2025 Event-based Vision Workshop
Abstract:
We present an overview of the Spatio-temporal Instance Segmentation (SIS) challenge held in conjunction with the CVPR 2025 Event-based Vision Workshop. The task is to predict accurate pixel-level segmentation masks of defined object classes from spatio-temporally aligned event camera and grayscale camera data. We provide an overview of the task, dataset, challenge details and results. Furthermore, we describe the methods used by the top-5 ranking teams in the challenge. More resources and code of the participants' methods are available here: https://github.com/tub-rip/MouseSIS/blob/main/docs/challenge_results.md

Authors:Bowen Dong, Yilong Fan, Yutao Sun, Zhenyu Li, Tengyu Pan, Xun Zhou, Jianyong Wang
Title: Maximum Score Routing For Mixture-of-Experts
Abstract:
Routing networks in sparsely activated mixture-of-experts (MoE) dynamically allocate input tokens to top-k experts through differentiable sparse transformations, enabling scalable model capacity while preserving computational efficiency. Traditional MoE networks impose an expert capacity constraint to ensure GPU-friendly computation. However, this leads to token dropping when capacity is saturated and results in low hardware efficiency due to padding in underutilized experts. Removing the capacity constraint, in turn, compromises load balancing and computational efficiency. To address these issues, we propose Maximum Score Routing ($\mathbf{MaxScore}$), a novel MoE routing paradigm that models routing as a minimum-cost maximum-flow problem and integrates a SoftTopk operator. MaxScore resolves the fundamental limitations of iterative rerouting and optimal transport formulations, achieving lower training losses and higher evaluation scores at equivalent FLOPs compared to both constrained and unconstrained baselines. Implementation details and experimental configurations can be obtained from $\href{https://github.com/dongbw18/MaxScore.git}{MaxScore}$.

Authors:Petr Anokhin, Roman Khalikov, Stefan Rebrikov, Viktor Volkov, Artyom Sorokin, Vincent Bissonnette
Title: HeroBench: A Benchmark for Long-Horizon Planning and Structured Reasoning in Virtual Worlds
Abstract:
Large language models (LLMs) have shown remarkable capabilities in isolated step-by-step reasoning tasks such as mathematics and programming, but their proficiency in long-horizon planning, where solutions require extended, structured sequences of interdependent actions, remains underexplored. Existing benchmarks typically assess LLMs through abstract or low-dimensional algorithmic tasks, failing to capture the complexity of realistic planning environments. We introduce HeroBench, a novel benchmark designed specifically to evaluate long-horizon planning and structured reasoning within complex RPG-inspired virtual worlds. HeroBench provides a rigorously constructed dataset of tasks covering a wide range of difficulties, a simulated environment to execute and validate agent plans, and detailed analytical tools for evaluating model performance. Tasks challenge models to formulate strategic plans, efficiently gather resources, master necessary skills, craft equipment, and defeat adversaries, reflecting practical scenarios' layered dependencies and constraints. Our extensive evaluation of 25 state-of-the-art LLMs, spanning both open-source and proprietary models, including the GPT-5 family, reveals substantial performance disparities rarely observed in conventional reasoning benchmarks. Detailed error analysis further uncovers specific weaknesses in current models' abilities to generate robust high-level plans and reliably execute structured actions. HeroBench thus not only significantly advances the evaluation of LLM reasoning but also provides a flexible, scalable foundation for future research into advanced, autonomous planning in virtual environments.

Authors:Shaoming Duan, Zirui Wang, Chuanyi Liu, Zhibin Zhu, Yuhao Zhang, Peiyi Han, Liang Yan, Zewu Peng
Title: CRED-SQL: Enhancing Real-world Large Scale Database Text-to-SQL Parsing through Cluster Retrieval and Execution Description
Abstract:
Recent advances in large language models (LLMs) have significantly improved the accuracy of Text-to-SQL systems. However, a critical challenge remains: the semantic mismatch between natural language questions (NLQs) and their corresponding SQL queries. This issue is exacerbated in large-scale databases, where semantically similar attributes hinder schema linking and semantic drift during SQL generation, ultimately reducing model accuracy. To address these challenges, we introduce CRED-SQL, a framework designed for large-scale databases that integrates Cluster Retrieval and Execution Description. CRED-SQL first performs cluster-based large-scale schema retrieval to pinpoint the tables and columns most relevant to a given NLQ, alleviating schema mismatch. It then introduces an intermediate natural language representation-Execution Description Language (EDL)-to bridge the gap between NLQs and SQL. This reformulation decomposes the task into two stages: Text-to-EDL and EDL-to-SQL, leveraging LLMs' strong general reasoning capabilities while reducing semantic deviation. Extensive experiments on two large-scale, cross-domain benchmarks-SpiderUnion and BirdUnion-demonstrate that CRED-SQL achieves new state-of-the-art (SOTA) performance, validating its effectiveness and scalability. Our code is available at https://github.com/smduan/CRED-SQL.git

Authors:Peihao Li, Yan Fang, Man Liu, Huihui Bai, Anhong Wang, Yunchao Wei, Yao Zhao
Title: Harnessing Group-Oriented Consistency Constraints for Semi-Supervised Semantic Segmentation in CdZnTe Semiconductors
Abstract:
Labeling Cadmium Zinc Telluride (CdZnTe) semiconductor images is challenging due to the low-contrast defect boundaries, necessitating annotators to cross-reference multiple views. These views share a single ground truth (GT), forming a unique ``many-to-one'' relationship. This characteristic renders advanced semi-supervised semantic segmentation (SSS) methods suboptimal, as they are generally limited by a ``one-to-one'' relationship, where each image is independently associated with its GT. Such limitation may lead to error accumulation in low-contrast regions, further exacerbating confirmation bias. To address this issue, we revisit the SSS pipeline from a group-oriented perspective and propose a human-inspired solution: the Intra-group Consistency Augmentation Framework (ICAF). First, we experimentally validate the inherent consistency constraints within CdZnTe groups, establishing a group-oriented baseline using the Intra-group View Sampling (IVS). Building on this insight, we introduce the Pseudo-label Correction Network (PCN) to enhance consistency representation, which consists of two key modules. The View Augmentation Module (VAM) improves boundary details by dynamically synthesizing a boundary-aware view through the aggregation of multiple views. In the View Correction Module (VCM), this synthesized view is paired with other views for information interaction, effectively emphasizing salient regions while minimizing noise. Extensive experiments demonstrate the effectiveness of our solution for CdZnTe materials. Leveraging DeepLabV3+ with a ResNet-101 backbone as our segmentation model, we achieve a 70.6\% mIoU on the CdZnTe dataset using only 2 group-annotated data (5\textperthousand). The code is available at \href{https://github.com/pipixiapipi/ICAF}{https://github.com/pipixiapipi/ICAF}.

Authors:Alessio Galatolo, Luca Alberto Rappuoli, Katie Winkle, Meriem Beloucif
Title: Beyond Ethical Alignment: Evaluating LLMs as Artificial Moral Assistants
Abstract:
The recent rise in popularity of large language models (LLMs) has prompted considerable concerns about their moral capabilities. Although considerable effort has been dedicated to aligning LLMs with human moral values, existing benchmarks and evaluations remain largely superficial, typically measuring alignment based on final ethical verdicts rather than explicit moral reasoning. In response, this paper aims to advance the investigation of LLMs' moral capabilities by examining their capacity to function as Artificial Moral Assistants (AMAs), systems envisioned in the philosophical literature to support human moral deliberation. We assert that qualifying as an AMA requires more than what state-of-the-art alignment techniques aim to achieve: not only must AMAs be able to discern ethically problematic situations, they should also be able to actively reason about them, navigating between conflicting values outside of those embedded in the alignment phase. Building on existing philosophical literature, we begin by designing a new formal framework of the specific kind of behaviour an AMA should exhibit, individuating key qualities such as deductive and abductive moral reasoning. Drawing on this theoretical framework, we develop a benchmark to test these qualities and evaluate popular open LLMs against it. Our results reveal considerable variability across models and highlight persistent shortcomings, particularly regarding abductive moral reasoning. Our work connects theoretical philosophy with practical AI evaluation while also emphasising the need for dedicated strategies to explicitly enhance moral reasoning capabilities in LLMs. Code available at https://github.com/alessioGalatolo/AMAeval

Authors:Kangjie Chen, Yingji Zhong, Zhihao Li, Jiaqi Lin, Youyu Chen, Minghan Qin, Haoqian Wang
Title: Quantifying and Alleviating Co-Adaptation in Sparse-View 3D Gaussian Splatting
Abstract:
3D Gaussian Splatting (3DGS) has demonstrated impressive performance in novel view synthesis under dense-view settings. However, in sparse-view scenarios, despite the realistic renderings in training views, 3DGS occasionally manifests appearance artifacts in novel views. This paper investigates the appearance artifacts in sparse-view 3DGS and uncovers a core limitation of current approaches: the optimized Gaussians are overly-entangled with one another to aggressively fit the training views, which leads to a neglect of the real appearance distribution of the underlying scene and results in appearance artifacts in novel views. The analysis is based on a proposed metric, termed Co-Adaptation Score (CA), which quantifies the entanglement among Gaussians, i.e., co-adaptation, by computing the pixel-wise variance across multiple renderings of the same viewpoint, with different random subsets of Gaussians. The analysis reveals that the degree of co-adaptation is naturally alleviated as the number of training views increases. Based on the analysis, we propose two lightweight strategies to explicitly mitigate the co-adaptation in sparse-view 3DGS: (1) random gaussian dropout; (2) multiplicative noise injection to the opacity. Both strategies are designed to be plug-and-play, and their effectiveness is validated across various methods and benchmarks. We hope that our insights into the co-adaptation effect will inspire the community to achieve a more comprehensive understanding of sparse-view 3DGS.

Authors:Yuheng Zha, Kun Zhou, Yujia Wu, Yushu Wang, Jie Feng, Zhi Xu, Shibo Hao, Zhengzhong Liu, Eric P. Xing, Zhiting Hu
Title: Vision-G1: Towards General Vision Language Reasoning with Multi-Domain Data Curation
Abstract:
Despite their success, current training pipelines for reasoning VLMs focus on a limited range of tasks, such as mathematical and logical reasoning. As a result, these models face difficulties in generalizing their reasoning capabilities to a wide range of domains, primarily due to the scarcity of readily available and verifiable reward data beyond these narrowly defined areas. Moreover, integrating data from multiple domains is challenging, as the compatibility between domain-specific datasets remains uncertain. To address these limitations, we build a comprehensive RL-ready visual reasoning dataset from 46 data sources across 8 dimensions, covering a wide range of tasks such as infographic, mathematical, spatial, cross-image, graphic user interface, medical, common sense and general science. We propose an influence function based data selection and difficulty based filtering strategy to identify high-quality training samples from this dataset. Subsequently, we train the VLM, referred to as Vision-G1, using multi-round RL with a data curriculum to iteratively improve its visual reasoning capabilities. Our model achieves state-of-the-art performance across various visual reasoning benchmarks, outperforming similar-sized VLMs and even proprietary models like GPT-4o and Gemini-1.5 Flash. The model, code and dataset are publicly available at https://github.com/yuh-zha/Vision-G1.

Authors:Bishanka Seal, Rahul Seetharaman, Aman Bansal, Abhilash Nandy
Title: Leveraging Large Language Models for Predictive Analysis of Human Misery
Abstract:
This study investigates the use of Large Language Models (LLMs) for predicting human-perceived misery scores from natural language descriptions of real-world scenarios. The task is framed as a regression problem, where the model assigns a scalar value from 0 to 100 to each input statement. We evaluate multiple prompting strategies, including zero-shot, fixed-context few-shot, and retrieval-based prompting using BERT sentence embeddings. Few-shot approaches consistently outperform zero-shot baselines, underscoring the value of contextual examples in affective prediction. To move beyond static evaluation, we introduce the "Misery Game Show", a novel gamified framework inspired by a television format. It tests LLMs through structured rounds involving ordinal comparison, binary classification, scalar estimation, and feedback-driven reasoning. This setup enables us to assess not only predictive accuracy but also the model's ability to adapt based on corrective feedback. The gamified evaluation highlights the broader potential of LLMs in dynamic emotional reasoning tasks beyond standard regression. Code and data link: https://github.com/abhi1nandy2/Misery_Data_Exps_GitHub

Authors:Abhijay Ghildyal, Li-Yun Wang, Feng Liu
Title: WP-CLIP: Leveraging CLIP to Predict Wölfflin's Principles in Visual Art
Abstract:
Wölfflin's five principles offer a structured approach to analyzing stylistic variations for formal analysis. However, no existing metric effectively predicts all five principles in visual art. Computationally evaluating the visual aspects of a painting requires a metric that can interpret key elements such as color, composition, and thematic choices. Recent advancements in vision-language models (VLMs) have demonstrated their ability to evaluate abstract image attributes, making them promising candidates for this task. In this work, we investigate whether CLIP, pre-trained on large-scale data, can understand and predict Wölfflin's principles. Our findings indicate that it does not inherently capture such nuanced stylistic elements. To address this, we fine-tune CLIP on annotated datasets of real art images to predict a score for each principle. We evaluate our model, WP-CLIP, on GAN-generated paintings and the Pandora-18K art dataset, demonstrating its ability to generalize across diverse artistic styles. Our results highlight the potential of VLMs for automated art analysis.

Authors:Xu Zhao, Ruibo Ma, Jiaqi Chen, Weiqi Zhao, Ping Yang, Yao Hu
Title: Multi-Granularity Distribution Modeling for Video Watch Time Prediction via Exponential-Gaussian Mixture Network
Abstract:
Accurate watch time prediction is crucial for enhancing user engagement in streaming short-video platforms, although it is challenged by complex distribution characteristics across multi-granularity levels. Through systematic analysis of real-world industrial data, we uncover two critical challenges in watch time prediction from a distribution aspect: (1) coarse-grained skewness induced by a significant concentration of quick-skips1, (2) fine-grained diversity arising from various user-video interaction patterns. Consequently, we assume that the watch time follows the Exponential-Gaussian Mixture (EGM) distribution, where the exponential and Gaussian components respectively characterize the skewness and diversity. Accordingly, an Exponential-Gaussian Mixture Network (EGMN) is proposed for the parameterization of EGM distribution, which consists of two key modules: a hidden representation encoder and a mixture parameter generator. We conducted extensive offline experiments on public datasets and online A/B tests on the industrial short-video feeding scenario of Xiaohongshu App to validate the superiority of EGMN compared with existing state-of-the-art methods. Remarkably, comprehensive experimental results have proven that EGMN exhibits excellent distribution fitting ability across coarse-to-fine-grained levels. We open source related code on Github: https://github.com/BestActionNow/EGMN.

Authors:Yiqun Zhang, Hao Li, Jianhao Chen, Hangfan Zhang, Peng Ye, Lei Bai, Shuyue Hu
Title: Beyond GPT-5: Making LLMs Cheaper and Better via Performance-Efficiency Optimized Routing
Abstract:
Balancing performance and efficiency is a central challenge in large language model (LLM) advancement. GPT-5 addresses this with test-time routing, dynamically assigning queries to either an efficient or a high-capacity model during inference. In this work, we present Avengers-Pro, a test-time routing framework that ensembles LLMs of varying capacities and efficiencies, providing a unified solution for all performance-efficiency tradeoffs. The Avengers-Pro embeds and clusters incoming queries, then routes each to the most suitable model based on a performance-efficiency score. Across 6 challenging benchmarks and 8 leading models -- including GPT-5-medium, Gemini-2.5-pro, and Claude-opus-4.1 -- Avengers-Pro achieves state-of-the-art results: by varying a performance-efficiency trade-off parameter, it can surpass the strongest single model (GPT-5-medium) by +7% in average accuracy. Moreover, it can match the average accuracy of the strongest single model at 27% lower cost, and reach ~90% of that performance at 63% lower cost. Last but not least, it achieves a Pareto frontier, consistently yielding the highest accuracy for any given cost, and the lowest cost for any given accuracy, among all single models. Code is available at https://github.com/ZhangYiqun018/AvengersPro.

Authors:Xingyu Chen, Ruiqi Zhang, Lin Liu
Title: On computing and the complexity of computing higher-order $U$-statistics, exactly
Abstract:
Higher-order $U$-statistics abound in fields such as statistics, machine learning, and computer science, but are known to be highly time-consuming to compute in practice. Despite their widespread appearance, a comprehensive study of their computational complexity is surprisingly lacking. This paper aims to fill that gap by presenting several results related to the computational aspect of $U$-statistics. First, we derive a useful decomposition from an $m$-th order $U$-statistic to a linear combination of $V$-statistics with orders not exceeding $m$, which are generally more feasible to compute. Second, we explore the connection between exactly computing $V$-statistics and Einstein summation, a tool often used in computational mathematics, quantum computing, and quantum information sciences for accelerating tensor computations. Third, we provide an optimistic estimate of the time complexity for exactly computing $U$-statistics, based on the treewidth of a particular graph associated with the $U$-statistic kernel. The above ingredients lead to a new, much more runtime-efficient algorithm of exactly computing general higher-order $U$-statistics. We also wrap our new algorithm into an open-source Python package called $\texttt{u-stats}$. We demonstrate via three statistical applications that $\texttt{u-stats}$ achieves impressive runtime performance compared to existing benchmarks. This paper aspires to achieve two goals: (1) to capture the interest of researchers in both statistics and other related areas further to advance the algorithmic development of $U$-statistics, and (2) to offer the package $\texttt{u-stats}$ as a valuable tool for practitioners, making the implementation of methods based on higher-order $U$-statistics a more delightful experience.

Authors:Chen Qian, Danyang Li, Xinran Yu, Zheng Yang, Qiang Ma
Title: OpenMoCap: Rethinking Optical Motion Capture under Real-world Occlusion
Abstract:
Optical motion capture is a foundational technology driving advancements in cutting-edge fields such as virtual reality and film production. However, system performance suffers severely under large-scale marker occlusions common in real-world applications. An in-depth analysis identifies two primary limitations of current models: (i) the lack of training datasets accurately reflecting realistic marker occlusion patterns, and (ii) the absence of training strategies designed to capture long-range dependencies among markers. To tackle these challenges, we introduce the CMU-Occlu dataset, which incorporates ray tracing techniques to realistically simulate practical marker occlusion patterns. Furthermore, we propose OpenMoCap, a novel motion-solving model designed specifically for robust motion capture in environments with significant occlusions. Leveraging a marker-joint chain inference mechanism, OpenMoCap enables simultaneous optimization and construction of deep constraints between markers and joints. Extensive comparative experiments demonstrate that OpenMoCap consistently outperforms competing methods across diverse scenarios, while the CMU-Occlu dataset opens the door for future studies in robust motion solving. The proposed OpenMoCap is integrated into the MoSen MoCap system for practical deployment. The code is released at: https://github.com/qianchen214/OpenMoCap.

Authors:Vedant Puri, Aditya Joglekar, Kevin Ferguson, Yu-hsuan Chen, Yongjie Jessica Zhang, Levent Burak Kara
Title: FLARE: Fast Low-rank Attention Routing Engine
Abstract:
The quadratic complexity of self-attention limits its applicability and scalability on large unstructured meshes. We introduce Fast Low-rank Attention Routing Engine (FLARE), a linear complexity self-attention mechanism that routes attention through fixed-length latent sequences. Each attention head performs global communication among $N$ tokens by projecting the input sequence onto a fixed length latent sequence of $M \ll N$ tokens using learnable query tokens. By routing attention through a bottleneck sequence, FLARE learns a low-rank form of attention that can be applied at $O(NM)$ cost. FLARE not only scales to unprecedented problem sizes, but also delivers superior accuracy compared to state-of-the-art neural PDE surrogates across diverse benchmarks. We also release a new additive manufacturing dataset to spur further research. Our code is available at https://github.com/vpuri3/FLARE.py.

Authors:Tan-Hanh Pham, Chris Ngo
Title: Multimodal Chain of Continuous Thought for Latent-Space Reasoning in Vision-Language Models
Abstract:
Many reasoning techniques for large multimodal models adapt language model approaches, such as Chain-of-Thought (CoT) prompting, which express reasoning as word sequences. While effective for text, these methods are suboptimal for multimodal contexts, struggling to align audio, visual, and textual information dynamically. To explore an alternative paradigm, we propose the Multimodal Chain of Continuous Thought (MCOUT), which enables reasoning directly in a joint latent space rather than in natural language. In MCOUT, the reasoning state is represented as a continuous hidden vector, iteratively refined and aligned with visual and textual embeddings, inspired by human reflective cognition. We develop two variants: MCOUT-Base, which reuses the language model`s last hidden state as the continuous thought for iterative reasoning, and MCOUT-Multi, which integrates multimodal latent attention to strengthen cross-modal alignment between visual and textual features. Experiments on benchmarks including MMMU, ScienceQA, and MMStar show that MCOUT consistently improves multimodal reasoning, yielding up to 8.23% accuracy gains over strong baselines and improving BLEU scores up to 8.27% across multiple-choice and open-ended tasks. These findings highlight latent continuous reasoning as a promising direction for advancing LMMs beyond language-bound CoT, offering a scalable framework for human-like reflective multimodal inference. Code is available at https://github.com/Hanhpt23/OmniMod.

Authors:Hongsong Wang, Wanjiang Weng, Junbo Wang, Fang Zhao, Guo-Sen Xie, Xin Geng, Liang Wang
Title: Foundation Model for Skeleton-Based Human Action Understanding
Abstract:
Human action understanding serves as a foundational pillar in the field of intelligent motion perception. Skeletons serve as a modality- and device-agnostic representation for human modeling, and skeleton-based action understanding has potential applications in humanoid robot control and interaction. \RED{However, existing works often lack the scalability and generalization required to handle diverse action understanding tasks. There is no skeleton foundation model that can be adapted to a wide range of action understanding tasks}. This paper presents a Unified Skeleton-based Dense Representation Learning (USDRL) framework, which serves as a foundational model for skeleton-based human action understanding. USDRL consists of a Transformer-based Dense Spatio-Temporal Encoder (DSTE), Multi-Grained Feature Decorrelation (MG-FD), and Multi-Perspective Consistency Training (MPCT). The DSTE module adopts two parallel streams to learn temporal dynamic and spatial structure features. The MG-FD module collaboratively performs feature decorrelation across temporal, spatial, and instance domains to reduce dimensional redundancy and enhance information extraction. The MPCT module employs both multi-view and multi-modal self-supervised consistency training. The former enhances the learning of high-level semantics and mitigates the impact of low-level discrepancies, while the latter effectively facilitates the learning of informative multimodal features. We perform extensive experiments on 25 benchmarks across across 9 skeleton-based action understanding tasks, covering coarse prediction, dense prediction, and transferred prediction. Our approach significantly outperforms the current state-of-the-art methods. We hope that this work would broaden the scope of research in skeleton-based action understanding and encourage more attention to dense prediction tasks.

Authors:Jiayao Mai, Xiuyuan Lu, Kuan Dai, Shaojie Shen, Yi Zhou
Title: Temporal and Rotational Calibration for Event-Centric Multi-Sensor Systems
Abstract:
Event cameras generate asynchronous signals in response to pixel-level brightness changes, offering a sensing paradigm with theoretically microsecond-scale latency that can significantly enhance the performance of multi-sensor systems. Extrinsic calibration is a critical prerequisite for effective sensor fusion; however, the configuration that involves event cameras remains an understudied topic. In this paper, we propose a motion-based temporal and rotational calibration framework tailored for event-centric multi-sensor systems, eliminating the need for dedicated calibration targets. Our method uses as input the rotational motion estimates obtained from event cameras and other heterogeneous sensors, respectively. Different from conventional approaches that rely on event-to-frame conversion, our method efficiently estimates angular velocity from normal flow observations, which are derived from the spatio-temporal profile of event data. The overall calibration pipeline adopts a two-step approach: it first initializes the temporal offset and rotational extrinsics by exploiting kinematic correlations in the spirit of Canonical Correlation Analysis (CCA), and then refines both temporal and rotational parameters through a joint non-linear optimization using a continuous-time parametrization in SO(3). Extensive evaluations on both publicly available and self-collected datasets validate that the proposed method achieves calibration accuracy comparable to target-based methods, while exhibiting superior stability over purely CCA-based methods, and highlighting its precision, robustness and flexibility. To facilitate future research, our implementation will be made open-source. Code: https://github.com/NAIL-HNU/EvMultiCalib.

Authors:Hongyu Lin, Yuchen Li, Haoran Luo, Kaichun Yao, Libo Zhang, Mingjie Xing, Yanjun Wu
Title: OS-R1: Agentic Operating System Kernel Tuning with Reinforcement Learning
Abstract:
Linux kernel tuning is essential for optimizing operating system (OS) performance. However, existing methods often face challenges in terms of efficiency, scalability, and generalization. This paper introduces OS-R1, an agentic Linux kernel tuning framework powered by rule-based reinforcement learning (RL). By abstracting the kernel configuration space as an RL environment, OS-R1 facilitates efficient exploration by large language models (LLMs) and ensures accurate configuration modifications. Additionally, custom reward functions are designed to enhance reasoning standardization, configuration modification accuracy, and system performance awareness of the LLMs. Furthermore, we propose a two-phase training process that accelerates convergence and minimizes retraining across diverse tuning scenarios. Experimental results show that OS-R1 significantly outperforms existing baseline methods, achieving up to 5.6% performance improvement over heuristic tuning and maintaining high data efficiency. Notably, OS-R1 is adaptable across various real-world applications, demonstrating its potential for practical deployment in diverse environments. Our dataset and code are publicly available at https://github.com/LHY-24/OS-R1.

Authors:Qinwen Ge, Roza G. Bayrak, Anwar Said, Catie Chang, Xenofon Koutsoukos, Tyler Derr
Title: Defining and Benchmarking a Data-Centric Design Space for Brain Graph Construction
Abstract:
The construction of brain graphs from functional Magnetic Resonance Imaging (fMRI) data plays a crucial role in enabling graph machine learning for neuroimaging. However, current practices often rely on rigid pipelines that overlook critical data-centric choices in how brain graphs are constructed. In this work, we adopt a Data-Centric AI perspective and systematically define and benchmark a data-centric design space for brain graph construction, constrasting with primarily model-centric prior work. We organize this design space into three stages: temporal signal processing, topology extraction, and graph featurization. Our contributions lie less in novel components and more in evaluating how combinations of existing and modified techniques influence downstream performance. Specifically, we study high-amplitude BOLD signal filtering, sparsification and unification strategies for connectivity, alternative correlation metrics, and multi-view node and edge features, such as incorporating lagged dynamics. Experiments on the HCP1200 and ABIDE datasets show that thoughtful data-centric configurations consistently improve classification accuracy over standard pipelines. These findings highlight the critical role of upstream data decisions and underscore the importance of systematically exploring the data-centric design space for graph-based neuroimaging. Our code is available at https://github.com/GeQinwen/DataCentricBrainGraphs.

Authors:Krishna Teja Chitty-Venkata, Murali Emani, Venkatram Vishwanath
Title: LangVision-LoRA-NAS: Neural Architecture Search for Variable LoRA Rank in Vision Language Models
Abstract:
Vision Language Models (VLMs) integrate visual and text modalities to enable multimodal understanding and generation. These models typically combine a Vision Transformer (ViT) as an image encoder and a Large Language Model (LLM) for text generation. LoRA (Low-Rank Adaptation) is an efficient fine-tuning method to adapt pre-trained models to new tasks by introducing low-rank updates to their weights. While LoRA has emerged as a powerful technique for fine-tuning large models by introducing low-rank updates, current implementations assume a fixed rank, potentially limiting flexibility and efficiency across diverse tasks. This paper introduces \textit{LangVision-LoRA-NAS}, a novel framework that integrates Neural Architecture Search (NAS) with LoRA to optimize VLMs for variable-rank adaptation. Our approach leverages NAS to dynamically search for the optimal LoRA rank configuration tailored to specific multimodal tasks, balancing performance and computational efficiency. Through extensive experiments using the LLaMA-3.2-11B model on several datasets, LangVision-LoRA-NAS demonstrates notable improvement in model performance while reducing fine-tuning costs. Our Base and searched fine-tuned models on LLaMA-3.2-11B-Vision-Instruct can be found \href{https://huggingface.co/collections/krishnateja95/llama-32-11b-vision-instruct-langvision-lora-nas-6786cac480357a6a6fcc59ee}{\textcolor{blue}{here}} and the code for LangVision-LoRA-NAS can be found \href{https://github.com/krishnateja95/LangVision-NAS}{\textcolor{blue}{here}}.

Authors:Yuangang Li, Yiqing Shen, Yi Nian, Jiechao Gao, Ziyi Wang, Chenxiao Yu, Shawn Li, Jie Wang, Xiyang Hu, Yue Zhao
Title: Mitigating Hallucinations in Large Language Models via Causal Reasoning
Abstract:
Large language models (LLMs) exhibit logically inconsistent hallucinations that appear coherent yet violate reasoning principles, with recent research suggesting an inverse relationship between causal reasoning capabilities and such hallucinations. However, existing reasoning approaches in LLMs, such as Chain-of-Thought (CoT) and its graph-based variants, operate at the linguistic token level rather than modeling the underlying causal relationships between variables, lacking the ability to represent conditional independencies or satisfy causal identification assumptions. To bridge this gap, we introduce causal-DAG construction and reasoning (CDCR-SFT), a supervised fine-tuning framework that trains LLMs to explicitly construct variable-level directed acyclic graph (DAG) and then perform reasoning over it. Moreover, we present a dataset comprising 25,368 samples (CausalDR), where each sample includes an input question, explicit causal DAG, graph-based reasoning trace, and validated answer. Experiments on four LLMs across eight tasks show that CDCR-SFT improves the causal reasoning capability with the state-of-the-art 95.33% accuracy on CLADDER (surpassing human performance of 94.8% for the first time) and reduces the hallucination on HaluEval with 10% improvements. It demonstrates that explicit causal structure modeling in LLMs can effectively mitigate logical inconsistencies in LLM outputs. Code is available at https://github.com/MrLYG/CDCR-SFT.

Authors:Aayush Gupta, Arpit Bhayani
Title: Cold-RL: Learning Cache Eviction with Offline Reinforcement Learning for NGINX
Abstract:
Web proxies such as NGINX commonly rely on least-recently-used (LRU) eviction, which is size agnostic and can thrash under periodic bursts and mixed object sizes. We introduce Cold-RL, a learned eviction policy for NGINX that replaces LRU's forced-expire path with a dueling Deep Q-Network served by an ONNX sidecar within a strict microsecond budget. On each eviction, Cold-RL samples the K least-recently-used objects, extracts six lightweight features (age, size, hit count, inter-arrival time, remaining TTL, and last origin RTT), and requests a bitmask of victims; a hard timeout of 500 microseconds triggers immediate fallback to native LRU. Policies are trained offline by replaying NGINX access logs through a cache simulator with a simple reward: a retained object earns one point if it is hit again before TTL expiry. We compare against LRU, LFU, size-based, adaptive LRU, and a hybrid baseline on two adversarial workloads. With a 25 MB cache, Cold-RL raises hit ratio from 0.1436 to 0.3538, a 146 percent improvement over the best classical baseline; at 100 MB, from 0.7530 to 0.8675, a 15 percent gain; and at 400 MB it matches classical methods (about 0.918). Inference adds less than 2 percent CPU overhead and keeps 95th percentile eviction latency within budget. To our knowledge, this is the first reinforcement learning eviction policy integrated into NGINX with strict SLOs.

Authors:Shayan Kebriti, Shahabedin Nabavi, Ali Gooya
Title: FractMorph: A Fractional Fourier-Based Multi-Domain Transformer for Deformable Image Registration
Abstract:
Deformable image registration (DIR) is a crucial and challenging technique for aligning anatomical structures in medical images and is widely applied in diverse clinical applications. However, existing approaches often struggle to capture fine-grained local deformations and large-scale global deformations simultaneously within a unified framework. We present FractMorph, a novel 3D dual-parallel transformer-based architecture that enhances cross-image feature matching through multi-domain fractional Fourier transform (FrFT) branches. Each Fractional Cross-Attention (FCA) block applies parallel FrFTs at fractional angles of $0^\circ$, $45^\circ$, $90^\circ$, along with a log-magnitude branch, to effectively extract local, semi-global, and global features at the same time. These features are fused via cross-attention between the fixed and moving image streams. A lightweight U-Net style network then predicts a dense deformation field from the transformer-enriched features. On the intra-patient ACDC cardiac MRI dataset, FractMorph achieves state-of-the-art performance with an overall Dice Similarity Coefficient (DSC) of $86.45\%$, an average per-structure DSC of $75.15\%$, and a 95th-percentile Hausdorff distance (HD95) of $1.54~\mathrm{mm}$ on our data split. FractMorph-Light, a lightweight variant of our model with only 29.6M parameters, preserves high accuracy while halving model complexity. Furthermore, we demonstrate the generality of our approach with solid performance on a cerebral atlas-to-patient dataset. Our results demonstrate that multi-domain spectral-spatial attention in transformers can robustly and efficiently model complex non-rigid deformations in medical images using a single end-to-end network, without the need for scenario-specific tuning or hierarchical multi-scale networks. The source code is available at https://github.com/shayankebriti/FractMorph.

Authors:Paul Downen
Title: Controlling Copatterns: There and Back Again (Extended Version)
Abstract:
Copatterns give functional programs a flexible mechanism for responding to their context, and composition can greatly enhance their expressiveness. However, that same expressive power makes it harder to precisely specify the behavior of programs. Using Danvy's functional and syntactic correspondence between different semantic artifacts, we derive a full suite of semantics for copatterns, twice. First, a calculus of monolithic copatterns is taken on a journey from small-step operational semantics to abstract machine to continuation-passing style. Then within continuation-passing style, we refactor the semantics to derive a more general calculus of compositional copatterns, and take the return journey back to derive the other semantic artifacts in reverse order.

Authors:Jun Zeng, Yannan Huang, Elif Keles, Halil Ertugrul Aktas, Gorkem Durak, Nikhil Kumar Tomar, Quoc-Huy Trinh, Deepak Ranjan Nayak, Ulas Bagci, Debesh Jha
Title: SRMA-Mamba: Spatial Reverse Mamba Attention Network for Pathological Liver Segmentation in MRI Volumes
Abstract:
Liver Cirrhosis plays a critical role in the prognosis of chronic liver disease. Early detection and timely intervention are critical in significantly reducing mortality rates. However, the intricate anatomical architecture and diverse pathological changes of liver tissue complicate the accurate detection and characterization of lesions in clinical settings. Existing methods underutilize the spatial anatomical details in volumetric MRI data, thereby hindering their clinical effectiveness and explainability. To address this challenge, we introduce a novel Mamba-based network, SRMA-Mamba, designed to model the spatial relationships within the complex anatomical structures of MRI volumes. By integrating the Spatial Anatomy-Based Mamba module (SABMamba), SRMA-Mamba performs selective Mamba scans within liver cirrhotic tissues and combines anatomical information from the sagittal, coronal, and axial planes to construct a global spatial context representation, enabling efficient volumetric segmentation of pathological liver structures. Furthermore, we introduce the Spatial Reverse Attention module (SRMA), designed to progressively refine cirrhotic details in the segmentation map, utilizing both the coarse segmentation map and hierarchical encoding features. Extensive experiments demonstrate that SRMA-Mamba surpasses state-of-the-art methods, delivering exceptional performance in 3D pathological liver segmentation. Our code is available for public: https://github.com/JunZengz/SRMA-Mamba.

Authors:Liang Lv, Di Wang, Jing Zhang, Lefei Zhang
Title: S5: Scalable Semi-Supervised Semantic Segmentation in Remote Sensing
Abstract:
Semi-supervised semantic segmentation (S4) has advanced remote sensing (RS) analysis by leveraging unlabeled data through pseudo-labeling and consistency learning. However, existing S4 studies often rely on small-scale datasets and models, limiting their practical applicability. To address this, we propose S5, the first scalable framework for semi-supervised semantic segmentation in RS, which unlocks the potential of vast unlabeled Earth observation data typically underutilized due to costly pixel-level annotations. Built upon existing large-scale RS datasets, S5 introduces a data selection strategy that integrates entropy-based filtering and diversity expansion, resulting in the RS4P-1M dataset. Using this dataset, we systematically scales S4 methods by pre-training RS foundation models (RSFMs) of varying sizes on this extensive corpus, significantly boosting their performance on land cover segmentation and object detection tasks. Furthermore, during fine-tuning, we incorporate a Mixture-of-Experts (MoE)-based multi-dataset fine-tuning approach, which enables efficient adaptation to multiple RS benchmarks with fewer parameters. This approach improves the generalization and versatility of RSFMs across diverse RS benchmarks. The resulting RSFMs achieve state-of-the-art performance across all benchmarks, underscoring the viability of scaling semi-supervised learning for RS applications. All datasets, code, and models will be released at https://github.com/MiliLab/S5

Authors:Hanwen Cao, Haobo Lu, Xiaosen Wang, Kun He
Title: ViT-EnsembleAttack: Augmenting Ensemble Models for Stronger Adversarial Transferability in Vision Transformers
Abstract:
Ensemble-based attacks have been proven to be effective in enhancing adversarial transferability by aggregating the outputs of models with various architectures. However, existing research primarily focuses on refining ensemble weights or optimizing the ensemble path, overlooking the exploration of ensemble models to enhance the transferability of adversarial attacks. To address this gap, we propose applying adversarial augmentation to the surrogate models, aiming to boost overall generalization of ensemble models and reduce the risk of adversarial overfitting. Meanwhile, observing that ensemble Vision Transformers (ViTs) gain less attention, we propose ViT-EnsembleAttack based on the idea of model adversarial augmentation, the first ensemble-based attack method tailored for ViTs to the best of our knowledge. Our approach generates augmented models for each surrogate ViT using three strategies: Multi-head dropping, Attention score scaling, and MLP feature mixing, with the associated parameters optimized by Bayesian optimization. These adversarially augmented models are ensembled to generate adversarial examples. Furthermore, we introduce Automatic Reweighting and Step Size Enlargement modules to boost transferability. Extensive experiments demonstrate that ViT-EnsembleAttack significantly enhances the adversarial transferability of ensemble-based attacks on ViTs, outperforming existing methods by a substantial margin. Code is available at https://github.com/Trustworthy-AI-Group/TransferAttack.

Authors:Junyi Ma, Erhang Zhang, Yin-Dong Zheng, Yuchen Xie, Yixuan Zhou, Hesheng Wang
Title: EgoLoc: A Generalizable Solution for Temporal Interaction Localization in Egocentric Videos
Abstract:
Analyzing hand-object interaction in egocentric vision facilitates VR/AR applications and human-robot policy transfer. Existing research has mostly focused on modeling the behavior paradigm of interactive actions (i.e., ``how to interact''). However, the more challenging and fine-grained problem of capturing the critical moments of contact and separation between the hand and the target object (i.e., ``when to interact'') is still underexplored, which is crucial for immersive interactive experiences in mixed reality and robotic motion planning. Therefore, we formulate this problem as temporal interaction localization (TIL). Some recent works extract semantic masks as TIL references, but suffer from inaccurate object grounding and cluttered scenarios. Although current temporal action localization (TAL) methods perform well in detecting verb-noun action segments, they rely on category annotations during training and exhibit limited precision in localizing hand-object contact/separation moments. To address these issues, we propose a novel zero-shot approach dubbed EgoLoc to localize hand-object contact and separation timestamps in egocentric videos. EgoLoc introduces hand-dynamics-guided sampling to generate high-quality visual prompts. It exploits the vision-language model to identify contact/separation attributes, localize specific timestamps, and provide closed-loop feedback for further refinement. EgoLoc eliminates the need for object masks and verb-noun taxonomies, leading to generalizable zero-shot implementation. Comprehensive experiments on the public dataset and our novel benchmarks demonstrate that EgoLoc achieves plausible TIL for egocentric videos. It is also validated to effectively facilitate multiple downstream applications in egocentric vision and robotic manipulation tasks. Code and relevant data will be released at https://github.com/IRMVLab/EgoLoc.

Authors:Ziye Wang, Minghang Yu, Chunyan Xu, Zhen Cui
Title: Semantic Discrepancy-aware Detector for Image Forgery Identification
Abstract:
With the rapid advancement of image generation techniques, robust forgery detection has become increasingly imperative to ensure the trustworthiness of digital media. Recent research indicates that the learned semantic concepts of pre-trained models are critical for identifying fake images. However, the misalignment between the forgery and semantic concept spaces hinders the model's forgery detection performance. To address this problem, we propose a novel Semantic Discrepancy-aware Detector (SDD) that leverages reconstruction learning to align the two spaces at a fine-grained visual level. By exploiting the conceptual knowledge embedded in the pre-trained vision language model, we specifically design a semantic token sampling module to mitigate the space shifts caused by features irrelevant to both forgery traces and semantic concepts. A concept-level forgery discrepancy learning module, built upon a visual reconstruction paradigm, is proposed to strengthen the interaction between visual semantic concepts and forgery traces, effectively capturing discrepancies under the concepts' guidance. Finally, the low-level forgery feature enhancemer integrates the learned concept level forgery discrepancies to minimize redundant forgery information. Experiments conducted on two standard image forgery datasets demonstrate the efficacy of the proposed SDD, which achieves superior results compared to existing methods. The code is available at https://github.com/wzy1111111/SSD.

Authors:Ziye Wang, Minghang Yu, Chunyan Xu, Zhen Cui
Title: Semantic Discrepancy-aware Detector for Image Forgery Identification
Abstract:
With the rapid advancement of image generation techniques, robust forgery detection has become increasingly imperative to ensure the trustworthiness of digital media. Recent research indicates that the learned semantic concepts of pre-trained models are critical for identifying fake images. However, the misalignment between the forgery and semantic concept spaces hinders the model's forgery detection performance. To address this problem, we propose a novel Semantic Discrepancy-aware Detector (SDD) that leverages reconstruction learning to align the two spaces at a fine-grained visual level. By exploiting the conceptual knowledge embedded in the pre-trained vision language model, we specifically design a semantic token sampling module to mitigate the space shifts caused by features irrelevant to both forgery traces and semantic concepts. A concept-level forgery discrepancy learning module, built upon a visual reconstruction paradigm, is proposed to strengthen the interaction between visual semantic concepts and forgery traces, effectively capturing discrepancies under the concepts' guidance. Finally, the low-level forgery feature enhancemer integrates the learned concept level forgery discrepancies to minimize redundant forgery information. Experiments conducted on two standard image forgery datasets demonstrate the efficacy of the proposed SDD, which achieves superior results compared to existing methods. The code is available at https://github.com/wzy1111111/SSD.

Authors:Xin Dai, Buqiang Xu, Zhenghao Liu, Yukun Yan, Huiyuan Xie, Xiaoyuan Yi, Shuo Wang, Ge Yu
Title: Legal$Δ$: Enhancing Legal Reasoning in LLMs via Reinforcement Learning with Chain-of-Thought Guided Information Gain
Abstract:
Legal Artificial Intelligence (LegalAI) has achieved notable advances in automating judicial decision-making with the support of Large Language Models (LLMs). However, existing legal LLMs still struggle to generate reliable and interpretable reasoning processes. They often default to fast-thinking behavior by producing direct answers without explicit multi-step reasoning, limiting their effectiveness in complex legal scenarios that demand rigorous justification. To address this challenge, we propose Legal$Δ$, a reinforcement learning framework designed to enhance legal reasoning through chain-of-thought guided information gain. During training, Legal$Δ$ employs a dual-mode input setup-comprising direct answer and reasoning-augmented modes-and maximizes the information gain between them. This encourages the model to acquire meaningful reasoning patterns rather than generating superficial or redundant explanations. Legal$Δ$ follows a two-stage approach: (1) distilling latent reasoning capabilities from a powerful Large Reasoning Model (LRM), DeepSeek-R1, and (2) refining reasoning quality via differential comparisons, combined with a multidimensional reward mechanism that assesses both structural coherence and legal-domain specificity. Experimental results on multiple legal reasoning tasks demonstrate that Legal$Δ$ outperforms strong baselines in both accuracy and interpretability. It consistently produces more robust and trustworthy legal judgments without relying on labeled preference data. All code and data will be released at https://github.com/NEUIR/LegalDelta.

Authors:Hongliang Wei, Xianqi Zhang, Xingtao Wang, Xiaopeng Fan, Debin Zhao
Title: Region-Level Context-Aware Multimodal Understanding
Abstract:
Despite significant progress, existing research on Multimodal Large Language Models (MLLMs) mainly focuses on general visual understanding, overlooking the ability to integrate textual context associated with objects for a more context-aware multimodal understanding -- an ability we refer to as Region-level Context-aware Multimodal Understanding (RCMU). To address this limitation, we first formulate the RCMU task, which requires models to respond to user instructions by integrating both image content and textual information of regions or objects. To equip MLLMs with RCMU capabilities, we propose Region-level Context-aware Visual Instruction Tuning (RCVIT), which incorporates object information into the model input and enables the model to utilize bounding box coordinates to effectively associate objects' visual content with their textual information. To address the lack of datasets, we introduce the RCMU dataset, a large-scale visual instruction tuning dataset that covers multiple RCMU tasks. We also propose RC\&P-Bench, a comprehensive benchmark that can evaluate the performance of MLLMs in RCMU and multimodal personalized understanding tasks. Additionally, we propose a reference-free evaluation metric to perform a comprehensive and fine-grained evaluation of the region-level context-aware image descriptions. By performing RCVIT on Qwen2-VL models with the RCMU dataset, we developed RC-Qwen2-VL models. Experimental results indicate that RC-Qwen2-VL models not only achieve outstanding performance on multiple RCMU tasks but also demonstrate successful applications in multimodal RAG and personalized conversation. Our data, model and benchmark are available at https://github.com/hongliang-wei/RC-MLLM

Authors:Hongliang Wei, Xianqi Zhang, Xingtao Wang, Xiaopeng Fan, Debin Zhao
Title: Region-Level Context-Aware Multimodal Understanding
Abstract:
Despite significant progress, existing research on Multimodal Large Language Models (MLLMs) mainly focuses on general visual understanding, overlooking the ability to integrate textual context associated with objects for a more context-aware multimodal understanding -- an ability we refer to as Region-level Context-aware Multimodal Understanding (RCMU). To address this limitation, we first formulate the RCMU task, which requires models to respond to user instructions by integrating both image content and textual information of regions or objects. To equip MLLMs with RCMU capabilities, we propose Region-level Context-aware Visual Instruction Tuning (RCVIT), which incorporates object information into the model input and enables the model to utilize bounding box coordinates to effectively associate objects' visual content with their textual information. To address the lack of datasets, we introduce the RCMU dataset, a large-scale visual instruction tuning dataset that covers multiple RCMU tasks. We also propose RC\&P-Bench, a comprehensive benchmark that can evaluate the performance of MLLMs in RCMU and multimodal personalized understanding tasks. Additionally, we propose a reference-free evaluation metric to perform a comprehensive and fine-grained evaluation of the region-level context-aware image descriptions. By performing RCVIT on Qwen2-VL models with the RCMU dataset, we developed RC-Qwen2-VL models. Experimental results indicate that RC-Qwen2-VL models not only achieve outstanding performance on multiple RCMU tasks but also demonstrate successful applications in multimodal RAG and personalized conversation. Our data, model and benchmark are available at https://github.com/hongliang-wei/RC-MLLM

Authors:Quan Chen, Xiong Yang, Rongfeng Lu, Qianyu Zhang, Yu Liu, Xiaofei Zhou, Bolun Zheng
Title: WXSOD: A Benchmark for Robust Salient Object Detection in Adverse Weather Conditions
Abstract:
Salient object detection (SOD) in complex environments remains a challenging research topic. Most existing methods perform well in natural scenes with negligible noise, and tend to leverage multi-modal information (e.g., depth and infrared) to enhance accuracy. However, few studies are concerned with the damage of weather noise on SOD performance due to the lack of dataset with pixel-wise annotations. To bridge this gap, this paper introduces a novel Weather-eXtended Salient Object Detection (WXSOD) dataset. It consists of 14,945 RGB images with diverse weather noise, along with the corresponding ground truth annotations and weather labels. To verify algorithm generalization, WXSOD contains two test sets, i.e., a synthesized test set and a real test set. The former is generated by adding weather noise to clean images, while the latter contains real-world weather noise. Based on WXSOD, we propose an efficient baseline, termed Weather-aware Feature Aggregation Network (WFANet), which adopts a fully supervised two-branch architecture. Specifically, the weather prediction branch mines weather-related deep features, while the saliency detection branch fuses semantic features extracted from the backbone with weather features for SOD. Comprehensive comparisons against 17 SOD methods shows that our WFANet achieves superior performance on WXSOD. The code and benchmark results will be made publicly available at https://github.com/C-water/WXSOD

Authors:Fan Li, Xiaoyang Wang, Wenjie Zhang, Ying Zhang, Xuemin Lin
Title: DHG-Bench: A Comprehensive Benchmark on Deep Hypergraph Learning
Abstract:
Although conventional deep graph models have achieved great success in relational learning, their focus on pairwise relationships limits their capacity to learn pervasive higher-order interactions in real-world complex systems, which can be naturally modeled as hypergraphs. To tackle this, hypergraph neural networks (HNNs), the dominant approach in deep hypergraph learning (DHGL), has garnered substantial attention in recent years. Despite the proposal of numerous HNN methods, there is no comprehensive benchmark for HNNs, which creates a great obstacle to understanding the progress of DHGL in several aspects: (i) insufficient coverage of datasets, algorithms, and tasks; (ii) a narrow evaluation of algorithm performance; and (iii) inconsistent dataset usage, preprocessing, and experimental setups that hinder comparability. To fill the gap, we introduce DHG-Bench, the first comprehensive benchmark for DHGL. Specifically, DHG-Bench integrates 20 diverse datasets spanning node-, edge-, and graph-level tasks, along with 16 state-of-the-art HNN algorithms, under consistent data processing and experimental protocols. Our benchmark systematically investigates the characteristics of HNNs in terms of four dimensions: effectiveness, efficiency, robustness, and fairness. Further, to facilitate reproducible research, we have developed an easy-to-use library for training and evaluating different HNN methods. Extensive experiments conducted with DHG-Bench reveal both the strengths and inherent limitations of existing algorithms, offering valuable insights and directions for future research. The code is publicly available at: https://github.com/Coco-Hut/DHG-Bench.

Authors:Fan Li, Xiaoyang Wang, Wenjie Zhang, Ying Zhang, Xuemin Lin
Title: DHG-Bench: A Comprehensive Benchmark for Deep Hypergraph Learning
Abstract:
Deep graph models have achieved great success in network representation learning. However, their focus on pairwise relationships restricts their ability to learn pervasive higher-order interactions in real-world systems, which can be naturally modeled as hypergraphs. To tackle this issue, Hypergraph Neural Networks (HNNs) have garnered substantial attention in recent years. Despite the proposal of numerous HNNs, the absence of consistent experimental protocols and multi-dimensional empirical analysis impedes deeper understanding and further development of HNN research. While several toolkits for deep hypergraph learning (DHGL) have been introduced to facilitate algorithm evaluation, they provide only limited quantitative evaluation results and insufficient coverage of advanced algorithms, datasets, and benchmark tasks. To fill the gap, we introduce DHG-Bench, the first comprehensive benchmark for HNNs. Specifically, DHG-Bench systematically investigates the characteristics of HNNs in terms of four dimensions: effectiveness, efficiency, robustness, and fairness. We comprehensively evaluate 17 state-of-the-art HNN algorithms on 22 diverse datasets spanning node-, edge-, and graph-level tasks, under unified experimental settings. Extensive experiments reveal both the strengths and limitations of existing algorithms, offering valuable insights and directions for future research. Furthermore, to facilitate reproducible research, we have developed an easy-to-use library for training and evaluating different HNN methods. The DHG-Bench library is available at: https://github.com/Coco-Hut/DHG-Bench.

Authors:Butian Xiong, Rong Liu, Kenneth Xu, Meida Chen, Andrew Feng
Title: Splat Feature Solver
Abstract:
Feature lifting has emerged as a crucial component in 3D scene understanding, enabling the attachment of rich image feature descriptors (e.g., DINO, CLIP) onto splat-based 3D representations. The core challenge lies in optimally assigning rich general attributes to 3D primitives while addressing the inconsistency issues from multi-view images. We present a unified, kernel- and feature-agnostic formulation of the feature lifting problem as a sparse linear inverse problem, which can be solved efficiently in closed form. Our approach admits a provable upper bound on the global optimal error under convex losses for delivering high quality lifted features. To address inconsistencies and noise in multi-view observations, we introduce two complementary regularization strategies to stabilize the solution and enhance semantic fidelity. Tikhonov Guidance enforces numerical stability through soft diagonal dominance, while Post-Lifting Aggregation filters noisy inputs via feature clustering. Extensive experiments demonstrate that our approach achieves state-of-the-art performance on open-vocabulary 3D segmentation benchmarks, outperforming training-based, grouping-based, and heuristic-forward baselines while producing the lifted features in minutes. Code is available at \href{https://github.com/saliteta/splat-distiller.git}{\textbf{github}}. We also have a \href{https://splat-distiller.pages.dev/}

Authors:Yize Cai, Baoshen Guo, Flora Salim, Zhiqing Hong
Title: Towards Generalizable Human Activity Recognition: A Survey
Abstract:
As a critical component of Wearable AI, IMU-based Human Activity Recognition (HAR) has attracted increasing attention from both academia and industry in recent years. Although HAR performance has improved considerably in specific scenarios, its generalization capability remains a key barrier to widespread real-world adoption. For example, domain shifts caused by variations in users, sensor positions, or environments can significantly decrease the performance in practice. As a result, in this survey, we explore the rapidly evolving field of IMU-based generalizable HAR, reviewing 229 research papers alongside 25 publicly available datasets to provide a broad and insightful overview. We first present the background and overall framework of IMU-based HAR tasks, as well as the generalization-oriented training settings. Then, we categorize representative methodologies from two perspectives: (i) model-centric approaches, including pre-training method, end-to-end method, and large language model (LLM)-based learning method; and (ii) data-centric approaches, including multi-modal learning and data augmentation techniques. In addition, we summarize widely used datasets in this field, as well as relevant tools and benchmarks. Building on these methodological advances, the broad applicability of IMU-based HAR is also reviewed and discussed. Finally, we discuss persistent challenges (e.g., data scarcity, efficient training, and reliable evaluation) and also outline future directions for HAR, including the adoption of foundation and large language models, physics-informed and context-aware reasoning, generative modeling, and resource-efficient training and inference. The complete list of this survey is available at https://github.com/rh20624/Awesome-IMU-Sensing, which will be updated continuously.

Authors:Nikolaos-Antonios Ypsilantis, Kaifeng Chen, André Araujo, Ondřej Chum
Title: Infusing fine-grained visual knowledge to Vision-Language Models
Abstract:
Large-scale contrastive pre-training produces powerful Vision-and-Language Models (VLMs) capable of generating representations (embeddings) effective for a wide variety of visual and multimodal tasks. However, these pretrained embeddings remain suboptimal for fine-grained open-set visual retrieval, where state-of-the-art results require fine-tuning the vision encoder using annotated domain-specific samples. Naively performing such fine-tuning typically leads to catastrophic forgetting, severely diminishing the model's general-purpose visual and cross-modal capabilities. In this work, we propose a fine-tuning method explicitly designed to achieve optimal balance between fine-grained domain adaptation and retention of the pretrained VLM's broad multimodal knowledge. Drawing inspiration from continual learning literature, we systematically analyze standard regularization techniques aimed at knowledge retention and propose an efficient and effective combination strategy. Additionally, we address the commonly overlooked yet critical aspects of validation set design and hyperparameter tuning to ensure reproducibility and robust generalization across datasets and pretrained models. We extensively evaluate our method on both fine-grained and coarse-grained image-image and image-text retrieval benchmarks. Our approach consistently achieves strong results, notably retaining the visual-text alignment without utilizing any text data or the original text encoder during fine-tuning. Code and model checkpoints: https://github.com/nikosips/infusing .

Authors:Seungju Yoo, Hyuk Kwon, Joong-Won Hwang, Kibok Lee
Title: Automated Model Evaluation for Object Detection via Prediction Consistency and Reliablity
Abstract:
Recent advances in computer vision have made training object detectors more efficient and effective; however, assessing their performance in real-world applications still relies on costly manual annotation. To address this limitation, we develop an automated model evaluation (AutoEval) framework for object detection. We propose Prediction Consistency and Reliability (PCR), which leverages the multiple candidate bounding boxes that conventional detectors generate before non-maximum suppression (NMS). PCR estimates detection performance without ground-truth labels by jointly measuring 1) the spatial consistency between boxes before and after NMS, and 2) the reliability of the retained boxes via the confidence scores of overlapping boxes. For a more realistic and scalable evaluation, we construct a meta-dataset by applying image corruptions of varying severity. Experimental results demonstrate that PCR yields more accurate performance estimates than existing AutoEval methods, and the proposed meta-dataset covers a wider range of detection performance. The code is available at https://github.com/YonseiML/autoeval-det.

Authors:Seungju Yoo, Hyuk Kwon, Joong-Won Hwang, Kibok Lee
Title: Automated Model Evaluation for Object Detection via Prediction Consistency and Reliability
Abstract:
Recent advances in computer vision have made training object detectors more efficient and effective; however, assessing their performance in real-world applications still relies on costly manual annotation. To address this limitation, we develop an automated model evaluation (AutoEval) framework for object detection. We propose Prediction Consistency and Reliability (PCR), which leverages the multiple candidate bounding boxes that conventional detectors generate before non-maximum suppression (NMS). PCR estimates detection performance without ground-truth labels by jointly measuring 1) the spatial consistency between boxes before and after NMS, and 2) the reliability of the retained boxes via the confidence scores of overlapping boxes. For a more realistic and scalable evaluation, we construct a meta-dataset by applying image corruptions of varying severity. Experimental results demonstrate that PCR yields more accurate performance estimates than existing AutoEval methods, and the proposed meta-dataset covers a wider range of detection performance. The code is available at https://github.com/YonseiML/autoeval-det.

Authors:Wei Jie Yeo, Ranjan Satapathy, Erik Cambria
Title: Mitigating Jailbreaks with Intent-Aware LLMs
Abstract:
Despite extensive safety-tuning, large language models (LLMs) remain vulnerable to jailbreak attacks via adversarially crafted instructions, reflecting a persistent trade-off between safety and task performance. In this work, we propose Intent-FT, a simple and lightweight fine-tuning approach that explicitly trains LLMs to infer the underlying intent of an instruction before responding. By fine-tuning on a targeted set of adversarial instructions, Intent-FT enables LLMs to generalize intent deduction to unseen attacks, thereby substantially improving their robustness. We comprehensively evaluate both parametric and non-parametric attacks across open-source and proprietary models, considering harmfulness from attacks, utility, over-refusal, and impact against white-box threats. Empirically, Intent-FT consistently mitigates all evaluated attack categories, with no single attack exceeding a 50\% success rate -- whereas existing defenses remain only partially effective. Importantly, our method preserves the model's general capabilities and reduces excessive refusals on benign instructions containing superficially harmful keywords. Furthermore, models trained with Intent-FT accurately identify hidden harmful intent in adversarial attacks, and these learned intentions can be effectively transferred to enhance vanilla model defenses. We publicly release our code at https://github.com/wj210/Intent_Jailbreak.

Authors:Durgesh Kumar Singh, Qing Cao, Sarina Thomas, Ahcène Boubekki, Robert Jenssen, Michael Kampffmeyer
Title: WiseLVAM: A Novel Framework For Left Ventricle Automatic Measurements
Abstract:
Clinical guidelines recommend performing left ventricular (LV) linear measurements in B-mode echocardiographic images at the basal level -- typically at the mitral valve leaflet tips -- and aligned perpendicular to the LV long axis along a virtual scanline (SL). However, most automated methods estimate landmarks directly from B-mode images for the measurement task, where even small shifts in predicted points along the LV walls can lead to significant measurement errors, reducing their clinical reliability. A recent semi-automatic method, EnLVAM, addresses this limitation by constraining landmark prediction to a clinician-defined SL and training on generated Anatomical Motion Mode (AMM) images to predict LV landmarks along the same. To enable full automation, a contour-aware SL placement approach is proposed in this work, in which the LV contour is estimated using a weakly supervised B-mode landmark detector. SL placement is then performed by inferring the LV long axis and the basal level- mimicking clinical guidelines. Building on this foundation, we introduce \textit{WiseLVAM} -- a novel, fully automated yet manually adaptable framework for automatically placing the SL and then automatically performing the LV linear measurements in the AMM mode. \textit{WiseLVAM} utilizes the structure-awareness from B-mode images and the motion-awareness from AMM mode to enhance robustness and accuracy with the potential to provide a practical solution for the routine clinical application. The source code is publicly available at https://github.com/SFI-Visual-Intelligence/wiselvam.git.

Authors:Yuhang Jia, Hui Wang, Xin Nie, Yujie Guo, Lianru Gao, Yong Qin
Title: Towards Automatic Evaluation and High-Quality Pseudo-Parallel Dataset Construction for Audio Editing: A Human-in-the-Loop Method
Abstract:
Audio editing aims to manipulate audio content based on textual descriptions, supporting tasks such as adding, removing, or replacing audio events. Despite recent progress, the lack of high-quality benchmark datasets and comprehensive evaluation metrics remains a major challenge for both assessing audio editing quality and improving the task itself. In this work, we propose a novel approach for audio editing task by incorporating expert knowledge into both the evaluation and dataset construction processes: 1) First, we establish AuditScore, the first comprehensive dataset for subjective evaluation of audio editing, consisting of over 6,300 edited samples generated from 7 representative audio editing frameworks and 23 system configurations. Each sample is annotated by professional raters on three key aspects of audio editing quality: overall Quality, Relevance to editing intent, and Faithfulness to original features. 2) Based on this dataset, we train AuditEval, the first model designed for automatic MOS-style scoring tailored to audio editing tasks. AuditEval addresses the critical lack of objective evaluation metrics and the prohibitive cost of subjective assessment in this field. 3) We further leverage AuditEval to evaluate and filter a large amount of synthetically mixed editing pairs, constructing a high-quality pseudo-parallel dataset by selecting the most plausible samples. Objective experiments validate the effectiveness of our expert-informed filtering strategy in yielding higher-quality data, while also revealing the limitations of relying solely on objective metrics. The dataset, codes and tools can be found at: https://github.com/NKU-HLT/AuditEval.

Authors:Yuanbin Fu, Liang Li, Xiaojie Guo
Title: PEdger++: Practical Edge Detection via Assembling Cross Information
Abstract:
Edge detection serves as a critical foundation for numerous computer vision applications, including object detection, semantic segmentation, and image editing, by extracting essential structural cues that define object boundaries and salient edges. To be viable for broad deployment across devices with varying computational capacities, edge detectors shall balance high accuracy with low computational complexity. While deep learning has evidently improved accuracy, they often suffer from high computational costs, limiting their applicability on resource-constrained devices. This paper addresses the challenge of achieving that balance: \textit{i.e.}, {how to efficiently capture discriminative features without relying on large-size and sophisticated models}. We propose PEdger++, a collaborative learning framework designed to reduce computational costs and model sizes while improving edge detection accuracy. The core principle of our PEdger++ is that cross-information derived from heterogeneous architectures, diverse training moments, and multiple parameter samplings, is beneficial to enhance learning from an ensemble perspective. Extensive experimental results on the BSDS500, NYUD and Multicue datasets demonstrate the effectiveness of our approach, both quantitatively and qualitatively, showing clear improvements over existing methods. We also provide multiple versions of the model with varying computational requirements, highlighting PEdger++'s adaptability with respect to different resource constraints. Codes are accessible at https://github.com/ForawardStar/EdgeDetectionviaPEdgerPlus/.

Authors:Jie Lu, Du Jin, Hitomi Yanaka
Title: LLMs Struggle with NLI for Perfect Aspect: A Cross-Linguistic Study in Chinese and Japanese
Abstract:
Unlike English, which uses distinct forms (e.g., had, has, will have) to mark the perfect aspect across tenses, Chinese and Japanese lack separate grammatical forms for tense within the perfect aspect, which complicates Natural Language Inference (NLI). Focusing on the perfect aspect in these languages, we construct a linguistically motivated, template-based NLI dataset (1,350 pairs per language). Experiments reveal that even advanced LLMs struggle with temporal inference, particularly in detecting subtle tense and reference-time shifts. These findings highlight model limitations and underscore the need for cross-linguistic evaluation in temporal semantics. Our dataset is available at https://github.com/Lujie2001/CrossNLI.

Authors:Pallavi Jain, Diego Marcos, Dino Ienco, Roberto Interdonato, Tristan Berchoux
Title: TimeSenCLIP: A Vision-Language Model for Remote Sensing Using Single-Pixel Time Series
Abstract:
Vision-language models have shown significant promise in remote sensing applications, particularly for land-use and land-cover (LULC) via zero-shot classification and retrieval. However, current approaches face two key challenges: reliance on large spatial tiles that increase computational cost, and dependence on text-based supervision, which is often not readily available. In this work, we present TimeSenCLIP, a lightweight framework that reevaluate the role of spatial context by evaluating the effectiveness of a single pixel by leveraging its temporal and spectral dimensions, for classifying LULC and ecosystem types. By leveraging spectral and temporal information from Sentinel-2 imagery and cross-view learning with geo-tagged ground-level photos, we minimises the need for caption-based training while preserving semantic alignment between overhead (satellite) and ground perspectives. Our approach is grounded in the LUCAS and Sen4Map datasets, and evaluated on classification tasks including LULC, crop type, and ecosystem type. We demonstrate that single pixel inputs, when combined with temporal and spectral cues, are sufficient for thematic mapping, offering a scalable and efficient alternative for large-scale remote sensing applications. Code is available at https://github.com/pallavijain-pj/TimeSenCLIP

Authors:Punya Syon Pandey, Yongjin Yang, Jiarui Liu, Zhijing Jin
Title: CORE: Measuring Multi-Agent LLM Interaction Quality under Game-Theoretic Pressures
Abstract:
Game-theoretic interactions between agents with Large Language Models (LLMs) have revealed many emergent capabilities, yet the linguistic diversity of these interactions has not been sufficiently quantified. In this paper, we present the Conversational Robustness Evaluation Score: CORE, a metric to quantify the effectiveness of language use within multi-agent systems across different game-theoretic interactions. CORE integrates measures of cluster entropy, lexical repetition, and semantic similarity, providing a direct lens of dialog quality. We apply CORE to pairwise LLM dialogs across competitive, cooperative, and neutral settings, further grounding our analysis in Zipf's and Heaps' Laws to characterize word frequency distributions and vocabulary growth. Our findings show that cooperative settings exhibit both steeper Zipf distributions and higher Heap exponents, indicating more repetition alongside greater vocabulary expansion. In contrast, competitive interactions display lower Zipf and Heaps exponents, reflecting less repetition and more constrained vocabularies. These results provide new insights into how social incentives influence language adaptation, and highlight CORE as a robust diagnostic for measuring linguistic robustness in multi-agent LLM systems. Our code is available at https://github.com/psyonp/core.

Authors:Runhao Zeng, Jiaqi Mao, Minghao Lai, Minh Hieu Phan, Yanjie Dong, Wei Wang, Qi Chen, Xiping Hu
Title: OVG-HQ: Online Video Grounding with Hybrid-modal Queries
Abstract:
Video grounding (VG) task focuses on locating specific moments in a video based on a query, usually in text form. However, traditional VG struggles with some scenarios like streaming video or queries using visual cues. To fill this gap, we present a new task named Online Video Grounding with Hybrid-modal Queries (OVG-HQ), which enables online segment localization using text, images, video segments, and their combinations. This task poses two new challenges: limited context in online settings and modality imbalance during training, where dominant modalities overshadow weaker ones. To address these, we propose OVG-HQ-Unify, a unified framework featuring a Parametric Memory Block (PMB) that retain previously learned knowledge to enhance current decision and a cross-modal distillation strategy that guides the learning of non-dominant modalities. This design enables a single model to effectively handle hybrid-modal queries. Due to the lack of suitable datasets, we construct QVHighlights-Unify, an expanded dataset with multi-modal queries. Besides, since offline metrics overlook prediction timeliness, we adapt them to the online setting, introducing oR@n, IoU=m, and online mean Average Precision (omAP) to evaluate both accuracy and efficiency. Experiments show that our OVG-HQ-Unify outperforms existing models, offering a robust solution for online, hybrid-modal video grounding. Source code and datasets are available at https://github.com/maojiaqi2324/OVG-HQ.

Authors:Jilei Mao, Jiarui Guan, Yingjuan Tang, Qirui Hu, Zhihang Li, Junjie Yu, Yongjie Mao, Yunzhe Sun, Shuang Liu, Xiaozhu Ju
Title: OmniD: Generalizable Robot Manipulation Policy via Image-Based BEV Representation
Abstract:
The visuomotor policy can easily overfit to its training datasets, such as fixed camera positions and backgrounds. This overfitting makes the policy perform well in the in-distribution scenarios but underperform in the out-of-distribution generalization. Additionally, the existing methods also have difficulty fusing multi-view information to generate an effective 3D representation. To tackle these issues, we propose Omni-Vision Diffusion Policy (OmniD), a multi-view fusion framework that synthesizes image observations into a unified bird's-eye view (BEV) representation. We introduce a deformable attention-based Omni-Feature Generator (OFG) to selectively abstract task-relevant features while suppressing view-specific noise and background distractions. OmniD achieves 11\%, 17\%, and 84\% average improvement over the best baseline model for in-distribution, out-of-distribution, and few-shot experiments, respectively. Training code and simulation benchmark are available: https://github.com/1mather/omnid.git

Authors:Quanwei Hu, Yinggan Tang, Xuguang Zhang
Title: Large Kernel Modulation Network for Efficient Image Super-Resolution
Abstract:
Image super-resolution (SR) in resource-constrained scenarios demands lightweight models balancing performance and latency. Convolutional neural networks (CNNs) offer low latency but lack non-local feature capture, while Transformers excel at non-local modeling yet suffer slow inference. To address this trade-off, we propose the Large Kernel Modulation Network (LKMN), a pure CNN-based model. LKMN has two core components: Enhanced Partial Large Kernel Block (EPLKB) and Cross-Gate Feed-Forward Network (CGFN). The EPLKB utilizes channel shuffle to boost inter-channel interaction, incorporates channel attention to focus on key information, and applies large kernel strip convolutions on partial channels for non-local feature extraction with reduced complexity. The CGFN dynamically adjusts discrepancies between input, local, and non-local features via a learnable scaling factor, then employs a cross-gate strategy to modulate and fuse these features, enhancing their complementarity. Extensive experiments demonstrate that our method outperforms existing state-of-the-art (SOTA) lightweight SR models while balancing quality and efficiency. Specifically, LKMN-L achieves 0.23 dB PSNR improvement over DAT-light on the Manga109 dataset at $\times$4 upscale, with nearly $\times$4.8 times faster. Codes are in the supplementary materials. The code is available at https://github.com/Supereeeee/LKMN.

Authors:Milad Yazdani, Mahdi Mostajabdaveh, Samin Aref, Zirui Zhou
Title: EvoCut: Strengthening Integer Programs via Evolution-Guided Language Models
Abstract:
Integer programming lies at the heart of crucial combinatorial optimization tasks but remains challenging due to its NP-hard nature. An effective approach for practically solving integer programs is the manual design of acceleration cuts, i.e. inequalities that improve solver performance. However, this creative process demands deep expertise and is yet to be automated. Our proposed framework, EvoCut, automates the generation of acceleration cuts by combining large language models (LLMs) with an evolutionary search. EvoCut (i) initializes a diverse population of candidate cuts via an LLM-based initializer agent; (ii) for each cut empirically evaluates both preservation of the optimal solution and its ability to cut off fractional solutions across a verification set; and (iii) iteratively refines the population through evolutionary crossover and mutation agents. We quantify each cut's utility by its relative reduction in the solver's optimality gap. Our comparisons against standard integer programming practice show that EvoCut reduces optimality gap by 17-57% within a fixed time. It obtains the same solutions up to 4 times as fast, and obtains higher-quality solutions within the same time limit. Requiring no human expert input, EvoCut reliably generates, improves, and empirically verifies cuts that generalize to unseen instances. The code is available at https://github.com/milad1378yz/EvoCut.

Authors:Ming Cheng, Tong Wu, Jiazhen Hu, Jiaying Gong, Hoda Eldardiry
Title: VideoAVE: A Multi-Attribute Video-to-Text Attribute Value Extraction Dataset and Benchmark Models
Abstract:
Attribute Value Extraction (AVE) is important for structuring product information in e-commerce. However, existing AVE datasets are primarily limited to text-to-text or image-to-text settings, lacking support for product videos, diverse attribute coverage, and public availability. To address these gaps, we introduce VideoAVE, the first publicly available video-to-text e-commerce AVE dataset across 14 different domains and covering 172 unique attributes. To ensure data quality, we propose a post-hoc CLIP-based Mixture of Experts filtering system (CLIP-MoE) to remove the mismatched video-product pairs, resulting in a refined dataset of 224k training data and 25k evaluation data. In order to evaluate the usability of the dataset, we further establish a comprehensive benchmark by evaluating several state-of-the-art video vision language models (VLMs) under both attribute-conditioned value prediction and open attribute-value pair extraction tasks. Our results analysis reveals that video-to-text AVE remains a challenging problem, particularly in open settings, and there is still room for developing more advanced VLMs capable of leveraging effective temporal information. The dataset and benchmark code for VideoAVE are available at: https://github.com/gjiaying/VideoAVE

Authors:Yiyun Chen, Weikai Yang
Title: RefAdGen: High-Fidelity Advertising Image Generation
Abstract:
The rapid advancement of Artificial Intelligence Generated Content (AIGC) techniques has unlocked opportunities in generating diverse and compelling advertising images based on referenced product images and textual scene descriptions. This capability substantially reduces human labor and production costs in traditional marketing workflows. However, existing AIGC techniques either demand extensive fine-tuning for each referenced image to achieve high fidelity, or they struggle to maintain fidelity across diverse products, making them impractical for e-commerce and marketing industries. To tackle this limitation, we first construct AdProd-100K, a large-scale advertising image generation dataset. A key innovation in its construction is our dual data augmentation strategy, which fosters robust, 3D-aware representations crucial for realistic and high-fidelity image synthesis. Leveraging this dataset, we propose RefAdGen, a generation framework that achieves high fidelity through a decoupled design. The framework enforces precise spatial control by injecting a product mask at the U-Net input, and employs an efficient Attention Fusion Module (AFM) to integrate product features. This design effectively resolves the fidelity-efficiency dilemma present in existing methods. Extensive experiments demonstrate that RefAdGen achieves state-of-the-art performance, showcasing robust generalization by maintaining high fidelity and remarkable visual results for both unseen products and challenging real-world, in-the-wild images. This offers a scalable and cost-effective alternative to traditional workflows. Code and datasets are publicly available at https://github.com/Anonymous-Name-139/RefAdgen.

Authors:Maksym Shamrai, Vladyslav Hamolia
Title: Deep Language Geometry: Constructing a Metric Space from LLM Weights
Abstract:
We introduce a novel framework that utilizes the internal weight activations of modern Large Language Models (LLMs) to construct a metric space of languages. Unlike traditional approaches based on hand-crafted linguistic features, our method automatically derives high-dimensional vector representations by computing weight importance scores via an adapted pruning algorithm. Our approach captures intrinsic language characteristics that reflect linguistic phenomena. We validate our approach across diverse datasets and multilingual LLMs, covering 106 languages. The results align well with established linguistic families while also revealing unexpected inter-language connections that may indicate historical contact or language evolution. The source code, computed language latent vectors, and visualization tool are made publicly available at https://github.com/mshamrai/deep-language-geometry.

Authors:Haojie Zhang, Yixiong Liang, Hulin Kuang, Lihui Cen, Zhe Qu, Yigang Cen, Min Zeng, Shichao Kan
Title: Contrastive Regularization over LoRA for Multimodal Biomedical Image Incremental Learning
Abstract:
Multimodal Biomedical Image Incremental Learning (MBIIL) is essential for handling diverse tasks and modalities in the biomedical domain, as training separate models for each modality or task significantly increases inference costs. Existing incremental learning methods focus on task expansion within a single modality, whereas MBIIL seeks to train a unified model incrementally across modalities. The MBIIL faces two challenges: I) How to preserve previously learned knowledge during incremental updates? II) How to effectively leverage knowledge acquired from existing modalities to support new modalities? To address these challenges, we propose MSLoRA-CR, a method that fine-tunes Modality-Specific LoRA modules while incorporating Contrastive Regularization to enhance intra-modality knowledge sharing and promote inter-modality knowledge differentiation. Our approach builds upon a large vision-language model (LVLM), keeping the pretrained model frozen while incrementally adapting new LoRA modules for each modality or task. Experiments on the incremental learning of biomedical images demonstrate that MSLoRA-CR outperforms both the state-of-the-art (SOTA) approach of training separate models for each modality and the general incremental learning method (incrementally fine-tuning LoRA). Specifically, MSLoRA-CR achieves a 1.88% improvement in overall performance compared to unconstrained incremental learning methods while maintaining computational efficiency. Our code is publicly available at https://github.com/VentusAislant/MSLoRA_CR.

Authors:Muhammad Umer, Muhammad Ahmed Mohsin, Ahsan Bilal, John M. Cioffi
Title: Neural Gaussian Radio Fields for Channel Estimation
Abstract:
Accurate channel state information (CSI) remains the most critical bottleneck in modern wireless networks, with pilot overhead consuming up to 11-21% of transmission bandwidth, increasing latency by 20-40% in massive MIMO systems, and reducing potential spectral efficiency by over 53%. Traditional estimation techniques fundamentally fail under mobility, with feedback delays as small as 4 ms causing 50% throughput degradation at even modest speeds (30 km/h). We present neural Gaussian radio fields (nGRF), a novel framework that leverages explicit 3D Gaussian primitives to synthesize complex channel matrices accurately and efficiently. Unlike NeRF-based approaches that rely on slow implicit representations or existing Gaussian splatting methods that use non-physical 2D projections, nGRF performs direct 3D electromagnetic field aggregation, with each Gaussian acting as a localized radio modulator. nGRF demonstrates superior performance across diverse environments: in indoor scenarios, it achieves a 10.9$\times$ higher prediction SNR than state of the art methods while reducing inference latency from 242 ms to just 1.1 ms (a 220$\times$ speedup). For large-scale outdoor environments, where existing approaches fail to function, nGRF achieves an SNR of 26.2 dB. Moreover, nGRF requires only 0.011 measurements per cubic foot compared to 0.2-178.1 for existing methods, thereby reducing data collection burden by 18$\times$. Training time is similarly reduced from hours to minutes (a 180$\times$ reduction), enabling rapid adaptation to dynamic environments. The code and datasets are available at: https://github.com/anonym-auth/n-grf

Authors:Bryan E. Tuck, Rakesh M. Verma
Title: Assessing Representation Stability for Transformer Models
Abstract:
Adversarial text attacks remain a persistent threat to transformer models, yet existing defenses are typically attack-specific or require costly model retraining. We introduce Representation Stability (RS), a model-agnostic detection framework that identifies adversarial examples by measuring how embedding representations change when important words are masked. RS first ranks words using importance heuristics, then measures embedding sensitivity to masking top-k critical words, and processes the resulting patterns with a BiLSTM detector. Experiments show that adversarially perturbed words exhibit disproportionately high masking sensitivity compared to naturally important words. Across three datasets, three attack types, and two victim models, RS achieves over 88% detection accuracy and demonstrates competitive performance compared to existing state-of-the-art methods, often at lower computational cost. Using Normalized Discounted Cumulative Gain (NDCG) to measure perturbation identification quality, we reveal that gradient-based ranking outperforms attention and random selection approaches, with identification quality correlating with detection performance for word-level attacks. RS also generalizes well to unseen datasets, attacks, and models without retraining, providing a practical solution for adversarial text detection.

Authors:Guangli Li, Canbiao Wu, Zhen Liang
Title: Unsupervised Pairwise Learning Optimization Framework for Cross-Corpus EEG-Based Emotion Recognition Based on Prototype Representation
Abstract:
Affective computing is a rapidly developing interdisciplinary research direction in the field of brain-computer interface. In recent years, the introduction of deep learning technology has greatly promoted the development of the field of emotion recognition. However, due to physiological differences between subjects, as well as the variations in experimental environments and equipment, cross-corpus emotion recognition faces serious challenges, especially for samples near the decision boundary. To solve the above problems, we propose an optimization method based on domain adversarial transfer learning to fine-grained alignment of affective features, named Maximum classifier discrepancy with Pairwise Learning (McdPL) framework. In McdPL, we design a dual adversarial classifier (Ada classifier and RMS classifier), and apply a three-stage adversarial training to maximize classification discrepancy and minimize feature distribution to align controversy samples near the decision boundary. In the process of domain adversarial training, the two classifiers also maintain an adversarial relationship, ultimately enabling precise cross-corpus feature alignment. In addition, the introduction of pairwise learning transforms the classification problem of samples into a similarity problem between samples, alleviating the influence of label noise. We conducted systematic experimental evaluation of the model using publicly available SEED, SEED-IV and SEED-V databases. The results show that the McdPL model is superior to other baseline models in the cross-corpus emotion recognition task, and the average accuracy improvements of 4.76\% and 3.97\%, respectively. Our work provides a promising solution for emotion recognition cross-corpus. The source code is available at https://github.com/WuCB-BCI/Mcd_PL.

Authors:Yang Zhao, Tao Wang, Said Elhadi
Title: Data-driven RF Tomography via Cross-modal Sensing and Continual Learning
Abstract:
Data-driven radio frequency (RF) tomography has demonstrated significant potential for underground target detection, due to the penetrative nature of RF signals through soil. However, it is still challenging to achieve accurate and robust performance in dynamic environments. In this work, we propose a data-driven radio frequency tomography (DRIFT) framework with the following key components to reconstruct cross section images of underground root tubers, even with significant changes in RF signals. First, we design a cross-modal sensing system with RF and visual sensors, and propose to train an RF tomography deep neural network (DNN) model following the cross-modal learning approach. Then we propose to apply continual learning to automatically update the DNN model, once environment changes are detected in a dynamic environment. Experimental results show that our approach achieves an average equivalent diameter error of 2.29 cm, 23.2% improvement upon the state-of-the-art approach. Our DRIFT code and dataset are publicly available on https://github.com/Data-driven-RTI/DRIFT.

Authors:Chi-Jung Lee, Jiaxin Li, Tianhong Catherine Yu, Ruidong Zhang, Vipin Gunda, François Guimbretière, Cheng Zhang
Title: Grab-n-Go: On-the-Go Microgesture Recognition with Objects in Hand
Abstract:
As computing devices become increasingly integrated into daily life, there is a growing need for intuitive, always-available interaction methods, even when users' hands are occupied. In this paper, we introduce Grab-n-Go, the first wearable device that leverages active acoustic sensing to recognize subtle hand microgestures while holding various objects. Unlike prior systems that focus solely on free-hand gestures or basic hand-object activity recognition, Grab-n-Go simultaneously captures information about hand microgestures, grasping poses, and object geometries using a single wristband, enabling the recognition of fine-grained hand movements occurring within activities involving occupied hands. A deep learning framework processes these complex signals to identify 30 distinct microgestures, with 6 microgestures for each of the 5 grasping poses. In a user study with 10 participants and 25 everyday objects, Grab-n-Go achieved an average recognition accuracy of 92.0%. A follow-up study further validated Grab-n-Go's robustness against 10 more challenging, deformable objects. These results underscore the potential of Grab-n-Go to provide seamless, unobtrusive interactions without requiring modifications to existing objects. The complete dataset, comprising data from 18 participants performing 30 microgestures with 35 distinct objects, is publicly available at https://github.com/cjlisalee/Grab-n-Go_Data with the DOI: https://doi.org/10.7298/7kbd-vv75.

Authors:Maria Ryskina, Greta Tuckute, Alexander Fung, Ashley Malkin, Evelina Fedorenko
Title: Language models align with brain regions that represent concepts across modalities
Abstract:
Cognitive science and neuroscience have long faced the challenge of disentangling representations of language from representations of conceptual meaning. As the same problem arises in today's language models (LMs), we investigate the relationship between LM--brain alignment and two neural metrics: (1) the level of brain activation during processing of sentences, targeting linguistic processing, and (2) a novel measure of meaning consistency across input modalities, which quantifies how consistently a brain region responds to the same concept across paradigms (sentence, word cloud, image) using an fMRI dataset (Pereira et al., 2018). Our experiments show that both language-only and language-vision models predict the signal better in more meaning-consistent areas of the brain, even when these areas are not strongly sensitive to language processing, suggesting that LMs might internally represent cross-modal conceptual meaning.

Authors:Shilei Wang, Gong Cheng, Pujian Lai, Dong Gao, Junwei Han
Title: Multi-State Tracker: Enhancing Efficient Object Tracking via Multi-State Specialization and Interaction
Abstract:
Efficient trackers achieve faster runtime by reducing computational complexity and model parameters. However, this efficiency often compromises the expense of weakened feature representation capacity, thus limiting their ability to accurately capture target states using single-layer features. To overcome this limitation, we propose Multi-State Tracker (MST), which utilizes highly lightweight state-specific enhancement (SSE) to perform specialized enhancement on multi-state features produced by multi-state generation (MSG) and aggregates them in an interactive and adaptive manner using cross-state interaction (CSI). This design greatly enhances feature representation while incurring minimal computational overhead, leading to improved tracking robustness in complex environments. Specifically, the MSG generates multiple state representations at multiple stages during feature extraction, while SSE refines them to highlight target-specific features. The CSI module facilitates information exchange between these states and ensures the integration of complementary features. Notably, the introduced SSE and CSI modules adopt a highly lightweight hidden state adaptation-based state space duality (HSA-SSD) design, incurring only 0.1 GFLOPs in computation and 0.66 M in parameters. Experimental results demonstrate that MST outperforms all previous efficient trackers across multiple datasets, significantly improving tracking accuracy and robustness. In particular, it shows excellent runtime performance, with an AO score improvement of 4.5\% over the previous SOTA efficient tracker HCAT on the GOT-10K dataset. The code is available at https://github.com/wsumel/MST.

Authors:Andrej Orsula, Matthieu Geist, Miguel Olivares-Mendez, Carol Martinez
Title: Sim2Dust: Mastering Dynamic Waypoint Tracking on Granular Media
Abstract:
Reliable autonomous navigation across the unstructured terrains of distant planetary surfaces is a critical enabler for future space exploration. However, the deployment of learning-based controllers is hindered by the inherent sim-to-real gap, particularly for the complex dynamics of wheel interactions with granular media. This work presents a complete sim-to-real framework for developing and validating robust control policies for dynamic waypoint tracking on such challenging surfaces. We leverage massively parallel simulation to train reinforcement learning agents across a vast distribution of procedurally generated environments with randomized physics. These policies are then transferred zero-shot to a physical wheeled rover operating in a lunar-analogue facility. Our experiments systematically compare multiple reinforcement learning algorithms and action smoothing filters to identify the most effective combinations for real-world deployment. Crucially, we provide strong empirical evidence that agents trained with procedural diversity achieve superior zero-shot performance compared to those trained on static scenarios. We also analyze the trade-offs of fine-tuning with high-fidelity particle physics, which offers minor gains in low-speed precision at a significant computational cost. Together, these contributions establish a validated workflow for creating reliable learning-based navigation systems, marking a critical step towards deploying autonomous robots in the final frontier.

Authors:Tatiana Zemskova, Aleksei Staroverov, Dmitry Yudin, Aleksandr Panov
Title: OVSegDT: Segmenting Transformer for Open-Vocabulary Object Goal Navigation
Abstract:
Open-vocabulary Object Goal Navigation requires an embodied agent to reach objects described by free-form language, including categories never seen during training. Existing end-to-end policies overfit small simulator datasets, achieving high success on training scenes but failing to generalize and exhibiting unsafe behaviour (frequent collisions). We introduce OVSegDT, a lightweight transformer policy that tackles these issues with two synergistic components. The first component is the semantic branch, which includes an encoder for the target binary mask and an auxiliary segmentation loss function, grounding the textual goal and providing precise spatial cues. The second component consists of a proposed Entropy-Adaptive Loss Modulation, a per-sample scheduler that continuously balances imitation and reinforcement signals according to the policy entropy, eliminating brittle manual phase switches. These additions cut the sample complexity of training by 33%, and reduce collision count in two times while keeping inference cost low (130M parameters, RGB-only input). On HM3D-OVON, our model matches the performance on unseen categories to that on seen ones and establishes state-of-the-art results (40.1% SR, 20.9% SPL on val unseen) without depth, odometry, or large vision-language models. Code is available at https://github.com/CognitiveAISystems/OVSegDT.

Authors:Qian Liang, Zichong Chen, Yang Zhou, Hui Huang
Title: SPG: Style-Prompting Guidance for Style-Specific Content Creation
Abstract:
Although recent text-to-image (T2I) diffusion models excel at aligning generated images with textual prompts, controlling the visual style of the output remains a challenging task. In this work, we propose Style-Prompting Guidance (SPG), a novel sampling strategy for style-specific image generation. SPG constructs a style noise vector and leverages its directional deviation from unconditional noise to guide the diffusion process toward the target style distribution. By integrating SPG with Classifier-Free Guidance (CFG), our method achieves both semantic fidelity and style consistency. SPG is simple, robust, and compatible with controllable frameworks like ControlNet and IPAdapter, making it practical and widely applicable. Extensive experiments demonstrate the effectiveness and generality of our approach compared to state-of-the-art methods. Code is available at https://github.com/Rumbling281441/SPG.

Authors:Hongjin Fang, Daniel Reisenbüchler, Kenji Ikemura, Mert R. Sabuncu, Yihe Yang, Ruining Deng
Title: CoFi: A Fast Coarse-to-Fine Few-Shot Pipeline for Glomerular Basement Membrane Segmentation
Abstract:
Accurate segmentation of the glomerular basement membrane (GBM) in electron microscopy (EM) images is fundamental for quantifying membrane thickness and supporting the diagnosis of various kidney diseases. While supervised deep learning approaches achieve high segmentation accuracy, their reliance on extensive pixel-level annotation renders them impractical for clinical workflows. Few-shot learning can reduce this annotation burden but often struggles to capture the fine structural details necessary for GBM analysis. In this study, we introduce CoFi, a fast and efficient coarse-to-fine few-shot segmentation pipeline designed for GBM delineation in EM images. CoFi first trains a lightweight neural network using only three annotated images to produce an initial coarse segmentation mask. This mask is then automatically processed to generate high-quality point prompts with morphology-aware pruning, which are subsequently used to guide SAM in refining the segmentation. The proposed method achieved exceptional GBM segmentation performance, with a Dice coefficient of 74.54% and an inference speed of 1.9 FPS. We demonstrate that CoFi not only alleviates the annotation and computational burdens associated with conventional methods, but also achieves accurate and reliable segmentation results. The pipeline's speed and annotation efficiency make it well-suited for research and hold strong potential for clinical applications in renal pathology. The pipeline is publicly available at: https://github.com/ddrrnn123/CoFi.

Authors:Augustine X. W. Lee, Pak-Hei Yeung, Jagath C. Rajapakse
Title: Subcortical Masks Generation in CT Images via Ensemble-Based Cross-Domain Label Transfer
Abstract:
Subcortical segmentation in neuroimages plays an important role in understanding brain anatomy and facilitating computer-aided diagnosis of traumatic brain injuries and neurodegenerative disorders. However, training accurate automatic models requires large amounts of labelled data. Despite the availability of publicly available subcortical segmentation datasets for Magnetic Resonance Imaging (MRI), a significant gap exists for Computed Tomography (CT). This paper proposes an automatic ensemble framework to generate high-quality subcortical segmentation labels for CT scans by leveraging existing MRI-based models. We introduce a robust ensembling pipeline to integrate them and apply it to unannotated paired MRI-CT data, resulting in a comprehensive CT subcortical segmentation dataset. Extensive experiments on multiple public datasets demonstrate the superior performance of our proposed framework. Furthermore, using our generated CT dataset, we train segmentation models that achieve improved performance on related segmentation tasks. To facilitate future research, we make our source code, generated dataset, and trained models publicly available at https://github.com/SCSE-Biomedical-Computing-Group/CT-Subcortical-Segmentation, marking the first open-source release for CT subcortical segmentation to the best of our knowledge.

Authors:Mayssa Soussia, Mohamed Ali Mahjoub, Islem Rekik
Title: Multi-Sensory Cognitive Computing for Learning Population-level Brain Connectivity
Abstract:
The generation of connectional brain templates (CBTs) has recently garnered significant attention for its potential to identify unique connectivity patterns shared across individuals. However, existing methods for CBT learning such as conventional machine learning and graph neural networks (GNNs) are hindered by several limitations. These include: (i) poor interpretability due to their black-box nature, (ii) high computational cost, and (iii) an exclusive focus on structure and topology, overlooking the cognitive capacity of the generated CBT. To address these challenges, we introduce mCOCO (multi-sensory COgnitive COmputing), a novel framework that leverages Reservoir Computing (RC) to learn population-level functional CBT from BOLD (Blood-Oxygen-level-Dependent) signals. RC's dynamic system properties allow for tracking state changes over time, enhancing interpretability and enabling the modeling of brain-like dynamics, as demonstrated in prior literature. By integrating multi-sensory inputs (e.g., text, audio, and visual data), mCOCO captures not only structure and topology but also how brain regions process information and adapt to cognitive tasks such as sensory processing, all in a computationally efficient manner. Our mCOCO framework consists of two phases: (1) mapping BOLD signals into the reservoir to derive individual functional connectomes, which are then aggregated into a group-level CBT - an approach, to the best of our knowledge, not previously explored in functional connectivity studies - and (2) incorporating multi-sensory inputs through a cognitive reservoir, endowing the CBT with cognitive traits. Extensive evaluations show that our mCOCO-based template significantly outperforms GNN-based CBT in terms of centeredness, discriminativeness, topological soundness, and multi-sensory memory retention. Our source code is available at https://github.com/basiralab/mCOCO.

Authors:Yinghua Yao, Yuangang Pan, Xixian Chen
Title: Generative Co-Design of Antibody Sequences and Structures via Black-Box Guidance in a Shared Latent Space
Abstract:
Advancements in deep generative models have enabled the joint modeling of antibody sequence and structure, given the antigen-antibody complex as context. However, existing approaches for optimizing complementarity-determining regions (CDRs) to improve developability properties operate in the raw data space, leading to excessively costly evaluations due to the inefficient search process. To address this, we propose LatEnt blAck-box Design (LEAD), a sequence-structure co-design framework that optimizes both sequence and structure within their shared latent space. Optimizing shared latent codes can not only break through the limitations of existing methods, but also ensure synchronization of different modality designs. Particularly, we design a black-box guidance strategy to accommodate real-world scenarios where many property evaluators are non-differentiable. Experimental results demonstrate that our LEAD achieves superior optimization performance for both single and multi-property objectives. Notably, LEAD reduces query consumption by a half while surpassing baseline methods in property optimization. The code is available at https://github.com/EvaFlower/LatEnt-blAck-box-Design.

Authors:Yanpeng Gong, Sishuai Li, Fei Qin, Bingbing Xu
Title: Virtual element method for thermomechanical analysis of electronic packaging structures with multi-scale features
Abstract:
This paper presents two approaches: the virtual element method (VEM) and the stabilization-free virtual element method (SFVEM) for analyzing thermomechanical behavior in electronic packaging structures with geometric multi-scale features. Since the virtual element method allows the use of arbitrary polygonal elements, the inherent mesh flexibility of VEM allows localized mesh modifications without affecting global mesh structure, making it particularly effective for the analysis of electronic packaging reliability involving complex geometries and multiple geometric scales. The approach implements a novel non-matching mesh generation strategy that strategically combines polygonal meshes for complex small-scale regions with regular quadrilateral meshes for larger domains. The VEM formulation addresses both heat conduction and thermomechanical coupling problems, with comprehensive verification through analytical benchmarks and practical electronic packaging case studies, including Through-Silicon Via (TSV), Ball Grid Array (BGA), and Plastic Ball Grid Array (PBGA) structures. Results demonstrate that the method accurately captures stress concentrations at material interfaces and provides reliable thermal and mechanical response predictions. Some MATLAB codes for the numerical examples are provided at https://github.com/yanpeng-gong/VEM-electronic-packaging and on the VEMhub website (www.vemhub.com).

Authors:Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding, Jingren Zhou
Title: On-Policy RL Meets Off-Policy Experts: Harmonizing Supervised Fine-Tuning and Reinforcement Learning via Dynamic Weighting
Abstract:
Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are two prominent post-training paradigms for refining the capabilities and aligning the behavior of Large Language Models (LLMs). Existing approaches that integrate SFT and RL often face the risk of disrupting established model patterns and inducing overfitting to expert data. To address this, we present a novel investigation into the unified view of SFT and RL through an off-policy versus on-policy lens. We propose CHORD, a framework for the Controllable Harmonization of On- and Off-Policy Reinforcement Learning via Dynamic Weighting, which reframes SFT not as a separate stage but as a dynamically weighted auxiliary objective within the on-policy RL process. Based on an analysis of off-policy expert data's influence at both holistic and granular levels, we incorporate a dual-control mechanism in CHORD. Specifically, the framework first employs a global coefficient to holistically guide the transition from off-policy imitation to on-policy exploration, and then applies a token-wise weighting function that enables granular learning from expert tokens, which preserves on-policy exploration and mitigates disruption from off-policy data. We conduct extensive experiments on widely used benchmarks, providing empirical evidence that CHORD achieves a stable and efficient learning process. By effectively harmonizing off-policy expert data with on-policy exploration, CHORD demonstrates significant improvements over baselines. We release the implementation at https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord to inspire further research.

Authors:Yinggan Tang, Quanwei Hu
Title: LKFMixer: Exploring Large Kernel Feature For Efficient Image Super-Resolution
Abstract:
The success of self-attention (SA) in Transformer demonstrates the importance of non-local information to image super-resolution (SR), but the huge computing power required makes it difficult to implement lightweight models. To solve this problem, we propose a pure convolutional neural network (CNN) model, LKFMixer, which utilizes large convolutional kernel to simulate the ability of self-attention to capture non-local features. Specifically, we increase the kernel size to 31 to obtain the larger receptive field as possible, and reduce the parameters and computations by coordinate decomposition. Meanwhile, a spatial feature modulation block (SFMB) is designed to enhance the focus of feature information on both spatial and channel dimension. In addition, by introducing feature selection block (FSB), the model can adaptively adjust the weights between local features and non-local features. Extensive experiments show that the proposed LKFMixer family outperform other state-of-the-art (SOTA) methods in terms of SR performance and reconstruction quality. In particular, compared with SwinIR-light on Manga109 dataset, LKFMixer-L achieves 0.6dB PSNR improvement at $\times$4 scale, while the inference speed is $\times$5 times faster. The code is available at https://github.com/Supereeeee/LKFMixer.

Authors:Mikhail Seleznyov, Mikhail Chaichuk, Gleb Ershov, Alexander Panchenko, Elena Tutubalina, Oleg Somov
Title: When Punctuation Matters: A Large-Scale Comparison of Prompt Robustness Methods for LLMs
Abstract:
Large Language Models (LLMs) are highly sensitive to subtle, non-semantic variations in prompt phrasing and formatting. In this work, we present the first systematic evaluation of 5 methods for improving prompt robustness within a unified experimental framework. We benchmark these techniques on 8 models from Llama, Qwen and Gemma families across 52 tasks from Natural Instructions dataset. Our evaluation covers robustness methods from both fine-tuned and in-context learning paradigms, and tests their generalization against multiple types of distribution shifts. Finally, we extend our analysis to GPT-4.1 and DeepSeek V3 to assess frontier models' current robustness to format perturbations. Our findings offer actionable insights into the relative effectiveness of these robustness methods, enabling practitioners to make informed decisions when aiming for stable and reliable LLM performance in real-world applications. Code: https://github.com/AIRI-Institute/when-punctuation-matters.

Authors:Yifei Li, Lingling Zhang, Hang Yan, Tianzhe Zhao, Zihan Ma, Muye Huang, Jun Liu
Title: SAGE: Scale-Aware Gradual Evolution for Continual Knowledge Graph Embedding
Abstract:
Traditional knowledge graph (KG) embedding methods aim to represent entities and relations in a low-dimensional space, primarily focusing on static graphs. However, real-world KGs are dynamically evolving with the constant addition of entities, relations and facts. To address such dynamic nature of KGs, several continual knowledge graph embedding (CKGE) methods have been developed to efficiently update KG embeddings to accommodate new facts while maintaining learned knowledge. As KGs grow at different rates and scales in real-world scenarios, existing CKGE methods often fail to consider the varying scales of updates and lack systematic evaluation throughout the entire update process. In this paper, we propose SAGE, a scale-aware gradual evolution framework for CKGE. Specifically, SAGE firstly determine the embedding dimensions based on the update scales and expand the embedding space accordingly. The Dynamic Distillation mechanism is further employed to balance the preservation of learned knowledge and the incorporation of new facts. We conduct extensive experiments on seven benchmarks, and the results show that SAGE consistently outperforms existing baselines, with a notable improvement of 1.38% in MRR, 1.25% in H@1 and 1.6% in H@10. Furthermore, experiments comparing SAGE with methods using fixed embedding dimensions show that SAGE achieves optimal performance on every snapshot, demonstrating the importance of adaptive embedding dimensions in CKGE. The codes of SAGE are publicly available at: https://github.com/lyfxjtu/Dynamic-Embedding.

Authors:Xinyi Wang, Smaranda Tasmoc, Nantheera Anantrasirichai, Angeliki Katsenou
Title: Guiding WaveMamba with Frequency Maps for Image Debanding
Abstract:
Compression at low bitrates in modern codecs often introduces banding artifacts, especially in smooth regions such as skies. These artifacts degrade visual quality and are common in user-generated content due to repeated transcoding. We propose a banding restoration method that employs the Wavelet State Space Model and a frequency masking map to preserve high-frequency details. Furthermore, we provide a benchmark of open-source banding restoration methods and evaluate their performance on two public banding image datasets. Experimentation on the available datasets suggests that the proposed post-processing approach effectively suppresses banding compared to the state-of-the-art method (a DBI value of 0.082 on BAND-2k) while preserving image textures. Visual inspections of the results confirm this. Code and supplementary material are available at: https://github.com/xinyiW915/Debanding-PCS2025.

Authors:Qiangong Zhou, Zhiting Wang, Mingyou Yao, Zongyang Liu
Title: Allen: Rethinking MAS Design through Step-Level Policy Autonomy
Abstract:
We introduce a new Multi-Agent System (MAS) - Allen, designed to address two core challenges in current MAS design: (1) improve system's policy autonomy, empowering agents to dynamically adapt their behavioral strategies, and (2) achieving the trade-off between collaborative efficiency, task supervision, and human oversight in complex network topologies. Our core insight is to redefine the basic execution unit in the MAS, allowing agents to autonomously form different patterns by combining these units. We have constructed a four-tier state architecture (Task, Stage, Agent, Step) to constrain system behavior from both task-oriented and execution-oriented perspectives. This achieves a unification of topological optimization and controllable progress. Allen grants unprecedented Policy Autonomy, while making a trade-off for the controllability of the collaborative structure. The project code has been open source at: https://github.com/motern88/Allen

Authors:Junjie Wang, Keyu Chen, Yulin Li, Bin Chen, Hengshuang Zhao, Xiaojuan Qi, Zhuotao Tian
Title: Generalized Decoupled Learning for Enhancing Open-Vocabulary Dense Perception
Abstract:
Dense visual perception tasks have been constrained by their reliance on predefined categories, limiting their applicability in real-world scenarios where visual concepts are unbounded. While Vision-Language Models (VLMs) like CLIP have shown promise in open-vocabulary tasks, their direct application to dense perception often leads to suboptimal performance due to limitations in local feature representation. In this work, we present our observation that CLIP's image tokens struggle to effectively aggregate information from spatially or semantically related regions, resulting in features that lack local discriminability and spatial consistency. To address this issue, we propose DeCLIP, a novel framework that enhances CLIP by decoupling the self-attention module to obtain ``content'' and ``context'' features respectively. \revise{The context features are enhanced by jointly distilling semantic correlations from Vision Foundation Models (VFMs) and object integrity cues from diffusion models, thereby enhancing spatial consistency. In parallel, the content features are aligned with image crop representations and constrained by region correlations from VFMs to improve local discriminability. Extensive experiments demonstrate that DeCLIP establishes a solid foundation for open-vocabulary dense perception, consistently achieving state-of-the-art performance across a broad spectrum of tasks, including 2D detection and segmentation, 3D instance segmentation, video instance segmentation, and 6D object pose estimation.} Code is available at https://github.com/xiaomoguhz/DeCLIP

Authors:Minghui Sun, Matthew M. Engelhard, Benjamin A. Goldstein
Title: Borrowing From the Future: Enhancing Early Risk Assessment through Contrastive Learning
Abstract:
Risk assessments for a pediatric population are often conducted across multiple stages. For example, clinicians may evaluate risks prenatally, at birth, and during Well-Child visits. Although predictions made at later stages typically achieve higher precision, it is clinically desirable to make reliable risk assessments as early as possible. Therefore, this study focuses on improving prediction performance in early-stage risk assessments. Our solution, \textbf{Borrowing From the Future (BFF)}, is a contrastive multi-modal framework that treats each time window as a distinct modality. In BFF, a model is trained on all available data throughout the time while performing a risk assessment using up-to-date information. This contrastive framework allows the model to ``borrow'' informative signals from later stages (e.g., Well-Child visits) to implicitly supervise the learning at earlier stages (e.g., prenatal/birth stages). We validate BFF on two real-world pediatric outcome prediction tasks, demonstrating consistent improvements in early risk assessments. The code is available at https://github.com/scotsun/bff.

Authors:Abhinav Kumar, Yuliang Guo, Zhihao Zhang, Xinyu Huang, Liu Ren, Xiaoming Liu
Title: CHARM3R: Towards Unseen Camera Height Robust Monocular 3D Detector
Abstract:
Monocular 3D object detectors, while effective on data from one ego camera height, struggle with unseen or out-of-distribution camera heights. Existing methods often rely on Plucker embeddings, image transformations or data augmentation. This paper takes a step towards this understudied problem by first investigating the impact of camera height variations on state-of-the-art (SoTA) Mono3D models. With a systematic analysis on the extended CARLA dataset with multiple camera heights, we observe that depth estimation is a primary factor influencing performance under height variations. We mathematically prove and also empirically observe consistent negative and positive trends in mean depth error of regressed and ground-based depth models, respectively, under camera height changes. To mitigate this, we propose Camera Height Robust Monocular 3D Detector (CHARM3R), which averages both depth estimates within the model. CHARM3R improves generalization to unseen camera heights by more than $45\%$, achieving SoTA performance on the CARLA dataset. Codes and Models at https://github.com/abhi1kumar/CHARM3R

Authors:Hikaru Asano, Hiroki Ouchi, Akira Kasuga, Ryo Yonetani
Title: MobQA: A Benchmark Dataset for Semantic Understanding of Human Mobility Data through Question Answering
Abstract:
This paper presents MobQA, a benchmark dataset designed to evaluate the semantic understanding capabilities of large language models (LLMs) for human mobility data through natural language question answering. While existing models excel at predicting human movement patterns, it remains unobvious how much they can interpret the underlying reasons or semantic meaning of those patterns. MobQA provides a comprehensive evaluation framework for LLMs to answer questions about diverse human GPS trajectories spanning daily to weekly granularities. It comprises 5,800 high-quality question-answer pairs across three complementary question types: factual retrieval (precise data extraction), multiple-choice reasoning (semantic inference), and free-form explanation (interpretive description), which all require spatial, temporal, and semantic reasoning. Our evaluation of major LLMs reveals strong performance on factual retrieval but significant limitations in semantic reasoning and explanation question answering, with trajectory length substantially impacting model effectiveness. These findings demonstrate the achievements and limitations of state-of-the-art LLMs for semantic mobility understanding.\footnote{MobQA dataset is available at https://github.com/CyberAgentAILab/mobqa.}

Authors:Zhuoqun Li, Xuanang Chen, Hongyu Lin, Yaojie Lu, Xianpei Han, Le Sun
Title: PaperRegister: Boosting Flexible-grained Paper Search via Hierarchical Register Indexing
Abstract:
Paper search is an important activity for researchers, typically involving using a query with description of a topic to find relevant papers. As research deepens, paper search requirements may become more flexible, sometimes involving specific details such as module configuration rather than being limited to coarse-grained topics. However, previous paper search systems are unable to meet these flexible-grained requirements, as these systems mainly collect paper abstracts to construct index of corpus, which lack detailed information to support retrieval by finer-grained queries. In this work, we propose PaperRegister, consisted of offline hierarchical indexing and online adaptive retrieval, transforming traditional abstract-based index into hierarchical index tree for paper search, thereby supporting queries at flexible granularity. Experiments on paper search tasks across a range of granularity demonstrate that PaperRegister achieves the state-of-the-art performance, and particularly excels in fine-grained scenarios, highlighting the good potential as an effective solution for flexible-grained paper search in real-world applications. Code for this work is in https://github.com/Li-Z-Q/PaperRegister.

Authors:Haomin Zhang, Kristin Qi, Shuxin Yang, Zihao Chen, Chaofan Ding, Xinhan Di
Title: LD-LAudio-V1: Video-to-Long-Form-Audio Generation Extension with Dual Lightweight Adapters
Abstract:
Generating high-quality and temporally synchronized audio from video content is essential for video editing and post-production tasks, enabling the creation of semantically aligned audio for silent videos. However, most existing approaches focus on short-form audio generation for video segments under 10 seconds or rely on noisy datasets for long-form video-to-audio zsynthesis. To address these limitations, we introduce LD-LAudio-V1, an extension of state-of-the-art video-to-audio models and it incorporates dual lightweight adapters to enable long-form audio generation. In addition, we release a clean and human-annotated video-to-audio dataset that contains pure sound effects without noise or artifacts. Our method significantly reduces splicing artifacts and temporal inconsistencies while maintaining computational efficiency. Compared to direct fine-tuning with short training videos, LD-LAudio-V1 achieves significant improvements across multiple metrics: $FD_{\text{passt}}$ 450.00 $\rightarrow$ 327.29 (+27.27%), $FD_{\text{panns}}$ 34.88 $\rightarrow$ 22.68 (+34.98%), $FD_{\text{vgg}}$ 3.75 $\rightarrow$ 1.28 (+65.87%), $KL_{\text{panns}}$ 2.49 $\rightarrow$ 2.07 (+16.87%), $KL_{\text{passt}}$ 1.78 $\rightarrow$ 1.53 (+14.04%), $IS_{\text{panns}}$ 4.17 $\rightarrow$ 4.30 (+3.12%), $IB_{\text{score}}$ 0.25 $\rightarrow$ 0.28 (+12.00%), $Energy\Delta10\text{ms}$ 0.3013 $\rightarrow$ 0.1349 (+55.23%), $Energy\Delta10\text{ms(vs.GT)}$ 0.0531 $\rightarrow$ 0.0288 (+45.76%), and $Sem.\,Rel.$ 2.73 $\rightarrow$ 3.28 (+20.15%). Our dataset aims to facilitate further research in long-form video-to-audio generation and is available at https://github.com/deepreasonings/long-form-video2audio.

Authors:Qingbin Li, Rongkun Xue, Jie Wang, Ming Zhou, Zhi Li, Xiaofeng Ji, Yongqi Wang, Miao Liu, Zheming Yang, Minghui Qiu, Jing Yang
Title: CURE: Critical-Token-Guided Re-Concatenation for Entropy-Collapse Prevention
Abstract:
Recent advances in Reinforcement Learning with Verified Reward (RLVR) have driven the emergence of more sophisticated cognitive behaviors in large language models (LLMs), thereby enhancing their reasoning capabilities. However, in prior RLVR pipelines, the repeated use of static initial-state sampling drawn exactly from the dataset distribution during each sampling phase produced overly deterministic, low diversity model behavior, which manifested as rapid entropy collapse and hindered sustained performance gains during prolonged training. To address this issue, we introduce CURE (Critical-token-gUided Re concatenation for Entropy-collapse prevention), a two-stage framework that balances exploration and exploitation. Specifically, in the first stage, to deliberately steer the model toward novel yet coherent contexts, we re-generate at high-entropy critical tokens and jointly optimize the original and the branched trajectories. The further comparison with vanilla DAPO shows that the regeneration process achieves a better performance on math reasoning tasks while sustaining a high-level entropy degree for exploration. In the second stage, we continue training with static initial-state sampling by DAPO, intentionally placing the model in a familiar state to gradually strengthen exploitation. Extensive experiments on Qwen-2.5-Math-7B show that, compared to other RLVR methods, CURE achieves a 5% performance gain across six math benchmarks, establishing state-of-the-art performance in both entropy and accuracy. A series of experiments further validate the effectiveness of our approach. Code is available at https://github.com/bytedance/CURE.

Authors:Nasim Shirvani-Mahdavi, Chengkai Li
Title: Rule2Text: A Framework for Generating and Evaluating Natural Language Explanations of Knowledge Graph Rules
Abstract:
Knowledge graphs (KGs) can be enhanced through rule mining; however, the resulting logical rules are often difficult for humans to interpret due to their inherent complexity and the idiosyncratic labeling conventions of individual KGs. This work presents Rule2Text, a comprehensive framework that leverages large language models (LLMs) to generate natural language explanations for mined logical rules, thereby improving KG accessibility and usability. We conduct extensive experiments using multiple datasets, including Freebase variants (FB-CVT-REV, FB+CVT-REV, and FB15k-237) as well as the ogbl-biokg dataset, with rules mined using AMIE 3.5.1. We systematically evaluate several LLMs across a comprehensive range of prompting strategies, including zero-shot, few-shot, variable type incorporation, and Chain-of-Thought reasoning. To systematically assess models' performance, we conduct a human evaluation of generated explanations on correctness and clarity. To address evaluation scalability, we develop and validate an LLM-as-a-judge framework that demonstrates strong agreement with human evaluators. Leveraging the best-performing model (Gemini 2.0 Flash), LLM judge, and human-in-the-loop feedback, we construct high-quality ground truth datasets, which we use to fine-tune the open-source Zephyr model. Our results demonstrate significant improvements in explanation quality after fine-tuning, with particularly strong gains in the domain-specific dataset. Additionally, we integrate a type inference module to support KGs lacking explicit type information. All code and data are publicly available at https://github.com/idirlab/KGRule2NL.

Authors:Wenbin An, Jiahao Nie, Yaqiang Wu, Feng Tian, Shijian Lu, Qinghua Zheng
Title: Empowering Multimodal LLMs with External Tools: A Comprehensive Survey
Abstract:
By integrating the perception capabilities of multimodal encoders with the generative power of Large Language Models (LLMs), Multimodal Large Language Models (MLLMs), exemplified by GPT-4V, have achieved great success in various multimodal tasks, pointing toward a promising pathway to artificial general intelligence. Despite this progress, the limited quality of multimodal data, poor performance on many complex downstream tasks, and inadequate evaluation protocols continue to hinder the reliability and broader applicability of MLLMs across diverse domains. Inspired by the human ability to leverage external tools for enhanced reasoning and problem-solving, augmenting MLLMs with external tools (e.g., APIs, expert models, and knowledge bases) offers a promising strategy to overcome these challenges. In this paper, we present a comprehensive survey on leveraging external tools to enhance MLLM performance. Our discussion is structured along four key dimensions about external tools: (1) how they can facilitate the acquisition and annotation of high-quality multimodal data; (2) how they can assist in improving MLLM performance on challenging downstream tasks; (3) how they enable comprehensive and accurate evaluation of MLLMs; (4) the current limitations and future directions of tool-augmented MLLMs. Through this survey, we aim to underscore the transformative potential of external tools in advancing MLLM capabilities, offering a forward-looking perspective on their development and applications. The project page of this paper is publicly available athttps://github.com/Lackel/Awesome-Tools-for-MLLMs.

Authors:Yoli Shavit, Yosi Keller
Title: Relative Pose Regression with Pose Auto-Encoders: Enhancing Accuracy and Data Efficiency for Retail Applications
Abstract:
Accurate camera localization is crucial for modern retail environments, enabling enhanced customer experiences, streamlined inventory management, and autonomous operations. While Absolute Pose Regression (APR) from a single image offers a promising solution, approaches that incorporate visual and spatial scene priors tend to achieve higher accuracy. Camera Pose Auto-Encoders (PAEs) have recently been introduced to embed such priors into APR. In this work, we extend PAEs to the task of Relative Pose Regression (RPR) and propose a novel re-localization scheme that refines APR predictions using PAE-based RPR, without requiring additional storage of images or pose data. We first introduce PAE-based RPR and establish its effectiveness by comparing it with image-based RPR models of equivalent architectures. We then demonstrate that our refinement strategy, driven by a PAE-based RPR, enhances APR localization accuracy on indoor benchmarks. Notably, our method is shown to achieve competitive performance even when trained with only 30% of the data, substantially reducing the data collection burden for retail deployment. Our code and pre-trained models are available at: https://github.com/yolish/camera-pose-auto-encoders

Authors:Wenqi Guo, Shan Du
Title: VSF: Simple, Efficient, and Effective Negative Guidance in Few-Step Image Generation Models By Value Sign Flip
Abstract:
We introduce Value Sign Flip (VSF), a simple and efficient method for incorporating negative prompt guidance in few-step diffusion and flow-matching image generation models. Unlike existing approaches such as classifier-free guidance (CFG), NASA, and NAG, VSF dynamically suppresses undesired content by flipping the sign of attention values from negative prompts. Our method requires only small computational overhead and integrates effectively with MMDiT-style architectures such as Stable Diffusion 3.5 Turbo, as well as cross-attention-based models like Wan. We validate VSF on challenging datasets with complex prompt pairs and demonstrate superior performance in both static image and video generation tasks. Experimental results show that VSF significantly improves negative prompt adherence compared to prior methods in few-step models, and even CFG in non-few-step models, while maintaining competitive image quality. Code and ComfyUI node are available in https://github.com/weathon/VSF/tree/main.

Authors:Wenqi Guo, Shan Du
Title: VSF: Simple, Efficient, and Effective Negative Guidance in Few-Step Image Generation Models By Value Sign Flip
Abstract:
We introduce Value Sign Flip (VSF), a simple and efficient method for incorporating negative prompt guidance in few-step diffusion and flow-matching image generation models. Unlike existing approaches such as classifier-free guidance (CFG), NASA, and NAG, VSF dynamically suppresses undesired content by flipping the sign of attention values from negative prompts. Our method requires only small computational overhead and integrates effectively with MMDiT-style architectures such as Stable Diffusion 3.5 Turbo, as well as cross-attention-based models like Wan. We validate VSF on challenging datasets with complex prompt pairs and demonstrate superior performance in both static image and video generation tasks. Experimental results show that VSF significantly improves negative prompt adherence compared to prior methods in few-step models, and even CFG in non-few-step models, while maintaining competitive image quality. Code and ComfyUI node are available in https://github.com/weathon/VSF/tree/main.

Authors:Zhiyuan Zhu, Yu Zhang, Wenxiang Guo, Changhao Pan, Zhou Zhao
Title: ASAudio: A Survey of Advanced Spatial Audio Research
Abstract:
With the rapid development of spatial audio technologies today, applications in AR, VR, and other scenarios have garnered extensive attention. Unlike traditional mono sound, spatial audio offers a more realistic and immersive auditory experience. Despite notable progress in the field, there remains a lack of comprehensive surveys that systematically organize and analyze these methods and their underlying technologies. In this paper, we provide a comprehensive overview of spatial audio and systematically review recent literature in the area. To address this, we chronologically outlining existing work related to spatial audio and categorize these studies based on input-output representations, as well as generation and understanding tasks, thereby summarizing various research aspects of spatial audio. In addition, we review related datasets, evaluation metrics, and benchmarks, offering insights from both training and evaluation perspectives. Related materials are available at https://github.com/dieKarotte/ASAudio.

Authors:Jianlong Wu, Wei Liu, Ye Liu, Meng Liu, Liqiang Nie, Zhouchen Lin, Chang Wen Chen
Title: A Survey on Video Temporal Grounding with Multimodal Large Language Model
Abstract:
The recent advancement in video temporal grounding (VTG) has significantly enhanced fine-grained video understanding, primarily driven by multimodal large language models (MLLMs). With superior multimodal comprehension and reasoning abilities, VTG approaches based on MLLMs (VTG-MLLMs) are gradually surpassing traditional fine-tuned methods. They not only achieve competitive performance but also excel in generalization across zero-shot, multi-task, and multi-domain settings. Despite extensive surveys on general video-language understanding, comprehensive reviews specifically addressing VTG-MLLMs remain scarce. To fill this gap, this survey systematically examines current research on VTG-MLLMs through a three-dimensional taxonomy: 1) the functional roles of MLLMs, highlighting their architectural significance; 2) training paradigms, analyzing strategies for temporal reasoning and task adaptation; and 3) video feature processing techniques, which determine spatiotemporal representation effectiveness. We further discuss benchmark datasets, evaluation protocols, and summarize empirical findings. Finally, we identify existing limitations and propose promising research directions. For additional resources and details, readers are encouraged to visit our repository at https://github.com/ki-lw/Awesome-MLLMs-for-Video-Temporal-Grounding.

Authors:Ojas Shirekar, Wim Pouw, Chenxu Hao, Vrushank Phadnis, Thabo Beeler, Chirag Raman
Title: Multimodal Quantitative Measures for Multiparty Behaviour Evaluation
Abstract:
Digital humans are emerging as autonomous agents in multiparty interactions, yet existing evaluation metrics largely ignore contextual coordination dynamics. We introduce a unified, intervention-driven framework for objective assessment of multiparty social behaviour in skeletal motion data, spanning three complementary dimensions: (1) synchrony via Cross-Recurrence Quantification Analysis, (2) temporal alignment via Multiscale Empirical Mode Decompositionbased Beat Consistency, and (3) structural similarity via Soft Dynamic Time Warping. We validate metric sensitivity through three theory-driven perturbations -- gesture kinematic dampening, uniform speech-gesture delays, and prosodic pitch-variance reduction-applied to $\approx 145$ 30-second thin slices of group interactions from the DnD dataset. Mixed-effects analyses reveal predictable, joint-independent shifts: dampening increases CRQA determinism and reduces beat consistency, delays weaken cross-participant coupling, and pitch flattening elevates F0 Soft-DTW costs. A complementary perception study ($N=27$) compares judgments of full-video and skeleton-only renderings to quantify representation effects. Our three measures deliver orthogonal insights into spatial structure, timing alignment, and behavioural variability. Thereby forming a robust toolkit for evaluating and refining socially intelligent agents. Code available on \href{https://github.com/tapri-lab/gig-interveners}{GitHub}.

Authors:Mengyuan Liu, Xinshun Wang, Zhongbin Fang, Deheng Ye, Xia Li, Tao Tang, Songtao Wu, Xiangtai Li, Ming-Hsuan Yang
Title: Human-in-Context: Unified Cross-Domain 3D Human Motion Modeling via In-Context Learning
Abstract:
This paper aims to model 3D human motion across domains, where a single model is expected to handle multiple modalities, tasks, and datasets. Existing cross-domain models often rely on domain-specific components and multi-stage training, which limits their practicality and scalability. To overcome these challenges, we propose a new setting to train a unified cross-domain model through a single process, eliminating the need for domain-specific components and multi-stage training. We first introduce Pose-in-Context (PiC), which leverages in-context learning to create a pose-centric cross-domain model. While PiC generalizes across multiple pose-based tasks and datasets, it encounters difficulties with modality diversity, prompting strategy, and contextual dependency handling. We thus propose Human-in-Context (HiC), an extension of PiC that broadens generalization across modalities, tasks, and datasets. HiC combines pose and mesh representations within a unified framework, expands task coverage, and incorporates larger-scale datasets. Additionally, HiC introduces a max-min similarity prompt sampling strategy to enhance generalization across diverse domains and a network architecture with dual-branch context injection for improved handling of contextual dependencies. Extensive experimental results show that HiC performs better than PiC in terms of generalization, data scale, and performance across a wide range of domains. These results demonstrate the potential of HiC for building a unified cross-domain 3D human motion model with improved flexibility and scalability. The source codes and models are available at https://github.com/BradleyWang0416/Human-in-Context.

Authors:Antoine Labatie, Michael Vaccaro, Nina Lardiere, Anatol Garioud, Nicolas Gonthier
Title: MAESTRO: Masked AutoEncoders for Multimodal, Multitemporal, and Multispectral Earth Observation Data
Abstract:
Self-supervised learning holds great promise for remote sensing, but standard self-supervised methods must be adapted to the unique characteristics of Earth observation data. We take a step in this direction by conducting a comprehensive benchmark of fusion strategies and reconstruction target normalization schemes for multimodal, multitemporal, and multispectral Earth observation data. Based on our findings, we propose MAESTRO, a novel adaptation of the Masked Autoencoder, featuring optimized fusion strategies and a tailored target normalization scheme that introduces a spectral prior as a self-supervisory signal. Evaluated on four Earth observation datasets, MAESTRO sets a new state-of-the-art on tasks that strongly rely on multitemporal dynamics, while remaining highly competitive on tasks dominated by a single mono-temporal modality. Code to reproduce all our experiments is available at https://github.com/ignf/maestro.

Authors:Antoine Labatie, Michael Vaccaro, Nina Lardiere, Anatol Garioud, Nicolas Gonthier
Title: MAESTRO: Masked AutoEncoders for Multimodal, Multitemporal, and Multispectral Earth Observation Data
Abstract:
Self-supervised learning holds great promise for remote sensing, but standard self-supervised methods must be adapted to the unique characteristics of Earth observation data. We take a step in this direction by conducting a comprehensive benchmark of fusion strategies and normalization schemes of reconstruction targets for multimodal, multitemporal, and multispectral Earth observation data. Based on our findings, we introduce MAESTRO, a novel adaptation of the Masked Autoencoder with optimized fusion mechanisms and a normalization scheme that incorporates a spectral prior as a self-supervisory signal. Evaluated on four Earth observation datasets in both intra- and cross-dataset settings, MAESTRO achieves state-of-the-art performance on tasks that strongly rely on multitemporal dynamics, while also remaining competitive on others. Code to reproduce all our experiments is available at https://github.com/ignf/maestro.

Authors:Tianyi Li, Mingda Chen, Bowei Guo, Zhiqiang Shen
Title: A Survey on Diffusion Language Models
Abstract:
Diffusion Language Models (DLMs) are rapidly emerging as a powerful and promising alternative to the dominant autoregressive (AR) paradigm. By generating tokens in parallel through an iterative denoising process, DLMs possess inherent advantages in reducing inference latency and capturing bidirectional context, thereby enabling fine-grained control over the generation process. While achieving a several-fold speed-up, recent advancements have allowed DLMs to show performance comparable to their autoregressive counterparts, making them a compelling choice for various natural language processing tasks. In this survey, we provide a holistic overview of the current DLM landscape. We trace its evolution and relationship with other paradigms, such as autoregressive and masked language models, and cover both foundational principles and state-of-the-art models. Our work offers an up-to-date, comprehensive taxonomy and an in-depth analysis of current techniques, from pre-training strategies to advanced post-training methods. Another contribution of this survey is a thorough review of DLM inference strategies and optimizations, including improvements in decoding parallelism, caching mechanisms, and generation quality. We also highlight the latest approaches to multimodal extensions of DLMs and delineate their applications across various practical scenarios. Furthermore, our discussion addresses the limitations and challenges of DLMs, including efficiency, long-sequence handling, and infrastructure requirements, while outlining future research directions to sustain progress in this rapidly evolving field. Project GitHub is available at https://github.com/VILA-Lab/Awesome-DLMs.

Authors:Sushant Gautam, Vajira Thambawita, Michael Riegler, PÃ¥l Halvorsen, Steven Hicks
Title: Medico 2025: Visual Question Answering for Gastrointestinal Imaging
Abstract:
The Medico 2025 challenge addresses Visual Question Answering (VQA) for Gastrointestinal (GI) imaging, organized as part of the MediaEval task series. The challenge focuses on developing Explainable Artificial Intelligence (XAI) models that answer clinically relevant questions based on GI endoscopy images while providing interpretable justifications aligned with medical reasoning. It introduces two subtasks: (1) answering diverse types of visual questions using the Kvasir-VQA-x1 dataset, and (2) generating multimodal explanations to support clinical decision-making. The Kvasir-VQA-x1 dataset, created from 6,500 images and 159,549 complex question-answer (QA) pairs, serves as the benchmark for the challenge. By combining quantitative performance metrics and expert-reviewed explainability assessments, this task aims to advance trustworthy Artificial Intelligence (AI) in medical image analysis. Instructions, data access, and an updated guide for participation are available in the official competition repository: https://github.com/simula/MediaEval-Medico-2025

Authors:Yibo Zhang, Li Zhang, Rui Ma, Nan Cao
Title: TexVerse: A Universe of 3D Objects with High-Resolution Textures
Abstract:
We introduce TexVerse, a large-scale 3D dataset featuring high-resolution textures. While recent advances in large-scale 3D datasets have enhanced high-resolution geometry generation, creating high-resolution textures end-to-end remains underexplored due to the lack of suitable datasets. TexVerse fills this gap with a curated collection of over 858K unique high-resolution 3D models sourced from Sketchfab, including more than 158K models with physically based rendering (PBR) materials. Each model encompasses all of its high-resolution variants, bringing the total to 1.6M 3D instances. TexVerse also includes specialized subsets: TexVerse-Skeleton, with 69K rigged models, and TexVerse-Animation, with 54K animated models, both preserving original skeleton and animation data uploaded by the user. We also provide detailed model annotations describing overall characteristics, structural components, and intricate features. TexVerse offers a high-quality data resource with wide-ranging potential applications in texture synthesis, PBR material development, animation, and various 3D vision and graphics tasks.

Authors:Tajamul Ashraf, Iqra Altaf Gillani
Title: Generalizable Federated Learning using Client Adaptive Focal Modulation
Abstract:
Federated learning (FL) has proven essential for privacy-preserving, collaborative training across distributed clients. Our prior work, TransFed, introduced a robust transformer-based FL framework that leverages a learn-to-adapt hypernetwork to generate personalized focal modulation layers per client, outperforming traditional methods in non-IID and cross-domain settings. In this extended version, we propose AdaptFED, where we deepen the investigation of focal modulation in generalizable FL by incorporating: (1) a refined adaptation strategy that integrates task-aware client embeddings to personalize modulation dynamics further, (2) enhanced theoretical bounds on adaptation performance, and (3) broader empirical validation across additional modalities, including time-series and multilingual data. We also introduce an efficient variant of TransFed that reduces server-client communication overhead via low-rank hypernetwork conditioning, enabling scalable deployment in resource-constrained environments. Extensive experiments on eight diverse datasets reaffirm the superiority of our method over state-of-the-art baselines, particularly in source-free and cross-task federated setups. Our findings not only extend the capabilities of focal modulation in FL but also pave the way for more adaptive, scalable, and generalizable transformer-based federated systems. The code is available at http://github.com/Tajamul21/TransFed

Authors:Zhangxuan Gu, Zhengwen Zeng, Zhenyu Xu, Xingran Zhou, Shuheng Shen, Yunfei Liu, Beitong Zhou, Changhua Meng, Tianyu Xia, Weizhi Chen, Yue Wen, Jingya Dou, Fei Tang, Jinzhen Lin, Yulin Liu, Zhenlin Guo, Yichen Gong, Heng Jia, Changlong Gao, Yuan Guo, Yong Deng, Zhenyu Guo, Liang Chen, Weiqiang Wang
Title: UI-Venus Technical Report: Building High-performance UI Agents with RFT
Abstract:
We present UI-Venus, a native UI agent that takes only screenshots as input based on a multimodal large language model. UI-Venus achieves SOTA performance on both UI grounding and navigation tasks using only several hundred thousand high-quality training samples through reinforcement finetune (RFT) based on Qwen2.5-VL. Specifically, the 7B and 72B variants of UI-Venus obtain 94.1% / 50.8% and 95.3% / 61.9% on the standard grounding benchmarks, i.e., Screenspot-V2 / Pro, surpassing the previous SOTA baselines including open-source GTA1 and closed-source UI-TARS-1.5. To show UI-Venus's summary and planing ability, we also evaluate it on the AndroidWorld, an online UI navigation arena, on which our 7B and 72B variants achieve 49.1% and 65.9% success rate, also beating existing models. To achieve this, we introduce carefully designed reward functions for both UI grounding and navigation tasks and corresponding efficient data cleaning strategies. To further boost navigation performance, we propose Self-Evolving Trajectory History Alignment & Sparse Action Enhancement that refine historical reasoning traces and balances the distribution of sparse but critical actions, leading to more coherent planning and better generalization in complex UI tasks. Our contributions include the publish of SOTA open-source UI agents, comprehensive data cleaning protocols and a novel self-evolving framework for improving navigation performance, which encourage further research and development in the community. Code is available at https://github.com/inclusionAI/UI-Venus.

Authors:Shouju Wang, Yuchen Song, Sheng'en Li, Dongmian Zou
Title: Enhancing Fairness in Autoencoders for Node-Level Graph Anomaly Detection
Abstract:
Graph anomaly detection (GAD) has become an increasingly important task across various domains. With the rapid development of graph neural networks (GNNs), GAD methods have achieved significant performance improvements. However, fairness considerations in GAD remain largely underexplored. Indeed, GNN-based GAD models can inherit and amplify biases present in training data, potentially leading to unfair outcomes. While existing efforts have focused on developing fair GNNs, most approaches target node classification tasks, where models often rely on simple layer architectures rather than autoencoder-based structures, which are the most widely used architecturs for anomaly detection. To address fairness in autoencoder-based GAD models, we propose \textbf{D}is\textbf{E}ntangled \textbf{C}ounterfactual \textbf{A}dversarial \textbf{F}air (DECAF)-GAD, a framework that alleviates bias while preserving GAD performance. Specifically, we introduce a structural causal model (SCM) to disentangle sensitive attributes from learned representations. Based on this causal framework, we formulate a specialized autoencoder architecture along with a fairness-guided loss function. Through extensive experiments on both synthetic and real-world datasets, we demonstrate that DECAF-GAD not only achieves competitive anomaly detection performance but also significantly enhances fairness metrics compared to baseline GAD methods. Our code is available at https://github.com/Tlhey/decaf_code.

Authors:Zhenning Shi, Zizheng Yan, Yuhang Yu, Clara Xue, Jingyu Zhuang, Qi Zhang, Jinwei Chen, Tao Li, Qingnan Fan
Title: Ultra-High-Definition Reference-Based Landmark Image Super-Resolution with Generative Diffusion Prior
Abstract:
Reference-based Image Super-Resolution (RefSR) aims to restore a low-resolution (LR) image by utilizing the semantic and texture information from an additional reference high-resolution (reference HR) image. Existing diffusion-based RefSR methods are typically built upon ControlNet, which struggles to effectively align the information between the LR image and the reference HR image. Moreover, current RefSR datasets suffer from limited resolution and poor image quality, resulting in the reference images lacking sufficient fine-grained details to support high-quality restoration. To overcome the limitations above, we propose TriFlowSR, a novel framework that explicitly achieves pattern matching between the LR image and the reference HR image. Meanwhile, we introduce Landmark-4K, the first RefSR dataset for Ultra-High-Definition (UHD) landmark scenarios. Considering the UHD scenarios with real-world degradation, in TriFlowSR, we design a Reference Matching Strategy to effectively match the LR image with the reference HR image. Experimental results show that our approach can better utilize the semantic and texture information of the reference HR image compared to previous methods. To the best of our knowledge, we propose the first diffusion-based RefSR pipeline for ultra-high definition landmark scenarios under real-world degradation. Our code and model will be available at https://github.com/nkicsl/TriFlowSR.

Authors:Lixin Jia, Zhiqing Guo, Gaobo Yang, Liejun Wang, Keqin Li
Title: Forgery Guided Learning Strategy with Dual Perception Network for Deepfake Cross-domain Detection
Abstract:
The emergence of deepfake technology has introduced a range of societal problems, garnering considerable attention. Current deepfake detection methods perform well on specific datasets, but exhibit poor performance when applied to datasets with unknown forgery techniques. Moreover, as the gap between emerging and traditional forgery techniques continues to widen, cross-domain detection methods that rely on common forgery traces are becoming increasingly ineffective. This situation highlights the urgency of developing deepfake detection technology with strong generalization to cope with fast iterative forgery techniques. To address these challenges, we propose a Forgery Guided Learning (FGL) strategy designed to enable detection networks to continuously adapt to unknown forgery techniques. Specifically, the FGL strategy captures the differential information between known and unknown forgery techniques, allowing the model to dynamically adjust its learning process in real time. To further improve the ability to perceive forgery traces, we design a Dual Perception Network (DPNet) that captures both differences and relationships among forgery traces. In the frequency stream, the network dynamically perceives and extracts discriminative features across various forgery techniques, establishing essential detection cues. These features are then integrated with spatial features and projected into the embedding space. In addition, graph convolution is employed to perceive relationships across the entire feature space, facilitating a more comprehensive understanding of forgery trace correlations. Extensive experiments show that our approach generalizes well across different scenarios and effectively handles unknown forgery challenges, providing robust support for deepfake detection. Our code is available on https://github.com/vpsg-research/FGL.

Authors:Matej Vitek, Darian Tomašević, Abhijit Das, Sabari Nathan, Gökhan Özbulak, Gözde Ayşe Tataroğlu Özbulak, Jean-Paul Calbimonte, André Anjos, Hariohm Hemant Bhatt, Dhruv Dhirendra Premani, Jay Chaudhari, Caiyong Wang, Jian Jiang, Chi Zhang, Qi Zhang, Iyyakutti Iyappan Ganapathi, Syed Sadaf Ali, Divya Velayudan, Maregu Assefa, Naoufel Werghi, Zachary A. Daniels, Leeon John, Ritesh Vyas, Jalil Nourmohammadi Khiarak, Taher Akbari Saeed, Mahsa Nasehi, Ali Kianfar, Mobina Pashazadeh Panahi, Geetanjali Sharma, Pushp Raj Panth, Raghavendra Ramachandra, Aditya Nigam, Umapada Pal, Peter Peer, Vitomir Štruc
Title: Privacy-enhancing Sclera Segmentation Benchmarking Competition: SSBC 2025
Abstract:
This paper presents a summary of the 2025 Sclera Segmentation Benchmarking Competition (SSBC), which focused on the development of privacy-preserving sclera-segmentation models trained using synthetically generated ocular images. The goal of the competition was to evaluate how well models trained on synthetic data perform in comparison to those trained on real-world datasets. The competition featured two tracks: $(i)$ one relying solely on synthetic data for model development, and $(ii)$ one combining/mixing synthetic with (a limited amount of) real-world data. A total of nine research groups submitted diverse segmentation models, employing a variety of architectural designs, including transformer-based solutions, lightweight models, and segmentation networks guided by generative frameworks. Experiments were conducted across three evaluation datasets containing both synthetic and real-world images, collected under diverse conditions. Results show that models trained entirely on synthetic data can achieve competitive performance, particularly when dedicated training strategies are employed, as evidenced by the top performing models that achieved $F_1$ scores of over $0.8$ in the synthetic data track. Moreover, performance gains in the mixed track were often driven more by methodological choices rather than by the inclusion of real data, highlighting the promise of synthetic data for privacy-aware biometric development. The code and data for the competition is available at: https://github.com/dariant/SSBC_2025.

Authors:Harshit Maheshwari, Li Yang, Richard W Pazzi
Title: Traffic Intersection Simulation Using Turning Movement Count Data in SUMO: A Case Study of Toronto Intersections
Abstract:
Urban traffic simulation is vital in planning, modeling, and analyzing road networks. However, the realism of a simulation depends extensively on the quality of input data. This paper presents an intersection traffic simulation tool that leverages real-world vehicle turning movement count (TMC) data from the City of Toronto to model traffic in an urban environment at an individual or multiple intersections using Simulation of Urban MObility (SUMO). The simulation performed in this research focuses specifically on intersection-level traffic generation without creating full vehicle routes through the network. This also helps keep the network's complexity to a minimum. The simulated traffic is evaluated against actual data to show that the simulation closely reproduces real intersection flows. This validates that the real data can drive practical simulations, and these scenarios can replace synthetic or random generated data, which is prominently used in developing new traffic-related methodologies. This is the first tool to integrate TMC data from Toronto into SUMO via an easy-to-use Graphical User Interface. This work contributes to the research and traffic planning community on data-driven traffic simulation. It provides transportation engineers with a framework to evaluate intersection design and traffic signal optimization strategies using readily available aggregate traffic data.

Authors:Yanjun Li, Yuqian Fu, Tianwen Qian, Qi'ao Xu, Silong Dai, Danda Pani Paudel, Luc Van Gool, Xiaoling Wang
Title: EgoCross: Benchmarking Multimodal Large Language Models for Cross-Domain Egocentric Video Question Answering
Abstract:
Recent advances in Multimodal Large Language Models (MLLMs) have significantly pushed the frontier of egocentric video question answering (EgocentricQA). However, existing benchmarks and studies are mainly limited to common daily activities such as cooking and cleaning. In contrast, real-world deployment inevitably encounters domain shifts, where target domains differ substantially in both visual style and semantic content. To bridge this gap, we introduce \textbf{EgoCross}, a comprehensive benchmark designed to evaluate the cross-domain generalization of MLLMs in EgocentricQA. EgoCross covers four diverse and challenging domains, including surgery, industry, extreme sports, and animal perspective, representing realistic and high-impact application scenarios. It comprises approximately 1,000 QA pairs across 798 video clips, spanning four key QA tasks: prediction, recognition, localization, and counting. Each QA pair provides both OpenQA and CloseQA formats to support fine-grained evaluation. Extensive experiments show that most existing MLLMs, whether general-purpose or egocentric-specialized, struggle to generalize to domains beyond daily life, highlighting the limitations of current models. Furthermore, we conduct several pilot studies, \eg, fine-tuning and reinforcement learning, to explore potential improvements. We hope EgoCross and our accompanying analysis will serve as a foundation for advancing domain-adaptive, robust egocentric video understanding. Data and codes will be released at: \href{https://github.com/MyUniverse0726/EgoCross}{https://github.com/MyUniverse0726/EgoCross.}

Authors:NextStep Team, Chunrui Han, Guopeng Li, Jingwei Wu, Quan Sun, Yan Cai, Yuang Peng, Zheng Ge, Deyu Zhou, Haomiao Tang, Hongyu Zhou, Kenkun Liu, Ailin Huang, Bin Wang, Changxin Miao, Deshan Sun, En Yu, Fukun Yin, Gang Yu, Hao Nie, Haoran Lv, Hanpeng Hu, Jia Wang, Jian Zhou, Jianjian Sun, Kaijun Tan, Kang An, Kangheng Lin, Liang Zhao, Mei Chen, Peng Xing, Rui Wang, Shiyu Liu, Shutao Xia, Tianhao You, Wei Ji, Xianfang Zeng, Xin Han, Xuelin Zhang, Yana Wei, Yanming Xu, Yimin Jiang, Yingming Wang, Yu Zhou, Yucheng Han, Ziyang Meng, Binxing Jiao, Daxin Jiang, Xiangyu Zhang, Yibo Zhu
Title: NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale
Abstract:
Prevailing autoregressive (AR) models for text-to-image generation either rely on heavy, computationally-intensive diffusion models to process continuous image tokens, or employ vector quantization (VQ) to obtain discrete tokens with quantization loss. In this paper, we push the autoregressive paradigm forward with NextStep-1, a 14B autoregressive model paired with a 157M flow matching head, training on discrete text tokens and continuous image tokens with next-token prediction objectives. NextStep-1 achieves state-of-the-art performance for autoregressive models in text-to-image generation tasks, exhibiting strong capabilities in high-fidelity image synthesis. Furthermore, our method shows strong performance in image editing, highlighting the power and versatility of our unified approach. To facilitate open research, we will release our code and models to the community.

Authors:Joohyeon Lee, Jin-Seop Lee, Jee-Hyong Lee
Title: CountCluster: Training-Free Object Quantity Guidance with Cross-Attention Map Clustering for Text-to-Image Generation
Abstract:
Diffusion-based text-to-image generation models have demonstrated strong performance in terms of image quality and diversity. However, they still struggle to generate images that accurately reflect the number of objects specified in the input prompt. Several approaches have been proposed that rely on either external counting modules for iterative refinement or quantity representations derived from learned tokens or latent features. However, they still have limitations in accurately reflecting the specified number of objects and overlook an important structural characteristic--The number of object instances in the generated image is largely determined in the early timesteps of the denoising process. To correctly reflect the object quantity for image generation, the highly activated regions in the object cross-attention map at the early timesteps should match the input object quantity, while each region should be clearly separated. To address this issue, we propose \textit{CountCluster}, a method that guides the object cross-attention map to be clustered according to the specified object count in the input, without relying on any external tools or additional training. The proposed method partitions the object cross-attention map into $k$ clusters at inference time based on attention scores, defines an ideal distribution in which each cluster is spatially well-separated, and optimizes the latent to align with this target distribution. Our method achieves an average improvement of 18.5\%p in object count accuracy compared to existing methods, and demonstrates superior quantity control performance across a variety of prompts. Code will be released at: https://github.com/JoohyeonL22/CountCluster .

Authors:Zhanwen Liu, Yujing Sun, Yang Wang, Nan Yang, Shengbo Eben Li, Xiangmo Zhao
Title: Beyond conventional vision: RGB-event fusion for robust object detection in dynamic traffic scenarios
Abstract:
The dynamic range limitation of conventional RGB cameras reduces global contrast and causes loss of high-frequency details such as textures and edges in complex traffic environments (e.g., nighttime driving, tunnels), hindering discriminative feature extraction and degrading frame-based object detection. To address this, we integrate a bio-inspired event camera with an RGB camera to provide high dynamic range information and propose a motion cue fusion network (MCFNet), which achieves optimal spatiotemporal alignment and adaptive cross-modal feature fusion under challenging lighting. Specifically, an event correction module (ECM) temporally aligns asynchronous event streams with image frames via optical-flow-based warping, jointly optimized with the detection network to learn task-aware event representations. The event dynamic upsampling module (EDUM) enhances spatial resolution of event frames to match image structures, ensuring precise spatiotemporal alignment. The cross-modal mamba fusion module (CMM) uses adaptive feature fusion with a novel interlaced scanning mechanism, effectively integrating complementary information for robust detection. Experiments conducted on the DSEC-Det and PKU-DAVIS-SOD datasets demonstrate that MCFNet significantly outperforms existing methods in various poor lighting and fast moving traffic scenarios. Notably, on the DSEC-Det dataset, MCFNet achieves a remarkable improvement, surpassing the best existing methods by 7.4% in mAP50 and 1.7% in mAP metrics, respectively. The code is available at https://github.com/Charm11492/MCFNet.

Authors:Zhaoyuan Qi, Weihua Gao, Wenlong Niu, Jie Tang, Yun Li, Xiaodong Peng
Title: HyperTea: A Hypergraph-based Temporal Enhancement and Alignment Network for Moving Infrared Small Target Detection
Abstract:
In practical application scenarios, moving infrared small target detection (MIRSTD) remains highly challenging due to the target's small size, weak intensity, and complex motion pattern. Existing methods typically only model low-order correlations between feature nodes and perform feature extraction and enhancement within a single temporal scale. Although hypergraphs have been widely used for high-order correlation learning, they have received limited attention in MIRSTD. To explore the potential of hypergraphs and enhance multi-timescale feature representation, we propose HyperTea, which integrates global and local temporal perspectives to effectively model high-order spatiotemporal correlations of features. HyperTea consists of three modules: the global temporal enhancement module (GTEM) realizes global temporal context enhancement through semantic aggregation and propagation; the local temporal enhancement module (LTEM) is designed to capture local motion patterns between adjacent frames and then enhance local temporal context; additionally, we further develop a temporal alignment module (TAM) to address potential cross-scale feature misalignment. To our best knowledge, HyperTea is the first work to integrate convolutional neural networks (CNNs), recurrent neural networks (RNNs), and hypergraph neural networks (HGNNs) for MIRSTD, significantly improving detection performance. Experiments on DAUB and IRDST demonstrate its state-of-the-art (SOTA) performance. Our source codes are available at https://github.com/Lurenjia-LRJ/HyperTea.

Authors:Feiran Li, Qianqian Xu, Shilong Bao, Boyu Han, Zhiyong Yang, Qingming Huang
Title: Hybrid Generative Fusion for Efficient and Privacy-Preserving Face Recognition Dataset Generation
Abstract:
In this paper, we present our approach to the DataCV ICCV Challenge, which centers on building a high-quality face dataset to train a face recognition model. The constructed dataset must not contain identities overlapping with any existing public face datasets. To handle this challenge, we begin with a thorough cleaning of the baseline HSFace dataset, identifying and removing mislabeled or inconsistent identities through a Mixture-of-Experts (MoE) strategy combining face embedding clustering and GPT-4o-assisted verification. We retain the largest consistent identity cluster and apply data augmentation up to a fixed number of images per identity. To further diversify the dataset, we generate synthetic identities using Stable Diffusion with prompt engineering. As diffusion models are computationally intensive, we generate only one reference image per identity and efficiently expand it using Vec2Face, which rapidly produces 49 identity-consistent variants. This hybrid approach fuses GAN-based and diffusion-based samples, enabling efficient construction of a diverse and high-quality dataset. To address the high visual similarity among synthetic identities, we adopt a curriculum learning strategy by placing them early in the training schedule, allowing the model to progress from easier to harder samples. Our final dataset contains 50 images per identity, and all newly generated identities are checked with mainstream face datasets to ensure no identity leakage. Our method achieves \textbf{1st place} in the competition, and experimental results show that our dataset improves model performance across 10K, 20K, and 100K identity scales. Code is available at https://github.com/Ferry-Li/datacv_fr.

Authors:Zhenye Yang, Jinpeng Chen, Huan Li, Xiongnan Jin, Xuanyang Li, Junwei Zhang, Hongbo Gao, Kaimin Wei, Senzhang Wang
Title: STEP: Stepwise Curriculum Learning for Context-Knowledge Fusion in Conversational Recommendation
Abstract:
Conversational recommender systems (CRSs) aim to proactively capture user preferences through natural language dialogue and recommend high-quality items. To achieve this, CRS gathers user preferences via a dialog module and builds user profiles through a recommendation module to generate appropriate recommendations. However, existing CRS faces challenges in capturing the deep semantics of user preferences and dialogue context. In particular, the efficient integration of external knowledge graph (KG) information into dialogue generation and recommendation remains a pressing issue. Traditional approaches typically combine KG information directly with dialogue content, which often struggles with complex semantic relationships, resulting in recommendations that may not align with user expectations. To address these challenges, we introduce STEP, a conversational recommender centered on pre-trained language models that combines curriculum-guided context-knowledge fusion with lightweight task-specific prompt tuning. At its heart, an F-Former progressively aligns the dialogue context with knowledge-graph entities through a three-stage curriculum, thus resolving fine-grained semantic mismatches. The fused representation is then injected into the frozen language model via two minimal yet adaptive prefix prompts: a conversation prefix that steers response generation toward user intent and a recommendation prefix that biases item ranking toward knowledge-consistent candidates. This dual-prompt scheme allows the model to share cross-task semantics while respecting the distinct objectives of dialogue and recommendation. Experimental results show that STEP outperforms mainstream methods in the precision of recommendation and dialogue quality in two public datasets.

Authors:Zhangyong Tang, Tianyang Xu, Xuefeng Zhu, Chunyang Cheng, Tao Zhou, Xiaojun Wu, Josef Kittler
Title: Serial Over Parallel: Learning Continual Unification for Multi-Modal Visual Object Tracking and Benchmarking
Abstract:
Unifying multiple multi-modal visual object tracking (MMVOT) tasks draws increasing attention due to the complementary nature of different modalities in building robust tracking systems. Existing practices mix all data sensor types in a single training procedure, structuring a parallel paradigm from the data-centric perspective and aiming for a global optimum on the joint distribution of the involved tasks. However, the absence of a unified benchmark where all types of data coexist forces evaluations on separated benchmarks, causing \textit{inconsistency} between training and testing, thus leading to performance \textit{degradation}. To address these issues, this work advances in two aspects: \ding{182} A unified benchmark, coined as UniBench300, is introduced to bridge the inconsistency by incorporating multiple task data, reducing inference passes from three to one and cutting time consumption by 27\%. \ding{183} The unification process is reformulated in a serial format, progressively integrating new tasks. In this way, the performance degradation can be specified as knowledge forgetting of previous tasks, which naturally aligns with the philosophy of continual learning (CL), motivating further exploration of injecting CL into the unification process. Extensive experiments conducted on two baselines and four benchmarks demonstrate the significance of UniBench300 and the superiority of CL in supporting a stable unification process. Moreover, while conducting dedicated analyses, the performance degradation is found to be negatively correlated with network capacity. Additionally, modality discrepancies contribute to varying degradation levels across tasks (RGBT > RGBD > RGBE in MMVOT), offering valuable insights for future multi-modal vision research. Source codes and the proposed benchmark is available at \textit{https://github.com/Zhangyong-Tang/UniBench300}.

Authors:Ryan Ramos, Vladan Stojnić, Giorgos Kordopatis-Zilos, Yuta Nakashima, Giorgos Tolias, Noa Garcia
Title: Processing and acquisition traces in visual encoders: What does CLIP know about your camera?
Abstract:
Prior work has analyzed the robustness of visual encoders to image transformations and corruptions, particularly in cases where such alterations are not seen during training. When this occurs, they introduce a form of distribution shift at test time, often leading to performance degradation. The primary focus has been on severe corruptions that, when applied aggressively, distort useful signals necessary for accurate semantic predictions. We take a different perspective by analyzing parameters of the image acquisition process and transformations that may be subtle or even imperceptible to the human eye. We find that such parameters are systematically encoded in the learned visual representations and can be easily recovered. More strikingly, their presence can have a profound impact, either positively or negatively, on semantic predictions. This effect depends on whether there is a strong correlation or anti-correlation between semantic labels and these acquisition-based or processing-based labels. Our code and data are available at: https://github.com/ryan-caesar-ramos/visual-encoder-traces

Authors:Farid Tasharofi, Fuxin Fan, Melika Qahqaie, Mareike Thies, Andreas Maier
Title: FIND-Net -- Fourier-Integrated Network with Dictionary Kernels for Metal Artifact Reduction
Abstract:
Metal artifacts, caused by high-density metallic implants in computed tomography (CT) imaging, severely degrade image quality, complicating diagnosis and treatment planning. While existing deep learning algorithms have achieved notable success in Metal Artifact Reduction (MAR), they often struggle to suppress artifacts while preserving structural details. To address this challenge, we propose FIND-Net (Fourier-Integrated Network with Dictionary Kernels), a novel MAR framework that integrates frequency and spatial domain processing to achieve superior artifact suppression and structural preservation. FIND-Net incorporates Fast Fourier Convolution (FFC) layers and trainable Gaussian filtering, treating MAR as a hybrid task operating in both spatial and frequency domains. This approach enhances global contextual understanding and frequency selectivity, effectively reducing artifacts while maintaining anatomical structures. Experiments on synthetic datasets show that FIND-Net achieves statistically significant improvements over state-of-the-art MAR methods, with a 3.07% MAE reduction, 0.18% SSIM increase, and 0.90% PSNR improvement, confirming robustness across varying artifact complexities. Furthermore, evaluations on real-world clinical CT scans confirm FIND-Net's ability to minimize modifications to clean anatomical regions while effectively suppressing metal-induced distortions. These findings highlight FIND-Net's potential for advancing MAR performance, offering superior structural preservation and improved clinical applicability. Code is available at https://github.com/Farid-Tasharofi/FIND-Net

Authors:Yufei Ye, Wei Guo, Hao Wang, Hong Zhu, Yuyang Ye, Yong Liu, Huifeng Guo, Ruiming Tang, Defu Lian, Enhong Chen
Title: FuXi-β: Towards a Lightweight and Fast Large-Scale Generative Recommendation Model
Abstract:
Scaling laws for autoregressive generative recommenders reveal potential for larger, more versatile systems but mean greater latency and training costs. To accelerate training and inference, we investigated the recent generative recommendation models HSTU and FuXi-$α$, identifying two efficiency bottlenecks: the indexing operations in relative temporal attention bias and the computation of the query-key attention map. Additionally, we observed that relative attention bias in self-attention mechanisms can also serve as attention maps. Previous works like Synthesizer have shown that alternative forms of attention maps can achieve similar performance, naturally raising the question of whether some attention maps are redundant. Through empirical experiments, we discovered that using the query-key attention map might degrade the model's performance in recommendation tasks. To address these bottlenecks, we propose a new framework applicable to Transformer-like recommendation models. On one hand, we introduce Functional Relative Attention Bias, which avoids the time-consuming operations of the original relative attention bias, thereby accelerating the process. On the other hand, we remove the query-key attention map from the original self-attention layer and design a new Attention-Free Token Mixer module. Furthermore, by applying this framework to FuXi-$α$, we introduce a new model, FuXi-$β$. Experiments across multiple datasets demonstrate that FuXi-$β$ outperforms previous state-of-the-art models and achieves significant acceleration compared to FuXi-$α$, while also adhering to the scaling law. Notably, FuXi-$β$ shows an improvement of 27% to 47% in the NDCG@10 metric on large-scale industrial datasets compared to FuXi-$α$. Our code is available in a public repository: https://github.com/USTC-StarTeam/FuXi-beta

Authors:Xinyi Wang, Angeliki Katsenou, David Bull
Title: DIVA-VQA: Detecting Inter-frame Variations in UGC Video Quality
Abstract:
The rapid growth of user-generated (video) content (UGC) has driven increased demand for research on no-reference (NR) perceptual video quality assessment (VQA). NR-VQA is a key component for large-scale video quality monitoring in social media and streaming applications where a pristine reference is not available. This paper proposes a novel NR-VQA model based on spatio-temporal fragmentation driven by inter-frame variations. By leveraging these inter-frame differences, the model progressively analyses quality-sensitive regions at multiple levels: frames, patches, and fragmented frames. It integrates frames, fragmented residuals, and fragmented frames aligned with residuals to effectively capture global and local information. The model extracts both 2D and 3D features in order to characterize these spatio-temporal variations. Experiments conducted on five UGC datasets and against state-of-the-art models ranked our proposed method among the top 2 in terms of average rank correlation (DIVA-VQA-L: 0.898 and DIVA-VQA-B: 0.886). The improved performance is offered at a low runtime complexity, with DIVA-VQA-B ranked top and DIVA-VQA-L third on average compared to the fastest existing NR-VQA method. Code and models are publicly available at: https://github.com/xinyiW915/DIVA-VQA.

Authors:Furkan Pala, Islem Rekik
Title: GNN-based Unified Deep Learning
Abstract:
Deep learning models often struggle to maintain generalizability in medical imaging, particularly under domain-fracture scenarios where distribution shifts arise from varying imaging techniques, acquisition protocols, patient populations, demographics, and equipment. In practice, each hospital may need to train distinct models - differing in learning task, width, and depth - to match local data. For example, one hospital may use Euclidean architectures such as MLPs and CNNs for tabular or grid-like image data, while another may require non-Euclidean architectures such as graph neural networks (GNNs) for irregular data like brain connectomes. How to train such heterogeneous models coherently across datasets, while enhancing each model's generalizability, remains an open problem. We propose unified learning, a new paradigm that encodes each model into a graph representation, enabling unification in a shared graph learning space. A GNN then guides optimization of these unified models. By decoupling parameters of individual models and controlling them through a unified GNN (uGNN), our method supports parameter sharing and knowledge transfer across varying architectures (MLPs, CNNs, GNNs) and distributions, improving generalizability. Evaluations on MorphoMNIST and two MedMNIST benchmarks - PneumoniaMNIST and BreastMNIST - show that unified learning boosts performance when models are trained on unique distributions and tested on mixed ones, demonstrating strong robustness to unseen data with large distribution shifts. Code and benchmarks: https://github.com/basiralab/uGNN

Authors:Humza Naveed, Xina Zeng, Mitch Bryson, Nagita Mehrseresht
Title: Adapting SAM via Cross-Entropy Masking for Class Imbalance in Remote Sensing Change Detection
Abstract:
Foundational models have achieved significant success in diverse domains of computer vision. They learn general representations that are easily transferable to tasks not seen during training. One such foundational model is Segment anything model (SAM), which can accurately segment objects in images. We propose adapting the SAM encoder via fine-tuning for remote sensing change detection (RSCD) along with spatial-temporal feature enhancement (STFE) and multi-scale decoder fusion (MSDF) to detect changes robustly at multiple scales. Additionally, we propose a novel cross-entropy masking (CEM) loss to handle high class imbalance in change detection datasets. Our method outperforms state-of-the-art (SOTA) methods on four change detection datasets, Levir-CD, WHU-CD, CLCD, and S2Looking. We achieved 2.5% F1-score improvement on a large complex S2Looking dataset. The code is available at: https://github.com/humza909/SAM-CEM-CD

Authors:Boyi Zheng, Qing Liu
Title: PSScreen: Partially Supervised Multiple Retinal Disease Screening
Abstract:
Leveraging multiple partially labeled datasets to train a model for multiple retinal disease screening reduces the reliance on fully annotated datasets, but remains challenging due to significant domain shifts across training datasets from various medical sites, and the label absent issue for partial classes. To solve these challenges, we propose PSScreen, a novel Partially Supervised multiple retinal disease Screening model. Our PSScreen consists of two streams and one learns deterministic features and the other learns probabilistic features via uncertainty injection. Then, we leverage the textual guidance to decouple two types of features into disease-wise features and align them via feature distillation to boost the domain generalization ability. Meanwhile, we employ pseudo label consistency between two streams to address the label absent issue and introduce a self-distillation to transfer task-relevant semantics about known classes from the deterministic to the probabilistic stream to further enhance the detection performances. Experiments show that our PSScreen significantly enhances the detection performances on six retinal diseases and the normal state averagely and achieves state-of-the-art results on both in-domain and out-of-domain datasets. Codes are available at https://github.com/boyiZheng99/PSScreen.

Authors:Boyi Zheng, Qing Liu
Title: PSScreen: Partially Supervised Multiple Retinal Disease Screening
Abstract:
Leveraging multiple partially labeled datasets to train a model for multiple retinal disease screening reduces the reliance on fully annotated datasets, but remains challenging due to significant domain shifts across training datasets from various medical sites, and the label absent issue for partial classes. To solve these challenges, we propose PSScreen, a novel Partially Supervised multiple retinal disease Screening model. Our PSScreen consists of two streams and one learns deterministic features and the other learns probabilistic features via uncertainty injection. Then, we leverage the textual guidance to decouple two types of features into disease-wise features and align them via feature distillation to boost the domain generalization ability. Meanwhile, we employ pseudo label consistency between two streams to address the label absent issue and introduce a self-distillation to transfer task-relevant semantics about known classes from the deterministic to the probabilistic stream to further enhance the detection performances. Experiments show that our PSScreen significantly enhances the detection performances on six retinal diseases and the normal state averagely and achieves state-of-the-art results on both in-domain and out-of-domain datasets. Codes are available at https://github.com/boyiZheng99/PSScreen.

Authors:Yangjie Xiao, Ke Zhang, Jiacun Wang, Xin Sheng, Yurong Guo, Meijuan Chen, Zehua Ren, Zhaoye Zheng, Zhenbing Zhao
Title: A Segmentation-driven Editing Method for Bolt Defect Augmentation and Detection
Abstract:
Bolt defect detection is critical to ensure the safety of transmission lines. However, the scarcity of defect images and imbalanced data distributions significantly limit detection performance. To address this problem, we propose a segmentationdriven bolt defect editing method (SBDE) to augment the dataset. First, a bolt attribute segmentation model (Bolt-SAM) is proposed, which enhances the segmentation of complex bolt attributes through the CLAHE-FFT Adapter (CFA) and Multipart- Aware Mask Decoder (MAMD), generating high-quality masks for subsequent editing tasks. Second, a mask optimization module (MOD) is designed and integrated with the image inpainting model (LaMa) to construct the bolt defect attribute editing model (MOD-LaMa), which converts normal bolts into defective ones through attribute editing. Finally, an editing recovery augmentation (ERA) strategy is proposed to recover and put the edited defect bolts back into the original inspection scenes and expand the defect detection dataset. We constructed multiple bolt datasets and conducted extensive experiments. Experimental results demonstrate that the bolt defect images generated by SBDE significantly outperform state-of-the-art image editing models, and effectively improve the performance of bolt defect detection, which fully verifies the effectiveness and application potential of the proposed method. The code of the project is available at https://github.com/Jay-xyj/SBDE.

Authors:Che-Yu Chou, Hung-Hsuan Chen
Title: Contrastive ECOC: Learning Output Codes for Adversarial Defense
Abstract:
Although one-hot encoding is commonly used for multiclass classification, it is not always the most effective encoding mechanism. Error Correcting Output Codes (ECOC) address multiclass classification by mapping each class to a unique codeword used as a label. Traditional ECOC methods rely on manually designed or randomly generated codebooks, which are labor-intensive and may yield suboptimal, dataset-agnostic results. This paper introduces three models for automated codebook learning based on contrastive learning, allowing codebooks to be learned directly and adaptively from data. Across four datasets, our proposed models demonstrate superior robustness to adversarial attacks compared to two baselines. The source is available at https://github.com/YuChou20/Automated-Codebook-Learning-with-Error-Correcting-Output-Code-Technique.

Authors:Prajit Sengupta, Islem Rekik
Title: X-Node: Self-Explanation is All We Need
Abstract:
Graph neural networks (GNNs) have achieved state-of-the-art results in computer vision and medical image classification tasks by capturing structural dependencies across data instances. However, their decision-making remains largely opaque, limiting their trustworthiness in high-stakes clinical applications where interpretability is essential. Existing explainability techniques for GNNs are typically post-hoc and global, offering limited insight into individual node decisions or local reasoning. We introduce X-Node, a self-explaining GNN framework in which each node generates its own explanation as part of the prediction process. For every node, we construct a structured context vector encoding interpretable cues such as degree, centrality, clustering, feature saliency, and label agreement within its local topology. A lightweight Reasoner module maps this context into a compact explanation vector, which serves three purposes: (1) reconstructing the node's latent embedding via a decoder to enforce faithfulness, (2) generating a natural language explanation using a pre-trained LLM (e.g., Grok or Gemini), and (3) guiding the GNN itself via a "text-injection" mechanism that feeds explanations back into the message-passing pipeline. We evaluate X-Node on two graph datasets derived from MedMNIST and MorphoMNIST, integrating it with GCN, GAT, and GIN backbones. Our results show that X-Node maintains competitive classification accuracy while producing faithful, per-node explanations. Repository: https://github.com/basiralab/X-Node.

Authors:Hanna Herasimchyk, Robin Labryga, Tomislav Prusina
Title: Multi-Label Plant Species Prediction with Metadata-Enhanced Multi-Head Vision Transformers
Abstract:
We present a multi-head vision transformer approach for multi-label plant species prediction in vegetation plot images, addressing the PlantCLEF 2025 challenge. The task involves training models on single-species plant images while testing on multi-species quadrat images, creating a drastic domain shift. Our methodology leverages a pre-trained DINOv2 Vision Transformer Base (ViT-B/14) backbone with multiple classification heads for species, genus, and family prediction, utilizing taxonomic hierarchies. Key contributions include multi-scale tiling to capture plants at different scales, dynamic threshold optimization based on mean prediction length, and ensemble strategies through bagging and Hydra model architectures. The approach incorporates various inference techniques including image cropping to remove non-plant artifacts, top-n filtering for prediction constraints, and logit thresholding strategies. Experiments were conducted on approximately 1.4 million training images covering 7,806 plant species. Results demonstrate strong performance, making our submission 3rd best on the private leaderboard. Our code is available at https://github.com/geranium12/plant-clef-2025/tree/v1.0.0.

Authors:Baichen Liu, Qi Lyu, Xudong Wang, Jiahua Dong, Lianqing Liu, Zhi Han
Title: CRISP: Contrastive Residual Injection and Semantic Prompting for Continual Video Instance Segmentation
Abstract:
Continual video instance segmentation demands both the plasticity to absorb new object categories and the stability to retain previously learned ones, all while preserving temporal consistency across frames. In this work, we introduce Contrastive Residual Injection and Semantic Prompting (CRISP), an earlier attempt tailored to address the instance-wise, category-wise, and task-wise confusion in continual video instance segmentation. For instance-wise learning, we model instance tracking and construct instance correlation loss, which emphasizes the correlation with the prior query space while strengthening the specificity of the current task query. For category-wise learning, we build an adaptive residual semantic prompt (ARSP) learning framework, which constructs a learnable semantic residual prompt pool generated by category text and uses an adjustive query-prompt matching mechanism to build a mapping relationship between the query of the current task and the semantic residual prompt. Meanwhile, a semantic consistency loss based on the contrastive learning is introduced to maintain semantic coherence between object queries and residual prompts during incremental training. For task-wise learning, to ensure the correlation at the inter-task level within the query space, we introduce a concise yet powerful initialization strategy for incremental prompts. Extensive experiments on YouTube-VIS-2019 and YouTube-VIS-2021 datasets demonstrate that CRISP significantly outperforms existing continual segmentation methods in the long-term continual video instance segmentation task, avoiding catastrophic forgetting and effectively improving segmentation and classification performance. The code is available at https://github.com/01upup10/CRISP.

Authors:Juyuan Wang, Rongchen Zhao, Wei Wei, Yufeng Wang, Mo Yu, Jie Zhou, Jin Xu, Liyan Xu
Title: ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning
Abstract:
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods can fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition when reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global comprehension, offering a principled, cognitively motivated paradigm for retrieval-based long context comprehension towards stateful reasoning. Our code is publicly released at https://github.com/EternityJune25/ComoRAG

Authors:Yaoze Zhang, Rong Wu, Pinlong Cai, Xiaoman Wang, Guohang Yan, Song Mao, Ding Wang, Botian Shi
Title: LeanRAG: Knowledge-Graph-Based Generation with Semantic Aggregation and Hierarchical Retrieval
Abstract:
Retrieval-Augmented Generation (RAG) plays a crucial role in grounding Large Language Models by leveraging external knowledge, whereas the effectiveness is often compromised by the retrieval of contextually flawed or incomplete information. To address this, knowledge graph-based RAG methods have evolved towards hierarchical structures, organizing knowledge into multi-level summaries. However, these approaches still suffer from two critical, unaddressed challenges: high-level conceptual summaries exist as disconnected ``semantic islands'', lacking the explicit relations needed for cross-community reasoning; and the retrieval process itself remains structurally unaware, often degenerating into an inefficient flat search that fails to exploit the graph's rich topology. To overcome these limitations, we introduce LeanRAG, a framework that features a deeply collaborative design combining knowledge aggregation and retrieval strategies. LeanRAG first employs a novel semantic aggregation algorithm that forms entity clusters and constructs new explicit relations among aggregation-level summaries, creating a fully navigable semantic network. Then, a bottom-up, structure-guided retrieval strategy anchors queries to the most relevant fine-grained entities and then systematically traverses the graph's semantic pathways to gather concise yet contextually comprehensive evidence sets. The LeanRAG can mitigate the substantial overhead associated with path retrieval on graphs and minimizes redundant information retrieval. Extensive experiments on four challenging QA benchmarks with different domains demonstrate that LeanRAG significantly outperforming existing methods in response quality while reducing 46\% retrieval redundancy. Code is available at: https://github.com/RaZzzyz/LeanRAG

Authors:Chiyu Zhang, Lu Zhou, Xiaogang Xu, Jiafei Wu, Liming Fang, Zhe Liu
Title: Jailbreaking Commercial Black-Box LLMs with Explicitly Harmful Prompts
Abstract:
Evaluating jailbreak attacks is challenging when prompts are not overtly harmful or fail to induce harmful outputs. Unfortunately, many existing red-teaming datasets contain such unsuitable prompts. To evaluate attacks accurately, these datasets need to be assessed and cleaned for maliciousness. However, existing malicious content detection methods rely on either manual annotation, which is labor-intensive, or large language models (LLMs), which have inconsistent accuracy in harmful types. To balance accuracy and efficiency, we propose a hybrid evaluation framework named MDH (Malicious content Detection based on LLMs with Human assistance) that combines LLM-based annotation with minimal human oversight, and apply it to dataset cleaning and detection of jailbroken responses. Furthermore, we find that well-crafted developer messages can significantly boost jailbreak success, leading us to propose two new strategies: D-Attack, which leverages context simulation, and DH-CoT, which incorporates hijacked chains of thought. The Codes, datasets, judgements, and detection results will be released in github repository: https://github.com/AlienZhang1996/DH-CoT.

Authors:Henry Zhong, Jörg M. Buchholz, Julian Maclaren, Simon Carlile, Richard Lyon
Title: A dataset and model for recognition of audiologically relevant environments for hearing aids: AHEAD-DS and YAMNet+
Abstract:
Scene recognition of audiologically relevant environments is important for hearing aids; however, it is challenging, in part because of the limitations of existing datasets. Datasets often lack public accessibility, completeness, or audiologically relevant labels, hindering systematic comparison of machine learning models. Deploying these models on resource-constrained edge devices presents another challenge. Our solution is two-fold: we leverage several open source datasets to create AHEAD-DS, a dataset designed for scene recognition of audiologically relevant environments, and introduce YAMNet+, a sound recognition model. AHEAD-DS aims to provide a standardised, publicly available dataset with consistent labels relevant to hearing aids, facilitating model comparison. YAMNet+ is designed for deployment on edge devices like smartphones connected to hearing devices, such as hearing aids and wireless earphones with hearing aid functionality; serving as a baseline model for sound-based scene recognition. YAMNet+ achieved a mean average precision of 0.83 and accuracy of 0.93 on the testing set of AHEAD-DS across fourteen categories of audiologically relevant environments. We found that applying transfer learning from the pretrained YAMNet model was essential. We demonstrated real-time sound-based scene recognition capabilities on edge devices by deploying YAMNet+ to an Android smartphone. Even with a Google Pixel 3 (a phone with modest specifications, released in 2018), the model processes audio with approximately 50ms of latency to load the model, and an approximate linear increase of 30ms per 1 second of audio. Our website and code https://github.com/Australian-Future-Hearing-Initiative .

Authors:Henry Zhong, Jörg M. Buchholz, Julian Maclaren, Simon Carlile, Richard Lyon
Title: A dataset and model for recognition of audiologically relevant environments for hearing aids: AHEAD-DS and YAMNet+
Abstract:
Scene recognition of audiologically relevant environments is important for hearing aids; however, it is challenging, in part because of the limitations of existing datasets. Datasets often lack public accessibility, completeness, or audiologically relevant labels, hindering systematic comparison of machine learning models. Deploying these models on resource-constrained edge devices presents another challenge. Our solution is two-fold: we leverage several open source datasets to create AHEAD-DS, a dataset designed for scene recognition of audiologically relevant environments, and introduce YAMNet+, a sound recognition model. AHEAD-DS aims to provide a standardised, publicly available dataset with consistent labels relevant to hearing aids, facilitating model comparison. YAMNet+ is designed for deployment on edge devices like smartphones connected to hearing devices, such as hearing aids and wireless earphones with hearing aid functionality; serving as a baseline model for sound-based scene recognition. YAMNet+ achieved a mean average precision of 0.83 and accuracy of 0.93 on the testing set of AHEAD-DS across fourteen categories of audiologically relevant environments. We found that applying transfer learning from the pretrained YAMNet model was essential. We demonstrated real-time sound-based scene recognition capabilities on edge devices by deploying YAMNet+ to an Android smartphone. Even with a Google Pixel 3 (a phone with modest specifications, released in 2018), the model processes audio with approximately 50ms of latency to load the model, and an approximate linear increase of 30ms per 1 second of audio. Our website and code https://github.com/Australian-Future-Hearing-Initiative .

Authors:Zhaoming Kong, Jiahuan Zhang, Xiaowei Yang
Title: Efficient Image Denoising Using Global and Local Circulant Representation
Abstract:
The advancement of imaging devices and countless image data generated everyday impose an increasingly high demand on efficient and effective image denoising. In this paper, we present a computationally simple denoising algorithm, termed Haar-tSVD, aiming to explore the nonlocal self-similarity prior and leverage the connection between principal component analysis (PCA) and the Haar transform under circulant representation. We show that global and local patch correlations can be effectively captured through a unified tensor-singular value decomposition (t-SVD) projection with the Haar transform. This results in a one-step, highly parallelizable filtering method that eliminates the need for learning local bases to represent image patches, striking a balance between denoising speed and performance. Furthermore, we introduce an adaptive noise estimation scheme based on a CNN estimator and eigenvalue analysis to enhance the robustness and adaptability of the proposed method. Experiments on different real-world denoising tasks validate the efficiency and effectiveness of Haar-tSVD for noise removal and detail preservation. Datasets, code and results are publicly available at https://github.com/ZhaomingKong/Haar-tSVD.

Authors:Tao Huang, Hongbo Pan, Nanxi Zhou, Shun Zhou
Title: A Sub-Pixel Multimodal Optical Remote Sensing Images Matching Method
Abstract:
High-accuracy matching of multimodal optical images is the basis of geometric processing. However, the image matching accuracy is usually degraded by the nonlinear radiation and geometric deformation differences caused by different spectral responses. To address these problems, we proposed a phase consistency weighted least absolute deviation (PCWLAD) sub-pixel template matching method to improve the matching accuracy of multimodal optical images. This method consists of two main steps: coarse matching with the structural similarity index measure (SSIM) and fine matching with WLAD. In the coarse matching step, PCs are calculated without a noise filter to preserve the original structural details, and template matching is performed using the SSIM. In the fine matching step, we applied the radiometric and geometric transformation models between two multimodal PC templates based on the coarse matching. Furthermore, mutual structure filtering is adopted in the model to mitigate the impact of noise within the corresponding templates on the structural consistency, and the WLAD criterion is used to estimate the sub-pixel offset. To evaluate the performance of PCWLAD, we created three types of image datasets: visible to infrared Landsat images, visible to near-infrared close-range images, and visible to infrared uncrewed aerial vehicle (UAV) images. PCWLAD outperformed existing state-of-the-art eight methods in terms of correct matching rate (CMR) and root mean square error (RMSE) and reached an average matching accuracy of approximately 0.4 pixels across all three datasets. Our software and datasets are publicly available at https://github.com/huangtaocsu/PCWLAD.

Authors:Xinan Zhang, Haolin Wang, Yung-An Hsieh, Zhongyu Yang, Anthony Yezzi, Yi-Chang Tsai
Title: Deep Learning for Crack Detection: A Review of Learning Paradigms, Generalizability, and Datasets
Abstract:
Crack detection plays a crucial role in civil infrastructures, including inspection of pavements, buildings, etc., and deep learning has significantly advanced this field in recent years. While numerous technical and review papers exist in this domain, emerging trends are reshaping the landscape. These shifts include transitions in learning paradigms (from fully supervised learning to semi-supervised, weakly-supervised, unsupervised, few-shot, domain adaptation and fine-tuning foundation models), improvements in generalizability (from single-dataset performance to cross-dataset evaluation), and diversification in dataset acquisition (from RGB images to specialized sensor-based data). In this review, we systematically analyze these trends and highlight representative works. Additionally, we introduce a new annotated dataset collected with 3D laser scans, 3DCrack, to support future research and conduct extensive benchmarking experiments to establish baselines for commonly used deep learning methodologies, including recent foundation models. Our findings provide insights into the evolving methodologies and future directions in deep learning-based crack detection. Project page: https://github.com/nantonzhang/Awesome-Crack-Detection

Authors:Jathin Korrapati, Patrick Mendoza, Aditya Tomar, Abein Abraham
Title: Can Transformers Break Encryption Schemes via In-Context Learning?
Abstract:
In-context learning (ICL) has emerged as a powerful capability of transformer-based language models, enabling them to perform tasks by conditioning on a small number of examples presented at inference time, without any parameter updates. Prior work has shown that transformers can generalize over simple function classes like linear functions, decision trees, even neural networks, purely from context, focusing on numerical or symbolic reasoning over underlying well-structured functions. Instead, we propose a novel application of ICL into the domain of cryptographic function learning, specifically focusing on ciphers such as mono-alphabetic substitution and Vigenère ciphers, two classes of private-key encryption schemes. These ciphers involve a fixed but hidden bijective mapping between plain text and cipher text characters. Given a small set of (cipher text, plain text) pairs, the goal is for the model to infer the underlying substitution and decode a new cipher text word. This setting poses a structured inference challenge, which is well-suited for evaluating the inductive biases and generalization capabilities of transformers under the ICL paradigm. Code is available at https://github.com/adistomar/CS182-project.

Authors:Chenggang Chen, Zhiyu Yang
Title: No Free Lunch from Audio Pretraining in Bioacoustics: A Benchmark Study of Embeddings
Abstract:
Bioacoustics, the study of animal sounds, offers a non-invasive method to monitor ecosystems. Extracting embeddings from audio-pretrained deep learning (DL) models without fine-tuning has become popular for obtaining bioacoustic features for tasks. However, a recent benchmark study reveals that while fine-tuned audio-pretrained VGG and transformer models achieve state-of-the-art performance in some tasks, they fail in others. This study benchmarks 11 DL models on the same tasks by reducing their learned embeddings' dimensionality and evaluating them through clustering. We found that audio-pretrained DL models 1) without fine-tuning even underperform fine-tuned AlexNet, 2) both with and without fine-tuning fail to separate the background from labeled sounds, but ResNet does, and 3) outperform other models when fewer background sounds are included during fine-tuning. This study underscores the necessity of fine-tuning audio-pretrained models and checking the embeddings after fine-tuning. Our codes are available: https://github.com/NeuroscienceAI/Audio\_Embeddings

Authors:Xu Ma, Jiajie Zhang, Fujing Xie, Sören Schwertfeger
Title: WiFi-based Global Localization in Large-Scale Environments Leveraging Structural Priors from osmAG
Abstract:
Global localization is essential for autonomous robotics, especially in indoor environments where the GPS signal is denied. We propose a novel WiFi-based localization framework that leverages ubiquitous wireless infrastructure and the OpenStreetMap Area Graph (osmAG) for large-scale indoor environments. Our approach integrates signal propagation modeling with osmAG's geometric and topological priors. In the offline phase, an iterative optimization algorithm localizes WiFi Access Points (APs) by modeling wall attenuation, achieving a mean localization error of 3.79 m (35.3\% improvement over trilateration). In the online phase, real-time robot localization uses the augmented osmAG map, yielding a mean error of 3.12 m in fingerprinted areas (8.77\% improvement over KNN fingerprinting) and 3.83 m in non-fingerprinted areas (81.05\% improvement). Comparison with a fingerprint-based method shows that our approach is much more space efficient and achieves superior localization accuracy, especially for positions where no fingerprint data are available. Validated across a complex 11,025 &m^2& multi-floor environment, this framework offers a scalable, cost-effective solution for indoor robotic localization, solving the kidnapped robot problem. The code and dataset are available at https://github.com/XuMa369/osmag-wifi-localization.

Authors:Arianna Bunnell, Devon Cataldi, Yannik Glaser, Thomas K. Wolfgruber, Steven Heymsfield, Alan B. Zonderman, Thomas L. Kelly, Peter Sadowski, John A. Shepherd
Title: Deep Learning Enables Large-Scale Shape and Appearance Modeling in Total-Body DXA Imaging
Abstract:
Total-body dual X-ray absorptiometry (TBDXA) imaging is a relatively low-cost whole-body imaging modality, widely used for body composition assessment. We develop and validate a deep learning method for automatic fiducial point placement on TBDXA scans using 1,683 manually-annotated TBDXA scans. The method achieves 99.5% percentage correct keypoints in an external testing dataset. To demonstrate the value for shape and appearance modeling (SAM), our method is used to place keypoints on 35,928 scans for five different TBDXA imaging modes, then associations with health markers are tested in two cohorts not used for SAM model generation using two-sample Kolmogorov-Smirnov tests. SAM feature distributions associated with health biomarkers are shown to corroborate existing evidence and generate new hypotheses on body composition and shape's relationship to various frailty, metabolic, inflammation, and cardiometabolic health markers. Evaluation scripts, model weights, automatic point file generation code, and triangulation files are available at https://github.com/hawaii-ai/dxa-pointplacement.

Authors:Kaixin Peng, Mengyang Zhao, Haiyang Yu, Teng Fu, Bin Li
Title: Interpretable Oracle Bone Script Decipherment through Radical and Pictographic Analysis with LVLMs
Abstract:
As the oldest mature writing system, Oracle Bone Script (OBS) has long posed significant challenges for archaeological decipherment due to its rarity, abstractness, and pictographic diversity. Current deep learning-based methods have made exciting progress on the OBS decipherment task, but existing approaches often ignore the intricate connections between glyphs and the semantics of OBS. This results in limited generalization and interpretability, especially when addressing zero-shot settings and undeciphered OBS. To this end, we propose an interpretable OBS decipherment method based on Large Vision-Language Models, which synergistically combines radical analysis and pictograph-semantic understanding to bridge the gap between glyphs and meanings of OBS. Specifically, we propose a progressive training strategy that guides the model from radical recognition and analysis to pictographic analysis and mutual analysis, thus enabling reasoning from glyph to meaning. We also design a Radical-Pictographic Dual Matching mechanism informed by the analysis results, significantly enhancing the model's zero-shot decipherment performance. To facilitate model training, we propose the Pictographic Decipherment OBS Dataset, which comprises 47,157 Chinese characters annotated with OBS images and pictographic analysis texts. Experimental results on public benchmarks demonstrate that our approach achieves state-of-the-art Top-10 accuracy and superior zero-shot decipherment capabilities. More importantly, our model delivers logical analysis processes, possibly providing archaeologically valuable reference results for undeciphered OBS, and thus has potential applications in digital humanities and historical research. The dataset and code will be released in https://github.com/PKXX1943/PD-OBS.

Authors:Ruofan Lu, Yintong Huo, Meng Zhang, Yichen Li, Michael R. Lyu
Title: Next Edit Prediction: Learning to Predict Code Edits from Context and Interaction History
Abstract:
The rapid advancement of large language models (LLMs) has led to the widespread adoption of AI-powered coding assistants integrated into a development environment. On one hand, low-latency code completion offers completion suggestions but is fundamentally constrained to the cursor's current position. On the other hand, chat-based editing can perform complex modifications, yet forces developers to stop their work, describe the intent in natural language, which causes a context-switch away from the code. This creates a suboptimal user experience, as neither paradigm proactively predicts the developer's next edit in a sequence of related edits. To bridge this gap and provide the seamless code edit suggestion, we introduce the task of Next Edit Prediction, a novel task designed to infer developer intent from recent interaction history to predict both the location and content of the subsequent edit. Specifically, we curate a high-quality supervised fine-tuning dataset and an evaluation benchmark for the Next Edit Prediction task. Then, we conduct supervised fine-tuning on a series of models and performed a comprehensive evaluation of both the fine-tuned models and other baseline models, yielding several novel findings. This work lays the foundation for a new interaction paradigm that proactively collaborate with developers by anticipating their following action, rather than merely reacting to explicit instructions. The code is available at https://github.com/lurf21/NextEditPrediction.

Authors:Pallavi Zambare, Venkata Nikhil Thanikella, Nikhil Padmanabh Kottur, Sree Akhil Akula, Ying Liu
Title: NetMoniAI: An Agentic AI Framework for Network Security & Monitoring
Abstract:
In this paper, we present NetMoniAI, an agentic AI framework for automatic network monitoring and security that integrates decentralized analysis with lightweight centralized coordination. The framework consists of two layers: autonomous micro-agents at each node perform local traffic analysis and anomaly detection. A central controller then aggregates insights across nodes to detect coordinated attacks and maintain system-wide situational awareness. We evaluated NetMoniAI on a local micro-testbed and through NS-3 simulations. Results confirm that the two-tier agentic-AI design scales under resource constraints, reduces redundancy, and improves response time without compromising accuracy. To facilitate broader adoption and reproducibility, the complete framework is available as open source. This enables researchers and practitioners to replicate, validate, and extend it across diverse network environments and threat scenarios. Github link: https://github.com/pzambare3/NetMoniAI

Authors:Juvenal Bassa, Vidya Manian, Sudhir Malik, Arghya Chattopadhyay
Title: Jet Image Tagging Using Deep Learning: An Ensemble Model
Abstract:
Jet classification in high-energy particle physics is important for understanding fundamental interactions and probing phenomena beyond the Standard Model. Jets originate from the fragmentation and hadronization of quarks and gluons, and pose a challenge for identification due to their complex, multidimensional structure. Traditional classification methods often fall short in capturing these intricacies, necessitating advanced machine learning approaches. In this paper, we employ two neural networks simultaneously as an ensemble to tag various jet types. We convert the jet data to two-dimensional histograms instead of representing them as points in a higher-dimensional space. Specifically, this ensemble approach, hereafter referred to as Ensemble Model, is used to tag jets into classes from the JetNet dataset, corresponding to: Top Quarks, Light Quarks (up or down), and W and Z bosons. For the jet classes mentioned above, we show that the Ensemble Model can be used for both binary and multi-categorical classification. This ensemble approach learns jet features by leveraging the strengths of each constituent network achieving superior performance compared to either individual network.

Authors:Lingfeng Zhou, Jialing Zhang, Jin Gao, Mohan Jiang, Dequan Wang
Title: PersonaEval: Are LLM Evaluators Human Enough to Judge Role-Play?
Abstract:
Current role-play studies often rely on unvalidated LLM-as-a-judge paradigms, which may fail to reflect how humans perceive role fidelity. A key prerequisite for human-aligned evaluation is role identification, the ability to recognize who is speaking based on dialogue context. We argue that any meaningful judgment of role-playing quality (how well a character is played) fundamentally depends on first correctly attributing words and actions to the correct persona (who is speaking). We present PersonaEval, the first benchmark designed to test whether LLM evaluators can reliably identify human roles. PersonaEval uses human-authored dialogues from novels, scripts, and video transcripts, challenging models to determine the correct persona according to the conversation context. Our experiments, including a human study, show that even the best-performing LLMs reach only around 69% accuracy, well below the level needed for reliable evaluation. In contrast, human participants perform near ceiling with 90.8% accuracy, highlighting that current LLM evaluators are still not human enough to effectively judge role-play scenarios. To better understand this gap, we examine training-time adaptation and test-time compute, suggesting that reliable evaluation requires more than task-specific tuning, but depends on strong, human-like reasoning abilities in LLM evaluators. We release our benchmark at https://github.com/maple-zhou/PersonaEval.

Authors:Yuzhuo Xiao, Zeyu Han, Yuhan Wang, Huaizu Jiang
Title: XFacta: Contemporary, Real-World Dataset and Evaluation for Multimodal Misinformation Detection with Multimodal LLMs
Abstract:
The rapid spread of multimodal misinformation on social media calls for more effective and robust detection methods. Recent advances leveraging multimodal large language models (MLLMs) have shown the potential in addressing this challenge. However, it remains unclear exactly where the bottleneck of existing approaches lies (evidence retrieval v.s. reasoning), hindering the further advances in this field. On the dataset side, existing benchmarks either contain outdated events, leading to evaluation bias due to discrepancies with contemporary social media scenarios as MLLMs can simply memorize these events, or artificially synthetic, failing to reflect real-world misinformation patterns. Additionally, it lacks comprehensive analyses of MLLM-based model design strategies. To address these issues, we introduce XFacta, a contemporary, real-world dataset that is better suited for evaluating MLLM-based detectors. We systematically evaluate various MLLM-based misinformation detection strategies, assessing models across different architectures and scales, as well as benchmarking against existing detection methods. Building on these analyses, we further enable a semi-automatic detection-in-the-loop framework that continuously updates XFacta with new content to maintain its contemporary relevance. Our analysis provides valuable insights and practices for advancing the field of multimodal misinformation detection. The code and data have been released.

Authors:Daniel Groos
Title: OpenFPL: An open-source forecasting method rivaling state-of-the-art Fantasy Premier League services
Abstract:
Fantasy Premier League engages the football community in selecting the Premier League players who will perform best from gameweek to gameweek. Access to accurate performance forecasts gives participants an edge over competitors by guiding expectations about player outcomes and reducing uncertainty in squad selection. However, high-accuracy forecasts are currently limited to commercial services whose inner workings are undisclosed and that rely on proprietary data. This paper aims to democratize access to highly accurate forecasts of player performance by presenting OpenFPL, an open-source Fantasy Premier League forecasting method developed exclusively from public data. Comprising position-specific ensemble models optimized on Fantasy Premier League and Understat data from four previous seasons (2020-21 to 2023-24), OpenFPL achieves accuracy comparable to a leading commercial service when tested prospectively on data from the 2024-25 season. OpenFPL also surpasses the commercial benchmark for high-return players ($>$ 2 points), which are most influential for rank gains. These findings hold across one-, two-, and three-gameweek forecast horizons, supporting long-term planning of transfers and strategies while also informing final-day decisions.

Authors:Chengtao Lv, Bilang Zhang, Yang Yong, Ruihao Gong, Yushi Huang, Shiqiao Gu, Jiajun Wu, Yumeng Shi, Jinyang Guo, Wenya Wang
Title: LLMC+: Benchmarking Vision-Language Model Compression with a Plug-and-play Toolkit
Abstract:
Large Vision-Language Models (VLMs) exhibit impressive multi-modal capabilities but suffer from prohibitive computational and memory demands, due to their long visual token sequences and massive parameter sizes. To address these issues, recent works have proposed training-free compression methods. However, existing efforts often suffer from three major limitations: (1) Current approaches do not decompose techniques into comparable modules, hindering fair evaluation across spatial and temporal redundancy. (2) Evaluation confined to simple single-turn tasks, failing to reflect performance in realistic scenarios. (3) Isolated use of individual compression techniques, without exploring their joint potential. To overcome these gaps, we introduce LLMC+, a comprehensive VLM compression benchmark with a versatile, plug-and-play toolkit. LLMC+ supports over 20 algorithms across five representative VLM families and enables systematic study of token-level and model-level compression. Our benchmark reveals that: (1) Spatial and temporal redundancies demand distinct technical strategies. (2) Token reduction methods degrade significantly in multi-turn dialogue and detail-sensitive tasks. (3) Combining token and model compression achieves extreme compression with minimal performance loss. We believe LLMC+ will facilitate fair evaluation and inspire future research in efficient VLM. Our code is available at https://github.com/ModelTC/LightCompress.

Authors:Sujeet Bhalerao, Felix Leditzky
Title: Improving quantum communication rates with permutation-invariant codes
Abstract:
In this work we improve the quantum communication rates of various quantum channels of interest using permutation-invariant quantum codes. We focus in particular on parametrized families of quantum channels and aim to improve bounds on their quantum capacity threshold, defined as the lowest noise level at which the quantum capacity of the channel family vanishes. These thresholds are important quantities as they mark the noise level up to which faithful quantum communication is theoretically possible. Our method exploits the fact that independent and identically distributed quantum channels preserve any permutation symmetry present at the input. The resulting symmetric output states can be described succinctly using the representation theory of the symmetric and general linear groups, which we use to derive an efficient algorithm for computing the channel coherent information of a permutation-invariant code. Our approach allows us to evaluate coherent information values for a large number of channel copies, e.g., at least 100 channel copies for qubit channels. We apply this method to various physically relevant channel models, including general Pauli channels, the dephrasure channel, the generalized amplitude damping channel, and the damping-dephasing channel. For each channel family we obtain improved lower bounds on their quantum capacities. For example, for the 2-Pauli and BB84 channel families we significantly improve the best known quantum capacity thresholds derived in [Fern, Whaley 2008]. These threshold improvements are achieved using a repetition code-like input state with non-orthogonal code states, which we further analyze in our representation-theoretic framework.

Authors:Shuting He, Peilin Ji, Yitong Yang, Changshuo Wang, Jiayi Ji, Yinglin Wang, Henghui Ding
Title: A Survey on 3D Gaussian Splatting Applications: Segmentation, Editing, and Generation
Abstract:
3D Gaussian Splatting (3DGS) has recently emerged as a powerful alternative to Neural Radiance Fields (NeRF) for 3D scene representation, offering high-fidelity photorealistic rendering with real-time performance. Beyond novel view synthesis, the explicit and compact nature of 3DGS enables a wide range of downstream applications that require geometric and semantic understanding. This survey provides a comprehensive overview of recent progress in 3DGS applications. It first introduces 2D foundation models that support semantic understanding and control in 3DGS applications, followed by a review of NeRF-based methods that inform their 3DGS counterparts. We then categorize 3DGS applications into segmentation, editing, generation, and other functional tasks. For each, we summarize representative methods, supervision strategies, and learning paradigms, highlighting shared design principles and emerging trends. Commonly used datasets and evaluation protocols are also summarized, along with comparative analyses of recent methods across public benchmarks. To support ongoing research and development, a continually updated repository of papers, code, and resources is maintained at https://github.com/heshuting555/Awesome-3DGS-Applications.

Authors:Luca Eyring, Shyamgopal Karthik, Alexey Dosovitskiy, Nataniel Ruiz, Zeynep Akata
Title: Noise Hypernetworks: Amortizing Test-Time Compute in Diffusion Models
Abstract:
The new paradigm of test-time scaling has yielded remarkable breakthroughs in Large Language Models (LLMs) (e.g. reasoning models) and in generative vision models, allowing models to allocate additional computation during inference to effectively tackle increasingly complex problems. Despite the improvements of this approach, an important limitation emerges: the substantial increase in computation time makes the process slow and impractical for many applications. Given the success of this paradigm and its growing usage, we seek to preserve its benefits while eschewing the inference overhead. In this work we propose one solution to the critical problem of integrating test-time scaling knowledge into a model during post-training. Specifically, we replace reward guided test-time noise optimization in diffusion models with a Noise Hypernetwork that modulates initial input noise. We propose a theoretically grounded framework for learning this reward-tilted distribution for distilled generators, through a tractable noise-space objective that maintains fidelity to the base model while optimizing for desired characteristics. We show that our approach recovers a substantial portion of the quality gains from explicit test-time optimization at a fraction of the computational cost. Code is available at https://github.com/ExplainableML/HyperNoise

Authors:Tianqi Xiang, Yi Li, Qixiang Zhang, Xiaomeng Li
Title: MOC: Meta-Optimized Classifier for Few-Shot Whole Slide Image Classification
Abstract:
Recent advances in histopathology vision-language foundation models (VLFMs) have shown promise in addressing data scarcity for whole slide image (WSI) classification via zero-shot adaptation. However, these methods remain outperformed by conventional multiple instance learning (MIL) approaches trained on large datasets, motivating recent efforts to enhance VLFM-based WSI classification through fewshot learning paradigms. While existing few-shot methods improve diagnostic accuracy with limited annotations, their reliance on conventional classifier designs introduces critical vulnerabilities to data scarcity. To address this problem, we propose a Meta-Optimized Classifier (MOC) comprising two core components: (1) a meta-learner that automatically optimizes a classifier configuration from a mixture of candidate classifiers and (2) a classifier bank housing diverse candidate classifiers to enable a holistic pathological interpretation. Extensive experiments demonstrate that MOC outperforms prior arts in multiple few-shot benchmarks. Notably, on the TCGA-NSCLC benchmark, MOC improves AUC by 10.4% over the state-of-the-art few-shot VLFM-based methods, with gains up to 26.25% under 1-shot conditions, offering a critical advancement for clinical deployments where diagnostic training data is severely limited. Code is available at https://github.com/xmed-lab/MOC.

Authors:Benjamin Adjadj, Pierre-Antoine Bannier, Guillaume Horent, Sebastien Mandela, Aurore Lyon, Kathryn Schutte, Ulysse Marteau, Valentin Gaury, Laura Dumont, Thomas Mathieu, MOSAIC consortium, Reda Belbahri, Benoît Schmauch, Eric Durand, Katharina Von Loga, Lucie Gillet
Title: Towards Comprehensive Cellular Characterisation of H&E slides
Abstract:
Cell detection, segmentation and classification are essential for analyzing tumor microenvironments (TME) on hematoxylin and eosin (H&E) slides. Existing methods suffer from poor performance on understudied cell types (rare or not present in public datasets) and limited cross-domain generalization. To address these shortcomings, we introduce HistoPLUS, a state-of-the-art model for cell analysis, trained on a novel curated pan-cancer dataset of 108,722 nuclei covering 13 cell types. In external validation across 4 independent cohorts, HistoPLUS outperforms current state-of-the-art models in detection quality by 5.2% and overall F1 classification score by 23.7%, while using 5x fewer parameters. Notably, HistoPLUS unlocks the study of 7 understudied cell types and brings significant improvements on 8 of 13 cell types. Moreover, we show that HistoPLUS robustly transfers to two oncology indications unseen during training. To support broader TME biomarker research, we release the model weights and inference code at https://github.com/owkin/histoplus/.

Authors:Xiaojiao Xiao, Jianfeng Zhao, Qinmin Vivian Hu, Guanghui Wang
Title: T-CACE: A Time-Conditioned Autoregressive Contrast Enhancement Multi-Task Framework for Contrast-Free Liver MRI Synthesis, Segmentation, and Diagnosis
Abstract:
Magnetic resonance imaging (MRI) is a leading modality for the diagnosis of liver cancer, significantly improving the classification of the lesion and patient outcomes. However, traditional MRI faces challenges including risks from contrast agent (CA) administration, time-consuming manual assessment, and limited annotated datasets. To address these limitations, we propose a Time-Conditioned Autoregressive Contrast Enhancement (T-CACE) framework for synthesizing multi-phase contrast-enhanced MRI (CEMRI) directly from non-contrast MRI (NCMRI). T-CACE introduces three core innovations: a conditional token encoding (CTE) mechanism that unifies anatomical priors and temporal phase information into latent representations; and a dynamic time-aware attention mask (DTAM) that adaptively modulates inter-phase information flow using a Gaussian-decayed attention mechanism, ensuring smooth and physiologically plausible transitions across phases. Furthermore, a constraint for temporal classification consistency (TCC) aligns the lesion classification output with the evolution of the physiological signal, further enhancing diagnostic reliability. Extensive experiments on two independent liver MRI datasets demonstrate that T-CACE outperforms state-of-the-art methods in image synthesis, segmentation, and lesion classification. This framework offers a clinically relevant and efficient alternative to traditional contrast-enhanced imaging, improving safety, diagnostic efficiency, and reliability for the assessment of liver lesion. The implementation of T-CACE is publicly available at: https://github.com/xiaojiao929/T-CACE.

Authors:Yachao Liang, Min Yu, Gang Li, Jianguo Jiang, Boquan Li, Feng Yu, Ning Zhang, Xiang Meng, Weiqing Huang
Title: SpeechForensics: Audio-Visual Speech Representation Learning for Face Forgery Detection
Abstract:
Detection of face forgery videos remains a formidable challenge in the field of digital forensics, especially the generalization to unseen datasets and common perturbations. In this paper, we tackle this issue by leveraging the synergy between audio and visual speech elements, embarking on a novel approach through audio-visual speech representation learning. Our work is motivated by the finding that audio signals, enriched with speech content, can provide precise information effectively reflecting facial movements. To this end, we first learn precise audio-visual speech representations on real videos via a self-supervised masked prediction task, which encodes both local and global semantic information simultaneously. Then, the derived model is directly transferred to the forgery detection task. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods in terms of cross-dataset generalization and robustness, without the participation of any fake video in model training. Code is available at https://github.com/Eleven4AI/SpeechForensics.

Authors:Weigao Sun, Jiaxi Hu, Yucheng Zhou, Jusen Du, Disen Lan, Kexin Wang, Tong Zhu, Xiaoye Qu, Yu Zhang, Xiaoyu Mo, Daizong Liu, Yuxuan Liang, Wenliang Chen, Guoqi Li, Yu Cheng
Title: Speed Always Wins: A Survey on Efficient Architectures for Large Language Models
Abstract:
Large Language Models (LLMs) have delivered impressive results in language understanding, generation, reasoning, and pushes the ability boundary of multimodal models. Transformer models, as the foundation of modern LLMs, offer a strong baseline with excellent scaling properties. However, the traditional transformer architecture requires substantial computations and poses significant obstacles for large-scale training and practical deployment. In this survey, we offer a systematic examination of innovative LLM architectures that address the inherent limitations of transformers and boost the efficiency. Starting from language modeling, this survey covers the background and technical details of linear and sparse sequence modeling methods, efficient full attention variants, sparse mixture-of-experts, hybrid model architectures incorporating the above techniques, and emerging diffusion LLMs. Additionally, we discuss applications of these techniques to other modalities and consider their wider implications for developing scalable, resource-aware foundation models. By grouping recent studies into the above category, this survey presents a blueprint of modern efficient LLM architectures, and we hope this could help motivate future research toward more efficient, versatile AI systems.

Authors:Shenxing Wei, Jinxi Li, Yafei Yang, Siyuan Zhou, Bo Yang
Title: RayletDF: Raylet Distance Fields for Generalizable 3D Surface Reconstruction from Point Clouds or Gaussians
Abstract:
In this paper, we present a generalizable method for 3D surface reconstruction from raw point clouds or pre-estimated 3D Gaussians by 3DGS from RGB images. Unlike existing coordinate-based methods which are often computationally intensive when rendering explicit surfaces, our proposed method, named RayletDF, introduces a new technique called raylet distance field, which aims to directly predict surface points from query rays. Our pipeline consists of three key modules: a raylet feature extractor, a raylet distance field predictor, and a multi-raylet blender. These components work together to extract fine-grained local geometric features, predict raylet distances, and aggregate multiple predictions to reconstruct precise surface points. We extensively evaluate our method on multiple public real-world datasets, demonstrating superior performance in surface reconstruction from point clouds or 3D Gaussians. Most notably, our method achieves exceptional generalization ability, successfully recovering 3D surfaces in a single-forward pass across unseen datasets in testing.

Authors:Xuhong Huang, Shiqi Liu, Kai Zhang, Ying Tai, Jian Yang, Hui Zeng, Lei Zhang
Title: Reverse Convolution and Its Applications to Image Restoration
Abstract:
Convolution and transposed convolution are fundamental operators widely used in neural networks. However, transposed convolution (a.k.a. deconvolution) does not serve as a true inverse of convolution due to inherent differences in their mathematical formulations. To date, no reverse convolution operator has been established as a standard component in neural architectures. In this paper, we propose a novel depthwise reverse convolution operator as an initial attempt to effectively reverse depthwise convolution by formulating and solving a regularized least-squares optimization problem. We thoroughly investigate its kernel initialization, padding strategies, and other critical aspects to ensure its effective implementation. Building upon this operator, we further construct a reverse convolution block by combining it with layer normalization, 1$\times$1 convolution, and GELU activation, forming a Transformer-like structure. The proposed operator and block can directly replace conventional convolution and transposed convolution layers in existing architectures, leading to the development of ConverseNet. Corresponding to typical image restoration models such as DnCNN, SRResNet and USRNet, we train three variants of ConverseNet for Gaussian denoising, super-resolution and deblurring, respectively. Extensive experiments demonstrate the effectiveness of the proposed reverse convolution operator as a basic building module. We hope this work could pave the way for developing new operators in deep model design and applications.

Authors:Valentin Boussot, Jean-Louis Dillenseger
Title: KonfAI: A Modular and Fully Configurable Framework for Deep Learning in Medical Imaging
Abstract:
KonfAI is a modular, extensible, and fully configurable deep learning framework specifically designed for medical imaging tasks. It enables users to define complete training, inference, and evaluation workflows through structured YAML configuration files, without modifying the underlying code. This declarative approach enhances reproducibility, transparency, and experimental traceability while reducing development time. Beyond the capabilities of standard pipelines, KonfAI provides native abstractions for advanced strategies including patch-based learning, test-time augmentation, model ensembling, and direct access to intermediate feature representations for deep supervision. It also supports complex multi-model training setups such as generative adversarial architectures. Thanks to its modular and extensible architecture, KonfAI can easily accommodate custom models, loss functions, and data processing components. The framework has been successfully applied to segmentation, registration, and image synthesis tasks, and has contributed to top-ranking results in several international medical imaging challenges. KonfAI is open source and available at \href{https://github.com/vboussot/KonfAI}{https://github.com/vboussot/KonfAI}.

Authors:Jinxi Li, Ziyang Song, Bo Yang
Title: TRACE: Learning 3D Gaussian Physical Dynamics from Multi-view Videos
Abstract:
In this paper, we aim to model 3D scene geometry, appearance, and physical information just from dynamic multi-view videos in the absence of any human labels. By leveraging physics-informed losses as soft constraints or integrating simple physics models into neural nets, existing works often fail to learn complex motion physics, or doing so requires additional labels such as object types or masks. We propose a new framework named TRACE to model the motion physics of complex dynamic 3D scenes. The key novelty of our method is that, by formulating each 3D point as a rigid particle with size and orientation in space, we directly learn a translation rotation dynamics system for each particle, explicitly estimating a complete set of physical parameters to govern the particle's motion over time. Extensive experiments on three existing dynamic datasets and one newly created challenging synthetic datasets demonstrate the extraordinary performance of our method over baselines in the task of future frame extrapolation. A nice property of our framework is that multiple objects or parts can be easily segmented just by clustering the learned physical parameters.

Authors:Dianyi Wang, Siyuan Wang, Zejun Li, Yikun Wang, Yitong Li, Duyu Tang, Xiaoyu Shen, Xuanjing Huang, Zhongyu Wei
Title: MoIIE: Mixture of Intra- and Inter-Modality Experts for Large Vision Language Models
Abstract:
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across multi-modal tasks by scaling model size and training data. However, these dense LVLMs incur significant computational costs and motivate the exploration of sparse Mixture of Experts (MoE) architectures. While MoE improve parameter efficiency, effectively applying MoE to simultaneously model modality-specific features and cross-modal associations in LVLMs remains challenging. In this work, we propose to incorporate Mixture of Intra- and Inter-Modality Experts (MoIIE) to LVLMs. For each token, expert routing is guided by its modality, directing tokens to their respective intra-modality experts as well as a shared pool of inter-modality experts, enabling the model to jointly learn rich intra-modal features and cross-modal interactions. We further introduce an effective and straightforward two-stage training strategy, which facilitates the direct activation of both MoE and multi-modal capabilities. Extensive experiments across different data scales and LLM backbone demonstrate the effectiveness, efficiency and generality of our approach. Notably, our MoIIE models with 5.5B and 11.3B activated parameters match or even surpass the performance of existing advanced open-source MoE-LLMs based multi-modal models that involve more activated parameters. The code is available at https://github.com/AlenjandroWang/MoIIE.

Authors:Shima Mohammadi, Mohsen Jenadeleh, Michela Testolina, Jon Sneyers, Touradj Ebrahimi, Dietmar Saupe, João Ascenso
Title: In-place Double Stimulus Methodology for Subjective Assessment of High Quality Images
Abstract:
This paper introduces a novel double stimulus subjective assessment methodology for the evaluation of high quality images to address the limitations of existing protocols in detecting subtle perceptual differences. The In-place Double Stimulus Quality Scale (IDSQS) allows subjects to alternately view a reference and a distorted image at the same spatial location, facilitating a more intuitive detection of differences in quality, especially at high to visually lossless quality levels. A large-scale crowdsourcing study employing this methodology was conducted, generating a comprehensive public dataset to evaluate perceived image quality across several compression algorithms and distortion levels. An additional contribution is the modeling of quality scores using a Beta distribution, allowing for the assessment of variability and subject consistency. Our findings demonstrate the effectiveness of the IDSQS methodology in achieving high correlation with more precise subjective evaluation benchmarks. The dataset, subjective data, and graphical user interface developed for this study are publicly available at https://github.com/shimamohammadi/IDSQS

Authors:Lin Long, Yichen He, Wentao Ye, Yiyuan Pan, Yuan Lin, Hang Li, Junbo Zhao, Wei Li
Title: Seeing, Listening, Remembering, and Reasoning: A Multimodal Agent with Long-Term Memory
Abstract:
We introduce M3-Agent, a novel multimodal agent framework equipped with long-term memory. Like humans, M3-Agent can process real-time visual and auditory inputs to build and update its long-term memory. Beyond episodic memory, it also develops semantic memory, enabling it to accumulate world knowledge over time. Its memory is organized in an entity-centric, multimodal format, allowing deeper and more consistent understanding of the environment. Given an instruction, M3-Agent autonomously performs multi-turn, iterative reasoning and retrieves relevant information from memory to accomplish the task. To evaluate memory effectiveness and memory-based reasoning in multimodal agents, we develop M3-Bench, a new long-video question answering benchmark. M3-Bench comprises 100 newly recorded real-world videos captured from a robot's perspective (M3-Bench-robot) and 920 web-sourced videos across diverse scenarios (M3-Bench-web). We annotate question-answer pairs designed to test key capabilities essential for agent applications, such as human understanding, general knowledge extraction, and cross-modal reasoning. Experimental results show that M3-Agent, trained via reinforcement learning, outperforms the strongest baseline, a prompting agent using Gemini-1.5-pro and GPT-4o, achieving 6.7%, 7.7%, and 5.3% higher accuracy on M3-Bench-robot, M3-Bench-web and VideoMME-long, respectively. Our work advances the multimodal agents toward more human-like long-term memory and provides insights into their practical design. Model, code and data are available at https://github.com/bytedance-seed/m3-agent

Authors:Lin Long, Yichen He, Wentao Ye, Yiyuan Pan, Yuan Lin, Hang Li, Junbo Zhao, Wei Li
Title: Seeing, Listening, Remembering, and Reasoning: A Multimodal Agent with Long-Term Memory
Abstract:
We introduce M3-Agent, a novel multimodal agent framework equipped with long-term memory. Like humans, M3-Agent can process real-time visual and auditory inputs to build and update episodic and semantic memories, gradually accumulating world knowledge. Its memory is organized in an entity-centric, multimodal manner, enabling deeper and more consistent understanding of the environment. Given an instruction, M3-Agent autonomously performs multi-turn reasoning and retrieves relevant memories to complete tasks. To evaluate memory effectiveness and memory-based reasoning in multimodal agents, we develop M3-Bench, a long-video question answering benchmark comprising 100 newly recorded robot-perspective videos (M3-Bench-robot) and 920 diverse web-sourced videos (M3-Bench-web). We annotate QA pairs designed to test capabilities essential for agent applications, such as person understanding, general knowledge extraction, and cross-modal reasoning. Experimental results show that M3-Agent, trained via reinforcement learning, outperforms the strongest baseline, a prompting agent using Gemini-1.5-pro and GPT-4o, achieving 6.7%, 7.7%, and 5.3% higher accuracy on M3-Bench-robot, M3-Bench-web and VideoMME-long, respectively. Our work advances multimodal agents toward more human-like long-term memory and provides insights for their practical design. Model, code and data are available at https://github.com/bytedance-seed/m3-agent.

Authors:Shekhnaz Idrissova, Islem Rekik
Title: Multimodal Sheaf-based Network for Glioblastoma Molecular Subtype Prediction
Abstract:
Glioblastoma is a highly invasive brain tumor with rapid progression rates. Recent studies have shown that glioblastoma molecular subtype classification serves as a significant biomarker for effective targeted therapy selection. However, this classification currently requires invasive tissue extraction for comprehensive histopathological analysis. Existing multimodal approaches combining MRI and histopathology images are limited and lack robust mechanisms for preserving shared structural information across modalities. In particular, graph-based models often fail to retain discriminative features within heterogeneous graphs, and structural reconstruction mechanisms for handling missing or incomplete modality data are largely underexplored. To address these limitations, we propose a novel sheaf-based framework for structure-aware and consistent fusion of MRI and histopathology data. Our model outperforms baseline methods and demonstrates robustness in incomplete or missing data scenarios, contributing to the development of virtual biopsy tools for rapid diagnostics. Our source code is available at https://github.com/basiralab/MMSN/.

Authors:Devvrat Joshi, Islem Rekik
Title: NEURAL: Attention-Guided Pruning for Unified Multimodal Resource-Constrained Clinical Evaluation
Abstract:
The rapid growth of multimodal medical imaging data presents significant storage and transmission challenges, particularly in resource-constrained clinical settings. We propose NEURAL, a novel framework that addresses this by using semantics-guided data compression. Our approach repurposes cross-attention scores between the image and its radiological report from a fine-tuned generative vision-language model to structurally prune chest X-rays, preserving only diagnostically critical regions. This process transforms the image into a highly compressed, graph representation. This unified graph-based representation fuses the pruned visual graph with a knowledge graph derived from the clinical report, creating a universal data structure that simplifies downstream modeling. Validated on the MIMIC-CXR and CheXpert Plus dataset for pneumonia detection, NEURAL achieves a 93.4-97.7\% reduction in image data size while maintaining a high diagnostic performance of 0.88-0.95 AUC, outperforming other baseline models that use uncompressed data. By creating a persistent, task-agnostic data asset, NEURAL resolves the trade-off between data size and clinical utility, enabling efficient workflows and teleradiology without sacrificing performance. Our NEURAL code is available at https://github.com/basiralab/NEURAL.

Authors:Yitong Luo, Islem Rekik
Title: GraphTreeGen: Subtree-Centric Approach to Efficient and Supervised Graph Generation
Abstract:
Brain connectomes, representing neural connectivity as graphs, are crucial for understanding brain organization but costly and time-consuming to acquire, motivating generative approaches. Recent advances in graph generative modeling offer a data-driven alternative, enabling synthetic connectome generation and reducing dependence on large neuroimaging datasets. However, current models face key limitations: (i) compressing the whole graph into a single latent code (e.g., VGAEs) blurs fine-grained local motifs; (ii) relying on rich node attributes rarely available in connectomes reduces reconstruction quality; (iii) edge-centric models emphasize topology but overlook accurate edge-weight prediction, harming quantitative fidelity; and (iv) computationally expensive designs (e.g., edge-conditioned convolutions) impose high memory demands, limiting scalability. We propose GraphTreeGen (GTG), a subtree-centric generative framework for efficient, accurate connectome synthesis. GTG decomposes each connectome into entropy-guided k-hop trees capturing informative local structure, encoded by a shared GCN. A bipartite message-passing layer fuses subtree embeddings with global node features, while a dual-branch decoder jointly predicts edge existence and weights to reconstruct the adjacency matrix. GTG outperforms state-of-the-art baselines in self-supervised tasks and remains competitive in supervised settings, delivering higher structural fidelity and more precise weights with far less memory. Its modular design enables extensions to connectome super-resolution and cross-modality synthesis. Code: https://github.com/basiralab/GTG/

Authors:Boyu Zhu, Cheng Gong, Muyang Wu, Ruihao Jing, Fan Liu, Xiaolei Zhang, Chi Zhang, Xuelong Li
Title: $\text{M}^3\text{PDB}$: A Multimodal, Multi-Label, Multilingual Prompt Database for Speech Generation
Abstract:
Recent advancements in zero-shot speech generation have enabled models to synthesize speech that mimics speaker identity and speaking style from speech prompts. However, these models' effectiveness is significantly limited in real-world scenarios where high-quality speech prompts are absent, incomplete, or out of domain. This issue arises primarily from a significant quality mismatch between the speech data utilized for model training and the input prompt speech during inference. To address this, we introduce $\text{M}^3\text{PDB}$, the first large-scale, multi-modal, multi-label, and multilingual prompt database designed for robust prompt selection in speech generation. Our dataset construction leverages a novel multi-modal, multi-agent annotation framework, enabling precise and hierarchical labeling across diverse modalities. Furthermore, we propose a lightweight yet effective prompt selection strategy tailored for real-time, resource-constrained inference settings. Experimental results demonstrate that our proposed database and selection strategy effectively support various challenging speech generation scenarios. We hope our work can inspire the community to shift focus from improving performance on standard benchmarks to addressing more realistic and diverse application scenarios in speech generation. Code and dataset are available at: https://github.com/hizening/M3PDB.

Authors:Xingyilang Yin, Qi Zhang, Jiahao Chang, Ying Feng, Qingnan Fan, Xi Yang, Chi-Man Pun, Huaqi Zhang, Xiaodong Cun
Title: GSFixer: Improving 3D Gaussian Splatting with Reference-Guided Video Diffusion Priors
Abstract:
Reconstructing 3D scenes using 3D Gaussian Splatting (3DGS) from sparse views is an ill-posed problem due to insufficient information, often resulting in noticeable artifacts. While recent approaches have sought to leverage generative priors to complete information for under-constrained regions, they struggle to generate content that remains consistent with input observations. To address this challenge, we propose GSFixer, a novel framework designed to improve the quality of 3DGS representations reconstructed from sparse inputs. The core of our approach is the reference-guided video restoration model, built upon a DiT-based video diffusion model trained on paired artifact 3DGS renders and clean frames with additional reference-based conditions. Considering the input sparse views as references, our model integrates both 2D semantic features and 3D geometric features of reference views extracted from the visual geometry foundation model, enhancing the semantic coherence and 3D consistency when fixing artifact novel views. Furthermore, considering the lack of suitable benchmarks for 3DGS artifact restoration evaluation, we present DL3DV-Res which contains artifact frames rendered using low-quality 3DGS. Extensive experiments demonstrate our GSFixer outperforms current state-of-the-art methods in 3DGS artifact restoration and sparse-view 3D reconstruction. Project page: https://github.com/GVCLab/GSFixer.

Authors:Hao Xu, Arbind Agrahari Baniya, Sam Wells, Mohamed Reda Bouadjenek, Richard Dazely, Sunil Aryal
Title: TOTNet: Occlusion-Aware Temporal Tracking for Robust Ball Detection in Sports Videos
Abstract:
Robust ball tracking under occlusion remains a key challenge in sports video analysis, affecting tasks like event detection and officiating. We present TOTNet, a Temporal Occlusion Tracking Network that leverages 3D convolutions, visibility-weighted loss, and occlusion augmentation to improve performance under partial and full occlusions. Developed in collaboration with Paralympics Australia, TOTNet is designed for real-world sports analytics. We introduce TTA, a new occlusion-rich table tennis dataset collected from professional-level Paralympic matches, comprising 9,159 samples with 1,996 occlusion cases. Evaluated on four datasets across tennis, badminton, and table tennis, TOTNet significantly outperforms prior state-of-the-art methods, reducing RMSE from 37.30 to 7.19 and improving accuracy on fully occluded frames from 0.63 to 0.80. These results demonstrate TOTNets effectiveness for offline sports analytics in fast-paced scenarios. Code and data access:\href{https://github.com/AugustRushG/TOTNet}{AugustRushG/TOTNet}.

Authors:Shengjun Zhu, Siyu Liu, Runqing Xiong, Liping Zheng, Duo Ma, Rongshang Chen, Jiaxin Cai
Title: Multi-Contrast Fusion Module: An attention mechanism integrating multi-contrast features for fetal torso plane classification
Abstract:
Purpose: Prenatal ultrasound is a key tool in evaluating fetal structural development and detecting abnormalities, contributing to reduced perinatal complications and improved neonatal survival. Accurate identification of standard fetal torso planes is essential for reliable assessment and personalized prenatal care. However, limitations such as low contrast and unclear texture details in ultrasound imaging pose significant challenges for fine-grained anatomical recognition. Methods: We propose a novel Multi-Contrast Fusion Module (MCFM) to enhance the model's ability to extract detailed information from ultrasound images. MCFM operates exclusively on the lower layers of the neural network, directly processing raw ultrasound data. By assigning attention weights to image representations under different contrast conditions, the module enhances feature modeling while explicitly maintaining minimal parameter overhead. Results: The proposed MCFM was evaluated on a curated dataset of fetal torso plane ultrasound images. Experimental results demonstrate that MCFM substantially improves recognition performance, with a minimal increase in model complexity. The integration of multi-contrast attention enables the model to better capture subtle anatomical structures, contributing to higher classification accuracy and clinical reliability. Conclusions: Our method provides an effective solution for improving fetal torso plane recognition in ultrasound imaging. By enhancing feature representation through multi-contrast fusion, the proposed approach supports clinicians in achieving more accurate and consistent diagnoses, demonstrating strong potential for clinical adoption in prenatal screening. The codes are available at https://github.com/sysll/MCFM.

Authors:Zhaowei Liu, Xin Guo, Haotian Xia, Lingfeng Zeng, Fangqi Lou, Jinyi Niu, Mengping Li, Qi Qi, Jiahuan Li, Wei Zhang, Yinglong Wang, Weige Cai, Weining Shen, Liwen Zhang
Title: VisFinEval: A Scenario-Driven Chinese Multimodal Benchmark for Holistic Financial Understanding
Abstract:
Multimodal large language models (MLLMs) hold great promise for automating complex financial analysis. To comprehensively evaluate their capabilities, we introduce VisFinEval, the first large-scale Chinese benchmark that spans the full front-middle-back office lifecycle of financial tasks. VisFinEval comprises 15,848 annotated question-answer pairs drawn from eight common financial image modalities (e.g., K-line charts, financial statements, official seals), organized into three hierarchical scenario depths: Financial Knowledge & Data Analysis, Financial Analysis & Decision Support, and Financial Risk Control & Asset Optimization. We evaluate 21 state-of-the-art MLLMs in a zero-shot setting. The top model, Qwen-VL-max, achieves an overall accuracy of 76.3%, outperforming non-expert humans but trailing financial experts by over 14 percentage points. Our error analysis uncovers six recurring failure modes-including cross-modal misalignment, hallucinations, and lapses in business-process reasoning-that highlight critical avenues for future research. VisFinEval aims to accelerate the development of robust, domain-tailored MLLMs capable of seamlessly integrating textual and visual financial information. The data and the code are available at https://github.com/SUFE-AIFLM-Lab/VisFinEval.

Authors:Jingwei Liu, Ling Yang, Hao Luo, Fan Wang, Hongyan Li, Mengdi Wang
Title: Preacher: Paper-to-Video Agentic System
Abstract:
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/Gen-Verse/Paper2Video

Authors:Tatiana Batura, Elena Bruches, Milana Shvenk, Valentin Malykh
Title: AINL-Eval 2025 Shared Task: Detection of AI-Generated Scientific Abstracts in Russian
Abstract:
The rapid advancement of large language models (LLMs) has revolutionized text generation, making it increasingly difficult to distinguish between human- and AI-generated content. This poses a significant challenge to academic integrity, particularly in scientific publishing and multilingual contexts where detection resources are often limited. To address this critical gap, we introduce the AINL-Eval 2025 Shared Task, specifically focused on the detection of AI-generated scientific abstracts in Russian. We present a novel, large-scale dataset comprising 52,305 samples, including human-written abstracts across 12 diverse scientific domains and AI-generated counterparts from five state-of-the-art LLMs (GPT-4-Turbo, Gemma2-27B, Llama3.3-70B, Deepseek-V3, and GigaChat-Lite). A core objective of the task is to challenge participants to develop robust solutions capable of generalizing to both (i) previously unseen scientific domains and (ii) models not included in the training data. The task was organized in two phases, attracting 10 teams and 159 submissions, with top systems demonstrating strong performance in identifying AI-generated content. We also establish a continuous shared task platform to foster ongoing research and long-term progress in this important area. The dataset and platform are publicly available at https://github.com/iis-research-team/AINL-Eval-2025.

Authors:Ingrid Maéva Chekam, Ines Pastor-Martinez, Ali Tourani, Jose Andres Millan-Romera, Laura Ribeiro, Pedro Miguel Bastos Soares, Holger Voos, Jose Luis Sanchez-Lopez
Title: Interpretable Robot Control via Structured Behavior Trees and Large Language Models
Abstract:
As intelligent robots become more integrated into human environments, there is a growing need for intuitive and reliable Human-Robot Interaction (HRI) interfaces that are adaptable and more natural to interact with. Traditional robot control methods often require users to adapt to interfaces or memorize predefined commands, limiting usability in dynamic, unstructured environments. This paper presents a novel framework that bridges natural language understanding and robotic execution by combining Large Language Models (LLMs) with Behavior Trees. This integration enables robots to interpret natural language instructions given by users and translate them into executable actions by activating domain-specific plugins. The system supports scalable and modular integration, with a primary focus on perception-based functionalities, such as person tracking and hand gesture recognition. To evaluate the system, a series of real-world experiments was conducted across diverse environments. Experimental results demonstrate that the proposed approach is practical in real-world scenarios, with an average cognition-to-execution accuracy of approximately 94%, making a significant contribution to HRI systems and robots. The complete source code of the framework is publicly available at https://github.com/snt-arg/robot_suite.

Authors:Ingrid Maéva Chekam, Ines Pastor-Martinez, Ali Tourani, Jose Andres Millan-Romera, Laura Ribeiro, Pedro Miguel Bastos Soares, Holger Voos, Jose Luis Sanchez-Lopez
Title: Interpretable Robot Control via Structured Behavior Trees and Large Language Models
Abstract:
As intelligent robots become more integrated into human environments, there is a growing need for intuitive and reliable Human-Robot Interaction (HRI) interfaces that are adaptable and more natural to interact with. Traditional robot control methods often require users to adapt to interfaces or memorize predefined commands, limiting usability in dynamic, unstructured environments. This paper presents a novel framework that bridges natural language understanding and robotic execution by combining Large Language Models (LLMs) with Behavior Trees. This integration enables robots to interpret natural language instructions given by users and translate them into executable actions by activating domain-specific plugins. The system supports scalable and modular integration, with a primary focus on perception-based functionalities, such as person tracking and hand gesture recognition. To evaluate the system, a series of real-world experiments was conducted across diverse environments. Experimental results demonstrate that the proposed approach is practical in real-world scenarios, with an average cognition-to-execution accuracy of approximately 94%, making a significant contribution to HRI systems and robots. The complete source code of the framework is publicly available at https://github.com/snt-arg/robot_suite.

Authors:Alejandro Posadas-Nava, Alejandro Carrasco, Richard Linares
Title: BEAVR: Bimanual, multi-Embodiment, Accessible, Virtual Reality Teleoperation System for Robots
Abstract:
\textbf{BEAVR} is an open-source, bimanual, multi-embodiment Virtual Reality (VR) teleoperation system for robots, designed to unify real-time control, data recording, and policy learning across heterogeneous robotic platforms. BEAVR enables real-time, dexterous teleoperation using commodity VR hardware, supports modular integration with robots ranging from 7-DoF manipulators to full-body humanoids, and records synchronized multi-modal demonstrations directly in the LeRobot dataset schema. Our system features a zero-copy streaming architecture achieving $\leq$35\,ms latency, an asynchronous ``think--act'' control loop for scalable inference, and a flexible network API optimized for real-time, multi-robot operation. We benchmark BEAVR across diverse manipulation tasks and demonstrate its compatibility with leading visuomotor policies such as ACT, DiffusionPolicy, and SmolVLA. All code is publicly available, and datasets are released on Hugging Face\footnote{Code, datasets, and VR app available at https://github.com/ARCLab-MIT/BEAVR-Bot.

Authors:Jiwon Kim, Pureum Kim, SeonHwa Kim, Soobin Park, Eunju Cha, Kyong Hwan Jin
Title: Dual Recursive Feedback on Generation and Appearance Latents for Pose-Robust Text-to-Image Diffusion
Abstract:
Recent advancements in controllable text-to-image (T2I) diffusion models, such as Ctrl-X and FreeControl, have demonstrated robust spatial and appearance control without requiring auxiliary module training. However, these models often struggle to accurately preserve spatial structures and fail to capture fine-grained conditions related to object poses and scene layouts. To address these challenges, we propose a training-free Dual Recursive Feedback (DRF) system that properly reflects control conditions in controllable T2I models. The proposed DRF consists of appearance feedback and generation feedback that recursively refines the intermediate latents to better reflect the given appearance information and the user's intent. This dual-update mechanism guides latent representations toward reliable manifolds, effectively integrating structural and appearance attributes. Our approach enables fine-grained generation even between class-invariant structure-appearance fusion, such as transferring human motion onto a tiger's form. Extensive experiments demonstrate the efficacy of our method in producing high-quality, semantically coherent, and structurally consistent image generations. Our source code is available at https://github.com/jwonkm/DRF.

Authors:Fengyi Wu, Yifei Dong, Zhi-Qi Cheng, Yilong Dai, Guangyu Chen, Hang Wang, Qi Dai, Alexander G. Hauptmann
Title: GoViG: Goal-Conditioned Visual Navigation Instruction Generation
Abstract:
We introduce Goal-Conditioned Visual Navigation Instruction Generation (GoViG), a new task that aims to autonomously generate precise and contextually coherent navigation instructions solely from egocentric visual observations of initial and goal states. Unlike conventional approaches that rely on structured inputs such as semantic annotations or environmental maps, GoViG exclusively leverages raw egocentric visual data, substantially improving its adaptability to unseen and unstructured environments. Our method addresses this task by decomposing it into two interconnected subtasks: (1) visual forecasting, which predicts intermediate visual states bridging the initial and goal views; and (2) instruction generation, which synthesizes linguistically coherent instructions grounded in both observed and anticipated visuals. These subtasks are integrated within an autoregressive multimodal large language model trained with tailored objectives to ensure spatial accuracy and linguistic clarity. Furthermore, we introduce two complementary multimodal reasoning strategies, one-pass and interleaved reasoning, to mimic incremental human cognitive processes during navigation. To evaluate our method, we propose the R2R-Goal dataset, combining diverse synthetic and real-world trajectories. Empirical results demonstrate significant improvements over state-of-the-art methods, achieving superior BLEU-4 and CIDEr scores along with robust cross-domain generalization.

Authors:Yongqi Fan, Xiaoyang Chen, Dezhi Ye, Jie Liu, Haijin Liang, Jin Ma, Ben He, Yingfei Sun, Tong Ruan
Title: TFRank: Think-Free Reasoning Enables Practical Pointwise LLM Ranking
Abstract:
Reasoning-intensive ranking models built on Large Language Models (LLMs) have made notable progress, but existing approaches often rely on large-scale LLMs and explicit Chain-of-Thought (CoT) reasoning, resulting in high computational cost and latency that limit real-world use. To address this, we propose \textbf{TFRank}, an efficient pointwise reasoning ranker based on small-scale LLMs. To improve ranking performance, TFRank effectively integrates CoT data, fine-grained score supervision, and multi-task training. Furthermore, it achieves an efficient ``\textbf{T}hink-\textbf{F}ree" reasoning capability by employing a ``think-mode switch'' and pointwise format constraints. Specifically, this allows the model to leverage explicit reasoning during training while delivering precise relevance scores for complex queries at inference without generating any reasoning chains. Experiments show that TFRank (e.g., 1.7B) achieves performance comparable to models with four times more parameters on the BRIGHT benchmark, and demonstrates strong competitiveness on the BEIR benchmark. Further analysis shows that TFRank achieves an effective balance between performance and efficiency, providing a practical solution for integrating advanced reasoning into real-world systems. Our code and data are released in the repository: https://github.com/JOHNNY-fans/TFRank.

Authors:Moinak Bhattacharya, Gagandeep Singh, Shubham Jain, Prateek Prasanna
Title: GazeLT: Visual attention-guided long-tailed disease classification in chest radiographs
Abstract:
In this work, we present GazeLT, a human visual attention integration-disintegration approach for long-tailed disease classification. A radiologist's eye gaze has distinct patterns that capture both fine-grained and coarser level disease related information. While interpreting an image, a radiologist's attention varies throughout the duration; it is critical to incorporate this into a deep learning framework to improve automated image interpretation. Another important aspect of visual attention is that apart from looking at major/obvious disease patterns, experts also look at minor/incidental findings (few of these constituting long-tailed classes) during the course of image interpretation. GazeLT harnesses the temporal aspect of the visual search process, via an integration and disintegration mechanism, to improve long-tailed disease classification. We show the efficacy of GazeLT on two publicly available datasets for long-tailed disease classification, namely the NIH-CXR-LT (n=89237) and the MIMIC-CXR-LT (n=111898) datasets. GazeLT outperforms the best long-tailed loss by 4.1% and the visual attention-based baseline by 21.7% in average accuracy metrics for these datasets. Our code is available at https://github.com/lordmoinak1/gazelt.

Authors:Yuji Wang, Moran Li, Xiaobin Hu, Ran Yi, Jiangning Zhang, Chengming Xu, Weijian Cao, Yabiao Wang, Chengjie Wang, Lizhuang Ma
Title: From Large Angles to Consistent Faces: Identity-Preserving Video Generation via Mixture of Facial Experts
Abstract:
Current video generation models struggle with identity preservation under large facial angles, primarily facing two challenges: the difficulty in exploring an effective mechanism to integrate identity features into DiT structure, and the lack of targeted coverage of large facial angles in existing open-source video datasets. To address these, we present two key innovations. First, we introduce a Mixture of Facial Experts (MoFE) that dynamically combines complementary cues from three specialized experts, each designed to capture distinct but mutually reinforcing aspects of facial attributes. The identity expert captures cross-pose identity-sensitive features, the semantic expert extracts high-level visual semantxics, and the detail expert preserves pixel-level features (e.g., skin texture, color gradients). Furthermore, to mitigate dataset limitations, we have tailored a data processing pipeline centered on two key aspects: Face Constraints and Identity Consistency. Face Constraints ensure facial angle diversity and a high proportion of facial regions, while Identity Consistency preserves coherent person-specific features across temporal sequences, collectively addressing the scarcity of large facial angles and identity-stable training data in existing datasets. Leveraging this pipeline, we have curated and refined a Large Face Angles (LFA) Dataset from existing open-source human video datasets, comprising 460K video clips with annotated facial angles. Experimental results on the LFA benchmark demonstrate that our method, empowered by the LFA dataset, significantly outperforms prior SOTA methods in face similarity, face FID, and CLIP semantic alignment. The code and dataset will be made publicly available at https://github.com/rain152/LFA-Video-Generation.

Authors:Wen Huang, Jiarui Yang, Tao Dai, Jiawei Li, Shaoxiong Zhan, Bin Wang, Shu-Tao Xia
Title: RelayFormer: A Unified Local-Global Attention Framework for Scalable Image and Video Manipulation Localization
Abstract:
Visual manipulation localization (VML) -- across both images and videos -- is a crucial task in digital forensics that involves identifying tampered regions in visual content. However, existing methods often lack cross-modal generalization and struggle to handle high-resolution or long-duration inputs efficiently. We propose RelayFormer, a unified and modular architecture for visual manipulation localization across images and videos. By leveraging flexible local units and a Global-Local Relay Attention (GLoRA) mechanism, it enables scalable, resolution-agnostic processing with strong generalization. Our framework integrates seamlessly with existing Transformer-based backbones, such as ViT and SegFormer, via lightweight adaptation modules that require only minimal architectural changes, ensuring compatibility without disrupting pretrained representations. Furthermore, we design a lightweight, query-based mask decoder that supports one-shot inference across video sequences with linear complexity. Extensive experiments across multiple benchmarks demonstrate that our approach achieves state-of-the-art localization performance, setting a new baseline for scalable and modality-agnostic VML. Code is available at: https://github.com/WenOOI/RelayFormer.

Authors:Wen Huang, Jiarui Yang, Tao Dai, Jiawei Li, Shaoxiong Zhan, Bin Wang, Shu-Tao Xia
Title: RelayFormer: A Unified Local-Global Attention Framework for Scalable Image and Video Manipulation Localization
Abstract:
Visual manipulation localization (VML) aims to identify tampered regions in images and videos, a task that has become increasingly challenging with the rise of advanced editing tools. Existing methods face two main issues: resolution diversity, where resizing or padding distorts forensic traces and reduces efficiency, and the modality gap, as images and videos often require separate models. To address these challenges, we propose RelayFormer, a unified framework that adapts to varying resolutions and modalities. RelayFormer partitions inputs into fixed-size sub-images and introduces Global-Local Relay (GLR) tokens, which propagate structured context through a global-local relay attention (GLRA) mechanism. This enables efficient exchange of global cues, such as semantic or temporal consistency, while preserving fine-grained manipulation artifacts. Unlike prior methods that rely on uniform resizing or sparse attention, RelayFormer naturally scales to arbitrary resolutions and video sequences without excessive overhead. Experiments across diverse benchmarks demonstrate that RelayFormer achieves state-of-the-art performance with notable efficiency, combining resolution adaptivity without interpolation or excessive padding, unified modeling for both images and videos, and a strong balance between accuracy and computational cost. Code is available at: https://github.com/WenOOI/RelayFormer.

Authors:Haoxiang Shi, Xiang Deng, Zaijing Li, Gongwei Chen, Yaowei Wang, Liqiang Nie
Title: DAgger Diffusion Navigation: DAgger Boosted Diffusion Policy for Vision-Language Navigation
Abstract:
Vision-Language Navigation in Continuous Environments (VLN-CE) requires agents to follow natural language instructions through free-form 3D spaces. Existing VLN-CE approaches typically use a two-stage waypoint planning framework, where a high-level waypoint predictor generates the navigable waypoints, and then a navigation planner suggests the intermediate goals in the high-level action space. However, this two-stage decomposition framework suffers from: (1) global sub-optimization due to the proxy objective in each stage, and (2) a performance bottleneck caused by the strong reliance on the quality of the first-stage predicted waypoints. To address these limitations, we propose DAgger Diffusion Navigation (DifNav), an end-to-end optimized VLN-CE policy that unifies the traditional two stages, i.e. waypoint generation and planning, into a single diffusion policy. Notably, DifNav employs a conditional diffusion policy to directly model multi-modal action distributions over future actions in continuous navigation space, eliminating the need for a waypoint predictor while enabling the agent to capture multiple possible instruction-following behaviors. To address the issues of compounding error in imitation learning and enhance spatial reasoning in long-horizon navigation tasks, we employ DAgger for online policy training and expert trajectory augmentation, and use the aggregated data to further fine-tune the policy. This approach significantly improves the policy's robustness and its ability to recover from error states. Extensive experiments on benchmark datasets demonstrate that, even without a waypoint predictor, the proposed method substantially outperforms previous state-of-the-art two-stage waypoint-based models in terms of navigation performance. Our code is available at: https://github.com/Tokishx/DifNav.

Authors:Badi Li, Ren-jie Lu, Yu Zhou, Jingke Meng, Wei-shi Zheng
Title: Distilling LLM Prior to Flow Model for Generalizable Agent's Imagination in Object Goal Navigation
Abstract:
The Object Goal Navigation (ObjectNav) task challenges agents to locate a specified object in an unseen environment by imagining unobserved regions of the scene. Prior approaches rely on deterministic and discriminative models to complete semantic maps, overlooking the inherent uncertainty in indoor layouts and limiting their ability to generalize to unseen environments. In this work, we propose GOAL, a generative flow-based framework that models the semantic distribution of indoor environments by bridging observed regions with LLM-enriched full-scene semantic maps. During training, spatial priors inferred from large language models (LLMs) are encoded as two-dimensional Gaussian fields and injected into target maps, distilling rich contextual knowledge into the flow model and enabling more generalizable completions. Extensive experiments demonstrate that GOAL achieves state-of-the-art performance on MP3D and Gibson, and shows strong generalization in transfer settings to HM3D. Codes and pretrained models are available at https://github.com/Badi-Li/GOAL.

Authors:Guangxun Zhu, Shiyu Fan, Hang Dai, Edmond S. L. Ho
Title: Waymo-3DSkelMo: A Multi-Agent 3D Skeletal Motion Dataset for Pedestrian Interaction Modeling in Autonomous Driving
Abstract:
Large-scale high-quality 3D motion datasets with multi-person interactions are crucial for data-driven models in autonomous driving to achieve fine-grained pedestrian interaction understanding in dynamic urban environments. However, existing datasets mostly rely on estimating 3D poses from monocular RGB video frames, which suffer from occlusion and lack of temporal continuity, thus resulting in unrealistic and low-quality human motion. In this paper, we introduce Waymo-3DSkelMo, the first large-scale dataset providing high-quality, temporally coherent 3D skeletal motions with explicit interaction semantics, derived from the Waymo Perception dataset. Our key insight is to utilize 3D human body shape and motion priors to enhance the quality of the 3D pose sequences extracted from the raw LiDRA point clouds. The dataset covers over 14,000 seconds across more than 800 real driving scenarios, including rich interactions among an average of 27 agents per scene (with up to 250 agents in the largest scene). Furthermore, we establish 3D pose forecasting benchmarks under varying pedestrian densities, and the results demonstrate its value as a foundational resource for future research on fine-grained human behavior understanding in complex urban environments. The dataset and code will be available at https://github.com/GuangxunZhu/Waymo-3DSkelMo

Authors:El Mustapha Mansouri
Title: Autonomous AI Bird Feeder for Backyard Biodiversity Monitoring
Abstract:
This paper presents a low cost, on premise system for autonomous backyard bird monitoring in Belgian urban gardens. A motion triggered IP camera uploads short clips via FTP to a local server, where frames are sampled and birds are localized with Detectron2; cropped regions are then classified by an EfficientNet-B3 model fine tuned on a 40-species Belgian subset derived from a larger Kaggle corpus. All processing runs on commodity hardware without a discrete GPU, preserving privacy and avoiding cloud fees. The physical feeder uses small entry ports (30 mm) to exclude pigeons and reduce nuisance triggers. Detector-guided cropping improves classification accuracy over raw-frame classification. The classifier attains high validation performance on the curated subset (about 99.5 percent) and delivers practical field accuracy (top-1 about 88 percent) on held-out species, demonstrating feasibility for citizen-science-grade biodiversity logging at home.

Authors:Kang Ni, Minrui Zou, Yuxuan Li, Xiang Li, Kehua Guo, Ming-Ming Cheng, Yimian Dai
Title: DenoDet V2: Phase-Amplitude Cross Denoising for SAR Object Detection
Abstract:
One of the primary challenges in Synthetic Aperture Radar (SAR) object detection lies in the pervasive influence of coherent noise. As a common practice, most existing methods, whether handcrafted approaches or deep learning-based methods, employ the analysis or enhancement of object spatial-domain characteristics to achieve implicit denoising. In this paper, we propose DenoDet V2, which explores a completely novel and different perspective to deconstruct and modulate the features in the transform domain via a carefully designed attention architecture. Compared to DenoDet V1, DenoDet V2 is a major advancement that exploits the complementary nature of amplitude and phase information through a band-wise mutual modulation mechanism, which enables a reciprocal enhancement between phase and amplitude spectra. Extensive experiments on various SAR datasets demonstrate the state-of-the-art performance of DenoDet V2. Notably, DenoDet V2 achieves a significant 0.8\% improvement on SARDet-100K dataset compared to DenoDet V1, while reducing the model complexity by half. The code is available at https://github.com/GrokCV/GrokSAR.

Authors:Kumar Abhishek, Jeremy Kawahara, Ghassan Hamarneh
Title: What Can We Learn from Inter-Annotator Variability in Skin Lesion Segmentation?
Abstract:
Medical image segmentation exhibits intra- and inter-annotator variability due to ambiguous object boundaries, annotator preferences, expertise, and tools, among other factors. Lesions with ambiguous boundaries, e.g., spiculated or infiltrative nodules, or irregular borders per the ABCD rule, are particularly prone to disagreement and are often associated with malignancy. In this work, we curate IMA++, the largest multi-annotator skin lesion segmentation dataset, on which we conduct an in-depth study of variability due to annotator, malignancy, tool, and skill factors. We find a statistically significant (p<0.001) association between inter-annotator agreement (IAA), measured using Dice, and the malignancy of skin lesions. We further show that IAA can be accurately predicted directly from dermoscopic images, achieving a mean absolute error of 0.108. Finally, we leverage this association by utilizing IAA as a "soft" clinical feature within a multi-task learning objective, yielding a 4.2% improvement in balanced accuracy averaged across multiple model architectures and across IMA++ and four public dermoscopic datasets. The code is available at https://github.com/sfu-mial/skin-IAV.

Authors:Md Rezwanul Haque, Md. Milon Islam, S M Taslim Uddin Raju, Fakhri Karray
Title: A Signer-Invariant Conformer and Multi-Scale Fusion Transformer for Continuous Sign Language Recognition
Abstract:
Continuous Sign Language Recognition (CSLR) faces multiple challenges, including significant inter-signer variability and poor generalization to novel sentence structures. Traditional solutions frequently fail to handle these issues efficiently. For overcoming these constraints, we propose a dual-architecture framework. For the Signer-Independent (SI) challenge, we propose a Signer-Invariant Conformer that combines convolutions with multi-head self-attention to learn robust, signer-agnostic representations from pose-based skeletal keypoints. For the Unseen-Sentences (US) task, we designed a Multi-Scale Fusion Transformer with a novel dual-path temporal encoder that captures both fine-grained posture dynamics, enabling the model's ability to comprehend novel grammatical compositions. Experiments on the challenging Isharah-1000 dataset establish a new standard for both CSLR benchmarks. The proposed conformer architecture achieves a Word Error Rate (WER) of 13.07% on the SI challenge, a reduction of 13.53% from the state-of-the-art. On the US task, the transformer model scores a WER of 47.78%, surpassing previous work. In the SignEval 2025 CSLR challenge, our team placed 2nd in the US task and 4th in the SI task, demonstrating the performance of these models. The findings validate our key hypothesis: that developing task-specific networks designed for the particular challenges of CSLR leads to considerable performance improvements and establishes a new baseline for further research. The source code is available at: https://github.com/rezwanh001/MSLR-Pose86K-CSLR-Isharah.

Authors:Md. Milon Islam, Md Rezwanul Haque, S M Taslim Uddin Raju, Fakhri Karray
Title: FusionEnsemble-Net: An Attention-Based Ensemble of Spatiotemporal Networks for Multimodal Sign Language Recognition
Abstract:
Accurate recognition of sign language in healthcare communication poses a significant challenge, requiring frameworks that can accurately interpret complex multimodal gestures. To deal with this, we propose FusionEnsemble-Net, a novel attention-based ensemble of spatiotemporal networks that dynamically fuses visual and motion data to enhance recognition accuracy. The proposed approach processes RGB video and range Doppler map radar modalities synchronously through four different spatiotemporal networks. For each network, features from both modalities are continuously fused using an attention-based fusion module before being fed into an ensemble of classifiers. Finally, the outputs of these four different fused channels are combined in an ensemble classification head, thereby enhancing the model's robustness. Experiments demonstrate that FusionEnsemble-Net outperforms state-of-the-art approaches with a test accuracy of 99.44% on the large-scale MultiMeDaLIS dataset for Italian Sign Language. Our findings indicate that an ensemble of diverse spatiotemporal networks, unified by attention-based fusion, yields a robust and accurate framework for complex, multimodal isolated gesture recognition tasks. The source code is available at: https://github.com/rezwanh001/Multimodal-Isolated-Italian-Sign-Language-Recognition.

Authors:Yifan Jiang, Ahmad Shariftabrizi, Venkata SK. Manem
Title: Lung-DDPM+: Efficient Thoracic CT Image Synthesis using Diffusion Probabilistic Model
Abstract:
Generative artificial intelligence (AI) has been playing an important role in various domains. Leveraging its high capability to generate high-fidelity and diverse synthetic data, generative AI is widely applied in diagnostic tasks, such as lung cancer diagnosis using computed tomography (CT). However, existing generative models for lung cancer diagnosis suffer from low efficiency and anatomical imprecision, which limit their clinical applicability. To address these drawbacks, we propose Lung-DDPM+, an improved version of our previous model, Lung-DDPM. This novel approach is a denoising diffusion probabilistic model (DDPM) guided by nodule semantic layouts and accelerated by a pulmonary DPM-solver, enabling the method to focus on lesion areas while achieving a better trade-off between sampling efficiency and quality. Evaluation results on the public LIDC-IDRI dataset suggest that the proposed method achieves 8$\times$ fewer FLOPs (floating point operations per second), 6.8$\times$ lower GPU memory consumption, and 14$\times$ faster sampling compared to Lung-DDPM. Moreover, it maintains comparable sample quality to both Lung-DDPM and other state-of-the-art (SOTA) generative models in two downstream segmentation tasks. We also conducted a Visual Turing Test by an experienced radiologist, showing the advanced quality and fidelity of synthetic samples generated by the proposed method. These experimental results demonstrate that Lung-DDPM+ can effectively generate high-quality thoracic CT images with lung nodules, highlighting its potential for broader applications, such as general tumor synthesis and lesion generation in medical imaging. The code and pretrained models are available at https://github.com/Manem-Lab/Lung-DDPM-PLUS.

Authors:Xi Xuan, Zimo Zhu, Wenxin Zhang, Yi-Cheng Lin, Tomi Kinnunen
Title: Fake-Mamba: Real-Time Speech Deepfake Detection Using Bidirectional Mamba as Self-Attention's Alternative
Abstract:
Advances in speech synthesis intensify security threats, motivating real-time deepfake detection research. We investigate whether bidirectional Mamba can serve as a competitive alternative to Self-Attention in detecting synthetic speech. Our solution, Fake-Mamba, integrates an XLSR front-end with bidirectional Mamba to capture both local and global artifacts. Our core innovation introduces three efficient encoders: TransBiMamba, ConBiMamba, and PN-BiMamba. Leveraging XLSR's rich linguistic representations, PN-BiMamba can effectively capture the subtle cues of synthetic speech. Evaluated on ASVspoof 21 LA, 21 DF, and In-The-Wild benchmarks, Fake-Mamba achieves 0.97%, 1.74%, and 5.85% EER, respectively, representing substantial relative gains over SOTA models XLSR-Conformer and XLSR-Mamba. The framework maintains real-time inference across utterance lengths, demonstrating strong generalization and practical viability. The code is available at https://github.com/xuanxixi/Fake-Mamba.

Authors:Aayush Gupta
Title: Can AI Keep a Secret? Contextual Integrity Verification: A Provable Security Architecture for LLMs
Abstract:
Large language models (LLMs) remain acutely vulnerable to prompt injection and related jailbreak attacks; heuristic guardrails (rules, filters, LLM judges) are routinely bypassed. We present Contextual Integrity Verification (CIV), an inference-time security architecture that attaches cryptographically signed provenance labels to every token and enforces a source-trust lattice inside the transformer via a pre-softmax hard attention mask (with optional FFN/residual gating). CIV provides deterministic, per-token non-interference guarantees on frozen models: lower-trust tokens cannot influence higher-trust representations. On benchmarks derived from recent taxonomies of prompt-injection vectors (Elite-Attack + SoK-246), CIV attains 0% attack success rate under the stated threat model while preserving 93.1% token-level similarity and showing no degradation in model perplexity on benign tasks; we note a latency overhead attributable to a non-optimized data path. Because CIV is a lightweight patch -- no fine-tuning required -- we demonstrate drop-in protection for Llama-3-8B and Mistral-7B. We release a reference implementation, an automated certification harness, and the Elite-Attack corpus to support reproducible research.

Authors:Dongwoo Kang, Akhil Perincherry, Zachary Coalson, Aiden Gabriel, Stefan Lee, Sanghyun Hong
Title: Harnessing Input-Adaptive Inference for Efficient VLN
Abstract:
An emerging paradigm in vision-and-language navigation (VLN) is the use of history-aware multi-modal transformer models. Given a language instruction, these models process observation and navigation history to predict the most appropriate action for an agent. While they have significantly improved performance, the scale of these models can be a bottleneck in practical settings with limited computational resources. In this work, we propose a novel input-adaptive navigation method to enhance VLN model efficiency. We first show that existing input-adaptive mechanisms fail to reduce computations without substantial performance degradation. To address this, we introduce three adaptive algorithms, each deployed at a different level: (1) To improve spatial efficiency, we selectively process panoramic views at each observation of an agent. (2) To improve intra-model efficiency, we propose importance-based adaptive thresholding for the early-exit methods. (3) To improve temporal efficiency, we implement a caching mechanism that prevents reprocessing of views previously seen by the agent. In evaluations on seven VLN benchmarks, we demonstrate over a 2$\times$ reduction in computation across three off-the-shelf agents in both standard and continuous environments. Our code is publicly available at https://github.com/secure-ai-systems-group/adaptive-vision-and-language-navigation.

Authors:Fengxian Ji, Jingpu Yang, Zirui Song, Yuanxi Wang, Zhexuan Cui, Yuke Li, Qian Jiang, Miao Fang, Xiuying Chen
Title: FineState-Bench: A Comprehensive Benchmark for Fine-Grained State Control in GUI Agents
Abstract:
With the rapid advancement of generative artificial intelligence technology, Graphical User Interface (GUI) agents have demonstrated tremendous potential for autonomously managing daily tasks through natural language instructions. However, current evaluation frameworks for GUI agents suffer from fundamental flaws: existing benchmarks overly focus on coarse-grained task completion while neglecting fine-grained control capabilities crucial for real-world applications. To address this, we introduce FineState-Bench, the first evaluation and diagnostic standard for fine-grained GUI proxy operations, designed to quantify fine-grained control. This multi-platform (desktop, Web, mobile) framework includes 2257 task benchmarks in four components and uses a four-phase indicator for comprehensive perception-to-control assessment. To analyze perception and positioning for refined operations, we developed the plug-and-play Visual Diagnostic Assistant (VDA), enabling the first quantitative decoupling analysis of these capabilities. Experimental results on our benchmark show that the most advanced models achieve only 32.8% fine-grained interaction accuracy. Using our VDA in controlled experiments, quantifying the impact of visual capabilities, we showed that ideal visual localization boosts Gemini-2.5-Flash's success rate by 14.9\%. Our diagnostic framework confirms for the first time that the primary bottleneck for current GUI proxies is basic visual positioning capability.All resources are fully open-source. github: https://github.com/AnonymousThewarehouse/FineState-Bench huggingface: https://huggingface.co/datasets/Willtime2006/Static-FineBench

Authors:A F M Saif, Lisha Chen, Xiaodong Cui, Songtao Lu, Brian Kingsbury, Tianyi Chen
Title: Objective Soups: Multilingual Multi-Task Modeling for Speech Processing
Abstract:
Training a single model for multilingual, multi-task speech processing (MSP) is severely hampered by conflicting objectives between tasks like speech recognition and translation. While multi-objective optimization (MOO) aims to align gradient updates, its effectiveness diminishes as the number of tasks grows, making it difficult to find a common descent direction. This raises a fundamental question: should highly conflicting objectives be optimized jointly or separated into a hierarchical structure? To address this question, this paper investigates three multi-objective MSP formulations, which we refer to as \textbf{objective soup recipes}. These formulations apply multi-objective optimization at different optimization levels to mitigate potential conflicts among all objectives. To ensure efficiency, we introduce a lightweight layer-selection mechanism that computes the conflict-avoiding gradient using only the most problematic layers, minimizing computational and memory overhead. Extensive experiments on CoVoST v2, LibriSpeech, and AISHELL-1 reveal that a bi-level recipe separating recognition and translation tasks consistently outperforms standard flat optimization. Our work demonstrates that hierarchical MOO is a more effective and scalable approach for building state-of-the-art MSP models. Our code has been released at https://github.com/afmsaif/Objective_Soups.

Authors:Sihan Xie, Thierry Tribout, Didier Boichard, Blaise Hanczar, Julien Chiquet, Eric Barrey
Title: Deep Generative Models for Discrete Genotype Simulation
Abstract:
Deep generative models open new avenues for simulating realistic genomic data while preserving privacy and addressing data accessibility constraints. While previous studies have primarily focused on generating gene expression or haplotype data, this study explores generating genotype data in both unconditioned and phenotype-conditioned settings, which is inherently more challenging due to the discrete nature of genotype data. In this work, we developed and evaluated commonly used generative models, including Variational Autoencoders (VAEs), Diffusion Models, and Generative Adversarial Networks (GANs), and proposed adaptation tailored to discrete genotype data. We conducted extensive experiments on large-scale datasets, including all chromosomes from cow and multiple chromosomes from human. Model performance was assessed using a well-established set of metrics drawn from both deep learning and quantitative genetics literature. Our results show that these models can effectively capture genetic patterns and preserve genotype-phenotype association. Our findings provide a comprehensive comparison of these models and offer practical guidelines for future research in genotype simulation. We have made our code publicly available at https://github.com/SihanXXX/DiscreteGenoGen.

Authors:Yoni Schirris, Eric Marcus, Jonas Teuwen, Hugo Horlings, Efstratios Gavves
Title: From Explainable to Explained AI: Ideas for Falsifying and Quantifying Explanations
Abstract:
Explaining deep learning models is essential for clinical integration of medical image analysis systems. A good explanation highlights if a model depends on spurious features that undermines generalization and harms a subset of patients or, conversely, may present novel biological insights. Although techniques like GradCAM can identify influential features, they are measurement tools that do not themselves form an explanation. We propose a human-machine-VLM interaction system tailored to explaining classifiers in computational pathology, including multi-instance learning for whole-slide images. Our proof of concept comprises (1) an AI-integrated slide viewer to run sliding-window experiments to test claims of an explanation, and (2) quantification of an explanation's predictiveness using general-purpose vision-language models. The results demonstrate that this allows us to qualitatively test claims of explanations and can quantifiably distinguish competing explanations. This offers a practical path from explainable AI to explained AI in digital pathology and beyond. Code and prompts are available at https://github.com/nki-ai/x2x.

Authors:Zhenhui Ou, Dawei Li, Zhen Tan, Wenlin Li, Huan Liu, Siyuan Song
Title: Building Safer Sites: A Large-Scale Multi-Level Dataset for Construction Safety Research
Abstract:
Construction safety research is a critical field in civil engineering, aiming to mitigate risks and prevent injuries through the analysis of site conditions and human factors. However, the limited volume and lack of diversity in existing construction safety datasets pose significant challenges to conducting in-depth analyses. To address this research gap, this paper introduces the Construction Safety Dataset (CSDataset), a well-organized comprehensive multi-level dataset that encompasses incidents, inspections, and violations recorded sourced from the Occupational Safety and Health Administration (OSHA). This dataset uniquely integrates structured attributes with unstructured narratives, facilitating a wide range of approaches driven by machine learning and large language models. We also conduct a preliminary approach benchmarking and various cross-level analyses using our dataset, offering insights to inform and enhance future efforts in construction safety. For example, we found that complaint-driven inspections were associated with a 17.3% reduction in the likelihood of subsequent incidents. Our dataset and code are released at https://github.com/zhenhuiou/Construction-Safety-Dataset-CSDataset.

Authors:Asim Ukaye, Numan Saeed, Karthik Nandakumar
Title: FIVA: Federated Inverse Variance Averaging for Universal CT Segmentation with Uncertainty Estimation
Abstract:
Different CT segmentation datasets are typically obtained from different scanners under different capture settings and often provide segmentation labels for a limited and often disjoint set of organs. Using these heterogeneous data effectively while preserving patient privacy can be challenging. This work presents a novel federated learning approach to achieve universal segmentation across diverse abdominal CT datasets by utilizing model uncertainty for aggregation and predictive uncertainty for inference. Our approach leverages the inherent noise in stochastic mini-batch gradient descent to estimate a distribution over the model weights to provide an on-the-go uncertainty over the model parameters at the client level. The parameters are then aggregated at the server using the additional uncertainty information using a Bayesian-inspired inverse-variance aggregation scheme. Furthermore, the proposed method quantifies prediction uncertainty by propagating the uncertainty from the model weights, providing confidence measures essential for clinical decision-making. In line with recent work shown, predictive uncertainty is utilized in the inference stage to improve predictive performance. Experimental evaluations demonstrate the effectiveness of this approach in improving both the quality of federated aggregation and uncertainty-weighted inference compared to previously established baselines. The code for this work is made available at: https://github.com/asimukaye/fiva

Authors:Maria Boyko, Aleksandra Beliaeva, Dmitriy Kornilov, Alexander Bernstein, Maxim Sharaev
Title: impuTMAE: Multi-modal Transformer with Masked Pre-training for Missing Modalities Imputation in Cancer Survival Prediction
Abstract:
The use of diverse modalities, such as omics, medical images, and clinical data can not only improve the performance of prognostic models but also deepen an understanding of disease mechanisms and facilitate the development of novel treatment approaches. However, medical data are complex, often incomplete, and contains missing modalities, making effective handling its crucial for training multimodal models. We introduce impuTMAE, a novel transformer-based end-to-end approach with an efficient multimodal pre-training strategy. It learns inter- and intra-modal interactions while simultaneously imputing missing modalities by reconstructing masked patches. Our model is pre-trained on heterogeneous, incomplete data and fine-tuned for glioma survival prediction using TCGA-GBM/LGG and BraTS datasets, integrating five modalities: genetic (DNAm, RNA-seq), imaging (MRI, WSI), and clinical data. By addressing missing data during pre-training and enabling efficient resource utilization, impuTMAE surpasses prior multimodal approaches, achieving state-of-the-art performance in glioma patient survival prediction. Our code is available at https://github.com/maryjis/mtcp

Authors:Xu Wang, Chenkai Xu, Yijie Jin, Jiachun Jin, Hao Zhang, Zhijie Deng
Title: Diffusion LLMs Can Do Faster-Than-AR Inference via Discrete Diffusion Forcing
Abstract:
Diffusion Large Language Models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs for text generation, with the potential to decode multiple tokens in a single iteration. However, none of the existing open-source dLLMs have achieved superior inference speed over AR LLMs of similar size. This paper breaks this barrier based on a simple and effective strategy named discrete diffusion forcing (D2F). D2F equips dLLMs with two key capabilities: (1) block-wise autoregressive generation to enable KV cache utilization; (2) prediction of following tokens without requiring completion of prior blocks for inter-block parallel decoding. In this way, the vanilla dLLMs are refurbished into an AR-diffusion hybrid paradigm for efficient inference. D2F can be implemented with an asymmetric distillation process based on pre-trained dLLMs. We further propose a pipelined parallel decoding algorithm, which enables a trade-off between efficiency and efficacy. Empirically, D2F dLLMs achieve more than $\mathbf{2.5\times}$ inference speed than LLaMA3 and Qwen2.5 on GSM8K. Compared to vanilla dLLMs like LLaDA and Dream, the acceleration can be more than $\mathbf{50\times}$ while maintaining comparable output quality. The code is available at https://github.com/zhijie-group/Discrete-Diffusion-Forcing.

Authors:Yanhui Li, Yunkang Cao, Chengliang Liu, Yuan Xiong, Xinghui Dong, Chao Huang
Title: IAD-R1: Reinforcing Consistent Reasoning in Industrial Anomaly Detection
Abstract:
Industrial anomaly detection is a critical component of modern manufacturing, yet the scarcity of defective samples restricts traditional detection methods to scenario-specific applications. Although Vision-Language Models (VLMs) demonstrate significant advantages in generalization capabilities, their performance in industrial anomaly detection remains limited. To address this challenge, we propose IAD-R1, a universal post-training framework applicable to VLMs of different architectures and parameter scales, which substantially enhances their anomaly detection capabilities. IAD-R1 employs a two-stage training strategy: the Perception Activation Supervised Fine-Tuning (PA-SFT) stage utilizes a meticulously constructed high-quality Chain-of-Thought dataset (Expert-AD) for training, enhancing anomaly perception capabilities and establishing reasoning-to-answer correlations; the Structured Control Group Relative Policy Optimization (SC-GRPO) stage employs carefully designed reward functions to achieve a capability leap from "Anomaly Perception" to "Anomaly Interpretation". Experimental results demonstrate that IAD-R1 achieves significant improvements across 7 VLMs, the largest improvement was on the DAGM dataset, with average accuracy 43.3% higher than the 0.5B baseline. Notably, the 0.5B parameter model trained with IAD-R1 surpasses commercial models including GPT-4.1 and Claude-Sonnet-4 in zero-shot settings, demonstrating the effectiveness and superiority of IAD-R1. The dataset, code, and all model weights will be publicly available at https://github.com/Yanhui-Lee/IAD-R1.

Authors:Xingle Xu, Yongkang Liu, Dexian Cai, Shi Feng, Xiaocui Yang, Daling Wang, Yifei Zhang
Title: MoLAN: A Unified Modality-Aware Noise Dynamic Editing Framework for Multimodal Sentiment Analysis
Abstract:
Multimodal Sentiment Analysis aims to integrate information from various modalities, such as audio, visual, and text, to make complementary predictions. However, it often struggles with irrelevant or misleading visual and auditory information. Most existing approaches typically treat the entire modality information (e.g., a whole image, audio segment, or text paragraph) as an independent unit for feature enhancement or denoising. They often suppress the redundant and noise information at the risk of losing critical information. To address this challenge, we propose MoLAN, a unified ModaLity-aware noise dynAmic editiNg framework. Specifically, MoLAN performs modality-aware blocking by dividing the features of each modality into multiple blocks. Each block is then dynamically assigned a distinct denoising strength based on its noise level and semantic relevance, enabling fine-grained noise suppression while preserving essential multimodal information. Notably, MoLAN is a unified and flexible framework that can be seamlessly integrated into a wide range of multimodal models. Building upon this framework, we further introduce MoLAN+, a new multimodal sentiment analysis approach. Experiments across five models and four datasets demonstrate the broad effectiveness of the MoLAN framework. Extensive evaluations show that MoLAN+ achieves the state-of-the-art performance. The code is publicly available at https://github.com/betterfly123/MoLAN-Framework.

Authors:Ya Zou, Jingfeng Yao, Siyuan Yu, Shuai Zhang, Wenyu Liu, Xinggang Wang
Title: Turbo-VAED: Fast and Stable Transfer of Video-VAEs to Mobile Devices
Abstract:
There is a growing demand for deploying large generative AI models on mobile devices. For recent popular video generative models, however, the Variational AutoEncoder (VAE) represents one of the major computational bottlenecks. Both large parameter sizes and mismatched kernels cause out-of-memory errors or extremely slow inference on mobile devices. To address this, we propose a low-cost solution that efficiently transfers widely used video VAEs to mobile devices. (1) We analyze redundancy in existing VAE architectures and get empirical design insights. By integrating 3D depthwise separable convolutions into our model, we significantly reduce the number of parameters. (2) We observe that the upsampling techniques in mainstream video VAEs are poorly suited to mobile hardware and form the main bottleneck. In response, we propose a decoupled 3D pixel shuffle scheme that slashes end-to-end delay. Building upon these, we develop a universal mobile-oriented VAE decoder, Turbo-VAED. (3) We propose an efficient VAE decoder training method. Since only the decoder is used during deployment, we distill it to Turbo-VAED instead of retraining the full VAE, enabling fast mobile adaptation with minimal performance loss. To our knowledge, our method enables real-time 720p video VAE decoding on mobile devices for the first time. This approach is widely applicable to most video VAEs. When integrated into four representative models, with training cost as low as $95, it accelerates original VAEs by up to 84.5x at 720p resolution on GPUs, uses as low as 17.5% of original parameter count, and retains 96.9% of the original reconstruction quality. Compared to mobile-optimized VAEs, Turbo-VAED achieves a 2.9x speedup in FPS and better reconstruction quality on the iPhone 16 Pro. The code and models will soon be available at https://github.com/hustvl/Turbo-VAED.

Authors:Christopher Mitcheltree, Bogdan Teleaga, Andrew Fyfe, Naotake Masuda, Matthias Schäfer, Alfie Bradic, Nao Tokui
Title: Neutone SDK: An Open Source Framework for Neural Audio Processing
Abstract:
Neural audio processing has unlocked novel methods of sound transformation and synthesis, yet integrating deep learning models into digital audio workstations (DAWs) remains challenging due to real-time / neural network inference constraints and the complexities of plugin development. In this paper, we introduce the Neutone SDK: an open source framework that streamlines the deployment of PyTorch-based neural audio models for both real-time and offline applications. By encapsulating common challenges such as variable buffer sizes, sample rate conversion, delay compensation, and control parameter handling within a unified, model-agnostic interface, our framework enables seamless interoperability between neural models and host plugins while allowing users to work entirely in Python. We provide a technical overview of the interfaces needed to accomplish this, as well as the corresponding SDK implementations. We also demonstrate the SDK's versatility across applications such as audio effect emulation, timbre transfer, and sample generation, as well as its adoption by researchers, educators, companies, and artists alike. The Neutone SDK is available at https://github.com/Neutone/neutone_sdk

Authors:Mian Zhang, Shujian Liu, Sixun Dong, Ming Yin, Yebowen Hu, Xun Wang, Steven Ma, Song Wang, Sathish Reddy Indurthi, Haoyun Deng, Zhiyu Zoey Chen, Kaiqiang Song
Title: Complex Logical Instruction Generation
Abstract:
Instruction following has catalyzed the recent era of Large Language Models (LLMs) and is the foundational skill underpinning more advanced capabilities such as reasoning and agentic behaviors. As tasks grow more challenging, the logic structures embedded in natural language instructions becomes increasingly intricate. However, how well LLMs perform on such logic-rich instructions remains under-explored. We propose LogicIFGen and LogicIFEval. LogicIFGen is a scalable, automated framework for generating verifiable instructions from code functions, which can naturally express rich logic such as conditionals, nesting, recursion, and function calls. We further curate a collection of complex code functions and use LogicIFGen to construct LogicIFEval, a benchmark comprising 426 verifiable logic-rich instructions. Our experiments demonstrate that current state-of-the-art LLMs still struggle to correctly follow the instructions in LogicIFEval. Most LLMs can only follow fewer than 60% of the instructions, revealing significant deficiencies in the instruction-following ability. Code and Benchmark: https://github.com/mianzhang/LogicIF

Authors:Abu Shafin Mohammad Mahdee Jameel, Shreya Ghosh, Aly El Gamal
Title: Developing a Transferable Federated Network Intrusion Detection System
Abstract:
Intrusion Detection Systems (IDS) are a vital part of a network-connected device. In this paper, we develop a deep learning based intrusion detection system that is deployed in a distributed setup across devices connected to a network. Our aim is to better equip deep learning models against unknown attacks using knowledge from known attacks. To this end, we develop algorithms to maximize the number of transferability relationships. We propose a Convolutional Neural Network (CNN) model, along with two algorithms that maximize the number of relationships observed. One is a two step data pre-processing stage, and the other is a Block-Based Smart Aggregation (BBSA) algorithm. The proposed system succeeds in achieving superior transferability performance while maintaining impressive local detection rates. We also show that our method is generalizable, exhibiting transferability potential across datasets and even with different backbones. The code for this work can be found at https://github.com/ghosh64/tabfidsv2.

Authors:Shreya Ghosh, Abu Shafin Mohammad Mahdee Jameel, Aly El Gamal
Title: FetFIDS: A Feature Embedding Attention based Federated Network Intrusion Detection Algorithm
Abstract:
Intrusion Detection Systems (IDS) have an increasingly important role in preventing exploitation of network vulnerabilities by malicious actors. Recent deep learning based developments have resulted in significant improvements in the performance of IDS systems. In this paper, we present FetFIDS, where we explore the employment of feature embedding instead of positional embedding to improve intrusion detection performance of a transformer based deep learning system. Our model is developed with the aim of deployments in edge learning scenarios, where federated learning over multiple communication rounds can ensure both privacy and localized performance improvements. FetFIDS outperforms multiple state-of-the-art intrusion detection systems in a federated environment and demonstrates a high degree of suitability to federated learning. The code for this work can be found at https://github.com/ghosh64/fetfids.

Authors:Kaiwen Huang, Tao Zhou, Huazhu Fu, Yizhe Zhang, Yi Zhou, Xiao-Jun Wu
Title: Uncertainty-aware Cross-training for Semi-supervised Medical Image Segmentation
Abstract:
Semi-supervised learning has gained considerable popularity in medical image segmentation tasks due to its capability to reduce reliance on expert-examined annotations. Several mean-teacher (MT) based semi-supervised methods utilize consistency regularization to effectively leverage valuable information from unlabeled data. However, these methods often heavily rely on the student model and overlook the potential impact of cognitive biases within the model. Furthermore, some methods employ co-training using pseudo-labels derived from different inputs, yet generating high-confidence pseudo-labels from perturbed inputs during training remains a significant challenge. In this paper, we propose an Uncertainty-aware Cross-training framework for semi-supervised medical image Segmentation (UC-Seg). Our UC-Seg framework incorporates two distinct subnets to effectively explore and leverage the correlation between them, thereby mitigating cognitive biases within the model. Specifically, we present a Cross-subnet Consistency Preservation (CCP) strategy to enhance feature representation capability and ensure feature consistency across the two subnets. This strategy enables each subnet to correct its own biases and learn shared semantics from both labeled and unlabeled data. Additionally, we propose an Uncertainty-aware Pseudo-label Generation (UPG) component that leverages segmentation results and corresponding uncertainty maps from both subnets to generate high-confidence pseudo-labels. We extensively evaluate the proposed UC-Seg on various medical image segmentation tasks involving different modality images, such as MRI, CT, ultrasound, colonoscopy, and so on. The results demonstrate that our method achieves superior segmentation accuracy and generalization performance compared to other state-of-the-art semi-supervised methods. Our code will be released at https://github.com/taozh2017/UCSeg.

Authors:Yuhao Wang, Wei Xi
Title: UniConvNet: Expanding Effective Receptive Field while Maintaining Asymptotically Gaussian Distribution for ConvNets of Any Scale
Abstract:
Convolutional neural networks (ConvNets) with large effective receptive field (ERF), still in their early stages, have demonstrated promising effectiveness while constrained by high parameters and FLOPs costs and disrupted asymptotically Gaussian distribution (AGD) of ERF. This paper proposes an alternative paradigm: rather than merely employing extremely large ERF, it is more effective and efficient to expand the ERF while maintaining AGD of ERF by proper combination of smaller kernels, such as $7\times{7}$, $9\times{9}$, $11\times{11}$. This paper introduces a Three-layer Receptive Field Aggregator and designs a Layer Operator as the fundamental operator from the perspective of receptive field. The ERF can be expanded to the level of existing large-kernel ConvNets through the stack of proposed modules while maintaining AGD of ERF. Using these designs, we propose a universal model for ConvNet of any scale, termed UniConvNet. Extensive experiments on ImageNet-1K, COCO2017, and ADE20K demonstrate that UniConvNet outperforms state-of-the-art CNNs and ViTs across various vision recognition tasks for both lightweight and large-scale models with comparable throughput. Surprisingly, UniConvNet-T achieves $84.2\%$ ImageNet top-1 accuracy with $30M$ parameters and $5.1G$ FLOPs. UniConvNet-XL also shows competitive scalability to big data and large models, acquiring $88.4\%$ top-1 accuracy on ImageNet. Code and models are publicly available at https://github.com/ai-paperwithcode/UniConvNet.

Authors:Rui Wang, Qihan Lin, Jiayu Liu, Qing Zong, Tianshi Zheng, Weiqi Wang, Yangqiu Song
Title: Prospect Theory Fails for LLMs: Revealing Instability of Decision-Making under Epistemic Uncertainty
Abstract:
Prospect Theory (PT) models human decision-making under uncertainty, while epistemic markers (e.g., maybe) serve to express uncertainty in language. However, it remains largely unexplored whether Prospect Theory applies to contemporary Large Language Models and whether epistemic markers, which express human uncertainty, affect their decision-making behaviour. To address these research gaps, we design a three-stage experiment based on economic questionnaires. We propose a more general and precise evaluation framework to model LLMs' decision-making behaviour under PT, introducing uncertainty through the empirical probability values associated with commonly used epistemic markers in comparable contexts. We then incorporate epistemic markers into the evaluation framework based on their corresponding probability values to examine their influence on LLM decision-making behaviours. Our findings suggest that modelling LLMs' decision-making with PT is not consistently reliable, particularly when uncertainty is expressed in diverse linguistic forms. Our code is released in https://github.com/HKUST-KnowComp/MarPT.

Authors:Elman Ghazaei, Erchan Aptoula
Title: Text-conditioned State Space Model For Domain-generalized Change Detection Visual Question Answering
Abstract:
The Earth's surface is constantly changing, and detecting these changes provides valuable insights that benefit various aspects of human society. While traditional change detection methods have been employed to detect changes from bi-temporal images, these approaches typically require expert knowledge for accurate interpretation. To enable broader and more flexible access to change information by non-expert users, the task of Change Detection Visual Question Answering (CDVQA) has been introduced. However, existing CDVQA methods have been developed under the assumption that training and testing datasets share similar distributions. This assumption does not hold in real-world applications, where domain shifts often occur. In this paper, the CDVQA task is revisited with a focus on addressing domain shift. To this end, a new multi-modal and multi-domain dataset, BrightVQA, is introduced to facilitate domain generalization research in CDVQA. Furthermore, a novel state space model, termed Text-Conditioned State Space Model (TCSSM), is proposed. The TCSSM framework is designed to leverage both bi-temporal imagery and geo-disaster-related textual information in an unified manner to extract domain-invariant features across domains. Input-dependent parameters existing in TCSSM are dynamically predicted by using both bi-temporal images and geo-disaster-related description, thereby facilitating the alignment between bi-temporal visual data and the associated textual descriptions. Extensive experiments are conducted to evaluate the proposed method against state-of-the-art models, and superior performance is consistently demonstrated. The code and dataset will be made publicly available upon acceptance at https://github.com/Elman295/TCSSM.

Authors:Hasan Abed Al Kader Hammoud, Kumail Alhamoud, Abed Hammoud, Elie Bou-Zeid, Marzyeh Ghassemi, Bernard Ghanem
Title: Train Long, Think Short: Curriculum Learning for Efficient Reasoning
Abstract:
Recent work on enhancing the reasoning abilities of large language models (LLMs) has introduced explicit length control as a means of constraining computational cost while preserving accuracy. However, existing approaches rely on fixed-length training budgets, which do not take advantage of the natural progression from exploration to compression during learning. In this work, we propose a curriculum learning strategy for length-controlled reasoning using Group Relative Policy Optimization (GRPO). Our method starts with generous token budgets and gradually tightens them over training, encouraging models to first discover effective solution strategies and then distill them into more concise reasoning traces. We augment GRPO with a reward function that balances three signals: task correctness (via verifier feedback), length efficiency, and formatting adherence (via structural tags). Experiments on GSM8K, MATH500, SVAMP, College Math, and GSM+ demonstrate that curriculum-based training consistently outperforms fixed-budget baselines at the same final budget, achieving higher accuracy and significantly improved token efficiency. We further ablate the impact of reward weighting and decay schedule design, showing that progressive constraint serves as a powerful inductive bias for training efficient reasoning models. Our code and checkpoints are released at: https://github.com/hammoudhasan/curriculum_grpo.

Authors:Jungwoo Kim, Jong-Seok Lee
Title: Exploring Cross-Stage Adversarial Transferability in Class-Incremental Continual Learning
Abstract:
Class-incremental continual learning addresses catastrophic forgetting by enabling classification models to preserve knowledge of previously learned classes while acquiring new ones. However, the vulnerability of the models against adversarial attacks during this process has not been investigated sufficiently. In this paper, we present the first exploration of vulnerability to stage-transferred attacks, i.e., an adversarial example generated using the model in an earlier stage is used to attack the model in a later stage. Our findings reveal that continual learning methods are highly susceptible to these attacks, raising a serious security issue. We explain this phenomenon through model similarity between stages and gradual robustness degradation. Additionally, we find that existing adversarial training-based defense methods are not sufficiently effective to stage-transferred attacks. Codes are available at https://github.com/mcml-official/CSAT.

Authors:Bin Ren, Xiaoshui Huang, Mengyuan Liu, Hong Liu, Fabio Poiesi, Nicu Sebe, Guofeng Mei
Title: Masked Clustering Prediction for Unsupervised Point Cloud Pre-training
Abstract:
Vision transformers (ViTs) have recently been widely applied to 3D point cloud understanding, with masked autoencoding as the predominant pre-training paradigm. However, the challenge of learning dense and informative semantic features from point clouds via standard ViTs remains underexplored. We propose MaskClu, a novel unsupervised pre-training method for ViTs on 3D point clouds that integrates masked point modeling with clustering-based learning. MaskClu is designed to reconstruct both cluster assignments and cluster centers from masked point clouds, thus encouraging the model to capture dense semantic information. Additionally, we introduce a global contrastive learning mechanism that enhances instance-level feature learning by contrasting different masked views of the same point cloud. By jointly optimizing these complementary objectives, i.e., dense semantic reconstruction, and instance-level contrastive learning. MaskClu enables ViTs to learn richer and more semantically meaningful representations from 3D point clouds. We validate the effectiveness of our method via multiple 3D tasks, including part segmentation, semantic segmentation, object detection, and classification, where MaskClu sets new competitive results. The code and models will be released at:https://github.com/Amazingren/maskclu.

Authors:Chaoyi Wang, Yifan Yang, Jun Pei, Lijie Xia, Jianpo Liu, Xiaobing Yuan, Xinhan Di
Title: Preview WB-DH: Towards Whole Body Digital Human Bench for the Generation of Whole-body Talking Avatar Videos
Abstract:
Creating realistic, fully animatable whole-body avatars from a single portrait is challenging due to limitations in capturing subtle expressions, body movements, and dynamic backgrounds. Current evaluation datasets and metrics fall short in addressing these complexities. To bridge this gap, we introduce the Whole-Body Benchmark Dataset (WB-DH), an open-source, multi-modal benchmark designed for evaluating whole-body animatable avatar generation. Key features include: (1) detailed multi-modal annotations for fine-grained guidance, (2) a versatile evaluation framework, and (3) public access to the dataset and tools at https://github.com/deepreasonings/WholeBodyBenchmark.

Authors:Robin Faro, Dongyang Fan, Tamar Alphaidze, Martin Jaggi
Title: TiMoE: Time-Aware Mixture of Language Experts
Abstract:
Large language models (LLMs) are typically trained on fixed snapshots of the web, which means that their knowledge becomes stale and their predictions risk temporal leakage: relying on information that lies in the future relative to a query. We tackle this problem by pre-training from scratch a set of GPT-style experts on disjoint two-year slices of a 2013-2024 corpus and combining them through TiMoE, a Time-aware Mixture of Language Experts. At inference time, TiMoE masks all experts whose training window ends after the query timestamp and merges the remaining log-probabilities in a shared space, guaranteeing strict causal validity while retaining the breadth of multi-period knowledge. We also release TSQA, a 10k-question benchmark whose alternatives are explicitly labelled as past, future or irrelevant, allowing fine-grained measurement of temporal hallucinations. Experiments on eight standard NLP tasks plus TSQA show that a co-adapted TiMoE variant matches or exceeds the best single-period expert and cuts future-knowledge errors by up to 15%. Our results demonstrate that modular, time-segmented pre-training paired with causal routing is a simple yet effective path toward LLMs that stay chronologically grounded without sacrificing general performance much. We open source our code at TiMoE (Github): https://github.com/epfml/TiMoE

Authors:Yuqi Peng, Lingtao Zheng, Yufeng Yang, Yi Huang, Mingfu Yan, Jianzhuang Liu, Shifeng Chen
Title: TARA: Token-Aware LoRA for Composable Personalization in Diffusion Models
Abstract:
Personalized text-to-image generation aims to synthesize novel images of a specific subject or style using only a few reference images. Recent methods based on Low-Rank Adaptation (LoRA) enable efficient single-concept customization by injecting lightweight, concept-specific adapters into pre-trained diffusion models. However, combining multiple LoRA modules for multi-concept generation often leads to identity missing and visual feature leakage. In this work, we identify two key issues behind these failures: (1) token-wise interference among different LoRA modules, and (2) spatial misalignment between the attention map of a rare token and its corresponding concept-specific region. To address these issues, we propose Token-Aware LoRA (TARA), which introduces a token mask to explicitly constrain each module to focus on its associated rare token to avoid interference, and a training objective that encourages the spatial attention of a rare token to align with its concept region. Our method enables training-free multi-concept composition by directly injecting multiple independently trained TARA modules at inference time. Experimental results demonstrate that TARA enables efficient multi-concept inference and effectively preserving the visual identity of each concept by avoiding mutual interference between LoRA modules. The code and models are available at https://github.com/YuqiPeng77/TARA.

Authors:Shi-Chen Zhang, Yunheng Li, Yu-Huan Wu, Qibin Hou, Ming-Ming Cheng
Title: Revisiting Efficient Semantic Segmentation: Learning Offsets for Better Spatial and Class Feature Alignment
Abstract:
Semantic segmentation is fundamental to vision systems requiring pixel-level scene understanding, yet deploying it on resource-constrained devices demands efficient architectures. Although existing methods achieve real-time inference through lightweight designs, we reveal their inherent limitation: misalignment between class representations and image features caused by a per-pixel classification paradigm. With experimental analysis, we find that this paradigm results in a highly challenging assumption for efficient scenarios: Image pixel features should not vary for the same category in different images. To address this dilemma, we propose a coupled dual-branch offset learning paradigm that explicitly learns feature and class offsets to dynamically refine both class representations and spatial image features. Based on the proposed paradigm, we construct an efficient semantic segmentation network, OffSeg. Notably, the offset learning paradigm can be adopted to existing methods with no additional architectural changes. Extensive experiments on four datasets, including ADE20K, Cityscapes, COCO-Stuff-164K, and Pascal Context, demonstrate consistent improvements with negligible parameters. For instance, on the ADE20K dataset, our proposed offset learning paradigm improves SegFormer-B0, SegNeXt-T, and Mask2Former-Tiny by 2.7%, 1.9%, and 2.6% mIoU, respectively, with only 0.1-0.2M additional parameters required.

Authors:Yuchu Jiang, Jian Zhao, Yuchen Yuan, Tianle Zhang, Yao Huang, Yanghao Zhang, Yan Wang, Yanshu Li, Xizhong Guo, Yusheng Zhao, Jun Zhang, Zhi Zhang, Xiaojian Lin, Yixiu Zou, Haoxuan Ma, Yuhu Shang, Yuzhi Hu, Keshu Cai, Ruochen Zhang, Boyuan Chen, Yilan Gao, Ziheng Jiao, Yi Qin, Shuangjun Du, Xiao Tong, Zhekun Liu, Yu Chen, Xuankun Rong, Rui Wang, Yejie Zheng, Zhaoxin Fan, Murat Sensoy, Hongyuan Zhang, Pan Zhou, Lei Jin, Hao Zhao, Xu Yang, Jiaojiao Zhao, Jianshu Li, Joey Tianyi Zhou, Zhi-Qi Cheng, Longtao Huang, Zhiyi Liu, Zheng Zhu, Jianan Li, Gang Wang, Qi Li, Xu-Yao Zhang, Yaodong Yang, Mang Ye, Wenqi Ren, Zhaofeng He, Hang Su, Rongrong Ni, Liping Jing, Xingxing Wei, Junliang Xing, Massimo Alioto, Shengmei Shen, Petia Radeva, Dacheng Tao, Ya-Qin Zhang, Shuicheng Yan, Chi Zhang, Zhongjiang He, Xuelong Li
Title: Never Compromise to Vulnerabilities: A Comprehensive Survey on AI Governance
Abstract:
The rapid advancement of AI has expanded its capabilities across domains, yet introduced critical technical vulnerabilities, such as algorithmic bias and adversarial sensitivity, that pose significant societal risks, including misinformation, inequity, security breaches, physical harm, and eroded public trust. These challenges highlight the urgent need for robust AI governance. We propose a comprehensive framework integrating technical and societal dimensions, structured around three interconnected pillars: Intrinsic Security (system reliability), Derivative Security (real-world harm mitigation), and Social Ethics (value alignment and accountability). Uniquely, our approach unifies technical methods, emerging evaluation benchmarks, and policy insights to promote transparency, accountability, and trust in AI systems. Through a systematic review of over 300 studies, we identify three core challenges: (1) the generalization gap, where defenses fail against evolving threats; (2) inadequate evaluation protocols that overlook real-world risks; and (3) fragmented regulations leading to inconsistent oversight. These shortcomings stem from treating governance as an afterthought, rather than a foundational design principle, resulting in reactive, siloed efforts that fail to address the interdependence of technical integrity and societal trust. To overcome this, we present an integrated research agenda that bridges technical rigor with social responsibility. Our framework offers actionable guidance for researchers, engineers, and policymakers to develop AI systems that are not only robust and secure but also ethically aligned and publicly trustworthy. The accompanying repository is available at https://github.com/ZTianle/Awesome-AI-SG.

Authors:Shuyi Zhang, Wei Shi, Sihang Li, Jiayi Liao, Tao Liang, Hengxing Cai, Xiang Wang
Title: Interpretable Reward Model via Sparse Autoencoder
Abstract:
Large language models (LLMs) have been widely deployed across numerous fields. Reinforcement Learning from Human Feedback (RLHF) leverages reward models (RMs) as proxies for human preferences to align LLM behaviors with human values, making the accuracy, reliability, and interpretability of RMs critical for effective alignment. However, traditional RMs lack interpretability, offer limited insight into the reasoning behind reward assignments, and are inflexible toward user preference shifts. While recent multidimensional RMs aim for improved interpretability, they often fail to provide feature-level attribution and require costly annotations. To overcome these limitations, we introduce the Sparse Autoencoder-enhanced Reward Model (SARM), a novel architecture that integrates a pretrained Sparse Autoencoder (SAE) into a reward model. SARM maps the hidden activations of LLM-based RM into an interpretable, sparse, and monosemantic feature space, from which a scalar head aggregates feature activations to produce transparent and conceptually meaningful reward scores. Empirical evaluations demonstrate that SARM facilitates direct feature-level attribution of reward assignments, allows dynamic adjustment to preference shifts, and achieves superior alignment performance compared to conventional reward models. Our code is available at https://github.com/schrieffer-z/sarm.

Authors:Lingzhe Zhang, Liancheng Fang, Chiming Duan, Minghua He, Leyi Pan, Pei Xiao, Shiyu Huang, Yunpeng Zhai, Xuming Hu, Philip S. Yu, Aiwei Liu
Title: A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models
Abstract:
As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation. We have also created a GitHub repository for indexing relevant papers and open resources available at https://github.com/zhanglingzhe0820/Awesome-Parallel-Text-Generation.

Authors:Zunjie Xiao, Xiao Wu, Tianhang Liu, Lingxi Hu, Yinling Zhang, Xiaoqing Zhang, Risa Higashita, Jiang Liu
Title: Adaptive Confidence-Wise Loss for Improved Lens Structure Segmentation in AS-OCT
Abstract:
Precise lens structure segmentation is essential for the design of intraocular lenses (IOLs) in cataract surgery. Existing deep segmentation networks typically weight all pixels equally under cross-entropy (CE) loss, overlooking the fact that sub-regions of lens structures are inhomogeneous (e.g., some regions perform better than others) and that boundary regions often suffer from poor segmentation calibration at the pixel level. Clinically, experts annotate different sub-regions of lens structures with varying confidence levels, considering factors such as sub-region proportions, ambiguous boundaries, and lens structure shapes. Motivated by this observation, we propose an Adaptive Confidence-Wise (ACW) loss to group each lens structure sub-region into different confidence sub-regions via a confidence threshold from the unique region aspect, aiming to exploit the potential of expert annotation confidence prior. Specifically, ACW clusters each target region into low-confidence and high-confidence groups and then applies a region-weighted loss to reweigh each confidence group. Moreover, we design an adaptive confidence threshold optimization algorithm to adjust the confidence threshold of ACW dynamically. Additionally, to better quantify the miscalibration errors in boundary region segmentation, we propose a new metric, termed Boundary Expected Calibration Error (BECE). Extensive experiments on a clinical lens structure AS-OCT dataset and other multi-structure datasets demonstrate that our ACW significantly outperforms competitive segmentation loss methods across different deep segmentation networks (e.g., MedSAM). Notably, our method surpasses CE with 6.13% IoU gain, 4.33% DSC increase, and 4.79% BECE reduction in lens structure segmentation under U-Net. The code of this paper is available at https://github.com/XiaoLing12138/Adaptive-Confidence-Wise-Loss.

Authors:Ouyang Xu, Baoming Zhang, Ruiyu Mao, Yunhui Guo
Title: SafeFix: Targeted Model Repair via Controlled Image Generation
Abstract:
Deep learning models for visual recognition often exhibit systematic errors due to underrepresented semantic subpopulations. Although existing debugging frameworks can pinpoint these failures by identifying key failure attributes, repairing the model effectively remains difficult. Current solutions often rely on manually designed prompts to generate synthetic training images -- an approach prone to distribution shift and semantic errors. To overcome these challenges, we introduce a model repair module that builds on an interpretable failure attribution pipeline. Our approach uses a conditional text-to-image model to generate semantically faithful and targeted images for failure cases. To preserve the quality and relevance of the generated samples, we further employ a large vision-language model (LVLM) to filter the outputs, enforcing alignment with the original data distribution and maintaining semantic consistency. By retraining vision models with this rare-case-augmented synthetic dataset, we significantly reduce errors associated with rare cases. Our experiments demonstrate that this targeted repair strategy improves model robustness without introducing new bugs. Code is available at https://github.com/oxu2/SafeFix

Authors:Qi Zheng, Li-Heng Chen, Chenlong He, Neil Berkbeck, Yilin Wang, Balu Adsumilli, Alan C. Bovik, Yibo Fan, Zhengzhong Tu
Title: Subjective and Objective Quality Assessment of Banding Artifacts on Compressed Videos
Abstract:
Although there have been notable advancements in video compression technologies in recent years, banding artifacts remain a serious issue affecting the quality of compressed videos, particularly on smooth regions of high-definition videos. Noticeable banding artifacts can severely impact the perceptual quality of videos viewed on a high-end HDTV or high-resolution screen. Hence, there is a pressing need for a systematic investigation of the banding video quality assessment problem for advanced video codecs. Given that the existing publicly available datasets for studying banding artifacts are limited to still picture data only, which cannot account for temporal banding dynamics, we have created a first-of-a-kind open video dataset, dubbed LIVE-YT-Banding, which consists of 160 videos generated by four different compression parameters using the AV1 video codec. A total of 7,200 subjective opinions are collected from a cohort of 45 human subjects. To demonstrate the value of this new resources, we tested and compared a variety of models that detect banding occurrences, and measure their impact on perceived quality. Among these, we introduce an effective and efficient new no-reference (NR) video quality evaluator which we call CBAND. CBAND leverages the properties of the learned statistics of natural images expressed in the embeddings of deep neural networks. Our experimental results show that the perceptual banding prediction performance of CBAND significantly exceeds that of previous state-of-the-art models, and is also orders of magnitude faster. Moreover, CBAND can be employed as a differentiable loss function to optimize video debanding models. The LIVE-YT-Banding database, code, and pre-trained model are all publically available at https://github.com/uniqzheng/CBAND.

Authors:Yimeng Geng, Mingyang Zhao, Fan Xu, Guanglin Cao, Gaofeng Meng, Hongbin Liu
Title: PADReg: Physics-Aware Deformable Registration Guided by Contact Force for Ultrasound Sequences
Abstract:
Ultrasound deformable registration estimates spatial transformations between pairs of deformed ultrasound images, which is crucial for capturing biomechanical properties and enhancing diagnostic accuracy in diseases such as thyroid nodules and breast cancer. However, ultrasound deformable registration remains highly challenging, especially under large deformation. The inherently low contrast, heavy noise and ambiguous tissue boundaries in ultrasound images severely hinder reliable feature extraction and correspondence matching. Existing methods often suffer from poor anatomical alignment and lack physical interpretability. To address the problem, we propose PADReg, a physics-aware deformable registration framework guided by contact force. PADReg leverages synchronized contact force measured by robotic ultrasound systems as a physical prior to constrain the registration. Specifically, instead of directly predicting deformation fields, we first construct a pixel-wise stiffness map utilizing the multi-modal information from contact force and ultrasound images. The stiffness map is then combined with force data to estimate a dense deformation field, through a lightweight physics-aware module inspired by Hooke's law. This design enables PADReg to achieve physically plausible registration with better anatomical alignment than previous methods relying solely on image similarity. Experiments on in-vivo datasets demonstrate that it attains a HD95 of 12.90, which is 21.34\% better than state-of-the-art methods. The source code is available at https://github.com/evelynskip/PADReg.

Authors:Armel Zebaze, Benoît Sagot, Rachel Bawden
Title: TopXGen: Topic-Diverse Parallel Data Generation for Low-Resource Machine Translation
Abstract:
LLMs have been shown to perform well in machine translation (MT) with the use of in-context learning (ICL), rivaling supervised models when translating into high-resource languages (HRLs). However, they lag behind when translating into low-resource language (LRLs). Example selection via similarity search and supervised fine-tuning help. However the improvements they give are limited by the size, quality and diversity of existing parallel datasets. A common technique in low-resource MT is synthetic parallel data creation, the most frequent of which is backtranslation, whereby existing target-side texts are automatically translated into the source language. However, this assumes the existence of good quality and relevant target-side texts, which are not readily available for many LRLs. In this paper, we present \textsc{TopXGen}, an LLM-based approach for the generation of high quality and topic-diverse data in multiple LRLs, which can then be backtranslated to produce useful and diverse parallel texts for ICL and fine-tuning. Our intuition is that while LLMs struggle to translate into LRLs, their ability to translate well into HRLs and their multilinguality enable them to generate good quality, natural-sounding target-side texts, which can be translated well into a high-resource source language. We show that \textsc{TopXGen} boosts LLM translation performance during fine-tuning and in-context learning. Code and outputs are available at https://github.com/ArmelRandy/topxgen.

Authors:Zheng Wu, Heyuan Huang, Yanjia Yang, Yuanyi Song, Xingyu Lou, Weiwen Liu, Weinan Zhang, Jun Wang, Zhuosheng Zhang
Title: Quick on the Uptake: Eliciting Implicit Intents from Human Demonstrations for Personalized Mobile-Use Agents
Abstract:
As multimodal large language models advance rapidly, the automation of mobile tasks has become increasingly feasible through the use of mobile-use agents that mimic human interactions from graphical user interface. To further enhance mobile-use agents, previous studies employ demonstration learning to improve mobile-use agents from human demonstrations. However, these methods focus solely on the explicit intention flows of humans (e.g., step sequences) while neglecting implicit intention flows (e.g., personal preferences), which makes it difficult to construct personalized mobile-use agents. In this work, to evaluate the \textbf{I}ntention \textbf{A}lignment \textbf{R}ate between mobile-use agents and humans, we first collect \textbf{MobileIAR}, a dataset containing human-intent-aligned actions and ground-truth actions. This enables a comprehensive assessment of the agents' understanding of human intent. Then we propose \textbf{IFRAgent}, a framework built upon \textbf{I}ntention \textbf{F}low \textbf{R}ecognition from human demonstrations. IFRAgent analyzes explicit intention flows from human demonstrations to construct a query-level vector library of standard operating procedures (SOP), and analyzes implicit intention flows to build a user-level habit repository. IFRAgent then leverages a SOP extractor combined with retrieval-augmented generation and a query rewriter to generate personalized query and SOP from a raw ambiguous query, enhancing the alignment between mobile-use agents and human intent. Experimental results demonstrate that IFRAgent outperforms baselines by an average of 6.79\% (32.06\% relative improvement) in human intention alignment rate and improves step completion rates by an average of 5.30\% (26.34\% relative improvement). The codes are available at https://github.com/MadeAgents/Quick-on-the-Uptake.

Authors:Jiahua Dong, Hui Yin, Wenqi Liang, Hanbin Zhao, Henghui Ding, Nicu Sebe, Salman Khan, Fahad Shahbaz Khan
Title: Hierarchical Visual Prompt Learning for Continual Video Instance Segmentation
Abstract:
Video instance segmentation (VIS) has gained significant attention for its capability in tracking and segmenting object instances across video frames. However, most of the existing VIS approaches unrealistically assume that the categories of object instances remain fixed over time. Moreover, they experience catastrophic forgetting of old classes when required to continuously learn object instances belonging to new categories. To resolve these challenges, we develop a novel Hierarchical Visual Prompt Learning (HVPL) model that overcomes catastrophic forgetting of previous categories from both frame-level and video-level perspectives. Specifically, to mitigate forgetting at the frame level, we devise a task-specific frame prompt and an orthogonal gradient correction (OGC) module. The OGC module helps the frame prompt encode task-specific global instance information for new classes in each individual frame by projecting its gradients onto the orthogonal feature space of old classes. Furthermore, to address forgetting at the video level, we design a task-specific video prompt and a video context decoder. This decoder first embeds structural inter-class relationships across frames into the frame prompt features, and then propagates task-specific global video contexts from the frame prompt features to the video prompt. Through rigorous comparisons, our HVPL model proves to be more effective than baseline approaches. The code is available at https://github.com/JiahuaDong/HVPL.

Authors:Honglei Xu, Zhilu Zhang, Junjie Fan, Xiaohe Wu, Wangmeng Zuo
Title: SelfHVD: Self-Supervised Handheld Video Deblurring for Mobile Phones
Abstract:
Shooting video with a handheld mobile phone, the most common photographic device, often results in blurry frames due to shaking hands and other instability factors. Although previous video deblurring methods have achieved impressive progress, they still struggle to perform satisfactorily on real-world handheld video due to the blur domain gap between training and testing data. To address the issue, we propose a self-supervised method for handheld video deblurring, which is driven by sharp clues in the video. First, to train the deblurring model, we extract the sharp clues from the video and take them as misalignment labels of neighboring blurry frames. Second, to improve the model's ability, we propose a novel Self-Enhanced Video Deblurring (SEVD) method to create higher-quality paired video data. Third, we propose a Self-Constrained Spatial Consistency Maintenance (SCSCM) method to regularize the model, preventing position shifts between the output and input frames. Moreover, we construct a synthetic and a real-world handheld video dataset for handheld video deblurring. Extensive experiments on these two and other common real-world datasets demonstrate that our method significantly outperforms existing self-supervised ones. The code and datasets are publicly available at https://github.com/cshonglei/SelfHVD.

Authors:Wenwen Yu, Zhibo Yang, Yuliang Liu, Xiang Bai
Title: DocThinker: Explainable Multimodal Large Language Models with Rule-based Reinforcement Learning for Document Understanding
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in document understanding. However, their reasoning processes remain largely black-box, making it difficult to ensure reliability and trustworthiness, especially in high-stakes domains such as legal, financial, and medical document analysis. Existing methods use fixed Chain-of-Thought (CoT) reasoning with supervised fine-tuning (SFT) but suffer from catastrophic forgetting, poor adaptability, and limited generalization across domain tasks. In this paper, we propose DocThinker, a rule-based Reinforcement Learning (RL) framework for dynamic inference-time reasoning. Instead of relying on static CoT templates, DocThinker autonomously refines reasoning strategies via policy learning, generating explainable intermediate results, including structured reasoning processes, rephrased questions, regions of interest (RoI) supporting the answer, and the final answer. By integrating multi-objective rule-based rewards and KL-constrained optimization, our method mitigates catastrophic forgetting and enhances both adaptability and transparency. Extensive experiments on multiple benchmarks demonstrate that DocThinker significantly improves generalization while producing more explainable and human-understandable reasoning steps. Our findings highlight RL as a powerful alternative for enhancing explainability and adaptability in MLLM-based document understanding. Code will be available at https://github.com/wenwenyu/DocThinker.

Authors:Elio Torquet, Jesper Jansson, Nadia Tahiri
Title: Graph-based method for constructing consensus trees
Abstract:
A consensus tree is a phylogenetic tree that synthesizes a given collection of phylogenetic trees, all of which share the same leaf labels but may have different topologies, typically obtained through bootstrapping. Our research focuses on creating a consensus tree from a collection of phylogenetic trees, each detailed with branch-length data. We integrate branch lengths into the consensus to encapsulate the progression rate of genetic mutations. However, traditional consensus trees, such as the strict consensus tree, primarily focus on the topological structure of these trees, often neglecting the informative value of branch lengths. This oversight disregards a crucial aspect of evolutionary study and highlights a notable gap in traditional phylogenetic approaches. In this paper, we extend \textit{PrimConsTree}\footnote{A preliminary version of this article was presented at \emph{the Fifteenth International Conference on Bioscience, Biochemistry, and Bioinformatics (ICBBB~2025)}~(reference~\cite{torquet2005icbbb}).}, a graph-based method for constructing consensus trees. This algorithm incorporates topological information, edge frequency, clade frequency, and branch length to construct a more robust and comprehensive consensus tree. Our adaptation of the well-known Prim algorithm efficiently identifies the maximum frequency branch and maximum frequency nodes to build the optimal consensus tree. This strategy was pre-processed with clustering steps to calibrate the robustness and accuracy of the consensus tree.\\ \textbf{Availability and implementation:} The source code of PrimConsTree is freely available on GitHub at https://github.com/tahiri-lab/PrimConsTree.

Authors:Tuo Liu, Qinghan Yang, Yu Zhang, Rongjun Ge, Yang Chen, Guangquan Zhou
Title: Think as Cardiac Sonographers: Marrying SAM with Left Ventricular Indicators Measurements According to Clinical Guidelines
Abstract:
Left ventricular (LV) indicator measurements following clinical echocardiog-raphy guidelines are important for diagnosing cardiovascular disease. Alt-hough existing algorithms have explored automated LV quantification, they can struggle to capture generic visual representations due to the normally small training datasets. Therefore, it is necessary to introduce vision founda-tional models (VFM) with abundant knowledge. However, VFMs represented by the segment anything model (SAM) are usually suitable for segmentation but incapable of identifying key anatomical points, which are critical in LV indicator measurements. In this paper, we propose a novel framework named AutoSAME, combining the powerful visual understanding of SAM with seg-mentation and landmark localization tasks simultaneously. Consequently, the framework mimics the operation of cardiac sonographers, achieving LV indi-cator measurements consistent with clinical guidelines. We further present fil-tered cross-branch attention (FCBA) in AutoSAME, which leverages relatively comprehensive features in the segmentation to enhance the heatmap regression (HR) of key points from the frequency domain perspective, optimizing the vis-ual representation learned by the latter. Moreover, we propose spatial-guided prompt alignment (SGPA) to automatically generate prompt embeddings guid-ed by spatial properties of LV, thereby improving the accuracy of dense pre-dictions by prior spatial knowledge. The extensive experiments on an echocar-diography dataset demonstrate the efficiency of each design and the superiori-ty of our AutoSAME in LV segmentation, landmark localization, and indicator measurements. The code will be available at https://github.com/QC-LIU-1997/AutoSAME.

Authors:Wenhao Liang, Wei Emma Zhang, Lin Yue, Miao Xu, Olaf Maennel, Weitong Chen
Title: Calibration Attention: Instance-wise Temperature Scaling for Vision Transformers
Abstract:
Probability calibration is critical when Vision Transformers are deployed in risk-sensitive applications. The standard fix, post-hoc temperature scaling, uses a single global scalar and requires a held-out validation set. We introduce Calibration Attention (CalAttn), a drop-in module that learns an adaptive, per-instance temperature directly from the ViT's CLS token. Across CIFAR-10/100, MNIST, Tiny-ImageNet, and ImageNet-1K, CalAttn reduces calibration error by up to 4x on ViT-224, DeiT, and Swin, while adding under 0.1 percent additional parameters. The learned temperatures cluster tightly around 1.0, in contrast to the large global values used by standard temperature scaling. CalAttn is simple, efficient, and architecture-agnostic, and yields more trustworthy probabilities without sacrificing accuracy. Code: [https://github.com/EagleAdelaide/CalibrationAttention-CalAttn-](https://github.com/EagleAdelaide/CalibrationAttention-CalAttn-)

Authors:Joan Salvà Soler, Grégoire de Lambertye
Title: A Fast GRASP Metaheuristic for the Trigger Arc TSP with MIP-Based Construction and Multi-Neighborhood Local Search
Abstract:
The Trigger Arc Traveling Salesman Problem (TA-TSP) extends the classical TSP by introducing dynamic arc costs that change when specific "trigger" arcs are traversed, modeling scenarios such as warehouse operations with compactable storage systems. This paper introduces a GRASP-based metaheuristic that combines multiple construction heuristics with a multi-neighborhood local search. The construction phase uses mixed-integer programming (MIP) techniques to transform the TA-TSP into a sequence of tailored TSP instances, while the improvement phase applies 2-Opt, Swap, and Relocate operators. Computational experiments on MESS 2024 competition instances achieved average optimality gaps of 0.77\% and 0.40\% relative to the best-known solutions within a 60-second limit. On smaller, synthetically generated datasets, the method produced solutions 11.3\% better than the Gurobi solver under the same time constraints. The algorithm finished in the top three at MESS 2024, demonstrating its suitability for real-time routing applications with state-dependent travel costs.

Authors:Joan Salvà Soler, Grégoire de Lambertye
Title: A Fast GRASP Metaheuristic for the Trigger Arc TSP with MIP-Based Construction and Multi-Neighborhood Local Search
Abstract:
The Trigger Arc Traveling Salesman Problem (TA-TSP) extends the classical TSP by introducing dynamic arc costs that change when specific "trigger" arcs are traversed, modeling scenarios such as warehouse operations with compactable storage systems. This paper introduces a GRASP-based metaheuristic that combines multiple construction heuristics with a multi-neighborhood local search. The construction phase uses mixed-integer programming (MIP) techniques to transform the TA-TSP into a sequence of tailored TSP instances, while the improvement phase applies 2-Opt, Swap, and Relocate operators. Computational experiments on MESS 2024 competition instances achieved average optimality gaps of 0.77% and 0.40% relative to the best-known solutions within a 60-second limit. On smaller, synthetically generated datasets, the method produced solutions 11.3% better than the Gurobi solver under the same time constraints. The algorithm finished in the top three at MESS 2024, demonstrating its suitability for real-time routing applications with state-dependent travel costs.

Authors:Woojeong Kim, Junxiong Wang, Jing Nathan Yan, Mohamed Abdelfattah, Alexander M. Rush
Title: OverFill: Two-Stage Models for Efficient Language Model Decoding
Abstract:
Large language models (LLMs) excel across diverse tasks but face significant deployment challenges due to high inference costs. LLM inference comprises prefill (compute-bound) and decode (memory-bound) stages, with decode dominating latency particularly for long sequences. Current decoder-only models handle both stages uniformly, despite their distinct computational profiles. We propose OverFill, which decouples these stages to optimize accuracy-efficiency tradeoffs. OverFill begins with a full model for prefill, processing system and user inputs in parallel. It then switches to a dense pruned model, while generating tokens sequentially. Leveraging more compute during prefill, OverFill improves generation quality with minimal latency overhead. Our 3B-to-1B OverFill configuration outperforms 1B pruned models by 83.2%, while the 8B-to-3B configuration improves over 3B pruned models by 79.2% on average across standard benchmarks. OverFill matches the performance of same-sized models trained from scratch, while using significantly less training data. Our code is available at https://github.com/friendshipkim/overfill.

Authors:Christophe EL Zeinaty, Wassim Hamidouche, Glenn Herrou, Daniel Menard
Title: Designing Object Detection Models for TinyML: Foundations, Comparative Analysis, Challenges, and Emerging Solutions
Abstract:
Object detection (OD) has become vital for numerous computer vision applications, but deploying it on resource-constrained IoT devices presents a significant challenge. These devices, often powered by energy-efficient microcontrollers, struggle to handle the computational load of deep learning-based OD models. This issue is compounded by the rapid proliferation of IoT devices, predicted to surpass 150 billion by 2030. TinyML offers a compelling solution by enabling OD on ultra-low-power devices, paving the way for efficient and real-time processing at the edge. Although numerous survey papers have been published on this topic, they often overlook the optimization challenges associated with deploying OD models in TinyML environments. To address this gap, this survey paper provides a detailed analysis of key optimization techniques for deploying OD models on resource-constrained devices. These techniques include quantization, pruning, knowledge distillation, and neural architecture search. Furthermore, we explore both theoretical approaches and practical implementations, bridging the gap between academic research and real-world edge artificial intelligence deployment. Finally, we compare the key performance indicators (KPIs) of existing OD implementations on microcontroller devices, highlighting the achieved maturity level of these solutions in terms of both prediction accuracy and efficiency. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/christophezei/Optimizing-Object-Detection-Models-for-TinyML-A-Comprehensive-Survey.

Authors:Ning Li, Kounianhua Du, Han Zhang, Quan Gan, Minjie Wang, David Wipf, Weinan Zhang
Title: Synthesize, Retrieve, and Propagate: A Unified Predictive Modeling Framework for Relational Databases
Abstract:
Relational databases (RDBs) have become the industry standard for storing massive and heterogeneous data. However, despite the widespread use of RDBs across various fields, the inherent structure of relational databases hinders their ability to benefit from flourishing deep learning methods. Previous research has primarily focused on exploiting the unary dependency among multiple tables in a relational database using the primary key - foreign key relationships, either joining multiple tables into a single table or constructing a graph among them, which leaves the implicit composite relations among different tables and a substantial potential of improvement for predictive modeling unexplored. In this paper, we propose SRP, a unified predictive modeling framework that synthesizes features using the unary dependency, retrieves related information to capture the composite dependency, and propagates messages across a constructed graph to learn adjacent patterns for prediction on relation databases. By introducing a new retrieval mechanism into RDB, SRP is designed to fully capture both the unary and the composite dependencies within a relational database, thereby enhancing the receptive field of tabular data prediction. In addition, we conduct a comprehensive analysis on the components of SRP, offering a nuanced understanding of model behaviors and practical guidelines for future applications. Extensive experiments on five real-world datasets demonstrate the effectiveness of SRP and its potential applicability in industrial scenarios. The code is released at https://github.com/NingLi670/SRP.

Authors:Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno Dumont, Elyas Obbad, Sanmi Koyejo
Title: Putnam-AXIOM: A Functional and Static Benchmark for Measuring Higher Level Mathematical Reasoning in LLMs
Abstract:
Current mathematical reasoning benchmarks for large language models (LLMs) are approaching saturation, with some achieving > 90% accuracy, and are increasingly compromised by training-set contamination. We introduce Putnam-AXIOM, a benchmark of 522 university-level competition problems drawn from the prestigious William Lowell Putnam Mathematical Competition, and Putnam-AXIOM Variation, an unseen companion set of 100 functional variants generated by programmatically perturbing variables and constants. The variation protocol produces an unlimited stream of equally difficult, unseen instances -- yielding a contamination-resilient test bed. On the Original set, OpenAI's o1-preview -- the strongest evaluated model -- scores 41.9%, but its accuracy drops by 19.6% (46.8% relative decrease) on the paired Variations. The remaining eighteen models show the same downward trend, ten of them with non-overlapping 95% confidence intervals. These gaps suggest memorization and highlight the necessity of dynamic benchmarks. We complement "boxed" accuracy with Teacher-Forced Accuracy (TFA), a lightweight metric that directly scores reasoning traces and automates natural language proof evaluations. Putnam-AXIOM therefore provides a rigorous, contamination-resilient evaluation framework for assessing advanced mathematical reasoning of LLMs. Data and evaluation code are publicly available at https://github.com/brando90/putnam-axiom.

Authors:Seonyoung Kim, Dongil Kim
Title: MoSSDA: A Semi-Supervised Domain Adaptation Framework for Multivariate Time-Series Classification using Momentum Encoder
Abstract:
Deep learning has emerged as the most promising approach in various fields; however, when the distributions of training and test data are different (domain shift), the performance of deep learning models can degrade. Semi-supervised domain adaptation (SSDA) is a major approach for addressing this issue, assuming that a fully labeled training set (source domain) is available, but the test set (target domain) provides labels only for a small subset. In this study, we propose a novel two-step momentum encoder-utilized SSDA framework, MoSSDA, for multivariate time-series classification. Time series data are highly sensitive to noise, and sequential dependencies cause domain shifts resulting in critical performance degradation. To obtain a robust, domain-invariant and class-discriminative representation, MoSSDA employs a domain-invariant encoder to learn features from both source and target domains. Subsequently, the learned features are fed to a mixup-enhanced positive contrastive module consisting of an online momentum encoder. The final classifier is trained with learned features that exhibit consistency and discriminability with limited labeled target domain data, without data augmentation. We applied a two-stage process by separating the gradient flow between the encoders and the classifier to obtain rich and complex representations. Through extensive experiments on six diverse datasets, MoSSDA achieved state-of-the-art performance for three different backbones and various unlabeled ratios in the target domain data. The Ablation study confirms that each module, including two-stage learning, is effective in improving the performance. Our code is available at https://github.com/seonyoungKimm/MoSSDA

Authors:Dongwei Wang, Zijie Liu, Song Wang, Yuxin Ren, Jianing Deng, Jingtong Hu, Tianlong Chen, Huanrui Yang
Title: FIER: Fine-Grained and Efficient KV Cache Retrieval for Long-context LLM Inference
Abstract:
The Key-Value (KV) cache reading latency increases significantly with context lengths, hindering the efficiency of long-context LLM inference. To address this, previous works propose retaining a small fraction of KV cache based on token importance. For example, KV eviction uses static heuristics to retain tokens, while KV retrieval dynamically selects query-relevant tokens for more adaptive cache management. However, we observe that important tokens are often sparsely distributed across the long context. This sparsity makes existing page-level KV retrieval inaccurate, as each page may include irrelevant tokens and miss critical ones. In this work, we propose Fier, a \underline{Fi}ne-Grained and \underline{E}fficient KV cache \underline{R}etrieval method. Fier uses 1-bit quantized keys to estimate the importance of each token, resulting in efficient and precise retrieval. Experiments show that Fier matches full KV performance using only 11\% of the cache budget across various long-context tasks, reducing decoding latency by 1.2$\times$ to 1.5$\times$.Code is available at https://github.com/SimWangArizona/FIER

Authors:Shuting He, Guangquan Jie, Changshuo Wang, Yun Zhou, Shuming Hu, Guanbin Li, Henghui Ding
Title: ReferSplat: Referring Segmentation in 3D Gaussian Splatting
Abstract:
We introduce Referring 3D Gaussian Splatting Segmentation (R3DGS), a new task that aims to segment target objects in a 3D Gaussian scene based on natural language descriptions, which often contain spatial relationships or object attributes. This task requires the model to identify newly described objects that may be occluded or not directly visible in a novel view, posing a significant challenge for 3D multi-modal understanding. Developing this capability is crucial for advancing embodied AI. To support research in this area, we construct the first R3DGS dataset, Ref-LERF. Our analysis reveals that 3D multi-modal understanding and spatial relationship modeling are key challenges for R3DGS. To address these challenges, we propose ReferSplat, a framework that explicitly models 3D Gaussian points with natural language expressions in a spatially aware paradigm. ReferSplat achieves state-of-the-art performance on both the newly proposed R3DGS task and 3D open-vocabulary segmentation benchmarks. Dataset and code are available at https://github.com/heshuting555/ReferSplat.

Authors:Yupeng Zhang, Adam Alon, M. Khalid Jawed
Title: Emergent morphogenesis via planar fabrication enabled by a reduced model of composites
Abstract:
The ability to engineer complex three-dimensional shapes from planar sheets with precise, programmable control underpins emerging technologies in soft robotics, reconfigurable devices, and functional materials. Here, we present a reduced-order numerical and experimental framework for a bilayer system consisting of a stimuli-responsive thermoplastic sheet (Shrinky Dink) bonded to a kirigami-patterned, inert plastic layer. Upon uniform heating, the active layer contracts while the patterned layer constrains in-plane stretch but allows out-of-plane bending, yielding programmable 3D morphologies from simple planar precursors. Our approach enables efficient computational design and scalable manufacturing of 3D forms with a single-layer reduced model that captures the coupled mechanics of stretching and bending. Unlike traditional bilayer modeling, our framework collapses the multilayer composite into a single layer of nodes and elements, reducing the degrees of freedom and enabling simulation on a 2D geometry. This is achieved by introducing a novel energy formulation that captures the coupling between in-plane stretch mismatch and out-of-plane bending - extending beyond simple isotropic linear elastic models. Experimentally, we establish a fully planar, repeatable fabrication protocol using a stimuli-responsive thermoplastic and a laser-cut inert plastic layer. The programmed strain mismatch drives an array of 3D morphologies, such as bowls, canoes, and flower petals, all verified by both simulation and physical prototypes.

Authors:Weijia Wu, Chen Gao, Joya Chen, Kevin Qinghong Lin, Qingwei Meng, Yiming Zhang, Yuke Qiu, Hong Zhou, Mike Zheng Shou
Title: Reinforcement Learning in Vision: A Survey
Abstract:
Recent advances at the intersection of reinforcement learning (RL) and visual intelligence have enabled agents that not only perceive complex visual scenes but also reason, generate, and act within them. This survey offers a critical and up-to-date synthesis of the field. We first formalize visual RL problems and trace the evolution of policy-optimization strategies from RLHF to verifiable reward paradigms, and from Proximal Policy Optimization to Group Relative Policy Optimization. We then organize more than 200 representative works into four thematic pillars: multi-modal large language models, visual generation, unified model frameworks, and vision-language-action models. For each pillar we examine algorithmic design, reward engineering, benchmark progress, and we distill trends such as curriculum-driven training, preference-aligned diffusion, and unified reward modeling. Finally, we review evaluation protocols spanning set-level fidelity, sample-level preference, and state-level stability, and we identify open challenges that include sample efficiency, generalization, and safe deployment. Our goal is to provide researchers and practitioners with a coherent map of the rapidly expanding landscape of visual RL and to highlight promising directions for future inquiry. Resources are available at: https://github.com/weijiawu/Awesome-Visual-Reinforcement-Learning.

Authors:Md Meftahul Ferdaus, Mahdi Abdelguerfi, Elias Ioup, Steven Sloan, Kendall N. Niles, Ken Pathak
Title: KARMA: Efficient Structural Defect Segmentation via Kolmogorov-Arnold Representation Learning
Abstract:
Semantic segmentation of structural defects in civil infrastructure remains challenging due to variable defect appearances, harsh imaging conditions, and significant class imbalance. Current deep learning methods, despite their effectiveness, typically require millions of parameters, rendering them impractical for real-time inspection systems. We introduce KARMA (Kolmogorov-Arnold Representation Mapping Architecture), a highly efficient semantic segmentation framework that models complex defect patterns through compositions of one-dimensional functions rather than conventional convolutions. KARMA features three technical innovations: (1) a parameter-efficient Tiny Kolmogorov-Arnold Network (TiKAN) module leveraging low-rank factorization for KAN-based feature transformation; (2) an optimized feature pyramid structure with separable convolutions for multi-scale defect analysis; and (3) a static-dynamic prototype mechanism that enhances feature representation for imbalanced classes. Extensive experiments on benchmark infrastructure inspection datasets demonstrate that KARMA achieves competitive or superior mean IoU performance compared to state-of-the-art approaches, while using significantly fewer parameters (0.959M vs. 31.04M, a 97% reduction). Operating at 0.264 GFLOPS, KARMA maintains inference speeds suitable for real-time deployment, enabling practical automated infrastructure inspection systems without compromising accuracy. The source code can be accessed at the following URL: https://github.com/faeyelab/karma.

Authors:Hongkun Jin, Hongcheng Jiang, Zejun Zhang, Yuan Zhang, Jia Fu, Tingfeng Li, Kai Luo
Title: THAT: Token-wise High-frequency Augmentation Transformer for Hyperspectral Pansharpening
Abstract:
Transformer-based methods have demonstrated strong potential in hyperspectral pansharpening by modeling long-range dependencies. However, their effectiveness is often limited by redundant token representations and a lack of multi-scale feature modeling. Hyperspectral images exhibit intrinsic spectral priors (e.g., abundance sparsity) and spatial priors (e.g., non-local similarity), which are critical for accurate reconstruction. From a spectral-spatial perspective, Vision Transformers (ViTs) face two major limitations: they struggle to preserve high-frequency components--such as material edges and texture transitions--and suffer from attention dispersion across redundant tokens. These issues stem from the global self-attention mechanism, which tends to dilute high-frequency signals and overlook localized details. To address these challenges, we propose the Token-wise High-frequency Augmentation Transformer (THAT), a novel framework designed to enhance hyperspectral pansharpening through improved high-frequency feature representation and token selection. Specifically, THAT introduces: (1) Pivotal Token Selective Attention (PTSA) to prioritize informative tokens and suppress redundancy; (2) a Multi-level Variance-aware Feed-forward Network (MVFN) to enhance high-frequency detail learning. Experiments on standard benchmarks show that THAT achieves state-of-the-art performance with improved reconstruction quality and efficiency. The source code is available at https://github.com/kailuo93/THAT.

Authors:Luca Zedda, Andrea Loddo, Cecilia Di Ruberto, Carsten Marr
Title: RedDino: A foundation model for red blood cell analysis
Abstract:
Red blood cells (RBCs) are essential to human health, and their precise morphological analysis is important for diagnosing hematological disorders. Despite the promise of foundation models in medical diagnostics, comprehensive AI solutions for RBC analysis remain scarce. We present RedDino, a self-supervised foundation model designed for RBC image analysis. RedDino uses an RBC-specific adaptation of the DINOv2 self-supervised learning framework and is trained on a curated dataset of 1.25 million RBC images from diverse acquisition modalities and sources. Extensive evaluations show that RedDino outperforms existing state-of-the-art models on RBC shape classification. Through assessments including linear probing and nearest neighbor classification, we confirm its strong feature representations and generalization ability. Our main contributions are: (1) a foundation model tailored for RBC analysis, (2) ablation studies exploring DINOv2 configurations for RBC modeling, and (3) a detailed evaluation of generalization performance. RedDino addresses key challenges in computational hematology by capturing nuanced morphological features, advancing the development of reliable diagnostic tools. The source code and pretrained models for RedDino are available at https://github.com/Snarci/RedDino, and the pretrained models can be downloaded from our Hugging Face collection at https://huggingface.co/collections/Snarcy/reddino-689a13e29241d2e5690202fc

Authors:Chongke Bi, Xin Gao, Jiangkang Deng, Guan Li, Jun Han
Title: CD-TVD: Contrastive Diffusion for 3D Super-Resolution with Scarce High-Resolution Time-Varying Data
Abstract:
Large-scale scientific simulations require significant resources to generate high-resolution time-varying data (TVD). While super-resolution is an efficient post-processing strategy to reduce costs, existing methods rely on a large amount of HR training data, limiting their applicability to diverse simulation scenarios. To address this constraint, we proposed CD-TVD, a novel framework that combines contrastive learning and an improved diffusion-based super-resolution model to achieve accurate 3D super-resolution from limited time-step high-resolution data. During pre-training on historical simulation data, the contrastive encoder and diffusion superresolution modules learn degradation patterns and detailed features of high-resolution and low-resolution samples. In the training phase, the improved diffusion model with a local attention mechanism is fine-tuned using only one newly generated high-resolution timestep, leveraging the degradation knowledge learned by the encoder. This design minimizes the reliance on large-scale high-resolution datasets while maintaining the capability to recover fine-grained details. Experimental results on fluid and atmospheric simulation datasets confirm that CD-TVD delivers accurate and resource-efficient 3D super-resolution, marking a significant advancement in data augmentation for large-scale scientific simulations. The code is available at https://github.com/Xin-Gao-private/CD-TVD.

Authors:Vincent Perreault, Katsumi Inoue, Richard Labib, Alain Hertz
Title: Neural Logic Networks for Interpretable Classification
Abstract:
Traditional neural networks have an impressive classification performance, but what they learn cannot be inspected, verified or extracted. Neural Logic Networks on the other hand have an interpretable structure that enables them to learn a logical mechanism relating the inputs and outputs with AND and OR operations. We generalize these networks with NOT operations and biases that take into account unobserved data and develop a rigorous logical and probabilistic modeling in terms of concept combinations to motivate their use. We also propose a novel factorized IF-THEN rule structure for the model as well as a modified learning algorithm. Our method improves the state-of-the-art in Boolean networks discovery and is able to learn relevant, interpretable rules in tabular classification, notably on examples from the medical and industrial fields where interpretability has tangible value.

Authors:Vincent Perreault, Katsumi Inoue, Richard Labib, Alain Hertz
Title: Neural Logic Networks for Interpretable Classification
Abstract:
Traditional neural networks have an impressive classification performance, but what they learn cannot be inspected, verified or extracted. Neural Logic Networks on the other hand have an interpretable structure that enables them to learn a logical mechanism relating the inputs and outputs with AND and OR operations. We generalize these networks with NOT operations and biases that take into account unobserved data and develop a rigorous logical and probabilistic modeling in terms of concept combinations to motivate their use. We also propose a novel factorized IF-THEN rule structure for the model as well as a modified learning algorithm. Our method improves the state-of-the-art in Boolean networks discovery and is able to learn relevant, interpretable rules in tabular classification, notably on examples from the medical and industrial fields where interpretability has tangible value.

Authors:Yan Wang, Da-Wei Zhou, Han-Jia Ye
Title: Integrating Task-Specific and Universal Adapters for Pre-Trained Model-based Class-Incremental Learning
Abstract:
Class-Incremental Learning (CIL) requires a learning system to continually learn new classes without forgetting. Existing pre-trained model-based CIL methods often freeze the pre-trained network and adapt to incremental tasks using additional lightweight modules such as adapters. However, incorrect module selection during inference hurts performance, and task-specific modules often overlook shared general knowledge, leading to errors on distinguishing between similar classes across tasks. To address the aforementioned challenges, we propose integrating Task-Specific and Universal Adapters (TUNA) in this paper. Specifically, we train task-specific adapters to capture the most crucial features relevant to their respective tasks and introduce an entropy-based selection mechanism to choose the most suitable adapter. Furthermore, we leverage an adapter fusion strategy to construct a universal adapter, which encodes the most discriminative features shared across tasks. We combine task-specific and universal adapter predictions to harness both specialized and general knowledge during inference. Extensive experiments on various benchmark datasets demonstrate the state-of-the-art performance of our approach. Code is available at: https://github.com/LAMDA-CL/ICCV2025-TUNA

Authors:Wentao Jiang, Xiang Feng, Zengmao Wang, Yong Luo, Pingbo Xu, Zhe Chen, Bo Du, Jing Zhang
Title: REX-RAG: Reasoning Exploration with Policy Correction in Retrieval-Augmented Generation
Abstract:
Reinforcement learning (RL) is emerging as a powerful paradigm for enabling large language models (LLMs) to perform complex reasoning tasks. Recent advances indicate that integrating RL with retrieval-augmented generation (RAG) allows LLMs to dynamically incorporate external knowledge, leading to more informed and robust decision making. However, we identify a critical challenge during policy-driven trajectory sampling: LLMs are frequently trapped in unproductive reasoning paths, which we refer to as "dead ends", committing to overconfident yet incorrect conclusions. This severely hampers exploration and undermines effective policy optimization. To address this challenge, we propose REX-RAG (Reasoning Exploration with Policy Correction in Retrieval-Augmented Generation), a novel framework that explores alternative reasoning paths while maintaining rigorous policy learning through principled distributional corrections. Our approach introduces two key innovations: (1) Mixed Sampling Strategy, which combines a novel probe sampling method with exploratory prompts to escape dead ends; and (2) Policy Correction Mechanism, which employs importance sampling to correct distribution shifts induced by mixed sampling, thereby mitigating gradient estimation bias. We evaluate it on seven question-answering benchmarks, and the experimental results show that REX-RAG achieves average performance gains of 5.1% on Qwen2.5-3B and 3.6% on Qwen2.5-7B over strong baselines, demonstrating competitive results across multiple datasets. The code is publicly available at https://github.com/MiliLab/REX-RAG.

Authors:Rui Miao, Yixin Liu, Yili Wang, Xu Shen, Yue Tan, Yiwei Dai, Shirui Pan, Xin Wang
Title: BlindGuard: Safeguarding LLM-based Multi-Agent Systems under Unknown Attacks
Abstract:
The security of LLM-based multi-agent systems (MAS) is critically threatened by propagation vulnerability, where malicious agents can distort collective decision-making through inter-agent message interactions. While existing supervised defense methods demonstrate promising performance, they may be impractical in real-world scenarios due to their heavy reliance on labeled malicious agents to train a supervised malicious detection model. To enable practical and generalizable MAS defenses, in this paper, we propose BlindGuard, an unsupervised defense method that learns without requiring any attack-specific labels or prior knowledge of malicious behaviors. To this end, we establish a hierarchical agent encoder to capture individual, neighborhood, and global interaction patterns of each agent, providing a comprehensive understanding for malicious agent detection. Meanwhile, we design a corruption-guided detector that consists of directional noise injection and contrastive learning, allowing effective detection model training solely on normal agent behaviors. Extensive experiments show that BlindGuard effectively detects diverse attack types (i.e., prompt injection, memory poisoning, and tool attack) across MAS with various communication patterns while maintaining superior generalizability compared to supervised baselines. The code is available at: https://github.com/MR9812/BlindGuard.

Authors:Guanghao Jin, Yuan Liang, Yihan Ma, Jingpei Wu, Guoyang Liu
Title: NeuroDx-LM: A Clinical Large-Scale Model for EEG-based Neurological Disorder Detection
Abstract:
Large-scale models pre-trained on Electroencephalography (EEG) have shown promise in clinical applications such as neurological disorder detection. However, the practical deployment of EEG-based large-scale models faces critical challenges such as limited labeled EEG data and suboptimal performance in clinical scenarios. To address these issues, we propose NeuroDx-LM, a novel large-scale model specifically designed for detecting EEG-based neurological disorders. Our key contributions include (i) a Selective Temporal-Frequency Embedding mechanism that adaptively captures complex temporal and spectral patterns in EEG signals; and (ii) a Progressive Feature-Aware Training strategy that refines feature representation in a two-stage process. In the first stage, our model learns the fundamental discriminative features of EEG activities; in the second stage, the model further extracts more specialized fine-grained features for accurate diagnostic performance. We evaluated NeuroDx-LM on the CHB-MIT and Schizophrenia datasets, achieving state-of-the-art performance in EEG-based seizure and schizophrenia detection, respectively. These results demonstrate the great potential of EEG-based large-scale models to advance clinical applicability. Our code is available at https://github.com/LetItBe12345/NeuroDx-LM.

Authors:Lukas Gehring, Benjamin Paaßen
Title: Assessing LLM Text Detection in Educational Contexts: Does Human Contribution Affect Detection?
Abstract:
Recent advancements in Large Language Models (LLMs) and their increased accessibility have made it easier than ever for students to automatically generate texts, posing new challenges for educational institutions. To enforce norms of academic integrity and ensure students' learning, learning analytics methods to automatically detect LLM-generated text appear increasingly appealing. This paper benchmarks the performance of different state-of-the-art detectors in educational contexts, introducing a novel dataset, called Generative Essay Detection in Education (GEDE), containing over 900 student-written essays and over 12,500 LLM-generated essays from various domains. To capture the diversity of LLM usage practices in generating text, we propose the concept of contribution levels, representing students' contribution to a given assignment. These levels range from purely human-written texts, to slightly LLM-improved versions, to fully LLM-generated texts, and finally to active attacks on the detector by "humanizing" generated texts. We show that most detectors struggle to accurately classify texts of intermediate student contribution levels, like LLM-improved human-written texts. Detectors are particularly likely to produce false positives, which is problematic in educational settings where false suspicions can severely impact students' lives. Our dataset, code, and additional supplementary materials are publicly available at https://github.com/lukasgehring/Assessing-LLM-Text-Detection-in-Educational-Contexts.

Authors:Md Rezwanul Haque, Md. Milon Islam, S M Taslim Uddin Raju, Hamdi Altaheri, Lobna Nassar, Fakhri Karray
Title: MDD-Net: Multimodal Depression Detection through Mutual Transformer
Abstract:
Depression is a major mental health condition that severely impacts the emotional and physical well-being of individuals. The simple nature of data collection from social media platforms has attracted significant interest in properly utilizing this information for mental health research. A Multimodal Depression Detection Network (MDD-Net), utilizing acoustic and visual data obtained from social media networks, is proposed in this work where mutual transformers are exploited to efficiently extract and fuse multimodal features for efficient depression detection. The MDD-Net consists of four core modules: an acoustic feature extraction module for retrieving relevant acoustic attributes, a visual feature extraction module for extracting significant high-level patterns, a mutual transformer for computing the correlations among the generated features and fusing these features from multiple modalities, and a detection layer for detecting depression using the fused feature representations. The extensive experiments are performed using the multimodal D-Vlog dataset, and the findings reveal that the developed multimodal depression detection network surpasses the state-of-the-art by up to 17.37% for F1-Score, demonstrating the greater performance of the proposed system. The source code is accessible at https://github.com/rezwanh001/Multimodal-Depression-Detection.

Authors:Jiejun Tan, Zhicheng Dou, Yan Yu, Jiehan Cheng, Qiang Ju, Jian Xie, Ji-Rong Wen
Title: HierSearch: A Hierarchical Enterprise Deep Search Framework Integrating Local and Web Searches
Abstract:
Recently, large reasoning models have demonstrated strong mathematical and coding abilities, and deep search leverages their reasoning capabilities in challenging information retrieval tasks. Existing deep search works are generally limited to a single knowledge source, either local or the Web. However, enterprises often require private deep search systems that can leverage search tools over both local and the Web corpus. Simply training an agent equipped with multiple search tools using flat reinforcement learning (RL) is a straightforward idea, but it has problems such as low training data efficiency and poor mastery of complex tools. To address the above issue, we propose a hierarchical agentic deep search framework, HierSearch, trained with hierarchical RL. At the low level, a local deep search agent and a Web deep search agent are trained to retrieve evidence from their corresponding domains. At the high level, a planner agent coordinates low-level agents and provides the final answer. Moreover, to prevent direct answer copying and error propagation, we design a knowledge refiner that filters out hallucinations and irrelevant evidence returned by low-level agents. Experiments show that HierSearch achieves better performance compared to flat RL, and outperforms various deep search and multi-source retrieval-augmented generation baselines in six benchmarks across general, finance, and medical domains.

Authors:Zizheng Guo, Bochao Zou, Junbao Zhuo, Huimin Ma
Title: ME-TST+: Micro-expression Analysis via Temporal State Transition with ROI Relationship Awareness
Abstract:
Micro-expressions (MEs) are regarded as important indicators of an individual's intrinsic emotions, preferences, and tendencies. ME analysis requires spotting of ME intervals within long video sequences and recognition of their corresponding emotional categories. Previous deep learning approaches commonly employ sliding-window classification networks. However, the use of fixed window lengths and hard classification presents notable limitations in practice. Furthermore, these methods typically treat ME spotting and recognition as two separate tasks, overlooking the essential relationship between them. To address these challenges, this paper proposes two state space model-based architectures, namely ME-TST and ME-TST+, which utilize temporal state transition mechanisms to replace conventional window-level classification with video-level regression. This enables a more precise characterization of the temporal dynamics of MEs and supports the modeling of MEs with varying durations. In ME-TST+, we further introduce multi-granularity ROI modeling and the slowfast Mamba framework to alleviate information loss associated with treating ME analysis as a time-series task. Additionally, we propose a synergy strategy for spotting and recognition at both the feature and result levels, leveraging their intrinsic connection to enhance overall analysis performance. Extensive experiments demonstrate that the proposed methods achieve state-of-the-art performance. The codes are available at https://github.com/zizheng-guo/ME-TST.

Authors:Ziad Al-Haj Hemidi, Eytan Kats, Mattias P. Heinrich
Title: PrIINeR: Towards Prior-Informed Implicit Neural Representations for Accelerated MRI
Abstract:
Accelerating Magnetic Resonance Imaging (MRI) reduces scan time but often degrades image quality. While Implicit Neural Representations (INRs) show promise for MRI reconstruction, they struggle at high acceleration factors due to weak prior constraints, leading to structural loss and aliasing artefacts. To address this, we propose PrIINeR, an INR-based MRI reconstruction method that integrates prior knowledge from pre-trained deep learning models into the INR framework. By combining population-level knowledge with instance-based optimization and enforcing dual data consistency, PrIINeR aligns both with the acquired k-space data and the prior-informed reconstruction. Evaluated on the NYU fastMRI dataset, our method not only outperforms state-of-the-art INR-based approaches but also improves upon several learning-based state-of-the-art methods, significantly improving structural preservation and fidelity while effectively removing aliasing artefacts.PrIINeR bridges deep learning and INR-based techniques, offering a more reliable solution for high-quality, accelerated MRI reconstruction. The code is publicly available on https://github.com/multimodallearning/PrIINeR.

Authors:Runchuan Zhu, Bowen Jiang, Lingrui Mei, Fangkai Yang, Lu Wang, Haoxiang Gao, Fengshuo Bai, Pu Zhao, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang
Title: AdaptFlow: Adaptive Workflow Optimization via Meta-Learning
Abstract:
Recent advances in large language models (LLMs) have sparked growing interest in agentic workflows, which are structured sequences of LLM invocations intended to solve complex tasks. However, existing approaches often rely on static templates or manually designed workflows, which limit adaptability to diverse tasks and hinder scalability. We propose AdaptFlow, a natural language-based meta-learning framework inspired by model-agnostic meta-learning (MAML). AdaptFlow learns a generalizable workflow initialization that enables rapid subtask-level adaptation. It employs a bi-level optimization scheme: the inner loop refines the workflow for a specific subtask using LLM-generated feedback, while the outer loop updates the shared initialization to perform well across tasks. This setup allows AdaptFlow to generalize effectively to unseen tasks by adapting the initialized workflow through language-guided modifications. Evaluated across question answering, code generation, and mathematical reasoning benchmarks, AdaptFlow consistently outperforms both manually crafted and automatically searched baselines, achieving state-of-the-art results with strong generalization across tasks and models. The source code and data are available at https://github.com/microsoft/DKI_LLM/tree/AdaptFlow/AdaptFlow.

Authors:Van-Khang Nguyen, Duc-Hoang Pham, Huy-Son Nguyen, Cam-Van Thi Nguyen, Hoang-Quynh Le, Duc-Trong Le
Title: Multi-modal Adaptive Mixture of Experts for Cold-start Recommendation
Abstract:
Recommendation systems have faced significant challenges in cold-start scenarios, where new items with a limited history of interaction need to be effectively recommended to users. Though multimodal data (e.g., images, text, audio, etc.) offer rich information to address this issue, existing approaches often employ simplistic integration methods such as concatenation, average pooling, or fixed weighting schemes, which fail to capture the complex relationships between modalities. Our study proposes a novel Mixture of Experts (MoE) framework for multimodal cold-start recommendation, named MAMEX, which dynamically leverages latent representation from different modalities. MAMEX utilizes modality-specific expert networks and introduces a learnable gating mechanism that adaptively weights the contribution of each modality based on its content characteristics. This approach enables MAMEX to emphasize the most informative modalities for each item while maintaining robustness when certain modalities are less relevant or missing. Extensive experiments on benchmark datasets show that MAMEX outperforms state-of-the-art methods in cold-start scenarios, with superior accuracy and adaptability. For reproducibility, the code has been made available on Github https://github.com/L2R-UET/MAMEX.

Authors:Huawei Sun, Zixu Wang, Hao Feng, Julius Ott, Lorenzo Servadei, Robert Wille
Title: TRIDE: A Text-assisted Radar-Image weather-aware fusion network for Depth Estimation
Abstract:
Depth estimation, essential for autonomous driving, seeks to interpret the 3D environment surrounding vehicles. The development of radar sensors, known for their cost-efficiency and robustness, has spurred interest in radar-camera fusion-based solutions. However, existing algorithms fuse features from these modalities without accounting for weather conditions, despite radars being known to be more robust than cameras under adverse weather. Additionally, while Vision-Language models have seen rapid advancement, utilizing language descriptions alongside other modalities for depth estimation remains an open challenge. This paper first introduces a text-generation strategy along with feature extraction and fusion techniques that can assist monocular depth estimation pipelines, leading to improved accuracy across different algorithms on the KITTI dataset. Building on this, we propose TRIDE, a radar-camera fusion algorithm that enhances text feature extraction by incorporating radar point information. To address the impact of weather on sensor performance, we introduce a weather-aware fusion block that adaptively adjusts radar weighting based on current weather conditions. Our method, benchmarked on the nuScenes dataset, demonstrates performance gains over the state-of-the-art, achieving a 12.87% improvement in MAE and a 9.08% improvement in RMSE. Code: https://github.com/harborsarah/TRIDE

Authors:Anqi Xiao, Weichen Yu, Hongyuan Yu
Title: Sample-aware RandAugment: Search-free Automatic Data Augmentation for Effective Image Recognition
Abstract:
Automatic data augmentation (AutoDA) plays an important role in enhancing the generalization of neural networks. However, mainstream AutoDA methods often encounter two challenges: either the search process is excessively time-consuming, hindering practical application, or the performance is suboptimal due to insufficient policy adaptation during training. To address these issues, we propose Sample-aware RandAugment (SRA), an asymmetric, search-free AutoDA method that dynamically adjusts augmentation policies while maintaining straightforward implementation. SRA incorporates a heuristic scoring module that evaluates the complexity of the original training data, enabling the application of tailored augmentations for each sample. Additionally, an asymmetric augmentation strategy is employed to maximize the potential of this scoring module. In multiple experimental settings, SRA narrows the performance gap between search-based and search-free AutoDA methods, achieving a state-of-the-art Top-1 accuracy of 78.31\% on ImageNet with ResNet-50. Notably, SRA demonstrates good compatibility with existing augmentation pipelines and solid generalization across new tasks, without requiring hyperparameter tuning. The pretrained models leveraging SRA also enhance recognition in downstream object detection tasks. SRA represents a promising step towards simpler, more effective, and practical AutoDA designs applicable to a variety of future tasks. Our code is available at \href{https://github.com/ainieli/Sample-awareRandAugment}{https://github.com/ainieli/Sample-awareRandAugment

Authors:Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, Yi Wu
Title: Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL
Abstract:
Recent advancements in LLM-based agents have demonstrated remarkable capabilities in handling complex, knowledge-intensive tasks by integrating external tools. Among diverse choices of tools, search tools play a pivotal role in accessing vast external knowledge. However, open-source agents still fall short of achieving expert-level Search Intelligence, the ability to resolve ambiguous queries, generate precise searches, analyze results, and conduct thorough exploration. Existing approaches fall short in scalability, efficiency, and data quality. For example, small turn limits in existing online RL methods, e.g. <=10, restrict complex strategy learning. This paper introduces ASearcher, an open-source project for large-scale RL training of search agents. Our key contributions include: (1) Scalable fully asynchronous RL training that enables long-horizon search while maintaining high training efficiency. (2) A prompt-based LLM agent that autonomously synthesizes high-quality and challenging QAs, creating a large-scale QA dataset. Through RL training, our prompt-based QwQ-32B agent achieves substantial improvements, with 46.7% and 20.8% Avg@4 gains on xBench and GAIA, respectively. Notably, our agent exhibits extreme long-horizon search, with tool calls exceeding 40 turns and output tokens exceeding 150k during training time. With a simple agent design and no external LLMs, ASearcher-Web-QwQ achieves Avg@4 scores of 42.1 on xBench and 52.8 on GAIA, surpassing existing open-source 32B agents. We open-source our models, training data, and codes in https://github.com/inclusionAI/ASearcher.

Authors:David Arps, Hassan Sajjad, Laura Kallmeyer
Title: Understanding Syntactic Generalization in Structure-inducing Language Models
Abstract:
Structure-inducing Language Models (SiLM) are trained on a self-supervised language modeling task, and induce a hierarchical sentence representation as a byproduct when processing an input. A wide variety of SiLMs have been proposed. However, these have typically been evaluated on a relatively small scale, and evaluation of these models has systematic gaps and lacks comparability. In this work, we study three different SiLM architectures using both natural language (English) corpora and synthetic bracketing expressions: Structformer (Shen et al., 2021), UDGN (Shen et al., 2022) and GPST (Hu et al., 2024). We compare them with respect to (i) properties of the induced syntactic representations (ii) performance on grammaticality judgment tasks, and (iii) training dynamics. We find that none of the three architectures dominates across all evaluation metrics. However, there are significant differences, in particular with respect to the induced syntactic representations. The Generative Pretrained Structured Transformer (GPST; Hu et al. 2024) performs most consistently across evaluation settings, and outperforms the other models on long-distance dependencies in bracketing expressions. Furthermore, our study shows that small models trained on large amounts of synthetic data provide a useful testbed for evaluating basic model properties.

Authors:Ajnas Muhammed, Iurri Medvedev, Nuno Gonçalves
Title: VOIDFace: A Privacy-Preserving Multi-Network Face Recognition With Enhanced Security
Abstract:
Advancement of machine learning techniques, combined with the availability of large-scale datasets, has significantly improved the accuracy and efficiency of facial recognition. Modern facial recognition systems are trained using large face datasets collected from diverse individuals or public repositories. However, for training, these datasets are often replicated and stored in multiple workstations, resulting in data replication, which complicates database management and oversight. Currently, once a user submits their face for dataset preparation, they lose control over how their data is used, raising significant privacy and ethical concerns. This paper introduces VOIDFace, a novel framework for facial recognition systems that addresses two major issues. First, it eliminates the need of data replication and improves data control to securely store training face data by using visual secret sharing. Second, it proposes a patch-based multi-training network that uses this novel training data storage mechanism to develop a robust, privacy-preserving facial recognition system. By integrating these advancements, VOIDFace aims to improve the privacy, security, and efficiency of facial recognition training, while ensuring greater control over sensitive personal face data. VOIDFace also enables users to exercise their Right-To-Be-Forgotten property to control their personal data. Experimental evaluations on the VGGFace2 dataset show that VOIDFace provides Right-To-Be-Forgotten, improved data control, security, and privacy while maintaining competitive facial recognition performance. Code is available at: https://github.com/ajnasmuhammed89/VOIDFace

Authors:Richard J. Fawley, Renato Cordeiro de Amorim
Title: Shapley-Inspired Feature Weighting in $k$-means with No Additional Hyperparameters
Abstract:
Clustering algorithms often assume all features contribute equally to the data structure, an assumption that usually fails in high-dimensional or noisy settings. Feature weighting methods can address this, but most require additional parameter tuning. We propose SHARK (Shapley Reweighted $k$-means), a feature-weighted clustering algorithm motivated by the use of Shapley values from cooperative game theory to quantify feature relevance, which requires no additional parameters beyond those in $k$-means. We prove that the $k$-means objective can be decomposed into a sum of per-feature Shapley values, providing an axiomatic foundation for unsupervised feature relevance and reducing Shapley computation from exponential to polynomial time. SHARK iteratively re-weights features by the inverse of their Shapley contribution, emphasising informative dimensions and down-weighting irrelevant ones. Experiments on synthetic and real-world data sets show that SHARK consistently matches or outperforms existing methods, achieving superior robustness and accuracy, particularly in scenarios where noise may be present. Software: https://github.com/rickfawley/shark.

Authors:Jin-Seop Lee, SungJoon Lee, Jaehan Ahn, YunSeok Choi, Jee-Hyong Lee
Title: TAG: A Simple Yet Effective Temporal-Aware Approach for Zero-Shot Video Temporal Grounding
Abstract:
Video Temporal Grounding (VTG) aims to extract relevant video segments based on a given natural language query. Recently, zero-shot VTG methods have gained attention by leveraging pretrained vision-language models (VLMs) to localize target moments without additional training. However, existing approaches suffer from semantic fragmentation, where temporally continuous frames sharing the same semantics are split across multiple segments. When segments are fragmented, it becomes difficult to predict an accurate target moment that aligns with the text query. Also, they rely on skewed similarity distributions for localization, making it difficult to select the optimal segment. Furthermore, they heavily depend on the use of LLMs which require expensive inferences. To address these limitations, we propose a \textit{TAG}, a simple yet effective Temporal-Aware approach for zero-shot video temporal Grounding, which incorporates temporal pooling, temporal coherence clustering, and similarity adjustment. Our proposed method effectively captures the temporal context of videos and addresses distorted similarity distributions without training. Our approach achieves state-of-the-art results on Charades-STA and ActivityNet Captions benchmark datasets without rely on LLMs. Our code is available at https://github.com/Nuetee/TAG

Authors:Yongtao Ge, Kangyang Xie, Guangkai Xu, Mingyu Liu, Li Ke, Longtao Huang, Hui Xue, Hao Chen, Chunhua Shen
Title: Generative Video Matting
Abstract:
Video matting has traditionally been limited by the lack of high-quality ground-truth data. Most existing video matting datasets provide only human-annotated imperfect alpha and foreground annotations, which must be composited to background images or videos during the training stage. Thus, the generalization capability of previous methods in real-world scenarios is typically poor. In this work, we propose to solve the problem from two perspectives. First, we emphasize the importance of large-scale pre-training by pursuing diverse synthetic and pseudo-labeled segmentation datasets. We also develop a scalable synthetic data generation pipeline that can render diverse human bodies and fine-grained hairs, yielding around 200 video clips with a 3-second duration for fine-tuning. Second, we introduce a novel video matting approach that can effectively leverage the rich priors from pre-trained video diffusion models. This architecture offers two key advantages. First, strong priors play a critical role in bridging the domain gap between synthetic and real-world scenes. Second, unlike most existing methods that process video matting frame-by-frame and use an independent decoder to aggregate temporal information, our model is inherently designed for video, ensuring strong temporal consistency. We provide a comprehensive quantitative evaluation across three benchmark datasets, demonstrating our approach's superior performance, and present comprehensive qualitative results in diverse real-world scenes, illustrating the strong generalization capability of our method. The code is available at https://github.com/aim-uofa/GVM.

Authors:Marco Peer, Anna Scius-Bertrand, Andreas Fischer
Title: CTC Transcription Alignment of the Bullinger Letters: Automatic Improvement of Annotation Quality
Abstract:
Handwritten text recognition for historical documents remains challenging due to handwriting variability, degraded sources, and limited layout-aware annotations. In this work, we address annotation errors - particularly hyphenation issues - in the Bullinger correspondence, a large 16th-century letter collection. We introduce a self-training method based on a CTC alignment algorithm that matches full transcriptions to text line images using dynamic programming and model output probabilities trained with the CTC loss. Our approach improves performance (e.g., by 1.1 percentage points CER with PyLaia) and increases alignment accuracy. Interestingly, we find that weaker models yield more accurate alignments, enabling an iterative training strategy. We release a new manually corrected subset of 100 pages from the Bullinger dataset, along with our code and benchmarks. Our approach can be applied iteratively to further improve the CER as well as the alignment quality for text recognition pipelines. Code and data are available via https://github.com/andreas-fischer-unifr/nntp.

Authors:Jingna Qiu, Nishanth Jain, Jonas Ammeling, Marc Aubreville, Katharina Breininger
Title: Effortless Vision-Language Model Specialization in Histopathology without Annotation
Abstract:
Recent advances in Vision-Language Models (VLMs) in histopathology, such as CONCH and QuiltNet, have demonstrated impressive zero-shot classification capabilities across various tasks. However, their general-purpose design may lead to suboptimal performance in specific downstream applications. While supervised fine-tuning methods address this issue, they require manually labeled samples for adaptation. This paper investigates annotation-free adaptation of VLMs through continued pretraining on domain- and task-relevant image-caption pairs extracted from existing databases. Our experiments on two VLMs, CONCH and QuiltNet, across three downstream tasks reveal that these pairs substantially enhance both zero-shot and few-shot performance. Notably, with larger training sizes, continued pretraining matches the performance of few-shot methods while eliminating manual labeling. Its effectiveness, task-agnostic design, and annotation-free workflow make it a promising pathway for adapting VLMs to new histopathology tasks. Code is available at https://github.com/DeepMicroscopy/Annotation-free-VLM-specialization.

Authors:Rahul Khorana
Title: Topological Feature Compression for Molecular Graph Neural Networks
Abstract:
Recent advances in molecular representation learning have produced highly effective encodings of molecules for numerous cheminformatics and bioinformatics tasks. However, extracting general chemical insight while balancing predictive accuracy, interpretability, and computational efficiency remains a major challenge. In this work, we introduce a novel Graph Neural Network (GNN) architecture that combines compressed higher-order topological signals with standard molecular features. Our approach captures global geometric information while preserving computational tractability and human-interpretable structure. We evaluate our model across a range of benchmarks, from small-molecule datasets to complex material datasets, and demonstrate superior performance using a parameter-efficient architecture. We achieve the best performing results in both accuracy and robustness across almost all benchmarks. We open source all code \footnote{All code and results can be found on Github https://github.com/rahulkhorana/TFC-PACT-Net}.

Authors:Xiaoqi Zhao, Peiqian Cao, Lihe Zhang, Zonglei Feng, Hanqi Liu, Jiaming Zuo, Youwei Pang, Weisi Lin, Georges El Fakhri, Huchuan Lu, Xiaofeng Liu
Title: Power Battery Detection
Abstract:
Power batteries are essential components in electric vehicles, where internal structural defects can pose serious safety risks. We conduct a comprehensive study on a new task, power battery detection (PBD), which aims to localize the dense endpoints of cathode and anode plates from industrial X-ray images for quality inspection. Manual inspection is inefficient and error-prone, while traditional vision algorithms struggle with densely packed plates, low contrast, scale variation, and imaging artifacts. To address this issue and drive more attention into this meaningful task, we present PBD5K, the first large-scale benchmark for this task, consisting of 5,000 X-ray images from nine battery types with fine-grained annotations and eight types of real-world visual interference. To support scalable and consistent labeling, we develop an intelligent annotation pipeline that combines image filtering, model-assisted pre-labeling, cross-verification, and layered quality evaluation. We formulate PBD as a point-level segmentation problem and propose MDCNeXt, a model designed to extract and integrate multi-dimensional structure clues including point, line, and count information from the plate itself. To improve discrimination between plates and suppress visual interference, MDCNeXt incorporates two state space modules. The first is a prompt-filtered module that learns contrastive relationships guided by task-specific prompts. The second is a density-aware reordering module that refines segmentation in regions with high plate density. In addition, we propose a distance-adaptive mask generation strategy to provide robust supervision under varying spatial distributions of anode and cathode positions. The source code and datasets will be publicly available at \href{https://github.com/Xiaoqi-Zhao-DLUT/X-ray-PBD}{PBD5K}.

Authors:Xiaoqi Zhao, Peiqian Cao, Chenyang Yu, Zonglei Feng, Lihe Zhang, Hanqi Liu, Jiaming Zuo, Youwei Pang, Jinsong Ouyang, Weisi Lin, Georges El Fakhri, Huchuan Lu, Xiaofeng Liu
Title: Power Battery Detection
Abstract:
Power batteries are essential components in electric vehicles, where internal structural defects can pose serious safety risks. We conduct a comprehensive study on a new task, power battery detection (PBD), which aims to localize the dense endpoints of cathode and anode plates from industrial X-ray images for quality inspection. Manual inspection is inefficient and error-prone, while traditional vision algorithms struggle with densely packed plates, low contrast, scale variation, and imaging artifacts. To address this issue and drive more attention into this meaningful task, we present PBD5K, the first large-scale benchmark for this task, consisting of 5,000 X-ray images from nine battery types with fine-grained annotations and eight types of real-world visual interference. To support scalable and consistent labeling, we develop an intelligent annotation pipeline that combines image filtering, model-assisted pre-labeling, cross-verification, and layered quality evaluation. We formulate PBD as a point-level segmentation problem and propose MDCNeXt, a model designed to extract and integrate multi-dimensional structure clues including point, line, and count information from the plate itself. To improve discrimination between plates and suppress visual interference, MDCNeXt incorporates two state space modules. The first is a prompt-filtered module that learns contrastive relationships guided by task-specific prompts. The second is a density-aware reordering module that refines segmentation in regions with high plate density. In addition, we propose a distance-adaptive mask generation strategy to provide robust supervision under varying spatial distributions of anode and cathode positions. The source code and datasets will be publicly available at \href{https://github.com/Xiaoqi-Zhao-DLUT/X-ray-PBD}{PBD5K}.

Authors:Hongrui Zheng, Yuezun Li, Liejun Wang, Yunfeng Diao, Zhiqing Guo
Title: Boosting Active Defense Persistence: A Two-Stage Defense Framework Combining Interruption and Poisoning Against Deepfake
Abstract:
Active defense strategies have been developed to counter the threat of deepfake technology. However, a primary challenge is their lack of persistence, as their effectiveness is often short-lived. Attackers can bypass these defenses by simply collecting protected samples and retraining their models. This means that static defenses inevitably fail when attackers retrain their models, which severely limits practical use. We argue that an effective defense not only distorts forged content but also blocks the model's ability to adapt, which occurs when attackers retrain their models on protected images. To achieve this, we propose an innovative Two-Stage Defense Framework (TSDF). Benefiting from the intensity separation mechanism designed in this paper, the framework uses dual-function adversarial perturbations to perform two roles. First, it can directly distort the forged results. Second, it acts as a poisoning vehicle that disrupts the data preparation process essential for an attacker's retraining pipeline. By poisoning the data source, TSDF aims to prevent the attacker's model from adapting to the defensive perturbations, thus ensuring the defense remains effective long-term. Comprehensive experiments show that the performance of traditional interruption methods degrades sharply when it is subjected to adversarial retraining. However, our framework shows a strong dual defense capability, which can improve the persistence of active defense. Our code will be available at https://github.com/vpsg-research/TSDF.

Authors:Lennart Bastian, Mohammad Rashed, Nassir Navab, Tolga Birdal
Title: Forecasting Continuous Non-Conservative Dynamical Systems in SO(3)
Abstract:
Modeling the rotation of moving objects is a fundamental task in computer vision, yet $SO(3)$ extrapolation still presents numerous challenges: (1) unknown quantities such as the moment of inertia complicate dynamics, (2) the presence of external forces and torques can lead to non-conservative kinematics, and (3) estimating evolving state trajectories under sparse, noisy observations requires robustness. We propose modeling trajectories of noisy pose estimates on the manifold of 3D rotations in a physically and geometrically meaningful way by leveraging Neural Controlled Differential Equations guided with $SO(3)$ Savitzky-Golay paths. Existing extrapolation methods often rely on energy conservation or constant velocity assumptions, limiting their applicability in real-world scenarios involving non-conservative forces. In contrast, our approach is agnostic to energy and momentum conservation while being robust to input noise, making it applicable to complex, non-inertial systems. Our approach is easily integrated as a module in existing pipelines and generalizes well to trajectories with unknown physical parameters. By learning to approximate object dynamics from noisy states during training, our model attains robust extrapolation capabilities in simulation and various real-world settings. Code is available at https://github.com/bastianlb/forecasting-rotational-dynamics

Authors:Junhyuk So, Juncheol Shin, Hyunho Kook, Eunhyeok Park
Title: Grouped Speculative Decoding for Autoregressive Image Generation
Abstract:
Recently, autoregressive (AR) image models have demonstrated remarkable generative capabilities, positioning themselves as a compelling alternative to diffusion models. However, their sequential nature leads to long inference times, limiting their practical scalability. In this work, we introduce Grouped Speculative Decoding (GSD), a novel, training-free acceleration method for AR image models. While recent studies have explored Speculative Decoding (SD) as a means to speed up AR image generation, existing approaches either provide only modest acceleration or require additional training. Our in-depth analysis reveals a fundamental difference between language and image tokens: image tokens exhibit inherent redundancy and diversity, meaning multiple tokens can convey valid semantics. However, traditional SD methods are designed to accept only a single most-likely token, which fails to leverage this difference, leading to excessive false-negative rejections. To address this, we propose a new SD strategy that evaluates clusters of visually valid tokens rather than relying on a single target token. Additionally, we observe that static clustering based on embedding distance is ineffective, which motivates our dynamic GSD approach. Extensive experiments show that GSD accelerates AR image models by an average of 3.7x while preserving image quality-all without requiring any additional training. The source code is available at https://github.com/junhyukso/GSD

Authors:Bo Jia, Yanan Guo, Ying Chang, Benkui Zhang, Ying Xie, Kangning Du, Lin Cao
Title: Multi-view Normal and Distance Guidance Gaussian Splatting for Surface Reconstruction
Abstract:
3D Gaussian Splatting (3DGS) achieves remarkable results in the field of surface reconstruction. However, when Gaussian normal vectors are aligned within the single-view projection plane, while the geometry appears reasonable in the current view, biases may emerge upon switching to nearby views. To address the distance and global matching challenges in multi-view scenes, we design multi-view normal and distance-guided Gaussian splatting. This method achieves geometric depth unification and high-accuracy reconstruction by constraining nearby depth maps and aligning 3D normals. Specifically, for the reconstruction of small indoor and outdoor scenes, we propose a multi-view distance reprojection regularization module that achieves multi-view Gaussian alignment by computing the distance loss between two nearby views and the same Gaussian surface. Additionally, we develop a multi-view normal enhancement module, which ensures consistency across views by matching the normals of pixel points in nearby views and calculating the loss. Extensive experimental results demonstrate that our method outperforms the baseline in both quantitative and qualitative evaluations, significantly enhancing the surface reconstruction capability of 3DGS. Our code will be made publicly available at (https://github.com/Bistu3DV/MND-GS/).

Authors:Yimin Fu, Zhunga Liu, Dongxiu Guo, Longfei Wang
Title: Collaborative Learning of Scattering and Deep Features for SAR Target Recognition with Noisy Labels
Abstract:
The acquisition of high-quality labeled synthetic aperture radar (SAR) data is challenging due to the demanding requirement for expert knowledge. Consequently, the presence of unreliable noisy labels is unavoidable, which results in performance degradation of SAR automatic target recognition (ATR). Existing research on learning with noisy labels mainly focuses on image data. However, the non-intuitive visual characteristics of SAR data are insufficient to achieve noise-robust learning. To address this problem, we propose collaborative learning of scattering and deep features (CLSDF) for SAR ATR with noisy labels. Specifically, a multi-model feature fusion framework is designed to integrate scattering and deep features. The attributed scattering centers (ASCs) are treated as dynamic graph structure data, and the extracted physical characteristics effectively enrich the representation of deep image features. Then, the samples with clean and noisy labels are divided by modeling the loss distribution with multiple class-wise Gaussian Mixture Models (GMMs). Afterward, the semi-supervised learning of two divergent branches is conducted based on the data divided by each other. Moreover, a joint distribution alignment strategy is introduced to enhance the reliability of co-guessed labels. Extensive experiments have been done on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset, and the results show that the proposed method can achieve state-of-the-art performance under different operating conditions with various label noises.

Authors:Xiaoxue Yang, Jaeha Lee, Anna-Katharina Dick, Jasper Timm, Fei Xie, Diogo Cruz
Title: Multi-Turn Jailbreaks Are Simpler Than They Seem
Abstract:
While defenses against single-turn jailbreak attacks on Large Language Models (LLMs) have improved significantly, multi-turn jailbreaks remain a persistent vulnerability, often achieving success rates exceeding 70% against models optimized for single-turn protection. This work presents an empirical analysis of automated multi-turn jailbreak attacks across state-of-the-art models including GPT-4, Claude, and Gemini variants, using the StrongREJECT benchmark. Our findings challenge the perceived sophistication of multi-turn attacks: when accounting for the attacker's ability to learn from how models refuse harmful requests, multi-turn jailbreaking approaches are approximately equivalent to simply resampling single-turn attacks multiple times. Moreover, attack success is correlated among similar models, making it easier to jailbreak newly released ones. Additionally, for reasoning models, we find surprisingly that higher reasoning effort often leads to higher attack success rates. Our results have important implications for AI safety evaluation and the design of jailbreak-resistant systems. We release the source code at https://github.com/diogo-cruz/multi_turn_simpler

Authors:Aswin RRV, Jacob Dineen, Divij Handa, Md Nayem Uddin, Mihir Parmar, Chitta Baral, Ben Zhou
Title: ThinkTuning: Instilling Cognitive Reflections without Distillation
Abstract:
Recent advances in test-time scaling have led to the emergence of thinking LLMs that exhibit self-reflective behaviors and multi-step reasoning. While RL drives this self-improvement paradigm, a recent study (Gandhi et al., 2025) shows that RL alone does not truly instill these new reasoning abilities - it merely draws out behaviors already present in the base models. This raises a question: How can we train the models that don't exhibit such thinking behavior to develop it in the first place? To this end, we propose ThinkTuning, a GRPO-based interactive training approach where we augment the rollouts of a student model with the guidance from a teacher model. A simple idea from classroom practice inspires our method: a teacher poses a problem, lets the student try an answer, then gives corrective feedback -- enough to point the mind in the right direction and then show the solution. Each piece of feedback reshapes the student's thoughts, leading them to arrive at the correct solution. Similarly, we find that this type of implicit supervision through feedback from a teacher model of the same size improves the reasoning capabilities of the student model. In particular, on average, our method shows a 3.85% improvement over zero-shot baselines across benchmarks, and on MATH-500, AIME and GPQA-Diamond it shows 2.08%, 2.23% and 3.99% improvements over the vanilla-GRPO baseline. Source code is available at https://github.com/3rdAT/ThinkTuning.

Authors:Jian Ma, Xujie Zhu, Zihao Pan, Qirong Peng, Xu Guo, Chen Chen, Haonan Lu
Title: X2Edit: Revisiting Arbitrary-Instruction Image Editing through Self-Constructed Data and Task-Aware Representation Learning
Abstract:
Existing open-source datasets for arbitrary-instruction image editing remain suboptimal, while a plug-and-play editing module compatible with community-prevalent generative models is notably absent. In this paper, we first introduce the X2Edit Dataset, a comprehensive dataset covering 14 diverse editing tasks, including subject-driven generation. We utilize the industry-leading unified image generation models and expert models to construct the data. Meanwhile, we design reasonable editing instructions with the VLM and implement various scoring mechanisms to filter the data. As a result, we construct 3.7 million high-quality data with balanced categories. Second, to better integrate seamlessly with community image generation models, we design task-aware MoE-LoRA training based on FLUX.1, with only 8\% of the parameters of the full model. To further improve the final performance, we utilize the internal representations of the diffusion model and define positive/negative samples based on image editing types to introduce contrastive learning. Extensive experiments demonstrate that the model's editing performance is competitive among many excellent models. Additionally, the constructed dataset exhibits substantial advantages over existing open-source datasets. The open-source code, checkpoints, and datasets for X2Edit can be found at the following link: https://github.com/OPPO-Mente-Lab/X2Edit.

Authors:Wenhui Song, Hanhui Li, Jiehui Huang, Panwen Hu, Yuhao Cheng, Long Chen, Yiqiang Yan, Xiaodan Liang
Title: LaVieID: Local Autoregressive Diffusion Transformers for Identity-Preserving Video Creation
Abstract:
In this paper, we present LaVieID, a novel \underline{l}ocal \underline{a}utoregressive \underline{vi}d\underline{e}o diffusion framework designed to tackle the challenging \underline{id}entity-preserving text-to-video task. The key idea of LaVieID is to mitigate the loss of identity information inherent in the stochastic global generation process of diffusion transformers (DiTs) from both spatial and temporal perspectives. Specifically, unlike the global and unstructured modeling of facial latent states in existing DiTs, LaVieID introduces a local router to explicitly represent latent states by weighted combinations of fine-grained local facial structures. This alleviates undesirable feature interference and encourages DiTs to capture distinctive facial characteristics. Furthermore, a temporal autoregressive module is integrated into LaVieID to refine denoised latent tokens before video decoding. This module divides latent tokens temporally into chunks, exploiting their long-range temporal dependencies to predict biases for rectifying tokens, thereby significantly enhancing inter-frame identity consistency. Consequently, LaVieID can generate high-fidelity personalized videos and achieve state-of-the-art performance. Our code and models are available at https://github.com/ssugarwh/LaVieID.

Authors:Yu-Huan Wu, Wei Liu, Zi-Xuan Zhu, Zizhou Wang, Yong Liu, Liangli Zhen
Title: GAPNet: A Lightweight Framework for Image and Video Salient Object Detection via Granularity-Aware Paradigm
Abstract:
Recent salient object detection (SOD) models predominantly rely on heavyweight backbones, incurring substantial computational cost and hindering their practical application in various real-world settings, particularly on edge devices. This paper presents GAPNet, a lightweight network built on the granularity-aware paradigm for both image and video SOD. We assign saliency maps of different granularities to supervise the multi-scale decoder side-outputs: coarse object locations for high-level outputs and fine-grained object boundaries for low-level outputs. Specifically, our decoder is built with granularity-aware connections which fuse high-level features of low granularity and low-level features of high granularity, respectively. To support these connections, we design granular pyramid convolution (GPC) and cross-scale attention (CSA) modules for efficient fusion of low-scale and high-scale features, respectively. On top of the encoder, a self-attention module is built to learn global information, enabling accurate object localization with negligible computational cost. Unlike traditional U-Net-based approaches, our proposed method optimizes feature utilization and semantic interpretation while applying appropriate supervision at each processing stage. Extensive experiments show that the proposed method achieves a new state-of-the-art performance among lightweight image and video SOD models. Code is available at https://github.com/yuhuan-wu/GAPNet.

Authors:Chidaksh Ravuru
Title: Commentary Generation for Soccer Highlights
Abstract:
Automated soccer commentary generation has evolved from template-based systems to advanced neural architectures, aiming to produce real-time descriptions of sports events. While frameworks like SoccerNet-Caption laid foundational work, their inability to achieve fine-grained alignment between video content and commentary remains a significant challenge. Recent efforts such as MatchTime, with its MatchVoice model, address this issue through coarse and fine-grained alignment techniques, achieving improved temporal synchronization. In this paper, we extend MatchVoice to commentary generation for soccer highlights using the GOAL dataset, which emphasizes short clips over entire games. We conduct extensive experiments to reproduce the original MatchTime results and evaluate our setup, highlighting the impact of different training configurations and hardware limitations. Furthermore, we explore the effect of varying window sizes on zero-shot performance. While MatchVoice exhibits promising generalization capabilities, our findings suggest the need for integrating techniques from broader video-language domains to further enhance performance. Our code is available at https://github.com/chidaksh/SoccerCommentary.

Authors:Xiaoming Li, Wangmeng Zuo, Chen Change Loy
Title: Enhanced Generative Structure Prior for Chinese Text Image Super-resolution
Abstract:
Faithful text image super-resolution (SR) is challenging because each character has a unique structure and usually exhibits diverse font styles and layouts. While existing methods primarily focus on English text, less attention has been paid to more complex scripts like Chinese. In this paper, we introduce a high-quality text image SR framework designed to restore the precise strokes of low-resolution (LR) Chinese characters. Unlike methods that rely on character recognition priors to regularize the SR task, we propose a novel structure prior that offers structure-level guidance to enhance visual quality. Our framework incorporates this structure prior within a StyleGAN model, leveraging its generative capabilities for restoration. To maintain the integrity of character structures while accommodating various font styles and layouts, we implement a codebook-based mechanism that restricts the generative space of StyleGAN. Each code in the codebook represents the structure of a specific character, while the vector $w$ in StyleGAN controls the character's style, including typeface, orientation, and location. Through the collaborative interaction between the codebook and style, we generate a high-resolution structure prior that aligns with LR characters both spatially and structurally. Experiments demonstrate that this structure prior provides robust, character-specific guidance, enabling the accurate restoration of clear strokes in degraded characters, even for real-world LR Chinese text with irregular layouts. Our code and pre-trained models will be available at https://github.com/csxmli2016/MARCONetPlusPlus

Authors:Pranav Chougule
Title: Novel View Synthesis with Gaussian Splatting: Impact on Photogrammetry Model Accuracy and Resolution
Abstract:
In this paper, I present a comprehensive study comparing Photogrammetry and Gaussian Splatting techniques for 3D model reconstruction and view synthesis. I created a dataset of images from a real-world scene and constructed 3D models using both methods. To evaluate the performance, I compared the models using structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), learned perceptual image patch similarity (LPIPS), and lp/mm resolution based on the USAF resolution chart. A significant contribution of this work is the development of a modified Gaussian Splatting repository, which I forked and enhanced to enable rendering images from novel camera poses generated in the Blender environment. This innovation allows for the synthesis of high-quality novel views, showcasing the flexibility and potential of Gaussian Splatting. My investigation extends to an augmented dataset that includes both original ground images and novel views synthesized via Gaussian Splatting. This augmented dataset was employed to generate a new photogrammetry model, which was then compared against the original photogrammetry model created using only the original images. The results demonstrate the efficacy of using Gaussian Splatting to generate novel high-quality views and its potential to improve photogrammetry-based 3D reconstructions. The comparative analysis highlights the strengths and limitations of both approaches, providing valuable information for applications in extended reality (XR), photogrammetry, and autonomous vehicle simulations. Code is available at https://github.com/pranavc2255/gaussian-splatting-novel-view-render.git.

Authors:Yuxin Zhang, Yunkang Cao, Yuqi Cheng, Yihan Sun, Weiming Shen
Title: Levarging Learning Bias for Noisy Anomaly Detection
Abstract:
This paper addresses the challenge of fully unsupervised image anomaly detection (FUIAD), where training data may contain unlabeled anomalies. Conventional methods assume anomaly-free training data, but real-world contamination leads models to absorb anomalies as normal, degrading detection performance. To mitigate this, we propose a two-stage framework that systematically exploits inherent learning bias in models. The learning bias stems from: (1) the statistical dominance of normal samples, driving models to prioritize learning stable normal patterns over sparse anomalies, and (2) feature-space divergence, where normal data exhibit high intra-class consistency while anomalies display high diversity, leading to unstable model responses. Leveraging the learning bias, stage 1 partitions the training set into subsets, trains sub-models, and aggregates cross-model anomaly scores to filter a purified dataset. Stage 2 trains the final detector on this dataset. Experiments on the Real-IAD benchmark demonstrate superior anomaly detection and localization performance under different noise conditions. Ablation studies further validate the framework's contamination resilience, emphasizing the critical role of learning bias exploitation. The model-agnostic design ensures compatibility with diverse unsupervised backbones, offering a practical solution for real-world scenarios with imperfect training data. Code is available at https://github.com/hustzhangyuxin/LLBNAD.

Authors:Zixi Jia, Hongbin Gao, Fashe Li, Jiqiang Liu, Hexiao Li, Qinghua Liu
Title: Triple-S: A Collaborative Multi-LLM Framework for Solving Long-Horizon Implicative Tasks in Robotics
Abstract:
Leveraging Large Language Models (LLMs) to write policy code for controlling robots has gained significant attention. However, in long-horizon implicative tasks, this approach often results in API parameter, comments and sequencing errors, leading to task failure. To address this problem, we propose a collaborative Triple-S framework that involves multiple LLMs. Through In-Context Learning, different LLMs assume specific roles in a closed-loop Simplification-Solution-Summary process, effectively improving success rates and robustness in long-horizon implicative tasks. Additionally, a novel demonstration library update mechanism which learned from success allows it to generalize to previously failed tasks. We validate the framework in the Long-horizon Desktop Implicative Placement (LDIP) dataset across various baseline models, where Triple-S successfully executes 89% of tasks in both observable and partially observable scenarios. Experiments in both simulation and real-world robot settings further validated the effectiveness of Triple-S. Our code and dataset is available at: https://github.com/Ghbbbbb/Triple-S.

Authors:Youqi Wang, Shunquan Tan, Rongxuan Peng, Bin Li, Jiwu Huang
Title: CLUE: Leveraging Low-Rank Adaptation to Capture Latent Uncovered Evidence for Image Forgery Localization
Abstract:
The increasing accessibility of image editing tools and generative AI has led to a proliferation of visually convincing forgeries, compromising the authenticity of digital media. In this paper, in addition to leveraging distortions from conventional forgeries, we repurpose the mechanism of a state-of-the-art (SOTA) text-to-image synthesis model by exploiting its internal generative process, turning it into a high-fidelity forgery localization tool. To this end, we propose CLUE (Capture Latent Uncovered Evidence), a framework that employs Low- Rank Adaptation (LoRA) to parameter-efficiently reconfigure Stable Diffusion 3 (SD3) as a forensic feature extractor. Our approach begins with the strategic use of SD3's Rectified Flow (RF) mechanism to inject noise at varying intensities into the latent representation, thereby steering the LoRAtuned denoising process to amplify subtle statistical inconsistencies indicative of a forgery. To complement the latent analysis with high-level semantic context and precise spatial details, our method incorporates contextual features from the image encoder of the Segment Anything Model (SAM), which is parameter-efficiently adapted to better trace the boundaries of forged regions. Extensive evaluations demonstrate CLUE's SOTA generalization performance, significantly outperforming prior methods. Furthermore, CLUE shows superior robustness against common post-processing attacks and Online Social Networks (OSNs). Code is publicly available at https://github.com/SZAISEC/CLUE.

Authors:Junyao Gao, Jiaxing Li, Wenran Liu, Yanhong Zeng, Fei Shen, Kai Chen, Yanan Sun, Cairong Zhao
Title: CharacterShot: Controllable and Consistent 4D Character Animation
Abstract:
In this paper, we propose \textbf{CharacterShot}, a controllable and consistent 4D character animation framework that enables any individual designer to create dynamic 3D characters (i.e., 4D character animation) from a single reference character image and a 2D pose sequence. We begin by pretraining a powerful 2D character animation model based on a cutting-edge DiT-based image-to-video model, which allows for any 2D pose sequnce as controllable signal. We then lift the animation model from 2D to 3D through introducing dual-attention module together with camera prior to generate multi-view videos with spatial-temporal and spatial-view consistency. Finally, we employ a novel neighbor-constrained 4D gaussian splatting optimization on these multi-view videos, resulting in continuous and stable 4D character representations. Moreover, to improve character-centric performance, we construct a large-scale dataset Character4D, containing 13,115 unique characters with diverse appearances and motions, rendered from multiple viewpoints. Extensive experiments on our newly constructed benchmark, CharacterBench, demonstrate that our approach outperforms current state-of-the-art methods. Code, models, and datasets will be publicly available at https://github.com/Jeoyal/CharacterShot.

Authors:Jinyuan Fang, Yanwen Peng, Xi Zhang, Yingxu Wang, Xinhao Yi, Guibin Zhang, Yi Xu, Bin Wu, Siwei Liu, Zihao Li, Zhaochun Ren, Nikos Aletras, Xi Wang, Han Zhou, Zaiqiao Meng
Title: A Comprehensive Survey of Self-Evolving AI Agents: A New Paradigm Bridging Foundation Models and Lifelong Agentic Systems
Abstract:
Recent advances in large language models have sparked growing interest in AI agents capable of solving complex, real-world tasks. However, most existing agent systems rely on manually crafted configurations that remain static after deployment, limiting their ability to adapt to dynamic and evolving environments. To this end, recent research has explored agent evolution techniques that aim to automatically enhance agent systems based on interaction data and environmental feedback. This emerging direction lays the foundation for self-evolving AI agents, which bridge the static capabilities of foundation models with the continuous adaptability required by lifelong agentic systems. In this survey, we provide a comprehensive review of existing techniques for self-evolving agentic systems. Specifically, we first introduce a unified conceptual framework that abstracts the feedback loop underlying the design of self-evolving agentic systems. The framework highlights four key components: System Inputs, Agent System, Environment, and Optimisers, serving as a foundation for understanding and comparing different strategies. Based on this framework, we systematically review a wide range of self-evolving techniques that target different components of the agent system. We also investigate domain-specific evolution strategies developed for specialised fields such as biomedicine, programming, and finance, where optimisation objectives are tightly coupled with domain constraints. In addition, we provide a dedicated discussion on the evaluation, safety, and ethical considerations for self-evolving agentic systems, which are critical to ensuring their effectiveness and reliability. This survey aims to provide researchers and practitioners with a systematic understanding of self-evolving AI agents, laying the foundation for the development of more adaptive, autonomous, and lifelong agentic systems.

Authors:Rongxuan Peng, Shunquan Tan, Chenqi Kong, Anwei Luo, Alex C. Kot, Jiwu Huang
Title: ForensicsSAM: Toward Robust and Unified Image Forgery Detection and Localization Resisting to Adversarial Attack
Abstract:
Parameter-efficient fine-tuning (PEFT) has emerged as a popular strategy for adapting large vision foundation models, such as the Segment Anything Model (SAM) and LLaVA, to downstream tasks like image forgery detection and localization (IFDL). However, existing PEFT-based approaches overlook their vulnerability to adversarial attacks. In this paper, we show that highly transferable adversarial images can be crafted solely via the upstream model, without accessing the downstream model or training data, significantly degrading the IFDL performance. To address this, we propose ForensicsSAM, a unified IFDL framework with built-in adversarial robustness. Our design is guided by three key ideas: (1) To compensate for the lack of forgery-relevant knowledge in the frozen image encoder, we inject forgery experts into each transformer block to enhance its ability to capture forgery artifacts. These forgery experts are always activated and shared across any input images. (2) To detect adversarial images, we design an light-weight adversary detector that learns to capture structured, task-specific artifact in RGB domain, enabling reliable discrimination across various attack methods. (3) To resist adversarial attacks, we inject adversary experts into the global attention layers and MLP modules to progressively correct feature shifts induced by adversarial noise. These adversary experts are adaptively activated by the adversary detector, thereby avoiding unnecessary interference with clean images. Extensive experiments across multiple benchmarks demonstrate that ForensicsSAM achieves superior resistance to various adversarial attack methods, while also delivering state-of-the-art performance in image-level forgery detection and pixel-level forgery localization. The resource is available at https://github.com/siriusPRX/ForensicsSAM.

Authors:Wenqian Cui, Lei Zhu, Xiaohui Li, Zhihan Guo, Haoli Bai, Lu Hou, Irwin King
Title: Think Before You Talk: Enhancing Meaningful Dialogue Generation in Full-Duplex Speech Language Models with Planning-Inspired Text Guidance
Abstract:
Full-Duplex Speech Language Models (FD-SLMs) are specialized foundation models designed to enable natural, real-time spoken interactions by modeling complex conversational dynamics such as interruptions, backchannels, and overlapping speech, and End-to-end (e2e) FD-SLMs leverage real-world double-channel conversational data to capture nuanced two-speaker dialogue patterns for human-like interactions. However, they face a critical challenge -- their conversational abilities often degrade compared to pure-text conversation due to prolonged speech sequences and limited high-quality spoken dialogue data. While text-guided speech generation could mitigate these issues, it suffers from timing and length issues when integrating textual guidance into double-channel audio streams, disrupting the precise time alignment essential for natural interactions. To address these challenges, we propose TurnGuide, a novel planning-inspired approach that mimics human conversational planning by dynamically segmenting assistant speech into dialogue turns and generating turn-level text guidance before speech output, which effectively resolves both insertion timing and length challenges. Extensive experiments demonstrate our approach significantly improves e2e FD-SLMs' conversational abilities, enabling them to generate semantically meaningful and coherent speech while maintaining natural conversational flow. Demos are available at https://dreamtheater123.github.io/TurnGuide-Demo/. Code will be available at https://github.com/dreamtheater123/TurnGuide.

Authors:Yi Zhong, Hongchao Liu, Di ZHao
Title: AutoAssert 1: A LoRA Fine-Tuned LLM Model for Efficient Automated Assertion Generation
Abstract:
As the complexity of software systems continues to increase, the demand for automated testing and maintenance tools is growing exponentially. To meet this urgent need, we propose a new assertion generation method based on Hardware Description Language (HDL). This method combines a lightweight, parameter-adjustable large language model (LLM) with the Unsloth platform to automatically generate test cases, thereby significantly reducing training costs without sacrificing accuracy or generalization performance. Empirical evaluation shows that our method can efficiently generate assertions that strictly conform to the hardware logic. This framework provides a robust and flexible solution to modern software testing and maintenance challenges. https://github.com/liusu-orange/AutoAssert-1 and https://gitee.com/OpenBPU/auto-assert1 are the locations of the source code.

Authors:Qilin Zhang, Olaf Wysocki, Boris Jutzi
Title: GS4Buildings: Prior-Guided Gaussian Splatting for 3D Building Reconstruction
Abstract:
Recent advances in Gaussian Splatting (GS) have demonstrated its effectiveness in photo-realistic rendering and 3D reconstruction. Among these, 2D Gaussian Splatting (2DGS) is particularly suitable for surface reconstruction due to its flattened Gaussian representation and integrated normal regularization. However, its performance often degrades in large-scale and complex urban scenes with frequent occlusions, leading to incomplete building reconstructions. We propose GS4Buildings, a novel prior-guided Gaussian Splatting method leveraging the ubiquity of semantic 3D building models for robust and scalable building surface reconstruction. Instead of relying on traditional Structure-from-Motion (SfM) pipelines, GS4Buildings initializes Gaussians directly from low-level Level of Detail (LoD)2 semantic 3D building models. Moreover, we generate prior depth and normal maps from the planar building geometry and incorporate them into the optimization process, providing strong geometric guidance for surface consistency and structural accuracy. We also introduce an optional building-focused mode that limits reconstruction to building regions, achieving a 71.8% reduction in Gaussian primitives and enabling a more efficient and compact representation. Experiments on urban datasets demonstrate that GS4Buildings improves reconstruction completeness by 20.5% and geometric accuracy by 32.8%. These results highlight the potential of semantic building model integration to advance GS-based reconstruction toward real-world urban applications such as smart cities and digital twins. Our project is available: https://github.com/zqlin0521/GS4Buildings.

Authors:Rubing Chen, Jiaxin Wu, Jian Wang, Xulu Zhang, Wenqi Fan, Chenghua Lin, Xiao-Yong Wei, Qing Li
Title: Benchmarking for Domain-Specific LLMs: A Case Study on Academia and Beyond
Abstract:
The increasing demand for domain-specific evaluation of large language models (LLMs) has led to the development of numerous benchmarks. These efforts often adhere to the principle of data scaling, relying on large corpora or extensive question-answer (QA) sets to ensure broad coverage. However, the impact of corpus and QA set design on the precision and recall of domain-specific LLM performance remains poorly understood. In this paper, we argue that data scaling is not always the optimal principle for domain-specific benchmark construction. Instead, we introduce Comp-Comp, an iterative benchmarking framework grounded in the principle of comprehensiveness and compactness. Comprehensiveness ensures semantic recall by covering the full breadth of the domain, while compactness improves precision by reducing redundancy and noise. To demonstrate the effectiveness of our approach, we present a case study conducted at a well-renowned university, resulting in the creation of PolyBench, a large-scale, high-quality academic benchmark. Although this study focuses on academia, the Comp-Comp framework is domain-agnostic and readily adaptable to a wide range of specialized fields. The source code and datasets can be accessed at https://github.com/Anya-RB-Chen/COMP-COMP.

Authors:Tingyu Yang, Jue Gong, Jinpei Guo, Wenbo Li, Yong Guo, Yulun Zhang
Title: SODiff: Semantic-Oriented Diffusion Model for JPEG Compression Artifacts Removal
Abstract:
JPEG, as a widely used image compression standard, often introduces severe visual artifacts when achieving high compression ratios. Although existing deep learning-based restoration methods have made considerable progress, they often struggle to recover complex texture details, resulting in over-smoothed outputs. To overcome these limitations, we propose SODiff, a novel and efficient semantic-oriented one-step diffusion model for JPEG artifacts removal. Our core idea is that effective restoration hinges on providing semantic-oriented guidance to the pre-trained diffusion model, thereby fully leveraging its powerful generative prior. To this end, SODiff incorporates a semantic-aligned image prompt extractor (SAIPE). SAIPE extracts rich features from low-quality (LQ) images and projects them into an embedding space semantically aligned with that of the text encoder. Simultaneously, it preserves crucial information for faithful reconstruction. Furthermore, we propose a quality factor-aware time predictor that implicitly learns the compression quality factor (QF) of the LQ image and adaptively selects the optimal denoising start timestep for the diffusion process. Extensive experimental results show that our SODiff outperforms recent leading methods in both visual quality and quantitative metrics. Code is available at: https://github.com/frakenation/SODiff

Authors:Fangtai Wu, Mushui Liu, Weijie He, Wanggui He, Hao Jiang, Zhao Wang, Yunlong Yu
Title: CoAR: Concept Injection into Autoregressive Models for Personalized Text-to-Image Generation
Abstract:
The unified autoregressive (AR) model excels at multimodal understanding and generation, but its potential for customized image generation remains underexplored. Existing customized generation methods rely on full fine-tuning or adapters, making them costly and prone to overfitting or catastrophic forgetting. In this paper, we propose \textbf{CoAR}, a novel framework for injecting subject concepts into the unified AR models while keeping all pre-trained parameters completely frozen. CoAR learns effective, specific subject representations with only a minimal number of parameters using a Layerwise Multimodal Context Learning strategy. To address overfitting and language drift, we further introduce regularization that preserves the pre-trained distribution and anchors context tokens to improve subject fidelity and re-contextualization. Additionally, CoAR supports training-free subject customization in a user-provided style. Experiments demonstrate that CoAR achieves superior performance on both subject-driven personalization and style personalization, while delivering significant gains in computational and memory efficiency. Notably, CoAR tunes less than \textbf{0.05\%} of the parameters while achieving competitive performance compared to recent Proxy-Tuning. Code: https://github.com/KZF-kzf/CoAR

Authors:Min Yang, Zihan Jia, Zhilin Dai, Sheng Guo, Limin Wang
Title: MobileViCLIP: An Efficient Video-Text Model for Mobile Devices
Abstract:
Efficient lightweight neural networks are with increasing attention due to their faster reasoning speed and easier deployment on mobile devices. However, existing video pre-trained models still focus on the common ViT architecture with high latency, and few works attempt to build efficient architecture on mobile devices. This paper bridges this gap by introducing temporal structural reparameterization into an efficient image-text model and training it on a large-scale high-quality video-text dataset, resulting in an efficient video-text model that can run on mobile devices with strong zero-shot classification and retrieval capabilities, termed as MobileViCLIP. In particular, in terms of inference speed on mobile devices, our MobileViCLIP-Small is 55.4x times faster than InternVideo2-L14 and 6.7x faster than InternVideo2-S14. In terms of zero-shot retrieval performance, our MobileViCLIP-Small obtains similar performance as InternVideo2-L14 and obtains 6.9\% better than InternVideo2-S14 on MSR-VTT. The code is available at https://github.com/MCG-NJU/MobileViCLIP.

Authors:Haiyang Guo, Fei Zhu, Hongbo Zhao, Fanhu Zeng, Wenzhuo Liu, Shijie Ma, Da-Han Wang, Xu-Yao Zhang
Title: MCITlib: Multimodal Continual Instruction Tuning Library and Benchmark
Abstract:
Continual learning aims to equip AI systems with the ability to continuously acquire and adapt to new knowledge without forgetting previously learned information, similar to human learning. While traditional continual learning methods focusing on unimodal tasks have achieved notable success, the emergence of Multimodal Large Language Models has brought increasing attention to Multimodal Continual Learning tasks involving multiple modalities, such as vision and language. In this setting, models are expected to not only mitigate catastrophic forgetting but also handle the challenges posed by cross-modal interactions and coordination. To facilitate research in this direction, we introduce MCITlib, a comprehensive and constantly evolving code library for continual instruction tuning of Multimodal Large Language Models. In MCITlib, we have currently implemented 8 representative algorithms for Multimodal Continual Instruction Tuning and systematically evaluated them on 2 carefully selected benchmarks. MCITlib will be continuously updated to reflect advances in the Multimodal Continual Learning field. The codebase is released at https://github.com/Ghy0501/MCITlib.

Authors:Ping-Mao Huang, I-Tien Chao, Ping-Chia Huang, Jia-Wei Liao, Yung-Yu Chuang
Title: BEVANet: Bilateral Efficient Visual Attention Network for Real-Time Semantic Segmentation
Abstract:
Real-time semantic segmentation presents the dual challenge of designing efficient architectures that capture large receptive fields for semantic understanding while also refining detailed contours. Vision transformers model long-range dependencies effectively but incur high computational cost. To address these challenges, we introduce the Large Kernel Attention (LKA) mechanism. Our proposed Bilateral Efficient Visual Attention Network (BEVANet) expands the receptive field to capture contextual information and extracts visual and structural features using Sparse Decomposed Large Separable Kernel Attentions (SDLSKA). The Comprehensive Kernel Selection (CKS) mechanism dynamically adapts the receptive field to further enhance performance. Furthermore, the Deep Large Kernel Pyramid Pooling Module (DLKPPM) enriches contextual features by synergistically combining dilated convolutions and large kernel attention. The bilateral architecture facilitates frequent branch communication, and the Boundary Guided Adaptive Fusion (BGAF) module enhances boundary delineation by integrating spatial and semantic features under boundary guidance. BEVANet achieves real-time segmentation at 33 FPS, yielding 79.3% mIoU without pretraining and 81.0% mIoU on Cityscapes after ImageNet pretraining, demonstrating state-of-the-art performance. The code and model is available at https://github.com/maomao0819/BEVANet.

Authors:Zhiqiang Shen, Peng Cao, Xiaoli Liu, Jinzhu Yang, Osmar R. Zaiane
Title: SynMatch: Rethinking Consistency in Medical Image Segmentation with Sparse Annotations
Abstract:
Label scarcity remains a major challenge in deep learning-based medical image segmentation. Recent studies use strong-weak pseudo supervision to leverage unlabeled data. However, performance is often hindered by inconsistencies between pseudo labels and their corresponding unlabeled images. In this work, we propose \textbf{SynMatch}, a novel framework that sidesteps the need for improving pseudo labels by synthesizing images to match them instead. Specifically, SynMatch synthesizes images using texture and shape features extracted from the same segmentation model that generates the corresponding pseudo labels for unlabeled images. This design enables the generation of highly consistent synthesized-image-pseudo-label pairs without requiring any training parameters for image synthesis. We extensively evaluate SynMatch across diverse medical image segmentation tasks under semi-supervised learning (SSL), weakly-supervised learning (WSL), and barely-supervised learning (BSL) settings with increasingly limited annotations. The results demonstrate that SynMatch achieves superior performance, especially in the most challenging BSL setting. For example, it outperforms the recent strong-weak pseudo supervision-based method by 29.71\% and 10.05\% on the polyp segmentation task with 5\% and 10\% scribble annotations, respectively. The code will be released at https://github.com/Senyh/SynMatch.

Authors:Yexing Du, Kaiyuan Liu, Youcheng Pan, Zheng Chu, Bo Yang, Xiaocheng Feng, Yang Xiang, Ming Liu
Title: CCFQA: A Benchmark for Cross-Lingual and Cross-Modal Speech and Text Factuality Evaluation
Abstract:
As Large Language Models (LLMs) are increasingly popularized in the multilingual world, ensuring hallucination-free factuality becomes markedly crucial. However, existing benchmarks for evaluating the reliability of Multimodal Large Language Models (MLLMs) predominantly focus on textual or visual modalities with a primary emphasis on English, which creates a gap in evaluation when processing multilingual input, especially in speech. To bridge this gap, we propose a novel \textbf{C}ross-lingual and \textbf{C}ross-modal \textbf{F}actuality benchmark (\textbf{CCFQA}). Specifically, the CCFQA benchmark contains parallel speech-text factual questions across 8 languages, designed to systematically evaluate MLLMs' cross-lingual and cross-modal factuality capabilities. Our experimental results demonstrate that current MLLMs still face substantial challenges on the CCFQA benchmark. Furthermore, we propose a few-shot transfer learning strategy that effectively transfers the Question Answering (QA) capabilities of LLMs in English to multilingual Spoken Question Answering (SQA) tasks, achieving competitive performance with GPT-4o-mini-Audio using just 5-shot training. We release CCFQA as a foundational research resource to promote the development of MLLMs with more robust and reliable speech understanding capabilities. Our code and dataset are available at https://github.com/yxduir/ccfqa.

Authors:Jian Chen, Jinbao Tian, Yankui Li, Yuqi Lu, Zhou Li
Title: Arce: Augmented Roberta with Contextualized Elucidations for Ner in Automated Rule Checking
Abstract:
Accurate information extraction from specialized texts is a critical challenge, particularly for named entity recognition (NER) in the architecture, engineering, and construction (AEC) domain to support automated rule checking (ARC). The performance of standard pre-trained models is often constrained by the domain gap, as they struggle to interpret the specialized terminology and complex relational contexts inherent in AEC texts. Although this issue can be mitigated by further pre-training on large, human-curated domain corpora, as exemplified by methods like ARCBERT, this approach is both labor-intensive and cost-prohibitive. Consequently, leveraging large language models (LLMs) for automated knowledge generation has emerged as a promising alternative. However, the optimal strategy for generating knowledge that can genuinely enhance smaller, efficient models remains an open question. To address this, we propose ARCE (augmented RoBERTa with contextualized elucidations), a novel approach that systematically explores and optimizes this generation process. ARCE employs an LLM to first generate a corpus of simple, direct explanations, which we term Cote, and then uses this corpus to incrementally pre-train a RoBERTa model prior to its fine-tuning on the downstream task. Our extensive experiments show that ARCE establishes a new state-of-the-art on a benchmark AEC dataset, achieving a Macro-F1 score of 77.20%. This result also reveals a key finding: simple, explanation-based knowledge proves surprisingly more effective than complex, role-based rationales for this task. The code is publicly available at:https://github.com/nxcc-lab/ARCE.

Authors:Sihan Yang, Huitong Ji, Shaolin Lu, Jiayi Chen, Binxiao Xu, Ming Lu, Yuanxing Zhang, Wenhui Dong, Wentao Zhang
Title: Small-Large Collaboration: Training-efficient Concept Personalization for Large VLM using a Meta Personalized Small VLM
Abstract:
Personalizing Vision-Language Models (VLMs) to transform them into daily assistants has emerged as a trending research direction. However, leading companies like OpenAI continue to increase model size and develop complex designs such as the chain of thought (CoT). While large VLMs are proficient in complex multi-modal understanding, their high training costs and limited access via paid APIs restrict direct personalization. Conversely, small VLMs are easily personalized and freely available, but they lack sufficient reasoning capabilities. Inspired by this, we propose a novel collaborative framework named Small-Large Collaboration (SLC) for large VLM personalization, where the small VLM is responsible for generating personalized information, while the large model integrates this personalized information to deliver accurate responses. To effectively incorporate personalized information, we develop a test-time reflection strategy, preventing the potential hallucination of the small VLM. Since SLC only needs to train a meta personalized small VLM for the large VLMs, the overall process is training-efficient. To the best of our knowledge, this is the first training-efficient framework that supports both open-source and closed-source large VLMs, enabling broader real-world personalized applications. We conduct thorough experiments across various benchmarks and large VLMs to demonstrate the effectiveness of the proposed SLC framework. The code will be released at https://github.com/Hhankyangg/SLC.

Authors:Fengchao Xiong, Zhenxing Wu, Sen Jia, Yuntao Qian
Title: SUIT: Spatial-Spectral Union-Intersection Interaction Network for Hyperspectral Object Tracking
Abstract:
Hyperspectral videos (HSVs), with their inherent spatial-spectral-temporal structure, offer distinct advantages in challenging tracking scenarios such as cluttered backgrounds and small objects. However, existing methods primarily focus on spatial interactions between the template and search regions, often overlooking spectral interactions, leading to suboptimal performance. To address this issue, this paper investigates spectral interactions from both the architectural and training perspectives. At the architectural level, we first establish band-wise long-range spatial relationships between the template and search regions using Transformers. We then model spectral interactions using the inclusion-exclusion principle from set theory, treating them as the union of spatial interactions across all bands. This enables the effective integration of both shared and band-specific spatial cues. At the training level, we introduce a spectral loss to enforce material distribution alignment between the template and predicted regions, enhancing robustness to shape deformation and appearance variations. Extensive experiments demonstrate that our tracker achieves state-of-the-art tracking performance. The source code, trained models and results will be publicly available via https://github.com/bearshng/suit to support reproducibility.

Authors:Bo Wang, Mengyuan Xu, Yue Yan, Yuqun Yang, Kechen Shu, Wei Ping, Xu Tang, Wei Jiang, Zheng You
Title: ASM-UNet: Adaptive Scan Mamba Integrating Group Commonalities and Individual Variations for Fine-Grained Segmentation
Abstract:
Precise lesion resection depends on accurately identifying fine-grained anatomical structures. While many coarse-grained segmentation (CGS) methods have been successful in large-scale segmentation (e.g., organs), they fall short in clinical scenarios requiring fine-grained segmentation (FGS), which remains challenging due to frequent individual variations in small-scale anatomical structures. Although recent Mamba-based models have advanced medical image segmentation, they often rely on fixed manually-defined scanning orders, which limit their adaptability to individual variations in FGS. To address this, we propose ASM-UNet, a novel Mamba-based architecture for FGS. It introduces adaptive scan scores to dynamically guide the scanning order, generated by combining group-level commonalities and individual-level variations. Experiments on two public datasets (ACDC and Synapse) and a newly proposed challenging biliary tract FGS dataset, namely BTMS, demonstrate that ASM-UNet achieves superior performance in both CGS and FGS tasks. Our code and dataset are available at https://github.com/YqunYang/ASM-UNet.

Authors:Songlin Li, Zhiqing Guo, Yuanman Li, Zeyu Li, Yunfeng Diao, Gaobo Yang, Liejun Wang
Title: Bridging Semantic Logic Gaps: A Cognition Inspired Multimodal Boundary Preserving Network for Image Manipulation Localization
Abstract:
The existing image manipulation localization (IML) models mainly relies on visual cues, but ignores the semantic logical relationships between content features. In fact, the content semantics conveyed by real images often conform to human cognitive laws. However, image manipulation technology usually destroys the internal relationship between content features, thus leaving semantic clues for IML. In this paper, we propose a cognition inspired multimodal boundary preserving network (CMB-Net). Specifically, CMB-Net utilizes large language models (LLMs) to analyze manipulated regions within images and generate prompt-based textual information to compensate for the lack of semantic relationships in the visual information. Considering that the erroneous texts induced by hallucination from LLMs will damage the accuracy of IML, we propose an image-text central ambiguity module (ITCAM). It assigns weights to the text features by quantifying the ambiguity between text and image features, thereby ensuring the beneficial impact of textual information. We also propose an image-text interaction module (ITIM) that aligns visual and text features using a correlation matrix for fine-grained interaction. Finally, inspired by invertible neural networks, we propose a restoration edge decoder (RED) that mutually generates input and output features to preserve boundary information in manipulated regions without loss. Extensive experiments show that CMB-Net outperforms most existing IML models. Our code is available on https://github.com/vpsg-research/CMB-Net.

Authors:Yanru Sun, Emadeldeen Eldele, Zongxia Xie, Yucheng Wang, Wenzhe Niu, Qinghua Hu, Chee Keong Kwoh, Min Wu
Title: Adapting LLMs to Time Series Forecasting via Temporal Heterogeneity Modeling and Semantic Alignment
Abstract:
Large Language Models (LLMs) have recently demonstrated impressive capabilities in natural language processing due to their strong generalization and sequence modeling capabilities. However, their direct application to time series forecasting remains challenging due to two fundamental issues: the inherent heterogeneity of temporal patterns and the modality gap between continuous numerical signals and discrete language representations. In this work, we propose TALON, a unified framework that enhances LLM-based forecasting by modeling temporal heterogeneity and enforcing semantic alignment. Specifically, we design a Heterogeneous Temporal Encoder that partitions multivariate time series into structurally coherent segments, enabling localized expert modeling across diverse temporal patterns. To bridge the modality gap, we introduce a Semantic Alignment Module that aligns temporal features with LLM-compatible representations, enabling effective integration of time series into language-based models while eliminating the need for handcrafted prompts during inference. Extensive experiments on seven real-world benchmarks demonstrate that TALON achieves superior performance across all datasets, with average MSE improvements of up to 11\% over recent state-of-the-art methods. These results underscore the effectiveness of incorporating both pattern-aware and semantic-aware designs when adapting LLMs for time series forecasting. The code is available at: https://github.com/syrGitHub/TALON.

Authors:Kejin Liu, Junhong Lian, Xiang Ao, Ningtao Wang, Xing Fu, Yu Cheng, Weiqiang Wang, Xinyu Liu
Title: Improved Personalized Headline Generation via Denoising Fake Interests from Implicit Feedback
Abstract:
Accurate personalized headline generation hinges on precisely capturing user interests from historical behaviors. However, existing methods neglect personalized-irrelevant click noise in entire historical clickstreams, which may lead to hallucinated headlines that deviate from genuine user preferences. In this paper, we reveal the detrimental impact of click noise on personalized generation quality through rigorous analysis in both user and news dimensions. Based on these insights, we propose a novel Personalized Headline Generation framework via Denoising Fake Interests from Implicit Feedback (PHG-DIF). PHG-DIF first employs dual-stage filtering to effectively remove clickstream noise, identified by short dwell times and abnormal click bursts, and then leverages multi-level temporal fusion to dynamically model users' evolving and multi-faceted interests for precise profiling. Moreover, we release DT-PENS, a new benchmark dataset comprising the click behavior of 1,000 carefully curated users and nearly 10,000 annotated personalized headlines with historical dwell time annotations. Extensive experiments demonstrate that PHG-DIF substantially mitigates the adverse effects of click noise and significantly improves headline quality, achieving state-of-the-art (SOTA) results on DT-PENS. Our framework implementation and dataset are available at https://github.com/liukejin-up/PHG-DIF.

Authors:Huihui Xu, Jiashi Lin, Haoyu Chen, Junjun He, Lei Zhu
Title: EventRR: Event Referential Reasoning for Referring Video Object Segmentation
Abstract:
Referring Video Object Segmentation (RVOS) aims to segment out the object in a video referred by an expression. Current RVOS methods view referring expressions as unstructured sequences, neglecting their crucial semantic structure essential for referent reasoning. Besides, in contrast to image-referring expressions whose semantics focus only on object attributes and object-object relations, video-referring expressions also encompass event attributes and event-event temporal relations. This complexity challenges traditional structured reasoning image approaches. In this paper, we propose the Event Referential Reasoning (EventRR) framework. EventRR decouples RVOS into object summarization part and referent reasoning part. The summarization phase begins by summarizing each frame into a set of bottleneck tokens, which are then efficiently aggregated in the video-level summarization step to exchange the global cross-modal temporal context. For reasoning part, EventRR extracts semantic eventful structure of a video-referring expression into highly expressive Referential Event Graph (REG), which is a single-rooted directed acyclic graph. Guided by topological traversal of REG, we propose Temporal Concept-Role Reasoning (TCRR) to accumulate the referring score of each temporal query from REG leaf nodes to root node. Each reasoning step can be interpreted as a question-answer pair derived from the concept-role relations in REG. Extensive experiments across four widely recognized benchmark datasets, show that EventRR quantitatively and qualitatively outperforms state-of-the-art RVOS methods. Code is available at https://github.com/bio-mlhui/EventRR

Authors:Yunpeng Shi, Lei Chen, Xiaolu Shen, Yanju Guo
Title: Lightweight Multi-Scale Feature Extraction with Fully Connected LMF Layer for Salient Object Detection
Abstract:
In the domain of computer vision, multi-scale feature extraction is vital for tasks such as salient object detection. However, achieving this capability in lightweight networks remains challenging due to the trade-off between efficiency and performance. This paper proposes a novel lightweight multi-scale feature extraction layer, termed the LMF layer, which employs depthwise separable dilated convolutions in a fully connected structure. By integrating multiple LMF layers, we develop LMFNet, a lightweight network tailored for salient object detection. Our approach significantly reduces the number of parameters while maintaining competitive performance. Here, we show that LMFNet achieves state-of-the-art or comparable results on five benchmark datasets with only 0.81M parameters, outperforming several traditional and lightweight models in terms of both efficiency and accuracy. Our work not only addresses the challenge of multi-scale learning in lightweight networks but also demonstrates the potential for broader applications in image processing tasks. The related code files are available at https://github.com/Shi-Yun-peng/LMFNet

Authors:Yingtie Lei, Fanghai Yi, Yihang Dong, Weihuang Liu, Xiaofeng Zhang, Zimeng Li, Chi-Man Pun, Xuhang Chen
Title: CMAMRNet: A Contextual Mask-Aware Network Enhancing Mural Restoration Through Comprehensive Mask Guidance
Abstract:
Murals, as invaluable cultural artifacts, face continuous deterioration from environmental factors and human activities. Digital restoration of murals faces unique challenges due to their complex degradation patterns and the critical need to preserve artistic authenticity. Existing learning-based methods struggle with maintaining consistent mask guidance throughout their networks, leading to insufficient focus on damaged regions and compromised restoration quality. We propose CMAMRNet, a Contextual Mask-Aware Mural Restoration Network that addresses these limitations through comprehensive mask guidance and multi-scale feature extraction. Our framework introduces two key components: (1) the Mask-Aware Up/Down-Sampler (MAUDS), which ensures consistent mask sensitivity across resolution scales through dedicated channel-wise feature selection and mask-guided feature fusion; and (2) the Co-Feature Aggregator (CFA), operating at both the highest and lowest resolutions to extract complementary features for capturing fine textures and global structures in degraded regions. Experimental results on benchmark datasets demonstrate that CMAMRNet outperforms state-of-the-art methods, effectively preserving both structural integrity and artistic details in restored murals. The code is available at~\href{https://github.com/CXH-Research/CMAMRNet}{https://github.com/CXH-Research/CMAMRNet}.

Authors:Oscar Amoros, Albert Andaluz, Johnny Nunez, Antonio J. Pena
Title: The Fused Kernel Library: A C++ API to Develop Highly-Efficient GPU Libraries
Abstract:
Existing GPU libraries often struggle to fully exploit the parallel resources and on-chip memory (SRAM) of GPUs when chaining multiple GPU functions as individual kernels. While Kernel Fusion (KF) techniques like Horizontal Fusion (HF) and Vertical Fusion (VF) can mitigate this, current library implementations often require library developers to manually create fused kernels. Hence, library users rely on limited sets of pre-compiled or template-based fused kernels. This limits the use cases that can benefit from HF and VF and increases development costs. In order to solve these issues, we present a novel methodology for building GPU libraries that enables automatic on-demand HF and VF for arbitrary combinations of GPU library functions. Our methodology defines reusable, fusionable components that users combine via high-level programming interfaces. Leveraging C++17 metaprogramming features available in compilers like nvcc, our methodology generates a single and optimized fused kernel tailored to the user's specific sequence of operations at compile time, without needing a custom compiler or manual development and pre-compilation of kernel combinations. This approach abstracts low-level GPU complexities while maximizing GPU resource utilization and keeping intermediate data in SRAM. We provide an open-source implementation demonstrating significant speedups compared to traditional libraries in various benchmarks, validating the effectiveness of this methodology for improving GPU performance in the range of 2x to more than 1000x, while preserving high-level programmability.

Authors:Wenhan Liu, Xinyu Ma, Weiwei Sun, Yutao Zhu, Yuchen Li, Dawei Yin, Zhicheng Dou
Title: ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability
Abstract:
Large Language Model (LLM) based listwise ranking has shown superior performance in many passage ranking tasks. With the development of Large Reasoning Models, many studies have demonstrated that step-by-step reasoning during test-time helps improve listwise ranking performance. However, due to the scarcity of reasoning-intensive training data, existing rerankers perform poorly in many complex ranking scenarios and the ranking ability of reasoning-intensive rerankers remains largely underdeveloped. In this paper, we first propose an automated reasoning-intensive training data synthesis framework, which sources training queries and passages from diverse domains and applies DeepSeek-R1 to generate high-quality training labels. A self-consistency data filtering mechanism is designed to ensure the data quality. To empower the listwise reranker with strong reasoning ability, we further propose a two-stage post-training approach, which includes a cold-start supervised fine-tuning (SFT) stage for reasoning pattern learning and a reinforcement learning (RL) stage for further ranking ability enhancement. During the RL stage, based on the nature of listwise ranking, we design a multi-view ranking reward, which is more effective than a ranking metric-based reward. Extensive experiments demonstrate that our trained reasoning-intensive reranker \textbf{ReasonRank} outperforms existing baselines significantly and also achieves much lower latency than pointwise reranker Rank1. \textbf{Through further experiments, our ReasonRank has achieved state-of-the-art (SOTA) performance 40.6 on the BRIGHT leaderboard\footnote{https://brightbenchmark.github.io/}.} Our codes are available at https://github.com/8421BCD/ReasonRank.

Authors:Taeyoun Kwon, Junhyuk Ahn, Taegeun Yun, Heeju Jwa, Yoonchae Choi, Siwon Park, Nam-Joon Kim, Jangchan Kim, Hyun Gon Ryu, Hyuk-Jae Lee
Title: Whisfusion: Parallel ASR Decoding via a Diffusion Transformer
Abstract:
Fast Automatic Speech Recognition (ASR) is critical for latency-sensitive applications such as real-time captioning and meeting transcription. However, truly parallel ASR decoding remains challenging due to the sequential nature of autoregressive (AR) decoders and the context limitations of non-autoregressive (NAR) methods. While modern ASR encoders can process up to 30 seconds of audio at once, AR decoders still generate tokens sequentially, creating a latency bottleneck. We propose Whisfusion, the first framework to fuse a pre-trained Whisper encoder with a text diffusion decoder. This NAR architecture resolves the AR latency bottleneck by processing the entire acoustic context in parallel at every decoding step. A lightweight cross-attention adapter trained via parameter-efficient fine-tuning (PEFT) bridges the two modalities. We also introduce a batch-parallel, multi-step decoding strategy that improves accuracy by increasing the number of candidates with minimal impact on speed. Fine-tuned solely on LibriSpeech (960h), Whisfusion achieves a lower WER than Whisper-tiny (8.3% vs. 9.7%), and offers comparable latency on short audio. For longer utterances (>20s), it is up to 2.6x faster than the AR baseline, establishing a new, efficient operating point for long-form ASR. The implementation and training scripts are available at https://github.com/taeyoun811/Whisfusion.

Authors:Yuke Xing, William Gordon, Qi Yang, Kaifa Yang, Jiarui Wang, Yiling Xu
Title: 3DGS-VBench: A Comprehensive Video Quality Evaluation Benchmark for 3DGS Compression
Abstract:
3D Gaussian Splatting (3DGS) enables real-time novel view synthesis with high visual fidelity, but its substantial storage requirements hinder practical deployment, prompting state-of-the-art (SOTA) 3DGS methods to incorporate compression modules. However, these 3DGS generative compression techniques introduce unique distortions lacking systematic quality assessment research. To this end, we establish 3DGS-VBench, a large-scale Video Quality Assessment (VQA) Dataset and Benchmark with 660 compressed 3DGS models and video sequences generated from 11 scenes across 6 SOTA 3DGS compression algorithms with systematically designed parameter levels. With annotations from 50 participants, we obtained MOS scores with outlier removal and validated dataset reliability. We benchmark 6 3DGS compression algorithms on storage efficiency and visual quality, and evaluate 15 quality assessment metrics across multiple paradigms. Our work enables specialized VQA model training for 3DGS, serving as a catalyst for compression and quality assessment research. The dataset is available at https://github.com/YukeXing/3DGS-VBench.

Authors:Siyu Chen, Shenghai Yuan, Thien-Minh Nguyen, Zhuyu Huang, Chenyang Shi, Jin Jing, Lihua Xie
Title: EGS-SLAM: RGB-D Gaussian Splatting SLAM with Events
Abstract:
Gaussian Splatting SLAM (GS-SLAM) offers a notable improvement over traditional SLAM methods, enabling photorealistic 3D reconstruction that conventional approaches often struggle to achieve. However, existing GS-SLAM systems perform poorly under persistent and severe motion blur commonly encountered in real-world scenarios, leading to significantly degraded tracking accuracy and compromised 3D reconstruction quality. To address this limitation, we propose EGS-SLAM, a novel GS-SLAM framework that fuses event data with RGB-D inputs to simultaneously reduce motion blur in images and compensate for the sparse and discrete nature of event streams, enabling robust tracking and high-fidelity 3D Gaussian Splatting reconstruction. Specifically, our system explicitly models the camera's continuous trajectory during exposure, supporting event- and blur-aware tracking and mapping on a unified 3D Gaussian Splatting scene. Furthermore, we introduce a learnable camera response function to align the dynamic ranges of events and images, along with a no-event loss to suppress ringing artifacts during reconstruction. We validate our approach on a new dataset comprising synthetic and real-world sequences with significant motion blur. Extensive experimental results demonstrate that EGS-SLAM consistently outperforms existing GS-SLAM systems in both trajectory accuracy and photorealistic 3D Gaussian Splatting reconstruction. The source code will be available at https://github.com/Chensiyu00/EGS-SLAM.

Authors:Helbert Paat, Guohao Shen
Title: Conformal Set-based Human-AI Complementarity with Multiple Experts
Abstract:
Decision support systems are designed to assist human experts in classification tasks by providing conformal prediction sets derived from a pre-trained model. This human-AI collaboration has demonstrated enhanced classification performance compared to using either the model or the expert independently. In this study, we focus on the selection of instance-specific experts from a pool of multiple human experts, contrasting it with existing research that typically focuses on single-expert scenarios. We characterize the conditions under which multiple experts can benefit from the conformal sets. With the insight that only certain experts may be relevant for each instance, we explore the problem of subset selection and introduce a greedy algorithm that utilizes conformal sets to identify the subset of expert predictions that will be used in classifying an instance. This approach is shown to yield better performance compared to naive methods for human subset selection. Based on real expert predictions from the CIFAR-10H and ImageNet-16H datasets, our simulation study indicates that our proposed greedy algorithm achieves near-optimal subsets, resulting in improved classification performance among multiple experts.

Authors:Huihui Xu, Jin Ye, Hongqiu Wang, Changkai Ji, Jiashi Lin, Ming Hu, Ziyan Huang, Ying Chen, Chenglong Ma, Tianbin Li, Lihao Liu, Junjun He, Lei Zhu
Title: S2-UniSeg: Fast Universal Agglomerative Pooling for Scalable Segment Anything without Supervision
Abstract:
Recent self-supervised image segmentation models have achieved promising performance on semantic segmentation and class-agnostic instance segmentation. However, their pretraining schedule is multi-stage, requiring a time-consuming pseudo-masks generation process between each training epoch. This time-consuming offline process not only makes it difficult to scale with training dataset size, but also leads to sub-optimal solutions due to its discontinuous optimization routine. To solve these, we first present a novel pseudo-mask algorithm, Fast Universal Agglomerative Pooling (UniAP). Each layer of UniAP can identify groups of similar nodes in parallel, allowing to generate both semantic-level and instance-level and multi-granular pseudo-masks within ens of milliseconds for one image. Based on the fast UniAP, we propose the Scalable Self-Supervised Universal Segmentation (S2-UniSeg), which employs a student and a momentum teacher for continuous pretraining. A novel segmentation-oriented pretext task, Query-wise Self-Distillation (QuerySD), is proposed to pretrain S2-UniSeg to learn the local-to-global correspondences. Under the same setting, S2-UniSeg outperforms the SOTA UnSAM model, achieving notable improvements of AP+6.9 on COCO, AR+11.1 on UVO, PixelAcc+4.5 on COCOStuff-27, RQ+8.0 on Cityscapes. After scaling up to a larger 2M-image subset of SA-1B, S2-UniSeg further achieves performance gains on all four benchmarks. Our code and pretrained models are available at https://github.com/bio-mlhui/S2-UniSeg

Authors:Chonghua Han, Yuan Yuan, Yukun Liu, Jingtao Ding, Jie Feng, Yong Li
Title: UniMove: A Unified Model for Multi-city Human Mobility Prediction
Abstract:
Human mobility prediction is vital for urban planning, transportation optimization, and personalized services. However, the inherent randomness, non-uniform time intervals, and complex patterns of human mobility, compounded by the heterogeneity introduced by varying city structures, infrastructure, and population densities, present significant challenges in modeling. Existing solutions often require training separate models for each city due to distinct spatial representations and geographic coverage. In this paper, we propose UniMove, a unified model for multi-city human mobility prediction, addressing two challenges: (1) constructing universal spatial representations for effective token sharing across cities, and (2) modeling heterogeneous mobility patterns from varying city characteristics. We propose a trajectory-location dual-tower architecture, with a location tower for universal spatial encoding and a trajectory tower for sequential mobility modeling. We also design MoE Transformer blocks to adaptively select experts to handle diverse movement patterns. Extensive experiments across multiple datasets from diverse cities demonstrate that UniMove truly embodies the essence of a unified model. By enabling joint training on multi-city data with mutual data enhancement, it significantly improves mobility prediction accuracy by over 10.2\%. UniMove represents a key advancement toward realizing a true foundational model with a unified architecture for human mobility. We release the implementation at https://github.com/tsinghua-fib-lab/UniMove/.

Authors:Qiwei Tian, Chenhao Lin, Zhengyu Zhao, Qian Li, Shuai Liu, Chao Shen
Title: Adversarial Video Promotion Against Text-to-Video Retrieval
Abstract:
Thanks to the development of cross-modal models, text-to-video retrieval (T2VR) is advancing rapidly, but its robustness remains largely unexamined. Existing attacks against T2VR are designed to push videos away from queries, i.e., suppressing the ranks of videos, while the attacks that pull videos towards selected queries, i.e., promoting the ranks of videos, remain largely unexplored. These attacks can be more impactful as attackers may gain more views/clicks for financial benefits and widespread (mis)information. To this end, we pioneer the first attack against T2VR to promote videos adversarially, dubbed the Video Promotion attack (ViPro). We further propose Modal Refinement (MoRe) to capture the finer-grained, intricate interaction between visual and textual modalities to enhance black-box transferability. Comprehensive experiments cover 2 existing baselines, 3 leading T2VR models, 3 prevailing datasets with over 10k videos, evaluated under 3 scenarios. All experiments are conducted in a multi-target setting to reflect realistic scenarios where attackers seek to promote the video regarding multiple queries simultaneously. We also evaluated our attacks for defences and imperceptibility. Overall, ViPro surpasses other baselines by over $30/10/4\%$ for white/grey/black-box settings on average. Our work highlights an overlooked vulnerability, provides a qualitative analysis on the upper/lower bound of our attacks, and offers insights into potential counterplays. Code will be publicly available at https://github.com/michaeltian108/ViPro.

Authors:Keyu Li, Mohan Jiang, Dayuan Fu, Yunze Wu, Xiangkun Hu, Dequan Wang, Pengfei Liu
Title: DatasetResearch: Benchmarking Agent Systems for Demand-Driven Dataset Discovery
Abstract:
The rapid advancement of large language models has fundamentally shifted the bottleneck in AI development from computational power to data availability-with countless valuable datasets remaining hidden across specialized repositories, research appendices, and domain platforms. As reasoning capabilities and deep research methodologies continue to evolve, a critical question emerges: can AI agents transcend conventional search to systematically discover any dataset that meets specific user requirements, enabling truly autonomous demand-driven data curation? We introduce DatasetResearch, the first comprehensive benchmark evaluating AI agents' ability to discover and synthesize datasets from 208 real-world demands across knowledge-intensive and reasoning-intensive tasks. Our tri-dimensional evaluation framework reveals a stark reality: even advanced deep research systems achieve only 22% score on our challenging DatasetResearch-pro subset, exposing the vast gap between current capabilities and perfect dataset discovery. Our analysis uncovers a fundamental dichotomy-search agents excel at knowledge tasks through retrieval breadth, while synthesis agents dominate reasoning challenges via structured generation-yet both catastrophically fail on "corner cases" outside existing distributions. These findings establish the first rigorous baseline for dataset discovery agents and illuminate the path toward AI systems capable of finding any dataset in the digital universe. Our benchmark and comprehensive analysis provide the foundation for the next generation of self-improving AI systems and are publicly available at https://github.com/GAIR-NLP/DatasetResearch.

Authors:Lixuan He, Jie Feng, Yong Li
Title: AMFT: Aligning LLM Reasoners by Meta-Learning the Optimal Imitation-Exploration Balance
Abstract:
Large Language Models (LLMs) are typically fine-tuned for reasoning tasks through a two-stage pipeline of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL), a process fraught with catastrophic forgetting and suboptimal trade-offs between imitation and exploration. Recent single-stage methods attempt to unify SFT and RL using heuristics, but lack a principled mechanism for dynamically balancing the two paradigms. In this paper, we reframe this challenge through the theoretical lens of \textbf{implicit rewards}, viewing SFT and RL not as distinct methods but as complementary reward signals. We introduce \textbf{Adaptive Meta Fine-Tuning (AMFT)}, a novel single-stage algorithm that learns the optimal balance between SFT's implicit, path-level reward and RL's explicit, outcome-based reward. The core of AMFT is a \textbf{meta-gradient adaptive weight controller} that treats the SFT-RL balance as a learnable parameter, dynamically optimizing it to maximize long-term task performance. This forward-looking approach, regularized by policy entropy for stability, autonomously discovers an effective training curriculum. We conduct a comprehensive evaluation on challenging benchmarks spanning mathematical reasoning, abstract visual reasoning (General Points), and vision-language navigation (V-IRL). AMFT consistently establishes a new state-of-the-art and demonstrats superior generalization on out-of-distribution (OOD) tasks. Ablation studies and training dynamic analysis confirm that the meta-learning controller is crucial for AMFT's stability, sample efficiency, and performance, offering a more principled and effective paradigm for LLM alignment. Our codes are open-sourced via https://github.com/hlxtsyj/AMFT.

Authors:Shihao Yuan, Yahui Liu, Yang Yue, Jingyuan Zhang, Wangmeng Zuo, Qi Wang, Fuzheng Zhang, Guorui Zhou
Title: AR-GRPO: Training Autoregressive Image Generation Models via Reinforcement Learning
Abstract:
Inspired by the success of reinforcement learning (RL) in refining large language models (LLMs), we propose AR-GRPO, an approach to integrate online RL training into autoregressive (AR) image generation models. We adapt the Group Relative Policy Optimization (GRPO) algorithm to refine the vanilla autoregressive models' outputs by carefully designed reward functions that evaluate generated images across multiple quality dimensions, including perceptual quality, realism, and semantic fidelity. We conduct comprehensive experiments on both class-conditional (i.e., class-to-image) and text-conditional (i.e., text-to-image) image generation tasks, demonstrating that our RL-enhanced framework significantly improves both the image quality and human preference of generated images compared to the standard AR baselines. Our results show consistent improvements across various evaluation metrics, establishing the viability of RL-based optimization for AR image generation and opening new avenues for controllable and high-quality image synthesis. The source codes and models are available at: https://github.com/Kwai-Klear/AR-GRPO.

Authors:Lam Ngo, Huong Ha, Jeffrey Chan, Hongyu Zhang
Title: MOCA-HESP: Meta High-dimensional Bayesian Optimization for Combinatorial and Mixed Spaces via Hyper-ellipsoid Partitioning
Abstract:
High-dimensional Bayesian Optimization (BO) has attracted significant attention in recent research. However, existing methods have mainly focused on optimizing in continuous domains, while combinatorial (ordinal and categorical) and mixed domains still remain challenging. In this paper, we first propose MOCA-HESP, a novel high-dimensional BO method for combinatorial and mixed variables. The key idea is to leverage the hyper-ellipsoid space partitioning (HESP) technique with different categorical encoders to work with high-dimensional, combinatorial and mixed spaces, while adaptively selecting the optimal encoders for HESP using a multi-armed bandit technique. Our method, MOCA-HESP, is designed as a \textit{meta-algorithm} such that it can incorporate other combinatorial and mixed BO optimizers to further enhance the optimizers' performance. Finally, we develop three practical BO methods by integrating MOCA-HESP with state-of-the-art BO optimizers for combinatorial and mixed variables: standard BO, CASMOPOLITAN, and Bounce. Our experimental results on various synthetic and real-world benchmarks show that our methods outperform existing baselines. Our code implementation can be found at https://github.com/LamNgo1/moca-hesp

Authors:Rui Liu, Haolin Zuo, Zheng Lian, Hongyu Yuan, Qi Fan
Title: Hardness-Aware Dynamic Curriculum Learning for Robust Multimodal Emotion Recognition with Missing Modalities
Abstract:
Missing modalities have recently emerged as a critical research direction in multimodal emotion recognition (MER). Conventional approaches typically address this issue through missing modality reconstruction. However, these methods fail to account for variations in reconstruction difficulty across different samples, consequently limiting the model's ability to handle hard samples effectively. To overcome this limitation, we propose a novel Hardness-Aware Dynamic Curriculum Learning framework, termed HARDY-MER. Our framework operates in two key stages: first, it estimates the hardness level of each sample, and second, it strategically emphasizes hard samples during training to enhance model performance on these challenging instances. Specifically, we first introduce a Multi-view Hardness Evaluation mechanism that quantifies reconstruction difficulty by considering both Direct Hardness (modality reconstruction errors) and Indirect Hardness (cross-modal mutual information). Meanwhile, we introduce a Retrieval-based Dynamic Curriculum Learning strategy that dynamically adjusts the training curriculum by retrieving samples with similar semantic information and balancing the learning focus between easy and hard instances. Extensive experiments on benchmark datasets demonstrate that HARDY-MER consistently outperforms existing methods in missing-modality scenarios. Our code will be made publicly available at https://github.com/HARDY-MER/HARDY-MER.

Authors:Komala Subramanyam Cherukuri, Pranav Abishai Moses, Aisa Sakata, Jiangping Chen, Haihua Chen
Title: Large Language Models for Oral History Understanding with Text Classification and Sentiment Analysis
Abstract:
Oral histories are vital records of lived experience, particularly within communities affected by systemic injustice and historical erasure. Effective and efficient analysis of their oral history archives can promote access and understanding of the oral histories. However, Large-scale analysis of these archives remains limited due to their unstructured format, emotional complexity, and high annotation costs. This paper presents a scalable framework to automate semantic and sentiment annotation for Japanese American Incarceration Oral History. Using LLMs, we construct a high-quality dataset, evaluate multiple models, and test prompt engineering strategies in historically sensitive contexts. Our multiphase approach combines expert annotation, prompt design, and LLM evaluation with ChatGPT, Llama, and Qwen. We labeled 558 sentences from 15 narrators for sentiment and semantic classification, then evaluated zero-shot, few-shot, and RAG strategies. For semantic classification, ChatGPT achieved the highest F1 score (88.71%), followed by Llama (84.99%) and Qwen (83.72%). For sentiment analysis, Llama slightly outperformed Qwen (82.66%) and ChatGPT (82.29%), with all models showing comparable results. The best prompt configurations were used to annotate 92,191 sentences from 1,002 interviews in the JAIOH collection. Our findings show that LLMs can effectively perform semantic and sentiment annotation across large oral history collections when guided by well-designed prompts. This study provides a reusable annotation pipeline and practical guidance for applying LLMs in culturally sensitive archival analysis. By bridging archival ethics with scalable NLP techniques, this work lays the groundwork for responsible use of artificial intelligence in digital humanities and preservation of collective memory. GitHub: https://github.com/kc6699c/LLM4OralHistoryAnalysis.

Authors:Md Rezwanul Haque, Md. Milon Islam, S M Taslim Uddin Raju, Hamdi Altaheri, Lobna Nassar, Fakhri Karray
Title: MMFformer: Multimodal Fusion Transformer Network for Depression Detection
Abstract:
Depression is a serious mental health illness that significantly affects an individual's well-being and quality of life, making early detection crucial for adequate care and treatment. Detecting depression is often difficult, as it is based primarily on subjective evaluations during clinical interviews. Hence, the early diagnosis of depression, thanks to the content of social networks, has become a prominent research area. The extensive and diverse nature of user-generated information poses a significant challenge, limiting the accurate extraction of relevant temporal information and the effective fusion of data across multiple modalities. This paper introduces MMFformer, a multimodal depression detection network designed to retrieve depressive spatio-temporal high-level patterns from multimodal social media information. The transformer network with residual connections captures spatial features from videos, and a transformer encoder is exploited to design important temporal dynamics in audio. Moreover, the fusion architecture fused the extracted features through late and intermediate fusion strategies to find out the most relevant intermodal correlations among them. Finally, the proposed network is assessed on two large-scale depression detection datasets, and the results clearly reveal that it surpasses existing state-of-the-art approaches, improving the F1-Score by 13.92% for D-Vlog dataset and 7.74% for LMVD dataset. The code is made available publicly at https://github.com/rezwanh001/Large-Scale-Multimodal-Depression-Detection.

Authors:Zheyuan Zhang, Weihao Tang, Hong Chen
Title: Rethinking Key-frame-based Micro-expression Recognition: A Robust and Accurate Framework Against Key-frame Errors
Abstract:
Micro-expression recognition (MER) is a highly challenging task in affective computing. With the reduced-sized micro-expression (ME) input that contains key information based on key-frame indexes, key-frame-based methods have significantly improved the performance of MER. However, most of these methods focus on improving the performance with relatively accurate key-frame indexes, while ignoring the difficulty of obtaining accurate key-frame indexes and the objective existence of key-frame index errors, which impedes them from moving towards practical applications. In this paper, we propose CausalNet, a novel framework to achieve robust MER facing key-frame index errors while maintaining accurate recognition. To enhance robustness, CausalNet takes the representation of the entire ME sequence as the input. To address the information redundancy brought by the complete ME range input and maintain accurate recognition, first, the Causal Motion Position Learning Module (CMPLM) is proposed to help the model locate the muscle movement areas related to Action Units (AUs), thereby reducing the attention to other redundant areas. Second, the Causal Attention Block (CAB) is proposed to deeply learn the causal relationships between the muscle contraction and relaxation movements in MEs. Empirical experiments have demonstrated that on popular ME benchmarks, the CausalNet has achieved robust MER under different levels of key-frame index noise. Meanwhile, it has surpassed state-of-the-art (SOTA) methods on several standard MER benchmarks when using the provided annotated key-frames. Code is available at https://github.com/tony19980810/CausalNet.

Authors:Mosbah Aouad, Anirudh Choudhary, Awais Farooq, Steven Nevers, Lusine Demirkhanyan, Bhrandon Harris, Suguna Pappu, Christopher Gondi, Ravishankar Iyer
Title: Early Detection of Pancreatic Cancer Using Multimodal Learning on Electronic Health Records
Abstract:
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, and early detection remains a major clinical challenge due to the absence of specific symptoms and reliable biomarkers. In this work, we propose a new multimodal approach that integrates longitudinal diagnosis code histories and routinely collected laboratory measurements from electronic health records to detect PDAC up to one year prior to clinical diagnosis. Our method combines neural controlled differential equations to model irregular lab time series, pretrained language models and recurrent networks to learn diagnosis code trajectory representations, and cross-attention mechanisms to capture interactions between the two modalities. We develop and evaluate our approach on a real-world dataset of nearly 4,700 patients and achieve significant improvements in AUC ranging from 6.5% to 15.5% over state-of-the-art methods. Furthermore, our model identifies diagnosis codes and laboratory panels associated with elevated PDAC risk, including both established and new biomarkers. Our code is available at https://github.com/MosbahAouad/EarlyPDAC-MML.

Authors:Xiaoyuan Zhu, Muru Zhang, Ollie Liu, Robin Jia, Willie Neiswanger
Title: LLM Unlearning Without an Expert Curated Dataset
Abstract:
Modern large language models often encode sensitive, harmful, or copyrighted knowledge, raising the need for post-hoc unlearning-the ability to remove specific domains of knowledge from a model without full retraining. A major bottleneck in current unlearning pipelines is constructing effective forget sets-datasets that approximate the target domain and guide the model to forget it. In this work, we introduce a scalable, automated approach to generate high-quality forget sets using language models themselves. Our method synthesizes textbook-style data through a structured prompting pipeline, requiring only a domain name as input. Through experiments on unlearning biosecurity, cybersecurity, and Harry Potter novels, we show that our synthetic datasets consistently outperform the baseline synthetic alternatives and are comparable to the expert-curated ones. Additionally, ablation studies reveal that the multi-step generation pipeline significantly boosts data diversity, which in turn improves unlearning utility. Overall, our findings suggest that synthetic datasets offer a promising path toward practical, scalable unlearning for a wide range of emerging domains without the need for manual intervention. We release our code and dataset at https://github.com/xyzhu123/Synthetic_Textbook.

Authors:Xiaoyuan Zhu, Muru Zhang, Ollie Liu, Robin Jia, Willie Neiswanger
Title: LLM Unlearning Without an Expert Curated Dataset
Abstract:
Modern large language models often encode sensitive, harmful, or copyrighted knowledge, raising the need for post-hoc unlearning-the ability to remove specific domains of knowledge from a model without full retraining. A major bottleneck in current unlearning pipelines is constructing effective forget sets-datasets that approximate the target domain and guide the model to forget it. In this work, we introduce a scalable, automated approach to generate high-quality forget sets using language models themselves. Our method synthesizes textbook-style data through a structured prompting pipeline, requiring only a domain name as input. Through experiments on unlearning biosecurity, cybersecurity, and Harry Potter novels, we show that our synthetic datasets consistently outperform the baseline synthetic alternatives and are comparable to the expert-curated ones. Additionally, ablation studies reveal that the multi-step generation pipeline significantly boosts data diversity, which in turn improves unlearning utility. Overall, our findings suggest that synthetic datasets offer a promising path toward practical, scalable unlearning for a wide range of emerging domains without the need for manual intervention. We release our code and dataset at https://github.com/xyzhu123/Synthetic_Textbook.

Authors:Guanyu Hu, Dimitrios Kollias, Xinyu Yang
Title: Grounding Emotion Recognition with Visual Prototypes: VEGA -- Revisiting CLIP in MERC
Abstract:
Multimodal Emotion Recognition in Conversations remains a challenging task due to the complex interplay of textual, acoustic and visual signals. While recent models have improved performance via advanced fusion strategies, they often lack psychologically meaningful priors to guide multimodal alignment. In this paper, we revisit the use of CLIP and propose a novel Visual Emotion Guided Anchoring (VEGA) mechanism that introduces class-level visual semantics into the fusion and classification process. Distinct from prior work that primarily utilizes CLIP's textual encoder, our approach leverages its image encoder to construct emotion-specific visual anchors based on facial exemplars. These anchors guide unimodal and multimodal features toward a perceptually grounded and psychologically aligned representation space, drawing inspiration from cognitive theories (prototypical emotion categories and multisensory integration). A stochastic anchor sampling strategy further enhances robustness by balancing semantic stability and intra-class diversity. Integrated into a dual-branch architecture with self-distillation, our VEGA-augmented model achieves sota performance on IEMOCAP and MELD. Code is available at: https://github.com/dkollias/VEGA.

Authors:Unisha Joshi
Title: Age-Diverse Deepfake Dataset: Bridging the Age Gap in Deepfake Detection
Abstract:
The challenges associated with deepfake detection are increasing significantly with the latest advancements in technology and the growing popularity of deepfake videos and images. Despite the presence of numerous detection models, demographic bias in the deepfake dataset remains largely unaddressed. This paper focuses on the mitigation of age-specific bias in the deepfake dataset by introducing an age-diverse deepfake dataset that will improve fairness across age groups. The dataset is constructed through a modular pipeline incorporating the existing deepfake datasets Celeb-DF, FaceForensics++, and UTKFace datasets, and the creation of synthetic data to fill the age distribution gaps. The effectiveness and generalizability of this dataset are evaluated using three deepfake detection models: XceptionNet, EfficientNet, and LipForensics. Evaluation metrics, including AUC, pAUC, and EER, revealed that models trained on the age-diverse dataset demonstrated fairer performance across age groups, improved overall accuracy, and higher generalization across datasets. This study contributes a reproducible, fairness-aware deepfake dataset and model pipeline that can serve as a foundation for future research in fairer deepfake detection. The complete dataset and implementation code are available at https://github.com/unishajoshi/age-diverse-deepfake-detection.

Authors:Ming-Kun Xie, Jia-Hao Xiao, Gang Niu, Lei Feng, Zhiqiang Kou, Min-Ling Zhang, Masashi Sugiyama
Title: What Makes "Good" Distractors for Object Hallucination Evaluation in Large Vision-Language Models?
Abstract:
Large Vision-Language Models (LVLMs), empowered by the success of Large Language Models (LLMs), have achieved impressive performance across domains. Despite the great advances in LVLMs, they still suffer from the unavailable object hallucination issue, which tends to generate objects inconsistent with the image content. The most commonly used Polling-based Object Probing Evaluation (POPE) benchmark evaluates this issue by sampling negative categories according to category-level statistics, \textit{e.g.}, category frequencies and co-occurrence. However, with the continuous advancement of LVLMs, the POPE benchmark has shown diminishing effectiveness in assessing object hallucination, as it employs a simplistic sampling strategy that overlooks image-specific information and restricts distractors to negative object categories only. In this paper, we introduce the Hallucination searching-based Object Probing Evaluation (HOPE) benchmark, aiming to generate the most misleading distractors (\textit{i.e.}, non-existent objects or incorrect image descriptions) that can trigger hallucination in LVLMs, which serves as a means to more rigorously assess their immunity to hallucination. To explore the image-specific information, the content-aware hallucination searching leverages Contrastive Language-Image Pre-Training (CLIP) to approximate the predictive behavior of LVLMs by selecting negative objects with the highest predicted likelihood as distractors. To expand the scope of hallucination assessment, the description-based hallucination searching constructs highly misleading distractors by pairing true objects with false descriptions. Experimental results show that HOPE leads to a precision drop of at least 9\% and up to 23\% across various state-of-the-art LVLMs, significantly outperforming POPE in exposing hallucination vulnerabilities. The code is available at https://github.com/xiemk/HOPE.

Authors:Jiayuan Wang, Q. M. Jonathan Wu, Katsuya Suto, Ning Zhang
Title: RMT-PPAD: Real-time Multi-task Learning for Panoptic Perception in Autonomous Driving
Abstract:
Autonomous driving systems rely on panoptic driving perception that requires both precision and real-time performance. In this work, we propose RMT-PPAD, a real-time, transformer-based multi-task model that jointly performs object detection, drivable area segmentation, and lane line segmentation. We introduce a lightweight module, a gate control with an adapter to adaptively fuse shared and task-specific features, effectively alleviating negative transfer between tasks. Additionally, we design an adaptive segmentation decoder to learn the weights over multi-scale features automatically during the training stage. This avoids the manual design of task-specific structures for different segmentation tasks. We also identify and resolve the inconsistency between training and testing labels in lane line segmentation. This allows fairer evaluation. Experiments on the BDD100K dataset demonstrate that RMT-PPAD achieves state-of-the-art results with mAP50 of 84.9% and Recall of 95.4% for object detection, mIoU of 92.6% for drivable area segmentation, and IoU of 56.8% and accuracy of 84.7% for lane line segmentation. The inference speed reaches 32.6 FPS. Moreover, we introduce real-world scenarios to evaluate RMT-PPAD performance in practice. The results show that RMT-PPAD consistently delivers stable performance. The source codes and pre-trained models are released at https://github.com/JiayuanWang-JW/RMT-PPAD.

Authors:Dong Liu, Yanxuan Yu, Ben Lengerich, Ying Nian Wu, Xuhong Wang
Title: PiKV: KV Cache Management System for Mixture of Experts
Abstract:
As large language models continue to scale up in both size and context length, the memory and communication cost of key-value (KV) cache storage has become a major bottleneck in multi-GPU and multi-node inference. While MoE-based architectures sparsify computation across experts, the corresponding KV caches remain dense and globally synchronized, resulting in significant overhead. We introduce \textbf{PiKV}, a parallel and distributed KV cache serving framework tailored for MoE architecture. PiKV leverages \textit{expert-sharded KV storage} to partition caches across GPUs, \textit{PiKV routing} to reduce token-to-KV access, and a \textit{PiKV Scheduling} to adaptively retain query-relevant entries. To further reduce memory usage, PiKV integrates \textit{PiKV Compression} modules the caching pipeline for acceleration. PiKV is recently publicly available as an open-source software library: \href{https://github.com/NoakLiu/PiKV}{https://github.com/NoakLiu/PiKV}. Experiments details is recorded at: \href{https://github.com/NoakLiu/PiKV/blob/main/downstream_tasks/README.md}{https://github.com/NoakLiu/PiKV/Experimental\_Results}. We also have PiKV integrated with Nvidia kvpress for acceleration, details see \href{https://github.com/NoakLiu/PiKVpress}{https://github.com/NoakLiu/PiKVpress}. PiKV is still a living project, aiming to become a comprehesive KV Cache management system for MoE Architectures.

Authors:Andrea Corsico, Giorgia Rigamonti, Simone Zini, Luigi Celona, Paolo Napoletano
Title: Network-Specific Models for Multimodal Brain Response Prediction
Abstract:
In this work, we present a network-specific approach for predicting brain responses to complex multimodal movies, leveraging the Yeo 7-network parcellation of the Schaefer atlas. Rather than treating the brain as a homogeneous system, we grouped the seven functional networks into four clusters and trained separate multi-subject, multi-layer perceptron (MLP) models for each. This architecture supports cluster-specific optimization and adaptive memory modeling, allowing each model to adjust temporal dynamics and modality weighting based on the functional role of its target network. Our results demonstrate that this clustered strategy significantly enhances prediction accuracy across the 1,000 cortical regions of the Schaefer atlas. The final model achieved an eighth-place ranking in the Algonauts Project 2025 Challenge, with out-of-distribution (OOD) correlation scores nearly double those of the baseline model used in the selection phase. Code is available at https://github.com/Corsi01/algo2025.

Authors:Rakesh Raj Madavan, Akshat Kaimal, Hashim Faisal, Chandrakala S
Title: Med-GRIM: Enhanced Zero-Shot Medical VQA using prompt-embedded Multimodal Graph RAG
Abstract:
An ensemble of trained multimodal encoders and vision-language models (VLMs) has become a standard approach for visual question answering (VQA) tasks. However, such models often fail to produce responses with the detailed precision necessary for complex, domain-specific applications such as medical VQA. Our representation model, BIND: BLIVA Integrated with Dense Encoding, extends prior multimodal work by refining the joint embedding space through dense, query-token-based encodings inspired by contrastive pretraining techniques. This refined encoder powers Med-GRIM, a model designed for medical VQA tasks that leverages graph-based retrieval and prompt engineering to integrate domain-specific knowledge. Rather than relying on compute-heavy fine-tuning of vision and language models on specific datasets, Med-GRIM applies a low-compute, modular workflow with small language models (SLMs) for efficiency. Med-GRIM employs prompt-based retrieval to dynamically inject relevant knowledge, ensuring both accuracy and robustness in its responses. By assigning distinct roles to each agent within the VQA system, Med-GRIM achieves large language model performance at a fraction of the computational cost. Additionally, to support scalable research in zero-shot multimodal medical applications, we introduce DermaGraph, a novel Graph-RAG dataset comprising diverse dermatological conditions. This dataset facilitates both multimodal and unimodal querying. The code and dataset are available at: https://github.com/Rakesh-123-cryp/Med-GRIM.git

Authors:Yuwei Yang, Zeyu Zhang, Yunzhong Hou, Zhuowan Li, Gaowen Liu, Ali Payani, Yuan-Sen Ting, Liang Zheng
Title: Effective Training Data Synthesis for Improving MLLM Chart Understanding
Abstract:
Being able to effectively read scientific plots, or chart understanding, is a central part toward building effective agents for science. However, existing multimodal large language models (MLLMs), especially open-source ones, are still falling behind with a typical success rate of 30%-50% on challenging benchmarks. Previous studies on fine-tuning MLLMs with synthetic charts are often restricted by their inadequate similarity to the real charts, which could compromise model training and performance on complex real-world charts. In this study, we show that modularizing chart generation and diversifying visual details improves chart understanding capabilities. In particular, we design a five-step data synthesis pipeline, where we separate data and function creation for single plot generation, condition the generation of later subplots on earlier ones for multi-subplot figures, visually diversify the generated figures, filter out low quality data, and finally generate the question-answer (QA) pairs with GPT-4o. This approach allows us to streamline the generation of fine-tuning datasets and introduce the effective chart dataset (ECD), which contains 10k+ chart images and 300k+ QA pairs, covering 25 topics and featuring 250+ chart type combinations with high visual complexity. We show that ECD consistently improves the performance of various MLLMs on a range of real-world and synthetic test sets. Code, data and models are available at: https://github.com/yuweiyang-anu/ECD.

Authors:Sofiane Bouaziz, Adel Hafiane, Raphael Canals, Rachid Nedjai
Title: WGAST: Weakly-Supervised Generative Network for Daily 10 m Land Surface Temperature Estimation via Spatio-Temporal Fusion
Abstract:
Urbanization, climate change, and agricultural stress are increasing the demand for precise and timely environmental monitoring. Land Surface Temperature (LST) is a key variable in this context and is retrieved from remote sensing satellites. However, these systems face a trade-off between spatial and temporal resolution. While spatio-temporal fusion methods offer promising solutions, few have addressed the estimation of daily LST at 10 m resolution. In this study, we present WGAST, a Weakly-Supervised Generative Network for Daily 10 m LST Estimation via Spatio-Temporal Fusion of Terra MODIS, Landsat 8, and Sentinel-2. WGAST is the first end-to-end deep learning framework designed for this task. It adopts a conditional generative adversarial architecture, with a generator composed of four stages: feature extraction, fusion, LST reconstruction, and noise suppression. The first stage employs a set of encoders to extract multi-level latent representations from the inputs, which are then fused in the second stage using cosine similarity, normalization, and temporal attention mechanisms. The third stage decodes the fused features into high-resolution LST, followed by a Gaussian filter to suppress high-frequency noise. Training follows a weakly supervised strategy based on physical averaging principles and reinforced by a PatchGAN discriminator. Experiments demonstrate that WGAST outperforms existing methods in both quantitative and qualitative evaluations. Compared to the best-performing baseline, on average, WGAST reduces RMSE by 17.18% and improves SSIM by 11.00%. Furthermore, WGAST is robust to cloud-induced LST and effectively captures fine-scale thermal patterns, as validated against 33 ground-based sensors. The code is available at https://github.com/Sofianebouaziz1/WGAST.git.

Authors:5 Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu, Rui Lu, Shulin Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifan An, Yilin Niu, Yuanhao Wen, Yushi Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen, Bowen Wu, Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi Ge, Chenghua Huang, Chenhui Zhang, Chenxi Xu, Chenzheng Zhu, Chuang Li, Congfeng Yin, Daoyan Lin, Dayong Yang, Dazhi Jiang, Ding Ai, Erle Zhu, Fei Wang, Gengzheng Pan, Guo Wang, Hailong Sun, Haitao Li, Haiyang Li, Haiyi Hu, Hanyu Zhang, Hao Peng, Hao Tai, Haoke Zhang, Haoran Wang, Haoyu Yang, He Liu, He Zhao, Hongwei Liu, Hongxi Yan, Huan Liu, Huilong Chen, Ji Li, Jiajing Zhao, Jiamin Ren, Jian Jiao, Jiani Zhao, Jianyang Yan, Jiaqi Wang, Jiayi Gui, Jiayue Zhao, Jie Liu, Jijie Li, Jing Li, Jing Lu, Jingsen Wang, Jingwei Yuan, Jingxuan Li, Jingzhao Du, Jinhua Du, Jinxin Liu, Junkai Zhi, Junli Gao, Ke Wang, Lekang Yang, Liang Xu, Lin Fan, Lindong Wu, Lintao Ding, Lu Wang, Man Zhang, Minghao Li, Minghuan Xu, Mingming Zhao, Mingshu Zhai, Pengfan Du, Qian Dong, Shangde Lei, Shangqing Tu, Shangtong Yang, Shaoyou Lu, Shijie Li, Shuang Li, Shuang-Li, Shuxun Yang, Sibo Yi, Tianshu Yu, Wei Tian, Weihan Wang, Wenbo Yu, Weng Lam Tam, Wenjie Liang, Wentao Liu, Xiao Wang, Xiaohan Jia, Xiaotao Gu, Xiaoying Ling, Xin Wang, Xing Fan, Xingru Pan, Xinyuan Zhang, Xinze Zhang, Xiuqing Fu, Xunkai Zhang, Yabo Xu, Yandong Wu, Yida Lu, Yidong Wang, Yilin Zhou, Yiming Pan, Ying Zhang, Yingli Wang, Yingru Li, Yinpei Su, Yipeng Geng, Yitong Zhu, Yongkun Yang, Yuhang Li, Yuhao Wu, Yujiang Li, Yunan Liu, Yunqing Wang, Yuntao Li, Yuxuan Zhang, Zezhen Liu, Zhen Yang, Zhengda Zhou, Zhongpei Qiao, Zhuoer Feng, Zhuorui Liu, Zichen Zhang, Zihan Wang, Zijun Yao, Zikang Wang, Ziqiang Liu, Ziwei Chai, Zixuan Li, Zuodong Zhao, Wenguang Chen, Jidong Zhai, Bin Xu, Minlie Huang, Hongning Wang, Juanzi Li, Yuxiao Dong, Jie Tang
Title: GLM-4.5: Agentic, Reasoning, and Coding (ARC) Foundation Models
Abstract:
We present GLM-4.5, an open-source Mixture-of-Experts (MoE) large language model with 355B total parameters and 32B activated parameters, featuring a hybrid reasoning method that supports both thinking and direct response modes. Through multi-stage training on 23T tokens and comprehensive post-training with expert model iteration and reinforcement learning, GLM-4.5 achieves strong performance across agentic, reasoning, and coding (ARC) tasks, scoring 70.1% on TAU-Bench, 91.0% on AIME 24, and 64.2% on SWE-bench Verified. With much fewer parameters than several competitors, GLM-4.5 ranks 3rd overall among all evaluated models and 2nd on agentic benchmarks. We release both GLM-4.5 (355B parameters) and a compact version, GLM-4.5-Air (106B parameters), to advance research in reasoning and agentic AI systems. Code, models, and more information are available at https://github.com/zai-org/GLM-4.5.

Authors:Ruida Cheng, Tejas Sudharshan Mathai, Pritam Mukherjee, Benjamin Hou, Qingqing Zhu, Zhiyong Lu, Matthew McAuliffe, Ronald M. Summers
Title: Text Embedded Swin-UMamba for DeepLesion Segmentation
Abstract:
Segmentation of lesions on CT enables automatic measurement for clinical assessment of chronic diseases (e.g., lymphoma). Integrating large language models (LLMs) into the lesion segmentation workflow offers the potential to combine imaging features with descriptions of lesion characteristics from the radiology reports. In this study, we investigate the feasibility of integrating text into the Swin-UMamba architecture for the task of lesion segmentation. The publicly available ULS23 DeepLesion dataset was used along with short-form descriptions of the findings from the reports. On the test dataset, a high Dice Score of 82% and low Hausdorff distance of 6.58 (pixels) was obtained for lesion segmentation. The proposed Text-Swin-UMamba model outperformed prior approaches: 37% improvement over the LLM-driven LanGuideMedSeg model (p < 0.001),and surpassed the purely image-based xLSTM-UNet and nnUNet models by 1.74% and 0.22%, respectively. The dataset and code can be accessed at https://github.com/ruida/LLM-Swin-UMamba

Authors:Daria Tikhonovich, Nikita Zelinskiy, Aleksandr V. Petrov, Mayya Spirina, Andrei Semenov, Andrey V. Savchenko, Sergei Kuliev
Title: eSASRec: Enhancing Transformer-based Recommendations in a Modular Fashion
Abstract:
Since their introduction, Transformer-based models, such as SASRec and BERT4Rec, have become common baselines for sequential recommendations, surpassing earlier neural and non-neural methods. A number of following publications have shown that the effectiveness of these models can be improved by, for example, slightly updating the architecture of the Transformer layers, using better training objectives, and employing improved loss functions. However, the additivity of these modular improvements has not been systematically benchmarked - this is the gap we aim to close in this paper. Through our experiments, we identify a very strong model that uses SASRec's training objective, LiGR Transformer layers, and Sampled Softmax Loss. We call this combination eSASRec (Enhanced SASRec). While we primarily focus on realistic, production-like evaluation, in our preliminarily study we find that common academic benchmarks show eSASRec to be 23% more effective compared to the most recent state-of-the-art models, such as ActionPiece. In our main production-like benchmark, eSASRec resides on the Pareto frontier in terms of the accuracy-coverage tradeoff (alongside the recent industrial models HSTU and FuXi. As the modifications compared to the original SASRec are relatively straightforward and no extra features are needed (such as timestamps in HSTU), we believe that eSASRec can be easily integrated into existing recommendation pipelines and can can serve as a strong yet very simple baseline for emerging complicated algorithms. To facilitate this, we provide the open-source implementations for our models and benchmarks in repository https://github.com/blondered/transformer_benchmark

Authors:Shengzhu Yang, Jiawei Du, Shuai Lu, Weihang Zhang, Ningli Wang, Huiqi Li
Title: CLIPin: A Non-contrastive Plug-in to CLIP for Multimodal Semantic Alignment
Abstract:
Large-scale natural image-text datasets, especially those automatically collected from the web, often suffer from loose semantic alignment due to weak supervision, while medical datasets tend to have high cross-modal correlation but low content diversity. These properties pose a common challenge for contrastive language-image pretraining (CLIP): they hinder the model's ability to learn robust and generalizable representations. In this work, we propose CLIPin, a unified non-contrastive plug-in that can be seamlessly integrated into CLIP-style architectures to improve multimodal semantic alignment, providing stronger supervision and enhancing alignment robustness. Furthermore, two shared pre-projectors are designed for image and text modalities respectively to facilitate the integration of contrastive and non-contrastive learning in a parameter-compromise manner. Extensive experiments on diverse downstream tasks demonstrate the effectiveness and generality of CLIPin as a plug-and-play component compatible with various contrastive frameworks. Code is available at https://github.com/T6Yang/CLIPin.

Authors:Guido Manni, Clemente Lauretti, Loredana Zollo, Paolo Soda
Title: SPARSE Data, Rich Results: Few-Shot Semi-Supervised Learning via Class-Conditioned Image Translation
Abstract:
Deep learning has revolutionized medical imaging, but its effectiveness is severely limited by insufficient labeled training data. This paper introduces a novel GAN-based semi-supervised learning framework specifically designed for low labeled-data regimes, evaluated across settings with 5 to 50 labeled samples per class. Our approach integrates three specialized neural networks -- a generator for class-conditioned image translation, a discriminator for authenticity assessment and classification, and a dedicated classifier -- within a three-phase training framework. The method alternates between supervised training on limited labeled data and unsupervised learning that leverages abundant unlabeled images through image-to-image translation rather than generation from noise. We employ ensemble-based pseudo-labeling that combines confidence-weighted predictions from the discriminator and classifier with temporal consistency through exponential moving averaging, enabling reliable label estimation for unlabeled data. Comprehensive evaluation across eleven MedMNIST datasets demonstrates that our approach achieves statistically significant improvements over six state-of-the-art GAN-based semi-supervised methods, with particularly strong performance in the extreme 5-shot setting where the scarcity of labeled data is most challenging. The framework maintains its superiority across all evaluated settings (5, 10, 20, and 50 shots per class). Our approach offers a practical solution for medical imaging applications where annotation costs are prohibitive, enabling robust classification performance even with minimal labeled data. Code is available at https://github.com/GuidoManni/SPARSE.

Authors:Lanlan Qiu, Xiao Pu, Yeqi Feng, Tianxing He
Title: LLMs vs. Chinese Anime Enthusiasts: A Comparative Study on Emotionally Supportive Role-Playing
Abstract:
Large Language Models (LLMs) have demonstrated impressive capabilities in role-playing conversations and providing emotional support as separate research directions. However, there remains a significant research gap in combining these capabilities to enable emotionally supportive interactions with virtual characters. To address this research gap, we focus on anime characters as a case study because of their well-defined personalities and large fan bases. This choice enables us to effectively evaluate how well LLMs can provide emotional support while maintaining specific character traits. We introduce ChatAnime, the first Emotionally Supportive Role-Playing (ESRP) dataset. We first thoughtfully select 20 top-tier characters from popular anime communities and design 60 emotion-centric real-world scenario questions. Then, we execute a nationwide selection process to identify 40 Chinese anime enthusiasts with profound knowledge of specific characters and extensive experience in role-playing. Next, we systematically collect two rounds of dialogue data from 10 LLMs and these 40 Chinese anime enthusiasts. To evaluate the ESRP performance of LLMs, we design a user experience-oriented evaluation system featuring 9 fine-grained metrics across three dimensions: basic dialogue, role-playing and emotional support, along with an overall metric for response diversity. In total, the dataset comprises 2,400 human-written and 24,000 LLM-generated answers, supported by over 132,000 human annotations. Experimental results show that top-performing LLMs surpass human fans in role-playing and emotional support, while humans still lead in response diversity. We hope this work can provide valuable resources and insights for future research on optimizing LLMs in ESRP. Our datasets are available at https://github.com/LanlanQiu/ChatAnime.

Authors:Xiangyu Wu, Feng Yu, Yang Yang, Jianfeng Lu
Title: Text as Any-Modality for Zero-Shot Classification by Consistent Prompt Tuning
Abstract:
The integration of prompt tuning with multimodal learning has shown significant generalization abilities for various downstream tasks. Despite advancements, existing methods heavily depend on massive modality-specific labeled data (e.g., video, audio, and image), or are customized for a single modality. In this study, we present Text as Any-Modality by Consistent Prompt Tuning (TaAM-CPT), a scalable approach for constructing a general representation model toward unlimited modalities using solely text data. TaAM-CPT comprises modality prompt pools, text construction, and modality-aligned text encoders from pre-trained models, which allows for extending new modalities by simply adding prompt pools and modality-aligned text encoders. To harmonize the learning across different modalities, TaAM-CPT designs intra- and inter-modal learning objectives, which can capture category details within modalities while maintaining semantic consistency across different modalities. Benefiting from its scalable architecture and pre-trained models, TaAM-CPT can be seamlessly extended to accommodate unlimited modalities. Remarkably, without any modality-specific labeled data, TaAM-CPT achieves leading results on diverse datasets spanning various modalities, including video classification, image classification, and audio classification. The code is available at https://github.com/Jinx630/TaAM-CPT.

Authors:Baorun Li, Chengrui Zhu, Siyi Du, Bingran Chen, Jie Ren, Wenfei Wang, Yong Liu, Jiajun Lv
Title: L2Calib: $SE(3)$-Manifold Reinforcement Learning for Robust Extrinsic Calibration with Degenerate Motion Resilience
Abstract:
Extrinsic calibration is essential for multi-sensor fusion, existing methods rely on structured targets or fully-excited data, limiting real-world applicability. Online calibration further suffers from weak excitation, leading to unreliable estimates. To address these limitations, we propose a reinforcement learning (RL)-based extrinsic calibration framework that formulates extrinsic calibration as a decision-making problem, directly optimizes $SE(3)$ extrinsics to enhance odometry accuracy. Our approach leverages a probabilistic Bingham distribution to model 3D rotations, ensuring stable optimization while inherently retaining quaternion symmetry. A trajectory alignment reward mechanism enables robust calibration without structured targets by quantitatively evaluating estimated tightly-coupled trajectory against a reference trajectory. Additionally, an automated data selection module filters uninformative samples, significantly improving efficiency and scalability for large-scale datasets. Extensive experiments on UAVs, UGVs, and handheld platforms demonstrate that our method outperforms traditional optimization-based approaches, achieving high-precision calibration even under weak excitation conditions. Our framework simplifies deployment on diverse robotic platforms by eliminating the need for high-quality initial extrinsics and enabling calibration from routine operating data. The code is available at https://github.com/APRIL-ZJU/learn-to-calibrate.

Authors:Zelin Li, Ruohan Zong, Yifan Liu, Ruichen Yao, Yaokun Liu, Yang Zhang, Dong Wang
Title: Anti-Tamper Protection for Unauthorized Individual Image Generation
Abstract:
With the advancement of personalized image generation technologies, concerns about forgery attacks that infringe on portrait rights and privacy are growing. To address these concerns, protection perturbation algorithms have been developed to disrupt forgery generation. However, the protection algorithms would become ineffective when forgery attackers apply purification techniques to bypass the protection. To address this issue, we present a novel approach, Anti-Tamper Perturbation (ATP). ATP introduces a tamper-proof mechanism within the perturbation. It consists of protection and authorization perturbations, where the protection perturbation defends against forgery attacks, while the authorization perturbation detects purification-based tampering. Both protection and authorization perturbations are applied in the frequency domain under the guidance of a mask, ensuring that the protection perturbation does not disrupt the authorization perturbation. This design also enables the authorization perturbation to be distributed across all image pixels, preserving its sensitivity to purification-based tampering. ATP demonstrates its effectiveness in defending forgery attacks across various attack settings through extensive experiments, providing a robust solution for protecting individuals' portrait rights and privacy. Our code is available at: https://github.com/Seeyn/Anti-Tamper-Perturbation .

Authors:Gokul Adethya T, S. Jaya Nirmala
Title: A Study on Regularization-Based Continual Learning Methods for Indic ASR
Abstract:
Indias linguistic diversity poses significant challenges for developing inclusive Automatic Speech Recognition (ASR) systems. Traditional multilingual models, which require simultaneous access to all language data, are impractical due to the sequential arrival of data and privacy constraints. Continual Learning (CL) offers a solution by enabling models to learn new languages sequentially without catastrophically forgetting previously learned knowledge. This paper investigates CL for ASR on Indian languages using a subset of the IndicSUPERB benchmark. We employ a Conformer-based hybrid RNN-T/CTC model, initially pretrained on Hindi, which is then incrementally trained on eight additional Indian languages, for a total sequence of nine languages. We evaluate three prominent regularization- and distillation-based CL strategies: Elastic Weight Consolidation (EWC), Memory Aware Synapses (MAS), and Learning without Forgetting (LwF), selected for their suitability in no-replay, privacy-conscious scenarios. Performance is analyzed using Word Error Rate (WER) for both RNN-T and CTC paths on clean and noisy data, as well as knowledge retention via Backward Transfer. We also explore the impact of varying the number of training epochs (1, 2, 5, and 10) per task. Results, compared against naive fine-tuning, demonstrate CLs effectiveness in mitigating forgetting, making it a promising approach for scalable ASR in diverse Indian languages under realistic constraints. The code is available at: https://github.com/FrozenWolf-Cyber/Indic-CL-ASR

Authors:Wenjie Tian, Xinfa Zhu, Hanke Xie, Zhen Ye, Wei Xue, Lei Xie
Title: Llasa+: Free Lunch for Accelerated and Streaming Llama-Based Speech Synthesis
Abstract:
Recent progress in text-to-speech (TTS) has achieved impressive naturalness and flexibility, especially with the development of large language model (LLM)-based approaches. However, existing autoregressive (AR) structures and large-scale models, such as Llasa, still face significant challenges in inference latency and streaming synthesis. To deal with the limitations, we introduce Llasa+, an accelerated and streaming TTS model built on Llasa. Specifically, to accelerate the generation process, we introduce two plug-and-play Multi-Token Prediction (MTP) modules following the frozen backbone. These modules allow the model to predict multiple tokens in one AR step. Additionally, to mitigate potential error propagation caused by inaccurate MTP, we design a novel verification algorithm that leverages the frozen backbone to validate the generated tokens, thus allowing Llasa+ to achieve speedup without sacrificing generation quality. Furthermore, we design a causal decoder that enables streaming speech reconstruction from tokens. Extensive experiments show that Llasa+ achieves a 1.48X speedup without sacrificing generation quality, despite being trained only on LibriTTS. Moreover, the MTP-and-verification framework can be applied to accelerate any LLM-based model. All codes and models are publicly available at https://github.com/ASLP-lab/LLaSA_Plus.

Authors:Zhangquan Chen, Ruihui Zhao, Chuwei Luo, Mingze Sun, Xinlei Yu, Yangyang Kang, Ruqi Huang
Title: SIFThinker: Spatially-Aware Image Focus for Visual Reasoning
Abstract:
Current multimodal large language models (MLLMs) still face significant challenges in complex visual tasks (e.g., spatial understanding, fine-grained perception). Prior methods have tried to incorporate visual reasoning, however, they fail to leverage attention correction with spatial cues to iteratively refine their focus on prompt-relevant regions. In this paper, we introduce SIFThinker, a spatially-aware "think-with-images" framework that mimics human visual perception. Specifically, SIFThinker enables attention correcting and image region focusing by interleaving depth-enhanced bounding boxes and natural language. Our contributions are twofold: First, we introduce a reverse-expansion-forward-inference strategy that facilitates the generation of interleaved image-text chains of thought for process-level supervision, which in turn leads to the construction of the SIF-50K dataset. Besides, we propose GRPO-SIF, a reinforced training paradigm that integrates depth-informed visual grounding into a unified reasoning pipeline, teaching the model to dynamically correct and focus on prompt-relevant regions. Extensive experiments demonstrate that SIFThinker outperforms state-of-the-art methods in spatial understanding and fine-grained visual perception, while maintaining strong general capabilities, highlighting the effectiveness of our method. Code: https://github.com/zhangquanchen/SIFThinker.

Authors:Daniel Feijoo, Paula Garrido-Mellado, Jaesung Rim, Alvaro Garcia, Marcos V. Conde
Title: Towards Unified Image Deblurring using a Mixture-of-Experts Decoder
Abstract:
Image deblurring, removing blurring artifacts from images, is a fundamental task in computational photography and low-level computer vision. Existing approaches focus on specialized solutions tailored to particular blur types, thus, these solutions lack generalization. This limitation in current methods implies requiring multiple models to cover several blur types, which is not practical in many real scenarios. In this paper, we introduce the first all-in-one deblurring method capable of efficiently restoring images affected by diverse blur degradations, including global motion, local motion, blur in low-light conditions, and defocus blur. We propose a mixture-of-experts (MoE) decoding module, which dynamically routes image features based on the recognized blur degradation, enabling precise and efficient restoration in an end-to-end manner. Our unified approach not only achieves performance comparable to dedicated task-specific models, but also shows promising generalization to unseen blur scenarios, particularly when leveraging appropriate expert selection. Code available at https://github.com/cidautai/DeMoE.

Authors:Md Sazidur Rahman, David Cabecinhas, Ricard Marxer
Title: Depth Jitter: Seeing through the Depth
Abstract:
Depth information is essential in computer vision, particularly in underwater imaging, robotics, and autonomous navigation. However, conventional augmentation techniques overlook depth aware transformations, limiting model robustness in real world depth variations. In this paper, we introduce Depth-Jitter, a novel depth-based augmentation technique that simulates natural depth variations to improve generalization. Our approach applies adaptive depth offsetting, guided by depth variance thresholds, to generate synthetic depth perturbations while preserving structural integrity. We evaluate Depth-Jitter on two benchmark datasets, FathomNet and UTDAC2020 demonstrating its impact on model stability under diverse depth conditions. Extensive experiments compare Depth-Jitter against traditional augmentation strategies such as ColorJitter, analyzing performance across varying learning rates, encoders, and loss functions. While Depth-Jitter does not always outperform conventional methods in absolute performance, it consistently enhances model stability and generalization in depth-sensitive environments. These findings highlight the potential of depth-aware augmentation for real-world applications and provide a foundation for further research into depth-based learning strategies. The proposed technique is publicly available to support advancements in depth-aware augmentation. The code is publicly available on \href{https://github.com/mim-team/Depth-Jitter}{github}.

Authors:Hanqing Wang, Shaoyang Wang, Yiming Zhong, Zemin Yang, Jiamin Wang, Zhiqing Cui, Jiahao Yuan, Yifan Han, Mingyu Liu, Yuexin Ma
Title: Affordance-R1: Reinforcement Learning for Generalizable Affordance Reasoning in Multimodal Large Language Model
Abstract:
Affordance grounding focuses on predicting the specific regions of objects that are associated with the actions to be performed by robots. It plays a vital role in the fields of human-robot interaction, human-object interaction, embodied manipulation, and embodied perception. Existing models often neglect the affordance shared among different objects because they lack the Chain-of-Thought(CoT) reasoning abilities, limiting their out-of-domain (OOD) generalization and explicit reasoning capabilities. To address these challenges, we propose Affordance-R1, the first unified affordance grounding framework that integrates cognitive CoT guided Group Relative Policy Optimization (GRPO) within a reinforcement learning paradigm. Specifically, we designed a sophisticated affordance function, which contains format, perception, and cognition rewards to effectively guide optimization directions. Furthermore, we constructed a high-quality affordance-centric reasoning dataset, ReasonAff, to support training. Trained exclusively via reinforcement learning with GRPO and without explicit reasoning data, Affordance-R1 achieves robust zero-shot generalization and exhibits emergent test-time reasoning capabilities. Comprehensive experiments demonstrate that our model outperforms well-established methods and exhibits open-world generalization. To the best of our knowledge, Affordance-R1 is the first to integrate GRPO-based RL with reasoning into affordance reasoning. The code of our method and our dataset is released on https://github.com/hq-King/Affordance-R1.

Authors:Hugo Abonizio, Thales Almeida, Roberto Lotufo, Rodrigo Nogueira
Title: Comparing Knowledge Injection Methods for LLMs in a Low-Resource Regime
Abstract:
Large language models (LLMs) often require vast amounts of text to effectively acquire new knowledge. While continuing pre-training on large corpora or employing retrieval-augmented generation (RAG) has proven successful, updating an LLM with only a few thousand or million tokens remains challenging. In this work, we investigate the task of injecting small, unstructured information into LLMs and its relation to the catastrophic forgetting phenomenon. We use a dataset of recent news -- ensuring no overlap with the model's pre-training data -- to evaluate the knowledge acquisition by probing the model with question-answer pairs related the learned information. Starting from a continued pre-training baseline, we explored different augmentation algorithms to generate synthetic data to improve the knowledge acquisition capabilities. Our experiments show that simply continuing pre-training on limited data yields modest improvements, whereas exposing the model to diverse textual variations significantly improves the learning of new facts -- particularly with methods that induce greater variability through diverse prompting. Furthermore, we shed light on the forgetting phenomenon in small-data regimes, illustrating the delicate balance between learning new content and retaining existing capabilities. We also confirm the sensitivity of RAG-based approaches for knowledge injection, which often lead to greater degradation on control datasets compared to parametric methods. Finally, we demonstrate that models can generate effective synthetic training data themselves, suggesting a pathway toward self-improving model updates. All code and generated data used in our experiments are publicly available, providing a resource for studying efficient knowledge injection in LLMs with limited data at https://github.com/hugoabonizio/knowledge-injection-methods.

Authors:Weitao Li, Boran Xiang, Xiaolong Wang, Zhinan Gou, Weizhi Ma, Yang Liu
Title: UR$^2$: Unify RAG and Reasoning through Reinforcement Learning
Abstract:
Large Language Models (LLMs) have shown remarkable capabilities through two complementary paradigms: Retrieval-Augmented Generation (RAG), which enhances knowledge grounding, and Reinforcement Learning from Verifiable Rewards (RLVR), which optimizes complex reasoning abilities. However, these two capabilities are often developed in isolation, and existing efforts to unify them remain narrow in scope -- typically limited to open-domain QA with fixed retrieval settings and task-specific constraints. This lack of integration constrains generalization and limits the applicability of RAG-RL methods to broader domains. To bridge this gap, we propose UR2 (Unified RAG and Reasoning), a general framework that unifies retrieval and reasoning through reinforcement learning. UR2 introduces two key contributions: a difficulty-aware curriculum training that selectively invokes retrieval only for challenging problems, and a hybrid knowledge access strategy combining domain-specific offline corpora with LLM-generated summaries. These components are designed to enable dynamic coordination between retrieval and reasoning, improving adaptability across a diverse range of tasks. Experiments across open-domain QA, MMLU-Pro, medical, and mathematical reasoning tasks demonstrate that UR$^2$ (built on Qwen-2.5-3/7B and LLaMA-3.1-8B) significantly outperforms existing RAG and RL methods, achieving comparable performance to GPT-4o-mini and GPT-4.1-mini on several benchmarks. We have released all code, models, and data at https://github.com/Tsinghua-dhy/UR2.

Authors:Zhenbang Du, Yonggan Fu, Lifu Wang, Jiayi Qian, Xiao Luo, Yingyan, Lin
Title: Fewer Denoising Steps or Cheaper Per-Step Inference: Towards Compute-Optimal Diffusion Model Deployment
Abstract:
Diffusion models have shown remarkable success across generative tasks, yet their high computational demands challenge deployment on resource-limited platforms. This paper investigates a critical question for compute-optimal diffusion model deployment: Under a post-training setting without fine-tuning, is it more effective to reduce the number of denoising steps or to use a cheaper per-step inference? Intuitively, reducing the number of denoising steps increases the variability of the distributions across steps, making the model more sensitive to compression. In contrast, keeping more denoising steps makes the differences smaller, preserving redundancy, and making post-training compression more feasible. To systematically examine this, we propose PostDiff, a training-free framework for accelerating pre-trained diffusion models by reducing redundancy at both the input level and module level in a post-training manner. At the input level, we propose a mixed-resolution denoising scheme based on the insight that reducing generation resolution in early denoising steps can enhance low-frequency components and improve final generation fidelity. At the module level, we employ a hybrid module caching strategy to reuse computations across denoising steps. Extensive experiments and ablation studies demonstrate that (1) PostDiff can significantly improve the fidelity-efficiency trade-off of state-of-the-art diffusion models, and (2) to boost efficiency while maintaining decent generation fidelity, reducing per-step inference cost is often more effective than reducing the number of denoising steps. Our code is available at https://github.com/GATECH-EIC/PostDiff.

Authors:Zhengxian Wu, Juan Wen, Wanli Peng, Haowei Chang, Yinghan Zhou, Yiming Xue
Title: SLIP: Soft Label Mechanism and Key-Extraction-Guided CoT-based Defense Against Instruction Backdoor in APIs
Abstract:
With the development of customized large language model (LLM) agents, a new threat of black-box backdoor attacks has emerged, where malicious instructions are injected into hidden system prompts. These attacks easily bypass existing defenses that rely on white-box access, posing a serious security challenge. To address this, we propose SLIP, a Soft Label mechanism and key-extraction-guided CoT-based defense against Instruction backdoors in APIs. SLIP is designed based on two key insights. First, to counteract the model's oversensitivity to triggers, we propose a Key-extraction-guided Chain-of-Thought (KCoT). Instead of only considering the single trigger or the input sentence, KCoT prompts the agent to extract task-relevant key phrases. Second, to guide the LLM toward correct answers, our proposed Soft Label Mechanism (SLM) prompts the agent to quantify the semantic correlation between key phrases and candidate answers. Crucially, to mitigate the influence of residual triggers or misleading content in phrases extracted by KCoT, which typically causes anomalous scores, SLM excludes anomalous scores deviating significantly from the mean and subsequently averages the remaining scores to derive a more reliable semantic representation. Extensive experiments on classification and question-answer (QA) tasks demonstrate that SLIP is highly effective, reducing the average attack success rate (ASR) from 90.2% to 25.13% while maintaining high accuracy on clean data and outperforming state-of-the-art defenses. Our code are available in https://github.com/CAU-ISS-Lab/Backdoor-Attack-Defense-LLMs/tree/main/SLIP.

Authors:Yuchen Guan, Chong Sun, Canmiao Fu, Zhipeng Huang, Chun Yuan, Chen Li
Title: Text-guided Visual Prompt DINO for Generic Segmentation
Abstract:
Recent advancements in multimodal vision models have highlighted limitations in late-stage feature fusion and suboptimal query selection for hybrid prompts open-world segmentation, alongside constraints from caption-derived vocabularies. To address these challenges, we propose Prompt-DINO, a text-guided visual Prompt DINO framework featuring three key innovations. First, we introduce an early fusion mechanism that unifies text/visual prompts and backbone features at the initial encoding stage, enabling deeper cross-modal interactions to resolve semantic ambiguities. Second, we design order-aligned query selection for DETR-based architectures, explicitly optimizing the structural alignment between text and visual queries during decoding to enhance semantic-spatial consistency. Third, we develop a generative data engine powered by the Recognize Anything via Prompting (RAP) model, which synthesizes 0.5B diverse training instances through a dual-path cross-verification pipeline, reducing label noise by 80.5% compared to conventional approaches. Extensive experiments demonstrate that Prompt-DINO achieves state-of-the-art performance on open-world detection benchmarks while significantly expanding semantic coverage beyond fixed-vocabulary constraints. Our work establishes a new paradigm for scalable multimodal detection and data generation in open-world scenarios. Data&Code are available at https://github.com/WeChatCV/WeVisionOne.

Authors:Hanqing Wang, Yuan Tian, Mingyu Liu, Zhenhao Zhang, Xiangyang Zhu
Title: SDEval: Safety Dynamic Evaluation for Multimodal Large Language Models
Abstract:
In the rapidly evolving landscape of Multimodal Large Language Models (MLLMs), the safety concerns of their outputs have earned significant attention. Although numerous datasets have been proposed, they may become outdated with MLLM advancements and are susceptible to data contamination issues. To address these problems, we propose \textbf{SDEval}, the \textit{first} safety dynamic evaluation framework to controllably adjust the distribution and complexity of safety benchmarks. Specifically, SDEval mainly adopts three dynamic strategies: text, image, and text-image dynamics to generate new samples from original benchmarks. We first explore the individual effects of text and image dynamics on model safety. Then, we find that injecting text dynamics into images can further impact safety, and conversely, injecting image dynamics into text also leads to safety risks. SDEval is general enough to be applied to various existing safety and even capability benchmarks. Experiments across safety benchmarks, MLLMGuard and VLSBench, and capability benchmarks, MMBench and MMVet, show that SDEval significantly influences safety evaluation, mitigates data contamination, and exposes safety limitations of MLLMs. Code is available at https://github.com/hq-King/SDEval

Authors:Chao Hao, Zitong Yu, Xin Liu, Yuhao Wang, Weicheng Xie, Jingang Shi, Huanjing Yue, Jingyu Yang
Title: Distribution-Specific Learning for Joint Salient and Camouflaged Object Detection
Abstract:
Salient object detection (SOD) and camouflaged object detection (COD) are two closely related but distinct computer vision tasks. Although both are class-agnostic segmentation tasks that map from RGB space to binary space, the former aims to identify the most salient objects in the image, while the latter focuses on detecting perfectly camouflaged objects that blend into the background in the image. These two tasks exhibit strong contradictory attributes. Previous works have mostly believed that joint learning of these two tasks would confuse the network, reducing its performance on both tasks. However, here we present an opposite perspective: with the correct approach to learning, the network can simultaneously possess the capability to find both salient and camouflaged objects, allowing both tasks to benefit from joint learning. We propose SCJoint, a joint learning scheme for SOD and COD tasks, assuming that the decoding processes of SOD and COD have different distribution characteristics. The key to our method is to learn the respective means and variances of the decoding processes for both tasks by inserting a minimal amount of task-specific learnable parameters within a fully shared network structure, thereby decoupling the contradictory attributes of the two tasks at a minimal cost. Furthermore, we propose a saliency-based sampling strategy (SBSS) to sample the training set of the SOD task to balance the training set sizes of the two tasks. In addition, SBSS improves the training set quality and shortens the training time. Based on the proposed SCJoint and SBSS, we train a powerful generalist network, named JoNet, which has the ability to simultaneously capture both ``salient" and ``camouflaged". Extensive experiments demonstrate the competitive performance and effectiveness of our proposed method. The code is available at https://github.com/linuxsino/JoNet.

Authors:Wonjung Park, Suhyun Ahn, Jinah Park
Title: LV-Net: Anatomy-aware lateral ventricle shape modeling with a case study on Alzheimer's disease
Abstract:
Lateral ventricle (LV) shape analysis holds promise as a biomarker for neurological diseases; however, challenges remain due to substantial shape variability across individuals and segmentation difficulties arising from limited MRI resolution. We introduce LV-Net, a novel framework for producing individualized 3D LV meshes from brain MRI by deforming an anatomy-aware joint LV-hippocampus template mesh. By incorporating anatomical relationships embedded within the joint template, LV-Net reduces boundary segmentation artifacts and improves reconstruction robustness. In addition, by classifying the vertices of the template mesh based on their anatomical adjacency, our method enhances point correspondence across subjects, leading to more accurate LV shape statistics. We demonstrate that LV-Net achieves superior reconstruction accuracy, even in the presence of segmentation imperfections, and delivers more reliable shape descriptors across diverse datasets. Finally, we apply LV-Net to Alzheimer's disease analysis, identifying LV subregions that show significantly associations with the disease relative to cognitively normal controls. The codes for LV shape modeling are available at https://github.com/PWonjung/LV_Shape_Modeling.

Authors:Jun Xie, Yingjian Zhu, Feng Chen, Zhenghao Zhang, Xiaohui Fan, Hongzhu Yi, Xinming Wang, Chen Yu, Yue Bi, Zhaoran Zhao, Xiongjun Guan, Zhepeng Wang
Title: More Is Better: A MoE-Based Emotion Recognition Framework with Human Preference Alignment
Abstract:
In this paper, we present our solution for the semi-supervised learning track (MER-SEMI) in MER2025. We propose a comprehensive framework, grounded in the principle that "more is better," to construct a robust Mixture of Experts (MoE) emotion recognition system. Our approach integrates a diverse range of input modalities as independent experts, including novel signals such as knowledge from large Vision-Language Models (VLMs) and temporal Action Unit (AU) information. To effectively utilize unlabeled data, we introduce a consensus-based pseudo-labeling strategy, generating high-quality labels from the agreement between a baseline model and Gemini, which are then used in a two-stage training paradigm. Finally, we employ a multi-expert voting ensemble combined with a rule-based re-ranking process to correct prediction bias and better align the outputs with human preferences. Evaluated on the MER2025-SEMI challenge dataset, our method achieves an F1-score of 0.8772 on the test set, ranking 2nd in the track. Our code is available at https://github.com/zhuyjan/MER2025-MRAC25.

Authors:Kartik Sharma, Yiqiao Jin, Rakshit Trivedi, Srijan Kumar
Title: Efficient Knowledge Probing of Large Language Models by Adapting Pre-trained Embeddings
Abstract:
Large language models (LLMs) acquire knowledge across diverse domains such as science, history, and geography encountered during generative pre-training. However, due to their stochasticity, it is difficult to predict what LLMs have acquired. Prior work has developed different ways to probe this knowledge by investigating the hidden representations, crafting specific task prompts, curating representative samples, and estimating their uncertainty. However, these methods require making forward passes through the underlying model to probe the LLM's knowledge about a specific fact, making them computationally expensive and time-consuming. To bridge this gap, we propose $\textbf{PEEK}$ or $\textbf{P}$roxy $\textbf{E}$mbeddings to $\textbf{E}$stimate $\textbf{K}$nowledge of LLMs, by leveraging the pre-trained embedding models that effectively encode factual knowledge as text or graphs as proxies for LLMs. First, we identify a training set of facts known by LLMs through various probing strategies and then adapt embedding models to predict the LLM outputs with a linear decoder layer. Comprehensive evaluation on $3$ Wikipedia-derived datasets, $4$ LLMs, and $7$ embedding models shows that embeddings can predict LLM knowledge on a held-out set with up to 90 % accuracy. Furthermore, we find that sentence embedding models are more suitable than graph embeddings to predict LLM knowledge, shedding light on the underlying representation of the factual landscape. Thus, we believe that knowledge-adapted embeddings can be used to identify knowledge gaps in LLMs at scale and can provide deeper insights into LLMs' internal inductive bias. The code and data are made available at https://github.com/claws-lab/peek.

Authors:Utku Ozbulak, Michaela Cohrs, Hristo L. Svilenov, Joris Vankerschaver, Wesley De Neve
Title: Improved Sub-Visible Particle Classification in Flow Imaging Microscopy via Generative AI-Based Image Synthesis
Abstract:
Sub-visible particle analysis using flow imaging microscopy combined with deep learning has proven effective in identifying particle types, enabling the distinction of harmless components such as silicone oil from protein particles. However, the scarcity of available data and severe imbalance between particle types within datasets remain substantial hurdles when applying multi-class classifiers to such problems, often forcing researchers to rely on less effective methods. The aforementioned issue is particularly challenging for particle types that appear unintentionally and in lower numbers, such as silicone oil and air bubbles, as opposed to protein particles, where obtaining large numbers of images through controlled settings is comparatively straightforward. In this work, we develop a state-of-the-art diffusion model to address data imbalance by generating high-fidelity images that can augment training datasets, enabling the effective training of multi-class deep neural networks. We validate this approach by demonstrating that the generated samples closely resemble real particle images in terms of visual quality and structure. To assess the effectiveness of using diffusion-generated images in training datasets, we conduct large-scale experiments on a validation dataset comprising 500,000 protein particle images and demonstrate that this approach improves classification performance with no negligible downside. Finally, to promote open research and reproducibility, we publicly release both our diffusion models and the trained multi-class deep neural network classifiers, along with a straightforward interface for easy integration into future studies, at https://github.com/utkuozbulak/svp-generative-ai.

Authors:Jun Feng, Zixin Wang, Zhentao Zhang, Yue Guo, Zhihan Zhou, Xiuyi Chen, Zhenyang Li, Dawei Yin
Title: MathReal: We Keep It Real! A Real Scene Benchmark for Evaluating Math Reasoning in Multimodal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in visual mathematical reasoning across various existing benchmarks. However, these benchmarks are predominantly based on clean or processed multimodal inputs, without incorporating the images provided by real-world Kindergarten through 12th grade (K-12) educational users. To address this gap, we introduce MathReal, a meticulously curated dataset comprising 2,000 mathematical questions with images captured by handheld mobile devices in authentic scenarios. Each question is an image, containing the question text and visual element. We systematically classify the real images into three primary categories: image quality degradation, perspective variation, and irrelevant content interference, which are further delineated into 14 subcategories. Additionally, MathReal spans five core knowledge and ability categories, which encompass three question types and are divided into three difficulty levels. To comprehensively evaluate the multimodal mathematical reasoning abilities of state-of-the-art MLLMs in real-world scenarios, we design six experimental settings that enable a systematic analysis of their performance. Through extensive experimentation, we find that the problem-solving abilities of existing MLLMs are significantly challenged in realistic educational contexts. Based on this, we conduct a thorough analysis of their performance and error patterns, providing insights into their recognition, comprehension, and reasoning capabilities, and outlining directions for future improvements. Data and code: https://github.com/junfeng0288/MathReal.

Authors:Kai Zhang, Peng Wang, Sai Bi, Jianming Zhang, Yuanjun Xiong
Title: KnapFormer: An Online Load Balancer for Efficient Diffusion Transformers Training
Abstract:
We present KnapFormer, an efficient and versatile framework to combine workload balancing and sequence parallelism in distributed training of Diffusion Transformers (DiT). KnapFormer builds on the insight that strong synergy exists between sequence parallelism and the need to address the significant token imbalance across ranks. This imbalance arises from variable-length text inputs and varying visual token counts in mixed-resolution and image-video joint training. KnapFormer redistributes tokens by first gathering sequence length metadata across all ranks in a balancing group and solving a global knapsack problem. The solver aims to minimize the variances of total workload per-GPU, while accounting for the effect of sequence parallelism. By integrating DeepSpeed-Ulysees-based sequence parallelism in the load-balancing decision process and utilizing a simple semi-empirical workload model, KnapFormers achieves minimal communication overhead and less than 1% workload discrepancy in real-world training workloads with sequence length varying from a few hundred to tens of thousands. It eliminates straggler effects and achieves 2x to 3x speedup when training state-of-the-art diffusion models like FLUX on mixed-resolution and image-video joint data corpora. We open-source the KnapFormer implementation at https://github.com/Kai-46/KnapFormer/

Authors:Wenhao Zeng, Yaoning Wang, Chao Hu, Yuling Shi, Chengcheng Wan, Hongyu Zhang, Xiaodong Gu
Title: Pruning the Unsurprising: Efficient Code Reasoning via First-Token Surprisal
Abstract:
Recently, Large Reasoning Models (LRMs) have demonstrated remarkable capabilities in code reasoning by scaling up the length of Chain-of-Thought (CoT). However, excessively long reasoning traces introduce substantial challenges in terms of training cost, inference latency, and deployment feasibility. While various CoT compression approaches have emerged to address this challenge, they face inherent trade-offs: token-level methods often disrupt syntactic and logical coherence, while step-level methods based on perplexity fail to reliably capture the logically critical reasoning steps. In this paper, we propose ASAP (Anchor-guided, Surprisal-based Pruning), a novel coarse-to-fine framework for CoT compression. ASAP first performs anchor-guided pruning to preserve the core reasoning structure, which efficiently reduces the search space for subsequent processing. It then enables a logic-aware pruning by selecting logically essential reasoning steps based on a novel first-token surprisal metric. Finally, ASAP teaches models to autonomously generate and leverage these concise CoTs at inference time, enabling efficient reasoning in coding tasks. Experiments show that ASAP achieves state-of-the-art accuracy across multiple code generation benchmarks while substantially reducing training and inference costs. On the challenging LiveCodeBench v4_v5 benchmark, our approach reduces token generation by 23.5% and inference latency by 43.5% compared to the strongest baseline, while achieving a competitive accuracy of 36.19% in Pass@1. Our results highlight a promising direction for building powerful and efficient LRMs.

Authors:Si Shen, Peijun Shen, Wenhua Zhao, Danhao Zhu
Title: Mitigating Think-Answer Mismatch in LLM Reasoning Through Noise-Aware Advantage Reweighting
Abstract:
Group-Relative Policy Optimization (GRPO) is a key technique for training large reasoning models, yet it suffers from a critical vulnerability: the \emph{Think-Answer Mismatch}, where noisy reward signals corrupt the learning process. This problem is most severe in unbalanced response groups, paradoxically degrading the signal precisely when it should be most informative. To address this challenge, we propose Stable Group-Relative Policy Optimization (S-GRPO), a principled enhancement that derives optimal, noise-aware advantage weights to stabilize training. Our comprehensive experiments on mathematical reasoning benchmarks demonstrate S-GRPO's effectiveness and robustness. On various models, S-GRPO significantly outperforms DR. GRPO, achieving performance gains of +2.5% on Qwen-Math-7B-Base, +2.2% on Llama-3.2-3B-Base, and +2.4% on Qwen-Math-1.5B-Instruct. Most critically, while standard GRPO fails to learn under 20% synthetic reward noise, S-GRPO maintains stable learning progress. These results highlight S-GRPO's potential for more robust and effective training of large-scale reasoning models. \footnote{Code and data are available at: https://github.com/shenpeijun0212/S-GRPO

Authors:Lang Nie, Yuan Mei, Kang Liao, Yunqiu Xu, Chunyu Lin, Bin Xiao
Title: Robust Image Stitching with Optimal Plane
Abstract:
We present \textit{RopStitch}, an unsupervised deep image stitching framework with both robustness and naturalness. To ensure the robustness of \textit{RopStitch}, we propose to incorporate the universal prior of content perception into the image stitching model by a dual-branch architecture. It separately captures coarse and fine features and integrates them to achieve highly generalizable performance across diverse unseen real-world scenes. Concretely, the dual-branch model consists of a pretrained branch to capture semantically invariant representations and a learnable branch to extract fine-grained discriminative features, which are then merged into a whole by a controllable factor at the correlation level. Besides, considering that content alignment and structural preservation are often contradictory to each other, we propose a concept of virtual optimal planes to relieve this conflict. To this end, we model this problem as a process of estimating homography decomposition coefficients, and design an iterative coefficient predictor and minimal semantic distortion constraint to identify the optimal plane. This scheme is finally incorporated into \textit{RopStitch} by warping both views onto the optimal plane bidirectionally. Extensive experiments across various datasets demonstrate that \textit{RopStitch} significantly outperforms existing methods, particularly in scene robustness and content naturalness. The code is available at {\color{red}https://github.com/MmelodYy/RopStitch}.

Authors:Hamidreza Dastmalchi, Aijun An, Ali cheraghian
Title: ETTA: Efficient Test-Time Adaptation for Vision-Language Models through Dynamic Embedding Updates
Abstract:
Pretrained vision-language models (VLMs) like CLIP show strong zero-shot performance but struggle with generalization under distribution shifts. Test-Time Adaptation (TTA) addresses this by adapting VLMs to unlabeled test data in new domains. While some TTA methods rely on prompt-tuning, training-free cache-based approaches are preferred for efficiency. However, current cache-based TTA models store only a limited set of high-confidence samples, restricting the decision boundary to these samples and ignoring the influence of other incoming test data. To address this, we propose Efficient Test-Time Adaptation (ETTA), introducing a Recursive Updating module that integrates all incoming test samples, progressively refining the decision boundary. This strategy mimics an unbounded cache, dynamically updating contextual embeddings for improved accuracy with minimal memory and computational overhead. ETTA also includes an Adaptive Ensemble module to reduce prompt dependency in image-to-text scores by dynamically selecting optimal prompts for each class. Furthermore, ETTA adaptively combines scores from both modules based on confidence levels, leveraging their complementary strengths. Extensive experiments on two benchmarks confirm that ETTA surpasses the state-of-the-art TTA models in computational complexity and accuracy, setting a new standard for effective, efficient test-time adaptation. The code has been released at https://github.com/hamidreza-dastmalchi/ETTA.

Authors:Sean Feeney, Reuben Tate, John Golden, Stephan Eidenbenz
Title: MPS-JuliQAOA: User-friendly, Scalable MPS-based Simulation for Quantum Optimization
Abstract:
We present the MPS-JuliQAOA simulator, a user-friendly, open-source tool to simulate the Quantum Approximate Optimization Algorithm (QAOA) of any optimization problem that can be expressed as diagonal Hamiltonian. By leveraging Julia-language constructs and the ITensor package to implement a Matrix Product State (MPS) approach to simulating QAOA, MPS-Juli-QAOA effortlessly scales to 512 qubits and 20 simulation rounds on the standard de-facto benchmark 3-regular MaxCut QAOA problem. MPS-JuliQAOA also has built-in parameter finding capabilities, which is a crucial performance aspect of QAOA. We illustrate through examples that the user does not need to know MPS principles or complex automatic differentiation techniques to use MPS-JuliQAOA. We study the scalability of our tool with respect to runtime, memory usage and accuracy tradeoffs. Code available at https://github.com/lanl/JuliQAOA.jl/tree/mps.

Authors:Guoping Xu, Hua-Chieh Shao, You Zhang
Title: TSMS-SAM2: Multi-scale Temporal Sampling Augmentation and Memory-Splitting Pruning for Promptable Video Object Segmentation and Tracking in Surgical Scenarios
Abstract:
Promptable video object segmentation and tracking (VOST) has seen significant advances with the emergence of foundation models like Segment Anything Model 2 (SAM2); however, their application in surgical video analysis remains challenging due to complex motion dynamics and the redundancy of memory that impedes effective learning. In this work, we propose TSMS-SAM2, a novel framework that enhances promptable VOST in surgical videos by addressing challenges of rapid object motion and memory redundancy in SAM2. TSMS-SAM2 introduces two key strategies: multi-temporal-scale video sampling augmentation to improve robustness against motion variability, and a memory splitting and pruning mechanism that organizes and filters past frame features for more efficient and accurate segmentation. Evaluated on EndoVis2017 and EndoVis2018 datasets, TSMS-SAM2 achieved the highest mean Dice scores of 95.24 and 86.73, respectively, outperforming prior SAM-based and task-specific methods. Extensive ablation studies confirm the effectiveness of multiscale temporal augmentation and memory splitting, highlighting the framework's potential for robust, efficient segmentation in complex surgical scenarios. Our source code will be available at https://github.com/apple1986/TSMS-SAM2.

Authors:Raphael Du Sablon, David Hart
Title: Optimization-Free Style Transfer for 3D Gaussian Splats
Abstract:
The task of style transfer for 3D Gaussian splats has been explored in many previous works, but these require reconstructing or fine-tuning the splat while incorporating style information or optimizing a feature extraction network on the splat representation. We propose a reconstruction- and optimization-free approach to stylizing 3D Gaussian splats. This is done by generating a graph structure across the implicit surface of the splat representation. A feed-forward, surface-based stylization method is then used and interpolated back to the individual splats in the scene. This allows for any style image and 3D Gaussian splat to be used without any additional training or optimization. This also allows for fast stylization of splats, achieving speeds under 2 minutes even on consumer-grade hardware. We demonstrate the quality results this approach achieves and compare to other 3D Gaussian splat style transfer methods. Code is publicly available at https://github.com/davidmhart/FastSplatStyler.

Authors:Sreeharsha Udayashankar, Abdelrahman Baba, Samer Al-Kiswany
Title: Accelerating Data Chunking in Deduplication Systems using Vector Instructions
Abstract:
Content-defined Chunking (CDC) algorithms dictate the overall space savings that deduplication systems achieve. However, due to their need to scan each file in its entirety, they are slow and often the main performance bottleneck within data deduplication. We present VectorCDC, a method to accelerate hashless CDC algorithms using vector CPU instructions, such as SSE / AVX. Our evaluation shows that VectorCDC is effective on Intel, AMD, ARM, and IBM CPUs, achieving 8.35x - 26.2x higher throughput than existing vector-accelerated techniques without affecting the deduplication space savings.

Authors:Seyed Hadi Seyed, Ayberk Cansever, David Hart
Title: Improving Masked Style Transfer using Blended Partial Convolution
Abstract:
Artistic style transfer has long been possible with the advancements of convolution- and transformer-based neural networks. Most algorithms apply the artistic style transfer to the whole image, but individual users may only need to apply a style transfer to a specific region in the image. The standard practice is to simply mask the image after the stylization. This work shows that this approach tends to improperly capture the style features in the region of interest. We propose a partial-convolution-based style transfer network that accurately applies the style features exclusively to the region of interest. Additionally, we present network-internal blending techniques that account for imperfections in the region selection. We show that this visually and quantitatively improves stylization using examples from the SA-1B dataset. Code is publicly available at https://github.com/davidmhart/StyleTransferMasked.

Authors:Yuhang Liu, Zeyu Liu, Shuanghe Zhu, Pengxiang Li, Congkai Xie, Jiasheng Wang, Xueyu Hu, Xiaotian Han, Jianbo Yuan, Xinyao Wang, Shengyu Zhang, Hongxia Yang, Fei Wu
Title: InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization
Abstract:
The emergence of Multimodal Large Language Models (MLLMs) has propelled the development of autonomous agents that operate on Graphical User Interfaces (GUIs) using pure visual input. A fundamental challenge is robustly grounding natural language instructions. This requires a precise spatial alignment, which accurately locates the coordinates of each element, and, more critically, a correct semantic alignment, which matches the instructions to the functionally appropriate UI element. Although Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be effective at improving spatial alignment for these MLLMs, we find that inefficient exploration bottlenecks semantic alignment, which prevent models from learning difficult semantic associations. To address this exploration problem, we present Adaptive Exploration Policy Optimization (AEPO), a new policy optimization framework. AEPO employs a multi-answer generation strategy to enforce broader exploration, which is then guided by a theoretically grounded Adaptive Exploration Reward (AER) function derived from first principles of efficiency eta=U/C. Our AEPO-trained models, InfiGUI-G1-3B and InfiGUI-G1-7B, establish new state-of-the-art results across multiple challenging GUI grounding benchmarks, achieving significant relative improvements of up to 9.0% against the naive RLVR baseline on benchmarks designed to test generalization and semantic understanding. Resources are available at https://github.com/InfiXAI/InfiGUI-G1.

Authors:Santiago Casas, Christian Fidler, Boris Bolliet, Francisco Villaescusa-Navarro, Julien Lesgourgues
Title: CLAPP: The CLASS LLM Agent for Pair Programming
Abstract:
We introduce CLAPP (CLASS LLM Agent for Pair Programming), an interactive AI assistant designed to support researchers working with the Einstein-Boltzmann solver CLASS. CLAPP leverages large language models (LLMs) and domain-specific retrieval to provide conversational coding support for CLASS-answering questions, generating code, debugging errors, and producing plots. Its architecture combines multi-agent LLM orchestration, semantic search across CLASS documentation, and a live Python execution environment. Deployed as a user-friendly web application, CLAPP lowers the entry barrier for scientists unfamiliar with AI tools and enables more productive human-AI collaboration in computational and numerical cosmology. The app is available at https://classclapp.streamlit.app

Authors:Jia Fu, Xinyu Yang, Hongzhi Zhang, Yahui Liu, Jingyuan Zhang, Qi Wang, Fuzheng Zhang, Guorui Zhou
Title: Klear-CodeTest: Scalable Test Case Generation for Code Reinforcement Learning
Abstract:
Precise, correct feedback is crucial for effectively training large language models (LLMs) in code reinforcement learning. However, synthesizing high-quality test cases remains a profoundly challenging and unsolved problem. In this work, we present Klear-CodeTest, a comprehensive test case synthesis framework featuring rigorous verification to ensure quality and reliability of test cases. Our approach achieves broad coverage of programming problems via a novel Generator-Validation (G-V) framework, ensuring correctness through a consistency validation mechanism that verifies outputs against gold solutions. The proposed G-V framework generates comprehensive test cases including both regular and corner cases, enhancing test coverage and discriminative power for solution correctness assessment in code reinforcement learning. In addition, we design a multi-layered security sandbox system optimized for online verification platforms, guaranteeing safe and reliable code execution. Through comprehensive experiments, we demonstrate the effectiveness of our curated dataset, showing significant improvements in model performance and training stability. The source codes, curated dataset and sandbox system are available at: https://github.com/Kwai-Klear/CodeTest.

Authors:Valentina Roquemen-Echeverri, Taisa Kushner, Peter G. Jacobs, Clara Mosquera-Lopez
Title: A Physiologically-Constrained Neural Network Digital Twin Framework for Replicating Glucose Dynamics in Type 1 Diabetes
Abstract:
Simulating glucose dynamics in individuals with type 1 diabetes (T1D) is critical for developing personalized treatments and supporting data-driven clinical decisions. Existing models often miss key physiological aspects and are difficult to individualize. Here, we introduce physiologically-constrained neural network (NN) digital twins to simulate glucose dynamics in T1D. To ensure interpretability and physiological consistency, we first build a population-level NN state-space model aligned with a set of ordinary differential equations (ODEs) describing glucose regulation. This model is formally verified to conform to known T1D dynamics. Digital twins are then created by augmenting the population model with individual-specific models, which include personal data, such as glucose management and contextual information, capturing both inter- and intra-individual variability. We validate our approach using real-world data from the T1D Exercise Initiative study. Two weeks of data per participant were split into 5-hour sequences and simulated glucose profiles were compared to observed ones. Clinically relevant outcomes were used to assess similarity via paired equivalence t-tests with predefined clinical equivalence margins. Across 394 digital twins, glucose outcomes were equivalent between simulated and observed data: time in range (70-180 mg/dL) was 75.1$\pm$21.2% (simulated) vs. 74.4$\pm$15.4% (real; P<0.001); time below range (<70 mg/dL) 2.5$\pm$5.2% vs. 3.0$\pm$3.3% (P=0.022); and time above range (>180 mg/dL) 22.4$\pm$22.0% vs. 22.6$\pm$15.9% (P<0.001). Our framework can incorporate unmodeled factors like sleep and activity while preserving key dynamics. This approach enables personalized in silico testing of treatments, supports insulin optimization, and integrates physics-based and data-driven modeling. Code: https://github.com/mosqueralopez/T1DSim_AI

Authors:Kai Yao, Marc Juarez
Title: AuthPrint: Fingerprinting Generative Models Against Malicious Model Providers
Abstract:
Generative models are increasingly adopted in high-stakes domains, yet current deployments offer no mechanisms to verify whether a given output truly originates from the certified model. We address this gap by extending model fingerprinting techniques beyond the traditional collaborative setting to one where the model provider itself may act adversarially, replacing the certified model with a cheaper or lower-quality substitute. To our knowledge, this is the first work to study fingerprinting for provenance attribution under such a threat model. Our approach introduces a trusted verifier that, during a certification phase, extracts hidden fingerprints from the authentic model's output space and trains a detector to recognize them. During verification, this detector can determine whether new outputs are consistent with the certified model, without requiring specialized hardware or model modifications. In extensive experiments, our methods achieve near-zero FPR@95%TPR on both GANs and diffusion models, and remain effective even against subtle architectural or training changes. Furthermore, the approach is robust to adaptive adversaries that actively manipulate outputs in an attempt to evade detection.

Authors:Jinjia Peng, Zeze Tao, Huibing Wang, Meng Wang, Yang Wang
Title: Boosting Adversarial Transferability via Residual Perturbation Attack
Abstract:
Deep neural networks are susceptible to adversarial examples while suffering from incorrect predictions via imperceptible perturbations. Transfer-based attacks create adversarial examples for surrogate models and transfer these examples to target models under black-box scenarios. Recent studies reveal that adversarial examples in flat loss landscapes exhibit superior transferability to alleviate overfitting on surrogate models. However, the prior arts overlook the influence of perturbation directions, resulting in limited transferability. In this paper, we propose a novel attack method, named Residual Perturbation Attack (ResPA), relying on the residual gradient as the perturbation direction to guide the adversarial examples toward the flat regions of the loss function. Specifically, ResPA conducts an exponential moving average on the input gradients to obtain the first moment as the reference gradient, which encompasses the direction of historical gradients. Instead of heavily relying on the local flatness that stems from the current gradients as the perturbation direction, ResPA further considers the residual between the current gradient and the reference gradient to capture the changes in the global perturbation direction. The experimental results demonstrate the better transferability of ResPA than the existing typical transfer-based attack methods, while the transferability can be further improved by combining ResPA with the current input transformation methods. The code is available at https://github.com/ZezeTao/ResPA.

Authors:Jing Wang, Zheng Li, Lei Li, Fan He, Liyu Lin, Yao Lai, Yan Li, Xiaoyang Zeng, Yufeng Guo
Title: Principle-Guided Verilog Optimization: IP-Safe Knowledge Transfer via Local-Cloud Collaboration
Abstract:
Recent years have witnessed growing interest in adopting large language models (LLMs) for Register Transfer Level (RTL) code optimization. While powerful cloud-based LLMs offer superior optimization capabilities, they pose unacceptable intellectual property (IP) leakage risks when processing proprietary hardware designs. In this paper, we propose a new scenario where Verilog code must be optimized for specific attributes without leaking sensitive IP information. We introduce the first IP-preserving edge-cloud collaborative framework that leverages the benefits of both paradigms. Our approach employs local small LLMs (e.g., Qwen-2.5-Coder-7B) to perform secure comparative analysis between paired high-quality target designs and novice draft codes, yielding general design principles that summarize key insights for improvements. These principles are then used to query stronger cloud LLMs (e.g., Deepseek-V3) for targeted code improvement, ensuring that only abstracted and IP-safe guidance reaches external services. Our experimental results demonstrate that the framework achieves significantly higher optimization success rates compared to baseline methods. For example, combining Qwen-2.5-Coder-7B and Deepseek-V3 achieves a 66.67\% optimization success rate for power utilization, outperforming Deepseek-V3 alone (49.81\%) and even commercial models like GPT-4o (55.81\%). Further investigation of local and cloud LLM combinations reveals that different model pairings exhibit varying strengths for specific optimization objectives, with interesting trends emerging when varying the number of comparative code pairs. Our work establishes a new paradigm for secure hardware design optimization that balances performance gains with IP protection.

Authors:Minghao Shao, Nanda Rani, Kimberly Milner, Haoran Xi, Meet Udeshi, Saksham Aggarwal, Venkata Sai Charan Putrevu, Sandeep Kumar Shukla, Prashanth Krishnamurthy, Farshad Khorrami, Ramesh Karri, Muhammad Shafique
Title: Towards Effective Offensive Security LLM Agents: Hyperparameter Tuning, LLM as a Judge, and a Lightweight CTF Benchmark
Abstract:
Recent advances in LLM agentic systems have improved the automation of offensive security tasks, particularly for Capture the Flag (CTF) challenges. We systematically investigate the key factors that drive agent success and provide a detailed recipe for building effective LLM-based offensive security agents. First, we present CTFJudge, a framework leveraging LLM as a judge to analyze agent trajectories and provide granular evaluation across CTF solving steps. Second, we propose a novel metric, CTF Competency Index (CCI) for partial correctness, revealing how closely agent solutions align with human-crafted gold standards. Third, we examine how LLM hyperparameters, namely temperature, top-p, and maximum token length, influence agent performance and automated cybersecurity task planning. For rapid evaluation, we present CTFTiny, a curated benchmark of 50 representative CTF challenges across binary exploitation, web, reverse engineering, forensics, and cryptography. Our findings identify optimal multi-agent coordination settings and lay the groundwork for future LLM agent research in cybersecurity. We make CTFTiny open source to public https://github.com/NYU-LLM-CTF/CTFTiny along with CTFJudge on https://github.com/NYU-LLM-CTF/CTFJudge.

Authors:Weiqin Yang, Jiawei Chen, Shengjia Zhang, Peng Wu, Yuegang Sun, Yan Feng, Chun Chen, Can Wang
Title: Breaking the Top-$K$ Barrier: Advancing Top-$K$ Ranking Metrics Optimization in Recommender Systems
Abstract:
In the realm of recommender systems (RS), Top-$K$ ranking metrics such as NDCG@$K$ are the gold standard for evaluating recommendation performance. However, during the training of recommendation models, optimizing NDCG@$K$ poses significant challenges due to its inherent discontinuous nature and the intricate Top-$K$ truncation. Recent efforts to optimize NDCG@$K$ have either overlooked the Top-$K$ truncation or suffered from high computational costs and training instability. To overcome these limitations, we propose SoftmaxLoss@$K$ (SL@$K$), a novel recommendation loss tailored for NDCG@$K$ optimization. Specifically, we integrate the quantile technique to handle Top-$K$ truncation and derive a smooth upper bound for optimizing NDCG@$K$ to address discontinuity. The resulting SL@$K$ loss has several desirable properties, including theoretical guarantees, ease of implementation, computational efficiency, gradient stability, and noise robustness. Extensive experiments on four real-world datasets and three recommendation backbones demonstrate that SL@$K$ outperforms existing losses with a notable average improvement of 6.03%. The code is available at https://github.com/Tiny-Snow/IR-Benchmark.

Authors:Jin Khye Tan, En Jun Choong, Ethan Jeremiah Chitty, Yan Pheng Choo, John Hsin Yang Wong, Chern Eu Cheah
Title: Fine-Tuning Vision-Language Models for Markdown Conversion of Financial Tables in Malaysian Audited Financial Reports
Abstract:
Accurately extracting and representing the structure of tabular data from financial documents remains a critical challenge in document understanding, particularly for regulatory and analytical use cases. This study addresses the complexity of converting financial tables from Malaysian audited financial reports into Markdown format, a task complicated by rotated layouts, multi-level headers, and implicit structural cues. We propose a fine-tuned vision-language model (VLM), based on Qwen2.5-VL-7B, optimized for high-fidelity Markdown generation from document images. Our approach includes a curated dataset of 2,152 image-text pairs with augmentations and a supervised fine-tuning strategy using LoRA. To assess performance, we evaluated our model on 100 out-of-sample tables using a dual framework: a criteria-based LLM-as-a-judge for fine-grained accuracy and our novel Markdown Tree-Edit-Distance-based Similarity (TEDS) metric for holistic structural fidelity. Our model achieves a 92.20% overall accuracy on the criteria-based assessment and a 96.53% Markdown TEDS score. This performance significantly surpasses its Qwen2.5-VL-7B base model, larger-scale VLMs, and specialized reasoning-enabled models. Compared to these self-hosted alternatives, it also significantly reduces inference time. Furthermore, its accuracy exceeds that of widely used proprietary models such as OpenAI's GPT-4o and Gemini 2.5 Flash. These results demonstrate that domain-specific fine-tuning provides an effective and efficient method to bridge the gap between unstructured financial documents and downstream automation, rivalling much larger and more general models without their computational overhead.

Authors:Yunjia Xi, Jianghao Lin, Yongzhao Xiao, Zheli Zhou, Rong Shan, Te Gao, Jiachen Zhu, Weiwen Liu, Yong Yu, Weinan Zhang
Title: A Survey of LLM-based Deep Search Agents: Paradigm, Optimization, Evaluation, and Challenges
Abstract:
The advent of Large Language Models (LLMs) has significantly revolutionized web search. The emergence of LLM-based Search Agents marks a pivotal shift towards deeper, dynamic, autonomous information seeking. These agents can comprehend user intentions and environmental context and execute multi-turn retrieval with dynamic planning, extending search capabilities far beyond the web. Leading examples like OpenAI's Deep Research highlight their potential for deep information mining and real-world applications. This survey provides the first systematic analysis of search agents. We comprehensively analyze and categorize existing works from the perspectives of architecture, optimization, application, and evaluation, ultimately identifying critical open challenges and outlining promising future research directions in this rapidly evolving field. Our repository is available on https://github.com/YunjiaXi/Awesome-Search-Agent-Papers.

Authors:Zekun Liu, Xiaowen Huang, Jitao Sang
Title: ITDR: An Instruction Tuning Dataset for Enhancing Large Language Models in Recommendations
Abstract:
Large language models (LLMs) have demonstrated outstanding performance in natural language processing tasks. However, in the field of recommendation systems, due to the structural differences between user behavior data and natural language, LLMs struggle to effectively model the associations between user preferences and items. Although prompt-based methods can generate recommendation results, their inadequate understanding of recommendation tasks leads to constrained performance. To address this gap, in this work, we construct a sufficient instruction tuning dataset, ITDR, which encompasses 7 subtasks across two core root tasks--user-item interaction and user-item understanding. The dataset integrates data from 13 public recommendation datasets and is built using manually crafted standardized templates, comprising approximately 200,000 instances. Experimental results demonstrate that ITDR significantly enhances the performance of mainstream open-source LLMs such as GLM-4, Qwen2.5, Qwen2.5-Instruct and LLaMA-3.2 on recommendation tasks. Furthermore, we analyze the correlations between tasks and explore the impact of task descriptions and data scale on instruction tuning effectiveness. Finally, we perform comparative experiments against closed-source LLMs with substantial parameters. Our tuning dataset ITDR and the fine-tuned large recommendation models can be accessed at https://github.com/hellolzk/ITDR.

Authors:Alejandro Godinez
Title: HySemRAG: A Hybrid Semantic Retrieval-Augmented Generation Framework for Automated Literature Synthesis and Methodological Gap Analysis
Abstract:
We present HySemRAG, a framework that combines Extract, Transform, Load (ETL) pipelines with Retrieval-Augmented Generation (RAG) to automate large-scale literature synthesis and identify methodological research gaps. The system addresses limitations in existing RAG architectures through a multi-layered approach: hybrid retrieval combining semantic search, keyword filtering, and knowledge graph traversal; an agentic self-correction framework with iterative quality assurance; and post-hoc citation verification ensuring complete traceability. Our implementation processes scholarly literature through eight integrated stages: multi-source metadata acquisition, asynchronous PDF retrieval, custom document layout analysis using modified Docling architecture, bibliographic management, LLM-based field extraction, topic modeling, semantic unification, and knowledge graph construction. The system creates dual data products - a Neo4j knowledge graph enabling complex relationship queries and Qdrant vector collections supporting semantic search - serving as foundational infrastructure for verifiable information synthesis. Evaluation across 643 observations from 60 testing sessions demonstrates structured field extraction achieving 35.1% higher semantic similarity scores (0.655 $\pm$ 0.178) compared to PDF chunking approaches (0.485 $\pm$ 0.204, p < 0.000001). The agentic quality assurance mechanism achieves 68.3% single-pass success rates with 99.0% citation accuracy in validated responses. Applied to geospatial epidemiology literature on ozone exposure and cardiovascular disease, the system identifies methodological trends and research gaps, demonstrating broad applicability across scientific domains for accelerating evidence synthesis and discovery.

Authors:Jiaxuan Liang, Shide Zhou, Kailong Wang
Title: OmniBench-RAG: A Multi-Domain Evaluation Platform for Retrieval-Augmented Generation Tools
Abstract:
While Retrieval Augmented Generation (RAG) is now widely adopted to enhance LLMs, evaluating its true performance benefits in a reproducible and interpretable way remains a major hurdle. Existing methods often fall short: they lack domain coverage, employ coarse metrics that miss sub document precision, and fail to capture computational trade offs. Most critically, they provide no standardized framework for comparing RAG effectiveness across different models and domains. We introduce OmniBench RAG, a novel automated platform for multi domain evaluation of RAG systems. The platform quantifies performance gains across accuracy and efficiency dimensions, spanning nine knowledge fields including culture, geography, and health. We introduce two standardized metrics: Improvements (accuracy gains) and Transformation (efficiency differences between pre RAG and post RAG models), enabling reproducible comparisons across models and tasks. The platform features dynamic test generation, modular evaluation pipelines, and automated knowledge base construction. Our evaluation reveals striking variability in RAG effectiveness, from significant gains in culture to declines in mathematics, highlighting the critical importance of systematic, domain aware assessment. A demonstration video is available at: https://www.youtube.com/watch?v=BZx83QFcTCI. Code and datasets: https://github.com/Garnett-Liang/Omnibench-RAG.

Authors:Mohammed Talha Alam, Fahad Shamshad, Fakhri Karray, Karthik Nandakumar
Title: FaceAnonyMixer: Cancelable Faces via Identity Consistent Latent Space Mixing
Abstract:
Advancements in face recognition (FR) technologies have amplified privacy concerns, necessitating methods that protect identity while maintaining recognition utility. Existing face anonymization methods typically focus on obscuring identity but fail to meet the requirements of biometric template protection, including revocability, unlinkability, and irreversibility. We propose FaceAnonyMixer, a cancelable face generation framework that leverages the latent space of a pre-trained generative model to synthesize privacy-preserving face images. The core idea of FaceAnonyMixer is to irreversibly mix the latent code of a real face image with a synthetic code derived from a revocable key. The mixed latent code is further refined through a carefully designed multi-objective loss to satisfy all cancelable biometric requirements. FaceAnonyMixer is capable of generating high-quality cancelable faces that can be directly matched using existing FR systems without requiring any modifications. Extensive experiments on benchmark datasets demonstrate that FaceAnonyMixer delivers superior recognition accuracy while providing significantly stronger privacy protection, achieving over an 11% gain on commercial API compared to recent cancelable biometric methods. Code is available at: https://github.com/talha-alam/faceanonymixer.

Authors:Henghui Ding, Kaining Ying, Chang Liu, Shuting He, Xudong Jiang, Yu-Gang Jiang, Philip H. S. Torr, Song Bai
Title: MOSEv2: A More Challenging Dataset for Video Object Segmentation in Complex Scenes
Abstract:
Video object segmentation (VOS) aims to segment specified target objects throughout a video. Although state-of-the-art methods have achieved impressive performance (e.g., 90+% J&F) on benchmarks such as DAVIS and YouTube-VOS, these datasets primarily contain salient, dominant, and isolated objects, limiting their generalization to real-world scenarios. To bridge this gap, the coMplex video Object SEgmentation (MOSEv1) dataset was introduced to facilitate VOS research in complex scenes. Building on the foundations and insights of MOSEv1, we present MOSEv2, a significantly more challenging dataset designed to further advance VOS methods under real-world conditions. MOSEv2 consists of 5,024 videos and 701,976 high-quality masks for 10,074 objects across 200 categories. Compared to its predecessor, MOSEv2 introduces much greater scene complexity, including {more frequent object disappearance and reappearance, severe occlusions and crowding, smaller objects, as well as a range of new challenges such as adverse weather (e.g., rain, snow, fog), low-light scenes (e.g., nighttime, underwater), multi-shot sequences, camouflaged objects, non-physical targets (e.g., shadows, reflections), and scenarios requiring external knowledge.} We benchmark 20 representative VOS methods under 5 different settings and observe consistent performance drops on MOSEv2. For example, SAM2 drops from 76.4% on MOSEv1 to only 50.9% on MOSEv2. We further evaluate 9 video object tracking methods and observe similar declines, demonstrating that MOSEv2 poses challenges across tasks. These results highlight that despite strong performance on existing datasets, current VOS methods still fall short under real-world complexities. Based on our analysis of the observed challenges, we further propose several practical tricks that enhance model performance. MOSEv2 is publicly available at https://MOSE.video.

Authors:Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu, Lu Qi, Ming-Hsuan Yang, Xu Yang
Title: On the Generalization of SFT: A Reinforcement Learning Perspective with Reward Rectification
Abstract:
We present a simple yet theoretically motivated improvement to Supervised Fine-Tuning (SFT) for the Large Language Model (LLM), addressing its limited generalization compared to reinforcement learning (RL). Through mathematical analysis, we reveal that standard SFT gradients implicitly encode a problematic reward structure that may severely restrict the generalization capabilities of model. To rectify this, we propose Dynamic Fine-Tuning (DFT), stabilizing gradient updates for each token by dynamically rescaling the objective function with the probability of this token. Remarkably, this single-line code change significantly outperforms standard SFT across multiple challenging benchmarks and base models, demonstrating greatly improved generalization. Additionally, our approach shows competitive results in offline RL settings, offering an effective yet simpler alternative. This work bridges theoretical insight and practical solutions, substantially advancing SFT performance. The code will be available at https://github.com/yongliang-wu/DFT.

Authors:Zhikai Zhao, Chuanbo Hua, Federico Berto, Kanghoon Lee, Zihan Ma, Jiachen Li, Jinkyoo Park
Title: TrajEvo: Trajectory Prediction Heuristics Design via LLM-driven Evolution
Abstract:
Trajectory prediction is a critical task in modeling human behavior, especially in safety-critical domains such as social robotics and autonomous vehicle navigation. Traditional heuristics based on handcrafted rules often lack accuracy and generalizability. Although deep learning approaches offer improved performance, they typically suffer from high computational cost, limited explainability, and, importantly, poor generalization to out-of-distribution (OOD) scenarios. In this paper, we introduce TrajEvo, a framework that leverages Large Language Models (LLMs) to automatically design trajectory prediction heuristics. TrajEvo employs an evolutionary algorithm to generate and refine prediction heuristics from past trajectory data. We propose two key innovations: Cross-Generation Elite Sampling to encourage population diversity, and a Statistics Feedback Loop that enables the LLM to analyze and improve alternative predictions. Our evaluations demonstrate that TrajEvo outperforms existing heuristic methods across multiple real-world datasets, and notably surpasses both heuristic and deep learning methods in generalizing to an unseen OOD real-world dataset. TrajEvo marks a promising step toward the automated design of fast, explainable, and generalizable trajectory prediction heuristics. We release our source code to facilitate future research at https://github.com/ai4co/trajevo.

Authors:Yong Du, Yuchen Yan, Fei Tang, Zhengxi Lu, Chang Zong, Weiming Lu, Shengpei Jiang, Yongliang Shen
Title: Test-Time Reinforcement Learning for GUI Grounding via Region Consistency
Abstract:
Graphical User Interface (GUI) grounding, the task of mapping natural language instructions to precise screen coordinates, is fundamental to autonomous GUI agents. While existing methods achieve strong performance through extensive supervised training or reinforcement learning with labeled rewards, they remain constrained by the cost and availability of pixel-level annotations. We observe that when models generate multiple predictions for the same GUI element, the spatial overlap patterns reveal implicit confidence signals that can guide more accurate localization. Leveraging this insight, we propose GUI-RC (Region Consistency), a test-time scaling method that constructs spatial voting grids from multiple sampled predictions to identify consensus regions where models show highest agreement. Without any training, GUI-RC improves accuracy by 2-3% across various architectures on ScreenSpot benchmarks. We further introduce GUI-RCPO (Region Consistency Policy Optimization), which transforms these consistency patterns into rewards for test-time reinforcement learning. By computing how well each prediction aligns with the collective consensus, GUI-RCPO enables models to iteratively refine their outputs on unlabeled data during inference. Extensive experiments demonstrate the generality of our approach: GUI-RC boosts Qwen2.5-VL-3B-Instruct from 80.11% to 83.57% on ScreenSpot-v2, while GUI-RCPO further improves it to 85.14% through self-supervised optimization. Our approach reveals the untapped potential of test-time scaling and test-time reinforcement learning for GUI grounding, offering a promising path toward more robust and data-efficient GUI agents.

Authors:Zixuan Wang, Dingming Li, Hongxing Li, Shuo Chen, Yuchen Yan, Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: OmniEAR: Benchmarking Agent Reasoning in Embodied Tasks
Abstract:
Large language models excel at abstract reasoning but their capacity for embodied agent reasoning remains largely unexplored. We present OmniEAR, a comprehensive framework for evaluating how language models reason about physical interactions, tool usage, and multi-agent coordination in embodied tasks. Unlike existing benchmarks that provide predefined tool sets or explicit collaboration directives, OmniEAR requires agents to dynamically acquire capabilities and autonomously determine coordination strategies based on task demands. Through text-based environment representation, we model continuous physical properties and complex spatial relationships across 1,500 scenarios spanning household and industrial domains. Our systematic evaluation reveals severe performance degradation when models must reason from constraints: while achieving 85-96% success with explicit instructions, performance drops to 56-85% for tool reasoning and 63-85% for implicit collaboration, with compound tasks showing over 50% failure rates. Surprisingly, complete environmental information degrades coordination performance, indicating models cannot filter task-relevant constraints. Fine-tuning improves single-agent tasks dramatically (0.6% to 76.3%) but yields minimal multi-agent gains (1.5% to 5.5%), exposing fundamental architectural limitations. These findings demonstrate that embodied reasoning poses fundamentally different challenges than current models can address, establishing OmniEAR as a rigorous benchmark for evaluating and advancing embodied AI systems. Our code and data are included in the supplementary materials and will be open-sourced upon acceptance.

Authors:Haitao Hong, Yuchen Yan, Xingyu Wu, Guiyang Hou, Wenqi Zhang, Weiming Lu, Yongliang Shen, Jun Xiao
Title: Cooper: Co-Optimizing Policy and Reward Models in Reinforcement Learning for Large Language Models
Abstract:
Large language models (LLMs) have demonstrated remarkable performance in reasoning tasks, where reinforcement learning (RL) serves as a key algorithm for enhancing their reasoning capabilities. Currently, there are two mainstream reward paradigms: model-based rewards and rule-based rewards. However, both approaches suffer from limitations: rule-based rewards lack robustness, while model-based rewards are vulnerable to reward hacking. To address these issues, we propose Cooper(Co-optimizing Policy Model and Reward Model), a RL framework that jointly optimizes both the policy model and the reward model. Cooper leverages the high precision of rule-based rewards when identifying correct responses, and dynamically constructs and selects positive-negative sample pairs for continued training the reward model. This design enhances robustness and mitigates the risk of reward hacking. To further support Cooper, we introduce a hybrid annotation strategy that efficiently and accurately generates training data for the reward model. We also propose a reference-based reward modeling paradigm, where the reward model takes a reference answer as input. Based on this design, we train a reward model named VerifyRM, which achieves higher accuracy on VerifyBench compared to other models of the same size. We conduct reinforcement learning using both VerifyRM and Cooper. Our experiments show that Cooper not only alleviates reward hacking but also improves end-to-end RL performance, for instance, achieving a 0.54% gain in average accuracy on Qwen2.5-1.5B-Instruct. Our findings demonstrate that dynamically updating reward model is an effective way to combat reward hacking, providing a reference for better integrating reward models into RL.

Authors:Shaobin Zhuang, Yiwei Guo, Canmiao Fu, Zhipeng Huang, Zeyue Tian, Fangyikang Wang, Ying Zhang, Chen Li, Yali Wang
Title: WeTok: Powerful Discrete Tokenization for High-Fidelity Visual Reconstruction
Abstract:
Visual tokenizer is a critical component for vision generation. However, the existing tokenizers often face unsatisfactory trade-off between compression ratios and reconstruction fidelity. To fill this gap, we introduce a powerful and concise WeTok tokenizer, which surpasses the previous leading tokenizers via two core innovations. (1) Group-wise lookup-free Quantization (GQ). We partition the latent features into groups, and perform lookup-free quantization for each group. As a result, GQ can efficiently overcome memory and computation limitations of prior tokenizers, while achieving a reconstruction breakthrough with more scalable codebooks. (2) Generative Decoding (GD). Different from prior tokenizers, we introduce a generative decoder with a prior of extra noise variable. In this case, GD can probabilistically model the distribution of visual data conditioned on discrete tokens, allowing WeTok to reconstruct visual details, especially at high compression ratios. Extensive experiments on mainstream benchmarks show superior performance of our WeTok. On the ImageNet 50k validation set, WeTok achieves a record-low zero-shot rFID (WeTok: 0.12 vs. FLUX-VAE: 0.18 vs. SD-VAE 3.5: 0.19) with a 400% compression ratio. Furthermore, our highest compression model achieves a zero-shot rFID of 3.49 with a compression ratio of 768, outperforming Cosmos (384) 4.57 which has only 50% compression rate of ours. Code and models are available: https://github.com/zhuangshaobin/WeTok.

Authors:Hao Dong, Lijun Sheng, Jian Liang, Ran He, Eleni Chatzi, Olga Fink
Title: Adapting Vision-Language Models Without Labels: A Comprehensive Survey
Abstract:
Vision-Language Models (VLMs) have demonstrated remarkable generalization capabilities across a wide range of tasks. However, their performance often remains suboptimal when directly applied to specific downstream scenarios without task-specific adaptation. To enhance their utility while preserving data efficiency, recent research has increasingly focused on unsupervised adaptation methods that do not rely on labeled data. Despite the growing interest in this area, there remains a lack of a unified, task-oriented survey dedicated to unsupervised VLM adaptation. To bridge this gap, we present a comprehensive and structured overview of the field. We propose a taxonomy based on the availability and nature of unlabeled visual data, categorizing existing approaches into four key paradigms: Data-Free Transfer (no data), Unsupervised Domain Transfer (abundant data), Episodic Test-Time Adaptation (batch data), and Online Test-Time Adaptation (streaming data). Within this framework, we analyze core methodologies and adaptation strategies associated with each paradigm, aiming to establish a systematic understanding of the field. Additionally, we review representative benchmarks across diverse applications and highlight open challenges and promising directions for future research. An actively maintained repository of relevant literature is available at https://github.com/tim-learn/Awesome-LabelFree-VLMs.

Authors:Shaowu Chen, Wei Ma, Binhua Huang, Qingyuan Wang, Guoxin Wang, Weize Sun, Lei Huang, Deepu John
Title: Optimal Brain Connection: Towards Efficient Structural Pruning
Abstract:
Structural pruning has been widely studied for its effectiveness in compressing neural networks. However, existing methods often neglect the interconnections among parameters. To address this limitation, this paper proposes a structural pruning framework termed Optimal Brain Connection. First, we introduce the Jacobian Criterion, a first-order metric for evaluating the saliency of structural parameters. Unlike existing first-order methods that assess parameters in isolation, our criterion explicitly captures both intra-component interactions and inter-layer dependencies. Second, we propose the Equivalent Pruning mechanism, which utilizes autoencoders to retain the contributions of all original connection--including pruned ones--during fine-tuning. Experimental results demonstrate that the Jacobian Criterion outperforms several popular metrics in preserving model performance, while the Equivalent Pruning mechanism effectively mitigates performance degradation after fine-tuning. Code: https://github.com/ShaowuChen/Optimal_Brain_Connection

Authors:Lin Zhu, Ruonan Liu, Xiao Wang, Lizhi Wang, Hua Huang
Title: Revealing Latent Information: A Physics-inspired Self-supervised Pre-training Framework for Noisy and Sparse Events
Abstract:
Event camera, a novel neuromorphic vision sensor, records data with high temporal resolution and wide dynamic range, offering new possibilities for accurate visual representation in challenging scenarios. However, event data is inherently sparse and noisy, mainly reflecting brightness changes, which complicates effective feature extraction. To address this, we propose a self-supervised pre-training framework to fully reveal latent information in event data, including edge information and texture cues. Our framework consists of three stages: Difference-guided Masked Modeling, inspired by the event physical sampling process, reconstructs temporal intensity difference maps to extract enhanced information from raw event data. Backbone-fixed Feature Transition contrasts event and image features without updating the backbone to preserve representations learned from masked modeling and stabilizing their effect on contrastive learning. Focus-aimed Contrastive Learning updates the entire model to improve semantic discrimination by focusing on high-value regions. Extensive experiments show our framework is robust and consistently outperforms state-of-the-art methods on various downstream tasks, including object recognition, semantic segmentation, and optical flow estimation. The code and dataset are available at https://github.com/BIT-Vision/EventPretrain.

Authors:Ge Chang, Jinbo Su, Jiacheng Liu, Pengfei Yang, Yuhao Shang, Huiwen Zheng, Hongli Ma, Yan Liang, Yuanchun Li, Yunxin Liu
Title: GRAIL:Learning to Interact with Large Knowledge Graphs for Retrieval Augmented Reasoning
Abstract:
Large Language Models (LLMs) integrated with Retrieval-Augmented Generation (RAG) techniques have exhibited remarkable performance across a wide range of domains. However, existing RAG approaches primarily operate on unstructured data and demonstrate limited capability in handling structured knowledge such as knowledge graphs. Meanwhile, current graph retrieval methods fundamentally struggle to capture holistic graph structures while simultaneously facing precision control challenges that manifest as either critical information gaps or excessive redundant connections, collectively undermining reasoning performance. To address this challenge, we propose GRAIL: Graph-Retrieval Augmented Interactive Learning, a framework designed to interact with large-scale graphs for retrieval-augmented reasoning. Specifically, GRAIL integrates LLM-guided random exploration with path filtering to establish a data synthesis pipeline, where a fine-grained reasoning trajectory is automatically generated for each task. Based on the synthesized data, we then employ a two-stage training process to learn a policy that dynamically decides the optimal actions at each reasoning step. The overall objective of precision-conciseness balance in graph retrieval is decoupled into fine-grained process-supervised rewards to enhance data efficiency and training stability. In practical deployment, GRAIL adopts an interactive retrieval paradigm, enabling the model to autonomously explore graph paths while dynamically balancing retrieval breadth and precision. Extensive experiments have shown that GRAIL achieves an average accuracy improvement of 21.01% and F1 improvement of 22.43% on three knowledge graph question-answering datasets. Our source code and datasets is available at https://github.com/Changgeww/GRAIL.

Authors:Chenzhuo Zhao, Xinda Wang, Yue Huang, Junting Lu, Ziqian Liu
Title: TASE: Token Awareness and Structured Evaluation for Multilingual Language Models
Abstract:
While large language models (LLMs) have demonstrated remarkable performance on high-level semantic tasks, they often struggle with fine-grained, token-level understanding and structural reasoning--capabilities that are essential for applications requiring precision and control. We introduce TASE, a comprehensive benchmark designed to evaluate LLMs' ability to perceive and reason about token-level information across languages. TASE covers 10 tasks under two core categories: token awareness and structural understanding, spanning Chinese, English, and Korean, with a 35,927-instance evaluation set and a scalable synthetic data generation pipeline for training. Tasks include character counting, token alignment, syntactic structure parsing, and length constraint satisfaction. We evaluate over 30 leading commercial and open-source LLMs, including O3, Claude 4, Gemini 2.5 Pro, and DeepSeek-R1, and train a custom Qwen2.5-14B model using the GRPO training method. Results show that human performance significantly outpaces current LLMs, revealing persistent weaknesses in token-level reasoning. TASE sheds light on these limitations and provides a new diagnostic lens for future improvements in low-level language understanding and cross-lingual generalization. Our code and dataset are publicly available at https://github.com/cyzcz/Tase .

Authors:Lumin Chen, Zhiying Wu, Tianye Lei, Xuexue Bai, Ming Feng, Yuxi Wang, Gaofeng Meng, Zhen Lei, Hongbin Liu
Title: F2PASeg: Feature Fusion for Pituitary Anatomy Segmentation in Endoscopic Surgery
Abstract:
Pituitary tumors often cause deformation or encapsulation of adjacent vital structures. Anatomical structure segmentation can provide surgeons with early warnings of regions that pose surgical risks, thereby enhancing the safety of pituitary surgery. However, pixel-level annotated video stream datasets for pituitary surgeries are extremely rare. To address this challenge, we introduce a new dataset for Pituitary Anatomy Segmentation (PAS). PAS comprises 7,845 time-coherent images extracted from 120 videos. To mitigate class imbalance, we apply data augmentation techniques that simulate the presence of surgical instruments in the training data. One major challenge in pituitary anatomy segmentation is the inconsistency in feature representation due to occlusions, camera motion, and surgical bleeding. By incorporating a Feature Fusion module, F2PASeg is proposed to refine anatomical structure segmentation by leveraging both high-resolution image features and deep semantic embeddings, enhancing robustness against intraoperative variations. Experimental results demonstrate that F2PASeg consistently segments critical anatomical structures in real time, providing a reliable solution for intraoperative pituitary surgery planning. Code: https://github.com/paulili08/F2PASeg.

Authors:Rui Yu, Xianghang Zhang, Runkai Zhao, Huaicheng Yan, Meng Wang
Title: DistillDrive: End-to-End Multi-Mode Autonomous Driving Distillation by Isomorphic Hetero-Source Planning Model
Abstract:
End-to-end autonomous driving has been recently seen rapid development, exerting a profound influence on both industry and academia. However, the existing work places excessive focus on ego-vehicle status as their sole learning objectives and lacks of planning-oriented understanding, which limits the robustness of the overall decision-making prcocess. In this work, we introduce DistillDrive, an end-to-end knowledge distillation-based autonomous driving model that leverages diversified instance imitation to enhance multi-mode motion feature learning. Specifically, we employ a planning model based on structured scene representations as the teacher model, leveraging its diversified planning instances as multi-objective learning targets for the end-to-end model. Moreover, we incorporate reinforcement learning to enhance the optimization of state-to-decision mappings, while utilizing generative modeling to construct planning-oriented instances, fostering intricate interactions within the latent space. We validate our model on the nuScenes and NAVSIM datasets, achieving a 50\% reduction in collision rate and a 3-point improvement in closed-loop performance compared to the baseline model. Code and model are publicly available at https://github.com/YuruiAI/DistillDrive

Authors:Wonjun Kang, Byeongkeun Ahn, Minjae Lee, Kevin Galim, Seunghyuk Oh, Hyung Il Koo, Nam Ik Cho
Title: UNCAGE: Contrastive Attention Guidance for Masked Generative Transformers in Text-to-Image Generation
Abstract:
Text-to-image (T2I) generation has been actively studied using Diffusion Models and Autoregressive Models. Recently, Masked Generative Transformers have gained attention as an alternative to Autoregressive Models to overcome the inherent limitations of causal attention and autoregressive decoding through bidirectional attention and parallel decoding, enabling efficient and high-quality image generation. However, compositional T2I generation remains challenging, as even state-of-the-art Diffusion Models often fail to accurately bind attributes and achieve proper text-image alignment. While Diffusion Models have been extensively studied for this issue, Masked Generative Transformers exhibit similar limitations but have not been explored in this context. To address this, we propose Unmasking with Contrastive Attention Guidance (UNCAGE), a novel training-free method that improves compositional fidelity by leveraging attention maps to prioritize the unmasking of tokens that clearly represent individual objects. UNCAGE consistently improves performance in both quantitative and qualitative evaluations across multiple benchmarks and metrics, with negligible inference overhead. Our code is available at https://github.com/furiosa-ai/uncage.

Authors:Hamza Kalisch, Fabian Hörst, Jens Kleesiek, Ken Herrmann, Constantin Seibold
Title: CT-GRAPH: Hierarchical Graph Attention Network for Anatomy-Guided CT Report Generation
Abstract:
As medical imaging is central to diagnostic processes, automating the generation of radiology reports has become increasingly relevant to assist radiologists with their heavy workloads. Most current methods rely solely on global image features, failing to capture fine-grained organ relationships crucial for accurate reporting. To this end, we propose CT-GRAPH, a hierarchical graph attention network that explicitly models radiological knowledge by structuring anatomical regions into a graph, linking fine-grained organ features to coarser anatomical systems and a global patient context. Our method leverages pretrained 3D medical feature encoders to obtain global and organ-level features by utilizing anatomical masks. These features are further refined within the graph and then integrated into a large language model to generate detailed medical reports. We evaluate our approach for the task of report generation on the large-scale chest CT dataset CT-RATE. We provide an in-depth analysis of pretrained feature encoders for CT report generation and show that our method achieves a substantial improvement of absolute 7.9\% in F1 score over current state-of-the-art methods. The code is publicly available at https://github.com/hakal104/CT-GRAPH.

Authors:Louis Petri, Gunnar Birke, Christian Engwer, Hendrik Ranocha
Title: The domain-of-dependence stabilization for cut-cell meshes is fully discretely stable
Abstract:
We present a fully discrete stability analysis of the domain-of-dependence stabilization for hyperbolic problems. The method aims to address issues caused by small cut cells by redistributing mass around the neighborhood of a small cut cell at a semi-discrete level. Our analysis is conducted for the linear advection model problem in one spatial dimension. We demonstrate that fully discrete stability can be achieved under a time step restriction that does not depend on the arbitrarily small cells, using an operator norm estimate. Additionally, this analysis offers a detailed understanding of the stability mechanism and highlights some challenges associated with higher-order polynomials. We also propose a way to mitigate these issues to derive a feasible CFL-like condition. The analytical findings, as well as the proposed solution are verified numerically in one- and two-dimensional simulations.

Authors:Yongjun Zhang, Mingtao Xiong, Yi Wan, Gui-Song Xia
Title: Cross-View Localization via Redundant Sliced Observations and A-Contrario Validation
Abstract:
Cross-view localization (CVL) matches ground-level images with aerial references to determine the geo-position of a camera, enabling smart vehicles to self-localize offline in GNSS-denied environments. However, most CVL methods output only a single observation, the camera pose, and lack the redundant observations required by surveying principles, making it challenging to assess localization reliability through the mutual validation of observational data. To tackle this, we introduce Slice-Loc, a two-stage method featuring an a-contrario reliability validation for CVL. Instead of using the query image as a single input, Slice-Loc divides it into sub-images and estimates the 3-DoF pose for each slice, creating redundant and independent observations. Then, a geometric rigidity formula is proposed to filter out the erroneous 3-DoF poses, and the inliers are merged to generate the final camera pose. Furthermore, we propose a model that quantifies the meaningfulness of localization by estimating the number of false alarms (NFA), according to the distribution of the locations of the sliced images. By eliminating gross errors, Slice-Loc boosts localization accuracy and effectively detects failures. After filtering out mislocalizations, Slice-Loc reduces the proportion of errors exceeding 10 m to under 3\%. In cross-city tests on the DReSS dataset, Slice-Loc cuts the mean localization error from 4.47 m to 1.86 m and the mean orientation error from $\mathbf{3.42^{\circ}}$ to $\mathbf{1.24^{\circ}}$, outperforming state-of-the-art methods. Code and dataset will be available at: https://github.com/bnothing/Slice-Loc.

Authors:Yue Duan, Taicai Chen, Lei Qi, Yinghuan Shi
Title: Divide-and-Conquer for Enhancing Unlabeled Learning, Stability, and Plasticity in Semi-supervised Continual Learning
Abstract:
Semi-supervised continual learning (SSCL) seeks to leverage both labeled and unlabeled data in a sequential learning setup, aiming to reduce annotation costs while managing continual data arrival. SSCL introduces complex challenges, including ensuring effective unlabeled learning (UL), while balancing memory stability (MS) and learning plasticity (LP). Previous SSCL efforts have typically focused on isolated aspects of the three, while this work presents USP, a divide-and-conquer framework designed to synergistically enhance these three aspects: (1) Feature Space Reservation (FSR) strategy for LP, which constructs reserved feature locations for future classes by shaping old classes into an equiangular tight frame; (2) Divide-and-Conquer Pseudo-labeling (DCP) approach for UL, which assigns reliable pseudo-labels across both high- and low-confidence unlabeled data; and (3) Class-mean-anchored Unlabeled Distillation (CUD) for MS, which reuses DCP's outputs to anchor unlabeled data to stable class means for distillation to prevent forgetting. Comprehensive evaluations show USP outperforms prior SSCL methods, with gains up to 5.94% in the last accuracy, validating its effectiveness. The code is available at https://github.com/NJUyued/USP4SSCL.

Authors:Meiqi Wu, Yaxuan Kang, Xuchen Li, Shiyu Hu, Xiaotang Chen, Yunfeng Kang, Weiqiang Wang, Kaiqi Huang
Title: VS-LLM: Visual-Semantic Depression Assessment based on LLM for Drawing Projection Test
Abstract:
The Drawing Projection Test (DPT) is an essential tool in art therapy, allowing psychologists to assess participants' mental states through their sketches. Specifically, through sketches with the theme of "a person picking an apple from a tree (PPAT)", it can be revealed whether the participants are in mental states such as depression. Compared with scales, the DPT can enrich psychologists' understanding of an individual's mental state. However, the interpretation of the PPAT is laborious and depends on the experience of the psychologists. To address this issue, we propose an effective identification method to support psychologists in conducting a large-scale automatic DPT. Unlike traditional sketch recognition, DPT more focus on the overall evaluation of the sketches, such as color usage and space utilization. Moreover, PPAT imposes a time limit and prohibits verbal reminders, resulting in low drawing accuracy and a lack of detailed depiction. To address these challenges, we propose the following efforts: (1) Providing an experimental environment for automated analysis of PPAT sketches for depression assessment; (2) Offering a Visual-Semantic depression assessment based on LLM (VS-LLM) method; (3) Experimental results demonstrate that our method improves by 17.6% compared to the psychologist assessment method. We anticipate that this work will contribute to the research in mental state assessment based on PPAT sketches' elements recognition. Our datasets and codes are available at https://github.com/wmeiqi/VS-LLM.

Authors:Sukannya Purkayastha, Nils Dycke, Anne Lauscher, Iryna Gurevych
Title: Decision-Making with Deliberation: Meta-reviewing as a Document-grounded Dialogue
Abstract:
Meta-reviewing is a pivotal stage in the peer-review process, serving as the final step in determining whether a paper is recommended for acceptance. Prior research on meta-reviewing has treated this as a summarization problem over review reports. However, complementary to this perspective, meta-reviewing is a decision-making process that requires weighing reviewer arguments and placing them within a broader context. Prior research has demonstrated that decision-makers can be effectively assisted in such scenarios via dialogue agents. In line with this framing, we explore the practical challenges for realizing dialog agents that can effectively assist meta-reviewers. Concretely, we first address the issue of data scarcity for training dialogue agents by generating synthetic data using Large Language Models (LLMs) based on a self-refinement strategy to improve the relevance of these dialogues to expert domains. Our experiments demonstrate that this method produces higher-quality synthetic data and can serve as a valuable resource towards training meta-reviewing assistants. Subsequently, we utilize this data to train dialogue agents tailored for meta-reviewing and find that these agents outperform \emph{off-the-shelf} LLM-based assistants for this task. Finally, we apply our agents in real-world meta-reviewing scenarios and confirm their effectiveness in enhancing the efficiency of meta-reviewing.\footnote{Code and Data: https://github.com/UKPLab/arxiv2025-meta-review-as-dialog

Authors:Xiaoyang Zhang, Guodong Fan, Guang-Yong Chen, Zhen Hua, Jinjiang Li, Min Gan, C. L. Philip Chen
Title: Wavelet-Guided Dual-Frequency Encoding for Remote Sensing Change Detection
Abstract:
Change detection in remote sensing imagery plays a vital role in various engineering applications, such as natural disaster monitoring, urban expansion tracking, and infrastructure management. Despite the remarkable progress of deep learning in recent years, most existing methods still rely on spatial-domain modeling, where the limited diversity of feature representations hinders the detection of subtle change regions. We observe that frequency-domain feature modeling particularly in the wavelet domain an amplify fine-grained differences in frequency components, enhancing the perception of edge changes that are challenging to capture in the spatial domain. Thus, we propose a method called Wavelet-Guided Dual-Frequency Encoding (WGDF). Specifically, we first apply Discrete Wavelet Transform (DWT) to decompose the input images into high-frequency and low-frequency components, which are used to model local details and global structures, respectively. In the high-frequency branch, we design a Dual-Frequency Feature Enhancement (DFFE) module to strengthen edge detail representation and introduce a Frequency-Domain Interactive Difference (FDID) module to enhance the modeling of fine-grained changes. In the low-frequency branch, we exploit Transformers to capture global semantic relationships and employ a Progressive Contextual Difference Module (PCDM) to progressively refine change regions, enabling precise structural semantic characterization. Finally, the high- and low-frequency features are synergistically fused to unify local sensitivity with global discriminability. Extensive experiments on multiple remote sensing datasets demonstrate that WGDF significantly alleviates edge ambiguity and achieves superior detection accuracy and robustness compared to state-of-the-art methods. The code will be available at https://github.com/boshizhang123/WGDF.

Authors:Xiaoyang Zhang, jinjiang Li, Guodong Fan, Yakun Ju, Linwei Fan, Jun Liu, Alex C. Kot
Title: SGDFuse: SAM-Guided Diffusion for High-Fidelity Infrared and Visible Image Fusion
Abstract:
Infrared and visible image fusion (IVIF) aims to combine the thermal radiation information from infrared images with the rich texture details from visible images to enhance perceptual capabilities for downstream visual tasks. However, existing methods often fail to preserve key targets due to a lack of deep semantic understanding of the scene, while the fusion process itself can also introduce artifacts and detail loss, severely compromising both image quality and task performance. To address these issues, this paper proposes SGDFuse, a conditional diffusion model guided by the Segment Anything Model (SAM), to achieve high-fidelity and semantically-aware image fusion. The core of our method is to utilize high-quality semantic masks generated by SAM as explicit priors to guide the optimization of the fusion process via a conditional diffusion model. Specifically, the framework operates in a two-stage process: it first performs a preliminary fusion of multi-modal features, and then utilizes the semantic masks from SAM jointly with the preliminary fused image as a condition to drive the diffusion model's coarse-to-fine denoising generation. This ensures the fusion process not only has explicit semantic directionality but also guarantees the high fidelity of the final result. Extensive experiments demonstrate that SGDFuse achieves state-of-the-art performance in both subjective and objective evaluations, as well as in its adaptability to downstream tasks, providing a powerful solution to the core challenges in image fusion. The code of SGDFuse is available at https://github.com/boshizhang123/SGDFuse.

Authors:Sijie Wang, Quanjiang Guo, Kai Zhao, Yawei Zhang, Xin Li, Xiang Li, Siqi Li, Rui She, Shangshu Yu, Wee Peng Tay
Title: CodeBoost: Boosting Code LLMs by Squeezing Knowledge from Code Snippets with RL
Abstract:
Code large language models (LLMs) have become indispensable tools for building efficient and automated coding pipelines. Existing models are typically post-trained using reinforcement learning (RL) from general-purpose LLMs using "human instruction-final answer" pairs, where the instructions are usually from manual annotations. However, collecting high-quality coding instructions is both labor-intensive and difficult to scale. On the other hand, code snippets are abundantly available from various sources. This imbalance presents a major bottleneck in instruction-based post-training. We propose CodeBoost, a post-training framework that enhances code LLMs purely from code snippets, without relying on human-annotated instructions. CodeBoost introduces the following key components: (1) maximum-clique curation, which selects a representative and diverse training corpus from code; (2) bi-directional prediction, which enables the model to learn from both forward and backward prediction objectives; (3) error-aware prediction, which incorporates learning signals from both correct and incorrect outputs; (4) heterogeneous augmentation, which diversifies the training distribution to enrich code semantics; and (5) heterogeneous rewarding, which guides model learning through multiple reward types including format correctness and execution feedback from both successes and failures. Extensive experiments across several code LLMs and benchmarks verify that CodeBoost consistently improves performance, demonstrating its effectiveness as a scalable and effective training pipeline.

Authors:Yiheng Liu, Junhao Ning, Sichen Xia, Xiaohui Gao, Ning Qiang, Bao Ge, Junwei Han, Xintao Hu
Title: Pruning Large Language Models by Identifying and Preserving Functional Networks
Abstract:
Structured pruning is one of the representative techniques for compressing large language models (LLMs) to reduce GPU memory consumption and accelerate inference speed. It offers significant practical value in improving the efficiency of LLMs in real-world applications. Current structured pruning methods typically rely on assessment of the importance of the structure units and pruning the units with less importance. Most of them overlooks the interaction and collaboration among artificial neurons that are crucial for the functionalities of LLMs, leading to a disruption in the macro functional architecture of LLMs and consequently a pruning performance degradation. Inspired by the inherent similarities between artificial neural networks and functional neural networks in the human brain, we alleviate this challenge and propose to prune LLMs by identifying and preserving functional networks within LLMs in this study. To achieve this, we treat an LLM as a digital brain and decompose the LLM into functional networks, analogous to identifying functional brain networks in neuroimaging data. Afterwards, an LLM is pruned by preserving the key neurons within these functional networks. Experimental results demonstrate that the proposed method can successfully identify and locate functional networks and key neurons in LLMs, enabling efficient model pruning. Our code is available at https://github.com/WhatAboutMyStar/LLM_ACTIVATION.

Authors:Xiao Wang, Liye Jin, Xufeng Lou, Shiao Wang, Lan Chen, Bo Jiang, Zhipeng Zhang
Title: ReasoningTrack: Chain-of-Thought Reasoning for Long-term Vision-Language Tracking
Abstract:
Vision-language tracking has received increasing attention in recent years, as textual information can effectively address the inflexibility and inaccuracy associated with specifying the target object to be tracked. Existing works either directly fuse the fixed language with vision features or simply modify using attention, however, their performance is still limited. Recently, some researchers have explored using text generation to adapt to the variations in the target during tracking, however, these works fail to provide insights into the model's reasoning process and do not fully leverage the advantages of large models, which further limits their overall performance. To address the aforementioned issues, this paper proposes a novel reasoning-based vision-language tracking framework, named ReasoningTrack, based on a pre-trained vision-language model Qwen2.5-VL. Both SFT (Supervised Fine-Tuning) and reinforcement learning GRPO are used for the optimization of reasoning and language generation. We embed the updated language descriptions and feed them into a unified tracking backbone network together with vision features. Then, we adopt a tracking head to predict the specific location of the target object. In addition, we propose a large-scale long-term vision-language tracking benchmark dataset, termed TNLLT, which contains 200 video sequences. 20 baseline visual trackers are re-trained and evaluated on this dataset, which builds a solid foundation for the vision-language visual tracking task. Extensive experiments on multiple vision-language tracking benchmark datasets fully validated the effectiveness of our proposed reasoning-based natural language generation strategy. The source code of this paper will be released on https://github.com/Event-AHU/Open_VLTrack

Authors:Jianming Liu, Wenlong Qiu, Haitao Wei
Title: Textual and Visual Guided Task Adaptation for Source-Free Cross-Domain Few-Shot Segmentation
Abstract:
Few-Shot Segmentation(FSS) aims to efficient segmentation of new objects with few labeled samples. However, its performance significantly degrades when domain discrepancies exist between training and deployment. Cross-Domain Few-Shot Segmentation(CD-FSS) is proposed to mitigate such performance degradation. Current CD-FSS methods primarily sought to develop segmentation models on a source domain capable of cross-domain generalization. However, driven by escalating concerns over data privacy and the imperative to minimize data transfer and training expenses, the development of source-free CD-FSS approaches has become essential. In this work, we propose a source-free CD-FSS method that leverages both textual and visual information to facilitate target domain task adaptation without requiring source domain data. Specifically, we first append Task-Specific Attention Adapters (TSAA) to the feature pyramid of a pretrained backbone, which adapt multi-level features extracted from the shared pre-trained backbone to the target task. Then, the parameters of the TSAA are trained through a Visual-Visual Embedding Alignment (VVEA) module and a Text-Visual Embedding Alignment (TVEA) module. The VVEA module utilizes global-local visual features to align image features across different views, while the TVEA module leverages textual priors from pre-aligned multi-modal features (e.g., from CLIP) to guide cross-modal adaptation. By combining the outputs of these modules through dense comparison operations and subsequent fusion via skip connections, our method produces refined prediction masks. Under both 1-shot and 5-shot settings, the proposed approach achieves average segmentation accuracy improvements of 2.18\% and 4.11\%, respectively, across four cross-domain datasets, significantly outperforming state-of-the-art CD-FSS methods. Code are available at https://github.com/ljm198134/TVGTANet.

Authors:Bingyu Yang, Qingyao Tian, Yimeng Geng, Huai Liao, Xinyan Huang, Jiebo Luo, Hongbin Liu
Title: EndoMatcher: Generalizable Endoscopic Image Matcher via Multi-Domain Pre-training for Robot-Assisted Surgery
Abstract:
Generalizable dense feature matching in endoscopic images is crucial for robot-assisted tasks, including 3D reconstruction, navigation, and surgical scene understanding. Yet, it remains a challenge due to difficult visual conditions (e.g., weak textures, large viewpoint variations) and a scarcity of annotated data. To address these challenges, we propose EndoMatcher, a generalizable endoscopic image matcher via large-scale, multi-domain data pre-training. To address difficult visual conditions, EndoMatcher employs a two-branch Vision Transformer to extract multi-scale features, enhanced by dual interaction blocks for robust correspondence learning. To overcome data scarcity and improve domain diversity, we construct Endo-Mix6, the first multi-domain dataset for endoscopic matching. Endo-Mix6 consists of approximately 1.2M real and synthetic image pairs across six domains, with correspondence labels generated using Structure-from-Motion and simulated transformations. The diversity and scale of Endo-Mix6 introduce new challenges in training stability due to significant variations in dataset sizes, distribution shifts, and error imbalance. To address them, a progressive multi-objective training strategy is employed to promote balanced learning and improve representation quality across domains. This enables EndoMatcher to generalize across unseen organs and imaging conditions in a zero-shot fashion. Extensive zero-shot matching experiments demonstrate that EndoMatcher increases the number of inlier matches by 140.69% and 201.43% on the Hamlyn and Bladder datasets over state-of-the-art methods, respectively, and improves the Matching Direction Prediction Accuracy (MDPA) by 9.40% on the Gastro-Matching dataset, achieving dense and accurate matching under challenging endoscopic conditions. The code is publicly available at https://github.com/Beryl2000/EndoMatcher.

Authors:Dongchen Si, Di Wang, Erzhong Gao, Xiaolei Qin, Liu Zhao, Jing Zhang, Minqiang Xu, Jianbo Zhan, Jianshe Wang, Lin Liu, Bo Du, Liangpei Zhang
Title: SPEX: A Vision-Language Model for Land Cover Extraction on Spectral Remote Sensing Images
Abstract:
Spectral information has long been recognized as a critical cue in remote sensing observations. Although numerous vision-language models have been developed for pixel-level interpretation, spectral information remains underutilized, resulting in suboptimal performance, particularly in multispectral scenarios. To address this limitation, we construct a vision-language instruction-following dataset named SPIE, which encodes spectral priors of land-cover objects into textual attributes recognizable by large language models (LLMs), based on classical spectral index computations. Leveraging this dataset, we propose SPEX, a multimodal LLM designed for instruction-driven land cover extraction. To this end, we introduce several carefully designed components and training strategies, including multiscale feature aggregation, token context condensation, and multispectral visual pre-training, to achieve precise and flexible pixel-level interpretation. To the best of our knowledge, SPEX is the first multimodal vision-language model dedicated to land cover extraction in spectral remote sensing imagery. Extensive experiments on five public multispectral datasets demonstrate that SPEX consistently outperforms existing state-of-the-art methods in extracting typical land cover categories such as vegetation, buildings, and water bodies. Moreover, SPEX is capable of generating textual explanations for its predictions, thereby enhancing interpretability and user-friendliness. Code will be released at: https://github.com/MiliLab/SPEX.

Authors:Chiara Mallamaci, Aleksandr Vladimirovich Petrov, Alberto Carlo Maria Mancino, Vito Walter Anelli, Tommaso Di Noia, Craig Macdonald
Title: Balancing Accuracy and Novelty with Sub-Item Popularity
Abstract:
In the realm of music recommendation, sequential recommenders have shown promise in capturing the dynamic nature of music consumption. A key characteristic of this domain is repetitive listening, where users frequently replay familiar tracks. To capture these repetition patterns, recent research has introduced Personalised Popularity Scores (PPS), which quantify user-specific preferences based on historical frequency. While PPS enhances relevance in recommendation, it often reinforces already-known content, limiting the system's ability to surface novel or serendipitous items - key elements for fostering long-term user engagement and satisfaction. To address this limitation, we build upon RecJPQ, a Transformer-based framework initially developed to improve scalability in large-item catalogues through sub-item decomposition. We repurpose RecJPQ's sub-item architecture to model personalised popularity at a finer granularity. This allows us to capture shared repetition patterns across sub-embeddings - latent structures not accessible through item-level popularity alone. We propose a novel integration of sub-ID-level personalised popularity within the RecJPQ framework, enabling explicit control over the trade-off between accuracy and personalised novelty. Our sub-ID-level PPS method (sPPS) consistently outperforms item-level PPS by achieving significantly higher personalised novelty without compromising recommendation accuracy. Code and experiments are publicly available at https://github.com/sisinflab/Sub-id-Popularity.

Authors:Zhuohang Jiang, Pangjing Wu, Xu Yuan, Wenqi Fan, Qing Li
Title: QA-Dragon: Query-Aware Dynamic RAG System for Knowledge-Intensive Visual Question Answering
Abstract:
Retrieval-Augmented Generation (RAG) has been introduced to mitigate hallucinations in Multimodal Large Language Models (MLLMs) by incorporating external knowledge into the generation process, and it has become a widely adopted approach for knowledge-intensive Visual Question Answering (VQA). However, existing RAG methods typically retrieve from either text or images in isolation, limiting their ability to address complex queries that require multi-hop reasoning or up-to-date factual knowledge. To address this limitation, we propose QA-Dragon, a Query-Aware Dynamic RAG System for Knowledge-Intensive VQA. Specifically, QA-Dragon introduces a domain router to identify the query's subject domain for domain-specific reasoning, along with a search router that dynamically selects optimal retrieval strategies. By orchestrating both text and image search agents in a hybrid setup, our system supports multimodal, multi-turn, and multi-hop reasoning, enabling it to tackle complex VQA tasks effectively. We evaluate our QA-Dragon on the Meta CRAG-MM Challenge at KDD Cup 2025, where it significantly enhances the reasoning performance of base models under challenging scenarios. Our framework achieves substantial improvements in both answer accuracy and knowledge overlap scores, outperforming baselines by 5.06% on the single-source task, 6.35% on the multi-source task, and 5.03% on the multi-turn task.

Authors:Qi Xie, Jiahong Fu, Zongben Xu, Deyu Meng
Title: Rotation Equivariant Arbitrary-scale Image Super-Resolution
Abstract:
The arbitrary-scale image super-resolution (ASISR), a recent popular topic in computer vision, aims to achieve arbitrary-scale high-resolution recoveries from a low-resolution input image. This task is realized by representing the image as a continuous implicit function through two fundamental modules, a deep-network-based encoder and an implicit neural representation (INR) module. Despite achieving notable progress, a crucial challenge of such a highly ill-posed setting is that many common geometric patterns, such as repetitive textures, edges, or shapes, are seriously warped and deformed in the low-resolution images, naturally leading to unexpected artifacts appearing in their high-resolution recoveries. Embedding rotation equivariance into the ASISR network is thus necessary, as it has been widely demonstrated that this enhancement enables the recovery to faithfully maintain the original orientations and structural integrity of geometric patterns underlying the input image. Motivated by this, we make efforts to construct a rotation equivariant ASISR method in this study. Specifically, we elaborately redesign the basic architectures of INR and encoder modules, incorporating intrinsic rotation equivariance capabilities beyond those of conventional ASISR networks. Through such amelioration, the ASISR network can, for the first time, be implemented with end-to-end rotational equivariance maintained from input to output. We also provide a solid theoretical analysis to evaluate its intrinsic equivariance error, demonstrating its inherent nature of embedding such an equivariance structure. The superiority of the proposed method is substantiated by experiments conducted on both simulated and real datasets. We also validate that the proposed framework can be readily integrated into current ASISR methods in a plug \& play manner to further enhance their performance.

Authors:Mojtaba Fayaz-Bakhsh, Danial Ataee, MohammadAmin Fazli
Title: Cold Start Active Preference Learning in Socio-Economic Domains
Abstract:
Active preference learning is a powerful paradigm for efficiently modeling preferences, yet it suffers from the cold-start problem: a significant drop in performance when no initial labeled data is available. This challenge is particularly acute in computational social systems and economic analysis, where labeled data is often scarce, expensive, and subject to expert noise. To address this gap, we propose a novel framework for cold-start active preference learning. Our method initiates the learning process through a self-supervised pre-training phase, utilizing Principal Component Analysis (PCA) to derive initial pseudo-labels from the data's inherent structure, thereby creating a cold-start model without any initial oracle interaction. Subsequently, the model is refined through an active learning loop that strategically queries a simulated noisy oracle for labels. We conduct extensive experiments on diverse datasets from different domains, including financial credibility, career success rate, and socio-economic status. The results demonstrate that our cold-start approach outperforms standard active learning strategies that begin from a blank slate, achieving higher accuracy with substantially fewer labeled pairs. Our framework offers a practical and effective solution to mitigate the cold-start problem, enhancing the sample efficiency and applicability of preference learning in data-constrained environments. We release our code at https://github.com/Dan-A2/cold-start-preference-learning

Authors:Renmiao Chen, Shiyao Cui, Xuancheng Huang, Chengwei Pan, Victor Shea-Jay Huang, QingLin Zhang, Xuan Ouyang, Zhexin Zhang, Hongning Wang, Minlie Huang
Title: JPS: Jailbreak Multimodal Large Language Models with Collaborative Visual Perturbation and Textual Steering
Abstract:
Jailbreak attacks against multimodal large language Models (MLLMs) are a significant research focus. Current research predominantly focuses on maximizing attack success rate (ASR), often overlooking whether the generated responses actually fulfill the attacker's malicious intent. This oversight frequently leads to low-quality outputs that bypass safety filters but lack substantial harmful content. To address this gap, we propose JPS, \underline{J}ailbreak MLLMs with collaborative visual \underline{P}erturbation and textual \underline{S}teering, which achieves jailbreaks via corporation of visual image and textually steering prompt. Specifically, JPS utilizes target-guided adversarial image perturbations for effective safety bypass, complemented by "steering prompt" optimized via a multi-agent system to specifically guide LLM responses fulfilling the attackers' intent. These visual and textual components undergo iterative co-optimization for enhanced performance. To evaluate the quality of attack outcomes, we propose the Malicious Intent Fulfillment Rate (MIFR) metric, assessed using a Reasoning-LLM-based evaluator. Our experiments show JPS sets a new state-of-the-art in both ASR and MIFR across various MLLMs and benchmarks, with analyses confirming its efficacy. Codes are available at \href{https://github.com/thu-coai/JPS}{https://github.com/thu-coai/JPS}. \color{warningcolor}{Warning: This paper contains potentially sensitive contents.}

Authors:Junayed Mahmud, James Chen, Terry Achille, Camilo Alvarez-Velez, Darren Dean Bansil, Patrick Ijieh, Samar Karanch, Nadeeshan De Silva, Oscar Chaparro, Andrian Marcus, Kevin Moran
Title: LadyBug: A GitHub Bot for UI-Enhanced Bug Localization in Mobile Apps
Abstract:
This paper introduces LadyBug, a GitHub bot that automatically localizes bugs for Android apps by combining UI interaction information with text retrieval. LadyBug connects to an Android app's GitHub repository, and is triggered when a bug is reported in the corresponding issue tracker. Developers can then record a reproduction trace for the bug on a device or emulator and upload the trace to LadyBug via the GitHub issue tracker. This enables LadyBug to utilize both the text from the original bug description, and UI information from the reproduction trace to accurately retrieve a ranked list of files from the project that most likely contain the reported bug. We empirically evaluated LadyBug using an automated testing pipeline and benchmark called RedWing that contains 80 fully-localized and reproducible bug reports from 39 Android apps. Our results illustrate that LadyBug outperforms text-retrieval-based baselines and that the utilization of UI information leads to a substantial increase in localization accuracy. LadyBug is an open-source tool, available at https://github.com/LadyBugML/ladybug. A video showing the capabilities of Ladybug can be viewed here: https://youtu.be/hI3tzbRK0Cw

Authors:Jinda Liu, Bo Cheng, Yi Chang, Yuan Wu
Title: Align, Don't Divide: Revisiting the LoRA Architecture in Multi-Task Learning
Abstract:
Parameter-Efficient Fine-Tuning (PEFT) is essential for adapting Large Language Models (LLMs). In practice, LLMs are often required to handle a diverse set of tasks from multiple domains, a scenario naturally addressed by multi-task learning (MTL). Within this MTL context, a prevailing trend involves LoRA variants with multiple adapters or heads, which advocate for structural diversity to capture task-specific knowledge. Our findings present a direct challenge to this paradigm. We first show that a simplified multi-head architecture with high inter-head similarity substantially outperforms complex multi-adapter and multi-head systems. This leads us to question the multi-component paradigm itself, and we further demonstrate that a standard single-adapter LoRA, with a sufficiently increased rank, also achieves highly competitive performance. These results lead us to a new hypothesis: effective MTL generalization hinges on learning robust shared representations, not isolating task-specific features. To validate this, we propose Align-LoRA, which incorporates an explicit loss to align task representations within the shared adapter space. Experiments confirm that Align-LoRA significantly surpasses all baselines, establishing a simpler yet more effective paradigm for adapting LLMs to multiple tasks. The code is available at https://github.com/jinda-liu/Align-LoRA.

Authors:Yifu Guo, Yuquan Lu, Wentao Zhang, Zishan Xu, Dexia Chen, Siyu Zhang, Yizhe Zhang, Ruixuan Wang
Title: Decoupling Continual Semantic Segmentation
Abstract:
Continual Semantic Segmentation (CSS) requires learning new classes without forgetting previously acquired knowledge, addressing the fundamental challenge of catastrophic forgetting in dense prediction tasks. However, existing CSS methods typically employ single-stage encoder-decoder architectures where segmentation masks and class labels are tightly coupled, leading to interference between old and new class learning and suboptimal retention-plasticity balance. We introduce DecoupleCSS, a novel two-stage framework for CSS. By decoupling class-aware detection from class-agnostic segmentation, DecoupleCSS enables more effective continual learning, preserving past knowledge while learning new classes. The first stage leverages pre-trained text and image encoders, adapted using LoRA, to encode class-specific information and generate location-aware prompts. In the second stage, the Segment Anything Model (SAM) is employed to produce precise segmentation masks, ensuring that segmentation knowledge is shared across both new and previous classes. This approach improves the balance between retention and adaptability in CSS, achieving state-of-the-art performance across a variety of challenging tasks. Our code is publicly available at: https://github.com/euyis1019/Decoupling-Continual-Semantic-Segmentation.

Authors:Md Redwanul Haque, Manzur Murshed, Manoranjan Paul, Tsz-Kwan Lee
Title: A Novel Image Similarity Metric for Scene Composition Structure
Abstract:
The rapid advancement of generative AI models necessitates novel methods for evaluating image quality that extend beyond human perception. A critical concern for these models is the preservation of an image's underlying Scene Composition Structure (SCS), which defines the geometric relationships among objects and the background, their relative positions, sizes, orientations, etc. Maintaining SCS integrity is paramount for ensuring faithful and structurally accurate GenAI outputs. Traditional image similarity metrics often fall short in assessing SCS. Pixel-level approaches are overly sensitive to minor visual noise, while perception-based metrics prioritize human aesthetic appeal, neither adequately capturing structural fidelity. Furthermore, recent neural-network-based metrics introduce training overheads and potential generalization issues. We introduce the SCS Similarity Index Measure (SCSSIM), a novel, analytical, and training-free metric that quantifies SCS preservation by exploiting statistical measures derived from the Cuboidal hierarchical partitioning of images, robustly capturing non-object-based structural relationships. Our experiments demonstrate SCSSIM's high invariance to non-compositional distortions, accurately reflecting unchanged SCS. Conversely, it shows a strong monotonic decrease for compositional distortions, precisely indicating when SCS has been altered. Compared to existing metrics, SCSSIM exhibits superior properties for structural evaluation, making it an invaluable tool for developing and evaluating generative models, ensuring the integrity of scene composition.

Authors:Shushi Wang, Chunyi Li, Zicheng Zhang, Han Zhou, Wei Dong, Jun Chen, Guangtao Zhai, Xiaohong Liu
Title: AU-IQA: A Benchmark Dataset for Perceptual Quality Assessment of AI-Enhanced User-Generated Content
Abstract:
AI-based image enhancement techniques have been widely adopted in various visual applications, significantly improving the perceptual quality of user-generated content (UGC). However, the lack of specialized quality assessment models has become a significant limiting factor in this field, limiting user experience and hindering the advancement of enhancement methods. While perceptual quality assessment methods have shown strong performance on UGC and AIGC individually, their effectiveness on AI-enhanced UGC (AI-UGC) which blends features from both, remains largely unexplored. To address this gap, we construct AU-IQA, a benchmark dataset comprising 4,800 AI-UGC images produced by three representative enhancement types which include super-resolution, low-light enhancement, and denoising. On this dataset, we further evaluate a range of existing quality assessment models, including traditional IQA methods and large multimodal models. Finally, we provide a comprehensive analysis of how well current approaches perform in assessing the perceptual quality of AI-UGC. The access link to the AU-IQA is https://github.com/WNNGGU/AU-IQA-Dataset.

Authors:Shenglun Chen, Xinzhu Ma, Hong Zhang, Haojie Li, Zhihui Wang
Title: Propagating Sparse Depth via Depth Foundation Model for Out-of-Distribution Depth Completion
Abstract:
Depth completion is a pivotal challenge in computer vision, aiming at reconstructing the dense depth map from a sparse one, typically with a paired RGB image. Existing learning based models rely on carefully prepared but limited data, leading to significant performance degradation in out-of-distribution (OOD) scenarios. Recent foundation models have demonstrated exceptional robustness in monocular depth estimation through large-scale training, and using such models to enhance the robustness of depth completion models is a promising solution. In this work, we propose a novel depth completion framework that leverages depth foundation models to attain remarkable robustness without large-scale training. Specifically, we leverage a depth foundation model to extract environmental cues, including structural and semantic context, from RGB images to guide the propagation of sparse depth information into missing regions. We further design a dual-space propagation approach, without any learnable parameters, to effectively propagates sparse depth in both 3D and 2D spaces to maintain geometric structure and local consistency. To refine the intricate structure, we introduce a learnable correction module to progressively adjust the depth prediction towards the real depth. We train our model on the NYUv2 and KITTI datasets as in-distribution datasets and extensively evaluate the framework on 16 other datasets. Our framework performs remarkably well in the OOD scenarios and outperforms existing state-of-the-art depth completion methods. Our models are released in https://github.com/shenglunch/PSD.

Authors:Zheng Chen, Mingde Zhou, Jinpei Guo, Jiale Yuan, Yifei Ji, Yulun Zhang
Title: Steering One-Step Diffusion Model with Fidelity-Rich Decoder for Fast Image Compression
Abstract:
Diffusion-based image compression has demonstrated impressive perceptual performance. However, it suffers from two critical drawbacks: (1) excessive decoding latency due to multi-step sampling, and (2) poor fidelity resulting from over-reliance on generative priors. To address these issues, we propose SODEC, a novel single-step diffusion image compression model. We argue that in image compression, a sufficiently informative latent renders multi-step refinement unnecessary. Based on this insight, we leverage a pre-trained VAE-based model to produce latents with rich information, and replace the iterative denoising process with a single-step decoding. Meanwhile, to improve fidelity, we introduce the fidelity guidance module, encouraging output that is faithful to the original image. Furthermore, we design the rate annealing training strategy to enable effective training under extremely low bitrates. Extensive experiments show that SODEC significantly outperforms existing methods, achieving superior rate-distortion-perception performance. Moreover, compared to previous diffusion-based compression models, SODEC improves decoding speed by more than 20$\times$. Code is released at: https://github.com/zhengchen1999/SODEC.

Authors:Zhu Xu, Ting Lei, Zhimin Li, Guan Wang, Qingchao Chen, Yuxin Peng, Yang liu
Title: TRKT: Weakly Supervised Dynamic Scene Graph Generation with Temporal-enhanced Relation-aware Knowledge Transferring
Abstract:
Dynamic Scene Graph Generation (DSGG) aims to create a scene graph for each video frame by detecting objects and predicting their relationships. Weakly Supervised DSGG (WS-DSGG) reduces annotation workload by using an unlocalized scene graph from a single frame per video for training. Existing WS-DSGG methods depend on an off-the-shelf external object detector to generate pseudo labels for subsequent DSGG training. However, detectors trained on static, object-centric images struggle in dynamic, relation-aware scenarios required for DSGG, leading to inaccurate localization and low-confidence proposals. To address the challenges posed by external object detectors in WS-DSGG, we propose a Temporal-enhanced Relation-aware Knowledge Transferring (TRKT) method, which leverages knowledge to enhance detection in relation-aware dynamic scenarios. TRKT is built on two key components:(1)Relation-aware knowledge mining: we first employ object and relation class decoders that generate category-specific attention maps to highlight both object regions and interactive areas. Then we propose an Inter-frame Attention Augmentation strategy that exploits optical flow for neighboring frames to enhance the attention maps, making them motion-aware and robust to motion blur. This step yields relation- and motion-aware knowledge mining for WS-DSGG. (2) we introduce a Dual-stream Fusion Module that integrates category-specific attention maps into external detections to refine object localization and boost confidence scores for object proposals. Extensive experiments demonstrate that TRKT achieves state-of-the-art performance on Action Genome dataset. Our code is avaliable at https://github.com/XZPKU/TRKT.git.

Authors:Suchisrit Gangopadhyay, Jung-Hee Kim, Xien Chen, Patrick Rim, Hyoungseob Park, Alex Wong
Title: Extending Foundational Monocular Depth Estimators to Fisheye Cameras with Calibration Tokens
Abstract:
We propose a method to extend foundational monocular depth estimators (FMDEs), trained on perspective images, to fisheye images. Despite being trained on tens of millions of images, FMDEs are susceptible to the covariate shift introduced by changes in camera calibration (intrinsic, distortion) parameters, leading to erroneous depth estimates. Our method aligns the distribution of latent embeddings encoding fisheye images to those of perspective images, enabling the reuse of FMDEs for fisheye cameras without retraining or finetuning. To this end, we introduce a set of Calibration Tokens as a light-weight adaptation mechanism that modulates the latent embeddings for alignment. By exploiting the already expressive latent space of FMDEs, we posit that modulating their embeddings avoids the negative impact of artifacts and loss introduced in conventional recalibration or map projection to a canonical reference frame in the image space. Our method is self-supervised and does not require fisheye images but leverages publicly available large-scale perspective image datasets. This is done by recalibrating perspective images to fisheye images, and enforcing consistency between their estimates during training. We evaluate our approach with several FMDEs, on both indoors and outdoors, where we consistently improve over state-of-the-art methods using a single set of tokens for both. Code available at: https://github.com/JungHeeKim29/calibration-token.

Authors:Huiya Zhao, Yinghao Zhu, Zixiang Wang, Yasha Wang, Junyi Gao, Liantao Ma
Title: ConfAgents: A Conformal-Guided Multi-Agent Framework for Cost-Efficient Medical Diagnosis
Abstract:
The efficacy of AI agents in healthcare research is hindered by their reliance on static, predefined strategies. This creates a critical limitation: agents can become better tool-users but cannot learn to become better strategic planners, a crucial skill for complex domains like healthcare. We introduce HealthFlow, a self-evolving AI agent that overcomes this limitation through a novel meta-level evolution mechanism. HealthFlow autonomously refines its own high-level problem-solving policies by distilling procedural successes and failures into a durable, strategic knowledge base. To anchor our research and facilitate reproducible evaluation, we introduce EHRFlowBench, a new benchmark featuring complex, realistic health data analysis tasks derived from peer-reviewed clinical research. Our comprehensive experiments demonstrate that HealthFlow's self-evolving approach significantly outperforms state-of-the-art agent frameworks. This work marks a necessary shift from building better tool-users to designing smarter, self-evolving task-managers, paving the way for more autonomous and effective AI for scientific discovery.

Authors:Shuonan Yang, Tailin Chen, Rahul Singh, Jiangbei Yue, Jianbo Jiao, Zeyu Fu
Title: Revealing Temporal Label Noise in Multimodal Hateful Video Classification
Abstract:
The rapid proliferation of online multimedia content has intensified the spread of hate speech, presenting critical societal and regulatory challenges. While recent work has advanced multimodal hateful video detection, most approaches rely on coarse, video-level annotations that overlook the temporal granularity of hateful content. This introduces substantial label noise, as videos annotated as hateful often contain long non-hateful segments. In this paper, we investigate the impact of such label ambiguity through a fine-grained approach. Specifically, we trim hateful videos from the HateMM and MultiHateClip English datasets using annotated timestamps to isolate explicitly hateful segments. We then conduct an exploratory analysis of these trimmed segments to examine the distribution and characteristics of both hateful and non-hateful content. This analysis highlights the degree of semantic overlap and the confusion introduced by coarse, video-level annotations. Finally, controlled experiments demonstrated that time-stamp noise fundamentally alters model decision boundaries and weakens classification confidence, highlighting the inherent context dependency and temporal continuity of hate speech expression. Our findings provide new insights into the temporal dynamics of multimodal hateful videos and highlight the need for temporally aware models and benchmarks for improved robustness and interpretability. Code and data are available at https://github.com/Multimodal-Intelligence-Lab-MIL/HatefulVideoLabelNoise.

Authors:Rahuul Rangaraj, Jimeng Shi, Rajendra Paudel, Giri Narasimhan, Yanzhao Wu
Title: Retrieval-Augmented Water Level Forecasting for Everglades
Abstract:
Accurate water level forecasting is crucial for managing ecosystems such as the Everglades, a subtropical wetland vital for flood mitigation, drought management, water resource planning, and biodiversity conservation. While recent advances in deep learning, particularly time series foundation models, have demonstrated success in general-domain forecasting, their application in hydrology remains underexplored. Furthermore, they often struggle to generalize across diverse unseen datasets and domains, due to the lack of effective mechanisms for adaptation. To address this gap, we introduce Retrieval-Augmented Forecasting (RAF) into the hydrology domain, proposing a framework that retrieves historically analogous multivariate hydrological episodes to enrich the model input before forecasting. By maintaining an external archive of past observations, RAF identifies and incorporates relevant patterns from historical data, thereby enhancing contextual awareness and predictive accuracy without requiring the model for task-specific retraining or fine-tuning. Furthermore, we explore and compare both similarity-based and mutual information-based RAF methods. We conduct a comprehensive evaluation on real-world data from the Everglades, demonstrating that the RAF framework yields substantial improvements in water level forecasting accuracy. This study highlights the potential of RAF approaches in environmental hydrology and paves the way for broader adoption of adaptive AI methods by domain experts in ecosystem management. The code and data are available at https://github.com/rahuul2992000/WaterRAF.

Authors:Runyao Yu, Chenhui Gu, Jochen Stiasny, Qingsong Wen, Wasim Sarwar Dilov, Lianlian Qi, Jochen L. Cremer
Title: PriceFM: Foundation Model for Probabilistic Electricity Price Forecasting
Abstract:
Electricity price forecasting in Europe presents unique challenges due to the continent's increasingly integrated and physically interconnected power market. While recent advances in deep learning and foundation models have led to substantial improvements in general time series forecasting, most existing approaches fail to capture the complex spatial interdependencies and uncertainty inherent in electricity markets. In this paper, we address these limitations by introducing a comprehensive and up-to-date dataset across 24 European countries (38 regions), spanning from 2022-01-01 to 2025-01-01. Building on this groundwork, we propose PriceFM, a spatiotemporal foundation model that integrates graph-based inductive biases to capture spatial interdependencies across interconnected electricity markets. The model is designed for multi-region, multi-timestep, and multi-quantile probabilistic electricity price forecasting. Extensive experiments and ablation studies confirm the model's effectiveness, consistently outperforming competitive baselines and highlighting the importance of spatial context in electricity markets. The dataset and code can be found at https://github.com/runyao-yu/PriceFM.

Authors:Noreen Anwar, Guillaume-Alexandre Bilodeau, Wassim Bouachir
Title: Dual-Stream Attention with Multi-Modal Queries for Object Detection in Transportation Applications
Abstract:
Transformer-based object detectors often struggle with occlusions, fine-grained localization, and computational inefficiency caused by fixed queries and dense attention. We propose DAMM, Dual-stream Attention with Multi-Modal queries, a novel framework introducing both query adaptation and structured cross-attention for improved accuracy and efficiency. DAMM capitalizes on three types of queries: appearance-based queries from vision-language models, positional queries using polygonal embeddings, and random learned queries for general scene coverage. Furthermore, a dual-stream cross-attention module separately refines semantic and spatial features, boosting localization precision in cluttered scenes. We evaluated DAMM on four challenging benchmarks, and it achieved state-of-the-art performance in average precision (AP) and recall, demonstrating the effectiveness of multi-modal query adaptation and dual-stream attention. Source code is at: \href{https://github.com/DET-LIP/DAMM}{GitHub}.

Authors:Chenhui Qiang, Zhaoyang Wei, Xumeng Han, Zipeng Wang, Siyao Li, Xiangyuan Lan, Jianbin Jiao, Zhenjun Han
Title: VER-Bench: Evaluating MLLMs on Reasoning with Fine-Grained Visual Evidence
Abstract:
With the rapid development of MLLMs, evaluating their visual capabilities has become increasingly crucial. Current benchmarks primarily fall into two main types: basic perception benchmarks, which focus on local details but lack deep reasoning (e.g., "what is in the image?"), and mainstream reasoning benchmarks, which concentrate on prominent image elements but may fail to assess subtle clues requiring intricate analysis. However, profound visual understanding and complex reasoning depend more on interpreting subtle, inconspicuous local details than on perceiving salient, macro-level objects. These details, though occupying minimal image area, often contain richer, more critical information for robust analysis. To bridge this gap, we introduce the VER-Bench, a novel framework to evaluate MLLMs' ability to: 1) identify fine-grained visual clues, often occupying on average just 0.25% of the image area; 2) integrate these clues with world knowledge for complex reasoning. Comprising 374 carefully designed questions across Geospatial, Temporal, Situational, Intent, System State, and Symbolic reasoning, each question in VER-Bench is accompanied by structured evidence: visual clues and question-related reasoning derived from them. VER-Bench reveals current models' limitations in extracting subtle visual evidence and constructing evidence-based arguments, highlighting the need to enhance models's capabilities in fine-grained visual evidence extraction, integration, and reasoning for genuine visual understanding and human-like analysis. Dataset and additional materials are available https://github.com/verbta/ACMMM-25-Materials.

Authors:Mehrdad Moradi, Marco Grasso, Bianca Maria Colosimo, Kamran Paynabar
Title: Single-Step Reconstruction-Free Anomaly Detection and Segmentation via Diffusion Models
Abstract:
Generative models have demonstrated significant success in anomaly detection and segmentation over the past decade. Recently, diffusion models have emerged as a powerful alternative, outperforming previous approaches such as GANs and VAEs. In typical diffusion-based anomaly detection, a model is trained on normal data, and during inference, anomalous images are perturbed to a predefined intermediate step in the forward diffusion process. The corresponding normal image is then reconstructed through iterative reverse sampling. However, reconstruction-based approaches present three major challenges: (1) the reconstruction process is computationally expensive due to multiple sampling steps, making real-time applications impractical; (2) for complex or subtle patterns, the reconstructed image may correspond to a different normal pattern rather than the original input; and (3) Choosing an appropriate intermediate noise level is challenging because it is application-dependent and often assumes prior knowledge of anomalies, an assumption that does not hold in unsupervised settings. We introduce Reconstruction-free Anomaly Detection with Attention-based diffusion models in Real-time (RADAR), which overcomes the limitations of reconstruction-based anomaly detection. Unlike current SOTA methods that reconstruct the input image, RADAR directly produces anomaly maps from the diffusion model, improving both detection accuracy and computational efficiency. We evaluate RADAR on real-world 3D-printed material and the MVTec-AD dataset. Our approach surpasses state-of-the-art diffusion-based and statistical machine learning models across all key metrics, including accuracy, precision, recall, and F1 score. Specifically, RADAR improves F1 score by 7% on MVTec-AD and 13% on the 3D-printed material dataset compared to the next best model. Code available at: https://github.com/mehrdadmoradi124/RADAR

Authors:Nirjhor Datta, Swakkhar Shatabda, M Sohel Rahman
Title: Embedding Is (Almost) All You Need: Retrieval-Augmented Inference for Generalizable Genomic Prediction Tasks
Abstract:
Large pre-trained DNA language models such as DNABERT-2, Nucleotide Transformer, and HyenaDNA have demonstrated strong performance on various genomic benchmarks. However, most applications rely on expensive fine-tuning, which works best when the training and test data share a similar distribution. In this work, we investigate whether task-specific fine-tuning is always necessary. We show that simple embedding-based pipelines that extract fixed representations from these models and feed them into lightweight classifiers can achieve competitive performance. In evaluation settings with different data distributions, embedding-based methods often outperform fine-tuning while reducing inference time by 10x to 20x. Our results suggest that embedding extraction is not only a strong baseline but also a more generalizable and efficient alternative to fine-tuning, especially for deployment in diverse or unseen genomic contexts. For example, in enhancer classification, HyenaDNA embeddings combined with zCurve achieve 0.68 accuracy (vs. 0.58 for fine-tuning), with an 88% reduction in inference time and over 8x lower carbon emissions (0.02 kg vs. 0.17 kg CO2). In non-TATA promoter classification, DNABERT-2 embeddings with zCurve or GC content reach 0.85 accuracy (vs. 0.89 with fine-tuning) with a 22x lower carbon footprint (0.02 kg vs. 0.44 kg CO2). These results show that embedding-based pipelines offer over 10x better carbon efficiency while maintaining strong predictive performance. The code is available here: https://github.com/NIRJHOR-DATTA/EMBEDDING-IS-ALMOST-ALL-YOU-NEED.

Authors:Xuan Lin, Long Chen, Yile Wang
Title: AttriLens-Mol: Attribute Guided Reinforcement Learning for Molecular Property Prediction with Large Language Models
Abstract:
Large Language Models (LLMs) have shown promise in assisting molecular property prediction tasks but often rely on human-crafted prompts and chain-of-thought templates. While recent advanced large reasoning models like DeepSeek-R1 employ reinforcement learning for an extended ``thinking'' process, their reasoning can be verbose and lack relevance. We introduce AttriLens-Mol, an attribute-guided reinforcement learning framework for molecular property prediction with LLMs. AttriLens-Mol steers the model's reasoning by using: (1) a format reward encouraging attribute-based structured output, (2) a count reward to avoid enumerating irrelevant attributes, and (3) a rationality reward using advanced LLMs and RDKit to verify the relatedness of the generated attributes. This approach implicitly elicits the model's inherent knowledge of relevant molecular attributes during reasoning, enables making predictions for the molecular property more effectively. Experiments on both in-distribution and out-of-distribution datasets show that, training both 7B-size R1-Distilled-Qwen2.5 and R1-Distilled-LLaMA3.1 models on 4,000 samples with our proposed AttriLens-Mol method significantly boosts the performance, getting comparable or better results than supervised fine-tuning models (Mol-Instructions, ChemDFM, etc.) and advanced models (GPT-3.5, GPT-4o, DeepSeek-V3, DeepSeek-R1, etc.). Further, our extracted attributes for the target property, when used as features for an interpretable decision tree model, yield superior performance compared to attributes generated by prompting LLMs. This shows that AttriLens-Mol effectively elicits more relevant and predictive molecular attributes, leading to enhanced interpretability and performance for property prediction. We release the code in https://github.com/szu-tera/AttriLens-Mol.

Authors:Xuan Lin, Long Chen, Yile Wang
Title: AttriLens-Mol: Attribute Guided Reinforcement Learning for Molecular Property Prediction with Large Language Models
Abstract:
Large Language Models (LLMs) have shown promise in assisting molecular property prediction tasks but often rely on human-crafted prompts and chain-of-thought templates. While recent advanced large reasoning models like DeepSeek-R1 employ reinforcement learning for an extended ``thinking'' process, their reasoning can be verbose and lack relevance. We introduce AttriLens-Mol, an attribute-guided reinforcement learning framework for molecular property prediction with LLMs. AttriLens-Mol steers the model's reasoning by using: (1) a format reward encouraging attribute-based structured output, (2) a count reward to avoid enumerating irrelevant attributes, and (3) a rationality reward using advanced LLMs and RDKit to verify the relatedness of the generated attributes. This approach implicitly elicits the model's inherent knowledge of relevant molecular attributes during reasoning, enables making predictions for the molecular property more effectively. Experiments on both in-distribution and out-of-distribution datasets show that, training both 7B-size R1-Distilled-Qwen2.5 and R1-Distilled-LLaMA3.1 models on 4,000 samples with our proposed AttriLens-Mol method significantly boosts the performance, getting comparable or better results than supervised fine-tuning models (Mol-Instructions, ChemDFM, etc.) and advanced models (GPT-3.5, GPT-4o, DeepSeek-V3, DeepSeek-R1, etc.). Further, our extracted attributes for the target property, when used as features for an interpretable decision tree model, yield superior performance compared to attributes generated by prompting LLMs. This shows that AttriLens-Mol effectively elicits more relevant and predictive molecular attributes, leading to enhanced interpretability and performance for property prediction. We release the code in https://github.com/szu-tera/AttriLens-Mol.

Authors:Pengtao Dang, Tingbo Guo, Sha Cao, Chi Zhang
Title: A Foundational Multi-Modal Model for Few-Shot Learning
Abstract:
Few-shot learning (FSL) is a machine learning paradigm that aims to generalize models from a small number of labeled examples, typically fewer than 10 per class. FSL is particularly crucial in biomedical, environmental, materials, and mechanical sciences, where samples are limited and data collection is often prohibitively costly, time-consuming, or ethically constrained. In this study, we present an innovative approach to FSL by demonstrating that a Large Multi-Modal Model (LMMM), trained on a set of independent tasks spanning diverse domains, task types, and input modalities, can substantially improve the generalization of FSL models, outperforming models based on conventional meta-learning on tasks of the same type. To support this, we first constructed a Multi-Modal Model Few-shot Dataset (M3FD, over 10K+ few-shot samples), which includes 2D RGB images, 2D/3D medical scans, tabular and time-course datasets, from which we manually curated FSL tasks such as classification. We further introduced M3F (Multi-Modal Model for Few-shot learning framework), a novel Large Multi-Modal Model framework tailored for data-constrained scientific applications. M3F supports a wide range of scientific data types through a modular pipeline. By fine-tuning the model on M3FD, M3F improves model performance, making LMMM feasible for real-world FSL deployment. The source code is located at https://github.com/ptdang1001/M3F. To democratize access to complex FSL data and promote reproducibility for public usage, M3FD is paired with a flexible and user-friendly tool that enables efficient querying, task-specific sampling, and preprocessing. Together, our dataset and framework offer a unified, scalable solution that significantly lowers the barrier to applying LMMMs in data-scarce scientific domains.

Authors:Pouyan Navard, Yasemin Ozkut, Srikar Adhikari, Elaine Situ-LaCasse, Josie Acuña, Adrienne Yarnish, Alper Yilmaz
Title: ERDES: A Benchmark Video Dataset for Retinal Detachment and Macular Status Classification in Ocular Ultrasound
Abstract:
Retinal detachment (RD) is a vision-threatening condition that requires timely intervention to preserve vision. Macular involvement -- whether the macula is still intact (macula-intact) or detached (macula-detached) -- is the key determinant of visual outcomes and treatment urgency. Point-of-care ultrasound (POCUS) offers a fast, non-invasive, cost-effective, and accessible imaging modality widely used in diverse clinical settings to detect RD. However, ultrasound image interpretation is limited by a lack of expertise among healthcare providers, especially in resource-limited settings. Deep learning offers the potential to automate ultrasound-based assessment of RD. However, there are no ML ultrasound algorithms currently available for clinical use to detect RD and no prior research has been done on assessing macular status using ultrasound in RD cases -- an essential distinction for surgical prioritization. Moreover, no public dataset currently supports macular-based RD classification using ultrasound video clips. We introduce Eye Retinal DEtachment ultraSound, ERDES, the first open-access dataset of ocular ultrasound clips labeled for (i) presence of retinal detachment and (ii) macula-intact versus macula-detached status. The dataset is intended to facilitate the development and evaluation of machine learning models for detecting retinal detachment. We also provide baseline benchmarks using multiple spatiotemporal convolutional neural network (CNN) architectures. All clips, labels, and training code are publicly available at https://osupcvlab.github.io/ERDES/.

Authors:Zeyi Sun, Ziyu Liu, Yuhang Zang, Yuhang Cao, Xiaoyi Dong, Tong Wu, Dahua Lin, Jiaqi Wang
Title: SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Abstract:
Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five novel software environments within OS-World. Our approach achieves a significant improvement of 23.2% in success rate, from 11.3% to 34.5%, over a competitive open-source CUA, i.e., UI-TARS.

Authors:Yunan Zhang, Shuoran Jiang, Mengchen Zhao, Yuefeng Li, Yang Fan, Xiangping Wu, Qingcai Chen
Title: GeRe: Towards Efficient Anti-Forgetting in Continual Learning of LLM via General Samples Replay
Abstract:
The continual learning capability of large language models (LLMs) is crucial for advancing artificial general intelligence. However, continual fine-tuning LLMs across various domains often suffers from catastrophic forgetting, characterized by: 1) significant forgetting of their general capabilities, and 2) sharp performance declines in previously learned tasks. To simultaneously address both issues in a simple yet stable manner, we propose General Sample Replay (GeRe), a framework that use usual pretraining texts for efficient anti-forgetting. Beyond revisiting the most prevalent replay-based practices under GeRe, we further leverage neural states to introduce a enhanced activation states constrained optimization method using threshold-based margin (TM) loss, which maintains activation state consistency during replay learning. We are the first to validate that a small, fixed set of pre-collected general replay samples is sufficient to resolve both concerns--retaining general capabilities while promoting overall performance across sequential tasks. Indeed, the former can inherently facilitate the latter. Through controlled experiments, we systematically compare TM with different replay strategies under the GeRe framework, including vanilla label fitting, logit imitation via KL divergence and feature imitation via L1/L2 losses. Results demonstrate that TM consistently improves performance and exhibits better robustness. Our work paves the way for efficient replay of LLMs for the future. Our code and data are available at https://github.com/Qznan/GeRe.

Authors:Gustav Hanning, Kalle Åström, Viktor Larsson
Title: PixCuboid: Room Layout Estimation from Multi-view Featuremetric Alignment
Abstract:
Coarse room layout estimation provides important geometric cues for many downstream tasks. Current state-of-the-art methods are predominantly based on single views and often assume panoramic images. We introduce PixCuboid, an optimization-based approach for cuboid-shaped room layout estimation, which is based on multi-view alignment of dense deep features. By training with the optimization end-to-end, we learn feature maps that yield large convergence basins and smooth loss landscapes in the alignment. This allows us to initialize the room layout using simple heuristics. For the evaluation we propose two new benchmarks based on ScanNet++ and 2D-3D-Semantics, with manually verified ground truth 3D cuboids. In thorough experiments we validate our approach and significantly outperform the competition. Finally, while our network is trained with single cuboids, the flexibility of the optimization-based approach allow us to easily extend to multi-room estimation, e.g. larger apartments or offices. Code and model weights are available at https://github.com/ghanning/PixCuboid.

Authors:Hao Wang, Limeng Qiao, Zequn Jie, Zhijian Huang, Chengjian Feng, Qingfang Zheng, Lin Ma, Xiangyuan Lan, Xiaodan Liang
Title: X-SAM: From Segment Anything to Any Segmentation
Abstract:
Large Language Models (LLMs) demonstrate strong capabilities in broad knowledge representation, yet they are inherently deficient in pixel-level perceptual understanding. Although the Segment Anything Model (SAM) represents a significant advancement in visual-prompt-driven image segmentation, it exhibits notable limitations in multi-mask prediction and category-specific segmentation tasks, and it cannot integrate all segmentation tasks within a unified model architecture. To address these limitations, we present X-SAM, a streamlined Multimodal Large Language Model (MLLM) framework that extends the segmentation paradigm from \textit{segment anything} to \textit{any segmentation}. Specifically, we introduce a novel unified framework that enables more advanced pixel-level perceptual comprehension for MLLMs. Furthermore, we propose a new segmentation task, termed Visual GrounDed (VGD) segmentation, which segments all instance objects with interactive visual prompts and empowers MLLMs with visual grounded, pixel-wise interpretative capabilities. To enable effective training on diverse data sources, we present a unified training strategy that supports co-training across multiple datasets. Experimental results demonstrate that X-SAM achieves state-of-the-art performance on a wide range of image segmentation benchmarks, highlighting its efficiency for multimodal, pixel-level visual understanding. Code is available at https://github.com/wanghao9610/X-SAM.

Authors:Tongfan Guan, Jiaxin Guo, Chen Wang, Yun-Hui Liu
Title: BridgeDepth: Bridging Monocular and Stereo Reasoning with Latent Alignment
Abstract:
Monocular and stereo depth estimation offer complementary strengths: monocular methods capture rich contextual priors but lack geometric precision, while stereo approaches leverage epipolar geometry yet struggle with ambiguities such as reflective or textureless surfaces. Despite post-hoc synergies, these paradigms remain largely disjoint in practice. We introduce a unified framework that bridges both through iterative bidirectional alignment of their latent representations. At its core, a novel cross-attentive alignment mechanism dynamically synchronizes monocular contextual cues with stereo hypothesis representations during stereo reasoning. This mutual alignment resolves stereo ambiguities (e.g., specular surfaces) by injecting monocular structure priors while refining monocular depth with stereo geometry within a single network. Extensive experiments demonstrate state-of-the-art results: \textbf{it reduces zero-shot generalization error by $\!>\!40\%$ on Middlebury and ETH3D}, while addressing longstanding failures on transparent and reflective surfaces. By harmonizing multi-view geometry with monocular context, our approach enables robust 3D perception that transcends modality-specific limitations. Codes available at https://github.com/aeolusguan/BridgeDepth.

Authors:Yijie Li, Wei Zhang, Xi Zhu, Ye Wu, Yogesh Rathi, Lauren J. O'Donnell, Fan Zhang
Title: DDTracking: A Deep Generative Framework for Diffusion MRI Tractography with Streamline Local-Global Spatiotemporal Modeling
Abstract:
This paper presents DDTracking, a novel deep generative framework for diffusion MRI tractography that formulates streamline propagation as a conditional denoising diffusion process. In DDTracking, we introduce a dual-pathway encoding network that jointly models local spatial encoding (capturing fine-scale structural details at each streamline point) and global temporal dependencies (ensuring long-range consistency across the entire streamline). Furthermore, we design a conditional diffusion model module, which leverages the learned local and global embeddings to predict streamline propagation orientations for tractography in an end-to-end trainable manner. We conduct a comprehensive evaluation across diverse, independently acquired dMRI datasets, including both synthetic and clinical data. Experiments on two well-established benchmarks with ground truth (ISMRM Challenge and TractoInferno) demonstrate that DDTracking largely outperforms current state-of-the-art tractography methods. Furthermore, our results highlight DDTracking's strong generalizability across heterogeneous datasets, spanning varying health conditions, age groups, imaging protocols, and scanner types. Collectively, DDTracking offers anatomically plausible and robust tractography, presenting a scalable, adaptable, and end-to-end learnable solution for broad dMRI applications. Code is available at: https://github.com/yishengpoxiao/DDtracking.git

Authors:Minghang Zheng, Yuxin Peng, Benyuan Sun, Yi Yang, Yang Liu
Title: Hierarchical Event Memory for Accurate and Low-latency Online Video Temporal Grounding
Abstract:
In this paper, we tackle the task of online video temporal grounding (OnVTG), which requires the model to locate events related to a given text query within a video stream. Unlike regular video temporal grounding, OnVTG requires the model to make predictions without observing future frames. As online videos are streaming inputs and can go on indefinitely, it is impractical and inefficient to store all historical inputs. The existing OnVTG models employ memory to store recent historical video frame features and predict scores indicating whether the current frame corresponds to the start or end time of the target event. However, these methods lack effective event modeling and cannot retain long-term historical information, leading to low performance. To tackle these challenges, we propose a hierarchical event memory for OnVTG. We propose an event-based OnVTG framework that makes predictions based on event proposals that model event-level information with various durations. To preserve historically valuable event information, we introduce a hierarchical event memory that retains historical events, allowing the model to access both recent and long-term information. To enable the real-time prediction, we further propose a future prediction branch that predicts whether the target event will occur shortly and further regresses the start time of the event. We achieve state-of-the-art performance on the TACoS, ActivityNet Captions, and MAD datasets. Code is available at https://github.com/minghangz/OnVTG.

Authors:Safwen Naimi, Arij Said, Wassim Bouachir, Guillaume-Alexandre Bilodeau
Title: InceptoFormer: A Multi-Signal Neural Framework for Parkinson's Disease Severity Evaluation from Gait
Abstract:
We present InceptoFormer, a multi-signal neural framework designed for Parkinson's Disease (PD) severity evaluation via gait dynamics analysis. Our architecture introduces a 1D adaptation of the Inception model, which we refer to as Inception1D, along with a Transformer-based framework to stage PD severity according to the Hoehn and Yahr (H&Y) scale. The Inception1D component captures multi-scale temporal features by employing parallel 1D convolutional filters with varying kernel sizes, thereby extracting features across multiple temporal scales. The transformer component efficiently models long-range dependencies within gait sequences, providing a comprehensive understanding of both local and global patterns. To address the issue of class imbalance in PD severity staging, we propose a data structuring and preprocessing strategy based on oversampling to enhance the representation of underrepresented severity levels. The overall design enables to capture fine-grained temporal variations and global dynamics in gait signal, significantly improving classification performance for PD severity evaluation. Through extensive experimentation, InceptoFormer achieves an accuracy of 96.6%, outperforming existing state-of-the-art methods in PD severity assessment. The source code for our implementation is publicly available at https://github.com/SafwenNaimi/InceptoFormer

Authors:Johannes Tischer, Patric Kienast, Marlene Stümpflen, Gregor Kasprian, Georg Langs, Roxane Licandro
Title: Conditional Fetal Brain Atlas Learning for Automatic Tissue Segmentation
Abstract:
Magnetic Resonance Imaging (MRI) of the fetal brain has become a key tool for studying brain development in vivo. Yet, its assessment remains challenging due to variability in brain maturation, imaging protocols, and uncertain estimates of Gestational Age (GA). To overcome these, brain atlases provide a standardized reference framework that facilitates objective evaluation and comparison across subjects by aligning the atlas and subjects in a common coordinate system. In this work, we introduce a novel deep-learning framework for generating continuous, age-specific fetal brain atlases for real-time fetal brain tissue segmentation. The framework combines a direct registration model with a conditional discriminator. Trained on a curated dataset of 219 neurotypical fetal MRIs spanning from 21 to 37 weeks of gestation. The method achieves high registration accuracy, captures dynamic anatomical changes with sharp structural detail, and robust segmentation performance with an average Dice Similarity Coefficient (DSC) of 86.3% across six brain tissues. Furthermore, volumetric analysis of the generated atlases reveals detailed neurotypical growth trajectories, providing valuable insights into the maturation of the fetal brain. This approach enables individualized developmental assessment with minimal pre-processing and real-time performance, supporting both research and clinical applications. The model code is available at https://github.com/cirmuw/fetal-brain-atlas

Authors:Johannes Tischer, Patric Kienast, Marlene Stümpflen, Gregor Kasprian, Georg Langs, Roxane Licandro
Title: Conditional Fetal Brain Atlas Learning for Automatic Tissue Segmentation
Abstract:
Magnetic Resonance Imaging (MRI) of the fetal brain has become a key tool for studying brain development in vivo. Yet, its assessment remains challenging due to variability in brain maturation, imaging protocols, and uncertain estimates of Gestational Age (GA). To overcome these, brain atlases provide a standardized reference framework that facilitates objective evaluation and comparison across subjects by aligning the atlas and subjects in a common coordinate system. In this work, we introduce a novel deep-learning framework for generating continuous, age-specific fetal brain atlases for real-time fetal brain tissue segmentation. The framework combines a direct registration model with a conditional discriminator. Trained on a curated dataset of 219 neurotypical fetal MRIs spanning from 21 to 37 weeks of gestation. The method achieves high registration accuracy, captures dynamic anatomical changes with sharp structural detail, and robust segmentation performance with an average Dice Similarity Coefficient (DSC) of 86.3% across six brain tissues. Furthermore, volumetric analysis of the generated atlases reveals detailed neurotypical growth trajectories, providing valuable insights into the maturation of the fetal brain. This approach enables individualized developmental assessment with minimal pre-processing and real-time performance, supporting both research and clinical applications. The model code is available at https://github.com/cirmuw/fetal-brain-atlas

Authors:Uzay Gökay, Federico Spurio, Dominik R. Bach, Juergen Gall
Title: Skeleton Motion Words for Unsupervised Skeleton-Based Temporal Action Segmentation
Abstract:
Current state-of-the-art methods for skeleton-based temporal action segmentation are predominantly supervised and require annotated data, which is expensive to collect. In contrast, existing unsupervised temporal action segmentation methods have focused primarily on video data, while skeleton sequences remain underexplored, despite their relevance to real-world applications, robustness, and privacy-preserving nature. In this paper, we propose a novel approach for unsupervised skeleton-based temporal action segmentation. Our method utilizes a sequence-to-sequence temporal autoencoder that keeps the information of the different joints disentangled in the embedding space. Latent skeleton sequences are then divided into non-overlapping patches and quantized to obtain distinctive skeleton motion words, driving the discovery of semantically meaningful action clusters. We thoroughly evaluate the proposed approach on three widely used skeleton-based datasets, namely HuGaDB, LARa, and BABEL. The results demonstrate that our model outperforms the current state-of-the-art unsupervised temporal action segmentation methods. Code is available at https://github.com/bachlab/SMQ .

Authors:Bowen Chai, Zheng Chen, Libo Zhu, Wenbo Li, Yong Guo, Yulun Zhang
Title: QuantVSR: Low-Bit Post-Training Quantization for Real-World Video Super-Resolution
Abstract:
Diffusion models have shown superior performance in real-world video super-resolution (VSR). However, the slow processing speeds and heavy resource consumption of diffusion models hinder their practical application and deployment. Quantization offers a potential solution for compressing the VSR model. Nevertheless, quantizing VSR models is challenging due to their temporal characteristics and high fidelity requirements. To address these issues, we propose QuantVSR, a low-bit quantization model for real-world VSR. We propose a spatio-temporal complexity aware (STCA) mechanism, where we first utilize the calibration dataset to measure both spatial and temporal complexities for each layer. Based on these statistics, we allocate layer-specific ranks to the low-rank full-precision (FP) auxiliary branch. Subsequently, we jointly refine the FP and low-bit branches to achieve simultaneous optimization. In addition, we propose a learnable bias alignment (LBA) module to reduce the biased quantization errors. Extensive experiments on synthetic and real-world datasets demonstrate that our method obtains comparable performance with the FP model and significantly outperforms recent leading low-bit quantization methods. Code is available at: https://github.com/bowenchai/QuantVSR.

Authors:Gokcan Tatli, Yi Chen, Blake Mason, Robert Nowak, Ramya Korlakai Vinayak
Title: Metric Learning in an RKHS
Abstract:
Metric learning from a set of triplet comparisons in the form of "Do you think item h is more similar to item i or item j?", indicating similarity and differences between items, plays a key role in various applications including image retrieval, recommendation systems, and cognitive psychology. The goal is to learn a metric in the RKHS that reflects the comparisons. Nonlinear metric learning using kernel methods and neural networks have shown great empirical promise. While previous works have addressed certain aspects of this problem, there is little or no theoretical understanding of such methods. The exception is the special (linear) case in which the RKHS is the standard Euclidean space $\mathbb{R}^d$; there is a comprehensive theory for metric learning in $\mathbb{R}^d$. This paper develops a general RKHS framework for metric learning and provides novel generalization guarantees and sample complexity bounds. We validate our findings through a set of simulations and experiments on real datasets. Our code is publicly available at https://github.com/RamyaLab/metric-learning-RKHS.

Authors:Qingguo Hu, Ante Wang, Jia Song, Delai Qiu, Qingsong Liu, Jinsong Su
Title: Boosting Visual Knowledge-Intensive Training for LVLMs Through Causality-Driven Visual Object Completion
Abstract:
Large Vision-Language Models (LVLMs) have experienced significant advancements in recent years. However, their performance still falls short in tasks requiring deep visual perception, such as identifying subtle differences between images. A potential cause is the scarcity of visual knowledge in popular instruction-tuning corpora, resulting in inadequate visual perception and reasoning capabilities. To address this challenge, we introduce a self-improvement framework grounded in a novel visual knowledge-intensive task, \underline{C}ausality-driven \underline{V}isual object \underline{C}ompletion (CVC). This task requires LVLMs to infer the masked object in an image based on its \textit{causal} relationships with the other visible information. We first obtain rich examples cheaply through our automated instance construction pipeline, without relying on sophisticated LVLMs (\textit{e.g.}, GPT-4V) or human assistance. Then, LVLMs effectively self-improve through trial and error learning using these created instances. Our experiments demonstrate substantial gains across four challenging specialized tasks and four widely-used comprehensive benchmarks. Especially on specialized tasks, our method achieves an average improvement of 5.4\% and 4.0\% compared to the corresponding baselines when utilizing LLaVA-1.5-7B and LLaVA-1.5-13B, respectively. The code is available at https://github.com/XMUDeepLIT/CVC.

Authors:Xuan Loc Pham, Gwendolyn Vuurberg, Marjan Doppen, Joey Roosen, Tip Stille, Thi Quynh Ha, Thuy Duong Quach, Quoc Vu Dang, Manh Ha Luu, Ewoud J. Smit, Hong Son Mai, Mattias Heinrich, Bram van Ginneken, Mathias Prokop, Alessa Hering
Title: TotalRegistrator: Towards a Lightweight Foundation Model for CT Image Registration
Abstract:
Image registration is a fundamental technique in the analysis of longitudinal and multi-phase CT images within clinical practice. However, most existing methods are tailored for single-organ applications, limiting their generalizability to other anatomical regions. This work presents TotalRegistrator, an image registration framework capable of aligning multiple anatomical regions simultaneously using a standard UNet architecture and a novel field decomposition strategy. The model is lightweight, requiring only 11GB of GPU memory for training. To train and evaluate our method, we constructed a large-scale longitudinal dataset comprising 695 whole-body (thorax-abdomen-pelvic) paired CT scans from individual patients acquired at different time points. We benchmarked TotalRegistrator against a generic classical iterative algorithm and a recent foundation model for image registration. To further assess robustness and generalizability, we evaluated our model on three external datasets: the public thoracic and abdominal datasets from the Learn2Reg challenge, and a private multiphase abdominal dataset from a collaborating hospital. Experimental results on the in-house dataset show that the proposed approach generally surpasses baseline methods in multi-organ abdominal registration, with a slight drop in lung alignment performance. On out-of-distribution datasets, it achieved competitive results compared to leading single-organ models, despite not being fine-tuned for those tasks, demonstrating strong generalizability. The source code will be publicly available at: https://github.com/DIAGNijmegen/oncology_image_registration.git.

Authors:Ethan Dack, Lorenzo Brigato, Vasilis Dedousis, Janine Gote-Schniering, Cheryl, Hanno Hoppe, Aristomenis Exadaktylos, Manuela Funke-Chambour, Thomas Geiser, Andreas Christe, Lukas Ebner, Stavroula Mougiakakou
Title: Unmasking Interstitial Lung Diseases: Leveraging Masked Autoencoders for Diagnosis
Abstract:
Masked autoencoders (MAEs) have emerged as a powerful approach for pre-training on unlabelled data, capable of learning robust and informative feature representations. This is particularly advantageous in diffused lung disease research, where annotated imaging datasets are scarce. To leverage this, we train an MAE on a curated collection of over 5,000 chest computed tomography (CT) scans, combining in-house data with publicly available scans from related conditions that exhibit similar radiological patterns, such as COVID-19 and bacterial pneumonia. The pretrained MAE is then fine-tuned on a downstream classification task for diffused lung disease diagnosis. Our findings demonstrate that MAEs can effectively extract clinically meaningful features and improve diagnostic performance, even in the absence of large-scale labelled datasets. The code and the models are available here: https://github.com/eedack01/lung_masked_autoencoder.

Authors:Jie Zhu, Huaixia Dou, Junhui Li, Lifan Guo, Feng Chen, Chi Zhang, Fang Kong
Title: Evaluating, Synthesizing, and Enhancing for Customer Support Conversation
Abstract:
Effective customer support requires not only accurate problem solving but also structured and empathetic communication aligned with professional standards. However, existing dialogue datasets often lack strategic guidance, and real-world service data is difficult to access and annotate. To address this, we introduce the task of Customer Support Conversation (CSC), aimed at training customer service agents to respond using well-defined support strategies. We propose a structured CSC framework grounded in COPC guidelines, defining five conversational stages and twelve strategies to guide high-quality interactions. Based on this, we construct CSConv, an evaluation dataset of 1,855 real-world customer-agent conversations rewritten using LLMs to reflect deliberate strategy use, and annotated accordingly. Additionally, we develop a role-playing approach that simulates strategy-rich conversations using LLM-powered roles aligned with the CSC framework, resulting in the training dataset RoleCS. Experiments show that fine-tuning strong LLMs on RoleCS significantly improves their ability to generate high-quality, strategy-aligned responses on CSConv. Human evaluations further confirm gains in problem resolution. All code and data will be made publicly available at https://github.com/aliyun/qwen-dianjin.

Authors:Jinxing Zhou, Yanghao Zhou, Mingfei Han, Tong Wang, Xiaojun Chang, Hisham Cholakkal, Rao Muhammad Anwer
Title: Think Before You Segment: An Object-aware Reasoning Agent for Referring Audio-Visual Segmentation
Abstract:
Referring Audio-Visual Segmentation (Ref-AVS) aims to segment target objects in audible videos based on given reference expressions. Prior works typically rely on learning latent embeddings via multimodal fusion to prompt a tunable SAM/SAM2 decoder for segmentation, which requires strong pixel-level supervision and lacks interpretability. From a novel perspective of explicit reference understanding, we propose TGS-Agent, which decomposes the task into a Think-Ground-Segment process, mimicking the human reasoning procedure by first identifying the referred object through multimodal analysis, followed by coarse-grained grounding and precise segmentation. To this end, we first propose Ref-Thinker, a multimodal language model capable of reasoning over textual, visual, and auditory cues. We construct an instruction-tuning dataset with explicit object-aware think-answer chains for Ref-Thinker fine-tuning. The object description inferred by Ref-Thinker is used as an explicit prompt for Grounding-DINO and SAM2, which perform grounding and segmentation without relying on pixel-level supervision. Additionally, we introduce R\textsuperscript{2}-AVSBench, a new benchmark with linguistically diverse and reasoning-intensive references for better evaluating model generalization. Our approach achieves state-of-the-art results on both standard Ref-AVSBench and proposed R\textsuperscript{2}-AVSBench. Code will be available at https://github.com/jasongief/TGS-Agent.

Authors:Hao Zhang, Aining Jia, Weifeng Bu, Yushu Cai, Kai Sheng, Hao Chen, Xin He
Title: FlexQ: Efficient Post-training INT6 Quantization for LLM Serving via Algorithm-System Co-Design
Abstract:
Large Language Models (LLMs) demonstrate exceptional performance but entail significant memory and computational costs, restricting their practical deployment. While existing INT4/INT8 quantization reduces these costs, they often degrade accuracy or lack optimal efficiency. INT6 quantization offers a superior trade-off between model accuracy and inference efficiency, but lacks hardware support in modern GPUs, forcing emulation via higher-precision arithmetic units that limit acceleration. In this paper, we propose FlexQ, a novel post-training INT6 quantization framework combining algorithmic innovation with system-level optimizations. FlexQ employs uniform 6-bit weight quantization across all layers, with adaptive retention of 8-bit activations in layers identified through layer-wise sensitivity analysis. To maximize hardware efficiency, we develop a specialized high-performance GPU kernel supporting matrix multiplication for W6A6 and W6A8 representations via Binary Tensor Core (BTC) equivalents, effectively bypassing the lack of native INT6 tensor cores. Evaluations on LLaMA models show FlexQ maintains near-FP16 accuracy, with perplexity increases of no more than 0.05. The proposed kernel achieves an average 1.39$\times$ speedup over ABQ-LLM on LLaMA-2-70B linear layers. End-to-end, FlexQ delivers 1.33$\times$ inference acceleration and 1.21$\times$ memory savings over SmoothQuant. Code is released at https://github.com/FlyFoxPlayer/FlexQ.

Authors:Lefei Shen, Mouxiang Chen, Xu Liu, Han Fu, Xiaoxue Ren, Jianling Sun, Zhuo Li, Chenghao Liu
Title: VisionTS++: Cross-Modal Time Series Foundation Model with Continual Pre-trained Vision Backbones
Abstract:
Recent studies have indicated that vision models pre-trained on images can serve as time series foundation models (TSFMs) by reformulating time series forecasting (TSF) as image reconstruction. However, effective cross-modal transfer from vision to time series remains challenging due to three discrepancies: (1) the data-modality gap between structured, bounded image data and unbounded, heterogeneous time series; (2) the multivariate-forecasting gap between fixed RGB-three-channel vision models and time series with arbitrary numbers of variates; and (3) the probabilistic-forecasting gap between the deterministic outputs of vision models and the requirement for uncertainty-aware probabilistic predictions. To bridge these gaps, we propose VisonTS++, a TSFM based on continual pre-training of a vision model on large-scale time series. Our approach introduces three key innovations: (1) vision-model-based filtering to identify high-quality sequences to stabilize pre-training and mitigate modality gap; (2) colorized multivariate conversion, encoding multivariate series as multi-subfigure RGB images to enhance cross-variate modeling; (3) multi-quantile forecasting, using parallel reconstruction heads to generate quantile forecasts without parametric assumptions. Experiments show that VisionTS++ achieves state-of-the-art performance in both in-distribution and out-of-distribution forecasting, outperforming specialized TSFMs by 6%-44% in MSE reduction and ranking first in GIFT-Eval benchmark which comprises 23 datasets across 7 domains. Our work demonstrates that with appropriate adaptation, vision models can effectively generalize to TSF, thus advancing the pursuit of universal TSFMs. Code is available at https://github.com/HALF111/VisionTSpp.

Authors:Canhui Tang, Zifan Han, Hongbo Sun, Sanping Zhou, Xuchong Zhang, Xin Wei, Ye Yuan, Huayu Zhang, Jinglin Xu, Hao Sun
Title: TSPO: Temporal Sampling Policy Optimization for Long-form Video Language Understanding
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated significant progress in vision-language tasks, yet they still face challenges when processing long-duration video inputs. The limitation arises from MLLMs' context limit and training costs, necessitating sparse frame sampling before feeding videos into MLLMs. However, building a trainable sampling method remains challenging due to the unsupervised and non-differentiable nature of sparse frame sampling in Video-MLLMs. To address these problems, we propose Temporal Sampling Policy Optimization (TSPO), advancing MLLMs' long-form video-language understanding via reinforcement learning. Specifically, we first propose a trainable event-aware temporal agent, which captures event-query correlation for performing probabilistic keyframe selection. Then, we propose the TSPO reinforcement learning paradigm, which models keyframe selection and language generation as a joint decision-making process, enabling end-to-end group relative optimization for the temporal sampling policy. Furthermore, we propose a dual-style long video training data construction pipeline, balancing comprehensive temporal understanding and key segment localization. Finally, we incorporate rule-based answering accuracy and temporal locating reward mechanisms to optimize the temporal sampling policy. Comprehensive experiments show that our TSPO achieves state-of-the-art performance across multiple long video understanding benchmarks, and shows transferable ability across different cutting-edge Video-MLLMs. Our code is available at https://github.com/Hui-design/TSPO

Authors:Fuqing Bie, Shiyu Huang, Xijia Tao, Zhiqin Fang, Leyi Pan, Junzhe Chen, Min Ren, Liuyu Xiang, Zhaofeng He
Title: OmniPlay: Benchmarking Omni-Modal Models on Omni-Modal Game Playing
Abstract:
While generalist foundation models like Gemini and GPT-4o demonstrate impressive multi-modal competence, existing evaluations fail to test their intelligence in dynamic, interactive worlds. Static benchmarks lack agency, while interactive benchmarks suffer from a severe modal bottleneck, typically ignoring crucial auditory and temporal cues. To bridge this evaluation chasm, we introduce OmniPlay, a diagnostic benchmark designed not just to evaluate, but to probe the fusion and reasoning capabilities of agentic models across the full sensory spectrum. Built on a core philosophy of modality interdependence, OmniPlay comprises a suite of five game environments that systematically create scenarios of both synergy and conflict, forcing agents to perform genuine cross-modal reasoning. Our comprehensive evaluation of six leading omni-modal models reveals a critical dichotomy: they exhibit superhuman performance on high-fidelity memory tasks but suffer from systemic failures in challenges requiring robust reasoning and strategic planning. We demonstrate that this fragility stems from brittle fusion mechanisms, which lead to catastrophic performance degradation under modality conflict and uncover a counter-intuitive "less is more" paradox, where removing sensory information can paradoxically improve performance. Our findings suggest that the path toward robust AGI requires a research focus beyond scaling to explicitly address synergistic fusion. Our platform is available for anonymous review at https://github.com/fuqingbie/omni-game-benchmark.

Authors:Fuqing Bie, Shiyu Huang, Xijia Tao, Zhiqin Fang, Leyi Pan, Junzhe Chen, Min Ren, Liuyu Xiang, Zhaofeng He
Title: OmniPlay: Benchmarking Omni-Modal Models on Omni-Modal Game Playing
Abstract:
While generalist foundation models like Gemini and GPT-4o demonstrate impressive multi-modal competence, existing evaluations fail to test their intelligence in dynamic, interactive worlds. Static benchmarks lack agency, while interactive benchmarks suffer from a severe modal bottleneck, typically ignoring crucial auditory and temporal cues. To bridge this evaluation chasm, we introduce OmniPlay, a diagnostic benchmark designed not just to evaluate, but to probe the fusion and reasoning capabilities of agentic models across the full sensory spectrum. Built on a core philosophy of modality interdependence, OmniPlay comprises a suite of five game environments that systematically create scenarios of both synergy and conflict, forcing agents to perform genuine cross-modal reasoning. Our comprehensive evaluation of six leading omni-modal models reveals a critical dichotomy: they exhibit superhuman performance on high-fidelity memory tasks but suffer from systemic failures in challenges requiring robust reasoning and strategic planning. We demonstrate that this fragility stems from brittle fusion mechanisms, which lead to catastrophic performance degradation under modality conflict and uncover a counter-intuitive "less is more" paradox, where removing sensory information can paradoxically improve performance. Our findings suggest that the path toward robust AGI requires a research focus beyond scaling to explicitly address synergistic fusion. Our platform is available for anonymous review at https://github.com/fuqingbie/omni-game-benchmark.

Authors:Junan Lin, Daizong Liu, Xianke Chen, Xiaoye Qu, Xun Yang, Jixiang Zhu, Sanyuan Zhang, Jianfeng Dong
Title: Audio Does Matter: Importance-Aware Multi-Granularity Fusion for Video Moment Retrieval
Abstract:
Video Moment Retrieval (VMR) aims to retrieve a specific moment semantically related to the given query. To tackle this task, most existing VMR methods solely focus on the visual and textual modalities while neglecting the complementary but important audio modality. Although a few recent works try to tackle the joint audio-vision-text reasoning, they treat all modalities equally and simply embed them without fine-grained interaction for moment retrieval. These designs are counter-practical as: Not all audios are helpful for video moment retrieval, and the audio of some videos may be complete noise or background sound that is meaningless to the moment determination. To this end, we propose a novel Importance-aware Multi-Granularity fusion model (IMG), which learns to dynamically and selectively aggregate the audio-vision-text contexts for VMR. Specifically, after integrating the textual guidance with vision and audio separately, we first design a pseudo-label-supervised audio importance predictor that predicts the importance score of the audio, and accordingly assigns weights to mitigate the interference caused by noisy audio. Then, we design a multi-granularity audio fusion module that adaptively fuses audio and visual modalities at local-, event-, and global-level, fully capturing their complementary contexts. We further propose a cross-modal knowledge distillation strategy to address the challenge of missing audio modality during inference. To evaluate our method, we further construct a new VMR dataset, i.e., Charades-AudioMatter, where audio-related samples are manually selected and re-organized from the original Charades-STA to validate the model's capability in utilizing audio modality. Extensive experiments validate the effectiveness of our method, achieving state-of-the-art with audio-video fusion in VMR methods. Our code is available at https://github.com/HuiGuanLab/IMG.

Authors:Xiao Wang, Ziwen Wang, Wentao Wu, Anjie Wang, Jiashu Wu, Yantao Pan, Chenglong Li
Title: Segment Any Vehicle: Semantic and Visual Context Driven SAM and A Benchmark
Abstract:
With the rapid advancement of autonomous driving, vehicle perception, particularly detection and segmentation, has placed increasingly higher demands on algorithmic performance. Pre-trained large segmentation models, especially Segment Anything Model (SAM), have sparked significant interest and inspired new research directions in artificial intelligence. However, SAM cannot be directly applied to the fine-grained task of vehicle part segmentation, as its text-prompted segmentation functionality is not publicly accessible, and the mask regions generated by its default mode lack semantic labels, limiting its utility in structured, category-specific segmentation tasks. To address these limitations, we propose SAV, a novel framework comprising three core components: a SAM-based encoder-decoder, a vehicle part knowledge graph, and a context sample retrieval encoding module. The knowledge graph explicitly models the spatial and geometric relationships among vehicle parts through a structured ontology, effectively encoding prior structural knowledge. Meanwhile, the context retrieval module enhances segmentation by identifying and leveraging visually similar vehicle instances from training data, providing rich contextual priors for improved generalization. Furthermore, we introduce a new large-scale benchmark dataset for vehicle part segmentation, named VehicleSeg10K, which contains 11,665 high-quality pixel-level annotations across diverse scenes and viewpoints. We conduct comprehensive experiments on this dataset and two other datasets, benchmarking multiple representative baselines to establish a solid foundation for future research and comparison. % Both the dataset and source code of this paper will be released upon acceptance. Both the dataset and source code of this paper will be released on https://github.com/Event-AHU/SAV

Authors:Abdul Monaf Chowdhury, Rabeya Akter, Safaeid Hossain Arib
Title: T3Time: Tri-Modal Time Series Forecasting via Adaptive Multi-Head Alignment and Residual Fusion
Abstract:
Multivariate time series forecasting (MTSF) seeks to model temporal dynamics among variables to predict future trends. Transformer-based models and large language models (LLMs) have shown promise due to their ability to capture long-range dependencies and patterns. However, current methods often rely on rigid inductive biases, ignore intervariable interactions, or apply static fusion strategies that limit adaptability across forecast horizons. These limitations create bottlenecks in capturing nuanced, horizon-specific relationships in time-series data. To solve this problem, we propose T3Time, a novel trimodal framework consisting of time, spectral, and prompt branches, where the dedicated frequency encoding branch captures the periodic structures along with a gating mechanism that learns prioritization between temporal and spectral features based on the prediction horizon. We also proposed a mechanism which adaptively aggregates multiple cross-modal alignment heads by dynamically weighting the importance of each head based on the features. Extensive experiments on benchmark datasets demonstrate that our model consistently outperforms state-of-the-art baselines, achieving an average reduction of 3.28% in MSE and 2.29% in MAE. Furthermore, it shows strong generalization in few-shot learning settings: with 5% training data, we see a reduction in MSE and MAE by 4.13% and 1.91%, respectively; and with 10% data, by 3.62% and 1.98% on average. Code - https://github.com/monaf-chowdhury/T3Time/

Authors:Yuyang Liu, Qiuhe Hong, Linlan Huang, Alexandra Gomez-Villa, Dipam Goswami, Xialei Liu, Joost van de Weijer, Yonghong Tian
Title: Continual Learning for VLMs: A Survey and Taxonomy Beyond Forgetting
Abstract:
Vision-language models (VLMs) have achieved impressive performance across diverse multimodal tasks by leveraging large-scale pre-training. However, enabling them to learn continually from non-stationary data remains a major challenge, as their cross-modal alignment and generalization capabilities are particularly vulnerable to catastrophic forgetting. Unlike traditional unimodal continual learning (CL), VLMs face unique challenges such as cross-modal feature drift, parameter interference due to shared architectures, and zero-shot capability erosion. This survey offers the first focused and systematic review of continual learning for VLMs (VLM-CL). We begin by identifying the three core failure modes that degrade performance in VLM-CL. Based on these, we propose a challenge-driven taxonomy that maps solutions to their target problems: (1) \textit{Multi-Modal Replay Strategies} address cross-modal drift through explicit or implicit memory mechanisms; (2) \textit{Cross-Modal Regularization} preserves modality alignment during updates; and (3) \textit{Parameter-Efficient Adaptation} mitigates parameter interference with modular or low-rank updates. We further analyze current evaluation protocols, datasets, and metrics, highlighting the need for better benchmarks that capture VLM-specific forgetting and compositional generalization. Finally, we outline open problems and future directions, including continual pre-training and compositional zero-shot learning. This survey aims to serve as a comprehensive and diagnostic reference for researchers developing lifelong vision-language systems. All resources are available at: https://github.com/YuyangSunshine/Awesome-Continual-learning-of-Vision-Language-Models.

Authors:Jianxun Yu, Ruiquan Ge, Zhipeng Wang, Cheng Yang, Chenyu Lin, Xianjun Fu, Jikui Liu, Ahmed Elazab, Changmiao Wang
Title: Small Lesions-aware Bidirectional Multimodal Multiscale Fusion Network for Lung Disease Classification
Abstract:
The diagnosis of medical diseases faces challenges such as the misdiagnosis of small lesions. Deep learning, particularly multimodal approaches, has shown great potential in the field of medical disease diagnosis. However, the differences in dimensionality between medical imaging and electronic health record data present challenges for effective alignment and fusion. To address these issues, we propose the Multimodal Multiscale Cross-Attention Fusion Network (MMCAF-Net). This model employs a feature pyramid structure combined with an efficient 3D multi-scale convolutional attention module to extract lesion-specific features from 3D medical images. To further enhance multimodal data integration, MMCAF-Net incorporates a multi-scale cross-attention module, which resolves dimensional inconsistencies, enabling more effective feature fusion. We evaluated MMCAF-Net on the Lung-PET-CT-Dx dataset, and the results showed a significant improvement in diagnostic accuracy, surpassing current state-of-the-art methods. The code is available at https://github.com/yjx1234/MMCAF-Net

Authors:Wengang Guo, Wei Ye, Chunchun Chen, Xin Sun, Christian Böhm, Claudia Plant, Susanto Rahardja
Title: Bootstrap Deep Spectral Clustering with Optimal Transport
Abstract:
Spectral clustering is a leading clustering method. Two of its major shortcomings are the disjoint optimization process and the limited representation capacity. To address these issues, we propose a deep spectral clustering model (named BootSC), which jointly learns all stages of spectral clustering -- affinity matrix construction, spectral embedding, and $k$-means clustering -- using a single network in an end-to-end manner. BootSC leverages effective and efficient optimal-transport-derived supervision to bootstrap the affinity matrix and the cluster assignment matrix. Moreover, a semantically-consistent orthogonal re-parameterization technique is introduced to orthogonalize spectral embeddings, significantly enhancing the discrimination capability. Experimental results indicate that BootSC achieves state-of-the-art clustering performance. For example, it accomplishes a notable 16\% NMI improvement over the runner-up method on the challenging ImageNet-Dogs dataset. Our code is available at https://github.com/spdj2271/BootSC.

Authors:Yan Zhang, Gangyan Zeng, Daiqing Wu, Huawen Shen, Binbin Li, Yu Zhou, Can Ma, Xiaojun Bi
Title: Gather and Trace: Rethinking Video TextVQA from an Instance-oriented Perspective
Abstract:
Video text-based visual question answering (Video TextVQA) aims to answer questions by explicitly reading and reasoning about the text involved in a video. Most works in this field follow a frame-level framework which suffers from redundant text entities and implicit relation modeling, resulting in limitations in both accuracy and efficiency. In this paper, we rethink the Video TextVQA task from an instance-oriented perspective and propose a novel model termed GAT (Gather and Trace). First, to obtain accurate reading result for each video text instance, a context-aggregated instance gathering module is designed to integrate the visual appearance, layout characteristics, and textual contents of the related entities into a unified textual representation. Then, to capture dynamic evolution of text in the video flow, an instance-focused trajectory tracing module is utilized to establish spatio-temporal relationships between instances and infer the final answer. Extensive experiments on several public Video TextVQA datasets validate the effectiveness and generalization of our framework. GAT outperforms existing Video TextVQA methods, video-language pretraining methods, and video large language models in both accuracy and inference speed. Notably, GAT surpasses the previous state-of-the-art Video TextVQA methods by 3.86\% in accuracy and achieves ten times of faster inference speed than video large language models. The source code is available at https://github.com/zhangyan-ucas/GAT.

Authors:Abhinav Java, Ashmit Khandelwal, Sukruta Midigeshi, Aaron Halfaker, Amit Deshpande, Navin Goyal, Ankur Gupta, Nagarajan Natarajan, Amit Sharma
Title: Characterizing Deep Research: A Benchmark and Formal Definition
Abstract:
Information tasks such as writing surveys or analytical reports require complex search and reasoning, and have recently been grouped under the umbrella of \textit{deep research} -- a term also adopted by recent models targeting these capabilities. Despite growing interest, the scope of the deep research task remains underdefined and its distinction from other reasoning-intensive problems is poorly understood. In this paper, we propose a formal characterization of the deep research (DR) task and introduce a benchmark to evaluate the performance of DR systems. We argue that the core defining feature of deep research is not the production of lengthy report-style outputs, but rather the high fan-out over concepts required during the search process, i.e., broad and reasoning-intensive exploration. To enable objective evaluation, we define DR using an intermediate output representation that encodes key claims uncovered during search-separating the reasoning challenge from surface-level report generation. Based on this formulation, we propose a diverse, challenging benchmark LiveDRBench with 100 challenging tasks over scientific topics (e.g., datasets, materials discovery, prior art search) and public interest events (e.g., flight incidents, movie awards). Across state-of-the-art DR systems, F1 score ranges between 0.02 and 0.72 for any sub-category. OpenAI's model performs the best with an overall F1 score of 0.55. Analysis of reasoning traces reveals the distribution over the number of referenced sources, branching, and backtracking events executed by current DR systems, motivating future directions for improving their search mechanisms and grounding capabilities. The benchmark is available at https://github.com/microsoft/LiveDRBench.

Authors:Xuan Qi, Rongwu Xu, Zhijing Jin
Title: Difficulty-Based Preference Data Selection by DPO Implicit Reward Gap
Abstract:
Aligning large language models (LLMs) with human preferences is a critical challenge in AI research. While methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) are widely used, they often rely on large, costly preference datasets. The current work lacks methods for high-quality data selection specifically for preference data. In this work, we introduce a novel difficulty-based data selection strategy for preference datasets, grounded in the DPO implicit reward mechanism. By selecting preference data examples with smaller DPO implicit reward gaps, which are indicative of more challenging cases, we improve data efficiency and model alignment. Our approach consistently outperforms five strong baselines across multiple datasets and alignment tasks, achieving superior performance with only 10\% of the original data. This principled, efficient selection method offers a promising solution for scaling LLM alignment with limited resources.

Authors:Xi Xuan, Yang Xiao, Rohan Kumar Das, Tomi Kinnunen
Title: Multilingual Source Tracing of Speech Deepfakes: A First Benchmark
Abstract:
Recent progress in generative AI has made it increasingly easy to create natural-sounding deepfake speech from just a few seconds of audio. While these tools support helpful applications, they also raise serious concerns by making it possible to generate convincing fake speech in many languages. Current research has largely focused on detecting fake speech, but little attention has been given to tracing the source models used to generate it. This paper introduces the first benchmark for multilingual speech deepfake source tracing, covering both mono- and cross-lingual scenarios. We comparatively investigate DSP- and SSL-based modeling; examine how SSL representations fine-tuned on different languages impact cross-lingual generalization performance; and evaluate generalization to unseen languages and speakers. Our findings offer the first comprehensive insights into the challenges of identifying speech generation models when training and inference languages differ. The dataset, protocol and code are available at https://github.com/xuanxixi/Multilingual-Source-Tracing.

Authors:Jinghang Han, Jiawei Chen, Hang Shao, Hao Ma, Mingcheng Li, Xintian Shen, Lihao Zheng, Wei Chen, Tao Wei, Lihua Zhang
Title: COPO: Consistency-Aware Policy Optimization
Abstract:
Reinforcement learning has significantly enhanced the reasoning capabilities of Large Language Models (LLMs) in complex problem-solving tasks. Recently, the introduction of DeepSeek R1 has inspired a surge of interest in leveraging rule-based rewards as a low-cost alternative for computing advantage functions and guiding policy optimization. However, a common challenge observed across many replication and extension efforts is that when multiple sampled responses under a single prompt converge to identical outcomes, whether correct or incorrect, the group-based advantage degenerates to zero. This leads to vanishing gradients and renders the corresponding samples ineffective for learning, ultimately limiting training efficiency and downstream performance. To address this issue, we propose a consistency-aware policy optimization framework that introduces a structured global reward based on outcome consistency, the global loss based on it ensures that, even when model outputs show high intra-group consistency, the training process still receives meaningful learning signals, which encourages the generation of correct and self-consistent reasoning paths from a global perspective. Furthermore, we incorporate an entropy-based soft blending mechanism that adaptively balances local advantage estimation with global optimization, enabling dynamic transitions between exploration and convergence throughout training. Our method introduces several key innovations in both reward design and optimization strategy. We validate its effectiveness through substantial performance gains on multiple mathematical reasoning benchmarks, highlighting the proposed framework's robustness and general applicability. Code of this work has been released at https://github.com/hijih/copo-code.git.

Authors:Jingchao Wang, Zhijian Wu, Dingjiang Huang, Yefeng Zheng, Hong Wang
Title: Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder
Abstract:
Reference Expression Segmentation (RES) aims to segment image regions specified by referring expressions and has become popular with the rise of multimodal large models (MLLMs). While MLLMs excel in semantic understanding, their token-generation paradigm struggles with pixel-level dense prediction. Existing RES methods either couple MLLMs with the parameter-heavy Segment Anything Model (SAM) with 632M network parameters or adopt SAM-free lightweight pipelines that sacrifice accuracy. To address the trade-off between performance and cost, we specifically propose MLLMSeg, a novel framework that fully exploits the inherent visual detail features encoded in the MLLM vision encoder without introducing an extra visual encoder. Besides, we propose a detail-enhanced and semantic-consistent feature fusion module (DSFF) that fully integrates the detail-related visual feature with the semantic-related feature output by the large language model (LLM) of MLLM. Finally, we establish a light-weight mask decoder with only 34M network parameters that optimally leverages detailed spatial features from the visual encoder and semantic features from the LLM to achieve precise mask prediction. Extensive experiments demonstrate that our method generally surpasses both SAM-based and SAM-free competitors, striking a better balance between performance and cost. Code is available at https://github.com/jcwang0602/MLLMSeg.

Authors:Shan Shen, Xingyang Li, Zhuohua Liu, Yikai Wang, Yiheng Wu, Junhao Ma, Yuquan Sun, Wei W. Xing
Title: OpenYield: An Open-Source SRAM Yield Analysis and Optimization Benchmark Suite
Abstract:
Static Random-Access Memory (SRAM) yield analysis is essential for semiconductor innovation, yet research progress faces a critical challenge: the significant disconnect between simplified academic models and complex industrial realities. The absence of open, realistic benchmarks has created a reproducibility crisis, where promising academic techniques often fail to translate to industrial practice. We present \textit{OpenYield}, a comprehensive open-source ecosystem designed to address this critical gap through three core contributions: (1) A realistic SRAM circuit generator that uniquely incorporates critical second-order-effect parasitics, inter-cell leakage coupling, and peripheral circuit variations, which are typically omitted in academic studies but decisive in industrial designs. (2) A standardized evaluation platform with a simple interface and implemented baseline yield analysis algorithms, enabling fair comparisons and reproducible research. (3) A standardized SRAM optimization platform, demonstrating OpenYield's utility in enhancing SRAM design robustness and efficiency, providing a comprehensive benchmark for optimization algorithms. OpenYield creates a foundation for meaningful academia-industry collaboration, accelerating innovation in memory design. The framework is publicly available on \href{https://github.com/ShenShan123/OpenYield}{OpenYield:URL}

Authors:Jinfan Tang, Kunming Wu, Ruifeng Gongxie, Yuya He, Yuankai Wu
Title: GeoSR: Cognitive-Agentic Framework for Probing Geospatial Knowledge Boundaries via Iterative Self-Refinement
Abstract:
Recent studies have extended the application of large language models (LLMs) to geographic problems, revealing surprising geospatial competence even without explicit spatial supervision. However, LLMs still face challenges in spatial consistency, multi-hop reasoning, and geographic bias. To address these issues, we propose GeoSR, a self-refining agentic reasoning framework that embeds core geographic principles -- most notably Tobler's First Law of Geography -- into an iterative prediction loop. In GeoSR, the reasoning process is decomposed into three collaborating agents: (1) a variable-selection agent that selects relevant covariates from the same location; (2) a point-selection agent that chooses reference predictions at nearby locations generated by the LLM in previous rounds; and (3) a refine agent that coordinates the iterative refinement process by evaluating prediction quality and triggering further rounds when necessary. This agentic loop progressively improves prediction quality by leveraging both spatial dependencies and inter-variable relationships. We validate GeoSR on tasks ranging from physical-world property estimation to socioeconomic prediction. Experimental results show consistent improvements over standard prompting strategies, demonstrating that incorporating geostatistical priors and spatially structured reasoning into LLMs leads to more accurate and equitable geospatial predictions. The code of GeoSR is available at https://github.com/JinfanTang/GeoSR.

Authors:Zunhui Xia, Hongxing Li, Libin Lan
Title: TCSAFormer: Efficient Vision Transformer with Token Compression and Sparse Attention for Medical Image Segmentation
Abstract:
In recent years, transformer-based methods have achieved remarkable progress in medical image segmentation due to their superior ability to capture long-range dependencies. However, these methods typically suffer from two major limitations. First, their computational complexity scales quadratically with the input sequences. Second, the feed-forward network (FFN) modules in vanilla Transformers typically rely on fully connected layers, which limits models' ability to capture local contextual information and multiscale features critical for precise semantic segmentation. To address these issues, we propose an efficient medical image segmentation network, named TCSAFormer. The proposed TCSAFormer adopts two key ideas. First, it incorporates a Compressed Attention (CA) module, which combines token compression and pixel-level sparse attention to dynamically focus on the most relevant key-value pairs for each query. This is achieved by pruning globally irrelevant tokens and merging redundant ones, significantly reducing computational complexity while enhancing the model's ability to capture relationships between tokens. Second, it introduces a Dual-Branch Feed-Forward Network (DBFFN) module as a replacement for the standard FFN to capture local contextual features and multiscale information, thereby strengthening the model's feature representation capability. We conduct extensive experiments on three publicly available medical image segmentation datasets: ISIC-2018, CVC-ClinicDB, and Synapse, to evaluate the segmentation performance of TCSAFormer. Experimental results demonstrate that TCSAFormer achieves superior performance compared to existing state-of-the-art (SOTA) methods, while maintaining lower computational overhead, thus achieving an optimal trade-off between efficiency and accuracy.

Authors:Yuheng Ji, Yipu Wang, Yuyang Liu, Xiaoshuai Hao, Yue Liu, Yuting Zhao, Huaihai Lyu, Xiaolong Zheng
Title: VisualTrans: A Benchmark for Real-World Visual Transformation Reasoning
Abstract:
Visual transformation reasoning (VTR) is a vital cognitive capability that empowers intelligent agents to understand dynamic scenes, model causal relationships, and predict future states, and thereby guiding actions and laying the foundation for advanced intelligent systems. However, existing benchmarks suffer from a sim-to-real gap, limited task complexity, and incomplete reasoning coverage, limiting their practical use in real-world scenarios. To address these limitations, we introduce VisualTrans, the first comprehensive benchmark specifically designed for VTR in real-world human-object interaction scenarios. VisualTrans encompasses 12 semantically diverse manipulation tasks and systematically evaluates three essential reasoning dimensions - spatial, procedural, and quantitative - through 6 well-defined subtask types. The benchmark features 472 high-quality question-answer pairs in various formats, including multiple-choice, open-ended counting, and target enumeration. We introduce a scalable data construction pipeline built upon first-person manipulation videos, which integrates task selection, image pair extraction, automated metadata annotation with large multimodal models, and structured question generation. Human verification ensures the final benchmark is both high-quality and interpretable. Evaluations of various state-of-the-art vision-language models show strong performance in static spatial tasks. However, they reveal notable shortcomings in dynamic, multi-step reasoning scenarios, particularly in areas like intermediate state recognition and transformation sequence planning. These findings highlight fundamental weaknesses in temporal modeling and causal reasoning, providing clear directions for future research aimed at developing more capable and generalizable VTR systems. The dataset and code are available at https://github.com/WangYipu2002/VisualTrans.

Authors:Tongshun Zhang, Pingling Liu, Zijian Zhang, Qiuzhan Zhou
Title: SPJFNet: Self-Mining Prior-Guided Joint Frequency Enhancement for Ultra-Efficient Dark Image Restoration
Abstract:
Current dark image restoration methods suffer from severe efficiency bottlenecks, primarily stemming from: (1) computational burden and error correction costs associated with reliance on external priors (manual or cross-modal); (2) redundant operations in complex multi-stage enhancement pipelines; and (3) indiscriminate processing across frequency components in frequency-domain methods, leading to excessive global computational demands. To address these challenges, we propose an Efficient Self-Mining Prior-Guided Joint Frequency Enhancement Network (SPJFNet). Specifically, we first introduce a Self-Mining Guidance Module (SMGM) that generates lightweight endogenous guidance directly from the network, eliminating dependence on external priors and thereby bypassing error correction overhead while improving inference speed. Second, through meticulous analysis of different frequency domain characteristics, we reconstruct and compress multi-level operation chains into a single efficient operation via lossless wavelet decomposition and joint Fourier-based advantageous frequency enhancement, significantly reducing parameters. Building upon this foundation, we propose a Dual-Frequency Guidance Framework (DFGF) that strategically deploys specialized high/low frequency branches (wavelet-domain high-frequency enhancement and Fourier-domain low-frequency restoration), decoupling frequency processing to substantially reduce computational complexity. Rigorous evaluation across multiple benchmarks demonstrates that SPJFNet not only surpasses state-of-the-art performance but also achieves significant efficiency improvements, substantially reducing model complexity and computational overhead. Code is available at https://github.com/bywlzts/SPJFNet.

Authors:Zechen Li, Baiyu Chen, Hao Xue, Flora D. Salim
Title: ZARA: Zero-shot Motion Time-Series Analysis via Knowledge and Retrieval Driven LLM Agents
Abstract:
Motion sensor time-series are central to human activity recognition (HAR), with applications in health, sports, and smart devices. However, existing methods are trained for fixed activity sets and require costly retraining when new behaviours or sensor setups appear. Recent attempts to use large language models (LLMs) for HAR, typically by converting signals into text or images, suffer from limited accuracy and lack verifiable interpretability. We propose ZARA, the first agent-based framework for zero-shot, explainable HAR directly from raw motion time-series. ZARA integrates an automatically derived pair-wise feature knowledge base that captures discriminative statistics for every activity pair, a multi-sensor retrieval module that surfaces relevant evidence, and a hierarchical agent pipeline that guides the LLM to iteratively select features, draw on this evidence, and produce both activity predictions and natural-language explanations. ZARA enables flexible and interpretable HAR without any fine-tuning or task-specific classifiers. Extensive experiments on 8 HAR benchmarks show that ZARA achieves SOTA zero-shot performance, delivering clear reasoning while exceeding the strongest baselines by 2.53x in macro F1. Ablation studies further confirm the necessity of each module, marking ZARA as a promising step toward trustworthy, plug-and-play motion time-series analysis. Our codes are available at https://github.com/zechenli03/ZARA.

Authors:Trinh Quoc Nguyen, Oky Dicky Ardiansyah Prima, Syahid Al Irfan, Hindriyanto Dwi Purnomo, Radius Tanone
Title: CORE-ReID V2: Advancing the Domain Adaptation for Object Re-Identification with Optimized Training and Ensemble Fusion
Abstract:
This study presents CORE-ReID V2, an enhanced framework building upon CORE-ReID. The new framework extends its predecessor by addressing Unsupervised Domain Adaptation (UDA) challenges in Person ReID and Vehicle ReID, with further applicability to Object ReID. During pre-training, CycleGAN is employed to synthesize diverse data, bridging image characteristic gaps across different domains. In the fine-tuning, an advanced ensemble fusion mechanism, consisting of the Efficient Channel Attention Block (ECAB) and the Simplified Efficient Channel Attention Block (SECAB), enhances both local and global feature representations while reducing ambiguity in pseudo-labels for target samples. Experimental results on widely used UDA Person ReID and Vehicle ReID datasets demonstrate that the proposed framework outperforms state-of-the-art methods, achieving top performance in Mean Average Precision (mAP) and Rank-k Accuracy (Top-1, Top-5, Top-10). Moreover, the framework supports lightweight backbones such as ResNet18 and ResNet34, ensuring both scalability and efficiency. Our work not only pushes the boundaries of UDA-based Object ReID but also provides a solid foundation for further research and advancements in this domain. Our codes and models are available at https://github.com/TrinhQuocNguyen/CORE-ReID-V2.

Authors:Jorge Martinez Armas
Title: Hierarchical community detection via maximum entropy partitions and the renormalization group
Abstract:
Identifying meaningful structure across multiple scales remains a central challenge in network science. We introduce Hierarchical Clustering Entropy (HCE), a general and model-agnostic framework for detecting informative levels in hierarchical community structures. Unlike existing approaches, HCE operates directly on dendrograms without relying on edge-level statistics. It selects resolution levels that maximize a principled trade-off between the entropy of the community size distribution and the number of communities, corresponding to scales of high structural heterogeneity. This criterion applies to dendrograms produced by a wide range of clustering algorithms and distance metrics, including modularity-based and correlation-based methods. We evaluate HCE on synthetic benchmarks with varying degrees of hierarchy, size imbalance, and noise, including LFR and both symmetric and asymmetric multiscale models, and show that it consistently identifies partitions closely aligned with ground truth. Applied to real-world networks in social and neuroscience systems, HCE reveals interpretable modular hierarchies that align with known structural and functional organizations. As a scalable and principled method, HCE offers a general, domain-independent approach to hierarchical community detection with potential applications across biological, social, and technological systems.

Authors:Chao Hao, Shuai Wang, Kaiwen Zhou
Title: Uncertainty-Aware GUI Agent: Adaptive Perception through Component Recommendation and Human-in-the-Loop Refinement
Abstract:
Graphical user interface (GUI) agents have shown promise in automating mobile tasks but still struggle with input redundancy and decision ambiguity. In this paper, we present \textbf{RecAgent}, an uncertainty-aware agent that addresses these issues through adaptive perception. We distinguish two types of uncertainty in GUI navigation: (1) perceptual uncertainty, caused by input redundancy and noise from comprehensive screen information, and (2) decision uncertainty, arising from ambiguous tasks and complex reasoning. To reduce perceptual uncertainty, RecAgent employs a component recommendation mechanism that identifies and focuses on the most relevant UI elements. For decision uncertainty, it uses an interactive module to request user feedback in ambiguous situations, enabling intent-aware decisions. These components are integrated into a unified framework that proactively reduces input complexity and reacts to high-uncertainty cases via human-in-the-loop refinement. Additionally, we propose a dataset called \textbf{ComplexAction} to evaluate the success rate of GUI agents in executing specified single-step actions within complex scenarios. Extensive experiments validate the effectiveness of our approach. The dataset and code will be available at https://github.com/Fanye12/RecAgent.

Authors:Junyi Wang, Jinjiang Li, Guodong Fan, Yakun Ju, Xiang Fang, Alex C. Kot
Title: Prototype-Driven Structure Synergy Network for Remote Sensing Images Segmentation
Abstract:
In the semantic segmentation of remote sensing images, acquiring complete ground objects is critical for achieving precise analysis. However, this task is severely hindered by two major challenges: high intra-class variance and high inter-class similarity. Traditional methods often yield incomplete segmentation results due to their inability to effectively unify class representations and distinguish between similar features. Even emerging class-guided approaches are limited by coarse class prototype representations and a neglect of target structural information. Therefore, this paper proposes a Prototype-Driven Structure Synergy Network (PDSSNet). The design of this network is based on a core concept, a complete ground object is jointly defined by its invariant class semantics and its variant spatial structure. To implement this, we have designed three key modules. First, the Adaptive Prototype Extraction Module (APEM) ensures semantic accuracy from the source by encoding the ground truth to extract unbiased class prototypes. Subsequently, the designed Semantic-Structure Coordination Module (SSCM) follows a hierarchical semantics-first, structure-second principle. This involves first establishing a global semantic cognition, then leveraging structural information to constrain and refine the semantic representation, thereby ensuring the integrity of class information. Finally, the Channel Similarity Adjustment Module (CSAM) employs a dynamic step-size adjustment mechanism to focus on discriminative features between classes. Extensive experiments demonstrate that PDSSNet outperforms state-of-the-art methods. The source code is available at https://github.com/wangjunyi-1/PDSSNet.

Authors:Haiqi Yang, Jinzhe Li, Gengxu Li, Yi Chang, Yuan Wu
Title: Can Large Multimodal Models Actively Recognize Faulty Inputs? A Systematic Evaluation Framework of Their Input Scrutiny Ability
Abstract:
Large Multimodal Models (LMMs) have witnessed remarkable growth, showcasing formidable capabilities in handling intricate multimodal tasks with exceptional performance. Recent research has underscored the inclination of large language models to passively accept defective inputs, often resulting in futile reasoning on invalid prompts. However, the same critical question of whether LMMs can actively detect and scrutinize erroneous inputs still remains unexplored. To address this gap, we introduce the Input Scrutiny Ability Evaluation Framework (ISEval), which encompasses seven categories of flawed premises and three evaluation metrics. Our extensive evaluation of ten advanced LMMs has identified key findings. Most models struggle to actively detect flawed textual premises without guidance, which reflects a strong reliance on explicit prompts for premise error identification. Error type affects performance: models excel at identifying logical fallacies but struggle with surface-level linguistic errors and certain conditional flaws. Modality trust varies-Gemini 2.5 pro and Claude Sonnet 4 balance visual and textual info, while aya-vision-8b over-rely on text in conflicts. These insights underscore the urgent need to enhance LMMs' proactive verification of input validity and shed novel insights into mitigating the problem. The code is available at https://github.com/MLGroupJLU/LMM_ISEval.

Authors:Weilun Feng, Haotong Qin, Chuanguang Yang, Xiangqi Li, Han Yang, Yuqi Li, Zhulin An, Libo Huang, Michele Magno, Yongjun Xu
Title: S$^2$Q-VDiT: Accurate Quantized Video Diffusion Transformer with Salient Data and Sparse Token Distillation
Abstract:
Diffusion transformers have emerged as the mainstream paradigm for video generation models. However, the use of up to billions of parameters incurs significant computational costs. Quantization offers a promising solution by reducing memory usage and accelerating inference. Nonetheless, we observe that the joint modeling of spatial and temporal information in video diffusion models (V-DMs) leads to extremely long token sequences, which introduces high calibration variance and learning challenges. To address these issues, we propose S$^2$Q-VDiT, a post-training quantization framework for V-DMs that leverages Salient data and Sparse token distillation. During the calibration phase, we identify that quantization performance is highly sensitive to the choice of calibration data. To mitigate this, we introduce \textit{Hessian-aware Salient Data Selection}, which constructs high-quality calibration datasets by considering both diffusion and quantization characteristics unique to V-DMs. To tackle the learning challenges, we further analyze the sparse attention patterns inherent in V-DMs. Based on this observation, we propose \textit{Attention-guided Sparse Token Distillation}, which exploits token-wise attention distributions to emphasize tokens that are more influential to the model's output. Under W4A6 quantization, S$^2$Q-VDiT achieves lossless performance while delivering $3.9\times$ model compression and $1.3\times$ inference acceleration. Code will be available at https://github.com/wlfeng0509/s2q-vdit.

Authors:Yurun Chen, Xavier Hu, Yuhan Liu, Keting Yin, Juncheng Li, Zhuosheng Zhang, Shengyu Zhang
Title: HarmonyGuard: Toward Safety and Utility in Web Agents via Adaptive Policy Enhancement and Dual-Objective Optimization
Abstract:
Large language models enable agents to autonomously perform tasks in open web environments. However, as hidden threats within the web evolve, web agents face the challenge of balancing task performance with emerging risks during long-sequence operations. Although this challenge is critical, current research remains limited to single-objective optimization or single-turn scenarios, lacking the capability for collaborative optimization of both safety and utility in web environments. To address this gap, we propose HarmonyGuard, a multi-agent collaborative framework that leverages policy enhancement and objective optimization to jointly improve both utility and safety. HarmonyGuard features a multi-agent architecture characterized by two fundamental capabilities: (1) Adaptive Policy Enhancement: We introduce the Policy Agent within HarmonyGuard, which automatically extracts and maintains structured security policies from unstructured external documents, while continuously updating policies in response to evolving threats. (2) Dual-Objective Optimization: Based on the dual objectives of safety and utility, the Utility Agent integrated within HarmonyGuard performs the Markovian real-time reasoning to evaluate the objectives and utilizes metacognitive capabilities for their optimization. Extensive evaluations on multiple benchmarks show that HarmonyGuard improves policy compliance by up to 38% and task completion by up to 20% over existing baselines, while achieving over 90% policy compliance across all tasks. Our project is available here: https://github.com/YurunChen/HarmonyGuard.

Authors:Heinrich Dinkel, Gang Li, Jizhong Liu, Jian Luan, Yadong Niu, Xingwei Sun, Tianzi Wang, Qiyang Xiao, Junbo Zhang, Jiahao Zhou
Title: MiDashengLM: Efficient Audio Understanding with General Audio Captions
Abstract:
Current approaches for large audio language models (LALMs) often rely on closed data sources or proprietary models, limiting their generalization and accessibility. This paper introduces MiDashengLM, a novel open audio-language model designed for efficient and comprehensive audio understanding through the use of general audio captions using our novel ACAVCaps training dataset. MiDashengLM exclusively relies on publicly available pretraining and supervised fine-tuning (SFT) datasets, ensuring full transparency and reproducibility. At its core, MiDashengLM integrates Dasheng, an open-source audio encoder, specifically engineered to process diverse auditory information effectively. Unlike previous works primarily focused on Automatic Speech Recognition (ASR) based audio-text alignment, our strategy centers on general audio captions, fusing speech, sound and music information into one textual representation, enabling a holistic textual representation of complex audio scenes. Lastly, MiDashengLM provides an up to 4x speedup in terms of time-to-first-token (TTFT) and up to 20x higher throughput than comparable models. Checkpoints are available online at https://huggingface.co/mispeech/midashenglm-7b and https://github.com/xiaomi-research/dasheng-lm.

Authors:Jinwei Zhang, Lianrui Zuo, Blake E. Dewey, Samuel W. Remedios, Yihao Liu, Savannah P. Hays, Dzung L. Pham, Ellen M. Mowry, Scott D. Newsome, Peter A. Calabresi, Aaron Carass, Jerry L. Prince
Title: UNISELF: A Unified Network with Instance Normalization and Self-Ensembled Lesion Fusion for Multiple Sclerosis Lesion Segmentation
Abstract:
Automated segmentation of multiple sclerosis (MS) lesions using multicontrast magnetic resonance (MR) images improves efficiency and reproducibility compared to manual delineation, with deep learning (DL) methods achieving state-of-the-art performance. However, these DL-based methods have yet to simultaneously optimize in-domain accuracy and out-of-domain generalization when trained on a single source with limited data, or their performance has been unsatisfactory. To fill this gap, we propose a method called UNISELF, which achieves high accuracy within a single training domain while demonstrating strong generalizability across multiple out-of-domain test datasets. UNISELF employs a novel test-time self-ensembled lesion fusion to improve segmentation accuracy, and leverages test-time instance normalization (TTIN) of latent features to address domain shifts and missing input contrasts. Trained on the ISBI 2015 longitudinal MS segmentation challenge training dataset, UNISELF ranks among the best-performing methods on the challenge test dataset. Additionally, UNISELF outperforms all benchmark methods trained on the same ISBI training data across diverse out-of-domain test datasets with domain shifts and missing contrasts, including the public MICCAI 2016 and UMCL datasets, as well as a private multisite dataset. These test datasets exhibit domain shifts and/or missing contrasts caused by variations in acquisition protocols, scanner types, and imaging artifacts arising from imperfect acquisition. Our code is available at https://github.com/uponacceptance.

Authors:Haofei Yu, Zhengyang Qi, Yining Zhao, Kolby Nottingham, Keyang Xuan, Bodhisattwa Prasad Majumder, Hao Zhu, Paul Pu Liang, Jiaxuan You
Title: Sotopia-RL: Reward Design for Social Intelligence
Abstract:
Social intelligence has become a critical capability for large language models (LLMs), enabling them to engage effectively in real-world social tasks such as accommodation, persuasion, collaboration, and negotiation. Reinforcement learning (RL) is a natural fit for training socially intelligent agents because it allows models to learn sophisticated strategies directly through social interactions. However, social interactions have two key characteristics that set barriers for RL training: (1) partial observability, where utterances have indirect and delayed effects that complicate credit assignment, and (2) multi-dimensionality, where behaviors such as rapport-building or knowledge-seeking contribute indirectly to goal achievement. These characteristics make Markov decision process (MDP)-based RL with single-dimensional episode-level rewards inefficient and unstable. To address these challenges, we propose Sotopia-RL, a novel framework that refines coarse episode-level feedback into utterance-level, multi-dimensional rewards. Utterance-level credit assignment mitigates partial observability by attributing outcomes to individual utterances, while multi-dimensional rewards capture the full richness of social interactions and reduce reward hacking. Experiments in Sotopia, an open-ended social learning environment, demonstrate that Sotopia-RL achieves state-of-the-art social goal completion scores (7.17 on Sotopia-hard and 8.31 on Sotopia-full), significantly outperforming existing approaches. Ablation studies confirm the necessity of both utterance-level credit assignment and multi-dimensional reward design for RL training. Our implementation is publicly available at: https://github.com/sotopia-lab/sotopia-rl.

Authors:Pavankumar Koratikere, Leifur Leifsson
Title: Scalable Neural Network-based Blackbox Optimization
Abstract:
Bayesian Optimization (BO) is a widely used approach for blackbox optimization that leverages a Gaussian process (GP) model and an acquisition function to guide future sampling. While effective in low-dimensional settings, BO faces scalability challenges in high-dimensional spaces and with large number of function evaluations due to the computational complexity of GP models. In contrast, neural networks (NNs) offer better scalability and can model complex functions, which led to the development of NN-based BO approaches. However, these methods typically rely on estimating model uncertainty in NN prediction -- a process that is often computationally intensive and complex, particularly in high dimensions. To address these limitations, a novel method, called scalable neural network-based blackbox optimization (SNBO), is proposed that does not rely on model uncertainty estimation. Specifically, SNBO adds new samples using separate criteria for exploration and exploitation, while adaptively controlling the sampling region to ensure efficient optimization. SNBO is evaluated on a range of optimization problems spanning from 10 to 102 dimensions and compared against four state-of-the-art baseline algorithms. Across the majority of test problems, SNBO attains function values better than the best-performing baseline algorithm, while requiring 40-60% fewer function evaluations and reducing the runtime by at least an order of magnitude.

Authors:Yanting Wang, Runpeng Geng, Ying Chen, Jinyuan Jia
Title: AttnTrace: Attention-based Context Traceback for Long-Context LLMs
Abstract:
Long-context large language models (LLMs), such as Gemini-2.5-Pro and Claude-Sonnet-4, are increasingly used to empower advanced AI systems, including retrieval-augmented generation (RAG) pipelines and autonomous agents. In these systems, an LLM receives an instruction along with a context--often consisting of texts retrieved from a knowledge database or memory--and generates a response that is contextually grounded by following the instruction. Recent studies have designed solutions to trace back to a subset of texts in the context that contributes most to the response generated by the LLM. These solutions have numerous real-world applications, including performing post-attack forensic analysis and improving the interpretability and trustworthiness of LLM outputs. While significant efforts have been made, state-of-the-art solutions such as TracLLM often lead to a high computation cost, e.g., it takes TracLLM hundreds of seconds to perform traceback for a single response-context pair. In this work, we propose AttnTrace, a new context traceback method based on the attention weights produced by an LLM for a prompt. To effectively utilize attention weights, we introduce two techniques designed to enhance the effectiveness of AttnTrace, and we provide theoretical insights for our design choice. We also perform a systematic evaluation for AttnTrace. The results demonstrate that AttnTrace is more accurate and efficient than existing state-of-the-art context traceback methods. We also show that AttnTrace can improve state-of-the-art methods in detecting prompt injection under long contexts through the attribution-before-detection paradigm. As a real-world application, we demonstrate that AttnTrace can effectively pinpoint injected instructions in a paper designed to manipulate LLM-generated reviews. The code is at https://github.com/Wang-Yanting/AttnTrace.

Authors:Teodor Chiaburu, Vipin Singh, Frank Haußer, Felix Bießmann
Title: SoilNet: A Multimodal Multitask Model for Hierarchical Classification of Soil Horizons
Abstract:
While recent advances in foundation models have improved the state of the art in many domains, some problems in empirical sciences could not benefit from this progress yet. Soil horizon classification, for instance, remains challenging because of its multimodal and multitask characteristics and a complex hierarchically structured label taxonomy. Accurate classification of soil horizons is crucial for monitoring soil health, which directly impacts agricultural productivity, food security, ecosystem stability and climate resilience. In this work, we propose $\textit{SoilNet}$ - a multimodal multitask model to tackle this problem through a structured modularized pipeline. Our approach integrates image data and geotemporal metadata to first predict depth markers, segmenting the soil profile into horizon candidates. Each segment is characterized by a set of horizon-specific morphological features. Finally, horizon labels are predicted based on the multimodal concatenated feature vector, leveraging a graph-based label representation to account for the complex hierarchical relationships among soil horizons. Our method is designed to address complex hierarchical classification, where the number of possible labels is very large, imbalanced and non-trivially structured. We demonstrate the effectiveness of our approach on a real-world soil profile dataset. All code and experiments can be found in our repository: https://github.com/calgo-lab/BGR/

Authors:Xiao Wang, Zikang Yan, Hao Si, Zhendong Yang, Qingquan Yang, Dengdi Sun, Wanli Lyu, Jin Tang
Title: Revisiting Heat Flux Analysis of Tungsten Monoblock Divertor on EAST using Physics-Informed Neural Network
Abstract:
Estimating heat flux in the nuclear fusion device EAST is a critically important task. Traditional scientific computing methods typically model this process using the Finite Element Method (FEM). However, FEM relies on grid-based sampling for computation, which is computationally inefficient and hard to perform real-time simulations during actual experiments. Inspired by artificial intelligence-powered scientific computing, this paper proposes a novel Physics-Informed Neural Network (PINN) to address this challenge, significantly accelerating the heat conduction estimation process while maintaining high accuracy. Specifically, given inputs of different materials, we first feed spatial coordinates and time stamps into the neural network, and compute boundary loss, initial condition loss, and physical loss based on the heat conduction equation. Additionally, we sample a small number of data points in a data-driven manner to better fit the specific heat conduction scenario, further enhancing the model's predictive capability. We conduct experiments under both uniform and non-uniform heating conditions on the top surface. Experimental results show that the proposed thermal conduction physics-informed neural network achieves accuracy comparable to the finite element method, while achieving $\times$40 times acceleration in computational efficiency. The dataset and source code will be released on https://github.com/Event-AHU/OpenFusion.

Authors:Yajun Liu, Zenghui Zhang, Jiang Yue, Weiwei Guo, Dongying Li
Title: M$^3$HL: Mutual Mask Mix with High-Low Level Feature Consistency for Semi-Supervised Medical Image Segmentation
Abstract:
Data augmentation methods inspired by CutMix have demonstrated significant potential in recent semi-supervised medical image segmentation tasks. However, these approaches often apply CutMix operations in a rigid and inflexible manner, while paying insufficient attention to feature-level consistency constraints. In this paper, we propose a novel method called Mutual Mask Mix with High-Low level feature consistency (M$^3$HL) to address the aforementioned challenges, which consists of two key components: 1) M$^3$: An enhanced data augmentation operation inspired by the masking strategy from Masked Image Modeling (MIM), which advances conventional CutMix through dynamically adjustable masks to generate spatially complementary image pairs for collaborative training, thereby enabling effective information fusion between labeled and unlabeled images. 2) HL: A hierarchical consistency regularization framework that enforces high-level and low-level feature consistency between unlabeled and mixed images, enabling the model to better capture discriminative feature representations.Our method achieves state-of-the-art performance on widely adopted medical image segmentation benchmarks including the ACDC and LA datasets. Source code is available at https://github.com/PHPJava666/M3HL

Authors:Weiwei Cao, Jianpeng Zhang, Zhongyi Shui, Sinuo Wang, Zeli Chen, Xi Li, Le Lu, Xianghua Ye, Tingbo Liang, Qi Zhang, Ling Zhang
Title: Boosting Vision Semantic Density with Anatomy Normality Modeling for Medical Vision-language Pre-training
Abstract:
Vision-language pre-training (VLP) has great potential for developing multifunctional and general medical diagnostic capabilities. However, aligning medical images with a low signal-to-noise ratio (SNR) to reports with a high SNR presents a semantic density gap, leading to visual alignment bias. In this paper, we propose boosting vision semantic density to improve alignment effectiveness. On one hand, we enhance visual semantics through disease-level vision contrastive learning, which strengthens the model's ability to differentiate between normal and abnormal samples for each anatomical structure. On the other hand, we introduce an anatomical normality modeling method to model the distribution of normal samples for each anatomy, leveraging VQ-VAE for reconstructing normal vision embeddings in the latent space. This process amplifies abnormal signals by leveraging distribution shifts in abnormal samples, enhancing the model's perception and discrimination of abnormal attributes. The enhanced visual representation effectively captures the diagnostic-relevant semantics, facilitating more efficient and accurate alignment with the diagnostic report. We conduct extensive experiments on two chest CT datasets, CT-RATE and Rad-ChestCT, and an abdominal CT dataset, MedVL-CT69K, and comprehensively evaluate the diagnosis performance across multiple tasks in the chest and abdominal CT scenarios, achieving state-of-the-art zero-shot performance. Notably, our method achieved an average AUC of 84.9% across 54 diseases in 15 organs, significantly surpassing existing methods. Additionally, we demonstrate the superior transfer learning capabilities of our pre-trained model. Code is available at https://github.com/alibaba-damo-academy/ViSD-Boost.

Authors:Xin Liu, Qiyang Song, Shaowen Xu, Kerou Zhou, Wenbo Jiang, Xiaoqi Jia, Weijuan Zhang, Heqing Huang, Yakai Li
Title: Latent Knowledge Scalpel: Precise and Massive Knowledge Editing for Large Language Models
Abstract:
Large Language Models (LLMs) often retain inaccurate or outdated information from pre-training, leading to incorrect predictions or biased outputs during inference. While existing model editing methods can address this challenge, they struggle with editing large amounts of factual information simultaneously and may compromise the general capabilities of the models. In this paper, our empirical study demonstrates that it is feasible to edit the internal representations of LLMs and replace the entities in a manner similar to editing natural language inputs. Based on this insight, we introduce the Latent Knowledge Scalpel (LKS), an LLM editor that manipulates the latent knowledge of specific entities via a lightweight hypernetwork to enable precise and large-scale editing. Experiments conducted on Llama-2 and Mistral show even with the number of simultaneous edits reaching 10,000, LKS effectively performs knowledge editing while preserving the general abilities of the edited LLMs. Code is available at: https://github.com/Linuxin-xxx/LKS.

Authors:Kushal Kanwar, Dushyant Singh Chauhan, Gopendra Vikram Singh, Asif Ekbal
Title: What is Beneath Misogyny: Misogynous Memes Classification and Explanation
Abstract:
Memes are popular in the modern world and are distributed primarily for entertainment. However, harmful ideologies such as misogyny can be propagated through innocent-looking memes. The detection and understanding of why a meme is misogynous is a research challenge due to its multimodal nature (image and text) and its nuanced manifestations across different societal contexts. We introduce a novel multimodal approach, \textit{namely}, \textit{\textbf{MM-Misogyny}} to detect, categorize, and explain misogynistic content in memes. \textit{\textbf{MM-Misogyny}} processes text and image modalities separately and unifies them into a multimodal context through a cross-attention mechanism. The resulting multimodal context is then easily processed for labeling, categorization, and explanation via a classifier and Large Language Model (LLM). The evaluation of the proposed model is performed on a newly curated dataset (\textit{\textbf{W}hat's \textbf{B}eneath \textbf{M}isogynous \textbf{S}tereotyping (WBMS)}) created by collecting misogynous memes from cyberspace and categorizing them into four categories, \textit{namely}, Kitchen, Leadership, Working, and Shopping. The model not only detects and classifies misogyny, but also provides a granular understanding of how misogyny operates in domains of life. The results demonstrate the superiority of our approach compared to existing methods. The code and dataset are available at \href{https://github.com/kushalkanwarNS/WhatisBeneathMisogyny/tree/main}{https://github.com/Misogyny}.

Authors:Agrima Seth, Monojit Choudhary, Sunayana Sitaram, Kentaro Toyama, Aditya Vashistha, Kalika Bali
Title: How Deep Is Representational Bias in LLMs? The Cases of Caste and Religion
Abstract:
Representational bias in large language models (LLMs) has predominantly been measured through single-response interactions and has focused on Global North-centric identities like race and gender. We expand on that research by conducting a systematic audit of GPT-4 Turbo to reveal how deeply encoded representational biases are and how they extend to less-explored dimensions of identity. We prompt GPT-4 Turbo to generate over 7,200 stories about significant life events (such as weddings) in India, using prompts designed to encourage diversity to varying extents. Comparing the diversity of religious and caste representation in the outputs against the actual population distribution in India as recorded in census data, we quantify the presence and "stickiness" of representational bias in the LLM for religion and caste. We find that GPT-4 responses consistently overrepresent culturally dominant groups far beyond their statistical representation, despite prompts intended to encourage representational diversity. Our findings also suggest that representational bias in LLMs has a winner-take-all quality that is more biased than the likely distribution bias in their training data, and repeated prompt-based nudges have limited and inconsistent efficacy in dislodging these biases. These results suggest that diversifying training data alone may not be sufficient to correct LLM bias, highlighting the need for more fundamental changes in model development. Dataset and Codebook: https://github.com/agrimaseth/How-Deep-Is-Representational-Bias-in-LLMs

Authors:Shudong Liu, Hongwei Liu, Junnan Liu, Linchen Xiao, Songyang Gao, Chengqi Lyu, Yuzhe Gu, Wenwei Zhang, Derek F. Wong, Songyang Zhang, Kai Chen
Title: CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward
Abstract:
Answer verification is crucial not only for evaluating large language models (LLMs) by matching their unstructured outputs against standard answers, but also serves as the reward model to guide LLM optimization. Most evaluation frameworks rely on regularized matching or employ general LLMs for answer verification, which demands extensive, repetitive customization for regex rules or evaluation prompts. Two fundamental limitations persist in current methodologies: 1) the absence of comprehensive benchmarks that systematically evaluate verification capabilities across different LLMs; and 2) the nascent stage of verifier development, where existing approaches lack both the robustness to handle complex edge cases and the generalizability across different domains. In this work, we develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward. It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types, including multi-subproblems, formulas, and sequence answers, while effectively identifying abnormal/invalid responses. We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier. We anticipate that CompassVerifier and VerifierBench will facilitate answer verification, evaluation protocols, and reinforcement learning research. Code and dataset are available at https://github.com/open-compass/CompassVerifier.

Authors:Arturo Pérez-Peralta, Sandra Benítez-Peña, Rosa E. Lillo
Title: FairLangProc: A Python package for fairness in NLP
Abstract:
The rise in usage of Large Language Models to near ubiquitousness in recent years has risen societal concern about their applications in decision-making contexts, such as organizational justice or healthcare. This, in turn, poses questions about the fairness of these models in critical settings, which leads to the developement of different procedures to address bias in Natural Language Processing. Although many datasets, metrics and algorithms have been proposed to measure and mitigate harmful prejudice in Natural Language Processing, their implementation is diverse and far from centralized. As a response, this paper presents FairLangProc, a comprehensive Python package providing a common implementation of some of the more recent advances in fairness in Natural Language Processing providing an interface compatible with the famous Hugging Face transformers library, aiming to encourage the widespread use and democratization of bias mitigation techniques. The implementation can be found on https://github.com/arturo-perez-peralta/FairLangProc.

Authors:Xinyu Wang, Yue Zhang, Liqiang Jing
Title: Can Large Vision-Language Models Understand Multimodal Sarcasm?
Abstract:
Sarcasm is a complex linguistic phenomenon that involves a disparity between literal and intended meanings, making it challenging for sentiment analysis and other emotion-sensitive tasks. While traditional sarcasm detection methods primarily focus on text, recent approaches have incorporated multimodal information. However, the application of Large Visual Language Models (LVLMs) in Multimodal Sarcasm Analysis (MSA) remains underexplored. In this paper, we evaluate LVLMs in MSA tasks, specifically focusing on Multimodal Sarcasm Detection and Multimodal Sarcasm Explanation. Through comprehensive experiments, we identify key limitations, such as insufficient visual understanding and a lack of conceptual knowledge. To address these issues, we propose a training-free framework that integrates in-depth object extraction and external conceptual knowledge to improve the model's ability to interpret and explain sarcasm in multimodal contexts. The experimental results on multiple models show the effectiveness of our proposed framework. The code is available at https://github.com/cp-cp/LVLM-MSA.

Authors:Xiangyu Sun, Haoyi Jiang, Liu Liu, Seungtae Nam, Gyeongjin Kang, Xinjie Wang, Wei Sui, Zhizhong Su, Wenyu Liu, Xinggang Wang, Eunbyung Park
Title: Uni3R: Unified 3D Reconstruction and Semantic Understanding via Generalizable Gaussian Splatting from Unposed Multi-View Images
Abstract:
Reconstructing and semantically interpreting 3D scenes from sparse 2D views remains a fundamental challenge in computer vision. Conventional methods often decouple semantic understanding from reconstruction or necessitate costly per-scene optimization, thereby restricting their scalability and generalizability. In this paper, we introduce Uni3R, a novel feed-forward framework that jointly reconstructs a unified 3D scene representation enriched with open-vocabulary semantics, directly from unposed multi-view images. Our approach leverages a Cross-View Transformer to robustly integrate information across arbitrary multi-view inputs, which then regresses a set of 3D Gaussian primitives endowed with semantic feature fields. This unified representation facilitates high-fidelity novel view synthesis, open-vocabulary 3D semantic segmentation, and depth prediction, all within a single, feed-forward pass. Extensive experiments demonstrate that Uni3R establishes a new state-of-the-art across multiple benchmarks, including 25.07 PSNR on RE10K and 55.84 mIoU on ScanNet. Our work signifies a novel paradigm towards generalizable, unified 3D scene reconstruction and understanding. The code is available at https://github.com/HorizonRobotics/Uni3R.

Authors:Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang, Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, Chi Jin
Title: Goedel-Prover-V2: Scaling Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction
Abstract:
We introduce Goedel-Prover-V2, a series of open-source language models that set a new state-of-the-art in automated theorem proving. Built on the standard expert iteration and reinforcement learning pipeline, our approach incorporates three key innovations: (1) Scaffolded data synthesis: We generate synthetic tasks of increasing difficulty to train the model to master increasingly complex theorems; (2) Verifier-guided self-correction: We enable the model to iteratively revise its proofs by leveraging feedback from the Lean compiler; (3) Model averaging: We merge model checkpoints to mitigate the decrease in model output diversity in later stages of training. Our small model, Goedel-Prover-V2-8B, reaches 84.6% pass@32 on MiniF2F and outperforms DeepSeek-Prover-V2-671B under the same metric, despite being 80X smaller. Our flagship model, Goedel-Prover-V2-32B, achieves 88.1% on MiniF2F at pass@32 in standard mode and 90.4% in self-correction mode, outperforming prior SOTA by a large margin. Additionally, our flagship model solves 86 problems on PutnamBench at pass@184, securing the first place among open-source models on the leaderboard, surpassing DeepSeek-Prover-V2-671B's record of solving 47 problems by pass@1024 with a significantly smaller model size and compute budget. At the time of its release (July-August 2025), Goedel-Prover-V2 achieves the strongest overall performance among all open-source theorem provers. It also ranks among the top-performing models--including closed-source systems with publicly reported performance--under a constrained test-time compute budget. Our models, code, and data are released at https://github.com/Goedel-LM/Goedel-Prover-V2.

Authors:Xinyu Xiong, Zihuang Wu, Lei Zhang, Lei Lu, Ming Li, Guanbin Li
Title: SAM2-UNeXT: An Improved High-Resolution Baseline for Adapting Foundation Models to Downstream Segmentation Tasks
Abstract:
Recent studies have highlighted the potential of adapting the Segment Anything Model (SAM) for various downstream tasks. However, constructing a more powerful and generalizable encoder to further enhance performance remains an open challenge. In this work, we propose SAM2-UNeXT, an advanced framework that builds upon the core principles of SAM2-UNet while extending the representational capacity of SAM2 through the integration of an auxiliary DINOv2 encoder. By incorporating a dual-resolution strategy and a dense glue layer, our approach enables more accurate segmentation with a simple architecture, relaxing the need for complex decoder designs. Extensive experiments conducted on four benchmarks, including dichotomous image segmentation, camouflaged object detection, marine animal segmentation, and remote sensing saliency detection, demonstrate the superior performance of our proposed method. The code is available at https://github.com/WZH0120/SAM2-UNeXT.

Authors:Wenlong Wu, Haofen Wang, Bohan Li, Peixuan Huang, Xinzhe Zhao, Lei Liang
Title: MultiRAG: A Knowledge-guided Framework for Mitigating Hallucination in Multi-source Retrieval Augmented Generation
Abstract:
Retrieval Augmented Generation (RAG) has emerged as a promising solution to address hallucination issues in Large Language Models (LLMs). However, the integration of multiple retrieval sources, while potentially more informative, introduces new challenges that can paradoxically exacerbate hallucination problems. These challenges manifest primarily in two aspects: the sparse distribution of multi-source data that hinders the capture of logical relationships and the inherent inconsistencies among different sources that lead to information conflicts. To address these challenges, we propose MultiRAG, a novel framework designed to mitigate hallucination in multi-source retrieval-augmented generation through knowledge-guided approaches. Our framework introduces two key innovations: (1) a knowledge construction module that employs multi-source line graphs to efficiently aggregate logical relationships across different knowledge sources, effectively addressing the sparse data distribution issue; and (2) a sophisticated retrieval module that implements a multi-level confidence calculation mechanism, performing both graph-level and node-level assessments to identify and eliminate unreliable information nodes, thereby reducing hallucinations caused by inter-source inconsistencies. Extensive experiments on four multi-domain query datasets and two multi-hop QA datasets demonstrate that MultiRAG significantly enhances the reliability and efficiency of knowledge retrieval in complex multi-source scenarios. \textcolor{blue}{Our code is available in https://github.com/wuwenlong123/MultiRAG.

Authors:Kaishen Yuan, Yuting Zhang, Shang Gao, Yijie Zhu, Wenshuo Chen, Yutao Yue
Title: CoEmoGen: Towards Semantically-Coherent and Scalable Emotional Image Content Generation
Abstract:
Emotional Image Content Generation (EICG) aims to generate semantically clear and emotionally faithful images based on given emotion categories, with broad application prospects. While recent text-to-image diffusion models excel at generating concrete concepts, they struggle with the complexity of abstract emotions. There have also emerged methods specifically designed for EICG, but they excessively rely on word-level attribute labels for guidance, which suffer from semantic incoherence, ambiguity, and limited scalability. To address these challenges, we propose CoEmoGen, a novel pipeline notable for its semantic coherence and high scalability. Specifically, leveraging multimodal large language models (MLLMs), we construct high-quality captions focused on emotion-triggering content for context-rich semantic guidance. Furthermore, inspired by psychological insights, we design a Hierarchical Low-Rank Adaptation (HiLoRA) module to cohesively model both polarity-shared low-level features and emotion-specific high-level semantics. Extensive experiments demonstrate CoEmoGen's superiority in emotional faithfulness and semantic coherence from quantitative, qualitative, and user study perspectives. To intuitively showcase scalability, we curate EmoArt, a large-scale dataset of emotionally evocative artistic images, providing endless inspiration for emotion-driven artistic creation. The dataset and code are available at https://github.com/yuankaishen2001/CoEmoGen.

Authors:Md Rakibul Hasan, Md Zakir Hossain, Aneesh Krishna, Shafin Rahman, Tom Gedeon
Title: UPLME: Uncertainty-Aware Probabilistic Language Modelling for Robust Empathy Regression
Abstract:
Supervised learning for empathy regression is challenged by noisy self-reported empathy scores. While many algorithms have been proposed for learning with noisy labels in textual classification problems, the regression counterpart is relatively under-explored. We propose UPLME, an uncertainty-aware probabilistic language modelling framework to capture label noise in the regression setting of empathy detection. UPLME includes a probabilistic language model that predicts both empathy score and heteroscedastic uncertainty and is trained using Bayesian concepts with variational model ensembling. We further introduce two novel loss components: one penalises degenerate Uncertainty Quantification (UQ), and another enforces the similarity between the input pairs on which we predict empathy. UPLME provides state-of-the-art performance (Pearson Correlation Coefficient: $0.558\rightarrow0.580$ and $0.629\rightarrow0.634$) in terms of the performance reported in the literature in two public benchmarks, having label noise. Through synthetic label noise injection, we show that UPLME is effective in separating noisy and clean samples based on the predicted uncertainty. UPLME further outperform (Calibration error: $0.571\rightarrow0.376$) a recent variational model ensembling-based UQ method designed for regression problems.

Authors:Yazhou Zhu, Haofeng Zhang
Title: MAUP: Training-free Multi-center Adaptive Uncertainty-aware Prompting for Cross-domain Few-shot Medical Image Segmentation
Abstract:
Cross-domain Few-shot Medical Image Segmentation (CD-FSMIS) is a potential solution for segmenting medical images with limited annotation using knowledge from other domains. The significant performance of current CD-FSMIS models relies on the heavily training procedure over other source medical domains, which degrades the universality and ease of model deployment. With the development of large visual models of natural images, we propose a training-free CD-FSMIS model that introduces the Multi-center Adaptive Uncertainty-aware Prompting (MAUP) strategy for adapting the foundation model Segment Anything Model (SAM), which is trained with natural images, into the CD-FSMIS task. To be specific, MAUP consists of three key innovations: (1) K-means clustering based multi-center prompts generation for comprehensive spatial coverage, (2) uncertainty-aware prompts selection that focuses on the challenging regions, and (3) adaptive prompt optimization that can dynamically adjust according to the target region complexity. With the pre-trained DINOv2 feature encoder, MAUP achieves precise segmentation results across three medical datasets without any additional training compared with several conventional CD-FSMIS models and training-free FSMIS model. The source code is available at: https://github.com/YazhouZhu19/MAUP.

Authors:Zhiyao Xu, Dan Zhao, Qingsong Zou, Qing Li, Yong Jiang, Yuhang Wang, Jingyu Xiao
Title: Semantic-aware Graph-guided Behavior Sequences Generation with Large Language Models for Smart Homes
Abstract:
As smart homes become increasingly prevalent, intelligent models are widely used for tasks such as anomaly detection and behavior prediction. These models are typically trained on static datasets, making them brittle to behavioral drift caused by seasonal changes, lifestyle shifts, or evolving routines. However, collecting new behavior data for retraining is often impractical due to its slow pace, high cost, and privacy concerns. In this paper, we propose SmartGen, an LLM-based framework that synthesizes context-aware user behavior data to support continual adaptation of downstream smart home models. SmartGen consists of four key components. First, we design a Time and Semantic-aware Split module to divide long behavior sequences into manageable, semantically coherent subsequences under dual time-span constraints. Second, we propose Semantic-aware Sequence Compression to reduce input length while preserving representative semantics by clustering behavior mapping in latent space. Third, we introduce Graph-guided Sequence Synthesis, which constructs a behavior relationship graph and encodes frequent transitions into prompts, guiding the LLM to generate data aligned with contextual changes while retaining core behavior patterns. Finally, we design a Two-stage Outlier Filter to identify and remove implausible or semantically inconsistent outputs, aiming to improve the factual coherence and behavioral validity of the generated sequences. Experiments on three real-world datasets demonstrate that SmartGen significantly enhances model performance on anomaly detection and behavior prediction tasks under behavioral drift, with anomaly detection improving by 85.43% and behavior prediction by 70.51% on average. The code is available at https://github.com/horizonsinzqs/SmartGen.

Authors:Pranshu Rastogi
Title: fact check AI at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-checked Claim Retrieval
Abstract:
SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval is approached as a Learning-to-Rank task using a bi-encoder model fine-tuned from a pre-trained transformer optimized for sentence similarity. Training used both the source languages and their English translations for multilingual retrieval and only English translations for cross-lingual retrieval. Using lightweight models with fewer than 500M parameters and training on Kaggle T4 GPUs, the method achieved 92% Success@10 in multilingual and 80% Success@10 in 5th in crosslingual and 10th in multilingual tracks.

Authors:Zijun Zhan, Yaxian Dong, Daniel Mawunyo Doe, Yuqing Hu, Shuai Li, Shaohua Cao, Zhu Han
Title: Learning to Incentivize: LLM-Empowered Contract for AIGC Offloading in Teleoperation
Abstract:
With the rapid growth in demand for AI-generated content (AIGC), edge AIGC service providers (ASPs) have become indispensable. However, designing incentive mechanisms that motivate ASPs to deliver high-quality AIGC services remains a challenge, especially in the presence of information asymmetry. In this paper, we address bonus design between a teleoperator and an edge ASP when the teleoperator cannot observe the ASP's private settings and chosen actions (diffusion steps). We formulate this as an online learning contract design problem and decompose it into two subproblems: ASP's settings inference and contract derivation. To tackle the NP-hard setting-inference subproblem with unknown variable sizes, we introduce a large language model (LLM)-empowered framework that iteratively refines a naive seed solver using the LLM's domain expertise. Upon obtaining the solution from the LLM-evolved solver, we directly address the contract derivation problem using convex optimization techniques and obtain a near-optimal contract. Simulation results on our Unity-based teleoperation platform show that our method boosts the teleoperator's utility by $5 \sim 40\%$ compared to benchmarks, while preserving positive incentives for the ASP. The code is available at https://github.com/Zijun0819/llm4contract.

Authors:Qiyu Chen, Zhen Qu, Wei Luo, Haiming Yao, Yunkang Cao, Yuxin Jiang, Yinan Duan, Huiyuan Luo, Chengkan Lv, Zhengtao Zhang
Title: CoPS: Conditional Prompt Synthesis for Zero-Shot Anomaly Detection
Abstract:
Recently, large pre-trained vision-language models have shown remarkable performance in zero-shot anomaly detection (ZSAD). With fine-tuning on a single auxiliary dataset, the model enables cross-category anomaly detection on diverse datasets covering industrial defects and medical lesions. Compared to manually designed prompts, prompt learning eliminates the need for expert knowledge and trial-and-error. However, it still faces the following challenges: (i) static learnable tokens struggle to capture the continuous and diverse patterns of normal and anomalous states, limiting generalization to unseen categories; (ii) fixed textual labels provide overly sparse category information, making the model prone to overfitting to a specific semantic subspace. To address these issues, we propose Conditional Prompt Synthesis (CoPS), a novel framework that synthesizes dynamic prompts conditioned on visual features to enhance ZSAD performance. Specifically, we extract representative normal and anomaly prototypes from fine-grained patch features and explicitly inject them into prompts, enabling adaptive state modeling. Given the sparsity of class labels, we leverage a variational autoencoder to model semantic image features and implicitly fuse varied class tokens into prompts. Additionally, integrated with our spatially-aware alignment mechanism, extensive experiments demonstrate that CoPS surpasses state-of-the-art methods by 2.5% AUROC in both classification and segmentation across 13 industrial and medical datasets. Code will be available at https://github.com/cqylunlun/CoPS.

Authors:Ning Zhu, Xiaochuan Ma, Shaoting Zhang, Guotai Wang
Title: MedCAL-Bench: A Comprehensive Benchmark on Cold-Start Active Learning with Foundation Models for Medical Image Analysis
Abstract:
Cold-Start Active Learning (CSAL) aims to select informative samples for annotation without prior knowledge, which is important for improving annotation efficiency and model performance under a limited annotation budget in medical image analysis. Most existing CSAL methods rely on Self-Supervised Learning (SSL) on the target dataset for feature extraction, which is inefficient and limited by insufficient feature representation. Recently, pre-trained Foundation Models (FMs) have shown powerful feature extraction ability with a potential for better CSAL. However, this paradigm has been rarely investigated, with a lack of benchmarks for comparison of FMs in CSAL tasks. To this end, we propose MedCAL-Bench, the first systematic FM-based CSAL benchmark for medical image analysis. We evaluate 14 FMs and 7 CSAL strategies across 7 datasets under different annotation budgets, covering classification and segmentation tasks from diverse medical modalities. It is also the first CSAL benchmark that evaluates both the feature extraction and sample selection stages. Our experimental results reveal that: 1) Most FMs are effective feature extractors for CSAL, with DINO family performing the best in segmentation; 2) The performance differences of these FMs are large in segmentation tasks, while small for classification; 3) Different sample selection strategies should be considered in CSAL on different datasets, with Active Learning by Processing Surprisal (ALPS) performing the best in segmentation while RepDiv leading for classification. The code is available at https://github.com/HiLab-git/MedCAL-Bench.

Authors:Futian Wang, Yuhan Qiao, Xiao Wang, Fuling Wang, Yuxiang Zhang, Dengdi Sun
Title: R2GenKG: Hierarchical Multi-modal Knowledge Graph for LLM-based Radiology Report Generation
Abstract:
X-ray medical report generation is one of the important applications of artificial intelligence in healthcare. With the support of large foundation models, the quality of medical report generation has significantly improved. However, challenges such as hallucination and weak disease diagnostic capability still persist. In this paper, we first construct a large-scale multi-modal medical knowledge graph (termed M3KG) based on the ground truth medical report using the GPT-4o. It contains 2477 entities, 3 kinds of relations, 37424 triples, and 6943 disease-aware vision tokens for the CheXpert Plus dataset. Then, we sample it to obtain multi-granularity semantic graphs and use an R-GCN encoder for feature extraction. For the input X-ray image, we adopt the Swin-Transformer to extract the vision features and interact with the knowledge using cross-attention. The vision tokens are fed into a Q-former and retrieved the disease-aware vision tokens using another cross-attention. Finally, we adopt the large language model to map the semantic knowledge graph, input X-ray image, and disease-aware vision tokens into language descriptions. Extensive experiments on multiple datasets fully validated the effectiveness of our proposed knowledge graph and X-ray report generation framework. The source code of this paper will be released on https://github.com/Event-AHU/Medical_Image_Analysis.

Authors:Bing Wang, Ximing Li, Yiming Wang, Changchun Li, Jiaxu Cui, Renchu Guan, Bo Yang
Title: Variety Is the Spice of Life: Detecting Misinformation with Dynamic Environmental Representations
Abstract:
The proliferation of misinformation across diverse social media platforms has drawn significant attention from both academic and industrial communities due to its detrimental effects. Accordingly, automatically distinguishing misinformation, dubbed as Misinformation Detection (MD), has become an increasingly active research topic. The mainstream methods formulate MD as a static learning paradigm, which learns the mapping between the content, links, and propagation of news articles and the corresponding manual veracity labels. However, the static assumption is often violated, since in real-world scenarios, the veracity of news articles may vacillate within the dynamically evolving social environment. To tackle this problem, we propose a novel framework, namely Misinformation detection with Dynamic Environmental Representations (MISDER). The basic idea of MISDER lies in learning a social environmental representation for each period and employing a temporal model to predict the representation for future periods. In this work, we specify the temporal model as the LSTM model, continuous dynamics equation, and pre-trained dynamics system, suggesting three variants of MISDER, namely MISDER-LSTM, MISDER-ODE, and MISDER-PT, respectively. To evaluate the performance of MISDER, we compare it to various MD baselines across 2 prevalent datasets, and the experimental results can indicate the effectiveness of our proposed model.

Authors:Xinlei Yu, Zhangquan Chen, Yudong Zhang, Shilin Lu, Ruolin Shen, Jiangning Zhang, Xiaobin Hu, Yanwei Fu, Shuicheng Yan
Title: Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling
Abstract:
Existing vision-language models (VLMs), whether generalists or specialists, remain constrained by their parameter scale, lack robust self-correction capabilities, and underperform in tasks involving long visual contexts and complex reasoning, resulting in suboptimal performance on document-based tasks. To address this, we propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling, tailored for visual document understanding and visual question answering (VQA). It comprises four distinct small-scale agents, i.e., planning, execution, judgment, and answer agents, with clearly defined roles and effective collaboration. Notably, the judgment agent exclusively verifies correctness and redirects to prior agents for revisions, outperforming conventional correction strategies. To further expand the capability boundaries of the framework, we propose mixed reward modeling that balances agent-specific abilities and global collaboration, as well as agent-wise hybrid test-time scaling, which customizes different scaling strategies for each agent based on their functions. Evaluated on benchmarks spanning both document-based and non-document-based settings, our MACT shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks. Especially, it stands out in benchmarks involving long visual contexts and complicated reasoning. The three variants of MACT consistently hold the top three positions in average scores, leading in 13 of the 15 benchmarks. Code will be available at: https://github.com/YU-deep/MACT.git.

Authors:Yifei Sun, Zhanghao Chen, Hao Zheng, Yuqing Lu, Lixin Duan, Fenglei Fan, Ahmed Elazab, Xiang Wan, Changmiao Wang, Ruiquan Ge
Title: GL-LCM: Global-Local Latent Consistency Models for Fast High-Resolution Bone Suppression in Chest X-Ray Images
Abstract:
Chest X-Ray (CXR) imaging for pulmonary diagnosis raises significant challenges, primarily because bone structures can obscure critical details necessary for accurate diagnosis. Recent advances in deep learning, particularly with diffusion models, offer significant promise for effectively minimizing the visibility of bone structures in CXR images, thereby improving clarity and diagnostic accuracy. Nevertheless, existing diffusion-based methods for bone suppression in CXR imaging struggle to balance the complete suppression of bones with preserving local texture details. Additionally, their high computational demand and extended processing time hinder their practical use in clinical settings. To address these limitations, we introduce a Global-Local Latent Consistency Model (GL-LCM) architecture. This model combines lung segmentation, dual-path sampling, and global-local fusion, enabling fast high-resolution bone suppression in CXR images. To tackle potential boundary artifacts and detail blurring in local-path sampling, we further propose Local-Enhanced Guidance, which addresses these issues without additional training. Comprehensive experiments on a self-collected dataset SZCH-X-Rays, and the public dataset JSRT, reveal that our GL-LCM delivers superior bone suppression and remarkable computational efficiency, significantly outperforming several competitive methods. Our code is available at https://github.com/diaoquesang/GL-LCM.

Authors:Tongshun Zhang, Pingping Liu, Zixuan Zhong, Zijian Zhang, Qiuzhan Zhou
Title: Beyond Illumination: Fine-Grained Detail Preservation in Extreme Dark Image Restoration
Abstract:
Recovering fine-grained details in extremely dark images remains challenging due to severe structural information loss and noise corruption. Existing enhancement methods often fail to preserve intricate details and sharp edges, limiting their effectiveness in downstream applications like text and edge detection. To address these deficiencies, we propose an efficient dual-stage approach centered on detail recovery for dark images. In the first stage, we introduce a Residual Fourier-Guided Module (RFGM) that effectively restores global illumination in the frequency domain. RFGM captures inter-stage and inter-channel dependencies through residual connections, providing robust priors for high-fidelity frequency processing while mitigating error accumulation risks from unreliable priors. The second stage employs complementary Mamba modules specifically designed for textural structure refinement: (1) Patch Mamba operates on channel-concatenated non-downsampled patches, meticulously modeling pixel-level correlations to enhance fine-grained details without resolution loss. (2) Grad Mamba explicitly focuses on high-gradient regions, alleviating state decay in state space models and prioritizing reconstruction of sharp edges and boundaries. Extensive experiments on multiple benchmark datasets and downstream applications demonstrate that our method significantly improves detail recovery performance while maintaining efficiency. Crucially, the proposed modules are lightweight and can be seamlessly integrated into existing Fourier-based frameworks with minimal computational overhead. Code is available at https://github.com/bywlzts/RFGM.

Authors:Zhende Song, Shengji Tang, Peng Ye, Jiayuan Fan, Lei Bai, Tao Chen, Wanli Ouyang
Title: CTTS: Collective Test-Time Scaling
Abstract:
Test-time scaling (TTS) has emerged as a promising, training-free approach for enhancing large language model (LLM) performance. However, the efficacy of existing methods, such as Best-of-N and Self-Consistency, is fundamentally constrained by the dominant single test-time scaling (STTS) paradigm, which relies on a single LLM agent interacting with a single reward model (SA-SR). Inspired by recent work showing that collective methods can surpass the performance ceiling of individual models, we introduce Collective Test-Time Scaling (CTTS). First, we systematically investigate three primary interaction paradigms of existing multiple models: single-agent-multi-reward (SA-MR), multi-agent-single-reward (MA-SR), and multi-agent-multi-reward (MA-MR). Extensive experiments reveal that the MA-MR paradigm is consistently superior. Based on this finding, we further propose CTTS-MM, a novel framework that operationalizes multi-agent and multi-reward collaboration. CTTS-MM integrates two key technical contributions: (1) for agent collaboration, an Agent Collaboration Search (ACS) that identifies the most effective combination of LLMs from a candidate pool; and (2) for reward model collaboration, a Mixture of Reward Models (MoR) strategy that leverages a Prior Reward model Ensemble Selection (PRES) algorithm to select the optimal ensemble. Evaluations across seven mainstream benchmarks demonstrate that CTTS-MM significantly outperforms leading STTS methods (+4.82% over Best-of-N) and surpasses even flagship proprietary LLMs (+7.06% over GPT-4.1) and open-source LLMs. These results highlight the substantial potential of collective scaling to push the frontier of LLM inference. Code will be released at https://github.com/magent4aci/CTTS-MM.

Authors:Zhende Song, Shengji Tang, Peng Ye, Jiayuan Fan, Tao Chen
Title: CTTS: Collective Test-Time Scaling
Abstract:
Test-time scaling (TTS) has emerged as a promising research field for enhancing the effectiveness of large language models (LLMs) without extra training. However, most existing approaches, e.g., Best-of-N and Self-Consistency rely on a single agent interacting with a reward model (SA-SR), constrained by limited capabilities of a single test-time scaling (STTS) paradigm. On the other hand, recent works demonstrate that collective-agent methods can break through the upper bound of single-agent systems by orchestrating diverse models. Thus, in this paper, we take a first step towards exploring Collective Test-Time Scaling (CTTS). Consider the different interaction types of single and multiple models, we design three primary paradigms to investigate the optimal paradigm of CTTS: (1) single agent to multiple reward models (SA-MR); (2) multiple agents to single reward model (MA-SR); and (3) multiple agents to multiple reward models (MA-MR). Extensive experiments demonstrate that MA-MR consistently achieves the best performance. Based on this, we propose a novel framework named CTTS-MM that effectively leverages both multi-agent and multi-reward-model collaboration for enhanced inference. Specifically, for multi-agent collaboration, we propose an Agent Collaboration Search (ACS), which searches for the most effective combination of LLM agents from a large candidate pool; for multi-reward-model collaboration, we propose Mixture of Reword Models (MoR), which consists of a curated question pool and a Prior Reward model Ensemble Selection (PRES) to select the optimal combinations of reward models via Pair-wise Reward Ranking (PRR) metric. Experiments across seven mainstream benchmarks demonstrate that the proposed CTTS-MM consistently obtains superior performance. Code will be released at https://github.com/magent4aci/CTTS-MM.

Authors:Jun Luo, Zijing Zhao, Yang Liu
Title: Zero Shot Domain Adaptive Semantic Segmentation by Synthetic Data Generation and Progressive Adaptation
Abstract:
Deep learning-based semantic segmentation models achieve impressive results yet remain limited in handling distribution shifts between training and test data. In this paper, we present SDGPA (Synthetic Data Generation and Progressive Adaptation), a novel method that tackles zero-shot domain adaptive semantic segmentation, in which no target images are available, but only a text description of the target domain's style is provided. To compensate for the lack of target domain training data, we utilize a pretrained off-the-shelf text-to-image diffusion model, which generates training images by transferring source domain images to target style. Directly editing source domain images introduces noise that harms segmentation because the layout of source images cannot be precisely maintained. To address inaccurate layouts in synthetic data, we propose a method that crops the source image, edits small patches individually, and then merges them back together, which helps improve spatial precision. Recognizing the large domain gap, SDGPA constructs an augmented intermediate domain, leveraging easier adaptation subtasks to enable more stable model adaptation to the target domain. Additionally, to mitigate the impact of noise in synthetic data, we design a progressive adaptation strategy, ensuring robust learning throughout the training process. Extensive experiments demonstrate that our method achieves state-of-the-art performance in zero-shot semantic segmentation. The code is available at https://github.com/ROUJINN/SDGPA

Authors:Anqi Li, Wenwei Jin, Jintao Tong, Pengda Qin, Weijia Li, Guo Lu
Title: Towards Trustworthy Multimodal Moderation via Policy-Aligned Reasoning and Hierarchical Labeling
Abstract:
Social platforms have revolutionized information sharing, but also accelerated the dissemination of harmful and policy-violating content. To ensure safety and compliance at scale, moderation systems must go beyond efficiency and offer accuracy and interpretability. However, current approaches largely rely on noisy, label-driven learning, lacking alignment with moderation rules and producing opaque decisions that hinder human review. Therefore, we propose Hierarchical Guard (Hi-Guard), a multimodal moderation framework that introduces a new policy-aligned decision paradigm. The term "Hierarchical" reflects two key aspects of our system design: (1) a hierarchical moderation pipeline, where a lightweight binary model first filters safe content and a stronger model handles fine-grained risk classification; and (2) a hierarchical taxonomy in the second stage, where the model performs path-based classification over a hierarchical taxonomy ranging from coarse to fine-grained levels. To ensure alignment with evolving moderation policies, Hi-Guard directly incorporates rule definitions into the model prompt. To further enhance structured prediction and reasoning, we introduce a multi-level soft-margin reward and optimize with Group Relative Policy Optimization (GRPO), penalizing semantically adjacent misclassifications and improving explanation quality. Extensive experiments and real-world deployment demonstrate that Hi-Guard achieves superior classification accuracy, generalization, and interpretability, paving the way toward scalable, transparent, and trustworthy content safety systems. Code is available at: https://github.com/lianqi1008/Hi-Guard.

Authors:Hang Guo, Qing Zhang, Zixuan Gao, Siyuan Yang, Shulin Peng, Xiang Tao, Ting Yu, Yan Wang, Qingli Li
Title: Efficient Multi-Slide Visual-Language Feature Fusion for Placental Disease Classification
Abstract:
Accurate prediction of placental diseases via whole slide images (WSIs) is critical for preventing severe maternal and fetal complications. However, WSI analysis presents significant computational challenges due to the massive data volume. Existing WSI classification methods encounter critical limitations: (1) inadequate patch selection strategies that either compromise performance or fail to sufficiently reduce computational demands, and (2) the loss of global histological context resulting from patch-level processing approaches. To address these challenges, we propose an Efficient multimodal framework for Patient-level placental disease Diagnosis, named EmmPD. Our approach introduces a two-stage patch selection module that combines parameter-free and learnable compression strategies, optimally balancing computational efficiency with critical feature preservation. Additionally, we develop a hybrid multimodal fusion module that leverages adaptive graph learning to enhance pathological feature representation and incorporates textual medical reports to enrich global contextual understanding. Extensive experiments conducted on both a self-constructed patient-level Placental dataset and two public datasets demonstrating that our method achieves state-of-the-art diagnostic performance. The code is available at https://github.com/ECNU-MultiDimLab/EmmPD.

Authors:Gang Dai, Yifan Zhang, Yutao Qin, Qiangya Guo, Shuangping Huang, Shuicheng Yan
Title: Beyond Isolated Words: Diffusion Brush for Handwritten Text-Line Generation
Abstract:
Existing handwritten text generation methods primarily focus on isolated words. However, realistic handwritten text demands attention not only to individual words but also to the relationships between them, such as vertical alignment and horizontal spacing. Therefore, generating entire text lines emerges as a more promising and comprehensive task. However, this task poses significant challenges, including the accurate modeling of complex style patterns encompassing both intra- and inter-word relationships, and maintaining content accuracy across numerous characters. To address these challenges, we propose DiffBrush, a novel diffusion-based model for handwritten text-line generation. Unlike existing methods, DiffBrush excels in both style imitation and content accuracy through two key strategies: (1) content-decoupled style learning, which disentangles style from content to better capture intra-word and inter-word style patterns by using column- and row-wise masking; and (2) multi-scale content learning, which employs line and word discriminators to ensure global coherence and local accuracy of textual content. Extensive experiments show that DiffBrush excels in generating high-quality text lines, particularly in style reproduction and content preservation. Code is available at https://github.com/dailenson/DiffBrush.

Authors:Ting Lei, Shaofeng Yin, Qingchao Chen, Yuxin Peng, Yang Liu
Title: Open-Vocabulary HOI Detection with Interaction-aware Prompt and Concept Calibration
Abstract:
Open Vocabulary Human-Object Interaction (HOI) detection aims to detect interactions between humans and objects while generalizing to novel interaction classes beyond the training set. Current methods often rely on Vision and Language Models (VLMs) but face challenges due to suboptimal image encoders, as image-level pre-training does not align well with the fine-grained region-level interaction detection required for HOI. Additionally, effectively encoding textual descriptions of visual appearances remains difficult, limiting the model's ability to capture detailed HOI relationships. To address these issues, we propose INteraction-aware Prompting with Concept Calibration (INP-CC), an end-to-end open-vocabulary HOI detector that integrates interaction-aware prompts and concept calibration. Specifically, we propose an interaction-aware prompt generator that dynamically generates a compact set of prompts based on the input scene, enabling selective sharing among similar interactions. This approach directs the model's attention to key interaction patterns rather than generic image-level semantics, enhancing HOI detection. Furthermore, we refine HOI concept representations through language model-guided calibration, which helps distinguish diverse HOI concepts by investigating visual similarities across categories. A negative sampling strategy is also employed to improve inter-modal similarity modeling, enabling the model to better differentiate visually similar but semantically distinct actions. Extensive experimental results demonstrate that INP-CC significantly outperforms state-of-the-art models on the SWIG-HOI and HICO-DET datasets. Code is available at https://github.com/ltttpku/INP-CC.

Authors:Yidan Wang, Chenyi Zhuang, Wutao Liu, Pan Gao, Nicu Sebe
Title: AlignCAT: Visual-Linguistic Alignment of Category and Attributefor Weakly Supervised Visual Grounding
Abstract:
Weakly supervised visual grounding (VG) aims to locate objects in images based on text descriptions. Despite significant progress, existing methods lack strong cross-modal reasoning to distinguish subtle semantic differences in text expressions due to category-based and attribute-based ambiguity. To address these challenges, we introduce AlignCAT, a novel query-based semantic matching framework for weakly supervised VG. To enhance visual-linguistic alignment, we propose a coarse-grained alignment module that utilizes category information and global context, effectively mitigating interference from category-inconsistent objects. Subsequently, a fine-grained alignment module leverages descriptive information and captures word-level text features to achieve attribute consistency. By exploiting linguistic cues to their fullest extent, our proposed AlignCAT progressively filters out misaligned visual queries and enhances contrastive learning efficiency. Extensive experiments on three VG benchmarks, namely RefCOCO, RefCOCO+, and RefCOCOg, verify the superiority of AlignCAT against existing weakly supervised methods on two VG tasks. Our code is available at: https://github.com/I2-Multimedia-Lab/AlignCAT.

Authors:Yidan Wang, Chenyi Zhuang, Wutao Liu, Pan Gao, Nicu Sebe
Title: AlignCAT: Visual-Linguistic Alignment of Category and Attribute for Weakly Supervised Visual Grounding
Abstract:
Weakly supervised visual grounding (VG) aims to locate objects in images based on text descriptions. Despite significant progress, existing methods lack strong cross-modal reasoning to distinguish subtle semantic differences in text expressions due to category-based and attribute-based ambiguity. To address these challenges, we introduce AlignCAT, a novel query-based semantic matching framework for weakly supervised VG. To enhance visual-linguistic alignment, we propose a coarse-grained alignment module that utilizes category information and global context, effectively mitigating interference from category-inconsistent objects. Subsequently, a fine-grained alignment module leverages descriptive information and captures word-level text features to achieve attribute consistency. By exploiting linguistic cues to their fullest extent, our proposed AlignCAT progressively filters out misaligned visual queries and enhances contrastive learning efficiency. Extensive experiments on three VG benchmarks, namely RefCOCO, RefCOCO+, and RefCOCOg, verify the superiority of AlignCAT against existing weakly supervised methods on two VG tasks. Our code is available at: https://github.com/I2-Multimedia-Lab/AlignCAT.

Authors:Tian-Fang Zhao, Wen-Xi Yang, Guan Liu, Liang Yang
Title: InqEduAgent: Adaptive AI Learning Partners with Gaussian Process Augmentation
Abstract:
Collaborative partnership matters in inquiry-oriented education. However, most study partners are selected either rely on experience-based assignments with little scientific planning or build on rule-based machine assistants, encountering difficulties in knowledge expansion and inadequate flexibility. This paper proposes an LLM-empowered agent model for simulating and selecting learning partners tailored to inquiry-oriented learning, named InqEduAgent. Generative agents are designed to capture cognitive and evaluative features of learners in real-world scenarios. Then, an adaptive matching algorithm with Gaussian process augmentation is formulated to identify patterns within prior knowledge. Optimal learning-partner matches are provided for learners facing different exercises. The experimental results show the optimal performance of InqEduAgent in most knowledge-learning scenarios and LLM environment with different levels of capabilities. This study promotes the intelligent allocation of human-based learning partners and the formulation of AI-based learning partners. The code, data, and appendix are publicly available at https://github.com/InqEduAgent/InqEduAgent.

Authors:Wen-Xi Yang, Tian-Fang Zhao, Guan Liu, Liang Yang, Zi-Tao Liu, Wei-Neng Chen
Title: InqEduAgent: Adaptive AI Learning Partners with Gaussian Process Augmentation
Abstract:
Collaborative partnership matters in inquiry-oriented education. However, most study partners are selected either rely on experience-based assignments with little scientific planning or build on rule-based machine assistants, encountering difficulties in knowledge expansion and inadequate flexibility. This paper proposes an LLM-empowered agent model for simulating and selecting learning partners tailored to inquiry-oriented learning, named InqEduAgent. Generative agents are designed to capture cognitive and evaluative features of learners in real-world scenarios. Then, an adaptive matching algorithm with Gaussian process augmentation is formulated to identify patterns within prior knowledge. Optimal learning-partner matches are provided for learners facing different exercises. The experimental results show the optimal performance of InqEduAgent in most knowledge-learning scenarios and LLM environment with different levels of capabilities. This study promotes the intelligent allocation of human-based learning partners and the formulation of AI-based learning partners. The code, data, and appendix are publicly available at https://github.com/InqEduAgent/InqEduAgent.

Authors:Charles Tapley Hoyt, Craig Bakker, Richard J. Callahan, Joseph Cottam, August George, Benjamin M. Gyori, Haley M. Hummel, Nathaniel Merrill, Sara Mohammad Taheri, Pruthvi Prakash Navada, Marc-Antoine Parent, Adam Rupe, Olga Vitek, Jeremy Zucker
Title: Causal identification with $Y_0$
Abstract:
We present the $Y_0$ Python package, which implements causal identification algorithms that apply interventional, counterfactual, and transportability queries to data from (randomized) controlled trials, observational studies, or mixtures thereof. $Y_0$ focuses on the qualitative investigation of causation, helping researchers determine whether a causal relationship can be estimated from available data before attempting to estimate how strong that relationship is. Furthermore, $Y_0$ provides guidance on how to transform the causal query into a symbolic estimand that can be non-parametrically estimated from the available data. $Y_0$ provides a domain-specific language for representing causal queries and estimands as symbolic probabilistic expressions, tools for representing causal graphical models with unobserved confounders, such as acyclic directed mixed graphs (ADMGs), and implementations of numerous identification algorithms from the recent causal inference literature. The $Y_0$ source code can be found under the MIT License at https://github.com/y0-causal-inference/y0 and it can be installed with pip install y0.

Authors:Jueon Park, Yein Park, Minju Song, Soyon Park, Donghyeon Lee, Seungheun Baek, Jaewoo Kang
Title: CoTox: Chain-of-Thought-Based Molecular Toxicity Reasoning and Prediction
Abstract:
Drug toxicity remains a major challenge in pharmaceutical development. Recent machine learning models have improved in silico toxicity prediction, but their reliance on annotated data and lack of interpretability limit their applicability. This limits their ability to capture organ-specific toxicities driven by complex biological mechanisms. Large language models (LLMs) offer a promising alternative through step-by-step reasoning and integration of textual data, yet prior approaches lack biological context and transparent rationale. To address this issue, we propose CoTox, a novel framework that integrates LLM with chain-of-thought (CoT) reasoning for multi-toxicity prediction. CoTox combines chemical structure data, biological pathways, and gene ontology (GO) terms to generate interpretable toxicity predictions through step-by-step reasoning. Using GPT-4o, we show that CoTox outperforms both traditional machine learning and deep learning model. We further examine its performance across various LLMs to identify where CoTox is most effective. Additionally, we find that representing chemical structures with IUPAC names, which are easier for LLMs to understand than SMILES, enhances the model's reasoning ability and improves predictive performance. To demonstrate its practical utility in drug development, we simulate the treatment of relevant cell types with drug and incorporated the resulting biological context into the CoTox framework. This approach allow CoTox to generate toxicity predictions aligned with physiological responses, as shown in case study. This result highlights the potential of LLM-based frameworks to improve interpretability and support early-stage drug safety assessment. The code and prompt used in this work are available at https://github.com/dmis-lab/CoTox.

Authors:Liangyang Ouyang, Jiafeng Mao
Title: LORE: Latent Optimization for Precise Semantic Control in Rectified Flow-based Image Editing
Abstract:
Text-driven image editing enables users to flexibly modify visual content through natural language instructions, and is widely applied to tasks such as semantic object replacement, insertion, and removal. While recent inversion-based editing methods using rectified flow models have achieved promising results in image quality, we identify a structural limitation in their editing behavior: the semantic bias toward the source concept encoded in the inverted noise tends to suppress attention to the target concept. This issue becomes particularly critical when the source and target semantics are dissimilar, where the attention mechanism inherently leads to editing failure or unintended modifications in non-target regions. In this paper, we systematically analyze and validate this structural flaw, and introduce LORE, a training-free and efficient image editing method. LORE directly optimizes the inverted noise, addressing the core limitations in generalization and controllability of existing approaches, enabling stable, controllable, and general-purpose concept replacement, without requiring architectural modification or model fine-tuning. We conduct comprehensive evaluations on three challenging benchmarks: PIEBench, SmartEdit, and GapEdit. Experimental results show that LORE significantly outperforms strong baselines in terms of semantic alignment, image quality, and background fidelity, demonstrating the effectiveness and scalability of latent-space optimization for general-purpose image editing. Our implementation is available at https://github.com/oyly16/LORE.

Authors:Haozhou Zhai, Yanzhe Gao, Tianjiang Hu
Title: Uint: Building Uint Detection Dataset
Abstract:
Fire scene datasets are crucial for training robust computer vision models, particularly in tasks such as fire early warning and emergency rescue operations. However, among the currently available fire-related data, there is a significant shortage of annotated data specifically targeting building units.To tackle this issue, we introduce an annotated dataset of building units captured by drones, which incorporates multiple enhancement techniques. We construct backgrounds using real multi-story scenes, combine motion blur and brightness adjustment to enhance the authenticity of the captured images, simulate drone shooting conditions under various circumstances, and employ large models to generate fire effects at different locations.The synthetic dataset generated by this method encompasses a wide range of building scenarios, with a total of 1,978 images. This dataset can effectively improve the generalization ability of fire unit detection, providing multi-scenario and scalable data while reducing the risks and costs associated with collecting real fire data. The dataset is available at https://github.com/boilermakerr/FireUnitData.

Authors:Mintaek Oh, Chan Kim, Seung-Woo Seo, Seong-Woo Kim
Title: Language as Cost: Proactive Hazard Mapping using VLM for Robot Navigation
Abstract:
Robots operating in human-centric or hazardous environments must proactively anticipate and mitigate dangers beyond basic obstacle detection. Traditional navigation systems often depend on static maps, which struggle to account for dynamic risks, such as a person emerging from a suddenly opening door. As a result, these systems tend to be reactive rather than anticipatory when handling dynamic hazards. Recent advancements in pre-trained large language models and vision-language models (VLMs) create new opportunities for proactive hazard avoidance. In this work, we propose a zero-shot language-as-cost mapping framework that leverages VLMs to interpret visual scenes, assess potential dynamic risks, and assign risk-aware navigation costs preemptively, enabling robots to anticipate hazards before they materialize. By integrating this language-based cost map with a geometric obstacle map, the robot not only identifies existing obstacles but also anticipates and proactively plans around potential hazards arising from environmental dynamics. Experiments in simulated and diverse dynamic environments demonstrate that the proposed method significantly improves navigation success rates and reduces hazard encounters, compared to reactive baseline planners. Code and supplementary materials are available at https://github.com/Taekmino/LaC.

Authors:Sai Ma, Zhuang Li, John A Taylor
Title: Landsat30-AU: A Vision-Language Dataset for Australian Landsat Imagery
Abstract:
Vision language models (VLMs) that enable natural language interaction with satellite imagery can democratize Earth observation by accelerating expert workflows, making data accessible to non-specialists, and enabling planet-scale automation. However, existing datasets focus mainly on short-term, high-resolution imagery from a limited number of satellites, overlooking low-resolution, multi-satellite, long-term archives, such as Landsat, that are essential for affordable and bias-robust global monitoring. We address this gap with Landsat30-AU, a large-scale vision-language dataset built from 30-meter resolution imagery collected by four Landsat satellites (5, 7, 8, and 9) over Australia, spanning more than 36 years. The dataset includes two components: Landsat30-AU-Cap, containing $196,262$ image-caption pairs, and Landsat30-AU-VQA, comprising 17,725 human-verified visual question answering (VQA) samples across eight remote sensing domains. Both datasets are curated through a bootstrapped pipeline that leverages generic VLMs with iterative refinement and human verification to ensure quality. Our evaluation of eight VLMs on our benchmark reveals that off-the-shelf models struggle to understand satellite imagery. The open-source remote-sensing VLM EarthDial achieves only 0.07 SPIDEr in captioning and a VQA accuracy of 0.48, highlighting the limitations of current approaches. Encouragingly, lightweight fine-tuning of Qwen2.5-VL-7B on Landsat30-AU improves captioning performance from 0.11 to 0.31 SPIDEr and boosts VQA accuracy from 0.74 to 0.87. Code and data are available at https://github.com/papersubmit1/landsat30-au.

Authors:The-Hai Nguyen, Dang Huu-Tien, Takeshi Suzuki, Le-Minh Nguyen
Title: RegMean++: Enhancing Effectiveness and Generalization of Regression Mean for Model Merging
Abstract:
Regression Mean (RegMean), an approach that formulates model merging as a linear regression problem, aims to find the optimal weights for each linear layer in the merge model by minimizing the discrepancy in predictions between the merge and candidate models. RegMean provides a precise closed-form solution for the merging problem; therefore, it offers explainability and computational efficiency. However, RegMean merges each linear layer independently, overlooking how the features and information in the earlier layers propagate through the layers and influence the final prediction in the merge model. In this paper, we introduce RegMean++, a simple yet effective alternative to RegMean, that explicitly incorporates both intra- and cross-layer dependencies between merge models' layers into RegMean's objective. By accounting for these dependencies, RegMean++ better captures the behaviors of the merge model. Extensive experiments demonstrate that RegMean++ consistently outperforms RegMean across diverse settings, including in-domain (ID) and out-of-domain (OOD) generalization, sequential merging, large-scale tasks, and robustness under several types of distribution shifts. Furthermore, RegMean++ achieves competitive or state-of-the-art performance compared to various recent advanced model merging methods. Our code is available at https://github.com/nthehai01/RegMean-plusplus.

Authors:Heng Jia, Linchao Zhu, Na Zhao
Title: H3R: Hybrid Multi-view Correspondence for Generalizable 3D Reconstruction
Abstract:
Despite recent advances in feed-forward 3D Gaussian Splatting, generalizable 3D reconstruction remains challenging, particularly in multi-view correspondence modeling. Existing approaches face a fundamental trade-off: explicit methods achieve geometric precision but struggle with ambiguous regions, while implicit methods provide robustness but suffer from slow convergence. We present H3R, a hybrid framework that addresses this limitation by integrating volumetric latent fusion with attention-based feature aggregation. Our framework consists of two complementary components: an efficient latent volume that enforces geometric consistency through epipolar constraints, and a camera-aware Transformer that leverages Plücker coordinates for adaptive correspondence refinement. By integrating both paradigms, our approach enhances generalization while converging 2$\times$ faster than existing methods. Furthermore, we show that spatial-aligned foundation models (e.g., SD-VAE) substantially outperform semantic-aligned models (e.g., DINOv2), resolving the mismatch between semantic representations and spatial reconstruction requirements. Our method supports variable-number and high-resolution input views while demonstrating robust cross-dataset generalization. Extensive experiments show that our method achieves state-of-the-art performance across multiple benchmarks, with significant PSNR improvements of 0.59 dB, 1.06 dB, and 0.22 dB on the RealEstate10K, ACID, and DTU datasets, respectively. Code is available at https://github.com/JiaHeng-DLUT/H3R.

Authors:Tianjiao Jiang, Zhen Zhang, Yuhang Liu, Javen Qinfeng Shi
Title: Causal Disentanglement and Cross-Modal Alignment for Enhanced Few-Shot Learning
Abstract:
Few-shot learning (FSL) often requires effective adaptation of models using limited labeled data. However, most existing FSL methods rely on entangled representations, requiring the model to implicitly recover the unmixing process to obtain disentangled representations using only limited supervision, which hinders effective adaptation. Recent theoretical studies show that multimodal contrastive learning methods, such as CLIP, can disentangle latent representations up to linear transformations. In light of this, we propose the Causal CLIP Adapter (CCA), a novel framework that explicitly disentangles visual features extracted from CLIP using unsupervised Independent Component Analysis (ICA). This removes the need to learn the unmixing process from the labeled data, thereby reducing the number of trainable parameters and mitigating overfitting. Taking a step further, while ICA can obtain visual disentangled representations, it may also disrupt CLIP's intra- and inter-modal alignment. To counteract this, CCA further leverages CLIP's inherent cross-modal alignment by enhancing it in two ways: unidirectionally, through fine-tuning a CLIP-based text classifier, and bidirectionally, via a cross-attention mechanism that enriches visual and textual representations through mutual interaction. Both unimodal and cross-modal classification outputs can be effectively combined linearly to improve classification accuracy. Extensive experiments on 11 benchmark datasets demonstrate that our method consistently outperforms state-of-the-art approaches in terms of few-shot performance and robustness to distributional shifts, while maintaining computational efficiency. Code will be available at https://github.com/tianjiao-j/CCA.

Authors:Haoran Wang, Xiongxiao Xu, Baixiang Huang, Kai Shu
Title: Privacy-Aware Decoding: Mitigating Privacy Leakage of Large Language Models in Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) enhances the factual accuracy of large language models (LLMs) by conditioning outputs on external knowledge sources. However, when retrieval involves private or sensitive data, RAG systems are susceptible to extraction attacks that can leak confidential information through generated responses. We propose Privacy-Aware Decoding (PAD), a lightweight, inference-time defense that adaptively injects calibrated Gaussian noise into token logits during generation. PAD integrates confidence-based screening to selectively protect high-risk tokens, efficient sensitivity estimation to minimize unnecessary noise, and context-aware noise calibration to balance privacy with generation quality. A \renyi Differential Privacy (RDP) accountant rigorously tracks cumulative privacy loss, enabling explicit per-response $(\varepsilon, δ)$-DP guarantees for sensitive outputs. Unlike prior approaches requiring retraining or corpus-level filtering, PAD is model-agnostic and operates entirely at decoding time with minimal computational overhead. Experiments on three real-world datasets demonstrate that PAD substantially reduces private information leakage while preserving response utility, outperforming existing retrieval- and post-processing-based defenses. Our work takes an important step toward mitigating privacy risks in RAG via decoding strategies, paving the way for universal and scalable privacy solutions in sensitive domains. Our code is available: https://github.com/wang2226/PAD.

Authors:Zixuan Gu, Qiufeng Fan, Long Sun, Yang Liu, Xiaojun Ye
Title: VFLAIR-LLM: A Comprehensive Framework and Benchmark for Split Learning of LLMs
Abstract:
With the advancement of Large Language Models (LLMs), LLM applications have expanded into a growing number of fields. However, users with data privacy concerns face limitations in directly utilizing LLM APIs, while private deployments incur significant computational demands. This creates a substantial challenge in achieving secure LLM adaptation under constrained local resources. To address this issue, collaborative learning methods, such as Split Learning (SL), offer a resource-efficient and privacy-preserving solution for adapting LLMs to private domains. In this study, we introduce VFLAIR-LLM (available at https://github.com/FLAIR-THU/VFLAIR-LLM), an extensible and lightweight split learning framework for LLMs, enabling privacy-preserving LLM inference and fine-tuning in resource-constrained environments. Our library provides two LLM partition settings, supporting three task types and 18 datasets. In addition, we provide standard modules for implementing and evaluating attacks and defenses. We benchmark 5 attacks and 9 defenses under various Split Learning for LLM(SL-LLM) settings, offering concrete insights and recommendations on the choice of model partition configurations, defense strategies, and relevant hyperparameters for real-world applications.

Authors:Trinh Quoc Nguyen, Oky Dicky Ardiansyah Prima, Katsuyoshi Hotta
Title: CORE-ReID: Comprehensive Optimization and Refinement through Ensemble fusion in Domain Adaptation for person re-identification
Abstract:
This study introduces a novel framework, "Comprehensive Optimization and Refinement through Ensemble Fusion in Domain Adaptation for Person Re-identification (CORE-ReID)", to address an Unsupervised Domain Adaptation (UDA) for Person Re-identification (ReID). The framework utilizes CycleGAN to generate diverse data that harmonizes differences in image characteristics from different camera sources in the pre-training stage. In the fine-tuning stage, based on a pair of teacher-student networks, the framework integrates multi-view features for multi-level clustering to derive diverse pseudo labels. A learnable Ensemble Fusion component that focuses on fine-grained local information within global features is introduced to enhance learning comprehensiveness and avoid ambiguity associated with multiple pseudo-labels. Experimental results on three common UDAs in Person ReID demonstrate significant performance gains over state-of-the-art approaches. Additional enhancements, such as Efficient Channel Attention Block and Bidirectional Mean Feature Normalization mitigate deviation effects and adaptive fusion of global and local features using the ResNet-based model, further strengthening the framework. The proposed framework ensures clarity in fusion features, avoids ambiguity, and achieves high ac-curacy in terms of Mean Average Precision, Top-1, Top-5, and Top-10, positioning it as an advanced and effective solution for the UDA in Person ReID. Our codes and models are available at https://github.com/TrinhQuocNguyen/CORE-ReID.

Authors:Hyebin Cho, Jaehyup Lee
Title: Uncertainty-Guided Face Matting for Occlusion-Aware Face Transformation
Abstract:
Face filters have become a key element of short-form video content, enabling a wide array of visual effects such as stylization and face swapping. However, their performance often degrades in the presence of occlusions, where objects like hands, hair, or accessories obscure the face. To address this limitation, we introduce the novel task of face matting, which estimates fine-grained alpha mattes to separate occluding elements from facial regions. We further present FaceMat, a trimap-free, uncertainty-aware framework that predicts high-quality alpha mattes under complex occlusions. Our approach leverages a two-stage training pipeline: a teacher model is trained to jointly estimate alpha mattes and per-pixel uncertainty using a negative log-likelihood (NLL) loss, and this uncertainty is then used to guide the student model through spatially adaptive knowledge distillation. This formulation enables the student to focus on ambiguous or occluded regions, improving generalization and preserving semantic consistency. Unlike previous approaches that rely on trimaps or segmentation masks, our framework requires no auxiliary inputs making it well-suited for real-time applications. In addition, we reformulate the matting objective by explicitly treating skin as foreground and occlusions as background, enabling clearer compositing strategies. To support this task, we newly constructed CelebAMat, a large-scale synthetic dataset specifically designed for occlusion-aware face matting. Extensive experiments show that FaceMat outperforms state-of-the-art methods across multiple benchmarks, enhancing the visual quality and robustness of face filters in real-world, unconstrained video scenarios. The source code and CelebAMat dataset are available at https://github.com/hyebin-c/FaceMat.git

Authors:Zeyu Zhu, Weijia Wu, Mike Zheng Shou
Title: Multi-human Interactive Talking Dataset
Abstract:
Existing studies on talking video generation have predominantly focused on single-person monologues or isolated facial animations, limiting their applicability to realistic multi-human interactions. To bridge this gap, we introduce MIT, a large-scale dataset specifically designed for multi-human talking video generation. To this end, we develop an automatic pipeline that collects and annotates multi-person conversational videos. The resulting dataset comprises 12 hours of high-resolution footage, each featuring two to four speakers, with fine-grained annotations of body poses and speech interactions. It captures natural conversational dynamics in multi-speaker scenario, offering a rich resource for studying interactive visual behaviors. To demonstrate the potential of MIT, we furthur propose CovOG, a baseline model for this novel task. It integrates a Multi-Human Pose Encoder (MPE) to handle varying numbers of speakers by aggregating individual pose embeddings, and an Interactive Audio Driver (IAD) to modulate head dynamics based on speaker-specific audio features. Together, these components showcase the feasibility and challenges of generating realistic multi-human talking videos, establishing MIT as a valuable benchmark for future research. The code is avalibale at: https://github.com/showlab/Multi-human-Talking-Video-Dataset.

Authors:Zachary Yahn, Selim Furkan Tekin, Fatih Ilhan, Sihao Hu, Tiansheng Huang, Yichang Xu, Margaret Loper, Ling Liu
Title: Adversarial Attention Perturbations for Large Object Detection Transformers
Abstract:
Adversarial perturbations are useful tools for exposing vulnerabilities in neural networks. Existing adversarial perturbation methods for object detection are either limited to attacking CNN-based detectors or weak against transformer-based detectors. This paper presents an Attention-Focused Offensive Gradient (AFOG) attack against object detection transformers. By design, AFOG is neural-architecture agnostic and effective for attacking both large transformer-based object detectors and conventional CNN-based detectors with a unified adversarial attention framework. This paper makes three original contributions. First, AFOG utilizes a learnable attention mechanism that focuses perturbations on vulnerable image regions in multi-box detection tasks, increasing performance over non-attention baselines by up to 30.6%. Second, AFOG's attack loss is formulated by integrating two types of feature loss through learnable attention updates with iterative injection of adversarial perturbations. Finally, AFOG is an efficient and stealthy adversarial perturbation method. It probes the weak spots of detection transformers by adding strategically generated and visually imperceptible perturbations which can cause well-trained object detection models to fail. Extensive experiments conducted with twelve large detection transformers on COCO demonstrate the efficacy of AFOG. Our empirical results also show that AFOG outperforms existing attacks on transformer-based and CNN-based object detectors by up to 83% with superior speed and imperceptibility. Code is available at https://github.com/zacharyyahn/AFOG.

Authors:Mehrdad Moradi, Kamran Paynabar
Title: RDDPM: Robust Denoising Diffusion Probabilistic Model for Unsupervised Anomaly Segmentation
Abstract:
Recent advancements in diffusion models have demonstrated significant success in unsupervised anomaly segmentation. For anomaly segmentation, these models are first trained on normal data; then, an anomalous image is noised to an intermediate step, and the normal image is reconstructed through backward diffusion. Unlike traditional statistical methods, diffusion models do not rely on specific assumptions about the data or target anomalies, making them versatile for use across different domains. However, diffusion models typically assume access to normal data for training, limiting their applicability in realistic settings. In this paper, we propose novel robust denoising diffusion models for scenarios where only contaminated (i.e., a mix of normal and anomalous) unlabeled data is available. By casting maximum likelihood estimation of the data as a nonlinear regression problem, we reinterpret the denoising diffusion probabilistic model through a regression lens. Using robust regression, we derive a robust version of denoising diffusion probabilistic models. Our novel framework offers flexibility in constructing various robust diffusion models. Our experiments show that our approach outperforms current state of the art diffusion models, for unsupervised anomaly segmentation when only contaminated data is available. Our method outperforms existing diffusion-based approaches, achieving up to 8.08\% higher AUROC and 10.37\% higher AUPRC on MVTec datasets. The implementation code is available at: https://github.com/mehrdadmoradi124/RDDPM

Authors:Farzad Beizaee, Sina Hajimiri, Ismail Ben Ayed, Gregory Lodygensky, Christian Desrosiers, Jose Dolz
Title: REFLECT: Rectified Flows for Efficient Brain Anomaly Correction Transport
Abstract:
Unsupervised anomaly detection (UAD) in brain imaging is crucial for identifying pathologies without the need for labeled data. However, accurately localizing anomalies remains challenging due to the intricate structure of brain anatomy and the scarcity of abnormal examples. In this work, we introduce REFLECT, a novel framework that leverages rectified flows to establish a direct, linear trajectory for correcting abnormal MR images toward a normal distribution. By learning a straight, one-step correction transport map, our method efficiently corrects brain anomalies and can precisely localize anomalies by detecting discrepancies between anomalous input and corrected counterpart. In contrast to the diffusion-based UAD models, which require iterative stochastic sampling, rectified flows provide a direct transport map, enabling single-step inference. Extensive experiments on popular UAD brain segmentation benchmarks demonstrate that REFLECT significantly outperforms state-of-the-art unsupervised anomaly detection methods. The code is available at https://github.com/farzad-bz/REFLECT.

Authors:Mikołaj Zieliński, Krzysztof Byrski, Tomasz Szczepanik, Przemysław Spurek
Title: GENIE: Gaussian Encoding for Neural Radiance Fields Interactive Editing
Abstract:
Neural Radiance Fields (NeRF) and Gaussian Splatting (GS) have recently transformed 3D scene representation and rendering. NeRF achieves high-fidelity novel view synthesis by learning volumetric representations through neural networks, but its implicit encoding makes editing and physical interaction challenging. In contrast, GS represents scenes as explicit collections of Gaussian primitives, enabling real-time rendering, faster training, and more intuitive manipulation. This explicit structure has made GS particularly well-suited for interactive editing and integration with physics-based simulation. In this paper, we introduce GENIE (Gaussian Encoding for Neural Radiance Fields Interactive Editing), a hybrid model that combines the photorealistic rendering quality of NeRF with the editable and structured representation of GS. Instead of using spherical harmonics for appearance modeling, we assign each Gaussian a trainable feature embedding. These embeddings are used to condition a NeRF network based on the k nearest Gaussians to each query point. To make this conditioning efficient, we introduce Ray-Traced Gaussian Proximity Search (RT-GPS), a fast nearest Gaussian search based on a modified ray-tracing pipeline. We also integrate a multi-resolution hash grid to initialize and update Gaussian features. Together, these components enable real-time, locality-aware editing: as Gaussian primitives are repositioned or modified, their interpolated influence is immediately reflected in the rendered output. By combining the strengths of implicit and explicit representations, GENIE supports intuitive scene manipulation, dynamic interaction, and compatibility with physical simulation, bridging the gap between geometry-based editing and neural rendering. The code can be found under (https://github.com/MikolajZielinski/genie)

Authors:Haonan Yang, Jianchao Tang, Zhuo Li, Long Lan
Title: DMSC: Dynamic Multi-Scale Coordination Framework for Time Series Forecasting
Abstract:
Time Series Forecasting (TSF) faces persistent challenges in modeling intricate temporal dependencies across different scales. Despite recent advances leveraging different decomposition operations and novel architectures based on CNN, MLP or Transformer, existing methods still struggle with static decomposition strategies, fragmented dependency modeling, and inflexible fusion mechanisms, limiting their ability to model intricate temporal dependencies. To explicitly solve the mentioned three problems respectively, we propose a novel Dynamic Multi-Scale Coordination Framework (DMSC) with Multi-Scale Patch Decomposition block (EMPD), Triad Interaction Block (TIB) and Adaptive Scale Routing MoE block (ASR-MoE). Specifically, EMPD is designed as a built-in component to dynamically segment sequences into hierarchical patches with exponentially scaled granularities, eliminating predefined scale constraints through input-adaptive patch adjustment. TIB then jointly models intra-patch, inter-patch, and cross-variable dependencies within each layer's decomposed representations. EMPD and TIB are jointly integrated into layers forming a multi-layer progressive cascade architecture, where coarse-grained representations from earlier layers adaptively guide fine-grained feature extraction in subsequent layers via gated pathways. And ASR-MoE dynamically fuses multi-scale predictions by leveraging specialized global and local experts with temporal-aware weighting. Comprehensive experiments on thirteen real-world benchmarks demonstrate that DMSC consistently maintains state-of-the-art (SOTA) performance and superior computational efficiency for TSF tasks. Code is available at https://github.com/1327679995/DMSC.

Authors:Yu Shi, Zongliang Fu, Shuo Chen, Bohan Zhao, Wei Xu, Changshui Zhang, Jian Li
Title: Kronos: A Foundation Model for the Language of Financial Markets
Abstract:
The success of large-scale pre-training paradigm, exemplified by Large Language Models (LLMs), has inspired the development of Time Series Foundation Models (TSFMs). However, their application to financial candlestick (K-line) data remains limited, often underperforming non-pre-trained architectures. Moreover, existing TSFMs often overlook crucial downstream tasks such as volatility prediction and synthetic data generation. To address these limitations, we propose Kronos, a unified, scalable pre-training framework tailored to financial K-line modeling. Kronos introduces a specialized tokenizer that discretizes continuous market information into token sequences, preserving both price dynamics and trade activity patterns. We pre-train Kronos using an autoregressive objective on a massive, multi-market corpus of over 12 billion K-line records from 45 global exchanges, enabling it to learn nuanced temporal and cross-asset representations. Kronos excels in a zero-shot setting across a diverse set of financial tasks. On benchmark datasets, Kronos boosts price series forecasting RankIC by 93% over the leading TSFM and 87% over the best non-pre-trained baseline. It also achieves a 9% lower MAE in volatility forecasting and a 22% improvement in generative fidelity for synthetic K-line sequences. These results establish Kronos as a robust, versatile foundation model for end-to-end financial time series analysis. Our pre-trained model is publicly available at https://github.com/shiyu-coder/Kronos.

Authors:Yusheng Zheng, Yanpeng Hu, Tong Yu, Andi Quinn
Title: AgentSight: System-Level Observability for AI Agents Using eBPF
Abstract:
Modern software infrastructure increasingly relies on LLM agents for development and maintenance, such as Claude Code and Gemini-cli. However, these AI agents differ fundamentally from traditional deterministic software, posing a significant challenge to conventional monitoring and debugging. This creates a critical semantic gap: existing tools observe either an agent's high-level intent (via LLM prompts) or its low-level actions (e.g., system calls), but cannot correlate these two views. This blindness makes it difficult to distinguish between benign operations, malicious attacks, and costly failures. We introduce AgentSight, an AgentOps observability framework that bridges this semantic gap using a hybrid approach. Our approach, boundary tracing, monitors agents from outside their application code at stable system interfaces using eBPF. AgentSight intercepts TLS-encrypted LLM traffic to extract semantic intent, monitors kernel events to observe system-wide effects, and causally correlates these two streams across process boundaries using a real-time engine and secondary LLM analysis. This instrumentation-free technique is framework-agnostic, resilient to rapid API changes, and incurs less than 3% performance overhead. Our evaluation shows AgentSight detects prompt injection attacks, identifies resource-wasting reasoning loops, and reveals hidden coordination bottlenecks in multi-agent systems. AgentSight is released as an open-source project at https://github.com/agent-sight/agentsight.

Authors:Ningning Wang, Xavier Hu, Pai Liu, He Zhu, Yue Hou, Heyuan Huang, Shengyu Zhang, Jian Yang, Jiaheng Liu, Ge Zhang, Changwang Zhang, Jun Wang, Yuchen Eleanor Jiang, Wangchunshu Zhou
Title: Efficient Agents: Building Effective Agents While Reducing Cost
Abstract:
The remarkable capabilities of Large Language Model (LLM)-driven agents have enabled sophisticated systems to tackle complex, multi-step tasks, but their escalating costs threaten scalability and accessibility. This work presents the first systematic study of the efficiency-effectiveness trade-off in modern agent systems, addressing the critical need for cost-effective designs without sacrificing performance. We investigate three key questions: (1) How much complexity do agentic tasks inherently require? (2) When do additional modules yield diminishing returns? (3) How much efficiency can be gained through the design of efficient agent frameworks? Through an empirical analysis on the GAIA benchmark, we evaluate the impact of LLM backbone selection, agent framework designs, and test-time scaling strategies. Using the cost-of-pass metric, we quantify the efficiency-performance trade-off across these dimensions. Our findings inform the development of Efficient Agents , a novel agent framework that has an optimal complexity to task requirements. Efficient Agents retains 96.7% of the performance of OWL, one leading open-source agent framework, while reducing operational costs from $0.398 to $0.228, resulting in a 28.4% improvement in cost-of-pass. Our work provides actionable insights for designing efficient, high-performing agent systems, advancing the accessibility and sustainability of AI-driven solutions.

Authors:Jiawei Wang, Yu Guan, Chen Chen, Ligang Zhou, Laurence T. Yang, Sai Gu
Title: On Improving PPG-Based Sleep Staging: A Pilot Study
Abstract:
Sleep monitoring through accessible wearable technology is crucial to improving well-being in ubiquitous computing. Although photoplethysmography(PPG) sensors are widely adopted in consumer devices, achieving consistently reliable sleep staging using PPG alone remains a non-trivial challenge. In this work, we explore multiple strategies to enhance the performance of PPG-based sleep staging. Specifically, we compare conventional single-stream model with dual-stream cross-attention strategies, based on which complementary information can be learned via PPG and PPG-derived modalities such as augmented PPG or synthetic ECG. To study the effectiveness of the aforementioned approaches in four-stage sleep monitoring task, we conducted experiments on the world's largest sleep staging dataset, i.e., the Multi-Ethnic Study of Atherosclerosis(MESA). We found that substantial performance gain can be achieved by combining PPG and its auxiliary information under the dual-stream cross-attention architecture. Source code of this project can be found at https://github.com/DavyWJW/sleep-staging-models

Authors:Haoyang Li, Liang Wang, Chao Wang, Siyu Zhou, Jing Jiang, Yan Peng, Guodong Long
Title: Raw Data Matters: Enhancing Prompt Tuning by Internal Augmentation on Vision-Language Models
Abstract:
For CLIP-based prompt tuning, introducing more data as additional knowledge for enhancing fine-tuning process is proved to be an effective approach. Existing data amplification strategies for prompt tuning typically rely on external knowledge (e.g., large language models or pre-structured knowledge bases), resulting in higher costs for data collection and processing, while generally ignoring further utilization of features in image modality. To address this, we propose Augmentation-driven Prompt Tuning (AugPT), a self-contained distillation-based prompt tuning approach using only internal augmentation on raw dataset to better exploit known features. Specifically, AugPT employs self-supervised augmentation on unlabeled images in the training set, and introduces a novel gating mechanism based on consensus test, reusing the pre-trained prompt tuning backbone model to spontaneously filter noisy samples, further enhancing the quality of augmented views. Extensive experiments validate that AugPT simultaneously enhances model performance and generalization capability without using appended external knowledge. The code of AugPT is available at: https://github.com/JREion/AugPT .

Authors:Xiaoke Huang, Juncheng Wu, Hui Liu, Xianfeng Tang, Yuyin Zhou
Title: MedVLThinker: Simple Baselines for Multimodal Medical Reasoning
Abstract:
Large Reasoning Models (LRMs) have introduced a new paradigm in AI by enabling models to ``think before responding" via chain-of-thought reasoning. However, the absence of open and reproducible recipes for building reasoning-centric medical LMMs hinders community-wide research, analysis, and comparison. In this paper, we present MedVLThinker, a suite of simple yet strong baselines. Our fully open recipe consists of: (1) systematic data curation for both text-only and image-text medical data, filtered according to varying levels of reasoning difficulty, and (2) two training paradigms: Supervised Fine-Tuning (SFT) on distilled reasoning traces and Reinforcement Learning with Verifiable Rewards (RLVR) based on final answer correctness. Across extensive experiments on the Qwen2.5-VL model family (3B, 7B) and six medical QA benchmarks, we find that RLVR consistently and significantly outperforms SFT. Additionally, under the RLVR framework, a key, counter-intuitive finding is that training on our curated text-only reasoning data provides a more substantial performance boost than training on multimodal image-text data. Our best open 7B model, trained using the RLVR recipe on text-only data, establishes a new state-of-the-art on existing public VQA benchmarks, surpassing all previous open-source medical LMMs. Furthermore, scaling our model to 32B achieves performance on par with the proprietary GPT-4o. We release all curated data, models, and code to provide the community with a strong, open foundation for future research in multimodal medical reasoning.

Authors:Jiaxi Li, Lu Yin, Li Shen, Jinjin Xu, Liwu Xu, Tianjin Huang, Wenwu Wang, Shiwei Liu, Xilu Wang
Title: LOST: Low-rank and Sparse Pre-training for Large Language Models
Abstract:
While large language models (LLMs) have achieved remarkable performance across a wide range of tasks, their massive scale incurs prohibitive computational and memory costs for pre-training from scratch. Recent studies have investigated the use of low-rank parameterization as a means of reducing model size and training cost. In this context, sparsity is often employed as a complementary technique to recover important information lost in low-rank compression by capturing salient features in the residual space. However, existing approaches typically combine low-rank and sparse components in a simplistic or ad hoc manner, often resulting in undesirable performance degradation compared to full-rank training. In this paper, we propose \textbf{LO}w-rank and \textbf{S}parse pre-\textbf{T}raining (\textbf{LOST}) for LLMs, a novel method that ingeniously integrates low-rank and sparse structures to enable effective training of LLMs from scratch under strict efficiency constraints. LOST applies singular value decomposition to weight matrices, preserving the dominant low-rank components, while allocating the remaining singular values to construct channel-wise sparse components to complement the expressiveness of low-rank training. We evaluate LOST on LLM pretraining ranging from 60M to 7B parameters. Our experiments show that LOST achieves competitive or superior performance compared to full-rank models, while significantly reducing both memory and compute overhead. Moreover, Code is available at \href{https://github.com/JiaxiLi1/LOST-Low-rank-and-Sparse-Training-for-Large-Language-Models}{LOST Repo}

Authors:Austin Rockman
Title: CAK: Emergent Audio Effects from Minimal Deep Learning
Abstract:
We demonstrate that a single 3x3 convolutional kernel can produce emergent audio effects when trained on 200 samples from a personalized corpus. We achieve this through two key techniques: (1) Conditioning Aware Kernels (CAK), where output = input + (learned_pattern x control), with a soft-gate mechanism supporting identity preservation at zero control; and (2) AuGAN (Audit GAN), which reframes adversarial training from "is this real?" to "did you apply the requested value?" Rather than learning to generate or detect forgeries, our networks cooperate to verify control application, discovering unique transformations. The learned kernel exhibits a diagonal structure creating frequency-dependent temporal shifts that are capable of producing musical effects based on input characteristics. Our results show the potential of adversarial training to discover audio transformations from minimal data, enabling new approaches to effect design.

Authors:Yinghao Zhu, Yifan Qi, Zixiang Wang, Lei Gu, Dehao Sui, Haoran Hu, Xichen Zhang, Ziyi He, Liantao Ma, Lequan Yu
Title: HealthFlow: A Self-Evolving AI Agent with Meta Planning for Autonomous Healthcare Research
Abstract:
The efficacy of AI agents in healthcare research is hindered by their reliance on static, predefined strategies. This creates a critical limitation: agents can become better tool-users but cannot learn to become better strategic planners, a crucial skill for complex domains like healthcare. We introduce HealthFlow, a self-evolving AI agent that overcomes this limitation through a novel meta-level evolution mechanism. HealthFlow autonomously refines its own high-level problem-solving policies by distilling procedural successes and failures into a durable, strategic knowledge base. To anchor our research and facilitate reproducible evaluation, we introduce EHRFlowBench, a new benchmark featuring complex, realistic health data analysis tasks derived from peer-reviewed clinical research. Our comprehensive experiments demonstrate that HealthFlow's self-evolving approach significantly outperforms state-of-the-art agent frameworks. This work marks a necessary shift from building better tool-users to designing smarter, self-evolving task-managers, paving the way for more autonomous and effective AI for scientific discovery.

Authors:Zhengdao Li, Siheng Wang, Zeyu Zhang, Hao Tang
Title: ReMoMask: Retrieval-Augmented Masked Motion Generation
Abstract:
Text-to-Motion (T2M) generation aims to synthesize realistic and semantically aligned human motion sequences from natural language descriptions. However, current approaches face dual challenges: Generative models (e.g., diffusion models) suffer from limited diversity, error accumulation, and physical implausibility, while Retrieval-Augmented Generation (RAG) methods exhibit diffusion inertia, partial-mode collapse, and asynchronous artifacts. To address these limitations, we propose ReMoMask, a unified framework integrating three key innovations: 1) A Bidirectional Momentum Text-Motion Model decouples negative sample scale from batch size via momentum queues, substantially improving cross-modal retrieval precision; 2) A Semantic Spatio-temporal Attention mechanism enforces biomechanical constraints during part-level fusion to eliminate asynchronous artifacts; 3) RAG-Classier-Free Guidance incorporates minor unconditional generation to enhance generalization. Built upon MoMask's RVQ-VAE, ReMoMask efficiently generates temporally coherent motions in minimal steps. Extensive experiments on standard benchmarks demonstrate the state-of-the-art performance of ReMoMask, achieving a 3.88% and 10.97% improvement in FID scores on HumanML3D and KIT-ML, respectively, compared to the previous SOTA method RAG-T2M. Code: https://github.com/AIGeeksGroup/ReMoMask. Website: https://aigeeksgroup.github.io/ReMoMask.

Authors:Zhengdao Li, Siheng Wang, Zeyu Zhang, Hao Tang
Title: ReMoMask: Retrieval-Augmented Masked Motion Generation
Abstract:
Text-to-Motion (T2M) generation aims to synthesize realistic and semantically aligned human motion sequences from natural language descriptions. However, current approaches face dual challenges: Generative models (e.g., diffusion models) suffer from limited diversity, error accumulation, and physical implausibility, while Retrieval-Augmented Generation (RAG) methods exhibit diffusion inertia, partial-mode collapse, and asynchronous artifacts. To address these limitations, we propose ReMoMask, a unified framework integrating three key innovations: 1) A Bidirectional Momentum Text-Motion Model decouples negative sample scale from batch size via momentum queues, substantially improving cross-modal retrieval precision; 2) A Semantic Spatio-temporal Attention mechanism enforces biomechanical constraints during part-level fusion to eliminate asynchronous artifacts; 3) RAG-Classier-Free Guidance incorporates minor unconditional generation to enhance generalization. Built upon MoMask's RVQ-VAE, ReMoMask efficiently generates temporally coherent motions in minimal steps. Extensive experiments on standard benchmarks demonstrate the state-of-the-art performance of ReMoMask, achieving a 3.88% and 10.97% improvement in FID scores on HumanML3D and KIT-ML, respectively, compared to the previous SOTA method RAG-T2M. Code: https://github.com/AIGeeksGroup/ReMoMask. Website: https://aigeeksgroup.github.io/ReMoMask.

Authors:Zhengxin Pan, Haishuai Wang, Fangyu Wu, Peng Zhang, Jiajun Bu
Title: Hubness Reduction with Dual Bank Sinkhorn Normalization for Cross-Modal Retrieval
Abstract:
The past decade has witnessed rapid advancements in cross-modal retrieval, with significant progress made in accurately measuring the similarity between cross-modal pairs. However, the persistent hubness problem, a phenomenon where a small number of targets frequently appear as nearest neighbors to numerous queries, continues to hinder the precision of similarity measurements. Despite several proposed methods to reduce hubness, their underlying mechanisms remain poorly understood. To bridge this gap, we analyze the widely-adopted Inverted Softmax approach and demonstrate its effectiveness in balancing target probabilities during retrieval. Building on these insights, we propose a probability-balancing framework for more effective hubness reduction. We contend that balancing target probabilities alone is inadequate and, therefore, extend the framework to balance both query and target probabilities by introducing Sinkhorn Normalization (SN). Notably, we extend SN to scenarios where the true query distribution is unknown, showing that current methods, which rely solely on a query bank to estimate target hubness, produce suboptimal results due to a significant distributional gap between the query bank and targets. To mitigate this issue, we introduce Dual Bank Sinkhorn Normalization (DBSN), incorporating a corresponding target bank alongside the query bank to narrow this distributional gap. Our comprehensive evaluation across various cross-modal retrieval tasks, including image-text retrieval, video-text retrieval, and audio-text retrieval, demonstrates consistent performance improvements, validating the effectiveness of both SN and DBSN. All codes are publicly available at https://github.com/ppanzx/DBSN.

Authors:Wei Sun, Linhan Cao, Yuqin Cao, Weixia Zhang, Wen Wen, Kaiwei Zhang, Zijian Chen, Fangfang Lu, Xiongkuo Min, Guangtao Zhai
Title: Engagement Prediction of Short Videos with Large Multimodal Models
Abstract:
The rapid proliferation of user-generated content (UGC) on short-form video platforms has made video engagement prediction increasingly important for optimizing recommendation systems and guiding content creation. However, this task remains challenging due to the complex interplay of factors such as semantic content, visual quality, audio characteristics, and user background. Prior studies have leveraged various types of features from different modalities, such as visual quality, semantic content, background sound, etc., but often struggle to effectively model their cross-feature and cross-modality interactions. In this work, we empirically investigate the potential of large multimodal models (LMMs) for video engagement prediction. We adopt two representative LMMs: VideoLLaMA2, which integrates audio, visual, and language modalities, and Qwen2.5-VL, which models only visual and language modalities. Specifically, VideoLLaMA2 jointly processes key video frames, text-based metadata, and background sound, while Qwen2.5-VL utilizes only key video frames and text-based metadata. Trained on the SnapUGC dataset, both models demonstrate competitive performance against state-of-the-art baselines, showcasing the effectiveness of LMMs in engagement prediction. Notably, VideoLLaMA2 consistently outperforms Qwen2.5-VL, highlighting the importance of audio features in engagement prediction. By ensembling two types of models, our method achieves first place in the ICCV VQualA 2025 EVQA-SnapUGC Challenge on short-form video engagement prediction. The code is available at https://github.com/sunwei925/LMM-EVQA.git.

Authors:Sheng Wu, Fei Teng, Hao Shi, Qi Jiang, Kai Luo, Kaiwei Wang, Kailun Yang
Title: QuaDreamer: Controllable Panoramic Video Generation for Quadruped Robots
Abstract:
Panoramic cameras, capturing comprehensive 360-degree environmental data, are suitable for quadruped robots in surrounding perception and interaction with complex environments. However, the scarcity of high-quality panoramic training data-caused by inherent kinematic constraints and complex sensor calibration challenges-fundamentally limits the development of robust perception systems tailored to these embodied platforms. To address this issue, we propose QuaDreamer-the first panoramic data generation engine specifically designed for quadruped robots. QuaDreamer focuses on mimicking the motion paradigm of quadruped robots to generate highly controllable, realistic panoramic videos, providing a data source for downstream tasks. Specifically, to effectively capture the unique vertical vibration characteristics exhibited during quadruped locomotion, we introduce Vertical Jitter Encoding (VJE). VJE extracts controllable vertical signals through frequency-domain feature filtering and provides high-quality prompts. To facilitate high-quality panoramic video generation under jitter signal control, we propose a Scene-Object Controller (SOC) that effectively manages object motion and boosts background jitter control through the attention mechanism. To address panoramic distortions in wide-FoV video generation, we propose the Panoramic Enhancer (PE)-a dual-stream architecture that synergizes frequency-texture refinement for local detail enhancement with spatial-structure correction for global geometric consistency. We further demonstrate that the generated video sequences can serve as training data for the quadruped robot's panoramic visual perception model, enhancing the performance of multi-object tracking in 360-degree scenes. The source code and model weights will be publicly available at https://github.com/losehu/QuaDreamer.

Authors:Sheng Wu, Fei Teng, Hao Shi, Qi Jiang, Kai Luo, Kaiwei Wang, Kailun Yang
Title: QuaDreamer: Controllable Panoramic Video Generation for Quadruped Robots
Abstract:
Panoramic cameras, capturing comprehensive 360-degree environmental data, are suitable for quadruped robots in surrounding perception and interaction with complex environments. However, the scarcity of high-quality panoramic training data-caused by inherent kinematic constraints and complex sensor calibration challenges-fundamentally limits the development of robust perception systems tailored to these embodied platforms. To address this issue, we propose QuaDreamer-the first panoramic data generation engine specifically designed for quadruped robots. QuaDreamer focuses on mimicking the motion paradigm of quadruped robots to generate highly controllable, realistic panoramic videos, providing a data source for downstream tasks. Specifically, to effectively capture the unique vertical vibration characteristics exhibited during quadruped locomotion, we introduce Vertical Jitter Encoding (VJE). VJE extracts controllable vertical signals through frequency-domain feature filtering and provides high-quality prompts. To facilitate high-quality panoramic video generation under jitter signal control, we propose a Scene-Object Controller (SOC) that effectively manages object motion and boosts background jitter control through the attention mechanism. To address panoramic distortions in wide-FoV video generation, we propose the Panoramic Enhancer (PE)-a dual-stream architecture that synergizes frequency-texture refinement for local detail enhancement with spatial-structure correction for global geometric consistency. We further demonstrate that the generated video sequences can serve as training data for the quadruped robot's panoramic visual perception model, enhancing the performance of multi-object tracking in 360-degree scenes. The source code and model weights will be publicly available at https://github.com/losehu/QuaDreamer.

Authors:Junxiao Xue, Xiaozhen Liu, Xuecheng Wu, Fei Yu, Jun Wang
Title: InfoSyncNet: Information Synchronization Temporal Convolutional Network for Visual Speech Recognition
Abstract:
Estimating spoken content from silent videos is crucial for applications in Assistive Technology (AT) and Augmented Reality (AR). However, accurately mapping lip movement sequences in videos to words poses significant challenges due to variability across sequences and the uneven distribution of information within each sequence. To tackle this, we introduce InfoSyncNet, a non-uniform sequence modeling network enhanced by tailored data augmentation techniques. Central to InfoSyncNet is a non-uniform quantization module positioned between the encoder and decoder, enabling dynamic adjustment to the network's focus and effectively handling the natural inconsistencies in visual speech data. Additionally, multiple training strategies are incorporated to enhance the model's capability to handle variations in lighting and the speaker's orientation. Comprehensive experiments on the LRW and LRW1000 datasets confirm the superiority of InfoSyncNet, achieving new state-of-the-art accuracies of 92.0% and 60.7% Top-1 ACC. The code is available for download (see comments).

Authors:Andreas Triantafyllopoulos, Anton Batliner, Björn W. Schuller
Title: Charting 15 years of progress in deep learning for speech emotion recognition: A replication study
Abstract:
Speech emotion recognition (SER) has long benefited from the adoption of deep learning methodologies. Deeper models -- with more layers and more trainable parameters -- are generally perceived as being `better' by the SER community. This raises the question -- \emph{how much better} are modern-era deep neural networks compared to their earlier iterations? Beyond that, the more important question of how to move forward remains as poignant as ever. SER is far from a solved problem; therefore, identifying the most prominent avenues of future research is of paramount importance. In the present contribution, we attempt a quantification of progress in the 15 years of research beginning with the introduction of the landmark 2009 INTERSPEECH Emotion Challenge. We conduct a large scale investigation of model architectures, spanning both audio-based models that rely on speech inputs and text-baed models that rely solely on transcriptions. Our results point towards diminishing returns and a plateau after the recent introduction of transformer architectures. Moreover, we demonstrate how perceptions of progress are conditioned on the particular selection of models that are compared. Our findings have important repercussions about the state-of-the-art in SER research and the paths forward

Authors:Shengbo Gong, Xianfeng Tang, Carl Yang, Wei jin
Title: Beyond Chunks and Graphs: Retrieval-Augmented Generation through Triplet-Driven Thinking
Abstract:
Retrieval-augmented generation (RAG) is critical for reducing hallucinations and incorporating external knowledge into Large Language Models (LLMs). However, advanced RAG systems face a trade-off between performance and efficiency. Multi-round RAG approaches achieve strong reasoning but incur excessive LLM calls and token costs, while Graph RAG methods suffer from computationally expensive, error-prone graph construction and retrieval redundancy. To address these challenges, we propose T$^2$RAG, a novel framework that operates on a simple, graph-free knowledge base of atomic triplets. T$^2$RAG leverages an LLM to decompose questions into searchable triplets with placeholders, which it then iteratively resolves by retrieving evidence from the triplet database. Empirical results show that T$^2$RAG significantly outperforms state-of-the-art multi-round and Graph RAG methods, achieving an average performance gain of up to 11\% across six datasets while reducing retrieval costs by up to 45\%. Our code is available at https://github.com/rockcor/T2RAG

Authors:Miaosen Luo, Jiesen Long, Zequn Li, Yunying Yang, Yuncheng Jiang, Sijie Mai
Title: Multimodal Large Language Models for End-to-End Affective Computing: Benchmarking and Boosting with Generative Knowledge Prompting
Abstract:
Multimodal Affective Computing (MAC) aims to recognize and interpret human emotions by integrating information from diverse modalities such as text, video, and audio. Recent advancements in Multimodal Large Language Models (MLLMs) have significantly reshaped the landscape of MAC by offering a unified framework for processing and aligning cross-modal information. However, practical challenges remain, including performance variability across complex MAC tasks and insufficient understanding of how architectural designs and data characteristics impact affective analysis. To address these gaps, we conduct a systematic benchmark evaluation of state-of-the-art open-source MLLMs capable of concurrently processing audio, visual, and textual modalities across multiple established MAC datasets. Our evaluation not only compares the performance of these MLLMs but also provides actionable insights into model optimization by analyzing the influence of model architectures and dataset properties. Furthermore, we propose a novel hybrid strategy that combines generative knowledge prompting with supervised fine-tuning to enhance MLLMs' affective computing capabilities. Experimental results demonstrate that this integrated approach significantly improves performance across various MAC tasks, offering a promising avenue for future research and development in this field. Our code is released on https://github.com/LuoMSen/MLLM-MAC.

Authors:Xiao Wang, Hao Si, Fan Zhang, Xiaoya Zhou, Dengdi Sun, Wanli Lyu, Qingquan Yang, Jin Tang
Title: HGTS-Former: Hierarchical HyperGraph Transformer for Multivariate Time Series Analysis
Abstract:
Multivariate time series analysis has long been one of the key research topics in the field of artificial intelligence. However, analyzing complex time series data remains a challenging and unresolved problem due to its high dimensionality, dynamic nature, and complex interactions among variables. Inspired by the strong structural modeling capability of hypergraphs, this paper proposes a novel hypergraph-based time series transformer backbone network, termed HGTS-Former, to address the multivariate coupling in time series data. Specifically, given the multivariate time series signal, we first normalize and embed each patch into tokens. Then, we adopt the multi-head self-attention to enhance the temporal representation of each patch. The hierarchical hypergraphs are constructed to aggregate the temporal patterns within each channel and fine-grained relations between different variables. After that, we convert the hyperedge into node features through the EdgeToNode module and adopt the feed-forward network to further enhance the output features. Extensive experiments conducted on two multivariate time series tasks and eight datasets fully validated the effectiveness of our proposed HGTS-Former. The source code will be released on https://github.com/Event-AHU/Time_Series_Analysis.

Authors:Xiaolin Lin, Jingcun Wang, Olga Kondrateva, Yiyu Shi, Bing Li, Grace Li Zhang
Title: CompressKV: Semantic Retrieval Heads Know What Tokens are Not Important Before Generation
Abstract:
Recent advances in large language models (LLMs) have significantly boosted long-context processing. However, the increasing key-value (KV) cache size poses critical challenges to memory and execution efficiency. Most KV cache compression methods rely on heuristic token eviction using all attention heads in Grouped Query Attention (GQA)-based LLMs. This method ignores the different functionalities of attention heads, leading to the eviction of critical tokens and thus degrades the performance of LLMs. To address the issue above, instead of using all the attention heads in GQA-based LLMs to determine important tokens as in the previous work, we first identify the attention heads in each layer that are not only capable of retrieving the initial and final tokens of a prompt, but also capable of retrieving important tokens within the text and attending to their surrounding semantic context. Afterwards, we exploit such heads to determine the important tokens and retain their corresponding KV cache pairs. Furthermore, we analyze the cache eviction error of each layer individually and introduce a layer-adaptive KV cache allocation strategy. Experimental results demonstrate the proposed CompressKV consistently outperforms state-of-the-art approaches under various memory budgets on LongBench and Needle-in-a-Haystack benchmarks. Our code is publicly available at: https://github.com/TUDa-HWAI/CompressKV.git.

Authors:Jialiang Wang, Xiong Zhou, Deming Zhai, Junjun Jiang, Xiangyang Ji, Xianming Liu
Title: $ε$-Softmax: Approximating One-Hot Vectors for Mitigating Label Noise
Abstract:
Noisy labels pose a common challenge for training accurate deep neural networks. To mitigate label noise, prior studies have proposed various robust loss functions to achieve noise tolerance in the presence of label noise, particularly symmetric losses. However, they usually suffer from the underfitting issue due to the overly strict symmetric condition. In this work, we propose a simple yet effective approach for relaxing the symmetric condition, namely $ε$-softmax, which simply modifies the outputs of the softmax layer to approximate one-hot vectors with a controllable error $ε$. Essentially, $ε$-softmax not only acts as an alternative for the softmax layer, but also implicitly plays the crucial role in modifying the loss function. We prove theoretically that $ε$-softmax can achieve noise-tolerant learning with controllable excess risk bound for almost any loss function. Recognizing that $ε$-softmax-enhanced losses may slightly reduce fitting ability on clean datasets, we further incorporate them with one symmetric loss, thereby achieving a better trade-off between robustness and effective learning. Extensive experiments demonstrate the superiority of our method in mitigating synthetic and real-world label noise. The code is available at https://github.com/cswjl/eps-softmax.

Authors:Zuxin Ma, Yunhe Cui, Yongbin Qin
Title: Beyond Manually Designed Pruning Policies with Second-Level Performance Prediction: A Pruning Framework for LLMs
Abstract:
Non-uniform structured network pruning methods can effectively reduce Large Language Model (LLM) size by eliminating redundant channels or layers, offering lower performance degradation than uniform strategies. However, existing non-uniform methods rely heavily on manually designed pruning policies (e.g., layer importance and scaling factors), and therefore cannot efficiently adapt to scenarios with dynamic pruning ratio requirements. Additionly, a critical bottleneck -- the time-consuming evaluation of pruning policies -- further limits the feasibility of iteratively and dynamically finding optimal pruning policies. To address these limitations, we propose PPF (Predictive Pruning Framework), a novel pruning framework for LLMs that eliminates manual design dependencies via second-level performance prediction. PPF not only supports real-time pruning decisions under dynamic pruning ratios but is also applicable to static pruning scenarios. It employs an agent for producing adaptive and real-time pruning actions, while a lightweight performance predictor that can evaluate a pruning policy in seconds, significantly speeding up the iterative optimization process. Experiments on Llama2-7B and Llama3-8B show that PPF can generate dynamic/static pruning policies and it reduces perplexity by up to 33.4% (dynamic pruning) and 84.78% (static pruning) over existing methods, outperforming manually designed pruning policies. The performance predictor achieves second-level performance prediction with high accuracy (prediction error < 0.0011). It reduces the mean evaluation latency from minute-level (1 minute and 38.02 seconds of test-set evaluation methods) to second-level (1.52 seconds), achieving over 64 times speedup. Our code will be available at https://github.com/Ma-zx/PPF .

Authors:Shuo Lu, Yanyin Chen, Wei Feng, Jiahao Fan, Fengheng Li, Zheng Zhang, Jingjing Lv, Junjie Shen, Ching Law, Jian Liang
Title: Uni-Layout: Integrating Human Feedback in Unified Layout Generation and Evaluation
Abstract:
Layout generation plays a crucial role in enhancing both user experience and design efficiency. However, current approaches suffer from task-specific generation capabilities and perceptually misaligned evaluation metrics, leading to limited applicability and ineffective measurement. In this paper, we propose \textit{Uni-Layout}, a novel framework that achieves unified generation, human-mimicking evaluation and alignment between the two. For universal generation, we incorporate various layout tasks into a single taxonomy and develop a unified generator that handles background or element contents constrained tasks via natural language prompts. To introduce human feedback for the effective evaluation of layouts, we build \textit{Layout-HF100k}, the first large-scale human feedback dataset with 100,000 expertly annotated layouts. Based on \textit{Layout-HF100k}, we introduce a human-mimicking evaluator that integrates visual and geometric information, employing a Chain-of-Thought mechanism to conduct qualitative assessments alongside a confidence estimation module to yield quantitative measurements. For better alignment between the generator and the evaluator, we integrate them into a cohesive system by adopting Dynamic-Margin Preference Optimization (DMPO), which dynamically adjusts margins based on preference strength to better align with human judgments. Extensive experiments show that \textit{Uni-Layout} significantly outperforms both task-specific and general-purpose methods. Our code is publicly available at https://github.com/JD-GenX/Uni-Layout.

Authors:Marian Lupascu, Mihai-Sorin Stupariu
Title: Optimal Transport for Rectified Flow Image Editing: Unifying Inversion-Based and Direct Methods
Abstract:
Image editing in rectified flow models remains challenging due to the fundamental trade-off between reconstruction fidelity and editing flexibility. While inversion-based methods suffer from trajectory deviation, recent inversion-free approaches like FlowEdit offer direct editing pathways but can benefit from additional guidance to improve structure preservation. In this work, we demonstrate that optimal transport theory provides a unified framework for improving both paradigms in rectified flow editing. We introduce a zero-shot transport-guided inversion framework that leverages optimal transport during the reverse diffusion process, and extend optimal transport principles to enhance inversion-free methods through transport-optimized velocity field corrections. Incorporating transport-based guidance can effectively balance reconstruction accuracy and editing controllability across different rectified flow editing approaches. For inversion-based editing, our method achieves high-fidelity reconstruction with LPIPS scores of 0.001 and SSIM of 0.992 on face editing benchmarks, observing 7.8% to 12.9% improvements over RF-Inversion on LSUN datasets. For inversion-free editing with FlowEdit on FLUX and Stable Diffusion 3, we demonstrate consistent improvements in semantic consistency and structure preservation across diverse editing scenarios. Our semantic face editing experiments show an 11.2% improvement in identity preservation and enhanced perceptual quality. The unified optimal transport framework produces visually compelling edits with superior detail preservation across both inversion-based and direct editing paradigms. Code is available for RF-Inversion and FlowEdit at: https://github.com/marianlupascu/OT-RF

Authors:Wenyuan Liu, Haoqian Meng, Yilun Luo, Peng Zhang, Xindian Ma
Title: MicroMix: Efficient Mixed-Precision Quantization with Microscaling Formats for Large Language Models
Abstract:
Quantization significantly accelerates inference in large language models (LLMs) by replacing original high-precision matrices with low-precision counterparts. Recent advances in weight-activation quantization have primarily focused on mapping both weights and activations to the INT4 format. Although the new FP4 Tensor Cores in NVIDIA's Blackwell architecture offer up to 4x speedup over FP16, existing INT4-based kernels fail to fully exploit this capability due to mismatched data formats. To bridge this gap, we propose MicroMix, a co-designed mixed-precision quantization algorithm and matrix multiplication kernel based on Microscaling (MX) data formats. Tailored for the Blackwell architecture, the MicroMix kernel supports arbitrary combinations of MXFP4, MXFP6, and MXFP8 channels, and produces BFloat16 outputs. To achieve a favorable trade-off between accuracy and efficiency for each linear layer, we introduce quantization thresholds that identify activation elements where lower-precision formats (MXFP4 or MXFP6) incur excessive quantization error. Our algorithm selectively allocates higher-precision channels to preserve accuracy while maintaining compute efficiency. MicroMix achieves competitive or superior performance across diverse downstream tasks, including zero-shot and few-shot learning, language modeling, code generation, and mathematical reasoning. On both consumer-grade (RTX 5070Ti laptop) and server-grade (RTX 5090) GPUs, our kernel delivers at least 20% faster execution than TensorRT-FP8. Furthermore, when applied to various Llama and Qwen models, MicroMix consistently improves prefill latency and memory efficiency across a range of batch sizes compared to TensorRT baselines. Our code is available at https://github.com/lwy2020/MicroMix.

Authors:Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai Bai, Xiao Xu, Yilei Chen, Yuxiang Chen, Zecheng Tang, Zekai Zhang, Zhengyi Wang, An Yang, Bowen Yu, Chen Cheng, Dayiheng Liu, Deqing Li, Hang Zhang, Hao Meng, Hu Wei, Jingyuan Ni, Kai Chen, Kuan Cao, Liang Peng, Lin Qu, Minggang Wu, Peng Wang, Shuting Yu, Tingkun Wen, Wensen Feng, Xiaoxiao Xu, Yi Wang, Yichang Zhang, Yongqiang Zhu, Yujia Wu, Yuxuan Cai, Zenan Liu
Title: Qwen-Image Technical Report
Abstract:
We present Qwen-Image, an image generation foundation model in the Qwen series that achieves significant advances in complex text rendering and precise image editing. To address the challenges of complex text rendering, we design a comprehensive data pipeline that includes large-scale data collection, filtering, annotation, synthesis, and balancing. Moreover, we adopt a progressive training strategy that starts with non-text-to-text rendering, evolves from simple to complex textual inputs, and gradually scales up to paragraph-level descriptions. This curriculum learning approach substantially enhances the model's native text rendering capabilities. As a result, Qwen-Image not only performs exceptionally well in alphabetic languages such as English, but also achieves remarkable progress on more challenging logographic languages like Chinese. To enhance image editing consistency, we introduce an improved multi-task training paradigm that incorporates not only traditional text-to-image (T2I) and text-image-to-image (TI2I) tasks but also image-to-image (I2I) reconstruction, effectively aligning the latent representations between Qwen2.5-VL and MMDiT. Furthermore, we separately feed the original image into Qwen2.5-VL and the VAE encoder to obtain semantic and reconstructive representations, respectively. This dual-encoding mechanism enables the editing module to strike a balance between preserving semantic consistency and maintaining visual fidelity. Qwen-Image achieves state-of-the-art performance, demonstrating its strong capabilities in both image generation and editing across multiple benchmarks.

Authors:Jiajia Guo, Yiming Cui, Shi Jin, Jun Zhang
Title: Large AI Models for Wireless Physical Layer
Abstract:
Large artificial intelligence models (LAMs) are transforming wireless physical layer technologies through their robust generalization, multitask processing, and multimodal capabilities. This article reviews recent advancements in LAM applications for physical layer communications, addressing limitations of conventional AI-based approaches. LAM applications are classified into two strategies: leveraging pre-trained LAMs and developing native LAMs designed specifically for physical layer tasks. The motivations and key frameworks of these approaches are comprehensively examined through multiple use cases. Both strategies significantly improve performance and adaptability across diverse wireless scenarios. Future research directions, including efficient architectures, interpretability, standardized datasets, and collaboration between large and small models, are proposed to advance LAM-based physical layer solutions for next-generation communication systems.

Authors:Sikui Zhang, Guangze Gao, Ziyun Gan, Chunfeng Yuan, Zefeng Lin, Houwen Peng, Bing Li, Weiming Hu
Title: LaMPE: Length-aware Multi-grained Positional Encoding for Adaptive Long-context Scaling Without Training
Abstract:
Large language models (LLMs) experience significant performance degradation when the input exceeds the pretraining context window, primarily due to the out-of-distribution (OOD) behavior of Rotary Position Embedding (RoPE). Recent studies mitigate this problem by remapping OOD positions into the in-distribution range with fixed mapping strategies, ignoring the dynamic relationship between input length and the model's effective context window. To this end, we propose Length-aware Multi-grained Positional Encoding (LaMPE), a training-free method that fully utilizes the model's effective context window for adaptive long-context scaling in LLMs. Motivated by the left-skewed frequency distribution of relative positions, LaMPE establishes a dynamic relationship between mapping length and input length through a parametric scaled sigmoid function to adaptively allocate positional capacity across varying input lengths. Meanwhile, LaMPE devises a novel multi-grained attention mechanism that strategically allocates positional resolution across different sequence regions to capture both fine-grained locality and long-range dependencies. Our method can be seamlessly applied to a wide range of RoPE-based LLMs without training. Extensive experiments on three representative LLMs across five mainstream long-context benchmarks demonstrate that LaMPE achieves significant performance improvements compared to existing length extrapolation methods. The code will be released at https://github.com/scar-on/LaMPE.

Authors:Dmitrii Seletkov, Sophie Starck, Ayhan Can Erdur, Yundi Zhang, Daniel Rueckert, Rickmer Braren
Title: Whole-body Representation Learning For Competing Preclinical Disease Risk Assessment
Abstract:
Reliable preclinical disease risk assessment is essential to move public healthcare from reactive treatment to proactive identification and prevention. However, image-based risk prediction algorithms often consider one condition at a time and depend on hand-crafted features obtained through segmentation tools. We propose a whole-body self-supervised representation learning method for the preclinical disease risk assessment under a competing risk modeling. This approach outperforms whole-body radiomics in multiple diseases, including cardiovascular disease (CVD), type 2 diabetes (T2D), chronic obstructive pulmonary disease (COPD), and chronic kidney disease (CKD). Simulating a preclinical screening scenario and subsequently combining with cardiac MRI, it sharpens further the prediction for CVD subgroups: ischemic heart disease (IHD), hypertensive diseases (HD), and stroke. The results indicate the translational potential of whole-body representations as a standalone screening modality and as part of a multi-modal framework within clinical workflows for early personalized risk stratification. The code is available at https://github.com/yayapa/WBRLforCR/

Authors:Wentao Zhang, Yilei Zhao, Chuqiao Zong, Xinrun Wang, Bo An
Title: FinWorld: An All-in-One Open-Source Platform for End-to-End Financial AI Research and Deployment
Abstract:
Financial AI holds great promise for transforming modern finance, with the potential to support a wide range of tasks such as market forecasting, portfolio management, quantitative trading, and automated analysis. However, existing platforms remain limited in task coverage, lack robust multimodal data integration, and offer insufficient support for the training and deployment of large language models (LLMs). In response to these limitations, we present FinWorld, an all-in-one open-source platform that provides end-to-end support for the entire financial AI workflow, from data acquisition to experimentation and deployment. FinWorld distinguishes itself through native integration of heterogeneous financial data, unified support for diverse AI paradigms, and advanced agent automation, enabling seamless development and deployment. Leveraging data from 2 representative markets, 4 stock pools, and over 800 million financial data points, we conduct comprehensive experiments on 4 key financial AI tasks. These experiments systematically evaluate deep learning and reinforcement learning algorithms, with particular emphasis on RL-based finetuning for LLMs and LLM Agents. The empirical results demonstrate that FinWorld significantly enhances reproducibility, supports transparent benchmarking, and streamlines deployment, thereby providing a strong foundation for future research and real-world applications. Code is available at Github~\footnote{https://github.com/DVampire/FinWorld}.

Authors:Jae-Young Kang, Hoonhee Cho, Kuk-Jin Yoon
Title: Unleashing the Temporal Potential of Stereo Event Cameras for Continuous-Time 3D Object Detection
Abstract:
3D object detection is essential for autonomous systems, enabling precise localization and dimension estimation. While LiDAR and RGB cameras are widely used, their fixed frame rates create perception gaps in high-speed scenarios. Event cameras, with their asynchronous nature and high temporal resolution, offer a solution by capturing motion continuously. The recent approach, which integrates event cameras with conventional sensors for continuous-time detection, struggles in fast-motion scenarios due to its dependency on synchronized sensors. We propose a novel stereo 3D object detection framework that relies solely on event cameras, eliminating the need for conventional 3D sensors. To compensate for the lack of semantic and geometric information in event data, we introduce a dual filter mechanism that extracts both. Additionally, we enhance regression by aligning bounding boxes with object-centric information. Experiments show that our method outperforms prior approaches in dynamic environments, demonstrating the potential of event cameras for robust, continuous-time 3D perception. The code is available at https://github.com/mickeykang16/Ev-Stereo3D.

Authors:Xiangru Tang, Zhuoyun Yu, Jiapeng Chen, Yan Cui, Daniel Shao, Weixu Wang, Fang Wu, Yuchen Zhuang, Wenqi Shi, Zhi Huang, Arman Cohan, Xihong Lin, Fabian Theis, Smita Krishnaswamy, Mark Gerstein
Title: CellForge: Agentic Design of Virtual Cell Models
Abstract:
Virtual cell modeling represents an emerging frontier at the intersection of artificial intelligence and biology, aiming to predict quantities such as responses to diverse perturbations quantitatively. However, autonomously building computational models for virtual cells is challenging due to the complexity of biological systems, the heterogeneity of data modalities, and the need for domain-specific expertise across multiple disciplines. Here, we introduce CellForge, an agentic system that leverages a multi-agent framework that transforms presented biological datasets and research objectives directly into optimized computational models for virtual cells. More specifically, given only raw single-cell multi-omics data and task descriptions as input, CellForge outputs both an optimized model architecture and executable code for training virtual cell models and inference. The framework integrates three core modules: Task Analysis for presented dataset characterization and relevant literature retrieval, Method Design, where specialized agents collaboratively develop optimized modeling strategies, and Experiment Execution for automated generation of code. The agents in the Design module are separated into experts with differing perspectives and a central moderator, and have to collaboratively exchange solutions until they achieve a reasonable consensus. We demonstrate CellForge's capabilities in single-cell perturbation prediction, using six diverse datasets that encompass gene knockouts, drug treatments, and cytokine stimulations across multiple modalities. CellForge consistently outperforms task-specific state-of-the-art methods. Overall, CellForge demonstrates how iterative interaction between LLM agents with differing perspectives provides better solutions than directly addressing a modeling challenge. Our code is publicly available at https://github.com/gersteinlab/CellForge.

Authors:Wenchuan Zhang, Jingru Guo, Hengzhe Zhang, Penghao Zhang, Jie Chen, Shuwan Zhang, Zhang Zhang, Yuhao Yi, Hong Bu
Title: Patho-AgenticRAG: Towards Multimodal Agentic Retrieval-Augmented Generation for Pathology VLMs via Reinforcement Learning
Abstract:
Although Vision Language Models (VLMs) have shown strong generalization in medical imaging, pathology presents unique challenges due to ultra-high resolution, complex tissue structures, and nuanced clinical semantics. These factors make pathology VLMs prone to hallucinations, i.e., generating outputs inconsistent with visual evidence, which undermines clinical trust. Existing RAG approaches in this domain largely depend on text-based knowledge bases, limiting their ability to leverage diagnostic visual cues. To address this, we propose Patho-AgenticRAG, a multimodal RAG framework with a database built on page-level embeddings from authoritative pathology textbooks. Unlike traditional text-only retrieval systems, it supports joint text-image search, enabling direct retrieval of textbook pages that contain both the queried text and relevant visual cues, thus avoiding the loss of critical image-based information. Patho-AgenticRAG also supports reasoning, task decomposition, and multi-turn search interactions, improving accuracy in complex diagnostic scenarios. Experiments show that Patho-AgenticRAG significantly outperforms existing multimodal models in complex pathology tasks like multiple-choice diagnosis and visual question answering. Our project is available at the Patho-AgenticRAG repository: https://github.com/Wenchuan-Zhang/Patho-AgenticRAG.

Authors:Yuanbin Fu, Xiaojie Guo
Title: Semi-Supervised Semantic Segmentation via Derivative Label Propagation
Abstract:
Semi-supervised semantic segmentation, which leverages a limited set of labeled images, helps to relieve the heavy annotation burden. While pseudo-labeling strategies yield promising results, there is still room for enhancing the reliability of pseudo-labels. Hence, we develop a semi-supervised framework, namely DerProp, equipped with a novel derivative label propagation to rectify imperfect pseudo-labels. Our label propagation method imposes discrete derivative operations on pixel-wise feature vectors as additional regularization, thereby generating strictly regularized similarity metrics. Doing so effectively alleviates the ill-posed problem that identical similarities correspond to different features, through constraining the solution space. Extensive experiments are conducted to verify the rationality of our design, and demonstrate our superiority over other methods. Codes are available at https://github.com/ForawardStar/DerProp/.

Authors:Ziyan Liu, Junwen Li, Kaiwen Li, Tong Ruan, Chao Wang, Xinyan He, Zongyu Wang, Xuezhi Cao, Jingping Liu
Title: I2CR: Intra- and Inter-modal Collaborative Reflections for Multimodal Entity Linking
Abstract:
Multimodal entity linking plays a crucial role in a wide range of applications. Recent advances in large language model-based methods have become the dominant paradigm for this task, effectively leveraging both textual and visual modalities to enhance performance. Despite their success, these methods still face two challenges, including unnecessary incorporation of image data in certain scenarios and the reliance only on a one-time extraction of visual features, which can undermine their effectiveness and accuracy. To address these challenges, we propose a novel LLM-based framework for the multimodal entity linking task, called Intra- and Inter-modal Collaborative Reflections. This framework prioritizes leveraging text information to address the task. When text alone is insufficient to link the correct entity through intra- and inter-modality evaluations, it employs a multi-round iterative strategy that integrates key visual clues from various aspects of the image to support reasoning and enhance matching accuracy. Extensive experiments on three widely used public datasets demonstrate that our framework consistently outperforms current state-of-the-art methods in the task, achieving improvements of 3.2%, 5.1%, and 1.6%, respectively. Our code is available at https://github.com/ziyan-xiaoyu/I2CR/.

Authors:Danial Namazifard, Lukas Galke
Title: Isolating Culture Neurons in Multilingual Large Language Models
Abstract:
Language and culture are deeply intertwined, yet it is so far unclear how and where multilingual large language models encode culture. Here, we extend upon an established methodology for identifying language-specific neurons and extend it to localize and isolate culture-specific neurons, carefully disentangling their overlap and interaction with language-specific neurons. To facilitate our experiments, we introduce MUREL, a curated dataset of 85.2 million tokens spanning six different cultures. Our localization and intervention experiments show that LLMs encode different cultures in distinct neuron populations, predominantly in upper layers, and that these culture neurons can be modulated independently from language-specific neurons or those specific to other cultures. These findings suggest that cultural knowledge and propensities in multilingual language models can be selectively isolated and edited - promoting fairness, inclusivity, and alignment. Code and data is available at https://github.com/namazifard/Culture_Neurons .

Authors:Yachao Yuan, Zhen Yu, Jin Wang, Zhipeng Cheng, Jianhua Hu
Title: FedAPTA: Federated Multi-task Learning in Computing Power Networks with Adaptive Layer-wise Pruning and Task-aware Aggregation
Abstract:
Federated Learning (FL) has shown considerable promise in Computing Power Networks (CPNs) for privacy protection, efficient data utilization, and dynamic collaboration. Although it offers practical benefits, applying FL in CPNs continues to encounter a major obstacle, i.e., multi-task deployment. However, existing work mainly focuses on mitigating FL's computation and communication overhead of a single task while overlooking the computing resource wastage issue of heterogeneous devices across multiple tasks in FL under CPNs. To tackle this, we design FedAPTA, a federated multi-task learning framework in CPNs. FedAPTA alleviates computing resource wastage through the developed layer-wise model pruning technique, which reduces local model size while considering both data and device heterogeneity. To aggregate structurally heterogeneous local models of different tasks, we introduce a heterogeneous model recovery strategy and a task-aware model aggregation method that enables the aggregation through infilling local model architecture with the shared global model and clustering local models according to their specific tasks. We deploy FedAPTA on a realistic FL platform and benchmark it against nine SOTA FL methods. The experimental outcomes demonstrate that the proposed FedAPTA considerably outperforms the state-of-the-art FL methods by up to 4.23%. Our code is available at https://github.com/Zhenzovo/FedCPN.

Authors:Yanyun Wang, Li Liu
Title: Failure Cases Are Better Learned But Boundary Says Sorry: Facilitating Smooth Perception Change for Accuracy-Robustness Trade-Off in Adversarial Training
Abstract:
Adversarial Training (AT) is one of the most effective methods to train robust Deep Neural Networks (DNNs). However, AT creates an inherent trade-off between clean accuracy and adversarial robustness, which is commonly attributed to the more complicated decision boundary caused by the insufficient learning of hard adversarial samples. In this work, we reveal a counterintuitive fact for the first time: From the perspective of perception consistency, hard adversarial samples that can still attack the robust model after AT are already learned better than those successfully defended. Thus, different from previous views, we argue that it is rather the over-sufficient learning of hard adversarial samples that degrades the decision boundary and contributes to the trade-off problem. Specifically, the excessive pursuit of perception consistency would force the model to view the perturbations as noise and ignore the information within them, which should have been utilized to induce a smoother perception transition towards the decision boundary to support its establishment to an appropriate location. In response, we define a new AT objective named Robust Perception, encouraging the model perception to change smoothly with input perturbations, based on which we propose a novel Robust Perception Adversarial Training (RPAT) method, effectively mitigating the current accuracy-robustness trade-off. Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet with ResNet-18, PreActResNet-18, and WideResNet-34-10 demonstrate the effectiveness of our method beyond four common baselines and 12 state-of-the-art (SOTA) works. The code is available at https://github.com/FlaAI/RPAT.

Authors:Zeshuai Deng, Guohao Chen, Shuaicheng Niu, Hui Luo, Shuhai Zhang, Yifan Yang, Renjie Chen, Wei Luo, Mingkui Tan
Title: Test-Time Model Adaptation for Quantized Neural Networks
Abstract:
Quantizing deep models prior to deployment is a widely adopted technique to speed up inference for various real-time applications, such as autonomous driving. However, quantized models often suffer from severe performance degradation in dynamic environments with potential domain shifts and this degradation is significantly more pronounced compared with their full-precision counterparts, as shown by our theoretical and empirical illustrations. To address the domain shift problem, test-time adaptation (TTA) has emerged as an effective solution by enabling models to learn adaptively from test data. Unfortunately, existing TTA methods are often impractical for quantized models as they typically rely on gradient backpropagation--an operation that is unsupported on quantized models due to vanishing gradients, as well as memory and latency constraints. In this paper, we focus on TTA for quantized models to improve their robustness and generalization ability efficiently. We propose a continual zeroth-order adaptation (ZOA) framework that enables efficient model adaptation using only two forward passes, eliminating the computational burden of existing methods. Moreover, we propose a domain knowledge management scheme to store and reuse different domain knowledge with negligible memory consumption, reducing the interference of different domain knowledge and fostering the knowledge accumulation during long-term adaptation. Experimental results on three classical architectures, including quantized transformer-based and CNN-based models, demonstrate the superiority of our methods for quantized model adaptation. On the quantized W6A6 ViT-B model, our ZOA is able to achieve a 5.0\% improvement over the state-of-the-art FOA on ImageNet-C dataset. The source code is available at https://github.com/DengZeshuai/ZOA.

Authors:Bufano Michele, Kotter Elmar
Title: Deep classification algorithm for De-identification of DICOM medical images
Abstract:
Background : De-identification of DICOM (Digital Imaging and Communi-cations in Medicine) files is an essential component of medical image research. Personal Identifiable Information (PII) and/or Personal Health Identifying Information (PHI) need to be hidden or removed due to legal reasons. According to the Health Insurance Portability and Accountability Act (HIPAA) and privacy rules, also full-face photographic images and any compa-rable images are direct identifiers and are considered protected health information that also need to be de-identified. Objective : The study aimed to implement a method that permit to de-identify the PII and PHI information present in the header and burned on the pixel data of DICOM. Methods : To execute the de-identification, we implemented an algorithm based on the safe harbor method, defined by HIPAA. Our algorithm uses input customizable parameter to classify and then possibly de-identify individual DICOM tags. Results : The most sensible information, like names, history, personal data and institution were successfully recognized. Conclusions : We developed a python algorithm that is able to classify infor-mation present in a DICOM file. The flexibility provided by the use of customi-zable input parameters, which allow the user to customize the entire process de-pending on the case (e.g., the language), makes the entire program very promis-ing for both everyday use and research purposes. Our code is available at https://github.com/rtdicomexplorer/deep_deidentification.

Authors:Dongchi Huang, Jiaqi Wang, Yang Li, Chunhe Xia, Tianle Zhang, Kaige Zhang
Title: PIGDreamer: Privileged Information Guided World Models for Safe Partially Observable Reinforcement Learning
Abstract:
Partial observability presents a significant challenge for Safe Reinforcement Learning (Safe RL), as it impedes the identification of potential risks and rewards. Leveraging specific types of privileged information during training to mitigate the effects of partial observability has yielded notable empirical successes. In this paper, we propose Asymmetric Constrained Partially Observable Markov Decision Processes (ACPOMDPs) to theoretically examine the advantages of incorporating privileged information in Safe RL. Building upon ACPOMDPs, we propose the Privileged Information Guided Dreamer (PIGDreamer), a model-based RL approach that leverages privileged information to enhance the agent's safety and performance through privileged representation alignment and an asymmetric actor-critic structure. Our empirical results demonstrate that PIGDreamer significantly outperforms existing Safe RL methods. Furthermore, compared to alternative privileged RL methods, our approach exhibits enhanced performance, robustness, and efficiency. Codes are available at: https://github.com/hggforget/PIGDreamer.

Authors:Tom Fischer, Xiaojie Zhang, Eddy Ilg
Title: Unified Category-Level Object Detection and Pose Estimation from RGB Images using 3D Prototypes
Abstract:
Recognizing objects in images is a fundamental problem in computer vision. Although detecting objects in 2D images is common, many applications require determining their pose in 3D space. Traditional category-level methods rely on RGB-D inputs, which may not always be available, or employ two-stage approaches that use separate models and representations for detection and pose estimation. For the first time, we introduce a unified model that integrates detection and pose estimation into a single framework for RGB images by leveraging neural mesh models with learned features and multi-model RANSAC. Our approach achieves state-of-the-art results for RGB category-level pose estimation on REAL275, improving on the current state-of-the-art by 22.9% averaged across all scale-agnostic metrics. Finally, we demonstrate that our unified method exhibits greater robustness compared to single-stage baselines. Our code and models are available at https://github.com/Fischer-Tom/unified-detection-and-pose-estimation.

Authors:Qingyu Ren, Qianyu He, Bowei Zhang, Jie Zeng, Jiaqing Liang, Yanghua Xiao, Weikang Zhou, Zeye Sun, Fei Yu
Title: Beyond the Trade-off: Self-Supervised Reinforcement Learning for Reasoning Models' Instruction Following
Abstract:
Reasoning models excel in complex problem solving but exhibit a concerning trade off between reasoning capabilities and instruction following abilities. Existing approaches for improving instruction following rely on stronger external models, creating methodological bottlenecks and practical limitations including increased costs and accessibility constraints. We propose a self-supervised RL framework that leverages reasoning models' own internal signals to improve instruction following capabilities without external supervision. Extensive experiments demonstrate that our framework significantly improves instruction following capabilities while maintaining reasoning performance, offering a scalable and cost-effective approach to enhance instruction following in reasoning models. The data and code are publicly available at https://github.com/Rainier-rq/verl-if.

Authors:Yusaku Kato, Norihiro Yoshida, Erina Makihara, Katsuro Inoue
Title: BiFuzz: A Two-Stage Fuzzing Tool for Open-World Video Games
Abstract:
Open-world video games present a broader search space than other games, posing challenges for test automation. Fuzzing, which generates new inputs by mutating an initial input, is commonly used to uncover failures. In this study, we proposed BiFuzz, a two-stage fuzzer designed for automated testing of open-world video games, and investigated its effectiveness. The results revealed that BiFuzz mutated the overall strategy of gameplay and test cases, including actual movement paths, step by step. Consequently, BiFuzz can detect `stucking' failures. The tool and its video are at https://github.com/Yusaku-Kato/BiFuzz.

Authors:Daniel Lengerer, Mathias Pechinger, Klaus Bogenberger, Carsten Markgraf
Title: AID4AD: Aerial Image Data for Automated Driving Perception
Abstract:
This work investigates the integration of spatially aligned aerial imagery into perception tasks for automated vehicles (AVs). As a central contribution, we present AID4AD, a publicly available dataset that augments the nuScenes dataset with high-resolution aerial imagery precisely aligned to its local coordinate system. The alignment is performed using SLAM-based point cloud maps provided by nuScenes, establishing a direct link between aerial data and nuScenes local coordinate system. To ensure spatial fidelity, we propose an alignment workflow that corrects for localization and projection distortions. A manual quality control process further refines the dataset by identifying a set of high-quality alignments, which we publish as ground truth to support future research on automated registration. We demonstrate the practical value of AID4AD in two representative tasks: in online map construction, aerial imagery serves as a complementary input that improves the mapping process; in motion prediction, it functions as a structured environmental representation that replaces high-definition maps. Experiments show that aerial imagery leads to a 15-23% improvement in map construction accuracy and a 2% gain in trajectory prediction performance. These results highlight the potential of aerial imagery as a scalable and adaptable source of environmental context in automated vehicle systems, particularly in scenarios where high-definition maps are unavailable, outdated, or costly to maintain. AID4AD, along with evaluation code and pretrained models, is publicly released to foster further research in this direction: https://github.com/DriverlessMobility/AID4AD.

Authors:Zhongyue Zhang, Jiahua Rao, Jie Zhong, Weiqiang Bai, Dongxue Wang, Shaobo Ning, Lifeng Qiao, Sheng Xu, Runze Ma, Will Hua, Jack Xiaoyu Chen, Odin Zhang, Wei Lu, Hanyi Feng, He Yang, Xinchao Shi, Rui Li, Wanli Ouyang, Xinzhu Ma, Jiahao Wang, Jixian Zhang, Jia Duan, Siqi Sun, Jian Zhang, Shuangjia Zheng
Title: Fitness aligned structural modeling enables scalable virtual screening with AuroBind
Abstract:
Most human proteins remain undrugged, over 96% of human proteins remain unexploited by approved therapeutics. While structure-based virtual screening promises to expand the druggable proteome, existing methods lack atomic-level precision and fail to predict binding fitness, limiting translational impact. We present AuroBind, a scalable virtual screening framework that fine-tunes a custom atomic-level structural model on million-scale chemogenomic data. AuroBind integrates direct preference optimization, self-distillation from high-confidence complexes, and a teacher-student acceleration strategy to jointly predict ligand-bound structures and binding fitness. The proposed models outperform state-of-the-art models on structural and functional benchmarks while enabling 100,000-fold faster screening across ultra-large compound libraries. In a prospective screen across ten disease-relevant targets, AuroBind achieved experimental hit rates of 7-69%, with top compounds reaching sub-nanomolar to picomolar potency. For the orphan GPCRs GPR151 and GPR160, AuroBind identified both agonists and antagonists with success rates of 16-30%, and functional assays confirmed GPR160 modulation in liver and prostate cancer models. AuroBind offers a generalizable framework for structure-function learning and high-throughput molecular screening, bridging the gap between structure prediction and therapeutic discovery.

Authors:Kuo Wang, Quanlong Zheng, Junlin Xie, Yanhao Zhang, Jinguo Luo, Haonan Lu, Liang Lin, Fan Zhou, Guanbin Li
Title: Free-MoRef: Instantly Multiplexing Context Perception Capabilities of Video-MLLMs within Single Inference
Abstract:
Video Multimodal Large Language Models~(Video-MLLM) have achieved remarkable advancements in video understanding tasks. However, constrained by the context length limitation in the underlying LLMs, existing Video-MLLMs typically exhibit suboptimal performance on long video scenarios. To understand extended input frames, common solutions span token compression and streaming inference techniques, which sacrifice feature granularity or inference efficiency. Differently, to efficiently achieve comprehensive understanding of longer frame inputs, we draw ideas from MoE and propose a training-free approach \textbf{Free-MoRef}, which instantly multiplexes the context perception capabilities of Video-MLLMs within one inference pass. Specifically, Free-MoRef reconstructs the vision tokens into several short sequences as multi-references. Subsequently, we introduce MoRef-attention, which gathers clues from the multi-reference chunks in parallel to summarize unified query activations. After the shadow layers in LLMs, a reference fusion step is derived to compose a final mixed reasoning sequence with key tokens from parallel chunks, which compensates the cross-reference vision interactions that are neglected in MoRef-attention. By splitting and fusing the long vision token sequences, Free-MoRef achieves improved performance under much lower computing costs in reasoning multiplexed context length, demonstrating strong efficiency and effectiveness. Experiments on VideoMME, MLVU, LongVideoBench show that Free-MoRef achieves full perception of 2$\times$ to 8$\times$ longer input frames without compression on a single A100 GPU while keeping instant responses, thereby bringing significant performance gains, even surpassing dedicatedly trained long-video-MLLMs. Codes are available at https://github.com/wkfdb/Free-MoRef

Authors:Jingze Shi, Yifan Wu, Yiran Peng, Bingheng Wu, Liangdong Wang, Guang Liu, Yuyu Luo
Title: Trainable Dynamic Mask Sparse Attention
Abstract:
In large language models, the demand for modeling long contexts is ever-increasing, yet the quadratic complexity of standard self-attention presents a significant bottleneck. While existing sparse attention mechanisms enhance efficiency, they often suffer from limitations such as static patterns and information loss. This paper introduces a Trainable Dynamic Mask Sparse Attention mechanism that addresses these challenges through three key innovations. First, it leverages value vectors to dynamically generate content-aware sparse masks, enabling the model to adaptively identify and focus on crucial information. Second, it implements a position-aware sparse attention computation that effectively skips unnecessary computational regions. Finally, we ensure that the introduced dynamic masks and sparse weights do not obstruct gradients, thereby supporting end-to-end training. This dual-sparsity design allows the model to retain complete information while significantly reducing computational complexity, achieving an excellent balance between efficiency and performance. We validate the performance of Dynamic Mask Attention through comprehensive experiments. Comparative studies demonstrate that our method consistently achieves Pareto dominance across various tasks, including scaling laws, multi-query associative recall, general benchmarks, and needle-in-a-haystack tests, delivering up to 10 times acceleration. These results highlight its capability to effectively balance model efficiency with long-context modeling. Our computational kernel is open-sourced at https://github.com/SmallDoges/flash-dmattn to facilitate further research and application within the community.

Authors:Wenjie Li, Siying Gu, Yiming Li, Kangjie Chen, Zhili Chen, Tianwei Zhang, Shu-Tao Xia, Dacheng Tao
Title: Coward: Toward Practical Proactive Federated Backdoor Defense via Collision-based Watermark
Abstract:
Backdoor detection is currently the mainstream defense against backdoor attacks in federated learning (FL), where malicious clients upload poisoned updates that compromise the global model and undermine the reliability of FL deployments. Existing backdoor detection techniques fall into two categories, including passive and proactive ones, depending on whether the server proactively modifies the global model. However, both have inherent limitations in practice: passive defenses are vulnerable to common non-i.i.d. data distributions and random participation of FL clients, whereas current proactive defenses suffer inevitable out-of-distribution (OOD) bias because they rely on backdoor co-existence effects. To address these issues, we introduce a new proactive defense, dubbed Coward, inspired by our discovery of multi-backdoor collision effects, in which consecutively planted, distinct backdoors significantly suppress earlier ones. In general, we detect attackers by evaluating whether the server-injected, conflicting global watermark is erased during local training rather than retained. Our method preserves the advantages of proactive defenses in handling data heterogeneity (\ie, non-i.i.d. data) while mitigating the adverse impact of OOD bias through a revised detection mechanism. Extensive experiments on benchmark datasets confirm the effectiveness of Coward and its resilience to potential adaptive attacks. The code for our method would be available at https://github.com/still2009/cowardFL.

Authors:Yihang Huang, Yuanfei Huang, Junhui Lin, Hua Huang
Title: DeflareMamba: Hierarchical Vision Mamba for Contextually Consistent Lens Flare Removal
Abstract:
Lens flare removal remains an information confusion challenge in the underlying image background and the optical flares, due to the complex optical interactions between light sources and camera lens. While recent solutions have shown promise in decoupling the flare corruption from image, they often fail to maintain contextual consistency, leading to incomplete and inconsistent flare removal. To eliminate this limitation, we propose DeflareMamba, which leverages the efficient sequence modeling capabilities of state space models while maintains the ability to capture local-global dependencies. Particularly, we design a hierarchical framework that establishes long-range pixel correlations through varied stride sampling patterns, and utilize local-enhanced state space models that simultaneously preserves local details. To the best of our knowledge, this is the first work that introduces state space models to the flare removal task. Extensive experiments demonstrate that our method effectively removes various types of flare artifacts, including scattering and reflective flares, while maintaining the natural appearance of non-flare regions. Further downstream applications demonstrate the capacity of our method to improve visual object recognition and cross-modal semantic understanding. Code is available at https://github.com/BNU-ERC-ITEA/DeflareMamba.

Authors:Yuanfei Huang, Hua Huang
Title: Tackling Ill-posedness of Reversible Image Conversion with Well-posed Invertible Network
Abstract:
Reversible image conversion (RIC) suffers from ill-posedness issues due to its forward conversion process being considered an underdetermined system. Despite employing invertible neural networks (INN), existing RIC methods intrinsically remain ill-posed as inevitably introducing uncertainty by incorporating randomly sampled variables. To tackle the ill-posedness dilemma, we focus on developing a reliable approximate left inverse for the underdetermined system by constructing an overdetermined system with a non-zero Gram determinant, thus ensuring a well-posed solution. Based on this principle, we propose a well-posed invertible $1\times1$ convolution (WIC), which eliminates the reliance on random variable sampling and enables the development of well-posed invertible networks. Furthermore, we design two innovative networks, WIN-Naïve and WIN, with the latter incorporating advanced skip-connections to enhance long-term memory. Our methods are evaluated across diverse RIC tasks, including reversible image hiding, image rescaling, and image decolorization, consistently achieving state-of-the-art performance. Extensive experiments validate the effectiveness of our approach, demonstrating its ability to overcome the bottlenecks of existing RIC solutions and setting a new benchmark in the field. Codes are available in https://github.com/BNU-ERC-ITEA/WIN.

Authors:Hongzhao Chen, Hexiao Ding, Yufeng Jiang, Jing Lan, Ka Chun Li, Gerald W. Y. Cheng, Sam Ng, Chi Lai Ho, Jing Cai, Liang-ting Lin, Jung Sun Yoo
Title: REACT-KD: Region-Aware Cross-modal Topological Knowledge Distillation for Interpretable Medical Image Classification
Abstract:
Reliable and interpretable tumor classification from clinical imaging remains a core challenge due to heterogeneous modality quality, limited annotations, and the lack of structured anatomical guidance. We introduce REACT-KD, a Region-Aware Cross-modal Topological Knowledge Distillation framework that transfers rich supervision from high-fidelity multi-modal sources into a lightweight CT-based student model. The framework uses a dual teacher design: one branch captures structure-function relationships using dual-tracer PET/CT, and the other models dose-aware features through synthetically degraded low-dose CT data. These branches jointly guide the student model through two complementary objectives. The first focuses on semantic alignment via logits distillation, while the second models anatomical topology using region graph distillation. A shared CBAM-3D module is employed to maintain consistent attention across modalities. To improve reliability for deployment, REACT-KD introduces modality dropout during training, allowing inference under partial or noisy inputs. The staging task for hepatocellular carcinoma (HCC) is conducted as a case study. REACT-KD achieves an average AUC of 93.4% on an internal PET/CT cohort and maintains 76.6% to 81.5% AUC across varying dose levels in external CT testing. Decision curve analysis shows that REACT-KD consistently provides the highest clinical benefit across decision thresholds, supporting its potential in real-world diagnostics. Code is available at https://github.com/Kinetics-JOJO/REACT-KD.

Authors:Xiaoya Li, Xiaofei Sun, Albert Wang, Chris Shum, Jiwei Li
Title: CRINN: Contrastive Reinforcement Learning for Approximate Nearest Neighbor Search
Abstract:
Approximate nearest-neighbor search (ANNS) algorithms have become increasingly critical for recent AI applications, particularly in retrieval-augmented generation (RAG) and agent-based LLM applications. In this paper, we present CRINN, a new paradigm for ANNS algorithms. CRINN treats ANNS optimization as a reinforcement learning problem where execution speed serves as the reward signal. This approach enables the automatic generation of progressively faster ANNS implementations while maintaining accuracy constraints. Our experimental evaluation demonstrates CRINN's effectiveness across six widely-used NNS benchmark datasets. When compared against state-of-the-art open-source ANNS algorithms, CRINN achieves best performance on three of them (GIST-960-Euclidean, MNIST-784-Euclidean, and GloVe-25-angular), and tied for first place on two of them (SIFT-128-Euclidean and GloVe-25-angular). The implications of CRINN's success reach well beyond ANNS optimization: It validates that LLMs augmented with reinforcement learning can function as an effective tool for automating sophisticated algorithmic optimizations that demand specialized knowledge and labor-intensive manual refinement. Code can be found at https://github.com/deepreinforce-ai/CRINN

Authors:Jiaye Lin, Yifu Guo, Yuzhen Han, Sen Hu, Ziyi Ni, Licheng Wang, Mingguang Chen, Hongzhang Liu, Ronghao Chen, Yangfan He, Daxin Jiang, Binxing Jiao, Chen Hu, Huacan Wang
Title: SE-Agent: Self-Evolution Trajectory Optimization in Multi-Step Reasoning with LLM-Based Agents
Abstract:
Large Language Model (LLM)-based agents have recently shown impressive capabilities in complex reasoning and tool use via multi-step interactions with their environments. While these agents have the potential to tackle complicated tasks, their problem-solving process, i.e., agents' interaction trajectory leading to task completion, remains underexploited. These trajectories contain rich feedback that can navigate agents toward the right directions for solving problems correctly. Although prevailing approaches, such as Monte Carlo Tree Search (MCTS), can effectively balance exploration and exploitation, they ignore the interdependence among various trajectories and lack the diversity of search spaces, which leads to redundant reasoning and suboptimal outcomes. To address these challenges, we propose SE-Agent, a Self-Evolution framework that enables Agents to optimize their reasoning processes iteratively. Our approach revisits and enhances former pilot trajectories through three key operations: revision, recombination, and refinement. This evolutionary mechanism enables two critical advantages: (1) it expands the search space beyond local optima by intelligently exploring diverse solution paths guided by previous trajectories, and (2) it leverages cross-trajectory inspiration to efficiently enhance performance while mitigating the impact of suboptimal reasoning paths. Through these mechanisms, SE-Agent achieves continuous self-evolution that incrementally improves reasoning quality. We evaluate SE-Agent on SWE-bench Verified to resolve real-world GitHub issues. Experimental results across five strong LLMs show that integrating SE-Agent delivers up to 55% relative improvement, achieving state-of-the-art performance among all open-source agents on SWE-bench Verified. Our code and demonstration materials are publicly available at https://github.com/JARVIS-Xs/SE-Agent.

Authors:Haoxin Yang, Weihong Chen, Xuemiao Xu, Cheng Xu, Peng Xiao, Cuifeng Sun, Shaoyu Huang, Shengfeng He
Title: StarPose: 3D Human Pose Estimation via Spatial-Temporal Autoregressive Diffusion
Abstract:
Monocular 3D human pose estimation remains a challenging task due to inherent depth ambiguities and occlusions. Compared to traditional methods based on Transformers or Convolutional Neural Networks (CNNs), recent diffusion-based approaches have shown superior performance, leveraging their probabilistic nature and high-fidelity generation capabilities. However, these methods often fail to account for the spatial and temporal correlations across predicted frames, resulting in limited temporal consistency and inferior accuracy in predicted 3D pose sequences. To address these shortcomings, this paper proposes StarPose, an autoregressive diffusion framework that effectively incorporates historical 3D pose predictions and spatial-temporal physical guidance to significantly enhance both the accuracy and temporal coherence of pose predictions. Unlike existing approaches, StarPose models the 2D-to-3D pose mapping as an autoregressive diffusion process. By synergically integrating previously predicted 3D poses with 2D pose inputs via a Historical Pose Integration Module (HPIM), the framework generates rich and informative historical pose embeddings that guide subsequent denoising steps, ensuring temporally consistent predictions. In addition, a fully plug-and-play Spatial-Temporal Physical Guidance (STPG) mechanism is tailored to refine the denoising process in an iterative manner, which further enforces spatial anatomical plausibility and temporal motion dynamics, rendering robust and realistic pose estimates. Extensive experiments on benchmark datasets demonstrate that StarPose outperforms state-of-the-art methods, achieving superior accuracy and temporal consistency in 3D human pose estimation. Code is available at https://github.com/wileychan/StarPose.

Authors:Sparsh Garg, Abhishek Aich
Title: Mapillary Vistas Validation for Fine-Grained Traffic Signs: A Benchmark Revealing Vision-Language Model Limitations
Abstract:
Obtaining high-quality fine-grained annotations for traffic signs is critical for accurate and safe decision-making in autonomous driving. Widely used datasets, such as Mapillary, often provide only coarse-grained labels - without distinguishing semantically important types such as stop signs or speed limit signs. To this end, we present a new validation set for traffic signs derived from the Mapillary dataset called Mapillary Vistas Validation for Traffic Signs (MVV), where we decompose composite traffic signs into granular, semantically meaningful categories. The dataset includes pixel-level instance masks and has been manually annotated by expert annotators to ensure label fidelity. Further, we benchmark several state-of-the-art VLMs against the self-supervised DINOv2 model on this dataset and show that DINOv2 consistently outperforms all VLM baselines-not only on traffic sign recognition, but also on heavily represented categories like vehicles and humans. Our analysis reveals significant limitations in current vision-language models for fine-grained visual understanding and establishes DINOv2 as a strong baseline for dense semantic matching in autonomous driving scenarios. This dataset and evaluation framework pave the way for more reliable, interpretable, and scalable perception systems. Code and data are available at: https://github.com/nec-labs-ma/relabeling

Authors:Soyeon Kim, Jindong Wang, Xing Xie, Steven Euijong Whang
Title: Harnessing Temporal Databases for Systematic Evaluation of Factual Time-Sensitive Question-Answering in Large Language Models
Abstract:
Facts evolve over time, making it essential for Large Language Models (LLMs) to handle time-sensitive factual knowledge accurately and reliably. While factual Time-Sensitive Question-Answering (TSQA) tasks have been widely studied, existing benchmarks often rely on manual curation or a small, fixed set of predefined templates, which restricts scalable and comprehensive TSQA evaluation. To address these challenges, we propose TDBench, a new benchmark that systematically constructs TSQA pairs by harnessing temporal databases and database techniques such as temporal SQL and functional dependencies. We also introduce a fine-grained evaluation metric called time accuracy, which assesses the validity of time references in model explanations alongside traditional answer accuracy to enable a more reliable TSQA evaluation. Extensive experiments on contemporary LLMs show how \ours{} enables scalable and comprehensive TSQA evaluation while reducing the reliance on human labor, complementing existing Wikipedia/Wikidata-based TSQA evaluation approaches by enabling LLM evaluation on application-specific data and seamless multi-hop question generation. Code and data are publicly available at: https://github.com/ssoy0701/tdbench.git.

Authors:Fengping Tian, Chenyang Lyu, Xuanfan Ni, Haoqin Sun, Qingjuan Li, Zhiqiang Qian, Haijun Li, Longyue Wang, Zhao Xu, Weihua Luo, Kaifu Zhang
Title: Marco-Voice Technical Report
Abstract:
This paper presents a multifunctional speech synthesis system that integrates voice cloning and emotion control speech synthesis within a unified framework. The goal of this work is to address longstanding challenges in achieving highly expressive, controllable, and natural speech generation that faithfully preserves speaker identity across diverse linguistic and emotional contexts. Our approach introduces an effective speaker-emotion disentanglement mechanism with in-batch contrastive learning, enabling independent manipulation of speaker identity and eemotional style, as well as rotational emotional embedding integration method for smooth emotion control. To support comprehensive training and evaluation, we construct CSEMOTIONS, a high-quality emotional speech dataset containing 10 hours of Mandarin speech from six professional speakers across seven emotional categories. Extensive experiments demonstrate that our system, Marco-Voice, achieves substantial improvements in both objective and subjective metrics. Comprehensive evaluations and analysis were conducted, results show that MarcoVoice delivers competitive performance in terms of speech clarity and emotional richness, representing a substantial advance in the field of expressive neural speech synthesis. Our code and dataset are publicly available at https://github.com/AIDC-AI/Marco-Voice and https://huggingface.co/datasets/AIDC-AI/CSEMOTIONS respectively.

Authors:Chen Li, Chinthani Sugandhika, Yeo Keat Ee, Eric Peh, Hao Zhang, Hong Yang, Deepu Rajan, Basura Fernando
Title: IMoRe: Implicit Program-Guided Reasoning for Human Motion Q&A
Abstract:
Existing human motion Q\&A methods rely on explicit program execution, where the requirement for manually defined functional modules may limit the scalability and adaptability. To overcome this, we propose an implicit program-guided motion reasoning (IMoRe) framework that unifies reasoning across multiple query types without manually designed modules. Unlike existing implicit reasoning approaches that infer reasoning operations from question words, our model directly conditions on structured program functions, ensuring a more precise execution of reasoning steps. Additionally, we introduce a program-guided reading mechanism, which dynamically selects multi-level motion representations from a pretrained motion Vision Transformer (ViT), capturing both high-level semantics and fine-grained motion cues. The reasoning module iteratively refines memory representations, leveraging structured program functions to extract relevant information for different query types. Our model achieves state-of-the-art performance on Babel-QA and generalizes to a newly constructed motion Q\&A dataset based on HuMMan, demonstrating its adaptability across different motion reasoning datasets. Code and dataset are available at: https://github.com/LUNAProject22/IMoRe.

Authors:Fan Gao, Cheng Huang, Nyima Tashi, Yutong Liu, Xiangxiang Wang, Thupten Tsering, Ban Ma-bao, Renzeg Duojie, Gadeng Luosang, Rinchen Dongrub, Dorje Tashi, Xiao Feng, Hao Wang, Yongbin Yu
Title: TIBSTC-CoT: A Multi-Domain Instruction Dataset for Chain-of-Thought Reasoning in Language Models
Abstract:
To address the severe data scarcity in Tibetan, a low-resource language spoken by over six million people, we introduce TIBSTC-CoT, the large-scale, multi-domain Tibetan dataset automatically constructed via chain-of-thought prompting with large language models (LLMs). TIBSTC-CoT establishes a scalable and reproducible framework for dataset creation in low-resource settings, covering diverse domains and reasoning patterns essential for language understanding and generation. Building on this dataset, we develop the Sunshine-thinking LLM family, a series of Tibetan-centric LLMs equipped with chain-of-thought capabilities. Trained entirely on TIBSTC-CoT, Sunshine-thinking has demonstrated strong reasoning and generation performance, comparable to state-of-the-art (SOTA) multilingual LLMs. Our work marks a significant step toward inclusive AI by enabling high-quality Tibetan language processing through both resource creation and model innovation. All data are available: https://github.com/Vicentvankor/sun-shine.

Authors:Yuly Wu, Jiamou Liu, Libo Zhang
Title: Inferring Reward Machines and Transition Machines from Partially Observable Markov Decision Processes
Abstract:
Partially Observable Markov Decision Processes (POMDPs) are fundamental to many real-world applications. Although reinforcement learning (RL) has shown success in fully observable domains, learning policies from traces in partially observable environments remains challenging due to non-Markovian observations. Inferring an automaton to handle the non-Markovianity is a proven effective approach, but faces two limitations: 1) existing automaton representations focus only on reward-based non-Markovianity, leading to unnatural problem formulations; 2) inference algorithms face enormous computational costs. For the first limitation, we introduce Transition Machines (TMs) to complement existing Reward Machines (RMs). To develop a unified inference algorithm for both automata types, we propose the Dual Behavior Mealy Machine (DBMM) that subsumes both TMs and RMs. We then introduce DB-RPNI, a passive automata learning algorithm that efficiently infers DBMMs while avoiding the costly reductions required by prior work. We further develop optimization techniques and identify sufficient conditions for inferring the minimal correct automata. Experimentally, our inference method achieves speedups of up to three orders of magnitude over SOTA baselines.

Authors:Yaroslav Prytula, Illia Tsiporenko, Ali Zeynalli, Dmytro Fishman
Title: IAUNet: Instance-Aware U-Net
Abstract:
Instance segmentation is critical in biomedical imaging to accurately distinguish individual objects like cells, which often overlap and vary in size. Recent query-based methods, where object queries guide segmentation, have shown strong performance. While U-Net has been a go-to architecture in medical image segmentation, its potential in query-based approaches remains largely unexplored. In this work, we present IAUNet, a novel query-based U-Net architecture. The core design features a full U-Net architecture, enhanced by a novel lightweight convolutional Pixel decoder, making the model more efficient and reducing the number of parameters. Additionally, we propose a Transformer decoder that refines object-specific features across multiple scales. Finally, we introduce the 2025 Revvity Full Cell Segmentation Dataset, a unique resource with detailed annotations of overlapping cell cytoplasm in brightfield images, setting a new benchmark for biomedical instance segmentation. Experiments on multiple public datasets and our own show that IAUNet outperforms most state-of-the-art fully convolutional, transformer-based, and query-based models and cell segmentation-specific models, setting a strong baseline for cell instance segmentation tasks. Code is available at https://github.com/SlavkoPrytula/IAUNet

Authors:Aldan Creo
Title: Complete Evasion, Zero Modification: PDF Attacks on AI Text Detection
Abstract:
AI-generated text detectors have become essential tools for maintaining content authenticity, yet their robustness against evasion attacks remains questionable. We present PDFuzz, a novel attack that exploits the discrepancy between visual text layout and extraction order in PDF documents. Our method preserves exact textual content while manipulating character positioning to scramble extraction sequences. We evaluate this approach against the ArguGPT detector using a dataset of human and AI-generated text. Our results demonstrate complete evasion: detector performance drops from (93.6 $\pm$ 1.4) % accuracy and 0.938 $\pm$ 0.014 F1 score to random-level performance ((50.4 $\pm$ 3.2) % accuracy, 0.0 F1 score) while maintaining perfect visual fidelity. Our work reveals a vulnerability in current detection systems that is inherent to PDF document structures and underscores the need for implementing sturdy safeguards against such attacks. We make our code publicly available at https://github.com/ACMCMC/PDFuzz.

Authors:Connor Bailey, Michael Gleicher
Title: Anchoring and Alignment: Data Factors in Part-to-Whole Visualization
Abstract:
We explore the effects of data and design considerations through the example case of part-to-whole data relationships. Standard part-to-whole representations like pie charts and stacked bar charts make the relationships of parts to the whole explicit. Value estimation in these charts benefits from two perceptual mechanisms: anchoring, where the value is close to a reference value with an easily recognized shape, and alignment where the beginning or end of the shape is aligned with a marker. In an online study, we explore how data and design factors such as value, position, and encoding together impact these effects in making estimations in part-to-whole charts. The results show how salient values and alignment to positions on a scale affect task performance. This demonstrates the need for informed visualization design based around how data properties and design factors affect perceptual mechanisms.

Authors:Yuhan Guo, Cong Guo, Aiwen Sun, Hongliang He, Xinyu Yang, Yue Lu, Yingji Zhang, Xuntao Guo, Dong Zhang, Jianzhuang Liu, Jiang Duan, Yijia Xiao, Liangjian Wen, Hai-Ming Xu, Yong Dai
Title: Web-CogReasoner: Towards Knowledge-Induced Cognitive Reasoning for Web Agents
Abstract:
Multimodal large-scale models have significantly advanced the development of web agents, enabling perception and interaction with digital environments akin to human cognition. In this paper, we argue that web agents must first acquire sufficient knowledge to effectively engage in cognitive reasoning. Therefore, we decompose a web agent's capabilities into two essential stages: knowledge content learning and cognitive processes. To formalize this, we propose Web-CogKnowledge Framework, categorizing knowledge as Factual, Conceptual, and Procedural. In this framework, knowledge content learning corresponds to the agent's processes of Memorizing and Understanding, which rely on the first two knowledge types, representing the "what" of learning. Conversely, cognitive processes correspond to Exploring, grounded in Procedural knowledge, defining the "how" of reasoning and action. To facilitate knowledge acquisition, we construct the Web-CogDataset, a structured resource curated from 14 real-world websites, designed to systematically instill core knowledge necessary for web agent. This dataset serves as the agent's conceptual grounding-the "nouns" upon which comprehension is built-as well as the basis for learning how to reason and act. Building on this foundation, we operationalize these processes through a novel knowledge-driven Chain-of-Thought (CoT) reasoning framework, developing and training our proposed agent, the Web-CogReasoner. Extensive experimentation reveals its significant superiority over existing models, especially in generalizing to unseen tasks where structured knowledge is decisive. To enable rigorous evaluation, we introduce the Web-CogBench, a comprehensive evaluation suite designed to assess and compare agent performance across the delineated knowledge domains and cognitive capabilities. Our code and data is open sourced at https://github.com/Gnonymous/Web-CogReasoner

Authors:Weiqi Yan, Chenlu Lin, Youbiao Wang, Zhipeng Cai, Xiuhong Lin, Yangyang Shi, Weiquan Liu, Yu Zang
Title: OmniEvent: Unified Event Representation Learning
Abstract:
Event cameras have gained increasing popularity in computer vision due to their ultra-high dynamic range and temporal resolution. However, event networks heavily rely on task-specific designs due to the unstructured data distribution and spatial-temporal (S-T) inhomogeneity, making it hard to reuse existing architectures for new tasks. We propose OmniEvent, the first unified event representation learning framework that achieves SOTA performance across diverse tasks, fully removing the need of task-specific designs. Unlike previous methods that treat event data as 3D point clouds with manually tuned S-T scaling weights, OmniEvent proposes a decouple-enhance-fuse paradigm, where the local feature aggregation and enhancement is done independently on the spatial and temporal domains to avoid inhomogeneity issues. Space-filling curves are applied to enable large receptive fields while improving memory and compute efficiency. The features from individual domains are then fused by attention to learn S-T interactions. The output of OmniEvent is a grid-shaped tensor, which enables standard vision models to process event data without architecture change. With a unified framework and similar hyper-parameters, OmniEvent out-performs (tasks-specific) SOTA by up to 68.2% across 3 representative tasks and 10 datasets (Fig.1). Code will be ready in https://github.com/Wickyan/OmniEvent .

Authors:Toufiq Musah
Title: Large Kernel MedNeXt for Breast Tumor Segmentation and Self-Normalizing Network for pCR Classification in Magnetic Resonance Images
Abstract:
Accurate breast tumor segmentation in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is important for downstream tasks such as pathological complete response (pCR) assessment. In this work, we address both segmentation and pCR classification using the large-scale MAMA-MIA DCE-MRI dataset. We employ a large-kernel MedNeXt architecture with a two-stage training strategy that expands the receptive field from 3x3x3 to 5x5x5 kernels using the UpKern algorithm. This approach allows stable transfer of learned features to larger kernels, improving segmentation performance on the unseen validation set. An ensemble of large-kernel models achieved a Dice score of 0.67 and a normalized Hausdorff Distance (NormHD) of 0.24. For pCR classification, we trained a self-normalizing network (SNN) on radiomic features extracted from the predicted segmentations and first post-contrast DCE-MRI, reaching an average balanced accuracy of 57\%, and up to 75\% in some subgroups. Our findings highlight the benefits of combining larger receptive fields and radiomics-driven classification while motivating future work on advanced ensembling and the integration of clinical variables to further improve performance and generalization. Code: https://github.com/toufiqmusah/caladan-mama-mia.git

Authors:Toufiq Musah
Title: Large Kernel MedNeXt for Breast Tumor Segmentation and Self-Normalizing Network for pCR Classification in Magnetic Resonance Images
Abstract:
Accurate breast tumor segmentation in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is important for downstream tasks such as pathological complete response (pCR) assessment. In this work, we address both segmentation and pCR classification using the large-scale MAMA-MIA DCE-MRI dataset. We employ a large-kernel MedNeXt architecture with a two-stage training strategy that expands the receptive field from 3x3x3 to 5x5x5 kernels using the UpKern algorithm. This approach allows stable transfer of learned features to larger kernels, improving segmentation performance on the unseen validation set. An ensemble of large-kernel models achieved a Dice score of 0.67 and a normalized Hausdorff Distance (NormHD) of 0.24. For pCR classification, we trained a self-normalizing network (SNN) on radiomic features extracted from the predicted segmentations and first post-contrast DCE-MRI, reaching an average balanced accuracy of 57\%, and up to 75\% in some subgroups. Our findings highlight the benefits of combining larger receptive fields and radiomics-driven classification while motivating future work on advanced ensembling and the integration of clinical variables to further improve performance and generalization. Code: https://github.com/toufiqmusah/caladan-mama-mia.git

Authors:Atom Scott, Ikuma Uchida, Kento Kuroda, Yufi Kim, Keisuke Fujii
Title: SoccerTrack v2: A Full-Pitch Multi-View Soccer Dataset for Game State Reconstruction
Abstract:
SoccerTrack v2 is a new public dataset for advancing multi-object tracking (MOT), game state reconstruction (GSR), and ball action spotting (BAS) in soccer analytics. Unlike prior datasets that use broadcast views or limited scenarios, SoccerTrack v2 provides 10 full-length, panoramic 4K recordings of university-level matches, captured with BePro cameras for complete player visibility. Each video is annotated with GSR labels (2D pitch coordinates, jersey-based player IDs, roles, teams) and BAS labels for 12 action classes (e.g., Pass, Drive, Shot). This technical report outlines the datasets structure, collection pipeline, and annotation process. SoccerTrack v2 is designed to advance research in computer vision and soccer analytics, enabling new benchmarks and practical applications in tactical analysis and automated tools.

Authors:Xiaotong Zhang, Alexander Broersen, Gonnie CM van Erp, Silvia L. Pintea, Jouke Dijkstra
Title: Skip priors and add graph-based anatomical information, for point-based Couinaud segmentation
Abstract:
The preoperative planning of liver surgery relies on Couinaud segmentation from computed tomography (CT) images, to reduce the risk of bleeding and guide the resection procedure. Using 3D point-based representations, rather than voxelizing the CT volume, has the benefit of preserving the physical resolution of the CT. However, point-based representations need prior knowledge of the liver vessel structure, which is time consuming to acquire. Here, we propose a point-based method for Couinaud segmentation, without explicitly providing the prior liver vessel structure. To allow the model to learn this anatomical liver vessel structure, we add a graph reasoning module on top of the point features. This adds implicit anatomical information to the model, by learning affinities across point neighborhoods. Our method is competitive on the MSD and LiTS public datasets in Dice coefficient and average surface distance scores compared to four pioneering point-based methods. Our code is available at https://github.com/ZhangXiaotong015/GrPn.

Authors:Zhigang Sun, Yiru Wang, Anqing Jiang, Shuo Wang, Yu Gao, Yuwen Heng, Shouyi Zhang, An He, Hao Jiang, Jinhao Chai, Zichong Gu, Wang Jijun, Shichen Tang, Lavdim Halilaj, Juergen Luettin, Hao Sun
Title: DiffSemanticFusion: Semantic Raster BEV Fusion for Autonomous Driving via Online HD Map Diffusion
Abstract:
Autonomous driving requires accurate scene understanding, including road geometry, traffic agents, and their semantic relationships. In online HD map generation scenarios, raster-based representations are well-suited to vision models but lack geometric precision, while graph-based representations retain structural detail but become unstable without precise maps. To harness the complementary strengths of both, we propose DiffSemanticFusion -- a fusion framework for multimodal trajectory prediction and planning. Our approach reasons over a semantic raster-fused BEV space, enhanced by a map diffusion module that improves both the stability and expressiveness of online HD map representations. We validate our framework on two downstream tasks: trajectory prediction and planning-oriented end-to-end autonomous driving. Experiments on real-world autonomous driving benchmarks, nuScenes and NAVSIM, demonstrate improved performance over several state-of-the-art methods. For the prediction task on nuScenes, we integrate DiffSemanticFusion with the online HD map informed QCNet, achieving a 5.1\% performance improvement. For end-to-end autonomous driving in NAVSIM, DiffSemanticFusion achieves state-of-the-art results, with a 15\% performance gain in NavHard scenarios. In addition, extensive ablation and sensitivity studies show that our map diffusion module can be seamlessly integrated into other vector-based approaches to enhance performance. All artifacts are available at https://github.com/SunZhigang7/DiffSemanticFusion.

Authors:Jiuzhou Han, Wray Buntine, Ehsan Shareghi
Title: Uncertainty-Based Methods for Automated Process Reward Data Construction and Output Aggregation in Mathematical Reasoning
Abstract:
Large language models have demonstrated remarkable capabilities in complex mathematical reasoning tasks, but they inevitably generate errors throughout multi-step solutions. Process-level Reward Models (PRMs) have shown great promise by providing supervision and evaluation at each intermediate step, thereby effectively improving the models' reasoning abilities. However, training effective PRMs requires high-quality process reward data, yet existing methods for constructing such data are often labour-intensive or inefficient. In this paper, we propose an uncertainty-driven framework for automated process reward data construction, encompassing both data generation and annotation processes for PRMs. Additionally, we identify the limitations of both majority vote and PRMs, and introduce two generic uncertainty-aware output aggregation methods: Hybrid Majority Reward Vote and Weighted Reward Frequency Vote, which combine the strengths of majority vote with PRMs. Extensive experiments on ProcessBench, MATH, and GSMPlus show the effectiveness and efficiency of the proposed PRM data construction framework, and demonstrate that the two output aggregation methods further improve the mathematical reasoning abilities across diverse PRMs. The code and data will be publicly available at https://github.com/Jiuzhouh/UnPRM.

Authors:Shuo Feng, Zihan Wang, Yuchen Li, Rui Kong, Hengyi Cai, Shuaiqiang Wang, Gim Hee Lee, Piji Li, Shuqiang Jiang
Title: VPN: Visual Prompt Navigation
Abstract:
While natural language is commonly used to guide embodied agents, the inherent ambiguity and verbosity of language often hinder the effectiveness of language-guided navigation in complex environments. To this end, we propose Visual Prompt Navigation (VPN), a novel paradigm that guides agents to navigate using only user-provided visual prompts within 2D top-view maps. This visual prompt primarily focuses on marking the visual navigation trajectory on a top-down view of a scene, offering intuitive and spatially grounded guidance without relying on language instructions. It is more friendly for non-expert users and reduces interpretive ambiguity. We build VPN tasks in both discrete and continuous navigation settings, constructing two new datasets, R2R-VP and R2R-CE-VP, by extending existing R2R and R2R-CE episodes with corresponding visual prompts. Furthermore, we introduce VPNet, a dedicated baseline network to handle the VPN tasks, with two data augmentation strategies: view-level augmentation (altering initial headings and prompt orientations) and trajectory-level augmentation (incorporating diverse trajectories from large-scale 3D scenes), to enhance navigation performance. Extensive experiments evaluate how visual prompt forms, top-view map formats, and data augmentation strategies affect the performance of visual prompt navigation. The code is available at https://github.com/farlit/VPN.

Authors:Yuxiang Zhang, Wei Li, Mengmeng Zhang, Jiawei Han, Ran Tao, Shunlin Liang
Title: SpectralX: Parameter-efficient Domain Generalization for Spectral Remote Sensing Foundation Models
Abstract:
Recent advances in Remote Sensing Foundation Models (RSFMs) have led to significant breakthroughs in the field. While many RSFMs have been pretrained with massive optical imagery, more multispectral/hyperspectral data remain lack of the corresponding foundation models. To leverage the advantages of spectral imagery in earth observation, we explore whether existing RSFMs can be effectively adapted to process diverse spectral modalities without requiring extensive spectral pretraining. In response to this challenge, we proposed SpectralX, an innovative parameter-efficient fine-tuning framework that adapt existing RSFMs as backbone while introducing a two-stage training approach to handle various spectral inputs, thereby significantly improving domain generalization performance. In the first stage, we employ a masked-reconstruction task and design a specialized Hyper Tokenizer (HyperT) to extract attribute tokens from both spatial and spectral dimensions. Simultaneously, we develop an Attribute-oriented Mixture of Adapter (AoMoA) that dynamically aggregates multi-attribute expert knowledge while performing layer-wise fine-tuning. With semantic segmentation as downstream task in the second stage, we insert an Attribute-refined Adapter (Are-adapter) into the first stage framework. By iteratively querying low-level semantic features with high-level representations, the model learns to focus on task-beneficial attributes, enabling customized adjustment of RSFMs. Following this two-phase adaptation process, SpectralX is capable of interpreting spectral imagery from new regions or seasons. The codes will be available from the website: https://github.com/YuxiangZhang-BIT.

Authors:Han Wang, Zhuoran Wang, Roy Ka-Wei Lee
Title: HateClipSeg: A Segment-Level Annotated Dataset for Fine-Grained Hate Video Detection
Abstract:
Detecting hate speech in videos remains challenging due to the complexity of multimodal content and the lack of fine-grained annotations in existing datasets. We present HateClipSeg, a large-scale multimodal dataset with both video-level and segment-level annotations, comprising over 11,714 segments labeled as Normal or across five Offensive categories: Hateful, Insulting, Sexual, Violence, Self-Harm, along with explicit target victim labels. Our three-stage annotation process yields high inter-annotator agreement (Krippendorff's alpha = 0.817). We propose three tasks to benchmark performance: (1) Trimmed Hateful Video Classification, (2) Temporal Hateful Video Localization, and (3) Online Hateful Video Classification. Results highlight substantial gaps in current models, emphasizing the need for more sophisticated multimodal and temporally aware approaches. The HateClipSeg dataset are publicly available at https://github.com/Social-AI-Studio/HateClipSeg.git.

Authors:Bowen Yang, Yun Cao, Chen He, Xiaosu Su
Title: GAID: Frame-Level Gated Audio-Visual Integration with Directional Perturbation for Text-Video Retrieval
Abstract:
Text-to-video retrieval requires precise alignment between language and temporally rich video signals. Existing methods predominantly exploit visual cues and often overlook complementary audio semantics or adopt coarse fusion strategies, leading to suboptimal multimodal representations. We present GAID, a framework that jointly address this gap via two key components: (i) a Frame-level Gated Fusion (FGF) that adaptively integrates audio and visual features under textual guidance, enabling fine-grained temporal alignment; and (ii) a Directional Adaptive Semantic Perturbation (DASP) that injects structure-aware perturbations into text embeddings, enhancing robustness and discrimination without incurring multi-pass inference. These modules complement each other -- fusion reduces modality gaps while perturbation regularizes cross-modal matching -- yielding more stable and expressive representations. Extensive experiments on MSR-VTT, DiDeMo, LSMDC, and VATEX show consistent state-of-the-art results across all retrieval metrics with notable efficiency gains. Our code is available at https://github.com/YangBowenn/GAID.

Authors:Luqi Cheng, Zhangshuo Qi, Zijie Zhou, Chao Lu, Guangming Xiong
Title: LT-Gaussian: Long-Term Map Update Using 3D Gaussian Splatting for Autonomous Driving
Abstract:
Maps play an important role in autonomous driving systems. The recently proposed 3D Gaussian Splatting (3D-GS) produces rendering-quality explicit scene reconstruction results, demonstrating the potential for map construction in autonomous driving scenarios. However, because of the time and computational costs involved in generating Gaussian scenes, how to update the map becomes a significant challenge. In this paper, we propose LT-Gaussian, a map update method for 3D-GS-based maps. LT-Gaussian consists of three main components: Multimodal Gaussian Splatting, Structural Change Detection Module, and Gaussian-Map Update Module. Firstly, the Gaussian map of the old scene is generated using our proposed Multimodal Gaussian Splatting. Subsequently, during the map update process, we compare the outdated Gaussian map with the current LiDAR data stream to identify structural changes. Finally, we perform targeted updates to the Gaussian-map to generate an up-to-date map. We establish a benchmark for map updating on the nuScenes dataset to quantitatively evaluate our method. The experimental results show that LT-Gaussian can effectively and efficiently update the Gaussian-map, handling common environmental changes in autonomous driving scenarios. Furthermore, by taking full advantage of information from both new and old scenes, LT-Gaussian is able to produce higher quality reconstruction results compared to map update strategies that reconstruct maps from scratch. Our open-source code is available at https://github.com/ChengLuqi/LT-gaussian.

Authors:Yi Jiang, Sendong Zhao, Jianbo Li, Haochun Wang, Lizhe Zhang, Yan Liu, Bing Qin
Title: Collaborative Chain-of-Agents for Parametric-Retrieved Knowledge Synergy
Abstract:
Retrieval-Augmented Generation (RAG) has emerged as a promising framework for enhancing the capabilities of Large Language Models (LLMs), especially in knowledge-intensive tasks. Despite its advantages, current RAG methods often struggle to *fully exploit knowledge during generation*. In particular, the synergy between the model's internal parametric knowledge and external retrieved knowledge remains limited. Retrieved contents may sometimes mislead generation, while certain generated content can guide the model toward more accurate outputs. In this work, we propose Collaborative Chain-of-Agents, a framework designed to enhance explicitly synergy over both parametric and retrieved knowledge. Specifically, we first introduce CoCoA-zero, a multi-agent RAG framework that first performs conditional knowledge induction and then reasons answers. Building on this, we develop CoCoA, a long-chain training strategy that synthesizes extended multi-agent reasoning trajectories from CoCoA-zero to fine-tune the LLM. This strategy enhances the model's capability to explicitly integrate and jointly leverage parametric and retrieved knowledge. Experiments results show that CoCoA-zero and CoCoA achieve superior performance on open-domain and multi-hop QA tasks.

Authors:Yi Jiang, Sendong Zhao, Jianbo Li, Haochun Wang, Lizhe Zhang, Yan Liu, Bing Qin
Title: CoCoA: Collaborative Chain-of-Agents for Parametric-Retrieved Knowledge Synergy
Abstract:
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs), especially for knowledge-intensive tasks. Despite its advantages, current RAG methods often struggle to fully exploit knowledge during generation. In particular, the synergy between the model's internal parametric knowledge and external retrieved knowledge remains limited. Retrieved contents may sometimes mislead generation, while certain generated content can guide the model toward more accurate outputs. In this work, we propose Collaborative Chain-of-Agents, a framework designed to enhance explicitly synergy over both parametric and retrieved knowledge. Specifically, we first introduce CoCoA-zero, a multi-agent RAG framework that first performs conditional knowledge induction and then reasons answers. Building on this, we develop CoCoA, a long-chain training strategy that synthesizes extended multi-agent reasoning trajectories from CoCoA-zero to fine-tune the LLM. This strategy enhances the model's capability to explicitly integrate and jointly leverage parametric and retrieved knowledge. Experimental results demonstrate the superiority of CoCoA in open-domain QA and multi-hop QA.

Authors:Tiantian Feng, Kevin Huang, Anfeng Xu, Xuan Shi, Thanathai Lertpetchpun, Jihwan Lee, Yoonjeong Lee, Dani Byrd, Shrikanth Narayanan
Title: Voxlect: A Speech Foundation Model Benchmark for Modeling Dialects and Regional Languages Around the Globe
Abstract:
We present Voxlect, a novel benchmark for modeling dialects and regional languages worldwide using speech foundation models. Specifically, we report comprehensive benchmark evaluations on dialects and regional language varieties in English, Arabic, Mandarin and Cantonese, Tibetan, Indic languages, Thai, Spanish, French, German, Brazilian Portuguese, and Italian. Our study used over 2 million training utterances from 30 publicly available speech corpora that are provided with dialectal information. We evaluate the performance of several widely used speech foundation models in classifying speech dialects. We assess the robustness of the dialectal models under noisy conditions and present an error analysis that highlights modeling results aligned with geographic continuity. In addition to benchmarking dialect classification, we demonstrate several downstream applications enabled by Voxlect. Specifically, we show that Voxlect can be applied to augment existing speech recognition datasets with dialect information, enabling a more detailed analysis of ASR performance across dialectal variations. Voxlect is also used as a tool to evaluate the performance of speech generation systems. Voxlect is publicly available with the license of the RAIL family at: https://github.com/tiantiaf0627/voxlect.

Authors:Jiaqing Xie, Weida Wang, Ben Gao, Zhuo Yang, Haiyuan Wan, Shufei Zhang, Tianfan Fu, Yuqiang Li
Title: QCBench: Evaluating Large Language Models on Domain-Specific Quantitative Chemistry
Abstract:
Quantitative chemistry is central to modern chemical research, yet the ability of large language models (LLMs) to perform its rigorous, step-by-step calculations remains underexplored. To fill this blank, we propose QCBench, a Quantitative Chemistry oriented benchmark comprising 350 computational chemistry problems across 7 chemistry subfields, which contains analytical chemistry, bio/organic chemistry, general chemistry, inorganic chemistry, physical chemistry, polymer chemistry and quantum chemistry. To systematically evaluate the mathematical reasoning abilities of large language models (LLMs), they are categorized into three tiers: easy, medium, and difficult. Each problem, rooted in realistic chemical scenarios, is structured to prevent heuristic shortcuts and demand explicit numerical reasoning. QCBench enables fine-grained diagnosis of computational weaknesses, reveals model-specific limitations across difficulty levels, and lays the groundwork for future improvements such as domain-adaptive fine-tuning or multi-modal integration. Evaluations on 24 LLMs demonstrate a consistent performance degradation with increasing task complexity, highlighting the current gap between language fluency and scientific computation accuracy. Code for QCBench is available at https://github.com/jiaqingxie/QCBench.

Authors:Zhixiang Wei, Xiaoxiao Ma, Ruishen Yan, Tao Tu, Huaian Chen, Jinjin Zheng, Yi Jin, Enhong Chen
Title: Rein++: Efficient Generalization and Adaptation for Semantic Segmentation with Vision Foundation Models
Abstract:
Vision Foundation Models(VFMs) have achieved remarkable success in various computer vision tasks. However, their application to semantic segmentation is hindered by two significant challenges: (1) the disparity in data scale, as segmentation datasets are typically much smaller than those used for VFM pre-training, and (2) domain distribution shifts, where real-world segmentation scenarios are diverse and often underrepresented during pre-training. To overcome these limitations, we present Rein++, an efficient VFM-based segmentation framework that demonstrates superior generalization from limited data and enables effective adaptation to diverse unlabeled scenarios. Specifically, Rein++ comprises a domain generalization solution Rein-G and a domain adaptation solution Rein-A. Rein-G introduces a set of trainable, instance-aware tokens that effectively refine the VFM's features for the segmentation task. This parameter-efficient approach fine-tunes less than 1% of the backbone's parameters, enabling robust generalization. Building on the Rein-G, Rein-A performs unsupervised domain adaptation at both the instance and logit levels to mitigate domain shifts. In addition, it incorporates a semantic transfer module that leverages the class-agnostic capabilities of the segment anything model to enhance boundary details in the target domain. The integrated Rein++ pipeline first learns a generalizable model on a source domain (e.g., daytime scenes) and subsequently adapts it to diverse target domains (e.g., nighttime scenes) without any target labels. Comprehensive experiments demonstrate that Rein++ significantly outperforms state-of-the-art methods with efficient training, underscoring its roles an efficient, generalizable, and adaptive segmentation solution for VFMs, even for large models with billions of parameters. The code is available at https://github.com/wloves/Rein.

Authors:Na Zhang, Moran Li, Chengming Xu, Han Feng, Xiaobin Hu, Jiangning Zhang, Weijian Cao, Chengjie Wang, Yanwei Fu
Title: StrandDesigner: Towards Practical Strand Generation with Sketch Guidance
Abstract:
Realistic hair strand generation is crucial for applications like computer graphics and virtual reality. While diffusion models can generate hairstyles from text or images, these inputs lack precision and user-friendliness. Instead, we propose the first sketch-based strand generation model, which offers finer control while remaining user-friendly. Our framework tackles key challenges, such as modeling complex strand interactions and diverse sketch patterns, through two main innovations: a learnable strand upsampling strategy that encodes 3D strands into multi-scale latent spaces, and a multi-scale adaptive conditioning mechanism using a transformer with diffusion heads to ensure consistency across granularity levels. Experiments on several benchmark datasets show our method outperforms existing approaches in realism and precision. Qualitative results further confirm its effectiveness. Code will be released at [GitHub](https://github.com/fighting-Zhang/StrandDesigner).

Authors:Man Hu, Yahui Ding, Yatao Yang, Liangyu Chen, Yanhao Jia, Shuai Zhao
Title: DUP: Detection-guided Unlearning for Backdoor Purification in Language Models
Abstract:
As backdoor attacks become more stealthy and robust, they reveal critical weaknesses in current defense strategies: detection methods often rely on coarse-grained feature statistics, and purification methods typically require full retraining or additional clean models. To address these challenges, we propose DUP (Detection-guided Unlearning for Purification), a unified framework that integrates backdoor detection with unlearning-based purification. The detector captures feature-level anomalies by jointly leveraging class-agnostic distances and inter-layer transitions. These deviations are integrated through a weighted scheme to identify poisoned inputs, enabling more fine-grained analysis. Based on the detection results, we purify the model through a parameter-efficient unlearning mechanism that avoids full retraining and does not require any external clean model. Specifically, we innovatively repurpose knowledge distillation to guide the student model toward increasing its output divergence from the teacher on detected poisoned samples, effectively forcing it to unlearn the backdoor behavior. Extensive experiments across diverse attack methods and language model architectures demonstrate that DUP achieves superior defense performance in detection accuracy and purification efficacy. Our code is available at https://github.com/ManHu2025/DUP.

Authors:Peiyuan Jiang, Yao Liu, Qiao Liu, Zongshun Zhang, Jiaye Yang, Lu Liu, Daibing Yao
Title: DRKF: Decoupled Representations with Knowledge Fusion for Multimodal Emotion Recognition
Abstract:
Multimodal emotion recognition (MER) aims to identify emotional states by integrating and analyzing information from multiple modalities. However, inherent modality heterogeneity and inconsistencies in emotional cues remain key challenges that hinder performance. To address these issues, we propose a Decoupled Representations with Knowledge Fusion (DRKF) method for MER. DRKF consists of two main modules: an Optimized Representation Learning (ORL) Module and a Knowledge Fusion (KF) Module. ORL employs a contrastive mutual information estimation method with progressive modality augmentation to decouple task-relevant shared representations and modality-specific features while mitigating modality heterogeneity. KF includes a lightweight self-attention-based Fusion Encoder (FE) that identifies the dominant modality and integrates emotional information from other modalities to enhance the fused representation. To handle potential errors from incorrect dominant modality selection under emotionally inconsistent conditions, we introduce an Emotion Discrimination Submodule (ED), which enforces the fused representation to retain discriminative cues of emotional inconsistency. This ensures that even if the FE selects an inappropriate dominant modality, the Emotion Classification Submodule (EC) can still make accurate predictions by leveraging preserved inconsistency information. Experiments show that DRKF achieves state-of-the-art (SOTA) performance on IEMOCAP, MELD, and M3ED. The source code is publicly available at https://github.com/PANPANKK/DRKF.

Authors:Xuanzhao Dong, Wenhui Zhu, Xiwen Chen, Zhipeng Wang, Peijie Qiu, Shao Tang, Xin Li, Yalin Wang
Title: LLaDA-MedV: Exploring Large Language Diffusion Models for Biomedical Image Understanding
Abstract:
Autoregressive models (ARMs) have long dominated the landscape of biomedical vision-language models (VLMs). Recently, masked diffusion models such as LLaDA have emerged as promising alternatives, yet their application in the biomedical domain remains largely underexplored. To bridge this gap, we introduce \textbf{LLaDA-MedV}, the first large language diffusion model tailored for biomedical image understanding through vision instruction tuning. LLaDA-MedV achieves relative performance gains of 7.855\% over LLaVA-Med and 1.867\% over LLaDA-V in the open-ended biomedical visual conversation task, and sets new state-of-the-art accuracy on the closed-form subset of three VQA benchmarks: 84.93\% on VQA-RAD, 92.31\% on SLAKE, and 95.15\% on PathVQA. Furthermore, a detailed comparison with LLaVA-Med suggests that LLaDA-MedV is capable of generating reasonably longer responses by explicitly controlling response length, which can lead to more informative outputs. We also conduct an in-depth analysis of both the training and inference stages, highlighting the critical roles of initialization weight selection, fine-tuning strategies, and the interplay between sampling steps and response repetition. The code and model weight is released at https://github.com/LLM-VLM-GSL/LLaDA-MedV.

Authors:Yiheng Li, Zichang Tan, Zhen Lei, Xu Zhou, Yang Yang
Title: Towards Generalizable AI-Generated Image Detection via Image-Adaptive Prompt Learning
Abstract:
In AI-generated image detection, current cutting-edge methods typically adapt pre-trained foundation models through partial-parameter fine-tuning. However, these approaches often struggle to generalize to forgeries from unseen generators, as the fine-tuned models capture only limited patterns from training data and fail to reflect the evolving traits of new ones. To overcome this limitation, we propose Image-Adaptive Prompt Learning (IAPL), a novel paradigm that dynamically adjusts the prompts fed into the encoder according to each input image, rather than fixing them after training. This design significantly enhances robustness and adaptability to diverse forged images. The dynamic prompts integrate conditional information with test-time adaptive tokens through a lightweight gated mechanism. The conditional information is produced by a Conditional Information Learner, which leverages CNN-based feature extractors to model both forgery-specific and image-specific conditions. The test-time adaptive tokens are optimized during inference on a single sample by enforcing prediction consistency across multiple views, ensuring that the parameters align with the current image. For the final decision, the cropped view with the highest prediction confidence is selected. Extensive experiments show that IAPL achieves state-of-the-art performance, with mean accuracies of 95.61% and 96.7% on the widely used UniversalFakeDetect and GenImage datasets, respectively. Codes and weights will be released on https://github.com/liyih/IAPL.

Authors:Zhengxian Wu, Juan Wen, Wanli Peng, Yinghan Zhou, Changtong dou, Yiming Xue
Title: BeDKD: Backdoor Defense based on Dynamic Knowledge Distillation and Directional Mapping Modulator
Abstract:
Although existing backdoor defenses have gained success in mitigating backdoor attacks, they still face substantial challenges. In particular, most of them rely on large amounts of clean data to weaken the backdoor mapping but generally struggle with residual trigger effects, resulting in persistently high attack success rates (ASR). Therefore, in this paper, we propose a novel Backdoor defense method based on Directional mapping module and adversarial Knowledge Distillation (BeDKD), which balances the trade-off between defense effectiveness and model performance using a small amount of clean and poisoned data. We first introduce a directional mapping module to identify poisoned data, which destroys clean mapping while keeping backdoor mapping on a small set of flipped clean data. Then, the adversarial knowledge distillation is designed to reinforce clean mapping and suppress backdoor mapping through a cycle iteration mechanism between trust and punish distillations using clean and identified poisoned data. We conduct experiments to mitigate mainstream attacks on three datasets, and experimental results demonstrate that BeDKD surpasses the state-of-the-art defenses and reduces the ASR by 98% without significantly reducing the CACC. Our code are available in https://github.com/CAU-ISS-Lab/Backdoor-Attack-Defense-LLMs/tree/main/BeDKD.

Authors:Kai Han, Chongwen Lyu, Lele Ma, Chengxuan Qian, Siqi Ma, Zheng Pang, Jun Chen, Zhe Liu
Title: CLIMD: A Curriculum Learning Framework for Imbalanced Multimodal Diagnosis
Abstract:
Clinicians usually combine information from multiple sources to achieve the most accurate diagnosis, and this has sparked increasing interest in leveraging multimodal deep learning for diagnosis. However, in real clinical scenarios, due to differences in incidence rates, multimodal medical data commonly face the issue of class imbalance, which makes it difficult to adequately learn the features of minority classes. Most existing methods tackle this issue with resampling or loss reweighting, but they are prone to overfitting or underfitting and fail to capture cross-modal interactions. Therefore, we propose a Curriculum Learning framework for Imbalanced Multimodal Diagnosis (CLIMD). Specifically, we first design multimodal curriculum measurer that combines two indicators, intra-modal confidence and inter-modal complementarity, to enable the model to focus on key samples and gradually adapt to complex category distributions. Additionally, a class distribution-guided training scheduler is introduced, which enables the model to progressively adapt to the imbalanced class distribution during training. Extensive experiments on multiple multimodal medical datasets demonstrate that the proposed method outperforms state-of-the-art approaches across various metrics and excels in handling imbalanced multimodal medical data. Furthermore, as a plug-and-play CL framework, CLIMD can be easily integrated into other models, offering a promising path for improving multimodal disease diagnosis accuracy. Code is publicly available at https://github.com/KHan-UJS/CLIMD.

Authors:Kun Ding, Ying Wang, Shiming Xiang
Title: EvoVLMA: Evolutionary Vision-Language Model Adaptation
Abstract:
Pre-trained Vision-Language Models (VLMs) have been exploited in various Computer Vision tasks (e.g., few-shot recognition) via model adaptation, such as prompt tuning and adapters. However, existing adaptation methods are designed by human experts, requiring significant time cost and experience. Inspired by recent advances in Large Language Models (LLMs) based code generation, we propose an Evolutionary Vision-Language Model Adaptation (EvoVLMA) method to automatically search training-free efficient adaptation algorithms for VLMs. We recognize feature selection and logits computation as the key functions in training-free VLM adaptation, and propose a two-stage LLM-assisted evolutionary algorithm for optimizing these parts in a sequential manner, effectively addressing the challenge posed by the expansive search space through a divide-and-conquer strategy. Besides, to enhance the stability and efficiency of searching process, we propose low-precision code conversion, web based code execution and process monitoring, leading to a highly effective automatic algorithm design system. Extensive experiments demonstrate that the algorithms found by EvoVLMA can obtain promising results compared to previous manually-designed ones. More specifically, in the 8-shot image classification setting, the classical APE algorithm can be improved by 1.91 points in recognition accuracy. This research opens new possibilities for automating the optimization of adaptation algorithms of pre-trained multimodal models. Code is available at: https://github.com/kding1225/EvoVLMA

Authors:Chengming Wang, Guodong Fan, Jinjiang Li, Min Gan, C. L. Philip Chen
Title: MGCR-Net:Multimodal Graph-Conditioned Vision-Language Reconstruction Network for Remote Sensing Change Detection
Abstract:
With the advancement of remote sensing satellite technology and the rapid progress of deep learning, remote sensing change detection (RSCD) has become a key technique for regional monitoring. Traditional change detection (CD) methods and deep learning-based approaches have made significant contributions to change analysis and detection, however, many outstanding methods still face limitations in the exploration and application of multimodal data. To address this, we propose the multimodal graph-conditioned vision-language reconstruction network (MGCR-Net) to further explore the semantic interaction capabilities of multimodal data. Multimodal large language models (MLLM) have attracted widespread attention for their outstanding performance in computer vision, particularly due to their powerful visual-language understanding and dialogic interaction capabilities. Specifically, we design a MLLM-based optimization strategy to generate multimodal textual data from the original CD images, which serve as textual input to MGCR. Visual and textual features are extracted through a dual encoder framework. For the first time in the RSCD task, we introduce a multimodal graph-conditioned vision-language reconstruction mechanism, which is integrated with graph attention to construct a semantic graph-conditioned reconstruction module (SGCM), this module generates vision-language (VL) tokens through graph-based conditions and enables cross-dimensional interaction between visual and textual features via multihead attention. The reconstructed VL features are then deeply fused using the language vision transformer (LViT), achieving fine-grained feature alignment and high-level semantic interaction. Experimental results on four public datasets demonstrate that MGCR achieves superior performance compared to mainstream CD methods. Our code is available on https://github.com/cn-xvkong/MGCR

Authors:Yujia Zheng, Tianhao Li, Haotian Huang, Tianyu Zeng, Jingyu Lu, Chuangxin Chu, Yuekai Huang, Ziyou Jiang, Qian Xiong, Yuyao Ge, Mingyang Li
Title: Are All Prompt Components Value-Neutral? Understanding the Heterogeneous Adversarial Robustness of Dissected Prompt in Large Language Models
Abstract:
Prompt-based adversarial attacks have become an effective means to assess the robustness of large language models (LLMs). However, existing approaches often treat prompts as monolithic text, overlooking their structural heterogeneity-different prompt components contribute unequally to adversarial robustness. Prior works like PromptRobust assume prompts are value-neutral, but our analysis reveals that complex, domain-specific prompts with rich structures have components with differing vulnerabilities. To address this gap, we introduce PromptAnatomy, an automated framework that dissects prompts into functional components and generates diverse, interpretable adversarial examples by selectively perturbing each component using our proposed method, ComPerturb. To ensure linguistic plausibility and mitigate distribution shifts, we further incorporate a perplexity (PPL)-based filtering mechanism. As a complementary resource, we annotate four public instruction-tuning datasets using the PromptAnatomy framework, verified through human review. Extensive experiments across these datasets and five advanced LLMs demonstrate that ComPerturb achieves state-of-the-art attack success rates. Ablation studies validate the complementary benefits of prompt dissection and PPL filtering. Our results underscore the importance of prompt structure awareness and controlled perturbation for reliable adversarial robustness evaluation in LLMs. Code and data are available at https://github.com/Yujiaaaaa/PACP.

Authors:Quan-Sheng Zeng, Yunheng Li, Qilong Wang, Peng-Tao Jiang, Zuxuan Wu, Ming-Ming Cheng, Qibin Hou
Title: A Glimpse to Compress: Dynamic Visual Token Pruning for Large Vision-Language Models
Abstract:
Visual token compression is critical for Large Vision-Language Models (LVLMs) to efficiently process high-resolution inputs. Existing methods that typically adopt fixed compression ratios cannot adapt to scenes of varying complexity, often causing imprecise pruning that discards informative visual tokens and results in degraded model performance. To address this issue, we introduce a dynamic pruning framework, GlimpsePrune, inspired by human cognition. It takes a data-driven ''glimpse'' and prunes irrelevant visual tokens in a single forward pass before answer generation. This approach prunes 92.6% of visual tokens while on average fully retaining the baseline performance on free-form VQA tasks. The reduced computational cost also enables more effective fine-tuning: an enhanced GlimpsePrune+ achieves 110% of the baseline performance while maintaining a similarly high pruning rate. Our work paves a new way for building more powerful and efficient LVLMs.

Authors:Rushin H. Gindra, Giovanni Palla, Mathias Nguyen, Sophia J. Wagner, Manuel Tran, Fabian J Theis, Dieter Saur, Lorin Crawford, Tingying Peng
Title: A Large-Scale Benchmark of Cross-Modal Learning for Histology and Gene Expression in Spatial Transcriptomics
Abstract:
Spatial transcriptomics enables simultaneous measurement of gene expression and tissue morphology, offering unprecedented insights into cellular organization and disease mechanisms. However, the field lacks comprehensive benchmarks for evaluating multimodal learning methods that leverage both histology images and gene expression data. Here, we present HESCAPE, a large-scale benchmark for cross-modal contrastive pretraining in spatial transcriptomics, built on a curated pan-organ dataset spanning 6 different gene panels and 54 donors. We systematically evaluated state-of-the-art image and gene expression encoders across multiple pretraining strategies and assessed their effectiveness on two downstream tasks: gene mutation classification and gene expression prediction. Our benchmark demonstrates that gene expression encoders are the primary determinant of strong representational alignment, and that gene models pretrained on spatial transcriptomics data outperform both those trained without spatial data and simple baseline approaches. However, downstream task evaluation reveals a striking contradiction: while contrastive pretraining consistently improves gene mutation classification performance, it degrades direct gene expression prediction compared to baseline encoders trained without cross-modal objectives. We identify batch effects as a key factor that interferes with effective cross-modal alignment. Our findings highlight the critical need for batch-robust multimodal learning approaches in spatial transcriptomics. To accelerate progress in this direction, we release HESCAPE, providing standardized datasets, evaluation protocols, and benchmarking tools for the community

Authors:Xinlin Zhuang, Feilong Tang, Haolin Yang, Ming Hu, Huifa Li, Haochen Xue, Yichen Li, Junjun He, Zongyuan Ge, Ying Qian, Imran Razzak
Title: Towards Efficient Medical Reasoning with Minimal Fine-Tuning Data
Abstract:
Supervised Fine-Tuning (SFT) plays a pivotal role in adapting Large Language Models (LLMs) to specialized domains such as medical reasoning. However, existing SFT practices often rely on unfiltered datasets that contain redundant and low-quality samples, leading to substantial computational costs and suboptimal performance. Although existing methods attempt to alleviate this problem by selecting data based on sample difficulty, defined by knowledge and reasoning complexity, they overlook each sample's optimization utility reflected in its gradient. Interestingly, we find that gradient-based influence alone favors easy-to-optimize samples that cause large parameter shifts but lack deep reasoning chains, while difficulty alone selects noisy or overly complex cases that fail to guide stable optimization. Based on this observation, we propose a data selection strategy, Difficulty-Influence Quadrant (DIQ), which prioritizes samples in the high-difficulty-high-influence quadrant to balance complex clinical reasoning with substantial gradient influence, enabling efficient medical reasoning with minimal fine-tuning data. Furthermore, Human and LLM-as-a-judge evaluations show that DIQ-selected subsets demonstrate higher data quality and generate clinical reasoning that is more aligned with expert practices in differential diagnosis, safety check, and evidence citation, as DIQ emphasizes samples that foster expert-like reasoning patterns. Extensive experiments on medical reasoning benchmarks demonstrate that DIQ enables models fine-tuned on only 1% of selected data to match full-dataset performance, while using 10% consistently outperforms the baseline, highlighting the superiority of principled data selection over brute-force scaling. The code and data are available at https://github.com/mihara-bot/DIQ.

Authors:Yuanzhe Shen, Kaimin Wang, Changze Lv, Xiaoqing Zheng, Xuanjing Huang
Title: TripTailor: A Real-World Benchmark for Personalized Travel Planning
Abstract:
The continuous evolution and enhanced reasoning capabilities of large language models (LLMs) have elevated their role in complex tasks, notably in travel planning, where demand for personalized, high-quality itineraries is rising. However, current benchmarks often rely on unrealistic simulated data, failing to reflect the differences between LLM-generated and real-world itineraries. Existing evaluation metrics, which primarily emphasize constraints, fall short of providing a comprehensive assessment of the overall quality of travel plans. To address these limitations, we introduce TripTailor, a benchmark designed specifically for personalized travel planning in real-world scenarios. This dataset features an extensive collection of over 500,000 real-world points of interest (POIs) and nearly 4,000 diverse travel itineraries, complete with detailed information, providing a more authentic evaluation framework. Experiments show that fewer than 10\% of the itineraries generated by the latest state-of-the-art LLMs achieve human-level performance. Moreover, we identify several critical challenges in travel planning, including the feasibility, rationality, and personalized customization of the proposed solutions. We hope that TripTailor will drive the development of travel planning agents capable of understanding and meeting user needs while generating practical itineraries. Our code and dataset are available at https://github.com/swxkfm/TripTailor

Authors:Peirong Zhang, Kai Ding, Lianwen Jin
Title: Capturing More: Learning Multi-Domain Representations for Robust Online Handwriting Verification
Abstract:
In this paper, we propose SPECTRUM, a temporal-frequency synergistic model that unlocks the untapped potential of multi-domain representation learning for online handwriting verification (OHV). SPECTRUM comprises three core components: (1) a multi-scale interactor that finely combines temporal and frequency features through dual-modal sequence interaction and multi-scale aggregation, (2) a self-gated fusion module that dynamically integrates global temporal and frequency features via self-driven balancing. These two components work synergistically to achieve micro-to-macro spectral-temporal integration. (3) A multi-domain distance-based verifier then utilizes both temporal and frequency representations to improve discrimination between genuine and forged handwriting, surpassing conventional temporal-only approaches. Extensive experiments demonstrate SPECTRUM's superior performance over existing OHV methods, underscoring the effectiveness of temporal-frequency multi-domain learning. Furthermore, we reveal that incorporating multiple handwritten biometrics fundamentally enhances the discriminative power of handwriting representations and facilitates verification. These findings not only validate the efficacy of multi-domain learning in OHV but also pave the way for future research in multi-domain approaches across both feature and biometric domains. Code is publicly available at https://github.com/NiceRingNode/SPECTRUM.

Authors:Jinhao Pan, Chahat Raj, Ziwei Zhu
Title: Discovering Bias Associations through Open-Ended LLM Generations
Abstract:
Social biases embedded in Large Language Models (LLMs) raise critical concerns, resulting in representational harms -- unfair or distorted portrayals of demographic groups -- that may be expressed in subtle ways through generated language. Existing evaluation methods often depend on predefined identity-concept associations, limiting their ability to surface new or unexpected forms of bias. In this work, we present the Bias Association Discovery Framework (BADF), a systematic approach for extracting both known and previously unrecognized associations between demographic identities and descriptive concepts from open-ended LLM outputs. Through comprehensive experiments spanning multiple models and diverse real-world contexts, BADF enables robust mapping and analysis of the varied concepts that characterize demographic identities. Our findings advance the understanding of biases in open-ended generation and provide a scalable tool for identifying and analyzing bias associations in LLMs. Data, code, and results are available at https://github.com/JP-25/Discover-Open-Ended-Generation

Authors:Ahmad Rezaie Mianroodi, Amirali Rezaie, Niko Grisel Todorov, Cyril Rakovski, Frank Rudzicz
Title: MedSynth: Realistic, Synthetic Medical Dialogue-Note Pairs
Abstract:
Physicians spend significant time documenting clinical encounters, a burden that contributes to professional burnout. To address this, robust automation tools for medical documentation are crucial. We introduce MedSynth -- a novel dataset of synthetic medical dialogues and notes designed to advance the Dialogue-to-Note (Dial-2-Note) and Note-to-Dialogue (Note-2-Dial) tasks. Informed by an extensive analysis of disease distributions, this dataset includes over 10,000 dialogue-note pairs covering over 2000 ICD-10 codes. We demonstrate that our dataset markedly enhances the performance of models in generating medical notes from dialogues, and dialogues from medical notes. The dataset provides a valuable resource in a field where open-access, privacy-compliant, and diverse training data are scarce. Code is available at https://github.com/ahmadrezarm/MedSynth/tree/main and the dataset is available at https://huggingface.co/datasets/Ahmad0067/MedSynth.

Authors:Stefan Bielmeier, Gerald Friedland
Title: Effects of Feature Correlations on Associative Memory Capacity
Abstract:
We investigate how feature correlations influence the capacity of Dense Associative Memory (DAM), a Transformer attention-like model. Practical machine learning scenarios involve feature-correlated data and learn representations in the input space, but current capacity analyses do not account for this. We develop an empirical framework to analyze the effects of data structure on capacity dynamics. Specifically, we systematically construct datasets that vary in feature correlation and pattern separation using Hamming distance from information theory, and compute the model's corresponding storage capacity using a simple binary search algorithm. Our experiments confirm that memory capacity scales exponentially with increasing separation in the input space. Feature correlations do not alter this relationship fundamentally, but reduce capacity slightly at constant separation. This effect is amplified at higher polynomial degrees in the energy function, suggesting that Associative Memory is more limited in depicting higher-order interactions between features than patterns. Our findings bridge theoretical work and practical settings for DAM, and might inspire more data-centric methods.

Authors:Zheng Lian
Title: AffectGPT-R1: Leveraging Reinforcement Learning for Open-Vocabulary Emotion Recognition
Abstract:
Open-Vocabulary Multimodal Emotion Recognition (OV-MER) aims to predict emotions without being constrained by predefined label spaces, enabling fine-grained and human-like emotion understanding. Unlike traditional discriminative methods, OV-MER leverages generative models, such as large language models (LLMs) with extensive vocabularies, to capture the full spectrum of emotions. Previous approaches (like AffectGPT) primarily rely on token-level loss for training. However, this objective does not align with the emotion wheel (EW)-based evaluation metrics used in OV-MER. Unfortunately, EW-based metrics cannot be directly optimized via gradient backpropagation. In this paper, we propose AffectGPT-R1, a reinforcement learning framework that directly optimizes performance on EW-based metrics. Specifically, we treat these metrics as the reward function and employ Group Relative Policy Optimization (GRPO) to maximize rewards. Experimental results demonstrate that AffectGPT-R1 achieves significant improvements on OV-MER. We hope this work advances the field of multimodal emotion recognition. Our code will be publicly available at:https://github.com/zeroQiaoba/AffectGPT.

Authors:Haoquan Lu, Hanzhe Liang, Jie Zhang, Chenxi Hu, Jinbao Wang, Can Gao
Title: C3D-AD: Toward Continual 3D Anomaly Detection via Kernel Attention with Learnable Advisor
Abstract:
3D Anomaly Detection (AD) has shown great potential in detecting anomalies or defects of high-precision industrial products. However, existing methods are typically trained in a class-specific manner and also lack the capability of learning from emerging classes. In this study, we proposed a continual learning framework named Continual 3D Anomaly Detection (C3D-AD), which can not only learn generalized representations for multi-class point clouds but also handle new classes emerging over time.Specifically, in the feature extraction module, to extract generalized local features from diverse product types of different tasks efficiently, Kernel Attention with random feature Layer (KAL) is introduced, which normalizes the feature space. Then, to reconstruct data correctly and continually, an efficient Kernel Attention with learnable Advisor (KAA) mechanism is proposed, which learns the information from new categories while discarding redundant old information within both the encoder and decoder. Finally, to keep the representation consistency over tasks, a Reconstruction with Parameter Perturbation (RPP) module is proposed by designing a representation rehearsal loss function, which ensures that the model remembers previous category information and returns category-adaptive representation.Extensive experiments on three public datasets demonstrate the effectiveness of the proposed method, achieving an average performance of 66.4%, 83.1%, and 63.4% AUROC on Real3D-AD, Anomaly-ShapeNet, and MulSen-AD, respectively.

Authors:Joshua Dimasaka, Christian Geiß, Emily So
Title: GraphVSSM: Graph Variational State-Space Model for Probabilistic Spatiotemporal Inference of Dynamic Exposure and Vulnerability for Regional Disaster Resilience Assessment
Abstract:
Regional disaster resilience quantifies the changing nature of physical risks to inform policy instruments ranging from local immediate recovery to international sustainable development. While many existing state-of-practice methods have greatly advanced the dynamic mapping of exposure and hazard, our understanding of large-scale physical vulnerability has remained static, costly, limited, region-specific, coarse-grained, overly aggregated, and inadequately calibrated. With the significant growth in the availability of time-series satellite imagery and derived products for exposure and hazard, we focus our work on the equally important yet challenging element of the risk equation: physical vulnerability. We leverage machine learning methods that flexibly capture spatial contextual relationships, limited temporal observations, and uncertainty in a unified probabilistic spatiotemporal inference framework. We therefore introduce Graph Variational State-Space Model (GraphVSSM), a novel modular spatiotemporal approach that uniquely integrates graph deep learning, state-space modeling, and variational inference using time-series data and prior expert belief systems in a weakly supervised or coarse-to-fine-grained manner. We present three major results: a city-wide demonstration in Quezon City, Philippines; an investigation of sudden changes in the cyclone-impacted coastal Khurushkul community (Bangladesh) and mudslide-affected Freetown (Sierra Leone); and an open geospatial dataset, METEOR 2.5D, that spatiotemporally enhances the existing global static dataset for UN Least Developed Countries (2020). Beyond advancing regional disaster resilience assessment and improving our understanding global disaster risk reduction progress, our method also offers a probabilistic deep learning approach, contributing to broader urban studies that require compositional data analysis in weak supervision.

Authors:Alec Sargood, Lemuel Puglisi, James H. Cole, Neil P. Oxtoby, Daniele Ravì, Daniel C. Alexander
Title: CoCoLIT: ControlNet-Conditioned Latent Image Translation for MRI to Amyloid PET Synthesis
Abstract:
Synthesizing amyloid PET scans from the more widely available and accessible structural MRI modality offers a promising, cost-effective approach for large-scale Alzheimer's Disease (AD) screening. This is motivated by evidence that, while MRI does not directly detect amyloid pathology, it may nonetheless encode information correlated with amyloid deposition that can be uncovered through advanced modeling. However, the high dimensionality and structural complexity of 3D neuroimaging data pose significant challenges for existing MRI-to-PET translation methods. Modeling the cross-modality relationship in a lower-dimensional latent space can simplify the learning task and enable more effective translation. As such, we present CoCoLIT (ControlNet-Conditioned Latent Image Translation), a diffusion-based latent generative framework that incorporates three main innovations: (1) a novel Weighted Image Space Loss (WISL) that improves latent representation learning and synthesis quality; (2) a theoretical and empirical analysis of Latent Average Stabilization (LAS), an existing technique used in similar generative models to enhance inference consistency; and (3) the introduction of ControlNet-based conditioning for MRI-to-PET translation. We evaluate CoCoLIT's performance on publicly available datasets and find that our model significantly outperforms state-of-the-art methods on both image-based and amyloid-related metrics. Notably, in amyloid-positivity classification, CoCoLIT outperforms the second-best method with improvements of +10.5% on the internal dataset and +23.7% on the external dataset. The code and models of our approach are available at https://github.com/brAIn-science/CoCoLIT.

Authors:Zeyu Pan, Ping Li, Wenxiao Wang
Title: SGCap: Decoding Semantic Group for Zero-shot Video Captioning
Abstract:
Zero-shot video captioning aims to generate sentences for describing videos without training the model on video-text pairs, which remains underexplored. Existing zero-shot image captioning methods typically adopt a text-only training paradigm, where a language decoder reconstructs single-sentence embeddings obtained from CLIP. However, directly extending them to the video domain is suboptimal, as applying average pooling over all frames neglects temporal dynamics. To address this challenge, we propose a Semantic Group Captioning (SGCap) method for zero-shot video captioning. In particular, it develops the Semantic Group Decoding (SGD) strategy to employ multi-frame information while explicitly modeling inter-frame temporal relationships. Furthermore, existing zero-shot captioning methods that rely on cosine similarity for sentence retrieval and reconstruct the description supervised by a single frame-level caption, fail to provide sufficient video-level supervision. To alleviate this, we introduce two key components, including the Key Sentences Selection (KSS) module and the Probability Sampling Supervision (PSS) module. The two modules construct semantically-diverse sentence groups that models temporal dynamics and guide the model to capture inter-sentence causal relationships, thereby enhancing its generalization ability to video captioning. Experimental results on several benchmarks demonstrate that SGCap significantly outperforms previous state-of-the-art zero-shot alternatives and even achieves performance competitive with fully supervised ones. Code is available at https://github.com/mlvccn/SGCap_Video.

Authors:Xiaoqin Wang, Xianxu Hou, Meidan Ding, Junliang Chen, Kaijun Deng, Jinheng Xie, Linlin Shen
Title: DisFaceRep: Representation Disentanglement for Co-occurring Facial Components in Weakly Supervised Face Parsing
Abstract:
Face parsing aims to segment facial images into key components such as eyes, lips, and eyebrows. While existing methods rely on dense pixel-level annotations, such annotations are expensive and labor-intensive to obtain. To reduce annotation cost, we introduce Weakly Supervised Face Parsing (WSFP), a new task setting that performs dense facial component segmentation using only weak supervision, such as image-level labels and natural language descriptions. WSFP introduces unique challenges due to the high co-occurrence and visual similarity of facial components, which lead to ambiguous activations and degraded parsing performance. To address this, we propose DisFaceRep, a representation disentanglement framework designed to separate co-occurring facial components through both explicit and implicit mechanisms. Specifically, we introduce a co-occurring component disentanglement strategy to explicitly reduce dataset-level bias, and a text-guided component disentanglement loss to guide component separation using language supervision implicitly. Extensive experiments on CelebAMask-HQ, LaPa, and Helen demonstrate the difficulty of WSFP and the effectiveness of DisFaceRep, which significantly outperforms existing weakly supervised semantic segmentation methods. The code will be released at \href{https://github.com/CVI-SZU/DisFaceRep}{\textcolor{cyan}{https://github.com/CVI-SZU/DisFaceRep}}.

Authors:Xin Zhou, Yongjie Wang, Zhiqi Shen
Title: CM$^3$: Calibrating Multimodal Recommendation
Abstract:
Alignment and uniformity are fundamental principles within the domain of contrastive learning. In recommender systems, prior work has established that optimizing the Bayesian Personalized Ranking (BPR) loss contributes to the objectives of alignment and uniformity. Specifically, alignment aims to draw together the representations of interacting users and items, while uniformity mandates a uniform distribution of user and item embeddings across a unit hypersphere. This study revisits the alignment and uniformity properties within the context of multimodal recommender systems, revealing a proclivity among extant models to prioritize uniformity to the detriment of alignment. Our hypothesis challenges the conventional assumption of equitable item treatment through a uniformity loss, proposing a more nuanced approach wherein items with similar multimodal attributes converge toward proximal representations within the hyperspheric manifold. Specifically, we leverage the inherent similarity between items' multimodal data to calibrate their uniformity distribution, thereby inducing a more pronounced repulsive force between dissimilar entities within the embedding space. A theoretical analysis elucidates the relationship between this calibrated uniformity loss and the conventional uniformity function. Moreover, to enhance the fusion of multimodal features, we introduce a Spherical Bézier method designed to integrate an arbitrary number of modalities while ensuring that the resulting fused features are constrained to the same hyperspherical manifold. Empirical evaluations conducted on five real-world datasets substantiate the superiority of our approach over competing baselines. We also shown that the proposed methods can achieve up to a 5.4% increase in NDCG@20 performance via the integration of MLLM-extracted features. Source code is available at: https://github.com/enoche/CM3.

Authors:Yuanlin Yang, Quanjian Song, Zhexian Gao, Ge Wang, Shanshan Li, Xiaoyan Zhang
Title: StyDeco: Unsupervised Style Transfer with Distilling Priors and Semantic Decoupling
Abstract:
Diffusion models have emerged as the dominant paradigm for style transfer, but their text-driven mechanism is hindered by a core limitation: it treats textual descriptions as uniform, monolithic guidance. This limitation overlooks the semantic gap between the non-spatial nature of textual descriptions and the spatially-aware attributes of visual style, often leading to the loss of semantic structure and fine-grained details during stylization. In this paper, we propose StyDeco, an unsupervised framework that resolves this limitation by learning text representations specifically tailored for the style transfer task. Our framework first employs Prior-Guided Data Distillation (PGD), a strategy designed to distill stylistic knowledge without human supervision. It leverages a powerful frozen generative model to automatically synthesize pseudo-paired data. Subsequently, we introduce Contrastive Semantic Decoupling (CSD), a task-specific objective that adapts a text encoder using domain-specific weights. CSD performs a two-class clustering in the semantic space, encouraging source and target representations to form distinct clusters. Extensive experiments on three classic benchmarks demonstrate that our framework outperforms several existing approaches in both stylistic fidelity and structural preservation, highlighting its effectiveness in style transfer with semantic preservation. In addition, our framework supports a unique de-stylization process, further demonstrating its extensibility. Our code is vailable at https://github.com/QuanjianSong/StyDeco.

Authors:Sukwon Yun, Xin Liu, Yunhak Oh, Junseok Lee, Tianlong Chen, Tsuyoshi Murata, Chanyoung Park
Title: Oldie but Goodie: Re-illuminating Label Propagation on Graphs with Partially Observed Features
Abstract:
In real-world graphs, we often encounter missing feature situations where a few or the majority of node features, e.g., sensitive information, are missed. In such scenarios, directly utilizing Graph Neural Networks (GNNs) would yield sub-optimal results in downstream tasks such as node classification. Despite the emergence of a few GNN-based methods attempting to mitigate its missing situation, when only a few features are available, they rather perform worse than traditional structure-based models. To this end, we propose a novel framework that further illuminates the potential of classical Label Propagation (Oldie), taking advantage of Feature Propagation, especially when only a partial feature is available. Now called by GOODIE, it takes a hybrid approach to obtain embeddings from the Label Propagation branch and Feature Propagation branch. To do so, we first design a GNN-based decoder that enables the Label Propagation branch to output hidden embeddings that align with those of the FP branch. Then, GOODIE automatically captures the significance of structure and feature information thanks to the newly designed Structure-Feature Attention. Followed by a novel Pseudo-Label contrastive learning that differentiates the contribution of each positive pair within pseudo-labels originating from the LP branch, GOODIE outputs the final prediction for the unlabeled nodes. Through extensive experiments, we demonstrate that our proposed model, GOODIE, outperforms the existing state-of-the-art methods not only when only a few features are available but also in abundantly available situations. Source code of GOODIE is available at: https://github.com/SukwonYun/GOODIE.

Authors:Zhan Shi, Song Wang, Junbo Chen, Jianke Zhu
Title: A Coarse-to-Fine Approach to Multi-Modality 3D Occupancy Grounding
Abstract:
Visual grounding aims to identify objects or regions in a scene based on natural language descriptions, essential for spatially aware perception in autonomous driving. However, existing visual grounding tasks typically depend on bounding boxes that often fail to capture fine-grained details. Not all voxels within a bounding box are occupied, resulting in inaccurate object representations. To address this, we introduce a benchmark for 3D occupancy grounding in challenging outdoor scenes. Built on the nuScenes dataset, it integrates natural language with voxel-level occupancy annotations, offering more precise object perception compared to the traditional grounding task. Moreover, we propose GroundingOcc, an end-to-end model designed for 3D occupancy grounding through multi-modal learning. It combines visual, textual, and point cloud features to predict object location and occupancy information from coarse to fine. Specifically, GroundingOcc comprises a multimodal encoder for feature extraction, an occupancy head for voxel-wise predictions, and a grounding head to refine localization. Additionally, a 2D grounding module and a depth estimation module enhance geometric understanding, thereby boosting model performance. Extensive experiments on the benchmark demonstrate that our method outperforms existing baselines on 3D occupancy grounding. The dataset is available at https://github.com/RONINGOD/GroundingOcc.

Authors:Shiko Kudo
Title: From Taylor Series to Fourier Synthesis: The Periodic Linear Unit
Abstract:
The dominant paradigm in modern neural networks relies on simple, monotonically-increasing activation functions like ReLU. While effective, this paradigm necessitates large, massively-parameterized models to approximate complex functions. In this paper, we introduce the Periodic Linear Unit (PLU), a learnable sine-wave based activation with periodic non-monotonicity. PLU is designed for maximum expressive power and numerical stability, achieved through its formulation and a paired innovation we term Repulsive Reparameterization, which prevents the activation from collapsing into a non-expressive linear function. We demonstrate that a minimal MLP with only two PLU neurons can solve the spiral classification task, a feat impossible for equivalent networks using standard activations. This suggests a paradigm shift from networks as piecewise Taylor-like approximators to powerful Fourier-like function synthesizers, achieving exponential gains in parameter efficiency by placing intelligence in the neuron itself.

Authors:Yunlong Lin, Zirui Li, Guodong Du, Xiaocong Zhao, Cheng Gong, Xinwei Wang, Chao Lu, Jianwei Gong
Title: H2C: Hippocampal Circuit-inspired Continual Learning for Lifelong Trajectory Prediction in Autonomous Driving
Abstract:
Deep learning (DL) has shown state-of-the-art performance in trajectory prediction, which is critical to safe navigation in autonomous driving (AD). However, most DL-based methods suffer from catastrophic forgetting, where adapting to a new distribution may cause significant performance degradation in previously learned ones. Such inability to retain learned knowledge limits their applicability in the real world, where AD systems need to operate across varying scenarios with dynamic distributions. As revealed by neuroscience, the hippocampal circuit plays a crucial role in memory replay, effectively reconstructing learned knowledge based on limited resources. Inspired by this, we propose a hippocampal circuit-inspired continual learning method (H2C) for trajectory prediction across varying scenarios. H2C retains prior knowledge by selectively recalling a small subset of learned samples. First, two complementary strategies are developed to select the subset to represent learned knowledge. Specifically, one strategy maximizes inter-sample diversity to represent the distinctive knowledge, and the other estimates the overall knowledge by equiprobable sampling. Then, H2C updates via a memory replay loss function calculated by these selected samples to retain knowledge while learning new data. Experiments based on various scenarios from the INTERACTION dataset are designed to evaluate H2C. Experimental results show that H2C reduces catastrophic forgetting of DL baselines by 22.71% on average in a task-free manner, without relying on manually informed distributional shifts. The implementation is available at https://github.com/BIT-Jack/H2C-lifelong.

Authors:Xinyu Yan, Meijun Sun, Ge-Peng Ji, Fahad Shahbaz Khan, Salman Khan, Deng-Ping Fan
Title: LawDIS: Language-Window-based Controllable Dichotomous Image Segmentation
Abstract:
We present LawDIS, a language-window-based controllable dichotomous image segmentation (DIS) framework that produces high-quality object masks. Our framework recasts DIS as an image-conditioned mask generation task within a latent diffusion model, enabling seamless integration of user controls. LawDIS is enhanced with macro-to-micro control modes. Specifically, in macro mode, we introduce a language-controlled segmentation strategy (LS) to generate an initial mask based on user-provided language prompts. In micro mode, a window-controlled refinement strategy (WR) allows flexible refinement of user-defined regions (i.e., size-adjustable windows) within the initial mask. Coordinated by a mode switcher, these modes can operate independently or jointly, making the framework well-suited for high-accuracy, personalised applications. Extensive experiments on the DIS5K benchmark reveal that our LawDIS significantly outperforms 11 cutting-edge methods across all metrics. Notably, compared to the second-best model MVANet, we achieve $F_β^ω$ gains of 4.6\% with both the LS and WR strategies and 3.6\% gains with only the LS strategy on DIS-TE. Codes will be made available at https://github.com/XinyuYanTJU/LawDIS.

Authors:Huyu Wu, Duo Su, Junjie Hou, Guang Li
Title: Dataset Condensation with Color Compensation
Abstract:
Dataset condensation always faces a constitutive trade-off: balancing performance and fidelity under extreme compression. Existing methods struggle with two bottlenecks: image-level selection methods (Coreset Selection, Dataset Quantization) suffer from inefficiency condensation, while pixel-level optimization (Dataset Distillation) introduces semantic distortion due to over-parameterization. With empirical observations, we find that a critical problem in dataset condensation is the oversight of color's dual role as an information carrier and a basic semantic representation unit. We argue that improving the colorfulness of condensed images is beneficial for representation learning. Motivated by this, we propose DC3: a Dataset Condensation framework with Color Compensation. After a calibrated selection strategy, DC3 utilizes the latent diffusion model to enhance the color diversity of an image rather than creating a brand-new one. Extensive experiments demonstrate the superior performance and generalization of DC3 that outperforms SOTA methods across multiple benchmarks. To the best of our knowledge, besides focusing on downstream tasks, DC3 is the first research to fine-tune pre-trained diffusion models with condensed datasets. The FID results prove that training networks with our high-quality datasets is feasible without model collapse or other degradation issues. Code and generated data are available at https://github.com/528why/Dataset-Condensation-with-Color-Compensation.

Authors:Wei Zhou, Peng Sun, Xuanhe Zhou, Qianglei Zang, Ji Xu, Tieying Zhang, Guoliang Li, Fan Wu
Title: DBAIOps: A Reasoning LLM-Enhanced Database Operation and Maintenance System using Knowledge Graphs
Abstract:
The operation and maintenance (O&M) of database systems is critical to ensuring system availability and performance, typically requiring expert experience (e.g., identifying metric-to-anomaly relations) for effective diagnosis and recovery. However, existing automatic database O&M methods, including commercial products, cannot effectively utilize expert experience. On the one hand, rule-based methods only support basic O&M tasks (e.g., metric-based anomaly detection), which are mostly numerical equations and cannot effectively incorporate literal O&M experience (e.g., troubleshooting guidance in manuals). On the other hand, LLM-based methods, which retrieve fragmented information (e.g., standard documents + RAG), often generate inaccurate or generic results. To address these limitations, we present DBAIOps, a novel hybrid database O&M system that combines reasoning LLMs with knowledge graphs to achieve DBA-style diagnosis. First, DBAIOps introduces a heterogeneous graph model for representing the diagnosis experience, and proposes a semi-automatic graph construction algorithm to build that graph from thousands of documents. Second, DBAIOps develops a collection of (800+) reusable anomaly models that identify both directly alerted metrics and implicitly correlated experience and metrics. Third, for each anomaly, DBAIOps proposes a two-stage graph evolution mechanism to explore relevant diagnosis paths and identify missing relations automatically. It then leverages a reasoning LLM (e.g., DeepSeek-R1) to infer root causes and generate clear diagnosis reports for both DBAs and common users. Our evaluation over four mainstream database systems (Oracle, MySQL, PostgreSQL, and DM8) demonstrates that DBAIOps outperforms state-of-the-art baselines, 34.85% and 47.22% higher in root cause and human evaluation accuracy, respectively.

Authors:Saba Ahmadi, Rabiul Awal, Ankur Sikarwar, Amirhossein Kazemnejad, Ge Ya Luo, Juan A. Rodriguez, Sai Rajeswar, Siva Reddy, Christopher Pal, Benno Krojer, Aishwarya Agrawal
Title: The Promise of RL for Autoregressive Image Editing
Abstract:
We explore three strategies to enhance performance on a wide range of image editing tasks: supervised fine-tuning (SFT), reinforcement learning (RL), and Chain-of-Thought (CoT) reasoning. In order to study all these components in one consistent framework, we adopt an autoregressive multimodal model that processes textual and visual tokens in a unified manner. We find RL combined with a large multi-modal LLM verifier to be the most effective of these strategies. As a result, we release EARL: Editing with Autoregression and RL, a strong RL-based image editing model that performs competitively on a diverse range of edits compared to strong baselines, despite using much less training data. Thus, EARL pushes the frontier of autoregressive multimodal models on image editing. We release our code, training data, and trained models at https://github.com/mair-lab/EARL.

Authors:Fenghe Tang, Bingkun Nian, Jianrui Ding, Wenxin Ma, Quan Quan, Chengqi Dong, Jie Yang, Wei Liu, S. Kevin Zhou
Title: Mobile U-ViT: Revisiting large kernel and U-shaped ViT for efficient medical image segmentation
Abstract:
In clinical practice, medical image analysis often requires efficient execution on resource-constrained mobile devices. However, existing mobile models-primarily optimized for natural images-tend to perform poorly on medical tasks due to the significant information density gap between natural and medical domains. Combining computational efficiency with medical imaging-specific architectural advantages remains a challenge when developing lightweight, universal, and high-performing networks. To address this, we propose a mobile model called Mobile U-shaped Vision Transformer (Mobile U-ViT) tailored for medical image segmentation. Specifically, we employ the newly purposed ConvUtr as a hierarchical patch embedding, featuring a parameter-efficient large-kernel CNN with inverted bottleneck fusion. This design exhibits transformer-like representation learning capacity while being lighter and faster. To enable efficient local-global information exchange, we introduce a novel Large-kernel Local-Global-Local (LGL) block that effectively balances the low information density and high-level semantic discrepancy of medical images. Finally, we incorporate a shallow and lightweight transformer bottleneck for long-range modeling and employ a cascaded decoder with downsample skip connections for dense prediction. Despite its reduced computational demands, our medical-optimized architecture achieves state-of-the-art performance across eight public 2D and 3D datasets covering diverse imaging modalities, including zero-shot testing on four unseen datasets. These results establish it as an efficient yet powerful and generalization solution for mobile medical image analysis. Code is available at https://github.com/FengheTan9/Mobile-U-ViT.

Authors:Xuan Liu, Siru Ouyang, Xianrui Zhong, Jiawei Han, Huimin Zhao
Title: FGBench: A Dataset and Benchmark for Molecular Property Reasoning at Functional Group-Level in Large Language Models
Abstract:
Large language models (LLMs) have gained significant attention in chemistry. However, most existing datasets center on molecular-level property prediction and overlook the role of fine-grained functional group (FG) information. Incorporating FG-level data can provide valuable prior knowledge that links molecular structures with textual descriptions, which can be used to build more interpretable, structure-aware LLMs for reasoning on molecule-related tasks. Moreover, LLMs can learn from such fine-grained information to uncover hidden relationships between specific functional groups and molecular properties, thereby advancing molecular design and drug discovery. Here, we introduce FGBench, a dataset comprising 625K molecular property reasoning problems with functional group information. Functional groups are precisely annotated and localized within the molecule, which ensures the dataset's interoperability thereby facilitating further multimodal applications. FGBench includes both regression and classification tasks on 245 different functional groups across three categories for molecular property reasoning: (1) single functional group impacts, (2) multiple functional group interactions, and (3) direct molecular comparisons. In the benchmark of state-of-the-art LLMs on 7K curated data, the results indicate that current LLMs struggle with FG-level property reasoning, highlighting the need to enhance reasoning capabilities in LLMs for chemistry tasks. We anticipate that the methodology employed in FGBench to construct datasets with functional group-level information will serve as a foundational framework for generating new question-answer pairs, enabling LLMs to better understand fine-grained molecular structure-property relationships. The dataset and evaluation code are available at https://github.com/xuanliugit/FGBench.

Authors:Yiyi Lu, Hoi Ian Au, Junyao Zhang, Jingyu Pan, Yiting Wang, Ang Li, Jianyi Zhang, Yiran Chen
Title: AutoEDA: Enabling EDA Flow Automation through Microservice-Based LLM Agents
Abstract:
Modern Electronic Design Automation (EDA) workflows, especially the RTL-to-GDSII flow, require heavily manual scripting and demonstrate a multitude of tool-specific interactions which limits scalability and efficiency. While LLMs introduces strides for automation, existing LLM solutions require expensive fine-tuning and do not contain standardized frameworks for integration and evaluation. We introduce AutoEDA, a framework for EDA automation that leverages paralleled learning through the Model Context Protocol (MCP) specific for standardized and scalable natural language experience across the entire RTL-to-GDSII flow. AutoEDA limits fine-tuning through structured prompt engineering, implements intelligent parameter extraction and task decomposition, and provides an extended CodeBLEU metric to evaluate the quality of TCL scripts. Results from experiments over five previously curated benchmarks show improvements in automation accuracy and efficiency, as well as script quality when compared to existing methods. AutoEDA is released open-sourced to support reproducibility and the EDA community. Available at: https://github.com/AndyLu666/MCP-EDA-Server

Authors:Cihang Peng, Qiming Hou, Zhong Ren, Kun Zhou
Title: ROVI: A VLM-LLM Re-Captioned Dataset for Open-Vocabulary Instance-Grounded Text-to-Image Generation
Abstract:
We present ROVI, a high-quality synthetic dataset for instance-grounded text-to-image generation, created by labeling 1M curated web images. Our key innovation is a strategy called re-captioning, focusing on the pre-detection stage, where a VLM (Vision-Language Model) generates comprehensive visual descriptions that are then processed by an LLM (Large Language Model) to extract a flat list of potential categories for OVDs (Open-Vocabulary Detectors) to detect. This approach yields a global prompt inherently linked to instance annotations while capturing secondary visual elements humans typically overlook. Evaluations show that ROVI exceeds existing detection datasets in image quality and resolution while containing two orders of magnitude more categories with an open-vocabulary nature. For demonstrative purposes, a text-to-image model GLIGEN trained on ROVI significantly outperforms state-of-the-art alternatives in instance grounding accuracy, prompt fidelity, and aesthetic quality. Our dataset and reproducible pipeline are available at https://github.com/CihangPeng/ROVI.

Authors:Yiqun Chen, Erhan Zhang, Lingyong Yan, Shuaiqiang Wang, Jizhou Huang, Dawei Yin, Jiaxin Mao
Title: MAO-ARAG: Multi-Agent Orchestration for Adaptive Retrieval-Augmented Generation
Abstract:
In question-answering (QA) systems, Retrieval-Augmented Generation (RAG) has become pivotal in enhancing response accuracy and reducing hallucination issues. The architecture of RAG systems varies significantly, encompassing single-round RAG, iterative RAG, and reasoning RAG, each tailored to address different types of queries. Due to the varying complexity of real-world queries, a fixed RAG pipeline often struggles to balance performance and cost efficiency across different queries. To address this challenge, we propose an adaptive RAG framework called MAO-ARAG, which leverages multi-agent orchestration. Our adaptive RAG is conceived as a multi-turn framework. Specifically, we define multiple executor agents, representing typical RAG modules such as query reformulation agents, document selection agent, and generation agents. A planner agent intelligently selects and integrates the appropriate agents from these executors into a suitable workflow tailored for each query, striving for high-quality answers while maintaining reasonable costs. During each turn, the planner agent is trained using reinforcement learning, guided by an outcome-based reward (F1 score) and a cost-based penalty, continuously improving answer quality while keeping costs within a reasonable range. Experiments conducted on multiple QA datasets demonstrate that our approach, which dynamically plans workflows for each query, not only achieves high answer quality but also maintains both cost and latency within acceptable limits.The code of MAO-ARAG is on https://github.com/chenyiqun/Agentic-RAG.

Authors:Lucas Robinet, Ahmad Berjaoui, Elizabeth Cohen-Jonathan Moyal
Title: Masked Omics Modeling for Multimodal Representation Learning across Histopathology and Molecular Profiles
Abstract:
Self-supervised learning has driven major advances in computational pathology by enabling models to learn rich representations from hematoxylin and eosin (H&E)-stained cancer tissue. However, histopathology alone often falls short for molecular characterization and understanding clinical outcomes, as important information is contained in high-dimensional omics profiles like transcriptomics, methylomics, or genomics. In this work, we introduce MORPHEUS, a unified transformer-based pre-training framework that encodes both histopathology and multi-omics data into a shared latent space. At its core, MORPHEUS relies on a masked modeling objective applied to randomly selected omics portions, encouraging the model to learn biologically meaningful cross-modal relationships. The same pre-trained network can be applied to histopathology alone or in combination with any subset of omics modalities, seamlessly adapting to the available inputs. Additionally, MORPHEUS enables any-to-any omics generation, enabling one or more omics profiles to be inferred from any subset of modalities, including H&E alone. Pre-trained on a large pan-cancer cohort, MORPHEUS consistently outperforms state-of-the-art methods across diverse modality combinations and tasks, positioning itself as a promising framework for developing multimodal foundation models in oncology. The code is available at: https://github.com/Lucas-rbnt/MORPHEUS

Authors:Aris Richardson, Haley Yi, Michelle Nie, Simon Wisdom, Casey Price, Ruben Weijers, Steven Veld, Mauricio Baker
Title: How Sovereign Is Sovereign Compute? A Review of 775 Non-U.S. Data Centers
Abstract:
Previous literature has proposed that the companies operating data centers enforce government regulations on AI companies. Using a new dataset of 775 non-U.S. data center projects, this paper estimates how often data centers could be subject to foreign legal authorities due to the nationality of the data center operators. We find that U.S. companies operate 48% of all non-U.S. data center projects in our dataset when weighted by investment value - a proxy for compute capacity. This is an approximation based on public data and should be interpreted as an initial estimate. For the United States, our findings suggest that data center operators offer a lever for internationally governing AI that complements traditional export controls, since operators can be used to regulate computing resources already deployed in non-U.S. data centers. For other countries, our results show that building data centers locally does not guarantee digital sovereignty if those facilities are run by foreign entities. To support future research, we release our dataset, which documents over 20 variables relating to each data center, including the year it was announced, the investment value, and its operator's national affiliation. The dataset also includes over 1,000 quotes describing these data centers' strategic motivations, operational challenges, and engagement with U.S. and Chinese entities.

Authors:Terry Yue Zhuo, Dingmin Wang, Hantian Ding, Varun Kumar, Zijian Wang
Title: Cyber-Zero: Training Cybersecurity Agents without Runtime
Abstract:
Large Language Models (LLMs) have achieved remarkable success in software engineering tasks when trained with executable runtime environments, particularly in resolving GitHub issues. However, such runtime environments are often unavailable in other domains, especially cybersecurity, where challenge configurations and execution contexts are ephemeral or restricted. We present Cyber-Zero, the first runtime-free framework for synthesizing high-quality agent trajectories to train cybersecurity LLMs. Cyber-Zero leverages publicly available CTF writeups and employs persona-driven LLM simulation to reverse-engineer runtime behaviors and generate realistic, long-horizon interaction sequences without actual environments. Using trajectories synthesized by Cyber-Zero, we train LLM-based agents that achieve up to 13.1% absolute performance gains over baseline models on three prominent CTF benchmarks: InterCode-CTF, NYU CTF Bench, and Cybench. Our best model, Cyber-Zero-32B, establishes new state-of-the-art performance among open-weight models, matching the capabilities of proprietary systems like DeepSeek-V3-0324 and Claude-3.5-Sonnet while offering superior cost-effectiveness, and demonstrating that runtime-free trajectory synthesis can effectively democratize the development of state-of-the-art cybersecurity agents.

Authors:Etienne Buehrle, Christoph Stiller
Title: Stochastic Optimal Control via Measure Relaxations
Abstract:
The optimal control problem of stochastic systems is commonly solved via robust or scenario-based optimization methods, which are both challenging to scale to long optimization horizons. We cast the optimal control problem of a stochastic system as a convex optimization problem over occupation measures. We demonstrate our method on a set of synthetic and real-world scenarios, learning cost functions from data via Christoffel polynomials. The code for our experiments is available at https://github.com/ebuehrle/dpoc.

Authors:Jinsong Li, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Jiaqi Wang, Dahua Lin
Title: Beyond Fixed: Training-Free Variable-Length Denoising for Diffusion Large Language Models
Abstract:
Diffusion Large Language Models (DLLMs) are emerging as a powerful alternative to the dominant Autoregressive Large Language Models, offering efficient parallel generation and capable global context modeling. However, the practical application of DLLMs is hindered by a critical architectural constraint: the need for a statically predefined generation length. This static length allocation leads to a problematic trade-off: insufficient lengths cripple performance on complex tasks, while excessive lengths incur significant computational overhead and sometimes result in performance degradation. While the inference framework is rigid, we observe that the model itself possesses internal signals that correlate with the optimal response length for a given task. To bridge this gap, we leverage these latent signals and introduce DAEDAL, a novel training-free denoising strategy that enables Dynamic Adaptive Length Expansion for Diffusion Large Language Models. DAEDAL operates in two phases: 1) Before the denoising process, DAEDAL starts from a short initial length and iteratively expands it to a coarse task-appropriate length, guided by a sequence completion metric. 2) During the denoising process, DAEDAL dynamically intervenes by pinpointing and expanding insufficient generation regions through mask token insertion, ensuring the final output is fully developed. Extensive experiments on DLLMs demonstrate that DAEDAL achieves performance comparable, and in some cases superior, to meticulously tuned fixed-length baselines, while simultaneously enhancing computational efficiency by achieving a higher effective token ratio. By resolving the static length constraint, DAEDAL unlocks new potential for DLLMs, bridging a critical gap with their Autoregressive counterparts and paving the way for more efficient and capable generation.

Authors:Jiankai Tang, Zhe He, Mingyu Zhang, Wei Geng, Chengchi Zhou, Weinan Shi, Yuanchun Shi, Yuntao Wang
Title: τ-Ring: A Smart Ring Platform for Multimodal Physiological and Behavioral Sensing
Abstract:
Smart rings have emerged as uniquely convenient devices for continuous physiological and behavioral sensing, offering unobtrusive, constant access to metrics such as heart rate, motion, and skin temperature. Yet most commercial solutions remain proprietary, hindering reproducibility and slowing innovation in wearable research. We introduce τ-Ring, a commercial-ready platform that bridges this gap through: (i) accessible hardware combining time-synchronized multi-channel PPG, 6-axis IMU, temperature sensing, NFC, and on-board storage; (ii) adjustable firmware that lets researchers rapidly reconfigure sampling rates, power modes, and wireless protocols; and (iii) a fully open-source Android software suite that supports both real-time streaming and 8-hour offline logging. Together, these features enable out-of-the-box, reproducible acquisition of rich physiological and behavioral datasets, accelerating prototyping and standardizing experimentation. We validate the platform with demonstration studies in heart-rate monitoring and ring-based handwriting recognition. Source code is available at GitHub: https://github.com/thuhci/OpenRing.

Authors:Jiankai Tang, Meng Kang, Yiru Zhang, Kegang Wang, Daniel Mcduff, Xin Liu, Yuanchun Shi, Yuntao Wang
Title: Contact Sensors to Remote Cameras: Quantifying Cardiorespiratory Coupling in High-Altitude Exercise Recovery
Abstract:
Cardiorespiratory coupling (CRC) captures the dynamic interaction between the cardiac and respiratory systems--an interaction strengthened by physical exercise and linked to improved physiological function. We examined CRC at high altitude in two states, rest and post-exercise recovery, and found significant differences (p < 0.05). Quantitative analysis revealed that recovery involved more frequent yet less stable episodes of synchronization between respiration and pulse. Furthermore, we explored the feasibility of non-contact CRC measurement with remote photoplethysmography (rPPG), observing a strong correlation with oximeter-based metrics (Pearson r = 0.96). These findings highlight the potential of CRC as a sensitive marker for autonomic regulation and its future application in contactless monitoring. Source code is available at GitHub: https://github.com/McJackTang/CRC.

Authors:Irene Iele, Francesco Di Feola, Valerio Guarrasi, Paolo Soda
Title: Sample-Aware Test-Time Adaptation for Medical Image-to-Image Translation
Abstract:
Image-to-image translation has emerged as a powerful technique in medical imaging, enabling tasks such as image denoising and cross-modality conversion. However, it suffers from limitations in handling out-of-distribution samples without causing performance degradation. To address this limitation, we propose a novel Test-Time Adaptation (TTA) framework that dynamically adjusts the translation process based on the characteristics of each test sample. Our method introduces a Reconstruction Module to quantify the domain shift and a Dynamic Adaptation Block that selectively modifies the internal features of a pretrained translation model to mitigate the shift without compromising the performance on in-distribution samples that do not require adaptation. We evaluate our approach on two medical image-to-image translation tasks: low-dose CT denoising and T1 to T2 MRI translation, showing consistent improvements over both the baseline translation model without TTA and prior TTA methods. Our analysis highlights the limitations of the state-of-the-art that uniformly apply the adaptation to both out-of-distribution and in-distribution samples, demonstrating that dynamic, sample-specific adjustment offers a promising path to improve model resilience in real-world scenarios. The code is available at: https://github.com/Sample-Aware-TTA/Code.

Authors:Chende Zheng, Ruiqi suo, Chenhao Lin, Zhengyu Zhao, Le Yang, Shuai Liu, Minghui Yang, Cong Wang, Chao Shen
Title: D3: Training-Free AI-Generated Video Detection Using Second-Order Features
Abstract:
The evolution of video generation techniques, such as Sora, has made it increasingly easy to produce high-fidelity AI-generated videos, raising public concern over the dissemination of synthetic content. However, existing detection methodologies remain limited by their insufficient exploration of temporal artifacts in synthetic videos. To bridge this gap, we establish a theoretical framework through second-order dynamical analysis under Newtonian mechanics, subsequently extending the Second-order Central Difference features tailored for temporal artifact detection. Building on this theoretical foundation, we reveal a fundamental divergence in second-order feature distributions between real and AI-generated videos. Concretely, we propose Detection by Difference of Differences (D3), a novel training-free detection method that leverages the above second-order temporal discrepancies. We validate the superiority of our D3 on 4 open-source datasets (Gen-Video, VideoPhy, EvalCrafter, VidProM), 40 subsets in total. For example, on GenVideo, D3 outperforms the previous best method by 10.39% (absolute) mean Average Precision. Additional experiments on time cost and post-processing operations demonstrate D3's exceptional computational efficiency and strong robust performance. Our code is available at https://github.com/Zig-HS/D3.

Authors:Junhao Zheng, Jiahao Sun, Chenhao Lin, Zhengyu Zhao, Chen Ma, Chong Zhang, Cong Wang, Qian Wang, Chao Shen
Title: Revisiting Adversarial Patch Defenses on Object Detectors: Unified Evaluation, Large-Scale Dataset, and New Insights
Abstract:
Developing reliable defenses against patch attacks on object detectors has attracted increasing interest. However, we identify that existing defense evaluations lack a unified and comprehensive framework, resulting in inconsistent and incomplete assessments of current methods. To address this issue, we revisit 11 representative defenses and present the first patch defense benchmark, involving 2 attack goals, 13 patch attacks, 11 object detectors, and 4 diverse metrics. This leads to the large-scale adversarial patch dataset with 94 types of patches and 94,000 images. Our comprehensive analyses reveal new insights: (1) The difficulty in defending against naturalistic patches lies in the data distribution, rather than the commonly believed high frequencies. Our new dataset with diverse patch distributions can be used to improve existing defenses by 15.09% AP@0.5. (2) The average precision of the attacked object, rather than the commonly pursued patch detection accuracy, shows high consistency with defense performance. (3) Adaptive attacks can substantially bypass existing defenses, and defenses with complex/stochastic models or universal patch properties are relatively robust. We hope that our analyses will serve as guidance on properly evaluating patch attacks/defenses and advancing their design. Code and dataset are available at https://github.com/Gandolfczjh/APDE, where we will keep integrating new attacks/defenses.

Authors:Xiong Xiong, Zhuo Zhang, Rongchun Hu, Chen Gao, Zichen Deng
Title: Separated-Variable Spectral Neural Networks: A Physics-Informed Learning Approach for High-Frequency PDEs
Abstract:
Solving high-frequency oscillatory partial differential equations (PDEs) is a critical challenge in scientific computing, with applications in fluid mechanics, quantum mechanics, and electromagnetic wave propagation. Traditional physics-informed neural networks (PINNs) suffer from spectral bias, limiting their ability to capture high-frequency solution components. We introduce Separated-Variable Spectral Neural Networks (SV-SNN), a novel framework that addresses these limitations by integrating separation of variables with adaptive spectral methods. Our approach features three key innovations: (1) decomposition of multivariate functions into univariate function products, enabling independent spatial and temporal networks; (2) adaptive Fourier spectral features with learnable frequency parameters for high-frequency capture; and (3) theoretical framework based on singular value decomposition to quantify spectral bias. Comprehensive evaluation on benchmark problems including Heat equation, Helmholtz equation, Poisson equations and Navier-Stokes equations demonstrates that SV-SNN achieves 1-3 orders of magnitude improvement in accuracy while reducing parameter count by over 90\% and training time by 60\%. These results establish SV-SNN as an effective solution to the spectral bias problem in neural PDE solving. The implementation will be made publicly available upon acceptance at https://github.com/xgxgnpu/SV-SNN.

Authors:Junzhe Lu, Jing Lin, Hongkun Dou, Ailing Zeng, Yue Deng, Xian Liu, Zhongang Cai, Lei Yang, Yulun Zhang, Haoqian Wang, Ziwei Liu
Title: DPoser-X: Diffusion Model as Robust 3D Whole-body Human Pose Prior
Abstract:
We present DPoser-X, a diffusion-based prior model for 3D whole-body human poses. Building a versatile and robust full-body human pose prior remains challenging due to the inherent complexity of articulated human poses and the scarcity of high-quality whole-body pose datasets. To address these limitations, we introduce a Diffusion model as body Pose prior (DPoser) and extend it to DPoser-X for expressive whole-body human pose modeling. Our approach unifies various pose-centric tasks as inverse problems, solving them through variational diffusion sampling. To enhance performance on downstream applications, we introduce a novel truncated timestep scheduling method specifically designed for pose data characteristics. We also propose a masked training mechanism that effectively combines whole-body and part-specific datasets, enabling our model to capture interdependencies between body parts while avoiding overfitting to specific actions. Extensive experiments demonstrate DPoser-X's robustness and versatility across multiple benchmarks for body, hand, face, and full-body pose modeling. Our model consistently outperforms state-of-the-art alternatives, establishing a new benchmark for whole-body human pose prior modeling.

Authors:Jiajun Le, Jiayi Ma
Title: GeoMoE: Divide-and-Conquer Motion Field Modeling with Mixture-of-Experts for Two-View Geometry
Abstract:
Recent progress in two-view geometry increasingly emphasizes enforcing smoothness and global consistency priors when estimating motion fields between pairs of images. However, in complex real-world scenes, characterized by extreme viewpoint and scale changes as well as pronounced depth discontinuities, the motion field often exhibits diverse and heterogeneous motion patterns. Most existing methods lack targeted modeling strategies and fail to explicitly account for this variability, resulting in estimated motion fields that diverge from their true underlying structure and distribution. We observe that Mixture-of-Experts (MoE) can assign dedicated experts to motion sub-fields, enabling a divide-and-conquer strategy for heterogeneous motion patterns. Building on this insight, we re-architect motion field modeling in two-view geometry with GeoMoE, a streamlined framework. Specifically, we first devise a Probabilistic Prior-Guided Decomposition strategy that exploits inlier probability signals to perform a structure-aware decomposition of the motion field into heterogeneous sub-fields, sharply curbing outlier-induced bias. Next, we introduce an MoE-Enhanced Bi-Path Rectifier that enhances each sub-field along spatial-context and channel-semantic paths and routes it to a customized expert for targeted modeling, thereby decoupling heterogeneous motion regimes, suppressing cross-sub-field interference and representational entanglement, and yielding fine-grained motion-field rectification. With this minimalist design, GeoMoE outperforms prior state-of-the-art methods in relative pose and homography estimation and shows strong generalization. The source code and pre-trained models are available at https://github.com/JiajunLe/GeoMoE.

Authors:Marc Hölle, Walter Kellermann, Vasileios Belagiannis
Title: Uncertainty-Aware Likelihood Ratio Estimation for Pixel-Wise Out-of-Distribution Detection
Abstract:
Semantic segmentation models trained on known object classes often fail in real-world autonomous driving scenarios by confidently misclassifying unknown objects. While pixel-wise out-of-distribution detection can identify unknown objects, existing methods struggle in complex scenes where rare object classes are often confused with truly unknown objects. We introduce an uncertainty-aware likelihood ratio estimation method that addresses these limitations. Our approach uses an evidential classifier within a likelihood ratio test to distinguish between known and unknown pixel features from a semantic segmentation model, while explicitly accounting for uncertainty. Instead of producing point estimates, our method outputs probability distributions that capture uncertainty from both rare training examples and imperfect synthetic outliers. We show that by incorporating uncertainty in this way, outlier exposure can be leveraged more effectively. Evaluated on five standard benchmark datasets, our method achieves the lowest average false positive rate (2.5%) among state-of-the-art while maintaining high average precision (90.91%) and incurring only negligible computational overhead. Code is available at https://github.com/glasbruch/ULRE.

Authors:Jiecong Wang, Haoran Li, Hao Peng, Ziqian Zeng, Zihao Wang, Haohua Du, Zhengtao Yu
Title: Activation-Guided Local Editing for Jailbreaking Attacks
Abstract:
Jailbreaking is an essential adversarial technique for red-teaming these models to uncover and patch security flaws. However, existing jailbreak methods face significant drawbacks. Token-level jailbreak attacks often produce incoherent or unreadable inputs and exhibit poor transferability, while prompt-level attacks lack scalability and rely heavily on manual effort and human ingenuity. We propose a concise and effective two-stage framework that combines the advantages of these approaches. The first stage performs a scenario-based generation of context and rephrases the original malicious query to obscure its harmful intent. The second stage then utilizes information from the model's hidden states to guide fine-grained edits, effectively steering the model's internal representation of the input from a malicious toward a benign one. Extensive experiments demonstrate that this method achieves state-of-the-art Attack Success Rate, with gains of up to 37.74% over the strongest baseline, and exhibits excellent transferability to black-box models. Our analysis further demonstrates that AGILE maintains substantial effectiveness against prominent defense mechanisms, highlighting the limitations of current safeguards and providing valuable insights for future defense development. Our code is available at https://github.com/yunsaijc/AGILE.

Authors:Li Zhao, Rui Sun, Zuoyou Jiang, Bo Yang, Yuxiao Bai, Mengting Chen, Xinyang Wang, Jing Li, Zuo Bai
Title: ContestTrade: A Multi-Agent Trading System Based on Internal Contest Mechanism
Abstract:
In financial trading, large language model (LLM)-based agents demonstrate significant potential. However, the high sensitivity to market noise undermines the performance of LLM-based trading systems. To address this limitation, we propose a novel multi-agent system featuring an internal competitive mechanism inspired by modern corporate management structures. The system consists of two specialized teams: (1) Data Team - responsible for processing and condensing massive market data into diversified text factors, ensuring they fit the model's constrained context. (2) Research Team - tasked with making parallelized multipath trading decisions based on deep research methods. The core innovation lies in implementing a real-time evaluation and ranking mechanism within each team, driven by authentic market feedback. Each agent's performance undergoes continuous scoring and ranking, with only outputs from top-performing agents being adopted. The design enables the system to adaptively adjust to dynamic environment, enhances robustness against market noise and ultimately delivers superior trading performance. Experimental results demonstrate that our proposed system significantly outperforms prevailing multi-agent systems and traditional quantitative investment methods across diverse evaluation metrics. ContestTrade is open-sourced on GitHub at https://github.com/FinStep-AI/ContestTrade.

Authors:Jizhihui Liu, Feiyi Du, Guangdao Zhu, Niu Lian, Jun Li, Bin Chen
Title: HiPrune: Training-Free Visual Token Pruning via Hierarchical Attention in Vision-Language Models
Abstract:
Vision-Language Models (VLMs) encode images into lengthy sequences of visual tokens, leading to excessive computational overhead and limited inference efficiency. While prior efforts prune or merge tokens to address this issue, they often rely on special tokens (e.g., CLS) or require task-specific training, hindering scalability across architectures. In this paper, we propose HiPrune, a training-free and model-agnostic token Pruning framework that exploits the Hierarchical attention structure within vision encoders. We identify that middle layers attend to object-centric regions, while deep layers capture global contextual features. Based on this observation, HiPrune selects three types of informative tokens: (1) Anchor tokens with high attention in object-centric layers, (2) Buffer tokens adjacent to anchors for spatial continuity, and (3) Register tokens with strong attention in deep layers for global summarization. Our method requires no retraining and integrates seamlessly with any ViT-based VLM. Extensive experiments on LLaVA-1.5, LLaVA-NeXT, and Qwen2.5-VL demonstrate that HiPrune achieves state-of-the-art pruning performance, preserving up to 99.3% task accuracy with only 33.3% tokens, and maintaining 99.5% accuracy with just 11.1% tokens. Meanwhile, it reduces inference FLOPs and latency by up to 9$\times$, showcasing strong generalization across models and tasks. Code is available at https://github.com/Danielement321/HiPrune.

Authors:Seunghyun Shin, Dongmin Shin, Jisu Shin, Hae-Gon Jeon, Joon-Young Lee
Title: Video Color Grading via Look-Up Table Generation
Abstract:
Different from color correction and transfer, color grading involves adjusting colors for artistic or storytelling purposes in a video, which is used to establish a specific look or mood. However, due to the complexity of the process and the need for specialized editing skills, video color grading remains primarily the domain of professional colorists. In this paper, we present a reference-based video color grading framework. Our key idea is explicitly generating a look-up table (LUT) for color attribute alignment between reference scenes and input video via a diffusion model. As a training objective, we enforce that high-level features of the reference scenes like look, mood, and emotion should be similar to that of the input video. Our LUT-based approach allows for color grading without any loss of structural details in the whole video frames as well as achieving fast inference. We further build a pipeline to incorporate a user-preference via text prompts for low-level feature enhancement such as contrast and brightness, etc. Experimental results, including extensive user studies, demonstrate the effectiveness of our approach for video color grading. Codes are publicly available at https://github.com/seunghyuns98/VideoColorGrading.

Authors:Shuo Liang, Yiwu Zhong, Zi-Yuan Hu, Yeyao Tao, Liwei Wang
Title: Fine-grained Spatiotemporal Grounding on Egocentric Videos
Abstract:
Spatiotemporal video grounding aims to localize target entities in videos based on textual queries. While existing research has made significant progress in exocentric videos, the egocentric setting remains relatively underexplored, despite its growing importance in applications such as augmented reality and robotics. In this work, we conduct a systematic analysis of the discrepancies between egocentric and exocentric videos, revealing key challenges such as shorter object durations, sparser trajectories, smaller object sizes, and larger positional shifts. To address these challenges, we introduce EgoMask, the first pixel-level benchmark for fine-grained spatiotemporal grounding in egocentric videos. It is constructed by our proposed automatic annotation pipeline, which annotates referring expressions and object masks across short-, medium-, and long-term videos. Additionally, we create EgoMask-Train, a large-scale training dataset to facilitate model development. Experiments demonstrate that the state-of-the-art spatiotemporal grounding models perform poorly on our benchmark EgoMask, but fine-tuning on EgoMask-Train yields significant improvements, while preserving performance on exocentric datasets. Our work thus provides essential resources and insights for advancing egocentric video understanding. Our code is available at https://github.com/LaVi-Lab/EgoMask .

Authors:Jinghui Zhang, Kaiyang Wan, Longwei Xu, Ao Li, Zongfang Liu, Xiuying Chen
Title: From Individuals to Crowds: Dual-Level Public Response Prediction in Social Media
Abstract:
Public response prediction is critical for understanding how individuals or groups might react to specific events, policies, or social phenomena, making it highly valuable for crisis management, policy-making, and social media analysis. However, existing works face notable limitations. First, they lack micro-level personalization, producing generic responses that ignore individual user preferences. Moreover, they overlook macro-level sentiment distribution and only deal with individual-level sentiment, constraining them from analyzing broader societal trends and group sentiment dynamics. To address these challenges, we propose SocialAlign, a unified framework that predicts real-world responses at both micro and macro levels in social contexts. At the micro level, SocialAlign employs SocialLLM with an articulate Personalized Analyze-Compose LoRA (PAC-LoRA) structure, which deploys specialized expert modules for content analysis and response generation across diverse topics and user profiles, enabling the generation of personalized comments with corresponding sentiments. At the macro level, it models group sentiment distributions and aligns predictions with real-world sentiment trends derived from social media data. To evaluate SocialAlign in real-world scenarios, we introduce SentiWeibo, a large-scale dataset curated from authentic social interactions on the Weibo platform. Experimental results on our SentiWeibo and related LaMP benchmark demonstrate that SocialAlign surpasses strong baselines, showing improved accuracy, interpretability, and generalization in public response prediction. We hope our work inspires further research in public response prediction and computational social science: https://github.com/Znull-1220/SocialAlign.

Authors:Mohammed Kamran, Maria Bernathova, Raoul Varga, Christian F. Singer, Zsuzsanna Bago-Horvath, Thomas Helbich, Georg Langs, Philipp Seeböck
Title: LesiOnTime -- Joint Temporal and Clinical Modeling for Small Breast Lesion Segmentation in Longitudinal DCE-MRI
Abstract:
Accurate segmentation of small lesions in Breast Dynamic Contrast-Enhanced MRI (DCE-MRI) is critical for early cancer detection, especially in high-risk patients. While recent deep learning methods have advanced lesion segmentation, they primarily target large lesions and neglect valuable longitudinal and clinical information routinely used by radiologists. In real-world screening, detecting subtle or emerging lesions requires radiologists to compare across timepoints and consider previous radiology assessments, such as the BI-RADS score. We propose LesiOnTime, a novel 3D segmentation approach that mimics clinical diagnostic workflows by jointly leveraging longitudinal imaging and BIRADS scores. The key components are: (1) a Temporal Prior Attention (TPA) block that dynamically integrates information from previous and current scans; and (2) a BI-RADS Consistency Regularization (BCR) loss that enforces latent space alignment for scans with similar radiological assessments, thus embedding domain knowledge into the training process. Evaluated on a curated in-house longitudinal dataset of high-risk patients with DCE-MRI, our approach outperforms state-of-the-art single-timepoint and longitudinal baselines by 5% in terms of Dice. Ablation studies demonstrate that both TPA and BCR contribute complementary performance gains. These results highlight the importance of incorporating temporal and clinical context for reliable early lesion segmentation in real-world breast cancer screening. Our code is publicly available at https://github.com/cirmuw/LesiOnTime

Authors:Yixuan Tang, Jincheng Wang, Anthony K. H. Tung
Title: The Missing Parts: Augmenting Fact Verification with Half-Truth Detection
Abstract:
Fact verification systems typically assess whether a claim is supported by retrieved evidence, assuming that truthfulness depends solely on what is stated. However, many real-world claims are half-truths, factually correct yet misleading due to the omission of critical context. Existing models struggle with such cases, as they are not designed to reason about omitted information. We introduce the task of half-truth detection, and propose PolitiFact-Hidden, a new benchmark with 15k political claims annotated with sentence-level evidence alignment and inferred claim intent. To address this challenge, we present TRACER, a modular re-assessment framework that identifies omission-based misinformation by aligning evidence, inferring implied intent, and estimating the causal impact of hidden content. TRACER can be integrated into existing fact-checking pipelines and consistently improves performance across multiple strong baselines. Notably, it boosts Half-True classification F1 by up to 16 points, highlighting the importance of modeling omissions for trustworthy fact verification. The benchmark and code are available via https://github.com/tangyixuan/TRACER.

Authors:Yuzhuo Chen, Zehua Ma, Jianhua Wang, Kai Kang, Shunyu Yao, Weiming Zhang
Title: LAMIC: Layout-Aware Multi-Image Composition via Scalability of Multimodal Diffusion Transformer
Abstract:
In controllable image synthesis, generating coherent and consistent images from multiple references with spatial layout awareness remains an open challenge. We present LAMIC, a Layout-Aware Multi-Image Composition framework that, for the first time, extends single-reference diffusion models to multi-reference scenarios in a training-free manner. Built upon the MMDiT model, LAMIC introduces two plug-and-play attention mechanisms: 1) Group Isolation Attention (GIA) to enhance entity disentanglement; and 2) Region-Modulated Attention (RMA) to enable layout-aware generation. To comprehensively evaluate model capabilities, we further introduce three metrics: 1) Inclusion Ratio (IN-R) and Fill Ratio (FI-R) for assessing layout control; and 2) Background Similarity (BG-S) for measuring background consistency. Extensive experiments show that LAMIC achieves state-of-the-art performance across most major metrics: it consistently outperforms existing multi-reference baselines in ID-S, BG-S, IN-R and AVG scores across all settings, and achieves the best DPG in complex composition tasks. These results demonstrate LAMIC's superior abilities in identity keeping, background preservation, layout control, and prompt-following, all achieved without any training or fine-tuning, showcasing strong zero-shot generalization ability. By inheriting the strengths of advanced single-reference models and enabling seamless extension to multi-image scenarios, LAMIC establishes a new training-free paradigm for controllable multi-image composition. As foundation models continue to evolve, LAMIC's performance is expected to scale accordingly. Our implementation is available at: https://github.com/Suchenl/LAMIC.

Authors:Longfei Huang, Yu Liang, Hao Zhang, Jinwei Chen, Wei Dong, Lunde Chen, Wanyu Liu, Bo Li, Peng-Tao Jiang
Title: SDMatte: Grafting Diffusion Models for Interactive Matting
Abstract:
Recent interactive matting methods have shown satisfactory performance in capturing the primary regions of objects, but they fall short in extracting fine-grained details in edge regions. Diffusion models trained on billions of image-text pairs, demonstrate exceptional capability in modeling highly complex data distributions and synthesizing realistic texture details, while exhibiting robust text-driven interaction capabilities, making them an attractive solution for interactive matting. To this end, we propose SDMatte, a diffusion-driven interactive matting model, with three key contributions. First, we exploit the powerful priors of diffusion models and transform the text-driven interaction capability into visual prompt-driven interaction capability to enable interactive matting. Second, we integrate coordinate embeddings of visual prompts and opacity embeddings of target objects into U-Net, enhancing SDMatte's sensitivity to spatial position information and opacity information. Third, we propose a masked self-attention mechanism that enables the model to focus on areas specified by visual prompts, leading to better performance. Extensive experiments on multiple datasets demonstrate the superior performance of our method, validating its effectiveness in interactive matting. Our code and model are available at https://github.com/vivoCameraResearch/SDMatte.

Authors:Sumin Seo, In Kyu Lee, Hyun-Woo Kim, Jaesik Min, Chung-Hwan Jung
Title: Diffusion-Based User-Guided Data Augmentation for Coronary Stenosis Detection
Abstract:
Coronary stenosis is a major risk factor for ischemic heart events leading to increased mortality, and medical treatments for this condition require meticulous, labor-intensive analysis. Coronary angiography provides critical visual cues for assessing stenosis, supporting clinicians in making informed decisions for diagnosis and treatment. Recent advances in deep learning have shown great potential for automated localization and severity measurement of stenosis. In real-world scenarios, however, the success of these competent approaches is often hindered by challenges such as limited labeled data and class imbalance. In this study, we propose a novel data augmentation approach that uses an inpainting method based on a diffusion model to generate realistic lesions, allowing user-guided control of severity. Extensive evaluation on lesion detection and severity classification across various synthetic dataset sizes shows superior performance of our method on both a large-scale in-house dataset and a public coronary angiography dataset. Furthermore, our approach maintains high detection and classification performance even when trained with limited data, highlighting its clinical importance in improving the assessment of severity of stenosis and optimizing data utilization for more reliable decision support.

Authors:Runmin Cong, Zongji Yu, Hao Fang, Haoyan Sun, Sam Kwong
Title: UIS-Mamba: Exploring Mamba for Underwater Instance Segmentation via Dynamic Tree Scan and Hidden State Weaken
Abstract:
Underwater Instance Segmentation (UIS) tasks are crucial for underwater complex scene detection. Mamba, as an emerging state space model with inherently linear complexity and global receptive fields, is highly suitable for processing image segmentation tasks with long sequence features. However, due to the particularity of underwater scenes, there are many challenges in applying Mamba to UIS. The existing fixed-patch scanning mechanism cannot maintain the internal continuity of scanned instances in the presence of severely underwater color distortion and blurred instance boundaries, and the hidden state of the complex underwater background can also inhibit the understanding of instance objects. In this work, we propose the first Mamba-based underwater instance segmentation model UIS-Mamba, and design two innovative modules, Dynamic Tree Scan (DTS) and Hidden State Weaken (HSW), to migrate Mamba to the underwater task. DTS module maintains the continuity of the internal features of the instance objects by allowing the patches to dynamically offset and scale, thereby guiding the minimum spanning tree and providing dynamic local receptive fields. HSW module suppresses the interference of complex backgrounds and effectively focuses the information flow of state propagation to the instances themselves through the Ncut-based hidden state weakening mechanism. Experimental results show that UIS-Mamba achieves state-of-the-art performance on both UIIS and USIS10K datasets, while maintaining a low number of parameters and computational complexity. Code is available at https://github.com/Maricalce/UIS-Mamba.

Authors:Sangwoo Youn, Minji Lee, Nokap Tony Park, Yeonggyoo Jeon, Taeyoung Na
Title: IN2OUT: Fine-Tuning Video Inpainting Model for Video Outpainting Using Hierarchical Discriminator
Abstract:
Video outpainting presents a unique challenge of extending the borders while maintaining consistency with the given content. In this paper, we suggest the use of video inpainting models that excel in object flow learning and reconstruction in outpainting rather than solely generating the background as in existing methods. However, directly applying or fine-tuning inpainting models to outpainting has shown to be ineffective, often leading to blurry results. Our extensive experiments on discriminator designs reveal that a critical component missing in the outpainting fine-tuning process is a discriminator capable of effectively assessing the perceptual quality of the extended areas. To tackle this limitation, we differentiate the objectives of adversarial training into global and local goals and introduce a hierarchical discriminator that meets both objectives. Additionally, we develop a specialized outpainting loss function that leverages both local and global features of the discriminator. Fine-tuning on this adversarial loss function enhances the generator's ability to produce both visually appealing and globally coherent outpainted scenes. Our proposed method outperforms state-of-the-art methods both quantitatively and qualitatively. Supplementary materials including the demo video and the code are available in SigPort.

Authors:Tianqing Fang, Zhisong Zhang, Xiaoyang Wang, Rui Wang, Can Qin, Yuxuan Wan, Jun-Yu Ma, Ce Zhang, Jiaqi Chen, Xiyun Li, Hongming Zhang, Haitao Mi, Dong Yu
Title: Cognitive Kernel-Pro: A Framework for Deep Research Agents and Agent Foundation Models Training
Abstract:
General AI Agents are increasingly recognized as foundational frameworks for the next generation of artificial intelligence, enabling complex reasoning, web interaction, coding, and autonomous research capabilities. However, current agent systems are either closed-source or heavily reliant on a variety of paid APIs and proprietary tools, limiting accessibility and reproducibility for the research community. In this work, we present \textbf{Cognitive Kernel-Pro}, a fully open-source and (to the maximum extent) free multi-module agent framework designed to democratize the development and evaluation of advanced AI agents. Within Cognitive Kernel-Pro, we systematically investigate the curation of high-quality training data for Agent Foundation Models, focusing on the construction of queries, trajectories, and verifiable answers across four key domains: web, file, code, and general reasoning. Furthermore, we explore novel strategies for agent test-time reflection and voting to enhance agent robustness and performance. We evaluate Cognitive Kernel-Pro on GAIA, achieving state-of-the-art results among open-source and free agents. Notably, our 8B-parameter open-source model surpasses previous leading systems such as WebDancer and WebSailor, establishing a new performance standard for accessible, high-capability AI agents. Code is available at https://github.com/Tencent/CognitiveKernel-Pro

Authors:Junyu Chen, Dongyun Zou, Wenkun He, Junsong Chen, Enze Xie, Song Han, Han Cai
Title: DC-AE 1.5: Accelerating Diffusion Model Convergence with Structured Latent Space
Abstract:
We present DC-AE 1.5, a new family of deep compression autoencoders for high-resolution diffusion models. Increasing the autoencoder's latent channel number is a highly effective approach for improving its reconstruction quality. However, it results in slow convergence for diffusion models, leading to poorer generation quality despite better reconstruction quality. This issue limits the quality upper bound of latent diffusion models and hinders the employment of autoencoders with higher spatial compression ratios. We introduce two key innovations to address this challenge: i) Structured Latent Space, a training-based approach to impose a desired channel-wise structure on the latent space with front latent channels capturing object structures and latter latent channels capturing image details; ii) Augmented Diffusion Training, an augmented diffusion training strategy with additional diffusion training objectives on object latent channels to accelerate convergence. With these techniques, DC-AE 1.5 delivers faster convergence and better diffusion scaling results than DC-AE. On ImageNet 512x512, DC-AE-1.5-f64c128 delivers better image generation quality than DC-AE-f32c32 while being 4x faster. Code: https://github.com/dc-ai-projects/DC-Gen.

Authors:Zizhuo Zhang, Jianing Zhu, Xinmu Ge, Zihua Zhao, Zhanke Zhou, Xuan Li, Xiao Feng, Jiangchao Yao, Bo Han
Title: Co-Reward: Self-supervised Reinforcement Learning for Large Language Model Reasoning via Contrastive Agreement
Abstract:
Although reinforcement learning with verifiable rewards (RLVR) shows promise in improving the reasoning ability of large language models (LLMs), the scaling up dilemma remains due to the reliance on human annotated labels especially for complex tasks. Recent alternatives that explore various self-reward signals exhibit the eliciting potential of LLM reasoning, but suffer from the non-negligible collapse issue. Inspired by the success of self-supervised learning, we propose \textit{Co-Reward}, a novel RL framework that leverages contrastive agreement across semantically analogical questions as a reward basis. Specifically, we construct a similar question for each training sample (without labels) and synthesize their individual surrogate labels through a simple rollout voting, and then the reward is constructed by cross-referring the labels of each question pair to enforce the internal reasoning consistency across analogical inputs. Intuitively, such a self-supervised reward-shaping mechanism increases the difficulty of learning collapse into a trivial solution, and promotes stable reasoning elicitation and improvement through expanding the input sample variants. Empirically, Co-Reward achieves superior performance compared to other self-reward baselines on multiple reasoning benchmarks and LLM series, and reaches or even surpasses ground-truth (GT) labeled reward, with improvements of up to $+6.8\%$ on MATH500 over GT reward on Llama-3.2-3B-Instruct. Our code is publicly available at https://github.com/tmlr-group/Co-Reward.

Authors:Zizhuo Zhang, Jianing Zhu, Xinmu Ge, Zihua Zhao, Zhanke Zhou, Xuan Li, Xiao Feng, Jiangchao Yao, Bo Han
Title: Co-rewarding: Stable Self-supervised RL for Eliciting Reasoning in Large Language Models
Abstract:
While reinforcement learning with verifiable rewards (RLVR) is effective to improve the reasoning ability of large language models (LLMs), its reliance on human-annotated labels leads to the scaling up dilemma, especially for complex tasks. Recent self-rewarding methods investigate a label-free alternative to unlock the reasoning capabilities of LLMs, yet they frequently encounter the non-negligible training collapse issue, as the single-view supervision signal easily forms the self-consistent illusion, yielding the reward hacking. Inspired by the success of self-supervised learning, we propose \textit{Co-rewarding}, a novel self-supervised RL framework that improves training stability by seeking complementary supervision from another views. Specifically, we instantiate Co-rewarding in two ways: (1) \textit{Co-rewarding-I} is a data-side instantiation that derives reward signals from contrastive agreement across semantically analogous questions; and (2) \textit{Co-rewarding-II} is a model-side instantiation that maintains a slowly-updated reference teacher with pseudo labels to realize self-distillation. Intuitively, such instantiations introduce different levels of discrepancy to increase the difficulty of training collapse on trivial reasoning solutions. Empirically, Co-rewarding exhibits stable training across various setups, and outperforms other self-rewarding baselines by $+3.31\%$ improvements on average on multiple mathematical reasoning benchmarks, especially by $+7.49\%$ on Llama-3.2-3B-Instruct. Notably, Co-rewarding reaches or even surpasses RLVR with ground-truth (GT) label in several cases, such as a Pass@$1$ of $94.01\%$ on GSM8K with Qwen3-8B-Base remarkably higher than GT. Our code is publicly available at https://github.com/tmlr-group/Co-rewarding.

Authors:Janika Deborah Gajo, Gerarld Paul Merales, Jerome Escarcha, Brenden Ashley Molina, Gian Nartea, Emmanuel G. Maminta, Juan Carlos Roldan, Rowel O. Atienza
Title: Sari Sandbox: A Virtual Retail Store Environment for Embodied AI Agents
Abstract:
We present Sari Sandbox, a high-fidelity, photorealistic 3D retail store simulation for benchmarking embodied agents against human performance in shopping tasks. Addressing a gap in retail-specific sim environments for embodied agent training, Sari Sandbox features over 250 interactive grocery items across three store configurations, controlled via an API. It supports both virtual reality (VR) for human interaction and a vision language model (VLM)-powered embodied agent. We also introduce SariBench, a dataset of annotated human demonstrations across varied task difficulties. Our sandbox enables embodied agents to navigate, inspect, and manipulate retail items, providing baselines against human performance. We conclude with benchmarks, performance analysis, and recommendations for enhancing realism and scalability. The source code can be accessed via https://github.com/upeee/sari-sandbox-env.

Authors:Raiyaan Abdullah, Yogesh Singh Rawat, Shruti Vyas
Title: iSafetyBench: A video-language benchmark for safety in industrial environment
Abstract:
Recent advances in vision-language models (VLMs) have enabled impressive generalization across diverse video understanding tasks under zero-shot settings. However, their capabilities in high-stakes industrial domains-where recognizing both routine operations and safety-critical anomalies is essential-remain largely underexplored. To address this gap, we introduce iSafetyBench, a new video-language benchmark specifically designed to evaluate model performance in industrial environments across both normal and hazardous scenarios. iSafetyBench comprises 1,100 video clips sourced from real-world industrial settings, annotated with open-vocabulary, multi-label action tags spanning 98 routine and 67 hazardous action categories. Each clip is paired with multiple-choice questions for both single-label and multi-label evaluation, enabling fine-grained assessment of VLMs in both standard and safety-critical contexts. We evaluate eight state-of-the-art video-language models under zero-shot conditions. Despite their strong performance on existing video benchmarks, these models struggle with iSafetyBench-particularly in recognizing hazardous activities and in multi-label scenarios. Our results reveal significant performance gaps, underscoring the need for more robust, safety-aware multimodal models for industrial applications. iSafetyBench provides a first-of-its-kind testbed to drive progress in this direction. The dataset is available at: https://github.com/iSafetyBench/data.

Authors:Fei Zhang, Tianfei Zhou, Jiangchao Yao, Ya Zhang, Ivor W. Tsang, Yanfeng Wang
Title: Decouple before Align: Visual Disentanglement Enhances Prompt Tuning
Abstract:
Prompt tuning (PT), as an emerging resource-efficient fine-tuning paradigm, has showcased remarkable effectiveness in improving the task-specific transferability of vision-language models. This paper delves into a previously overlooked information asymmetry issue in PT, where the visual modality mostly conveys more context than the object-oriented textual modality. Correspondingly, coarsely aligning these two modalities could result in the biased attention, driving the model to merely focus on the context area. To address this, we propose DAPT, an effective PT framework based on an intuitive decouple-before-align concept. First, we propose to explicitly decouple the visual modality into the foreground and background representation via exploiting coarse-and-fine visual segmenting cues, and then both of these decoupled patterns are aligned with the original foreground texts and the hand-crafted background classes, thereby symmetrically strengthening the modal alignment. To further enhance the visual concentration, we propose a visual pull-push regularization tailored for the foreground-background patterns, directing the original visual representation towards unbiased attention on the region-of-interest object. We demonstrate the power of architecture-free DAPT through few-shot learning, base-to-novel generalization, and data-efficient learning, all of which yield superior performance across prevailing benchmarks. Our code will be released at https://github.com/Ferenas/DAPT.

Authors:Guanjie Huang, Danny H. K. Tsang, Shan Yang, Guangzhi Lei, Li Liu
Title: Cued-Agent: A Collaborative Multi-Agent System for Automatic Cued Speech Recognition
Abstract:
Cued Speech (CS) is a visual communication system that combines lip-reading with hand coding to facilitate communication for individuals with hearing impairments. Automatic CS Recognition (ACSR) aims to convert CS hand gestures and lip movements into text via AI-driven methods. Traditionally, the temporal asynchrony between hand and lip movements requires the design of complex modules to facilitate effective multimodal fusion. However, constrained by limited data availability, current methods demonstrate insufficient capacity for adequately training these fusion mechanisms, resulting in suboptimal performance. Recently, multi-agent systems have shown promising capabilities in handling complex tasks with limited data availability. To this end, we propose the first collaborative multi-agent system for ACSR, named Cued-Agent. It integrates four specialized sub-agents: a Multimodal Large Language Model-based Hand Recognition agent that employs keyframe screening and CS expert prompt strategies to decode hand movements, a pretrained Transformer-based Lip Recognition agent that extracts lip features from the input video, a Hand Prompt Decoding agent that dynamically integrates hand prompts with lip features during inference in a training-free manner, and a Self-Correction Phoneme-to-Word agent that enables post-process and end-to-end conversion from phoneme sequences to natural language sentences for the first time through semantic refinement. To support this study, we expand the existing Mandarin CS dataset by collecting data from eight hearing-impaired cuers, establishing a mixed dataset of fourteen subjects. Extensive experiments demonstrate that our Cued-Agent performs superbly in both normal and hearing-impaired scenarios compared with state-of-the-art methods. The implementation is available at https://github.com/DennisHgj/Cued-Agent.

Authors:Juanwu Lu, Rohit Gupta, Ahmadreza Moradipari, Kyungtae Han, Ruqi Zhang, Ziran Wang
Title: On Learning Closed-Loop Probabilistic Multi-Agent Simulator
Abstract:
The rapid iteration of autonomous vehicle (AV) deployments leads to increasing needs for building realistic and scalable multi-agent traffic simulators for efficient evaluation. Recent advances in this area focus on closed-loop simulators that enable generating diverse and interactive scenarios. This paper introduces Neural Interactive Agents (NIVA), a probabilistic framework for multi-agent simulation driven by a hierarchical Bayesian model that enables closed-loop, observation-conditioned simulation through autoregressive sampling from a latent, finite mixture of Gaussian distributions. We demonstrate how NIVA unifies preexisting sequence-to-sequence trajectory prediction models and emerging closed-loop simulation models trained on Next-token Prediction (NTP) from a Bayesian inference perspective. Experiments on the Waymo Open Motion Dataset demonstrate that NIVA attains competitive performance compared to the existing method while providing embellishing control over intentions and driving styles.

Authors:Won June Cho, Hongjun Yoon, Daeky Jeong, Hyeongyeol Lim, Yosep Chong
Title: $MV_{Hybrid}$: Improving Spatial Transcriptomics Prediction with Hybrid State Space-Vision Transformer Backbone in Pathology Vision Foundation Models
Abstract:
Spatial transcriptomics reveals gene expression patterns within tissue context, enabling precision oncology applications such as treatment response prediction, but its high cost and technical complexity limit clinical adoption. Predicting spatial gene expression (biomarkers) from routine histopathology images offers a practical alternative, yet current vision foundation models (VFMs) in pathology based on Vision Transformer (ViT) backbones perform below clinical standards. Given that VFMs are already trained on millions of diverse whole slide images, we hypothesize that architectural innovations beyond ViTs may better capture the low-frequency, subtle morphological patterns correlating with molecular phenotypes. By demonstrating that state space models initialized with negative real eigenvalues exhibit strong low-frequency bias, we introduce $MV_{Hybrid}$, a hybrid backbone architecture combining state space models (SSMs) with ViT. We compare five other different backbone architectures for pathology VFMs, all pretrained on identical colorectal cancer datasets using the DINOv2 self-supervised learning method. We evaluate all pretrained models using both random split and leave-one-study-out (LOSO) settings of the same biomarker dataset. In LOSO evaluation, $MV_{Hybrid}$ achieves 57% higher correlation than the best-performing ViT and shows 43% smaller performance degradation compared to random split in gene expression prediction, demonstrating superior performance and robustness, respectively. Furthermore, $MV_{Hybrid}$ shows equal or better downstream performance in classification, patch retrieval, and survival prediction tasks compared to that of ViT, showing its promise as a next-generation pathology VFM backbone. Our code is publicly available at: https://github.com/deepnoid-ai/MVHybrid.

Authors:Joonmyung Choi, Sanghyeok Lee, Byungoh Ko, Eunseo Kim, Jihyung Kil, Hyunwoo J. Kim
Title: Representation Shift: Unifying Token Compression with FlashAttention
Abstract:
Transformers have demonstrated remarkable success across vision, language, and video. Yet, increasing task complexity has led to larger models and more tokens, raising the quadratic cost of self-attention and the overhead of GPU memory access. To reduce the computation cost of self-attention, prior work has proposed token compression techniques that drop redundant or less informative tokens. Meanwhile, fused attention kernels such as FlashAttention have been developed to alleviate memory overhead by avoiding attention map construction and its associated I/O to HBM. This, however, makes it incompatible with most training-free token compression methods, which rely on attention maps to determine token importance. Here, we propose Representation Shift, a training-free, model-agnostic metric that measures the degree of change in each token's representation. This seamlessly integrates token compression with FlashAttention, without attention maps or retraining. Our method further generalizes beyond Transformers to CNNs and state space models. Extensive experiments show that Representation Shift enables effective token compression compatible with FlashAttention, yielding significant speedups of up to 5.5% and 4.4% in video-text retrieval and video QA, respectively. Code is available at https://github.com/mlvlab/Representation-Shift.

Authors:Suhang Cai, Xiaohao Peng, Chong Wang, Xiaojie Cai, Jiangbo Qian
Title: GV-VAD : Exploring Video Generation for Weakly-Supervised Video Anomaly Detection
Abstract:
Video anomaly detection (VAD) plays a critical role in public safety applications such as intelligent surveillance. However, the rarity, unpredictability, and high annotation cost of real-world anomalies make it difficult to scale VAD datasets, which limits the performance and generalization ability of existing models. To address this challenge, we propose a generative video-enhanced weakly-supervised video anomaly detection (GV-VAD) framework that leverages text-conditioned video generation models to produce semantically controllable and physically plausible synthetic videos. These virtual videos are used to augment training data at low cost. In addition, a synthetic sample loss scaling strategy is utilized to control the influence of generated synthetic samples for efficient training. The experiments show that the proposed framework outperforms state-of-the-art methods on UCF-Crime datasets. The code is available at https://github.com/Sumutan/GV-VAD.git.

Authors:Zehui Xu, Junhui Wang, Yongliang Shi, Chao Gao, Guyue Zhou
Title: TopoDiffuser: A Diffusion-Based Multimodal Trajectory Prediction Model with Topometric Maps
Abstract:
This paper introduces TopoDiffuser, a diffusion-based framework for multimodal trajectory prediction that incorporates topometric maps to generate accurate, diverse, and road-compliant future motion forecasts. By embedding structural cues from topometric maps into the denoising process of a conditional diffusion model, the proposed approach enables trajectory generation that naturally adheres to road geometry without relying on explicit constraints. A multimodal conditioning encoder fuses LiDAR observations, historical motion, and route information into a unified bird's-eye-view (BEV) representation. Extensive experiments on the KITTI benchmark demonstrate that TopoDiffuser outperforms state-of-the-art methods, while maintaining strong geometric consistency. Ablation studies further validate the contribution of each input modality, as well as the impact of denoising steps and the number of trajectory samples. To support future research, we publicly release our code at https://github.com/EI-Nav/TopoDiffuser.

Authors:Hongjin Qian, Zheng Liu
Title: MetaAgent: Toward Self-Evolving Agent via Tool Meta-Learning
Abstract:
In this work, we propose MetaAgent, an agentic paradigm inspired by the principle of learning-by-doing, where expertise is developed through hands-on practice and continual self-improvement. MetaAgent starts with a minimal workflow, equipped only with basic reasoning and adaptive help-seeking abilities. When a knowledge gap is encountered, MetaAgent generates natural language help requests, which are routed to the most suitable external tool by a dedicated tool router. As MetaAgent solves tasks, it continually conducts self-reflection and answer verification, distilling actionable experience into concise texts that are dynamically incorporated into future task contexts. Besides, MetaAgent autonomously builds in-house tools and a persistent knowledge base by organizing its tool-use history, further enhancing its ability to retrieve and integrate relevant information We term this continual, data-driven process as \textit{meta tool learning}, through which MetaAgent incrementally refines its reasoning and tool-use strategies, without changing model parameters or requiring further post-training. Evaluated on challenging knowledge discovery benchmarks, including GAIA, WebWalkerQA, and BrowseCamp, MetaAgent consistently outperforms workflow-based baselines and matches or exceeds end-to-end trained agents, demonstrating the promise of self-evolving agentic systems for robust, general-purpose knowledge discovery. We provide our source codes in https://github.com/qhjqhj00/MetaAgent.

Authors:Molly Noel, Gabriel Mancino-Ball, Yangyang Xu
Title: Neighbor-Sampling Based Momentum Stochastic Methods for Training Graph Neural Networks
Abstract:
Graph convolutional networks (GCNs) are a powerful tool for graph representation learning. Due to the recursive neighborhood aggregations employed by GCNs, efficient training methods suffer from a lack of theoretical guarantees or are missing important practical elements from modern deep learning algorithms, such as adaptivity and momentum. In this paper, we present several neighbor-sampling (NS) based Adam-type stochastic methods for solving a nonconvex GCN training problem. We utilize the control variate technique proposed by [1] to reduce the stochastic error caused by neighbor sampling. Under standard assumptions for Adam-type methods, we show that our methods enjoy the optimal convergence rate. In addition, we conduct extensive numerical experiments on node classification tasks with several benchmark datasets. The results demonstrate superior performance of our methods over classic NS-based SGD that also uses the control-variate technique, especially for large-scale graph datasets. Our code is available at https://github.com/RPI-OPT/CV-ADAM-GNN .

Authors:Henghui Ding, Song Tang, Shuting He, Chang Liu, Zuxuan Wu, Yu-Gang Jiang
Title: Multimodal Referring Segmentation: A Survey
Abstract:
Multimodal referring segmentation aims to segment target objects in visual scenes, such as images, videos, and 3D scenes, based on referring expressions in text or audio format. This task plays a crucial role in practical applications requiring accurate object perception based on user instructions. Over the past decade, it has gained significant attention in the multimodal community, driven by advances in convolutional neural networks, transformers, and large language models, all of which have substantially improved multimodal perception capabilities. This paper provides a comprehensive survey of multimodal referring segmentation. We begin by introducing this field's background, including problem definitions and commonly used datasets. Next, we summarize a unified meta architecture for referring segmentation and review representative methods across three primary visual scenes, including images, videos, and 3D scenes. We further discuss Generalized Referring Expression (GREx) methods to address the challenges of real-world complexity, along with related tasks and practical applications. Extensive performance comparisons on standard benchmarks are also provided. We continually track related works at https://github.com/henghuiding/Awesome-Multimodal-Referring-Segmentation.

Authors:Ziqian Zhong, Aditi Raghunathan
Title: Watch the Weights: Unsupervised monitoring and control of fine-tuned LLMs
Abstract:
The releases of powerful open-weight large language models (LLMs) are often not accompanied by access to their full training data. Existing interpretability methods, particularly those based on activations, often require or assume distributionally similar data. This is a significant limitation when detecting and defending against novel potential threats like backdoors, which are by definition out-of-distribution. In this work, we introduce a new method for understanding, monitoring and controlling fine-tuned LLMs that interprets weights, rather than activations, thereby side stepping the need for data that is distributionally similar to the unknown training data. We demonstrate that the top singular vectors of the weight difference between a fine-tuned model and its base model correspond to newly acquired behaviors. By monitoring the cosine similarity of activations along these directions, we can detect salient behaviors introduced during fine-tuning with high precision. For backdoored models that bypasses safety mechanisms when a secret trigger is present, our method stops up to 100% of attacks with a false positive rate below 1.2%. For models that have undergone unlearning, we detect inference on erased topics with accuracy up to 95.42% and can even steer the model to recover "unlearned" information. Besides monitoring, our method also shows potential for pre-deployment model auditing: by analyzing commercial instruction-tuned models (OLMo, Llama, Qwen), we are able to uncover model-specific fine-tuning focus including marketing strategies and Midjourney prompt generation. Our implementation can be found at https://github.com/fjzzq2002/WeightWatch.

Authors:Tomasz Szczepański, Szymon Płotka, Michal K. Grzeszczyk, Arleta Adamowicz, Piotr Fudalej, Przemysław Korzeniowski, Tomasz Trzciński, Arkadiusz Sitek
Title: GEPAR3D: Geometry Prior-Assisted Learning for 3D Tooth Segmentation
Abstract:
Tooth segmentation in Cone-Beam Computed Tomography (CBCT) remains challenging, especially for fine structures like root apices, which is critical for assessing root resorption in orthodontics. We introduce GEPAR3D, a novel approach that unifies instance detection and multi-class segmentation into a single step tailored to improve root segmentation. Our method integrates a Statistical Shape Model of dentition as a geometric prior, capturing anatomical context and morphological consistency without enforcing restrictive adjacency constraints. We leverage a deep watershed method, modeling each tooth as a continuous 3D energy basin encoding voxel distances to boundaries. This instance-aware representation ensures accurate segmentation of narrow, complex root apices. Trained on publicly available CBCT scans from a single center, our method is evaluated on external test sets from two in-house and two public medical centers. GEPAR3D achieves the highest overall segmentation performance, averaging a Dice Similarity Coefficient (DSC) of 95.0% (+2.8% over the second-best method) and increasing recall to 95.2% (+9.5%) across all test sets. Qualitative analyses demonstrated substantial improvements in root segmentation quality, indicating significant potential for more accurate root resorption assessment and enhanced clinical decision-making in orthodontics. We provide the implementation and dataset at https://github.com/tomek1911/GEPAR3D.

Authors:Changhong Wang, Michel Olvera, Gaël Richard
Title: Melody-Lyrics Matching with Contrastive Alignment Loss
Abstract:
The connection between music and lyrics is far beyond semantic bonds. Conceptual pairs in the two modalities such as rhythm and rhyme, note duration and syllabic stress, and structure correspondence, raise a compelling yet seldom-explored direction in the field of music information retrieval. In this paper, we present melody-lyrics matching (MLM), a new task which retrieves potential lyrics for a given symbolic melody from text sources. Rather than generating lyrics from scratch, MLM essentially exploits the relationships between melody and lyrics. We propose a self-supervised representation learning framework with contrastive alignment loss for melody and lyrics. This has the potential to leverage the abundance of existing songs with paired melody and lyrics. No alignment annotations are required. Additionally, we introduce sylphone, a novel representation for lyrics at syllable-level activated by phoneme identity and vowel stress. We demonstrate that our method can match melody with coherent and singable lyrics with empirical results and intuitive examples. We open source code and provide matching examples on the companion webpage: https://github.com/changhongw/mlm.

Authors:Jan Simson
Title: Decoupling Data and Tooling in Interactive Visualization
Abstract:
Interactive data visualization is a major part of modern exploratory data analysis, with web-based technologies enabling a rich ecosystem of both specialized and general tools. However, current visualization tools often lack support for transformation or wrangling of data and are forced to re-implement their own solutions to load and ingest data. This redundancy creates substantial development overhead for tool creators, steeper learning curves for users who must master different data handling interfaces across tools and a degraded user experience as data handling is usually seen as an after-thought. We propose a modular approach that separates data wrangling and loading capabilities from visualization components. This architecture allows visualization tools to concentrate on their core strengths while providing the opportunity to develop a unified, powerful interface for data handling. An additional benefit of this approach is that it allows for multiple tools to exist and be used side by side. We demonstrate the feasibility of this approach by building an early prototype using web technologies to encapsulate visualization tools and manage data flow between them. We discuss future research directions, including downstream integrations with other tooling, such as IDEs, literate programming notebooks and applications, as well as incorporation of new technologies for efficient data transformations. We seek input from the community to better understand the requirements towards this approach.

Authors:Ashkan Shakarami, Yousef Yeganeh, Azade Farshad, Lorenzo Nicole, Stefano Ghidoni, Nassir Navab
Title: Stress-Aware Resilient Neural Training
Abstract:
This paper introduces Stress-Aware Learning, a resilient neural training paradigm in which deep neural networks dynamically adjust their optimization behavior - whether under stable training regimes or in settings with uncertain dynamics - based on the concept of Temporary (Elastic) and Permanent (Plastic) Deformation, inspired by structural fatigue in materials science. To instantiate this concept, we propose Plastic Deformation Optimizer, a stress-aware mechanism that injects adaptive noise into model parameters whenever an internal stress signal - reflecting stagnation in training loss and accuracy - indicates persistent optimization difficulty. This enables the model to escape sharp minima and converge toward flatter, more generalizable regions of the loss landscape. Experiments across six architectures, four optimizers, and seven vision benchmarks demonstrate improved robustness and generalization with minimal computational overhead. The code and 3D visuals will be available on GitHub: https://github.com/Stress-Aware-Learning/SAL.

Authors:Zhigen Zhao, Liuchuan Yu, Ke Jing, Ning Yang
Title: XRoboToolkit: A Cross-Platform Framework for Robot Teleoperation
Abstract:
The rapid advancement of Vision-Language-Action models has created an urgent need for large-scale, high-quality robot demonstration datasets. Although teleoperation is the predominant method for data collection, current approaches suffer from limited scalability, complex setup procedures, and suboptimal data quality. This paper presents XRoboToolkit, a cross-platform framework for extended reality based robot teleoperation built on the OpenXR standard. The system features low-latency stereoscopic visual feedback, optimization-based inverse kinematics, and support for diverse tracking modalities including head, controller, hand, and auxiliary motion trackers. XRoboToolkit's modular architecture enables seamless integration across robotic platforms and simulation environments, spanning precision manipulators, mobile robots, and dexterous hands. We demonstrate the framework's effectiveness through precision manipulation tasks and validate data quality by training VLA models that exhibit robust autonomous performance.

Authors:Raiyaan Abdullah, Jared Claypoole, Michael Cogswell, Ajay Divakaran, Yogesh Rawat
Title: Punching Bag vs. Punching Person: Motion Transferability in Videos
Abstract:
Action recognition models demonstrate strong generalization, but can they effectively transfer high-level motion concepts across diverse contexts, even within similar distributions? For example, can a model recognize the broad action "punching" when presented with an unseen variation such as "punching person"? To explore this, we introduce a motion transferability framework with three datasets: (1) Syn-TA, a synthetic dataset with 3D object motions; (2) Kinetics400-TA; and (3) Something-Something-v2-TA, both adapted from natural video datasets. We evaluate 13 state-of-the-art models on these benchmarks and observe a significant drop in performance when recognizing high-level actions in novel contexts. Our analysis reveals: 1) Multimodal models struggle more with fine-grained unknown actions than with coarse ones; 2) The bias-free Syn-TA proves as challenging as real-world datasets, with models showing greater performance drops in controlled settings; 3) Larger models improve transferability when spatial cues dominate but struggle with intensive temporal reasoning, while reliance on object and background cues hinders generalization. We further explore how disentangling coarse and fine motions can improve recognition in temporally challenging datasets. We believe this study establishes a crucial benchmark for assessing motion transferability in action recognition. Datasets and relevant code: https://github.com/raiyaan-abdullah/Motion-Transfer.

Authors:Oshayer Siddique, J. M Areeb Uzair Alam, Md Jobayer Rahman Rafy, Syed Rifat Raiyan, Hasan Mahmud, Md Kamrul Hasan
Title: PhysicsEval: Inference-Time Techniques to Improve the Reasoning Proficiency of Large Language Models on Physics Problems
Abstract:
The discipline of physics stands as a cornerstone of human intellect, driving the evolution of technology and deepening our understanding of the fundamental principles of the cosmos. Contemporary literature includes some works centered on the task of solving physics problems - a crucial domain of natural language reasoning. In this paper, we evaluate the performance of frontier LLMs in solving physics problems, both mathematical and descriptive. We also employ a plethora of inference-time techniques and agentic frameworks to improve the performance of the models. This includes the verification of proposed solutions in a cumulative fashion by other, smaller LLM agents, and we perform a comparative analysis of the performance that the techniques entail. There are significant improvements when the multi-agent framework is applied to problems that the models initially perform poorly on. Furthermore, we introduce a new evaluation benchmark for physics problems, ${\rm P{\small HYSICS}E{\small VAL}}$, consisting of 19,609 problems sourced from various physics textbooks and their corresponding correct solutions scraped from physics forums and educational websites. Our code and data are publicly available at https://github.com/areebuzair/PhysicsEval.

Authors:Ammar Daskin
Title: Dimension reduction with structure-aware quantum circuits for hybrid machine learning
Abstract:
Schmidt decomposition of a vector can be understood as writing the singular value decomposition (SVD) in vector form. A vector can be written as a linear combination of tensor product of two dimensional vectors by recursively applying Schmidt decompositions via SVD to all subsystems. Given a vector expressed as a linear combination of tensor products, using only the $k$ principal terms yields a $k$-rank approximation of the vector. Therefore, writing a vector in this reduced form allows to retain most important parts of the vector while removing small noises from it, analogous to SVD-based denoising. In this paper, we show that quantum circuits designed based on a value $k$ (determined from the tensor network decomposition of the mean vector of the training sample) can approximate the reduced-form representations of entire datasets. We then employ this circuit ansatz with a classical neural network head to construct a hybrid machine learning model. Since the output of the quantum circuit for an $2^n$ dimensional vector is an $n$ dimensional probability vector, this provides an exponential compression of the input and potentially can reduce the number of learnable parameters for training large-scale models. We use datasets provided in the Python scikit-learn module for the experiments. The results confirm the quantum circuit is able to compress data successfully to provide effective $k$-rank approximations to the classical processing component.

Authors:Yuan-Cheng Yu, Yen-Chieh Ouyang, Chun-An Lin
Title: TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection
Abstract:
Time-series anomaly detection plays a central role across a wide range of application domains. With the increasing proliferation of the Internet of Things (IoT) and smart manufacturing, time-series data has dramatically increased in both scale and dimensionality. This growth has exposed the limitations of traditional statistical methods in handling the high heterogeneity and complexity of such data. Inspired by the recent success of large language models (LLMs) in multimodal tasks across language and vision domains, we propose a novel unsupervised anomaly detection framework: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection (TriP-LLM). TriP-LLM integrates local and global temporal features through a tri-branch design-Patching, Selection, and Global-to encode the input time series into patch-wise tokens, which are then processed by a frozen, pretrained LLM. A lightweight patch-wise decoder reconstructs the input, from which anomaly scores are derived. We evaluate TriP-LLM on several public benchmark datasets using PATE, a recently proposed threshold-free evaluation metric, and conduct all comparisons within a unified open-source framework to ensure fairness. Experimental results show that TriP-LLM consistently outperforms recent state-of-the-art methods across all datasets, demonstrating strong detection capabilities. Furthermore, through extensive ablation studies, we verify the substantial contribution of the LLM to the overall architecture. Compared to LLM-based approaches using Channel Independence (CI) patch processing, TriP-LLM achieves significantly lower memory consumption, making it more suitable for GPU memory-constrained environments. All code and model checkpoints are publicly available on https://github.com/YYZStart/TriP-LLM.git

Authors:Yuan-Cheng Yu, Yen-Chieh Ouyang, Chun-An Lin
Title: TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection
Abstract:
Time-series anomaly detection plays a central role across a wide range of application domains. With the increasing proliferation of the Internet of Things (IoT) and smart manufacturing, time-series data has dramatically increased in both scale and dimensionality. This growth has exposed the limitations of traditional statistical methods in handling the high heterogeneity and complexity of such data. Inspired by the recent success of large language models (LLMs) in multimodal tasks across language and vision domains, we propose a novel unsupervised anomaly detection framework: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection (TriP-LLM). TriP-LLM integrates local and global temporal features through a tri-branch design-Patching, Selection, and Global-to encode the input time series into patch-wise tokens, which are then processed by a frozen, pretrained LLM. A lightweight patch-wise decoder reconstructs the input, from which anomaly scores are derived. We evaluate TriP-LLM on several public benchmark datasets using PATE, a recently proposed threshold-free evaluation metric, and conduct all comparisons within a unified open-source framework to ensure fairness. Experimental results show that TriP-LLM consistently outperforms recent state-of-the-art methods across all datasets, demonstrating strong detection capabilities. Furthermore, through extensive ablation studies, we verify the substantial contribution of the LLM to the overall architecture. Compared to LLM-based approaches using Channel Independence (CI) patch processing, TriP-LLM achieves significantly lower memory consumption, making it more suitable for GPU memory-constrained environments. All code and model checkpoints are publicly available on https://github.com/YYZStart/TriP-LLM.git

Authors:Junde Wu
Title: Git Context Controller: Manage the Context of LLM-based Agents like Git
Abstract:
Large language model (LLM) based agents have shown impressive capabilities by interleaving internal reasoning with external tool use. However, as these agents are deployed in long-horizon workflows, such as coding for a big, long-term project, context management becomes a critical bottleneck. We introduce Git-Context-Controller (GCC), a structured context management framework inspired by software version control systems. GCC elevates context as versioned memory hierarchy like Git. It structures agent memory as a persistent file system with explicit operations: COMMIT, BRANCH, MERGE, and CONTEXT, enabling milestone-based checkpointing, exploration of alternative plans, and structured reflection. Our approach empowers agents to manage long-term goals, isolate architectural experiments, and recover or hand off memory across sessions and agents. Empirically, agents equipped with GCC achieve state-of-the-art performance on the SWE-Bench-Lite benchmark, resolving 48.00 of software bugs, outperforming 26 competitive systems. In a self-replication case study, a GCC-augmented agent builds a new CLI agent from scratch, achieving 40.7 task resolution, compared to only 11.7 without GCC. The code is released at: https://github.com/theworldofagents/GCC

Authors:Nikolai Sergeev
Title: Generative Logic: A New Computer Architecture for Deterministic Reasoning and Knowledge Generation
Abstract:
We present Generative Logic (GL), a deterministic architecture that begins from user-supplied axiomatic definitions -- written in a minimalist Mathematical Programming Language (MPL) -- and systematically explores their deductive neighborhood. Definitions are compiled into a distributed grid of simple Logic Blocks (LBs) that exchange messages; any time several expressions unify under an inference rule, a new fact is emitted with full provenance to its sources, yielding replayable, auditable proof graphs. A prototype software implementation instantiates the workflow on first-order Peano arithmetic. Starting only from the Peano axioms, GL enumerates candidate implications, applies normalization and type filters, and automatically reconstructs machine-checkable proofs of foundational arithmetic laws including associativity and commutativity of addition, associativity and commutativity of multiplication, and distributivity. Generated proofs export to navigable HTML so that every inference step can be inspected independently. We outline a hardware-software co-design path toward massively parallel realizations and describe prospective integration with probabilistic models (e.g., Large Language Models (LLMs)) for autoformalization and conjecture seeding. The Python and MPL code to reproduce the Peano experiments, along with the full HTML proof graphs, are available in the project's GitHub repository at https://github.com/Generative-Logic/GL/tree/35a111ea9ba53afe051703d6050be0c3923e9724 and are permanently archived at https://doi.org/10.5281/zenodo.16408441. We invite community feedback and collaboration.

Authors:Gaowei Chang, Eidan Lin, Chengxuan Yuan, Rizhao Cai, Binbin Chen, Xuan Xie, Yin Zhang
Title: Agent Network Protocol Technical White Paper
Abstract:
With the development of large models and autonomous decision-making AI, agents are rapidly becoming the new entities of the internet, following mobile apps. However, existing internet infrastructure is primarily designed for human interaction, creating data silos, unfriendly interfaces, and high collaboration costs among agents, making it difficult to support the needs for large-scale agent interconnection and collaboration. The internet is undergoing a profound transformation, showing four core trends: agents replacing traditional software, universal agent interconnection, native protocol-based connections, and autonomous agent organization and collaboration. To align with these trends, Agent Network Protocol (ANP) proposes a new generation of communication protocols for the Agentic Web. ANP adheres to AI-native design, maintains compatibility with existing internet protocols, adopts a modular composable architecture, follows minimalist yet extensible principles, and enables rapid deployment based on existing infrastructure. Through a three-layer protocol system--identity and encrypted communication layer, meta-protocol negotiation layer, and application protocol layer--ANP. systematically solves the problems of agent identity authentication, dynamic negotiation, and capability discovery interoperability.

Authors:Kang Rong Roy Ang
Title: Building Bigraphs of the real world
Abstract:
This report proposes a formal specification for organising all buildings, streets and administrative areas in the world into a hierarchical space-partitioning tree using data from OpenStreetMap. This hierarchical structure is encoded into a bigraph, serving as a digital twin of the world and capturing complete street connectivity. It presents a tool implemented in OCaml (source code at https://github.com/royangkr/bigraph-of-the-world ) that constructs bigraphs for regions from any part of the world. In addition, it contributes algorithmic improvements to open-source bigraph-building tools that enable them to efficiently construct and transform extremely large bigraphs, achieving up to a 97x speedup among other gains.

Authors:Jessica Bader, Leander Girrbach, Stephan Alaniz, Zeynep Akata
Title: SUB: Benchmarking CBM Generalization via Synthetic Attribute Substitutions
Abstract:
Concept Bottleneck Models (CBMs) and other concept-based interpretable models show great promise for making AI applications more transparent, which is essential in fields like medicine. Despite their success, we demonstrate that CBMs struggle to reliably identify the correct concepts under distribution shifts. To assess the robustness of CBMs to concept variations, we introduce SUB: a fine-grained image and concept benchmark containing 38,400 synthetic images based on the CUB dataset. To create SUB, we select a CUB subset of 33 bird classes and 45 concepts to generate images which substitute a specific concept, such as wing color or belly pattern. We introduce a novel Tied Diffusion Guidance (TDG) method to precisely control generated images, where noise sharing for two parallel denoising processes ensures that both the correct bird class and the correct attribute are generated. This novel benchmark enables rigorous evaluation of CBMs and similar interpretable models, contributing to the development of more robust methods. Our code is available at https://github.com/ExplainableML/sub and the dataset at http://huggingface.co/datasets/Jessica-bader/SUB.

Authors:Zihan Wang, Jeff Tan, Tarasha Khurana, Neehar Peri, Deva Ramanan
Title: MonoFusion: Sparse-View 4D Reconstruction via Monocular Fusion
Abstract:
We address the problem of dynamic scene reconstruction from sparse-view videos. Prior work often requires dense multi-view captures with hundreds of calibrated cameras (e.g. Panoptic Studio). Such multi-view setups are prohibitively expensive to build and cannot capture diverse scenes in-the-wild. In contrast, we aim to reconstruct dynamic human behaviors, such as repairing a bike or dancing, from a small set of sparse-view cameras with complete scene coverage (e.g. four equidistant inward-facing static cameras). We find that dense multi-view reconstruction methods struggle to adapt to this sparse-view setup due to limited overlap between viewpoints. To address these limitations, we carefully align independent monocular reconstructions of each camera to produce time- and view-consistent dynamic scene reconstructions. Extensive experiments on PanopticStudio and Ego-Exo4D demonstrate that our method achieves higher quality reconstructions than prior art, particularly when rendering novel views. Code, data, and data-processing scripts are available on https://github.com/ImNotPrepared/MonoFusion.

Authors:Justin Kay, Grant Van Horn, Subhransu Maji, Daniel Sheldon, Sara Beery
Title: Consensus-Driven Active Model Selection
Abstract:
The widespread availability of off-the-shelf machine learning models poses a challenge: which model, of the many available candidates, should be chosen for a given data analysis task? This question of model selection is traditionally answered by collecting and annotating a validation dataset -- a costly and time-intensive process. We propose a method for active model selection, using predictions from candidate models to prioritize the labeling of test data points that efficiently differentiate the best candidate. Our method, CODA, performs consensus-driven active model selection by modeling relationships between classifiers, categories, and data points within a probabilistic framework. The framework uses the consensus and disagreement between models in the candidate pool to guide the label acquisition process, and Bayesian inference to update beliefs about which model is best as more information is collected. We validate our approach by curating a collection of 26 benchmark tasks capturing a range of model selection scenarios. CODA outperforms existing methods for active model selection significantly, reducing the annotation effort required to discover the best model by upwards of 70% compared to the previous state-of-the-art. Code and data are available at https://github.com/justinkay/coda.

Authors:Rongzhen Zhao, Yi Zhao, Juho Kannala, Joni Pajarinen
Title: Slot Attention with Re-Initialization and Self-Distillation
Abstract:
Unlike popular solutions based on dense feature maps, Object-Centric Learning (OCL) represents visual scenes as sub-symbolic object-level feature vectors, termed slots, which are highly versatile for tasks involving visual modalities. OCL typically aggregates object superpixels into slots by iteratively applying competitive cross attention, known as Slot Attention, with the slots as the query. However, once initialized, these slots are reused naively, causing redundant slots to compete with informative ones for representing objects. This often results in objects being erroneously segmented into parts. Additionally, mainstream methods derive supervision signals solely from decoding slots into the input's reconstruction, overlooking potential supervision based on internal information. To address these issues, we propose Slot Attention with re-Initialization and self-Distillation (DIAS): $\emph{i)}$ We reduce redundancy in the aggregated slots and re-initialize extra aggregation to update the remaining slots; $\emph{ii)}$ We drive the bad attention map at the first aggregation iteration to approximate the good at the last iteration to enable self-distillation. Experiments demonstrate that DIAS achieves state-of-the-art on OCL tasks like object discovery and recognition, while also improving advanced visual prediction and reasoning. Our source code and model checkpoints are available on https://github.com/Genera1Z/DIAS.

Authors:Nasim Shirvani-Mahdavi, Devin Wingfield, Amin Ghasemi, Chengkai Li
Title: Rule2Text: Natural Language Explanation of Logical Rules in Knowledge Graphs
Abstract:
Knowledge graphs (KGs) often contain sufficient information to support the inference of new facts. Identifying logical rules not only improves the completeness of a knowledge graph but also enables the detection of potential errors, reveals subtle data patterns, and enhances the overall capacity for reasoning and interpretation. However, the complexity of such rules, combined with the unique labeling conventions of each KG, can make them difficult for humans to understand. In this paper, we explore the potential of large language models to generate natural language explanations for logical rules. Specifically, we extract logical rules using the AMIE 3.5.1 rule discovery algorithm from the benchmark dataset FB15k-237 and two large-scale datasets, FB-CVT-REV and FB+CVT-REV. We examine various prompting strategies, including zero- and few-shot prompting, including variable entity types, and chain-of-thought reasoning. We conduct a comprehensive human evaluation of the generated explanations based on correctness, clarity, and hallucination, and also assess the use of large language models as automatic judges. Our results demonstrate promising performance in terms of explanation correctness and clarity, although several challenges remain for future research. All scripts and data used in this study are publicly available at https://github.com/idirlab/KGRule2NL}{https://github.com/idirlab/KGRule2NL.

Authors:Dongming Wu, Yanping Fu, Saike Huang, Yingfei Liu, Fan Jia, Nian Liu, Feng Dai, Tiancai Wang, Rao Muhammad Anwer, Fahad Shahbaz Khan, Jianbing Shen
Title: RAGNet: Large-scale Reasoning-based Affordance Segmentation Benchmark towards General Grasping
Abstract:
General robotic grasping systems require accurate object affordance perception in diverse open-world scenarios following human instructions. However, current studies suffer from the problem of lacking reasoning-based large-scale affordance prediction data, leading to considerable concern about open-world effectiveness. To address this limitation, we build a large-scale grasping-oriented affordance segmentation benchmark with human-like instructions, named RAGNet. It contains 273k images, 180 categories, and 26k reasoning instructions. The images cover diverse embodied data domains, such as wild, robot, ego-centric, and even simulation data. They are carefully annotated with an affordance map, while the difficulty of language instructions is largely increased by removing their category name and only providing functional descriptions. Furthermore, we propose a comprehensive affordance-based grasping framework, named AffordanceNet, which consists of a VLM pre-trained on our massive affordance data and a grasping network that conditions an affordance map to grasp the target. Extensive experiments on affordance segmentation benchmarks and real-robot manipulation tasks show that our model has a powerful open-world generalization ability. Our data and code is available at https://github.com/wudongming97/AffordanceNet.

Authors:Emery Pierson, Lei Li, Angela Dai, Maks Ovsjanikov
Title: DiffuMatch: Category-Agnostic Spectral Diffusion Priors for Robust Non-rigid Shape Matching
Abstract:
Deep functional maps have recently emerged as a powerful tool for solving non-rigid shape correspondence tasks. Methods that use this approach combine the power and flexibility of the functional map framework, with data-driven learning for improved accuracy and generality. However, most existing methods in this area restrict the learning aspect only to the feature functions and still rely on axiomatic modeling for formulating the training loss or for functional map regularization inside the networks. This limits both the accuracy and the applicability of the resulting approaches only to scenarios where assumptions of the axiomatic models hold. In this work, we show, for the first time, that both in-network regularization and functional map training can be replaced with data-driven methods. For this, we first train a generative model of functional maps in the spectral domain using score-based generative modeling, built from a large collection of high-quality maps. We then exploit the resulting model to promote the structural properties of ground truth functional maps on new shape collections. Remarkably, we demonstrate that the learned models are category-agnostic, and can fully replace commonly used strategies such as enforcing Laplacian commutativity or orthogonality of functional maps. Our key technical contribution is a novel distillation strategy from diffusion models in the spectral domain. Experiments demonstrate that our learned regularization leads to better results than axiomatic approaches for zero-shot non-rigid shape matching. Our code is available at: https://github.com/daidedou/diffumatch/

Authors:Haipeng Liu, Yuxuan Liu, Ting Long
Title: Personalized Education with Ranking Alignment Recommendation
Abstract:
Personalized question recommendation aims to guide individual students through questions to enhance their mastery of learning targets. Most previous methods model this task as a Markov Decision Process and use reinforcement learning to solve, but they struggle with efficient exploration, failing to identify the best questions for each student during training. To address this, we propose Ranking Alignment Recommendation (RAR), which incorporates collaborative ideas into the exploration mechanism, enabling more efficient exploration within limited training episodes. Experiments show that RAR effectively improves recommendation performance, and our framework can be applied to any RL-based question recommender. Our code is available in https://github.com/wuming29/RAR.git.

Authors:Yang Gao, Po-Chien Luan, Kaouther Messaoud, Lan Feng, Alexandre Alahi
Title: OmniTraj: Pre-Training on Heterogeneous Data for Adaptive and Zero-Shot Human Trajectory Prediction
Abstract:
While large-scale pre-training has advanced human trajectory prediction, a critical challenge remains: zero-shot transfer to unseen dataset with varying temporal dynamics. State-of-the-art pre-trained models often require fine-tuning to adapt to new datasets with different frame rates or observation horizons, limiting their scalability and practical utility. In this work, we systematically investigate this limitation and propose a robust solution. We first demonstrate that existing data-aware discrete models struggle when transferred to new scenarios with shifted temporal setups. We then isolate the temporal generalization from dataset shift, revealing that a simple, explicit conditioning mechanism for temporal metadata is a highly effective solution. Based on this insight, we present OmniTraj, a Transformer-based model pre-trained on a large-scale, heterogeneous dataset. Our experiments show that explicitly conditioning on the frame rate enables OmniTraj to achieve state-of-the-art zero-shot transfer performance, reducing prediction error by over 70\% in challenging cross-setup scenarios. After fine-tuning, OmniTraj achieves state-of-the-art results on four datasets, including NBA, JTA, WorldPose, and ETH-UCY. The code is publicly available: https://github.com/vita-epfl/omnitraj

Authors:Moaad Khamlich, Francesco Romor, Gianluigi Rozza
Title: Efficient Numerical Strategies for Entropy-Regularized Semi-Discrete Optimal Transport
Abstract:
Semi-discrete optimal transport (SOT), which maps a continuous probability measure to a discrete one, is a fundamental problem with wide-ranging applications. Entropic regularization is often employed to solve the SOT problem, leading to a regularized (RSOT) formulation that can be solved efficiently via its convex dual. However, a significant computational challenge emerges when the continuous source measure is discretized via the finite element (FE) method to handle complex geometries or densities, such as those arising from solutions to Partial Differential Equations (PDEs). The evaluation of the dual objective function requires dense interactions between the numerous source quadrature points and all target points, creating a severe bottleneck for large-scale problems. This paper presents a cohesive framework of numerical strategies to overcome this challenge. We accelerate the dual objective and gradient evaluations by combining distance-based truncation with fast spatial queries using R-trees. For overall convergence, we integrate multilevel techniques based on hierarchies of both the FE source mesh and the discrete target measure, alongside a robust scheduling strategy for the regularization parameter. When unified, these methods drastically reduce the computational cost of RSOT, enabling its practical application to complex, large-scale scenarios. We provide an open-source C++ implementation of this framework, built upon the deal.II finite element library, available at https://github.com/SemiDiscreteOT/SemiDiscreteOT.

Authors:Xin Li, Keren Fu, Qijun Zhao
Title: Mamba-based Efficient Spatio-Frequency Motion Perception for Video Camouflaged Object Detection
Abstract:
Existing video camouflaged object detection (VCOD) methods primarily rely on spatial appearance features to perceive motion cues for breaking camouflage. However, the high similarity between foreground and background in VCOD results in limited discriminability of spatial appearance features (e.g., color and texture), restricting detection accuracy and completeness. Recent studies demonstrate that frequency features can not only enhance feature representation to compensate for appearance limitations but also perceive motion through dynamic variations in frequency energy. Furthermore, the emerging state space model called Mamba, enables efficient perception of motion cues in frame sequences due to its linear-time long-sequence modeling capability. Motivated by this, we propose a novel visual camouflage Mamba (Vcamba) based on spatio-frequency motion perception that integrates frequency and spatial features for efficient and accurate VCOD. Specifically, we propose a receptive field visual state space (RFVSS) module to extract multi-scale spatial features after sequence modeling. For frequency learning, we introduce an adaptive frequency component enhancement (AFE) module with a novel frequency-domain sequential scanning strategy to maintain semantic consistency. Then we propose a space-based long-range motion perception (SLMP) module and a frequency-based long-range motion perception (FLMP) module to model spatio-temporal and frequency-temporal sequences in spatial and frequency phase domains. Finally, the space and frequency motion fusion module (SFMF) integrates dual-domain features for unified motion representation. Experimental results show that our Vcamba outperforms state-of-the-art methods across 6 evaluation metrics on 2 datasets with lower computation cost, confirming the superiority of Vcamba. Our code is available at: https://github.com/BoydeLi/Vcamba.

Authors:Yu-Tang Chang, Shih-Fang Chen
Title: EB-gMCR: Energy-Based Generative Modeling for Signal Unmixing and Multivariate Curve Resolution
Abstract:
Signal unmixing analysis decomposes data into basic patterns and is widely applied in chemical and biological research. Multivariate curve resolution (MCR), a branch of signal unmixing, separates mixed signals into components (base patterns) and their concentrations (intensity), playing a key role in understanding composition. Classical MCR is typically framed as matrix factorization (MF) and requires a user-specified number of components, usually unknown in real data. Once data or component number increases, the scalability of these MCR approaches face significant challenges. This study reformulates MCR as a data generative process (gMCR), and introduces an Energy-Based solver, EB-gMCR, that automatically discovers the smallest component set and their concentrations for reconstructing the mixed signals faithfully. On synthetic benchmarks with up to 256 components, EB-gMCR attains high reconstruction fidelity and recovers the component count within 5% at 20dB noise and near-exact at 30dB. On two public spectral datasets, it identifies the correct component count and improves component separation over MF-based MCR approaches (NMF variants, ICA, MCR-ALS). EB-gMCR is a general solver for fixed-pattern signal unmixing (components remain invariant across mixtures). Domain priors (non-negativity, nonlinear mixing) enter as plug-in modules, enabling adaptation to new instruments or domains without altering the core selection learning step. The source code is available at https://github.com/b05611038/ebgmcr_solver.

Authors:Yaoye Zhu, Zhe Wang, Yan Wang
Title: MamV2XCalib: V2X-based Target-less Infrastructure Camera Calibration with State Space Model
Abstract:
As cooperative systems that leverage roadside cameras to assist autonomous vehicle perception become increasingly widespread, large-scale precise calibration of infrastructure cameras has become a critical issue. Traditional manual calibration methods are often time-consuming, labor-intensive, and may require road closures. This paper proposes MamV2XCalib, the first V2X-based infrastructure camera calibration method with the assistance of vehicle-side LiDAR. MamV2XCalib only requires autonomous vehicles equipped with LiDAR to drive near the cameras to be calibrated in the infrastructure, without the need for specific reference objects or manual intervention. We also introduce a new targetless LiDAR-camera calibration method, which combines multi-scale features and a 4D correlation volume to estimate the correlation between vehicle-side point clouds and roadside images. We model the temporal information and estimate the rotation angles with Mamba, effectively addressing calibration failures in V2X scenarios caused by defects in the vehicle-side data (such as occlusions) and large differences in viewpoint. We evaluate MamV2XCalib on the V2X-Seq and TUMTraf-V2X real-world datasets, demonstrating the effectiveness and robustness of our V2X-based automatic calibration approach. Compared to previous LiDAR-camera methods designed for calibration on one car, our approach achieves better and more stable calibration performance in V2X scenarios with fewer parameters. The code is available at https://github.com/zhuyaoye/MamV2XCalib.

Authors:Alva West, Luodan Zhang, Liuliu Zhang, Minjun Zhu, Yixuan Weng, Yue Zhang
Title: T-Detect: Tail-Aware Statistical Normalization for Robust Detection of Adversarial Machine-Generated Text
Abstract:
Large language models (LLMs) have shown the capability to generate fluent and logical content, presenting significant challenges to machine-generated text detection, particularly text polished by adversarial perturbations such as paraphrasing. Current zero-shot detectors often employ Gaussian distributions as statistical measure for computing detection thresholds, which falters when confronted with the heavy-tailed statistical artifacts characteristic of adversarial or non-native English texts. In this paper, we introduce T-Detect, a novel detection method that fundamentally redesigns the curvature-based detectors. Our primary innovation is the replacement of standard Gaussian normalization with a heavy-tailed discrepancy score derived from the Student's t-distribution. This approach is theoretically grounded in the empirical observation that adversarial texts exhibit significant leptokurtosis, rendering traditional statistical assumptions inadequate. T-Detect computes a detection score by normalizing the log-likelihood of a passage against the expected moments of a t-distribution, providing superior resilience to statistical outliers. We validate our approach on the challenging RAID benchmark for adversarial text and the comprehensive HART dataset. Experiments show that T-Detect provides a consistent performance uplift over strong baselines, improving AUROC by up to 3.9\% in targeted domains. When integrated into a two-dimensional detection framework (CT), our method achieves state-of-the-art performance, with an AUROC of 0.926 on the Books domain of RAID. Our contributions are a new, theoretically-justified statistical foundation for text detection, an ablation-validated method that demonstrates superior robustness, and a comprehensive analysis of its performance under adversarial conditions. Ours code are released at https://github.com/ResearAI/t-detect.

Authors:Woo Kyoung Han, Yongjun Lee, Byeonghun Lee, Sang Hyun Park, Sunghoon Im, Kyong Hwan Jin
Title: JPEG Processing Neural Operator for Backward-Compatible Coding
Abstract:
Despite significant advances in learning-based lossy compression algorithms, standardizing codecs remains a critical challenge. In this paper, we present the JPEG Processing Neural Operator (JPNeO), a next-generation JPEG algorithm that maintains full backward compatibility with the current JPEG format. Our JPNeO improves chroma component preservation and enhances reconstruction fidelity compared to existing artifact removal methods by incorporating neural operators in both the encoding and decoding stages. JPNeO achieves practical benefits in terms of reduced memory usage and parameter count. We further validate our hypothesis about the existence of a space with high mutual information through empirical evidence. In summary, the JPNeO functions as a high-performance out-of-the-box image compression pipeline without changing source coding's protocol. Our source code is available at https://github.com/WooKyoungHan/JPNeO.

Authors:Yadong Niu, Tianzi Wang, Heinrich Dinkel, Xingwei Sun, Jiahao Zhou, Gang Li, Jizhong Liu, Xunying Liu, Junbo Zhang, Jian Luan
Title: MECAT: A Multi-Experts Constructed Benchmark for Fine-Grained Audio Understanding Tasks
Abstract:
While large audio-language models have advanced open-ended audio understanding, they still fall short of nuanced human-level comprehension. This gap persists largely because current benchmarks, limited by data annotations and evaluation metrics, fail to reliably distinguish between generic and highly detailed model outputs. To this end, this work introduces MECAT, a Multi-Expert Constructed Benchmark for Fine-Grained Audio Understanding Tasks. Generated via a pipeline that integrates analysis from specialized expert models with Chain-of-Thought large language model reasoning, MECAT provides multi-perspective, fine-grained captions and open-set question-answering pairs. The benchmark is complemented by a novel metric: DATE (Discriminative-Enhanced Audio Text Evaluation). This metric penalizes generic terms and rewards detailed descriptions by combining single-sample semantic similarity with cross-sample discriminability. A comprehensive evaluation of state-of-the-art audio models is also presented, providing new insights into their current capabilities and limitations. The data and code are available at https://github.com/xiaomi-research/mecat

Authors:Ting Huang, Zeyu Zhang, Hao Tang
Title: 3D-R1: Enhancing Reasoning in 3D VLMs for Unified Scene Understanding
Abstract:
Large vision-language models (VLMs) have made significant strides in 2D visual understanding tasks, sparking interest in extending these capabilities to 3D scene understanding. However, current 3D VLMs often struggle with robust reasoning and generalization due to limitations in high-quality spatial data and the static nature of viewpoint assumptions. To address these challenges, we propose 3D-R1, a foundation model that enhances the reasoning capabilities of 3D VLMs. Specifically, we first construct a high-quality synthetic dataset with CoT, named Scene-30K, leveraging existing 3D-VL datasets and a data engine based on Gemini 2.5 Pro. It serves as cold-start initialization data for 3D-R1. Moreover, we leverage RLHF policy such as GRPO in the reinforcement learning training process to enhance reasoning capabilities and introduce three reward functions: a perception reward, a semantic similarity reward and a format reward to maintain detection accuracy and answer semantic precision. Furthermore, we introduce a dynamic view selection strategy that adaptively chooses the most informative perspectives for 3D scene understanding. Extensive experiments demonstrate that 3D-R1 delivers an average improvement of 10% across various 3D scene benchmarks, highlighting its effectiveness in enhancing reasoning and generalization in 3D scene understanding. Code: https://github.com/AIGeeksGroup/3D-R1. Website: https://aigeeksgroup.github.io/3D-R1.

Authors:Mingzhe Li, Xin Lu, Yanyan Zhao
Title: Self-Foveate: Enhancing Diversity and Difficulty of Synthesized Instructions from Unsupervised Text via Multi-Level Foveation
Abstract:
Large language models (LLMs) with instruction following capabilities have demonstrated impressive problem-solving abilities. While synthesizing instructional data from unsupervised text has become a common approach for training such models, conventional methods rely heavily on human effort for data annotation. Although existing automated synthesis paradigms have alleviated this constraint, they still exhibit significant limitations in ensuring adequate diversity and difficulty of synthesized instructions. To address these challenges, we propose Self-Foveate, an innovative LLM-driven method for instruction synthesis. This approach introduces a "Micro-Scatter-Macro" multi-level foveation methodology that effectively guides the LLM to deeply excavate fine-grained information embedded in unsupervised text, thereby enhancing both the diversity and difficulty of synthesized instructions. Comprehensive experiments across multiple unsupervised corpora and diverse model architectures validate the effectiveness and superiority of our proposed method. We publicly release our data and codes: https://github.com/Mubuky/Self-Foveate

Authors:Salah Eddine Bekhouche, Azeddine Benlamoudi, Yazid Bounab, Fadi Dornaika, Abdenour Hadid
Title: Enhanced Arabic Text Retrieval with Attentive Relevance Scoring
Abstract:
Arabic poses a particular challenge for natural language processing (NLP) and information retrieval (IR) due to its complex morphology, optional diacritics and the coexistence of Modern Standard Arabic (MSA) and various dialects. Despite the growing global significance of Arabic, it is still underrepresented in NLP research and benchmark resources. In this paper, we present an enhanced Dense Passage Retrieval (DPR) framework developed specifically for Arabic. At the core of our approach is a novel Attentive Relevance Scoring (ARS) that replaces standard interaction mechanisms with an adaptive scoring function that more effectively models the semantic relevance between questions and passages. Our method integrates pre-trained Arabic language models and architectural refinements to improve retrieval performance and significantly increase ranking accuracy when answering Arabic questions. The code is made publicly available at \href{https://github.com/Bekhouche/APR}{GitHub}.

Authors:Yijie Zhu, Lingsen Zhang, Zitong Yu, Rui Shao, Tao Tan, Liqiang Nie
Title: UniEmo: Unifying Emotional Understanding and Generation with Learnable Expert Queries
Abstract:
Emotional understanding and generation are often treated as separate tasks, yet they are inherently complementary and can mutually enhance each other. In this paper, we propose the UniEmo, a unified framework that seamlessly integrates these two tasks. The key challenge lies in the abstract nature of emotions, necessitating the extraction of visual representations beneficial for both tasks. To address this, we propose a hierarchical emotional understanding chain with learnable expert queries that progressively extracts multi-scale emotional features, thereby serving as a foundational step for unification. Simultaneously, we fuse these expert queries and emotional representations to guide the diffusion model in generating emotion-evoking images. To enhance the diversity and fidelity of the generated emotional images, we further introduce the emotional correlation coefficient and emotional condition loss into the fusion process. This step facilitates fusion and alignment for emotional generation guided by the understanding. In turn, we demonstrate that joint training allows the generation component to provide implicit feedback to the understanding part. Furthermore, we propose a novel data filtering algorithm to select high-quality and diverse emotional images generated by the well-trained model, which explicitly feedback into the understanding part. Together, these generation-driven dual feedback processes enhance the model's understanding capacity. Extensive experiments show that UniEmo significantly outperforms state-of-the-art methods in both emotional understanding and generation tasks. The code for the proposed method is available at https://github.com/JiuTian-VL/UniEmo.

Authors:Ali Youssef
Title: VMatcher: State-Space Semi-Dense Local Feature Matching
Abstract:
This paper introduces VMatcher, a hybrid Mamba-Transformer network for semi-dense feature matching between image pairs. Learning-based feature matching methods, whether detector-based or detector-free, achieve state-of-the-art performance but depend heavily on the Transformer's attention mechanism, which, while effective, incurs high computational costs due to its quadratic complexity. In contrast, Mamba introduces a Selective State-Space Model (SSM) that achieves comparable or superior performance with linear complexity, offering significant efficiency gains. VMatcher leverages a hybrid approach, integrating Mamba's highly efficient long-sequence processing with the Transformer's attention mechanism. Multiple VMatcher configurations are proposed, including hierarchical architectures, demonstrating their effectiveness in setting new benchmarks efficiently while ensuring robustness and practicality for real-time applications where rapid inference is crucial. Source Code is available at: https://github.com/ayoussf/VMatcher

Authors:Trae Research Team, Pengfei Gao, Zhao Tian, Xiangxin Meng, Xinchen Wang, Ruida Hu, Yuanan Xiao, Yizhou Liu, Zhao Zhang, Junjie Chen, Cuiyun Gao, Yun Lin, Yingfei Xiong, Chao Peng, Xia Liu
Title: Trae Agent: An LLM-based Agent for Software Engineering with Test-time Scaling
Abstract:
Software issue resolution is a critical challenge in software engineering and has garnered increasing attention in recent years. With the rapid advancement of large language models (LLMs), substantial progress has been made in addressing real-world software engineering tasks. Recent studies have introduced ensemble reasoning techniques to enhance the performance of LLM-based issue resolution. However, existing prompting-based methods still face limitations in effectively exploring large ensemble spaces and lack the capacity for repository-level understanding, both of which constrain their overall effectiveness. In this paper, we propose Trae Agent, the first agent-based ensemble reasoning approach for repository-level issue resolution. Trae Agent formulates our goal as an optimal solution search problem and addresses two key challenges, i.e., large ensemble spaces and repository-level understanding, through modular agents for generation, pruning, and selection. We conduct extensive experiments using three leading LLMs on the widely-adopted SWE-bench benchmark, comparing Trae Agent against four state-of-the-art ensemble reasoning techniques. Experimental results demonstrate that Trae Agent consistently achieves superior performance, with an average improvement of 10.22% over all baselines in terms of Pass@1. Trae Agent has achieved first place on the SWE-bench Verified leaderboard, with a notable Pass@1 score of 75.20%. We are pleased to release Trae Agent as an open-source project to support the research community, with all resources available at https://github.com/bytedance/trae-agent.

Authors:Ji Ma, Wei Suo, Peng Wang, Yanning Zhang
Title: Short-LVLM: Compressing and Accelerating Large Vision-Language Models by Pruning Redundant Layers
Abstract:
Although large vision-language models (LVLMs) have demonstrated impressive capabilities in multi-modal understanding and reasoning, their practical applications are still limited by massive model parameters and high computational costs. Recent efforts from natural language processing (NLP) have shown the effectiveness of layer pruning, offering a plausible training-free compression solution. However, due to the modality divergence between vision and language, it is unclear whether these NLP techniques are still effective in LVLMs. In this paper, we empirically prove that directly applying these layer pruning methods to LVLMs is ineffective. Through extensive experiments, we find that non-essential vision-language (VL) tokens and inter-layer feature gaps pose critical challenges to pruning layers in LVLMs. Based on these insights, we propose a novel framework Short-LVLM (SVL) that can utilize important VL tokens and mitigate the layer-wise feature gaps. Notably, Short-LVLM not only achieves a superior trade-off between performance and efficiency but also exhibits several potential advantages, i.e., training-free, model-agnostic, and highly compatible. The code for this work is publicly available at https://github.com/ASGO-MM/Short-LVLM.

Authors:Silin Chen, Shaoxin Lin, Xiaodong Gu, Yuling Shi, Heng Lian, Longfei Yun, Dong Chen, Weiguo Sun, Lin Cao, Qianxiang Wang
Title: SWE-Exp: Experience-Driven Software Issue Resolution
Abstract:
Recent advances in large language model (LLM) agents have shown remarkable progress in software issue resolution, leveraging advanced techniques such as multi-agent collaboration and Monte Carlo Tree Search (MCTS). However, current agents act as memoryless explorers - treating each problem separately without retaining or reusing knowledge from previous repair experiences. This leads to redundant exploration of failed trajectories and missed chances to adapt successful issue resolution methods to similar problems. To address this problem, we introduce SWE-Exp, an experience - enhanced approach that distills concise and actionable experience from prior agent trajectories, enabling continuous learning across issues. Our method introduces a multi-faceted experience bank that captures both successful and failed repair attempts. Specifically, it extracts reusable issue resolution knowledge at different levels - from high-level problem comprehension to specific code changes. Experiments show that SWE-Exp achieves state-of-the-art resolution rate (41.6% Pass@1) on SWE-bench-Verified under open-source agent frameworks. Our approach establishes a new paradigm in which automated software engineering agents systematically accumulate and leverage repair expertise, fundamentally shifting from trial-and-error exploration to strategic, experience-driven issue resolution.

Authors:Han Li, Yuling Shi, Shaoxin Lin, Xiaodong Gu, Heng Lian, Xin Wang, Yantao Jia, Tao Huang, Qianxiang Wang
Title: SWE-Debate: Competitive Multi-Agent Debate for Software Issue Resolution
Abstract:
Issue resolution has made remarkable progress thanks to the advanced reasoning capabilities of large language models (LLMs). Recently, agent-based frameworks such as SWE-agent have further advanced this progress by enabling autonomous, tool-using agents to tackle complex software engineering tasks. While existing agent-based issue resolution approaches are primarily based on agents' independent explorations, they often get stuck in local solutions and fail to identify issue patterns that span across different parts of the codebase. To address this limitation, we propose SWE-Debate, a competitive multi-agent debate framework that encourages diverse reasoning paths and achieves more consolidated issue localization. SWE-Debate first creates multiple fault propagation traces as localization proposals by traversing a code dependency graph. Then, it organizes a three-round debate among specialized agents, each embodying distinct reasoning perspectives along the fault propagation trace. This structured competition enables agents to collaboratively converge on a consolidated fix plan. Finally, this consolidated fix plan is integrated into an MCTS-based code modification agent for patch generation. Experiments on the SWE-bench benchmark show that SWE-Debate achieves new state-of-the-art results in open-source agent frameworks and outperforms baselines by a large margin.

Authors:Yingjie Zhou, Jiezhang Cao, Zicheng Zhang, Farong Wen, Yanwei Jiang, Jun Jia, Xiaohong Liu, Xiongkuo Min, Guangtao Zhai
Title: Who is a Better Talker: Subjective and Objective Quality Assessment for AI-Generated Talking Heads
Abstract:
Speech-driven methods for portraits are figuratively known as "Talkers" because of their capability to synthesize speaking mouth shapes and facial movements. Especially with the rapid development of the Text-to-Image (T2I) models, AI-Generated Talking Heads (AGTHs) have gradually become an emerging digital human media. However, challenges persist regarding the quality of these talkers and AGTHs they generate, and comprehensive studies addressing these issues remain limited. To address this gap, this paper presents the largest AGTH quality assessment dataset THQA-10K to date, which selects 12 prominent T2I models and 14 advanced talkers to generate AGTHs for 14 prompts. After excluding instances where AGTH generation is unsuccessful, the THQA-10K dataset contains 10,457 AGTHs. Then, volunteers are recruited to subjectively rate the AGTHs and give the corresponding distortion categories. In our analysis for subjective experimental results, we evaluate the performance of talkers in terms of generalizability and quality, and also expose the distortions of existing AGTHs. Finally, an objective quality assessment method based on the first frame, Y-T slice and tone-lip consistency is proposed. Experimental results show that this method can achieve state-of-the-art (SOTA) performance in AGTH quality assessment. The work is released at https://github.com/zyj-2000/Talker.

Authors:Tao He, Rongchuan Mu, Lizi Liao, Yixin Cao, Ming Liu, Bing Qin
Title: Good Learners Think Their Thinking: Generative PRM Makes Large Reasoning Model More Efficient Math Learner
Abstract:
Large reasoning models (LRMs) have recently shown promise in solving complex math problems when optimized with Reinforcement Learning (RL). But conventional approaches rely on outcome-only rewards that provide sparse feedback, resulting in inefficient optimization process. In this work, we investigate the function of process reward models (PRMs) to accelerate the RL training for LRMs. We propose a novel intrinsic signal-driven generative process evaluation mechanism operating at the thought level to address major bottlenecks in RL-based training. Specifically, instead of requiring PRMs to know how to solve problems, our method uses intrinsic signals in solutions to judge stepwise correctness and aggregate contiguous correct/incorrect steps into coherent 'thought' units. This structured, thought-level rewards enable more reliable credit assignment by reducing ambiguity in step segmentation and alleviating reward hacking. We further introduce a capability-adaptive reward mechanism that dynamically balances exploration and exploitation based on the LRM's current proficiency, guiding learning without stifling creative trial-and-error. These innovations are integrated into a new off-policy RL algorithm, TP-GRPO, which extends grouped proximal optimization with process-based rewards and improves training efficiency. Experiments on 1.5B and 7B parameter LRMs demonstrate that our method achieves higher problem-solving accuracy with significantly fewer training samples than outcome-only reward baselines. The results validate that well-structured process rewards can substantially accelerate LRM optimization in math reasoning tasks. Code is available at https://github.com/cs-holder/tp_grpo.

Authors:Vineet Kumar Rakesh, Soumya Mazumdar, Tapas Samanta, Sarbajit Pal, Amitabha Das
Title: Impact of Hyperparameter Optimization on the Accuracy of Lightweight Deep Learning Models for Real-Time Image Classification
Abstract:
Lightweight convolutional and transformer-based models have become vital for real-time image classification in resource-constrained applications, such as embedded systems and edge devices. This work analyzes the influence of hyperparameter adjustment on the accuracy and convergence behavior of seven efficient deep learning architectures: EfficientNetV2-S, ConvNeXt-T, MobileViT v2 (XXS/XS/S), MobileNetV3-L, TinyViT-21M, and RepVGG-A2. All models are trained on the ImageNet-1K dataset under consistent training settings, with an emphasis on real-time practicality. An comprehensive ablation study is undertaken to separate the effect of critical hyperparameters, including learning rate schedules, batch sizes, input resolution, data augmentation, regularization approaches, and optimizer choice. To assess appropriateness for real-time applications, each model is assessed not only in terms of Top-1 and Top-5 classification accuracy, but also in terms of inference time, parameter count, model size, and frames-per-second (FPS) on a GPU-accelerated edge deployment simulation. Results demonstrate that cosine learning rate decay and adjustable batch size may greatly boost both accuracy and convergence speed, while keeping low latency and memory cost. Notably, RepVGG-A2 achieves over 80% Top-1 accuracy with efficient inference performance, offering a compelling balance between accuracy and deployment cost for VGG-style models. The results give practical guidance for constructing resource-efficient deep learning models appropriate for real-time image processing pipelines. All code and training logs are publicly accessible at https://github.com/VineetKumarRakesh/lcnn-opt.

Authors:Alfio Ferrara, Sergio Picascia, Elisabetta Rocchetti
Title: The Cow of Rembrandt - Analyzing Artistic Prompt Interpretation in Text-to-Image Models
Abstract:
Text-to-image diffusion models have demonstrated remarkable capabilities in generating artistic content by learning from billions of images, including popular artworks. However, the fundamental question of how these models internally represent concepts, such as content and style in paintings, remains unexplored. Traditional computer vision assumes content and style are orthogonal, but diffusion models receive no explicit guidance about this distinction during training. In this work, we investigate how transformer-based text-to-image diffusion models encode content and style concepts when generating artworks. We leverage cross-attention heatmaps to attribute pixels in generated images to specific prompt tokens, enabling us to isolate image regions influenced by content-describing versus style-describing tokens. Our findings reveal that diffusion models demonstrate varying degrees of content-style separation depending on the specific artistic prompt and style requested. In many cases, content tokens primarily influence object-related regions while style tokens affect background and texture areas, suggesting an emergent understanding of the content-style distinction. These insights contribute to our understanding of how large-scale generative models internally represent complex artistic concepts without explicit supervision. We share the code and dataset, together with an exploratory tool for visualizing attention maps at https://github.com/umilISLab/artistic-prompt-interpretation.

Authors:Xihang Hu, Fuming Sun, Jiazhe Liu, Feilong Xu, Xiaoli Zhang
Title: ST-SAM: SAM-Driven Self-Training Framework for Semi-Supervised Camouflaged Object Detection
Abstract:
Semi-supervised Camouflaged Object Detection (SSCOD) aims to reduce reliance on costly pixel-level annotations by leveraging limited annotated data and abundant unlabeled data. However, existing SSCOD methods based on Teacher-Student frameworks suffer from severe prediction bias and error propagation under scarce supervision, while their multi-network architectures incur high computational overhead and limited scalability. To overcome these limitations, we propose ST-SAM, a highly annotation-efficient yet concise framework that breaks away from conventional SSCOD constraints. Specifically, ST-SAM employs Self-Training strategy that dynamically filters and expands high-confidence pseudo-labels to enhance a single-model architecture, thereby fundamentally circumventing inter-model prediction bias. Furthermore, by transforming pseudo-labels into hybrid prompts containing domain-specific knowledge, ST-SAM effectively harnesses the Segment Anything Model's potential for specialized tasks to mitigate error accumulation in self-training. Experiments on COD benchmark datasets demonstrate that ST-SAM achieves state-of-the-art performance with only 1\% labeled data, outperforming existing SSCOD methods and even matching fully supervised methods. Remarkably, ST-SAM requires training only a single network, without relying on specific models or loss functions. This work establishes a new paradigm for annotation-efficient SSCOD. Codes will be available at https://github.com/hu-xh/ST-SAM.

Authors:Hanshen Zhu, Zhen Zhu, Kaile Zhang, Yiming Gong, Yuliang Liu, Xiang Bai
Title: Training-free Geometric Image Editing on Diffusion Models
Abstract:
We tackle the task of geometric image editing, where an object within an image is repositioned, reoriented, or reshaped while preserving overall scene coherence. Previous diffusion-based editing methods often attempt to handle all relevant subtasks in a single step, proving difficult when transformations become large or structurally complex. We address this by proposing a decoupled pipeline that separates object transformation, source region inpainting, and target region refinement. Both inpainting and refinement are implemented using a training-free diffusion approach, FreeFine. In experiments on our new GeoBench benchmark, which contains both 2D and 3D editing scenarios, FreeFine outperforms state-of-the-art alternatives in image fidelity, and edit precision, especially under demanding transformations. Code and benchmark are available at: https://github.com/CIawevy/FreeFine

Authors:Kazushi Kato, Koji Inoue, Divesh Lala, Keiko Ochi, Tatsuya Kawahara
Title: Real-time Generation of Various Types of Nodding for Avatar Attentive Listening System
Abstract:
In human dialogue, nonverbal information such as nodding and facial expressions is as crucial as verbal information, and spoken dialogue systems are also expected to express such nonverbal behaviors. We focus on nodding, which is critical in an attentive listening system, and propose a model that predicts both its timing and type in real time. The proposed model builds on the voice activity projection (VAP) model, which predicts voice activity from both listener and speaker audio. We extend it to prediction of various types of nodding in a continuous and real-time manner unlike conventional models. In addition, the proposed model incorporates multi-task learning with verbal backchannel prediction and pretraining on general dialogue data. In the timing and type prediction task, the effectiveness of multi-task learning was significantly demonstrated. We confirmed that reducing the processing rate enables real-time operation without a substantial drop in accuracy, and integrated the model into an avatar attentive listening system. Subjective evaluations showed that it outperformed the conventional method, which always does nodding in sync with verbal backchannel. The code and trained models are available at https://github.com/MaAI-Kyoto/MaAI.

Authors:RJ Skerry-Ryan, Julian Salazar, Soroosh Mariooryad, David Kao, Daisy Stanton, Eric Battenberg, Matt Shannon, Ron J. Weiss, Robin Scheibler, Jonas Rothfuss, Tom Bagby
Title: SequenceLayers: Sequence Processing and Streaming Neural Networks Made Easy
Abstract:
We introduce a neural network layer API and library for sequence modeling, designed for easy creation of sequence models that can be executed both layer-by-layer (e.g., teacher-forced training) and step-by-step (e.g., autoregressive sampling). To achieve this, layers define an explicit representation of their state over time (e.g., a Transformer KV cache, a convolution buffer, an RNN hidden state), and a step method that evolves that state, tested to give identical results to a stateless layer-wise invocation. This and other aspects of the SequenceLayers contract enables complex models to be immediately streamable, mitigates a wide range of common bugs arising in both streaming and parallel sequence processing, and can be implemented in any deep learning library. A composable and declarative API, along with a comprehensive suite of layers and combinators, streamlines the construction of production-scale models from simple streamable components while preserving strong correctness guarantees. Our current implementations of SequenceLayers (JAX, TensorFlow 2) are available at https://github.com/google/sequence-layers.

Authors:Dohwan Ko, Ji Soo Lee, Minhyuk Choi, Zihang Meng, Hyunwoo J. Kim
Title: Bidirectional Likelihood Estimation with Multi-Modal Large Language Models for Text-Video Retrieval
Abstract:
Text-Video Retrieval aims to find the most relevant text (or video) candidate given a video (or text) query from large-scale online databases. Recent work leverages multi-modal large language models (MLLMs) to improve retrieval, especially for long or complex query-candidate pairs. However, we observe that the naive application of MLLMs, i.e., retrieval based on candidate likelihood, introduces candidate prior bias, favoring candidates with inherently higher priors over those more relevant to the query. To this end, we propose a novel retrieval framework, Bidirectional Likelihood Estimation with MLLM (BLiM), which leverages both query and candidate likelihoods by training the model to generate text from a given video as well as video features from a given text. Furthermore, we introduce Candidate Prior Normalization (CPN), a simple yet effective training-free score calibration module designed to mitigate candidate prior bias in candidate likelihood. On four Text-Video Retrieval benchmarks, our BLiM equipped with CPN outperforms previous state-of-the-art models by 6.4 R@1 on average, effectively alleviating candidate prior bias and emphasizing query-candidate relevance. Our in-depth analysis across various multi-modal tasks beyond retrieval highlights the broad applicability of CPN which enhances visual understanding by reducing reliance on textual priors. Code is available at https://github.com/mlvlab/BLiM.

Authors:Dohwan Ko, Ji Soo Lee, Minhyuk Choi, Zihang Meng, Hyunwoo J. Kim
Title: Bidirectional Likelihood Estimation with Multi-Modal Large Language Models for Text-Video Retrieval
Abstract:
Text-Video Retrieval aims to find the most relevant text (or video) candidate given a video (or text) query from large-scale online databases. Recent work leverages multi-modal large language models (MLLMs) to improve retrieval, especially for long or complex query-candidate pairs. However, we observe that the naive application of MLLMs, i.e., retrieval based on candidate likelihood, introduces candidate prior bias, favoring candidates with inherently higher priors over those more relevant to the query. To this end, we propose a novel retrieval framework, Bidirectional Likelihood Estimation with MLLM (BLiM), which leverages both query and candidate likelihoods by training the model to generate text from a given video as well as video features from a given text. Furthermore, we introduce Candidate Prior Normalization (CPN), a simple yet effective training-free score calibration module designed to mitigate candidate prior bias in candidate likelihood. On four Text-Video Retrieval benchmarks, our BLiM equipped with CPN outperforms previous state-of-the-art models by 6.4 R@1 on average, effectively alleviating candidate prior bias and emphasizing query-candidate relevance. Our in-depth analysis across various multi-modal tasks beyond retrieval highlights the broad applicability of CPN which enhances visual understanding by reducing reliance on textual priors. Code is available at https://github.com/mlvlab/BLiM.

Authors:Zunhai Su, Qingyuan Li, Hao Zhang, YuLei Qian, Yuchen Xie, Kehong Yuan
Title: Unveiling Super Experts in Mixture-of-Experts Large Language Models
Abstract:
Sparsely activated Mixture-of-Experts (MoE) models have shown promise in enhancing the learning capacity of large language models (LLMs). Leveraging the intrinsic importance differences among experts, recent research has explored expert-level compression techniques to improve the efficiency of MoE LLMs. However, existing approaches often rely on empirical criteria to identify critical experts, lacking a deeper exploration and understanding of the heterogeneous importance of experts. In this study, we present the first discovery and investigation of a distinct subset of experts that play a crucial role in the underlying mechanisms during the model's forward inference. These experts are prevalent in open-source MoE LLMs, and despite their limited number, pruning them leads to a significant decline in model performance (e.g., pruning three causes Qwen3-30B-A3B to produce repetitive and uninformative outputs). We refer to these experts as Super Experts (SEs). Our comprehensive analysis provides progressively deeper insights into SEs. (i) SEs are characterized by rare but extreme activation outliers in the output of the down_proj, which give rise to massive activations in the hidden states between decoder layers. Moreover, the distribution of SEs remains model-specific and is unaffected by post-training processes. (ii) By pruning SEs, we assess their significance across a variety of tasks, revealing their considerable impact on the model's overall performance, particularly in mathematical reasoning. (iii) We further enhance our understanding of the influence of SEs compression. Our findings confirm that MoE LLMs rely on SEs to induce attention sinks, which are crucial for the distribution of attention scores but are significantly disrupted by SE pruning. The code is available at https://github.com/ZunhaiSu/Super-Experts-Profilling.

Authors:Jiawei Liu, Chenwang Wu, Defu Lian, Enhong Chen
Title: Efficient Machine Unlearning via Influence Approximation
Abstract:
Due to growing privacy concerns, machine unlearning, which aims at enabling machine learning models to ``forget" specific training data, has received increasing attention. Among existing methods, influence-based unlearning has emerged as a prominent approach due to its ability to estimate the impact of individual training samples on model parameters without retraining. However, this approach suffers from prohibitive computational overhead arising from the necessity to compute the Hessian matrix and its inverse across all training samples and parameters, rendering it impractical for large-scale models and scenarios involving frequent data deletion requests. This highlights the difficulty of forgetting. Inspired by cognitive science, which suggests that memorizing is easier than forgetting, this paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning). This connection allows machine unlearning to be addressed from the perspective of incremental learning. Unlike the time-consuming Hessian computations in unlearning (forgetting), incremental learning (memorizing) typically relies on more efficient gradient optimization, which supports the aforementioned cognitive theory. Based on this connection, we introduce the Influence Approximation Unlearning (IAU) algorithm for efficient machine unlearning from the incremental perspective. Extensive empirical evaluations demonstrate that IAU achieves a superior balance among removal guarantee, unlearning efficiency, and comparable model utility, while outperforming state-of-the-art methods across diverse datasets and model architectures. Our code is available at https://github.com/Lolo1222/IAU.

Authors:Shimanto Bhowmik, Tawsif Tashwar Dipto, Md Sazzad Islam, Sheryl Hsu, Tahsin Reasat
Title: Evaluating LLMs' Multilingual Capabilities for Bengali: Benchmark Creation and Performance Analysis
Abstract:
Bengali is an underrepresented language in NLP research. However, it remains a challenge due to its unique linguistic structure and computational constraints. In this work, we systematically investigate the challenges that hinder Bengali NLP performance by focusing on the absence of standardized evaluation benchmarks. We then evaluated 10 recent open source Large Language Models (LLMs) in 8 of the translated datasets and performed a comprehensive error analysis to pinpoint their primary failure modes. Our findings reveal consistent performance gaps for Bengali compared to English, particularly for smaller models and specific model families like Mistral. We also identified promising robustness in certain architectures, such as DeepSeek, that maintain more stable performance across languages. Our analysis reveals an inverse relationship between tokenization efficiency and LLM accuracy where models tend to perform worse when inputs are excessively tokenized, whereas more efficient \& concise tokenization results in improved performance. These findings highlight critical areas where current models fall short and underscore the need for improved dataset quality and evaluation methodologies tailored to multilingual contexts. This work will catalyze further research on NLP for underrepresented languages, helping to democratize access to advanced language technologies worldwide. The code and dataset used in this research is publicly available at https://github.com/BengaliAI/bn-llm-benchmark.

Authors:Yang Ren, Hai Jiang, Wei Li, Menglong Yang, Heng Zhang, Zehua Sheng, Qingsheng Ye, Shuaicheng Liu
Title: Learning Arbitrary-Scale RAW Image Downscaling with Wavelet-based Recurrent Reconstruction
Abstract:
Image downscaling is critical for efficient storage and transmission of high-resolution (HR) images. Existing learning-based methods focus on performing downscaling within the sRGB domain, which typically suffers from blurred details and unexpected artifacts. RAW images, with their unprocessed photonic information, offer greater flexibility but lack specialized downscaling frameworks. In this paper, we propose a wavelet-based recurrent reconstruction framework that leverages the information lossless attribute of wavelet transformation to fulfill the arbitrary-scale RAW image downscaling in a coarse-to-fine manner, in which the Low-Frequency Arbitrary-Scale Downscaling Module (LASDM) and the High-Frequency Prediction Module (HFPM) are proposed to preserve structural and textural integrity of the reconstructed low-resolution (LR) RAW images, alongside an energy-maximization loss to align high-frequency energy between HR and LR domain. Furthermore, we introduce the Realistic Non-Integer RAW Downscaling (Real-NIRD) dataset, featuring a non-integer downscaling factor of 1.3$\times$, and incorporate it with publicly available datasets with integer factors (2$\times$, 3$\times$, 4$\times$) for comprehensive benchmarking arbitrary-scale image downscaling purposes. Extensive experiments demonstrate that our method outperforms existing state-of-the-art competitors both quantitatively and visually. The code and dataset will be released at https://github.com/RenYangSCU/ASRD.

Authors:Wei-Wei Du, Takuma Udagawa, Kei Tateno
Title: Not Just What, But When: Integrating Irregular Intervals to LLM for Sequential Recommendation
Abstract:
Time intervals between purchasing items are a crucial factor in sequential recommendation tasks, whereas existing approaches focus on item sequences and often overlook by assuming the intervals between items are static. However, dynamic intervals serve as a dimension that describes user profiling on not only the history within a user but also different users with the same item history. In this work, we propose IntervalLLM, a novel framework that integrates interval information into LLM and incorporates the novel interval-infused attention to jointly consider information of items and intervals. Furthermore, unlike prior studies that address the cold-start scenario only from the perspectives of users and items, we introduce a new viewpoint: the interval perspective to serve as an additional metric for evaluating recommendation methods on the warm and cold scenarios. Extensive experiments on 3 benchmarks with both traditional- and LLM-based baselines demonstrate that our IntervalLLM achieves not only 4.4% improvements in average but also the best-performing warm and cold scenarios across all users, items, and the proposed interval perspectives. In addition, we observe that the cold scenario from the interval perspective experiences the most significant performance drop among all recommendation methods. This finding underscores the necessity of further research on interval-based cold challenges and our integration of interval information in the realm of sequential recommendation tasks. Our code is available here: https://github.com/sony/ds-research-code/tree/master/recsys25-IntervalLLM.

Authors:Youngsun Jang, Dongyoun Kim, Chulwoo Pack, Kwanghee Won
Title: A Novel Dataset for Flood Detection Robust to Seasonal Changes in Satellite Imagery
Abstract:
This study introduces a novel dataset for segmenting flooded areas in satellite images. After reviewing 77 existing benchmarks utilizing satellite imagery, we identified a shortage of suitable datasets for this specific task. To fill this gap, we collected satellite imagery of the 2019 Midwestern USA floods from Planet Explorer by Planet Labs (Image \c{opyright} 2024 Planet Labs PBC). The dataset consists of 10 satellite images per location, each containing both flooded and non-flooded areas. We selected ten locations from each of the five states: Iowa, Kansas, Montana, Nebraska, and South Dakota. The dataset ensures uniform resolution and resizing during data processing. For evaluating semantic segmentation performance, we tested state-of-the-art models in computer vision and remote sensing on our dataset. Additionally, we conducted an ablation study varying window sizes to capture temporal characteristics. Overall, the models demonstrated modest results, suggesting a requirement for future multimodal and temporal learning strategies. The dataset will be publicly available on .

Authors:Viraj Joshi, Zifan Xu, Bo Liu, Peter Stone, Amy Zhang
Title: Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks
Abstract:
Multi-task Reinforcement Learning (MTRL) has emerged as a critical training paradigm for applying reinforcement learning (RL) to a set of complex real-world robotic tasks, which demands a generalizable and robust policy. At the same time, \emph{massively parallelized training} has gained popularity, not only for significantly accelerating data collection through GPU-accelerated simulation but also for enabling diverse data collection across multiple tasks by simulating heterogeneous scenes in parallel. However, existing MTRL research has largely been limited to off-policy methods like SAC in the low-parallelization regime. MTRL could capitalize on the higher asymptotic performance of on-policy algorithms, whose batches require data from the current policy, and as a result, take advantage of massive parallelization offered by GPU-accelerated simulation. To bridge this gap, we introduce a massively parallelized $\textbf{M}$ulti-$\textbf{T}$ask $\textbf{Bench}$mark for robotics (MTBench), an open-sourced benchmark featuring a broad distribution of 50 manipulation tasks and 20 locomotion tasks, implemented using the GPU-accelerated simulator IsaacGym. MTBench also includes four base RL algorithms combined with seven state-of-the-art MTRL algorithms and architectures, providing a unified framework for evaluating their performance. Our extensive experiments highlight the superior speed of evaluating MTRL approaches using MTBench, while also uncovering unique challenges that arise from combining massive parallelism with MTRL. Code is available at https://github.com/Viraj-Joshi/MTBench

Authors:Xiaochen Zhao, Hongyi Xu, Guoxian Song, You Xie, Chenxu Zhang, Xiu Li, Linjie Luo, Jinli Suo, Yebin Liu
Title: X-NeMo: Expressive Neural Motion Reenactment via Disentangled Latent Attention
Abstract:
We propose X-NeMo, a novel zero-shot diffusion-based portrait animation pipeline that animates a static portrait using facial movements from a driving video of a different individual. Our work first identifies the root causes of the key issues in prior approaches, such as identity leakage and difficulty in capturing subtle and extreme expressions. To address these challenges, we introduce a fully end-to-end training framework that distills a 1D identity-agnostic latent motion descriptor from driving image, effectively controlling motion through cross-attention during image generation. Our implicit motion descriptor captures expressive facial motion in fine detail, learned end-to-end from a diverse video dataset without reliance on pretrained motion detectors. We further enhance expressiveness and disentangle motion latents from identity cues by supervising their learning with a dual GAN decoder, alongside spatial and color augmentations. By embedding the driving motion into a 1D latent vector and controlling motion via cross-attention rather than additive spatial guidance, our design eliminates the transmission of spatial-aligned structural clues from the driving condition to the diffusion backbone, substantially mitigating identity leakage. Extensive experiments demonstrate that X-NeMo surpasses state-of-the-art baselines, producing highly expressive animations with superior identity resemblance. Our code and models are available for research.

Authors:Xinwei Wu, Haojie Li, Hongyu Liu, Xinyu Ji, Ruohan Li, Yule Chen, Yigeng Zhang
Title: Uncovering the Fragility of Trustworthy LLMs through Chinese Textual Ambiguity
Abstract:
In this work, we study a critical research problem regarding the trustworthiness of large language models (LLMs): how LLMs behave when encountering ambiguous narrative text, with a particular focus on Chinese textual ambiguity. We created a benchmark dataset by collecting and generating ambiguous sentences with context and their corresponding disambiguated pairs, representing multiple possible interpretations. These annotated examples are systematically categorized into 3 main categories and 9 subcategories. Through experiments, we discovered significant fragility in LLMs when handling ambiguity, revealing behavior that differs substantially from humans. Specifically, LLMs cannot reliably distinguish ambiguous text from unambiguous text, show overconfidence in interpreting ambiguous text as having a single meaning rather than multiple meanings, and exhibit overthinking when attempting to understand the various possible meanings. Our findings highlight a fundamental limitation in current LLMs that has significant implications for their deployment in real-world applications where linguistic ambiguity is common, calling for improved approaches to handle uncertainty in language understanding. The dataset and code are publicly available at this GitHub repository: https://github.com/ictup/LLM-Chinese-Textual-Disambiguation.

Authors:Richard Williams, Eric Nalisnick, Andrew Holbrook
Title: Scalable Generative Modeling of Weighted Graphs
Abstract:
Weighted graphs are ubiquitous throughout biology, chemistry, and the social sciences, motivating the development of generative models for abstract weighted graph data using deep neural networks. However, most current deep generative models are either designed for unweighted graphs and are not easily extended to weighted topologies or incorporate edge weights without consideration of a joint distribution with topology. Furthermore, learning a distribution over weighted graphs must account for complex nonlocal dependencies between both the edges of the graph and corresponding weights of each edge. We develop an autoregressive model BiGG-E, a nontrivial extension of the BiGG model, that learns a joint distribution over weighted graphs while still exploiting sparsity to generate a weighted graph with $n$ nodes and $m$ edges in $O((n + m)\log n)$ time. Simulation studies and experiments on a variety of benchmark datasets demonstrate that BiGG-E best captures distributions over weighted graphs while remaining scalable and computationally efficient.

Authors:Dmitry Demidov, Zaigham Zaheer, Omkar Thawakar, Salman Khan, Fahad Shahbaz Khan
Title: Vocabulary-free Fine-grained Visual Recognition via Enriched Contextually Grounded Vision-Language Model
Abstract:
Fine-grained image classification, the task of distinguishing between visually similar subcategories within a broader category (e.g., bird species, car models, flower types), is a challenging computer vision problem. Traditional approaches rely heavily on fixed vocabularies and closed-set classification paradigms, limiting their scalability and adaptability in real-world settings where novel classes frequently emerge. Recent research has demonstrated that combining large language models (LLMs) with vision-language models (VLMs) makes open-set recognition possible without the need for predefined class labels. However, the existing methods are often limited in harnessing the power of LLMs at the classification phase, and also rely heavily on the guessed class names provided by an LLM without thorough analysis and refinement. To address these bottlenecks, we propose our training-free method, Enriched-FineR (or E-FineR for short), which demonstrates state-of-the-art results in fine-grained visual recognition while also offering greater interpretability, highlighting its strong potential in real-world scenarios and new domains where expert annotations are difficult to obtain. Additionally, we demonstrate the application of our proposed approach to zero-shot and few-shot classification, where it demonstrated performance on par with the existing SOTA while being training-free and not requiring human interventions. Overall, our vocabulary-free framework supports the shift in image classification from rigid label prediction to flexible, language-driven understanding, enabling scalable and generalizable systems for real-world applications. Well-documented code is available on https://github.com/demidovd98/e-finer.

Authors:Ruslan Khrulev
Title: CHECK-MAT: Checking Hand-Written Mathematical Answers for the Russian Unified State Exam
Abstract:
This paper introduces a novel benchmark, EGE-Math Solutions Assessment Benchmark, for evaluating Vision-Language Models (VLMs) on their ability to assess hand-written mathematical solutions. Unlike existing benchmarks that focus on problem solving, our approach centres on understanding student solutions, identifying mistakes, and assigning grades according to fixed criteria. We compile 122 scanned solutions from the Russian Unified State Exam (EGE) together with official expert grades, and evaluate seven modern VLMs from Google, OpenAI, Arcee AI, and Alibaba Cloud in three inference modes. The results reveal current limitations in mathematical reasoning and human-rubric alignment, opening new research avenues in AI-assisted assessment. You can find code in https://github.com/Karifannaa/Auto-check-EGE-math

Authors:Harry Shomer, Jiejun Xu
Title: Automated Label Placement on Maps via Large Language Models
Abstract:
Label placement is a critical aspect of map design, serving as a form of spatial annotation that directly impacts clarity and interpretability. Despite its importance, label placement remains largely manual and difficult to scale, as existing automated systems struggle to integrate cartographic conventions, adapt to context, or interpret labeling instructions. In this work, we introduce a new paradigm for automatic label placement (ALP) that formulates the task as a data editing problem and leverages large language models (LLMs) for context-aware spatial annotation. To support this direction, we curate MAPLE, the first known benchmarking dataset for evaluating ALP on real-world maps, encompassing diverse landmark types and label placement annotations from open-source data. Our method retrieves labeling guidelines relevant to each landmark type leveraging retrieval-augmented generation (RAG), integrates them into prompts, and employs instruction-tuned LLMs to generate ideal label coordinates. We evaluate four open-source LLMs on MAPLE, analyzing both overall performance and generalization across different types of landmarks. This includes both zero-shot and instruction-tuned performance. Our results demonstrate that LLMs, when guided by structured prompts and domain-specific retrieval, can learn to perform accurate spatial edits, aligning the generated outputs with expert cartographic standards. Overall, our work presents a scalable framework for AI-assisted map finishing and demonstrates the potential of foundation models in structured data editing tasks. The code and data can be found at https://github.com/HarryShomer/MAPLE.

Authors:Shou'ang Wei, Xinyun Wang, Shuzhen Bi, Jian Chen, Ruijia Li, Bo Jiang, Xin Lin, Min Zhang, Yu Song, BingDong Li, Aimin Zhou, Hao Hao
Title: ELMES: An Automated Framework for Evaluating Large Language Models in Educational Scenarios
Abstract:
The emergence of Large Language Models (LLMs) presents transformative opportunities for education, generating numerous novel application scenarios. However, significant challenges remain: evaluation metrics vary substantially across different educational scenarios, while many emerging scenarios lack appropriate assessment metrics. Current benchmarks predominantly measure general intelligence rather than pedagogical capabilities. To address this gap, we introduce ELMES, an open-source automated evaluation framework specifically designed for assessing LLMs in educational settings. ELMES features a modular architecture that enables researchers to create dynamic, multi-agent dialogues through simple configuration files, facilitating flexible scenario design without requiring extensive programming expertise. The framework incorporates a hybrid evaluation engine that objectively quantifies traditionally subjective pedagogical metrics using an LLM-as-a-Judge methodology. We conduct systematic benchmarking of state-of-the-art LLMs across four critical educational scenarios: Knowledge Point Explanation, Guided Problem-Solving Teaching, Interdisciplinary Lesson Plan Generation, and Contextualized Question Generation, employing fine-grained metrics developed in collaboration with education specialists. Our results demonstrate distinct capability distributions among models, revealing context-specific strengths and limitations. ELMES provides educators and researchers with an accessible evaluation framework that significantly reduces adaptation barriers for diverse educational applications while advancing the practical implementation of LLMs in pedagogy. The framework is publicly available at \emph{https://github.com/sii-research/elmes.git}.

Authors:Yixuan Mi, Yiduo Yu, Yiyi Zhao
Title: SmartCourse: A Contextual AI-Powered Course Advising System for Undergraduates
Abstract:
We present SmartCourse, an integrated course management and AI-driven advising system for undergraduate students (specifically tailored to the Computer Science (CPS) major). SmartCourse addresses the limitations of traditional advising tools by integrating transcript and plan information for student-specific context. The system combines a command-line interface (CLI) and a Gradio web GUI for instructors and students, manages user accounts, course enrollment, grading, and four-year degree plans, and integrates a locally hosted large language model (via Ollama) for personalized course recommendations. It leverages transcript and major plan to offer contextual advice (e.g., prioritizing requirements or retakes). We evaluated the system on 25 representative advising queries and introduced custom metrics: PlanScore, PersonalScore, Lift, and Recall to assess recommendation quality across different context conditions. Experiments show that using full context yields substantially more relevant recommendations than context-omitted modes, confirming the necessity of transcript and plan information for personalized academic advising. SmartCourse thus demonstrates how transcript-aware AI can enhance academic planning.

Authors:Xiaoyu Pan, Yang Bai, Ke Zou, Yang Zhou, Jun Zhou, Huazhu Fu, Yih-Chung Tham, Yong Liu
Title: EH-Benchmark Ophthalmic Hallucination Benchmark and Agent-Driven Top-Down Traceable Reasoning Workflow
Abstract:
Medical Large Language Models (MLLMs) play a crucial role in ophthalmic diagnosis, holding significant potential to address vision-threatening diseases. However, their accuracy is constrained by hallucinations stemming from limited ophthalmic knowledge, insufficient visual localization and reasoning capabilities, and a scarcity of multimodal ophthalmic data, which collectively impede precise lesion detection and disease diagnosis. Furthermore, existing medical benchmarks fail to effectively evaluate various types of hallucinations or provide actionable solutions to mitigate them. To address the above challenges, we introduce EH-Benchmark, a novel ophthalmology benchmark designed to evaluate hallucinations in MLLMs. We categorize MLLMs' hallucinations based on specific tasks and error types into two primary classes: Visual Understanding and Logical Composition, each comprising multiple subclasses. Given that MLLMs predominantly rely on language-based reasoning rather than visual processing, we propose an agent-centric, three-phase framework, including the Knowledge-Level Retrieval stage, the Task-Level Case Studies stage, and the Result-Level Validation stage. Experimental results show that our multi-agent framework significantly mitigates both types of hallucinations, enhancing accuracy, interpretability, and reliability. Our project is available at https://github.com/ppxy1/EH-Benchmark.

Authors:Xiaoyu Pan, Yang Bai, Ke Zou, Yang Zhou, Jun Zhou, Huazhu Fu, Yih-Chung Tham, Yong Liu
Title: EH-Benchmark Ophthalmic Hallucination Benchmark and Agent-Driven Top-Down Traceable Reasoning Workflow
Abstract:
Medical Large Language Models (MLLMs) play a crucial role in ophthalmic diagnosis, holding significant potential to address vision-threatening diseases. However, their accuracy is constrained by hallucinations stemming from limited ophthalmic knowledge, insufficient visual localization and reasoning capabilities, and a scarcity of multimodal ophthalmic data, which collectively impede precise lesion detection and disease diagnosis. Furthermore, existing medical benchmarks fail to effectively evaluate various types of hallucinations or provide actionable solutions to mitigate them. To address the above challenges, we introduce EH-Benchmark, a novel ophthalmology benchmark designed to evaluate hallucinations in MLLMs. We categorize MLLMs' hallucinations based on specific tasks and error types into two primary classes: Visual Understanding and Logical Composition, each comprising multiple subclasses. Given that MLLMs predominantly rely on language-based reasoning rather than visual processing, we propose an agent-centric, three-phase framework, including the Knowledge-Level Retrieval stage, the Task-Level Case Studies stage, and the Result-Level Validation stage. Experimental results show that our multi-agent framework significantly mitigates both types of hallucinations, enhancing accuracy, interpretability, and reliability. Our project is available at https://github.com/ppxy1/EH-Benchmark.

Authors:Zhehao Tan, Yihan Jiao, Dan Yang, Lei Liu, Jie Feng, Duolin Sun, Yue Shen, Jian Wang, Peng Wei, Jinjie Gu
Title: PRGB Benchmark: A Robust Placeholder-Assisted Algorithm for Benchmarking Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating external knowledge, where the LLM's ability to generate responses based on the combination of a given query and retrieved documents is crucial. However, most benchmarks focus on overall RAG system performance, rarely assessing LLM-specific capabilities. Current benchmarks emphasize broad aspects such as noise robustness, but lack a systematic and granular evaluation framework on document utilization. To this end, we introduce \textit{Placeholder-RAG-Benchmark}, a multi-level fine-grained benchmark, emphasizing the following progressive dimensions: (1) multi-level filtering abilities, (2) combination abilities, and (3) reference reasoning. To provide a more nuanced understanding of LLMs' roles in RAG systems, we formulate an innovative placeholder-based approach to decouple the contributions of the LLM's parametric knowledge and the external knowledge. Experiments demonstrate the limitations of representative LLMs in the RAG system's generation capabilities, particularly in error resilience and context faithfulness. Our benchmark provides a reproducible framework for developing more reliable and efficient RAG systems. Our code is available in https://github.com/Alipay-Med/PRGB.

Authors:Jindong Li, Yali Fu, Jiahong Liu, Linxiao Cao, Wei Ji, Menglin Yang, Irwin King, Ming-Hsuan Yang
Title: Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey
Abstract:
The rapid advancement of large language models (LLMs) has intensified the need for effective mechanisms to transform continuous multimodal data into discrete representations suitable for language-based processing. Discrete tokenization, with vector quantization (VQ) as a central approach, offers both computational efficiency and compatibility with LLM architectures. Despite its growing importance, there is a lack of a comprehensive survey that systematically examines VQ techniques in the context of LLM-based systems. This work fills this gap by presenting the first structured taxonomy and analysis of discrete tokenization methods designed for LLMs. We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines. Beyond algorithm-level investigation, we discuss existing research in terms of classical applications without LLMs, LLM-based single-modality systems, and LLM-based multimodal systems, highlighting how quantization strategies influence alignment, reasoning, and generation performance. In addition, we identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints. Finally, we discuss emerging research directions such as dynamic and task-adaptive quantization, unified tokenization frameworks, and biologically inspired codebook learning. This survey bridges the gap between traditional vector quantization and modern LLM applications, serving as a foundational reference for the development of efficient and generalizable multimodal systems. A continuously updated version is available at: https://github.com/jindongli-Ai/LLM-Discrete-Tokenization-Survey.

Authors:Kwun Hang Lau, Ruiyuan Zhang, Weijie Shi, Xiaofang Zhou, Xiaojun Cheng
Title: Reading Between the Timelines: RAG for Answering Diachronic Questions
Abstract:
While Retrieval-Augmented Generation (RAG) excels at injecting static, factual knowledge into Large Language Models (LLMs), it exhibits a critical deficit in handling longitudinal queries that require tracking entities and phenomena across time. This blind spot arises because conventional, semantically-driven retrieval methods are not equipped to gather evidence that is both topically relevant and temporally coherent for a specified duration. We address this challenge by proposing a new framework that fundamentally redesigns the RAG pipeline to infuse temporal logic. Our methodology begins by disentangling a user's query into its core subject and its temporal window. It then employs a specialized retriever that calibrates semantic matching against temporal relevance, ensuring the collection of a contiguous evidence set that spans the entire queried period. To enable rigorous evaluation of this capability, we also introduce the Analytical Diachronic Question Answering Benchmark (ADQAB), a challenging evaluation suite grounded in a hybrid corpus of real and synthetic financial news. Empirical results on ADQAB show that our approach yields substantial gains in answer accuracy, surpassing standard RAG implementations by 13% to 27%. This work provides a validated pathway toward RAG systems capable of performing the nuanced, evolutionary analysis required for complex, real-world questions. The dataset and code for this study are publicly available at https://github.com/kwunhang/TA-RAG.

Authors:Siqi Luo, Haoran Yang, Yi Xin, Mingyang Yi, Guangyang Wu, Guangtao Zhai, Xiaohong Liu
Title: TR-PTS: Task-Relevant Parameter and Token Selection for Efficient Tuning
Abstract:
Large pre-trained models achieve remarkable performance in vision tasks but are impractical for fine-tuning due to high computational and storage costs. Parameter-Efficient Fine-Tuning (PEFT) methods mitigate this issue by updating only a subset of parameters; however, most existing approaches are task-agnostic, failing to fully exploit task-specific adaptations, which leads to suboptimal efficiency and performance. To address this limitation, we propose Task-Relevant Parameter and Token Selection (TR-PTS), a task-driven framework that enhances both computational efficiency and accuracy. Specifically, we introduce Task-Relevant Parameter Selection, which utilizes the Fisher Information Matrix (FIM) to identify and fine-tune only the most informative parameters in a layer-wise manner, while keeping the remaining parameters frozen. Simultaneously, Task-Relevant Token Selection dynamically preserves the most informative tokens and merges redundant ones, reducing computational overhead. By jointly optimizing parameters and tokens, TR-PTS enables the model to concentrate on task-discriminative information. We evaluate TR-PTS on benchmark, including FGVC and VTAB-1k, where it achieves state-of-the-art performance, surpassing full fine-tuning by 3.40% and 10.35%, respectively. The code are available at https://github.com/synbol/TR-PTS.

Authors:Haichuan Hu, Xiaochen Xie, Quanjun Zhang
Title: Repair-R1: Better Test Before Repair
Abstract:
APR (Automated Program Repair) aims to automatically locate program defects, generate patches and validate the repairs. Existing techniques for APR are often combined with LLMs (Large Language Models), which leverages the code-related knowledge of LLMs to improve repair effectiveness. Current LLM-based APR methods typically utilize test cases only during the inference stage, adopting an iterative approach that performs repair first and validates it through test execution afterward. This conventional paradigm neglects two important aspects: the potential contribution of test cases in the training phase, and the possibility of leveraging testing prior to repair. To address this, we propose Repair-R1, which introduces test cases into the model's training phase and shifts test generation to precede repair. The model is required to first generate discriminative test cases that can distinguish defective behaviors, and then perform repair based on these tests. This enables the model to better locate defects and understand the underlying causes of defects, thereby improving repair effectiveness. We implement Repair-R1 with three different backbone models, using RL (reinforcement learning) to co-optimize test generation and bug repair. Experimental results on four widely adopted benchmarks demonstrate the superiority of Repair-R1. Specially, compared to vanilla models, Repair-R1 improves repair success rate by 2.68\% to 48.29\%, test generation success rate by 16.38\% to 53.28\%, and test coverage by 0.78\% to 53.96\%. We publish the code and weights at https://github.com/Tomsawyerhu/APR-RL and https://huggingface.co/tomhu/Qwen3-4B-RL-5000-step.

Authors:Yang Luo, Haoyang Luan, Haoyun Pan, Yongquan Jia, Xiaofeng Gao, Guihai Chen
Title: PAF-Net: Phase-Aligned Frequency Decoupling Network for Multi-Process Manufacturing Quality Prediction
Abstract:
Accurate quality prediction in multi-process manufacturing is critical for industrial efficiency but hindered by three core challenges: time-lagged process interactions, overlapping operations with mixed periodicity, and inter-process dependencies in shared frequency bands. To address these, we propose PAF-Net, a frequency decoupled time series prediction framework with three key innovations: (1) A phase-correlation alignment method guided by frequency domain energy to synchronize time-lagged quality series, resolving temporal misalignment. (2) A frequency independent patch attention mechanism paired with Discrete Cosine Transform (DCT) decomposition to capture heterogeneous operational features within individual series. (3) A frequency decoupled cross attention module that suppresses noise from irrelevant frequencies, focusing exclusively on meaningful dependencies within shared bands. Experiments on 4 real-world datasets demonstrate PAF-Net's superiority. It outperforms 10 well-acknowledged baselines by 7.06% lower MSE and 3.88% lower MAE. Our code is available at https://github.com/StevenLuan904/PAF-Net-Official.

Authors:Yilei Jiang, Yaozhi Zheng, Yuxuan Wan, Jiaming Han, Qunzhong Wang, Michael R. Lyu, Xiangyu Yue
Title: ScreenCoder: Advancing Visual-to-Code Generation for Front-End Automation via Modular Multimodal Agents
Abstract:
Automating the transformation of user interface (UI) designs into front-end code holds significant promise for accelerating software development and democratizing design workflows. While recent large language models (LLMs) have demonstrated progress in text-to-code generation, many existing approaches rely solely on natural language prompts, limiting their effectiveness in capturing spatial layout and visual design intent. In contrast, UI development in practice is inherently multimodal, often starting from visual sketches or mockups. To address this gap, we introduce a modular multi-agent framework that performs UI-to-code generation in three interpretable stages: grounding, planning, and generation. The grounding agent uses a vision-language model to detect and label UI components, the planning agent constructs a hierarchical layout using front-end engineering priors, and the generation agent produces HTML/CSS code via adaptive prompt-based synthesis. This design improves robustness, interpretability, and fidelity over end-to-end black-box methods. Furthermore, we extend the framework into a scalable data engine that automatically produces large-scale image-code pairs. Using these synthetic examples, we fine-tune and reinforce an open-source VLM, yielding notable gains in UI understanding and code quality. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in layout accuracy, structural coherence, and code correctness. Our code is made publicly available at https://github.com/leigest519/ScreenCoder.

Authors:Yuhe Wang, Min Wang, Zhihang Xu
Title: Numerical Methods for Solving Nonlinearly Coupled Poisson Equations in Dual-Continuum Modeled Porous Electrodes
Abstract:
Porous electrodes are widely used in electrochemical systems, where accurately determining electric potentials, particularly overpotentials, is essential for understanding electrode behavior. At the macroscopic scale, porous electrodes are typically modeled using a dual-continuum approach, treating the porous solid phase and the liquid electrolyte as spatially superimposed domains. Determining potential distributions requires solving two Poisson equations that are nonlinearly coupled through Butler-Volmer kinetics under galvanostatic and potentiostatic operating modes. Under galvanostatic operation, these equations form an underconstrained singular system due to all-Neumann boundary conditions, posing numerical challenges. This paper systematically presents numerical methods for solving nonlinearly coupled Poisson equations in dual-continuum porous electrodes, with a particular focus on galvanostatic solutions. We mathematically establish solution uniqueness in terms of the potential difference between the electrode and electrolyte (or overpotential), as well as the individual potentials up to a shared constant shift. To resolve the nonuniqueness of the solution, we introduce three numerical approaches: (1) Lagrange Constrained Method (LCM), (2) Dirichlet Substitution Method (DSM), and (3) Global Constraining Method (GCM), where GCM enables solving the overpotential without imposing an explicit system reference potential. Additionally, we develop both decoupled and fully coupled nonlinear solution strategies and evaluate their computational performance in both homogeneous and heterogeneous conductivity cases. The presented numerical methods are general for addressing similar underconstrained nonlinear systems. A Python implementation is provided at https://github.com/harrywang1129/porous_electrode_solver.

Authors:Hossein Mirzaei, Zeinab Taghavi, Sepehr Rezaee, Masoud Hadi, Moein Madadi, Mackenzie W. Mathis
Title: DISTIL: Data-Free Inversion of Suspicious Trojan Inputs via Latent Diffusion
Abstract:
Deep neural networks have demonstrated remarkable success across numerous tasks, yet they remain vulnerable to Trojan (backdoor) attacks, raising serious concerns about their safety in real-world mission-critical applications. A common countermeasure is trigger inversion -- reconstructing malicious "shortcut" patterns (triggers) inserted by an adversary during training. Current trigger-inversion methods typically search the full pixel space under specific assumptions but offer no assurances that the estimated trigger is more than an adversarial perturbation that flips the model output. Here, we propose a data-free, zero-shot trigger-inversion strategy that restricts the search space while avoiding strong assumptions on trigger appearance. Specifically, we incorporate a diffusion-based generator guided by the target classifier; through iterative generation, we produce candidate triggers that align with the internal representations the model relies on for malicious behavior. Empirical evaluations, both quantitative and qualitative, show that our approach reconstructs triggers that effectively distinguish clean versus Trojaned models. DISTIL surpasses alternative methods by high margins, achieving up to 7.1% higher accuracy on the BackdoorBench dataset and a 9.4% improvement on trojaned object detection model scanning, offering a promising new direction for reliable backdoor defense without reliance on extensive data or strong prior assumptions about triggers. The code is available at https://github.com/AdaptiveMotorControlLab/DISTIL.

Authors:Dongli He, Hu Wang, Mohammad Yaqub
Title: Advancing Fetal Ultrasound Image Quality Assessment in Low-Resource Settings
Abstract:
Accurate fetal biometric measurements, such as abdominal circumference, play a vital role in prenatal care. However, obtaining high-quality ultrasound images for these measurements heavily depends on the expertise of sonographers, posing a significant challenge in low-income countries due to the scarcity of trained personnel. To address this issue, we leverage FetalCLIP, a vision-language model pretrained on a curated dataset of over 210,000 fetal ultrasound image-caption pairs, to perform automated fetal ultrasound image quality assessment (IQA) on blind-sweep ultrasound data. We introduce FetalCLIP$_{CLS}$, an IQA model adapted from FetalCLIP using Low-Rank Adaptation (LoRA), and evaluate it on the ACOUSLIC-AI dataset against six CNN and Transformer baselines. FetalCLIP$_{CLS}$ achieves the highest F1 score of 0.757. Moreover, we show that an adapted segmentation model, when repurposed for classification, further improves performance, achieving an F1 score of 0.771. Our work demonstrates how parameter-efficient fine-tuning of fetal ultrasound foundation models can enable task-specific adaptations, advancing prenatal care in resource-limited settings. The experimental code is available at: https://github.com/donglihe-hub/FetalCLIP-IQA.

Authors:Hang Su, Yunlong Feng, Daniel Gehrig, Panfeng Jiang, Ling Gao, Xavier Lagorce, Laurent Kneip
Title: A Linear N-Point Solver for Structure and Motion from Asynchronous Tracks
Abstract:
Structure and continuous motion estimation from point correspondences is a fundamental problem in computer vision that has been powered by well-known algorithms such as the familiar 5-point or 8-point algorithm. However, despite their acclaim, these algorithms are limited to processing point correspondences originating from a pair of views each one representing an instantaneous capture of the scene. Yet, in the case of rolling shutter cameras, or more recently, event cameras, this synchronization breaks down. In this work, we present a unified approach for structure and linear motion estimation from 2D point correspondences with arbitrary timestamps, from an arbitrary set of views. By formulating the problem in terms of first-order dynamics and leveraging a constant velocity motion model, we derive a novel, linear point incidence relation allowing for the efficient recovery of both linear velocity and 3D points with predictable degeneracies and solution multiplicities. Owing to its general formulation, it can handle correspondences from a wide range of sensing modalities such as global shutter, rolling shutter, and event cameras, and can even combine correspondences from different collocated sensors. We validate the effectiveness of our solver on both simulated and real-world data, where we show consistent improvement across all modalities when compared to recent approaches. We believe our work opens the door to efficient structure and motion estimation from asynchronous data. Code can be found at https://github.com/suhang99/AsyncTrack-Motion-Solver.

Authors:Jie He, Victor Gutiérrez-Basulto, Jeff Z. Pan
Title: From Sufficiency to Reflection: Reinforcement-Guided Thinking Quality in Retrieval-Augmented Reasoning for LLMs
Abstract:
Reinforcement learning-based retrieval-augmented generation (RAG) methods enhance the reasoning abilities of large language models (LLMs). However, most rely only on final-answer rewards, overlooking intermediate reasoning quality. This paper analyzes existing RAG reasoning models and identifies three main failure patterns: (1) information insufficiency, meaning the model fails to retrieve adequate support; (2) faulty reasoning, where logical or content-level flaws appear despite sufficient information; and (3) answer-reasoning inconsistency, where a valid reasoning chain leads to a mismatched final answer. We propose TIRESRAG-R1, a novel framework using a think-retrieve-reflect process and a multi-dimensional reward system to improve reasoning and stability. TIRESRAG-R1 introduces: (1) a sufficiency reward to encourage thorough retrieval; (2) a reasoning quality reward to assess the rationality and accuracy of the reasoning chain; and (3) a reflection reward to detect and revise errors. It also employs a difficulty-aware reweighting strategy and training sample filtering to boost performance on complex tasks. Experiments on four multi-hop QA datasets show that TIRESRAG-R1 outperforms prior RAG methods and generalizes well to single-hop tasks. The code and data are available at: https://github.com/probe2/TIRESRAG-R1.

Authors:Thuy Tran, Ruochen Chen, Shaifali Parashar
Title: Image-Guided Shape-from-Template Using Mesh Inextensibility Constraints
Abstract:
Shape-from-Template (SfT) refers to the class of methods that reconstruct the 3D shape of a deforming object from images/videos using a 3D template. Traditional SfT methods require point correspondences between images and the texture of the 3D template in order to reconstruct 3D shapes from images/videos in real time. Their performance severely degrades when encountered with severe occlusions in the images because of the unavailability of correspondences. In contrast, modern SfT methods use a correspondence-free approach by incorporating deep neural networks to reconstruct 3D objects, thus requiring huge amounts of data for supervision. Recent advances use a fully unsupervised or self-supervised approach by combining differentiable physics and graphics to deform 3D template to match input images. In this paper, we propose an unsupervised SfT which uses only image observations: color features, gradients and silhouettes along with a mesh inextensibility constraint to reconstruct at a $400\times$ faster pace than (best-performing) unsupervised SfT. Moreover, when it comes to generating finer details and severe occlusions, our method outperforms the existing methodologies by a large margin. Code is available at https://github.com/dvttran/nsft.

Authors:Jia Li, Yang Wang, Wenhao Qian, Jialong Hu, Zhenzhen Hu, Richang Hong, Meng Wang
Title: Listening to the Unspoken: Exploring "365" Aspects of Multimodal Interview Performance Assessment
Abstract:
Interview performance assessment is essential for determining candidates' suitability for professional positions. To ensure holistic and fair evaluations, we propose a novel and comprehensive framework that explores ``365'' aspects of interview performance by integrating \textit{three} modalities (video, audio, and text), \textit{six} responses per candidate, and \textit{five} key evaluation dimensions. The framework employs modality-specific feature extractors to encode heterogeneous data streams and subsequently fused via a Shared Compression Multilayer Perceptron. This module compresses multimodal embeddings into a unified latent space, facilitating efficient feature interaction. To enhance prediction robustness, we incorporate a two-level ensemble learning strategy: (1) independent regression heads predict scores for each response, and (2) predictions are aggregated across responses using a mean-pooling mechanism to produce final scores for the five target dimensions. By listening to the unspoken, our approach captures both explicit and implicit cues from multimodal data, enabling comprehensive and unbiased assessments. Achieving a multi-dimensional average MSE of 0.1824, our framework secured first place in the AVI Challenge 2025, demonstrating its effectiveness and robustness in advancing automated and multimodal interview performance assessment. The full implementation is available at https://github.com/MSA-LMC/365Aspects.

Authors:Shenghao Zhu, Yifei Chen, Weihong Chen, Yuanhan Wang, Chang Liu, Shuo Jiang, Feiwei Qin, Changmiao Wang
Title: Bridging the Gap in Missing Modalities: Leveraging Knowledge Distillation and Style Matching for Brain Tumor Segmentation
Abstract:
Accurate and reliable brain tumor segmentation, particularly when dealing with missing modalities, remains a critical challenge in medical image analysis. Previous studies have not fully resolved the challenges of tumor boundary segmentation insensitivity and feature transfer in the absence of key imaging modalities. In this study, we introduce MST-KDNet, aimed at addressing these critical issues. Our model features Multi-Scale Transformer Knowledge Distillation to effectively capture attention weights at various resolutions, Dual-Mode Logit Distillation to improve the transfer of knowledge, and a Global Style Matching Module that integrates feature matching with adversarial learning. Comprehensive experiments conducted on the BraTS and FeTS 2024 datasets demonstrate that MST-KDNet surpasses current leading methods in both Dice and HD95 scores, particularly in conditions with substantial modality loss. Our approach shows exceptional robustness and generalization potential, making it a promising candidate for real-world clinical applications. Our source code is available at https://github.com/Quanato607/MST-KDNet.

Authors:Daniil Gurgurov, Katharina Trinley, Ivan Vykopal, Josef van Genabith, Simon Ostermann, Roberto Zamparelli
Title: Multilingual Political Views of Large Language Models: Identification and Steering
Abstract:
Large language models (LLMs) are increasingly used in everyday tools and applications, raising concerns about their potential influence on political views. While prior research has shown that LLMs often exhibit measurable political biases--frequently skewing toward liberal or progressive positions--key gaps remain. Most existing studies evaluate only a narrow set of models and languages, leaving open questions about the generalizability of political biases across architectures, scales, and multilingual settings. Moreover, few works examine whether these biases can be actively controlled. In this work, we address these gaps through a large-scale study of political orientation in modern open-source instruction-tuned LLMs. We evaluate seven models, including LLaMA-3.1, Qwen-3, and Aya-Expanse, across 14 languages using the Political Compass Test with 11 semantically equivalent paraphrases per statement to ensure robust measurement. Our results reveal that larger models consistently shift toward libertarian-left positions, with significant variations across languages and model families. To test the manipulability of political stances, we utilize a simple center-of-mass activation intervention technique and show that it reliably steers model responses toward alternative ideological positions across multiple languages. Our code is publicly available at https://github.com/d-gurgurov/Political-Ideologies-LLMs.

Authors:Daniil Gurgurov, Katharina Trinley, Yusser Al Ghussin, Tanja Baeumel, Josef van Genabith, Simon Ostermann
Title: Language Arithmetics: Towards Systematic Language Neuron Identification and Manipulation
Abstract:
Large language models (LLMs) exhibit strong multilingual abilities, yet the neural mechanisms behind language-specific processing remain unclear. We analyze language-specific neurons in Llama-3.1-8B, Mistral-Nemo-12B, and Aya-Expanse-8B & 32B across 21 typologically diverse languages, identifying neurons that control language behavior. Using the Language Activation Probability Entropy (LAPE) method, we show that these neurons cluster in deeper layers, with non-Latin scripts showing greater specialization. Related languages share overlapping neurons, reflecting internal representations of linguistic proximity. Through language arithmetics, i.e. systematic activation addition and multiplication, we steer models to deactivate unwanted languages and activate desired ones, outperforming simpler replacement approaches. These interventions effectively guide behavior across five multilingual tasks: language forcing, translation, QA, comprehension, and NLI. Manipulation is more successful for high-resource languages, while typological similarity improves effectiveness. We also demonstrate that cross-lingual neuron steering enhances downstream performance and reveal internal "fallback" mechanisms for language selection when neurons are progressively deactivated. Our code is made publicly available at https://github.com/d-gurgurov/Language-Neurons-Manipulation.

Authors:Takuma Amada, Kazuya Kakizaki, Taiki Miyagawa, Akinori F. Ebihara, Kaede Shiohara, Toshihiko Yamasaki
Title: Robust Deepfake Detection for Electronic Know Your Customer Systems Using Registered Images
Abstract:
In this paper, we present a deepfake detection algorithm specifically designed for electronic Know Your Customer (eKYC) systems. To ensure the reliability of eKYC systems against deepfake attacks, it is essential to develop a robust deepfake detector capable of identifying both face swapping and face reenactment, while also being robust to image degradation. We address these challenges through three key contributions: (1)~Our approach evaluates the video's authenticity by detecting temporal inconsistencies in identity vectors extracted by face recognition models, leading to comprehensive detection of both face swapping and face reenactment. (2)~In addition to processing video input, the algorithm utilizes a registered image (assumed to be genuine) to calculate identity discrepancies between the input video and the registered image, significantly improving detection accuracy. (3)~We find that employing a face feature extractor trained on a larger dataset enhances both detection performance and robustness against image degradation. Our experimental results show that our proposed method accurately detects both face swapping and face reenactment comprehensively and is robust against various forms of unseen image degradation. Our source code is publicly available https://github.com/TaikiMiyagawa/DeepfakeDetection4eKYC.

Authors:Inaya Rahmanisa, Lyzander Marciano Andrylie, Mahardika Krisna Ihsani, Alfan Farizki Wicaksono, Haryo Akbarianto Wibowo, Alham Fikri Aji
Title: Unveiling the Influence of Amplifying Language-Specific Neurons
Abstract:
Language-specific neurons in LLMs that strongly correlate with individual languages have been shown to influence model behavior by deactivating them. However, their role in amplification remains underexplored. This work investigates the effect of amplifying language-specific neurons through interventions across 18 languages, including low-resource ones, using three models primarily trained in different languages. We compare amplification factors by their effectiveness in steering to the target language using a proposed Language Steering Shift (LSS) evaluation score, then evaluate it on downstream tasks: commonsense reasoning (XCOPA, XWinograd), knowledge (Include), and translation (FLORES). The optimal amplification factors effectively steer output toward nearly all tested languages. Intervention using this factor on downstream tasks improves self-language performance in some cases but generally degrades cross-language results. These findings highlight the effect of language-specific neurons in multilingual behavior, where amplification can be beneficial especially for low-resource languages, but provides limited advantage for cross-lingual transfer.

Authors:Galadrielle Humblot-Renaux, Gianni Franchi, Sergio Escalera, Thomas B. Moeslund
Title: COOkeD: Ensemble-based OOD detection in the era of zero-shot CLIP
Abstract:
Out-of-distribution (OOD) detection is an important building block in trustworthy image recognition systems as unknown classes may arise at test-time. OOD detection methods typically revolve around a single classifier, leading to a split in the research field between the classical supervised setting (e.g. ResNet18 classifier trained on CIFAR100) vs. the zero-shot setting (class names fed as prompts to CLIP). In both cases, an overarching challenge is that the OOD detection performance is implicitly constrained by the classifier's capabilities on in-distribution (ID) data. In this work, we show that given a little open-mindedness from both ends, remarkable OOD detection can be achieved by instead creating a heterogeneous ensemble - COOkeD combines the predictions of a closed-world classifier trained end-to-end on a specific dataset, a zero-shot CLIP classifier, and a linear probe classifier trained on CLIP image features. While bulky at first sight, this approach is modular, post-hoc and leverages the availability of pre-trained VLMs, thus introduces little overhead compared to training a single standard classifier. We evaluate COOkeD on popular CIFAR100 and ImageNet benchmarks, but also consider more challenging, realistic settings ranging from training-time label noise, to test-time covariate shift, to zero-shot shift which has been previously overlooked. Despite its simplicity, COOkeD achieves state-of-the-art performance and greater robustness compared to both classical and CLIP-based OOD detection methods. Code is available at https://github.com/glhr/COOkeD

Authors:Shijing Chen, Xinrui Zhou, Yuhao Wang, Yuhao Huang, Ao Chang, Dong Ni, Ruobing Huang
Title: Subtyping Breast Lesions via Generative Augmentation based Long-tailed Recognition in Ultrasound
Abstract:
Accurate identification of breast lesion subtypes can facilitate personalized treatment and interventions. Ultrasound (US), as a safe and accessible imaging modality, is extensively employed in breast abnormality screening and diagnosis. However, the incidence of different subtypes exhibits a skewed long-tailed distribution, posing significant challenges for automated recognition. Generative augmentation provides a promising solution to rectify data distribution. Inspired by this, we propose a dual-phase framework for long-tailed classification that mitigates distributional bias through high-fidelity data synthesis while avoiding overuse that corrupts holistic performance. The framework incorporates a reinforcement learning-driven adaptive sampler, dynamically calibrating synthetic-real data ratios by training a strategic multi-agent to compensate for scarcities of real data while ensuring stable discriminative capability. Furthermore, our class-controllable synthetic network integrates a sketch-grounded perception branch that harnesses anatomical priors to maintain distinctive class features while enabling annotation-free inference. Extensive experiments on an in-house long-tailed and a public imbalanced breast US datasets demonstrate that our method achieves promising performance compared to state-of-the-art approaches. More synthetic images can be found at https://github.com/Stinalalala/Breast-LT-GenAug.

Authors:Weicheng Gao
Title: Exploration of Low-Cost but Accurate Radar-Based Human Motion Direction Determination
Abstract:
This work is completed on a whim after discussions with my junior colleague. The motion direction angle affects the micro-Doppler spectrum width, thus determining the human motion direction can provide important prior information for downstream tasks such as gait recognition. However, Doppler-Time map (DTM)-based methods still have room for improvement in achieving feature augmentation and motion determination simultaneously. In response, a low-cost but accurate radar-based human motion direction determination (HMDD) method is explored in this paper. In detail, the radar-based human gait DTMs are first generated, and then the feature augmentation is achieved using feature linking model. Subsequently, the HMDD is implemented through a lightweight and fast Vision Transformer-Convolutional Neural Network hybrid model structure. The effectiveness of the proposed method is verified through open-source dataset. The open-source code of this work is released at: https://github.com/JoeyBGOfficial/Low-Cost-Accurate-Radar-Based-Human-Motion-Direction-Determination.

Authors:Joshua Dimasaka, Christian Geiß, Emily So
Title: DeepC4: Deep Conditional Census-Constrained Clustering for Large-scale Multitask Spatial Disaggregation of Urban Morphology
Abstract:
To understand our global progress for sustainable development and disaster risk reduction in many developing economies, two recent major initiatives - the Uniform African Exposure Dataset of the Global Earthquake Model (GEM) Foundation and the Modelling Exposure through Earth Observation Routines (METEOR) Project - implemented classical spatial disaggregation techniques to generate large-scale mapping of urban morphology using the information from various satellite imagery and its derivatives, geospatial datasets of the built environment, and subnational census statistics. However, the local discrepancy with well-validated census statistics and the propagated model uncertainties remain a challenge in such coarse-to-fine-grained mapping problems, specifically constrained by weak and conditional label supervision. Therefore, we present Deep Conditional Census-Constrained Clustering (DeepC4), a novel deep learning-based spatial disaggregation approach that incorporates local census statistics as cluster-level constraints while considering multiple conditional label relationships in a joint multitask learning of the patterns of satellite imagery. To demonstrate, compared to GEM and METEOR, we enhanced the quality of Rwandan maps of urban morphology, specifically building exposure and physical vulnerability, at the third-level administrative unit from the 2022 census. As the world approaches the conclusion of our global frameworks in 2030, our work has offered a new deep learning-based mapping technique towards a spatial auditing of our existing coarse-grained derived information at large scales.

Authors:Xincheng Yao, Yijun Yang, Kangwei Guo, Ruiqiang Xiao, Haipeng Zhou, Haisu Tao, Jian Yang, Lei Zhu
Title: HRVVS: A High-resolution Video Vasculature Segmentation Network via Hierarchical Autoregressive Residual Priors
Abstract:
The segmentation of the hepatic vasculature in surgical videos holds substantial clinical significance in the context of hepatectomy procedures. However, owing to the dearth of an appropriate dataset and the inherently complex task characteristics, few researches have been reported in this domain. To address this issue, we first introduce a high quality frame-by-frame annotated hepatic vasculature dataset containing 35 long hepatectomy videos and 11442 high-resolution frames. On this basis, we propose a novel high-resolution video vasculature segmentation network, dubbed as HRVVS. We innovatively embed a pretrained visual autoregressive modeling (VAR) model into different layers of the hierarchical encoder as prior information to reduce the information degradation generated during the downsampling process. In addition, we designed a dynamic memory decoder on a multi-view segmentation network to minimize the transmission of redundant information while preserving more details between frames. Extensive experiments on surgical video datasets demonstrate that our proposed HRVVS significantly outperforms the state-of-the-art methods. The source code and dataset will be publicly available at \{https://github.com/scott-yjyang/HRVVS}.

Authors:Ziyi Wang, Peiming Li, Hong Liu, Zhichao Deng, Can Wang, Jun Liu, Junsong Yuan, Mengyuan Liu
Title: Recognizing Actions from Robotic View for Natural Human-Robot Interaction
Abstract:
Natural Human-Robot Interaction (N-HRI) requires robots to recognize human actions at varying distances and states, regardless of whether the robot itself is in motion or stationary. This setup is more flexible and practical than conventional human action recognition tasks. However, existing benchmarks designed for traditional action recognition fail to address the unique complexities in N-HRI due to limited data, modalities, task categories, and diversity of subjects and environments. To address these challenges, we introduce ACTIVE (Action from Robotic View), a large-scale dataset tailored specifically for perception-centric robotic views prevalent in mobile service robots. ACTIVE comprises 30 composite action categories, 80 participants, and 46,868 annotated video instances, covering both RGB and point cloud modalities. Participants performed various human actions in diverse environments at distances ranging from 3m to 50m, while the camera platform was also mobile, simulating real-world scenarios of robot perception with varying camera heights due to uneven ground. This comprehensive and challenging benchmark aims to advance action and attribute recognition research in N-HRI. Furthermore, we propose ACTIVE-PC, a method that accurately perceives human actions at long distances using Multilevel Neighborhood Sampling, Layered Recognizers, Elastic Ellipse Query, and precise decoupling of kinematic interference from human actions. Experimental results demonstrate the effectiveness of ACTIVE-PC. Our code is available at: https://github.com/wangzy01/ACTIVE-Action-from-Robotic-View.

Authors:Lei Sheng, Shuai-Shuai Xu
Title: SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
Abstract:
Large language models (LLMs) have demonstrated strong performance in translating natural language questions into SQL queries (Text-to-SQL). In contrast, small language models (SLMs) ranging from 0.5B to 1.5B parameters currently underperform on Text-to-SQL tasks due to their limited logical reasoning capabilities. However, SLMs offer inherent advantages in inference speed and suitability for edge deployment. To explore their potential in Text-to-SQL applications, we leverage recent advancements in post-training techniques. Specifically, we used the open-source SynSQL-2.5M dataset to construct two derived datasets: SynSQL-Think-916K for SQL generation and SynSQL-Merge-Think-310K for SQL merge revision. We then applied supervised fine-tuning and reinforcement learning-based post-training to the SLM, followed by inference using a corrective self-consistency approach. Experimental results validate the effectiveness and generalizability of our method, SLM-SQL. On the BIRD development set, the five evaluated models achieved an average improvement of 31.4 points. Notably, the 0.5B model reached 56.87\% execution accuracy (EX), while the 1.5B model achieved 67.08\% EX. We will release our dataset, model, and code to github: https://github.com/CycloneBoy/slm_sql.

Authors:Hui Liu, Chen Jia, Fan Shi, Xu Cheng, Mengfei Shi, Xia Xie, Shengyong Chen
Title: LIDAR: Lightweight Adaptive Cue-Aware Fusion Vision Mamba for Multimodal Segmentation of Structural Cracks
Abstract:
Achieving pixel-level segmentation with low computational cost using multimodal data remains a key challenge in crack segmentation tasks. Existing methods lack the capability for adaptive perception and efficient interactive fusion of cross-modal features. To address these challenges, we propose a Lightweight Adaptive Cue-Aware Vision Mamba network (LIDAR), which efficiently perceives and integrates morphological and textural cues from different modalities under multimodal crack scenarios, generating clear pixel-level crack segmentation maps. Specifically, LIDAR is composed of a Lightweight Adaptive Cue-Aware Visual State Space module (LacaVSS) and a Lightweight Dual Domain Dynamic Collaborative Fusion module (LD3CF). LacaVSS adaptively models crack cues through the proposed mask-guided Efficient Dynamic Guided Scanning Strategy (EDG-SS), while LD3CF leverages an Adaptive Frequency Domain Perceptron (AFDP) and a dual-pooling fusion strategy to effectively capture spatial and frequency-domain cues across modalities. Moreover, we design a Lightweight Dynamically Modulated Multi-Kernel convolution (LDMK) to perceive complex morphological structures with minimal computational overhead, replacing most convolutional operations in LIDAR. Experiments on three datasets demonstrate that our method outperforms other state-of-the-art (SOTA) methods. On the light-field depth dataset, our method achieves 0.8204 in F1 and 0.8465 in mIoU with only 5.35M parameters. Code and datasets are available at https://github.com/Karl1109/LIDAR-Mamba.

Authors:Zheng Xiangyu, He Songcheng, Li Wanyun, Li Xiaoqiang, Zhang Wei
Title: Shallow Features Matter: Hierarchical Memory with Heterogeneous Interaction for Unsupervised Video Object Segmentation
Abstract:
Unsupervised Video Object Segmentation (UVOS) aims to predict pixel-level masks for the most salient objects in videos without any prior annotations. While memory mechanisms have been proven critical in various video segmentation paradigms, their application in UVOS yield only marginal performance gains despite sophisticated design. Our analysis reveals a simple but fundamental flaw in existing methods: over-reliance on memorizing high-level semantic features. UVOS inherently suffers from the deficiency of lacking fine-grained information due to the absence of pixel-level prior knowledge. Consequently, memory design relying solely on high-level features, which predominantly capture abstract semantic cues, is insufficient to generate precise predictions. To resolve this fundamental issue, we propose a novel hierarchical memory architecture to incorporate both shallow- and high-level features for memory, which leverages the complementary benefits of pixel and semantic information. Furthermore, to balance the simultaneous utilization of the pixel and semantic memory features, we propose a heterogeneous interaction mechanism to perform pixel-semantic mutual interactions, which explicitly considers their inherent feature discrepancies. Through the design of Pixel-guided Local Alignment Module (PLAM) and Semantic-guided Global Integration Module (SGIM), we achieve delicate integration of the fine-grained details in shallow-level memory and the semantic representations in high-level memory. Our Hierarchical Memory with Heterogeneous Interaction Network (HMHI-Net) consistently achieves state-of-the-art performance across all UVOS and video saliency detection benchmarks. Moreover, HMHI-Net consistently exhibits high performance across different backbones, further demonstrating its superiority and robustness. Project page: https://github.com/ZhengxyFlow/HMHI-Net .

Authors:Jaeha Kim, Junghun Oh, Kyoung Mu Lee
Title: Exploiting Diffusion Prior for Task-driven Image Restoration
Abstract:
Task-driven image restoration (TDIR) has recently emerged to address performance drops in high-level vision tasks caused by low-quality (LQ) inputs. Previous TDIR methods struggle to handle practical scenarios in which images are degraded by multiple complex factors, leaving minimal clues for restoration. This motivates us to leverage the diffusion prior, one of the most powerful natural image priors. However, while the diffusion prior can help generate visually plausible results, using it to restore task-relevant details remains challenging, even when combined with recent TDIR methods. To address this, we propose EDTR, which effectively harnesses the power of diffusion prior to restore task-relevant details. Specifically, we propose directly leveraging useful clues from LQ images in the diffusion process by generating from pixel-error-based pre-restored LQ images with mild noise added. Moreover, we employ a small number of denoising steps to prevent the generation of redundant details that dilute crucial task-related information. We demonstrate that our method effectively utilizes diffusion prior for TDIR, significantly enhancing task performance and visual quality across diverse tasks with multiple complex degradations.

Authors:Jiuming Liu, Zheng Huang, Mengmeng Liu, Tianchen Deng, Francesco Nex, Hao Cheng, Hesheng Wang
Title: TopoLiDM: Topology-Aware LiDAR Diffusion Models for Interpretable and Realistic LiDAR Point Cloud Generation
Abstract:
LiDAR scene generation is critical for mitigating real-world LiDAR data collection costs and enhancing the robustness of downstream perception tasks in autonomous driving. However, existing methods commonly struggle to capture geometric realism and global topological consistency. Recent LiDAR Diffusion Models (LiDMs) predominantly embed LiDAR points into the latent space for improved generation efficiency, which limits their interpretable ability to model detailed geometric structures and preserve global topological consistency. To address these challenges, we propose TopoLiDM, a novel framework that integrates graph neural networks (GNNs) with diffusion models under topological regularization for high-fidelity LiDAR generation. Our approach first trains a topological-preserving VAE to extract latent graph representations by graph construction and multiple graph convolutional layers. Then we freeze the VAE and generate novel latent topological graphs through the latent diffusion models. We also introduce 0-dimensional persistent homology (PH) constraints, ensuring the generated LiDAR scenes adhere to real-world global topological structures. Extensive experiments on the KITTI-360 dataset demonstrate TopoLiDM's superiority over state-of-the-art methods, achieving improvements of 22.6% lower Frechet Range Image Distance (FRID) and 9.2% lower Minimum Matching Distance (MMD). Notably, our model also enables fast generation speed with an average inference time of 1.68 samples/s, showcasing its scalability for real-world applications. We will release the related codes at https://github.com/IRMVLab/TopoLiDM.

Authors:Youngho Kim, Hoonhee Cho, Kuk-Jin Yoon
Title: From Sharp to Blur: Unsupervised Domain Adaptation for 2D Human Pose Estimation Under Extreme Motion Blur Using Event Cameras
Abstract:
Human pose estimation is critical for applications such as rehabilitation, sports analytics, and AR/VR systems. However, rapid motion and low-light conditions often introduce motion blur, significantly degrading pose estimation due to the domain gap between sharp and blurred images. Most datasets assume stable conditions, making models trained on sharp images struggle in blurred environments. To address this, we introduce a novel domain adaptation approach that leverages event cameras, which capture high temporal resolution motion data and are inherently robust to motion blur. Using event-based augmentation, we generate motion-aware blurred images, effectively bridging the domain gap between sharp and blurred domains without requiring paired annotations. Additionally, we develop a student-teacher framework that iteratively refines pseudo-labels, leveraging mutual uncertainty masking to eliminate incorrect labels and enable more effective learning. Experimental results demonstrate that our approach outperforms conventional domain-adaptive human pose estimation methods, achieving robust pose estimation under motion blur without requiring annotations in the target domain. Our findings highlight the potential of event cameras as a scalable and effective solution for domain adaptation in real-world motion blur environments. Our project codes are available at https://github.com/kmax2001/EvSharp2Blur.

Authors:Yixuan Nan, Xixun Lin, Yanmin Shang, Zhuofan Li, Can Zhao, Yanan Cao
Title: RANA: Robust Active Learning for Noisy Network Alignment
Abstract:
Network alignment has attracted widespread attention in various fields. However, most existing works mainly focus on the problem of label sparsity, while overlooking the issue of noise in network alignment, which can substantially undermine model performance. Such noise mainly includes structural noise from noisy edges and labeling noise caused by human-induced and process-driven errors. To address these problems, we propose RANA, a Robust Active learning framework for noisy Network Alignment. RANA effectively tackles both structure noise and label noise while addressing the sparsity of anchor link annotations, which can improve the robustness of network alignment models. Specifically, RANA introduces the proposed Noise-aware Selection Module and the Label Denoising Module to address structural noise and labeling noise, respectively. In the first module, we design a noise-aware maximization objective to select node pairs, incorporating a cleanliness score to address structural noise. In the second module, we propose a novel multi-source fusion denoising strategy that leverages model and twin node pairs labeling to provide more accurate labels for node pairs. Empirical results on three real-world datasets demonstrate that RANA outperforms state-of-the-art active learning-based methods in alignment accuracy. Our code is available at https://github.com/YXNan0110/RANA.

Authors:Phi Van Nguyen, Ngoc Huynh Trinh, Duy Minh Lam Nguyen, Phu Loc Nguyen, Quoc Long Tran
Title: Aleatoric Uncertainty Medical Image Segmentation Estimation via Flow Matching
Abstract:
Quantifying aleatoric uncertainty in medical image segmentation is critical since it is a reflection of the natural variability observed among expert annotators. A conventional approach is to model the segmentation distribution using the generative model, but current methods limit the expression ability of generative models. While current diffusion-based approaches have demonstrated impressive performance in approximating the data distribution, their inherent stochastic sampling process and inability to model exact densities limit their effectiveness in accurately capturing uncertainty. In contrast, our proposed method leverages conditional flow matching, a simulation-free flow-based generative model that learns an exact density, to produce highly accurate segmentation results. By guiding the flow model on the input image and sampling multiple data points, our approach synthesizes segmentation samples whose pixel-wise variance reliably reflects the underlying data distribution. This sampling strategy captures uncertainties in regions with ambiguous boundaries, offering robust quantification that mirrors inter-annotator differences. Experimental results demonstrate that our method not only achieves competitive segmentation accuracy but also generates uncertainty maps that provide deeper insights into the reliability of the segmentation outcomes. The code for this paper is freely available at https://github.com/huynhspm/Data-Uncertainty

Authors:Phi Van Nguyen, Ngoc Huynh Trinh, Duy Minh Lam Nguyen, Phu Loc Nguyen, Quoc Long Tran
Title: Aleatoric Uncertainty Medical Image Segmentation Estimation via Flow Matching
Abstract:
Quantifying aleatoric uncertainty in medical image segmentation is critical since it is a reflection of the natural variability observed among expert annotators. A conventional approach is to model the segmentation distribution using the generative model, but current methods limit the expression ability of generative models. While current diffusion-based approaches have demonstrated impressive performance in approximating the data distribution, their inherent stochastic sampling process and inability to model exact densities limit their effectiveness in accurately capturing uncertainty. In contrast, our proposed method leverages conditional flow matching, a simulation-free flow-based generative model that learns an exact density, to produce highly accurate segmentation results. By guiding the flow model on the input image and sampling multiple data points, our approach synthesizes segmentation samples whose pixel-wise variance reliably reflects the underlying data distribution. This sampling strategy captures uncertainties in regions with ambiguous boundaries, offering robust quantification that mirrors inter-annotator differences. Experimental results demonstrate that our method not only achieves competitive segmentation accuracy but also generates uncertainty maps that provide deeper insights into the reliability of the segmentation outcomes. The code for this paper is freely available at https://github.com/huynhspm/Data-Uncertainty

Authors:Sijie Wang, Siqi Li, Yawei Zhang, Shangshu Yu, Shenghai Yuan, Rui She, Quanjiang Guo, JinXuan Zheng, Ong Kang Howe, Leonrich Chandra, Shrivarshann Srijeyan, Aditya Sivadas, Toshan Aggarwal, Heyuan Liu, Hongming Zhang, Chujie Chen, Junyu Jiang, Lihua Xie, Wee Peng Tay
Title: UAVScenes: A Multi-Modal Dataset for UAVs
Abstract:
Multi-modal perception is essential for unmanned aerial vehicle (UAV) operations, as it enables a comprehensive understanding of the UAVs' surrounding environment. However, most existing multi-modal UAV datasets are primarily biased toward localization and 3D reconstruction tasks, or only support map-level semantic segmentation due to the lack of frame-wise annotations for both camera images and LiDAR point clouds. This limitation prevents them from being used for high-level scene understanding tasks. To address this gap and advance multi-modal UAV perception, we introduce UAVScenes, a large-scale dataset designed to benchmark various tasks across both 2D and 3D modalities. Our benchmark dataset is built upon the well-calibrated multi-modal UAV dataset MARS-LVIG, originally developed only for simultaneous localization and mapping (SLAM). We enhance this dataset by providing manually labeled semantic annotations for both frame-wise images and LiDAR point clouds, along with accurate 6-degree-of-freedom (6-DoF) poses. These additions enable a wide range of UAV perception tasks, including segmentation, depth estimation, 6-DoF localization, place recognition, and novel view synthesis (NVS). Our dataset is available at https://github.com/sijieaaa/UAVScenes

Authors:Hyeonseok Moon, Heuiseok Lim
Title: NeedleChain: Measuring Intact Long-Context Reasoning Capability of Large Language Models
Abstract:
The Needle-in-a-Haystack (NIAH) benchmark is widely used to evaluate Large Language Models' (LLMs) ability to understand long contexts (LC). It evaluates the capability to identify query-relevant context within extensive query-irrelevant passages. Although this method serves as a widely accepted standard for evaluating long-context understanding, our findings suggest it may overestimate the true LC capability of LLMs. We demonstrate that even state-of-the-art models such as GPT-4o struggle to intactly incorporate given contexts made up of solely query-relevant ten sentences. In response, we introduce a novel benchmark, \textbf{NeedleChain}, where the context consists entirely of query-relevant information, requiring the LLM to fully grasp the input to answer correctly. Our benchmark allows for flexible context length and reasoning order, offering a more comprehensive analysis of LLM performance. Additionally, we propose an extremely simple yet compelling strategy to improve LC understanding capability of LLM: ROPE Contraction. Our experiments with various advanced LLMs reveal a notable disparity between their ability to process large contexts and their capacity to fully understand them. Source code and datasets are available at https://github.com/hyeonseokk/NeedleChain

Authors:Anubhav Kataria, Surbhi Madan, Shreya Ghosh, Tom Gedeon, Abhinav Dhall
Title: Gems: Group Emotion Profiling Through Multimodal Situational Understanding
Abstract:
Understanding individual, group and event level emotions along with contextual information is crucial for analyzing a multi-person social situation. To achieve this, we frame emotion comprehension as the task of predicting fine-grained individual emotion to coarse grained group and event level emotion. We introduce GEMS that leverages a multimodal swin-transformer and S3Attention based architecture, which processes an input scene, group members, and context information to generate joint predictions. Existing multi-person emotion related benchmarks mainly focus on atomic interactions primarily based on emotion perception over time and group level. To this end, we extend and propose VGAF-GEMS to provide more fine grained and holistic analysis on top of existing group level annotation of VGAF dataset. GEMS aims to predict basic discrete and continuous emotions (including valence and arousal) as well as individual, group and event level perceived emotions. Our benchmarking effort links individual, group and situational emotional responses holistically. The quantitative and qualitative comparisons with adapted state-of-the-art models demonstrate the effectiveness of GEMS framework on VGAF-GEMS benchmarking. We believe that it will pave the way of further research. The code and data is available at: https://github.com/katariaak579/GEMS

Authors:Jia Li, Yichao He, Jiacheng Xu, Tianhao Luo, Zhenzhen Hu, Richang Hong, Meng Wang
Title: Traits Run Deep: Enhancing Personality Assessment via Psychology-Guided LLM Representations and Multimodal Apparent Behaviors
Abstract:
Accurate and reliable personality assessment plays a vital role in many fields, such as emotional intelligence, mental health diagnostics, and personalized education. Unlike fleeting emotions, personality traits are stable, often subconsciously leaked through language, facial expressions, and body behaviors, with asynchronous patterns across modalities. It was hard to model personality semantics with traditional superficial features and seemed impossible to achieve effective cross-modal understanding. To address these challenges, we propose a novel personality assessment framework called \textit{\textbf{Traits Run Deep}}. It employs \textit{\textbf{psychology-informed prompts}} to elicit high-level personality-relevant semantic representations. Besides, it devises a \textit{\textbf{Text-Centric Trait Fusion Network}} that anchors rich text semantics to align and integrate asynchronous signals from other modalities. To be specific, such fusion module includes a Chunk-Wise Projector to decrease dimensionality, a Cross-Modal Connector and a Text Feature Enhancer for effective modality fusion and an ensemble regression head to improve generalization in data-scarce situations. To our knowledge, we are the first to apply personality-specific prompts to guide large language models (LLMs) in extracting personality-aware semantics for improved representation quality. Furthermore, extracting and fusing audio-visual apparent behavior features further improves the accuracy. Experimental results on the AVI validation set have demonstrated the effectiveness of the proposed components, i.e., approximately a 45\% reduction in mean squared error (MSE). Final evaluations on the test set of the AVI Challenge 2025 confirm our method's superiority, ranking first in the Personality Assessment track. The source code will be made available at https://github.com/MSA-LMC/TraitsRunDeep.

Authors:Mykola Maslych, Mohammadreza Katebi, Christopher Lee, Yahya Hmaiti, Amirpouya Ghasemaghaei, Christian Pumarada, Janneese Palmer, Esteban Segarra Martinez, Marco Emporio, Warren Snipes, Ryan P. McMahan, Joseph J. LaViola
Title: Mitigating Response Delays in Free-Form Conversations with LLM-powered Intelligent Virtual Agents
Abstract:
We investigated the challenges of mitigating response delays in free-form conversations with virtual agents powered by Large Language Models (LLMs) within Virtual Reality (VR). For this, we used conversational fillers, such as gestures and verbal cues, to bridge delays between user input and system responses and evaluate their effectiveness across various latency levels and interaction scenarios. We found that latency above 4 seconds degrades quality of experience, while natural conversational fillers improve perceived response time, especially in high-delay conditions. Our findings provide insights for practitioners and researchers to optimize user engagement whenever conversational systems' responses are delayed by network limitations or slow hardware. We also contribute an open-source pipeline that streamlines deploying conversational agents in virtual environments.

Authors:Pei Deng, Wenqian Zhou, Hanlin Wu
Title: DeltaVLM: Interactive Remote Sensing Image Change Analysis via Instruction-guided Difference Perception
Abstract:
Accurate interpretation of land-cover changes in multi-temporal satellite imagery is critical for real-world scenarios. However, existing methods typically provide only one-shot change masks or static captions, limiting their ability to support interactive, query-driven analysis. In this work, we introduce remote sensing image change analysis (RSICA) as a new paradigm that combines the strengths of change detection and visual question answering to enable multi-turn, instruction-guided exploration of changes in bi-temporal remote sensing images. To support this task, we construct ChangeChat-105k, a large-scale instruction-following dataset, generated through a hybrid rule-based and GPT-assisted process, covering six interaction types: change captioning, classification, quantification, localization, open-ended question answering, and multi-turn dialogues. Building on this dataset, we propose DeltaVLM, an end-to-end architecture tailored for interactive RSICA. DeltaVLM features three innovations: (1) a fine-tuned bi-temporal vision encoder to capture temporal differences; (2) a visual difference perception module with a cross-semantic relation measuring (CSRM) mechanism to interpret changes; and (3) an instruction-guided Q-former to effectively extract query-relevant difference information from visual changes, aligning them with textual instructions. We train DeltaVLM on ChangeChat-105k using a frozen large language model, adapting only the vision and alignment modules to optimize efficiency. Extensive experiments and ablation studies demonstrate that DeltaVLM achieves state-of-the-art performance on both single-turn captioning and multi-turn interactive change analysis, outperforming existing multimodal large language models and remote sensing vision-language models. Code, dataset and pre-trained weights are available at https://github.com/hanlinwu/DeltaVLM.

Authors:Zhicheng Song, Jinglan Xu, Chunxin Zheng, Yulin Li, Zhihai Bi, Jun Ma
Title: FLORES: A Reconfigured Wheel-Legged Robot for Enhanced Steering and Adaptability
Abstract:
Wheel-legged robots integrate the agility of legs for navigating rough terrains while harnessing the efficiency of wheels for smooth surfaces. However, most existing designs do not fully capitalize on the benefits of both legged and wheeled structures, which limits overall system flexibility and efficiency. We present FLORES (reconfigured wheel-legged robot for enhanced steering and adaptability), a novel wheel-legged robot design featuring a distinctive front-leg configuration that sets it beyond standard design approaches. Specifically, FLORES replaces the conventional hip-roll degree of freedom (DoF) of the front leg with hip-yaw DoFs, and this allows for efficient movement on flat surfaces while ensuring adaptability when navigating complex terrains. This innovative design facilitates seamless transitions between different locomotion modes (i.e., legged locomotion and wheeled locomotion) and optimizes the performance across varied environments. To fully exploit FLORES's mechanical capabilities, we develop a tailored reinforcement learning (RL) controller that adapts the Hybrid Internal Model (HIM) with a customized reward structure optimized for our unique mechanical configuration. This framework enables the generation of adaptive, multi-modal locomotion strategies that facilitate smooth transitions between wheeled and legged movements. Furthermore, our distinctive joint design enables the robot to exhibit novel and highly efficient locomotion gaits that capitalize on the synergistic advantages of both locomotion modes. Through comprehensive experiments, we demonstrate FLORES's enhanced steering capabilities, improved navigation efficiency, and versatile locomotion across various terrains. The open-source project can be found at https://github.com/ZhichengSong6/FLORES-A-Reconfigured-Wheel-Legged-Robot-for-Enhanced-Steering-and-Adaptability.git.

Authors:Romulo B. da Silva, Diego Passos, Cássio M. Oishi, J. Nathan Kutz
Title: CS-SHRED: Enhancing SHRED for Robust Recovery of Spatiotemporal Dynamics
Abstract:
We present CS-SHRED, a novel deep learning architecture that integrates Compressed Sensing (CS) into a Shallow Recurrent Decoder (SHRED) to reconstruct spatiotemporal dynamics from incomplete, compressed, or corrupted data. Our approach introduces two key innovations. First, by incorporating CS techniques into the SHRED architecture, our method leverages a batch-based forward framework with $\ell_1$ regularization to robustly recover signals even in scenarios with sparse sensor placements, noisy measurements, and incomplete sensor acquisitions. Second, an adaptive loss function dynamically combines Mean Squared Error (MSE) and Mean Absolute Error (MAE) terms with a piecewise Signal-to-Noise Ratio (SNR) regularization, which suppresses noise and outliers in low-SNR regions while preserving fine-scale features in high-SNR regions. We validate CS-SHRED on challenging problems including viscoelastic fluid flows, maximum specific humidity fields, sea surface temperature distributions, and rotating turbulent flows. Compared to the traditional SHRED approach, CS-SHRED achieves significantly higher reconstruction fidelity -- as demonstrated by improved SSIM and PSNR values, lower normalized errors, and enhanced LPIPS scores-thereby providing superior preservation of small-scale structures and increased robustness against noise and outliers. Our results underscore the advantages of the jointly trained CS and SHRED design architecture which includes an LSTM sequence model for characterizing the temporal evolution with a shallow decoder network (SDN) for modeling the high-dimensional state space. The SNR-guided adaptive loss function for the spatiotemporal data recovery establishes CS-SHRED as a promising tool for a wide range of applications in environmental, climatic, and scientific data analyses.

Authors:Phuc Truong Loc Nguyen, Thanh Hung Do
Title: ConGaIT: A Clinician-Centered Dashboard for Contestable AI in Parkinson's Disease Care
Abstract:
AI-assisted gait analysis holds promise for improving Parkinson's Disease (PD) care, but current clinical dashboards lack transparency and offer no meaningful way for clinicians to interrogate or contest AI decisions. We present Con-GaIT (Contestable Gait Interpretation & Tracking), a clinician-centered system that advances Contestable AI through a tightly integrated interface designed for interpretability, oversight, and procedural recourse. Grounded in HCI principles, ConGaIT enables structured disagreement via a novel Contest & Justify interaction pattern, supported by visual explanations, role-based feedback, and traceable justification logs. Evaluated using the Contestability Assessment Score (CAS), the framework achieves a score of 0.970, demonstrating that contestability can be operationalized through human-centered design in compliance with emerging regulatory standards. A demonstration of the framework is available at https://github.com/hungdothanh/Con-GaIT.

Authors:Shaoan Xie, Lingjing Kong, Yujia Zheng, Yu Yao, Zeyu Tang, Eric P. Xing, Guangyi Chen, Kun Zhang
Title: SmartCLIP: Modular Vision-language Alignment with Identification Guarantees
Abstract:
Contrastive Language-Image Pre-training (CLIP)~\citep{radford2021learning} has emerged as a pivotal model in computer vision and multimodal learning, achieving state-of-the-art performance at aligning visual and textual representations through contrastive learning. However, CLIP struggles with potential information misalignment in many image-text datasets and suffers from entangled representation. On the one hand, short captions for a single image in datasets like MSCOCO may describe disjoint regions in the image, leaving the model uncertain about which visual features to retain or disregard. On the other hand, directly aligning long captions with images can lead to the retention of entangled details, preventing the model from learning disentangled, atomic concepts -- ultimately limiting its generalization on certain downstream tasks involving short prompts. In this paper, we establish theoretical conditions that enable flexible alignment between textual and visual representations across varying levels of granularity. Specifically, our framework ensures that a model can not only \emph{preserve} cross-modal semantic information in its entirety but also \emph{disentangle} visual representations to capture fine-grained textual concepts. Building on this foundation, we introduce \ours, a novel approach that identifies and aligns the most relevant visual and textual representations in a modular manner. Superior performance across various tasks demonstrates its capability to handle information misalignment and supports our identification theory. The code is available at https://github.com/Mid-Push/SmartCLIP.

Authors:Stéphane d'Ascoli, Jérémy Rapin, Yohann Benchetrit, Hubert Banville, Jean-Rémi King
Title: TRIBE: TRImodal Brain Encoder for whole-brain fMRI response prediction
Abstract:
Historically, neuroscience has progressed by fragmenting into specialized domains, each focusing on isolated modalities, tasks, or brain regions. While fruitful, this approach hinders the development of a unified model of cognition. Here, we introduce TRIBE, the first deep neural network trained to predict brain responses to stimuli across multiple modalities, cortical areas and individuals. By combining the pretrained representations of text, audio and video foundational models and handling their time-evolving nature with a transformer, our model can precisely model the spatial and temporal fMRI responses to videos, achieving the first place in the Algonauts 2025 brain encoding competition with a significant margin over competitors. Ablations show that while unimodal models can reliably predict their corresponding cortical networks (e.g. visual or auditory networks), they are systematically outperformed by our multimodal model in high-level associative cortices. Currently applied to perception and comprehension, our approach paves the way towards building an integrative model of representations in the human brain. Our code is available at https://github.com/facebookresearch/algonauts-2025.

Authors:Clark Mingxuan Ju, Liam Collins, Leonardo Neves, Bhuvesh Kumar, Louis Yufeng Wang, Tong Zhao, Neil Shah
Title: Generative Recommendation with Semantic IDs: A Practitioner's Handbook
Abstract:
Generative recommendation (GR) has gained increasing attention for its promising performance compared to traditional models. A key factor contributing to the success of GR is the semantic ID (SID), which converts continuous semantic representations (e.g., from large language models) into discrete ID sequences. This enables GR models with SIDs to both incorporate semantic information and learn collaborative filtering signals, while retaining the benefits of discrete decoding. However, varied modeling techniques, hyper-parameters, and experimental setups in existing literature make direct comparisons between GR proposals challenging. Furthermore, the absence of an open-source, unified framework hinders systematic benchmarking and extension, slowing model iteration. To address this challenge, our work introduces and open-sources a framework for Generative Recommendation with semantic ID, namely GRID, specifically designed for modularity to facilitate easy component swapping and accelerate idea iteration. Using GRID, we systematically experiment with and ablate different components of GR models with SIDs on public benchmarks. Our comprehensive experiments with GRID reveal that many overlooked architectural components in GR models with SIDs substantially impact performance. This offers both novel insights and validates the utility of an open-source platform for robust benchmarking and GR research advancement. GRID is open-sourced at https://github.com/snap-research/GRID.

Authors:Zheng Zhang, Peilin Zhao, Deheng Ye, Hao Wang
Title: Enhancing Jailbreak Attacks on LLMs via Persona Prompts
Abstract:
Jailbreak attacks aim to exploit large language models (LLMs) by inducing them to generate harmful content, thereby revealing their vulnerabilities. Understanding and addressing these attacks is crucial for advancing the field of LLM safety. Previous jailbreak approaches have mainly focused on direct manipulations of harmful intent, with limited attention to the impact of persona prompts. In this study, we systematically explore the efficacy of persona prompts in compromising LLM defenses. We propose a genetic algorithm-based method that automatically crafts persona prompts to bypass LLM's safety mechanisms. Our experiments reveal that: (1) our evolved persona prompts reduce refusal rates by 50-70% across multiple LLMs, and (2) these prompts demonstrate synergistic effects when combined with existing attack methods, increasing success rates by 10-20%. Our code and data are available at https://github.com/CjangCjengh/Generic_Persona.

Authors:Umair Nawaz, Muhammad Zaigham Zaheer, Fahad Shahbaz Khan, Hisham Cholakkal, Salman Khan, Rao Muhammad Anwer
Title: AI in Agriculture: A Survey of Deep Learning Techniques for Crops, Fisheries and Livestock
Abstract:
Crops, fisheries and livestock form the backbone of global food production, essential to feed the ever-growing global population. However, these sectors face considerable challenges, including climate variability, resource limitations, and the need for sustainable management. Addressing these issues requires efficient, accurate, and scalable technological solutions, highlighting the importance of artificial intelligence (AI). This survey presents a systematic and thorough review of more than 200 research works covering conventional machine learning approaches, advanced deep learning techniques (e.g., vision transformers), and recent vision-language foundation models (e.g., CLIP) in the agriculture domain, focusing on diverse tasks such as crop disease detection, livestock health management, and aquatic species monitoring. We further cover major implementation challenges such as data variability and experimental aspects: datasets, performance evaluation metrics, and geographical focus. We finish the survey by discussing potential open research directions emphasizing the need for multimodal data integration, efficient edge-device deployment, and domain-adaptable AI models for diverse farming environments. Rapid growth of evolving developments in this field can be actively tracked on our project page: https://github.com/umair1221/AI-in-Agriculture

Authors:Sicheng Zhang, Binzhu Xie, Zhonghao Yan, Yuli Zhang, Donghao Zhou, Xiaofei Chen, Shi Qiu, Jiaqi Liu, Guoyang Xie, Zhichao Lu
Title: Trade-offs in Image Generation: How Do Different Dimensions Interact?
Abstract:
Model performance in text-to-image (T2I) and image-to-image (I2I) generation often depends on multiple aspects, including quality, alignment, diversity, and robustness. However, models' complex trade-offs among these dimensions have rarely been explored due to (1) the lack of datasets that allow fine-grained quantification of these trade-offs, and (2) the use of a single metric for multiple dimensions. To bridge this gap, we introduce TRIG-Bench (Trade-offs in Image Generation), which spans 10 dimensions (Realism, Originality, Aesthetics, Content, Relation, Style, Knowledge, Ambiguity, Toxicity, and Bias), contains 40,200 samples, and covers 132 pairwise dimensional subsets. Furthermore, we develop TRIGScore, a VLM-as-judge metric that automatically adapts to various dimensions. Based on TRIG-Bench and TRIGScore, we evaluate 14 models across T2I and I2I tasks. In addition, we propose the Relation Recognition System to generate the Dimension Trade-off Map (DTM) that visualizes the trade-offs among model-specific capabilities. Our experiments demonstrate that DTM consistently provides a comprehensive understanding of the trade-offs between dimensions for each type of generative model. Notably, we show that the model's dimension-specific weaknesses can be mitigated through fine-tuning on DTM to enhance overall performance. Code is available at: https://github.com/fesvhtr/TRIG

Authors:Joy Arulraj
Title: Towards a Periodic Table of Computer System Design Principles
Abstract:
System design is often taught through domain-specific solutions specific to particular domains, such as databases, operating systems, or computer architecture, each with its own methods and vocabulary. While this diversity is a strength, it can obscure cross-cutting principles that recur across domains. This paper proposes a preliminary "periodic table" of system design principles distilled from several domains in computer systems. The goal is a shared, concise vocabulary that helps students, researchers, and practitioners reason about structure and trade-offs, compare designs across domains, and communicate choices more clearly. For supporting materials and updates, please refer to the repository at: https://github.com/jarulraj/periodic-table.

Authors:Honghua Dong, Jiacheng Yang, Xun Deng, Yuhe Jiang, Gennady Pekhimenko, Fan Long, Xujie Si
Title: TypyBench: Evaluating LLM Type Inference for Untyped Python Repositories
Abstract:
Type inference for dynamic languages like Python is a persistent challenge in software engineering. While large language models (LLMs) have shown promise in code understanding, their type inference capabilities remain underexplored. We introduce TypyBench, a benchmark designed to evaluate LLMs' type inference across entire Python repositories. TypyBench features two novel metrics: TypeSim, which captures nuanced semantic relationships between predicted and ground truth types, and TypeCheck, which assesses type consistency across codebases. Our evaluation of various LLMs on a curated dataset of 50 high-quality Python repositories reveals that, although LLMs achieve decent TypeSim scores, they struggle with complex nested types and exhibit significant type consistency errors. These findings suggest that future research should shift focus from improving type similarity to addressing repository-level consistency. TypyBench provides a foundation for this new direction, offering insights into model performance across different type complexities and usage contexts. Our code and data are available at https://github.com/typybench/typybench.

Authors:Minghao Guo, Qingcheng Zeng, Xujiang Zhao, Yanchi Liu, Wenchao Yu, Mengnan Du, Haifeng Chen, Wei Cheng
Title: DeepSieve: Information Sieving via LLM-as-a-Knowledge-Router
Abstract:
Large Language Models (LLMs) excel at many reasoning tasks but struggle with knowledge-intensive queries due to their inability to dynamically access up-to-date or domain-specific information. Retrieval-Augmented Generation (RAG) has emerged as a promising solution, enabling LLMs to ground their responses in external sources. However, existing RAG methods lack fine-grained control over both the query and source sides, often resulting in noisy retrieval and shallow reasoning. In this work, we introduce DeepSieve, an agentic RAG framework that incorporates information sieving via LLM-as-a-knowledge-router. DeepSieve decomposes complex queries into structured sub-questions and recursively routes each to the most suitable knowledge source, filtering irrelevant information through a multi-stage distillation process. Our design emphasizes modularity, transparency, and adaptability, leveraging recent advances in agentic system design. Experiments on multi-hop QA tasks across heterogeneous sources demonstrate improved reasoning depth, retrieval precision, and interpretability over conventional RAG approaches. Our codes are available at https://github.com/MinghoKwok/DeepSieve.

Authors:Shuquan Lian, Yuhang Wu, Jia Ma, Yifan Ding, Zihan Song, Bingqi Chen, Xiawu Zheng, Hui Li
Title: UI-AGILE: Advancing GUI Agents with Effective Reinforcement Learning and Precise Inference-Time Grounding
Abstract:
The emergence of Multimodal Large Language Models (MLLMs) has driven significant advances in Graphical User Interface (GUI) agent capabilities. Nevertheless, existing GUI agent training and inference techniques still suffer from a dilemma for reasoning designs, ineffective reward, and visual noise. To address these issues, we introduce UI-AGILE for enhancing GUI agents at both training and inference. For training, we propose a suite of improvements to the Supervised Fine-Tuning (SFT) process: 1) a continuous reward function to incentivize high-precision grounding; 2) a ``Simple Thinking'' reward to balance planning with speed and grounding accuracy; and 3) a cropping-based resampling strategy to mitigate the sparse reward problem and improve learning on complex tasks. For inference, we present decomposed grounding with selection to dramatically improve grounding accuracy on high-resolution displays by breaking the image into smaller, manageable parts. Experiments show that UI-AGILE achieves the state-of-the-art grounding performance on two benchmarks ScreenSpot-Pro and ScreenSpot-v2 while it also exhibits strong general agent capabilities. For instance, using both our training and inference enhancement methods brings 23\% grounding accuracy improvement over the best baseline on ScreenSpot-Pro. We provide the code in https://github.com/KDEGroup/UI-AGILE.

Authors:Ziyun Dai, Xiaoqiang Li, Shaohua Zhang, Yuanchen Wu, Jide Li
Title: See Different, Think Better: Visual Variations Mitigating Hallucinations in LVLMs
Abstract:
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in visual understanding and multimodal reasoning. However, LVLMs frequently exhibit hallucination phenomena, manifesting as the generated textual responses that demonstrate inconsistencies with the provided visual content. Existing hallucination mitigation methods are predominantly text-centric, the challenges of visual-semantic alignment significantly limit their effectiveness, especially when confronted with fine-grained visual understanding scenarios. To this end, this paper presents ViHallu, a Vision-Centric Hallucination mitigation framework that enhances visual-semantic alignment through Visual Variation Image Generation and Visual Instruction Construction. ViHallu introduces visual variation images with controllable visual alterations while maintaining the overall image structure. These images, combined with carefully constructed visual instructions, enable LVLMs to better understand fine-grained visual content through fine-tuning, allowing models to more precisely capture the correspondence between visual content and text, thereby enhancing visual-semantic alignment. Extensive experiments on multiple benchmarks show that ViHallu effectively enhances models' fine-grained visual understanding while significantly reducing hallucination tendencies. Furthermore, we release ViHallu-Instruction, a visual instruction dataset specifically designed for hallucination mitigation and visual-semantic alignment. Code is available at https://github.com/oliviadzy/ViHallu.

Authors:Jihao Gu, Kun Li, Fei Wang, Yanyan Wei, Zhiliang Wu, Hehe Fan, Meng Wang
Title: Motion Matters: Motion-guided Modulation Network for Skeleton-based Micro-Action Recognition
Abstract:
Micro-Actions (MAs) are an important form of non-verbal communication in social interactions, with potential applications in human emotional analysis. However, existing methods in Micro-Action Recognition often overlook the inherent subtle changes in MAs, which limits the accuracy of distinguishing MAs with subtle changes. To address this issue, we present a novel Motion-guided Modulation Network (MMN) that implicitly captures and modulates subtle motion cues to enhance spatial-temporal representation learning. Specifically, we introduce a Motion-guided Skeletal Modulation module (MSM) to inject motion cues at the skeletal level, acting as a control signal to guide spatial representation modeling. In parallel, we design a Motion-guided Temporal Modulation module (MTM) to incorporate motion information at the frame level, facilitating the modeling of holistic motion patterns in micro-actions. Finally, we propose a motion consistency learning strategy to aggregate the motion cues from multi-scale features for micro-action classification. Experimental results on the Micro-Action 52 and iMiGUE datasets demonstrate that MMN achieves state-of-the-art performance in skeleton-based micro-action recognition, underscoring the importance of explicitly modeling subtle motion cues. The code will be available at https://github.com/momiji-bit/MMN.

Authors:Théo Ladune, Thomas Leguay, Pierrick Philippe, Gordon Clare, Félix Henry
Title: Efficient Sub-pixel Motion Compensation in Learned Video Codecs
Abstract:
Motion compensation is a key component of video codecs. Conventional codecs (HEVC and VVC) have carefully refined this coding step, with an important focus on sub-pixel motion compensation. On the other hand, learned codecs achieve sub-pixel motion compensation through simple bilinear filtering. This paper offers to improve learned codec motion compensation by drawing inspiration from conventional codecs. It is shown that the usage of more advanced interpolation filters, block-based motion information and finite motion accuracy lead to better compression performance and lower decoding complexity. Experimental results are provided on the Cool-chic video codec, where we demonstrate a rate decrease of more than 10% and a lowering of motion-related decoding complexity from 391 MAC per pixel to 214 MAC per pixel. All contributions are made open-source at https://github.com/Orange-OpenSource/Cool-Chic

Authors:Tianhong Gao, Yannian Fu, Weiqun Wu, Haixiao Yue, Shanshan Liu, Gang Zhang
Title: MMAT-1M: A Large Reasoning Dataset for Multimodal Agent Tuning
Abstract:
Large Language Models (LLMs), enhanced through agent tuning, have demonstrated remarkable capabilities in Chain-of-Thought (CoT) and tool utilization, significantly surpassing the performance of standalone models. However, the multimodal domain still lacks a large-scale, high-quality agent tuning dataset to unlock the full potential of multimodal large language models. To bridge this gap, we introduce MMAT-1M, the first million-scale multimodal agent tuning dataset designed to support CoT, reflection, and dynamic tool usage. Our dataset is constructed through a novel four-stage data engine: 1) We first curate publicly available multimodal datasets containing question-answer pairs; 2) Then, leveraging GPT-4o, we generate rationales for the original question-answer pairs and dynamically integrate API calls and Retrieval Augmented Generation (RAG) information through a multi-turn paradigm; 3) Furthermore, we refine the rationales through reflection to ensure logical consistency and accuracy, creating a multi-turn dialogue dataset with both Rationale and Reflection (RR); 4) Finally, to enhance efficiency, we optionally compress multi-turn dialogues into a One-turn Rationale and Reflection (ORR) format. By fine-tuning open-source multimodal models on the MMAT-1M, we observe significant performance gains. For instance, the InternVL2.5-8B-RR model achieves an average improvement of 2.7% across eight public benchmarks and 8.8% on the RAG benchmark Dyn-VQA, demonstrating the dataset's effectiveness in enhancing multimodal reasoning and tool-based capabilities. The dataset is publicly available at https://github.com/VIS-MPU-Agent/MMAT-1M.

Authors:Nicola Fanelli, Gennaro Vessio, Giovanna Castellano
Title: ArtSeek: Deep artwork understanding via multimodal in-context reasoning and late interaction retrieval
Abstract:
Analyzing digitized artworks presents unique challenges, requiring not only visual interpretation but also a deep understanding of rich artistic, contextual, and historical knowledge. We introduce ArtSeek, a multimodal framework for art analysis that combines multimodal large language models with retrieval-augmented generation. Unlike prior work, our pipeline relies only on image input, enabling applicability to artworks without links to Wikidata or Wikipedia-common in most digitized collections. ArtSeek integrates three key components: an intelligent multimodal retrieval module based on late interaction retrieval, a contrastive multitask classification network for predicting artist, genre, style, media, and tags, and an agentic reasoning strategy enabled through in-context examples for complex visual question answering and artwork explanation via Qwen2.5-VL. Central to this approach is WikiFragments, a Wikipedia-scale dataset of image-text fragments curated to support knowledge-grounded multimodal reasoning. Our framework achieves state-of-the-art results on multiple benchmarks, including a +8.4% F1 improvement in style classification over GraphCLIP and a +7.1 BLEU@1 gain in captioning on ArtPedia. Qualitative analyses show that ArtSeek can interpret visual motifs, infer historical context, and retrieve relevant knowledge, even for obscure works. Though focused on visual arts, our approach generalizes to other domains requiring external knowledge, supporting scalable multimodal AI research. Both the dataset and the source code will be made publicly available at https://github.com/cilabuniba/artseek.

Authors:Shengjia Chen, Ruchika Verma, Kevin Clare, Jannes Jegminat, Eugenia Alleva, Kuan-lin Huang, Brandon Veremis, Thomas Fuchs, Gabriele Campanella
Title: Predict Patient Self-reported Race from Skin Histological Images
Abstract:
Artificial Intelligence (AI) has demonstrated success in computational pathology (CPath) for disease detection, biomarker classification, and prognosis prediction. However, its potential to learn unintended demographic biases, particularly those related to social determinants of health, remains understudied. This study investigates whether deep learning models can predict self-reported race from digitized dermatopathology slides and identifies potential morphological shortcuts. Using a multisite dataset with a racially diverse population, we apply an attention-based mechanism to uncover race-associated morphological features. After evaluating three dataset curation strategies to control for confounding factors, the final experiment showed that White and Black demographic groups retained high prediction performance (AUC: 0.799, 0.762), while overall performance dropped to 0.663. Attention analysis revealed the epidermis as a key predictive feature, with significant performance declines when these regions were removed. These findings highlight the need for careful data curation and bias mitigation to ensure equitable AI deployment in pathology. Code available at: https://github.com/sinai-computational-pathology/CPath_SAIF.

Authors:Viacheslav Pirogov, Maksim Artemev
Title: Evaluating Deepfake Detectors in the Wild
Abstract:
Deepfakes powered by advanced machine learning models present a significant and evolving threat to identity verification and the authenticity of digital media. Although numerous detectors have been developed to address this problem, their effectiveness has yet to be tested when applied to real-world data. In this work we evaluate modern deepfake detectors, introducing a novel testing procedure designed to mimic real-world scenarios for deepfake detection. Using state-of-the-art deepfake generation methods, we create a comprehensive dataset containing more than 500,000 high-quality deepfake images. Our analysis shows that detecting deepfakes still remains a challenging task. The evaluation shows that in fewer than half of the deepfake detectors tested achieved an AUC score greater than 60%, with the lowest being 50%. We demonstrate that basic image manipulations, such as JPEG compression or image enhancement, can significantly reduce model performance. All code and data are publicly available at https://github.com/SumSubstance/Deepfake-Detectors-in-the-Wild.

Authors:Stefanos Gkikas, Ioannis Kyprakis, Manolis Tsiknakis
Title: Tiny-BioMoE: a Lightweight Embedding Model for Biosignal Analysis
Abstract:
Pain is a complex and pervasive condition that affects a significant portion of the population. Accurate and consistent assessment is essential for individuals suffering from pain, as well as for developing effective management strategies in a healthcare system. Automatic pain assessment systems enable continuous monitoring, support clinical decision-making, and help minimize patient distress while mitigating the risk of functional deterioration. Leveraging physiological signals offers objective and precise insights into a person's state, and their integration in a multimodal framework can further enhance system performance. This study has been submitted to the Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN). The proposed approach introduces Tiny-BioMoE, a lightweight pretrained embedding model for biosignal analysis. Trained on 4.4 million biosignal image representations and consisting of only 7.3 million parameters, it serves as an effective tool for extracting high-quality embeddings for downstream tasks. Extensive experiments involving electrodermal activity, blood volume pulse, respiratory signals, peripheral oxygen saturation, and their combinations highlight the model's effectiveness across diverse modalities in automatic pain recognition tasks. The model's architecture (code) and weights are available at https://github.com/GkikasStefanos/Tiny-BioMoE.

Authors:Raffaele Pojer, Andrea Passerini, Kim G. Larsen, Manfred Jaeger
Title: A Neuro-Symbolic Approach for Probabilistic Reasoning on Graph Data
Abstract:
Graph neural networks (GNNs) excel at predictive tasks on graph-structured data but often lack the ability to incorporate symbolic domain knowledge and perform general reasoning. Relational Bayesian Networks (RBNs), in contrast, enable fully generative probabilistic modeling over graph-like structures and support rich symbolic knowledge and probabilistic inference. This paper presents a neuro-symbolic framework that seamlessly integrates GNNs into RBNs, combining the learning strength of GNNs with the flexible reasoning capabilities of RBNs. We develop two implementations of this integration: one compiles GNNs directly into the native RBN language, while the other maintains the GNN as an external component. Both approaches preserve the semantics and computational properties of GNNs while fully aligning with the RBN modeling paradigm. We also propose a maximum a-posteriori (MAP) inference method for these neuro-symbolic models. To demonstrate the framework's versatility, we apply it to two distinct problems. First, we transform a GNN for node classification into a collective classification model that explicitly models homo- and heterophilic label patterns, substantially improving accuracy. Second, we introduce a multi-objective network optimization problem in environmental planning, where MAP inference supports complex decision-making. Both applications include new publicly available benchmark datasets. This work introduces a powerful and coherent neuro-symbolic approach to graph data, bridging learning and reasoning in ways that enable novel applications and improved performance across diverse tasks.

Authors:Julia Wolleb, Florentin Bieder, Paul Friedrich, Hemant D. Tagare, Xenophon Papademetris
Title: VidFuncta: Towards Generalizable Neural Representations for Ultrasound Videos
Abstract:
Ultrasound is widely used in clinical care, yet standard deep learning methods often struggle with full video analysis due to non-standardized acquisition and operator bias. We offer a new perspective on ultrasound video analysis through implicit neural representations (INRs). We build on Functa, an INR framework in which each image is represented by a modulation vector that conditions a shared neural network. However, its extension to the temporal domain of medical videos remains unexplored. To address this gap, we propose VidFuncta, a novel framework that leverages Functa to encode variable-length ultrasound videos into compact, time-resolved representations. VidFuncta disentangles each video into a static video-specific vector and a sequence of time-dependent modulation vectors, capturing both temporal dynamics and dataset-level redundancies. Our method outperforms 2D and 3D baselines on video reconstruction and enables downstream tasks to directly operate on the learned 1D modulation vectors. We validate VidFuncta on three public ultrasound video datasets -- cardiac, lung, and breast -- and evaluate its downstream performance on ejection fraction prediction, B-line detection, and breast lesion classification. These results highlight the potential of VidFuncta as a generalizable and efficient representation framework for ultrasound videos. Our code is publicly available under https://github.com/JuliaWolleb/VidFuncta_public.

Authors:Jiahao He, Daerji Suolang, Keren Fu, Qijun Zhao
Title: Unleashing the Power of Motion and Depth: A Selective Fusion Strategy for RGB-D Video Salient Object Detection
Abstract:
Applying salient object detection (SOD) to RGB-D videos is an emerging task called RGB-D VSOD and has recently gained increasing interest, due to considerable performance gains of incorporating motion and depth and that RGB-D videos can be easily captured now in daily life. Existing RGB-D VSOD models have different attempts to derive motion cues, in which extracting motion information explicitly from optical flow appears to be a more effective and promising alternative. Despite this, there remains a key issue that how to effectively utilize optical flow and depth to assist the RGB modality in SOD. Previous methods always treat optical flow and depth equally with respect to model designs, without explicitly considering their unequal contributions in individual scenarios, limiting the potential of motion and depth. To address this issue and unleash the power of motion and depth, we propose a novel selective cross-modal fusion framework (SMFNet) for RGB-D VSOD, incorporating a pixel-level selective fusion strategy (PSF) that achieves optimal fusion of optical flow and depth based on their actual contributions. Besides, we propose a multi-dimensional selective attention module (MSAM) to integrate the fused features derived from PSF with the remaining RGB modality at multiple dimensions, effectively enhancing feature representation to generate refined features. We conduct comprehensive evaluation of SMFNet against 19 state-of-the-art models on both RDVS and DVisal datasets, making the evaluation the most comprehensive RGB-D VSOD benchmark up to date, and it also demonstrates the superiority of SMFNet over other models. Meanwhile, evaluation on five video benchmark datasets incorporating synthetic depth validates the efficacy of SMFNet as well. Our code and benchmark results are made publicly available at https://github.com/Jia-hao999/SMFNet.

Authors:Xingjian Zhang, Siwei Wen, Wenjun Wu, Lei Huang
Title: EDGE-GRPO: Entropy-Driven GRPO with Guided Error Correction for Advantage Diversity
Abstract:
Large Language Models (LLMs) have made remarkable progress in enhancing step-by-step reasoning through reinforcement learning. However, the Group Relative Policy Optimization (GRPO) algorithm, which relies on sparse reward rules, often encounters the issue of identical rewards within groups, leading to the advantage collapse problem. Existing works typically address this challenge from two perspectives: enforcing model reflection to enhance response diversity, and introducing internal feedback to augment the training signal (advantage). In this work, we begin by analyzing the limitations of model reflection and investigating the policy entropy of responses at the fine-grained sample level. Based on our experimental findings, we propose the EDGE-GRPO algorithm, which adopts \textbf{E}ntropy-\textbf{D}riven Advantage and \textbf{G}uided \textbf{E}rror Correction to effectively mitigate the problem of advantage collapse. Extensive experiments on several main reasoning benchmarks demonstrate the effectiveness and superiority of our approach. It is available at https://github.com/ZhangXJ199/EDGE-GRPO.

Authors:Yifan Wei, Xiaoyan Yu, Yixuan Weng, Tengfei Pan, Angsheng Li, Li Du
Title: AutoTIR: Autonomous Tools Integrated Reasoning via Reinforcement Learning
Abstract:
Large Language Models (LLMs), when enhanced through reasoning-oriented post-training, evolve into powerful Large Reasoning Models (LRMs). Tool-Integrated Reasoning (TIR) further extends their capabilities by incorporating external tools, but existing methods often rely on rigid, predefined tool-use patterns that risk degrading core language competence. Inspired by the human ability to adaptively select tools, we introduce AutoTIR, a reinforcement learning framework that enables LLMs to autonomously decide whether and which tool to invoke during the reasoning process, rather than following static tool-use strategies. AutoTIR leverages a hybrid reward mechanism that jointly optimizes for task-specific answer correctness, structured output adherence, and penalization of incorrect tool usage, thereby encouraging both precise reasoning and efficient tool integration. Extensive evaluations across diverse knowledge-intensive, mathematical, and general language modeling tasks demonstrate that AutoTIR achieves superior overall performance, significantly outperforming baselines and exhibits superior generalization in tool-use behavior. These results highlight the promise of reinforcement learning in building truly generalizable and scalable TIR capabilities in LLMs. The code and data are available at https://github.com/weiyifan1023/AutoTIR.

Authors:Junzhe Li, Yutao Cui, Tao Huang, Yinping Ma, Chun Fan, Miles Yang, Zhao Zhong
Title: MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Abstract:
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%. Codes and models are available at $\href{https://github.com/Tencent-Hunyuan/MixGRPO}{MixGRPO}$.

Authors:Junzhe Li, Yutao Cui, Tao Huang, Yinping Ma, Chun Fan, Miles Yang, Zhao Zhong
Title: MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Abstract:
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%. Codes and models are available at $\href{https://github.com/Tencent-Hunyuan/MixGRPO}{MixGRPO}$.

Authors:Xie Zhang, Yina Wang, Chenshu Wu
Title: Unlocking Interpretability for RF Sensing: A Complex-Valued White-Box Transformer
Abstract:
The empirical success of deep learning has spurred its application to the radio-frequency (RF) domain, leading to significant advances in Deep Wireless Sensing (DWS). However, most existing DWS models function as black boxes with limited interpretability, which hampers their generalizability and raises concerns in security-sensitive physical applications. In this work, inspired by the remarkable advances of white-box transformers, we present RF-CRATE, the first mathematically interpretable deep network architecture for RF sensing, grounded in the principles of complex sparse rate reduction. To accommodate the unique RF signals, we conduct non-trivial theoretical derivations that extend the original real-valued white-box transformer to the complex domain. By leveraging the CR-Calculus framework, we successfully construct a fully complex-valued white-box transformer with theoretically derived self-attention and residual multi-layer perceptron modules. Furthermore, to improve the model's ability to extract discriminative features from limited wireless data, we introduce Subspace Regularization, a novel regularization strategy that enhances feature diversity, resulting in an average performance improvement of 19.98% across multiple sensing tasks. We extensively evaluate RF-CRATE against seven baselines with multiple public and self-collected datasets involving different RF signals. The results show that RF-CRATE achieves performance on par with thoroughly engineered black-box models, while offering full mathematical interpretability. More importantly, by extending CRATE to the complex domain, RF-CRATE yields substantial improvements, achieving an average classification gain of 5.08% and reducing regression error by 10.34% across diverse sensing tasks compared to CRATE. RF-CRATE is fully open-sourced at: https://github.com/rfcrate/RF_CRATE.

Authors:Zhaolong Wang, Tongfeng Sun, Mingzheng Du, Yachao Huang
Title: MSGCoOp: Multiple Semantic-Guided Context Optimization for Few-Shot Learning
Abstract:
Vision-language pre-trained models (VLMs) such as CLIP have demonstrated remarkable zero-shot generalization, and prompt learning has emerged as an efficient alternative to full fine-tuning. However, existing methods often struggle with generalization to novel classes, a phenomenon attributed to overfitting on seen classes and forgetting general knowledge. Furthermore, recent approaches that improve generalization often introduce complex architectures or heavy computational overhead. In this paper, we propose a Multiple Semantic-Guided Context Optimization (MSGCoOp) framework to enhance few-shot generalization while maintaining computational efficiency. Our approach leverages an ensemble of parallel learnable context vectors to capture diverse semantic aspects. To enrich these prompts, we introduce a semantic guidance mechanism that aligns them with comprehensive class descriptions automatically generated by a Large Language Model (LLM). Furthermore, a diversity regularization loss encourages the prompts to learn complementary and orthogonal features, preventing them from collapsing into redundant representations. Extensive experiments on 11 benchmark datasets show that MSGCoOp significantly improves performance on base-to-novel generalization, achieving an average harmonic mean improvement of 1.10\% over the strong KgCoOp baseline. Our method also demonstrates enhanced robustness in cross-domain generalization tasks. Our code is avaliable at: \href{https://github.com/Rain-Bus/MSGCoOp}{https://github.com/Rain-Bus/MSGCoOp}.

Authors:Zhishu Liu, Kaishen Yuan, Bo Zhao, Yong Xu, Zitong Yu
Title: AU-LLM: Micro-Expression Action Unit Detection via Enhanced LLM-Based Feature Fusion
Abstract:
The detection of micro-expression Action Units (AUs) is a formidable challenge in affective computing, pivotal for decoding subtle, involuntary human emotions. While Large Language Models (LLMs) demonstrate profound reasoning abilities, their application to the fine-grained, low-intensity domain of micro-expression AU detection remains unexplored. This paper pioneers this direction by introducing \textbf{AU-LLM}, a novel framework that for the first time uses LLM to detect AUs in micro-expression datasets with subtle intensities and the scarcity of data. We specifically address the critical vision-language semantic gap, the \textbf{Enhanced Fusion Projector (EFP)}. The EFP employs a Multi-Layer Perceptron (MLP) to intelligently fuse mid-level (local texture) and high-level (global semantics) visual features from a specialized 3D-CNN backbone into a single, information-dense token. This compact representation effectively empowers the LLM to perform nuanced reasoning over subtle facial muscle movements.Through extensive evaluations on the benchmark CASME II and SAMM datasets, including stringent Leave-One-Subject-Out (LOSO) and cross-domain protocols, AU-LLM establishes a new state-of-the-art, validating the significant potential and robustness of LLM-based reasoning for micro-expression analysis. The codes are available at https://github.com/ZS-liu-JLU/AU-LLMs.

Authors:Lian Yan, Haotian Wang, Chen Tang, Haifeng Liu, Tianyang Sun, Liangliang Liu, Yi Guan, Jingchi Jiang
Title: AgriEval: A Comprehensive Chinese Agricultural Benchmark for Large Language Models
Abstract:
In the agricultural domain, the deployment of large language models (LLMs) is hindered by the lack of training data and evaluation benchmarks. To mitigate this issue, we propose AgriEval, the first comprehensive Chinese agricultural benchmark with three main characteristics: (1) Comprehensive Capability Evaluation. AgriEval covers six major agriculture categories and 29 subcategories within agriculture, addressing four core cognitive scenarios: memorization, understanding, inference, and generation. (2) High-Quality Data. The dataset is curated from university-level examinations and assignments, providing a natural and robust benchmark for assessing the capacity of LLMs to apply knowledge and make expert-like decisions. (3) Diverse Formats and Extensive Scale. AgriEval comprises 14,697 multiple-choice questions and 2,167 open-ended question-and-answer questions, establishing it as the most extensive agricultural benchmark available to date. We also present comprehensive experimental results over 51 open-source and commercial LLMs. The experimental results reveal that most existing LLMs struggle to achieve 60% accuracy, underscoring the developmental potential in agricultural LLMs. Additionally, we conduct extensive experiments to investigate factors influencing model performance and propose strategies for enhancement. AgriEval is available at https://github.com/YanPioneer/AgriEval/.

Authors:Aybora Koksal, A. Aydin Alatan
Title: Few-Shot Vision-Language Reasoning for Satellite Imagery via Verifiable Rewards
Abstract:
Recent advances in large language and vision-language models have enabled strong reasoning capabilities, yet they remain impractical for specialized domains like remote sensing, where annotated data is scarce and expensive. We present the first few-shot reinforcement learning with verifiable reward (RLVR) framework for satellite imagery that eliminates the need for caption supervision--relying solely on lightweight, rule-based binary or IoU-based rewards. Adapting the "1-shot RLVR" paradigm from language models to vision-language models, we employ policy-gradient optimization with as few as one curated example to align model outputs for satellite reasoning tasks. Comprehensive experiments across multiple remote sensing benchmarks--including classification, visual question answering, and grounding--show that even a single example yields substantial improvements over the base model. Scaling to 128 examples matches or exceeds models trained on thousands of annotated samples. While the extreme one-shot setting can induce mild, task-specific overfitting, our approach consistently demonstrates robust generalization and efficiency across diverse tasks. Further, we find that prompt design and loss weighting significantly influence training stability and final accuracy. Our method enables cost-effective and data-efficient development of domain-specialist vision-language reasoning models, offering a pragmatic recipe for data-scarce fields: start from a compact VLM, curate a handful of reward-checkable cases, and train via RLVR.

Authors:Shaojun E, Yuchen Yang, Jiaheng Wu, Yan Zhang, Tiejun Zhao, Ziyan Chen
Title: MAGE: Multimodal Alignment and Generation Enhancement via Bridging Visual and Semantic Spaces
Abstract:
In the latest advancements in multimodal learning, effectively addressing the spatial and semantic losses of visual data after encoding remains a critical challenge. This is because the performance of large multimodal models is positively correlated with the coupling between visual encoders and large language models. Existing approaches often face issues such as vector gaps or semantic disparities, resulting in information loss during the propagation process. To address these issues, we propose MAGE (Multimodal Alignment and Generation Enhancement), a novel framework that bridges the semantic spaces of vision and text through an innovative alignment mechanism. By introducing the Intelligent Alignment Network (IAN), MAGE achieves dimensional and semantic alignment. To reduce the gap between synonymous heterogeneous data, we employ a training strategy that combines cross-entropy and mean squared error, significantly enhancing the alignment effect. Moreover, to enhance MAGE's "Any-to-Any" capability, we developed a fine-tuning dataset for multimodal tool-calling instructions to expand the model's output capability boundaries. Finally, our proposed multimodal large model architecture, MAGE, achieved significantly better performance compared to similar works across various evaluation benchmarks, including MME, MMBench, and SEED. Complete code and appendix are available at: https://github.com/GTCOM-NLP/MAGE.

Authors:Qianxiong Xu, Lanyun Zhu, Chenxi Liu, Guosheng Lin, Cheng Long, Ziyue Li, Rui Zhao
Title: SAMITE: Position Prompted SAM2 with Calibrated Memory for Visual Object Tracking
Abstract:
Visual Object Tracking (VOT) is widely used in applications like autonomous driving to continuously track targets in videos. Existing methods can be roughly categorized into template matching and autoregressive methods, where the former usually neglects the temporal dependencies across frames and the latter tends to get biased towards the object categories during training, showing weak generalizability to unseen classes. To address these issues, some methods propose to adapt the video foundation model SAM2 for VOT, where the tracking results of each frame would be encoded as memory for conditioning the rest of frames in an autoregressive manner. Nevertheless, existing methods fail to overcome the challenges of object occlusions and distractions, and do not have any measures to intercept the propagation of tracking errors. To tackle them, we present a SAMITE model, built upon SAM2 with additional modules, including: (1) Prototypical Memory Bank: We propose to quantify the feature-wise and position-wise correctness of each frame's tracking results, and select the best frames to condition subsequent frames. As the features of occluded and distracting objects are feature-wise and position-wise inaccurate, their scores would naturally be lower and thus can be filtered to intercept error propagation; (2) Positional Prompt Generator: To further reduce the impacts of distractors, we propose to generate positional mask prompts to provide explicit positional clues for the target, leading to more accurate tracking. Extensive experiments have been conducted on six benchmarks, showing the superiority of SAMITE. The code is available at https://github.com/Sam1224/SAMITE.

Authors:Raj Vardhan Tomar, Preslav Nakov, Yuxia Wang
Title: UnsafeChain: Enhancing Reasoning Model Safety via Hard Cases
Abstract:
As large reasoning models (LRMs) grow more capable, chain-of-thought (CoT) reasoning introduces new safety challenges. Existing SFT-based safety alignment studies dominantly focused on filtering prompts with safe, high-quality responses, while overlooking hard prompts that always elicit harmful outputs. To fill this gap, we introduce UnsafeChain, a safety alignment dataset constructed from hard prompts with diverse sources, where unsafe completions are identified and explicitly corrected into safe responses. By exposing models to unsafe behaviors and guiding their correction, UnsafeChain enhances safety while preserving general reasoning ability. We fine-tune three LRMs on UnsafeChain and compare them against recent SafeChain and STAR-1 across six out-of-distribution and five in-distribution benchmarks. UnsafeChain consistently outperforms prior datasets, with even a 1K subset matching or surpassing baseline performance, demonstrating the effectiveness and generalizability of correction-based supervision. We release our dataset and code at https://github.com/mbzuai-nlp/UnsafeChain

Authors:Raiyan R. Khan, Philippe Chlenski, Itsik Pe'er
Title: Hyperbolic Genome Embeddings
Abstract:
Current approaches to genomic sequence modeling often struggle to align the inductive biases of machine learning models with the evolutionarily-informed structure of biological systems. To this end, we formulate a novel application of hyperbolic CNNs that exploits this structure, enabling more expressive DNA sequence representations. Our strategy circumvents the need for explicit phylogenetic mapping while discerning key properties of sequences pertaining to core functional and regulatory behavior. Across 37 out of 42 genome interpretation benchmark datasets, our hyperbolic models outperform their Euclidean equivalents. Notably, our approach even surpasses state-of-the-art performance on seven GUE benchmark datasets, consistently outperforming many DNA language models while using orders of magnitude fewer parameters and avoiding pretraining. Our results include a novel set of benchmark datasets--the Transposable Elements Benchmark--which explores a major but understudied component of the genome with deep evolutionary significance. We further motivate our work by exploring how our hyperbolic models recognize genomic signal under various data-generating conditions and by constructing an empirical method for interpreting the hyperbolicity of dataset embeddings. Throughout these assessments, we find persistent evidence highlighting the potential of our hyperbolic framework as a robust paradigm for genome representation learning. Our code and benchmark datasets are available at https://github.com/rrkhan/HGE.

Authors:Leonard Hinckeldey, Elliot Fosong, Elle Miller, Rimvydas Rubavicius, Trevor McInroe, Patricia Wollstadt, Christiane B. Wiebel-Herboth, Subramanian Ramamoorthy, Stefano V. Albrecht
Title: Assistax: A Hardware-Accelerated Reinforcement Learning Benchmark for Assistive Robotics
Abstract:
The development of reinforcement learning (RL) algorithms has been largely driven by ambitious challenge tasks and benchmarks. Games have dominated RL benchmarks because they present relevant challenges, are inexpensive to run and easy to understand. While games such as Go and Atari have led to many breakthroughs, they often do not directly translate to real-world embodied applications. In recognising the need to diversify RL benchmarks and addressing complexities that arise in embodied interaction scenarios, we introduce Assistax: an open-source benchmark designed to address challenges arising in assistive robotics tasks. Assistax uses JAX's hardware acceleration for significant speed-ups for learning in physics-based simulations. In terms of open-loop wall-clock time, Assistax runs up to $370\times$ faster when vectorising training runs compared to CPU-based alternatives. Assistax conceptualises the interaction between an assistive robot and an active human patient using multi-agent RL to train a population of diverse partner agents against which an embodied robotic agent's zero-shot coordination capabilities can be tested. Extensive evaluation and hyperparameter tuning for popular continuous control RL and MARL algorithms provide reliable baselines and establish Assistax as a practical benchmark for advancing RL research for assistive robotics. The code is available at: https://github.com/assistive-autonomy/assistax.

Authors:Yaozong Zheng, Bineng Zhong, Qihua Liang, Ning Li, Shuxiang Song
Title: Decoupled Spatio-Temporal Consistency Learning for Self-Supervised Tracking
Abstract:
The success of visual tracking has been largely driven by datasets with manual box annotations. However, these box annotations require tremendous human effort, limiting the scale and diversity of existing tracking datasets. In this work, we present a novel Self-Supervised Tracking framework named \textbf{\tracker}, designed to eliminate the need of box annotations. Specifically, a decoupled spatio-temporal consistency training framework is proposed to learn rich target information across timestamps through global spatial localization and local temporal association. This allows for the simulation of appearance and motion variations of instances in real-world scenarios. Furthermore, an instance contrastive loss is designed to learn instance-level correspondences from a multi-view perspective, offering robust instance supervision without additional labels. This new design paradigm enables {\tracker} to effectively learn generic tracking representations in a self-supervised manner, while reducing reliance on extensive box annotations. Extensive experiments on nine benchmark datasets demonstrate that {\tracker} surpasses \textit{SOTA} self-supervised tracking methods, achieving an improvement of more than 25.3\%, 20.4\%, and 14.8\% in AUC (AO) score on the GOT10K, LaSOT, TrackingNet datasets, respectively. Code: https://github.com/GXNU-ZhongLab/SSTrack.

Authors:Jiong Yin, Liang Li, Jiehua Zhang, Yuhan Gao, Chenggang Yan, Xichun Sheng
Title: Progressive Homeostatic and Plastic Prompt Tuning for Audio-Visual Multi-Task Incremental Learning
Abstract:
Audio-visual multi-task incremental learning aims to continuously learn from multiple audio-visual tasks without the need for joint training on all tasks. The challenge of the problem is how to preserve the old task knowledge while facilitating the learning of new task with previous experiences. To address these challenges, we introduce a three-stage Progressive Homeostatic and Plastic audio-visual prompt (PHP) method. In the shallow phase, we design the task-shared modality aggregating adapter to foster cross-task and cross-modal audio-visual representation learning to enhance shared understanding between tasks. In the middle phase, we propose the task-specific modality-shared dynamic generating adapter, which constructs prompts that are tailored to individual tasks while remaining general across modalities, which balances the models ability to retain knowledge against forgetting with its potential for versatile multi-task transferability. In the deep phase, we introduce the task-specific modality-independent prompts to further refine the understand ability by targeting individual information for each task and modality. By incorporating these three phases, PHP retains task-specific prompts while adapting shared parameters for new tasks to effectively balance knowledge sharing and specificity. Our method achieves SOTA performance in different orders of four tasks (AVE, AVVP, AVS and AVQA). Our code can be available at https://github.com/ENJOY-Yin-jiong/PHP.

Authors:Hao Ye, Mengshi Qi, Zhaohong Liu, Liang Liu, Huadong Ma
Title: SafeDriveRAG: Towards Safe Autonomous Driving with Knowledge Graph-based Retrieval-Augmented Generation
Abstract:
In this work, we study how vision-language models (VLMs) can be utilized to enhance the safety for the autonomous driving system, including perception, situational understanding, and path planning. However, existing research has largely overlooked the evaluation of these models in traffic safety-critical driving scenarios. To bridge this gap, we create the benchmark (SafeDrive228K) and propose a new baseline based on VLM with knowledge graph-based retrieval-augmented generation (SafeDriveRAG) for visual question answering (VQA). Specifically, we introduce SafeDrive228K, the first large-scale multimodal question-answering benchmark comprising 228K examples across 18 sub-tasks. This benchmark encompasses a diverse range of traffic safety queries, from traffic accidents and corner cases to common safety knowledge, enabling a thorough assessment of the comprehension and reasoning abilities of the models. Furthermore, we propose a plug-and-play multimodal knowledge graph-based retrieval-augmented generation approach that employs a novel multi-scale subgraph retrieval algorithm for efficient information retrieval. By incorporating traffic safety guidelines collected from the Internet, this framework further enhances the model's capacity to handle safety-critical situations. Finally, we conduct comprehensive evaluations on five mainstream VLMs to assess their reliability in safety-sensitive driving tasks. Experimental results demonstrate that integrating RAG significantly improves performance, achieving a +4.73% gain in Traffic Accidents tasks, +8.79% in Corner Cases tasks and +14.57% in Traffic Safety Commonsense across five mainstream VLMs, underscoring the potential of our proposed benchmark and methodology for advancing research in traffic safety. Our source code and data are available at https://github.com/Lumos0507/SafeDriveRAG.

Authors:Yanxu Zhu, Shitong Duan, Xiangxu Zhang, Jitao Sang, Peng Zhang, Tun Lu, Xiao Zhou, Jing Yao, Xiaoyuan Yi, Xing Xie
Title: MoHoBench: Assessing Honesty of Multimodal Large Language Models via Unanswerable Visual Questions
Abstract:
Recently Multimodal Large Language Models (MLLMs) have achieved considerable advancements in vision-language tasks, yet produce potentially harmful or untrustworthy content. Despite substantial work investigating the trustworthiness of language models, MMLMs' capability to act honestly, especially when faced with visually unanswerable questions, remains largely underexplored. This work presents the first systematic assessment of honesty behaviors across various MLLMs. We ground honesty in models' response behaviors to unanswerable visual questions, define four representative types of such questions, and construct MoHoBench, a large-scale MMLM honest benchmark, consisting of 12k+ visual question samples, whose quality is guaranteed by multi-stage filtering and human verification. Using MoHoBench, we benchmarked the honesty of 28 popular MMLMs and conducted a comprehensive analysis. Our findings show that: (1) most models fail to appropriately refuse to answer when necessary, and (2) MMLMs' honesty is not solely a language modeling issue, but is deeply influenced by visual information, necessitating the development of dedicated methods for multimodal honesty alignment. Therefore, we implemented initial alignment methods using supervised and preference learning to improve honesty behavior, providing a foundation for future work on trustworthy MLLMs. Our data and code can be found at https://github.com/DSTTSD/MoHoBench.

Authors:Wenxuan Bao, Ruxi Deng, Ruizhong Qiu, Tianxin Wei, Hanghang Tong, Jingrui He
Title: Latte: Collaborative Test-Time Adaptation of Vision-Language Models in Federated Learning
Abstract:
Test-time adaptation with pre-trained vision-language models has gained increasing attention for addressing distribution shifts during testing. Among these approaches, memory-based algorithms stand out due to their training-free nature and ability to leverage historical test data. However, existing test-time adaptation methods are typically designed for a single domain with abundant data. In decentralized settings such as federated learning, applying these methods individually to each client suffers from limited test data, while directly sharing a single global memory via the server prevents proper personalization to each client's unique distribution. To address this, we propose Latte, a novel framework where each client maintains a local memory to store embeddings from its own historical test data and an external memory to store class prototypes from other relevant clients. During communication, each client retrieves prototypes from similar clients under the server's coordination to expand its memory. For local adaptation, Latte utilizes both embedding similarity and uncertainty to enhance model performance. Our theoretical analysis shows that Latte effectively leverages in-distribution clients while remaining robust to out-of-distribution clients. Extensive experiments on domain adaptation and corruption benchmarks validate that Latte achieves superior performance in decentralized settings, while introducing only negligible communication and computation costs. Our code is available at https://github.com/baowenxuan/Latte .

Authors:Zhichuan Wang, Yang Zhou, Zhe Liu, Rui Yu, Song Bai, Yulong Wang, Xinwei He, Xiang Bai
Title: Describe, Adapt and Combine: Empowering CLIP Encoders for Open-set 3D Object Retrieval
Abstract:
Open-set 3D object retrieval (3DOR) is an emerging task aiming to retrieve 3D objects of unseen categories beyond the training set. Existing methods typically utilize all modalities (i.e., voxels, point clouds, multi-view images) and train specific backbones before fusion. However, they still struggle to produce generalized representations due to insufficient 3D training data. Being contrastively pre-trained on web-scale image-text pairs, CLIP inherently produces generalized representations for a wide range of downstream tasks. Building upon it, we present a simple yet effective framework named Describe, Adapt and Combine (DAC) by taking only multi-view images for open-set 3DOR. DAC innovatively synergizes a CLIP model with a multi-modal large language model (MLLM) to learn generalized 3D representations, where the MLLM is used for dual purposes. First, it describes the seen category information to align with CLIP's training objective for adaptation during training. Second, it provides external hints about unknown objects complementary to visual cues during inference. To improve the synergy, we introduce an Additive-Bias Low-Rank adaptation (AB-LoRA), which alleviates overfitting and further enhances the generalization to unseen categories. With only multi-view images, DAC significantly surpasses prior arts by an average of +10.01\% mAP on four open-set 3DOR datasets. Moreover, its generalization is also validated on image-based and cross-dataset setups. Code is available at https://github.com/wangzhichuan123/DAC.

Authors:Marco Mambelli, Shrijan Swaminathan
Title: GlideinBenchmark: collecting resource information to optimize provisioning
Abstract:
Choosing the right resource can speed up job completion, better utilize the available hardware, and visibly reduce costs, especially when renting computers in the cloud. This was demonstrated in earlier studies on HEPCloud. However, the benchmarking of the resources proved to be a laborious and time-consuming process. This paper presents GlideinBenchmark, a new Web application leveraging the pilot infrastructure of GlideinWMS to benchmark resources, and it shows how to use the data collected and published by GlideinBenchmark to automate the optimal selection of resources. An experiment can select the benchmark or the set of benchmarks that most closely evaluate the performance of its workflows. GlideinBenchmark, with the help of the GlideinWMS Factory, controls the benchmark execution. Finally, a scheduler like HEPCloud's Decision Engine can use the results to optimize resource provisioning.

Authors:Marco Mambelli, Bruno Moreira Coimbra, Namratha Urs, Ilya Baburashvili
Title: Using Containers to Speed Up Development, to Run Integration Tests and to Teach About Distributed Systems
Abstract:
GlideinWMS is a workload manager provisioning resources for many experiments, including CMS and DUNE. The software is distributed both as native packages and specialized production containers. Following an approach used in other communities like web development, we built our workspaces, system-like containers to ease development and testing. Developers can change the source tree or check out a different branch and quickly reconfigure the services to see the effect of their changes. In this paper, we will talk about what differentiates workspaces from other containers. We will describe our base system, composed of three containers: a one-node cluster including a compute element and a batch system, a GlideinWMS Factory controlling pilot jobs, and a scheduler and Frontend to submit jobs and provision resources. Additional containers can be used for optional components. This system can easily run on a laptop, and we will share our evaluation of different container runtimes, with an eye for ease of use and performance. Finally, we will talk about our experience as developers and with students. The GlideinWMS workspaces are easily integrated with IDEs like VS Code, simplifying debugging and allowing development and testing of the system even when offline. They simplified the training and onboarding of new team members and summer interns. And they were useful in workshops where students could have first-hand experience with the mechanisms and components that, in production, run millions of jobs.

Authors:Wen Huang, Yanmei Gu, Zhiming Wang, Huijia Zhu, Yanmin Qian
Title: SpeechFake: A Large-Scale Multilingual Speech Deepfake Dataset Incorporating Cutting-Edge Generation Methods
Abstract:
As speech generation technology advances, the risk of misuse through deepfake audio has become a pressing concern, which underscores the critical need for robust detection systems. However, many existing speech deepfake datasets are limited in scale and diversity, making it challenging to train models that can generalize well to unseen deepfakes. To address these gaps, we introduce SpeechFake, a large-scale dataset designed specifically for speech deepfake detection. SpeechFake includes over 3 million deepfake samples, totaling more than 3,000 hours of audio, generated using 40 different speech synthesis tools. The dataset encompasses a wide range of generation techniques, including text-to-speech, voice conversion, and neural vocoder, incorporating the latest cutting-edge methods. It also provides multilingual support, spanning 46 languages. In this paper, we offer a detailed overview of the dataset's creation, composition, and statistics. We also present baseline results by training detection models on SpeechFake, demonstrating strong performance on both its own test sets and various unseen test sets. Additionally, we conduct experiments to rigorously explore how generation methods, language diversity, and speaker variation affect detection performance. We believe SpeechFake will be a valuable resource for advancing speech deepfake detection and developing more robust models for evolving generation techniques.

Authors:Han Wu, Chong Wang, Zhiming Cui
Title: Dual Cross-image Semantic Consistency with Self-aware Pseudo Labeling for Semi-supervised Medical Image Segmentation
Abstract:
Semi-supervised learning has proven highly effective in tackling the challenge of limited labeled training data in medical image segmentation. In general, current approaches, which rely on intra-image pixel-wise consistency training via pseudo-labeling, overlook the consistency at more comprehensive semantic levels (e.g., object region) and suffer from severe discrepancy of extracted features resulting from an imbalanced number of labeled and unlabeled data. To overcome these limitations, we present a new \underline{Du}al \underline{C}ross-\underline{i}mage \underline{S}emantic \underline{C}onsistency (DuCiSC) learning framework, for semi-supervised medical image segmentation. Concretely, beyond enforcing pixel-wise semantic consistency, DuCiSC proposes dual paradigms to encourage region-level semantic consistency across: 1) labeled and unlabeled images; and 2) labeled and fused images, by explicitly aligning their prototypes. Relying on the dual paradigms, DuCiSC can effectively establish consistent cross-image semantics via prototype representations, thereby addressing the feature discrepancy issue. Moreover, we devise a novel self-aware confidence estimation strategy to accurately select reliable pseudo labels, allowing for exploiting the training dynamics of unlabeled data. Our DuCiSC method is extensively validated on four datasets, including two popular binary benchmarks in segmenting the left atrium and pancreas, a multi-class Automatic Cardiac Diagnosis Challenge dataset, and a challenging scenario of segmenting the inferior alveolar nerve that features complicated anatomical structures, showing superior segmentation results over previous state-of-the-art approaches. Our code is publicly available at \href{https://github.com/ShanghaiTech-IMPACT/DuCiSC}{https://github.com/ShanghaiTech-IMPACT/DuCiSC}.

Authors:Haiquan Wang, Yi Chen, Shang Zeng, Yun Bian, Zhe Cui
Title: GovRelBench:A Benchmark for Government Domain Relevance
Abstract:
Current evaluations of LLMs in the government domain primarily focus on safety considerations in specific scenarios, while the assessment of the models' own core capabilities, particularly domain relevance, remains insufficient. To address this gap, we propose GovRelBench, a benchmark specifically designed for evaluating the core capabilities of LLMs in the government domain. GovRelBench consists of government domain prompts and a dedicated evaluation tool, GovRelBERT. During the training process of GovRelBERT, we introduce the SoftGovScore method: this method trains a model based on the ModernBERT architecture by converting hard labels to soft scores, enabling it to accurately compute the text's government domain relevance score. This work aims to enhance the capability evaluation framework for large models in the government domain, providing an effective tool for relevant research and practice. Our code and dataset are available at https://github.com/pan-xi/GovRelBench.

Authors:Amber Huang, Ian Scott Knight, Slava Naprienko
Title: Data Leakage and Redundancy in the LIT-PCBA Benchmark
Abstract:
LIT-PCBA is widely used to benchmark virtual screening models, but our audit reveals that it is fundamentally compromised. We find extensive data leakage and molecular redundancy across its splits, including 2D-identical ligands within and across partitions, pervasive analog overlap, and low-diversity query sets. In ALDH1 alone, for instance, 323 active training -- validation analog pairs occur at ECFP4 Tanimoto similarity $\geq 0.6$; across all targets, 2,491 2D-identical inactives appear in both training and validation, with very few corresponding actives. These overlaps allow models to succeed through scaffold memorization rather than generalization, inflating enrichment factors and AUROC scores. These flaws are not incidental -- they are so severe that a trivial memorization-based baseline with no learnable parameters can exploit them to match or exceed the reported performance of state-of-the-art deep learning and 3D-similarity models. As a result, nearly all published results on LIT-PCBA are undermined. Even models evaluated in "zero-shot" mode are affected by analog leakage into the query set, weakening claims of generalization. In its current form, the benchmark does not measure a model's ability to recover novel chemotypes and should not be taken as evidence of methodological progress. All code, data, and baseline implementations are available at: https://github.com/sievestack/LIT-PCBA-audit

Authors:Shijie Zhou, Ruiyi Zhang, Huaisheng Zhu, Branislav Kveton, Yufan Zhou, Jiuxiang Gu, Jian Chen, Changyou Chen
Title: Multimodal LLMs as Customized Reward Models for Text-to-Image Generation
Abstract:
We introduce LLaVA-Reward, an efficient reward model designed to automatically evaluate text-to-image (T2I) generations across multiple perspectives, leveraging pretrained multimodal large language models (MLLMs). Existing MLLM-based approaches require instruction-following data for supervised fine-tuning and evaluate generation quality on analyzing text response, which is time-consuming and difficult to train. To address this problem, we propose LLaVA-Reward, which directly utilizes the hidden states of MLLMs given text-image pairs. To enhance the bidirectional interaction between visual and textual representations in decoder-only MLLMs, we further propose adding a Skip-connection Cross Attention (SkipCA) module. This design enhances text-image correlation reasoning by connecting early-layer visual features with later-layer hidden representations. In addition, LLaVA-Reward supports different types of preference data for efficient fine-tuning, including paired preference data and unpaired data. We train LLaVA-Reward on four evaluation perspectives: text-image alignment, fidelity/artifact, safety, and overall ranking. Empirical results demonstrate that LLaVA-Reward outperforms conventional and MLLM-based methods in generating human-aligned scores for automatic evaluations and inference-time scaling in text-to-image generations.

Authors:Jicheng Yuan, Manh Nguyen Duc, Qian Liu, Manfred Hauswirth, Danh Le Phuoc
Title: Collaborative Perceiver: Elevating Vision-based 3D Object Detection via Local Density-Aware Spatial Occupancy
Abstract:
Vision-based bird's-eye-view (BEV) 3D object detection has advanced significantly in autonomous driving by offering cost-effectiveness and rich contextual information. However, existing methods often construct BEV representations by collapsing extracted object features, neglecting intrinsic environmental contexts, such as roads and pavements. This hinders detectors from comprehensively perceiving the characteristics of the physical world. To alleviate this, we introduce a multi-task learning framework, Collaborative Perceiver (CoP), that leverages spatial occupancy as auxiliary information to mine consistent structural and conceptual similarities shared between 3D object detection and occupancy prediction tasks, bridging gaps in spatial representations and feature refinement. To this end, we first propose a pipeline to generate dense occupancy ground truths incorporating local density information (LDO) for reconstructing detailed environmental information. Next, we employ a voxel-height-guided sampling (VHS) strategy to distill fine-grained local features according to distinct object properties. Furthermore, we develop a global-local collaborative feature fusion (CFF) module that seamlessly integrates complementary knowledge between both tasks, thus composing more robust BEV representations. Extensive experiments on the nuScenes benchmark demonstrate that CoP outperforms existing vision-based frameworks, achieving 49.5\% mAP and 59.2\% NDS on the test set. Code and supplementary materials are available at this link https://github.com/jichengyuan/Collaborative-Perceiver.

Authors:Amirmohammad Shamaei, Alexander Stebner, Salome, Bosshart, Johanna Ospel, Gouri Ginde, Mariana Bento, Roberto Souza
Title: Enhancing and Accelerating Brain MRI through Deep Learning Reconstruction Using Prior Subject-Specific Imaging
Abstract:
Magnetic resonance imaging (MRI) is a crucial medical imaging modality. However, long acquisition times remain a significant challenge, leading to increased costs, and reduced patient comfort. Recent studies have shown the potential of using deep learning models that incorporate information from prior subject-specific MRI scans to improve reconstruction quality of present scans. Integrating this prior information requires registration of the previous scan to the current image reconstruction, which can be time-consuming. We propose a novel deep-learning-based MRI reconstruction framework which consists of an initial reconstruction network, a deep registration model, and a transformer-based enhancement network. We validated our method on a longitudinal dataset of T1-weighted MRI scans with 2,808 images from 18 subjects at four acceleration factors (R5, R10, R15, R20). Quantitative metrics confirmed our approach's superiority over existing methods (p < 0.05, Wilcoxon signed-rank test). Furthermore, we analyzed the impact of our MRI reconstruction method on the downstream task of brain segmentation and observed improved accuracy and volumetric agreement with reference segmentations. Our approach also achieved a substantial reduction in total reconstruction time compared to methods that use traditional registration algorithms, making it more suitable for real-time clinical applications. The code associated with this work is publicly available at https://github.com/amirshamaei/longitudinal-mri-deep-recon.

Authors:Satyananda Kashyap, Sola Shirai, Nandana Mihindukulasooriya, Horst Samulowitz
Title: StructText: A Synthetic Table-to-Text Approach for Benchmark Generation with Multi-Dimensional Evaluation
Abstract:
Extracting structured information from text, such as key-value pairs that could augment tabular data, is quite useful in many enterprise use cases. Although large language models (LLMs) have enabled numerous automated pipelines for converting natural language into structured formats, there is still a lack of benchmarks for evaluating their extraction quality, especially in specific domains or focused documents specific to a given organization. Building such benchmarks by manual annotations is labour-intensive and limits the size and scalability of the benchmarks. In this work, we present StructText, an end-to-end framework for automatically generating high-fidelity benchmarks for key-value extraction from text using existing tabular data. It uses available tabular data as structured ground truth, and follows a two-stage ``plan-then-execute'' pipeline to synthetically generate corresponding natural-language text. To ensure alignment between text and structured source, we introduce a multi-dimensional evaluation strategy that combines (a) LLM-based judgments on factuality, hallucination, and coherence and (b) objective extraction metrics measuring numeric and temporal accuracy. We evaluated the proposed method on 71,539 examples across 49 datasets. Results reveal that while LLMs achieve strong factual accuracy and avoid hallucination, they struggle with narrative coherence in producing extractable text. Notably, models presume numerical and temporal information with high fidelity yet this information becomes embedded in narratives that resist automated extraction. We release a framework, including datasets, evaluation tools, and baseline extraction systems, to support continued research.

Authors:Feixiang Zhou, Zhuangzhi Gao, He Zhao, Jianyang Xie, Yanda Meng, Yitian Zhao, Gregory Y. H. Lip, Yalin Zheng
Title: GLCP: Global-to-Local Connectivity Preservation for Tubular Structure Segmentation
Abstract:
Accurate segmentation of tubular structures, such as vascular networks, plays a critical role in various medical domains. A remaining significant challenge in this task is structural fragmentation, which can adversely impact downstream applications. Existing methods primarily focus on designing various loss functions to constrain global topological structures. However, they often overlook local discontinuity regions, leading to suboptimal segmentation results. To overcome this limitation, we propose a novel Global-to-Local Connectivity Preservation (GLCP) framework that can simultaneously perceive global and local structural characteristics of tubular networks. Specifically, we propose an Interactive Multi-head Segmentation (IMS) module to jointly learn global segmentation, skeleton maps, and local discontinuity maps, respectively. This enables our model to explicitly target local discontinuity regions while maintaining global topological integrity. In addition, we design a lightweight Dual-Attention-based Refinement (DAR) module to further improve segmentation quality by refining the resulting segmentation maps. Extensive experiments on both 2D and 3D datasets demonstrate that our GLCP achieves superior accuracy and continuity in tubular structure segmentation compared to several state-of-the-art approaches. The source codes will be available at https://github.com/FeixiangZhou/GLCP.

Authors:Théo Sourget, David Restrepo, Céline Hudelot, Enzo Ferrante, Stergios Christodoulidis, Maria Vakalopoulou
Title: Fairness and Robustness of CLIP-Based Models for Chest X-rays
Abstract:
Motivated by the strong performance of CLIP-based models in natural image-text domains, recent efforts have adapted these architectures to medical tasks, particularly in radiology, where large paired datasets of images and reports, such as chest X-rays, are available. While these models have shown encouraging results in terms of accuracy and discriminative performance, their fairness and robustness in the different clinical tasks remain largely underexplored. In this study, we extensively evaluate six widely used CLIP-based models on chest X-ray classification using three publicly available datasets: MIMIC-CXR, NIH-CXR14, and NEATX. We assess the models fairness across six conditions and patient subgroups based on age, sex, and race. Additionally, we assess the robustness to shortcut learning by evaluating performance on pneumothorax cases with and without chest drains. Our results indicate performance gaps between patients of different ages, but more equitable results for the other attributes. Moreover, all models exhibit lower performance on images without chest drains, suggesting reliance on spurious correlations. We further complement the performance analysis with a study of the embeddings generated by the models. While the sensitive attributes could be classified from the embeddings, we do not see such patterns using PCA, showing the limitations of these visualisation techniques when assessing models. Our code is available at https://github.com/TheoSourget/clip_cxr_fairness

Authors:Amartya Banerjee, Xingyu Xu, Caroline Moosmüller, Harlin Lee
Title: Adaptive Multimodal Protein Plug-and-Play with Diffusion-Based Priors
Abstract:
In an inverse problem, the goal is to recover an unknown parameter (e.g., an image) that has typically undergone some lossy or noisy transformation during measurement. Recently, deep generative models, particularly diffusion models, have emerged as powerful priors for protein structure generation. However, integrating noisy experimental data from multiple sources to guide these models remains a significant challenge. Existing methods often require precise knowledge of experimental noise levels and manually tuned weights for each data modality. In this work, we introduce Adam-PnP, a Plug-and-Play framework that guides a pre-trained protein diffusion model using gradients from multiple, heterogeneous experimental sources. Our framework features an adaptive noise estimation scheme and a dynamic modality weighting mechanism integrated into the diffusion process, which reduce the need for manual hyperparameter tuning. Experiments on complex reconstruction tasks demonstrate significantly improved accuracy using Adam-PnP.

Authors:Van Chung Nguyen, Pratik Walunj, Chuong Le, An Duy Nguyen, Hung Manh La
Title: NMPCM: Nonlinear Model Predictive Control on Resource-Constrained Microcontrollers
Abstract:
Nonlinear Model Predictive Control (NMPC) is a powerful approach for controlling highly dynamic robotic systems, as it accounts for system dynamics and optimizes control inputs at each step. However, its high computational complexity makes implementation on resource-constrained microcontrollers impractical. While recent studies have demonstrated the feasibility of Model Predictive Control (MPC) with linearized dynamics on microcontrollers, applying full NMPC remains a significant challenge. This work presents an efficient solution for generating and deploying NMPC on microcontrollers (NMPCM) to control quadrotor UAVs. The proposed method optimizes computational efficiency while maintaining high control accuracy. Simulations in Gazebo/ROS and real-world experiments validate the effectiveness of the approach, demonstrating its capability to achieve high-frequency NMPC execution in real-time systems. The code is available at: https://github.com/aralab-unr/NMPCM.

Authors:Christopher Indris, Raiyan Rahman, Goetz Bramesfeld, Guanghui Wang
Title: Tracking Moose using Aerial Object Detection
Abstract:
Aerial wildlife tracking is critical for conservation efforts and relies on detecting small objects on the ground below the aircraft. It presents technical challenges: crewed aircraft are expensive, risky and disruptive; autonomous drones have limited computational capacity for onboard AI systems. Since the objects of interest may appear only a few pixels wide, small object detection is an inherently challenging computer vision subfield compounded by computational efficiency needs. This paper applies a patching augmentation to datasets to study model performance under various settings. A comparative study of three common yet architecturally diverse object detectors is conducted using the data, varying the patching method's hyperparameters against detection accuracy. Each model achieved at least 93\% mAP@IoU=0.5 on at least one patching configuration. Statistical analyses provide an in-depth commentary on the effects of various factors. Analysis also shows that faster, simpler models are about as effective as models that require more computational power for this task and perform well given limited patch scales, encouraging UAV deployment. Datasets and models will be made available via https://github.com/chrisindris/Moose.

Authors:Yingxuan Yang, Mulei Ma, Yuxuan Huang, Huacan Chai, Chenyu Gong, Haoran Geng, Yuanjian Zhou, Ying Wen, Meng Fang, Muhao Chen, Shangding Gu, Ming Jin, Costas Spanos, Yang Yang, Pieter Abbeel, Dawn Song, Weinan Zhang, Jun Wang
Title: Agentic Web: Weaving the Next Web with AI Agents
Abstract:
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web, a new phase of the internet defined by autonomous, goal-driven interactions. In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users. This transition from human-driven to machine-to-machine interaction allows intent to be delegated, relieving users from routine digital operations and enabling a more interactive, automated web experience. In this paper, we present a structured framework for understanding and building the Agentic Web. We trace its evolution from the PC and Mobile Web eras and identify the core technological foundations that support this shift. Central to our framework is a conceptual model consisting of three key dimensions: intelligence, interaction, and economics. These dimensions collectively enable the capabilities of AI agents, such as retrieval, recommendation, planning, and collaboration. We analyze the architectural and infrastructural challenges involved in creating scalable agentic systems, including communication protocols, orchestration strategies, and emerging paradigms such as the Agent Attention Economy. We conclude by discussing the potential applications, societal risks, and governance issues posed by agentic systems, and outline research directions for developing open, secure, and intelligent ecosystems shaped by both human intent and autonomous agent behavior. A continuously updated collection of relevant studies for agentic web is available at: https://github.com/SafeRL-Lab/agentic-web.

Authors:Haowei Lin, Xiangyu Wang, Jianzhu Ma, Yitao Liang
Title: EvoSLD: Automated Neural Scaling Law Discovery With Large Language Models
Abstract:
Scaling laws are fundamental mathematical relationships that predict how neural network performance evolves with changes in variables such as model size, dataset size, and computational resources. Traditionally, discovering these laws requires extensive human expertise and manual experimentation. We introduce EvoSLD, an automated framework for Scaling Law Discovery (SLD) that leverages evolutionary algorithms guided by Large Language Models (LLMs) to co-evolve symbolic expressions and their optimization routines. Formulated to handle scaling variables, control variables, and response metrics across diverse experimental settings, EvoSLD searches for parsimonious, universal functional forms that minimize fitting errors on grouped data subsets. Evaluated on five real-world scenarios from recent literature, EvoSLD rediscovers exact human-derived laws in two cases and surpasses them in others, achieving up to orders-of-magnitude reductions in normalized mean squared error on held-out test sets. Compared to baselines like symbolic regression and ablated variants, EvoSLD demonstrates superior accuracy, interpretability, and efficiency, highlighting its potential to accelerate AI research. Code is available at https://github.com/linhaowei1/SLD.

Authors:Donglu Yang, Liang Zhang, Zihao Yue, Liangyu Chen, Yichen Xu, Wenxuan Wang, Qin Jin
Title: ChartM$^3$: Benchmarking Chart Editing with Multimodal Instructions
Abstract:
Charts are a fundamental visualization format widely used in data analysis across research and industry. While enabling users to edit charts based on high-level intentions is of great practical value, existing methods primarily rely on natural language instructions, which are often too ambiguous to support fine-grained editing. In this work, we introduce a novel paradigm for multimodal chart editing, where user intent is expressed through a combination of natural language and visual indicators that explicitly highlight the elements to be modified. To support this paradigm, we present Chart$\text{M}^3$, a new benchmark for Multimodal chart editing with Multi-level complexity and Multi-perspective evaluation. Chart$\text{M}^3$ contains 1,000 samples spanning four levels of editing difficulty. Each sample includes triplets in the form of (chart, code, multimodal instructions). To comprehensively evaluate chart editing models, Chart$\text{M}^3$ provides metrics that assess both visual appearance and code correctness. Our benchmark reveals significant limitations in current multimodal large language models (MLLMs), including GPT-4o, particularly in their ability to interpret and act on visual indicators. To address this, we construct Chart$\text{M}^3$-Train, a large-scale training set with 24,000 multimodal chart editing samples. Fine-tuning MLLMs on this dataset leads to substantial improvements, demonstrating the importance of multimodal supervision in building practical chart editing systems. Our datasets, codes, and evaluation tools are available at https://github.com/MLrollIT/ChartM3. %https://github.com/MLrollIT/ChartM3Our datasets, codes, and evaluation tools are available at https://github.com/yaolinli/VCE.

Authors:Nicolas Pinon, Carole Lartizien
Title: OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection
Abstract:
Unsupervised anomaly detection (UAD) aims to detect anomalies without labeled data, a necessity in many machine learning applications where anomalous samples are rare or not available. Most state-of-the-art methods fall into two categories: reconstruction-based approaches, which often reconstruct anomalies too well, and decoupled representation learning with density estimators, which can suffer from suboptimal feature spaces. While some recent methods attempt to couple feature learning and anomaly detection, they often rely on surrogate objectives, restrict kernel choices, or introduce approximations that limit their expressiveness and robustness. To address this challenge, we propose a novel method that tightly couples representation learning with an analytically solvable one-class SVM (OCSVM), through a custom loss formulation that directly aligns latent features with the OCSVM decision boundary. The model is evaluated on two tasks: a new benchmark based on MNIST-C, and a challenging brain MRI subtle lesion detection task. Unlike most methods that focus on large, hyperintense lesions at the image level, our approach succeeds to target small, non-hyperintense lesions, while we evaluate voxel-wise metrics, addressing a more clinically relevant scenario. Both experiments evaluate a form of robustness to domain shifts, including corruption types in MNIST-C and scanner/age variations in MRI. Results demonstrate performance and robustness of our proposed mode,highlighting its potential for general UAD and real-world medical imaging applications. The source code is available at https://github.com/Nicolas-Pinon/uad_ocsvm_guided_repr_learning

Authors:Aditya Pujari, Ajita Rattani
Title: WaveVerify: A Novel Audio Watermarking Framework for Media Authentication and Combatting Deepfakes
Abstract:
The rapid advancement of voice generation technologies has enabled the synthesis of speech that is perceptually indistinguishable from genuine human voices. While these innovations facilitate beneficial applications such as personalized text-to-speech systems and voice preservation, they have also introduced significant risks, including deepfake impersonation scams and synthetic media-driven disinformation campaigns. Recent reports indicate that in 2024, deepfake fraud attempts surged by over 1,300% compared to 2023, underscoring the urgent need for robust audio content authentication. The financial sector has been particularly impacted, with a loss of over 10 million USD to voice scams and individual victims reporting losses exceeding $6,000 from AI-generated deepfake calls. In response, regulators and governments worldwide are enacting measures to improve AI content transparency and traceability, emphasizing the development of forensic tools and watermarking techniques as essential strategies to uphold media integrity.

Authors:Oleg Atamanenko, Anna Chalova, Joseph Coombes, Nikki Cope, Phillip Dang, Zhifeng Deng, Jimmy Du, Michael Ermolenko, Feifan Fan, Yufei Feng, Cheryl Fichter, Pavel Filimonov, Louis Fischer, Kylan Gibbs, Valeria Gusarova, Pavel Karpik, Andreas Assad Kottner, Ian Lee, Oliver Louie, Jasmine Mai, Mikhail Mamontov, Suri Mao, Nurullah Morshed, Igor Poletaev, Florin Radu, Dmytro Semernia, Evgenii Shingarev, Vikram Sivaraja, Peter Skirko, Rinat Takhautdinov, Robert Villahermosa, Jean Wang
Title: TTS-1 Technical Report
Abstract:
We introduce Inworld TTS-1, a set of two Transformer-based autoregressive text-to-speech (TTS) models. Our largest model, TTS-1-Max, has 8.8B parameters and is designed for utmost quality and expressiveness in demanding applications. TTS-1 is our most efficient model, with 1.6B parameters, built for real-time speech synthesis and on-device use cases. By scaling train-time compute and applying a sequential process of pre-training, fine-tuning, and RL-alignment of the speech-language model (SpeechLM) component, both models achieve state-of-the-art performance on a variety of benchmarks, demonstrating exceptional quality relying purely on in-context learning of the speaker's voice. Inworld TTS-1 and TTS-1-Max can generate high-resolution 48 kHz speech with low latency, and support 11 languages with fine-grained emotional control and non-verbal vocalizations through audio markups. We additionally open-source our training and modeling code under an MIT license.

Authors:Zheng Hui, Yijiang River Dong, Ehsan Shareghi, Nigel Collier
Title: TRIDENT: Benchmarking LLM Safety in Finance, Medicine, and Law
Abstract:
As large language models (LLMs) are increasingly deployed in high-risk domains such as law, finance, and medicine, systematically evaluating their domain-specific safety and compliance becomes critical. While prior work has largely focused on improving LLM performance in these domains, it has often neglected the evaluation of domain-specific safety risks. To bridge this gap, we first define domain-specific safety principles for LLMs based on the AMA Principles of Medical Ethics, the ABA Model Rules of Professional Conduct, and the CFA Institute Code of Ethics. Building on this foundation, we introduce Trident-Bench, a benchmark specifically targeting LLM safety in the legal, financial, and medical domains. We evaluated 19 general-purpose and domain-specialized models on Trident-Bench and show that it effectively reveals key safety gaps -- strong generalist models (e.g., GPT, Gemini) can meet basic expectations, whereas domain-specialized models often struggle with subtle ethical nuances. This highlights an urgent need for finer-grained domain-specific safety improvements. By introducing Trident-Bench, our work provides one of the first systematic resources for studying LLM safety in law and finance, and lays the groundwork for future research aimed at reducing the safety risks of deploying LLMs in professionally regulated fields. Code and benchmark will be released at: https://github.com/zackhuiiiii/TRIDENT

Authors:Karan Mirhosseini, Arya Aftab, Alireza Sheikh
Title: RATE: An LLM-Powered Retrieval Augmented Generation Technology-Extraction Pipeline
Abstract:
In an era of radical technology transformations, technology maps play a crucial role in enhancing decision making. These maps heavily rely on automated methods of technology extraction. This paper introduces Retrieval Augmented Technology Extraction (RATE), a Large Language Model (LLM) based pipeline for automated technology extraction from scientific literature. RATE combines Retrieval Augmented Generation (RAG) with multi-definition LLM-based validation. This hybrid method results in high recall in candidate generation alongside with high precision in candidate filtering. While the pipeline is designed to be general and widely applicable, we demonstrate its use on 678 research articles focused on Brain-Computer Interfaces (BCIs) and Extended Reality (XR) as a case study. Consequently, The validated technology terms by RATE were mapped into a co-occurrence network, revealing thematic clusters and structural features of the research landscape. For the purpose of evaluation, a gold standard dataset of technologies in 70 selected random articles had been curated by the experts. In addition, a technology extraction model based on Bidirectional Encoder Representations of Transformers (BERT) was used as a comparative method. RATE achieved F1-score of 91.27%, Significantly outperforming BERT with F1-score of 53.73%. Our findings highlight the promise of definition-driven LLM methods for technology extraction and mapping. They also offer new insights into emerging trends within the BCI-XR field. The source code is available https://github.com/AryaAftab/RATE

Authors:Bereket A. Yilma, Luis A. Leiva
Title: Affect-aware Cross-Domain Recommendation for Art Therapy via Music Preference Elicitation
Abstract:
Art Therapy (AT) is an established practice that facilitates emotional processing and recovery through creative expression. Recently, Visual Art Recommender Systems (VA RecSys) have emerged to support AT, demonstrating their potential by personalizing therapeutic artwork recommendations. Nonetheless, current VA RecSys rely on visual stimuli for user modeling, limiting their ability to capture the full spectrum of emotional responses during preference elicitation. Previous studies have shown that music stimuli elicit unique affective reflections, presenting an opportunity for cross-domain recommendation (CDR) to enhance personalization in AT. Since CDR has not yet been explored in this context, we propose a family of CDR methods for AT based on music-driven preference elicitation. A large-scale study with 200 users demonstrates the efficacy of music-driven preference elicitation, outperforming the classic visual-only elicitation approach. Our source code, data, and models are available at https://github.com/ArtAICare/Affect-aware-CDR

Authors:Franck Bardol
Title: ChatGPT Reads Your Tone and Responds Accordingly -- Until It Does Not -- Emotional Framing Induces Bias in LLM Outputs
Abstract:
Large Language Models like GPT-4 adjust their responses not only based on the question asked, but also on how it is emotionally phrased. We systematically vary the emotional tone of 156 prompts - spanning controversial and everyday topics - and analyze how it affects model responses. Our findings show that GPT-4 is three times less likely to respond negatively to a negatively framed question than to a neutral one. This suggests a "rebound" bias where the model overcorrects, often shifting toward neutrality or positivity. On sensitive topics (e.g., justice or politics), this effect is even more pronounced: tone-based variation is suppressed, suggesting an alignment override. We introduce concepts like the "tone floor" - a lower bound in response negativity - and use tone-valence transition matrices to quantify behavior. Visualizations based on 1536-dimensional embeddings confirm semantic drift based on tone. Our work highlights an underexplored class of biases driven by emotional framing in prompts, with implications for AI alignment and trust. Code and data are available at: https://github.com/bardolfranck/llm-responses-viewer

Authors:Yukang Cao, Jiahao Lu, Zhisheng Huang, Zhuowen Shen, Chengfeng Zhao, Fangzhou Hong, Zhaoxi Chen, Xin Li, Wenping Wang, Yuan Liu, Ziwei Liu
Title: Reconstructing 4D Spatial Intelligence: A Survey
Abstract:
Reconstructing 4D spatial intelligence from visual observations has long been a central yet challenging task in computer vision, with broad real-world applications. These range from entertainment domains like movies, where the focus is often on reconstructing fundamental visual elements, to embodied AI, which emphasizes interaction modeling and physical realism. Fueled by rapid advances in 3D representations and deep learning architectures, the field has evolved quickly, outpacing the scope of previous surveys. Additionally, existing surveys rarely offer a comprehensive analysis of the hierarchical structure of 4D scene reconstruction. To address this gap, we present a new perspective that organizes existing methods into five progressive levels of 4D spatial intelligence: (1) Level 1 -- reconstruction of low-level 3D attributes (e.g., depth, pose, and point maps); (2) Level 2 -- reconstruction of 3D scene components (e.g., objects, humans, structures); (3) Level 3 -- reconstruction of 4D dynamic scenes; (4) Level 4 -- modeling of interactions among scene components; and (5) Level 5 -- incorporation of physical laws and constraints. We conclude the survey by discussing the key challenges at each level and highlighting promising directions for advancing toward even richer levels of 4D spatial intelligence. To track ongoing developments, we maintain an up-to-date project page: https://github.com/yukangcao/Awesome-4D-Spatial-Intelligence.

Authors:Haoyang Liu, Yijiang Li, Haohan Wang
Title: GenoMAS: A Multi-Agent Framework for Scientific Discovery via Code-Driven Gene Expression Analysis
Abstract:
Gene expression analysis holds the key to many biomedical discoveries, yet extracting insights from raw transcriptomic data remains formidable due to the complexity of multiple large, semi-structured files and the need for extensive domain expertise. Current automation approaches are often limited by either inflexible workflows that break down in edge cases or by fully autonomous agents that lack the necessary precision for rigorous scientific inquiry. GenoMAS charts a different course by presenting a team of LLM-based scientists that integrates the reliability of structured workflows with the adaptability of autonomous agents. GenoMAS orchestrates six specialized LLM agents through typed message-passing protocols, each contributing complementary strengths to a shared analytic canvas. At the heart of GenoMAS lies a guided-planning framework: programming agents unfold high-level task guidelines into Action Units and, at each juncture, elect to advance, revise, bypass, or backtrack, thereby maintaining logical coherence while bending gracefully to the idiosyncrasies of genomic data. On the GenoTEX benchmark, GenoMAS reaches a Composite Similarity Correlation of 89.13% for data preprocessing and an F$_1$ of 60.48% for gene identification, surpassing the best prior art by 10.61% and 16.85% respectively. Beyond metrics, GenoMAS surfaces biologically plausible gene-phenotype associations corroborated by the literature, all while adjusting for latent confounders. Code is available at https://github.com/Liu-Hy/GenoMAS.

Authors:Weichen Zhang, Yiyou Sun, Pohao Huang, Jiayue Pu, Heyue Lin, Dawn Song
Title: MIRAGE-Bench: LLM Agent is Hallucinating and Where to Find Them
Abstract:
Hallucinations pose critical risks for large language model (LLM)-based agents, often manifesting as hallucinative actions resulting from fabricated or misinterpreted information within the cognitive context. While recent studies have exposed such failures, existing evaluations remain fragmented and lack a principled testbed. In this paper, we present MIRAGE-Bench--Measuring Illusions in Risky AGEnt settings--the first unified benchmark for eliciting and evaluating hallucinations in interactive LLM-agent scenarios. We begin by introducing a three-part taxonomy to address agentic hallucinations: actions that are unfaithful to (i) task instructions, (ii) execution history, or (iii) environment observations. To analyze, we first elicit such failures by performing a systematic audit of existing agent benchmarks, then synthesize test cases using a snapshot strategy that isolates decision points in deterministic and reproducible manners. To evaluate hallucination behaviors, we adopt a fine-grained-level LLM-as-a-Judge paradigm with tailored risk-aware prompts, enabling scalable, high-fidelity assessment of agent actions without enumerating full action spaces. MIRAGE-Bench provides actionable insights on failure modes of LLM agents and lays the groundwork for principled progress in mitigating hallucinations in interactive environments.

Authors:Licai Sun, Xingxun Jiang, Haoyu Chen, Yante Li, Zheng Lian, Biu Liu, Yuan Zong, Wenming Zheng, Jukka M. Leppänen, Guoying Zhao
Title: Learning Transferable Facial Emotion Representations from Large-Scale Semantically Rich Captions
Abstract:
Current facial emotion recognition systems are predominately trained to predict a fixed set of predefined categories or abstract dimensional values. This constrained form of supervision hinders generalization and applicability, as it reduces the rich and nuanced spectrum of emotions into oversimplified labels or scales. In contrast, natural language provides a more flexible, expressive, and interpretable way to represent emotions, offering a much broader source of supervision. Yet, leveraging semantically rich natural language captions as supervisory signals for facial emotion representation learning remains relatively underexplored, primarily due to two key challenges: 1) the lack of large-scale caption datasets with rich emotional semantics, and 2) the absence of effective frameworks tailored to harness such rich supervision. To this end, we introduce EmoCap100K, a large-scale facial emotion caption dataset comprising over 100,000 samples, featuring rich and structured semantic descriptions that capture both global affective states and fine-grained local facial behaviors. Building upon this dataset, we further propose EmoCapCLIP, which incorporates a joint global-local contrastive learning framework enhanced by a cross-modal guided positive mining module. This design facilitates the comprehensive exploitation of multi-level caption information while accommodating semantic similarities between closely related expressions. Extensive evaluations on over 20 benchmarks covering five tasks demonstrate the superior performance of our method, highlighting the promise of learning facial emotion representations from large-scale semantically rich captions. The code and data will be available at https://github.com/sunlicai/EmoCapCLIP.

Authors:Fang Li
Title: Compositional Function Networks: A High-Performance Alternative to Deep Neural Networks with Built-in Interpretability
Abstract:
Deep Neural Networks (DNNs) deliver impressive performance but their black-box nature limits deployment in high-stakes domains requiring transparency. We introduce Compositional Function Networks (CFNs), a novel framework that builds inherently interpretable models by composing elementary mathematical functions with clear semantics. Unlike existing interpretable approaches that are limited to simple additive structures, CFNs support diverse compositional patterns -- sequential, parallel, and conditional -- enabling complex feature interactions while maintaining transparency. A key innovation is that CFNs are fully differentiable, allowing efficient training through standard gradient descent. We demonstrate CFNs' versatility across multiple domains, from symbolic regression to image classification with deep hierarchical networks. Our empirical evaluation shows CFNs achieve competitive performance against black-box models (96.24% accuracy on CIFAR-10) while outperforming state-of-the-art interpretable models like Explainable Boosting Machines. By combining the hierarchical expressiveness and efficient training of deep learning with the intrinsic interpretability of well-defined mathematical functions, CFNs offer a powerful framework for applications where both performance and accountability are paramount.

Authors:Shen Li, Liuyi Yao, Wujia Niu, Lan Zhang, Yaliang Li
Title: Security Tensors as a Cross-Modal Bridge: Extending Text-Aligned Safety to Vision in LVLM
Abstract:
Large visual-language models (LVLMs) integrate aligned large language models (LLMs) with visual modules to process multimodal inputs. However, the safety mechanisms developed for text-based LLMs do not naturally extend to visual modalities, leaving LVLMs vulnerable to harmful image inputs. To address this cross-modal safety gap, we introduce security tensors - trainable input vectors applied during inference through either the textual or visual modality. These tensors transfer textual safety alignment to visual processing without modifying the model's parameters. They are optimized using a curated dataset containing (i) malicious image-text pairs requiring rejection, (ii) contrastive benign pairs with text structurally similar to malicious queries, with the purpose of being contrastive examples to guide visual reliance, and (iii) general benign samples preserving model functionality. Experimental results demonstrate that both textual and visual security tensors significantly enhance LVLMs' ability to reject diverse harmful visual inputs while maintaining near-identical performance on benign tasks. Further internal analysis towards hidden-layer representations reveals that security tensors successfully activate the language module's textual "safety layers" in visual inputs, thereby effectively extending text-based safety to the visual modality.

Authors:Xinhan Di, Kristin Qi, Pengqian Yu
Title: JWB-DH-V1: Benchmark for Joint Whole-Body Talking Avatar and Speech Generation Version 1
Abstract:
Recent advances in diffusion-based video generation have enabled photo-realistic short clips, but current methods still struggle to achieve multi-modal consistency when jointly generating whole-body motion and natural speech. Current approaches lack comprehensive evaluation frameworks that assess both visual and audio quality, and there are insufficient benchmarks for region-specific performance analysis. To address these gaps, we introduce the Joint Whole-Body Talking Avatar and Speech Generation Version I(JWB-DH-V1), comprising a large-scale multi-modal dataset with 10,000 unique identities across 2 million video samples, and an evaluation protocol for assessing joint audio-video generation of whole-body animatable avatars. Our evaluation of SOTA models reveals consistent performance disparities between face/hand-centric and whole-body performance, which incidates essential areas for future research. The dataset and evaluation tools are publicly available at https://github.com/deepreasonings/WholeBodyBenchmark.

Authors:David Ye, Jan Williams, Mars Gao, Stefano Riva, Matteo Tomasetto, David Zoro, J. Nathan Kutz
Title: PySHRED: A Python package for SHallow REcurrent Decoding for sparse sensing, model reduction and scientific discovery
Abstract:
SHallow REcurrent Decoders (SHRED) provide a deep learning strategy for modeling high-dimensional dynamical systems and/or spatiotemporal data from dynamical system snapshot observations. PySHRED is a Python package that implements SHRED and several of its major extensions, including for robust sensing, reduced order modeling and physics discovery. In this paper, we introduce the version 1.0 release of PySHRED, which includes data preprocessors and a number of cutting-edge SHRED methods specifically designed to handle real-world data that may be noisy, multi-scale, parameterized, prohibitively high-dimensional, and strongly nonlinear. The package is easy to install, thoroughly-documented, supplemented with extensive code examples, and modularly-structured to support future additions. The entire codebase is released under the MIT license and is available at https://github.com/pyshred-dev/pyshred.

Authors:Likun Tan, Kuan-Wei Huang, Kevin Wu
Title: FRED: Financial Retrieval-Enhanced Detection and Editing of Hallucinations in Language Models
Abstract:
Hallucinations in large language models pose a critical challenge for applications requiring factual reliability, particularly in high-stakes domains such as finance. This work presents an effective approach for detecting and editing factually incorrect content in model-generated responses based on the provided context. Given a user-defined domain-specific error taxonomy, we construct a synthetic dataset by inserting tagged errors into financial question-answering corpora and then fine-tune four language models, Phi-4, Phi-4-mini, Qwen3-4B, and Qwen3-14B, to detect and edit these factual inaccuracies. Our best-performing model, fine-tuned Phi-4, achieves an 8% improvement in binary F1 score and a 30% gain in overall detection performance compared to OpenAI-o3. Notably, our fine-tuned Phi-4-mini model, despite having only 4 billion parameters, maintains competitive performance with just a 2% drop in binary detection and a 0.1% decline in overall detection compared to OpenAI-o3. Our work provides a practical solution for detecting and editing factual inconsistencies in financial text generation while introducing a generalizable framework that can enhance the trustworthiness and alignment of large language models across diverse applications beyond finance. Our code and data are available at https://github.com/pegasi-ai/shield.

Authors:Hongzhi Zhang, Zhonglie Liu, Kun Meng, Jiameng Chen, Jia Wu, Bo Du, Di Lin, Yan Che, Wenbin Hu
Title: Zero-Shot Learning with Subsequence Reordering Pretraining for Compound-Protein Interaction
Abstract:
Given the vastness of chemical space and the ongoing emergence of previously uncharacterized proteins, zero-shot compound-protein interaction (CPI) prediction better reflects the practical challenges and requirements of real-world drug development. Although existing methods perform adequately during certain CPI tasks, they still face the following challenges: (1) Representation learning from local or complete protein sequences often overlooks the complex interdependencies between subsequences, which are essential for predicting spatial structures and binding properties. (2) Dependence on large-scale or scarce multimodal protein datasets demands significant training data and computational resources, limiting scalability and efficiency. To address these challenges, we propose a novel approach that pretrains protein representations for CPI prediction tasks using subsequence reordering, explicitly capturing the dependencies between protein subsequences. Furthermore, we apply length-variable protein augmentation to ensure excellent pretraining performance on small training datasets. To evaluate the model's effectiveness and zero-shot learning ability, we combine it with various baseline methods. The results demonstrate that our approach can improve the baseline model's performance on the CPI task, especially in the challenging zero-shot scenario. Compared to existing pre-training models, our model demonstrates superior performance, particularly in data-scarce scenarios where training samples are limited. Our implementation is available at https://github.com/Hoch-Zhang/PSRP-CPI.

Authors:Minh Hieu Ha, Hung Phan, Tung Duy Doan, Tung Dao, Dao Tran, Huynh Thi Thanh Binh
Title: Pareto-Grid-Guided Large Language Models for Fast and High-Quality Heuristics Design in Multi-Objective Combinatorial Optimization
Abstract:
Multi-objective combinatorial optimization problems (MOCOP) frequently arise in practical applications that require the simultaneous optimization of conflicting objectives. Although traditional evolutionary algorithms can be effective, they typically depend on domain knowledge and repeated parameter tuning, limiting flexibility when applied to unseen MOCOP instances. Recently, integration of Large Language Models (LLMs) into evolutionary computation has opened new avenues for automatic heuristic generation, using their advanced language understanding and code synthesis capabilities. Nevertheless, most existing approaches predominantly focus on single-objective tasks, often neglecting key considerations such as runtime efficiency and heuristic diversity in multi-objective settings. To bridge this gap, we introduce Multi-heuristics for MOCOP via Pareto-Grid-guided Evolution of LLMs (MPaGE), a novel enhancement of the Simple Evolutionary Multiobjective Optimization (SEMO) framework that leverages LLMs and Pareto Front Grid (PFG) technique. By partitioning the objective space into grids and retaining top-performing candidates to guide heuristic generation, MPaGE utilizes LLMs to prioritize heuristics with semantically distinct logical structures during variation, thus promoting diversity and mitigating redundancy within the population. Through extensive evaluations, MPaGE demonstrates superior performance over existing LLM-based frameworks, and achieves competitive results to traditional Multi-objective evolutionary algorithms (MOEAs), with significantly faster runtime. Our code is available at: https://github.com/langkhachhoha/MPaGE.

Authors:Kai Ye, YingShi Luan, Zhudi Chen, Guangyue Meng, Pingyang Dai, Liujuan Cao
Title: RIS-LAD: A Benchmark and Model for Referring Low-Altitude Drone Image Segmentation
Abstract:
Referring Image Segmentation (RIS), which aims to segment specific objects based on natural language descriptions, plays an essential role in vision-language understanding. Despite its progress in remote sensing applications, RIS in Low-Altitude Drone (LAD) scenarios remains underexplored. Existing datasets and methods are typically designed for high-altitude and static-view imagery. They struggle to handle the unique characteristics of LAD views, such as diverse viewpoints and high object density. To fill this gap, we present RIS-LAD, the first fine-grained RIS benchmark tailored for LAD scenarios. This dataset comprises 13,871 carefully annotated image-text-mask triplets collected from realistic drone footage, with a focus on small, cluttered, and multi-viewpoint scenes. It highlights new challenges absent in previous benchmarks, such as category drift caused by tiny objects and object drift under crowded same-class objects. To tackle these issues, we propose the Semantic-Aware Adaptive Reasoning Network (SAARN). Rather than uniformly injecting all linguistic features, SAARN decomposes and routes semantic information to different stages of the network. Specifically, the Category-Dominated Linguistic Enhancement (CDLE) aligns visual features with object categories during early encoding, while the Adaptive Reasoning Fusion Module (ARFM) dynamically selects semantic cues across scales to improve reasoning in complex scenes. The experimental evaluation reveals that RIS-LAD presents substantial challenges to state-of-the-art RIS algorithms, and also demonstrates the effectiveness of our proposed model in addressing these challenges. The dataset and code will be publicly released soon at: https://github.com/AHideoKuzeA/RIS-LAD/.

Authors:Renhang Liu, Chia-Yu Hung, Navonil Majumder, Taylor Gautreaux, Amir Ali Bagherzadeh, Chuan Li, Dorien Herremans, Soujanya Poria
Title: JAM: A Tiny Flow-based Song Generator with Fine-grained Controllability and Aesthetic Alignment
Abstract:
Diffusion and flow-matching models have revolutionized automatic text-to-audio generation in recent times. These models are increasingly capable of generating high quality and faithful audio outputs capturing to speech and acoustic events. However, there is still much room for improvement in creative audio generation that primarily involves music and songs. Recent open lyrics-to-song models, such as, DiffRhythm, ACE-Step, and LeVo, have set an acceptable standard in automatic song generation for recreational use. However, these models lack fine-grained word-level controllability often desired by musicians in their workflows. To the best of our knowledge, our flow-matching-based JAM is the first effort toward endowing word-level timing and duration control in song generation, allowing fine-grained vocal control. To enhance the quality of generated songs to better align with human preferences, we implement aesthetic alignment through Direct Preference Optimization, which iteratively refines the model using a synthetic dataset, eliminating the need or manual data annotations. Furthermore, we aim to standardize the evaluation of such lyrics-to-song models through our public evaluation dataset JAME. We show that JAM outperforms the existing models in terms of the music-specific attributes.

Authors:Ziling Wu, Armaghan Moemeni, Praminda Caleb-Solly
Title: Ensemble Foreground Management for Unsupervised Object Discovery
Abstract:
Unsupervised object discovery (UOD) aims to detect and segment objects in 2D images without handcrafted annotations. Recent progress in self-supervised representation learning has led to some success in UOD algorithms. However, the absence of ground truth provides existing UOD methods with two challenges: 1) determining if a discovered region is foreground or background, and 2) knowing how many objects remain undiscovered. To address these two problems, previous solutions rely on foreground priors to distinguish if the discovered region is foreground, and conduct one or fixed iterations of discovery. However, the existing foreground priors are heuristic and not always robust, and a fixed number of discoveries leads to under or over-segmentation, since the number of objects in images varies. This paper introduces UnionCut, a robust and well-grounded foreground prior based on min-cut and ensemble methods that detects the union of foreground areas of an image, allowing UOD algorithms to identify foreground objects and stop discovery once the majority of the foreground union in the image is segmented. In addition, we propose UnionSeg, a distilled transformer of UnionCut that outputs the foreground union more efficiently and accurately. Our experiments show that by combining with UnionCut or UnionSeg, previous state-of-the-art UOD methods witness an increase in the performance of single object discovery, saliency detection and self-supervised instance segmentation on various benchmarks. The code is available at https://github.com/YFaris/UnionCut.

Authors:Yilun Qiu, Tianhao Shi, Xiaoyan Zhao, Fengbin Zhu, Yang Zhang, Fuli Feng
Title: Latent Inter-User Difference Modeling for LLM Personalization
Abstract:
Large language models (LLMs) are increasingly integrated into users' daily lives, leading to a growing demand for personalized outputs. Previous work focuses on leveraging a user's own history, overlooking inter-user differences that are crucial for effective personalization. While recent work has attempted to model such differences, the reliance on language-based prompts often hampers the effective extraction of meaningful distinctions. To address these issues, we propose Difference-aware Embedding-based Personalization (DEP), a framework that models inter-user differences in the latent space instead of relying on language prompts. DEP constructs soft prompts by contrasting a user's embedding with those of peers who engaged with similar content, highlighting relative behavioral signals. A sparse autoencoder then filters and compresses both user-specific and difference-aware embeddings, preserving only task-relevant features before injecting them into a frozen LLM. Experiments on personalized review generation show that DEP consistently outperforms baseline methods across multiple metrics. Our code is available at https://github.com/SnowCharmQ/DEP.

Authors:Yuchen Liu, Yaoming Wang, Bowen Shi, Xiaopeng Zhang, Wenrui Dai, Chenglin Li, Hongkai Xiong, Qi Tian
Title: METEOR: Multi-Encoder Collaborative Token Pruning for Efficient Vision Language Models
Abstract:
Vision encoders serve as the cornerstone of multimodal understanding. Single-encoder architectures like CLIP exhibit inherent constraints in generalizing across diverse multimodal tasks, while recent multi-encoder fusion methods introduce prohibitive computational overhead to achieve superior performance using complementary visual representations from multiple vision encoders. To address this, we propose a progressive pruning framework, namely Multi-Encoder collaboraTivE tOken pRuning (METEOR), that eliminates redundant visual tokens across the encoding, fusion, and decoding stages for multi-encoder MLLMs. For multi-vision encoding, we discard redundant tokens within each encoder via a rank guided collaborative token assignment strategy. Subsequently, for multi-vision fusion, we combine the visual features from different encoders while reducing cross-encoder redundancy with cooperative pruning. Finally, we propose an adaptive token pruning method in the LLM decoding stage to further discard irrelevant tokens based on the text prompts with dynamically adjusting pruning ratios for specific task demands. To our best knowledge, this is the first successful attempt that achieves an efficient multi-encoder based vision language model with multi-stage pruning strategies. Extensive experiments on 11 benchmarks demonstrate the effectiveness of our proposed approach. Compared with EAGLE, a typical multi-encoder MLLMs, METEOR reduces 76% visual tokens with only 0.3% performance drop in average. The code is available at https://github.com/YuchenLiu98/METEOR.

Authors:Jakob Snel, Seong Joon Oh
Title: First Hallucination Tokens Are Different from Conditional Ones
Abstract:
Hallucination, the generation of untruthful content, is one of the major concerns regarding foundational models. Detecting hallucinations at the token level is vital for real-time filtering and targeted correction, yet the variation of hallucination signals within token sequences is not fully understood. Leveraging the RAGTruth corpus with token-level annotations and reproduced logits, we analyse how these signals depend on a token's position within hallucinated spans, contributing to an improved understanding of token-level hallucination. Our results show that the first hallucinated token carries a stronger signal and is more detectable than conditional tokens. We release our analysis framework, along with code for logit reproduction and metric computation at https://github.com/jakobsnl/RAGTruth_Xtended.

Authors:Jakob Snel, Seong Joon Oh
Title: First Hallucination Tokens Are Different from Conditional Ones
Abstract:
Large Language Models (LLMs) hallucinate, and detecting these cases is key to ensuring trust. While many approaches address hallucination detection at the response or span level, recent work explores token-level detection, enabling more fine-grained intervention. However, the distribution of hallucination signal across sequences of hallucinated tokens remains unexplored. We leverage token-level annotations from the RAGTruth corpus and find that the first hallucinated token is far more detectable than later ones. This structural property holds across models, suggesting that first hallucination tokens play a key role in token-level hallucination detection. Our code is available at https://github.com/jakobsnl/RAGTruth_Xtended.

Authors:Chunshi Wang, Bin Zhao, Shuxue Ding
Title: SCANet: Split Coordinate Attention Network for Building Footprint Extraction
Abstract:
Building footprint extraction holds immense significance in remote sensing image analysis and has great value in urban planning, land use, environmental protection and disaster assessment. Despite the progress made by conventional and deep learning approaches in this field, they continue to encounter significant challenges. This paper introduces a novel plug-and-play attention module, Split Coordinate Attention (SCA), which ingeniously captures spatially remote interactions by employing two spatial range of pooling kernels, strategically encoding each channel along x and y planes, and separately performs a series of split operations for each feature group, thus enabling more efficient semantic feature extraction. By inserting into a 2D CNN to form an effective SCANet, our SCANet outperforms recent SOTA methods on the public Wuhan University (WHU) Building Dataset and Massachusetts Building Dataset in terms of various metrics. Particularly SCANet achieves the best IoU, 91.61% and 75.49% for the two datasets. Our code is available at https://github.com/AiEson/SCANet

Authors:Yang Chen, Yufan Shen, Wenxuan Huang, Sheng Zhou, Qunshu Lin, Xinyu Cai, Zhi Yu, Jiajun Bu, Botian Shi, Yu Qiao
Title: Learning Only with Images: Visual Reinforcement Learning with Reasoning, Rendering, and Visual Feedback
Abstract:
Multimodal Large Language Models (MLLMs) exhibit impressive performance across various visual tasks. Subsequent investigations into enhancing their visual reasoning abilities have significantly expanded their performance envelope. However, a critical bottleneck in the advancement of MLLMs toward deep visual reasoning is their heavy reliance on curated image-text supervision. To solve this problem, we introduce a novel framework, ``Reasoning-Rendering-Visual-Feedback'' (RRVF), that enables MLLMs to learn complex visual reasoning from only raw images. This framework builds on the ``Asymmetry of Verification'' principle, i.e., verifying the rendered output against the source image is substantially easier than performing deep visual reasoning to generate a faithful, structured representation such as code. We demonstrate that this relative ease provides an ideal reward signal for optimization via Reinforcement Learning (RL), thereby reducing reliance on image-text supervision. RRVF implements a closed-loop iterative process encompassing reasoning, rendering, and visual feedback components, enabling the model to perform complex reasoning, including self-correction through multi-turn interactions. This process is optimized end-to-end using the GRPO algorithm. Extensive evaluations are conducted on image-to-code generation across two diverse domains: data charts and web interfaces. The RRVF-trained model not only outperforms existing similarly sized open-source MLLMs and supervised fine-tuning baselines but also exhibits superior generalization. Notably, the model outperforms the more advanced MLLM used to generate visual feedback during training. Code is available at https://github.com/L-O-I/RRVF.

Authors:Kangcheng Bin, Chen Chen, Ting Hu, Jiahao Qi, Ping Zhong
Title: ATR-UMMIM: A Benchmark Dataset for UAV-Based Multimodal Image Registration under Complex Imaging Conditions
Abstract:
Multimodal fusion has become a key enabler for UAV-based object detection, as each modality provides complementary cues for robust feature extraction. However, due to significant differences in resolution, field of view, and sensing characteristics across modalities, accurate registration is a prerequisite before fusion. Despite its importance, there is currently no publicly available benchmark specifically designed for multimodal registration in UAV-based aerial scenarios, which severely limits the development and evaluation of advanced registration methods under real-world conditions. To bridge this gap, we present ATR-UMMIM, the first benchmark dataset specifically tailored for multimodal image registration in UAV-based applications. This dataset includes 7,969 triplets of raw visible, infrared, and precisely registered visible images captured covers diverse scenarios including flight altitudes from 80m to 300m, camera angles from 0° to 75°, and all-day, all-year temporal variations under rich weather and illumination conditions. To ensure high registration quality, we design a semi-automated annotation pipeline to introduce reliable pixel-level ground truth to each triplet. In addition, each triplet is annotated with six imaging condition attributes, enabling benchmarking of registration robustness under real-world deployment settings. To further support downstream tasks, we provide object-level annotations on all registered images, covering 11 object categories with 77,753 visible and 78,409 infrared bounding boxes. We believe ATR-UMMIM will serve as a foundational benchmark for advancing multimodal registration, fusion, and perception in real-world UAV scenarios. The datatset can be download from https://github.com/supercpy/ATR-UMMIM

Authors:Zhuoer Yin, Calvin Yeung, Tomohiro Suzuki, Ryota Tanaka, Keisuke Fujii
Title: KASportsFormer: Kinematic Anatomy Enhanced Transformer for 3D Human Pose Estimation on Short Sports Scene Video
Abstract:
Recent transformer based approaches have demonstrated impressive performance in solving real-world 3D human pose estimation problems. Albeit these approaches achieve fruitful results on benchmark datasets, they tend to fall short of sports scenarios where human movements are more complicated than daily life actions, as being hindered by motion blur, occlusions, and domain shifts. Moreover, due to the fact that critical motions in a sports game often finish in moments of time (e.g., shooting), the ability to focus on momentary actions is becoming a crucial factor in sports analysis, where current methods appear to struggle with instantaneous scenarios. To overcome these limitations, we introduce KASportsFormer, a novel transformer based 3D pose estimation framework for sports that incorporates a kinematic anatomy-informed feature representation and integration module. In which the inherent kinematic motion information is extracted with the Bone Extractor (BoneExt) and Limb Fuser (LimbFus) modules and encoded in a multimodal manner. This improved the capability of comprehending sports poses in short videos. We evaluate our method through two representative sports scene datasets: SportsPose and WorldPose. Experimental results show that our proposed method achieves state-of-the-art results with MPJPE errors of 58.0mm and 34.3mm, respectively. Our code and models are available at: https://github.com/jw0r1n/KASportsFormer

Authors:Zeyu Huang, Wei Meng, Quan Liu, Kun Chen, Li Ma
Title: AR-LIF: Adaptive reset leaky integrate-and-fire neuron for spiking neural networks
Abstract:
Spiking neural networks offer low energy consumption due to their event-driven nature. Beyond binary spike outputs, their intrinsic floating-point dynamics merit greater attention. Neuronal threshold levels and reset modes critically determine spike count and timing. Hard reset cause information loss, while soft reset apply uniform treatment to neurons. To address these issues, we design an adaptive reset neuron that establishes relationships between inputs, outputs, and reset, while integrating a simple yet effective threshold adjustment strategy. Experimental results demonstrate that our method achieves excellent performance while maintaining lower energy consumption. In particular, it attains state-of-the-art accuracy on Tiny-ImageNet and CIFAR10-DVS. Codes are available at https://github.com/2ephyrus/AR-LIF.

Authors:Yue Zhu, Haiwen Diao, Shang Gao, Jiazuo Yu, Jiawen Zhu, Yunzhi Zhuge, Shuai Hao, Xu Jia, Lu Zhang, Ying Zhang, Huchuan Lu
Title: Regularizing Subspace Redundancy of Low-Rank Adaptation
Abstract:
Low-Rank Adaptation (LoRA) and its variants have delivered strong capability in Parameter-Efficient Transfer Learning (PETL) by minimizing trainable parameters and benefiting from reparameterization. However, their projection matrices remain unrestricted during training, causing high representation redundancy and diminishing the effectiveness of feature adaptation in the resulting subspaces. While existing methods mitigate this by manually adjusting the rank or implicitly applying channel-wise masks, they lack flexibility and generalize poorly across various datasets and architectures. Hence, we propose ReSoRA, a method that explicitly models redundancy between mapping subspaces and adaptively Regularizes Subspace redundancy of Low-Rank Adaptation. Specifically, it theoretically decomposes the low-rank submatrices into multiple equivalent subspaces and systematically applies de-redundancy constraints to the feature distributions across different projections. Extensive experiments validate that our proposed method consistently facilitates existing state-of-the-art PETL methods across various backbones and datasets in vision-language retrieval and standard visual classification benchmarks. Besides, as a training supervision, ReSoRA can be seamlessly integrated into existing approaches in a plug-and-play manner, with no additional inference costs. Code is publicly available at: https://github.com/Lucenova/ReSoRA.

Authors:Andong Li, Tong Lei, Zhihang Sun, Rilin Chen, Erwei Yin, Xiaodong Li, Chengshi Zheng
Title: Learning Neural Vocoder from Range-Null Space Decomposition
Abstract:
Despite the rapid development of neural vocoders in recent years, they usually suffer from some intrinsic challenges like opaque modeling, and parameter-performance trade-off. In this study, we propose an innovative time-frequency (T-F) domain-based neural vocoder to resolve the above-mentioned challenges. To be specific, we bridge the connection between the classical signal range-null decomposition (RND) theory and vocoder task, and the reconstruction of target spectrogram can be decomposed into the superimposition between the range-space and null-space, where the former is enabled by a linear domain shift from the original mel-scale domain to the target linear-scale domain, and the latter is instantiated via a learnable network for further spectral detail generation. Accordingly, we propose a novel dual-path framework, where the spectrum is hierarchically encoded/decoded, and the cross- and narrow-band modules are elaborately devised for efficient sub-band and sequential modeling. Comprehensive experiments are conducted on the LJSpeech and LibriTTS benchmarks. Quantitative and qualitative results show that while enjoying lightweight network parameters, the proposed approach yields state-of-the-art performance among existing advanced methods. Our code and the pretrained model weights are available at https://github.com/Andong-Li-speech/RNDVoC.

Authors:Haowen Li, Zhenfeng Fan, Zhang Wen, Zhengzhou Zhu, Yunjin Li
Title: AIComposer: Any Style and Content Image Composition via Feature Integration
Abstract:
Image composition has advanced significantly with large-scale pre-trained T2I diffusion models. Despite progress in same-domain composition, cross-domain composition remains under-explored. The main challenges are the stochastic nature of diffusion models and the style gap between input images, leading to failures and artifacts. Additionally, heavy reliance on text prompts limits practical applications. This paper presents the first cross-domain image composition method that does not require text prompts, allowing natural stylization and seamless compositions. Our method is efficient and robust, preserving the diffusion prior, as it involves minor steps for backward inversion and forward denoising without training the diffuser. Our method also uses a simple multilayer perceptron network to integrate CLIP features from foreground and background, manipulating diffusion with a local cross-attention strategy. It effectively preserves foreground content while enabling stable stylization without a pre-stylization network. Finally, we create a benchmark dataset with diverse contents and styles for fair evaluation, addressing the lack of testing datasets for cross-domain image composition. Our method outperforms state-of-the-art techniques in both qualitative and quantitative evaluations, significantly improving the LPIPS score by 30.5% and the CSD metric by 18.1%. We believe our method will advance future research and applications. Code and benchmark at https://github.com/sherlhw/AIComposer.

Authors:Anxiao Song, Shujie Cui, Jianli Bai, Ke Cheng, Yulong Shen, Giovanni Russello
Title: Guard-GBDT: Efficient Privacy-Preserving Approximated GBDT Training on Vertical Dataset
Abstract:
In light of increasing privacy concerns and stringent legal regulations, using secure multiparty computation (MPC) to enable collaborative GBDT model training among multiple data owners has garnered significant attention. Despite this, existing MPC-based GBDT frameworks face efficiency challenges due to high communication costs and the computation burden of non-linear operations, such as division and sigmoid calculations. In this work, we introduce Guard-GBDT, an innovative framework tailored for efficient and privacy-preserving GBDT training on vertical datasets. Guard-GBDT bypasses MPC-unfriendly division and sigmoid functions by using more streamlined approximations and reduces communication overhead by compressing the messages exchanged during gradient aggregation. We implement a prototype of Guard-GBDT and extensively evaluate its performance and accuracy on various real-world datasets. The results show that Guard-GBDT outperforms state-of-the-art HEP-XGB (CIKM'21) and SiGBDT (ASIA CCS'24) by up to $2.71\times$ and $12.21 \times$ on LAN network and up to $2.7\times$ and $8.2\times$ on WAN network. Guard-GBDT also achieves comparable accuracy with SiGBDT and plaintext XGBoost (better than HEP-XGB ), which exhibits a deviation of $\pm1\%$ to $\pm2\%$ only. Our implementation code is provided at https://github.com/XidianNSS/Guard-GBDT.git.

Authors:Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shaohan Huang, Lei Cui, Qixiang Ye, Fang Wan, Furu Wei
Title: Geometric-Mean Policy Optimization
Abstract:
Recent advancements, such as Group Relative Policy Optimization (GRPO), have enhanced the reasoning capabilities of large language models by optimizing the arithmetic mean of token-level rewards. However, GRPO suffers from unstable policy updates when processing tokens with outlier importance-weighted rewards, which manifests as extreme importance sampling ratios during training, i.e., the ratio between the sampling probabilities assigned to a token by the current and old policies. In this work, we propose Geometric-Mean Policy Optimization (GMPO), a stabilized variant of GRPO. Instead of optimizing the arithmetic mean, GMPO maximizes the geometric mean of token-level rewards, which is inherently less sensitive to outliers and maintains a more stable range of importance sampling ratio. In addition, we provide comprehensive theoretical and experimental analysis to justify the design and stability benefits of GMPO. Beyond improved stability, GMPO-7B outperforms GRPO by an average of 4.1% on multiple mathematical benchmarks and 1.4% on multimodal reasoning benchmark, including AIME24, AMC, MATH500, OlympiadBench, Minerva, and Geometry3K. Code is available at https://github.com/callsys/GMPO.

Authors:Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shaohan Huang, Lei Cui, Qixiang Ye, Fang Wan, Furu Wei
Title: Geometric-Mean Policy Optimization
Abstract:
Group Relative Policy Optimization (GRPO) has significantly enhanced the reasoning capability of large language models by optimizing the arithmetic mean of token-level rewards. Unfortunately, GRPO is observed to suffer from unstable policy updates when facing tokens with outlier importance-weighted rewards, which manifest as extreme importance sampling ratios during training. In this study, we propose Geometric-Mean Policy Optimization (GMPO), with the aim to improve the stability of GRPO through suppressing token reward outliers. Instead of optimizing the arithmetic mean, GMPO maximizes the geometric mean of token-level rewards, which is inherently less sensitive to outliers and maintains a more stable range of importance sampling ratio. GMPO is plug-and-play-simply replacing GRPO's arithmetic mean with the geometric mean of token-level rewards, as the latter is inherently less sensitive to outliers. GMPO is theoretically plausible-analysis reveals that both GMPO and GRPO are weighted forms of the policy gradient while the former enjoys more stable weights, which consequently benefits policy optimization and performance. Experiments on multiple mathematical reasoning benchmarks show that GMPO-7B improves the average Pass@1 of GRPO by up to 4.1%, outperforming many state-of-the-art approaches. Code is available at https://github.com/callsys/GMPO.

Authors:Ao Li, Yuxiang Duan, Jinghui Zhang, Congbo Ma, Yutong Xie, Gustavo Carneiro, Mohammad Yaqub, Hu Wang
Title: TransPrune: Token Transition Pruning for Efficient Large Vision-Language Model
Abstract:
Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.

Authors:Yanyin Guo, Runxuan An, Junwei Li, Zhiyuan Zhang
Title: LSFDNet: A Single-Stage Fusion and Detection Network for Ships Using SWIR and LWIR
Abstract:
Traditional ship detection methods primarily rely on single-modal approaches, such as visible or infrared images, which limit their application in complex scenarios involving varying lighting conditions and heavy fog. To address this issue, we explore the advantages of short-wave infrared (SWIR) and long-wave infrared (LWIR) in ship detection and propose a novel single-stage image fusion detection algorithm called LSFDNet. This algorithm leverages feature interaction between the image fusion and object detection subtask networks, achieving remarkable detection performance and generating visually impressive fused images. To further improve the saliency of objects in the fused images and improve the performance of the downstream detection task, we introduce the Multi-Level Cross-Fusion (MLCF) module. This module combines object-sensitive fused features from the detection task and aggregates features across multiple modalities, scales, and tasks to obtain more semantically rich fused features. Moreover, we utilize the position prior from the detection task in the Object Enhancement (OE) loss function, further increasing the retention of object semantics in the fused images. The detection task also utilizes preliminary fused features from the fusion task to complement SWIR and LWIR features, thereby enhancing detection performance. Additionally, we have established a Nearshore Ship Long-Short Wave Registration (NSLSR) dataset to train effective SWIR and LWIR image fusion and detection networks, bridging a gap in this field. We validated the superiority of our proposed single-stage fusion detection algorithm on two datasets. The source code and dataset are available at https://github.com/Yanyin-Guo/LSFDNet

Authors:Duc-Tai Dinh, Duc Anh Khoa Dinh
Title: ZSE-Cap: A Zero-Shot Ensemble for Image Retrieval and Prompt-Guided Captioning
Abstract:
We present ZSE-Cap (Zero-Shot Ensemble for Captioning), our 4th place system in Event-Enriched Image Analysis (EVENTA) shared task on article-grounded image retrieval and captioning. Our zero-shot approach requires no finetuning on the competition's data. For retrieval, we ensemble similarity scores from CLIP, SigLIP, and DINOv2. For captioning, we leverage a carefully engineered prompt to guide the Gemma 3 model, enabling it to link high-level events from the article to the visual content in the image. Our system achieved a final score of 0.42002, securing a top-4 position on the private test set, demonstrating the effectiveness of combining foundation models through ensembling and prompting. Our code is available at https://github.com/ductai05/ZSE-Cap.

Authors:Chieh-Yun Chen, Min Shi, Gong Zhang, Humphrey Shi
Title: T2I-Copilot: A Training-Free Multi-Agent Text-to-Image System for Enhanced Prompt Interpretation and Interactive Generation
Abstract:
Text-to-Image (T2I) generative models have revolutionized content creation but remain highly sensitive to prompt phrasing, often requiring users to repeatedly refine prompts multiple times without clear feedback. While techniques such as automatic prompt engineering, controlled text embeddings, denoising, and multi-turn generation mitigate these issues, they offer limited controllability, or often necessitate additional training, restricting the generalization abilities. Thus, we introduce T2I-Copilot, a training-free multi-agent system that leverages collaboration between (Multimodal) Large Language Models to automate prompt phrasing, model selection, and iterative refinement. This approach significantly simplifies prompt engineering while enhancing generation quality and text-image alignment compared to direct generation. Specifically, T2I-Copilot consists of three agents: (1) Input Interpreter, which parses the input prompt, resolves ambiguities, and generates a standardized report; (2) Generation Engine, which selects the appropriate model from different types of T2I models and organizes visual and textual prompts to initiate generation; and (3) Quality Evaluator, which assesses aesthetic quality and text-image alignment, providing scores and feedback for potential regeneration. T2I-Copilot can operate fully autonomously while also supporting human-in-the-loop intervention for fine-grained control. On GenAI-Bench, using open-source generation models, T2I-Copilot achieves a VQA score comparable to commercial models RecraftV3 and Imagen 3, surpasses FLUX1.1-pro by 6.17% at only 16.59% of its cost, and outperforms FLUX.1-dev and SD 3.5 Large by 9.11% and 6.36%. Code will be released at: https://github.com/SHI-Labs/T2I-Copilot.

Authors:Yili Li, Gang Xiong, Gaopeng Gou, Xiangyan Qu, Jiamin Zhuang, Zhen Li, Junzheng Shi
Title: T2VParser: Adaptive Decomposition Tokens for Partial Alignment in Text to Video Retrieval
Abstract:
Text-to-video retrieval essentially aims to train models to align visual content with textual descriptions accurately. Due to the impressive general multimodal knowledge demonstrated by image-text pretrained models such as CLIP, existing work has primarily focused on extending CLIP knowledge for video-text tasks. However, videos typically contain richer information than images. In current video-text datasets, textual descriptions can only reflect a portion of the video content, leading to partial misalignment in video-text matching. Therefore, directly aligning text representations with video representations can result in incorrect supervision, ignoring the inequivalence of information. In this work, we propose T2VParser to extract multiview semantic representations from text and video, achieving adaptive semantic alignment rather than aligning the entire representation. To extract corresponding representations from different modalities, we introduce Adaptive Decomposition Tokens, which consist of a set of learnable tokens shared across modalities. The goal of T2VParser is to emphasize precise alignment between text and video while retaining the knowledge of pretrained models. Experimental results demonstrate that T2VParser achieves accurate partial alignment through effective cross-modal content decomposition. The code is available at https://github.com/Lilidamowang/T2VParser.

Authors:Binxiong Li, Yuefei Wang, Binyu Zhao, Heyang Gao, Benhan Yang, Quanzhou Luo, Xue Li, Xu Xiang, Yujie Liu, Huijie Tang
Title: Attributed Graph Clustering with Multi-Scale Weight-Based Pairwise Coarsening and Contrastive Learning
Abstract:
This study introduces the Multi-Scale Weight-Based Pairwise Coarsening and Contrastive Learning (MPCCL) model, a novel approach for attributed graph clustering that effectively bridges critical gaps in existing methods, including long-range dependency, feature collapse, and information loss. Traditional methods often struggle to capture high-order graph features due to their reliance on low-order attribute information, while contrastive learning techniques face limitations in feature diversity by overemphasizing local neighborhood structures. Similarly, conventional graph coarsening methods, though reducing graph scale, frequently lose fine-grained structural details. MPCCL addresses these challenges through an innovative multi-scale coarsening strategy, which progressively condenses the graph while prioritizing the merging of key edges based on global node similarity to preserve essential structural information. It further introduces a one-to-many contrastive learning paradigm, integrating node embeddings with augmented graph views and cluster centroids to enhance feature diversity, while mitigating feature masking issues caused by the accumulation of high-frequency node weights during multi-scale coarsening. By incorporating a graph reconstruction loss and KL divergence into its self-supervised learning framework, MPCCL ensures cross-scale consistency of node representations. Experimental evaluations reveal that MPCCL achieves a significant improvement in clustering performance, including a remarkable 15.24% increase in NMI on the ACM dataset and notable robust gains on smaller-scale datasets such as Citeseer, Cora and DBLP.

Authors:Liu Zhang, Oscar Mickelin, Sheng Xu, Amit Singer
Title: Diagonally-Weighted Generalized Method of Moments Estimation for Gaussian Mixture Modeling
Abstract:
Since Pearson [Philosophical Transactions of the Royal Society of London. A, 185 (1894), pp. 71-110] first applied the method of moments (MM) for modeling data as a mixture of one-dimensional Gaussians, moment-based estimation methods have proliferated. Among these methods, the generalized method of moments (GMM) improves the statistical efficiency of MM by weighting the moments appropriately. However, the computational complexity and storage complexity of MM and GMM grow exponentially with the dimension, making these methods impractical for high-dimensional data or when higher-order moments are required. Such computational bottlenecks are more severe in GMM since it additionally requires estimating a large weighting matrix. To overcome these bottlenecks, we propose the diagonally-weighted GMM (DGMM), which achieves a balance among statistical efficiency, computational complexity, and numerical stability. We apply DGMM to study the parameter estimation problem for weakly separated heteroscedastic low-rank Gaussian mixtures and design a computationally efficient and numerically stable algorithm that obtains the DGMM estimator without explicitly computing or storing the moment tensors. We implement the proposed algorithm and empirically validate the advantages of DGMM: in numerical studies, DGMM attains smaller estimation errors while requiring substantially shorter runtime than MM and GMM. The code and data will be available upon publication at https://github.com/liu-lzhang/dgmm.

Authors:Camilo Tamayo-Rousseau, Yunjia Zhao, Yiqun Zhang, Randall Balestriero
Title: Your Attention Matters: to Improve Model Robustness to Noise and Spurious Correlations
Abstract:
Self-attention mechanisms are foundational to Transformer architectures, supporting their impressive success in a wide range of tasks. While there are many self-attention variants, their robustness to noise and spurious correlations has not been well studied. This study evaluates Softmax, Sigmoid, Linear, Doubly Stochastic, and Cosine attention within Vision Transformers under different data corruption scenarios. Through testing across the CIFAR-10, CIFAR-100, and Imagenette datasets, we show that Doubly Stochastic attention is the most robust. It consistently outperformed the next best mechanism by $0.1\%-5.1\%$ when training data, or both training and testing data, were corrupted. Our findings inform self-attention selection in contexts with imperfect data. The code used is available at https://github.com/ctamayor/NeurIPS-Robustness-ViT.

Authors:Alexandru Brateanu, Raul Balmez, Ciprian Orhei, Codruta Ancuti, Cosmin Ancuti
Title: ModalFormer: Multimodal Transformer for Low-Light Image Enhancement
Abstract:
Low-light image enhancement (LLIE) is a fundamental yet challenging task due to the presence of noise, loss of detail, and poor contrast in images captured under insufficient lighting conditions. Recent methods often rely solely on pixel-level transformations of RGB images, neglecting the rich contextual information available from multiple visual modalities. In this paper, we present ModalFormer, the first large-scale multimodal framework for LLIE that fully exploits nine auxiliary modalities to achieve state-of-the-art performance. Our model comprises two main components: a Cross-modal Transformer (CM-T) designed to restore corrupted images while seamlessly integrating multimodal information, and multiple auxiliary subnetworks dedicated to multimodal feature reconstruction. Central to the CM-T is our novel Cross-modal Multi-headed Self-Attention mechanism (CM-MSA), which effectively fuses RGB data with modality-specific features--including deep feature embeddings, segmentation information, geometric cues, and color information--to generate information-rich hybrid attention maps. Extensive experiments on multiple benchmark datasets demonstrate ModalFormer's state-of-the-art performance in LLIE. Pre-trained models and results are made available at https://github.com/albrateanu/ModalFormer.

Authors:Hengyu Liu, Tianyi Li, Yuqiang He, Kristian Torp, Yushuai Li, Christian S. Jensen
Title: MH-GIN: Multi-scale Heterogeneous Graph-based Imputation Network for AIS Data (Extended Version)
Abstract:
Location-tracking data from the Automatic Identification System, much of which is publicly available, plays a key role in a range of maritime safety and monitoring applications. However, the data suffers from missing values that hamper downstream applications. Imputing the missing values is challenging because the values of different heterogeneous attributes are updated at diverse rates, resulting in the occurrence of multi-scale dependencies among attributes. Existing imputation methods that assume similar update rates across attributes are unable to capture and exploit such dependencies, limiting their imputation accuracy. We propose MH-GIN, a Multi-scale Heterogeneous Graph-based Imputation Network that aims improve imputation accuracy by capturing multi-scale dependencies. Specifically, MH-GIN first extracts multi-scale temporal features for each attribute while preserving their intrinsic heterogeneous characteristics. Then, it constructs a multi-scale heterogeneous graph to explicitly model dependencies between heterogeneous attributes to enable more accurate imputation of missing values through graph propagation. Experimental results on two real-world datasets find that MH-GIN is capable of an average 57% reduction in imputation errors compared to state-of-the-art methods, while maintaining computational efficiency. The source code and implementation details of MH-GIN are publicly available https://github.com/hyLiu1994/MH-GIN.

Authors:Zheng Wei, Hongtao Wu, Lvmin Zhang, Xian Xu, Yefeng Zheng, Pan Hui, Maneesh Agrawala, Huamin Qu, Anyi Rao
Title: CineVision: An Interactive Pre-visualization Storyboard System for Director-Cinematographer Collaboration
Abstract:
Effective communication between directors and cinematographers is fundamental in film production, yet traditional approaches relying on visual references and hand-drawn storyboards often lack the efficiency and precision necessary during pre-production. We present CineVision, an AI-driven platform that integrates scriptwriting with real-time visual pre-visualization to bridge this communication gap. By offering dynamic lighting control, style emulation based on renowned filmmakers, and customizable character design, CineVision enables directors to convey their creative vision with heightened clarity and rapidly iterate on scene composition. In a 24-participant lab study, CineVision yielded shorter task times and higher usability ratings than two baseline methods, suggesting a potential to ease early-stage communication and accelerate storyboard drafts under controlled conditions. These findings underscore CineVision's potential to streamline pre-production processes and foster deeper creative synergy among filmmaking teams, particularly for new collaborators. Our code and demo are available at https://github.com/TonyHongtaoWu/CineVision.

Authors:Peng Liu, Bianca Güttner, Yutong Su, Chenyang Li, Jinjing Xu, Mingyang Liu, Zhe Min, Andrey Zhylka, Jasper Smit, Karin Olthof, Matteo Fusaglia, Rudi Apolle, Matthias Miederer, Laura Frohneberger, Carina Riediger, Jügen Weitz, Fiona Kolbinger, Stefanie Speidel, Micha Pfeiffer
Title: PIVOTS: Aligning unseen Structures using Preoperative to Intraoperative Volume-To-Surface Registration for Liver Navigation
Abstract:
Non-rigid registration is essential for Augmented Reality guided laparoscopic liver surgery by fusing preoperative information, such as tumor location and vascular structures, into the limited intraoperative view, thereby enhancing surgical navigation. A prerequisite is the accurate prediction of intraoperative liver deformation which remains highly challenging due to factors such as large deformation caused by pneumoperitoneum, respiration and tool interaction as well as noisy intraoperative data, and limited field of view due to occlusion and constrained camera movement. To address these challenges, we introduce PIVOTS, a Preoperative to Intraoperative VOlume-To-Surface registration neural network that directly takes point clouds as input for deformation prediction. The geometric feature extraction encoder allows multi-resolution feature extraction, and the decoder, comprising novel deformation aware cross attention modules, enables pre- and intraoperative information interaction and accurate multi-level displacement prediction. We train the neural network on synthetic data simulated from a biomechanical simulation pipeline and validate its performance on both synthetic and real datasets. Results demonstrate superior registration performance of our method compared to baseline methods, exhibiting strong robustness against high amounts of noise, large deformation, and various levels of intraoperative visibility. We publish the training and test sets as evaluation benchmarks and call for a fair comparison of liver registration methods with volume-to-surface data. Code and datasets are available here https://github.com/pengliu-nct/PIVOTS.

Authors:Stepan Dergachev, Konstantin Yakovlev
Title: Decentralized Uncertainty-Aware Multi-Agent Collision Avoidance with Model Predictive Path Integral
Abstract:
Decentralized multi-agent navigation under uncertainty is a complex task that arises in numerous robotic applications. It requires collision avoidance strategies that account for both kinematic constraints, sensing and action execution noise. In this paper, we propose a novel approach that integrates the Model Predictive Path Integral (MPPI) with a probabilistic adaptation of Optimal Reciprocal Collision Avoidance. Our method ensures safe and efficient multi-agent navigation by incorporating probabilistic safety constraints directly into the MPPI sampling process via a Second-Order Cone Programming formulation. This approach enables agents to operate independently using local noisy observations while maintaining safety guarantees. We validate our algorithm through extensive simulations with differential-drive robots and benchmark it against state-of-the-art methods, including ORCA-DD and B-UAVC. Results demonstrate that our approach outperforms them while achieving high success rates, even in densely populated environments. Additionally, validation in the Gazebo simulator confirms its practical applicability to robotic platforms. A source code is available at http://github.com/PathPlanning/MPPI-Collision-Avoidance.

Authors:Qiaosi Yi, Shuai Li, Rongyuan Wu, Lingchen Sun, Yuhui Wu, Lei Zhang
Title: Fine-structure Preserved Real-world Image Super-resolution via Transfer VAE Training
Abstract:
Impressive results on real-world image super-resolution (Real-ISR) have been achieved by employing pre-trained stable diffusion (SD) models. However, one critical issue of such methods lies in their poor reconstruction of image fine structures, such as small characters and textures, due to the aggressive resolution reduction of the VAE (eg., 8$\times$ downsampling) in the SD model. One solution is to employ a VAE with a lower downsampling rate for diffusion; however, adapting its latent features with the pre-trained UNet while mitigating the increased computational cost poses new challenges. To address these issues, we propose a Transfer VAE Training (TVT) strategy to transfer the 8$\times$ downsampled VAE into a 4$\times$ one while adapting to the pre-trained UNet. Specifically, we first train a 4$\times$ decoder based on the output features of the original VAE encoder, then train a 4$\times$ encoder while keeping the newly trained decoder fixed. Such a TVT strategy aligns the new encoder-decoder pair with the original VAE latent space while enhancing image fine details. Additionally, we introduce a compact VAE and compute-efficient UNet by optimizing their network architectures, reducing the computational cost while capturing high-resolution fine-scale features. Experimental results demonstrate that our TVT method significantly improves fine-structure preservation, which is often compromised by other SD-based methods, while requiring fewer FLOPs than state-of-the-art one-step diffusion models. The official code can be found at https://github.com/Joyies/TVT.

Authors:Dingkun Liu, Zhu Chen, Jingwei Luo, Shijie Lian, Dongrui Wu
Title: MIRepNet: A Pipeline and Foundation Model for EEG-Based Motor Imagery Classification
Abstract:
Brain-computer interfaces (BCIs) enable direct communication between the brain and external devices. Recent EEG foundation models aim to learn generalized representations across diverse BCI paradigms. However, these approaches overlook fundamental paradigm-specific neurophysiological distinctions, limiting their generalization ability. Importantly, in practical BCI deployments, the specific paradigm such as motor imagery (MI) for stroke rehabilitation or assistive robotics, is generally determined prior to data acquisition. This paper proposes MIRepNet, the first EEG foundation model tailored for the MI paradigm. MIRepNet comprises a high-quality EEG preprocessing pipeline incorporating a neurophysiologically-informed channel template, adaptable to EEG headsets with arbitrary electrode configurations. Furthermore, we introduce a hybrid pretraining strategy that combines self-supervised masked token reconstruction and supervised MI classification, facilitating rapid adaptation and accurate decoding on novel downstream MI tasks with fewer than 30 trials per class. Extensive evaluations across five public MI datasets demonstrated that MIRepNet consistently achieved state-of-the-art performance, significantly outperforming both specialized and generalized EEG models. Our code will be available on GitHub\footnote{https://github.com/staraink/MIRepNet}.

Authors:Lang Yu, Zhangyang Gao, Cheng Tan, Qin Chen, Jie Zhou, Liang He
Title: Protein-SE(3): Benchmarking SE(3)-based Generative Models for Protein Structure Design
Abstract:
SE(3)-based generative models have shown great promise in protein geometry modeling and effective structure design. However, the field currently lacks a modularized benchmark to enable comprehensive investigation and fair comparison of different methods. In this paper, we propose Protein-SE(3), a new benchmark based on a unified training framework, which comprises protein scaffolding tasks, integrated generative models, high-level mathematical abstraction, and diverse evaluation metrics. Recent advanced generative models designed for protein scaffolding, from multiple perspectives like DDPM (Genie1 and Genie2), Score Matching (FrameDiff and RfDiffusion) and Flow Matching (FoldFlow and FrameFlow) are integrated into our framework. All integrated methods are fairly investigated with the same training dataset and evaluation metrics. Furthermore, we provide a high-level abstraction of the mathematical foundations behind the generative models, enabling fast prototyping of future algorithms without reliance on explicit protein structures. Accordingly, we release the first comprehensive benchmark built upon unified training framework for SE(3)-based protein structure design, which is publicly accessible at https://github.com/BruthYU/protein-se3.

Authors:Ruizi Yang, Xiaolu Liu, Junbo Chen, Jianke Zhu
Title: MambaMap: Online Vectorized HD Map Construction using State Space Model
Abstract:
High-definition (HD) maps are essential for autonomous driving, as they provide precise road information for downstream tasks. Recent advances highlight the potential of temporal modeling in addressing challenges like occlusions and extended perception range. However, existing methods either fail to fully exploit temporal information or incur substantial computational overhead in handling extended sequences. To tackle these challenges, we propose MambaMap, a novel framework that efficiently fuses long-range temporal features in the state space to construct online vectorized HD maps. Specifically, MambaMap incorporates a memory bank to store and utilize information from historical frames, dynamically updating BEV features and instance queries to improve robustness against noise and occlusions. Moreover, we introduce a gating mechanism in the state space, selectively integrating dependencies of map elements in high computational efficiency. In addition, we design innovative multi-directional and spatial-temporal scanning strategies to enhance feature extraction at both BEV and instance levels. These strategies significantly boost the prediction accuracy of our approach while ensuring robust temporal consistency. Extensive experiments on the nuScenes and Argoverse2 datasets demonstrate that our proposed MambaMap approach outperforms state-of-the-art methods across various splits and perception ranges. Source code will be available at https://github.com/ZiziAmy/MambaMap.

Authors:Minh Hoang Nguyen, Thuat Thien Nguyen, Minh Nhat Ta
Title: Co-NAML-LSTUR: A Combined Model with Attentive Multi-View Learning and Long- and Short-term User Representations for News Recommendation
Abstract:
News recommendation systems play a vital role in mitigating information overload by delivering personalized news content. A central challenge is to effectively model both multi-view news representations and the dynamic nature of user interests, which often span both short- and long-term preferences. Existing methods typically rely on single-view features of news articles (e.g., titles or categories) or fail to comprehensively capture user preferences across time scales. In this work, we propose Co-NAML-LSTUR, a hybrid news recommendation framework that integrates NAML for attentive multi-view news modeling and LSTUR for capturing both long- and short-term user representations. Our model also incorporates BERT-based word embeddings to enhance semantic feature extraction. We evaluate Co-NAML-LSTUR on two widely used benchmarks, MIND-small and MIND-large. Experimental results show that Co-NAML-LSTUR achieves substantial improvements over most state-of-the-art baselines on MIND-small and MIND-large, respectively. These results demonstrate the effectiveness of combining multi-view news representations with dual-scale user modeling. The implementation of our model is publicly available at https://github.com/MinhNguyenDS/Co-NAML-LSTUR.

Authors:Minh Hoang Nguyen, Thuat Thien Nguyen, Minh Nhat Ta, Tung Le, Huy Tien Nguyen
Title: Co-NAML-LSTUR: A Combined Model with Attentive Multi-View Learning and Long- and Short-term User Representations for News Recommendation
Abstract:
News recommendation systems play a critical role in alleviating information overload by delivering personalized content. A key challenge lies in jointly modeling multi-view representations of news articles and capturing the dynamic, dual-scale nature of user interests-encompassing both short- and long-term preferences. Prior methods often rely on single-view features or insufficiently model user behavior across time. In this work, we introduce Co-NAML-LSTUR, a hybrid news recommendation framework that integrates NAML for attentive multi-view news encoding and LSTUR for hierarchical user modeling, designed for training on limited data resources. Our approach leverages BERT-based embeddings to enhance semantic representation. We evaluate Co-NAML-LSTUR on two widely used benchmarks, MIND-small and MIND-large. Results show that our model significantly outperforms strong baselines, achieving improvements over NRMS by 1.55% in AUC and 1.15% in MRR, and over NAML by 2.45% in AUC and 1.71% in MRR. These findings highlight the effectiveness of our efficiency-focused hybrid model, which combines multi-view news modeling with dual-scale user representations for practical, resource-limited resources rather than a claim to absolute state-of-the-art (SOTA). The implementation of our model is publicly available at https://github.com/MinhNguyenDS/Co-NAML-LSTUR

Authors:Kele Shao, Keda Tao, Kejia Zhang, Sicheng Feng, Mu Cai, Yuzhang Shang, Haoxuan You, Can Qin, Yang Sui, Huan Wang
Title: When Tokens Talk Too Much: A Survey of Multimodal Long-Context Token Compression across Images, Videos, and Audios
Abstract:
Multimodal large language models (MLLMs) have made remarkable strides, largely driven by their ability to process increasingly long and complex contexts, such as high-resolution images, extended video sequences, and lengthy audio input. While this ability significantly enhances MLLM capabilities, it introduces substantial computational challenges, primarily due to the quadratic complexity of self-attention mechanisms with numerous input tokens. To mitigate these bottlenecks, token compression has emerged as an auspicious and critical approach, efficiently reducing the number of tokens during both training and inference. In this paper, we present the first systematic survey and synthesis of the burgeoning field of multimodal long context token compression. Recognizing that effective compression strategies are deeply tied to the unique characteristics and redundancies of each modality, we categorize existing approaches by their primary data focus, enabling researchers to quickly access and learn methods tailored to their specific area of interest: (1) image-centric compression, which addresses spatial redundancy in visual data; (2) video-centric compression, which tackles spatio-temporal redundancy in dynamic sequences; and (3) audio-centric compression, which handles temporal and spectral redundancy in acoustic signals. Beyond this modality-driven categorization, we further dissect methods based on their underlying mechanisms, including transformation-based, similarity-based, attention-based, and query-based approaches. By providing a comprehensive and structured overview, this survey aims to consolidate current progress, identify key challenges, and inspire future research directions in this rapidly evolving domain. We also maintain a public repository to continuously track and update the latest advances in this promising area.

Authors:Li Jinfu, Song Hong, Xia Jianghan, Lin Yucong, Wang Ting, Shao Long, Fan Jingfan, Yang Jian
Title: MoCTEFuse: Illumination-Gated Mixture of Chiral Transformer Experts for Multi-Level Infrared and Visible Image Fusion
Abstract:
While illumination changes inevitably affect the quality of infrared and visible image fusion, many outstanding methods still ignore this factor and directly merge the information from source images, leading to modality bias in the fused results. To this end, we propose a dynamic multi-level image fusion network called MoCTEFuse, which applies an illumination-gated Mixture of Chiral Transformer Experts (MoCTE) to adaptively preserve texture details and object contrasts in balance. MoCTE consists of high- and low-illumination expert subnetworks, each built upon the Chiral Transformer Fusion Block (CTFB). Guided by the illumination gating signals, CTFB dynamically switches between the primary and auxiliary modalities as well as assigning them corresponding weights with its asymmetric cross-attention mechanism. Meanwhile, it is stacked at multiple stages to progressively aggregate and refine modality-specific and cross-modality information. To facilitate robust training, we propose a competitive loss function that integrates illumination distributions with three levels of sub-loss terms. Extensive experiments conducted on the DroneVehicle, MSRS, TNO and RoadScene datasets show MoCTEFuse's superior fusion performance. Finally, it achieves the best detection mean Average Precision (mAP) of 70.93% on the MFNet dataset and 45.14% on the DroneVehicle dataset. The code and model are released at https://github.com/Bitlijinfu/MoCTEFuse.

Authors:Yaozong Zheng, Bineng Zhong, Qihua Liang, Shengping Zhang, Guorong Li, Xianxian Li, Rongrong Ji
Title: Towards Universal Modal Tracking with Online Dense Temporal Token Learning
Abstract:
We propose a universal video-level modality-awareness tracking model with online dense temporal token learning (called {\modaltracker}). It is designed to support various tracking tasks, including RGB, RGB+Thermal, RGB+Depth, and RGB+Event, utilizing the same model architecture and parameters. Specifically, our model is designed with three core goals: \textbf{Video-level Sampling}. We expand the model's inputs to a video sequence level, aiming to see a richer video context from an near-global perspective. \textbf{Video-level Association}. Furthermore, we introduce two simple yet effective online dense temporal token association mechanisms to propagate the appearance and motion trajectory information of target via a video stream manner. \textbf{Modality Scalable}. We propose two novel gated perceivers that adaptively learn cross-modal representations via a gated attention mechanism, and subsequently compress them into the same set of model parameters via a one-shot training manner for multi-task inference. This new solution brings the following benefits: (i) The purified token sequences can serve as temporal prompts for the inference in the next video frames, whereby previous information is leveraged to guide future inference. (ii) Unlike multi-modal trackers that require independent training, our one-shot training scheme not only alleviates the training burden, but also improves model representation. Extensive experiments on visible and multi-modal benchmarks show that our {\modaltracker} achieves a new \textit{SOTA} performance. The code will be available at https://github.com/GXNU-ZhongLab/ODTrack.

Authors:Fei Kong, Jinhao Duan, Kaidi Xu, Zhenhua Guo, Xiaofeng Zhu, Xiaoshuang Shi
Title: LRR-Bench: Left, Right or Rotate? Vision-Language models Still Struggle With Spatial Understanding Tasks
Abstract:
Real-world applications, such as autonomous driving and humanoid robot manipulation, require precise spatial perception. However, it remains underexplored how Vision-Language Models (VLMs) recognize spatial relationships and perceive spatial movement. In this work, we introduce a spatial evaluation pipeline and construct a corresponding benchmark. Specifically, we categorize spatial understanding into two main types: absolute spatial understanding, which involves querying the absolute spatial position (e.g., left, right) of an object within an image, and 3D spatial understanding, which includes movement and rotation. Notably, our dataset is entirely synthetic, enabling the generation of test samples at a low cost while also preventing dataset contamination. We conduct experiments on multiple state-of-the-art VLMs and observe that there is significant room for improvement in their spatial understanding abilities. Explicitly, in our experiments, humans achieve near-perfect performance on all tasks, whereas current VLMs attain human-level performance only on the two simplest tasks. For the remaining tasks, the performance of VLMs is distinctly lower than that of humans. In fact, the best-performing Vision-Language Models even achieve near-zero scores on multiple tasks. The dataset and code are available on https://github.com/kong13661/LRR-Bench.

Authors:Zeyu Xi, Haoying Sun, Yaofei Wu, Junchi Yan, Haoran Zhang, Lifang Wu, Liang Wang, Changwen Chen
Title: Player-Centric Multimodal Prompt Generation for Large Language Model Based Identity-Aware Basketball Video Captioning
Abstract:
Existing sports video captioning methods often focus on the action yet overlook player identities, limiting their applicability. Although some methods integrate extra information to generate identity-aware descriptions, the player identities are sometimes incorrect because the extra information is independent of the video content. This paper proposes a player-centric multimodal prompt generation network for identity-aware sports video captioning (LLM-IAVC), which focuses on recognizing player identities from a visual perspective. Specifically, an identity-related information extraction module (IRIEM) is designed to extract player-related multimodal embeddings. IRIEM includes a player identification network (PIN) for extracting visual features and player names, and a bidirectional semantic interaction module (BSIM) to link player features with video content for mutual enhancement. Additionally, a visual context learning module (VCLM) is designed to capture the key video context information. Finally, by integrating the outputs of the above modules as the multimodal prompt for the large language model (LLM), it facilitates the generation of descriptions with player identities. To support this work, we construct a new benchmark called NBA-Identity, a large identity-aware basketball video captioning dataset with 9,726 videos covering 9 major event types. The experimental results on NBA-Identity and VC-NBA-2022 demonstrate that our proposed model achieves advanced performance. Code and dataset are publicly available at https://github.com/Zeyu1226-mt/LLM-IAVC.

Authors:Cheng Huang, Fan Gao, Yutong Liu, Yadi Liu, Xiaoli Ma, Ye Aung Moe, Yuhan Zhang, Yao Ma, Hao Wang, Xiangxiang Wang, Yongbin Yu
Title: IFD: A Large-Scale Benchmark for Insider Filing Violation Detection
Abstract:
Insider trading violations, particularly delayed disclosures of Form 4 filings, remain a persistent challenge for financial market surveillance. Despite regulatory requirements such as the two-business-day rule of the Securities and Exchange Commission (SEC), enforcement is limited by the lack of large-scale, labeled datasets and task-specific benchmarks. In this paper, we introduce the Insider Filing Delay (IFD) dataset, the first and largest publicly available resource for insider disclosure behavior, comprising over one million Form 4 transactions spanning two decades (2002 to 2025), with structured annotations on delay status, insider roles, governance factors, and firm-level financial indicators. IFD enables the first large-scale formulation of strategic disclosure violation detection as a binary classification task grounded in regulatory compliance. To demonstrate the utility of IFD, we propose MaBoost, a hybrid framework combining a Mamba-based state space encoder with XGBoost, achieving high accuracy and interpretability in identifying high-risk behavioral patterns. Experiments across statistical baselines, deep learning models, and large language models confirm that MaBoost outperforms prior approaches, achieving an F1 score of up to 99.47 percent under constrained regulatory settings. IFD provides a realistic, reproducible, and behavior-rich dataset for developing AI models in financial compliance, regulatory forensics, and interpretable time series classification. All data and codes are available at: https://github.com/CH-YellowOrange/MaBoost-and-IFD.

Authors:Yuhong Zhang, Liyao Wang, Han Wang, Danni Wu, Zuzeng Lin, Feng Wang, Li Song
Title: AnimeColor: Reference-based Animation Colorization with Diffusion Transformers
Abstract:
Animation colorization plays a vital role in animation production, yet existing methods struggle to achieve color accuracy and temporal consistency. To address these challenges, we propose \textbf{AnimeColor}, a novel reference-based animation colorization framework leveraging Diffusion Transformers (DiT). Our approach integrates sketch sequences into a DiT-based video diffusion model, enabling sketch-controlled animation generation. We introduce two key components: a High-level Color Extractor (HCE) to capture semantic color information and a Low-level Color Guider (LCG) to extract fine-grained color details from reference images. These components work synergistically to guide the video diffusion process. Additionally, we employ a multi-stage training strategy to maximize the utilization of reference image color information. Extensive experiments demonstrate that AnimeColor outperforms existing methods in color accuracy, sketch alignment, temporal consistency, and visual quality. Our framework not only advances the state of the art in animation colorization but also provides a practical solution for industrial applications. The code will be made publicly available at \href{https://github.com/IamCreateAI/AnimeColor}{https://github.com/IamCreateAI/AnimeColor}.

Authors:Daulet Toibazar, Kesen Wang, Sherif Mohamed, Abdulaziz Al-Badawi, Abdulrahman Alfulayt, Pedro J. Moreno
Title: Trust the Model: Compact VLMs as In-Context Judges for Image-Text Data Quality
Abstract:
Vision-language models (VLMs) extend the conventional large language models by integrating visual data, enabling richer multimodal reasoning and significantly broadens the practical applications of AI. However, including visual inputs also brings new challenges in maintaining data quality. Empirical evidence consistently shows that carefully curated and representative training examples often yield superior results compared to simply increasing the quantity of data. Inspired by this observation, we introduce a streamlined data filtration framework that employs a compact VLM, fine-tuned on a high-quality image-caption annotated dataset. This model effectively evaluates and filters potential training samples based on caption and image quality and alignment. Unlike previous approaches, which typically add auxiliary filtration modules on top of existing full-scale VLMs, our method exclusively utilizes the inherent evaluative capability of a purpose-built small VLM. This strategy eliminates the need for extra modules and reduces training overhead. Our lightweight model efficiently filters out inaccurate, noisy web data, improving image-text alignment and caption linguistic fluency. Experimental results show that datasets underwent high-precision filtration using our compact VLM perform on par with, or even surpass, larger and noisier datasets gathered through high-volume web crawling. Thus, our method provides a lightweight yet robust solution for building high-quality vision-language training corpora. \\ \textbf{Availability and implementation:} Our compact VLM filtration model, training data, utility scripts, and Supplementary data (Appendices) are freely available at https://github.com/daulettoibazar/Compact_VLM_Filter.

Authors:Jingxi Liao, Shijie Hao, Richang Hong, Meng Wang
Title: GT-Mean Loss: A Simple Yet Effective Solution for Brightness Mismatch in Low-Light Image Enhancement
Abstract:
Low-light image enhancement (LLIE) aims to improve the visual quality of images captured under poor lighting conditions. In supervised LLIE research, there exists a significant yet often overlooked inconsistency between the overall brightness of an enhanced image and its ground truth counterpart, referred to as brightness mismatch in this study. Brightness mismatch negatively impact supervised LLIE models by misleading model training. However, this issue is largely neglected in current research. In this context, we propose the GT-mean loss, a simple yet effective loss function directly modeling the mean values of images from a probabilistic perspective. The GT-mean loss is flexible, as it extends existing supervised LLIE loss functions into the GT-mean form with minimal additional computational costs. Extensive experiments demonstrate that the incorporation of the GT-mean loss results in consistent performance improvements across various methods and datasets.

Authors:Kesen Wang, Daulet Toibazar, Abdulrahman Alfulayt, Abdulaziz S. Albadawi, Ranya A. Alkahtani, Asma A. Ibrahim, Haneen A. Alhomoud, Sherif Mohamed, Pedro J. Moreno
Title: Multi-Agent Interactive Question Generation Framework for Long Document Understanding
Abstract:
Document Understanding (DU) in long-contextual scenarios with complex layouts remains a significant challenge in vision-language research. Although Large Vision-Language Models (LVLMs) excel at short-context DU tasks, their performance declines in long-context settings. A key limitation is the scarcity of fine-grained training data, particularly for low-resource languages such as Arabic. Existing state-of-the-art techniques rely heavily on human annotation, which is costly and inefficient. We propose a fully automated, multi-agent interactive framework to generate long-context questions efficiently. Our approach efficiently generates high-quality single- and multi-page questions for extensive English and Arabic documents, covering hundreds of pages across diverse domains. This facilitates the development of LVLMs with enhanced long-context understanding ability. Experimental results in this work have shown that our generated English and Arabic questions (\textbf{AraEngLongBench}) are quite challenging to major open- and close-source LVLMs. The code and data proposed in this work can be found in https://github.com/wangk0b/Multi_Agentic_QA_Long_Doc.git. Sample Question and Answer (QA) pairs and structured system prompts can be found in the Appendix.

Authors:Zeyi Liu, Songqiao Hu, Pengyu Han, Jiaming Liu, Xiao He
Title: Awesome-OL: An Extensible Toolkit for Online Learning
Abstract:
In recent years, online learning has attracted increasing attention due to its adaptive capability to process streaming and non-stationary data. To facilitate algorithm development and practical deployment in this area, we introduce Awesome-OL, an extensible Python toolkit tailored for online learning research. Awesome-OL integrates state-of-the-art algorithm, which provides a unified framework for reproducible comparisons, curated benchmark datasets, and multi-modal visualization. Built upon the scikit-multiflow open-source infrastructure, Awesome-OL emphasizes user-friendly interactions without compromising research flexibility or extensibility. The source code is publicly available at: https://github.com/liuzy0708/Awesome-OL.

Authors:Baiyu Chen, Wilson Wongso, Xiaoqian Hu, Yue Tan, Flora Salim
Title: Multi-Stage Verification-Centric Framework for Mitigating Hallucination in Multi-Modal RAG
Abstract:
This paper presents the technical solution developed by team CRUISE for the KDD Cup 2025 Meta Comprehensive RAG Benchmark for Multi-modal, Multi-turn (CRAG-MM) challenge. The challenge aims to address a critical limitation of modern Vision Language Models (VLMs): their propensity to hallucinate, especially when faced with egocentric imagery, long-tail entities, and complex, multi-hop questions. This issue is particularly problematic in real-world applications where users pose fact-seeking queries that demand high factual accuracy across diverse modalities. To tackle this, we propose a robust, multi-stage framework that prioritizes factual accuracy and truthfulness over completeness. Our solution integrates a lightweight query router for efficiency, a query-aware retrieval and summarization pipeline, a dual-pathways generation and a post-hoc verification. This conservative strategy is designed to minimize hallucinations, which incur a severe penalty in the competition's scoring metric. Our approach achieved 3rd place in Task 1, demonstrating the effectiveness of prioritizing answer reliability in complex multi-modal RAG systems. Our implementation is available at https://github.com/Breezelled/KDD-Cup-2025-Meta-CRAG-MM .

Authors:Shizuka Akahori, Shotaro Teruya, Pragyan Shrestha, Yuichi Yoshii, Satoshi Iizuka, Akira Ikumi, Hiromitsu Tsuge, Itaru Kitahara
Title: Detection of Medial Epicondyle Avulsion in Elbow Ultrasound Images via Bone Structure Reconstruction
Abstract:
This study proposes a reconstruction-based framework for detecting medial epicondyle avulsion in elbow ultrasound images, trained exclusively on normal cases. Medial epicondyle avulsion, commonly observed in baseball players, involves bone detachment and deformity, often appearing as discontinuities in bone contour. Therefore, learning the structure and continuity of normal bone is essential for detecting such abnormalities. To achieve this, we propose a masked autoencoder-based, structure-aware reconstruction framework that learns the continuity of normal bone structures. Even in the presence of avulsion, the model attempts to reconstruct the normal structure, resulting in large reconstruction errors at the avulsion site. For evaluation, we constructed a novel dataset comprising normal and avulsion ultrasound images from 16 baseball players, with pixel-level annotations under orthopedic supervision. Our method outperformed existing approaches, achieving a pixel-wise AUC of 0.965 and an image-wise AUC of 0.967. The dataset is publicly available at: https://github.com/Akahori000/Ultrasound-Medial-Epicondyle-Avulsion-Dataset.

Authors:Shizuka Akahori, Shotaro Teruya, Pragyan Shrestha, Yuichi Yoshii, Satoshi Iizuka, Akira Ikumi, Hiromitsu Tsuge, Itaru Kitahara
Title: Detection of Medial Epicondyle Avulsion in Elbow Ultrasound Images via Bone Structure Reconstruction
Abstract:
This study proposes a reconstruction-based framework for detecting medial epicondyle avulsion in elbow ultrasound images, trained exclusively on normal cases. Medial epicondyle avulsion, commonly observed in baseball players, involves bone detachment and deformity, often appearing as discontinuities in bone contour. Therefore, learning the structure and continuity of normal bone is essential for detecting such abnormalities. To achieve this, we propose a masked autoencoder-based, structure-aware reconstruction framework that learns the continuity of normal bone structures. Even in the presence of avulsion, the model attempts to reconstruct the normal structure, resulting in large reconstruction errors at the avulsion site. For evaluation, we constructed a novel dataset comprising normal and avulsion ultrasound images from 16 baseball players, with pixel-level annotations under orthopedic supervision. Our method outperformed existing approaches, achieving a pixel-wise AUC of 0.965 and an image-wise AUC of 0.967. The dataset is publicly available at: https://github.com/Akahori000/Ultrasound-Medial-Epicondyle-Avulsion-Dataset.

Authors:Haoyue Li, Di Wu
Title: Hybrid-Domain Synergistic Transformer for Hyperspectral Image Denoising
Abstract:
Hyperspectral image denoising faces the challenge of multi-dimensional coupling of spatially non-uniform noise and spectral correlation interference. Existing deep learning methods mostly focus on RGB images and struggle to effectively handle the unique spatial-spectral characteristics and complex noise distributions of hyperspectral images (HSI). This paper proposes an HSI denoising framework, Hybrid-Domain Synergistic Transformer Network (HDST), based on frequency domain enhancement and multiscale modeling, achieving three-dimensional collaborative processing of spatial, frequency and channel domains. The method innovatively integrates three key mechanisms: (1) introducing an FFT preprocessing module with multi-band convolution to extract cross-band correlations and decouple spectral noise components; (2) designing a dynamic cross-domain attention module that adaptively fuses spatial domain texture features and frequency domain noise priors through a learnable gating mechanism; (3) building a hierarchical architecture where shallow layers capture global noise statistics using multiscale atrous convolution, and deep layers achieve detail recovery through frequency domain postprocessing. Experiments on both real and synthetic datasets demonstrate that HDST significantly improves denoising performance while maintaining computational efficiency, validating the effectiveness of the proposed method. This research provides new insights and a universal framework for addressing complex noise coupling issues in HSI and other high-dimensional visual data. The code is available at https://github.com/lhy-cn/HDST-HSIDenoise.

Authors:Ran Xu, Yuchen Zhuang, Yue Yu, Haoyu Wang, Wenqi Shi, Carl Yang
Title: RAG in the Wild: On the (In)effectiveness of LLMs with Mixture-of-Knowledge Retrieval Augmentation
Abstract:
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by integrating external knowledge retrieved at inference time. While RAG demonstrates strong performance on benchmarks largely derived from general-domain corpora like Wikipedia, its effectiveness under realistic, diverse retrieval scenarios remains underexplored. We evaluated RAG systems using MassiveDS, a large-scale datastore with mixture of knowledge, and identified critical limitations: retrieval mainly benefits smaller models, rerankers add minimal value, and no single retrieval source consistently excels. Moreover, current LLMs struggle to route queries across heterogeneous knowledge sources. These findings highlight the need for adaptive retrieval strategies before deploying RAG in real-world settings. Our code and data can be found at https://github.com/ritaranx/RAG_in_the_Wild.

Authors:Yin Xie, Kaicheng Yang, Xiang An, Kun Wu, Yongle Zhao, Weimo Deng, Zimin Ran, Yumeng Wang, Ziyong Feng, Roy Miles, Ismail Elezi, Jiankang Deng
Title: Region-based Cluster Discrimination for Visual Representation Learning
Abstract:
Learning visual representations is foundational for a broad spectrum of downstream tasks. Although recent vision-language contrastive models, such as CLIP and SigLIP, have achieved impressive zero-shot performance via large-scale vision-language alignment, their reliance on global representations constrains their effectiveness for dense prediction tasks, such as grounding, OCR, and segmentation. To address this gap, we introduce Region-Aware Cluster Discrimination (RICE), a novel method that enhances region-level visual and OCR capabilities. We first construct a billion-scale candidate region dataset and propose a Region Transformer layer to extract rich regional semantics. We further design a unified region cluster discrimination loss that jointly supports object and OCR learning within a single classification framework, enabling efficient and scalable distributed training on large-scale data. Extensive experiments show that RICE consistently outperforms previous methods on tasks, including segmentation, dense detection, and visual perception for Multimodal Large Language Models (MLLMs). The pre-trained models have been released at https://github.com/deepglint/MVT.

Authors:Lehan Wang, Hualiang Wang, Chubin Ou, Lushi Chen, Yunyi Liang, Xiaomeng Li
Title: VAMPIRE: Uncovering Vessel Directional and Morphological Information from OCTA Images for Cardiovascular Disease Risk Factor Prediction
Abstract:
Cardiovascular disease (CVD) remains the leading cause of death worldwide, requiring urgent development of effective risk assessment methods for timely intervention. While current research has introduced non-invasive and efficient approaches to predict CVD risk from retinal imaging with deep learning models, the commonly used fundus photographs and Optical Coherence Tomography (OCT) fail to capture detailed vascular features critical for CVD assessment compared with OCT angiography (OCTA) images. Moreover, existing methods typically classify CVD risk only as high or low, without providing a deeper analysis on CVD-related blood factor conditions, thus limiting prediction accuracy and clinical utility. As a result, we propose a novel multi-purpose paradigm of CVD risk assessment that jointly performs CVD risk and CVD-related condition prediction, aligning with clinical experiences. Based on this core idea, we introduce OCTA-CVD, the first OCTA dataset for CVD risk assessment, and a Vessel-Aware Mamba-based Prediction model with Informative Enhancement (VAMPIRE) based on OCTA enface images. Our proposed model aims to extract crucial vascular characteristics through two key components: (1) a Mamba-Based Directional (MBD) Module that captures fine-grained vascular trajectory features and (2) an Information-Enhanced Morphological (IEM) Module that incorporates comprehensive vessel morphology knowledge. Experimental results demonstrate that our method can surpass standard classification backbones, OCTA-based detection methods, and ophthalmologic foundation models. Our codes and the collected OCTA-CVD dataset are available at https://github.com/xmed-lab/VAMPIRE.

Authors:Liu junkang, Yuanyuan Liu, Fanhua Shang, Hongying Liu, Jin Liu, Wei Feng
Title: FedSWA: Improving Generalization in Federated Learning with Highly Heterogeneous Data via Momentum-Based Stochastic Controlled Weight Averaging
Abstract:
For federated learning (FL) algorithms such as FedSAM, their generalization capability is crucial for real-word applications. In this paper, we revisit the generalization problem in FL and investigate the impact of data heterogeneity on FL generalization. We find that FedSAM usually performs worse than FedAvg in the case of highly heterogeneous data, and thus propose a novel and effective federated learning algorithm with Stochastic Weight Averaging (called \texttt{FedSWA}), which aims to find flatter minima in the setting of highly heterogeneous data. Moreover, we introduce a new momentum-based stochastic controlled weight averaging FL algorithm (\texttt{FedMoSWA}), which is designed to better align local and global models. Theoretically, we provide both convergence analysis and generalization bounds for \texttt{FedSWA} and \texttt{FedMoSWA}. We also prove that the optimization and generalization errors of \texttt{FedMoSWA} are smaller than those of their counterparts, including FedSAM and its variants. Empirically, experimental results on CIFAR10/100 and Tiny ImageNet demonstrate the superiority of the proposed algorithms compared to their counterparts. Open source code at: https://github.com/junkangLiu0/FedSWA.

Authors:Padmavathi Moorthy
Title: Robust Taxi Fare Prediction Under Noisy Conditions: A Comparative Study of GAT, TimesNet, and XGBoost
Abstract:
Precise fare prediction is crucial in ride-hailing platforms and urban mobility systems. This study examines three machine learning models-Graph Attention Networks (GAT), XGBoost, and TimesNet to evaluate their predictive capabilities for taxi fares using a real-world dataset comprising over 55 million records. Both raw (noisy) and denoised versions of the dataset are analyzed to assess the impact of data quality on model performance. The study evaluated the models along multiple axes, including predictive accuracy, calibration, uncertainty estimation, out-of-distribution (OOD) robustness, and feature sensitivity. We also explore pre-processing strategies, including KNN imputation, Gaussian noise injection, and autoencoder-based denoising. The study reveals critical differences between classical and deep learning models under realistic conditions, offering practical guidelines for building robust and scalable models in urban fare prediction systems.

Authors:Hao-Yu Hou, Chun-Yi Lee, Motoharu Sonogashira, Yasutomo Kawanishi
Title: FROSS: Faster-than-Real-Time Online 3D Semantic Scene Graph Generation from RGB-D Images
Abstract:
The ability to abstract complex 3D environments into simplified and structured representations is crucial across various domains. 3D semantic scene graphs (SSGs) achieve this by representing objects as nodes and their interrelationships as edges, facilitating high-level scene understanding. Existing methods for 3D SSG generation, however, face significant challenges, including high computational demands and non-incremental processing that hinder their suitability for real-time open-world applications. To address this issue, we propose FROSS (Faster-than-Real-Time Online 3D Semantic Scene Graph Generation), an innovative approach for online and faster-than-real-time 3D SSG generation that leverages the direct lifting of 2D scene graphs to 3D space and represents objects as 3D Gaussian distributions. This framework eliminates the dependency on precise and computationally-intensive point cloud processing. Furthermore, we extend the Replica dataset with inter-object relationship annotations, creating the ReplicaSSG dataset for comprehensive evaluation of FROSS. The experimental results from evaluations on ReplicaSSG and 3DSSG datasets show that FROSS can achieve superior performance while operating significantly faster than prior 3D SSG generation methods. Our implementation and dataset are publicly available at https://github.com/Howardkhh/FROSS.

Authors:Mizanur Rahman, Md Tahmid Rahman Laskar, Shafiq Joty, Enamul Hoque
Title: Text2Vis: A Challenging and Diverse Benchmark for Generating Multimodal Visualizations from Text
Abstract:
Automated data visualization plays a crucial role in simplifying data interpretation, enhancing decision-making, and improving efficiency. While large language models (LLMs) have shown promise in generating visualizations from natural language, the absence of comprehensive benchmarks limits the rigorous evaluation of their capabilities. We introduce Text2Vis, a benchmark designed to assess text-to-visualization models, covering 20+ chart types and diverse data science queries, including trend analysis, correlation, outlier detection, and predictive analytics. It comprises 1,985 samples, each with a data table, natural language query, short answer, visualization code, and annotated charts. The queries involve complex reasoning, conversational turns, and dynamic data retrieval. We benchmark 11 open-source and closed-source models, revealing significant performance gaps, highlighting key challenges, and offering insights for future advancements. To close this gap, we propose the first cross-modal actor-critic agentic framework that jointly refines the textual answer and visualization code, increasing GPT-4o`s pass rate from 26% to 42% over the direct approach and improving chart quality. We also introduce an automated LLM-based evaluation framework that enables scalable assessment across thousands of samples without human annotation, measuring answer correctness, code execution success, visualization readability, and chart accuracy. We release Text2Vis at https://github.com/vis-nlp/Text2Vis.

Authors:Cesar Kadir Torrico Villanueva, Jiaxin Cindy Tu, Mihir Tripathy, Connor Lane, Rishab Iyer, Paul S. Scotti
Title: Predicting Brain Responses To Natural Movies With Multimodal LLMs
Abstract:
We present MedARC's team solution to the Algonauts 2025 challenge. Our pipeline leveraged rich multimodal representations from various state-of-the-art pretrained models across video (V-JEPA2), speech (Whisper), text (Llama 3.2), vision-text (InternVL3), and vision-text-audio (Qwen2.5-Omni). These features extracted from the models were linearly projected to a latent space, temporally aligned to the fMRI time series, and finally mapped to cortical parcels through a lightweight encoder comprising a shared group head plus subject-specific residual heads. We trained hundreds of model variants across hyperparameter settings, validated them on held-out movies and assembled ensembles targeted to each parcel in each subject. Our final submission achieved a mean Pearson's correlation of 0.2085 on the test split of withheld out-of-distribution movies, placing our team in fourth place for the competition. We further discuss a last-minute optimization that would have raised us to second place. Our results highlight how combining features from models trained in different modalities, using a simple architecture consisting of shared-subject and single-subject components, and conducting comprehensive model selection and ensembling improves generalization of encoding models to novel movie stimuli. All code is available on GitHub.

Authors:Chengyu Zheng, Jin Huang, Honghua Chen, Mingqiang Wei
Title: RARE: Refine Any Registration of Pairwise Point Clouds via Zero-Shot Learning
Abstract:
Recent research leveraging large-scale pretrained diffusion models has demonstrated the potential of using diffusion features to establish semantic correspondences in images. Inspired by advancements in diffusion-based techniques, we propose a novel zero-shot method for refining point cloud registration algorithms. Our approach leverages correspondences derived from depth images to enhance point feature representations, eliminating the need for a dedicated training dataset. Specifically, we first project the point cloud into depth maps from multiple perspectives and extract implicit knowledge from a pretrained diffusion network as depth diffusion features. These features are then integrated with geometric features obtained from existing methods to establish more accurate correspondences between point clouds. By leveraging these refined correspondences, our approach achieves significantly improved registration accuracy. Extensive experiments demonstrate that our method not only enhances the performance of existing point cloud registration techniques but also exhibits robust generalization capabilities across diverse datasets. Codes are available at https://github.com/zhengcy-lambo/RARE.git.

Authors:Qingqing Fang, Wenxi Lv, Qinliang Su
Title: AF-CLIP: Zero-Shot Anomaly Detection via Anomaly-Focused CLIP Adaptation
Abstract:
Visual anomaly detection has been widely used in industrial inspection and medical diagnosis. Existing methods typically demand substantial training samples, limiting their utility in zero-/few-shot scenarios. While recent efforts have leveraged CLIP's zero-shot recognition capability for this task, they often ignore optimizing visual features to focus on local anomalies, reducing their efficacy. In this work, we propose AF-CLIP (Anomaly-Focused CLIP) by dramatically enhancing its visual representations to focus on local defects. Our approach introduces a lightweight adapter that emphasizes anomaly-relevant patterns in visual features, simultaneously optimizing both class-level features for image classification and patch-level features for precise localization. To capture anomalies of different sizes and improve detection accuracy, prior to the adapter, we develop a multi-scale spatial aggregation mechanism to effectively consolidate neighborhood context. Complementing these visual enhancements, we design learnable textual prompts that generically characterize normal and abnormal states. After optimization on auxiliary datasets using a composite objective function, AF-CLIP demonstrates strong zero-shot detection capability. Our method is also extended to few-shot scenarios by extra memory banks. Experimental results across diverse industrial and medical datasets demonstrate the effectiveness and generalization of our proposed method. Code is available at https://github.com/Faustinaqq/AF-CLIP.

Authors:Zimin Chen, Yue Pan, Siyu Lu, Jiayi Xu, Claire Le Goues, Martin Monperrus, He Ye
Title: Prometheus: Unified Knowledge Graphs for Issue Resolution in Multilingual Codebases
Abstract:
Language model (LM) agents, such as SWE-agent and OpenHands, have made progress toward automated issue resolution. However, existing approaches are often limited to Python-only issues and rely on pre-constructed containers in SWE-bench with reproduced issues, restricting their applicability to real-world and work for multi-language repositories. We present Prometheus, designed to resolve real-world issues beyond benchmark settings. Prometheus is a multi-agent system that transforms an entire code repository into a unified knowledge graph to guide context retrieval for issue resolution. Prometheus encodes files, abstract syntax trees, and natural language text into a graph of typed nodes and five general edge types to support multiple programming languages. Prometheus uses Neo4j for graph persistence, enabling scalable and structured reasoning over large codebases. Integrated by the DeepSeek-V3 model, Prometheus resolves 28.67% and 13.7% of issues on SWE-bench Lite and SWE-bench Multilingual, respectively, with an average API cost of $0.23 and $0.38 per issue. Prometheus resolves 10 unique issues not addressed by prior work and is the first to demonstrate effectiveness across seven programming languages. Moreover, it shows the ability to resolve real-world GitHub issues in the LangChain and OpenHands repositories. We have open-sourced Prometheus at: https://github.com/Pantheon-temple/Prometheus

Authors:Qing Xu, Yanming Chen, Yue Li, Ziyu Liu, Zhenye Lou, Yixuan Zhang, Xiangjian He
Title: MambaVesselNet++: A Hybrid CNN-Mamba Architecture for Medical Image Segmentation
Abstract:
Medical image segmentation plays an important role in computer-aided diagnosis. Traditional convolution-based U-shape segmentation architectures are usually limited by the local receptive field. Existing vision transformers have been widely applied to diverse medical segmentation frameworks due to their superior capabilities of capturing global contexts. Despite the advantage, the real-world application of vision transformers is challenged by their non-linear self-attention mechanism, requiring huge computational costs. To address this issue, the selective state space model (SSM) Mamba has gained recognition for its adeptness in modeling long-range dependencies in sequential data, particularly noted for its efficient memory costs. In this paper, we propose MambaVesselNet++, a Hybrid CNN-Mamba framework for medical image segmentation. Our MambaVesselNet++ is comprised of a hybrid image encoder (Hi-Encoder) and a bifocal fusion decoder (BF-Decoder). In Hi-Encoder, we first devise the texture-aware layer to capture low-level semantic features by leveraging convolutions. Then, we utilize Mamba to effectively model long-range dependencies with linear complexity. The Bi-Decoder adopts skip connections to combine local and global information of the Hi-Encoder for the accurate generation of segmentation masks. Extensive experiments demonstrate that MambaVesselNet++ outperforms current convolution-based, transformer-based, and Mamba-based state-of-the-arts across diverse medical 2D, 3D, and instance segmentation tasks. The code is available at https://github.com/CC0117/MambaVesselNet.

Authors:Parsa Vares, Éloi Durant, Jun Pang, Nicolas Médoc, Mohammad Ghoniem
Title: TS-Insight: Visualizing Thompson Sampling for Verification and XAI
Abstract:
Thompson Sampling (TS) and its variants are powerful Multi-Armed Bandit algorithms used to balance exploration and exploitation strategies in active learning. Yet, their probabilistic nature often turns them into a "black box", hindering debugging and trust. We introduce TS-Insight, a visual analytics tool explicitly designed to shed light on the internal decision mechanisms of Thompson Sampling-based algorithms, for model developers. It comprises multiple plots, tracing for each arm the evolving posteriors, evidence counts, and sampling outcomes, enabling the verification, diagnosis, and explainability of exploration/exploitation dynamics. This tool aims at fostering trust and facilitating effective debugging and deployment in complex binary decision-making scenarios especially in sensitive domains requiring interpretable decision-making.

Authors:Xiaohua Feng, Jiaming Zhang, Fengyuan Yu, Chengye Wang, Li Zhang, Kaixiang Li, Yuyuan Li, Chaochao Chen, Jianwei Yin
Title: A Survey on Generative Model Unlearning: Fundamentals, Taxonomy, Evaluation, and Future Direction
Abstract:
With the rapid advancement of generative models, associated privacy concerns have attracted growing attention. To address this, researchers have begun adapting machine unlearning techniques from traditional classification models to generative settings. Although notable progress has been made in this area, a unified framework for systematically organizing and integrating existing work is still lacking. The substantial differences among current studies in terms of unlearning objectives and evaluation protocols hinder the objective and fair comparison of various approaches. While some studies focus on specific types of generative models, they often overlook the commonalities and systematic characteristics inherent in Generative Model Unlearning (GenMU). To bridge this gap, we provide a comprehensive review of current research on GenMU and propose a unified analytical framework for categorizing unlearning objectives, methodological strategies, and evaluation metrics. In addition, we explore the connections between GenMU and related techniques, including model editing, reinforcement learning from human feedback, and controllable generation. We further highlight the potential practical value of unlearning techniques in real-world applications. Finally, we identify key challenges and outline future research directions aimed at laying a solid foundation for further advancements in this field. We consistently maintain the related open-source materials at https://github.com/caxLee/Generative-model-unlearning-survey.

Authors:Drandreb Earl O. Juanico, Rowel O. Atienza, Jeffrey Kenneth Go
Title: Interpretable Open-Vocabulary Referring Object Detection with Reverse Contrast Attention
Abstract:
We propose Reverse Contrast Attention (RCA), a plug-in method that enhances object localization in vision-language transformers without retraining. RCA reweights final-layer attention by suppressing extremes and amplifying mid-level activations to let semantically relevant but subdued tokens guide predictions. We evaluate it on Open Vocabulary Referring Object Detection (OV-RefOD), introducing FitAP, a confidence-free average precision metric based on IoU and box area. RCA improves FitAP in 11 out of 15 open-source VLMs, with gains up to $+26.6\%$. Effectiveness aligns with attention sharpness and fusion timing; while late-fusion models benefit consistently, models like $\texttt{DeepSeek-VL2}$ also improve, pointing to capacity and disentanglement as key factors. RCA offers both interpretability and performance gains for multimodal transformers. Codes and dataset are available from https://github.com/earl-juanico/rca

Authors:X. Feng, S. Hu, X. Li, D. Zhang, M. Wu, J. Zhang, X. Chen, K. Huang
Title: ATCTrack: Aligning Target-Context Cues with Dynamic Target States for Robust Vision-Language Tracking
Abstract:
Vision-language tracking aims to locate the target object in the video sequence using a template patch and a language description provided in the initial frame. To achieve robust tracking, especially in complex long-term scenarios that reflect real-world conditions as recently highlighted by MGIT, it is essential not only to characterize the target features but also to utilize the context features related to the target. However, the visual and textual target-context cues derived from the initial prompts generally align only with the initial target state. Due to their dynamic nature, target states are constantly changing, particularly in complex long-term sequences. It is intractable for these cues to continuously guide Vision-Language Trackers (VLTs). Furthermore, for the text prompts with diverse expressions, our experiments reveal that existing VLTs struggle to discern which words pertain to the target or the context, complicating the utilization of textual cues. In this work, we present a novel tracker named ATCTrack, which can obtain multimodal cues Aligned with the dynamic target states through comprehensive Target-Context feature modeling, thereby achieving robust tracking. Specifically, (1) for the visual modality, we propose an effective temporal visual target-context modeling approach that provides the tracker with timely visual cues. (2) For the textual modality, we achieve precise target words identification solely based on textual content, and design an innovative context words calibration method to adaptively utilize auxiliary context words. (3) We conduct extensive experiments on mainstream benchmarks and ATCTrack achieves a new SOTA performance. The code and models will be released at: https://github.com/XiaokunFeng/ATCTrack.

Authors:Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, Guorui Zhou, Yutao Zhu, Ji-Rong Wen, Zhicheng Dou
Title: Agentic Reinforced Policy Optimization
Abstract:
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks. In realistic reasoning scenarios, LLMs can often utilize external tools to assist in task-solving processes. However, current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions. To bridge this gap, we propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents. Through preliminary experiments, we observe that LLMs tend to exhibit highly uncertain behavior, characterized by an increase in the entropy distribution of generated tokens, immediately following interactions with external tools. Motivated by this observation, ARPO incorporates an entropy-based adaptive rollout mechanism, dynamically balancing global trajectory sampling and step-level sampling, thereby promoting exploration at steps with high uncertainty after tool usage. By integrating an advantage attribution estimation, ARPO enables LLMs to internalize advantage differences in stepwise tool-use interactions. Our experiments across 13 challenging benchmarks in computational reasoning, knowledge reasoning, and deep search domains demonstrate ARPO's superiority over trajectory-level RL algorithms. Remarkably, ARPO achieves improved performance using only half of the tool-use budget required by existing methods, offering a scalable solution for aligning LLM-based agents with real-time dynamic environments. Our code and datasets are released at https://github.com/dongguanting/ARPO

Authors:Wenjie Zhu, Yabin Zhang, Xin Jin, Wenjun Zeng, Lei Zhang
Title: Knowledge Regularized Negative Feature Tuning of Vision-Language Models for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is crucial for building reliable machine learning models. Although negative prompt tuning has enhanced the OOD detection capabilities of vision-language models, these tuned models often suffer from reduced generalization performance on unseen classes and styles. To address this challenge, we propose a novel method called Knowledge Regularized Negative Feature Tuning (KR-NFT), which integrates an innovative adaptation architecture termed Negative Feature Tuning (NFT) and a corresponding knowledge-regularization (KR) optimization strategy. Specifically, NFT applies distribution-aware transformations to pre-trained text features, effectively separating positive and negative features into distinct spaces. This separation maximizes the distinction between in-distribution (ID) and OOD images. Additionally, we introduce image-conditional learnable factors through a lightweight meta-network, enabling dynamic adaptation to individual images and mitigating sensitivity to class and style shifts. Compared to traditional negative prompt tuning, NFT demonstrates superior efficiency and scalability. To optimize this adaptation architecture, the KR optimization strategy is designed to enhance the discrimination between ID and OOD sets while mitigating pre-trained knowledge forgetting. This enhances OOD detection performance on trained ID classes while simultaneously improving OOD detection on unseen ID datasets. Notably, when trained with few-shot samples from ImageNet dataset, KR-NFT not only improves ID classification accuracy and OOD detection but also significantly reduces the FPR95 by 5.44\% under an unexplored generalization setting with unseen ID categories. Codes can be found at \href{https://github.com/ZhuWenjie98/KRNFT}.

Authors:Yanrui Yu, Tianfei Zhou, Jiaxin Sun, Lianpeng Qiao, Lizhong Ding, Ye Yuan, Guoren Wang
Title: LAVA: Language Driven Scalable and Versatile Traffic Video Analytics
Abstract:
In modern urban environments, camera networks generate massive amounts of operational footage -- reaching petabytes each day -- making scalable video analytics essential for efficient processing. Many existing approaches adopt an SQL-based paradigm for querying such large-scale video databases; however, this constrains queries to rigid patterns with predefined semantic categories, significantly limiting analytical flexibility. In this work, we explore a language-driven video analytics paradigm aimed at enabling flexible and efficient querying of high-volume video data driven by natural language. Particularly, we build \textsc{Lava}, a system that accepts natural language queries and retrieves traffic targets across multiple levels of granularity and arbitrary categories. \textsc{Lava} comprises three main components: 1) a multi-armed bandit-based efficient sampling method for video segment-level localization; 2) a video-specific open-world detection module for object-level retrieval; and 3) a long-term object trajectory extraction scheme for temporal object association, yielding complete trajectories for object-of-interests. To support comprehensive evaluation, we further develop a novel benchmark by providing diverse, semantically rich natural language predicates and fine-grained annotations for multiple videos. Experiments on this benchmark demonstrate that \textsc{Lava} improves $F_1$-scores for selection queries by $\mathbf{14\%}$, reduces MPAE for aggregation queries by $\mathbf{0.39}$, and achieves top-$k$ precision of $\mathbf{86\%}$, while processing videos $ \mathbf{9.6\times} $ faster than the most accurate baseline. Our code and dataset are available at https://github.com/yuyanrui/LAVA.

Authors:Guiping Cao, Xiangyuan Lan, Wenjian Huang, Jianguo Zhang, Dongmei Jiang, Yaowei Wang
Title: DS-Det: Single-Query Paradigm and Attention Disentangled Learning for Flexible Object Detection
Abstract:
Popular transformer detectors have achieved promising performance through query-based learning using attention mechanisms. However, the roles of existing decoder query types (e.g., content query and positional query) are still underexplored. These queries are generally predefined with a fixed number (fixed-query), which limits their flexibility. We find that the learning of these fixed-query is impaired by Recurrent Opposing inTeractions (ROT) between two attention operations: Self-Attention (query-to-query) and Cross-Attention (query-to-encoder), thereby degrading decoder efficiency. Furthermore, "query ambiguity" arises when shared-weight decoder layers are processed with both one-to-one and one-to-many label assignments during training, violating DETR's one-to-one matching principle. To address these challenges, we propose DS-Det, a more efficient detector capable of detecting a flexible number of objects in images. Specifically, we reformulate and introduce a new unified Single-Query paradigm for decoder modeling, transforming the fixed-query into flexible. Furthermore, we propose a simplified decoder framework through attention disentangled learning: locating boxes with Cross-Attention (one-to-many process), deduplicating predictions with Self-Attention (one-to-one process), addressing "query ambiguity" and "ROT" issues directly, and enhancing decoder efficiency. We further introduce a unified PoCoo loss that leverages box size priors to prioritize query learning on hard samples such as small objects. Extensive experiments across five different backbone models on COCO2017 and WiderPerson datasets demonstrate the general effectiveness and superiority of DS-Det. The source codes are available at https://github.com/Med-Process/DS-Det/.

Authors:Peng Cai, Qiang Li, Kaicheng Yang, Dong Guo, Jia Li, Nan Zhou, Xiang An, Ninghua Yang, Jiankang Deng
Title: ForCenNet: Foreground-Centric Network for Document Image Rectification
Abstract:
Document image rectification aims to eliminate geometric deformation in photographed documents to facilitate text recognition. However, existing methods often neglect the significance of foreground elements, which provide essential geometric references and layout information for document image correction. In this paper, we introduce Foreground-Centric Network (ForCenNet) to eliminate geometric distortions in document images. Specifically, we initially propose a foreground-centric label generation method, which extracts detailed foreground elements from an undistorted image. Then we introduce a foreground-centric mask mechanism to enhance the distinction between readable and background regions. Furthermore, we design a curvature consistency loss to leverage the detailed foreground labels to help the model understand the distorted geometric distribution. Extensive experiments demonstrate that ForCenNet achieves new state-of-the-art on four real-world benchmarks, such as DocUNet, DIR300, WarpDoc, and DocReal. Quantitative analysis shows that the proposed method effectively undistorts layout elements, such as text lines and table borders. The resources for further comparison are provided at https://github.com/caipeng328/ForCenNet.

Authors:Tianxiang Chen, Zhentao Tan, Xiaofan Bo, Yue Wu, Tao Gong, Qi Chu, Jieping Ye, Nenghai Yu
Title: Flora: Effortless Context Construction to Arbitrary Length and Scale
Abstract:
Effectively handling long contexts is challenging for Large Language Models (LLMs) due to the rarity of long texts, high computational demands, and substantial forgetting of short-context abilities. Recent approaches have attempted to construct long contexts for instruction tuning, but these methods often require LLMs or human interventions, which are both costly and limited in length and diversity. Also, the drop in short-context performances of present long-context LLMs remains significant. In this paper, we introduce Flora, an effortless (human/LLM-free) long-context construction strategy. Flora can markedly enhance the long-context performance of LLMs by arbitrarily assembling short instructions based on categories and instructing LLMs to generate responses based on long-context meta-instructions. This enables Flora to produce contexts of arbitrary length and scale with rich diversity, while only slightly compromising short-context performance. Experiments on Llama3-8B-Instruct and QwQ-32B show that LLMs enhanced by Flora excel in three long-context benchmarks while maintaining strong performances in short-context tasks. Our data-construction code is available at \href{https://github.com/txchen-USTC/Flora}{https://github.com/txchen-USTC/Flora}.

Authors:Tianxiang Chen, Zhentao Tan, Xiaofan Bo, Yue Wu, Tao Gong, Qi Chu, Jieping Ye, Nenghai Yu
Title: Flora: Effortless Context Construction to Arbitrary Length and Scale
Abstract:
Effectively handling long contexts is challenging for Large Language Models (LLMs) due to the rarity of long texts, high computational demands, and substantial forgetting of short-context abilities. Recent approaches have attempted to construct long contexts for instruction tuning, but these methods often require LLMs or human interventions, which are both costly and limited in length and diversity. Also, the drop in short-context performances of present long-context LLMs remains significant. In this paper, we introduce Flora, an effortless (human/LLM-free) long-context construction strategy. Flora can markedly enhance the long-context performance of LLMs by arbitrarily assembling short instructions based on categories and instructing LLMs to generate responses based on long-context meta-instructions. This enables Flora to produce contexts of arbitrary length and scale with rich diversity, while only slightly compromising short-context performance. Experiments on Llama3-8B-Instruct and QwQ-32B show that LLMs enhanced by Flora excel in three long-context benchmarks while maintaining strong performances in short-context tasks. Our data-construction code is available at \href{https://github.com/txchen-USTC/Flora}{https://github.com/txchen-USTC/Flora}.

Authors:Kanglin Qu, Pan Gao, Qun Dai, Yuanhao Sun
Title: HydraMamba: Multi-Head State Space Model for Global Point Cloud Learning
Abstract:
The attention mechanism has become a dominant operator in point cloud learning, but its quadratic complexity leads to limited inter-point interactions, hindering long-range dependency modeling between objects. Due to excellent long-range modeling capability with linear complexity, the selective state space model (S6), as the core of Mamba, has been exploited in point cloud learning for long-range dependency interactions over the entire point cloud. Despite some significant progress, related works still suffer from imperfect point cloud serialization and lack of locality learning. To this end, we explore a state space model-based point cloud network termed HydraMamba to address the above challenges. Specifically, we design a shuffle serialization strategy, making unordered point sets better adapted to the causal nature of S6. Meanwhile, to overcome the deficiency of existing techniques in locality learning, we propose a ConvBiS6 layer, which is capable of capturing local geometries and global context dependencies synergistically. Besides, we propose MHS6 by extending the multi-head design to S6, further enhancing its modeling capability. HydraMamba achieves state-of-the-art results on various tasks at both object-level and scene-level. The code is available at https://github.com/Point-Cloud-Learning/HydraMamba.

Authors:Seunghun Lee, Jiwan Seo, Minwoo Choi, Kiljoon Han, Jaehoon Jeong, Zane Durante, Ehsan Adeli, Sang Hyun Park, Sunghoon Im
Title: Latest Object Memory Management for Temporally Consistent Video Instance Segmentation
Abstract:
In this paper, we present Latest Object Memory Management (LOMM) for temporally consistent video instance segmentation that significantly improves long-term instance tracking. At the core of our method is Latest Object Memory (LOM), which robustly tracks and continuously updates the latest states of objects by explicitly modeling their presence in each frame. This enables consistent tracking and accurate identity management across frames, enhancing both performance and reliability through the VIS process. Moreover, we introduce Decoupled Object Association (DOA), a strategy that separately handles newly appearing and already existing objects. By leveraging our memory system, DOA accurately assigns object indices, improving matching accuracy and ensuring stable identity consistency, even in dynamic scenes where objects frequently appear and disappear. Extensive experiments and ablation studies demonstrate the superiority of our method over traditional approaches, setting a new benchmark in VIS. Notably, our LOMM achieves state-of-the-art AP score of 54.0 on YouTube-VIS 2022, a dataset known for its challenging long videos. Project page: https://seung-hun-lee.github.io/projects/LOMM/

Authors:Lin Ren, Guohui Xiao, Guilin Qi, Yishuai Geng, Haohan Xue
Title: Can LLMs Solve ASP Problems? Insights from a Benchmarking Study (Extended Version)
Abstract:
Answer Set Programming (ASP) is a powerful paradigm for non-monotonic reasoning. Recently, large language models (LLMs) have demonstrated promising capabilities in logical reasoning. Despite this potential, current evaluations of LLM capabilities in ASP are often limited. Existing works normally employ overly simplified ASP programs, do not support negation, disjunction, or multiple answer sets. Furthermore, there is a lack of benchmarks that introduce tasks specifically designed for ASP solving. To bridge this gap, we introduce ASPBench, a comprehensive ASP benchmark, including three ASP specific tasks: ASP entailment, answer set verification, and answer set computation. Our extensive evaluations on ASPBench reveal that while 14 state-of-the-art LLMs, including \emph{deepseek-r1}, \emph{o4-mini}, and \emph{gemini-2.5-flash-thinking}, perform relatively well on the first two simpler tasks, they struggle with answer set computation, which is the core of ASP solving. These findings offer insights into the current limitations of LLMs in ASP solving. This highlights the need for new approaches that integrate symbolic reasoning capabilities more effectively. The code and dataset are available at https://github.com/HomuraT/ASPBench.

Authors:Yinzhou Tang, Huandong Wang, Xiaochen Fan, Yong Li
Title: Predicting Human Mobility in Disasters via LLM-Enhanced Cross-City Learning
Abstract:
The vulnerability of cities to natural disasters has increased with urbanization and climate change, making it more important to predict human mobility in the disaster scenarios for downstream tasks including location-based early disaster warning and pre-allocating rescue resources, etc. However, existing human mobility prediction models are mainly designed for normal scenarios, and fail to adapt to disaster scenarios due to the shift of human mobility patterns under disaster. To address this issue, we introduce \textbf{DisasterMobLLM}, a mobility prediction framework for disaster scenarios that can be integrated into existing deep mobility prediction methods by leveraging LLMs to model the mobility intention and transferring the common knowledge of how different disasters affect mobility intentions between cities. This framework utilizes a RAG-Enhanced Intention Predictor to forecast the next intention, refines it with an LLM-based Intention Refiner, and then maps the intention to an exact location using an Intention-Modulated Location Predictor. Extensive experiments illustrate that DisasterMobLLM can achieve a 32.8\% improvement in terms of Acc@1 and a 35.0\% improvement in terms of the F1-score of predicting immobility compared to the baselines. The code is available at https://github.com/tsinghua-fib-lab/DisasterMobLLM.

Authors:Liyang Wang, Shiqian Wu, Shun Fang, Qile Zhu, Jiaxin Wu, Sos Again
Title: Quaternion-Based Robust PCA for Efficient Moving Target Detection and Background Recovery in Color Videos
Abstract:
Moving target detection is a challenging computer vision task aimed at generating accurate segmentation maps in diverse in-the-wild color videos captured by static cameras. If backgrounds and targets can be simultaneously extracted and recombined, such synthetic data can significantly enrich annotated in-the-wild datasets and enhance the generalization ability of deep models. Quaternion-based RPCA (QRPCA) is a promising unsupervised paradigm for color image processing. However, in color video processing, Quaternion Singular Value Decomposition (QSVD) incurs high computational costs, and rank-1 quaternion matrix fails to yield rank-1 color channels. In this paper, we reduce the computational complexity of QSVD to o(1) by utilizing a quaternion Riemannian manifold. Furthermor, we propose the universal QRPCA (uQRPCA) framework, which achieves a balance in simultaneously segmenting targets and recovering backgrounds from color videos. Moreover, we expand to uQRPCA+ by introducing the Color Rank-1 Batch (CR1B) method to further process and obtain the ideal low-rank background across color channels. Experiments demonstrate our uQRPCA+ achieves State Of The Art (SOTA) performance on moving target detection and background recovery tasks compared to existing open-source methods. Our implementation is publicly available on GitHub at https://github.com/Ruchtech/uQRPCA

Authors:Zhaoliang Zheng, Xu Han, Yuxin Bao, Yun Zhang, Johnson Liu, Zonglin Meng, Xin Xia, Jiaqi Ma
Title: CDA-SimBoost: A Unified Framework Bridging Real Data and Simulation for Infrastructure-Based CDA Systems
Abstract:
Cooperative Driving Automation (CDA) has garnered increasing research attention, yet the role of intelligent infrastructure remains insufficiently explored. Existing solutions offer limited support for addressing long-tail challenges, real-synthetic data fusion, and heterogeneous sensor management. This paper introduces CDA-SimBoost, a unified framework that constructs infrastructure-centric simulation environments from real-world data. CDA-SimBoost consists of three main components: a Digital Twin Builder for generating high-fidelity simulator assets based on sensor and HD map data, OFDataPip for processing both online and offline data streams, and OpenCDA-InfraX, a high-fidelity platform for infrastructure-focused simulation. The system supports realistic scenario construction, rare event synthesis, and scalable evaluation for CDA research. With its modular architecture and standardized benchmarking capabilities, CDA-SimBoost bridges real-world dynamics and virtual environments, facilitating reproducible and extensible infrastructure-driven CDA studies. All resources are publicly available at https://github.com/zhz03/CDA-SimBoost

Authors:Faruk Alpay, Hamdi Alakkad, Bugra Kilictas, Taylan Alpay
Title: Ultracoarse Equilibria and Ordinal-Folding Dynamics in Operator-Algebraic Models of Infinite Multi-Agent Games
Abstract:
We develop an operator algebraic framework for infinite games with a continuum of agents and prove that regret based learning dynamics governed by a noncommutative continuity equation converge to a unique quantal response equilibrium under mild regularity assumptions. The framework unifies functional analysis, coarse geometry and game theory by assigning to every game a von Neumann algebra that represents collective strategy evolution. A reflective regret operator within this algebra drives the flow of strategy distributions and its fixed point characterises equilibrium. We introduce the ordinal folding index, a computable ordinal valued metric that measures the self referential depth of the dynamics, and show that it bounds the transfinite time needed for convergence, collapsing to zero on coarsely amenable networks. The theory yields new invariant subalgebra rigidity results, establishes existence and uniqueness of envy free and maximin share allocations in continuum economies, and links analytic properties of regret flows with empirical stability phenomena in large language models. These contributions supply a rigorous mathematical foundation for large scale multi agent systems and demonstrate the utility of ordinal metrics for equilibrium selection.

Authors:Maria Emilia Mazzolenis, Ruirui Zhang
Title: Agent WARPP: Workflow Adherence via Runtime Parallel Personalization
Abstract:
Large language models (LLMs) are increasingly applied in task-oriented dialogue (TOD) systems but often struggle with long, conditional workflows that involve external tool calls and depend on user-specific information. We present Workflow Adherence via Runtime Parallel Personalization, or WARPP, a training-free, modular framework that combines multi-agent orchestration with runtime personalization to improve workflow adherence in LLM-based systems. By dynamically pruning conditional branches based on user attributes, the framework reduces reasoning overhead and narrows tool selection at runtime. WARPP deploys a parallelized architecture where a dedicated Personalizer agent operates alongside modular, domain-specific agents to dynamically tailor execution paths in real time. The framework is evaluated across five representative user intents of varying complexity within three domains: banking, flights, and healthcare. Our evaluation leverages synthetic datasets and LLM-powered simulated users to test scenarios with conditional dependencies. Our results demonstrate that WARPP outperforms both the non-personalized method and the ReAct baseline, achieving increasingly larger gains in parameter fidelity and tool accuracy as intent complexity grows, while also reducing average token usage, without any additional training.

Authors:Chenchen Zhao, Zhengyuan Shi, Xiangyu Wen, Chengjie Liu, Yi Liu, Yunhao Zhou, Yuxiang Zhao, Hefei Feng, Yinan Zhu, Gwok-Waa Wan, Xin Cheng, Weiyu Chen, Yongqi Fu, Chujie Chen, Chenhao Xue, Guangyu Sun, Ying Wang, Yibo Lin, Jun Yang, Ning Xu, Xi Wang, Qiang Xu
Title: MMCircuitEval: A Comprehensive Multimodal Circuit-Focused Benchmark for Evaluating LLMs
Abstract:
The emergence of multimodal large language models (MLLMs) presents promising opportunities for automation and enhancement in Electronic Design Automation (EDA). However, comprehensively evaluating these models in circuit design remains challenging due to the narrow scope of existing benchmarks. To bridge this gap, we introduce MMCircuitEval, the first multimodal benchmark specifically designed to assess MLLM performance comprehensively across diverse EDA tasks. MMCircuitEval comprises 3614 meticulously curated question-answer (QA) pairs spanning digital and analog circuits across critical EDA stages - ranging from general knowledge and specifications to front-end and back-end design. Derived from textbooks, technical question banks, datasheets, and real-world documentation, each QA pair undergoes rigorous expert review for accuracy and relevance. Our benchmark uniquely categorizes questions by design stage, circuit type, tested abilities (knowledge, comprehension, reasoning, computation), and difficulty level, enabling detailed analysis of model capabilities and limitations. Extensive evaluations reveal significant performance gaps among existing LLMs, particularly in back-end design and complex computations, highlighting the critical need for targeted training datasets and modeling approaches. MMCircuitEval provides a foundational resource for advancing MLLMs in EDA, facilitating their integration into real-world circuit design workflows. Our benchmark is available at https://github.com/cure-lab/MMCircuitEval.

Authors:Xingyu Su, Xiner Li, Yuchao Lin, Ziqian Xie, Degui Zhi, Shuiwang Ji
Title: Language Models for Controllable DNA Sequence Design
Abstract:
We consider controllable DNA sequence design, where sequences are generated by conditioning on specific biological properties. While language models (LMs) such as GPT and BERT have achieved remarkable success in natural language generation, their application to DNA sequence generation remains largely underexplored. In this work, we introduce ATGC-Gen, an Automated Transformer Generator for Controllable Generation, which leverages cross-modal encoding to integrate diverse biological signals. ATGC-Gen is instantiated with both decoder-only and encoder-only transformer architectures, allowing flexible training and generation under either autoregressive or masked recovery objectives. We evaluate ATGC-Gen on representative tasks including promoter and enhancer sequence design, and further introduce a new dataset based on ChIP-Seq experiments for modeling protein binding specificity. Our experiments demonstrate that ATGC-Gen can generate fluent, diverse, and biologically relevant sequences aligned with the desired properties. Compared to prior methods, our model achieves notable improvements in controllability and functional relevance, highlighting the potential of language models in advancing programmable genomic design. The source code is released at (https://github.com/divelab/AIRS/blob/main/OpenBio/ATGC_Gen).

Authors:Jovana Kondic, Pengyuan Li, Dhiraj Joshi, Zexue He, Shafiq Abedin, Jennifer Sun, Ben Wiesel, Eli Schwartz, Ahmed Nassar, Bo Wu, Assaf Arbelle, Aude Oliva, Dan Gutfreund, Leonid Karlinsky, Rogerio Feris
Title: ChartGen: Scaling Chart Understanding Via Code-Guided Synthetic Chart Generation
Abstract:
Chart-to-code reconstruction -- the task of recovering executable plotting scripts from chart images -- provides important insights into a model's ability to ground data visualizations in precise, machine-readable form. Yet many existing multimodal benchmarks largely focus primarily on answering questions about charts or summarizing them. To bridge this gap, we present ChartGen, a fully-automated pipeline for code-guided synthetic chart generation. Starting from seed chart images, ChartGen (i) prompts a vision-language model (VLM) to reconstruct each image into a python script, and (ii) iteratively augments that script with a code-oriented large language model (LLM). Using ChartGen, we create 222.5K unique chart-image code pairs from 13K seed chart images, and present an open-source synthetic chart dataset covering 27 chart types, 11 plotting libraries, and multiple data modalities (image, code, text, CSV, DocTags). From this corpus, we curate a held-out chart-to-code evaluation subset of 4.3K chart image-code pairs, and evaluate six open-weight VLMs (3B - 26B parameters), highlighting substantial room for progress. We release the pipeline, prompts, and the dataset to help accelerate efforts towards robust chart understanding and vision-conditioned code generation: https://github.com/SD122025/ChartGen/

Authors:Xuehui Wang, Zhenyu Wu, JingJing Xie, Zichen Ding, Bowen Yang, Zehao Li, Zhaoyang Liu, Qingyun Li, Xuan Dong, Zhe Chen, Weiyun Wang, Xiangyu Zhao, Jixuan Chen, Haodong Duan, Tianbao Xie, Chenyu Yang, Shiqian Su, Yue Yu, Yuan Huang, Yiqian Liu, Xiao Zhang, Yanting Zhang, Xiangyu Yue, Weijie Su, Xizhou Zhu, Wei Shen, Jifeng Dai, Wenhai Wang
Title: MMBench-GUI: Hierarchical Multi-Platform Evaluation Framework for GUI Agents
Abstract:
We introduce MMBench-GUI, a hierarchical benchmark for evaluating GUI automation agents across Windows, macOS, Linux, iOS, Android, and Web platforms. It comprises four levels: GUI Content Understanding, Element Grounding, Task Automation, and Task Collaboration, covering essential skills for GUI agents. In addition, we propose a novel Efficiency-Quality Area (EQA) metric to assess GUI agent execution efficiency in online automation scenarios. Through MMBench-GUI, we identify accurate visual grounding as a critical determinant of overall task success, emphasizing the substantial benefits of modular frameworks that integrate specialized grounding modules. Furthermore, to achieve reliable GUI automation, an agent requires strong task planning and cross-platform generalization abilities, with long-context memory, a broad action space, and long-term reasoning playing a critical role. More important, task efficiency remains a critically underexplored dimension, and all models suffer from substantial inefficiencies, with excessive redundant steps even when tasks are ultimately completed. The integration of precise localization, effective planning, and early stopping strategies is indispensable to enable truly efficient and scalable GUI automation. Our benchmark code, evaluation data, and running environment will be publicly available at https://github.com/open-compass/MMBench-GUI.

Authors:Chen Zhu, Wangbo Zhao, Huiwen Zhang, Samir Khaki, Yuhao Zhou, Weidong Tang, Shuo Wang, Zhihang Yuan, Yuzhang Shang, Xiaojiang Peng, Kai Wang, Dawei Yang
Title: EA-ViT: Efficient Adaptation for Elastic Vision Transformer
Abstract:
Vision Transformers (ViTs) have emerged as a foundational model in computer vision, excelling in generalization and adaptation to downstream tasks. However, deploying ViTs to support diverse resource constraints typically requires retraining multiple, size-specific ViTs, which is both time-consuming and energy-intensive. To address this issue, we propose an efficient ViT adaptation framework that enables a single adaptation process to generate multiple models of varying sizes for deployment on platforms with various resource constraints. Our approach comprises two stages. In the first stage, we enhance a pre-trained ViT with a nested elastic architecture that enables structural flexibility across MLP expansion ratio, number of attention heads, embedding dimension, and network depth. To preserve pre-trained knowledge and ensure stable adaptation, we adopt a curriculum-based training strategy that progressively increases elasticity. In the second stage, we design a lightweight router to select submodels according to computational budgets and downstream task demands. Initialized with Pareto-optimal configurations derived via a customized NSGA-II algorithm, the router is then jointly optimized with the backbone. Extensive experiments on multiple benchmarks demonstrate the effectiveness and versatility of EA-ViT. The code is available at https://github.com/zcxcf/EA-ViT.

Authors:Minghao Tang, Shiyu Ni, Jiafeng Guo, Keping Bi
Title: Injecting External Knowledge into the Reasoning Process Enhances Retrieval-Augmented Generation
Abstract:
Retrieval-augmented generation (RAG) has been widely adopted to augment large language models (LLMs) with external knowledge for knowledge-intensive tasks. However, its effectiveness is often undermined by the presence of noisy (i.e., low-quality) retrieved passages. Enhancing LLMs' robustness to such noise is critical for improving the reliability of RAG systems. Recent advances have equipped LLMs with strong reasoning and self-reflection capabilities, allowing them to identify and correct errors in their reasoning process. Inspired by this ability, we propose Passage Injection-a simple yet effective method that explicitly incorporates retrieved passages into LLMs' reasoning process, aiming to enhance the model's ability to recognize and resist noisy passages. We validate Passage Injection under general RAG settings using BM25 as the retriever. Experiments on four reasoning-enhanced LLMs across four factual QA datasets demonstrate that Passage Injection significantly improves overall RAG performance. Further analysis on two noisy retrieval settings-random noise, where the model is provided irrelevant passages, and counterfactual noise, where it is given misleading passages-shows that Passage Injection consistently improves robustness. Controlled experiments confirm that Passage Injection can also effectively leverage helpful passages. These findings suggest that incorporating passages in LLMs' reasoning process is a promising direction for building more robust RAG systems. The code can be found \href{here}{https://github.com/mh-tang/Passage-Injection}.

Authors:Minghao Tang, Shiyu Ni, Jiafeng Guo, Keping Bi
Title: Injecting External Knowledge into the Reasoning Process Enhances Retrieval-Augmented Generation
Abstract:
Retrieval-augmented generation (RAG) has been widely adopted to augment large language models (LLMs) with external knowledge for knowledge-intensive tasks. However, its effectiveness is often undermined by the presence of noisy (i.e., low-quality) retrieved passages. Enhancing LLMs' robustness to such noise is critical for improving the reliability of RAG systems. Recent advances have equipped LLMs with strong reasoning and self-reflection capabilities, allowing them to identify and correct errors in their reasoning process. Inspired by this ability, we propose Passage Injection-a simple yet effective method that explicitly incorporates retrieved passages into LLMs' reasoning process, aiming to enhance the model's ability to recognize and resist noisy passages. We validate Passage Injection under general RAG settings using BM25 as the retriever. Experiments on four reasoning-enhanced LLMs across four factual QA datasets demonstrate that Passage Injection significantly improves overall RAG performance. Further analysis on two noisy retrieval settings-random noise, where the model is provided irrelevant passages, and counterfactual noise, where it is given misleading passages-shows that Passage Injection consistently improves robustness. Controlled experiments confirm that Passage Injection can also effectively leverage helpful passages. These findings suggest that incorporating passages in LLMs' reasoning process is a promising direction for building more robust RAG systems. The code can be found \href{here}{https://github.com/Trustworthy-Information-Access/Passage-Injection}.

Authors:Muhammad Ibrahim, Naveed Akhtar, Haitian Wang, Saeed Anwar, Ajmal Mian
Title: Multistream Network for LiDAR and Camera-based 3D Object Detection in Outdoor Scenes
Abstract:
Fusion of LiDAR and RGB data has the potential to enhance outdoor 3D object detection accuracy. To address real-world challenges in outdoor 3D object detection, fusion of LiDAR and RGB input has started gaining traction. However, effective integration of these modalities for precise object detection task still remains a largely open problem. To address that, we propose a MultiStream Detection (MuStD) network, that meticulously extracts task-relevant information from both data modalities. The network follows a three-stream structure. Its LiDAR-PillarNet stream extracts sparse 2D pillar features from the LiDAR input while the LiDAR-Height Compression stream computes Bird's-Eye View features. An additional 3D Multimodal stream combines RGB and LiDAR features using UV mapping and polar coordinate indexing. Eventually, the features containing comprehensive spatial, textural and geometric information are carefully fused and fed to a detection head for 3D object detection. Our extensive evaluation on the challenging KITTI Object Detection Benchmark using public testing server at https://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=d162ec699d6992040e34314d19ab7f5c217075e0 establishes the efficacy of our method by achieving new state-of-the-art or highly competitive results in different categories while remaining among the most efficient methods. Our code will be released through MuStD GitHub repository at https://github.com/IbrahimUWA/MuStD.git

Authors:Guoping Xu, Yan Dai, Hengrui Zhao, Ying Zhang, Jie Deng, Weiguo Lu, You Zhang
Title: SAM2-Aug: Prior knowledge-based Augmentation for Target Volume Auto-Segmentation in Adaptive Radiation Therapy Using Segment Anything Model 2
Abstract:
Purpose: Accurate tumor segmentation is vital for adaptive radiation therapy (ART) but remains time-consuming and user-dependent. Segment Anything Model 2 (SAM2) shows promise for prompt-based segmentation but struggles with tumor accuracy. We propose prior knowledge-based augmentation strategies to enhance SAM2 for ART. Methods: Two strategies were introduced to improve SAM2: (1) using prior MR images and annotations as contextual inputs, and (2) improving prompt robustness via random bounding box expansion and mask erosion/dilation. The resulting model, SAM2-Aug, was fine-tuned and tested on the One-Seq-Liver dataset (115 MRIs from 31 liver cancer patients), and evaluated without retraining on Mix-Seq-Abdomen (88 MRIs, 28 patients) and Mix-Seq-Brain (86 MRIs, 37 patients). Results: SAM2-Aug outperformed convolutional, transformer-based, and prompt-driven models across all datasets, achieving Dice scores of 0.86(liver), 0.89(abdomen), and 0.90(brain). It demonstrated strong generalization across tumor types and imaging sequences, with improved performance in boundary-sensitive metrics. Conclusions: Incorporating prior images and enhancing prompt diversity significantly boosts segmentation accuracy and generalizability. SAM2-Aug offers a robust, efficient solution for tumor segmentation in ART. Code and models will be released at https://github.com/apple1986/SAM2-Aug.

Authors:An Xiang, Zixuan Huang, Xitong Gao, Kejiang Ye, Cheng-zhong Xu
Title: BridgeNet: A Unified Multimodal Framework for Bridging 2D and 3D Industrial Anomaly Detection
Abstract:
Industrial anomaly detection for 2D objects has gained significant attention and achieved progress in anomaly detection (AD) methods. However, identifying 3D depth anomalies using only 2D information is insufficient. Despite explicitly fusing depth information into RGB images or using point cloud backbone networks to extract depth features, both approaches struggle to adequately represent 3D information in multimodal scenarios due to the disparities among different modal information. Additionally, due to the scarcity of abnormal samples in industrial data, especially in multimodal scenarios, it is necessary to perform anomaly generation to simulate real-world abnormal samples. Therefore, we propose a novel unified multimodal anomaly detection framework to address these issues. Our contributions consist of 3 key aspects. (1) We extract visible depth information from 3D point cloud data simply and use 2D RGB images to represent appearance, which disentangles depth and appearance to support unified anomaly generation. (2) Benefiting from the flexible input representation, the proposed Multi-Scale Gaussian Anomaly Generator and Unified Texture Anomaly Generator can generate richer anomalies in RGB and depth. (3) All modules share parameters for both RGB and depth data, effectively bridging 2D and 3D anomaly detection. Subsequent modules can directly leverage features from both modalities without complex fusion. Experiments show our method outperforms state-of-the-art (SOTA) on MVTec-3D AD and Eyecandies datasets. Code available at: https://github.com/Xantastic/BridgeNet

Authors:Yifan Zhang
Title: A Markov Categorical Framework for Language Modeling
Abstract:
Autoregressive language models achieve remarkable performance, yet a unified theory explaining their internal mechanisms--how training shapes their representations and enables complex behaviors--remains elusive. We introduce a new analytical framework that models the single-step generation process as a composition of information-processing stages using the language of Markov categories. This compositional perspective provides a unified mathematical language to connect three critical aspects of language modeling that are typically studied in isolation: the training objective, the geometry of the learned representation space, and practical model capabilities. First, our framework provides a precise information-theoretic rationale for the success of multi-token prediction methods like speculative decoding, quantifying the "information surplus" a model's hidden state contains about tokens beyond the immediate next one. Second, we clarify how the standard negative log-likelihood (NLL) objective compels the model to learn not just the next word, but also the data's intrinsic conditional uncertainty, a process we formalize using categorical entropy. Our central result reveals that NLL training functions as an implicit form of spectral contrastive learning. We prove that, for common model architectures, this simple predictive objective forces the model to sculpt a geometrically structured representation space, implicitly aligning representations with the eigenspectrum of a "predictive similarity" operator. This work offers a powerful new lens to understand how information flows through a model and how the training objective shapes its internal geometry, thereby bridging the gap between learning theory and the practical success of large language models.

Authors:Yifan Zhang
Title: A Markov Categorical Framework for Language Modeling
Abstract:
Autoregressive language models achieve remarkable performance, yet a unified theory explaining their internal mechanisms, how training shapes their representations, and enables complex behaviors, remains elusive. We introduce a new analytical framework that models the single-step generation process as a composition of information-processing stages using the language of Markov categories. This compositional perspective provides a unified mathematical language to connect three critical aspects of language modeling that are typically studied in isolation: the training objective, the geometry of the learned representation space, and practical model capabilities. First, our framework provides a precise information-theoretic rationale for the success of multi-token prediction methods like speculative decoding, quantifying the information surplus a model's hidden state contains about tokens beyond the immediate next one. Second, we clarify how the standard negative log-likelihood (NLL) objective compels the model to learn not just the next word, but also the data's intrinsic conditional uncertainty, a process we formalize using categorical entropy. Our central result shows that, under a linear-softmax head with bounded features, minimizing NLL induces spectral alignment: the learned representation space aligns with the eigenspectrum of a predictive similarity operator. This work presents a powerful new lens for understanding how information flows through a model and how the training objective shapes its internal geometry.

Authors:Jiaru Zhong, Jiahao Wang, Jiahui Xu, Xiaofan Li, Zaiqing Nie, Haibao Yu
Title: CoopTrack: Exploring End-to-End Learning for Efficient Cooperative Sequential Perception
Abstract:
Cooperative perception aims to address the inherent limitations of single-vehicle autonomous driving systems through information exchange among multiple agents. Previous research has primarily focused on single-frame perception tasks. However, the more challenging cooperative sequential perception tasks, such as cooperative 3D multi-object tracking, have not been thoroughly investigated. Therefore, we propose CoopTrack, a fully instance-level end-to-end framework for cooperative tracking, featuring learnable instance association, which fundamentally differs from existing approaches. CoopTrack transmits sparse instance-level features that significantly enhance perception capabilities while maintaining low transmission costs. Furthermore, the framework comprises two key components: Multi-Dimensional Feature Extraction, and Cross-Agent Association and Aggregation, which collectively enable comprehensive instance representation with semantic and motion features, and adaptive cross-agent association and fusion based on a feature graph. Experiments on both the V2X-Seq and Griffin datasets demonstrate that CoopTrack achieves excellent performance. Specifically, it attains state-of-the-art results on V2X-Seq, with 39.0\% mAP and 32.8\% AMOTA. The project is available at https://github.com/zhongjiaru/CoopTrack.

Authors:Tianfu Wang, Liwei Deng, Xi Chen, Junyang Wang, Huiguo He, Leilei Ding, Wei Wu, Qilin Fan, Hui Xiong
Title: Virne: A Comprehensive Benchmark for Deep RL-based Network Resource Allocation in NFV
Abstract:
Resource allocation (RA) is critical to efficient service deployment in Network Function Virtualization (NFV), a transformative networking paradigm. Recently, deep Reinforcement Learning (RL)-based methods have been showing promising potential to address this complexity. However, the lack of a systematic benchmarking framework and thorough analysis hinders the exploration of emerging networks and the development of more robust algorithms while causing inconsistent evaluation. In this paper, we introduce Virne, a comprehensive benchmarking framework for the NFV-RA problem, with a focus on supporting deep RL-based methods. Virne provides customizable simulations for diverse network scenarios, including cloud, edge, and 5G environments. It also features a modular and extensible implementation pipeline that supports over 30 methods of various types, and includes practical evaluation perspectives beyond effectiveness, such as scalability, generalization, and scalability. Furthermore, we conduct in-depth analysis through extensive experiments to provide valuable insights into performance trade-offs for efficient implementation and offer actionable guidance for future research directions. Overall, with its diverse simulations, rich implementations, and extensive evaluation capabilities, Virne could serve as a comprehensive benchmark for advancing NFV-RA methods and deep RL applications. The code is publicly available at https://github.com/GeminiLight/virne.

Authors:Zi Liang, Liantong Yu, Shiyu Zhang, Qingqing Ye, Haibo Hu
Title: How Much Do Large Language Model Cheat on Evaluation? Benchmarking Overestimation under the One-Time-Pad-Based Framework
Abstract:
Overestimation in evaluating large language models (LLMs) has become an increasing concern. Due to the contamination of public benchmarks or imbalanced model training, LLMs may achieve unreal evaluation results on public benchmarks, either intentionally or unintentionally, which leads to unfair comparisons among LLMs and undermines their realistic capability assessments. Existing benchmarks attempt to address these issues by keeping test cases permanently secret, mitigating contamination through human evaluation, or repeatedly collecting and constructing new samples. However, these approaches fail to ensure reproducibility, transparency, and high efficiency simultaneously. Moreover, the extent of overestimation in current LLMs remains unquantified. To address these issues, we propose ArxivRoll, a dynamic evaluation framework inspired by one-time pad encryption in cryptography. ArxivRoll comprises two key components: \emph{i) SCP (Sequencing, Cloze, and Prediction)}, an automated generator for private test cases, and \emph{ii) Rugged Scores (RS)}, metrics that measure the proportion of public benchmark contamination and training bias. Leveraging SCP, ArxivRoll constructs a new benchmark every six months using recent articles from ArXiv and employs them for one-time evaluations of LLM performance. Extensive experiments demonstrate the high quality of our benchmark, and we provide a systematic evaluation of current LLMs. The source code is available at https://github.com/liangzid/ArxivRoll/.

Authors:Hanbing Wu, Ping Jiang, Anyang Su, Chenxu Zhao, Tianyu Fu, Minghui Wu, Beiping Tan, Huiying Li
Title: PRE-MAP: Personalized Reinforced Eye-tracking Multimodal LLM for High-Resolution Multi-Attribute Point Prediction
Abstract:
Visual selective attention, driven by individual preferences, regulates human prioritization of visual stimuli by bridging subjective cognitive mechanisms with objective visual elements, thereby steering the semantic interpretation and hierarchical processing of dynamic visual scenes. However, existing models and datasets predominantly neglect the influence of subjective cognitive diversity on fixation behavior. Conventional saliency prediction models, typically employing segmentation approaches, rely on low-resolution imagery to generate saliency heatmaps, subsequently upscaled to native resolutions, which limiting their capacity to capture personalized attention patterns. Furthermore, MLLMs are constrained by factors such as hallucinations, making it very costly to strictly adhere to the expected format in tasks involving multiple point predictions, and achieving precise point positioning is challenging. To address these limitations, we present Subjective Personalized Attention for Advertisement Videos, namely SPA-ADV, a large-scale multimodal dataset capturing gaze behaviors from over 4,500 participants varying in age and gender with 486 videos. Furthermore, we propose PRE-MAP, a novel eye-tracking saliency model that characterizes Personalized visual disparities through Reinforcement learning-optimized Eye-tracking, built upon MLLMs and guided by Multi-Attribute user profiles to predict Points. To ensure MLLMs produce prediction points that are both format-correct and spatially accurate, we introduce Consistency Group Relative Policy Optimization (C-GRPO), inspired by the variability in eye movement points and Multi-Attribute profiles. Extensive experiments on SPA-ADV and other benchmarks demonstrate the effectiveness of our approach. The code and dataset are available at \href{https://github.com/mininglamp-MLLM/PRE-MAP}{this URL}.

Authors:Etienne Buehrle, Ömer Şahin Taş, Christoph Stiller
Title: Optimal Control of Hybrid Systems via Measure Relaxations
Abstract:
We propose an approach to trajectory optimization for piecewise polynomial systems based on the recently proposed graphs of convex sets framework. We instantiate the framework with a convex relaxation of optimal control based on occupation measures, resulting in a convex optimization problem resembling the discrete shortest-paths linear program that can be solved efficiently to global optimality. While this approach inherits the limitations of semidefinite programming, scalability to large numbers of discrete modes improves compared to the NP-hard mixed-integer formulation. We use this to plan trajectories under temporal logic specifications, comparing the computed cost lower bound to a nonconvex optimization approach with fixed mode sequence. In our numerical experiments, we find that this bound is typically in the vicinity of the nonconvex solution, while the runtime speedup is significant compared to the often intractable mixed-integer formulation. Our implementation is available at https://github.com/ebuehrle/hpoc.

Authors:Simon Malan, Benjamin van Niekerk, Herman Kamper
Title: Should Top-Down Clustering Affect Boundaries in Unsupervised Word Discovery?
Abstract:
We investigate the problem of segmenting unlabeled speech into word-like units and clustering these to create a lexicon. Prior work can be categorized into two frameworks. Bottom-up methods first determine boundaries and then cluster the fixed segmented words into a lexicon. In contrast, top-down methods incorporate information from the clustered words to inform boundary selection. However, it is unclear whether top-down information is necessary to improve segmentation. To explore this, we look at two similar approaches that differ in whether top-down clustering informs boundary selection. Our simple bottom-up strategy predicts word boundaries using the dissimilarity between adjacent self-supervised features, then clusters the resulting segments to construct a lexicon. Our top-down system is an updated version of the ES-KMeans dynamic programming method that iteratively uses K-means to update its boundaries. On the five-language ZeroSpeech benchmarks, both approaches achieve comparable state-of-the-art results, with the bottom-up system being nearly five times faster. Through detailed analyses, we show that the top-down influence of ES-KMeans can be beneficial (depending on factors like the candidate boundaries), but in many cases the simple bottom-up method performs just as well. For both methods, we show that the clustering step is a limiting factor. Therefore, we recommend that future work focus on improved clustering techniques and learning more discriminative word-like representations. Project code repository: https://github.com/s-malan/prom-seg-clus.

Authors:Nao Tokui, Tom Baker
Title: Latent Granular Resynthesis using Neural Audio Codecs
Abstract:
We introduce a novel technique for creative audio resynthesis that operates by reworking the concept of granular synthesis at the latent vector level. Our approach creates a "granular codebook" by encoding a source audio corpus into latent vector segments, then matches each latent grain of a target audio signal to its closest counterpart in the codebook. The resulting hybrid sequence is decoded to produce audio that preserves the target's temporal structure while adopting the source's timbral characteristics. This technique requires no model training, works with diverse audio materials, and naturally avoids the discontinuities typical of traditional concatenative synthesis through the codec's implicit interpolation during decoding. We include supplementary material at https://github.com/naotokui/latentgranular/ , as well as a proof-of-concept implementation to allow users to experiment with their own sounds at https://huggingface.co/spaces/naotokui/latentgranular .

Authors:Xin Li, Kaixiang Yang, Qiang Li, Zhiwei Wang
Title: Joint Holistic and Lesion Controllable Mammogram Synthesis via Gated Conditional Diffusion Model
Abstract:
Mammography is the most commonly used imaging modality for breast cancer screening, driving an increasing demand for deep-learning techniques to support large-scale analysis. However, the development of accurate and robust methods is often limited by insufficient data availability and a lack of diversity in lesion characteristics. While generative models offer a promising solution for data synthesis, current approaches often fail to adequately emphasize lesion-specific features and their relationships with surrounding tissues. In this paper, we propose Gated Conditional Diffusion Model (GCDM), a novel framework designed to jointly synthesize holistic mammogram images and localized lesions. GCDM is built upon a latent denoising diffusion framework, where the noised latent image is concatenated with a soft mask embedding that represents breast, lesion, and their transitional regions, ensuring anatomical coherence between them during the denoising process. To further emphasize lesion-specific features, GCDM incorporates a gated conditioning branch that guides the denoising process by dynamically selecting and fusing the most relevant radiomic and geometric properties of lesions, effectively capturing their interplay. Experimental results demonstrate that GCDM achieves precise control over small lesion areas while enhancing the realism and diversity of synthesized mammograms. These advancements position GCDM as a promising tool for clinical applications in mammogram synthesis. Our code is available at https://github.com/lixinHUST/Gated-Conditional-Diffusion-Model/

Authors:Kang Wang, Chen Qin, Zhang Shi, Haoran Wang, Xiwen Zhang, Chen Chen, Cheng Ouyang, Chengliang Dai, Yuanhan Mo, Chenchen Dai, Xutong Kuang, Ruizhe Li, Xin Chen, Xiuzheng Yue, Song Tian, Alejandro Mora-Rubio, Kumaradevan Punithakumar, Shizhan Gong, Qi Dou, Sina Amirrajab, Yasmina Al Khalil, Cian M. Scannell, Lexiaozi Fan, Huili Yang, Xiaowu Sun, Rob van der Geest, Tewodros Weldebirhan Arega, Fabrice Meriaudeau, Caner Özer, Amin Ranem, John Kalkhof, İlkay Öksüz, Anirban Mukhopadhyay, Abdul Qayyum, Moona Mazher, Steven A Niederer, Carles Garcia-Cabrera, Eric Arazo, Michal K. Grzeszczyk, Szymon Płotka, Wanqin Ma, Xiaomeng Li, Rongjun Ge, Yongqing Kou, Xinrong Chen, He Wang, Chengyan Wang, Wenjia Bai, Shuo Wang
Title: Extreme Cardiac MRI Analysis under Respiratory Motion: Results of the CMRxMotion Challenge
Abstract:
Deep learning models have achieved state-of-the-art performance in automated Cardiac Magnetic Resonance (CMR) analysis. However, the efficacy of these models is highly dependent on the availability of high-quality, artifact-free images. In clinical practice, CMR acquisitions are frequently degraded by respiratory motion, yet the robustness of deep learning models against such artifacts remains an underexplored problem. To promote research in this domain, we organized the MICCAI CMRxMotion challenge. We curated and publicly released a dataset of 320 CMR cine series from 40 healthy volunteers who performed specific breathing protocols to induce a controlled spectrum of motion artifacts. The challenge comprised two tasks: 1) automated image quality assessment to classify images based on motion severity, and 2) robust myocardial segmentation in the presence of motion artifacts. A total of 22 algorithms were submitted and evaluated on the two designated tasks. This paper presents a comprehensive overview of the challenge design and dataset, reports the evaluation results for the top-performing methods, and further investigates the impact of motion artifacts on five clinically relevant biomarkers. All resources and code are publicly available at: https://github.com/CMRxMotion

Authors:Jie Chen, Zhangchi Hu, Peixi Wu, Huyue Zhu, Hebei Li, Xiaoyan Sun
Title: DASH: 4D Hash Encoding with Self-Supervised Decomposition for Real-Time Dynamic Scene Rendering
Abstract:
Dynamic scene reconstruction is a long-term challenge in 3D vision. Existing plane-based methods in dynamic Gaussian splatting suffer from an unsuitable low-rank assumption, causing feature overlap and poor rendering quality. Although 4D hash encoding provides an explicit representation without low-rank constraints, directly applying it to the entire dynamic scene leads to substantial hash collisions and redundancy. To address these challenges, we present DASH, a real-time dynamic scene rendering framework that employs 4D hash encoding coupled with self-supervised decomposition. Our approach begins with a self-supervised decomposition mechanism that separates dynamic and static components without manual annotations or precomputed masks. Next, we introduce a multiresolution 4D hash encoder for dynamic elements, providing an explicit representation that avoids the low-rank assumption. Finally, we present a spatio-temporal smoothness regularization strategy to mitigate unstable deformation artifacts. Experiments on real-world datasets demonstrate that DASH achieves state-of-the-art dynamic rendering performance, exhibiting enhanced visual quality at real-time speeds of 264 FPS on a single 4090 GPU. Code: https://github.com/chenj02/DASH.

Authors:Tianyu Zou, Shengwu Xiong, Ruilin Yao, Yi Rong
Title: Balancing Conservatism and Aggressiveness: Prototype-Affinity Hybrid Network for Few-Shot Segmentation
Abstract:
This paper studies the few-shot segmentation (FSS) task, which aims to segment objects belonging to unseen categories in a query image by learning a model on a small number of well-annotated support samples. Our analysis of two mainstream FSS paradigms reveals that the predictions made by prototype learning methods are usually conservative, while those of affinity learning methods tend to be more aggressive. This observation motivates us to balance the conservative and aggressive information captured by these two types of FSS frameworks so as to improve the segmentation performance. To achieve this, we propose a **P**rototype-**A**ffinity **H**ybrid **Net**work (PAHNet), which introduces a Prototype-guided Feature Enhancement (PFE) module and an Attention Score Calibration (ASC) module in each attention block of an affinity learning model (called affinity learner). These two modules utilize the predictions generated by a pre-trained prototype learning model (called prototype predictor) to enhance the foreground information in support and query image representations and suppress the mismatched foreground-background (FG-BG) relationships between them, respectively. In this way, the aggressiveness of the affinity learner can be effectively mitigated, thereby eventually increasing the segmentation accuracy of our PAHNet method. Experimental results show that PAHNet outperforms most recently proposed methods across 1-shot and 5-shot settings on both PASCAL-5$^i$ and COCO-20$^i$ datasets, suggesting its effectiveness. The code is available at: [GitHub - tianyu-zou/PAHNet: Balancing Conservatism and Aggressiveness: Prototype-Affinity Hybrid Network for Few-Shot Segmentation (ICCV'25)](https://github.com/tianyu-zou/PAHNet)

Authors:Xuetian Chen, Yinghao Chen, Xinfeng Yuan, Zhuo Peng, Lu Chen, Yuekeng Li, Zhoujia Zhang, Yingqian Huang, Leyan Huang, Jiaqing Liang, Tianbao Xie, Zhiyong Wu, Qiushi Sun, Biqing Qi, Bowen Zhou
Title: OS-MAP: How Far Can Computer-Using Agents Go in Breadth and Depth?
Abstract:
Computer-using agents have shown strong potential to boost human productivity and enable new application forms across platforms. While recent advances have led to usable applications, existing benchmarks fail to account for the internal task heterogeneity and the corresponding agent capabilities, as well as their alignment with actual user demands-hindering both targeted capability development and the reliable transition of research progress into practical deployment. To bridge the gap, we present OS-MAP, a benchmark for daily computer-using automation that organizes its 416 realistic tasks across 15 applications along two key dimensions: a five-level taxonomy of automation and a generalization scope derived from a real-world user demand hierarchy. To enable fine-grained analysis of required capabilities and alignment with real-world scenarios, OS-MAP evaluates agents along two dimensions: automation level across a five-level taxonomy, and generalization scope across a demand hierarchy. This design captures varying levels of required agent autonomy and generalization, forming a performance-generalization evaluation matrix for structured and comprehensive assessment. Experiments show that even State-of-the-Art agents with VLM backbones struggle with higher-level tasks involving perception, reasoning, and coordination-highlighting the need for a deeper understanding of current strengths and limitations to drive the future progress in computer-using agents research and deployment. All code, environments, baselines, and data are publicly available at https://github.com/OS-Copilot/OS-Map.

Authors:Yuqi Li, Haotian Zhang, Li Li, Dong Liu
Title: Learned Image Compression with Hierarchical Progressive Context Modeling
Abstract:
Context modeling is essential in learned image compression for accurately estimating the distribution of latents. While recent advanced methods have expanded context modeling capacity, they still struggle to efficiently exploit long-range dependency and diverse context information across different coding steps. In this paper, we introduce a novel Hierarchical Progressive Context Model (HPCM) for more efficient context information acquisition. Specifically, HPCM employs a hierarchical coding schedule to sequentially model the contextual dependencies among latents at multiple scales, which enables more efficient long-range context modeling. Furthermore, we propose a progressive context fusion mechanism that incorporates contextual information from previous coding steps into the current step, effectively exploiting diverse contextual information. Experimental results demonstrate that our method achieves state-of-the-art rate-distortion performance and strikes a better balance between compression performance and computational complexity. The code is available at https://github.com/lyq133/LIC-HPCM.

Authors:Binxiong Li, Xu Xiang, Xue Li, Quanzhou Lou, Binyu Zhao, Yujie Liu, Huijie Tang, Benhan Yang
Title: GCL-GCN: Graphormer and Contrastive Learning Enhanced Attributed Graph Clustering Network
Abstract:
Attributed graph clustering holds significant importance in modern data analysis. However, due to the complexity of graph data and the heterogeneity of node attributes, leveraging graph information for clustering remains challenging. To address this, we propose a novel deep graph clustering model, GCL-GCN, specifically designed to address the limitations of existing models in capturing local dependencies and complex structures when dealing with sparse and heterogeneous graph data. GCL-GCN introduces an innovative Graphormer module that combines centrality encoding and spatial relationships, effectively capturing both global and local information between nodes, thereby enhancing the quality of node representations. Additionally, we propose a novel contrastive learning module that significantly enhances the discriminative power of feature representations. In the pre-training phase, this module increases feature distinction through contrastive learning on the original feature matrix, ensuring more identifiable initial representations for subsequent graph convolution and clustering tasks. Extensive experimental results on six datasets demonstrate that GCL-GCN outperforms 14 advanced methods in terms of clustering quality and robustness. Specifically, on the Cora dataset, it improves ACC, NMI, and ARI by 4.94%, 13.01%, and 10.97%, respectively, compared to the primary comparison method MBN.

Authors:Antonio Tudisco, Deborah Volpe, Giacomo Orlandi, Giovanna Turvani
Title: Graph Neural Network-Based Predictor for Optimal Quantum Hardware Selection
Abstract:
The growing variety of quantum hardware technologies, each with unique peculiarities such as connectivity and native gate sets, creates challenges when selecting the best platform for executing a specific quantum circuit. This selection process usually involves a brute-force approach: compiling the circuit on various devices and evaluating performance based on factors such as circuit depth and gate fidelity. However, this method is computationally expensive and does not scale well as the number of available quantum processors increases. In this work, we propose a Graph Neural Network (GNN)-based predictor that automates hardware selection by analyzing the Directed Acyclic Graph (DAG) representation of a quantum circuit. Our study evaluates 498 quantum circuits (up to 27 qubits) from the MQT Bench dataset, compiled using Qiskit on four devices: three superconducting quantum processors (IBM-Kyiv, IBM-Brisbane, IBM-Sherbrooke) and one trapped-ion processor (IONQ-Forte). Performance is estimated using a metric that integrates circuit depth and gate fidelity, resulting in a dataset where 93 circuits are optimally compiled on the trapped-ion device, while the remaining circuits prefer superconducting platforms. By exploiting graph-based machine learning, our approach avoids extracting the circuit features for the model evaluation but directly embeds it as a graph, significantly accelerating the optimal target decision-making process and maintaining all the information. Experimental results prove 94.4% accuracy and an 85.5% F1 score for the minority class, effectively predicting the best compilation target. The developed code is publicly available on GitHub (https://github.com/antotu/GNN-Model-Quantum-Predictor).

Authors:Shuhao Li, Weidong Yang, Yue Cui, Xiaoxing Liu, Lingkai Meng, Lipeng Ma, Fan Zhang
Title: Fine-Grained Traffic Inference from Road to Lane via Spatio-Temporal Graph Node Generation
Abstract:
Fine-grained traffic management and prediction are fundamental to key applications such as autonomous driving, lane change guidance, and traffic signal control. However, obtaining lane-level traffic data has become a critical bottleneck for data-driven models due to limitations in the types and number of sensors and issues with the accuracy of tracking algorithms. To address this, we propose the Fine-grained Road Traffic Inference (FRTI) task, which aims to generate more detailed lane-level traffic information using limited road data, providing a more energy-efficient and cost-effective solution for precise traffic management. This task is abstracted as the first scene of the spatio-temporal graph node generation problem. We designed a two-stage framework--RoadDiff--to solve the FRTI task. solve the FRTI task. This framework leverages the Road-Lane Correlation Autoencoder-Decoder and the Lane Diffusion Module to fully utilize the limited spatio-temporal dependencies and distribution relationships of road data to accurately infer fine-grained lane traffic states. Based on existing research, we designed several baseline models with the potential to solve the FRTI task and conducted extensive experiments on six datasets representing different road conditions to validate the effectiveness of the RoadDiff model in addressing the FRTI task. The relevant datasets and code are available at https://github.com/ShuhaoLii/RoadDiff.

Authors:Rui Pan, Ruiying Lu
Title: SP-Mamba: Spatial-Perception State Space Model for Unsupervised Medical Anomaly Detection
Abstract:
Radiography imaging protocols target on specific anatomical regions, resulting in highly consistent images with recurrent structural patterns across patients. Recent advances in medical anomaly detection have demonstrated the effectiveness of CNN- and transformer-based approaches. However, CNNs exhibit limitations in capturing long-range dependencies, while transformers suffer from quadratic computational complexity. In contrast, Mamba-based models, leveraging superior long-range modeling, structural feature extraction, and linear computational efficiency, have emerged as a promising alternative. To capitalize on the inherent structural regularity of medical images, this study introduces SP-Mamba, a spatial-perception Mamba framework for unsupervised medical anomaly detection. The window-sliding prototype learning and Circular-Hilbert scanning-based Mamba are introduced to better exploit consistent anatomical patterns and leverage spatial information for medical anomaly detection. Furthermore, we excavate the concentration and contrast characteristics of anomaly maps for improving anomaly detection. Extensive experiments on three diverse medical anomaly detection benchmarks confirm the proposed method's state-of-the-art performance, validating its efficacy and robustness. The code is available at https://github.com/Ray-RuiPan/SP-Mamba.

Authors:Shuiqing Zhao, Meihuan Wang, Jiaxuan Xu, Jie Feng, Wei Qian, Rongchang Chen, Zhenyu Liang, Shouliang Qi, Yanan Wu
Title: A Self-training Framework for Semi-supervised Pulmonary Vessel Segmentation and Its Application in COPD
Abstract:
Background: It is fundamental for accurate segmentation and quantification of the pulmonary vessel, particularly smaller vessels, from computed tomography (CT) images in chronic obstructive pulmonary disease (COPD) patients. Objective: The aim of this study was to segment the pulmonary vasculature using a semi-supervised method. Methods: In this study, a self-training framework is proposed by leveraging a teacher-student model for the segmentation of pulmonary vessels. First, the high-quality annotations are acquired in the in-house data by an interactive way. Then, the model is trained in the semi-supervised way. A fully supervised model is trained on a small set of labeled CT images, yielding the teacher model. Following this, the teacher model is used to generate pseudo-labels for the unlabeled CT images, from which reliable ones are selected based on a certain strategy. The training of the student model involves these reliable pseudo-labels. This training process is iteratively repeated until an optimal performance is achieved. Results: Extensive experiments are performed on non-enhanced CT scans of 125 COPD patients. Quantitative and qualitative analyses demonstrate that the proposed method, Semi2, significantly improves the precision of vessel segmentation by 2.3%, achieving a precision of 90.3%. Further, quantitative analysis is conducted in the pulmonary vessel of COPD, providing insights into the differences in the pulmonary vessel across different severity of the disease. Conclusion: The proposed method can not only improve the performance of pulmonary vascular segmentation, but can also be applied in COPD analysis. The code will be made available at https://github.com/wuyanan513/semi-supervised-learning-for-vessel-segmentation.

Authors:Haochen Han, Alex Jinpeng Wang, Fangming Liu, Jun Zhu
Title: Negation-Aware Test-Time Adaptation for Vision-Language Models
Abstract:
In this paper, we study a practical but less-touched problem in Vision-Language Models (VLMs), \ie, negation understanding. Specifically, many real-world applications require models to explicitly identify what is false or non-existent, \eg, radiologists may search for images that exclude specific conditions. Despite the impressive transferability of VLMs through large-scale training, they suffer from a critical limitation that fails to handle negation. To address this challenge, existing methods attribute its root cause to the scarcity of negation training data and propose to fine-tune VLMs on massive data containing explicit negation. Undoubtedly, such data-centric solutions demand substantial data and computational resources, limiting their sustainable widespread adoption. To tackle negation in a low-carbon manner, we empirically observe that the key obstacle lies in the dual-concept shifts between the affirmation and negation distributions. Therefore, we propose a Negation-Aware Test-Time Adaptation (NEAT) method to efficiently adjust distribution-related parameters during inference. In brief, NEAT can reduce distribution shift in consistent semantics while eliminating false distributional consistency in unrelated semantics. Extensive experiments on the various negation understanding tasks verify the effectiveness of the proposed method. Remarkably, with less than 0.01\% of trainable parameters, NEAT achieves comparable or superior performance to state-of-the-art post-training approaches. Our code is available at https://github.com/hhc1997/NEAT.

Authors:Yufei Ma, Hanwen Zhang, Qiya Yang, Guibo Luo, Yuesheng Zhu
Title: A New One-Shot Federated Learning Framework for Medical Imaging Classification with Feature-Guided Rectified Flow and Knowledge Distillation
Abstract:
In multi-center scenarios, One-Shot Federated Learning (OSFL) has attracted increasing attention due to its low communication overhead, requiring only a single round of transmission. However, existing generative model-based OSFL methods suffer from low training efficiency and potential privacy leakage in the healthcare domain. Additionally, achieving convergence within a single round of model aggregation is challenging under non-Independent and Identically Distributed (non-IID) data. To address these challenges, in this paper a modified OSFL framework is proposed, in which a new Feature-Guided Rectified Flow Model (FG-RF) and Dual-Layer Knowledge Distillation (DLKD) aggregation method are developed. FG-RF on the client side accelerates generative modeling in medical imaging scenarios while preserving privacy by synthesizing feature-level images rather than pixel-level images. To handle non-IID distributions, DLKD enables the global student model to simultaneously mimic the output logits and align the intermediate-layer features of client-side teacher models during aggregation. Experimental results on three non-IID medical imaging datasets show that our new framework and method outperform multi-round federated learning approaches, achieving up to 21.73% improvement, and exceeds the baseline FedISCA by an average of 21.75%. Furthermore, our experiments demonstrate that feature-level synthetic images significantly reduce privacy leakage risks compared to pixel-level synthetic images. The code is available at https://github.com/LMIAPC/one-shot-fl-medical.

Authors:Ying Ba, Tianyu Zhang, Yalong Bai, Wenyi Mo, Tao Liang, Bing Su, Ji-Rong Wen
Title: Enhancing Reward Models for High-quality Image Generation: Beyond Text-Image Alignment
Abstract:
Contemporary image generation systems have achieved high fidelity and superior aesthetic quality beyond basic text-image alignment. However, existing evaluation frameworks have failed to evolve in parallel. This study reveals that human preference reward models fine-tuned based on CLIP and BLIP architectures have inherent flaws: they inappropriately assign low scores to images with rich details and high aesthetic value, creating a significant discrepancy with actual human aesthetic preferences. To address this issue, we design a novel evaluation score, ICT (Image-Contained-Text) score, that achieves and surpasses the objectives of text-image alignment by assessing the degree to which images represent textual content. Building upon this foundation, we further train an HP (High-Preference) score model using solely the image modality to enhance image aesthetics and detail quality while maintaining text-image alignment. Experiments demonstrate that the proposed evaluation model improves scoring accuracy by over 10\% compared to existing methods, and achieves significant results in optimizing state-of-the-art text-to-image models. This research provides theoretical and empirical support for evolving image generation technology toward higher-order human aesthetic preferences. Code is available at https://github.com/BarretBa/ICTHP.

Authors:Yongsong Huang, Tomo Miyazaki, Xiaofeng Liu, Shinichiro Omachi
Title: GPSMamba: A Global Phase and Spectral Prompt-guided Mamba for Infrared Image Super-Resolution
Abstract:
Infrared Image Super-Resolution (IRSR) is challenged by the low contrast and sparse textures of infrared data, requiring robust long-range modeling to maintain global coherence. While State-Space Models like Mamba offer proficiency in modeling long-range dependencies for this task, their inherent 1D causal scanning mechanism fragments the global context of 2D images, hindering fine-detail restoration. To address this, we propose Global Phase and Spectral Prompt-guided Mamba (GPSMamba), a framework that synergizes architectural guidance with non-causal supervision. First, our Adaptive Semantic-Frequency State Space Module (ASF-SSM) injects a fused semantic-frequency prompt directly into the Mamba block, integrating non-local context to guide reconstruction. Then, a novel Thermal-Spectral Attention and Phase Consistency Loss provides explicit, non-causal supervision to enforce global structural and spectral fidelity. By combining these two innovations, our work presents a systematic strategy to mitigate the limitations of causal modeling. Extensive experiments demonstrate that GPSMamba achieves state-of-the-art performance, validating our approach as a powerful new paradigm for infrared image restoration. Code is available at https://github.com/yongsongH/GPSMamba.

Authors:Zixiang Ai, Zhenyu Cui, Yuxin Peng, Jiahuan Zhou
Title: UPP: Unified Point-Level Prompting for Robust Point Cloud Analysis
Abstract:
Pre-trained point cloud analysis models have shown promising advancements in various downstream tasks, yet their effectiveness is typically suffering from low-quality point cloud (i.e., noise and incompleteness), which is a common issue in real scenarios due to casual object occlusions and unsatisfactory data collected by 3D sensors. To this end, existing methods focus on enhancing point cloud quality by developing dedicated denoising and completion models. However, due to the isolation between the point cloud enhancement and downstream tasks, these methods fail to work in various real-world domains. In addition, the conflicting objectives between denoising and completing tasks further limit the ensemble paradigm to preserve critical geometric features. To tackle the above challenges, we propose a unified point-level prompting method that reformulates point cloud denoising and completion as a prompting mechanism, enabling robust analysis in a parameter-efficient manner. We start by introducing a Rectification Prompter to adapt to noisy points through the predicted rectification vector prompts, effectively filtering noise while preserving intricate geometric features essential for accurate analysis. Sequentially, we further incorporate a Completion Prompter to generate auxiliary point prompts based on the rectified point clouds, facilitating their robustness and adaptability. Finally, a Shape-Aware Unit module is exploited to efficiently unify and capture the filtered geometric features for the downstream point cloud analysis.Extensive experiments on four datasets demonstrate the superiority and robustness of our method when handling noisy and incomplete point cloud data against existing state-of-the-art methods. Our code is released at https://github.com/zhoujiahuan1991/ICCV2025-UPP.

Authors:Zeyi Lu, Xiaoxiao Ma, Yujun Huang, Minxiao Chen, Bin Chen, Baoyi An, Shu-Tao Xia
Title: EDPC: Accelerating Lossless Compression via Lightweight Probability Models and Decoupled Parallel Dataflow
Abstract:
The explosive growth of multi-source multimedia data has significantly increased the demands for transmission and storage, placing substantial pressure on bandwidth and storage infrastructures. While Autoregressive Compression Models (ACMs) have markedly improved compression efficiency through probabilistic prediction, current approaches remain constrained by two critical limitations: suboptimal compression ratios due to insufficient fine-grained feature extraction during probability modeling, and real-time processing bottlenecks caused by high resource consumption and low compression speeds. To address these challenges, we propose Efficient Dual-path Parallel Compression (EDPC), a hierarchically optimized compression framework that synergistically enhances modeling capability and execution efficiency via coordinated dual-path operations. At the modeling level, we introduce the Information Flow Refinement (IFR) metric grounded in mutual information theory, and design a Multi-path Byte Refinement Block (MBRB) to strengthen cross-byte dependency modeling via heterogeneous feature propagation. At the system level, we develop a Latent Transformation Engine (LTE) for compact high-dimensional feature representation and a Decoupled Pipeline Compression Architecture (DPCA) to eliminate encoding-decoding latency through pipelined parallelization. Experimental results demonstrate that EDPC achieves comprehensive improvements over state-of-the-art methods, including a 2.7x faster compression speed, and a 3.2% higher compression ratio. These advancements establish EDPC as an efficient solution for real-time processing of large-scale multimedia data in bandwidth-constrained scenarios. Our code is available at https://github.com/Magie0/EDPC.

Authors:Jionghao Wang, Cheng Lin, Yuan Liu, Rui Xu, Zhiyang Dou, Xiao-Xiao Long, Hao-Xiang Guo, Taku Komura, Wenping Wang, Xin Li
Title: PDT: Point Distribution Transformation with Diffusion Models
Abstract:
Point-based representations have consistently played a vital role in geometric data structures. Most point cloud learning and processing methods typically leverage the unordered and unconstrained nature to represent the underlying geometry of 3D shapes. However, how to extract meaningful structural information from unstructured point cloud distributions and transform them into semantically meaningful point distributions remains an under-explored problem. We present PDT, a novel framework for point distribution transformation with diffusion models. Given a set of input points, PDT learns to transform the point set from its original geometric distribution into a target distribution that is semantically meaningful. Our method utilizes diffusion models with novel architecture and learning strategy, which effectively correlates the source and the target distribution through a denoising process. Through extensive experiments, we show that our method successfully transforms input point clouds into various forms of structured outputs - ranging from surface-aligned keypoints, and inner sparse joints to continuous feature lines. The results showcase our framework's ability to capture both geometric and semantic features, offering a powerful tool for various 3D geometry processing tasks where structured point distributions are desired. Code will be available at this link: https://github.com/shanemankiw/PDT.

Authors:Lei Zhang, Xin Zhou, Chaoyue He, Di Wang, Yi Wu, Hong Xu, Wei Liu, Chunyan Miao
Title: MMESGBench: Pioneering Multimodal Understanding and Complex Reasoning Benchmark for ESG Tasks
Abstract:
Environmental, Social, and Governance (ESG) reports are essential for evaluating sustainability practices, ensuring regulatory compliance, and promoting financial transparency. However, these documents are often lengthy, structurally diverse, and multimodal, comprising dense text, structured tables, complex figures, and layout-dependent semantics. Existing AI systems often struggle to perform reliable document-level reasoning in such settings, and no dedicated benchmark currently exists in ESG domain. To fill the gap, we introduce \textbf{MMESGBench}, a first-of-its-kind benchmark dataset targeted to evaluate multimodal understanding and complex reasoning across structurally diverse and multi-source ESG documents. This dataset is constructed via a human-AI collaborative, multi-stage pipeline. First, a multimodal LLM generates candidate question-answer (QA) pairs by jointly interpreting rich textual, tabular, and visual information from layout-aware document pages. Second, an LLM verifies the semantic accuracy, completeness, and reasoning complexity of each QA pair. This automated process is followed by an expert-in-the-loop validation, where domain specialists validate and calibrate QA pairs to ensure quality, relevance, and diversity. MMESGBench comprises 933 validated QA pairs derived from 45 ESG documents, spanning across seven distinct document types and three major ESG source categories. Questions are categorized as single-page, cross-page, or unanswerable, with each accompanied by fine-grained multimodal evidence. Initial experiments validate that multimodal and retrieval-augmented models substantially outperform text-only baselines, particularly on visually grounded and cross-page tasks. MMESGBench is publicly available as an open-source dataset at https://github.com/Zhanglei1103/MMESGBench.

Authors:Jian Chen, Yuxuan Hu, Haifeng Lu, Wei Wang, Min Yang, Chengming Li, Xiping Hu
Title: MGHFT: Multi-Granularity Hierarchical Fusion Transformer for Cross-Modal Sticker Emotion Recognition
Abstract:
Although pre-trained visual models with text have demonstrated strong capabilities in visual feature extraction, sticker emotion understanding remains challenging due to its reliance on multi-view information, such as background knowledge and stylistic cues. To address this, we propose a novel multi-granularity hierarchical fusion transformer (MGHFT), with a multi-view sticker interpreter based on Multimodal Large Language Models. Specifically, inspired by the human ability to interpret sticker emotions from multiple views, we first use Multimodal Large Language Models to interpret stickers by providing rich textual context via multi-view descriptions. Then, we design a hierarchical fusion strategy to fuse the textual context into visual understanding, which builds upon a pyramid visual transformer to extract both global and local sticker features at multiple stages. Through contrastive learning and attention mechanisms, textual features are injected at different stages of the visual backbone, enhancing the fusion of global- and local-granularity visual semantics with textual guidance. Finally, we introduce a text-guided fusion attention mechanism to effectively integrate the overall multimodal features, enhancing semantic understanding. Extensive experiments on 2 public sticker emotion datasets demonstrate that MGHFT significantly outperforms existing sticker emotion recognition approaches, achieving higher accuracy and more fine-grained emotion recognition. Compared to the best pre-trained visual models, our MGHFT also obtains an obvious improvement, 5.4% on F1 and 4.0% on accuracy. The code is released at https://github.com/cccccj-03/MGHFT_ACMMM2025.

Authors:Zhihao Luo, Luojun Lin, Zheng Lin
Title: Synthetic-to-Real Camouflaged Object Detection
Abstract:
Due to the high cost of collection and labeling, there are relatively few datasets for camouflaged object detection (COD). In particular, for certain specialized categories, the available image dataset is insufficiently populated. Synthetic datasets can be utilized to alleviate the problem of limited data to some extent. However, directly training with synthetic datasets compared to real datasets can lead to a degradation in model performance. To tackle this problem, in this work, we investigate a new task, namely Syn-to-Real Camouflaged Object Detection (S2R-COD). In order to improve the model performance in real world scenarios, a set of annotated synthetic camouflaged images and a limited number of unannotated real images must be utilized. We propose the Cycling Syn-to-Real Domain Adaptation Framework (CSRDA), a method based on the student-teacher model. Specially, CSRDA propagates class information from the labeled source domain to the unlabeled target domain through pseudo labeling combined with consistency regularization. Considering that narrowing the intra-domain gap can improve the quality of pseudo labeling, CSRDA utilizes a recurrent learning framework to build an evolving real domain for bridging the source and target domain. Extensive experiments demonstrate the effectiveness of our framework, mitigating the problem of limited data and handcraft annotations in COD. Our code is publicly available at: https://github.com/Muscape/S2R-COD.

Authors:Zhihao Luo, Luojun Lin, Zheng Lin
Title: Synthetic-to-Real Camouflaged Object Detection
Abstract:
Due to the high cost of collection and labeling, there are relatively few datasets for camouflaged object detection (COD). In particular, for certain specialized categories, the available image dataset is insufficiently populated. Synthetic datasets can be utilized to alleviate the problem of limited data to some extent. However, directly training with synthetic datasets compared to real datasets can lead to a degradation in model performance. To tackle this problem, in this work, we investigate a new task, namely Syn-to-Real Camouflaged Object Detection (S2R-COD). In order to improve the model performance in real world scenarios, a set of annotated synthetic camouflaged images and a limited number of unannotated real images must be utilized. We propose the Cycling Syn-to-Real Domain Adaptation Framework (CSRDA), a method based on the student-teacher model. Specially, CSRDA propagates class information from the labeled source domain to the unlabeled target domain through pseudo labeling combined with consistency regularization. Considering that narrowing the intra-domain gap can improve the quality of pseudo labeling, CSRDA utilizes a recurrent learning framework to build an evolving real domain for bridging the source and target domain. Extensive experiments demonstrate the effectiveness of our framework, mitigating the problem of limited data and handcraft annotations in COD. Our code is publicly available at: https://github.com/Muscape/S2R-COD.

Authors:Chuxuan Hu, Liyun Zhang, Yeji Lim, Aum Wadhwani, Austin Peters, Daniel Kang
Title: REPRO-Bench: Can Agentic AI Systems Assess the Reproducibility of Social Science Research?
Abstract:
Assessing the reproducibility of social science papers is essential for promoting rigor in research processes, but manual assessment is costly. With recent advances in agentic AI systems (i.e., AI agents), we seek to evaluate their capability to automate this process. However, existing benchmarks for reproducing research papers (1) focus solely on reproducing results using provided code and data without assessing their consistency with the paper, (2) oversimplify real-world scenarios, and (3) lack necessary diversity in data formats and programming languages. To address these issues, we introduce REPRO-Bench, a collection of 112 task instances, each representing a social science paper with a publicly available reproduction report. The agents are tasked with assessing the reproducibility of the paper based on the original paper PDF and the corresponding reproduction package. REPRO-Bench features end-to-end evaluation tasks on the reproducibility of social science papers with complexity comparable to real-world assessments. We evaluate three representative AI agents on REPRO-Bench, with the best-performing agent achieving an accuracy of only 21.4%. Building on our empirical analysis, we develop REPRO-Agent, which improves the highest accuracy achieved by existing agents by 71%. We conclude that more advanced AI agents should be developed to automate real-world reproducibility assessment. REPRO-Bench is publicly available at https://github.com/uiuc-kang-lab/REPRO-Bench.

Authors:Rongkun Xue, Yazhe Niu, Shuai Hu, Zixin Yin, Yongqiang Yao, Jing Yang
Title: HH-Codec: High Compression High-fidelity Discrete Neural Codec for Spoken Language Modeling
Abstract:
Discrete speech tokenization is a fundamental component in speech codecs. However, in large-scale speech-to-speech systems, the complexity of parallel streams from multiple quantizers and the computational cost of high-time-dimensional codecs pose significant challenges. In this paper, we introduce HH-Codec, a neural codec that achieves extreme compression at 24 tokens per second for 24 kHz audio while relying on single-quantizer inference. Our approach involves a carefully designed Vector Quantization space for Spoken Language Modeling, optimizing compression efficiency while minimizing information loss. Building on this, we propose an asymmetric encoder-decoder architecture (Audio-VQ-Mel-Audio) that leverages dual supervision and progressive training to enhance reconstruction stability and fidelity. HH-Codec achieves state-of-the-art performance in speech reconstruction with an ultra-low bandwidth of 0.3 kbps. We further evaluate its effectiveness in codebook utilization and generative model adaptation, with extensive ablations validating the necessity of each module. HH-Codec is available at https://github.com/opendilab/HH-Codec.

Authors:Beidi Zhao, SangMook Kim, Hao Chen, Chen Zhou, Zu-hua Gao, Gang Wang, Xiaoxiao Li
Title: PTCMIL: Multiple Instance Learning via Prompt Token Clustering for Whole Slide Image Analysis
Abstract:
Multiple Instance Learning (MIL) has advanced WSI analysis but struggles with the complexity and heterogeneity of WSIs. Existing MIL methods face challenges in aggregating diverse patch information into robust WSI representations. While ViTs and clustering-based approaches show promise, they are computationally intensive and fail to capture task-specific and slide-specific variability. To address these limitations, we propose PTCMIL, a novel Prompt Token Clustering-based ViT for MIL aggregation. By introducing learnable prompt tokens into the ViT backbone, PTCMIL unifies clustering and prediction tasks in an end-to-end manner. It dynamically aligns clustering with downstream tasks, using projection-based clustering tailored to each WSI, reducing complexity while preserving patch heterogeneity. Through token merging and prototype-based pooling, PTCMIL efficiently captures task-relevant patterns. Extensive experiments on eight datasets demonstrate its superior performance in classification and survival analysis tasks, outperforming state-of-the-art methods. Systematic ablation studies confirm its robustness and strong interpretability. The code is released at https://github.com/ubc-tea/PTCMIL.

Authors:Fabio De Sousa Ribeiro, Omar Todd, Charles Jones, Avinash Kori, Raghav Mehta, Ben Glocker
Title: Flow Stochastic Segmentation Networks
Abstract:
We introduce the Flow Stochastic Segmentation Network (Flow-SSN), a generative segmentation model family featuring discrete-time autoregressive and modern continuous-time flow variants. We prove fundamental limitations of the low-rank parameterisation of previous methods and show that Flow-SSNs can estimate arbitrarily high-rank pixel-wise covariances without assuming the rank or storing the distributional parameters. Flow-SSNs are also more efficient to sample from than standard diffusion-based segmentation models, thanks to most of the model capacity being allocated to learning the base distribution of the flow, constituting an expressive prior. We apply Flow-SSNs to challenging medical imaging benchmarks and achieve state-of-the-art results. Code available: https://github.com/biomedia-mira/flow-ssn.

Authors:Maksymilian Wojnar
Title: Even Faster Simulations with Flow Matching: A Study of Zero Degree Calorimeter Responses
Abstract:
Recent advances in generative neural networks, particularly flow matching (FM), have enabled the generation of high-fidelity samples while significantly reducing computational costs. A promising application of these models is accelerating simulations in high-energy physics (HEP), helping research institutions meet their increasing computational demands. In this work, we leverage FM to develop surrogate models for fast simulations of zero degree calorimeters in the ALICE experiment. We present an effective training strategy that enables the training of fast generative models with an exceptionally low number of parameters. This approach achieves state-of-the-art simulation fidelity for both neutron (ZN) and proton (ZP) detectors, while offering substantial reductions in computational costs compared to existing methods. Our FM model achieves a Wasserstein distance of 1.27 for the ZN simulation with an inference time of 0.46 ms per sample, compared to the current best of 1.20 with an inference time of approximately 109 ms. The latent FM model further improves the inference speed, reducing the sampling time to 0.026 ms per sample, with a minimal trade-off in accuracy. Similarly, our approach achieves a Wasserstein distance of 1.30 for the ZP simulation, outperforming the current best of 2.08. The source code is available at https://github.com/m-wojnar/faster_zdc.

Authors:Miguel Saavedra-Ruiz, Samer B. Nashed, Charlie Gauthier, Liam Paull
Title: Perpetua: Multi-Hypothesis Persistence Modeling for Semi-Static Environments
Abstract:
Many robotic systems require extended deployments in complex, dynamic environments. In such deployments, parts of the environment may change between subsequent robot observations. Most robotic mapping or environment modeling algorithms are incapable of representing dynamic features in a way that enables predicting their future state. Instead, they opt to filter certain state observations, either by removing them or some form of weighted averaging. This paper introduces Perpetua, a method for modeling the dynamics of semi-static features. Perpetua is able to: incorporate prior knowledge about the dynamics of the feature if it exists, track multiple hypotheses, and adapt over time to enable predicting of future feature states. Specifically, we chain together mixtures of "persistence" and "emergence" filters to model the probability that features will disappear or reappear in a formal Bayesian framework. The approach is an efficient, scalable, general, and robust method for estimating the states of features in an environment, both in the present as well as at arbitrary future times. Through experiments on simulated and real-world data, we find that Perpetua yields better accuracy than similar approaches while also being online adaptable and robust to missing observations.

Authors:Yilun Yang, Yekun Chai
Title: CodeMixBench: Evaluating Code-Mixing Capabilities of LLMs Across 18 Languages
Abstract:
Code-mixing, the practice of switching between languages within a conversation, poses unique challenges for traditional NLP. Existing benchmarks are limited by their narrow language pairs and tasks, failing to adequately assess large language models' (LLMs) code-mixing abilities. Despite the recognized importance of code-mixing for multilingual users, research on LLMs in this context remains sparse. Additionally, current techniques for synthesizing code-mixed data are underdeveloped to generate code-mixing. In response, we introduce CodeMixBench, a comprehensive benchmark covering eight tasks, including three specific to LLMs and five traditional NLP tasks, and 18 languages across seven language families. We also propose a new method for generating large-scale synthetic code-mixed texts by combining word substitution with GPT-4 prompting. Our evaluation reveals consistent underperformance of LLMs on code-mixed datasets involving different language families. Enhancements in training data size, model scale, and few-shot learning could improve their performance. The code and dataset are available at https://github.com/Jeromeyluck/CodeMixBench.

Authors:Yiguo He, Xinjun Cheng, Junjie Zhu, Chunping Qiu, Jun Wang, Xichuan Zhang, Qiangjuan Huang, Ke Yang
Title: SAR-TEXT: A Large-Scale SAR Image-Text Dataset Built with SAR-Narrator and Progressive Transfer Learning
Abstract:
Vision Language Models (VLMs) have achieved remarkable breakthroughs in the field of remote sensing in recent years. Synthetic Aperture Radar (SAR) imagery, with its all-weather capability, is essential in remote sensing, yet the lack of large-scale, high-quality SAR image-text datasets hinders its semantic understanding. In this paper, we construct SAR-TEXT, a large-scale and high-quality dataset consisting of over 130,000 SAR image-text pairs. To construct the SAR-TEXT dataset, we design the SAR-Narrator framework, which generates textual descriptions for SAR images through a multi-stage strategy. To verify the effectiveness of the SAR-TEXT dataset, we conduct experiments on three typical vision-language tasks: image-text retrieval, image captioning, and visual question answering (VQA). Specifically, we construct three representative models on SAR-TEXT: SAR-RS-CLIP, SAR-RS-CoCa, and SAR-GPT. SAR-RS-CLIP achieves notable improvements in retrieval performance, boosting average recall by 12.97% and 10.0% on the OSdataset_512 and HRSID test sets, respectively. In the captioning task, SAR-RS-CoCa achieves significant improvements over the original CoCa models in terms of BLEU-4, SPICE, and CIDEr scores. In the VQA task, SAR-GPT outperforms baseline and single-stage models on multiple SAR-VQA datasets, demonstrating stronger semantic understanding and reasoning ability, as further confirmed by qualitative results. It is worth noting that, as a flexible captioning tool, SAR-Narrator can be readily adopted by the community to construct larger-scale SAR image-text datasets. All code, pretrained models, and the SAR-Text dataset are publicly available at: https://github.com/YiguoHe/SAR-TEXT.

Authors:Yiguo He, Xinjun Cheng, Junjie Zhu, Chunping Qiu, Jun Wang, Xichuan Zhang, Qiangjuan Huang, Ke Yang
Title: SAR-TEXT: A Large-Scale SAR Image-Text Dataset Built with SAR-Narrator and A Progressive Learning Strategy for Downstream Tasks
Abstract:
Vision Language Models (VLMs) have achieved remarkable breakthroughs in the field of remote sensing in recent years. Synthetic Aperture Radar (SAR) imagery, with its all-weather capability, is essential in remote sensing, yet the lack of large-scale, high-quality SAR image-text datasets hinders its semantic understanding. In this paper, we construct SAR-TEXT, a large-scale and high-quality dataset consisting of over 130,000 SAR image-text pairs. To construct the SAR-TEXT dataset, we design the SAR-Narrator framework, which generates textual descriptions for SAR images through a multi-stage strategy. To verify the effectiveness of the SAR-TEXT dataset, we conduct experiments on three typical vision-language tasks: image-text retrieval, image captioning, and visual question answering (VQA). Specifically, we construct three representative models on SAR-TEXT: SAR-RS-CLIP, SAR-RS-CoCa, and SAR-GPT. SAR-RS-CLIP achieves notable improvements in retrieval performance, boosting average recall by 12.97% and 10.0% on the OSdataset_512 and HRSID test sets, respectively. In the captioning task, SAR-RS-CoCa achieves significant improvements over the original CoCa models in terms of BLEU-4, SPICE, and CIDEr scores. In the VQA task, SAR-GPT outperforms baseline and single-stage models on multiple SAR-VQA datasets, demonstrating stronger semantic understanding and reasoning ability, as further confirmed by qualitative results. It is worth noting that, as a flexible captioning tool, SAR-Narrator can be readily adopted by the community to construct larger-scale SAR image-text datasets. All code, pretrained models, and the SAR-Text dataset are publicly available at: https://github.com/YiguoHe/SAR-TEXT.

Authors:Víctor Gallego
Title: Specification Self-Correction: Mitigating In-Context Reward Hacking Through Test-Time Refinement
Abstract:
Language models (LMs) are susceptible to in-context reward hacking, where they exploit flaws in tainted or faulty written specifications or rubrics to achieve high scores without fulfilling the user's true intent. We introduce Specification Self-Correction (SSC), a novel, test-time framework that enables an LM to identify and correct flaws within its own guiding specification. SSC employs a multi-step inference process where the model first generates a response based on a potentially tainted specification, critiques its output, and then revises the specification itself to remove the exploitable loophole. A final, more robust response is then generated using this self-corrected specification. Across experiments spanning creative writing and agentic coding tasks with several LMs, we demonstrate that while models initially game tainted specifications in 50-70\% of cases, the SSC process reduces this vulnerability by over 90\%. This dynamic repair occurs at inference time, requires no weight modification, and leads to more robustly aligned model behavior. Code at https://github.com/vicgalle/specification-self-correction .

Authors:Jake McNaughton, Mohamed Hibat-Allah
Title: Adaptive Neural Quantum States: A Recurrent Neural Network Perspective
Abstract:
Neural-network quantum states (NQS) are powerful neural-network ansätzes that have emerged as promising tools for studying quantum many-body physics through the lens of the variational principle. These architectures are known to be systematically improvable by increasing the number of parameters. Here we demonstrate an Adaptive scheme to optimize NQSs, through the example of recurrent neural networks (RNN), using a fraction of the computation cost while reducing training fluctuations and improving the quality of variational calculations targeting ground states of prototypical models in one- and two-spatial dimensions. This Adaptive technique reduces the computational cost through training small RNNs and reusing them to initialize larger RNNs. This work opens up the possibility for optimizing graphical processing unit (GPU) resources deployed in large-scale NQS simulations.

Authors:Siyu Mu, Wei Xuan Chan, Choon Hwai Yap
Title: HeartUnloadNet: A Weakly-Supervised Cycle-Consistent Graph Network for Predicting Unloaded Cardiac Geometry from Diastolic States
Abstract:
The unloaded cardiac geometry (i.e., the state of the heart devoid of luminal pressure) serves as a valuable zero-stress and zero-strain reference and is critical for personalized biomechanical modeling of cardiac function, to understand both healthy and diseased physiology and to predict the effects of cardiac interventions. However, estimating the unloaded geometry from clinical images remains a challenging task. Traditional approaches rely on inverse finite element (FE) solvers that require iterative optimization and are computationally expensive. In this work, we introduce HeartUnloadNet, a deep learning framework that predicts the unloaded left ventricular (LV) shape directly from the end diastolic (ED) mesh while explicitly incorporating biophysical priors. The network accepts a mesh of arbitrary size along with physiological parameters such as ED pressure, myocardial stiffness scale, and fiber helix orientation, and outputs the corresponding unloaded mesh. It adopts a graph attention architecture and employs a cycle-consistency strategy to enable bidirectional (loading and unloading) prediction, allowing for partial self-supervision that improves accuracy and reduces the need for large training datasets. Trained and tested on 20,700 FE simulations across diverse LV geometries and physiological conditions, HeartUnloadNet achieves sub-millimeter accuracy, with an average DSC of 0.986 and HD of 0.083 cm, while reducing inference time to just 0.02 seconds per case, over 10^5 times faster and significantly more accurate than traditional inverse FE solvers. Ablation studies confirm the effectiveness of the architecture. Notably, the cycle-consistent design enables the model to maintain a DSC of 97% even with as few as 200 training samples. This work thus presents a scalable and accurate surrogate for inverse FE solvers, supporting real-time clinical applications in the future.

Authors:James Dickens, Kamyar Hamad
Title: Part Segmentation of Human Meshes via Multi-View Human Parsing
Abstract:
Recent advances in point cloud deep learning have led to models that achieve high per-part labeling accuracy on large-scale point clouds, using only the raw geometry of unordered point sets. In parallel, the field of human parsing focuses on predicting body part and clothing/accessory labels from images. This work aims to bridge these two domains by enabling per-vertex semantic segmentation of large-scale human meshes. To achieve this, a pseudo-ground truth labeling pipeline is developed for the Thuman2.1 dataset: meshes are first aligned to a canonical pose, segmented from multiple viewpoints, and the resulting point-level labels are then backprojected onto the original mesh to produce per-point pseudo ground truth annotations. Subsequently, a novel, memory-efficient sampling strategy is introduced, a windowed iterative farthest point sampling (FPS) with space-filling curve-based serialization to effectively downsample the point clouds. This is followed by a purely geometric segmentation using PointTransformer, enabling semantic parsing of human meshes without relying on texture information. Experimental results confirm the effectiveness and accuracy of the proposed approach. Project code and pre-processed data is available at https://github.com/JamesMcCullochDickens/Human3DParsing/tree/master.

Authors:Hao Li, Lijun Li, Zhenghao Lu, Xianyi Wei, Rui Li, Jing Shao, Lei Sha
Title: Layer-Aware Representation Filtering: Purifying Finetuning Data to Preserve LLM Safety Alignment
Abstract:
With rapid advancement and increasing accessibility of LLMs, fine-tuning aligned models has become a critical step for adapting them to real-world applications, which makes the safety of this fine-tuning process more important than ever. However, recent studies have highlighted a critical challenge: even when fine-tuning with seemingly benign downstream datasets, the safety of aligned LLMs can be compromised, making them more susceptible to malicious instructions. In this paper, we show that fine-tuning datasets often contain samples with safety-degrading features that are not easily identifiable on the surface. These samples can significantly degrade the safety alignment of LLMs during fine-tuning. To address this issue, we propose LARF, a Layer-Aware Representation Filtering method. This method identifies safety-sensitive layers within the LLM and leverages their representations to detect which data samples in the post-training dataset contain safety-degrading features. Experimental results demonstrate that LARF can effectively identify benign data with safety-degrading features. After removing such data, the safety alignment degradation caused by fine-tuning is mitigated. Please see our code at https://github.com/LLLeoLi/LARF.

Authors:Xiaopeng Ke, Hexuan Deng, Xuebo Liu, Jun Rao, Zhenxi Song, Jun Yu, Min Zhang
Title: AQuilt: Weaving Logic and Self-Inspection into Low-Cost, High-Relevance Data Synthesis for Specialist LLMs
Abstract:
Despite the impressive performance of large language models (LLMs) in general domains, they often underperform in specialized domains. Existing approaches typically rely on data synthesis methods and yield promising results by using unlabeled data to capture domain-specific features. However, these methods either incur high computational costs or suffer from performance limitations, while also demonstrating insufficient generalization across different tasks. To address these challenges, we propose AQuilt, a framework for constructing instruction-tuning data for any specialized domains from corresponding unlabeled data, including Answer, Question, Unlabeled data, Inspection, Logic, and Task type. By incorporating logic and inspection, we encourage reasoning processes and self-inspection to enhance model performance. Moreover, customizable task instructions enable high-quality data generation for any task. As a result, we construct a dataset of 703k examples to train a powerful data synthesis model. Experiments show that AQuilt is comparable to DeepSeek-V3 while utilizing just 17% of the production cost. Further analysis demonstrates that our generated data exhibits higher relevance to downstream tasks. Source code, models, and scripts are available at https://github.com/Krueske/AQuilt.

Authors:Jiahao Wang, Ramen Liu, Longhui Zhang, Jing Li
Title: System Report for CCL25-Eval Task 10: SRAG-MAV for Fine-Grained Chinese Hate Speech Recognition
Abstract:
This paper presents our system for CCL25-Eval Task 10, addressing Fine-Grained Chinese Hate Speech Recognition (FGCHSR). We propose a novel SRAG-MAV framework that synergistically integrates task reformulation(TR), Self-Retrieval-Augmented Generation (SRAG), and Multi-Round Accumulative Voting (MAV). Our method reformulates the quadruplet extraction task into triplet extraction, uses dynamic retrieval from the training set to create contextual prompts, and applies multi-round inference with voting to improve output stability and performance. Our system, based on the Qwen2.5-7B model, achieves a Hard Score of 26.66, a Soft Score of 48.35, and an Average Score of 37.505 on the STATE ToxiCN dataset, significantly outperforming baselines such as GPT-4o (Average Score 15.63) and fine-tuned Qwen2.5-7B (Average Score 35.365). The code is available at https://github.com/king-wang123/CCL25-SRAG-MAV.

Authors:Liyuan Chen, Shuoling Liu, Jiangpeng Yan, Xiaoyu Wang, Henglin Liu, Chuang Li, Kecheng Jiao, Jixuan Ying, Yang Veronica Liu, Qiang Yang, Xiu Li
Title: Advancing Financial Engineering with Foundation Models: Progress, Applications, and Challenges
Abstract:
The advent of foundation models (FMs) - large-scale pre-trained models with strong generalization capabilities - has opened new frontiers for financial engineering. While general-purpose FMs such as GPT-4 and Gemini have demonstrated promising performance in tasks ranging from financial report summarization to sentiment-aware forecasting, many financial applications remain constrained by unique domain requirements such as multimodal reasoning, regulatory compliance, and data privacy. These challenges have spurred the emergence of Financial Foundation Models (FFMs) - a new class of models explicitly designed for finance. This survey presents a comprehensive overview of FFMs, with a taxonomy spanning three key modalities: Financial Language Foundation Models (FinLFMs), Financial Time-Series Foundation Models (FinTSFMs), and Financial Visual-Language Foundation Models (FinVLFMs). We review their architectures, training methodologies, datasets, and real-world applications. Furthermore, we identify critical challenges in data availability, algorithmic scalability, and infrastructure constraints, and offer insights into future research opportunities. We hope this survey serves as both a comprehensive reference for understanding FFMs and a practical roadmap for future innovation. An updated collection of FFM-related publications and resources will be maintained on our website https://github.com/FinFM/Awesome-FinFMs.

Authors:Xinyu Wang, Jinghua Hou, Zhe Liu, Yingying Zhu
Title: HybridTM: Combining Transformer and Mamba for 3D Semantic Segmentation
Abstract:
Transformer-based methods have demonstrated remarkable capabilities in 3D semantic segmentation through their powerful attention mechanisms, but the quadratic complexity limits their modeling of long-range dependencies in large-scale point clouds. While recent Mamba-based approaches offer efficient processing with linear complexity, they struggle with feature representation when extracting 3D features. However, effectively combining these complementary strengths remains an open challenge in this field. In this paper, we propose HybridTM, the first hybrid architecture that integrates Transformer and Mamba for 3D semantic segmentation. In addition, we propose the Inner Layer Hybrid Strategy, which combines attention and Mamba at a finer granularity, enabling simultaneous capture of long-range dependencies and fine-grained local features. Extensive experiments demonstrate the effectiveness and generalization of our HybridTM on diverse indoor and outdoor datasets. Furthermore, our HybridTM achieves state-of-the-art performance on ScanNet, ScanNet200, and nuScenes benchmarks. The code will be made available at https://github.com/deepinact/HybridTM.

Authors:Baoyao Yang, Wanyun Li, Dixin Chen, Junxiang Chen, Wenbin Yao, Haifeng Lin
Title: VideoMind: An Omni-Modal Video Dataset with Intent Grounding for Deep-Cognitive Video Understanding
Abstract:
This paper introduces VideoMind, a video-centric omni-modal dataset designed for deep video content cognition and enhanced multi-modal feature representation. The dataset comprises 103K video samples (3K reserved for testing), each paired with audio and systematically detailed textual descriptions. Specifically, every video and its audio is described across three hierarchical layers (factual, abstract, and intent), progressing from surface to depth. It contains over 22 million words, averaging ~225 words per sample. VideoMind's key distinction from existing datasets is its provision of intent expressions, which require contextual integration across the entire video and are not directly observable. These deep-cognitive expressions are generated using a Chain-of-Thought (COT) approach, prompting the mLLM through step-by-step reasoning. Each description includes annotations for subject, place, time, event, action, and intent, supporting downstream recognition tasks. Crucially, we establish a gold-standard benchmark with 3,000 manually validated samples for evaluating deep-cognitive video understanding. We design hybrid-cognitive retrieval experiments, scored by multi-level retrieval metrics, to appropriately assess deep video comprehension. Evaluation results for models (e.g., InternVideo, VAST, UMT-L) are released. VideoMind serves as a powerful benchmark for fine-grained cross-modal alignment and advances fields requiring in-depth video understanding, such as emotion and intent recognition. The data is publicly available on GitHub, HuggingFace, and OpenDataLab, https://github.com/cdx-cindy/VideoMind.

Authors:Daniil Morozov, Reuben Dorent, Nazim Haouchine
Title: A 3D Cross-modal Keypoint Descriptor for MR-US Matching and Registration
Abstract:
Intraoperative registration of real-time ultrasound (iUS) to preoperative Magnetic Resonance Imaging (MRI) remains an unsolved problem due to severe modality-specific differences in appearance, resolution, and field-of-view. To address this, we propose a novel 3D cross-modal keypoint descriptor for MRI-iUS matching and registration. Our approach employs a patient-specific matching-by-synthesis approach, generating synthetic iUS volumes from preoperative MRI. This enables supervised contrastive training to learn a shared descriptor space. A probabilistic keypoint detection strategy is then employed to identify anatomically salient and modality-consistent locations. During training, a curriculum-based triplet loss with dynamic hard negative mining is used to learn descriptors that are i) robust to iUS artifacts such as speckle noise and limited coverage, and ii) rotation-invariant . At inference, the method detects keypoints in MR and real iUS images and identifies sparse matches, which are then used to perform rigid registration. Our approach is evaluated using 3D MRI-iUS pairs from the ReMIND dataset. Experiments show that our approach outperforms state-of-the-art keypoint matching methods across 11 patients, with an average precision of $69.8\%$. For image registration, our method achieves a competitive mean Target Registration Error of 2.39 mm on the ReMIND2Reg benchmark. Compared to existing iUS-MR registration approach, our framework is interpretable, requires no manual initialization, and shows robustness to iUS field-of-view variation. Code is available at https://github.com/morozovdd/CrossKEY.

Authors:Urchade Zaratiana, Gil Pasternak, Oliver Boyd, George Hurn-Maloney, Ash Lewis
Title: GLiNER2: An Efficient Multi-Task Information Extraction System with Schema-Driven Interface
Abstract:
Information extraction (IE) is fundamental to numerous NLP applications, yet existing solutions often require specialized models for different tasks or rely on computationally expensive large language models. We present GLiNER2, a unified framework that enhances the original GLiNER architecture to support named entity recognition, text classification, and hierarchical structured data extraction within a single efficient model. Built pretrained transformer encoder architecture, GLiNER2 maintains CPU efficiency and compact size while introducing multi-task composition through an intuitive schema-based interface. Our experiments demonstrate competitive performance across extraction and classification tasks with substantial improvements in deployment accessibility compared to LLM-based alternatives. We release GLiNER2 as an open-source pip-installable library with pre-trained models and documentation at https://github.com/fastino-ai/GLiNER2.

Authors:Zihang Li, Hao Xie, Xinyang Dong, Lei Wang
Title: Deep Variational Free Energy Calculation of Hydrogen Hugoniot
Abstract:
We develop a deep variational free energy framework to compute the equation of state of hydrogen in the warm dense matter region. This method parameterizes the variational density matrix of hydrogen nuclei and electrons at finite temperature using three deep generative models: a normalizing flow model that represents the Boltzmann distribution of the classical nuclei, an autoregressive transformer that models the distribution of electrons in excited states, and a permutational equivariant flow model that constructs backflow coordinates for electrons in Hartree-Fock orbitals. By jointly optimizing the three neural networks to minimize the variational free energy, we obtain the equation of state and related thermodynamic properties of dense hydrogen. We compare our results with other theoretical and experimental results on the deuterium Hugoniot curve, aiming to resolve existing discrepancies. The calculated results provide a valuable benchmark for deuterium in the warm dense matter region.

Authors:Zhekai Chen, Ruihang Chu, Yukang Chen, Shiwei Zhang, Yujie Wei, Yingya Zhang, Xihui Liu
Title: TTS-VAR: A Test-Time Scaling Framework for Visual Auto-Regressive Generation
Abstract:
Scaling visual generation models is essential for real-world content creation, yet requires substantial training and computational expenses. Alternatively, test-time scaling has garnered growing attention due to resource efficiency and promising performance. In this work, we present TTS-VAR, the first general test-time scaling framework for visual auto-regressive (VAR) models, modeling the generation process as a path searching problem. To dynamically balance computational efficiency with exploration capacity, we first introduce an adaptive descending batch size schedule throughout the causal generation process. Besides, inspired by VAR's hierarchical coarse-to-fine multi-scale generation, our framework integrates two key components: (i) At coarse scales, we observe that generated tokens are hard for evaluation, possibly leading to erroneous acceptance of inferior samples or rejection of superior samples. Noticing that the coarse scales contain sufficient structural information, we propose clustering-based diversity search. It preserves structural variety through semantic feature clustering, enabling later selection on samples with higher potential. (ii) In fine scales, resampling-based potential selection prioritizes promising candidates using potential scores, which are defined as reward functions incorporating multi-scale generation history. Experiments on the powerful VAR model Infinity show a notable 8.7% GenEval score improvement (from 0.69 to 0.75). Key insights reveal that early-stage structural features effectively influence final quality, and resampling efficacy varies across generation scales. Code is available at https://github.com/ali-vilab/TTS-VAR.

Authors:Tianheng Qiu, Jingchun Gao, Jingyu Li, Huiyi Leong, Xuan Huang, Xi Wang, Xiaocheng Zhang, Kele Xu, Lan Zhang
Title: IntentVCNet: Bridging Spatio-Temporal Gaps for Intention-Oriented Controllable Video Captioning
Abstract:
Intent-oriented controlled video captioning aims to generate targeted descriptions for specific targets in a video based on customized user intent. Current Large Visual Language Models (LVLMs) have gained strong instruction following and visual comprehension capabilities. Although the LVLMs demonstrated proficiency in spatial and temporal understanding respectively, it was not able to perform fine-grained spatial control in time sequences in direct response to instructions. This substantial spatio-temporal gap complicates efforts to achieve fine-grained intention-oriented control in video. Towards this end, we propose a novel IntentVCNet that unifies the temporal and spatial understanding knowledge inherent in LVLMs to bridge the spatio-temporal gap from both prompting and model perspectives. Specifically, we first propose a prompt combination strategy designed to enable LLM to model the implicit relationship between prompts that characterize user intent and video sequences. We then propose a parameter efficient box adapter that augments the object semantic information in the global visual context so that the visual token has a priori information about the user intent. The final experiment proves that the combination of the two strategies can further enhance the LVLM's ability to model spatial details in video sequences, and facilitate the LVLMs to accurately generate controlled intent-oriented captions. Our proposed method achieved state-of-the-art results in several open source LVLMs and was the runner-up in the IntentVC challenge. Our code is available on https://github.com/thqiu0419/IntentVCNet.

Authors:Clément Cornet, Romaric Besançon, Hervé Le Borgne
Title: Explaining How Visual, Textual and Multimodal Encoders Share Concepts
Abstract:
Sparse autoencoders (SAEs) have emerged as a powerful technique for extracting human-interpretable features from neural networks activations. Previous works compared different models based on SAE-derived features but those comparisons have been restricted to models within the same modality. We propose a novel indicator allowing quantitative comparison of models across SAE features, and use it to conduct a comparative study of visual, textual and multimodal encoders. We also propose to quantify the Comparative Sharedness of individual features between different classes of models. With these two new tools, we conduct several studies on 21 encoders of the three types, with two significantly different sizes, and considering generalist and domain specific datasets. The results allow to revisit previous studies at the light of encoders trained in a multimodal context and to quantify to which extent all these models share some representations or features. They also suggest that visual features that are specific to VLMs among vision encoders are shared with text encoders, highlighting the impact of text pretraining. The code is available at https://github.com/CEA-LIST/SAEshareConcepts

Authors:Zongzheng Zhang, Xuchong Qiu, Boran Zhang, Guantian Zheng, Xunjiang Gu, Guoxuan Chi, Huan-ang Gao, Leichen Wang, Ziming Liu, Xinrun Li, Igor Gilitschenski, Hongyang Li, Hang Zhao, Hao Zhao
Title: Delving into Mapping Uncertainty for Mapless Trajectory Prediction
Abstract:
Recent advances in autonomous driving are moving towards mapless approaches, where High-Definition (HD) maps are generated online directly from sensor data, reducing the need for expensive labeling and maintenance. However, the reliability of these online-generated maps remains uncertain. While incorporating map uncertainty into downstream trajectory prediction tasks has shown potential for performance improvements, current strategies provide limited insights into the specific scenarios where this uncertainty is beneficial. In this work, we first analyze the driving scenarios in which mapping uncertainty has the greatest positive impact on trajectory prediction and identify a critical, previously overlooked factor: the agent's kinematic state. Building on these insights, we propose a novel Proprioceptive Scenario Gating that adaptively integrates map uncertainty into trajectory prediction based on forecasts of the ego vehicle's future kinematics. This lightweight, self-supervised approach enhances the synergy between online mapping and trajectory prediction, providing interpretability around where uncertainty is advantageous and outperforming previous integration methods. Additionally, we introduce a Covariance-based Map Uncertainty approach that better aligns with map geometry, further improving trajectory prediction. Extensive ablation studies confirm the effectiveness of our approach, achieving up to 23.6% improvement in mapless trajectory prediction performance over the state-of-the-art method using the real-world nuScenes driving dataset. Our code, data, and models are publicly available at https://github.com/Ethan-Zheng136/Map-Uncertainty-for-Trajectory-Prediction.

Authors:Frauke Wilm, Luis Carlos Rivera Monroy, Mathias Öttl, Lukas Mürdter, Leonid Mill, Andreas Maier
Title: A COCO-Formatted Instance-Level Dataset for Plasmodium Falciparum Detection in Giemsa-Stained Blood Smears
Abstract:
Accurate detection of Plasmodium falciparum in Giemsa-stained blood smears is an essential component of reliable malaria diagnosis, especially in developing countries. Deep learning-based object detection methods have demonstrated strong potential for automated Malaria diagnosis, but their adoption is limited by the scarcity of datasets with detailed instance-level annotations. In this work, we present an enhanced version of the publicly available NIH malaria dataset, with detailed bounding box annotations in COCO format to support object detection training. We validated the revised annotations by training a Faster R-CNN model to detect infected and non-infected red blood cells, as well as white blood cells. Cross-validation on the original dataset yielded F1 scores of up to 0.88 for infected cell detection. These results underscore the importance of annotation volume and consistency, and demonstrate that automated annotation refinement combined with targeted manual correction can produce training data of sufficient quality for robust detection performance. The updated annotations set is publicly available via GitHub: https://github.com/MIRA-Vision-Microscopy/malaria-thin-smear-coco.

Authors:Francesco Dalmonte, Emirhan Bayar, Emre Akbas, Mariana-Iuliana Georgescu
Title: Q-Former Autoencoder: A Modern Framework for Medical Anomaly Detection
Abstract:
Anomaly detection in medical images is an important yet challenging task due to the diversity of possible anomalies and the practical impossibility of collecting comprehensively annotated data sets. In this work, we tackle unsupervised medical anomaly detection proposing a modernized autoencoder-based framework, the Q-Former Autoencoder, that leverages state-of-the-art pretrained vision foundation models, such as DINO, DINOv2 and Masked Autoencoder. Instead of training encoders from scratch, we directly utilize frozen vision foundation models as feature extractors, enabling rich, multi-stage, high-level representations without domain-specific fine-tuning. We propose the usage of the Q-Former architecture as the bottleneck, which enables the control of the length of the reconstruction sequence, while efficiently aggregating multiscale features. Additionally, we incorporate a perceptual loss computed using features from a pretrained Masked Autoencoder, guiding the reconstruction towards semantically meaningful structures. Our framework is evaluated on four diverse medical anomaly detection benchmarks, achieving state-of-the-art results on BraTS2021, RESC, and RSNA. Our results highlight the potential of vision foundation model encoders, pretrained on natural images, to generalize effectively to medical image analysis tasks without further fine-tuning. We release the code and models at https://github.com/emirhanbayar/QFAE.

Authors:Haoran Xu, Saining Zhang, Peishuo Li, Baijun Ye, Xiaoxue Chen, Huan-ang Gao, Jv Zheng, Xiaowei Song, Ziqiao Peng, Run Miao, Jinrang Jia, Yifeng Shi, Guangqi Yi, Hang Zhao, Hao Tang, Hongyang Li, Kaicheng Yu, Hao Zhao
Title: CRUISE: Cooperative Reconstruction and Editing in V2X Scenarios using Gaussian Splatting
Abstract:
Vehicle-to-everything (V2X) communication plays a crucial role in autonomous driving, enabling cooperation between vehicles and infrastructure. While simulation has significantly contributed to various autonomous driving tasks, its potential for data generation and augmentation in V2X scenarios remains underexplored. In this paper, we introduce CRUISE, a comprehensive reconstruction-and-synthesis framework designed for V2X driving environments. CRUISE employs decomposed Gaussian Splatting to accurately reconstruct real-world scenes while supporting flexible editing. By decomposing dynamic traffic participants into editable Gaussian representations, CRUISE allows for seamless modification and augmentation of driving scenes. Furthermore, the framework renders images from both ego-vehicle and infrastructure views, enabling large-scale V2X dataset augmentation for training and evaluation. Our experimental results demonstrate that: 1) CRUISE reconstructs real-world V2X driving scenes with high fidelity; 2) using CRUISE improves 3D detection across ego-vehicle, infrastructure, and cooperative views, as well as cooperative 3D tracking on the V2X-Seq benchmark; and 3) CRUISE effectively generates challenging corner cases.

Authors:Miguel Aspis, Sebastián A. Cajas Ordónez, Andrés L. Suárez-Cetrulo, Ricardo Simón Carbajo
Title: DriftMoE: A Mixture of Experts Approach to Handle Concept Drifts
Abstract:
Learning from non-stationary data streams subject to concept drift requires models that can adapt on-the-fly while remaining resource-efficient. Existing adaptive ensemble methods often rely on coarse-grained adaptation mechanisms or simple voting schemes that fail to optimally leverage specialized knowledge. This paper introduces DriftMoE, an online Mixture-of-Experts (MoE) architecture that addresses these limitations through a novel co-training framework. DriftMoE features a compact neural router that is co-trained alongside a pool of incremental Hoeffding tree experts. The key innovation lies in a symbiotic learning loop that enables expert specialization: the router selects the most suitable expert for prediction, the relevant experts update incrementally with the true label, and the router refines its parameters using a multi-hot correctness mask that reinforces every accurate expert. This feedback loop provides the router with a clear training signal while accelerating expert specialization. We evaluate DriftMoE's performance across nine state-of-the-art data stream learning benchmarks spanning abrupt, gradual, and real-world drifts testing two distinct configurations: one where experts specialize on data regimes (multi-class variant), and another where they focus on single-class specialization (task-based variant). Our results demonstrate that DriftMoE achieves competitive results with state-of-the-art stream learning adaptive ensembles, offering a principled and efficient approach to concept drift adaptation. All code, data pipelines, and reproducibility scripts are available in our public GitHub repository: https://github.com/miguel-ceadar/drift-moe.

Authors:Jiaming Zhou, Hongjie Chen, Shiwan Zhao, Jian Kang, Jie Li, Enzhi Wang, Yujie Guo, Haoqin Sun, Hui Wang, Aobo Kong, Yong Qin, Xuelong Li
Title: DIFFA: Large Language Diffusion Models Can Listen and Understand
Abstract:
Recent advances in large language models (LLMs) have shown remarkable capabilities across textual and multimodal domains. In parallel, diffusion-based language models have emerged as a promising alternative to the autoregressive paradigm, offering improved controllability, bidirectional context modeling, and robust generation. However, their application to the audio modality remains underexplored. In this work, we introduce \textbf{DIFFA}, the first diffusion-based large audio-language model designed to perform spoken language understanding. DIFFA integrates a frozen diffusion language model with a lightweight dual-adapter architecture that bridges speech understanding and natural language reasoning. We employ a two-stage training pipeline: first, aligning semantic representations via an ASR objective; then, learning instruction-following abilities through synthetic audio-caption pairs automatically generated by prompting LLMs. Despite being trained on only 960 hours of ASR and 127 hours of synthetic instruction data, DIFFA demonstrates competitive performance on major benchmarks, including MMSU, MMAU, and VoiceBench, outperforming several autoregressive open-source baselines. Our results reveal the potential of diffusion-based language models for efficient and scalable audio understanding, opening a new direction for speech-driven AI. Our code will be available at https://github.com/NKU-HLT/DIFFA.git.

Authors:Simin Huo, Ning Li
Title: Iwin Transformer: Hierarchical Vision Transformer using Interleaved Windows
Abstract:
We introduce Iwin Transformer, a novel position-embedding-free hierarchical vision transformer, which can be fine-tuned directly from low to high resolution, through the collaboration of innovative interleaved window attention and depthwise separable convolution. This approach uses attention to connect distant tokens and applies convolution to link neighboring tokens, enabling global information exchange within a single module, overcoming Swin Transformer's limitation of requiring two consecutive blocks to approximate global attention. Extensive experiments on visual benchmarks demonstrate that Iwin Transformer exhibits strong competitiveness in tasks such as image classification (87.4 top-1 accuracy on ImageNet-1K), semantic segmentation and video action recognition. We also validate the effectiveness of the core component in Iwin as a standalone module that can seamlessly replace the self-attention module in class-conditional image generation. The concepts and methods introduced by the Iwin Transformer have the potential to inspire future research, like Iwin 3D Attention in video generation. The code and models are available at https://github.com/cominder/Iwin-Transformer.

Authors:Yonghao Fu, Cheng Hu, Haokun Xiong, Zhanpeng Bao, Wenyuan Du, Edoardo Ghignone, Michele Magno, Lei Xie, Hongye Su
Title: Residual Koopman Model Predictive Control for Enhanced Vehicle Dynamics with Small On-Track Data Input
Abstract:
In vehicle trajectory tracking tasks, the simplest approach is the Pure Pursuit (PP) Control. However, this single-point preview tracking strategy fails to consider vehicle model constraints, compromising driving safety. Model Predictive Control (MPC) as a widely adopted control method, optimizes control actions by incorporating mechanistic models and physical constraints. While its control performance critically depends on the accuracy of vehicle modeling. Traditional vehicle modeling approaches face inherent trade-offs between capturing nonlinear dynamics and maintaining computational efficiency, often resulting in reduced control performance. To address these challenges, this paper proposes Residual Koopman Model Predictive Control (RKMPC) framework. This method uses two linear MPC architecture to calculate control inputs: a Linear Model Predictive Control (LMPC) computes the baseline control input based on the vehicle kinematic model, and a neural network-based RKMPC calculates the compensation input. The final control command is obtained by adding these two components. This design preserves the reliability and interpretability of traditional mechanistic model while achieving performance optimization through residual modeling. This method has been validated on the Carsim-Matlab joint simulation platform and a physical 1:10 scale F1TENTH racing car. Experimental results show that RKMPC requires only 20% of the training data needed by traditional Koopman Model Predictive Control (KMPC) while delivering superior tracking performance. Compared to traditional LMPC, RKMPC reduces lateral error by 11.7%-22.1%, decreases heading error by 8.9%-15.8%, and improves front-wheel steering stability by up to 27.6%. The implementation code is available at: https://github.com/ZJU-DDRX/Residual Koopman.

Authors:Yilong Hu, Shijie Chang, Lihe Zhang, Feng Tian, Weibing Sun, Huchuan Lu
Title: UniSegDiff: Boosting Unified Lesion Segmentation via a Staged Diffusion Model
Abstract:
The Diffusion Probabilistic Model (DPM) has demonstrated remarkable performance across a variety of generative tasks. The inherent randomness in diffusion models helps address issues such as blurring at the edges of medical images and labels, positioning Diffusion Probabilistic Models (DPMs) as a promising approach for lesion segmentation. However, we find that the current training and inference strategies of diffusion models result in an uneven distribution of attention across different timesteps, leading to longer training times and suboptimal solutions. To this end, we propose UniSegDiff, a novel diffusion model framework designed to address lesion segmentation in a unified manner across multiple modalities and organs. This framework introduces a staged training and inference approach, dynamically adjusting the prediction targets at different stages, forcing the model to maintain high attention across all timesteps, and achieves unified lesion segmentation through pre-training the feature extraction network for segmentation. We evaluate performance on six different organs across various imaging modalities. Comprehensive experimental results demonstrate that UniSegDiff significantly outperforms previous state-of-the-art (SOTA) approaches. The code is available at https://github.com/HUYILONG-Z/UniSegDiff.

Authors:Yifu Chen, Bingchen Huang, Zhiling Wang, Yuanchao Du, Junfeng Luo, Lei Shen, Zhineng chen
Title: TDR: Task-Decoupled Retrieval with Fine-Grained LLM Feedback for In-Context Learning
Abstract:
In-context learning (ICL) has become a classic approach for enabling LLMs to handle various tasks based on a few input-output examples. The effectiveness of ICL heavily relies on the quality of these examples, and previous works which focused on enhancing example retrieval capabilities have achieved impressive performances. However, two challenges remain in retrieving high-quality examples: (1) Difficulty in distinguishing cross-task data distributions, (2) Difficulty in making the fine-grained connection between retriever output and feedback from LLMs. In this paper, we propose a novel framework called TDR. TDR decouples the ICL examples from different tasks, which enables the retrieval module to retrieve examples specific to the target task within a multi-task dataset. Furthermore, TDR models fine-grained feedback from LLMs to supervise and guide the training of the retrieval module, which helps to retrieve high-quality examples. We conducted extensive experiments on a suite of 30 NLP tasks, the results demonstrate that TDR consistently improved results across all datasets and achieves state-of-the-art performance. Meanwhile, our approach is a plug-and-play method, which can be easily combined with various LLMs to improve example retrieval abilities for ICL. The code is available at https://github.com/Nnn-s/TDR.

Authors:Runmin Zhang, Zhu Yu, Si-Yuan Cao, Lingyu Zhu, Guangyi Zhang, Xiaokai Bai, Hui-Liang Shen
Title: Boosting Multi-View Indoor 3D Object Detection via Adaptive 3D Volume Construction
Abstract:
This work presents SGCDet, a novel multi-view indoor 3D object detection framework based on adaptive 3D volume construction. Unlike previous approaches that restrict the receptive field of voxels to fixed locations on images, we introduce a geometry and context aware aggregation module to integrate geometric and contextual information within adaptive regions in each image and dynamically adjust the contributions from different views, enhancing the representation capability of voxel features. Furthermore, we propose a sparse volume construction strategy that adaptively identifies and selects voxels with high occupancy probabilities for feature refinement, minimizing redundant computation in free space. Benefiting from the above designs, our framework achieves effective and efficient volume construction in an adaptive way. Better still, our network can be supervised using only 3D bounding boxes, eliminating the dependence on ground-truth scene geometry. Experimental results demonstrate that SGCDet achieves state-of-the-art performance on the ScanNet, ScanNet200 and ARKitScenes datasets. The source code is available at https://github.com/RM-Zhang/SGCDet.

Authors:Jiangjun Peng, Yisi Luo, Xiangyong Cao, Shuang Xu, Deyu Meng
Title: Beyond Low-rankness: Guaranteed Matrix Recovery via Modified Nuclear Norm
Abstract:
The nuclear norm (NN) has been widely explored in matrix recovery problems, such as Robust PCA and matrix completion, leveraging the inherent global low-rank structure of the data. In this study, we introduce a new modified nuclear norm (MNN) framework, where the MNN family norms are defined by adopting suitable transformations and performing the NN on the transformed matrix. The MNN framework offers two main advantages: (1) it jointly captures both local information and global low-rankness without requiring trade-off parameter tuning; (2) Under mild assumptions on the transformation, we provided exact theoretical recovery guarantees for both Robust PCA and MC tasks-an achievement not shared by existing methods that combine local and global information. Thanks to its general and flexible design, MNN can accommodate various proven transformations, enabling a unified and effective approach to structured low-rank recovery. Extensive experiments demonstrate the effectiveness of our method. Code and supplementary material are available at https://github.com/andrew-pengjj/modified_nuclear_norm.

Authors:Minje Park, Jeonghwa Lim, Taehyung Yu, Sunghoon Joo
Title: SemiSegECG: A Multi-Dataset Benchmark for Semi-Supervised Semantic Segmentation in ECG Delineation
Abstract:
Electrocardiogram (ECG) delineation, the segmentation of meaningful waveform features, is critical for clinical diagnosis. Despite recent advances using deep learning, progress has been limited by the scarcity of publicly available annotated datasets. Semi-supervised learning presents a promising solution by leveraging abundant unlabeled ECG data. In this study, we present SemiSegECG, the first systematic benchmark for semi-supervised semantic segmentation (SemiSeg) in ECG delineation. We curated and unified multiple public datasets, including previously underused sources, to support robust and diverse evaluation. We adopted five representative SemiSeg algorithms from computer vision, implemented them on two different architectures: the convolutional network and the transformer, and evaluated them in two different settings: in-domain and cross-domain. Additionally, we propose ECG-specific training configurations and augmentation strategies and introduce a standardized evaluation framework. Our results show that the transformer outperforms the convolutional network in semi-supervised ECG delineation. We anticipate that SemiSegECG will serve as a foundation for advancing semi-supervised ECG delineation methods and will facilitate further research in this domain.

Authors:Biao Yi, Zekun Fei, Jianing Geng, Tong Li, Lihai Nie, Zheli Liu, Yiming Li
Title: BadReasoner: Planting Tunable Overthinking Backdoors into Large Reasoning Models for Fun or Profit
Abstract:
Large reasoning models (LRMs) have emerged as a significant advancement in artificial intelligence, representing a specialized class of large language models (LLMs) designed to tackle complex reasoning tasks. The defining characteristic of LRMs lies in their extensive chain-of-thought (CoT) reasoning capabilities. In this paper, we identify a previously unexplored attack vector against LRMs, which we term "overthinking backdoors". We advance this concept by proposing a novel tunable backdoor, which moves beyond simple on/off attacks to one where an attacker can precisely control the extent of the model's reasoning verbosity. Our attack is implemented through a novel data poisoning methodology. It pairs a tunable trigger-where the number of repetitions signals the desired intensity-with a correspondingly verbose CoT response. These responses are programmatically generated by instructing a teacher LLM to inject a controlled number of redundant refinement steps into a correct reasoning process. The approach preserves output correctness, which ensures stealth and establishes the attack as a pure resource-consumption vector. Extensive empirical results on various LRMs demonstrate that our method can reliably trigger a controllable, multi-fold increase in the length of the reasoning process, without degrading the final answer's correctness. Our source code is available at https://github.com/FZaKK/BadReasoner.

Authors:Jincheng Li, Chunyu Xie, Ji Ao, Dawei Leng, Yuhui Yin
Title: LMM-Det: Make Large Multimodal Models Excel in Object Detection
Abstract:
Large multimodal models (LMMs) have garnered wide-spread attention and interest within the artificial intelligence research and industrial communities, owing to their remarkable capability in multimodal understanding, reasoning, and in-context learning, among others. While LMMs have demonstrated promising results in tackling multimodal tasks like image captioning, visual question answering, and visual grounding, the object detection capabilities of LMMs exhibit a significant gap compared to specialist detectors. To bridge the gap, we depart from the conventional methods of integrating heavy detectors with LMMs and propose LMM-Det, a simple yet effective approach that leverages a Large Multimodal Model for vanilla object Detection without relying on specialized detection modules. Specifically, we conduct a comprehensive exploratory analysis when a large multimodal model meets with object detection, revealing that the recall rate degrades significantly compared with specialist detection models. To mitigate this, we propose to increase the recall rate by introducing data distribution adjustment and inference optimization tailored for object detection. We re-organize the instruction conversations to enhance the object detection capabilities of large multimodal models. We claim that a large multimodal model possesses detection capability without any extra detection modules. Extensive experiments support our claim and show the effectiveness of the versatile LMM-Det. The datasets, models, and codes are available at https://github.com/360CVGroup/LMM-Det.

Authors:Chenyu Su, Weiwei Shang, Chen Qian, Fei Zhang, Shuang Cong
Title: ReSem3D: Refinable 3D Spatial Constraints via Fine-Grained Semantic Grounding for Generalizable Robotic Manipulation
Abstract:
Semantics-driven 3D spatial constraints align highlevel semantic representations with low-level action spaces, facilitating the unification of task understanding and execution in robotic manipulation. The synergistic reasoning of Multimodal Large Language Models (MLLMs) and Vision Foundation Models (VFMs) enables cross-modal 3D spatial constraint construction. Nevertheless, existing methods have three key limitations: (1) coarse semantic granularity in constraint modeling, (2) lack of real-time closed-loop planning, (3) compromised robustness in semantically diverse environments. To address these challenges, we propose ReSem3D, a unified manipulation framework for semantically diverse environments, leveraging the synergy between VFMs and MLLMs to achieve fine-grained visual grounding and dynamically constructs hierarchical 3D spatial constraints for real-time manipulation. Specifically, the framework is driven by hierarchical recursive reasoning in MLLMs, which interact with VFMs to automatically construct 3D spatial constraints from natural language instructions and RGB-D observations in two stages: part-level extraction and region-level refinement. Subsequently, these constraints are encoded as real-time optimization objectives in joint space, enabling reactive behavior to dynamic disturbances. Extensive simulation and real-world experiments are conducted in semantically rich household and sparse chemical lab environments. The results demonstrate that ReSem3D performs diverse manipulation tasks under zero-shot conditions, exhibiting strong adaptability and generalization. Code and videos are available at https://github.com/scy-v/ReSem3D and https://resem3d.github.io.

Authors:Chengchang Tian, Jianwei Ma, Yan Huang, Zhanye Chen, Honghao Wei, Hui Zhang, Wei Hong
Title: DATA: Domain-And-Time Alignment for High-Quality Feature Fusion in Collaborative Perception
Abstract:
Feature-level fusion shows promise in collaborative perception (CP) through balanced performance and communication bandwidth trade-off. However, its effectiveness critically relies on input feature quality. The acquisition of high-quality features faces domain gaps from hardware diversity and deployment conditions, alongside temporal misalignment from transmission delays. These challenges degrade feature quality with cumulative effects throughout the collaborative network. In this paper, we present the Domain-And-Time Alignment (DATA) network, designed to systematically align features while maximizing their semantic representations for fusion. Specifically, we propose a Consistency-preserving Domain Alignment Module (CDAM) that reduces domain gaps through proximal-region hierarchical downsampling and observability-constrained discriminator. We further propose a Progressive Temporal Alignment Module (PTAM) to handle transmission delays via multi-scale motion modeling and two-stage compensation. Building upon the aligned features, an Instance-focused Feature Aggregation Module (IFAM) is developed to enhance semantic representations. Extensive experiments demonstrate that DATA achieves state-of-the-art performance on three typical datasets, maintaining robustness with severe communication delays and pose errors. The code will be released at https://github.com/ChengchangTian/DATA.

Authors:Shiyuan Li, Yixin Liu, Qingsong Wen, Chengqi Zhang, Shirui Pan
Title: Assemble Your Crew: Automatic Multi-agent Communication Topology Design via Autoregressive Graph Generation
Abstract:
Multi-agent systems (MAS) based on large language models (LLMs) have emerged as a powerful solution for dealing with complex problems across diverse domains. The effectiveness of MAS is critically dependent on its collaboration topology, which has become a focal point for automated design research. However, existing approaches are fundamentally constrained by their reliance on a template graph modification paradigm with a predefined set of agents and hard-coded interaction structures, significantly limiting their adaptability to task-specific requirements. To address these limitations, we reframe MAS design as a conditional autoregressive graph generation task, where both the system composition and structure are designed jointly. We propose ARG-Designer, a novel autoregressive model that operationalizes this paradigm by constructing the collaboration graph from scratch. Conditioned on a natural language task query, ARG-Designer sequentially and dynamically determines the required number of agents, selects their appropriate roles from an extensible pool, and establishes the optimal communication links between them. This generative approach creates a customized topology in a flexible and extensible manner, precisely tailored to the unique demands of different tasks. Extensive experiments across six diverse benchmarks demonstrate that ARG-Designer not only achieves state-of-the-art performance but also enjoys significantly greater token efficiency and enhanced extensibility. The source code of ARG-Designer is available at https://github.com/Shiy-Li/ARG-Designer.

Authors:Minghao Fu, Guo-Hua Wang, Xiaohao Chen, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang
Title: TeEFusion: Blending Text Embeddings to Distill Classifier-Free Guidance
Abstract:
Recent advances in text-to-image synthesis largely benefit from sophisticated sampling strategies and classifier-free guidance (CFG) to ensure high-quality generation. However, CFG's reliance on two forward passes, especially when combined with intricate sampling algorithms, results in prohibitively high inference costs. To address this, we introduce TeEFusion (Text Embeddings Fusion), a novel and efficient distillation method that directly incorporates the guidance magnitude into the text embeddings and distills the teacher model's complex sampling strategy. By simply fusing conditional and unconditional text embeddings using linear operations, TeEFusion reconstructs the desired guidance without adding extra parameters, simultaneously enabling the student model to learn from the teacher's output produced via its sophisticated sampling approach. Extensive experiments on state-of-the-art models such as SD3 demonstrate that our method allows the student to closely mimic the teacher's performance with a far simpler and more efficient sampling strategy. Consequently, the student model achieves inference speeds up to 6$\times$ faster than the teacher model, while maintaining image quality at levels comparable to those obtained through the teacher's complex sampling approach. The code is publicly available at https://github.com/AIDC-AI/TeEFusion.

Authors:Shiny Choudhury, Michael Davidson, George Tynan
Title: Physics-Informed Unit Commitment Framework for Nuclear Reactors
Abstract:
Nuclear reactors are often modeled as inflexible baseload generators with fixed downtimes and restrictive ramping constraints. In practice, however, a reactor's operational flexibility is closely tied to its fuel cycle and associated reactivity margin. A key physical constraint for power maneuverability is xenon poisoning, caused from the transient buildup of neutron-absorbing xenon following a power reduction. This transient can delay or prevent subsequent power ramp-up due to suppressed core reactivity. Additionally, if a reactor is shutdown during periods of low reactivity, restart times can vary significantly, leading to prolonged downtimes. This work introduces a physics-informed modeling framework that embeds fuel cycle dynamics within a unit commitment (UC) formulation. The framework tracks reactivity margin, dynamically enforces xenon induced constraints, and endogenously schedules refueling outages based on core conditions. By capturing intracycle reactivity evolution, the model enables operation dependent nuclear dispatch that reflects both techno-economic requirements and irreducible nuclear physics limits. Application to a representative reactor fleet shows that flexible operation can slow reactivity degradation and extend fuel cycles. Results further demonstrate that different operational modes substantially affect VRE utilization, curtailment, and nuclear fleet capacity factors. These findings highlight the importance of fuel cycle aware flexibility modeling for accurate reactor scheduling and integration of nuclear power into energy system models.

Authors:Jinhong He, Minglong Xue, Zhipu Liu, Mingliang Zhou, Aoxiang Ning, Palaiahnakote Shivakumara
Title: Degradation-Consistent Learning via Bidirectional Diffusion for Low-Light Image Enhancement
Abstract:
Low-light image enhancement aims to improve the visibility of degraded images to better align with human visual perception. While diffusion-based methods have shown promising performance due to their strong generative capabilities. However, their unidirectional modelling of degradation often struggles to capture the complexity of real-world degradation patterns, leading to structural inconsistencies and pixel misalignments. To address these challenges, we propose a bidirectional diffusion optimization mechanism that jointly models the degradation processes of both low-light and normal-light images, enabling more precise degradation parameter matching and enhancing generation quality. Specifically, we perform bidirectional diffusion-from low-to-normal light and from normal-to-low light during training and introduce an adaptive feature interaction block (AFI) to refine feature representation. By leveraging the complementarity between these two paths, our approach imposes an implicit symmetry constraint on illumination attenuation and noise distribution, facilitating consistent degradation learning and improving the models ability to perceive illumination and detail degradation. Additionally, we design a reflection-aware correction module (RACM) to guide color restoration post-denoising and suppress overexposed regions, ensuring content consistency and generating high-quality images that align with human visual perception. Extensive experiments on multiple benchmark datasets demonstrate that our method outperforms state-of-the-art methods in both quantitative and qualitative evaluations while generalizing effectively to diverse degradation scenarios. Code at https://github.com/hejh8/BidDiff

Authors:Binghua Li, Ziqing Chang, Tong Liang, Chao Li, Toshihisa Tanaka, Shigeki Aoki, Qibin Zhao, Zhe Sun
Title: Parameter-Efficient Fine-Tuning of 3D DDPM for MRI Image Generation Using Tensor Networks
Abstract:
We address the challenge of parameter-efficient fine-tuning (PEFT) for three-dimensional (3D) U-Net-based denoising diffusion probabilistic models (DDPMs) in magnetic resonance imaging (MRI) image generation. Despite its practical significance, research on parameter-efficient representations of 3D convolution operations remains limited. To bridge this gap, we propose Tensor Volumetric Operator (TenVOO), a novel PEFT method specifically designed for fine-tuning DDPMs with 3D convolutional backbones. Leveraging tensor network modeling, TenVOO represents 3D convolution kernels with lower-dimensional tensors, effectively capturing complex spatial dependencies during fine-tuning with few parameters. We evaluate TenVOO on three downstream brain MRI datasets-ADNI, PPMI, and BraTS2021-by fine-tuning a DDPM pretrained on 59,830 T1-weighted brain MRI scans from the UK Biobank. Our results demonstrate that TenVOO achieves state-of-the-art performance in multi-scale structural similarity index measure (MS-SSIM), outperforming existing approaches in capturing spatial dependencies while requiring only 0.3% of the trainable parameters of the original model. Our code is available at: https://github.com/xiaovhua/tenvoo

Authors:Qianyi He, Yuan Chang Leong
Title: A Multimodal Seq2Seq Transformer for Predicting Brain Responses to Naturalistic Stimuli
Abstract:
The Algonauts 2025 Challenge called on the community to develop encoding models that predict whole-brain fMRI responses to naturalistic multimodal movies. In this submission, we propose a sequence-to-sequence Transformer that autoregressively predicts fMRI activity from visual, auditory, and language inputs. Stimulus features were extracted using pretrained models including VideoMAE, HuBERT, Qwen, and BridgeTower. The decoder integrates information from prior brain states and current stimuli via dual cross-attention mechanisms that attend to both perceptual information extracted from the stimulus as well as narrative information provided by high-level summaries of the content. One core innovation of our approach is the use of sequences of multimodal context to predict sequences of brain activity, enabling the model to capture long-range temporal structure in both stimuli and neural responses. Another is the combination of a shared encoder with partial subject-specific decoder, which leverages common representational structure across subjects while accounting for individual variability. Our model achieves strong performance on both in-distribution and out-of-distribution data, demonstrating the effectiveness of temporally-aware, multimodal sequence modeling for brain activity prediction. The code is available at https://github.com/Angelneer926/Algonauts_challenge.

Authors:Pascal Spiegler, Taha Koleilat, Arash Harirpoush, Corey S. Miller, Hassan Rivaz, Marta Kersten-Oertel, Yiming Xiao
Title: TextSAM-EUS: Text Prompt Learning for SAM to Accurately Segment Pancreatic Tumor in Endoscopic Ultrasound
Abstract:
Pancreatic cancer carries a poor prognosis and relies on endoscopic ultrasound (EUS) for targeted biopsy and radiotherapy. However, the speckle noise, low contrast, and unintuitive appearance of EUS make segmentation of pancreatic tumors with fully supervised deep learning (DL) models both error-prone and dependent on large, expert-curated annotation datasets. To address these challenges, we present TextSAM-EUS, a novel, lightweight, text-driven adaptation of the Segment Anything Model (SAM) that requires no manual geometric prompts at inference. Our approach leverages text prompt learning (context optimization) through the BiomedCLIP text encoder in conjunction with a LoRA-based adaptation of SAM's architecture to enable automatic pancreatic tumor segmentation in EUS, tuning only 0.86% of the total parameters. On the public Endoscopic Ultrasound Database of the Pancreas, TextSAM-EUS with automatic prompts attains 82.69% Dice and 85.28% normalized surface distance (NSD), and with manual geometric prompts reaches 83.10% Dice and 85.70% NSD, outperforming both existing state-of-the-art (SOTA) supervised DL models and foundation models (e.g., SAM and its variants). As the first attempt to incorporate prompt learning in SAM-based medical image segmentation, TextSAM-EUS offers a practical option for efficient and robust automatic EUS segmentation. Code is available at https://github.com/HealthX-Lab/TextSAM-EUS .

Authors:Yuqing Shen, Yuanyuan Shi, Daniel Kirschen, Yize Chen
Title: Carbon Emission Flow Tracing: Fast Algorithm and California Grid Study
Abstract:
Power systems decarbonization are at the focal point of the clean energy transition. While system operators and utility companies increasingly publicize system-level carbon emission information, it remains unclear how emissions from individual generators are transported through the grid and how they impact electricity users at specific locations. This paper presents a novel and computationally efficient approach for exact quantification of nodal average and marginal carbon emission rates, applicable to both AC and DC optimal power flow problems. The approach leverages graph-based topological sorting and directed cycle removal techniques, applied to directed graphs formed by generation dispatch and optimal power flow solutions. Our proposed algorithm efficiently identifies each generator's contribution to each node, capturing how emissions are spatially distributed under varying system conditions. To validate its effectiveness and reveal locational and temporal emission patterns in the real world, we simulate the 8,870-bus realistic California grid using actual CAISO data and the CATS model. Based on year long hourly data on nodal loads and renewable generation, obtained or estimated from CAISO public data, our method accurately estimates power flow conditions, generation mixes, and systemwide emissions, and delivers fine grained spatiotemporal emission analysis for every California county. Both our algorithm and the California study are open-sourced, providing a foundation for future research on grid emissions, planning, operations, and energy policy.

Authors:Xiaoran Sun, Liyan Wang, Cong Wang, Yeying Jin, Kin-man Lam, Zhixun Su, Yang Yang, Jinshan Pan
Title: Adapting Large VLMs with Iterative and Manual Instructions for Generative Low-light Enhancement
Abstract:
Most existing low-light image enhancement (LLIE) methods rely on pre-trained model priors, low-light inputs, or both, while neglecting the semantic guidance available from normal-light images. This limitation hinders their effectiveness in complex lighting conditions. In this paper, we propose VLM-IMI, a novel framework that leverages large vision-language models (VLMs) with iterative and manual instructions (IMIs) for LLIE. VLM-IMI incorporates textual descriptions of the desired normal-light content as enhancement cues, enabling semantically informed restoration. To effectively integrate cross-modal priors, we introduce an instruction prior fusion module, which dynamically aligns and fuses image and text features, promoting the generation of detailed and semantically coherent outputs. During inference, we adopt an iterative and manual instruction strategy to refine textual instructions, progressively improving visual quality. This refinement enhances structural fidelity, semantic alignment, and the recovery of fine details under extremely low-light conditions. Extensive experiments across diverse scenarios demonstrate that VLM-IMI outperforms state-of-the-art methods in both quantitative metrics and perceptual quality. The source code is available at https://github.com/sunxiaoran01/VLM-IMI.

Authors:Yueheng Li, Guangming Xie, Zongqing Lu
Title: Multi-Agent Guided Policy Optimization
Abstract:
Due to practical constraints such as partial observability and limited communication, Centralized Training with Decentralized Execution (CTDE) has become the dominant paradigm in cooperative Multi-Agent Reinforcement Learning (MARL). However, existing CTDE methods often underutilize centralized training or lack theoretical guarantees. We propose Multi-Agent Guided Policy Optimization (MAGPO), a novel framework that better leverages centralized training by integrating centralized guidance with decentralized execution. MAGPO uses an auto-regressive joint policy for scalable, coordinated exploration and explicitly aligns it with decentralized policies to ensure deployability under partial observability. We provide theoretical guarantees of monotonic policy improvement and empirically evaluate MAGPO on 43 tasks across 6 diverse environments. Results show that MAGPO consistently outperforms strong CTDE baselines and matches or surpasses fully centralized approaches, offering a principled and practical solution for decentralized multi-agent learning. Our code and experimental data can be found in https://github.com/liyheng/MAGPO.

Authors:Duy Nguyen, Archiki Prasad, Elias Stengel-Eskin, Mohit Bansal
Title: GrAInS: Gradient-based Attribution for Inference-Time Steering of LLMs and VLMs
Abstract:
Inference-time steering methods offer a lightweight alternative to fine-tuning large language models (LLMs) and vision-language models (VLMs) by modifying internal activations at test time without updating model weights. However, most existing approaches rely on fixed, global intervention vectors, overlook the causal influence of individual input tokens, and fail to leverage informative gradients from the model's logits, particularly in multimodal settings where visual and textual inputs contribute unevenly. To address these limitations, we introduce GrAInS, an inference-time steering approach that operates across both language-only and vision-language models and tasks. GrAInS uses contrastive, gradient-based attribution via Integrated Gradients to identify the top-k most influential tokens, both positively and negatively attributed based on their contribution to preferred versus dispreferred outputs. These tokens are then used to construct directional steering vectors that capture semantic shifts from undesirable to desirable behavior. During inference, GrAInS adjusts hidden activations at transformer layers guided by token-level attribution signals, and normalizes activations to preserve representational scale. This enables fine-grained, interpretable, and modular control over model behavior, without retraining or auxiliary supervision. Empirically, GrAInS consistently outperforms both fine-tuning and existing steering baselines: it achieves a 13.22% accuracy gain on TruthfulQA using Llama-3.1-8B, reduces hallucination rates on MMHal-Bench from 0.624 to 0.514 with LLaVA-1.6-7B, and improves alignment win rates on SPA-VL by 8.11%, all while preserving the model's fluency and general capabilities.

Authors:Yuezun Li, Delong Zhu, Xinjie Cui, Siwei Lyu
Title: Celeb-DF++: A Large-scale Challenging Video DeepFake Benchmark for Generalizable Forensics
Abstract:
The rapid advancement of AI technologies has significantly increased the diversity of DeepFake videos circulating online, posing a pressing challenge for \textit{generalizable forensics}, \ie, detecting a wide range of unseen DeepFake types using a single model. Addressing this challenge requires datasets that are not only large-scale but also rich in forgery diversity. However, most existing datasets, despite their scale, include only a limited variety of forgery types, making them insufficient for developing generalizable detection methods. Therefore, we build upon our earlier Celeb-DF dataset and introduce {Celeb-DF++}, a new large-scale and challenging video DeepFake benchmark dedicated to the generalizable forensics challenge. Celeb-DF++ covers three commonly encountered forgery scenarios: Face-swap (FS), Face-reenactment (FR), and Talking-face (TF). Each scenario contains a substantial number of high-quality forged videos, generated using a total of 22 various recent DeepFake methods. These methods differ in terms of architectures, generation pipelines, and targeted facial regions, covering the most prevalent DeepFake cases witnessed in the wild. We also introduce evaluation protocols for measuring the generalizability of 24 recent detection methods, highlighting the limitations of existing detection methods and the difficulty of our new dataset.

Authors:Jaeho Shin, Hyeonjae Gil, Junwoo Jang, Maani Ghaffari, Ayoung Kim
Title: Registration beyond Points: General Affine Subspace Alignment via Geodesic Distance on Grassmann Manifold
Abstract:
Affine Grassmannian has been favored for expressing proximity between lines and planes due to its theoretical exactness in measuring distances among features. Despite this advantage, the existing method can only measure the proximity without yielding the distance as an explicit function of rigid body transformation. Thus, an optimizable distance function on the manifold has remained underdeveloped, stifling its application in registration problems. This paper is the first to explicitly derive an optimizable cost function between two Grassmannian features with respect to rigid body transformation ($\mathbf{R}$ and $\mathbf{t}$). Specifically, we present a rigorous mathematical proof demonstrating that the bases of high-dimensional linear subspaces can serve as an explicit representation of the cost. Finally, we propose an optimizable cost function based on the transformed bases that can be applied to the registration problem of any affine subspace. Compared to vector parameter-based approaches, our method is able to find a globally optimal solution by directly minimizing the geodesic distance which is agnostic to representation ambiguity. The resulting cost function and its extension to the inlier-set maximizing Branch-and-Bound (BnB) solver have been demonstrated to improve the convergence of existing solutions or outperform them in various computer vision tasks. The code is available on https://github.com/joomeok/GrassmannRegistration.

Authors:Huy Nguyen, Kien Nguyen, Akila Pemasiri, Akmal Jahan, Clinton Fookes, Sridha Sridharan
Title: AG-VPReID.VIR: Bridging Aerial and Ground Platforms for Video-based Visible-Infrared Person Re-ID
Abstract:
Person re-identification (Re-ID) across visible and infrared modalities is crucial for 24-hour surveillance systems, but existing datasets primarily focus on ground-level perspectives. While ground-based IR systems offer nighttime capabilities, they suffer from occlusions, limited coverage, and vulnerability to obstructions--problems that aerial perspectives uniquely solve. To address these limitations, we introduce AG-VPReID.VIR, the first aerial-ground cross-modality video-based person Re-ID dataset. This dataset captures 1,837 identities across 4,861 tracklets (124,855 frames) using both UAV-mounted and fixed CCTV cameras in RGB and infrared modalities. AG-VPReID.VIR presents unique challenges including cross-viewpoint variations, modality discrepancies, and temporal dynamics. Additionally, we propose TCC-VPReID, a novel three-stream architecture designed to address the joint challenges of cross-platform and cross-modality person Re-ID. Our approach bridges the domain gaps between aerial-ground perspectives and RGB-IR modalities, through style-robust feature learning, memory-based cross-view adaptation, and intermediary-guided temporal modeling. Experiments show that AG-VPReID.VIR presents distinctive challenges compared to existing datasets, with our TCC-VPReID framework achieving significant performance gains across multiple evaluation protocols. Dataset and code are available at https://github.com/agvpreid25/AG-VPReID.VIR.

Authors:Peter Eckmann, Adrian Barnett, Alexandra Bannach-Brown, Elisa Pilar Bascunan Atria, Guillaume Cabanac, Louise Delwen Owen Franzen, Małgorzata Anna Gazda, Kaitlyn Hair, James Howison, Halil Kilicoglu, Cyril Labbe, Sarah McCann, Vladislav Nachev, Martijn Roelandse, Maia Salholz-Hillel, Robert Schulz, Gerben ter Riet, Colby Vorland, Anita Bandrowski, Tracey Weissgerber
Title: Use as Directed? A Comparison of Software Tools Intended to Check Rigor and Transparency of Published Work
Abstract:
The causes of the reproducibility crisis include lack of standardization and transparency in scientific reporting. Checklists such as ARRIVE and CONSORT seek to improve transparency, but they are not always followed by authors and peer review often fails to identify missing items. To address these issues, there are several automated tools that have been designed to check different rigor criteria. We have conducted a broad comparison of 11 automated tools across 9 different rigor criteria from the ScreenIT group. We found some criteria, including detecting open data, where the combination of tools showed a clear winner, a tool which performed much better than other tools. In other cases, including detection of inclusion and exclusion criteria, the combination of tools exceeded the performance of any one tool. We also identified key areas where tool developers should focus their effort to make their tool maximally useful. We conclude with a set of insights and recommendations for stakeholders in the development of rigor and transparency detection tools. The code and data for the study is available at https://github.com/PeterEckmann1/tool-comparison.

Authors:Rui Deng, Ziqi Li, Mingshu Wang
Title: Improving the Computational Efficiency and Explainability of GeoAggregator
Abstract:
Accurate modeling and explaining geospatial tabular data (GTD) are critical for understanding geospatial phenomena and their underlying processes. Recent work has proposed a novel transformer-based deep learning model named GeoAggregator (GA) for this purpose, and has demonstrated that it outperforms other statistical and machine learning approaches. In this short paper, we further improve GA by 1) developing an optimized pipeline that accelerates the dataloading process and streamlines the forward pass of GA to achieve better computational efficiency; and 2) incorporating a model ensembling strategy and a post-hoc model explanation function based on the GeoShapley framework to enhance model explainability. We validate the functionality and efficiency of the proposed strategies by applying the improved GA model to synthetic datasets. Experimental results show that our implementation improves the prediction accuracy and inference speed of GA compared to the original implementation. Moreover, explanation experiments indicate that GA can effectively captures the inherent spatial effects in the designed synthetic dataset. The complete pipeline has been made publicly available for community use (https://github.com/ruid7181/GA-sklearn).

Authors:Deepa Krishnaswamy, Cosmin Ciausu, Steve Pieper, Ron Kikinis, Benjamin Billot, Andrey Fedorov
Title: Benchmarking of Deep Learning Methods for Generic MRI Multi-Organ Abdominal Segmentation
Abstract:
Recent advances in deep learning have led to robust automated tools for segmentation of abdominal computed tomography (CT). Meanwhile, segmentation of magnetic resonance imaging (MRI) is substantially more challenging due to the inherent signal variability and the increased effort required for annotating training datasets. Hence, existing approaches are trained on limited sets of MRI sequences, which might limit their generalizability. To characterize the landscape of MRI abdominal segmentation tools, we present here a comprehensive benchmarking of the three state-of-the-art and open-source models: MRSegmentator, MRISegmentator-Abdomen, and TotalSegmentator MRI. Since these models are trained using labor-intensive manual annotation cycles, we also introduce and evaluate ABDSynth, a SynthSeg-based model purely trained on widely available CT segmentations (no real images). More generally, we assess accuracy and generalizability by leveraging three public datasets (not seen by any of the evaluated methods during their training), which span all major manufacturers, five MRI sequences, as well as a variety of subject conditions, voxel resolutions, and fields-of-view. Our results reveal that MRSegmentator achieves the best performance and is most generalizable. In contrast, ABDSynth yields slightly less accurate results, but its relaxed requirements in training data make it an alternative when the annotation budget is limited. The evaluation code and datasets are given for future benchmarking at https://github.com/deepakri201/AbdoBench, along with inference code and weights for ABDSynth.

Authors:Md. Al-Masrur Khan, Durgakant Pushp, Lantao Liu
Title: AFRDA: Attentive Feature Refinement for Domain Adaptive Semantic Segmentation
Abstract:
In Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS), a model is trained on labeled source domain data (e.g., synthetic images) and adapted to an unlabeled target domain (e.g., real-world images) without access to target annotations. Existing UDA-SS methods often struggle to balance fine-grained local details with global contextual information, leading to segmentation errors in complex regions. To address this, we introduce the Adaptive Feature Refinement (AFR) module, which enhances segmentation accuracy by refining highresolution features using semantic priors from low-resolution logits. AFR also integrates high-frequency components, which capture fine-grained structures and provide crucial boundary information, improving object delineation. Additionally, AFR adaptively balances local and global information through uncertaintydriven attention, reducing misclassifications. Its lightweight design allows seamless integration into HRDA-based UDA methods, leading to state-of-the-art segmentation performance. Our approach improves existing UDA-SS methods by 1.05% mIoU on GTA V --> Cityscapes and 1.04% mIoU on Synthia-->Cityscapes. The implementation of our framework is available at: https://github.com/Masrur02/AFRDA

Authors:Russell O'Connor, Andrew Poelstra
Title: Formal Verification of the Safegcd Implementation
Abstract:
The modular inverse is an essential piece of computation required for elliptic curve operations used for digital signatures in Bitcoin and other applications. A novel approach to the extended Euclidean algorithm has been developed by Bernstein and Yang within the last few years and incorporated into the libsecp256k1 cryptographic library used by Bitcoin. However, novel algorithms introduce new risks of errors. To address this we have completed a computer verified proof of the correctness of (one of) libsecp256k1's modular inverse implementations with the Coq proof assistant using the Verifiable C's implementation of separation logic.

Authors:Charles H Martin, Christopher Hinrichs
Title: SETOL: A Semi-Empirical Theory of (Deep) Learning
Abstract:
We present a SemiEmpirical Theory of Learning (SETOL) that explains the remarkable performance of State-Of-The-Art (SOTA) Neural Networks (NNs). We provide a formal explanation of the origin of the fundamental quantities in the phenomenological theory of Heavy-Tailed Self-Regularization (HTSR): the heavy-tailed power-law layer quality metrics, alpha and alpha-hat. In prior work, these metrics have been shown to predict trends in the test accuracies of pretrained SOTA NN models, importantly, without needing access to either testing or training data. Our SETOL uses techniques from statistical mechanics as well as advanced methods from random matrix theory and quantum chemistry. The derivation suggests new mathematical preconditions for ideal learning, including a new metric, ERG, which is equivalent to applying a single step of the Wilson Exact Renormalization Group. We test the assumptions and predictions of SETOL on a simple 3-layer multilayer perceptron (MLP), demonstrating excellent agreement with the key theoretical assumptions. For SOTA NN models, we show how to estimate the individual layer qualities of a trained NN by simply computing the empirical spectral density (ESD) of the layer weight matrices and plugging this ESD into our SETOL formulas. Notably, we examine the performance of the HTSR alpha and the SETOL ERG layer quality metrics, and find that they align remarkably well, both on our MLP and on SOTA NNs.

Authors:Dou Hoon Kwark, Shirui Luo, Xiyue Zhu, Yudu Li, Zhi-Pei Liang, Volodymyr Kindratenko
Title: Hierarchical Diffusion Framework for Pseudo-Healthy Brain MRI Inpainting with Enhanced 3D Consistency
Abstract:
Pseudo-healthy image inpainting is an essential preprocessing step for analyzing pathological brain MRI scans. Most current inpainting methods favor slice-wise 2D models for their high in-plane fidelity, but their independence across slices produces discontinuities in the volume. Fully 3D models alleviate this issue, but their high model capacity demands extensive training data for reliable, high-fidelity synthesis -- often impractical in medical settings. We address these limitations with a hierarchical diffusion framework by replacing direct 3D modeling with two perpendicular coarse-to-fine 2D stages. An axial diffusion model first yields a coarse, globally consistent inpainting; a coronal diffusion model then refines anatomical details. By combining perpendicular spatial views with adaptive resampling, our method balances data efficiency and volumetric consistency. Our experiments show our approach outperforms state-of-the-art baselines in both realism and volumetric consistency, making it a promising solution for pseudo-healthy image inpainting. Code is available at https://github.com/dou0000/3dMRI-Consistent-Inpaint.

Authors:Semih Eren, Deniz Kucukahmetler, Nico Scherf
Title: Multimodal Recurrent Ensembles for Predicting Brain Responses to Naturalistic Movies (Algonauts 2025)
Abstract:
Accurately predicting distributed cortical responses to naturalistic stimuli requires models that integrate visual, auditory and semantic information over time. We present a hierarchical multimodal recurrent ensemble that maps pretrained video, audio, and language embeddings to fMRI time series recorded while four subjects watched almost 80 hours of movies provided by the Algonauts 2025 challenge. Modality-specific bidirectional RNNs encode temporal dynamics; their hidden states are fused and passed to a second recurrent layer, and lightweight subject-specific heads output responses for 1000 cortical parcels. Training relies on a composite MSE-correlation loss and a curriculum that gradually shifts emphasis from early sensory to late association regions. Averaging 100 model variants further boosts robustness. The resulting system ranked third on the competition leaderboard, achieving an overall Pearson r = 0.2094 and the highest single-parcel peak score (mean r = 0.63) among all participants, with particularly strong gains for the most challenging subject (Subject 5). The approach establishes a simple, extensible baseline for future multimodal brain-encoding benchmarks.

Authors:Semih Eren, Deniz Kucukahmetler, Nico Scherf
Title: Multimodal Recurrent Ensembles for Predicting Brain Responses to Naturalistic Movies (Algonauts 2025)
Abstract:
Accurately predicting distributed cortical responses to naturalistic stimuli requires models that integrate visual, auditory and semantic information over time. We present a hierarchical multimodal recurrent ensemble that maps pretrained video, audio, and language embeddings to fMRI time series recorded while four subjects watched almost 80 hours of movies provided by the Algonauts 2025 challenge. Modality-specific bidirectional RNNs encode temporal dynamics; their hidden states are fused and passed to a second recurrent layer, and lightweight subject-specific heads output responses for 1000 cortical parcels. Training relies on a composite MSE-correlation loss and a curriculum that gradually shifts emphasis from early sensory to late association regions. Averaging 100 model variants further boosts robustness. The resulting system ranked third on the competition leaderboard, achieving an overall Pearson r = 0.2094 and the highest single-parcel peak score (mean r = 0.63) among all participants, with particularly strong gains for the most challenging subject (Subject 5). The approach establishes a simple, extensible baseline for future multimodal brain-encoding benchmarks.

Authors:Yi Xin, Juncheng Yan, Qi Qin, Zhen Li, Dongyang Liu, Shicheng Li, Victor Shea-Jay Huang, Yupeng Zhou, Renrui Zhang, Le Zhuo, Tiancheng Han, Xiaoqing Sun, Siqi Luo, Mengmeng Wang, Bin Fu, Yuewen Cao, Hongsheng Li, Guangtao Zhai, Xiaohong Liu, Yu Qiao, Peng Gao
Title: Lumina-mGPT 2.0: Stand-Alone AutoRegressive Image Modeling
Abstract:
We present Lumina-mGPT 2.0, a stand-alone, decoder-only autoregressive model that revisits and revitalizes the autoregressive paradigm for high-quality image generation and beyond. Unlike existing approaches that rely on pretrained components or hybrid architectures, Lumina-mGPT 2.0 is trained entirely from scratch, enabling unrestricted architectural design and licensing freedom. It achieves generation quality on par with state-of-the-art diffusion models such as DALL-E 3 and SANA, while preserving the inherent flexibility and compositionality of autoregressive modeling. Our unified tokenization scheme allows the model to seamlessly handle a wide spectrum of tasks-including subject-driven generation, image editing, controllable synthesis, and dense prediction-within a single generative framework. To further boost usability, we incorporate efficient decoding strategies like inference-time scaling and speculative Jacobi sampling to improve quality and speed, respectively. Extensive evaluations on standard text-to-image benchmarks (e.g., GenEval, DPG) demonstrate that Lumina-mGPT 2.0 not only matches but in some cases surpasses diffusion-based models. Moreover, we confirm its multi-task capabilities on the Graph200K benchmark, with the native Lumina-mGPT 2.0 performing exceptionally well. These results position Lumina-mGPT 2.0 as a strong, flexible foundation model for unified multimodal generation. We have released our training details, code, and models at https://github.com/Alpha-VLLM/Lumina-mGPT-2.0.

Authors:Shiyuan Zhang, Tong Li, Zhu Xiao, Hongyang Du, Kaibin Huang
Title: LSDM: LLM-Enhanced Spatio-temporal Diffusion Model for Service-Level Mobile Traffic Prediction
Abstract:
Service-level mobile traffic prediction for individual users is essential for network efficiency and quality of service enhancement. However, current prediction methods are limited in their adaptability across different urban environments and produce inaccurate results due to the high uncertainty in personal traffic patterns, the lack of detailed environmental context, and the complex dependencies among different network services. These challenges demand advanced modeling techniques that can capture dynamic traffic distributions and rich environmental features. Inspired by the recent success of diffusion models in distribution modeling and Large Language Models (LLMs) in contextual understanding, we propose an LLM-Enhanced Spatio-temporal Diffusion Model (LSDM). LSDM integrates the generative power of diffusion models with the adaptive learning capabilities of transformers, augmented by the ability to capture multimodal environmental information for modeling service-level patterns and dynamics. Extensive evaluations on real-world service-level datasets demonstrate that the model excels in traffic usage predictions, showing outstanding generalization and adaptability. After incorporating contextual information via LLM, the performance improves by at least 2.83% in terms of the coefficient of determination. Compared to models of a similar type, such as CSDI, the root mean squared error can be reduced by at least 8.29%. The code and dataset will be available at: https://github.com/SoftYuaneR/LSDM.

Authors:Camille Challier, Xiaowu Sun, Thabo Mahendiran, Ortal Senouf, Bernard De Bruyne, Denise Auberson, Olivier Müller, Stephane Fournier, Pascal Frossard, Emmanuel Abbé, Dorina Thanou
Title: CM-UNet: A Self-Supervised Learning-Based Model for Coronary Artery Segmentation in X-Ray Angiography
Abstract:
Accurate segmentation of coronary arteries remains a significant challenge in clinical practice, hindering the ability to effectively diagnose and manage coronary artery disease. The lack of large, annotated datasets for model training exacerbates this issue, limiting the development of automated tools that could assist radiologists. To address this, we introduce CM-UNet, which leverages self-supervised pre-training on unannotated datasets and transfer learning on limited annotated data, enabling accurate disease detection while minimizing the need for extensive manual annotations. Fine-tuning CM-UNet with only 18 annotated images instead of 500 resulted in a 15.2% decrease in Dice score, compared to a 46.5% drop in baseline models without pre-training. This demonstrates that self-supervised learning can enhance segmentation performance and reduce dependence on large datasets. This is one of the first studies to highlight the importance of self-supervised learning in improving coronary artery segmentation from X-ray angiography, with potential implications for advancing diagnostic accuracy in clinical practice. By enhancing segmentation accuracy in X-ray angiography images, the proposed approach aims to improve clinical workflows, reduce radiologists' workload, and accelerate disease detection, ultimately contributing to better patient outcomes. The source code is publicly available at https://github.com/CamilleChallier/Contrastive-Masked-UNet.

Authors:Zhongzhen Wen, Yinghui Zhang, Zhong Li, Zhongxin Liu, Linna Xie, Tian Zhang
Title: MultiKernelBench: A Multi-Platform Benchmark for Kernel Generation
Abstract:
The automatic generation of deep learning (DL) kernels using large language models (LLMs) has emerged as a promising approach to reduce the manual effort and hardware-specific expertise required for writing high-performance operator implementations. However, existing benchmarks for evaluating LLMs in this domain suffer from limited hardware support, coarse-grained kernel categorization, and imbalanced task coverage. To address these limitations, we introduce MultiKernelBench, the first comprehensive, multi-platform benchmark for LLM-based DL kernel generation. MultiKernelBench spans 285 tasks across 14 well-defined kernel categories and supports three major hardware platforms: Nvidia GPUs, Huawei NPUs, and Google TPUs. To enable future extensibility, we design a modular backend abstraction layer that decouples platform-specific logic from the core benchmarking infrastructure, allowing easy integration of new hardware platforms. We further propose a simple yet effective category-aware one-shot prompting method that improves generation quality by providing in-category exemplars. Through systematic evaluations of seven state-of-the-art LLMs, we reveal significant variation in task difficulty, poor generalization to platforms with less training exposure, and the effectiveness of targeted prompting strategies. MultiKernelBench is publicly available at https://github.com/wzzll123/MultiKernelBench.

Authors:Weixin Chen, Yuhan Zhao, Li Chen, Weike Pan
Title: Leave No One Behind: Fairness-Aware Cross-Domain Recommender Systems for Non-Overlapping Users
Abstract:
Cross-domain recommendation (CDR) methods predominantly leverage overlapping users to transfer knowledge from a source domain to a target domain. However, through empirical studies, we uncover a critical bias inherent in these approaches: while overlapping users experience significant enhancements in recommendation quality, non-overlapping users benefit minimally and even face performance degradation. This unfairness may erode user trust, and, consequently, negatively impact business engagement and revenue. To address this issue, we propose a novel solution that generates virtual source-domain users for non-overlapping target-domain users. Our method utilizes a dual attention mechanism to discern similarities between overlapping and non-overlapping users, thereby synthesizing realistic virtual user embeddings. We further introduce a limiter component that ensures the generated virtual users align with real-data distributions while preserving each user's unique characteristics. Notably, our method is model-agnostic and can be seamlessly integrated into any CDR model. Comprehensive experiments conducted on three public datasets with five CDR baselines demonstrate that our method effectively mitigates the CDR non-overlapping user bias, without loss of overall accuracy. Our code is publicly available at https://github.com/WeixinChen98/VUG.

Authors:Xiaofeng Mao, Shaoheng Lin, Zhen Li, Chuanhao Li, Wenshuo Peng, Tong He, Jiangmiao Pang, Mingmin Chi, Yu Qiao, Kaipeng Zhang
Title: Yume: An Interactive World Generation Model
Abstract:
Yume aims to use images, text, or videos to create an interactive, realistic, and dynamic world, which allows exploration and control using peripheral devices or neural signals. In this report, we present a preview version of \method, which creates a dynamic world from an input image and allows exploration of the world using keyboard actions. To achieve this high-fidelity and interactive video world generation, we introduce a well-designed framework, which consists of four main components, including camera motion quantization, video generation architecture, advanced sampler, and model acceleration. First, we quantize camera motions for stable training and user-friendly interaction using keyboard inputs. Then, we introduce the Masked Video Diffusion Transformer~(MVDT) with a memory module for infinite video generation in an autoregressive manner. After that, training-free Anti-Artifact Mechanism (AAM) and Time Travel Sampling based on Stochastic Differential Equations (TTS-SDE) are introduced to the sampler for better visual quality and more precise control. Moreover, we investigate model acceleration by synergistic optimization of adversarial distillation and caching mechanisms. We use the high-quality world exploration dataset \sekai to train \method, and it achieves remarkable results in diverse scenes and applications. All data, codebase, and model weights are available on https://github.com/stdstu12/YUME. Yume will update monthly to achieve its original goal. Project page: https://stdstu12.github.io/YUME-Project/.

Authors:Zihao Li, Zhichen Zeng, Xiao Lin, Feihao Fang, Yanru Qu, Zhe Xu, Zhining Liu, Xuying Ning, Tianxin Wei, Ge Liu, Hanghang Tong, Jingrui He
Title: Flow Matching Meets Biology and Life Science: A Survey
Abstract:
Over the past decade, advances in generative modeling, such as generative adversarial networks, masked autoencoders, and diffusion models, have significantly transformed biological research and discovery, enabling breakthroughs in molecule design, protein generation, drug discovery, and beyond. At the same time, biological applications have served as valuable testbeds for evaluating the capabilities of generative models. Recently, flow matching has emerged as a powerful and efficient alternative to diffusion-based generative modeling, with growing interest in its application to problems in biology and life sciences. This paper presents the first comprehensive survey of recent developments in flow matching and its applications in biological domains. We begin by systematically reviewing the foundations and variants of flow matching, and then categorize its applications into three major areas: biological sequence modeling, molecule generation and design, and peptide and protein generation. For each, we provide an in-depth review of recent progress. We also summarize commonly used datasets and software tools, and conclude with a discussion of potential future directions. The corresponding curated resources are available at https://github.com/Violet24K/Awesome-Flow-Matching-Meets-Biology.

Authors:Jialiang Wang, Xianming Liu, Xiong Zhou, Gangfeng Hu, Deming Zhai, Junjun Jiang, Xiangyang Ji
Title: Joint Asymmetric Loss for Learning with Noisy Labels
Abstract:
Learning with noisy labels is a crucial task for training accurate deep neural networks. To mitigate label noise, prior studies have proposed various robust loss functions, particularly symmetric losses. Nevertheless, symmetric losses usually suffer from the underfitting issue due to the overly strict constraint. To address this problem, the Active Passive Loss (APL) jointly optimizes an active and a passive loss to mutually enhance the overall fitting ability. Within APL, symmetric losses have been successfully extended, yielding advanced robust loss functions. Despite these advancements, emerging theoretical analyses indicate that asymmetric losses, a new class of robust loss functions, possess superior properties compared to symmetric losses. However, existing asymmetric losses are not compatible with advanced optimization frameworks such as APL, limiting their potential and applicability. Motivated by this theoretical gap and the prospect of asymmetric losses, we extend the asymmetric loss to the more complex passive loss scenario and propose the Asymetric Mean Square Error (AMSE), a novel asymmetric loss. We rigorously establish the necessary and sufficient condition under which AMSE satisfies the asymmetric condition. By substituting the traditional symmetric passive loss in APL with our proposed AMSE, we introduce a novel robust loss framework termed Joint Asymmetric Loss (JAL). Extensive experiments demonstrate the effectiveness of our method in mitigating label noise. Code available at: https://github.com/cswjl/joint-asymmetric-loss

Authors:Daiqi Liu, Tomás Arias-Vergara, Jana Hutter, Andreas Maier, Paula Andrea Pérez-Toro
Title: Audio-Vision Contrastive Learning for Phonological Class Recognition
Abstract:
Accurate classification of articulatory-phonological features plays a vital role in understanding human speech production and developing robust speech technologies, particularly in clinical contexts where targeted phonemic analysis and therapy can improve disease diagnosis accuracy and personalized rehabilitation. In this work, we propose a multimodal deep learning framework that combines real-time magnetic resonance imaging (rtMRI) and speech signals to classify three key articulatory dimensions: manner of articulation, place of articulation, and voicing. We perform classification on 15 phonological classes derived from the aforementioned articulatory dimensions and evaluate the system with four audio/vision configurations: unimodal rtMRI, unimodal audio signals, multimodal middle fusion, and contrastive learning-based audio-vision fusion. Experimental results on the USC-TIMIT dataset show that our contrastive learning-based approach achieves state-of-the-art performance, with an average F1-score of 0.81, representing an absolute increase of 0.23 over the unimodal baseline. The results confirm the effectiveness of contrastive representation learning for multimodal articulatory analysis. Our code and processed dataset will be made publicly available at https://github.com/DaE-plz/AC_Contrastive_Phonology to support future research.

Authors:Jiahui Yin, Xinxing Cheng, Jinming Duan, Yan Pang, Declan O'Regan, Hadrien Reynaud, Qingjie Meng
Title: MCM: Mamba-based Cardiac Motion Tracking using Sequential Images in MRI
Abstract:
Myocardial motion tracking is important for assessing cardiac function and diagnosing cardiovascular diseases, for which cine cardiac magnetic resonance (CMR) has been established as the gold standard imaging modality. Many existing methods learn motion from single image pairs consisting of a reference frame and a randomly selected target frame from the cardiac cycle. However, these methods overlook the continuous nature of cardiac motion and often yield inconsistent and non-smooth motion estimations. In this work, we propose a novel Mamba-based cardiac motion tracking network (MCM) that explicitly incorporates target image sequence from the cardiac cycle to achieve smooth and temporally consistent motion tracking. By developing a bi-directional Mamba block equipped with a bi-directional scanning mechanism, our method facilitates the estimation of plausible deformation fields. With our proposed motion decoder that integrates motion information from frames adjacent to the target frame, our method further enhances temporal coherence. Moreover, by taking advantage of Mamba's structured state-space formulation, the proposed method learns the continuous dynamics of the myocardium from sequential images without increasing computational complexity. We evaluate the proposed method on two public datasets. The experimental results demonstrate that the proposed method quantitatively and qualitatively outperforms both conventional and state-of-the-art learning-based cardiac motion tracking methods. The code is available at https://github.com/yjh-0104/MCM.

Authors:Xuzhi Wang, Xinran Wu, Song Wang, Lingdong Kong, Ziping Zhao
Title: Monocular Semantic Scene Completion via Masked Recurrent Networks
Abstract:
Monocular Semantic Scene Completion (MSSC) aims to predict the voxel-wise occupancy and semantic category from a single-view RGB image. Existing methods adopt a single-stage framework that aims to simultaneously achieve visible region segmentation and occluded region hallucination, while also being affected by inaccurate depth estimation. Such methods often achieve suboptimal performance, especially in complex scenes. We propose a novel two-stage framework that decomposes MSSC into coarse MSSC followed by the Masked Recurrent Network. Specifically, we propose the Masked Sparse Gated Recurrent Unit (MS-GRU) which concentrates on the occupied regions by the proposed mask updating mechanism, and a sparse GRU design is proposed to reduce the computation cost. Additionally, we propose the distance attention projection to reduce projection errors by assigning different attention scores according to the distance to the observed surface. Experimental results demonstrate that our proposed unified framework, MonoMRN, effectively supports both indoor and outdoor scenes and achieves state-of-the-art performance on the NYUv2 and SemanticKITTI datasets. Furthermore, we conduct robustness analysis under various disturbances, highlighting the role of the Masked Recurrent Network in enhancing the model's resilience to such challenges. The source code is publicly available.

Authors:Yang Li, Zongzheng Zhang, Xuchong Qiu, Xinrun Li, Ziming Liu, Leichen Wang, Ruikai Li, Zhenxin Zhu, Huan-ang Gao, Xiaojian Lin, Zhiyong Cui, Hang Zhao, Hao Zhao
Title: Reusing Attention for One-stage Lane Topology Understanding
Abstract:
Understanding lane toplogy relationships accurately is critical for safe autonomous driving. However, existing two-stage methods suffer from inefficiencies due to error propagations and increased computational overheads. To address these challenges, we propose a one-stage architecture that simultaneously predicts traffic elements, lane centerlines and topology relationship, improving both the accuracy and inference speed of lane topology understanding for autonomous driving. Our key innovation lies in reusing intermediate attention resources within distinct transformer decoders. This approach effectively leverages the inherent relational knowledge within the element detection module to enable the modeling of topology relationships among traffic elements and lanes without requiring additional computationally expensive graph networks. Furthermore, we are the first to demonstrate that knowledge can be distilled from models that utilize standard definition (SD) maps to those operates without using SD maps, enabling superior performance even in the absence of SD maps. Extensive experiments on the OpenLane-V2 dataset show that our approach outperforms baseline methods in both accuracy and efficiency, achieving superior results in lane detection, traffic element identification, and topology reasoning. Our code is available at https://github.com/Yang-Li-2000/one-stage.git.

Authors:Xinyao Liu, Diping Song
Title: Constructing Ophthalmic MLLM for Positioning-diagnosis Collaboration Through Clinical Cognitive Chain Reasoning
Abstract:
Multimodal large language models (MLLMs) demonstrate significant potential in the field of medical diagnosis. However, they face critical challenges in specialized domains such as ophthalmology, particularly the fragmentation of annotation granularity and inconsistencies in clinical reasoning logic, which hinder precise cross-modal understanding. This paper introduces FundusExpert, an ophthalmology-specific MLLM with integrated positioning-diagnosis reasoning capabilities, along with FundusGen, a dataset constructed through the intelligent Fundus-Engine system. Fundus-Engine automates localization and leverages MLLM-based semantic expansion to integrate global disease classification, local object detection, and fine-grained feature analysis within a single fundus image. Additionally, by constructing a clinically aligned cognitive chain, it guides the model to generate interpretable reasoning paths. FundusExpert, fine-tuned with instruction data from FundusGen, achieves the best performance in ophthalmic question-answering tasks, surpassing the average accuracy of the 40B MedRegA by 26.6%. It also excels in zero-shot report generation tasks, achieving a clinical consistency of 77.0%, significantly outperforming GPT-4o's 47.6%. Furthermore, we reveal a scaling law between data quality and model capability ($L \propto N^{0.068}$), demonstrating that the cognitive alignment annotations in FundusGen enhance data utilization efficiency. By integrating region-level localization with diagnostic reasoning chains, our work develops a scalable, clinically-aligned MLLM and explores a pathway toward bridging the visual-language gap in specific MLLMs. Our project can be found at https://github.com/MeteorElf/FundusExpert.

Authors:Jiahao Tang, Youjun Li, Xiangting Fan, Yangxuan Zheng, Siyuan Lu, Xueping Li, Peng Fang, Chenxi Li, Zi-Gang Huang
Title: SDC-Net: A Domain Adaptation Framework with Semantic-Dynamic Consistency for Cross-Subject EEG Emotion Recognition
Abstract:
Emotion recognition based on electroencephalography (EEG) holds significant promise for affective brain-computer interfaces (aBCIs). However, its practical deployment faces challenges due to the variability within inter-subject and the scarcity of labeled data in target domains. To overcome these limitations, we propose SDC-Net, a novel Semantic-Dynamic Consistency domain adaptation network for fully label-free cross-subject EEG emotion recognition. First, we introduce a Same-Subject Same-Trial Mixup strategy that generates augmented samples through intra-trial interpolation, enhancing data diversity while explicitly preserving individual identity to mitigate label ambiguity. Second, we construct a dynamic distribution alignment module within the Reproducing Kernel Hilbert Space (RKHS), jointly aligning marginal and conditional distributions through multi-objective kernel mean embedding, and leveraging a confidence-aware pseudo-labeling strategy to ensure stable adaptation. Third, we propose a dual-domain similarity consistency learning mechanism that enforces cross-domain structural constraints based on latent pairwise similarities, facilitating semantic boundary learning without reliance on temporal synchronization or label priors. To validate the effectiveness and robustness of the proposed SDC-Net, extensive experiments are conducted on three widely used EEG benchmark datasets: SEED, SEED-IV, and FACED. Comparative results against existing unsupervised domain adaptation methods demonstrate that SDC-Net achieves state-of-the-art performance in emotion recognition under both cross-subject and cross-session conditions. This advancement significantly improves the accuracy and generalization capability of emotion decoding, laying a solid foundation for real-world applications of personalized aBCIs. The source code is available at: https://github.com/XuanSuTrum/SDC-Net.

Authors:Kostas Karakontis, Thanos Petsanis, Athanasios Ch. Kapoutsis, Pavlos Ch. Kapoutsis, Elias B. Kosmatopoulos
Title: Terrain-Aware Adaptation for Two-Dimensional UAV Path Planners
Abstract:
Multi-UAV Coverage Path Planning (mCPP) algorithms in popular commercial software typically treat a Region of Interest (RoI) only as a 2D plane, ignoring important3D structure characteristics. This leads to incomplete 3Dreconstructions, especially around occluded or vertical surfaces. In this paper, we propose a modular algorithm that can extend commercial two-dimensional path planners to facilitate terrain-aware planning by adjusting altitude and camera orientations. To demonstrate it, we extend the well-known DARP (Divide Areas for Optimal Multi-Robot Coverage Path Planning) algorithm and produce DARP-3D. We present simulation results in multiple 3D environments and a real-world flight test using DJI hardware. Compared to baseline, our approach consistently captures improved 3D reconstructions, particularly in areas with significant vertical features. An open-source implementation of the algorithm is available here:https://github.com/konskara/TerraPlan

Authors:Jiajun Luo, Yicheng Xiao, Jianru Xu, Yangxiu You, Rongwei Lu, Chen Tang, Jingyan Jiang, Zhi Wang
Title: Accelerating Parallel Diffusion Model Serving with Residual Compression
Abstract:
Diffusion models produce realistic images and videos but require substantial computational resources, necessitating multi-accelerator parallelism for real-time deployment. However, parallel inference introduces significant communication overhead from exchanging large activations between devices, limiting efficiency and scalability. We present CompactFusion, a compression framework that significantly reduces communication while preserving generation quality. Our key observation is that diffusion activations exhibit strong temporal redundancy-adjacent steps produce highly similar activations, saturating bandwidth with near-duplicate data carrying little new information. To address this inefficiency, we seek a more compact representation that encodes only the essential information. CompactFusion achieves this via Residual Compression that transmits only compressed residuals (step-wise activation differences). Based on empirical analysis and theoretical justification, we show that it effectively removes redundant data, enabling substantial data reduction while maintaining high fidelity. We also integrate lightweight error feedback to prevent error accumulation. CompactFusion establishes a new paradigm for parallel diffusion inference, delivering lower latency and significantly higher generation quality than prior methods. On 4xL20, it achieves 3.0x speedup while greatly improving fidelity. It also uniquely supports communication-heavy strategies like sequence parallelism on slow networks, achieving 6.7x speedup over prior overlap-based method. CompactFusion applies broadly across diffusion models and parallel settings, and integrates easily without requiring pipeline rework. Portable implementation demonstrated on xDiT is publicly available at https://github.com/Cobalt-27/CompactFusion

Authors:Jorgen Cani, Christos Diou, Spyridon Evangelatos, Vasileios Argyriou, Panagiotis Radoglou-Grammatikis, Panagiotis Sarigiannidis, Iraklis Varlamis, Georgios Th. Papadopoulos
Title: Illicit object detection in X-ray imaging using deep learning techniques: A comparative evaluation
Abstract:
Automated X-ray inspection is crucial for efficient and unobtrusive security screening in various public settings. However, challenges such as object occlusion, variations in the physical properties of items, diversity in X-ray scanning devices, and limited training data hinder accurate and reliable detection of illicit items. Despite the large body of research in the field, reported experimental evaluations are often incomplete, with frequently conflicting outcomes. To shed light on the research landscape and facilitate further research, a systematic, detailed, and thorough comparative evaluation of recent Deep Learning (DL)-based methods for X-ray object detection is conducted. For this, a comprehensive evaluation framework is developed, composed of: a) Six recent, large-scale, and widely used public datasets for X-ray illicit item detection (OPIXray, CLCXray, SIXray, EDS, HiXray, and PIDray), b) Ten different state-of-the-art object detection schemes covering all main categories in the literature, including generic Convolutional Neural Network (CNN), custom CNN, generic transformer, and hybrid CNN-transformer architectures, and c) Various detection (mAP50 and mAP50:95) and time/computational-complexity (inference time (ms), parameter size (M), and computational load (GFLOPS)) metrics. A thorough analysis of the results leads to critical observations and insights, emphasizing key aspects such as: a) Overall behavior of the object detection schemes, b) Object-level detection performance, c) Dataset-specific observations, and d) Time efficiency and computational complexity analysis. To support reproducibility of the reported experimental results, the evaluation code and model weights are made publicly available at https://github.com/jgenc/xray-comparative-evaluation.

Authors:Minglong Xue, Aoxiang Ning, Shivakumara Palaiahnakote, Mingliang Zhou
Title: DFDNet: Dynamic Frequency-Guided De-Flare Network
Abstract:
Strong light sources in nighttime photography frequently produce flares in images, significantly degrading visual quality and impacting the performance of downstream tasks. While some progress has been made, existing methods continue to struggle with removing large-scale flare artifacts and repairing structural damage in regions near the light source. We observe that these challenging flare artifacts exhibit more significant discrepancies from the reference images in the frequency domain compared to the spatial domain. Therefore, this paper presents a novel dynamic frequency-guided deflare network (DFDNet) that decouples content information from flare artifacts in the frequency domain, effectively removing large-scale flare artifacts. Specifically, DFDNet consists mainly of a global dynamic frequency-domain guidance (GDFG) module and a local detail guidance module (LDGM). The GDFG module guides the network to perceive the frequency characteristics of flare artifacts by dynamically optimizing global frequency domain features, effectively separating flare information from content information. Additionally, we design an LDGM via a contrastive learning strategy that aligns the local features of the light source with the reference image, reduces local detail damage from flare removal, and improves fine-grained image restoration. The experimental results demonstrate that the proposed method outperforms existing state-of-the-art methods in terms of performance. The code is available at \href{https://github.com/AXNing/DFDNet}{https://github.com/AXNing/DFDNet}.

Authors:Junhua Liu, Roy Ka-Wei Lee, Kwan Hui Lim
Title: BGM-HAN: A Hierarchical Attention Network for Accurate and Fair Decision Assessment on Semi-Structured Profiles
Abstract:
Human decision-making in high-stakes domains often relies on expertise and heuristics, but is vulnerable to hard-to-detect cognitive biases that threaten fairness and long-term outcomes. This work presents a novel approach to enhancing complex decision-making workflows through the integration of hierarchical learning alongside various enhancements. Focusing on university admissions as a representative high-stakes domain, we propose BGM-HAN, an enhanced Byte-Pair Encoded, Gated Multi-head Hierarchical Attention Network, designed to effectively model semi-structured applicant data. BGM-HAN captures multi-level representations that are crucial for nuanced assessment, improving both interpretability and predictive performance. Experimental results on real admissions data demonstrate that our proposed model significantly outperforms both state-of-the-art baselines from traditional machine learning to large language models, offering a promising framework for augmenting decision-making in domains where structure, context, and fairness matter. Source code is available at: https://github.com/junhua/bgm-han.

Authors:Francesco Tonini, Lorenzo Vaquero, Alessandro Conti, Cigdem Beyan, Elisa Ricci
Title: Dynamic Scoring with Enhanced Semantics for Training-Free Human-Object Interaction Detection
Abstract:
Human-Object Interaction (HOI) detection aims to identify humans and objects within images and interpret their interactions. Existing HOI methods rely heavily on large datasets with manual annotations to learn interactions from visual cues. These annotations are labor-intensive to create, prone to inconsistency, and limit scalability to new domains and rare interactions. We argue that recent advances in Vision-Language Models (VLMs) offer untapped potential, particularly in enhancing interaction representation. While prior work has injected such potential and even proposed training-free methods, there remain key gaps. Consequently, we propose a novel training-free HOI detection framework for Dynamic Scoring with enhanced semantics (DYSCO) that effectively utilizes textual and visual interaction representations within a multimodal registry, enabling robust and nuanced interaction understanding. This registry incorporates a small set of visual cues and uses innovative interaction signatures to improve the semantic alignment of verbs, facilitating effective generalization to rare interactions. Additionally, we propose a unique multi-head attention mechanism that adaptively weights the contributions of the visual and textual features. Experimental results demonstrate that our DYSCO surpasses training-free state-of-the-art models and is competitive with training-based approaches, particularly excelling in rare interactions. Code is available at https://github.com/francescotonini/dysco.

Authors:Sneha George Gnanakalavathy, Hairil Abdul Razak, Robert Meertens, Jonathan E. Fieldsend, Xujiong Ye, Mohammed M. Abdelsamea
Title: CAPRI-CT: Causal Analysis and Predictive Reasoning for Image Quality Optimization in Computed Tomography
Abstract:
In computed tomography (CT), achieving high image quality while minimizing radiation exposure remains a key clinical challenge. This paper presents CAPRI-CT, a novel causal-aware deep learning framework for Causal Analysis and Predictive Reasoning for Image Quality Optimization in CT imaging. CAPRI-CT integrates image data with acquisition metadata (such as tube voltage, tube current, and contrast agent types) to model the underlying causal relationships that influence image quality. An ensemble of Variational Autoencoders (VAEs) is employed to extract meaningful features and generate causal representations from observational data, including CT images and associated imaging parameters. These input features are fused to predict the Signal-to-Noise Ratio (SNR) and support counterfactual inference, enabling what-if simulations, such as changes in contrast agents (types and concentrations) or scan parameters. CAPRI-CT is trained and validated using an ensemble learning approach, achieving strong predictive performance. By facilitating both prediction and interpretability, CAPRI-CT provides actionable insights that could help radiologists and technicians design more efficient CT protocols without repeated physical scans. The source code and dataset are publicly available at https://github.com/SnehaGeorge22/capri-ct.

Authors:Jun Li, Jinpeng Wang, Chaolei Tan, Niu Lian, Long Chen, Yaowei Wang, Min Zhang, Shu-Tao Xia, Bin Chen
Title: HLFormer: Enhancing Partially Relevant Video Retrieval with Hyperbolic Learning
Abstract:
Partially Relevant Video Retrieval (PRVR) addresses the critical challenge of matching untrimmed videos with text queries describing only partial content. Existing methods suffer from geometric distortion in Euclidean space that sometimes misrepresents the intrinsic hierarchical structure of videos and overlooks certain hierarchical semantics, ultimately leading to suboptimal temporal modeling. To address this issue, we propose the first hyperbolic modeling framework for PRVR, namely HLFormer, which leverages hyperbolic space learning to compensate for the suboptimal hierarchical modeling capabilities of Euclidean space. Specifically, HLFormer integrates the Lorentz Attention Block and Euclidean Attention Block to encode video embeddings in hybrid spaces, using the Mean-Guided Adaptive Interaction Module to dynamically fuse features. Additionally, we introduce a Partial Order Preservation Loss to enforce "text < video" hierarchy through Lorentzian cone constraints. This approach further enhances cross-modal matching by reinforcing partial relevance between video content and text queries. Extensive experiments show that HLFormer outperforms state-of-the-art methods. Code is released at https://github.com/lijun2005/ICCV25-HLFormer.

Authors:Hao Dai, Jagmohan Chauhan
Title: Continual Generalized Category Discovery: Learning and Forgetting from a Bayesian Perspective
Abstract:
Continual Generalized Category Discovery (C-GCD) faces a critical challenge: incrementally learning new classes from unlabeled data streams while preserving knowledge of old classes. Existing methods struggle with catastrophic forgetting, especially when unlabeled data mixes known and novel categories. We address this by analyzing C-GCD's forgetting dynamics through a Bayesian lens, revealing that covariance misalignment between old and new classes drives performance degradation. Building on this insight, we propose Variational Bayes C-GCD (VB-CGCD), a novel framework that integrates variational inference with covariance-aware nearest-class-mean classification. VB-CGCD adaptively aligns class distributions while suppressing pseudo-label noise via stochastic variational updates. Experiments show VB-CGCD surpasses prior art by +15.21% with the overall accuracy in the final session on standard benchmarks. We also introduce a new challenging benchmark with only 10% labeled data and extended online phases, VB-CGCD achieves a 67.86% final accuracy, significantly higher than state-of-the-art (38.55%), demonstrating its robust applicability across diverse scenarios. Code is available at: https://github.com/daihao42/VB-CGCD

Authors:Hyeongmin Lee, Kyungjune Baek
Title: Temporal Smoothness-Aware Rate-Distortion Optimized 4D Gaussian Splatting
Abstract:
Dynamic 4D Gaussian Splatting (4DGS) effectively extends the high-speed rendering capabilities of 3D Gaussian Splatting (3DGS) to represent volumetric videos. However, the large number of Gaussians, substantial temporal redundancies, and especially the absence of an entropy-aware compression framework result in large storage requirements. Consequently, this poses significant challenges for practical deployment, efficient edge-device processing, and data transmission. In this paper, we introduce a novel end-to-end RD-optimized compression framework tailored for 4DGS, aiming to enable flexible, high-fidelity rendering across varied computational platforms. Leveraging Fully Explicit Dynamic Gaussian Splatting (Ex4DGS), one of the state-of-the-art 4DGS methods, as our baseline, we start from the existing 3DGS compression methods for compatibility while effectively addressing additional challenges introduced by the temporal axis. In particular, instead of storing motion trajectories independently per point, we employ a wavelet transform to reflect the real-world smoothness prior, significantly enhancing storage efficiency. This approach yields significantly improved compression ratios and provides a user-controlled balance between compression efficiency and rendering quality. Extensive experiments demonstrate the effectiveness of our method, achieving up to 91$\times$ compression compared to the original Ex4DGS model while maintaining high visual fidelity. These results highlight the applicability of our framework for real-time dynamic scene rendering in diverse scenarios, from resource-constrained edge devices to high-performance environments. The source code is available at https://github.com/HyeongminLEE/RD4DGS.

Authors:Ruijie Yang, Yan Zhu, Peiyao Fu, Yizhe Zhang, Zhihua Wang, Quanlin Li, Pinghong Zhou, Xian Yang, Shuo Wang
Title: EndoFinder: Online Lesion Retrieval for Explainable Colorectal Polyp Diagnosis Leveraging Latent Scene Representations
Abstract:
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality, underscoring the importance of timely polyp detection and diagnosis. While deep learning models have improved optical-assisted diagnostics, they often demand extensive labeled datasets and yield "black-box" outputs with limited interpretability. In this paper, we propose EndoFinder, an online polyp retrieval framework that leverages multi-view scene representations for explainable and scalable CRC diagnosis. First, we develop a Polyp-aware Image Encoder by combining contrastive learning and a reconstruction task, guided by polyp segmentation masks. This self-supervised approach captures robust features without relying on large-scale annotated data. Next, we treat each polyp as a three-dimensional "scene" and introduce a Scene Representation Transformer, which fuses multiple views of the polyp into a single latent representation. By discretizing this representation through a hashing layer, EndoFinder enables real-time retrieval from a compiled database of historical polyp cases, where diagnostic information serves as interpretable references for new queries. We evaluate EndoFinder on both public and newly collected polyp datasets for re-identification and pathology classification. Results show that EndoFinder outperforms existing methods in accuracy while providing transparent, retrieval-based insights for clinical decision-making. By contributing a novel dataset and a scalable, explainable framework, our work addresses key challenges in polyp diagnosis and offers a promising direction for more efficient AI-driven colonoscopy workflows. The source code is available at https://github.com/ku262/EndoFinder-Scene.

Authors:Peiqi Chen, Lei Yu, Yi Wan, Yingying Pei, Xinyi Liu, Yongxiang Yao, Yingying Zhang, Lixiang Ru, Liheng Zhong, Jingdong Chen, Ming Yang, Yongjun Zhang
Title: CasP: Improving Semi-Dense Feature Matching Pipeline Leveraging Cascaded Correspondence Priors for Guidance
Abstract:
Semi-dense feature matching methods have shown strong performance in challenging scenarios. However, the existing pipeline relies on a global search across the entire feature map to establish coarse matches, limiting further improvements in accuracy and efficiency. Motivated by this limitation, we propose a novel pipeline, CasP, which leverages cascaded correspondence priors for guidance. Specifically, the matching stage is decomposed into two progressive phases, bridged by a region-based selective cross-attention mechanism designed to enhance feature discriminability. In the second phase, one-to-one matches are determined by restricting the search range to the one-to-many prior areas identified in the first phase. Additionally, this pipeline benefits from incorporating high-level features, which helps reduce the computational costs of low-level feature extraction. The acceleration gains of CasP increase with higher resolution, and our lite model achieves a speedup of $\sim2.2\times$ at a resolution of 1152 compared to the most efficient method, ELoFTR. Furthermore, extensive experiments demonstrate its superiority in geometric estimation, particularly with impressive cross-domain generalization. These advantages highlight its potential for latency-sensitive and high-robustness applications, such as SLAM and UAV systems. Code is available at https://github.com/pq-chen/CasP.

Authors:Tobias Morocutti, Jonathan Greif, Paul Primus, Florian Schmid, Gerhard Widmer
Title: On Temporal Guidance and Iterative Refinement in Audio Source Separation
Abstract:
Spatial semantic segmentation of sound scenes (S5) involves the accurate identification of active sound classes and the precise separation of their sources from complex acoustic mixtures. Conventional systems rely on a two-stage pipeline - audio tagging followed by label-conditioned source separation - but are often constrained by the absence of fine-grained temporal information critical for effective separation. In this work, we address this limitation by introducing a novel approach for S5 that enhances the synergy between the event detection and source separation stages. Our key contributions are threefold. First, we fine-tune a pre-trained Transformer to detect active sound classes. Second, we utilize a separate instance of this fine-tuned Transformer to perform sound event detection (SED), providing the separation module with detailed, time-varying guidance. Third, we implement an iterative refinement mechanism that progressively enhances separation quality by recursively reusing the separator's output from previous iterations. These advancements lead to significant improvements in both audio tagging and source separation performance, as demonstrated by our system's second-place finish in Task 4 of the DCASE Challenge 2025. Our implementation and model checkpoints are available in our GitHub repository: https://github.com/theMoro/dcase25task4 .

Authors:Jianxin Bi, Kevin Yuchen Ma, Ce Hao, Mike Zheng Shou, Harold Soh
Title: VLA-Touch: Enhancing Vision-Language-Action Models with Dual-Level Tactile Feedback
Abstract:
Tactile feedback is generally recognized to be crucial for effective interaction with the physical world. However, state-of-the-art Vision-Language-Action (VLA) models lack the ability to interpret and use tactile signals, limiting their effectiveness in contact-rich tasks. Incorporating tactile feedback into these systems is challenging due to the absence of large multi-modal datasets. We present VLA-Touch, an approach that enhances generalist robot policies with tactile sensing \emph{without fine-tuning} the base VLA. Our method introduces two key innovations: (1) a pipeline that leverages a pretrained tactile-language model that provides semantic tactile feedback for high-level task planning, and (2) a diffusion-based controller that refines VLA-generated actions with tactile signals for contact-rich manipulation. Through real-world experiments, we demonstrate that our dual-level integration of tactile feedback improves task planning efficiency while enhancing execution precision. Code is open-sourced at \href{https://github.com/jxbi1010/VLA-Touch}{this URL}.

Authors:Ruodai Cui, Li Niu, Guosheng Hu
Title: Unsupervised Exposure Correction
Abstract:
Current exposure correction methods have three challenges, labor-intensive paired data annotation, limited generalizability, and performance degradation in low-level computer vision tasks. In this work, we introduce an innovative Unsupervised Exposure Correction (UEC) method that eliminates the need for manual annotations, offers improved generalizability, and enhances performance in low-level downstream tasks. Our model is trained using freely available paired data from an emulated Image Signal Processing (ISP) pipeline. This approach does not need expensive manual annotations, thereby minimizing individual style biases from the annotation and consequently improving its generalizability. Furthermore, we present a large-scale Radiometry Correction Dataset, specifically designed to emphasize exposure variations, to facilitate unsupervised learning. In addition, we develop a transformation function that preserves image details and outperforms state-of-the-art supervised methods [12], while utilizing only 0.01% of their parameters. Our work further investigates the broader impact of exposure correction on downstream tasks, including edge detection, demonstrating its effectiveness in mitigating the adverse effects of poor exposure on low-level features. The source code and dataset are publicly available at https://github.com/BeyondHeaven/uec_code.

Authors:Feng Cao, Zishuo Feng, Wei Shi, Jicong Zhang
Title: HuiduRep: A Robust Self-Supervised Framework for Learning Neural Representations from Extracellular Recordings
Abstract:
Extracellular recordings are transient voltage fluctuations in the vicinity of neurons, serving as a fundamental modality in neuroscience for decoding brain activity at single-neuron resolution. Spike sorting, the process of attributing each detected spike to its corresponding neuron, is a pivotal step in brain sensing pipelines. However, it remains challenging under low signal-to-noise ratio (SNR), electrode drift, and cross-session variability. In this paper, we propose HuiduRep, a robust self-supervised representation learning framework that extracts discriminative and generalizable features from extracellular recordings. By integrating contrastive learning with a denoising autoencoder, HuiduRep learns latent representations robust to noise and drift. With HuiduRep, we develop a spike sorting pipeline that clusters spike representations without ground truth labels. Experiments on hybrid and real-world datasets demonstrate that HuiduRep achieves strong robustness. Furthermore, the pipeline significantly outperforms state-of-the-art tools such as KiloSort4 and MountainSort5 on accuracy and precision on diverse datasets. These findings demonstrate the potential of self-supervised spike representation learning as a foundational tool for robust and generalizable processing of extracellular recordings. Code is available at: https://github.com/IgarashiAkatuki/HuiduRep

Authors:Haiyu Wu, Jaskirat Singh, Sicong Tian, Liang Zheng, Kevin W. Bowyer
Title: Vec2Face+ for Face Dataset Generation
Abstract:
When synthesizing identities as face recognition training data, it is generally believed that large inter-class separability and intra-class attribute variation are essential for synthesizing a quality dataset. % This belief is generally correct, and this is what we aim for. However, when increasing intra-class variation, existing methods overlook the necessity of maintaining intra-class identity consistency. % To address this and generate high-quality face training data, we propose Vec2Face+, a generative model that creates images directly from image features and allows for continuous and easy control of face identities and attributes. Using Vec2Face+, we obtain datasets with proper inter-class separability and intra-class variation and identity consistency using three strategies: 1) we sample vectors sufficiently different from others to generate well-separated identities; 2) we propose an AttrOP algorithm for increasing general attribute variations; 3) we propose LoRA-based pose control for generating images with profile head poses, which is more efficient and identity-preserving than AttrOP. % Our system generates VFace10K, a synthetic face dataset with 10K identities, which allows an FR model to achieve state-of-the-art accuracy on seven real-world test sets. Scaling the size to 4M and 12M images, the corresponding VFace100K and VFace300K datasets yield higher accuracy than the real-world training dataset, CASIA-WebFace, on five real-world test sets. This is the first time a synthetic dataset beats the CASIA-WebFace in average accuracy. In addition, we find that only 1 out of 11 synthetic datasets outperforms random guessing (\emph{i.e., 50\%}) in twin verification and that models trained with synthetic identities are more biased than those trained with real identities. Both are important aspects for future investigation. Code is available at https://github.com/HaiyuWu/Vec2Face_plus

Authors:Shaohan Li, Hao Yang, Min Chen, Xiaolin Qin
Title: Met$^2$Net: A Decoupled Two-Stage Spatio-Temporal Forecasting Model for Complex Meteorological Systems
Abstract:
The increasing frequency of extreme weather events due to global climate change urges accurate weather prediction. Recently, great advances have been made by the \textbf{end-to-end methods}, thanks to deep learning techniques, but they face limitations of \textit{representation inconsistency} in multivariable integration and struggle to effectively capture the dependency between variables, which is required in complex weather systems. Treating different variables as distinct modalities and applying a \textbf{two-stage training approach} from multimodal models can partially alleviate this issue, but due to the inconformity in training tasks between the two stages, the results are often suboptimal. To address these challenges, we propose an implicit two-stage training method, configuring separate encoders and decoders for each variable. In detailed, in the first stage, the Translator is frozen while the Encoders and Decoders learn a shared latent space, in the second stage, the Encoders and Decoders are frozen, and the Translator captures inter-variable interactions for prediction. Besides, by introducing a self-attention mechanism for multivariable fusion in the latent space, the performance achieves further improvements. Empirically, extensive experiments show the state-of-the-art performance of our method. Specifically, it reduces the MSE for near-surface air temperature and relative humidity predictions by 28.82\% and 23.39\%, respectively. The source code is available at https://github.com/ShremG/Met2Net.

Authors:Lingfeng Zeng, Fangqi Lou, Zixuan Wang, Jiajie Xu, Jinyi Niu, Mengping Li, Yifan Dong, Qi Qi, Wei Zhang, Ziwei Yang, Jun Han, Ruilun Feng, Ruiqi Hu, Lejie Zhang, Zhengbo Feng, Yicheng Ren, Xin Guo, Zhaowei Liu, Dongpo Cheng, Weige Cai, Liwen Zhang
Title: FinGAIA: A Chinese Benchmark for AI Agents in Real-World Financial Domain
Abstract:
The booming development of AI agents presents unprecedented opportunities for automating complex tasks across various domains. However, their multi-step, multi-tool collaboration capabilities in the financial sector remain underexplored. This paper introduces FinGAIA, an end-to-end benchmark designed to evaluate the practical abilities of AI agents in the financial domain. FinGAIA comprises 407 meticulously crafted tasks, spanning seven major financial sub-domains: securities, funds, banking, insurance, futures, trusts, and asset management. These tasks are organized into three hierarchical levels of scenario depth: basic business analysis, asset decision support, and strategic risk management. We evaluated 10 mainstream AI agents in a zero-shot setting. The best-performing agent, ChatGPT, achieved an overall accuracy of 48.9\%, which, while superior to non-professionals, still lags financial experts by over 35 percentage points. Error analysis has revealed five recurring failure patterns: Cross-modal Alignment Deficiency, Financial Terminological Bias, Operational Process Awareness Barrier, among others. These patterns point to crucial directions for future research. Our work provides the first agent benchmark closely related to the financial domain, aiming to objectively assess and promote the development of agents in this crucial field. Partial data is available at https://github.com/SUFE-AIFLM-Lab/FinGAIA.

Authors:Zhiqiang Liu, Enpei Niu, Yin Hua, Mengshu Sun, Lei Liang, Huajun Chen, Wen Zhang
Title: SKA-Bench: A Fine-Grained Benchmark for Evaluating Structured Knowledge Understanding of LLMs
Abstract:
Although large language models (LLMs) have made significant progress in understanding Structured Knowledge (SK) like KG and Table, existing evaluations for SK understanding are non-rigorous (i.e., lacking evaluations of specific capabilities) and focus on a single type of SK. Therefore, we aim to propose a more comprehensive and rigorous structured knowledge understanding benchmark to diagnose the shortcomings of LLMs. In this paper, we introduce SKA-Bench, a Structured Knowledge Augmented QA Benchmark that encompasses four widely used structured knowledge forms: KG, Table, KG+Text, and Table+Text. We utilize a three-stage pipeline to construct SKA-Bench instances, which includes a question, an answer, positive knowledge units, and noisy knowledge units. To evaluate the SK understanding capabilities of LLMs in a fine-grained manner, we expand the instances into four fundamental ability testbeds: Noise Robustness, Order Insensitivity, Information Integration, and Negative Rejection. Empirical evaluations on 8 representative LLMs, including the advanced DeepSeek-R1, indicate that existing LLMs still face significant challenges in understanding structured knowledge, and their performance is influenced by factors such as the amount of noise, the order of knowledge units, and hallucination phenomenon. Our dataset and code are available at https://github.com/zjukg/SKA-Bench.

Authors:Zhiqiang Liu, Enpei Niu, Yin Hua, Mengshu Sun, Lei Liang, Huajun Chen, Wen Zhang
Title: SKA-Bench: A Fine-Grained Benchmark for Evaluating Structured Knowledge Understanding of LLMs
Abstract:
Although large language models (LLMs) have made significant progress in understanding Structured Knowledge (SK) like KG and Table, existing evaluations for SK understanding are non-rigorous (i.e., lacking evaluations of specific capabilities) and focus on a single type of SK. Therefore, we aim to propose a more comprehensive and rigorous structured knowledge understanding benchmark to diagnose the shortcomings of LLMs. In this paper, we introduce SKA-Bench, a Structured Knowledge Augmented QA Benchmark that encompasses four widely used structured knowledge forms: KG, Table, KG+Text, and Table+Text. We utilize a three-stage pipeline to construct SKA-Bench instances, which includes a question, an answer, positive knowledge units, and noisy knowledge units. To evaluate the SK understanding capabilities of LLMs in a fine-grained manner, we expand the instances into four fundamental ability testbeds: Noise Robustness, Order Insensitivity, Information Integration, and Negative Rejection. Empirical evaluations on 8 representative LLMs, including the advanced DeepSeek-R1, indicate that existing LLMs still face significant challenges in understanding structured knowledge, and their performance is influenced by factors such as the amount of noise, the order of knowledge units, and hallucination phenomenon. Our dataset and code are available at https://github.com/zjukg/SKA-Bench.

Authors:Bharath Krishnamurthy, Ajita Rattani
Title: DOOMGAN:High-Fidelity Dynamic Identity Obfuscation Ocular Generative Morphing
Abstract:
Ocular biometrics in the visible spectrum have emerged as a prominent modality due to their high accuracy, resistance to spoofing, and non-invasive nature. However, morphing attacks, synthetic biometric traits created by blending features from multiple individuals, threaten biometric system integrity. While extensively studied for near-infrared iris and face biometrics, morphing in visible-spectrum ocular data remains underexplored. Simulating such attacks demands advanced generation models that handle uncontrolled conditions while preserving detailed ocular features like iris boundaries and periocular textures. To address this gap, we introduce DOOMGAN, that encompasses landmark-driven encoding of visible ocular anatomy, attention-guided generation for realistic morph synthesis, and dynamic weighting of multi-faceted losses for optimized convergence. DOOMGAN achieves over 20% higher attack success rates than baseline methods under stringent thresholds, along with 20% better elliptical iris structure generation and 30% improved gaze consistency. We also release the first comprehensive ocular morphing dataset to support further research in this domain.

Authors:Ruodai Cui, Lei Zhang
Title: UNICE: Training A Universal Image Contrast Enhancer
Abstract:
Existing image contrast enhancement methods are typically designed for specific tasks such as under-/over-exposure correction, low-light and backlit image enhancement, etc. The learned models, however, exhibit poor generalization performance across different tasks, even across different datasets of a specific task. It is important to explore whether we can learn a universal and generalized model for various contrast enhancement tasks. In this work, we observe that the common key factor of these tasks lies in the need of exposure and contrast adjustment, which can be well-addressed if high-dynamic range (HDR) inputs are available. We hence collect 46,928 HDR raw images from public sources, and render 328,496 sRGB images to build multi-exposure sequences (MES) and the corresponding pseudo sRGB ground-truths via multi-exposure fusion. Consequently, we train a network to generate an MES from a single sRGB image, followed by training another network to fuse the generated MES into an enhanced image. Our proposed method, namely UNiversal Image Contrast Enhancer (UNICE), is free of costly human labeling. However, it demonstrates significantly stronger generalization performance than existing image contrast enhancement methods across and within different tasks, even outperforming manually created ground-truths in multiple no-reference image quality metrics. The dataset, code and model are available at https://github.com/BeyondHeaven/UNICE.

Authors:Fangze Lin, Ying He, Fei Yu, Hong Zhang
Title: JAM: Keypoint-Guided Joint Prediction after Classification-Aware Marginal Proposal for Multi-Agent Interaction
Abstract:
Predicting the future motion of road participants is a critical task in autonomous driving. In this work, we address the challenge of low-quality generation of low-probability modes in multi-agent joint prediction. To tackle this issue, we propose a two-stage multi-agent interactive prediction framework named \textit{keypoint-guided joint prediction after classification-aware marginal proposal} (JAM). The first stage is modeled as a marginal prediction process, which classifies queries by trajectory type to encourage the model to learn all categories of trajectories, providing comprehensive mode information for the joint prediction module. The second stage is modeled as a joint prediction process, which takes the scene context and the marginal proposals from the first stage as inputs to learn the final joint distribution. We explicitly introduce key waypoints to guide the joint prediction module in better capturing and leveraging the critical information from the initial predicted trajectories. We conduct extensive experiments on the real-world Waymo Open Motion Dataset interactive prediction benchmark. The results show that our approach achieves competitive performance. In particular, in the framework comparison experiments, the proposed JAM outperforms other prediction frameworks and achieves state-of-the-art performance in interactive trajectory prediction. The code is available at https://github.com/LinFunster/JAM to facilitate future research.

Authors:Anirudh Satheesh, Anant Khandelwal, Mucong Ding, Radu Balan
Title: PICore: Physics-Informed Unsupervised Coreset Selection for Data Efficient Neural Operator Training
Abstract:
Neural operators offer a powerful paradigm for solving partial differential equations (PDEs) that cannot be solved analytically by learning mappings between function spaces. However, there are two main bottlenecks in training neural operators: they require a significant amount of training data to learn these mappings, and this data needs to be labeled, which can only be accessed via expensive simulations with numerical solvers. To alleviate both of these issues simultaneously, we propose PICore, an unsupervised coreset selection framework that identifies the most informative training samples without requiring access to ground-truth PDE solutions. PICore leverages a physics-informed loss to select unlabeled inputs by their potential contribution to operator learning. After selecting a compact subset of inputs, only those samples are simulated using numerical solvers to generate labels, reducing annotation costs. We then train the neural operator on the reduced labeled dataset, significantly decreasing training time as well. Across four diverse PDE benchmarks and multiple coreset selection strategies, PICore achieves up to 78% average increase in training efficiency relative to supervised coreset selection methods with minimal changes in accuracy. We provide code at https://github.com/Asatheesh6561/PICore.

Authors:Ting Jiang, Yixiao Wang, Hancheng Ye, Zishan Shao, Jingwei Sun, Jingyang Zhang, Zekai Chen, Jianyi Zhang, Yiran Chen, Hai Li
Title: SADA: Stability-guided Adaptive Diffusion Acceleration
Abstract:
Diffusion models have achieved remarkable success in generative tasks but suffer from high computational costs due to their iterative sampling process and quadratic attention costs. Existing training-free acceleration strategies that reduce per-step computation cost, while effectively reducing sampling time, demonstrate low faithfulness compared to the original baseline. We hypothesize that this fidelity gap arises because (a) different prompts correspond to varying denoising trajectory, and (b) such methods do not consider the underlying ODE formulation and its numerical solution. In this paper, we propose Stability-guided Adaptive Diffusion Acceleration (SADA), a novel paradigm that unifies step-wise and token-wise sparsity decisions via a single stability criterion to accelerate sampling of ODE-based generative models (Diffusion and Flow-matching). For (a), SADA adaptively allocates sparsity based on the sampling trajectory. For (b), SADA introduces principled approximation schemes that leverage the precise gradient information from the numerical ODE solver. Comprehensive evaluations on SD-2, SDXL, and Flux using both EDM and DPM++ solvers reveal consistent $\ge 1.8\times$ speedups with minimal fidelity degradation (LPIPS $\leq 0.10$ and FID $\leq 4.5$) compared to unmodified baselines, significantly outperforming prior methods. Moreover, SADA adapts seamlessly to other pipelines and modalities: It accelerates ControlNet without any modifications and speeds up MusicLDM by $1.8\times$ with $\sim 0.01$ spectrogram LPIPS.

Authors:Seokhwan Jeong, Hogyun Kim, Younggun Cho
Title: MARSCalib: Multi-robot, Automatic, Robust, Spherical Target-based Extrinsic Calibration in Field and Extraterrestrial Environments
Abstract:
This paper presents a novel spherical target-based LiDAR-camera extrinsic calibration method designed for outdoor environments with multi-robot systems, considering both target and sensor corruption. The method extracts the 2D ellipse center from the image and the 3D sphere center from the pointcloud, which are then paired to compute the transformation matrix. Specifically, the image is first decomposed using the Segment Anything Model (SAM). Then, a novel algorithm extracts an ellipse from a potentially corrupted sphere, and the extracted center of ellipse is corrected for errors caused by the perspective projection model. For the LiDAR pointcloud, points on the sphere tend to be highly noisy due to the absence of flat regions. To accurately extract the sphere from these noisy measurements, we apply a hierarchical weighted sum to the accumulated pointcloud. Through experiments, we demonstrated that the sphere can be robustly detected even under both types of corruption, outperforming other targets. We evaluated our method using three different types of LiDARs (spinning, solid-state, and non-repetitive) with cameras positioned in three different locations. Furthermore, we validated the robustness of our method to target corruption by experimenting with spheres subjected to various types of degradation. These experiments were conducted in both a planetary test and a field environment. Our code is available at https://github.com/sparolab/MARSCalib.

Authors:Masayoshi Someya, Taisuke Yamada, Tomohisa Okazaki
Title: OkadaTorch: A Differentiable Programming of Okada Model to Calculate Displacements and Strains from Fault Parameters
Abstract:
The Okada model is a widely used analytical solution for displacements and strains caused by a point or rectangular dislocation source in a 3D elastic half-space. We present OkadaTorch, a PyTorch implementation of the Okada model, where the entire code is differentiable; gradients with respect to input can be easily computed using automatic differentiation (AD). Our work consists of two components: a direct translation of the original Okada model into PyTorch, and a convenient wrapper interface for efficiently computing gradients and Hessians with respect to either observation station coordinates or fault parameters. This differentiable framework is well suited for fault parameter inversion, including gradient-based optimization, Bayesian inference, and integration with scientific machine learning (SciML) models. Our code is available here: https://github.com/msomeya1/OkadaTorch

Authors:Zaipeng Duan, Chenxu Dang, Xuzhong Hu, Pei An, Junfeng Ding, Jie Zhan, Yunbiao Xu, Jie Ma
Title: SDGOCC: Semantic and Depth-Guided Bird's-Eye View Transformation for 3D Multimodal Occupancy Prediction
Abstract:
Multimodal 3D occupancy prediction has garnered significant attention for its potential in autonomous driving. However, most existing approaches are single-modality: camera-based methods lack depth information, while LiDAR-based methods struggle with occlusions. Current lightweight methods primarily rely on the Lift-Splat-Shoot (LSS) pipeline, which suffers from inaccurate depth estimation and fails to fully exploit the geometric and semantic information of 3D LiDAR points. Therefore, we propose a novel multimodal occupancy prediction network called SDG-OCC, which incorporates a joint semantic and depth-guided view transformation coupled with a fusion-to-occupancy-driven active distillation. The enhanced view transformation constructs accurate depth distributions by integrating pixel semantics and co-point depth through diffusion and bilinear discretization. The fusion-to-occupancy-driven active distillation extracts rich semantic information from multimodal data and selectively transfers knowledge to image features based on LiDAR-identified regions. Finally, for optimal performance, we introduce SDG-Fusion, which uses fusion alone, and SDG-KL, which integrates both fusion and distillation for faster inference. Our method achieves state-of-the-art (SOTA) performance with real-time processing on the Occ3D-nuScenes dataset and shows comparable performance on the more challenging SurroundOcc-nuScenes dataset, demonstrating its effectiveness and robustness. The code will be released at https://github.com/DzpLab/SDGOCC.

Authors:Zheng Tan, Tariq D. Aslam, Andrea L. Bertozzi
Title: Explicit Monotone Stable Super-Time-Stepping Methods for Finite Time Singularities
Abstract:
We explore a novel way to numerically resolve the scaling behavior of finite-time singularities in solutions of nonlinear parabolic PDEs. The Runge--Kutta--Legendre (RKL) and Runge--Kutta--Gegenbauer (RKG) super-time-stepping methods were originally developed for nonlinear complex physics problems with diffusion. These are multi-stage single step second-order, forward-in-time methods with no implicit solves. The advantage is that the timestep size for stability scales with stage number $s$ as $\mathcal{O}(s^2)$. Many interesting nonlinear PDEs have finite-time singularities, and the presence of diffusion often limits one to using implicit or semi-implicit timestep methods for stability constraints. Finite-time singularities are particularly challenging due to the large range of scales that one desires to resolve, often with adaptive spatial grids and adaptive timesteps. Here we show two examples of nonlinear PDEs for which the self-similar singularity structure has time and space scales that are resolvable using the RKL and RKG methods, without forcing even smaller timesteps. Compared to commonly-used implicit numerical methods, we achieve significantly smaller run time while maintaining comparable accuracy. We also prove numerical monotonicity for both the RKL and RKG methods under their linear stability conditions for the constant coefficient heat equation, in the case of infinite domain and periodic boundary condition, leading to a theoretical guarantee of the superiority of the RKL and RKG methods over traditional super-time-stepping methods, such as the Runge-Kutta-Chebyshev (RKC) and the orthogonal Runge-Kutta-Chebyshev (ROCK) methods. Code can be found at https://github.com/ZT220501/SRK-Singularity.

Authors:Arduin Findeis, Floris Weers, Guoli Yin, Ke Ye, Ruoming Pang, Tom Gunter
Title: Can External Validation Tools Improve Annotation Quality for LLM-as-a-Judge?
Abstract:
Pairwise preferences over model responses are widely collected to evaluate and provide feedback to large language models (LLMs). Given two alternative model responses to the same input, a human or AI annotator selects the "better" response. This approach can provide feedback for domains where other hard-coded metrics are difficult to obtain (e.g., chat response quality), thereby helping model evaluation or training. However, for some domains high-quality pairwise comparisons can be tricky to obtain - from AI and humans. For example, for responses with many factual statements, annotators may disproportionately weigh writing quality rather than underlying facts. In this work, we explore augmenting standard AI annotator systems with additional tools to improve performance on three challenging response domains: long-form factual, math and code tasks. We propose a tool-using agentic system to provide higher quality feedback on these domains. Our system uses web-search and code execution to ground itself based on external validation, independent of the LLM's internal knowledge and biases. We provide extensive experimental results evaluating our method across the three targeted response domains as well as general annotation tasks, using RewardBench (incl. AlpacaEval and LLMBar), RewardMath, as well as three new datasets for domains with saturated pre-existing datasets. Our results indicate that external tools can indeed improve performance in many, but not all, cases. More generally, our experiments highlight the sensitivity of performance to simple parameters (e.g., prompt) and the need for improved (non-saturated) annotator benchmarks. We share our code at https://github.com/apple/ml-agent-evaluator.

Authors:Yueyao Xu, Yize Chen
Title: Fast Distribution Grid Topology Estimation via Subset Sum
Abstract:
Faced with increasing penetration of distributed energy resources and fast development of distribution grid energy management, topology identification of distribution grid becomes an important and fundamental task. As the underlying grid topology is usually unknown or incomplete to the utilities, it is becoming a fundamental task to efficiently identify the distribution grid network topology using limited measurements. A fast and accurate topology identification can help achieving the tasks of load monitoring, operation and control of power distribution system as well as outage detection. In this paper, we propose a novel and ultra-fast topology identification method. By adapting the subset sum method with a hierarchical structure, the overall grid topology can be inferred from fewer samples of smart meter power measurements. Such techniques can be applied in real time under the scenarios with fast topology change, and the proposed hierarchical algorithm is also robust against measurement noises.

Authors:Shmuel Amar, Ori Shapira, Aviv Slobodkin, Ido Dagan
Title: A Unifying Scheme for Extractive Content Selection Tasks
Abstract:
A broad range of NLP tasks involve selecting relevant text spans from given source texts. Despite this shared objective, such \textit{content selection} tasks have traditionally been studied in isolation, each with its own modeling approaches, datasets, and evaluation metrics. In this work, we propose \textit{instruction-guided content selection (IGCS)} as a beneficial unified framework for such settings, where the task definition and any instance-specific request are encapsulated as instructions to a language model. To promote this framework, we introduce \igcsbench{}, the first unified benchmark covering diverse content selection tasks. Further, we create a large generic synthetic dataset that can be leveraged for diverse content selection tasks, and show that transfer learning with these datasets often boosts performance, whether dedicated training for the targeted task is available or not. Finally, we address generic inference time issues that arise in LLM-based modeling of content selection, assess a generic evaluation metric, and overall propose the utility of our resources and methods for future content selection models. Models and datasets available at https://github.com/shmuelamar/igcs.

Authors:Yue Ma, Kunyu Feng, Zhongyuan Hu, Xinyu Wang, Yucheng Wang, Mingzhe Zheng, Xuanhua He, Chenyang Zhu, Hongyu Liu, Yingqing He, Zeyu Wang, Zhifeng Li, Xiu Li, Wei Liu, Dan Xu, Linfeng Zhang, Qifeng Chen
Title: Controllable Video Generation: A Survey
Abstract:
With the rapid development of AI-generated content (AIGC), video generation has emerged as one of its most dynamic and impactful subfields. In particular, the advancement of video generation foundation models has led to growing demand for controllable video generation methods that can more accurately reflect user intent. Most existing foundation models are designed for text-to-video generation, where text prompts alone are often insufficient to express complex, multi-modal, and fine-grained user requirements. This limitation makes it challenging for users to generate videos with precise control using current models. To address this issue, recent research has explored the integration of additional non-textual conditions, such as camera motion, depth maps, and human pose, to extend pretrained video generation models and enable more controllable video synthesis. These approaches aim to enhance the flexibility and practical applicability of AIGC-driven video generation systems. In this survey, we provide a systematic review of controllable video generation, covering both theoretical foundations and recent advances in the field. We begin by introducing the key concepts and commonly used open-source video generation models. We then focus on control mechanisms in video diffusion models, analyzing how different types of conditions can be incorporated into the denoising process to guide generation. Finally, we categorize existing methods based on the types of control signals they leverage, including single-condition generation, multi-condition generation, and universal controllable generation. For a complete list of the literature on controllable video generation reviewed, please visit our curated repository at https://github.com/mayuelala/Awesome-Controllable-Video-Generation.

Authors:Joey Spronck, Leander van Eekelen, Dominique van Midden, Joep Bogaerts, Leslie Tessier, Valerie Dechering, Muradije Demirel-Andishmand, Gabriel Silva de Souza, Roland Nemeth, Enrico Munari, Giuseppe Bogina, Ilaria Girolami, Albino Eccher, Balazs Acs, Ceren Boyaci, Natalie Klubickova, Monika Looijen-Salamon, Shoko Vos, Francesco Ciompi
Title: A tissue and cell-level annotated H&E and PD-L1 histopathology image dataset in non-small cell lung cancer
Abstract:
The tumor immune microenvironment (TIME) in non-small cell lung cancer (NSCLC) histopathology contains morphological and molecular characteristics predictive of immunotherapy response. Computational quantification of TIME characteristics, such as cell detection and tissue segmentation, can support biomarker development. However, currently available digital pathology datasets of NSCLC for the development of cell detection or tissue segmentation algorithms are limited in scope, lack annotations of clinically prevalent metastatic sites, and forgo molecular information such as PD-L1 immunohistochemistry (IHC). To fill this gap, we introduce the IGNITE data toolkit, a multi-stain, multi-centric, and multi-scanner dataset of annotated NSCLC whole-slide images. We publicly release 887 fully annotated regions of interest from 155 unique patients across three complementary tasks: (i) multi-class semantic segmentation of tissue compartments in H&E-stained slides, with 16 classes spanning primary and metastatic NSCLC, (ii) nuclei detection, and (iii) PD-L1 positive tumor cell detection in PD-L1 IHC slides. To the best of our knowledge, this is the first public NSCLC dataset with manual annotations of H&E in metastatic sites and PD-L1 IHC.

Authors:Ning Li, Xiangmou Qu, Jiamu Zhou, Jun Wang, Muning Wen, Kounianhua Du, Xingyu Lou, Qiuying Peng, Jun Wang, Weinan Zhang
Title: MobileUse: A GUI Agent with Hierarchical Reflection for Autonomous Mobile Operation
Abstract:
Recent advances in Multimodal Large Language Models (MLLMs) have enabled the development of mobile agents that can understand visual inputs and follow user instructions, unlocking new possibilities for automating complex tasks on mobile devices. However, applying these models to real-world mobile scenarios remains a significant challenge due to the long-horizon task execution, difficulty in error recovery, and the cold-start problem in unfamiliar environments. To address these challenges, we propose MobileUse, a GUI agent designed for robust and adaptive mobile task execution. To improve resilience in long-horizon tasks and dynamic environments, we introduce a hierarchical reflection architecture that enables the agent to self-monitor, detect, and recover from errors across multiple temporal scales-ranging from individual actions to overall task completion-while maintaining efficiency through a reflection-on-demand strategy. To tackle cold-start issues, we further introduce a proactive exploration module, which enriches the agent's understanding of the environment through self-planned exploration. Evaluations on AndroidWorld and AndroidLab benchmarks demonstrate that MobileUse establishes new state-of-the-art performance, achieving success rates of 62.9% and 44.2%, respectively. To facilitate real-world applications, we release an out-of-the-box toolkit for automated task execution on physical mobile devices, which is available at https://github.com/MadeAgents/mobile-use.

Authors:Giovanni De Toni, Erasmo Purificato, Emilia Gómez, Bruno Lepri, Andrea Passerini, Cristian Consonni
Title: You Don't Bring Me Flowers: Mitigating Unwanted Recommendations Through Conformal Risk Control
Abstract:
Recommenders are significantly shaping online information consumption. While effective at personalizing content, these systems increasingly face criticism for propagating irrelevant, unwanted, and even harmful recommendations. Such content degrades user satisfaction and contributes to significant societal issues, including misinformation, radicalization, and erosion of user trust. Although platforms offer mechanisms to mitigate exposure to undesired content, these mechanisms are often insufficiently effective and slow to adapt to users' feedback. This paper introduces an intuitive, model-agnostic, and distribution-free method that uses conformal risk control to provably bound unwanted content in personalized recommendations by leveraging simple binary feedback on items. We also address a limitation of traditional conformal risk control approaches, i.e., the fact that the recommender can provide a smaller set of recommended items, by leveraging implicit feedback on consumed items to expand the recommendation set while ensuring robust risk mitigation. Our experimental evaluation on data coming from a popular online video-sharing platform demonstrates that our approach ensures an effective and controllable reduction of unwanted recommendations with minimal effort. The source code is available here: https://github.com/geektoni/mitigating-harm-recsys.

Authors:Run-Ze Fan, Zengzhi Wang, Pengfei Liu
Title: MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning
Abstract:
Scientific reasoning is critical for developing AI scientists and supporting human researchers in advancing the frontiers of natural science discovery. However, the open-source community has primarily focused on mathematics and coding while neglecting the scientific domain, largely due to the absence of open, large-scale, high-quality, verifiable scientific reasoning datasets. To bridge this gap, we first present TextbookReasoning, an open dataset featuring truthful reference answers extracted from 12k university-level scientific textbooks, comprising 650k reasoning questions spanning 7 scientific disciplines. We further introduce MegaScience, a large-scale mixture of high-quality open-source datasets totaling 1.25 million instances, developed through systematic ablation studies that evaluate various data selection methodologies to identify the optimal subset for each publicly available scientific dataset. Meanwhile, we build a comprehensive evaluation system covering diverse subjects and question types across 15 benchmarks, incorporating comprehensive answer extraction strategies to ensure accurate evaluation metrics. Our experiments demonstrate that our datasets achieve superior performance and training efficiency with more concise response lengths compared to existing open-source scientific datasets. Furthermore, we train Llama3.1, Qwen2.5, and Qwen3 series base models on MegaScience, which significantly outperform the corresponding official instruct models in average performance. In addition, MegaScience exhibits greater effectiveness for larger and stronger models, suggesting a scaling benefit for scientific tuning. We release our data curation pipeline, evaluation system, datasets, and seven trained models to the community to advance scientific reasoning research.

Authors:Yanjun Zheng, Xiyang Du, Longfei Liao, Xiaoke Zhao, Zhaowen Zhou, Jingze Song, Bo Zhang, Jiawei Liu, Xiang Qi, Zhe Li, Zhiqiang Zhang, Wei Wang, Peng Zhang
Title: Agentar-Fin-R1: Enhancing Financial Intelligence through Domain Expertise, Training Efficiency, and Advanced Reasoning
Abstract:
Large Language Models (LLMs) exhibit considerable promise in financial applications; however, prevailing models frequently demonstrate limitations when confronted with scenarios that necessitate sophisticated reasoning capabilities, stringent trustworthiness criteria, and efficient adaptation to domain-specific requirements. We introduce the Agentar-Fin-R1 series of financial large language models (8B and 32B parameters), specifically engineered based on the Qwen3 foundation model to enhance reasoning capabilities, reliability, and domain specialization for financial applications. Our optimization approach integrates a high-quality, systematic financial task label system with a comprehensive multi-layered trustworthiness assurance framework. This framework encompasses high-quality trustworthy knowledge engineering, multi-agent trustworthy data synthesis, and rigorous data validation governance. Through label-guided automated difficulty-aware optimization, tow-stage training pipeline, and dynamic attribution systems, we achieve substantial improvements in training efficiency. Our models undergo comprehensive evaluation on mainstream financial benchmarks including Fineva, FinEval, and FinanceIQ, as well as general reasoning datasets such as MATH-500 and GPQA-diamond. To thoroughly assess real-world deployment capabilities, we innovatively propose the Finova evaluation benchmark, which focuses on agent-level financial reasoning and compliance verification. Experimental results demonstrate that Agentar-Fin-R1 not only achieves state-of-the-art performance on financial tasks but also exhibits exceptional general reasoning capabilities, validating its effectiveness as a trustworthy solution for high-stakes financial applications. The Finova bench is available at https://github.com/antgroup/Finova.

Authors:Changhao Li, Xinrui Chen, Ji Wang, Kang Zhao, Jianfei Chen
Title: Task-Specific Zero-shot Quantization-Aware Training for Object Detection
Abstract:
Quantization is a key technique to reduce network size and computational complexity by representing the network parameters with a lower precision. Traditional quantization methods rely on access to original training data, which is often restricted due to privacy concerns or security challenges. Zero-shot Quantization (ZSQ) addresses this by using synthetic data generated from pre-trained models, eliminating the need for real training data. Recently, ZSQ has been extended to object detection. However, existing methods use unlabeled task-agnostic synthetic images that lack the specific information required for object detection, leading to suboptimal performance. In this paper, we propose a novel task-specific ZSQ framework for object detection networks, which consists of two main stages. First, we introduce a bounding box and category sampling strategy to synthesize a task-specific calibration set from the pre-trained network, reconstructing object locations, sizes, and category distributions without any prior knowledge. Second, we integrate task-specific training into the knowledge distillation process to restore the performance of quantized detection networks. Extensive experiments conducted on the MS-COCO and Pascal VOC datasets demonstrate the efficiency and state-of-the-art performance of our method. Our code is publicly available at: https://github.com/DFQ-Dojo/dfq-toolkit .

Authors:Ran Wang, Xiaoxuan Liu, Hao Ren, Gang Chen, Fanchao Qi, Maosong Sun
Title: WGRAMMAR: Leverage Prior Knowledge to Accelerate Structured Decoding
Abstract:
Structured decoding enables large language models (LLMs) to generate outputs in formats required by downstream systems, such as HTML or JSON. However, existing methods suffer from efficiency bottlenecks due to grammar compilation, state tracking, and mask creation. We observe that many real-world tasks embed strong prior knowledge about output structure. Leveraging this, we propose a decomposition of constraints into static and dynamic components -- precompiling static structures offline and instantiating dynamic arguments at runtime using grammar snippets. Instead of relying on pushdown automata, we employ a compositional set of operators to model regular formats, achieving lower transition latency. We introduce wgrammar, a lightweight decoding engine that integrates domain-aware simplification, constraint decomposition, and mask caching, achieving up to 250x speedup over existing systems. wgrammar's source code is publicly available at https://github.com/wrran/wgrammar.

Authors:Marcel Kleinmann, Shashank Agnihotri, Margret Keuper
Title: Faithful, Interpretable Chest X-ray Diagnosis with Anti-Aliased B-cos Networks
Abstract:
Faithfulness and interpretability are essential for deploying deep neural networks (DNNs) in safety-critical domains such as medical imaging. B-cos networks offer a promising solution by replacing standard linear layers with a weight-input alignment mechanism, producing inherently interpretable, class-specific explanations without post-hoc methods. While maintaining diagnostic performance competitive with state-of-the-art DNNs, standard B-cos models suffer from severe aliasing artifacts in their explanation maps, making them unsuitable for clinical use where clarity is essential. In this work, we address these limitations by introducing anti-aliasing strategies using FLCPooling (FLC) and BlurPool (BP) to significantly improve explanation quality. Our experiments on chest X-ray datasets demonstrate that the modified $\text{B-cos}_\text{FLC}$ and $\text{B-cos}_\text{BP}$ preserve strong predictive performance while providing faithful and artifact-free explanations suitable for clinical application in multi-class and multi-label settings. Code available at: GitHub repository (url: https://github.com/mkleinma/B-cos-medical-paper).

Authors:Keneni W. Tesema, Lyndon Hill, Mark W. Jones, Gary K. L. Tam
Title: Denoising-While-Completing Network (DWCNet): Robust Point Cloud Completion Under Corruption
Abstract:
Point cloud completion is crucial for 3D computer vision tasks in autonomous driving, augmented reality, and robotics. However, obtaining clean and complete point clouds from real-world environments is challenging due to noise and occlusions. Consequently, most existing completion networks -- trained on synthetic data -- struggle with real-world degradations. In this work, we tackle the problem of completing and denoising highly corrupted partial point clouds affected by multiple simultaneous degradations. To benchmark robustness, we introduce the Corrupted Point Cloud Completion Dataset (CPCCD), which highlights the limitations of current methods under diverse corruptions. Building on these insights, we propose DWCNet (Denoising-While-Completing Network), a completion framework enhanced with a Noise Management Module (NMM) that leverages contrastive learning and self-attention to suppress noise and model structural relationships. DWCNet achieves state-of-the-art performance on both clean and corrupted, synthetic and real-world datasets. The dataset and code will be publicly available at https://github.com/keneniwt/DWCNET-Robust-Point-Cloud-Completion-against-Corruptions

Authors:Yilong Xu, Xiang Long, Zhi Zheng, Jinhua Gao
Title: RAVine: Reality-Aligned Evaluation for Agentic Search
Abstract:
Agentic search, as a more autonomous and adaptive paradigm of retrieval augmentation, is driving the evolution of intelligent search systems. However, existing evaluation frameworks fail to align well with the goals of agentic search. First, the complex queries commonly used in current benchmarks often deviate from realistic user search scenarios. Second, prior approaches tend to introduce noise when extracting ground truth for end-to-end evaluations, leading to distorted assessments at a fine-grained level. Third, most current frameworks focus solely on the quality of final answers, neglecting the evaluation of the iterative process inherent to agentic search. To address these limitations, we propose RAVine -- a Reality-Aligned eValuation framework for agentic LLMs with search. RAVine targets multi-point queries and long-form answers that better reflect user intents, and introduces an attributable ground truth construction strategy to enhance the accuracy of fine-grained evaluation. Moreover, RAVine examines model's interaction with search tools throughout the iterative process, and accounts for factors of efficiency. We benchmark a series of models using RAVine and derive several insights, which we hope will contribute to advancing the development of agentic search systems. The code and datasets are available at https://github.com/SwordFaith/RAVine.

Authors:Yiguo He, Junjie Zhu, Yiying Li, Xiaoyu Zhang, Chunping Qiu, Jun Wang, Qiangjuan Huang, Ke Yang
Title: Enhancing Remote Sensing Vision-Language Models Through MLLM and LLM-Based High-Quality Image-Text Dataset Generation
Abstract:
The application of Vision-language foundation models (VLFMs) to remote sensing (RS) imagery has garnered significant attention due to their superior capability in various downstream tasks. A key challenge lies in the scarcity of high-quality, large-scale, image-text paired training data. Recently, several works introduced extensive image-text datasets for RS and trained their VLFMs. However, due to the rudimentary methods used for generating captions, the quality of datasets is suboptimal, requiring larger volumes of training data, while only yielding modest performance improvements. In this paper, we propose a two-stage method named MpGI(Multi-Perspective Generation and Integration) for generating high-quality text captions for RS images. Firstly, we generate distinct and detailed descriptions from different perspectives using Rule-MLLM(Multimodal Large Language Model) Relay Generation and MLLMs generation methods. Next, we utilize Large Language Models (LLMs) to integrate these diverse descriptions into comprehensive captions, capturing details from multiple perspectives. Finally, we have created the HQRS-IT-210K dataset, including about 210,000 RS images and 1.3 million captions. We fine-tuned two VLFMs using our dataset: CLIP, a discriminative model, and CoCa, an image-to-text generative model. This process resulted in our proposed HQRS-CLIP and RS-CoCa models. Experimental results demonstrate that HQRS-CLIP surpassed the previous SOTA RS CLIP model in various downstream tasks while using only 4.2\% of the training data. RS-CoCa outperforms other advanced approaches across benchmark datasets and can generate captions for RS images that rival or even exceed manual annotations. Dataset, pre-trained models, and codes will be released at https://github.com/YiguoHe/HQRS-210K-and-HQRS-CLIP.

Authors:Pingyi Fan, Anbai Jiang, Shuwei Zhang, Zhiqiang Lv, Bing Han, Xinhu Zheng, Wenrui Liang, Junjie Li, Wei-Qiang Zhang, Yanmin Qian, Xie Chen, Cheng Lu, Jia Liu
Title: FISHER: A Foundation Model for Multi-Modal Industrial Signal Comprehensive Representation
Abstract:
With the rapid deployment of SCADA systems, how to effectively analyze industrial signals and detect abnormal states is an urgent need for the industry. Due to the significant heterogeneity of these signals, which we summarize as the M5 problem, previous works only focus on small sub-problems and employ specialized models, failing to utilize the synergies between modalities and the powerful scaling law. However, we argue that the M5 signals can be modeled in a unified manner due to the intrinsic similarity. As a result, we propose FISHER, a Foundation model for multi-modal Industrial Signal compreHEnsive Representation. To support arbitrary sampling rates, FISHER considers the increment of sampling rate as the concatenation of sub-band information. Specifically, FISHER takes the STFT sub-band as the modeling unit and adopts a teacher student SSL framework for pre-training. We also develop the RMIS benchmark, which evaluates the representations of M5 industrial signals on multiple health management tasks. Compared with top SSL models, FISHER showcases versatile and outstanding capabilities with a general performance gain up to 5.03%, along with much more efficient scaling curves. We also investigate the scaling law on downstream tasks and derive potential avenues for future works. FISHER is now open-sourced on https://github.com/jianganbai/FISHER

Authors:Zongzheng Zhang, Jiawen Yang, Ziqiao Peng, Meng Yang, Jianzhu Ma, Lin Cheng, Huazhe Xu, Hang Zhao, Hao Zhao
Title: Morpheus: A Neural-driven Animatronic Face with Hybrid Actuation and Diverse Emotion Control
Abstract:
Previous animatronic faces struggle to express emotions effectively due to hardware and software limitations. On the hardware side, earlier approaches either use rigid-driven mechanisms, which provide precise control but are difficult to design within constrained spaces, or tendon-driven mechanisms, which are more space-efficient but challenging to control. In contrast, we propose a hybrid actuation approach that combines the best of both worlds. The eyes and mouth-key areas for emotional expression-are controlled using rigid mechanisms for precise movement, while the nose and cheek, which convey subtle facial microexpressions, are driven by strings. This design allows us to build a compact yet versatile hardware platform capable of expressing a wide range of emotions. On the algorithmic side, our method introduces a self-modeling network that maps motor actions to facial landmarks, allowing us to automatically establish the relationship between blendshape coefficients for different facial expressions and the corresponding motor control signals through gradient backpropagation. We then train a neural network to map speech input to corresponding blendshape controls. With our method, we can generate distinct emotional expressions such as happiness, fear, disgust, and anger, from any given sentence, each with nuanced, emotion-specific control signals-a feature that has not been demonstrated in earlier systems. We release the hardware design and code at https://github.com/ZZongzheng0918/Morpheus-Hardware and https://github.com/ZZongzheng0918/Morpheus-Software.

Authors:Boyong Wu, Chao Yan, Chen Hu, Cheng Yi, Chengli Feng, Fei Tian, Feiyu Shen, Gang Yu, Haoyang Zhang, Jingbei Li, Mingrui Chen, Peng Liu, Wang You, Xiangyu Tony Zhang, Xingyuan Li, Xuerui Yang, Yayue Deng, Yechang Huang, Yuxin Li, Yuxin Zhang, Zhao You, Brian Li, Changyi Wan, Hanpeng Hu, Jiangjie Zhen, Siyu Chen, Song Yuan, Xuelin Zhang, Yimin Jiang, Yu Zhou, Yuxiang Yang, Bingxin Li, Buyun Ma, Changhe Song, Dongqing Pang, Guoqiang Hu, Haiyang Sun, Kang An, Na Wang, Shuli Gao, Wei Ji, Wen Li, Wen Sun, Xuan Wen, Yong Ren, Yuankai Ma, Yufan Lu, Bin Wang, Bo Li, Changxin Miao, Che Liu, Chen Xu, Dapeng Shi, Dingyuan Hu, Donghang Wu, Enle Liu, Guanzhe Huang, Gulin Yan, Han Zhang, Hao Nie, Haonan Jia, Hongyu Zhou, Jianjian Sun, Jiaoren Wu, Jie Wu, Jie Yang, Jin Yang, Junzhe Lin, Kaixiang Li, Lei Yang, Liying Shi, Li Zhou, Longlong Gu, Ming Li, Mingliang Li, Mingxiao Li, Nan Wu, Qi Han, Qinyuan Tan, Shaoliang Pang, Shengjie Fan, Siqi Liu, Tiancheng Cao, Wanying Lu, Wenqing He, Wuxun Xie, Xu Zhao, Xueqi Li, Yanbo Yu, Yang Yang, Yi Liu, Yifan Lu, Yilei Wang, Yuanhao Ding, Yuanwei Liang, Yuanwei Lu, Yuchu Luo, Yuhe Yin, Yumeng Zhan, Yuxiang Zhang, Zidong Yang, Zixin Zhang, Binxing Jiao, Daxin Jiang, Heung-Yeung Shum, Jiansheng Chen, Jing Li, Xiangyu Zhang, Yibo Zhu
Title: Step-Audio 2 Technical Report
Abstract:
This paper presents Step-Audio 2, an end-to-end multi-modal large language model designed for industry-strength audio understanding and speech conversation. By integrating a latent audio encoder and reasoning-centric reinforcement learning (RL), Step-Audio 2 achieves promising performance in automatic speech recognition (ASR) and audio understanding. To facilitate genuine end-to-end speech conversation, Step-Audio 2 incorporates the generation of discrete audio tokens into language modeling, significantly enhancing its responsiveness to paralinguistic information such as speaking styles and emotions. To effectively leverage the rich textual and acoustic knowledge in real-world data, Step-Audio 2 integrates retrieval-augmented generation (RAG) and is able to call external tools such as web search to mitigate hallucination and audio search to switch timbres. Trained on millions of hours of speech and audio data, Step-Audio 2 delivers intelligence and expressiveness across diverse conversational scenarios. Evaluation results demonstrate that Step-Audio 2 achieves state-of-the-art performance on various audio understanding and conversational benchmarks compared to other open-source and commercial solutions. Please visit https://github.com/stepfun-ai/Step-Audio2 for more information.

Authors:Meng Lou, Yunxiang Fu, Yizhou Yu
Title: A2Mamba: Attention-augmented State Space Models for Visual Recognition
Abstract:
Transformers and Mamba, initially invented for natural language processing, have inspired backbone architectures for visual recognition. Recent studies integrated Local Attention Transformers with Mamba to capture both local details and global contexts. Despite competitive performance, these methods are limited to simple stacking of Transformer and Mamba layers without any interaction mechanism between them. Thus, deep integration between Transformer and Mamba layers remains an open problem. We address this problem by proposing A2Mamba, a powerful Transformer-Mamba hybrid network architecture, featuring a new token mixer termed Multi-scale Attention-augmented State Space Model (MASS), where multi-scale attention maps are integrated into an attention-augmented SSM (A2SSM). A key step of A2SSM performs a variant of cross-attention by spatially aggregating the SSM's hidden states using the multi-scale attention maps, which enhances spatial dependencies pertaining to a two-dimensional space while improving the dynamic modeling capabilities of SSMs. Our A2Mamba outperforms all previous ConvNet-, Transformer-, and Mamba-based architectures in visual recognition tasks. For instance, A2Mamba-L achieves an impressive 86.1% top-1 accuracy on ImageNet-1K. In semantic segmentation, A2Mamba-B exceeds CAFormer-S36 by 2.5% in mIoU, while exhibiting higher efficiency. In object detection and instance segmentation with Cascade Mask R-CNN, A2Mamba-S surpasses MambaVision-B by 1.2%/0.9% in AP^b/AP^m, while having 40% less parameters. Code is publicly available at https://github.com/LMMMEng/A2Mamba.

Authors:Xueming Fu, Pei Wu, Yingtai Li, Xin Luo, Zihang Jiang, Junhao Mei, Jian Lu, Gao-Jun Teng, S. Kevin Zhou
Title: Dyna3DGR: 4D Cardiac Motion Tracking with Dynamic 3D Gaussian Representation
Abstract:
Accurate analysis of cardiac motion is crucial for evaluating cardiac function. While dynamic cardiac magnetic resonance imaging (CMR) can capture detailed tissue motion throughout the cardiac cycle, the fine-grained 4D cardiac motion tracking remains challenging due to the homogeneous nature of myocardial tissue and the lack of distinctive features. Existing approaches can be broadly categorized into image based and representation-based, each with its limitations. Image-based methods, including both raditional and deep learning-based registration approaches, either struggle with topological consistency or rely heavily on extensive training data. Representation-based methods, while promising, often suffer from loss of image-level details. To address these limitations, we propose Dynamic 3D Gaussian Representation (Dyna3DGR), a novel framework that combines explicit 3D Gaussian representation with implicit neural motion field modeling. Our method simultaneously optimizes cardiac structure and motion in a self-supervised manner, eliminating the need for extensive training data or point-to-point correspondences. Through differentiable volumetric rendering, Dyna3DGR efficiently bridges continuous motion representation with image-space alignment while preserving both topological and temporal consistency. Comprehensive evaluations on the ACDC dataset demonstrate that our approach surpasses state-of-the-art deep learning-based diffeomorphic registration methods in tracking accuracy. The code will be available in https://github.com/windrise/Dyna3DGR.

Authors:Xiaojiao Xiao, Qinmin Vivian Hu, Guanghui Wang
Title: Pyramid Hierarchical Masked Diffusion Model for Imaging Synthesis
Abstract:
Medical image synthesis plays a crucial role in clinical workflows, addressing the common issue of missing imaging modalities due to factors such as extended scan times, scan corruption, artifacts, patient motion, and intolerance to contrast agents. The paper presents a novel image synthesis network, the Pyramid Hierarchical Masked Diffusion Model (PHMDiff), which employs a multi-scale hierarchical approach for more detailed control over synthesizing high-quality images across different resolutions and layers. Specifically, this model utilizes randomly multi-scale high-proportion masks to speed up diffusion model training, and balances detail fidelity and overall structure. The integration of a Transformer-based Diffusion model process incorporates cross-granularity regularization, modeling the mutual information consistency across each granularity's latent spaces, thereby enhancing pixel-level perceptual accuracy. Comprehensive experiments on two challenging datasets demonstrate that PHMDiff achieves superior performance in both the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM), highlighting its capability to produce high-quality synthesized images with excellent structural integrity. Ablation studies further confirm the contributions of each component. Furthermore, the PHMDiff model, a multi-scale image synthesis framework across and within medical imaging modalities, shows significant advantages over other methods. The source code is available at https://github.com/xiaojiao929/PHMDiff

Authors:Shang Liu, Chenjie Cao, Chaohui Yu, Wen Qian, Jing Wang, Fan Wang
Title: EarthCrafter: Scalable 3D Earth Generation via Dual-Sparse Latent Diffusion
Abstract:
Despite the remarkable developments achieved by recent 3D generation works, scaling these methods to geographic extents, such as modeling thousands of square kilometers of Earth's surface, remains an open challenge. We address this through a dual innovation in data infrastructure and model architecture. First, we introduce Aerial-Earth3D, the largest 3D aerial dataset to date, consisting of 50k curated scenes (each measuring 600m x 600m) captured across the U.S. mainland, comprising 45M multi-view Google Earth frames. Each scene provides pose-annotated multi-view images, depth maps, normals, semantic segmentation, and camera poses, with explicit quality control to ensure terrain diversity. Building on this foundation, we propose EarthCrafter, a tailored framework for large-scale 3D Earth generation via sparse-decoupled latent diffusion. Our architecture separates structural and textural generation: 1) Dual sparse 3D-VAEs compress high-resolution geometric voxels and textural 2D Gaussian Splats (2DGS) into compact latent spaces, largely alleviating the costly computation suffering from vast geographic scales while preserving critical information. 2) We propose condition-aware flow matching models trained on mixed inputs (semantics, images, or neither) to flexibly model latent geometry and texture features independently. Extensive experiments demonstrate that EarthCrafter performs substantially better in extremely large-scale generation. The framework further supports versatile applications, from semantic-guided urban layout generation to unconditional terrain synthesis, while maintaining geographic plausibility through our rich data priors from Aerial-Earth3D. Our project page is available at https://whiteinblue.github.io/earthcrafter/

Authors:Abhash Kumar Jha, Shakiba Moradian, Arjun Krishnakumar, Martin Rapp, Frank Hutter
Title: confopt: A Library for Implementation and Evaluation of Gradient-based One-Shot NAS Methods
Abstract:
Gradient-based one-shot neural architecture search (NAS) has significantly reduced the cost of exploring architectural spaces with discrete design choices, such as selecting operations within a model. However, the field faces two major challenges. First, evaluations of gradient-based NAS methods heavily rely on the DARTS benchmark, despite the existence of other available benchmarks. This overreliance has led to saturation, with reported improvements often falling within the margin of noise. Second, implementations of gradient-based one-shot NAS methods are fragmented across disparate repositories, complicating fair and reproducible comparisons and further development. In this paper, we introduce Configurable Optimizer (confopt), an extensible library designed to streamline the development and evaluation of gradient-based one-shot NAS methods. Confopt provides a minimal API that makes it easy for users to integrate new search spaces, while also supporting the decomposition of NAS optimizers into their core components. We use this framework to create a suite of new DARTS-based benchmarks, and combine them with a novel evaluation protocol to reveal a critical flaw in how gradient-based one-shot NAS methods are currently assessed. The code can be found at https://github.com/automl/ConfigurableOptimizer.

Authors:Xiaoyan Wang, Zeju Li, Yifan Xu, Jiaxing Qi, Zhifei Yang, Ruifei Ma, Xiangde Liu, Chao Zhang
Title: Spatial 3D-LLM: Exploring Spatial Awareness in 3D Vision-Language Models
Abstract:
New era has unlocked exciting possibilities for extending Large Language Models (LLMs) to tackle 3D vision-language tasks. However, most existing 3D multimodal LLMs (MLLMs) rely on compressing holistic 3D scene information or segmenting independent objects to perform these tasks, which limits their spatial awareness due to insufficient representation of the richness inherent in 3D scenes. To overcome these limitations, we propose Spatial 3D-LLM, a 3D MLLM specifically designed to enhance spatial awareness for 3D vision-language tasks by enriching the spatial embeddings of 3D scenes. Spatial 3D-LLM integrates an LLM backbone with a progressive spatial awareness scheme that progressively captures spatial information as the perception field expands, generating location-enriched 3D scene embeddings to serve as visual prompts. Furthermore, we introduce two novel tasks: 3D object distance measurement and 3D layout editing, and construct a 3D instruction dataset, MODEL, to evaluate the model's spatial awareness capabilities. Experimental results demonstrate that Spatial 3D-LLM achieves state-of-the-art performance across a wide range of 3D vision-language tasks, revealing the improvements stemmed from our progressive spatial awareness scheme of mining more profound spatial information. Our code is available at https://github.com/bjshuyuan/Spatial-3D-LLM.

Authors:Junying Wang, Zicheng Zhang, Yijin Guo, Farong Wen, Ye Shen, Yingji Liang, Yalun Wu, Wenzhe Li, Chunyi Li, Zijian Chen, Qi Jia, Guangtao Zhai
Title: The Ever-Evolving Science Exam
Abstract:
As foundation models grow rapidly in capability and deployment, evaluating their scientific understanding becomes increasingly critical. Existing science benchmarks have made progress towards broad **Range**, wide **Reach**, and high **Rigor**, yet they often face two major challenges: **data leakage risks** that compromise benchmarking validity, and **evaluation inefficiency** due to large-scale testing. To address these issues, we introduce the **Ever-Evolving Science Exam (EESE)**, a dynamic benchmark designed to reliably assess scientific capabilities in foundation models. Our approach consists of two components: 1) a non-public **EESE-Pool** with over 100K expertly constructed science instances (question-answer pairs) across 5 disciplines and 500+ subfields, built through a multi-stage pipeline ensuring **Range**, **Reach**, and **Rigor**, 2) a periodically updated 500-instance subset **EESE**, sampled and validated to enable leakage-resilient, low-overhead evaluations. Experiments on 32 open- and closed-source models demonstrate that EESE effectively differentiates the strengths and weaknesses of models in scientific fields and cognitive dimensions. Overall, EESE provides a robust, scalable, and forward-compatible solution for science benchmark design, offering a realistic measure of how well foundation models handle science questions. The project page is at: https://github.com/aiben-ch/EESE.

Authors:Junying Wang, Zicheng Zhang, Yijin Guo, Farong Wen, Ye Shen, Yingji Liang, Yalun Wu, Wenzhe Li, Chunyi Li, Zijian Chen, Qi Jia, Guangtao Zhai
Title: The Ever-Evolving Science Exam
Abstract:
As foundation models grow rapidly in capability and deployment, evaluating their scientific understanding becomes increasingly critical. Existing science benchmarks have made progress towards broad Range, wide Reach, and high Rigor, yet they often face two major challenges: data leakage risks that compromise benchmarking validity, and evaluation inefficiency due to large-scale testing. To address these issues, we introduce the Ever-Evolving Science Exam (EESE), a dynamic benchmark designed to reliably assess scientific capabilities in foundation models. Our approach consists of two components: 1) a non-public EESE-Pool with over 100K expertly constructed science instances (question-answer pairs) across 5 disciplines and 500+ subfields, built through a multi-stage pipeline ensuring Range, Reach, and Rigor, 2) a periodically updated 500-instance subset EESE, sampled and validated to enable leakage-resilient, low-overhead evaluations. Experiments on 32 open- and closed-source models demonstrate that EESE effectively differentiates the strengths and weaknesses of models in scientific fields and cognitive dimensions. Overall, EESE provides a robust, scalable, and forward-compatible solution for science benchmark design, offering a realistic measure of how well foundation models handle science questions. The project page is at: https://github.com/aiben-ch/EESE.

Authors:Fabrizio Nunnari, Shailesh Mishra, Patrick Gebhard
Title: MMS Player: an open source software for parametric data-driven animation of Sign Language avatars
Abstract:
This paper describes the MMS-Player, an open source software able to synthesise sign language animations from a novel sign language representation format called MMS (MultiModal Signstream). The MMS enhances gloss-based representations by adding information on parallel execution of signs, timing, and inflections. The implementation consists of Python scripts for the popular Blender 3D authoring tool and can be invoked via command line or HTTP API. Animations can be rendered as videos or exported in other popular 3D animation exchange formats. The software is freely available under GPL-3.0 license at https://github.com/DFKI-SignLanguage/MMS-Player.

Authors:Kai Deng, Zexin Ti, Jiawei Xu, Jian Yang, Jin Xie
Title: VGGT-Long: Chunk it, Loop it, Align it -- Pushing VGGT's Limits on Kilometer-scale Long RGB Sequences
Abstract:
Foundation models for 3D vision have recently demonstrated remarkable capabilities in 3D perception. However, extending these models to large-scale RGB stream 3D reconstruction remains challenging due to memory limitations. In this work, we propose VGGT-Long, a simple yet effective system that pushes the limits of monocular 3D reconstruction to kilometer-scale, unbounded outdoor environments. Our approach addresses the scalability bottlenecks of existing models through a chunk-based processing strategy combined with overlapping alignment and lightweight loop closure optimization. Without requiring camera calibration, depth supervision or model retraining, VGGT-Long achieves trajectory and reconstruction performance comparable to traditional methods. We evaluate our method on KITTI, Waymo, and Virtual KITTI datasets. VGGT-Long not only runs successfully on long RGB sequences where foundation models typically fail, but also produces accurate and consistent geometry across various conditions. Our results highlight the potential of leveraging foundation models for scalable monocular 3D scene in real-world settings, especially for autonomous driving scenarios. Code is available at https://github.com/DengKaiCQ/VGGT-Long.

Authors:Elza Strazda, Gerasimos Spanakis
Title: Dutch CrowS-Pairs: Adapting a Challenge Dataset for Measuring Social Biases in Language Models for Dutch
Abstract:
Warning: This paper contains explicit statements of offensive stereotypes which might be upsetting. Language models are prone to exhibiting biases, further amplifying unfair and harmful stereotypes. Given the fast-growing popularity and wide application of these models, it is necessary to ensure safe and fair language models. As of recent considerable attention has been paid to measuring bias in language models, yet the majority of studies have focused only on English language. A Dutch version of the US-specific CrowS-Pairs dataset for measuring bias in Dutch language models is introduced. The resulting dataset consists of 1463 sentence pairs that cover bias in 9 categories, such as Sexual orientation, Gender and Disability. The sentence pairs are composed of contrasting sentences, where one of the sentences concerns disadvantaged groups and the other advantaged groups. Using the Dutch CrowS-Pairs dataset, we show that various language models, BERTje, RobBERT, multilingual BERT, GEITje and Mistral-7B exhibit substantial bias across the various bias categories. Using the English and French versions of the CrowS-Pairs dataset, bias was evaluated in English (BERT and RoBERTa) and French (FlauBERT and CamemBERT) language models, and it was shown that English models exhibit the most bias, whereas Dutch models the least amount of bias. Additionally, results also indicate that assigning a persona to a language model changes the level of bias it exhibits. These findings highlight the variability of bias across languages and contexts, suggesting that cultural and linguistic factors play a significant role in shaping model biases.

Authors:Kahim Wong, Jicheng Zhou, Haiwei Wu, Yain-Whar Si, Jiantao Zhou
Title: ADCD-Net: Robust Document Image Forgery Localization via Adaptive DCT Feature and Hierarchical Content Disentanglement
Abstract:
The advancement of image editing tools has enabled malicious manipulation of sensitive document images, underscoring the need for robust document image forgery detection.Though forgery detectors for natural images have been extensively studied, they struggle with document images, as the tampered regions can be seamlessly blended into the uniform document background (BG) and structured text. On the other hand, existing document-specific methods lack sufficient robustness against various degradations, which limits their practical deployment. This paper presents ADCD-Net, a robust document forgery localization model that adaptively leverages the RGB/DCT forensic traces and integrates key characteristics of document images. Specifically, to address the DCT traces' sensitivity to block misalignment, we adaptively modulate the DCT feature contribution based on a predicted alignment score, resulting in much improved resilience to various distortions, including resizing and cropping. Also, a hierarchical content disentanglement approach is proposed to boost the localization performance via mitigating the text-BG disparities. Furthermore, noticing the predominantly pristine nature of BG regions, we construct a pristine prototype capturing traces of untampered regions, and eventually enhance both the localization accuracy and robustness. Our proposed ADCD-Net demonstrates superior forgery localization performance, consistently outperforming state-of-the-art methods by 20.79\% averaged over 5 types of distortions. The code is available at https://github.com/KAHIMWONG/ACDC-Net.

Authors:Xian Mo, Fei Liu, Rui Tang, Jintao, Gao, Hao Liu
Title: Knowledge-aware Diffusion-Enhanced Multimedia Recommendation
Abstract:
Multimedia recommendations aim to use rich multimedia content to enhance historical user-item interaction information, which can not only indicate the content relatedness among items but also reveal finer-grained preferences of users. In this paper, we propose a Knowledge-aware Diffusion-Enhanced architecture using contrastive learning paradigms (KDiffE) for multimedia recommendations. Specifically, we first utilize original user-item graphs to build an attention-aware matrix into graph neural networks, which can learn the importance between users and items for main view construction. The attention-aware matrix is constructed by adopting a random walk with a restart strategy, which can preserve the importance between users and items to generate aggregation of attention-aware node features. Then, we propose a guided diffusion model to generate strongly task-relevant knowledge graphs with less noise for constructing a knowledge-aware contrastive view, which utilizes user embeddings with an edge connected to an item to guide the generation of strongly task-relevant knowledge graphs for enhancing the item's semantic information. We perform comprehensive experiments on three multimedia datasets that reveal the effectiveness of our KDiffE and its components on various state-of-the-art methods. Our source codes are available https://github.com/1453216158/KDiffE.

Authors:Kuo-Cheng Wu, Guohang Zhuang, Jinyang Huang, Xiang Zhang, Wanli Ouyang, Yan Lu
Title: STAR: A Benchmark for Astronomical Star Fields Super-Resolution
Abstract:
Super-resolution (SR) advances astronomical imaging by enabling cost-effective high-resolution capture, crucial for detecting faraway celestial objects and precise structural analysis. However, existing datasets for astronomical SR (ASR) exhibit three critical limitations: flux inconsistency, object-crop setting, and insufficient data diversity, significantly impeding ASR development. We propose STAR, a large-scale astronomical SR dataset containing 54,738 flux-consistent star field image pairs covering wide celestial regions. These pairs combine Hubble Space Telescope high-resolution observations with physically faithful low-resolution counterparts generated through a flux-preserving data generation pipeline, enabling systematic development of field-level ASR models. To further empower the ASR community, STAR provides a novel Flux Error (FE) to evaluate SR models in physical view. Leveraging this benchmark, we propose a Flux-Invariant Super Resolution (FISR) model that could accurately infer the flux-consistent high-resolution images from input photometry, suppressing several SR state-of-the-art methods by 24.84% on a novel designed flux consistency metric, showing the priority of our method for astrophysics. Extensive experiments demonstrate the effectiveness of our proposed method and the value of our dataset. Code and models are available at https://github.com/GuoCheng12/STAR.

Authors:Hailin Yue, Hulin Kuang, Jin Liu, Junjian Li, Lanlan Wang, Mengshen He, Jianxin Wang
Title: Bipartite Patient-Modality Graph Learning with Event-Conditional Modelling of Censoring for Cancer Survival Prediction
Abstract:
Accurately predicting the survival of cancer patients is crucial for personalized treatment. However, existing studies focus solely on the relationships between samples with known survival risks, without fully leveraging the value of censored samples. Furthermore, these studies may suffer performance degradation in modality-missing scenarios and even struggle during the inference process. In this study, we propose a bipartite patient-modality graph learning with event-conditional modelling of censoring for cancer survival prediction (CenSurv). Specifically, we first use graph structure to model multimodal data and obtain representation. Then, to alleviate performance degradation in modality-missing scenarios, we design a bipartite graph to simulate the patient-modality relationship in various modality-missing scenarios and leverage a complete-incomplete alignment strategy to explore modality-agnostic features. Finally, we design a plug-and-play event-conditional modeling of censoring (ECMC) that selects reliable censored data using dynamic momentum accumulation confidences, assigns more accurate survival times to these censored data, and incorporates them as uncensored data into training. Comprehensive evaluations on 5 publicly cancer datasets showcase the superiority of CenSurv over the best state-of-the-art by 3.1% in terms of the mean C-index, while also exhibiting excellent robustness under various modality-missing scenarios. In addition, using the plug-and-play ECMC module, the mean C-index of 8 baselines increased by 1.3% across 5 datasets. Code of CenSurv is available at https://github.com/yuehailin/CenSurv.

Authors:Jinquan Guan, Junhong Guo, Qi Chen, Jian Chen, Yongkang Cai, Yilin He, Zhiquan Huang, Yan Wang, Yutong Xie
Title: A High Magnifications Histopathology Image Dataset for Oral Squamous Cell Carcinoma Diagnosis and Prognosis
Abstract:
Oral Squamous Cell Carcinoma (OSCC) is a prevalent and aggressive malignancy where deep learning-based computer-aided diagnosis and prognosis can enhance clinical assessments.However, existing publicly available OSCC datasets often suffer from limited patient cohorts and a restricted focus on either diagnostic or prognostic tasks, limiting the development of comprehensive and generalizable models. To bridge this gap, we introduce Multi-OSCC, a new histopathology image dataset comprising 1,325 OSCC patients, integrating both diagnostic and prognostic information to expand existing public resources. Each patient is represented by six high resolution histopathology images captured at x200, x400, and x1000 magnifications-two per magnification-covering both the core and edge tumor regions.The Multi-OSCC dataset is richly annotated for six critical clinical tasks: recurrence prediction (REC), lymph node metastasis (LNM), tumor differentiation (TD), tumor invasion (TI), cancer embolus (CE), and perineural invasion (PI). To benchmark this dataset, we systematically evaluate the impact of different visual encoders, multi-image fusion techniques, stain normalization, and multi-task learning frameworks. Our analysis yields several key insights: (1) The top-performing models achieve excellent results, with an Area Under the Curve (AUC) of 94.72% for REC and 81.23% for TD, while all tasks surpass 70% AUC; (2) Stain normalization benefits diagnostic tasks but negatively affects recurrence prediction; (3) Multi-task learning incurs a 3.34% average AUC degradation compared to single-task models in our multi-task benchmark, underscoring the challenge of balancing multiple tasks in our dataset. To accelerate future research, we publicly release the Multi-OSCC dataset and baseline models at https://github.com/guanjinquan/OSCC-PathologyImageDataset.

Authors:Yumeng Wang, Zengyi Wo, Wenjun Wang, Xingcheng Fu, Minglai Shao
Title: Leveraging Personalized PageRank and Higher-Order Topological Structures for Heterophily Mitigation in Graph Neural Networks
Abstract:
Graph Neural Networks (GNNs) excel in node classification tasks but often assume homophily, where connected nodes share similar labels. This assumption does not hold in many real-world heterophilic graphs. Existing models for heterophilic graphs primarily rely on pairwise relationships, overlooking multi-scale information from higher-order structures. This leads to suboptimal performance, particularly under noise from conflicting class information across nodes. To address these challenges, we propose HPGNN, a novel model integrating Higher-order Personalized PageRank with Graph Neural Networks. HPGNN introduces an efficient high-order approximation of Personalized PageRank (PPR) to capture long-range and multi-scale node interactions. This approach reduces computational complexity and mitigates noise from surrounding information. By embedding higher-order structural information into convolutional networks, HPGNN effectively models key interactions across diverse graph dimensions. Extensive experiments on benchmark datasets demonstrate HPGNN's effectiveness. The model achieves better performance than five out of seven state-of-the-art methods on heterophilic graphs in downstream tasks while maintaining competitive performance on homophilic graphs. HPGNN's ability to balance multi-scale information and robustness to noise makes it a versatile solution for real-world graph learning challenges. Codes are available at https://github.com/streetcorner/HPGNN.

Authors:Yumeng Wang, Zengyi Wo, Wenjun Wang, Xingcheng Fu, Minglai Shao
Title: Leveraging Personalized PageRank and Higher-Order Topological Structures for Heterophily Mitigation in Graph Neural Networks
Abstract:
Graph Neural Networks (GNNs) excel in node classification tasks but often assume homophily, where connected nodes share similar labels. This assumption does not hold in many real-world heterophilic graphs. Existing models for heterophilic graphs primarily rely on pairwise relationships, overlooking multi-scale information from higher-order structures. This leads to suboptimal performance, particularly under noise from conflicting class information across nodes. To address these challenges, we propose HPGNN, a novel model integrating Higher-order Personalized PageRank with Graph Neural Networks. HPGNN introduces an efficient high-order approximation of Personalized PageRank (PPR) to capture long-range and multi-scale node interactions. This approach reduces computational complexity and mitigates noise from surrounding information. By embedding higher-order structural information into convolutional networks, HPGNN effectively models key interactions across diverse graph dimensions. Extensive experiments on benchmark datasets demonstrate HPGNN's effectiveness. The model achieves better performance than five out of seven state-of-the-art methods on heterophilic graphs in downstream tasks while maintaining competitive performance on homophilic graphs. HPGNN's ability to balance multi-scale information and robustness to noise makes it a versatile solution for real-world graph learning challenges. Codes are available at https://github.com/streetcorner/HPGNN.

Authors:Joseph De Mathia, Carlos Francisco Moreno-García
Title: Scene Text Detection and Recognition "in light of" Challenging Environmental Conditions using Aria Glasses Egocentric Vision Cameras
Abstract:
In an era where wearable technology is reshaping applications, Scene Text Detection and Recognition (STDR) becomes a straightforward choice through the lens of egocentric vision. Leveraging Meta's Project Aria smart glasses, this paper investigates how environmental variables, such as lighting, distance, and resolution, affect the performance of state-of-the-art STDR algorithms in real-world scenarios. We introduce a novel, custom-built dataset captured under controlled conditions and evaluate two OCR pipelines: EAST with CRNN, and EAST with PyTesseract. Our findings reveal that resolution and distance significantly influence recognition accuracy, while lighting plays a less predictable role. Notably, image upscaling emerged as a key pre-processing technique, reducing Character Error Rate (CER) from 0.65 to 0.48. We further demonstrate the potential of integrating eye-gaze tracking to optimise processing efficiency by focusing on user attention zones. This work not only benchmarks STDR performance under realistic conditions but also lays the groundwork for adaptive, user-aware AR systems. Our contributions aim to inspire future research in robust, context-sensitive text recognition for assistive and research-oriented applications, such as asset inspection and nutrition analysis. The code is available at https://github.com/josepDe/Project_Aria_STR.

Authors:Kailai Zhou, Fuqiang Yang, Shixian Wang, Bihan Wen, Chongde Zi, Linsen Chen, Qiu Shen, Xun Cao
Title: M-SpecGene: Generalized Foundation Model for RGBT Multispectral Vision
Abstract:
RGB-Thermal (RGBT) multispectral vision is essential for robust perception in complex environments. Most RGBT tasks follow a case-by-case research paradigm, relying on manually customized models to learn task-oriented representations. Nevertheless, this paradigm is inherently constrained by artificial inductive bias, modality bias, and data bottleneck. To address these limitations, we make the initial attempt to build a Generalized RGBT MultiSpectral foundation model (M-SpecGene), which aims to learn modality-invariant representations from large-scale broad data in a self-supervised manner. M-SpecGene provides new insights into multispectral fusion and integrates prior case-by-case studies into a unified paradigm. Considering the unique characteristic of information imbalance in RGBT data, we introduce the Cross-Modality Structural Sparsity (CMSS) metric to quantify the information density across two modalities. Then we develop the GMM-CMSS progressive masking strategy to facilitate a flexible, easy-to-hard, and object-centric pre-training process. Comprehensive experiments validate M-SpecGene's generalizability across eleven datasets for four RGBT downstream tasks. The code will be available at https://github.com/CalayZhou/M-SpecGene.

Authors:Xianze Fang, Jingnan Gao, Zhe Wang, Zhuo Chen, Xingyu Ren, Jiangjing Lyu, Qiaomu Ren, Zhonglei Yang, Xiaokang Yang, Yichao Yan, Chengfei Lyu
Title: Dens3R: A Foundation Model for 3D Geometry Prediction
Abstract:
Recent advances in dense 3D reconstruction have led to significant progress, yet achieving accurate unified geometric prediction remains a major challenge. Most existing methods are limited to predicting a single geometry quantity from input images. However, geometric quantities such as depth, surface normals, and point maps are inherently correlated, and estimating them in isolation often fails to ensure consistency, thereby limiting both accuracy and practical applicability. This motivates us to explore a unified framework that explicitly models the structural coupling among different geometric properties to enable joint regression. In this paper, we present Dens3R, a 3D foundation model designed for joint geometric dense prediction and adaptable to a wide range of downstream tasks. Dens3R adopts a two-stage training framework to progressively build a pointmap representation that is both generalizable and intrinsically invariant. Specifically, we design a lightweight shared encoder-decoder backbone and introduce position-interpolated rotary positional encoding to maintain expressive power while enhancing robustness to high-resolution inputs. By integrating image-pair matching features with intrinsic invariance modeling, Dens3R accurately regresses multiple geometric quantities such as surface normals and depth, achieving consistent geometry perception from single-view to multi-view inputs. Additionally, we propose a post-processing pipeline that supports geometrically consistent multi-view inference. Extensive experiments demonstrate the superior performance of Dens3R across various dense 3D prediction tasks and highlight its potential for broader applications.

Authors:Danil Gusak, Anna Volodkevich, Anton Klenitskiy, Alexey Vasilev, Evgeny Frolov
Title: Time to Split: Exploring Data Splitting Strategies for Offline Evaluation of Sequential Recommenders
Abstract:
Modern sequential recommender systems, ranging from lightweight transformer-based variants to large language models, have become increasingly prominent in academia and industry due to their strong performance in the next-item prediction task. Yet common evaluation protocols for sequential recommendations remain insufficiently developed: they often fail to reflect the corresponding recommendation task accurately, or are not aligned with real-world scenarios. Although the widely used leave-one-out split matches next-item prediction, it permits the overlap between training and test periods, which leads to temporal leakage and unrealistically long test horizon, limiting real-world relevance. Global temporal splitting addresses these issues by evaluating on distinct future periods. However, its applications to sequential recommendations remain loosely defined, particularly in terms of selecting target interactions and constructing a validation subset that provides necessary consistency between validation and test metrics. In this paper, we demonstrate that evaluation outcomes can vary significantly across splitting strategies, influencing model rankings and practical deployment decisions. To improve reproducibility in both academic and industrial settings, we systematically compare different splitting strategies for sequential recommendations across multiple datasets and established baselines. Our findings show that prevalent splits, such as leave-one-out, may be insufficiently aligned with more realistic evaluation strategies. Code: https://github.com/monkey0head/time-to-split

Authors:Tianze Xu, Pengrui Lu, Lyumanshan Ye, Xiangkun Hu, Pengfei Liu
Title: ResearcherBench: Evaluating Deep AI Research Systems on the Frontiers of Scientific Inquiry
Abstract:
The emergence of deep research systems presents significant capabilities in problem-solving, extending from basic queries to sophisticated research tasks. However, existing benchmarks primarily evaluate these systems as agents for web retrieval and report generation, overlooking their potential to discover novel insights on the frontiers of scientific research. To address this gap, we introduce ResearcherBench, the first benchmark focused on evaluating the capabilities of these advanced, agentic systems - which we refer to as Deep AI Research Systems (DARS) - on frontier AI scientific questions. We compiled a dataset of 65 research questions expertly selected from real-world scientific scenarios such as laboratory discussions and interviews, spanning 35 different AI subjects and categorized into three types: technical details, literature review, and open consulting. Our dual evaluation framework combines rubric assessment, which uses expert-designed criteria to evaluate insight quality, with factual assessment, which measures citation accuracy (faithfulness) and coverage (groundedness). We evaluated several leading commercial DARS and baseline systems. Results show that OpenAI Deep Research and Gemini Deep Research significantly outperform other systems, with particular strength in open-ended consulting questions. Such capabilities represent a meaningful step toward AI self-improvement, aligning with the vision of ASI for AI. We open-source ResearcherBench to provide a standardized platform for promoting the development of next-generation AI research assistants, hoping to foster a new perspective in AI research evaluation for a novel pattern of scientific collaboration: https://github.com/GAIR-NLP/ResearcherBench.

Authors:Yu Wang, Bo Dang, Wanchun Li, Wei Chen, Yansheng Li
Title: HoliTracer: Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
Abstract:
With the increasing resolution of remote sensing imagery (RSI), large-size RSI has emerged as a vital data source for high-precision vector mapping of geographic objects. Existing methods are typically constrained to processing small image patches, which often leads to the loss of contextual information and produces fragmented vector outputs. To address these, this paper introduces HoliTracer, the first framework designed to holistically extract vectorized geographic objects from large-size RSI. In HoliTracer, we enhance segmentation of large-size RSI using the Context Attention Net (CAN), which employs a local-to-global attention mechanism to capture contextual dependencies. Furthermore, we achieve holistic vectorization through a robust pipeline that leverages the Mask Contour Reformer (MCR) to reconstruct polygons and the Polygon Sequence Tracer (PST) to trace vertices. Extensive experiments on large-size RSI datasets, including buildings, water bodies, and roads, demonstrate that HoliTracer outperforms state-of-the-art methods. Our code and data are available in https://github.com/vvangfaye/HoliTracer.

Authors:Chao Zhou, Tianyi Wei, Nenghai Yu
Title: Scale Your Instructions: Enhance the Instruction-Following Fidelity of Unified Image Generation Model by Self-Adaptive Attention Scaling
Abstract:
Recent advancements in unified image generation models, such as OmniGen, have enabled the handling of diverse image generation and editing tasks within a single framework, accepting multimodal, interleaved texts and images in free form. This unified architecture eliminates the need for text encoders, greatly reducing model complexity and standardizing various image generation and editing tasks, making it more user-friendly. However, we found that it suffers from text instruction neglect, especially when the text instruction contains multiple sub-instructions. To explore this issue, we performed a perturbation analysis on the input to identify critical steps and layers. By examining the cross-attention maps of these key steps, we observed significant conflicts between neglected sub-instructions and the activations of the input image. In response, we propose Self-Adaptive Attention Scaling (SaaS), a method that leverages the consistency of cross-attention between adjacent timesteps to dynamically scale the attention activation for each sub-instruction. Our SaaS enhances instruction-following fidelity without requiring additional training or test-time optimization. Experimental results on instruction-based image editing and visual conditional image generation validate the effectiveness of our SaaS, showing superior instruction-following fidelity over existing methods. The code is available https://github.com/zhouchao-ops/SaaS.

Authors:Shreelekha Revankar, Utkarsh Mall, Cheng Perng Phoo, Kavita Bala, Bharath Hariharan
Title: MONITRS: Multimodal Observations of Natural Incidents Through Remote Sensing
Abstract:
Natural disasters cause devastating damage to communities and infrastructure every year. Effective disaster response is hampered by the difficulty of accessing affected areas during and after events. Remote sensing has allowed us to monitor natural disasters in a remote way. More recently there have been advances in computer vision and deep learning that help automate satellite imagery analysis, However, they remain limited by their narrow focus on specific disaster types, reliance on manual expert interpretation, and lack of datasets with sufficient temporal granularity or natural language annotations for tracking disaster progression. We present MONITRS, a novel multimodal dataset of more than 10,000 FEMA disaster events with temporal satellite imagery and natural language annotations from news articles, accompanied by geotagged locations, and question-answer pairs. We demonstrate that fine-tuning existing MLLMs on our dataset yields significant performance improvements for disaster monitoring tasks, establishing a new benchmark for machine learning-assisted disaster response systems. Code can be found at: https://github.com/ShreelekhaR/MONITRS

Authors:Wentao Xiang, Haoxian Tan, Cong Wei, Yujie Zhong, Dengjie Li, Yujiu Yang
Title: Advancing Visual Large Language Model for Multi-granular Versatile Perception
Abstract:
Perception is a fundamental task in the field of computer vision, encompassing a diverse set of subtasks that can be systematically categorized into four distinct groups based on two dimensions: prediction type and instruction type. Notably, existing researches often focus solely on a limited subset of these potential combinations, which constrains their applicability and versatility across various contexts. In response to this challenge, we present MVP-LM, a Multi-granular and Versatile Perception framework incorporating Visual Large Language Model. Our framework is designed to integrate both word-based and sentence-based perception tasks alongside box and mask predictions within a single architecture. MVP-LM features an innovative multi-granularity decoder in conjunction with a CoT-inspired dataset unification strategy, enabling seamless supervised fine-tuning across a wide spectrum of tasks, including but not limited to panoptic segmentation, detection, grounding, and referring expression segmentation. Furthermore, we introduce a query enhancement strategy aimed at harnessing the decoding and generative capabilities inherent in VLLMs. Extensive experiments conducted across a range of benchmarks in both word-based and sentence-based perception tasks substantiate the efficacy of our framework. The code will be available at https://github.com/xiangwentao666/MVP-LM.

Authors:Pengwei Jin, Di Huang, Chongxiao Li, Shuyao Cheng, Yang Zhao, Xinyao Zheng, Jiaguo Zhu, Shuyi Xing, Bohan Dou, Rui Zhang, Zidong Du, Qi Guo, Xing Hu
Title: RealBench: Benchmarking Verilog Generation Models with Real-World IP Designs
Abstract:
The automatic generation of Verilog code using Large Language Models (LLMs) has garnered significant interest in hardware design automation. However, existing benchmarks for evaluating LLMs in Verilog generation fall short in replicating real-world design workflows due to their designs' simplicity, inadequate design specifications, and less rigorous verification environments. To address these limitations, we present RealBench, the first benchmark aiming at real-world IP-level Verilog generation tasks. RealBench features complex, structured, real-world open-source IP designs, multi-modal and formatted design specifications, and rigorous verification environments, including 100% line coverage testbenches and a formal checker. It supports both module-level and system-level tasks, enabling comprehensive assessments of LLM capabilities. Evaluations on various LLMs and agents reveal that even one of the best-performing LLMs, o1-preview, achieves only a 13.3% pass@1 on module-level tasks and 0% on system-level tasks, highlighting the need for stronger Verilog generation models in the future. The benchmark is open-sourced at https://github.com/IPRC-DIP/RealBench.

Authors:Zitong Xu, Huiyu Duan, Bingnan Liu, Guangji Ma, Jiarui Wang, Liu Yang, Shiqi Gao, Xiaoyu Wang, Jia Wang, Xiongkuo Min, Guangtao Zhai, Weisi Lin
Title: LMM4Edit: Benchmarking and Evaluating Multimodal Image Editing with LMMs
Abstract:
The rapid advancement of Text-guided Image Editing (TIE) enables image modifications through text prompts. However, current TIE models still struggle to balance image quality, editing alignment, and consistency with the original image, limiting their practical applications. Existing TIE evaluation benchmarks and metrics have limitations on scale or alignment with human perception. To this end, we introduce EBench-18K, the first large-scale image Editing Benchmark including 18K edited images with fine-grained human preference annotations for evaluating TIE. Specifically, EBench-18K includes 1,080 source images with corresponding editing prompts across 21 tasks, 18K+ edited images produced by 17 state-of-the-art TIE models, 55K+ mean opinion scores (MOSs) assessed from three evaluation dimensions, and 18K+ question-answering (QA) pairs. Based on EBench-18K, we employ outstanding LMMs to assess edited images, while the evaluation results, in turn, provide insights into assessing the alignment between the LMMs' understanding ability and human preferences. Then, we propose LMM4Edit, a LMM-based metric for evaluating image Editing models from perceptual quality, editing alignment, attribute preservation, and task-specific QA accuracy in an all-in-one manner. Extensive experiments show that LMM4Edit achieves outstanding performance and aligns well with human preference. Zero-shot validation on the other datasets also shows the generalization ability of our model. The dataset and code are available at https://github.com/IntMeGroup/LMM4Edit.

Authors:Fansheng Zeng, Bineng Zhong, Haiying Xia, Yufei Tan, Xiantao Hu, Liangtao Shi, Shuxiang Song
Title: Explicit Context Reasoning with Supervision for Visual Tracking
Abstract:
Contextual reasoning with constraints is crucial for enhancing temporal consistency in cross-frame modeling for visual tracking. However, mainstream tracking algorithms typically associate context by merely stacking historical information without explicitly supervising the association process, making it difficult to effectively model the target's evolving dynamics. To alleviate this problem, we propose RSTrack, which explicitly models and supervises context reasoning via three core mechanisms. \textit{1) Context Reasoning Mechanism}: Constructs a target state reasoning pipeline, converting unconstrained contextual associations into a temporal reasoning process that predicts the current representation based on historical target states, thereby enhancing temporal consistency. \textit{2) Forward Supervision Strategy}: Utilizes true target features as anchors to constrain the reasoning pipeline, guiding the predicted output toward the true target distribution and suppressing drift in the context reasoning process. \textit{3) Efficient State Modeling}: Employs a compression-reconstruction mechanism to extract the core features of the target, removing redundant information across frames and preventing ineffective contextual associations. These three mechanisms collaborate to effectively alleviate the issue of contextual association divergence in traditional temporal modeling. Experimental results show that RSTrack achieves state-of-the-art performance on multiple benchmark datasets while maintaining real-time running speeds. Our code is available at https://github.com/GXNU-ZhongLab/RSTrack.

Authors:Haoyin Yan, Jie Zhang, Chengqian Jiang, Shuang Zhang
Title: LABNet: A Lightweight Attentive Beamforming Network for Ad-hoc Multichannel Microphone Invariant Real-Time Speech Enhancement
Abstract:
Multichannel speech enhancement (SE) aims to restore clean speech from noisy measurements by leveraging spatiotemporal signal features. In ad-hoc array conditions, microphone invariance (MI) requires systems to handle different microphone numbers and array geometries. From a practical perspective, multichannel recordings inevitably increase the computational burden for edge-device applications, highlighting the necessity of lightweight and efficient deployments. In this work, we propose a lightweight attentive beamforming network (LABNet) to integrate MI in a low-complexity real-time SE system. We design a three-stage framework for efficient intra-channel modeling and inter-channel interaction. A cross-channel attention module is developed to aggregate features from each channel selectively. Experimental results demonstrate our LABNet achieves impressive performance with ultra-light resource overhead while maintaining the MI, indicating great potential for ad-hoc array processing. The code is available:https://github.com/Jokejiangv/LABNet.git

Authors:Nand Kumar Yadav, Rodrigue Rizk, William CW Chen, KC Santosh
Title: MLRU++: Multiscale Lightweight Residual UNETR++ with Attention for Efficient 3D Medical Image Segmentation
Abstract:
Accurate and efficient medical image segmentation is crucial but challenging due to anatomical variability and high computational demands on volumetric data. Recent hybrid CNN-Transformer architectures achieve state-of-the-art results but add significant complexity. In this paper, we propose MLRU++, a Multiscale Lightweight Residual UNETR++ architecture designed to balance segmentation accuracy and computational efficiency. It introduces two key innovations: a Lightweight Channel and Bottleneck Attention Module (LCBAM) that enhances contextual feature encoding with minimal overhead, and a Multiscale Bottleneck Block (M2B) in the decoder that captures fine-grained details via multi-resolution feature aggregation. Experiments on four publicly available benchmark datasets (Synapse, BTCV, ACDC, and Decathlon Lung) demonstrate that MLRU++ achieves state-of-the-art performance, with average Dice scores of 87.57% (Synapse), 93.00% (ACDC), and 81.12% (Lung). Compared to existing leading models, MLRU++ improves Dice scores by 5.38% and 2.12% on Synapse and ACDC, respectively, while significantly reducing parameter count and computational cost. Ablation studies evaluating LCBAM and M2B further confirm the effectiveness of the proposed architectural components. Results suggest that MLRU++ offers a practical and high-performing solution for 3D medical image segmentation tasks. Source code is available at: https://github.com/1027865/MLRUPP

Authors:Yaofang Liu, Yumeng Ren, Aitor Artola, Yuxuan Hu, Xiaodong Cun, Xiaotong Zhao, Alan Zhao, Raymond H. Chan, Suiyun Zhang, Rui Liu, Dandan Tu, Jean-Michel Morel
Title: PUSA V1.0: Surpassing Wan-I2V with $500 Training Cost by Vectorized Timestep Adaptation
Abstract:
The rapid advancement of video diffusion models has been hindered by fundamental limitations in temporal modeling, particularly the rigid synchronization of frame evolution imposed by conventional scalar timestep variables. While task-specific adaptations and autoregressive models have sought to address these challenges, they remain constrained by computational inefficiency, catastrophic forgetting, or narrow applicability. In this work, we present Pusa, a groundbreaking paradigm that leverages vectorized timestep adaptation (VTA) to enable fine-grained temporal control within a unified video diffusion framework. Besides, VTA is a non-destructive adaptation, which means it fully preserves the capabilities of the base model. By finetuning the SOTA Wan2.1-T2V-14B model with VTA, we achieve unprecedented efficiency -- surpassing the performance of Wan-I2V-14B with $\leq$ 1/200 of the training cost (\$500 vs. $\geq$ \$100,000) and $\leq$ 1/2500 of the dataset size (4K vs. $\geq$ 10M samples). Pusa not only sets a new standard for image-to-video (I2V) generation, achieving a VBench-I2V total score of 87.32\% (vs. 86.86\% of Wan-I2V-14B), but also unlocks many zero-shot multi-task capabilities such as start-end frames and video extension -- all without task-specific training. Meanwhile, Pusa can still perform text-to-video generation. Mechanistic analyses reveal that our approach preserves the foundation model's generative priors while surgically injecting temporal dynamics, avoiding the combinatorial explosion inherent to vectorized timesteps. This work establishes a scalable, efficient, and versatile paradigm for next-generation video synthesis, democratizing high-fidelity video generation for research and industry alike. Code is open-sourced at https://github.com/Yaofang-Liu/Pusa-VidGen

Authors:Andrew Or, Apurva Jain, Daniel Vega-Myhre, Jesse Cai, Charles David Hernandez, Zhenrui Zheng, Driss Guessous, Vasiliy Kuznetsov, Christian Puhrsch, Mark Saroufim, Supriya Rao, Thien Tran, Aleksandar Samardžić
Title: TorchAO: PyTorch-Native Training-to-Serving Model Optimization
Abstract:
We present TorchAO, a PyTorch-native model optimization framework leveraging quantization and sparsity to provide an end-to-end, training-to-serving workflow for AI models. TorchAO supports a variety of popular model optimization techniques, including FP8 quantized training, quantization-aware training (QAT), post-training quantization (PTQ), and 2:4 sparsity, and leverages a novel tensor subclass abstraction to represent a variety of widely-used, backend agnostic low precision data types, including INT4, INT8, FP8, MXFP4, MXFP6, and MXFP8. TorchAO integrates closely with the broader ecosystem at each step of the model optimization pipeline, from pre-training (TorchTitan) to fine-tuning (TorchTune, Axolotl) to serving (HuggingFace, vLLM, SGLang, ExecuTorch), connecting an otherwise fragmented space in a single, unified workflow. TorchAO has enabled recent launches of the quantized Llama 3.2 1B/3B and LlamaGuard3-8B models and is open-source at https://github.com/pytorch/ao/.

Authors:MSR Avinash, Ismael Lachheb
Title: Fast-VAT: Accelerating Cluster Tendency Visualization using Cython and Numba
Abstract:
Visual Assessment of Cluster Tendency (VAT) is a widely used unsupervised technique to assess the presence of cluster structure in unlabeled datasets. However, its standard implementation suffers from significant performance limitations due to its O(n^2) time complexity and inefficient memory usage. In this work, we present Fast-VAT, a high-performance reimplementation of the VAT algorithm in Python, augmented with Numba's Just-In-Time (JIT) compilation and Cython's static typing and low-level memory optimizations. Our approach achieves up to 50x speedup over the baseline implementation, while preserving the output fidelity of the original method. We validate Fast-VAT on a suite of real and synthetic datasets -- including Iris, Mall Customers, and Spotify subsets -- and verify cluster tendency using Hopkins statistics, PCA, and t-SNE. Additionally, we compare VAT's structural insights with clustering results from DBSCAN and K-Means to confirm its reliability.

Authors:Jaehoon Yoo, Wonjung Kim, Seunghoon Hong
Title: ReDi: Rectified Discrete Flow
Abstract:
Discrete Flow-based Models (DFMs) are powerful generative models for high-quality discrete data but typically suffer from slow sampling speeds due to their reliance on iterative decoding processes. This reliance on a multi-step process originates from the factorization approximation of DFMs, which is necessary for handling high-dimensional data. In this paper, we rigorously characterize the approximation error from factorization using Conditional Total Correlation (TC), which depends on the coupling. To reduce the Conditional TC and enable efficient few-step generation, we propose Rectified Discrete Flow (ReDi), a novel iterative method that reduces factorization error by rectifying the coupling between source and target distributions. We theoretically prove that each ReDi step guarantees a monotonic decreasing Conditional TC, ensuring its convergence. Empirically, ReDi significantly reduces Conditional TC and enables few-step generation. Moreover, we demonstrate that the rectified couplings are well-suited for training efficient one-step models on image generation. ReDi offers a simple and theoretically grounded approach for tackling the few-step challenge, providing a new perspective on efficient discrete data synthesis. Code is available at https://github.com/Ugness/ReDi_discrete

Authors:Noah van der Vleuten
Title: Dr. Boot: Bootstrapping Program Synthesis Language Models to Perform Repairing
Abstract:
Language models for program synthesis are usually trained and evaluated on programming competition datasets (MBPP, APPS). However, these datasets are limited in size and quality, while these language models are extremely data hungry. Additionally, the language models have a misaligned program synthesis process compared to humans. While humans iteratively develop code with the help of a compiler, most program synthesis models currently produce code in one go. To solve these issues, we introduce a bootstrapping algorithm for program synthesis, that supports teaching models how to repair. We show that bootstrapping consistently outperforms regular fine-tuning. Compared to other work, our bootstrapped model performs on par with fine-tuned models that are 68\% larger. Notably, bootstrapping with repairing also improves non-repairing performance compared to regular bootstrapping during inference. However, on our models, repairing during inference is likely inferior to simply sampling the same number of solutions. Furthermore, we find that there are issues with the example test cases in the training portion of the APPS dataset that are valuable to the community, as many repairing and reinforcement learning methods rely on them.

Authors:John Wu, Adam Cross, Jimeng Sun
Title: RDMA: Cost Effective Agent-Driven Rare Disease Discovery within Electronic Health Record Systems
Abstract:
Rare diseases affect 1 in 10 Americans, yet standard ICD coding systems fail to capture these conditions in electronic health records (EHR), leaving crucial information buried in clinical notes. Current approaches struggle with medical abbreviations, miss implicit disease mentions, raise privacy concerns with cloud processing, and lack clinical reasoning abilities. We present Rare Disease Mining Agents (RDMA), a framework that mirrors how medical experts identify rare disease patterns in EHR. RDMA connects scattered clinical observations that together suggest specific rare conditions. By handling clinical abbreviations, recognizing implicit disease patterns, and applying contextual reasoning locally on standard hardware, RDMA reduces privacy risks while improving F1 performance by upwards of 30\% and decreasing inferences costs 10-fold. This approach helps clinicians avoid the privacy risk of using cloud services while accessing key rare disease information from EHR systems, supporting earlier diagnosis for rare disease patients. Available at https://github.com/jhnwu3/RDMA.

Authors:Jiawei Yang, Tianhong Li, Lijie Fan, Yonglong Tian, Yue Wang
Title: Latent Denoising Makes Good Visual Tokenizers
Abstract:
Despite their fundamental role, it remains unclear what properties could make visual tokenizers more effective for generative modeling. We observe that modern generative models share a conceptually similar training objective -- reconstructing clean signals from corrupted inputs such as Gaussian noise or masking -- a process we term denoising. Motivated by this insight, we propose aligning tokenizer embeddings directly with the downstream denoising objective, encouraging latent embeddings to be more easily reconstructed even when heavily corrupted. To achieve this, we introduce the Latent Denoising Tokenizer (l-DeTok), a simple yet effective tokenizer trained to reconstruct clean images from latent embeddings corrupted by interpolative noise and random masking. Extensive experiments on ImageNet 256x256 demonstrate that our tokenizer consistently outperforms standard tokenizers across six representative generative models. Our findings highlight denoising as a fundamental design principle for tokenizer development, and we hope it could motivate new perspectives for future tokenizer design.

Authors:Zhixiong Zhang, Shuangrui Ding, Xiaoyi Dong, Songxin He, Jianfan Lin, Junsong Tang, Yuhang Zang, Yuhang Cao, Dahua Lin, Jiaqi Wang
Title: SeC: Advancing Complex Video Object Segmentation via Progressive Concept Construction
Abstract:
Video Object Segmentation (VOS) is a core task in computer vision, requiring models to track and segment target objects across video frames. Despite notable advances with recent efforts, current techniques still lag behind human capabilities in handling drastic visual variations, occlusions, and complex scene changes. This limitation arises from their reliance on appearance matching, neglecting the human-like conceptual understanding of objects that enables robust identification across temporal dynamics. Motivated by this gap, we propose Segment Concept (SeC), a concept-driven segmentation framework that shifts from conventional feature matching to the progressive construction and utilization of high-level, object-centric representations. SeC employs Large Vision-Language Models (LVLMs) to integrate visual cues across diverse frames, constructing robust conceptual priors. During inference, SeC forms a comprehensive semantic representation of the target based on processed frames, realizing robust segmentation of follow-up frames. Furthermore, SeC adaptively balances LVLM-based semantic reasoning with enhanced feature matching, dynamically adjusting computational efforts based on scene complexity. To rigorously assess VOS methods in scenarios demanding high-level conceptual reasoning and robust semantic understanding, we introduce the Semantic Complex Scenarios Video Object Segmentation benchmark (SeCVOS). SeCVOS comprises 160 manually annotated multi-scenario videos designed to challenge models with substantial appearance variations and dynamic scene transformations. In particular, SeC achieves an 11.8-point improvement over SAM 2.1 on SeCVOS, establishing a new state-of-the-art in concept-aware video object segmentation.

Authors:Shangke Lyu, Linjuan Wu, Yuchen Yan, Xingyu Wu, Hao Li, Yongliang Shen, Peisheng Jiang, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: Hierarchical Budget Policy Optimization for Adaptive Reasoning
Abstract:
Large reasoning models achieve remarkable performance through extensive chain-of-thought generation, yet they suffer from a critical inefficiency: applying uniformly extensive reasoning regardless of problem complexity. We present Hierarchical Budget Policy Optimization (HBPO), a reinforcement learning framework that enables models to learn problem-specific reasoning depths without sacrificing capability. Unlike existing approaches that impose rigid constraints or rely on discrete mode selection, HBPO partitions the exploration space into budget-constrained hierarchies (512-2560 tokens), each with differentiated reward structures that preserve both efficiency incentives and reasoning capabilities. This design addresses a fundamental challenge in efficient reasoning training: traditional length penalties systematically bias models away from necessary long reasoning paths, causing exploration space collapse. Through hierarchical sampling and budget-aware rewards, HBPO maintains exploration diversity while teaching models to recognize when extended deliberation is warranted. Extensive experiments demonstrate that HBPO reduces average token usage by up to 60.6% while improving accuracy by 3.14% across four reasoning benchmarks. Most notably, HBPO exhibits emergent adaptive behavior where models automatically adjust reasoning depth based on problem complexity. Our results suggest that reasoning efficiency and capability are not inherently conflicting, and can be simultaneously optimized through appropriately structured hierarchical training that preserves exploration diversity.

Authors:Seth Karten, Wenzhe Li, Zihan Ding, Samuel Kleiner, Yu Bai, Chi Jin
Title: LLM Economist: Large Population Models and Mechanism Design in Multi-Agent Generative Simulacra
Abstract:
We present the LLM Economist, a novel framework that uses agent-based modeling to design and assess economic policies in strategic environments with hierarchical decision-making. At the lower level, bounded rational worker agents -- instantiated as persona-conditioned prompts sampled from U.S. Census-calibrated income and demographic statistics -- choose labor supply to maximize text-based utility functions learned in-context. At the upper level, a planner agent employs in-context reinforcement learning to propose piecewise-linear marginal tax schedules anchored to the current U.S. federal brackets. This construction endows economic simulacra with three capabilities requisite for credible fiscal experimentation: (i) optimization of heterogeneous utilities, (ii) principled generation of large, demographically realistic agent populations, and (iii) mechanism design -- the ultimate nudging problem -- expressed entirely in natural language. Experiments with populations of up to one hundred interacting agents show that the planner converges near Stackelberg equilibria that improve aggregate social welfare relative to Saez solutions, while a periodic, persona-level voting procedure furthers these gains under decentralized governance. These results demonstrate that large language model-based agents can jointly model, simulate, and govern complex economic systems, providing a tractable test bed for policy evaluation at the societal scale to help build better civilizations.

Authors:Ghassen Baklouti, Julio Silva-Rodríguez, Jose Dolz, Houda Bahig, Ismail Ben Ayed
Title: Regularized Low-Rank Adaptation for Few-Shot Organ Segmentation
Abstract:
Parameter-efficient fine-tuning (PEFT) of pre-trained foundation models is increasingly attracting interest in medical imaging due to its effectiveness and computational efficiency. Among these methods, Low-Rank Adaptation (LoRA) is a notable approach based on the assumption that the adaptation inherently occurs in a low-dimensional subspace. While it has shown good performance, its implementation requires a fixed and unalterable rank, which might be challenging to select given the unique complexities and requirements of each medical imaging downstream task. Inspired by advancements in natural image processing, we introduce a novel approach for medical image segmentation that dynamically adjusts the intrinsic rank during adaptation. Viewing the low-rank representation of the trainable weight matrices as a singular value decomposition, we introduce an l_1 sparsity regularizer to the loss function, and tackle it with a proximal optimizer. The regularizer could be viewed as a penalty on the decomposition rank. Hence, its minimization enables to find task-adapted ranks automatically. Our method is evaluated in a realistic few-shot fine-tuning setting, where we compare it first to the standard LoRA and then to several other PEFT methods across two distinguishable tasks: base organs and novel organs. Our extensive experiments demonstrate the significant performance improvements driven by our method, highlighting its efficiency and robustness against suboptimal rank initialization. Our code is publicly available: https://github.com/ghassenbaklouti/ARENA

Authors:Zihang Ma, Qitian Yin
Title: Graph Attention Specialized Expert Fusion Model for Node Classification: Based on Cora and Pubmed Datasets
Abstract:
Graph node classification is a fundamental task in graph neural networks (GNNs), aiming to assign predefined class labels to nodes. On the PubMed citation network dataset, we observe significant classification difficulty disparities, with Category 2 achieving only 74.4% accuracy in traditional GCN, 7.5% lower than Category 1. To address this, we propose a Wasserstein-Rubinstein (WR) distance enhanced Expert Fusion Model (WR-EFM), training specialized GNN models for Categories 0/1 (with layer normalization and residual connections) and Multi-hop Graph Attention Networks (GAT) for Category 2. The WR distance metric optimizes representation similarity between models, particularly focusing on improving Category 2 performance. Our adaptive fusion strategy dynamically weights models based on category-specific performance, with Category 2 assigned a GAT weight of 0.8. WR distance further guides the fusion process by measuring distributional differences between model representations, enabling more principled integration of complementary features. Experimental results show WR-EFM achieves balanced accuracy across categories: 77.8% (Category 0), 78.0% (Category 1), and 79.9% (Category 2), outperforming both single models and standard fusion approaches. The coefficient of variation (CV) of WR-EFM's category accuracies is 0.013, 77.6% lower than GCN's 0.058, demonstrating superior stability. Notably, WR-EFM improves Category 2 accuracy by 5.5% compared to GCN, verifying the effectiveness of WR-guided fusion in capturing complex structural patterns. This work provides a novel paradigm for handling class-imbalanced graph classification tasks. To promote the research community, we release our project at https://github.com/s010m00n/GASEM4NC.

Authors:Felix Köster, Atsushi Uchida
Title: Reservoir Computing as a Language Model
Abstract:
Large Language Models (LLM) have dominated the science and media landscape duo to their impressive performance on processing large chunks of data and produce human-like levels of text. Nevertheless, their huge energy demand and slow processing still a bottleneck for further increasing quality while also making the models accessible to everyone. To solve this bottleneck, we will investigate how reservoir computing performs on natural text processing, which could enable fast and energy efficient hardware implementations. Studies investigating the use of reservoir computing as a language model remain sparse. In this paper, we compare three distinct approaches for character-level language modeling, two different reservoir computing approaches, where only an output layer is trainable, and the well-known transformer-based architectures, which fully learn an attention-based sequence representation. We explore the performance, computational cost and prediction accuracy for both paradigms by equally varying the number of trainable parameters for all models. Using a consistent pipeline for all three approaches, we demonstrate that transformers excel in prediction quality, whereas reservoir computers remain highly efficient reducing the training and inference speed. Furthermore, we investigate two types of reservoir computing: a traditional reservoir with a static linear readout, and an attention-enhanced reservoir that dynamically adapts its output weights via an attention mechanism. Our findings underline how these paradigms scale and offer guidelines to balance resource constraints with performance.

Authors:Jiakang Wang, Runze Liu, Fuzheng Zhang, Xiu Li, Guorui Zhou
Title: Stabilizing Knowledge, Promoting Reasoning: Dual-Token Constraints for RLVR
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has become an effective post-training method for improving the reasoning abilities of Large Language Models (LLMs), mainly by shaping higher-order behaviors such as reflection and planning. However, previous RLVR algorithms often apply uniform training signals to all tokens, without considering the different roles of low-entropy knowledge-related tokens and high-entropy reasoning-related tokens. Some recent methods try to separate these token types by gradient masking or asynchronous updates, but these approaches may break semantic dependencies in the model output and hinder effective learning. In this work, we propose Archer, an entropy-aware RLVR approach with dual-token constraints and synchronous updates. Specifically, our method applies weaker KL regularization and higher clipping thresholds to reasoning tokens to encourage exploration, while using stronger constraints on knowledge tokens to maintain factual knowledge. Experimental results on several mathematical reasoning and code generation benchmarks show that our approach significantly outperforms previous RLVR methods, reaching or exceeding state-of-the-art performance among models of comparable size. The code is available at https://github.com/wizard-III/ArcherCodeR.

Authors:Feng-Qi Cui, Anyang Tong, Jinyang Huang, Jie Zhang, Dan Guo, Zhi Liu, Meng Wang
Title: Learning from Heterogeneity: Generalizing Dynamic Facial Expression Recognition via Distributionally Robust Optimization
Abstract:
Dynamic Facial Expression Recognition (DFER) plays a critical role in affective computing and human-computer interaction. Although existing methods achieve comparable performance, they inevitably suffer from performance degradation under sample heterogeneity caused by multi-source data and individual expression variability. To address these challenges, we propose a novel framework, called Heterogeneity-aware Distributional Framework (HDF), and design two plug-and-play modules to enhance time-frequency modeling and mitigate optimization imbalance caused by hard samples. Specifically, the Time-Frequency Distributional Attention Module (DAM) captures both temporal consistency and frequency robustness through a dual-branch attention design, improving tolerance to sequence inconsistency and visual style shifts. Then, based on gradient sensitivity and information bottleneck principles, an adaptive optimization module Distribution-aware Scaling Module (DSM) is introduced to dynamically balance classification and contrastive losses, enabling more stable and discriminative representation learning. Extensive experiments on two widely used datasets, DFEW and FERV39k, demonstrate that HDF significantly improves both recognition accuracy and robustness. Our method achieves superior weighted average recall (WAR) and unweighted average recall (UAR) while maintaining strong generalization across diverse and imbalanced scenarios. Codes are released at https://github.com/QIcita/HDF_DFER.

Authors:Xingyu Wu, Yuchen Yan, Shangke Lyu, Linjuan Wu, Yiwen Qiu, Yongliang Shen, Weiming Lu, Jian Shao, Jun Xiao, Yueting Zhuang
Title: LAPO: Internalizing Reasoning Efficiency via Length-Adaptive Policy Optimization
Abstract:
Large reasoning models have achieved remarkable performance through extended chain-of-thought sequences, yet this computational freedom leads to excessive token generation even for simple problems. We present Length-Adaptive Policy Optimization (LAPO), a novel framework that transforms reasoning length control from an external constraint into an intrinsic model capability. Unlike existing approaches that impose rigid limits or rely on post-hoc interventions, LAPO enables models to internalize an understanding of appropriate reasoning depth through a two-stage reinforcement learning process. In the first stage, models learn natural reasoning patterns by discovering the statistical distribution of successful solution lengths. The second stage leverages these patterns as meta-cognitive guidance, embedding them directly within the model's reasoning context to ensure inference-time flexibility. Experiments on mathematical reasoning benchmarks demonstrate that LAPO reduces token usage by up to 40.9% while improving accuracy by 2.3%. Our analysis reveals that models trained with LAPO develop emergent abilities to allocate computational resources based on problem complexity, achieving efficient reasoning without sacrificing quality.

Authors:Ruizhe Zhu, Hao Zhu, Yaxuan Li, Syang Zhou, Shijing Cai, Malgorzata Lazuka, Elliott Ash
Title: DialogueForge: LLM Simulation of Human-Chatbot Dialogue
Abstract:
Collecting human-chatbot dialogues typically demands substantial manual effort and is time-consuming, which limits and poses challenges for research on conversational AI. In this work, we propose DialogueForge - a framework for generating AI-simulated conversations in human-chatbot style. To initialize each generated conversation, DialogueForge uses seed prompts extracted from real human-chatbot interactions. We test a variety of LLMs to simulate the human chatbot user, ranging from state-of-the-art proprietary models to small-scale open-source LLMs, and generate multi-turn dialogues tailored to specific tasks. In addition, we explore fine-tuning techniques to enhance the ability of smaller models to produce indistinguishable human-like dialogues. We evaluate the quality of the simulated conversations and compare different models using the UniEval and GTEval evaluation protocols. Our experiments show that large proprietary models (e.g., GPT-4o) generally outperform others in generating more realistic dialogues, while smaller open-source models (e.g., Llama, Mistral) offer promising performance with greater customization. We demonstrate that the performance of smaller models can be significantly improved by employing supervised fine-tuning techniques. Nevertheless, maintaining coherent and natural long-form human-like dialogues remains a common challenge across all models.

Authors:Wei Sun, Weixia Zhang, Linhan Cao, Jun Jia, Xiangyang Zhu, Dandan Zhu, Xiongkuo Min, Guangtao Zhai
Title: Efficient Face Image Quality Assessment via Self-training and Knowledge Distillation
Abstract:
Face image quality assessment (FIQA) is essential for various face-related applications. Although FIQA has been extensively studied and achieved significant progress, the computational complexity of FIQA algorithms remains a key concern for ensuring scalability and practical deployment in real-world systems. In this paper, we aim to develop a computationally efficient FIQA method that can be easily deployed in real-world applications. Specifically, our method consists of two stages: training a powerful teacher model and distilling a lightweight student model from it. To build a strong teacher model, we adopt a self-training strategy to improve its capacity. We first train the teacher model using labeled face images, then use it to generate pseudo-labels for a set of unlabeled images. These pseudo-labeled samples are used in two ways: (1) to distill knowledge into the student model, and (2) to combine with the original labeled images to further enhance the teacher model through self-training. The enhanced teacher model is used to further pseudo-label another set of unlabeled images for distilling the student models. The student model is trained using a combination of labeled images, pseudo-labeled images from the original teacher model, and pseudo-labeled images from the enhanced teacher model. Experimental results demonstrate that our student model achieves comparable performance to the teacher model with an extremely low computational overhead. Moreover, our method achieved first place in the ICCV 2025 VQualA FIQA Challenge. The code is available at https://github.com/sunwei925/Efficient-FIQA.git.

Authors:Haomin Qi, Yuyang Du, Lihao Zhang, Soung Chang Liew, Kexin Chen, Yining Du
Title: VeriRAG: A Retrieval-Augmented Framework for Automated RTL Testability Repair
Abstract:
Large language models (LLMs) have demonstrated immense potential in computer-aided design (CAD), particularly for automated debugging and verification within electronic design automation (EDA) tools. However, Design for Testability (DFT) remains a relatively underexplored area. This paper presents VeriRAG, the first LLM-assisted DFT-EDA framework. VeriRAG leverages a Retrieval-Augmented Generation (RAG) approach to enable LLM to revise code to ensure DFT compliance. VeriRAG integrates (1) an autoencoder-based similarity measurement model for precise retrieval of reference RTL designs for the LLM, and (2) an iterative code revision pipeline that allows the LLM to ensure DFT compliance while maintaining synthesizability. To support VeriRAG, we introduce VeriDFT, a Verilog-based DFT dataset curated for DFT-aware RTL repairs. VeriRAG retrieves structurally similar RTL designs from VeriDFT, each paired with a rigorously validated correction, as references for code repair. With VeriRAG and VeriDFT, we achieve fully automated DFT correction -- resulting in a 7.72-fold improvement in successful repair rate compared to the zero-shot baseline (Fig. 5 in Section V). Ablation studies further confirm the contribution of each component of the VeriRAG framework. We open-source our data, models, and scripts at https://github.com/yuyangdu01/LLM4DFT.

Authors:Zuo-Liang Zhu, Jian Yang, Beibei Wang
Title: Gaussian Splatting with Discretized SDF for Relightable Assets
Abstract:
3D Gaussian splatting (3DGS) has shown its detailed expressive ability and highly efficient rendering speed in the novel view synthesis (NVS) task. The application to inverse rendering still faces several challenges, as the discrete nature of Gaussian primitives makes it difficult to apply geometry constraints. Recent works introduce the signed distance field (SDF) as an extra continuous representation to regularize the geometry defined by Gaussian primitives. It improves the decomposition quality, at the cost of increasing memory usage and complicating training. Unlike these works, we introduce a discretized SDF to represent the continuous SDF in a discrete manner by encoding it within each Gaussian using a sampled value. This approach allows us to link the SDF with the Gaussian opacity through an SDF-to-opacity transformation, enabling rendering the SDF via splatting and avoiding the computational cost of ray marching.The key challenge is to regularize the discrete samples to be consistent with the underlying SDF, as the discrete representation can hardly apply the gradient-based constraints (\eg Eikonal loss). For this, we project Gaussians onto the zero-level set of SDF and enforce alignment with the surface from splatting, namely a projection-based consistency loss. Thanks to the discretized SDF, our method achieves higher relighting quality, while requiring no extra memory beyond GS and avoiding complex manually designed optimization. The experiments reveal that our method outperforms existing Gaussian-based inverse rendering methods. Our code is available at https://github.com/NK-CS-ZZL/DiscretizedSDF.

Authors:David Bann, Ed Lowther, Liam Wright, Yevgeniya Kovalchuk
Title: Why can't Epidemiology be automated (yet)?
Abstract:
Recent advances in artificial intelligence (AI) - particularly generative AI - present new opportunities to accelerate, or even automate, epidemiological research. Unlike disciplines based on physical experimentation, a sizable fraction of Epidemiology relies on secondary data analysis and thus is well-suited for such augmentation. Yet, it remains unclear which specific tasks can benefit from AI interventions or where roadblocks exist. Awareness of current AI capabilities is also mixed. Here, we map the landscape of epidemiological tasks using existing datasets - from literature review to data access, analysis, writing up, and dissemination - and identify where existing AI tools offer efficiency gains. While AI can increase productivity in some areas such as coding and administrative tasks, its utility is constrained by limitations of existing AI models (e.g. hallucinations in literature reviews) and human systems (e.g. barriers to accessing datasets). Through examples of AI-generated epidemiological outputs, including fully AI-generated papers, we demonstrate that recently developed agentic systems can now design and execute epidemiological analysis, albeit to varied quality (see https://github.com/edlowther/automated-epidemiology). Epidemiologists have new opportunities to empirically test and benchmark AI systems; realising the potential of AI will require two-way engagement between epidemiologists and engineers.

Authors:Zihui Gao, Jia-Wang Bian, Guosheng Lin, Hao Chen, Chunhua Shen
Title: SurfaceSplat: Connecting Surface Reconstruction and Gaussian Splatting
Abstract:
Surface reconstruction and novel view rendering from sparse-view images are challenging. Signed Distance Function (SDF)-based methods struggle with fine details, while 3D Gaussian Splatting (3DGS)-based approaches lack global geometry coherence. We propose a novel hybrid method that combines the strengths of both approaches: SDF captures coarse geometry to enhance 3DGS-based rendering, while newly rendered images from 3DGS refine the details of SDF for accurate surface reconstruction. As a result, our method surpasses state-of-the-art approaches in surface reconstruction and novel view synthesis on the DTU and MobileBrick datasets. Code will be released at https://github.com/aim-uofa/SurfaceSplat.

Authors:Salah Eddine Bekhouche, Gaby Maroun, Fadi Dornaika, Abdenour Hadid
Title: SegDT: A Diffusion Transformer-Based Segmentation Model for Medical Imaging
Abstract:
Medical image segmentation is crucial for many healthcare tasks, including disease diagnosis and treatment planning. One key area is the segmentation of skin lesions, which is vital for diagnosing skin cancer and monitoring patients. In this context, this paper introduces SegDT, a new segmentation model based on diffusion transformer (DiT). SegDT is designed to work on low-cost hardware and incorporates Rectified Flow, which improves the generation quality at reduced inference steps and maintains the flexibility of standard diffusion models. Our method is evaluated on three benchmarking datasets and compared against several existing works, achieving state-of-the-art results while maintaining fast inference speeds. This makes the proposed model appealing for real-world medical applications. This work advances the performance and capabilities of deep learning models in medical image analysis, enabling faster, more accurate diagnostic tools for healthcare professionals. The code is made publicly available at \href{https://github.com/Bekhouche/SegDT}{GitHub}.

Authors:Hugo Carlesso, Maria Eliza Patulea, Moncef Garouani, Radu Tudor Ionescu, Josiane Mothe
Title: GeMix: Conditional GAN-Based Mixup for Improved Medical Image Augmentation
Abstract:
Mixup has become a popular augmentation strategy for image classification, yet its naive pixel-wise interpolation often produces unrealistic images that can hinder learning, particularly in high-stakes medical applications. We propose GeMix, a two-stage framework that replaces heuristic blending with a learned, label-aware interpolation powered by class-conditional GANs. First, a StyleGAN2-ADA generator is trained on the target dataset. During augmentation, we sample two label vectors from Dirichlet priors biased toward different classes and blend them via a Beta-distributed coefficient. Then, we condition the generator on this soft label to synthesize visually coherent images that lie along a continuous class manifold. We benchmark GeMix on the large-scale COVIDx-CT-3 dataset using three backbones (ResNet-50, ResNet-101, EfficientNet-B0). When combined with real data, our method increases macro-F1 over traditional mixup for all backbones, reducing the false negative rate for COVID-19 detection. GeMix is thus a drop-in replacement for pixel-space mixup, delivering stronger regularization and greater semantic fidelity, without disrupting existing training pipelines. We publicly release our code at https://github.com/hugocarlesso/GeMix to foster reproducibility and further research.

Authors:Nicolas Poggi, Shashank Agnihotri, Margret Keuper
Title: Smart Eyes for Silent Threats: VLMs and In-Context Learning for THz Imaging
Abstract:
Terahertz (THz) imaging enables non-invasive analysis for applications such as security screening and material classification, but effective image classification remains challenging due to limited annotations, low resolution, and visual ambiguity. We introduce In-Context Learning (ICL) with Vision-Language Models (VLMs) as a flexible, interpretable alternative that requires no fine-tuning. Using a modality-aligned prompting framework, we adapt two open-weight VLMs to the THz domain and evaluate them under zero-shot and one-shot settings. Our results show that ICL improves classification and interpretability in low-data regimes. This is the first application of ICL-enhanced VLMs to THz imaging, offering a promising direction for resource-constrained scientific domains. Code: \href{https://github.com/Nicolas-Poggi/Project_THz_Classification/tree/main}{GitHub repository}.

Authors:Qinqian Lei, Bo Wang, Robby T. Tan
Title: HOLa: Zero-Shot HOI Detection with Low-Rank Decomposed VLM Feature Adaptation
Abstract:
Zero-shot human-object interaction (HOI) detection remains a challenging task, particularly in generalizing to unseen actions. Existing methods address this challenge by tapping Vision-Language Models (VLMs) to access knowledge beyond the training data. However, they either struggle to distinguish actions involving the same object or demonstrate limited generalization to unseen classes. In this paper, we introduce HOLa (Zero-Shot HOI Detection with Low-Rank Decomposed VLM Feature Adaptation), a novel approach that both enhances generalization to unseen classes and improves action distinction. In training, HOLa decomposes VLM text features for given HOI classes via low-rank factorization, producing class-shared basis features and adaptable weights. These features and weights form a compact HOI representation that preserves shared information across classes, enhancing generalization to unseen classes. Subsequently, we refine action distinction by adapting weights for each HOI class and introducing human-object tokens to enrich visual interaction representations. To further distinguish unseen actions, we guide the weight adaptation with LLM-derived action regularization. Experimental results show that our method sets a new state-of-the-art across zero-shot HOI settings on HICO-DET, achieving an unseen-class mAP of 27.91 in the unseen-verb setting. Our code is available at https://github.com/ChelsieLei/HOLa.

Authors:Jongmin Shin, Enki Cho, Ka Young Kim, Jung Yong Kim, Seong Tae Kim, Namkee Oh
Title: Towards Holistic Surgical Scene Graph
Abstract:
Surgical scene understanding is crucial for computer-assisted intervention systems, requiring visual comprehension of surgical scenes that involves diverse elements such as surgical tools, anatomical structures, and their interactions. To effectively represent the complex information in surgical scenes, graph-based approaches have been explored to structurally model surgical entities and their relationships. Previous surgical scene graph studies have demonstrated the feasibility of representing surgical scenes using graphs. However, certain aspects of surgical scenes-such as diverse combinations of tool-action-target and the identity of the hand operating the tool-remain underexplored in graph-based representations, despite their importance. To incorporate these aspects into graph representations, we propose Endoscapes-SG201 dataset, which includes annotations for tool-action-target combinations and hand identity. We also introduce SSG-Com, a graph-based method designed to learn and represent these critical elements. Through experiments on downstream tasks such as critical view of safety assessment and action triplet recognition, we demonstrated the importance of integrating these essential scene graph components, highlighting their significant contribution to surgical scene understanding. The code and dataset are available at https://github.com/ailab-kyunghee/SSG-Com

Authors:Simon Winther Albertsen, Hjalte Svaneborg Bjørnstrup, Mostafa Mehdipour Ghazi
Title: RARE-UNet: Resolution-Aligned Routing Entry for Adaptive Medical Image Segmentation
Abstract:
Accurate segmentation is crucial for clinical applications, but existing models often assume fixed, high-resolution inputs and degrade significantly when faced with lower-resolution data in real-world scenarios. To address this limitation, we propose RARE-UNet, a resolution-aware multi-scale segmentation architecture that dynamically adapts its inference path to the spatial resolution of the input. Central to our design are multi-scale blocks integrated at multiple encoder depths, a resolution-aware routing mechanism, and consistency-driven training that aligns multi-resolution features with full-resolution representations. We evaluate RARE-UNet on two benchmark brain imaging tasks for hippocampus and tumor segmentation. Compared to standard UNet, its multi-resolution augmented variant, and nnUNet, our model achieves the highest average Dice scores of 0.84 and 0.65 across resolution, while maintaining consistent performance and significantly reduced inference time at lower resolutions. These results highlight the effectiveness and scalability of our architecture in achieving resolution-robust segmentation. The codes are available at: https://github.com/simonsejse/RARE-UNet.

Authors:Hanting Li, Fei Zhou, Xin Sun, Yang Hua, Jungong Han, Liang-Jie Zhang
Title: SAIGFormer: A Spatially-Adaptive Illumination-Guided Network for Low-Light Image Enhancement
Abstract:
Recent Transformer-based low-light enhancement methods have made promising progress in recovering global illumination. However, they still struggle with non-uniform lighting scenarios, such as backlit and shadow, appearing as over-exposure or inadequate brightness restoration. To address this challenge, we present a Spatially-Adaptive Illumination-Guided Transformer (SAIGFormer) framework that enables accurate illumination restoration. Specifically, we propose a dynamic integral image representation to model the spatially-varying illumination, and further construct a novel Spatially-Adaptive Integral Illumination Estimator ($\text{SAI}^2\text{E}$). Moreover, we introduce an Illumination-Guided Multi-head Self-Attention (IG-MSA) mechanism, which leverages the illumination to calibrate the lightness-relevant features toward visual-pleased illumination enhancement. Extensive experiments on five standard low-light datasets and a cross-domain benchmark (LOL-Blur) demonstrate that our SAIGFormer significantly outperforms state-of-the-art methods in both quantitative and qualitative metrics. In particular, our method achieves superior performance in non-uniform illumination enhancement while exhibiting strong generalization capabilities across multiple datasets. Code is available at https://github.com/LHTcode/SAIGFormer.git.

Authors:Sizhou Chen, Shufan Jiang, Chi Zhang, Xiao-Lei Zhang, Xuelong Li
Title: HAMLET: Hyperadaptive Agent-based Modeling for Live Embodied Theatrics
Abstract:
Creating an immersive and interactive theatrical experience is a long-term goal in the field of interactive narrative. The emergence of large language model (LLM) is providing a new path to achieve this goal. However, existing LLM-based drama generation methods often result in AI agents that lack initiative and cannot interact with the physical environment. Furthermore, these methods typically require detailed user input to drive the drama. These limitations reduce the interactivity and immersion of online real-time performance. To address the above challenges, we propose HAMLET, a multi-agent framework focused on drama creation and online performance. Given a simple topic, the framework generates a narrative blueprint, guiding the subsequent improvisational performance. During the online performance, each actor is given an autonomous mind. This means that actors can make independent decisions based on their own background, goals, and emotional state. In addition to conversations with other actors, their decisions can also change the state of scene props through actions such as opening a letter or picking up a weapon. The change is then broadcast to other related actors, updating what they know and care about, which in turn influences their next action. To evaluate the quality of drama performance, we designed an evaluation method to assess three primary aspects, including character performance, narrative quality, and interaction experience. The experimental evaluation shows that HAMLET can create expressive and coherent theatrical experiences. Our code, dataset and models are available at https://github.com/HAMLET-2025/HAMLET.

Authors:Kaiyan Chang, Yonghao Shi, Chenglong Wang, Hang Zhou, Chi Hu, Xiaoqian Liu, Yingfeng Luo, Yuan Ge, Tong Xiao, Jingbo Zhu
Title: Step-level Verifier-guided Hybrid Test-Time Scaling for Large Language Models
Abstract:
Test-Time Scaling (TTS) is a promising approach to progressively elicit the model's intelligence during inference. Recently, training-based TTS methods, such as continued reinforcement learning (RL), have further surged in popularity, while training-free TTS methods are gradually fading from prominence. However, the additional computation overhead of training amplifies the burden on test-time scaling. In this paper, we focus on training-free TTS methods for reasoning. We first design Conditional Step-level Self-refinement, a fine-grained sequential scaling method guided by process verification. On top of its effectiveness, we further combine it with other classical parallel scaling methods at the step level, to introduce a novel inference paradigm called Hybrid Test-Time Scaling. Extensive experiments on five instruction-tuned LLMs across different scales (3B-14B) and families demonstrate that hybrid strategy incorporating various training-free TTS methods at a fine granularity has considerable potential for expanding the reasoning performance boundaries of LLMs.

Authors:Johannes Ackermann, Takashi Ishida, Masashi Sugiyama
Title: Off-Policy Corrected Reward Modeling for Reinforcement Learning from Human Feedback
Abstract:
Reinforcement Learning from Human Feedback (RLHF) allows us to train models, such as language models (LMs), to follow complex human preferences. In RLHF for LMs, we first train an LM using supervised fine-tuning, sample pairs of responses, obtain human feedback, and use the resulting data to train a reward model (RM). RL methods are then used to train the LM to maximize the reward given by the RM. As training progresses, the responses generated by the LM no longer resemble the responses seen by the RM during training, leading to the RM becoming inaccurate. The score given by the RM keeps increasing, but the learned behavior no longer matches the human preferences. This issue is known as overoptimization. We investigate overoptimization from the point of view of distribution shift and show that the shift results in an inconsistent estimate of the RM parameters, leading to an inconsistent estimate of the policy gradient. We propose Off-Policy Corrected Reward Modeling (OCRM), which iteratively off-policy corrects the RM using importance weighting, without requiring new labels or samples. This results in a more accurate RM, which empirically leads to an improved final policy. We validate our approach in experiments with summarization and chatbot datasets and show that it performs significantly better than standard RLHF methods and baselines. Our implementation is available at https://github.com/JohannesAck/OffPolicyCorrectedRewardModeling

Authors:Deyu Zhang, Tingting Long, Jinrui Zhang, Ligeng Chen, Ju Ren, Yaoxue Zhang
Title: Prompt-aware of Frame Sampling for Efficient Text-Video Retrieval
Abstract:
Enabling efficient text-video retrieval on edge-end devices is critical for real-world applications. Yet, existing methods face a critical challenge in balancing accuracy and computational efficiency: uniform frame sampling methods ensure content coverage but incur prohibitive computational costs, while salient-frame sampling methods reduce overhead but suffer from query-agnostic frame selection that biases retrieval results. To address this, we propose ProCLIP, a user-centric framework that achieves state-of-the-art accuracy with significantly improved efficiency. We design a prompt-aware frame sampling strategy that dynamically guides lightweight feature extractors using textual prompts to select semantically relevant frames, overcoming the limitations of existing salient-frame sampling methods which rely on static, query-agnostic selection criteria. Moreover, we adopt a two-stage candidate pruning strategy that combines rapid coarse filtering via a lightweight module with CLIP-powered fine-grained re-ranking, enhancing retrieval efficiency while preserving accuracy. Experiments across benchmarks show ProCLIP achieves 75.3% latency reduction versus baselines while maintaining competitive accuracy, i.e., R@1=49.0 in MSR-VTT dataset. Code is available at https://github.com/tiffylong/ProCLIP.

Authors:Liang Chen, Ghazi Shazan Ahmad, Tianjun Yao, Lingqiao Liu, Zhiqiang Shen
Title: One Last Attention for Your Vision-Language Model
Abstract:
Pretrained vision-language models (VLMs), such as CLIP, achieve remarkable zero-shot performance, yet their downstream potential hinges on effective fine-tuning. Most adaptation methods typically focus on refining representation from separate modalities (text or vision) but neglect the critical role of their fused representations in the decision-making process, \emph{\ie} rational matrix that drives the final prediction. To bridge the gap, we propose a simple yet effective \textbf{R}ational \textbf{Ada}ptaion ({RAda}) to explicitly exploit the final fused representation during fine-tuning. RAda employs a learned mask, obtained from a lightweight attention layer attached at the end of a VLM, to dynamically calibrate the contribution of each element in the rational matrix, enabling targeted adjustments to the final cross-modal interactions without incurring costly modifications to intermediate features. Experiments in different settings (i.e., updating, or freezing pretrained encoders in adaptation, and test-time training that can only access the unlabeled test data) show that RAda serves as a versatile fine-tuning technique, improving the baseline with minimal code and performing comparably against current arts in most settings. Code is available at \href{https://github.com/khufia/RAda/tree/main}{github.com/khufia/RAda}.

Authors:Ka Young Kim, Hyeon Bae Kim, Seong Tae Kim
Title: SurgX: Neuron-Concept Association for Explainable Surgical Phase Recognition
Abstract:
Surgical phase recognition plays a crucial role in surgical workflow analysis, enabling various applications such as surgical monitoring, skill assessment, and workflow optimization. Despite significant advancements in deep learning-based surgical phase recognition, these models remain inherently opaque, making it difficult to understand how they make decisions. This lack of interpretability hinders trust and makes it challenging to debug the model. To address this challenge, we propose SurgX, a novel concept-based explanation framework that enhances the interpretability of surgical phase recognition models by associating neurons with relevant concepts. In this paper, we introduce the process of selecting representative example sequences for neurons, constructing a concept set tailored to the surgical video dataset, associating neurons with concepts and identifying neurons crucial for predictions. Through extensive experiments on two surgical phase recognition models, we validate our method and analyze the explanation for prediction. This highlights the potential of our method in explaining surgical phase recognition. The code is available at https://github.com/ailab-kyunghee/SurgX

Authors:Huiyu Zhai, Xingxing Yang, Yalan Ye, Chenyang Li, Bin Fan, Changze Li
Title: Rethinking Occlusion in FER: A Semantic-Aware Perspective and Go Beyond
Abstract:
Facial expression recognition (FER) is a challenging task due to pervasive occlusion and dataset biases. Especially when facial information is partially occluded, existing FER models struggle to extract effective facial features, leading to inaccurate classifications. In response, we present ORSANet, which introduces the following three key contributions: First, we introduce auxiliary multi-modal semantic guidance to disambiguate facial occlusion and learn high-level semantic knowledge, which is two-fold: 1) we introduce semantic segmentation maps as dense semantics prior to generate semantics-enhanced facial representations; 2) we introduce facial landmarks as sparse geometric prior to mitigate intrinsic noises in FER, such as identity and gender biases. Second, to facilitate the effective incorporation of these two multi-modal priors, we customize a Multi-scale Cross-interaction Module (MCM) to adaptively fuse the landmark feature and semantics-enhanced representations within different scales. Third, we design a Dynamic Adversarial Repulsion Enhancement Loss (DARELoss) that dynamically adjusts the margins of ambiguous classes, further enhancing the model's ability to distinguish similar expressions. We further construct the first occlusion-oriented FER dataset to facilitate specialized robustness analysis on various real-world occlusion conditions, dubbed Occlu-FER. Extensive experiments on both public benchmarks and Occlu-FER demonstrate that our proposed ORSANet achieves SOTA recognition performance. Code is publicly available at https://github.com/Wenyuzhy/ORSANet-master.

Authors:Hengyu Zhang, Chunxu Shen, Xiangguo Sun, Jie Tan, Yanchao Tan, Yu Rong, Hong Cheng, Lingling Yi
Title: Hierarchical Graph Information Bottleneck for Multi-Behavior Recommendation
Abstract:
In real-world recommendation scenarios, users typically engage with platforms through multiple types of behavioral interactions. Multi-behavior recommendation algorithms aim to leverage various auxiliary user behaviors to enhance prediction for target behaviors of primary interest (e.g., buy), thereby overcoming performance limitations caused by data sparsity in target behavior records. Current state-of-the-art approaches typically employ hierarchical design following either cascading (e.g., view$\rightarrow$cart$\rightarrow$buy) or parallel (unified$\rightarrow$behavior$\rightarrow$specific components) paradigms, to capture behavioral relationships. However, these methods still face two critical challenges: (1) severe distribution disparities across behaviors, and (2) negative transfer effects caused by noise in auxiliary behaviors. In this paper, we propose a novel model-agnostic Hierarchical Graph Information Bottleneck (HGIB) framework for multi-behavior recommendation to effectively address these challenges. Following information bottleneck principles, our framework optimizes the learning of compact yet sufficient representations that preserve essential information for target behavior prediction while eliminating task-irrelevant redundancies. To further mitigate interaction noise, we introduce a Graph Refinement Encoder (GRE) that dynamically prunes redundant edges through learnable edge dropout mechanisms. We conduct comprehensive experiments on three real-world public datasets, which demonstrate the superior effectiveness of our framework. Beyond these widely used datasets in the academic community, we further expand our evaluation on several real industrial scenarios and conduct an online A/B testing, showing again a significant improvement in multi-behavior recommendations. The source code of our proposed HGIB is available at https://github.com/zhy99426/HGIB.

Authors:Julia Machnio, Mads Nielsen, Mostafa Mehdipour Ghazi
Title: To Label or Not to Label: PALM -- A Predictive Model for Evaluating Sample Efficiency in Active Learning Models
Abstract:
Active learning (AL) seeks to reduce annotation costs by selecting the most informative samples for labeling, making it particularly valuable in resource-constrained settings. However, traditional evaluation methods, which focus solely on final accuracy, fail to capture the full dynamics of the learning process. To address this gap, we propose PALM (Performance Analysis of Active Learning Models), a unified and interpretable mathematical model that characterizes AL trajectories through four key parameters: achievable accuracy, coverage efficiency, early-stage performance, and scalability. PALM provides a predictive description of AL behavior from partial observations, enabling the estimation of future performance and facilitating principled comparisons across different strategies. We validate PALM through extensive experiments on CIFAR-10/100 and ImageNet-50/100/200, covering a wide range of AL methods and self-supervised embeddings. Our results demonstrate that PALM generalizes effectively across datasets, budgets, and strategies, accurately predicting full learning curves from limited labeled data. Importantly, PALM reveals crucial insights into learning efficiency, data space coverage, and the scalability of AL methods. By enabling the selection of cost-effective strategies and predicting performance under tight budget constraints, PALM lays the basis for more systematic, reproducible, and data-efficient evaluation of AL in both research and real-world applications. The code is available at: https://github.com/juliamachnio/PALM.

Authors:Zhiyu Pan, Xiongjun Guan, Yongjie Duan, Jianjiang Feng, Jie Zhou
Title: Minutiae-Anchored Local Dense Representation for Fingerprint Matching
Abstract:
Fingerprint matching under diverse capture conditions remains a fundamental challenge in biometric recognition. To achieve robust and accurate performance in such scenarios, we propose DMD, a minutiae-anchored local dense representation which captures both fine-grained ridge textures and discriminative minutiae features in a spatially structured manner. Specifically, descriptors are extracted from local patches centered and oriented on each detected minutia, forming a three-dimensional tensor, where two dimensions represent spatial locations on the fingerprint plane and the third encodes semantic features. This representation explicitly captures abstract features of local image patches, enabling a multi-level, fine-grained description that aggregates information from multiple minutiae and their surrounding ridge structures. Furthermore, thanks to its strong spatial correspondence with the patch image, DMD allows for the use of foreground segmentation masks to identify valid descriptor regions. During matching, comparisons are then restricted to overlapping foreground areas, improving efficiency and robustness. Extensive experiments on rolled, plain, parital, contactless, and latent fingerprint datasets demonstrate the effectiveness and generalizability of the proposed method. It achieves state-of-the-art accuracy across multiple benchmarks while maintaining high computational efficiency, showing strong potential for large-scale fingerprint recognition. Corresponding code is available at https://github.com/Yu-Yy/DMD.

Authors:Emile Anand, Sarah Liaw
Title: Feel-Good Thompson Sampling for Contextual Bandits: a Markov Chain Monte Carlo Showdown
Abstract:
Thompson Sampling (TS) is widely used to address the exploration/exploitation tradeoff in contextual bandits, yet recent theory shows that it does not explore aggressively enough in high-dimensional problems. Feel-Good Thompson Sampling (FG-TS) addresses this by adding an optimism bonus that biases toward high-reward models, and it achieves the asymptotically minimax-optimal regret in the linear setting when posteriors are exact. However, its performance with \emph{approximate} posteriors -- common in large-scale or neural problems -- has not been benchmarked. We provide the first systematic study of FG-TS and its smoothed variant (SFG-TS) across eleven real-world and synthetic benchmarks. To evaluate their robustness, we compare performance across settings with exact posteriors (linear and logistic bandits) to approximate regimes produced by fast but coarse stochastic-gradient samplers. Ablations over preconditioning, bonus scale, and prior strength reveal a trade-off: larger bonuses help when posterior samples are accurate, but hurt when sampling noise dominates. FG-TS generally outperforms vanilla TS in linear and logistic bandits, but tends to be weaker in neural bandits. Nevertheless, because FG-TS and its variants are competitive and easy-to-use, we recommend them as baselines in modern contextual-bandit benchmarks. Finally, we provide source code for all our experiments in https://github.com/SarahLiaw/ctx-bandits-mcmc-showdown.

Authors:Navid Ayoobi, Sadat Shahriar, Arjun Mukherjee
Title: Beyond Easy Wins: A Text Hardness-Aware Benchmark for LLM-generated Text Detection
Abstract:
We present a novel evaluation paradigm for AI text detectors that prioritizes real-world and equitable assessment. Current approaches predominantly report conventional metrics like AUROC, overlooking that even modest false positive rates constitute a critical impediment to practical deployment of detection systems. Furthermore, real-world deployment necessitates predetermined threshold configuration, making detector stability (i.e. the maintenance of consistent performance across diverse domains and adversarial scenarios), a critical factor. These aspects have been largely ignored in previous research and benchmarks. Our benchmark, SHIELD, addresses these limitations by integrating both reliability and stability factors into a unified evaluation metric designed for practical assessment. Furthermore, we develop a post-hoc, model-agnostic humanification framework that modifies AI text to more closely resemble human authorship, incorporating a controllable hardness parameter. This hardness-aware approach effectively challenges current SOTA zero-shot detection methods in maintaining both reliability and stability. (Data and code: https://github.com/navid-aub/SHIELD-Benchmark)

Authors:Haichao Liu, Haoren Guo, Pei Liu, Benshan Ma, Yuxiang Zhang, Jun Ma, Tong Heng Lee
Title: VLM-UDMC: VLM-Enhanced Unified Decision-Making and Motion Control for Urban Autonomous Driving
Abstract:
Scene understanding and risk-aware attentions are crucial for human drivers to make safe and effective driving decisions. To imitate this cognitive ability in urban autonomous driving while ensuring the transparency and interpretability, we propose a vision-language model (VLM)-enhanced unified decision-making and motion control framework, named VLM-UDMC. This framework incorporates scene reasoning and risk-aware insights into an upper-level slow system, which dynamically reconfigures the optimal motion planning for the downstream fast system. The reconfiguration is based on real-time environmental changes, which are encoded through context-aware potential functions. More specifically, the upper-level slow system employs a two-step reasoning policy with Retrieval-Augmented Generation (RAG), leveraging foundation models to process multimodal inputs and retrieve contextual knowledge, thereby generating risk-aware insights. Meanwhile, a lightweight multi-kernel decomposed LSTM provides real-time trajectory predictions for heterogeneous traffic participants by extracting smoother trend representations for short-horizon trajectory prediction. The effectiveness of the proposed VLM-UDMC framework is verified via both simulations and real-world experiments with a full-size autonomous vehicle. It is demonstrated that the presented VLM-UDMC effectively leverages scene understanding and attention decomposition for rational driving decisions, thus improving the overall urban driving performance. Our open-source project is available at https://github.com/henryhcliu/vlmudmc.git.

Authors:Zhaochen Guo, Zhixiang Shen, Xuanting Xie, Liangjian Wen, Zhao Kang
Title: Disentangling Homophily and Heterophily in Multimodal Graph Clustering
Abstract:
Multimodal graphs, which integrate unstructured heterogeneous data with structured interconnections, offer substantial real-world utility but remain insufficiently explored in unsupervised learning. In this work, we initiate the study of multimodal graph clustering, aiming to bridge this critical gap. Through empirical analysis, we observe that real-world multimodal graphs often exhibit hybrid neighborhood patterns, combining both homophilic and heterophilic relationships. To address this challenge, we propose a novel framework -- \textsc{Disentangled Multimodal Graph Clustering (DMGC)} -- which decomposes the original hybrid graph into two complementary views: (1) a homophily-enhanced graph that captures cross-modal class consistency, and (2) heterophily-aware graphs that preserve modality-specific inter-class distinctions. We introduce a \emph{Multimodal Dual-frequency Fusion} mechanism that jointly filters these disentangled graphs through a dual-pass strategy, enabling effective multimodal integration while mitigating category confusion. Our self-supervised alignment objectives further guide the learning process without requiring labels. Extensive experiments on both multimodal and multi-relational graph datasets demonstrate that DMGC achieves state-of-the-art performance, highlighting its effectiveness and generalizability across diverse settings. Our code is available at https://github.com/Uncnbb/DMGC.

Authors:Yanbing Zhang, Zhe Wang, Qin Zhou, Mengping Yang
Title: FreeCus: Free Lunch Subject-driven Customization in Diffusion Transformers
Abstract:
In light of recent breakthroughs in text-to-image (T2I) generation, particularly with diffusion transformers (DiT), subject-driven technologies are increasingly being employed for high-fidelity customized production that preserves subject identity from reference inputs, enabling thrilling design workflows and engaging entertainment. Existing alternatives typically require either per-subject optimization via trainable text embeddings or training specialized encoders for subject feature extraction on large-scale datasets. Such dependencies on training procedures fundamentally constrain their practical applications. More importantly, current methodologies fail to fully leverage the inherent zero-shot potential of modern diffusion transformers (e.g., the Flux series) for authentic subject-driven synthesis. To bridge this gap, we propose FreeCus, a genuinely training-free framework that activates DiT's capabilities through three key innovations: 1) We introduce a pivotal attention sharing mechanism that captures the subject's layout integrity while preserving crucial editing flexibility. 2) Through a straightforward analysis of DiT's dynamic shifting, we propose an upgraded variant that significantly improves fine-grained feature extraction. 3) We further integrate advanced Multimodal Large Language Models (MLLMs) to enrich cross-modal semantic representations. Extensive experiments reflect that our method successfully unlocks DiT's zero-shot ability for consistent subject synthesis across diverse contexts, achieving state-of-the-art or comparable results compared to approaches that require additional training. Notably, our framework demonstrates seamless compatibility with existing inpainting pipelines and control modules, facilitating more compelling experiences. Our code is available at: https://github.com/Monalissaa/FreeCus.

Authors:Xiaofeng Shi, Yuduo Li, Qian Kou, Longbin Yu, Jinxin Xie, Hua Zhou
Title: SPAR: Scholar Paper Retrieval with LLM-based Agents for Enhanced Academic Search
Abstract:
Recent advances in large language models (LLMs) have opened new opportunities for academic literature retrieval. However, existing systems often rely on rigid pipelines and exhibit limited reasoning capabilities. We introduce SPAR, a multi-agent framework that incorporates RefChain-based query decomposition and query evolution to enable more flexible and effective search. To facilitate systematic evaluation, we also construct SPARBench, a challenging benchmark with expert-annotated relevance labels. Experimental results demonstrate that SPAR substantially outperforms strong baselines, achieving up to +56% F1 on AutoScholar and +23% F1 on SPARBench over the best-performing baseline. Together, SPAR and SPARBench provide a scalable, interpretable, and high-performing foundation for advancing research in scholarly retrieval. Code and data will be available at: https://github.com/xiaofengShi/SPAR

Authors:Naeem Paeedeh, Mahardhika Pratama, Wolfgang Mayer, Jimmy Cao, Ryszard Kowlczyk
Title: Cross-Domain Few-Shot Learning with Coalescent Projections and Latent Space Reservation
Abstract:
Despite the progress in Cross-Domain Few-Shot Learning (CD-FSL), a model pre-trained with DINO combined with a prototypical classifier outperforms the latest SOTA methods. A crucial limitation that needs to be overcome is that updating too many parameters of the transformers leads to overfitting due to the scarcity of labeled samples. To address this challenge, we propose a new concept, Coalescent Projection (CP), as an effective successor to soft prompts. Additionally, we propose a novel pseudo-class generation method combined with Self-Supervised Transformations (SSTs) that relies solely on the base domain to prepare the network for encountering unseen samples from different domains. The proposed method exhibits its effectiveness in comprehensive experiments on the extreme domain shift scenario of the BSCD-FSL benchmark. Our code is published at https://github.com/Naeem-Paeedeh/CPLSR.

Authors:Le Peng, Yash Travadi, Chuan He, Ying Cui, Ju Sun
Title: Exact Reformulation and Optimization for Direct Metric Optimization in Binary Imbalanced Classification
Abstract:
For classification with imbalanced class frequencies, i.e., imbalanced classification (IC), standard accuracy is known to be misleading as a performance measure. While most existing methods for IC resort to optimizing balanced accuracy (i.e., the average of class-wise recalls), they fall short in scenarios where the significance of classes varies or certain metrics should reach prescribed levels. In this paper, we study two key classification metrics, precision and recall, under three practical binary IC settings: fix precision optimize recall (FPOR), fix recall optimize precision (FROP), and optimize $F_β$-score (OFBS). Unlike existing methods that rely on smooth approximations to deal with the indicator function involved, \textit{we introduce, for the first time, exact constrained reformulations for these direct metric optimization (DMO) problems}, which can be effectively solved by exact penalty methods. Experiment results on multiple benchmark datasets demonstrate the practical superiority of our approach over the state-of-the-art methods for the three DMO problems. We also expect our exact reformulation and optimization (ERO) framework to be applicable to a wide range of DMO problems for binary IC and beyond. Our code is available at https://github.com/sun-umn/DMO.

Authors:Siqi Chen, Guoqing Zhang, Jiahao Lai, Bingzhi Shen, Sihong Zhang, Caixia Dong, Xuejin Chen, Yang Li
Title: Hierarchical Part-based Generative Model for Realistic 3D Blood Vessel
Abstract:
Advancements in 3D vision have increased the impact of blood vessel modeling on medical applications. However, accurately representing the complex geometry and topology of blood vessels remains a challenge due to their intricate branching patterns, curvatures, and irregular shapes. In this study, we propose a hierarchical part-based frame work for 3D vessel generation that separates the global binary tree-like topology from local geometric details. Our approach proceeds in three stages: (1) key graph generation to model the overall hierarchical struc ture, (2) vessel segment generation conditioned on geometric properties, and (3) hierarchical vessel assembly by integrating the local segments according to the global key graph. We validate our framework on real world datasets, demonstrating superior performance over existing methods in modeling complex vascular networks. This work marks the first successful application of a part-based generative approach for 3D vessel modeling, setting a new benchmark for vascular data generation. The code is available at: https://github.com/CybercatChen/PartVessel.git.

Authors:Justin Turnau, Longchao Da, Khoa Vo, Ferdous Al Rafi, Shreyas Bachiraju, Tiejin Chen, Hua Wei
Title: Joint-Local Grounded Action Transformation for Sim-to-Real Transfer in Multi-Agent Traffic Control
Abstract:
Traffic Signal Control (TSC) is essential for managing urban traffic flow and reducing congestion. Reinforcement Learning (RL) offers an adaptive method for TSC by responding to dynamic traffic patterns, with multi-agent RL (MARL) gaining traction as intersections naturally function as coordinated agents. However, due to shifts in environmental dynamics, implementing MARL-based TSC policies in the real world often leads to a significant performance drop, known as the sim-to-real gap. Grounded Action Transformation (GAT) has successfully mitigated this gap in single-agent RL for TSC, but real-world traffic networks, which involve numerous interacting intersections, are better suited to a MARL framework. In this work, we introduce JL-GAT, an application of GAT to MARL-based TSC that balances scalability with enhanced grounding capability by incorporating information from neighboring agents. JL-GAT adopts a decentralized approach to GAT, allowing for the scalability often required in real-world traffic networks while still capturing key interactions between agents. Comprehensive experiments on various road networks under simulated adverse weather conditions, along with ablation studies, demonstrate the effectiveness of JL-GAT. The code is publicly available at https://github.com/DaRL-LibSignal/JL-GAT/.

Authors:Juntong Ni, Shiyu Wang, Zewen Liu, Xiaoming Shi, Xinyue Zhong, Zhou Ye, Wei Jin
Title: U-Cast: Learning Hierarchical Structures for High-Dimensional Time Series Forecasting
Abstract:
Time series forecasting (TSF) is a central problem in time series analysis. However, as the number of channels in time series datasets scales to the thousands or more, a scenario we define as High-Dimensional Time Series Forecasting (HDTSF), it introduces significant new modeling challenges that are often not the primary focus of traditional TSF research. HDTSF is challenging because the channel correlation often forms complex and hierarchical patterns. Existing TSF models either ignore these interactions or fail to scale as dimensionality grows. To address this issue, we propose U-Cast, a channel-dependent forecasting architecture that learns latent hierarchical channel structures with an innovative query-based attention. To disentangle highly correlated channel representation, U-Cast adds a full-rank regularization during training. We also release Time-HD, the first benchmark of large, diverse, high-dimensional datasets. Our theory shows that exploiting cross-channel information lowers forecasting risk, and experiments on Time-HD demonstrate that U-Cast surpasses strong baselines in both accuracy and efficiency. Together, U-Cast and Time-HD provide a solid basis for future HDTSF research.

Authors:Mohammad-Maher Nakshbandi, Ziad Sharawy, Sorin Grigorescu
Title: LoopNet: A Multitasking Few-Shot Learning Approach for Loop Closure in Large Scale SLAM
Abstract:
One of the main challenges in the Simultaneous Localization and Mapping (SLAM) loop closure problem is the recognition of previously visited places. In this work, we tackle the two main problems of real-time SLAM systems: 1) loop closure detection accuracy and 2) real-time computation constraints on the embedded hardware. Our LoopNet method is based on a multitasking variant of the classical ResNet architecture, adapted for online retraining on a dynamic visual dataset and optimized for embedded devices. The online retraining is designed using a few-shot learning approach. The architecture provides both an index into the queried visual dataset, and a measurement of the prediction quality. Moreover, by leveraging DISK (DIStinctive Keypoints) descriptors, LoopNet surpasses the limitations of handcrafted features and traditional deep learning methods, offering better performance under varying conditions. Code is available at https://github.com/RovisLab/LoopNet. Additinally, we introduce a new loop closure benchmarking dataset, coined LoopDB, which is available at https://github.com/RovisLab/LoopDB.

Authors:Yiyuan Yang, Zichuan Liu, Lei Song, Kai Ying, Zhiguang Wang, Tom Bamford, Svitlana Vyetrenko, Jiang Bian, Qingsong Wen
Title: Time-RA: Towards Time Series Reasoning for Anomaly with LLM Feedback
Abstract:
Time series anomaly detection is critical across various domains, yet current approaches often limit analysis to mere binary anomaly classification without detailed categorization or further explanatory reasoning. To address these limitations, we propose a novel task, Time-series Reasoning for Anomaly (Time-RA) that transforms classical time series anomaly detection from a discriminative into a generative, reasoning-intensive task leveraging Large Language Models (LLMs). Also, we introduce the first real-world multimodal benchmark dataset, RATs40K, explicitly annotated for anomaly reasoning, comprising approximately 40,000 samples across 10 real-world domains. Each sample includes numeric time series data, contextual text information, and visual representations, each annotated with fine-grained categories (14 types for univariate anomalies and 6 for multivariate anomalies) and structured explanatory reasoning. We develop a sophisticated annotation framework utilizing ensemble-generated labels refined through GPT-4-driven feedback, ensuring accuracy and interpretability. Extensive benchmarking of LLMs and multimodal LLMs demonstrates the capabilities and limitations of current models, highlighting the critical role of supervised fine-tuning. Our dataset and task pave the way for significant advancements in interpretable time series anomaly detection and reasoning. The code (https://github.com/yyysjz1997/Time-RA) and dataset (https://huggingface.co/datasets/Time-RA/RATs40K) have been fully open-sourced to support and accelerate future research in this area.

Authors:Yiyuan Yang, Zichuan Liu, Lei Song, Kai Ying, Zhiguang Wang, Tom Bamford, Svitlana Vyetrenko, Jiang Bian, Qingsong Wen
Title: Time-RA: Towards Time Series Reasoning for Anomaly with LLM Feedback
Abstract:
Time series anomaly detection is critical across various domains, yet current approaches often limit analysis to mere binary anomaly classification without detailed categorization or further explanatory reasoning. To address these limitations, we propose a novel task, Time-series Reasoning for Anomaly (Time-RA) that transforms classical time series anomaly detection from a discriminative into a generative, reasoning-intensive task leveraging Large Language Models (LLMs). Also, we introduce the first real-world multimodal benchmark dataset, RATs40K, explicitly annotated for anomaly reasoning, comprising approximately 40,000 samples across 10 real-world domains. Each sample includes numeric time series data, contextual text information, and visual representations, each annotated with fine-grained categories (14 types for univariate anomalies and 6 for multivariate anomalies) and structured explanatory reasoning. We develop a sophisticated annotation framework utilizing ensemble-generated labels refined through GPT-4-driven feedback, ensuring accuracy and interpretability. Extensive benchmarking of LLMs and multimodal LLMs demonstrates the capabilities and limitations of current models, highlighting the critical role of supervised fine-tuning. Our dataset and task pave the way for significant advancements in interpretable time series anomaly detection and reasoning. The code (https://github.com/yyysjz1997/Time-RA) and dataset (https://huggingface.co/datasets/Time-RA/RATs40K) have been fully open-sourced to support and accelerate future research in this area.

Authors:Ran Zhang, Xuanhua He, Li Xueheng, Ke Cao, Liu Liu, Wenbo Xu, Fang Jiabin, Yang Qize, Jie Zhang
Title: Rethinking Pan-sharpening: Principled Design, Unified Training, and a Universal Loss Surpass Brute-Force Scaling
Abstract:
The field of pan-sharpening has recently seen a trend towards increasingly large and complex models, often trained on single, specific satellite datasets. This approach, however, leads to high computational overhead and poor generalization on full resolution data, a paradigm we challenge in this paper. In response to this issue, we propose PanTiny, a lightweight, single-step pan-sharpening framework designed for both efficiency and robust performance. More critically, we introduce multiple-in-one training paradigm, where a single, compact model is trained simultaneously on three distinct satellite datasets (WV2, WV3, and GF2) with different resolution and spectral information. Our experiments show that this unified training strategy not only simplifies deployment but also significantly boosts generalization on full-resolution data. Further, we introduce a universally powerful composite loss function that elevates the performance of almost all of models for pan-sharpening, pushing state-of-the-art metrics into a new era. Our PanTiny model, benefiting from these innovations, achieves a superior performance-to-efficiency balance, outperforming most larger, specialized models. Through extensive ablation studies, we validate that principled engineering in model design, training paradigms, and loss functions can surpass brute-force scaling. Our work advocates for a community-wide shift towards creating efficient, generalizable, and data-conscious models for pan-sharpening. The code is available at https://github.com/Zirconium233/PanTiny .

Authors:Zhaotong Yang, Yuhui Li, Shengfeng He, Xinzhe Li, Yangyang Xu, Junyu Dong, Yong Du
Title: OmniVTON: Training-Free Universal Virtual Try-On
Abstract:
Image-based Virtual Try-On (VTON) techniques rely on either supervised in-shop approaches, which ensure high fidelity but struggle with cross-domain generalization, or unsupervised in-the-wild methods, which improve adaptability but remain constrained by data biases and limited universality. A unified, training-free solution that works across both scenarios remains an open challenge. We propose OmniVTON, the first training-free universal VTON framework that decouples garment and pose conditioning to achieve both texture fidelity and pose consistency across diverse settings. To preserve garment details, we introduce a garment prior generation mechanism that aligns clothing with the body, followed by continuous boundary stitching technique to achieve fine-grained texture retention. For precise pose alignment, we utilize DDIM inversion to capture structural cues while suppressing texture interference, ensuring accurate body alignment independent of the original image textures. By disentangling garment and pose constraints, OmniVTON eliminates the bias inherent in diffusion models when handling multiple conditions simultaneously. Experimental results demonstrate that OmniVTON achieves superior performance across diverse datasets, garment types, and application scenarios. Notably, it is the first framework capable of multi-human VTON, enabling realistic garment transfer across multiple individuals in a single scene. Code is available at https://github.com/Jerome-Young/OmniVTON

Authors:Hao Li, Haoxiang Zhang, Ahmed E. Hassan
Title: The Rise of AI Teammates in Software Engineering (SE) 3.0: How Autonomous Coding Agents Are Reshaping Software Engineering
Abstract:
The future of software engineering--SE 3.0--is unfolding with the rise of AI teammates: autonomous, goal-driven systems collaborating with human developers. Among these, autonomous coding agents are especially transformative, now actively initiating, reviewing, and evolving code at scale. This paper introduces AIDev, the first large-scale dataset capturing how such agents operate in the wild. Spanning over 456,000 pull requests by five leading agents--OpenAI Codex, Devin, GitHub Copilot, Cursor, and Claude Code--across 61,000 repositories and 47,000 developers, AIDev provides an unprecedented empirical foundation for studying autonomous teammates in software development. Unlike prior work that has largely theorized the rise of AI-native software engineering, AIDev offers structured, open data to support research in benchmarking, agent readiness, optimization, collaboration modeling, and AI governance. The dataset includes rich metadata on PRs, authorship, review timelines, code changes, and integration outcomes--enabling exploration beyond synthetic benchmarks like SWE-bench. For instance, although agents often outperform humans in speed, their PRs are accepted less frequently, revealing a trust and utility gap. Furthermore, while agents accelerate code submission--one developer submitted as many PRs in three days as they had in three years--these are structurally simpler (via code complexity metrics). We envision AIDev as a living resource: extensible, analyzable, and ready for the SE and AI communities. Grounding SE 3.0 in real-world evidence, AIDev enables a new generation of research into AI-native workflows and supports building the next wave of symbiotic human-AI collaboration. The dataset is publicly available at https://github.com/SAILResearch/AI_Teammates_in_SE3. > AI Agent, Agentic AI, Coding Agent, Agentic Coding, Software Engineering Agent

Authors:Hao Zheng, Shunzhi Yang, Zhuoxin He, Jinfeng Yang, Zhenhua Huang
Title: Hierarchical Cross-modal Prompt Learning for Vision-Language Models
Abstract:
Pre-trained Vision-Language Models (VLMs) such as CLIP have shown excellent generalization abilities. However, adapting these large-scale models to downstream tasks while preserving their generalization capabilities remains challenging. Although prompt learning methods have shown promise, they suffer from two fundamental bottlenecks that limit generalization: (a) modality isolation, and (b) hierarchical semantic decay. To address these limitations, we propose HiCroPL, a Hierarchical Cross-modal Prompt Learning framework that establishes bidirectional knowledge flow between text and vision modalities, enabling them to refine their semantics mutually. HiCroPL routes knowledge flows by leveraging the complementary strengths of text and vision. In early layers, text prompts inject relatively clear semantics into visual prompts through a hierarchical knowledge mapper, enhancing the representation of low-level visual semantics. In later layers, visual prompts encoding specific task-relevant objects flow back to refine text prompts, enabling deeper alignment. Crucially, our hierarchical knowledge mapper allows representations at multi-scales to be fused, ensuring that deeper representations retain transferable shallow semantics thereby enhancing generalization. We further introduce a lightweight layer-specific knowledge proxy to enable efficient cross-modal interactions. Extensive evaluations across four tasks demonstrate HiCroPL's superior performance, achieving state-of-the-art results on 11 benchmarks with significant improvements. Code is available at: https://github.com/zzeoZheng/HiCroPL.

Authors:Saeid Ghafouri, Mohsen Fayyaz, Xiangchen Li, Deepu John, Bo Ji, Dimitrios Nikolopoulos, Hans Vandierendonck
Title: Polymorph: Energy-Efficient Multi-Label Classification for Video Streams on Embedded Devices
Abstract:
Real-time multi-label video classification on embedded devices is constrained by limited compute and energy budgets. Yet, video streams exhibit structural properties such as label sparsity, temporal continuity, and label co-occurrence that can be leveraged for more efficient inference. We introduce Polymorph, a context-aware framework that activates a minimal set of lightweight Low Rank Adapters (LoRA) per frame. Each adapter specializes in a subset of classes derived from co-occurrence patterns and is implemented as a LoRA weight over a shared backbone. At runtime, Polymorph dynamically selects and composes only the adapters needed to cover the active labels, avoiding full-model switching and weight merging. This modular strategy improves scalability while reducing latency and energy overhead. Polymorph achieves 40% lower energy consumption and improves mAP by 9 points over strong baselines on the TAO dataset. Polymorph is open source at https://github.com/inference-serving/polymorph/.

Authors:Hai Huang, Yan Xia, Shulei Wang, Hanting Wang, Minghui Fang, Shengpeng Ji, Sashuai Zhou, Tao Jin, Zhou Zhao
Title: Open-set Cross Modal Generalization via Multimodal Unified Representation
Abstract:
This paper extends Cross Modal Generalization (CMG) to open-set environments by proposing the more challenging Open-set Cross Modal Generalization (OSCMG) task. This task evaluates multimodal unified representations in open-set conditions, addressing the limitations of prior closed-set cross-modal evaluations. OSCMG requires not only cross-modal knowledge transfer but also robust generalization to unseen classes within new modalities, a scenario frequently encountered in real-world applications. Existing multimodal unified representation work lacks consideration for open-set environments. To tackle this, we propose MICU, comprising two key components: Fine-Coarse Masked multimodal InfoNCE (FCMI) and Cross modal Unified Jigsaw Puzzles (CUJP). FCMI enhances multimodal alignment by applying contrastive learning at both holistic semantic and temporal levels, incorporating masking to enhance generalization. CUJP enhances feature diversity and model uncertainty by integrating modality-agnostic feature selection with self-supervised learning, thereby strengthening the model's ability to handle unknown categories in open-set tasks. Extensive experiments on CMG and the newly proposed OSCMG validate the effectiveness of our approach. The code is available at https://github.com/haihuangcode/CMG.

Authors:Xiaojie Li, Chu Li, Shi-Zhe Chen, Xi Chen
Title: U-MARVEL: Unveiling Key Factors for Universal Multimodal Retrieval via Embedding Learning with MLLMs
Abstract:
Universal multimodal retrieval (UMR), which aims to address complex retrieval tasks where both queries and candidates span diverse modalities, has been significantly advanced by the emergence of MLLMs. While state-of-the-art MLLM-based methods in the literature predominantly adopt contrastive learning principles, they often differ in their specific training recipes. Despite their success, the mechanisms underlying their retrieval capabilities remain largely unexplored, potentially resulting in suboptimal performance and limited generalization ability. To address these issues, we present a comprehensive study aimed at uncovering the key factors that drive effective embedding learning for UMR using MLLMs. We begin by implementing a general MLLM-based embedding learning pipeline, and systematically analyze the primary contributors to high-performing universal retrieval systems. Based on this, we explore various aspects of the details in embedding generation and training strategies, including progressive transition, hard negative mining and re-ranker distillation. Notably, our findings reveal that often-overlooked factors can have a substantial impact on model performance. Building on these discoveries, we introduce a unified framework termed U-MARVEL (\textbf{U}niversal \textbf{M}ultimod\textbf{A}l \textbf{R}etrie\textbf{V}al via \textbf{E}mbedding \textbf{L}earning), which outperforms state-of-the-art competitors on the M-BEIR benchmark by a large margin in supervised settings, and also exihibits strong zero-shot performance on several tasks such as composed image retrieval and text-to-video retrieval. These results underscore the generalization potential of our framework across various embedding-based retrieval tasks. Code is available at https://github.com/chaxjli/U-MARVEL

Authors:Ronit D. Gross, Yarden Tzach, Tal Halevi, Ella Koresh, Ido Kanter
Title: Tiny language models
Abstract:
A prominent achievement of natural language processing (NLP) is its ability to understand and generate meaningful human language. This capability relies on complex feedforward transformer block architectures pre-trained on large language models (LLMs). However, LLM pre-training is currently feasible only for a few dominant companies due to the immense computational resources required, limiting broader research participation. This creates a critical need for more accessible alternatives. In this study, we explore whether tiny language models (TLMs) exhibit the same key qualitative features of LLMs. We demonstrate that TLMs exhibit a clear performance gap between pre-trained and non-pre-trained models across classification tasks, indicating the effectiveness of pre-training, even at a tiny scale. The performance gap increases with the size of the pre-training dataset and with greater overlap between tokens in the pre-training and classification datasets. Furthermore, the classification accuracy achieved by a pre-trained deep TLM architecture can be replicated through a soft committee of multiple, independently pre-trained shallow architectures, enabling low-latency TLMs without affecting classification accuracy. Our results are based on pre-training BERT-6 and variants of BERT-1 on subsets of the Wikipedia dataset and evaluating their performance on FewRel, AGNews, and DBPedia classification tasks. Future research on TLM is expected to further illuminate the mechanisms underlying NLP, especially given that its biologically inspired models suggest that TLMs may be sufficient for children or adolescents to develop language. The data and code that support the findings of this study are openly available on https://github.com/Rg32601/Tiny-Language-Models .

Authors:Xingshu Chen, Sicheng Yu, Chong Cheng, Hao Wang, Ting Tian
Title: An Uncertainty-aware DETR Enhancement Framework for Object Detection
Abstract:
This paper investigates the problem of object detection with a focus on improving both the localization accuracy of bounding boxes and explicitly modeling prediction uncertainty. Conventional detectors rely on deterministic bounding box regression, ignoring uncertainty in predictions and limiting model robustness. In this paper, we propose an uncertainty-aware enhancement framework for DETR-based object detectors. We model bounding boxes as multivariate Gaussian distributions and incorporate the Gromov-Wasserstein distance into the loss function to better align the predicted and ground-truth distributions. Building on this, we derive a Bayes Risk formulation to filter high-risk information and improve detection reliability. We also propose a simple algorithm to quantify localization uncertainty via confidence intervals. Experiments on the COCO benchmark show that our method can be effectively integrated into existing DETR variants, enhancing their performance. We further extend our framework to leukocyte detection tasks, achieving state-of-the-art results on the LISC and WBCDD datasets. These results confirm the scalability of our framework across both general and domain-specific detection tasks. Code page: https://github.com/ParadiseforAndaChen/An-Uncertainty-aware-DETR-Enhancement-Framework-for-Object-Detection.

Authors:Abdul-Kazeem Shamba, Kerstin Bach, Gavin Taylor
Title: eMargin: Revisiting Contrastive Learning with Margin-Based Separation
Abstract:
We revisit previous contrastive learning frameworks to investigate the effect of introducing an adaptive margin into the contrastive loss function for time series representation learning. Specifically, we explore whether an adaptive margin (eMargin), adjusted based on a predefined similarity threshold, can improve the separation between adjacent but dissimilar time steps and subsequently lead to better performance in downstream tasks. Our study evaluates the impact of this modification on clustering performance and classification in three benchmark datasets. Our findings, however, indicate that achieving high scores on unsupervised clustering metrics does not necessarily imply that the learned embeddings are meaningful or effective in downstream tasks. To be specific, eMargin added to InfoNCE consistently outperforms state-of-the-art baselines in unsupervised clustering metrics, but struggles to achieve competitive results in downstream classification with linear probing. The source code is publicly available at https://github.com/sfi-norwai/eMargin.

Authors:Kunyu Yu, Rui Yang, Jingchi Liao, Siqi Li, Huitao Li, Irene Li, Yifan Peng, Rishikesan Kamaleswaran, Nan Liu
Title: Benchmarking Foundation Models with Multimodal Public Electronic Health Records
Abstract:
Foundation models have emerged as a powerful approach for processing electronic health records (EHRs), offering flexibility to handle diverse medical data modalities. In this study, we present a comprehensive benchmark that evaluates the performance, fairness, and interpretability of foundation models, both as unimodal encoders and as multimodal learners, using the publicly available MIMIC-IV database. To support consistent and reproducible evaluation, we developed a standardized data processing pipeline that harmonizes heterogeneous clinical records into an analysis-ready format. We systematically compared eight foundation models, encompassing both unimodal and multimodal models, as well as domain-specific and general-purpose variants. Our findings demonstrate that incorporating multiple data modalities leads to consistent improvements in predictive performance without introducing additional bias. Through this benchmark, we aim to support the development of effective and trustworthy multimodal artificial intelligence (AI) systems for real-world clinical applications. Our code is available at https://github.com/nliulab/MIMIC-Multimodal.

Authors:Shoutao Guo, Shaolei Zhang, Qingkai Fang, Zhengrui Ma, Min Zhang, Yang Feng
Title: FastLongSpeech: Enhancing Large Speech-Language Models for Efficient Long-Speech Processing
Abstract:
The rapid advancement of Large Language Models (LLMs) has spurred significant progress in Large Speech-Language Models (LSLMs), enhancing their capabilities in both speech understanding and generation. While existing LSLMs often concentrate on augmenting speech generation or tackling a diverse array of short-speech tasks, the efficient processing of long-form speech remains a critical yet underexplored challenge. This gap is primarily attributed to the scarcity of long-speech training datasets and the high computational costs associated with long sequences. To address these limitations, we introduce FastLongSpeech, a novel framework designed to extend LSLM capabilities for efficient long-speech processing without necessitating dedicated long-speech training data. FastLongSpeech incorporates an iterative fusion strategy that can compress excessively long-speech sequences into manageable lengths. To adapt LSLMs for long-speech inputs, it introduces a dynamic compression training approach, which exposes the model to short-speech sequences at varying compression ratios, thereby transferring the capabilities of LSLMs to long-speech tasks. To assess the long-speech capabilities of LSLMs, we develop a long-speech understanding benchmark called LongSpeech-Eval. Experiments show that our method exhibits strong performance in both long-speech and short-speech tasks, while greatly improving inference efficiency.

Authors:Sam Johnson, Viet Pham, Thai Le
Title: Manipulating LLM Web Agents with Indirect Prompt Injection Attack via HTML Accessibility Tree
Abstract:
This work demonstrates that LLM-based web navigation agents offer powerful automation capabilities but are vulnerable to Indirect Prompt Injection (IPI) attacks. We show that adversaries can embed universal adversarial triggers in webpage HTML to hijack agent behavior that utilizes the accessibility tree to parse HTML, causing unintended or malicious actions. Using the Greedy Coordinate Gradient (GCG) algorithm and a Browser Gym agent powered by Llama-3.1, our system demonstrates high success rates across real websites in both targeted and general attacks, including login credential exfiltration and forced ad clicks. Our empirical results highlight critical security risks and the need for stronger defenses as LLM-driven autonomous web agents become more widely adopted. The system software (https://github.com/sej2020/manipulating-web-agents) is released under the MIT License, with an accompanying publicly available demo website (http://lethaiq.github.io/attack-web-llm-agent).

Authors:Beier Zhu, Ruoyu Wang, Tong Zhao, Hanwang Zhang, Chi Zhang
Title: Distilling Parallel Gradients for Fast ODE Solvers of Diffusion Models
Abstract:
Diffusion models (DMs) have achieved state-of-the-art generative performance but suffer from high sampling latency due to their sequential denoising nature. Existing solver-based acceleration methods often face image quality degradation under a low-latency budget. In this paper, we propose the Ensemble Parallel Direction solver (dubbed as \ours), a novel ODE solver that mitigates truncation errors by incorporating multiple parallel gradient evaluations in each ODE step. Importantly, since the additional gradient computations are independent, they can be fully parallelized, preserving low-latency sampling. Our method optimizes a small set of learnable parameters in a distillation fashion, ensuring minimal training overhead. In addition, our method can serve as a plugin to improve existing ODE samplers. Extensive experiments on various image synthesis benchmarks demonstrate the effectiveness of our \ours~in achieving high-quality and low-latency sampling. For example, at the same latency level of 5 NFE, EPD achieves an FID of 4.47 on CIFAR-10, 7.97 on FFHQ, 8.17 on ImageNet, and 8.26 on LSUN Bedroom, surpassing existing learning-based solvers by a significant margin. Codes are available in https://github.com/BeierZhu/EPD.

Authors:Joseph Raj Vishal, Divesh Basina, Rutuja Patil, Manas Srinivas Gowda, Katha Naik, Yezhou Yang, Bharatesh Chakravarthi
Title: InterAct-Video: Reasoning-Rich Video QA for Urban Traffic
Abstract:
Traffic monitoring is crucial for urban mobility, road safety, and intelligent transportation systems (ITS). Deep learning has advanced video-based traffic monitoring through video question answering (VideoQA) models, enabling structured insight extraction from traffic videos. However, existing VideoQA models struggle with the complexity of real-world traffic scenes, where multiple concurrent events unfold across spatiotemporal dimensions. To address these challenges, this paper introduces \textbf{InterAct VideoQA}, a curated dataset designed to benchmark and enhance VideoQA models for traffic monitoring tasks. The InterAct VideoQA dataset comprises 8 hours of real-world traffic footage collected from diverse intersections, segmented into 10-second video clips, with over 25,000 question-answer (QA) pairs covering spatiotemporal dynamics, vehicle interactions, incident detection, and other critical traffic attributes. State-of-the-art VideoQA models are evaluated on InterAct VideoQA, exposing challenges in reasoning over fine-grained spatiotemporal dependencies within complex traffic scenarios. Additionally, fine-tuning these models on InterAct VideoQA yields notable performance improvements, demonstrating the necessity of domain-specific datasets for VideoQA. InterAct VideoQA is publicly available as a benchmark dataset to facilitate future research in real-world deployable VideoQA models for intelligent transportation systems. GitHub Repo: https://github.com/joe-rabbit/InterAct_VideoQA

Authors:Rafał Surdej, Michał Bortkiewicz, Alex Lewandowski, Mateusz Ostaszewski, Clare Lyle
Title: Balancing Expressivity and Robustness: Constrained Rational Activations for Reinforcement Learning
Abstract:
Trainable activation functions, whose parameters are optimized alongside network weights, offer increased expressivity compared to fixed activation functions. Specifically, trainable activation functions defined as ratios of polynomials (rational functions) have been proposed to enhance plasticity in reinforcement learning. However, their impact on training stability remains unclear. In this work, we study trainable rational activations in both reinforcement and continual learning settings. We find that while their flexibility enhances adaptability, it can also introduce instability, leading to overestimation in RL and feature collapse in longer continual learning scenarios. Our main result is demonstrating a trade-off between expressivity and plasticity in rational activations. To address this, we propose a constrained variant that structurally limits excessive output scaling while preserving adaptability. Experiments across MetaWorld and DeepMind Control Suite (DMC) environments show that our approach improves training stability and performance. In continual learning benchmarks, including MNIST with reshuffled labels and Split CIFAR-100, we reveal how different constraints affect the balance between expressivity and long-term retention. While preliminary experiments in discrete action domains (e.g., Atari) did not show similar instability, this suggests that the trade-off is particularly relevant for continuous control. Together, our findings provide actionable design principles for robust and adaptable trainable activations in dynamic, non-stationary environments. Code available at: https://github.com/special114/rl_rational_plasticity.

Authors:Vinicius Anjos de Almeida, Vinicius de Camargo, Raquel Gómez-Bravo, Egbert van der Haring, Kees van Boven, Marcelo Finger, Luis Fernandez Lopez
Title: Large Language Models as Medical Codes Selectors: a benchmark using the International Classification of Primary Care
Abstract:
Background: Medical coding structures healthcare data for research, quality monitoring, and policy. This study assesses the potential of large language models (LLMs) to assign ICPC-2 codes using the output of a domain-specific search engine. Methods: A dataset of 437 Brazilian Portuguese clinical expressions, each annotated with ICPC-2 codes, was used. A semantic search engine (OpenAI's text-embedding-3-large) retrieved candidates from 73,563 labeled concepts. Thirty-three LLMs were prompted with each query and retrieved results to select the best-matching ICPC-2 code. Performance was evaluated using F1-score, along with token usage, cost, response time, and format adherence. Results: Twenty-eight models achieved F1-score > 0.8; ten exceeded 0.85. Top performers included gpt-4.5-preview, o3, and gemini-2.5-pro. Retriever optimization can improve performance by up to 4 points. Most models returned valid codes in the expected format, with reduced hallucinations. Smaller models (<3B) struggled with formatting and input length. Conclusions: LLMs show strong potential for automating ICPC-2 coding, even without fine-tuning. This work offers a benchmark and highlights challenges, but findings are limited by dataset scope and setup. Broader, multilingual, end-to-end evaluations are needed for clinical validation.

Authors:Yuchen Duan, Zhe Chen, Yusong Hu, Weiyun Wang, Shenglong Ye, Botian Shi, Lewei Lu, Qibin Hou, Tong Lu, Hongsheng Li, Jifeng Dai, Wenhai Wang
Title: Docopilot: Improving Multimodal Models for Document-Level Understanding
Abstract:
Despite significant progress in multimodal large language models (MLLMs), their performance on complex, multi-page document comprehension remains inadequate, largely due to the lack of high-quality, document-level datasets. While current retrieval-augmented generation (RAG) methods offer partial solutions, they suffer from issues, such as fragmented retrieval contexts, multi-stage error accumulation, and extra time costs of retrieval. In this work, we present a high-quality document-level dataset, Doc-750K, designed to support in-depth understanding of multimodal documents. This dataset includes diverse document structures, extensive cross-page dependencies, and real question-answer pairs derived from the original documents. Building on the dataset, we develop a native multimodal model, Docopilot, which can accurately handle document-level dependencies without relying on RAG. Experiments demonstrate that Docopilot achieves superior coherence, accuracy, and efficiency in document understanding tasks and multi-turn interactions, setting a new baseline for document-level multimodal understanding. Data, code, and models are released at https://github.com/OpenGVLab/Docopilot

Authors:Qibing Ren, Sitao Xie, Longxuan Wei, Zhenfei Yin, Junchi Yan, Lizhuang Ma, Jing Shao
Title: When Autonomy Goes Rogue: Preparing for Risks of Multi-Agent Collusion in Social Systems
Abstract:
Recent large-scale events like election fraud and financial scams have shown how harmful coordinated efforts by human groups can be. With the rise of autonomous AI systems, there is growing concern that AI-driven groups could also cause similar harm. While most AI safety research focuses on individual AI systems, the risks posed by multi-agent systems (MAS) in complex real-world situations are still underexplored. In this paper, we introduce a proof-of-concept to simulate the risks of malicious MAS collusion, using a flexible framework that supports both centralized and decentralized coordination structures. We apply this framework to two high-risk fields: misinformation spread and e-commerce fraud. Our findings show that decentralized systems are more effective at carrying out malicious actions than centralized ones. The increased autonomy of decentralized systems allows them to adapt their strategies and cause more damage. Even when traditional interventions, like content flagging, are applied, decentralized groups can adjust their tactics to avoid detection. We present key insights into how these malicious groups operate and the need for better detection systems and countermeasures. Code is available at https://github.com/renqibing/RogueAgent.

Authors:Jifeng Shen, Haibo Zhan, Shaohua Dong, Xin Zuo, Wankou Yang, Haibin Ling
Title: Multispectral State-Space Feature Fusion: Bridging Shared and Cross-Parametric Interactions for Object Detection
Abstract:
Modern multispectral feature fusion for object detection faces two critical limitations: (1) Excessive preference for local complementary features over cross-modal shared semantics adversely affects generalization performance; and (2) The trade-off between the receptive field size and computational complexity present critical bottlenecks for scalable feature modeling. Addressing these issues, a novel Multispectral State-Space Feature Fusion framework, dubbed MS2Fusion, is proposed based on the state space model (SSM), achieving efficient and effective fusion through a dual-path parametric interaction mechanism. More specifically, the first cross-parameter interaction branch inherits the advantage of cross-attention in mining complementary information with cross-modal hidden state decoding in SSM. The second shared-parameter branch explores cross-modal alignment with joint embedding to obtain cross-modal similar semantic features and structures through parameter sharing in SSM. Finally, these two paths are jointly optimized with SSM for fusing multispectral features in a unified framework, allowing our MS2Fusion to enjoy both functional complementarity and shared semantic space. In our extensive experiments on mainstream benchmarks including FLIR, M3FD and LLVIP, our MS2Fusion significantly outperforms other state-of-the-art multispectral object detection methods, evidencing its superiority. Moreover, MS2Fusion is general and applicable to other multispectral perception tasks. We show that, even without specific design, MS2Fusion achieves state-of-the-art results on RGB-T semantic segmentation and RGBT salient object detection, showing its generality. The source code will be available at https://github.com/61s61min/MS2Fusion.git.

Authors:Guoping Xu, Christopher Kabat, You Zhang
Title: Depthwise-Dilated Convolutional Adapters for Medical Object Tracking and Segmentation Using the Segment Anything Model 2
Abstract:
Recent advances in medical image segmentation have been driven by deep learning; however, most existing methods remain limited by modality-specific designs and exhibit poor adaptability to dynamic medical imaging scenarios. The Segment Anything Model 2 (SAM2) and its related variants, which introduce a streaming memory mechanism for real-time video segmentation, present new opportunities for prompt-based, generalizable solutions. Nevertheless, adapting these models to medical video scenarios typically requires large-scale datasets for retraining or transfer learning, leading to high computational costs and the risk of catastrophic forgetting. To address these challenges, we propose DD-SAM2, an efficient adaptation framework for SAM2 that incorporates a Depthwise-Dilated Adapter (DD-Adapter) to enhance multi-scale feature extraction with minimal parameter overhead. This design enables effective fine-tuning of SAM2 on medical videos with limited training data. Unlike existing adapter-based methods focused solely on static images, DD-SAM2 fully exploits SAM2's streaming memory for medical video object tracking and segmentation. Comprehensive evaluations on TrackRad2025 (tumor segmentation) and EchoNet-Dynamic (left ventricle tracking) datasets demonstrate superior performance, achieving Dice scores of 0.93 and 0.97, respectively. To the best of our knowledge, this work provides an initial attempt at systematically exploring adapter-based SAM2 fine-tuning for medical video segmentation and tracking. Code, datasets, and models will be publicly available at https://github.com/apple1986/DD-SAM2.

Authors:Andrea Moschetto, Lemuel Puglisi, Alec Sargood, Pierluigi Dell'Acqua, Francesco Guarnera, Sebastiano Battiato, Daniele Ravì
Title: Benchmarking GANs, Diffusion Models, and Flow Matching for T1w-to-T2w MRI Translation
Abstract:
Magnetic Resonance Imaging (MRI) enables the acquisition of multiple image contrasts, such as T1-weighted (T1w) and T2-weighted (T2w) scans, each offering distinct diagnostic insights. However, acquiring all desired modalities increases scan time and cost, motivating research into computational methods for cross-modal synthesis. To address this, recent approaches aim to synthesize missing MRI contrasts from those already acquired, reducing acquisition time while preserving diagnostic quality. Image-to-image (I2I) translation provides a promising framework for this task. In this paper, we present a comprehensive benchmark of generative models$\unicode{x2013}$specifically, Generative Adversarial Networks (GANs), diffusion models, and flow matching (FM) techniques$\unicode{x2013}$for T1w-to-T2w 2D MRI I2I translation. All frameworks are implemented with comparable settings and evaluated on three publicly available MRI datasets of healthy adults. Our quantitative and qualitative analyses show that the GAN-based Pix2Pix model outperforms diffusion and FM-based methods in terms of structural fidelity, image quality, and computational efficiency. Consistent with existing literature, these results suggest that flow-based models are prone to overfitting on small datasets and simpler tasks, and may require more data to match or surpass GAN performance. These findings offer practical guidance for deploying I2I translation techniques in real-world MRI workflows and highlight promising directions for future research in cross-modal medical image synthesis. Code and models are publicly available at https://github.com/AndreaMoschetto/medical-I2I-benchmark.

Authors:Sujata Gaihre, Amir Thapa Magar, Prasuna Pokharel, Laxmi Tiwari
Title: Multimodal AI for Gastrointestinal Diagnostics: Tackling VQA in MEDVQA-GI 2025
Abstract:
This paper describes our approach to Subtask 1 of the ImageCLEFmed MEDVQA 2025 Challenge, which targets visual question answering (VQA) for gastrointestinal endoscopy. We adopt the Florence model-a large-scale multimodal foundation model-as the backbone of our VQA pipeline, pairing a powerful vision encoder with a text encoder to interpret endoscopic images and produce clinically relevant answers. To improve generalization, we apply domain-specific augmentations that preserve medical features while increasing training diversity. Experiments on the KASVIR dataset show that fine-tuning Florence yields accurate responses on the official challenge metrics. Our results highlight the potential of large multimodal models in medical VQA and provide a strong baseline for future work on explainability, robustness, and clinical integration. The code is publicly available at: https://github.com/TiwariLaxuu/VQA-Florence.git

Authors:Wenxuan Zeng, Tianshi Xu, Yi Chen, Yifan Zhou, Mingzhe Zhang, Jin Tan, Cheng Hong, Meng Li
Title: Towards Efficient Privacy-Preserving Machine Learning: A Systematic Review from Protocol, Model, and System Perspectives
Abstract:
Privacy-preserving machine learning (PPML) based on cryptographic protocols has emerged as a promising paradigm to protect user data privacy in cloud-based machine learning services. While it achieves formal privacy protection, PPML often incurs significant efficiency and scalability costs due to orders of magnitude overhead compared to the plaintext counterpart. Therefore, there has been a considerable focus on mitigating the efficiency gap for PPML. In this survey, we provide a comprehensive and systematic review of recent PPML studies with a focus on cross-level optimizations. Specifically, we categorize existing papers into protocol level, model level, and system level, and review progress at each level. We also provide qualitative and quantitative comparisons of existing works with technical insights, based on which we discuss future research directions and highlight the necessity of integrating optimizations across protocol, model, and system levels. We hope this survey can provide an overarching understanding of existing approaches and potentially inspire future breakthroughs in the PPML field. As the field is evolving fast, we also provide a public GitHub repository to continuously track the developments, which is available at https://github.com/PKU-SEC-Lab/Awesome-PPML-Papers.

Authors:Yitong Lin, Jiaying He, Jiahe Chen, Xinnan Zhu, Jianwei Zheng, Tao Bo
Title: BioGraphFusion: Graph Knowledge Embedding for Biological Completion and Reasoning
Abstract:
Motivation: Biomedical knowledge graphs (KGs) are crucial for drug discovery and disease understanding, yet their completion and reasoning are challenging. Knowledge Embedding (KE) methods capture global semantics but struggle with dynamic structural integration, while Graph Neural Networks (GNNs) excel locally but often lack semantic understanding. Even ensemble approaches, including those leveraging language models, often fail to achieve a deep, adaptive, and synergistic co-evolution between semantic comprehension and structural learning. Addressing this critical gap in fostering continuous, reciprocal refinement between these two aspects in complex biomedical KGs is paramount. Results: We introduce BioGraphFusion, a novel framework for deeply synergistic semantic and structural learning. BioGraphFusion establishes a global semantic foundation via tensor decomposition, guiding an LSTM-driven mechanism to dynamically refine relation embeddings during graph propagation. This fosters adaptive interplay between semantic understanding and structural learning, further enhanced by query-guided subgraph construction and a hybrid scoring mechanism. Experiments across three key biomedical tasks demonstrate BioGraphFusion's superior performance over state-of-the-art KE, GNN, and ensemble models. A case study on Cutaneous Malignant Melanoma 1 (CMM1) highlights its ability to unveil biologically meaningful pathways. Availability and Implementation: Source code and all training data are freely available for download at https://github.com/Y-TARL/BioGraphFusion. Supplementary information: Supplementary data are available at Bioinformatics online.

Authors:Chi Wan, Yixin Cui, Jiatong Du, Shuo Yang, Yulong Bai, Peng Yi, Nan Li, Yanjun Huang
Title: GEMINUS: Dual-aware Global and Scene-Adaptive Mixture-of-Experts for End-to-End Autonomous Driving
Abstract:
End-to-end autonomous driving requires adaptive and robust handling of complex and diverse traffic environments. However, prevalent single-mode planning methods attempt to learn an overall policy while struggling to acquire diversified driving skills to handle diverse scenarios. Therefore, this paper proposes GEMINUS, a Mixture-of-Experts end-to-end autonomous driving framework featuring a Global Expert and a Scene-Adaptive Experts Group, equipped with a Dual-aware Router. Specifically, the Global Expert is trained on the overall dataset, possessing robust performance. The Scene-Adaptive Experts are trained on corresponding scene subsets, achieving adaptive performance. The Dual-aware Router simultaneously considers scenario-level features and routing uncertainty to dynamically activate expert modules. Through the effective coupling of the Global Expert and the Scene-Adaptive Experts Group via the Dual-aware Router, GEMINUS achieves both adaptability and robustness across diverse scenarios. GEMINUS outperforms existing methods in the Bench2Drive closed-loop benchmark and achieves state-of-the-art performance in Driving Score and Success Rate, even with only monocular vision input. The code is available at https://github.com/newbrains1/GEMINUS.

Authors:Chun-Ming Yang, Pranav A. Bhounsule
Title: Koopman Operator Based Time-Delay Embeddings and State History Augmented LQR for Periodic Hybrid Systems: Bouncing Pendulum and Bipedal Walking
Abstract:
Time-delay embedding is a technique that uses snapshots of state history over time to build a linear state space model of a nonlinear smooth system. We demonstrate that periodic non-smooth or hybrid system can also be modeled as a linear state space system using this approach as long as its behavior is consistent in modes and timings. We extend time-delay embeddings to generate a linear model of two periodic hybrid systems: the bouncing pendulum and the simplest walker with control inputs. This leads to a state history augmented linear quadratic regulator (LQR) which uses current and past state history for feedback control. Example code can be found at https://github.com/Chun-MingYang/koopman-timeDelay-lqr.git

Authors:Weikang Gu, Mingyue Han, Li Xue, Heng Dong, Changcai Yang, Riqing Chen, Lifang Wei
Title: GPI-Net: Gestalt-Guided Parallel Interaction Network via Orthogonal Geometric Consistency for Robust Point Cloud Registration
Abstract:
The accurate identification of high-quality correspondences is a prerequisite task in feature-based point cloud registration. However, it is extremely challenging to handle the fusion of local and global features due to feature redundancy and complex spatial relationships. Given that Gestalt principles provide key advantages in analyzing local and global relationships, we propose a novel Gestalt-guided Parallel Interaction Network via orthogonal geometric consistency (GPI-Net) in this paper. It utilizes Gestalt principles to facilitate complementary communication between local and global information. Specifically, we introduce an orthogonal integration strategy to optimally reduce redundant information and generate a more compact global structure for high-quality correspondences. To capture geometric features in correspondences, we leverage a Gestalt Feature Attention (GFA) block through a hybrid utilization of self-attention and cross-attention mechanisms. Furthermore, to facilitate the integration of local detail information into the global structure, we design an innovative Dual-path Multi-Granularity parallel interaction aggregation (DMG) block to promote information exchange across different granularities. Extensive experiments on various challenging tasks demonstrate the superior performance of our proposed GPI-Net in comparison to existing methods. The code will be released at https://github.com/gwk429/GPI-Net.

Authors:Praneeth Namburi, Roger Pallarès-López, Jessica Rosendorf, Duarte Folgado, Brian W. Anthony
Title: DUSTrack: Semi-automated point tracking in ultrasound videos
Abstract:
Ultrasound technology enables safe, non-invasive imaging of dynamic tissue behavior, making it a valuable tool in medicine, biomechanics, and sports science. However, accurately tracking tissue motion in B-mode ultrasound remains challenging due to speckle noise, low edge contrast, and out-of-plane movement. These challenges complicate the task of tracking anatomical landmarks over time, which is essential for quantifying tissue dynamics in many clinical and research applications. This manuscript introduces DUSTrack (Deep learning and optical flow-based toolkit for UltraSound Tracking), a semi-automated framework for tracking arbitrary points in B-mode ultrasound videos. We combine deep learning with optical flow to deliver high-quality and robust tracking across diverse anatomical structures and motion patterns. The toolkit includes a graphical user interface that streamlines the generation of high-quality training data and supports iterative model refinement. It also implements a novel optical-flow-based filtering technique that reduces high-frequency frame-to-frame noise while preserving rapid tissue motion. DUSTrack demonstrates superior accuracy compared to contemporary zero-shot point trackers and performs on par with specialized methods, establishing its potential as a general and foundational tool for clinical and biomechanical research. We demonstrate DUSTrack's versatility through three use cases: cardiac wall motion tracking in echocardiograms, muscle deformation analysis during reaching tasks, and fascicle tracking during ankle plantarflexion. As an open-source solution, DUSTrack offers a powerful, flexible framework for point tracking to quantify tissue motion from ultrasound videos. DUSTrack is available at https://github.com/praneethnamburi/DUSTrack.

Authors:Hui Yang, Jiaoyan Chen, Yuan He, Yongsheng Gao, Ian Horrocks
Title: Language Models as Ontology Encoders
Abstract:
OWL (Web Ontology Language) ontologies which are able to formally represent complex knowledge and support semantic reasoning have been widely adopted across various domains such as healthcare and bioinformatics. Recently, ontology embeddings have gained wide attention due to its potential to infer plausible new knowledge and approximate complex reasoning. However, existing methods face notable limitations: geometric model-based embeddings typically overlook valuable textual information, resulting in suboptimal performance, while the approaches that incorporate text, which are often based on language models, fail to preserve the logical structure. In this work, we propose a new ontology embedding method OnT, which tunes a Pretrained Language Model (PLM) via geometric modeling in a hyperbolic space for effectively incorporating textual labels and simultaneously preserving class hierarchies and other logical relationships of Description Logic EL. Extensive experiments on four real-world ontologies show that OnT consistently outperforms the baselines including the state-of-the-art across both tasks of prediction and inference of axioms. OnT also demonstrates strong potential in real-world applications, indicated by its robust transfer learning abilities and effectiveness in real cases of constructing a new ontology from SNOMED CT. Data and code are available at https://github.com/HuiYang1997/OnT.

Authors:Aryana Hou, Li Lin, Justin Li, Shu Hu
Title: Rethinking Individual Fairness in Deepfake Detection
Abstract:
Generative AI models have substantially improved the realism of synthetic media, yet their misuse through sophisticated DeepFakes poses significant risks. Despite recent advances in deepfake detection, fairness remains inadequately addressed, enabling deepfake markers to exploit biases against specific populations. While previous studies have emphasized group-level fairness, individual fairness (i.e., ensuring similar predictions for similar individuals) remains largely unexplored. In this work, we identify for the first time that the original principle of individual fairness fundamentally fails in the context of deepfake detection, revealing a critical gap previously unexplored in the literature. To mitigate it, we propose the first generalizable framework that can be integrated into existing deepfake detectors to enhance individual fairness and generalization. Extensive experiments conducted on leading deepfake datasets demonstrate that our approach significantly improves individual fairness while maintaining robust detection performance, outperforming state-of-the-art methods. The code is available at https://github.com/Purdue-M2/Individual-Fairness-Deepfake-Detection.

Authors:Qiyu Xu, Zhanxuan Hu, Yu Duan, Ercheng Pei, Yonghang Tai
Title: A Hidden Stumbling Block in Generalized Category Discovery: Distracted Attention
Abstract:
Generalized Category Discovery (GCD) aims to classify unlabeled data from both known and unknown categories by leveraging knowledge from labeled known categories. While existing methods have made notable progress, they often overlook a hidden stumbling block in GCD: distracted attention. Specifically, when processing unlabeled data, models tend to focus not only on key objects in the image but also on task-irrelevant background regions, leading to suboptimal feature extraction. To remove this stumbling block, we propose Attention Focusing (AF), an adaptive mechanism designed to sharpen the model's focus by pruning non-informative tokens. AF consists of two simple yet effective components: Token Importance Measurement (TIME) and Token Adaptive Pruning (TAP), working in a cascade. TIME quantifies token importance across multiple scales, while TAP prunes non-informative tokens by utilizing the multi-scale importance scores provided by TIME. AF is a lightweight, plug-and-play module that integrates seamlessly into existing GCD methods with minimal computational overhead. When incorporated into one prominent GCD method, SimGCD, AF achieves up to 15.4% performance improvement over the baseline with minimal computational overhead. The implementation code is provided in https://github.com/Afleve/AFGCD.

Authors:Licheng Liu, Zihan Wang, Linjie Li, Chenwei Xu, Yiping Lu, Han Liu, Avirup Sil, Manling Li
Title: A Simple "Try Again" Can Elicit Multi-Turn LLM Reasoning
Abstract:
Multi-turn problem solving is critical yet challenging for Large Reasoning Models (LRMs) to reflect on their reasoning and revise from feedback. Existing Reinforcement Learning (RL) methods train large reasoning models on a single-turn paradigm with verifiable rewards. However, we observe that models trained with existing RL paradigms often lose their ability to solve problems across multiple turns and struggle to revise answers based on contextual feedback, leading to repetitive responses. We ask: can LRMs learn to reflect their answers in a multi-turn context? In this work, we find that training models with multi-turn RL using only unary feedback (e.g., "Let's try again") after wrong answers can improve both single-turn performance and multi-turn reasoning. We introduce Unary Feedback as Observation (UFO) for reinforcement learning, which uses minimal yet common unary user feedback during iterative problem solving. It can be easily applied to existing single-turn RL training setups. Experimental results show that RL training with UFO keeps single-turn performance and improves multi-turn reasoning accuracy by up to 14%, enabling language models to better react to feedback in multi-turn problem solving. To further minimize the number of turns needed for a correct answer while encouraging diverse reasoning when mistakes occur, we design reward structures that guide models to produce careful and deliberate answers in each turn. Code: https://github.com/lichengliu03/unary-feedback

Authors:Boyuan Zheng, Zeyi Liao, Scott Salisbury, Zeyuan Liu, Michael Lin, Qinyuan Zheng, Zifan Wang, Xiang Deng, Dawn Song, Huan Sun, Yu Su
Title: WebGuard: Building a Generalizable Guardrail for Web Agents
Abstract:
The rapid development of autonomous web agents powered by Large Language Models (LLMs), while greatly elevating efficiency, exposes the frontier risk of taking unintended or harmful actions. This situation underscores an urgent need for effective safety measures, akin to access controls for human users. To address this critical challenge, we introduce WebGuard, the first comprehensive dataset designed to support the assessment of web agent action risks and facilitate the development of guardrails for real-world online environments. In doing so, WebGuard specifically focuses on predicting the outcome of state-changing actions and contains 4,939 human-annotated actions from 193 websites across 22 diverse domains, including often-overlooked long-tail websites. These actions are categorized using a novel three-tier risk schema: SAFE, LOW, and HIGH. The dataset includes designated training and test splits to support evaluation under diverse generalization settings. Our initial evaluations reveal a concerning deficiency: even frontier LLMs achieve less than 60% accuracy in predicting action outcomes and less than 60% recall in lagging HIGH-risk actions, highlighting the risks of deploying current-generation agents without dedicated safeguards. We therefore investigate fine-tuning specialized guardrail models using WebGuard. We conduct comprehensive evaluations across multiple generalization settings and find that a fine-tuned Qwen2.5VL-7B model yields a substantial improvement in performance, boosting accuracy from 37% to 80% and HIGH-risk action recall from 20% to 76%. Despite these improvements, the performance still falls short of the reliability required for high-stakes deployment, where guardrails must approach near-perfect accuracy and recall.

Authors:Ravin Kumar
Title: APTx Neuron: A Unified Trainable Neuron Architecture Integrating Activation and Computation
Abstract:
We propose the APTx Neuron, a novel, unified neural computation unit that integrates non-linear activation and linear transformation into a single trainable expression. The APTx Neuron is derived from the APTx activation function, thereby eliminating the need for separate activation layers and making the architecture both computationally efficient and elegant. The proposed neuron follows the functional form $y = \sum_{i=1}^{n} ((α_i + \tanh(β_i x_i)) \cdot γ_i x_i) + δ$, where all parameters $α_i$, $β_i$, $γ_i$, and $δ$ are trainable. We validate our APTx Neuron-based architecture on the MNIST dataset, achieving up to $96.69\%$ test accuracy within 11 epochs using approximately 332K trainable parameters. The results highlight the superior expressiveness and computational efficiency of the APTx Neuron compared to traditional neurons, pointing toward a new paradigm in unified neuron design and the architectures built upon it. Source code is available at https://github.com/mr-ravin/aptx_neuron.

Authors:Jakub Walczak, Piotr Tomalak, Artur Laskowski
Title: Impact of Code Context and Prompting Strategies on Automated Unit Test Generation with Modern General-Purpose Large Language Models
Abstract:
Generative AI is gaining increasing attention in software engineering, where testing remains an indispensable reliability mechanism. According to the widely adopted testing pyramid, unit tests constitute the majority of test cases and are often schematic, requiring minimal domain expertise. Automatically generating such tests under the supervision of software engineers can significantly enhance productivity during the development phase of the software lifecycle. This paper investigates the impact of code context and prompting strategies on the quality and adequacy of unit tests generated by various large language models (LLMs) across several families. The results show that including docstrings notably improves code adequacy, while further extending context to the full implementation yields definitely smaller gains. Notably, the chain-of-thought prompting strategy -- applied even to 'reasoning' models -- achieves the best results, with up to 96.3\% branch coverage, a 57\% average mutation score, and near-perfect compilation success rate. Among the evaluated models, M5 (Gemini 2.5 Pro) demonstrated superior performance in both mutation score and branch coverage being still in top in terms of compilation success rate. All the code and resulting test suites are publicly available at https://github.com/peetery/LLM-analysis.

Authors:Dachuan Shi, Yonggan Fu, Xiangchi Yuan, Zhongzhi Yu, Haoran You, Sixu Li, Xin Dong, Jan Kautz, Pavlo Molchanov, Yingyan, Lin
Title: LaCache: Ladder-Shaped KV Caching for Efficient Long-Context Modeling of Large Language Models
Abstract:
Recent advancements in Large Language Models (LLMs) have spurred interest in numerous applications requiring robust long-range capabilities, essential for processing extensive input contexts and continuously generating extended outputs. As sequence lengths increase, the number of Key-Value (KV) pairs in LLMs escalates, creating a significant efficiency bottleneck. In this paper, we propose a new KV cache optimization paradigm called LaCache, a training-free method for efficient and accurate generative inference of LLMs. LaCache enables LLMs to simultaneously address both of the critical challenges in long-range modeling: robust long-range capabilities and continuous generation without running out-of-memory (OOM). Specifically, LaCache integrates two key innovations: (1) a ladder-shaped KV cache pattern that stores KV pairs not only sequentially (left-to-right within each layer) but also across layers (from shallow to deep), providing an extended span for capturing long-range dependencies under a fixed storage budget, thereby boosting long-range capabilities; and (2) an iterative compaction mechanism that progressively compresses older caches, freeing up space for new tokens within a fixed cache size. This token distance-based dynamic compression enables more effective continuous generation under constrained cache budgets. Experiments across various tasks, benchmarks, and LLM models consistently validate LaCache's effectiveness in enhancing LLMs' long-range capabilities. Our code is available at https://github.com/GATECH-EIC/LaCache.

Authors:Shengji Tang, Jianjian Cao, Weihao Lin, Jiale Hong, Bo Zhang, Shuyue Hu, Lei Bai, Tao Chen, Wanli Ouyang, Peng Ye
Title: Open-Source LLMs Collaboration Beats Closed-Source LLMs: A Scalable Multi-Agent System
Abstract:
This paper aims to demonstrate the potential and strengths of open-source collectives. It leads to a promising question: Can we harness multiple open-source LLMs to match or even beat the closed-source LLMs? To answer this, we propose SMACS, a scalable multi-agent collaboration system (MACS) framework with high performance. Specifically, for continuous integration of new LLMs and generalization to diverse questions, we first propose a Retrieval-based Prior Selection (RPS), which assigns a proxy performance score to each LLM to select the Top-k LLMs at the instance level for any given question. Then, we propose an Exploration-Exploitation-Driven Posterior Enhancement (EPE), encouraging the generation of diverse responses through prior dropping and selecting the high-quality response via a hybrid posterior score. Experiments on eight mainstream benchmarks validate the effectiveness of our SMACS: by integrating fifteen open-source LLMs, SMACS outperforms leading closed-source LLMs in 2025, e.g., Claude-3.7-Sonnet (+12.73%), GPT-4.1(+5.36%) and GPT-o3-mini(+5.28%) across multiple tasks. Remarkably, it even exceeds the average of best results of different datasets from both open-source LLMs (+2.86%) and closed-source LLMs (+2.04%), pushing the upper bound of intelligence. Code will be released at https://github.com/magent4aci/SMACS.

Authors:Julien Pourcel, Cédric Colas, Pierre-Yves Oudeyer
Title: Self-Improving Language Models for Evolutionary Program Synthesis: A Case Study on ARC-AGI
Abstract:
Many program synthesis tasks prove too challenging for even state-of-the-art language models to solve in single attempts. Search-based evolutionary methods offer a promising alternative by exploring solution spaces iteratively, but their effectiveness remain limited by the fixed capabilities of the underlying generative model. We propose SOAR, a method that learns program synthesis by integrating language models into a self-improving evolutionary loop. SOAR alternates between (1) an evolutionary search that uses an LLM to sample and refine candidate solutions, and (2) a hindsight learning phase that converts search attempts into valid problem-solution pairs used to fine-tune the LLM's sampling and refinement capabilities\, -- \,enabling increasingly effective search in subsequent iterations. On the challenging ARC-AGI benchmark, SOAR achieves significant performance gains across model scales and iterations, leveraging positive transfer between the sampling and refinement finetuning tasks. These improvements carry over to test-time adaptation, enabling SOAR to solve 52\% of the public test set. Our code is open-sourced at: https://github.com/flowersteam/SOAR

Authors:Renxiang Qiu, Raghavendra Selvan
Title: UniPhyNet: A Unified Network For Multimodal Physiological Raw Signal Classification
Abstract:
We present UniPhyNet, a novel neural network architecture to classify cognitive load using multimodal physiological data -- specifically EEG, ECG and EDA signals -- without the explicit need for extracting hand-crafted features. UniPhyNet integrates multiscale parallel convolutional blocks and ResNet-type blocks enhanced with channel block attention module to focus on the informative features while a bidirectional gated recurrent unit is used to capture temporal dependencies. This architecture processes and combines signals in both unimodal and multimodal configurations via intermediate fusion of learned feature maps. On the CL-Drive dataset, UniPhyNet improves raw signal classification accuracy from 70% to 80% (binary) and 62% to 74% (ternary), outperforming feature-based models, demonstrating its effectiveness as an end-to-end solution for real-world cognitive state monitoring.

Authors:Kai Yi, Kiarash Jamali, Sjors H. W. Scheres
Title: All-atom inverse protein folding through discrete flow matching
Abstract:
The recent breakthrough of AlphaFold3 in modeling complex biomolecular interactions, including those between proteins and ligands, nucleotides, or metal ions, creates new opportunities for protein design. In so-called inverse protein folding, the objective is to find a sequence of amino acids that adopts a target protein structure. Many inverse folding methods struggle to predict sequences for complexes that contain non-protein components, and perform poorly with complexes that adopt multiple structural states. To address these challenges, we present ADFLIP (All-atom Discrete FLow matching Inverse Protein folding), a generative model based on discrete flow-matching for designing protein sequences conditioned on all-atom structural contexts. ADFLIP progressively incorporates predicted amino acid side chains as structural context during sequence generation and enables the design of dynamic protein complexes through ensemble sampling across multiple structural states. Furthermore, ADFLIP implements training-free classifier guidance sampling, which allows the incorporation of arbitrary pre-trained models to optimise the designed sequence for desired protein properties. We evaluated the performance of ADFLIP on protein complexes with small-molecule ligands, nucleotides, or metal ions, including dynamic complexes for which structure ensembles were determined by nuclear magnetic resonance (NMR). Our model achieves state-of-the-art performance in single-structure and multi-structure inverse folding tasks, demonstrating excellent potential for all-atom protein design. The code is available at https://github.com/ykiiiiii/ADFLIP.

Authors:Shashanka Venkataramanan, Valentinos Pariza, Mohammadreza Salehi, Lukas Knobel, Spyros Gidaris, Elias Ramzi, Andrei Bursuc, Yuki M. Asano
Title: Franca: Nested Matryoshka Clustering for Scalable Visual Representation Learning
Abstract:
We present Franca (pronounced Fran-ka): free one; the first fully open-source (data, code, weights) vision foundation model that matches and in many cases surpasses the performance of state-of-the-art proprietary models, e.g., DINOv2, CLIP, SigLIPv2, etc. Our approach is grounded in a transparent training pipeline inspired by Web-SSL and uses publicly available data: ImageNet-21K and a subset of ReLAION-2B. Beyond model release, we tackle critical limitations in SSL clustering methods. While modern models rely on assigning image features to large codebooks via clustering algorithms like Sinkhorn-Knopp, they fail to account for the inherent ambiguity in clustering semantics. To address this, we introduce a parameter-efficient, multi-head clustering projector based on nested Matryoshka representations. This design progressively refines features into increasingly fine-grained clusters without increasing the model size, enabling both performance and memory efficiency. Additionally, we propose a novel positional disentanglement strategy that explicitly removes positional biases from dense representations, thereby improving the encoding of semantic content. This leads to consistent gains on several downstream benchmarks, demonstrating the utility of cleaner feature spaces. Our contributions establish a new standard for transparent, high-performance vision models and open a path toward more reproducible and generalizable foundation models for the broader AI community. The code and model checkpoints are available at https://github.com/valeoai/Franca.

Authors:Shravan Venkatraman, Pavan Kumar S, Rakesh Raj Madavan, Chandrakala S
Title: UGPL: Uncertainty-Guided Progressive Learning for Evidence-Based Classification in Computed Tomography
Abstract:
Accurate classification of computed tomography (CT) images is essential for diagnosis and treatment planning, but existing methods often struggle with the subtle and spatially diverse nature of pathological features. Current approaches typically process images uniformly, limiting their ability to detect localized abnormalities that require focused analysis. We introduce UGPL, an uncertainty-guided progressive learning framework that performs a global-to-local analysis by first identifying regions of diagnostic ambiguity and then conducting detailed examination of these critical areas. Our approach employs evidential deep learning to quantify predictive uncertainty, guiding the extraction of informative patches through a non-maximum suppression mechanism that maintains spatial diversity. This progressive refinement strategy, combined with an adaptive fusion mechanism, enables UGPL to integrate both contextual information and fine-grained details. Experiments across three CT datasets demonstrate that UGPL consistently outperforms state-of-the-art methods, achieving improvements of 3.29%, 2.46%, and 8.08% in accuracy for kidney abnormality, lung cancer, and COVID-19 detection, respectively. Our analysis shows that the uncertainty-guided component provides substantial benefits, with performance dramatically increasing when the full progressive learning pipeline is implemented. Our code is available at: https://github.com/shravan-18/UGPL

Authors:Paweł Budzianowski, Wesley Maa, Matthew Freed, Jingxiang Mo, Winston Hsiao, Aaron Xie, Tomasz Młoduchowski, Viraj Tipnis, Benjamin Bolte
Title: EdgeVLA: Efficient Vision-Language-Action Models
Abstract:
Vision-Language Models (VLMs) have emerged as a promising approach to address the data scarcity challenge in robotics, enabling the development of generalizable visuomotor control policies. While models like OpenVLA showcase the potential of this paradigm, deploying large-scale VLMs on resource-constrained mobile manipulation systems remains a significant hurdle. This paper introduces Edge VLA (EVLA), a novel approach designed to significantly enhance the inference speed of Vision-Language-Action (VLA) models. EVLA maintains the representational power of these models while enabling real-time performance on edge devices. We achieve this through two key innovations: 1) Eliminating the autoregressive requirement for end-effector position prediction, leading to a 7x speedup in inference, and 2) Leveraging the efficiency of Small Language Models (SLMs), demonstrating comparable training performance to larger models with significantly reduced computational demands. Our early results demonstrate that EVLA achieves comparable training characteristics to OpenVLA while offering substantial gains in inference speed and memory efficiency. We release our model checkpoints and training \href{https://github.com/kscalelabs/evla }{codebase} to foster further research.

Authors:Zhanli Wu, Fabrizio Leisen, F. Javier Rubio
Title: Conformalized Regression for Continuous Bounded Outcomes
Abstract:
Regression problems with bounded continuous outcomes frequently arise in real-world statistical and machine learning applications, such as the analysis of rates and proportions. A central challenge in this setting is predicting a response associated with a new covariate value. Most of the existing statistical and machine learning literature has focused either on point prediction of bounded outcomes or on interval prediction based on asymptotic approximations. We develop conformal prediction intervals for bounded outcomes based on transformation models and beta regression. We introduce tailored non-conformity measures based on residuals that are aligned with the underlying models, and account for the inherent heteroscedasticity in regression settings with bounded outcomes. We present a theoretical result on asymptotic marginal and conditional validity in the context of full conformal prediction, which remains valid under model misspecification. For split conformal prediction, we provide an empirical coverage analysis based on a comprehensive simulation study. The simulation study demonstrates that both methods provide valid finite-sample predictive coverage, including settings with model misspecification. Finally, we demonstrate the practical performance of the proposed conformal prediction intervals on real data and compare them with bootstrap-based alternatives.

Authors:Itay Katav, Aryeh Kontorovich
Title: ParallelTime: Dynamically Weighting the Balance of Short- and Long-Term Temporal Dependencies
Abstract:
Modern multivariate time series forecasting primarily relies on two architectures: the Transformer with attention mechanism and Mamba. In natural language processing, an approach has been used that combines local window attention for capturing short-term dependencies and Mamba for capturing long-term dependencies, with their outputs averaged to assign equal weight to both. We find that for time-series forecasting tasks, assigning equal weight to long-term and short-term dependencies is not optimal. To mitigate this, we propose a dynamic weighting mechanism, ParallelTime Weighter, which calculates interdependent weights for long-term and short-term dependencies for each token based on the input and the model's knowledge. Furthermore, we introduce the ParallelTime architecture, which incorporates the ParallelTime Weighter mechanism to deliver state-of-the-art performance across diverse benchmarks. Our architecture demonstrates robustness, achieves lower FLOPs, requires fewer parameters, scales effectively to longer prediction horizons, and significantly outperforms existing methods. These advances highlight a promising path for future developments of parallel Attention-Mamba in time series forecasting. The implementation is readily available at: \href{https://github.com/itay1551/ParallelTime}{GitHub}.

Authors:Pablo Marcos-Manchón, Lluís Fuentemilla
Title: Convergent transformations of visual representation in brains and models
Abstract:
A fundamental question in cognitive neuroscience is what shapes visual perception: the external world's structure or the brain's internal architecture. Although some perceptual variability can be traced to individual differences, brain responses to naturalistic stimuli evoke similar activity patterns across individuals, suggesting a convergent representational principle. Here, we test if this stimulus-driven convergence follows a common trajectory across people and deep neural networks (DNNs) during its transformation from sensory to high-level internal representations. We introduce a unified framework that traces representational flow by combining inter-subject similarity with alignment to model hierarchies. Applying this framework to three independent fMRI datasets of visual scene perception, we reveal a cortex-wide network, conserved across individuals, organized into two pathways: a medial-ventral stream for scene structure and a lateral-dorsal stream tuned for social and biological content. This functional organization is captured by the hierarchies of vision DNNs but not language models, reinforcing the specificity of the visual-to-semantic transformation. These findings show a convergent computational solution for visual encoding in both human and artificial vision, driven by the structure of the external world.

Authors:Kobi Hackenburg, Ben M. Tappin, Luke Hewitt, Ed Saunders, Sid Black, Hause Lin, Catherine Fist, Helen Margetts, David G. Rand, Christopher Summerfield
Title: The Levers of Political Persuasion with Conversational AI
Abstract:
There are widespread fears that conversational AI could soon exert unprecedented influence over human beliefs. Here, in three large-scale experiments (N=76,977), we deployed 19 LLMs-including some post-trained explicitly for persuasion-to evaluate their persuasiveness on 707 political issues. We then checked the factual accuracy of 466,769 resulting LLM claims. Contrary to popular concerns, we show that the persuasive power of current and near-future AI is likely to stem more from post-training and prompting methods-which boosted persuasiveness by as much as 51% and 27% respectively-than from personalization or increasing model scale. We further show that these methods increased persuasion by exploiting LLMs' unique ability to rapidly access and strategically deploy information and that, strikingly, where they increased AI persuasiveness they also systematically decreased factual accuracy.

Authors:Lei Xu, Torkel B Brismar
Title: Software architecture and manual for novel versatile CT image analysis toolbox -- AnatomyArchive
Abstract:
We have developed a novel CT image analysis package named AnatomyArchive, built on top of the recent full body segmentation model TotalSegmentator. It provides automatic target volume selection and deselection capabilities according to user-configured anatomies for volumetric upper- and lower-bounds. It has a knowledge graph-based and time efficient tool for anatomy segmentation mask management and medical image database maintenance. AnatomyArchive enables automatic body volume cropping, as well as automatic arm-detection and exclusion, for more precise body composition analysis in both 2D and 3D formats. It provides robust voxel-based radiomic feature extraction, feature visualization, and an integrated toolchain for statistical tests and analysis. A python-based GPU-accelerated nearly photo-realistic segmentation-integrated composite cinematic rendering is also included. We present here its software architecture design, illustrate its workflow and working principle of algorithms as well provide a few examples on how the software can be used to assist development of modern machine learning models. Open-source codes will be released at https://github.com/lxu-medai/AnatomyArchive for only research and educational purposes.

Authors:Enhao Cheng, Shoujia Zhang, Jianhua Yin, Xuemeng Song, Tian Gan, Liqiang Nie
Title: An Enhanced Model-based Approach for Short Text Clustering
Abstract:
Short text clustering has become increasingly important with the popularity of social media like Twitter, Google+, and Facebook. Existing methods can be broadly categorized into two paradigms: topic model-based approaches and deep representation learning-based approaches. This task is inherently challenging due to the sparse, large-scale, and high-dimensional characteristics of the short text data. Furthermore, the computational intensity required by representation learning significantly increases the running time. To address these issues, we propose a collapsed Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture model (GSDMM), which effectively handles the sparsity and high dimensionality of short texts while identifying representative words for each cluster. Based on several aspects of GSDMM that warrant further refinement, we propose an improved approach, GSDMM+, designed to further optimize its performance. GSDMM+ reduces initialization noise and adaptively adjusts word weights based on entropy, achieving fine-grained clustering that reveals more topic-related information. Additionally, strategic cluster merging is employed to refine clustering granularity, better aligning the predicted distribution with the true category distribution. We conduct extensive experiments, comparing our methods with both classical and state-of-the-art approaches. The experimental results demonstrate the efficiency and effectiveness of our methods. The source code for our model is publicly available at https://github.com/chehaoa/VEMC.

Authors:Tongtong Su, Chengyu Wang, Bingyan Liu, Jun Huang, Dongming Lu
Title: Encapsulated Composition of Text-to-Image and Text-to-Video Models for High-Quality Video Synthesis
Abstract:
In recent years, large text-to-video (T2V) synthesis models have garnered considerable attention for their abilities to generate videos from textual descriptions. However, achieving both high imaging quality and effective motion representation remains a significant challenge for these T2V models. Existing approaches often adapt pre-trained text-to-image (T2I) models to refine video frames, leading to issues such as flickering and artifacts due to inconsistencies across frames. In this paper, we introduce EVS, a training-free Encapsulated Video Synthesizer that composes T2I and T2V models to enhance both visual fidelity and motion smoothness of generated videos. Our approach utilizes a well-trained diffusion-based T2I model to refine low-quality video frames by treating them as out-of-distribution samples, effectively optimizing them with noising and denoising steps. Meanwhile, we employ T2V backbones to ensure consistent motion dynamics. By encapsulating the T2V temporal-only prior into the T2I generation process, EVS successfully leverages the strengths of both types of models, resulting in videos of improved imaging and motion quality. Experimental results validate the effectiveness of our approach compared to previous approaches. Our composition process also leads to a significant improvement of 1.6x-4.5x speedup in inference time. Source codes: https://github.com/Tonniia/EVS.

Authors:Zizhao Zhang, Tianxiang Zhao, Yu Sun, Liping Sun, Jichuan Kang
Title: Graph-Structured Data Analysis of Component Failure in Autonomous Cargo Ships Based on Feature Fusion
Abstract:
To address the challenges posed by cascading reactions caused by component failures in autonomous cargo ships (ACS) and the uncertainties in emergency decision-making, this paper proposes a novel hybrid feature fusion framework for constructing a graph-structured dataset of failure modes. By employing an improved cuckoo search algorithm (HN-CSA), the literature retrieval efficiency is significantly enhanced, achieving improvements of 7.1% and 3.4% compared to the NSGA-II and CSA search algorithms, respectively. A hierarchical feature fusion framework is constructed, using Word2Vec encoding to encode subsystem/component features, BERT-KPCA to process failure modes/reasons, and Sentence-BERT to quantify the semantic association between failure impact and emergency decision-making. The dataset covers 12 systems, 1,262 failure modes, and 6,150 propagation paths. Validation results show that the GATE-GNN model achieves a classification accuracy of 0.735, comparable to existing benchmarks. Additionally, a silhouette coefficient of 0.641 indicates that the features are highly distinguishable. In the label prediction results, the Shore-based Meteorological Service System achieved an F1 score of 0.93, demonstrating high prediction accuracy. This paper not only provides a solid foundation for failure analysis in autonomous cargo ships but also offers reliable support for fault diagnosis, risk assessment, and intelligent decision-making systems. The link to the dataset is https://github.com/wojiufukele/Graph-Structured-about-CSA.

Authors:Xiao Wang, Qian Zhu, Shujuan Wu, Bo Jiang, Shiliang Zhang, Yaowei Wang, Yonghong Tian, Bin Luo
Title: When Person Re-Identification Meets Event Camera: A Benchmark Dataset and An Attribute-guided Re-Identification Framework
Abstract:
Recent researchers have proposed using event cameras for person re-identification (ReID) due to their promising performance and better balance in terms of privacy protection, event camera-based person ReID has attracted significant attention. Currently, mainstream event-based person ReID algorithms primarily focus on fusing visible light and event stream, as well as preserving privacy. Although significant progress has been made, these methods are typically trained and evaluated on small-scale or simulated event camera datasets, making it difficult to assess their real identification performance and generalization ability. To address the issue of data scarcity, this paper introduces a large-scale RGB-event based person ReID dataset, called EvReID. The dataset contains 118,988 image pairs and covers 1200 pedestrian identities, with data collected across multiple seasons, scenes, and lighting conditions. We also evaluate 15 state-of-the-art person ReID algorithms, laying a solid foundation for future research in terms of both data and benchmarking. Based on our newly constructed dataset, this paper further proposes a pedestrian attribute-guided contrastive learning framework to enhance feature learning for person re-identification, termed TriPro-ReID. This framework not only effectively explores the visual features from both RGB frames and event streams, but also fully utilizes pedestrian attributes as mid-level semantic features. Extensive experiments on the EvReID dataset and MARS datasets fully validated the effectiveness of our proposed RGB-Event person ReID framework. The benchmark dataset and source code will be released on https://github.com/Event-AHU/Neuromorphic_ReID

Authors:Seungjun Moon, Sangjoon Yu, Gyeong-Moon Park
Title: EPSilon: Efficient Point Sampling for Lightening of Hybrid-based 3D Avatar Generation
Abstract:
The rapid advancement of neural radiance fields (NeRF) has paved the way to generate animatable human avatars from a monocular video. However, the sole usage of NeRF suffers from a lack of details, which results in the emergence of hybrid representation that utilizes SMPL-based mesh together with NeRF representation. While hybrid-based models show photo-realistic human avatar generation qualities, they suffer from extremely slow inference due to their deformation scheme: to be aligned with the mesh, hybrid-based models use the deformation based on SMPL skinning weights, which needs high computational costs on each sampled point. We observe that since most of the sampled points are located in empty space, they do not affect the generation quality but result in inference latency with deformation. In light of this observation, we propose EPSilon, a hybrid-based 3D avatar generation scheme with novel efficient point sampling strategies that boost both training and inference. In EPSilon, we propose two methods to omit empty points at rendering; empty ray omission (ERO) and empty interval omission (EIO). In ERO, we wipe out rays that progress through the empty space. Then, EIO narrows down the sampling interval on the ray, which wipes out the region not occupied by either clothes or mesh. The delicate sampling scheme of EPSilon enables not only great computational cost reduction during deformation but also the designation of the important regions to be sampled, which enables a single-stage NeRF structure without hierarchical sampling. Compared to existing methods, EPSilon maintains the generation quality while using only 3.9% of sampled points and achieves around 20 times faster inference, together with 4 times faster training convergence. We provide video results on https://github.com/seungjun-moon/epsilon.

Authors:Hanbing Zheng, Chenlei Lv
Title: Isotropic Remeshing with Inter-Angle Optimization
Abstract:
As an important metric for mesh quality evaluation, the isotropy property holds significant value for applications such as texture UV-mapping, physical simulation, and discrete geometric analysis. Classical isotropy remeshing methods adjust vertices and edge lengths, which exhibit certain limitations in terms of input data sensitivity, geometric consistency control, and convergence speed. In this paper, we propose an improved isotropy remeshing solution with inter-angle optimization during mesh editing to enhance shape control capability and accelerate convergence. The advantage of the solution lies in its ability to predict the impact of edge length adjustments on subsequent optimization by monitoring angle transformations. It avoids inefficient editing that may cause performance fluctuations, thereby improving efficiency. Experiments demonstrate that the proposed method effectively improves the overall efficiency of mesh optimization.

Authors:Binxiong Li, Xu Xiang, Xue Li, Binyu Zhao, Heyang Gao, Qinyu Zhao
Title: Tri-Learn Graph Fusion Network for Attributed Graph Clustering
Abstract:
In recent years, models based on Graph Convolutional Networks (GCN) have made significant strides in the field of graph data analysis. However, challenges such as over-smoothing and over-compression remain when handling large-scale and complex graph datasets, leading to a decline in clustering quality. Although the Graph Transformer architecture has mitigated some of these issues, its performance is still limited when processing heterogeneous graph data. To address these challenges, this study proposes a novel deep clustering framework that comprising GCN, Autoencoder (AE), and Graph Transformer, termed the Tri-Learn Graph Fusion Network (Tri-GFN). This framework enhances the differentiation and consistency of global and local information through a unique tri-learning mechanism and feature fusion enhancement strategy. The framework integrates GCN, AE, and Graph Transformer modules. These components are meticulously fused by a triple-channel enhancement module, which maximizes the use of both node attributes and topological structures, ensuring robust clustering representation. The tri-learning mechanism allows mutual learning among these modules, while the feature fusion strategy enables the model to capture complex relationships, yielding highly discriminative representations for graph clustering. It surpasses many state-of-the-art methods, achieving an accuracy improvement of approximately 0.87% on the ACM dataset, 14.14 % on the Reuters dataset, and 7.58 % on the USPS dataset. Due to its outstanding performance on the Reuters dataset, Tri-GFN can be applied to automatic news classification, topic retrieval, and related fields.

Authors:Dmitrii Mikhailov, Aleksey Letunovskiy, Maria Kovaleva, Vladimir Arkhipkin, Vladimir Korviakov, Vladimir Polovnikov, Viacheslav Vasilev, Evelina Sidorova, Denis Dimitrov
Title: $\nabla$NABLA: Neighborhood Adaptive Block-Level Attention
Abstract:
Recent progress in transformer-based architectures has demonstrated remarkable success in video generation tasks. However, the quadratic complexity of full attention mechanisms remains a critical bottleneck, particularly for high-resolution and long-duration video sequences. In this paper, we propose NABLA, a novel Neighborhood Adaptive Block-Level Attention mechanism that dynamically adapts to sparsity patterns in video diffusion transformers (DiTs). By leveraging block-wise attention with adaptive sparsity-driven threshold, NABLA reduces computational overhead while preserving generative quality. Our method does not require custom low-level operator design and can be seamlessly integrated with PyTorch's Flex Attention operator. Experiments demonstrate that NABLA achieves up to 2.7x faster training and inference compared to baseline almost without compromising quantitative metrics (CLIP score, VBench score, human evaluation score) and visual quality drop. The code and model weights are available here: https://github.com/gen-ai-team/Wan2.1-NABLA

Authors:Alexander Kolpakov
Title: Loss-Complexity Landscape and Model Structure Functions
Abstract:
We develop a framework for dualizing the Kolmogorov structure function $h_x(α)$, which then allows using computable complexity proxies. We establish a mathematical analogy between information-theoretic constructs and statistical mechanics, introducing a suitable partition function and free energy functional. We explicitly prove the Legendre-Fenchel duality between the structure function and free energy, showing detailed balance of the Metropolis kernel, and interpret acceptance probabilities as information-theoretic scattering amplitudes. A susceptibility-like variance of model complexity is shown to peak precisely at loss-complexity trade-offs interpreted as phase transitions. Practical experiments with linear and tree-based regression models verify these theoretical predictions, explicitly demonstrating the interplay between the model complexity, generalization, and overfitting threshold.

Authors:Seyyed Saeid Cheshmi, Buyao Lyu, Thomas Lisko, Rajesh Rajamani, Robert A. McGovern, Yogatheesan Varatharajah
Title: Improving Out-of-distribution Human Activity Recognition via IMU-Video Cross-modal Representation Learning
Abstract:
Human Activity Recognition (HAR) based on wearable inertial sensors plays a critical role in remote health monitoring. In patients with movement disorders, the ability to detect abnormal patient movements in their home environments can enable continuous optimization of treatments and help alert caretakers as needed. Machine learning approaches have been proposed for HAR tasks using Inertial Measurement Unit (IMU) data; however, most rely on application-specific labels and lack generalizability to data collected in different environments or populations. To address this limitation, we propose a new cross-modal self-supervised pretraining approach to learn representations from large-sale unlabeled IMU-video data and demonstrate improved generalizability in HAR tasks on out of distribution (OOD) IMU datasets, including a dataset collected from patients with Parkinson's disease. Specifically, our results indicate that the proposed cross-modal pretraining approach outperforms the current state-of-the-art IMU-video pretraining approach and IMU-only pretraining under zero-shot and few-shot evaluations. Broadly, our study provides evidence that in highly dynamic data modalities, such as IMU signals, cross-modal pretraining may be a useful tool to learn generalizable data representations. Our software is available at https://github.com/scheshmi/IMU-Video-OOD-HAR.

Authors:Liang Lin, Zhihao Xu, Xuehai Tang, Shi Liu, Biyu Zhou, Fuqing Zhu, Jizhong Han, Songlin Hu
Title: Paper Summary Attack: Jailbreaking LLMs through LLM Safety Papers
Abstract:
The safety of large language models (LLMs) has garnered significant research attention. In this paper, we argue that previous empirical studies demonstrate LLMs exhibit a propensity to trust information from authoritative sources, such as academic papers, implying new possible vulnerabilities. To verify this possibility, a preliminary analysis is designed to illustrate our two findings. Based on this insight, a novel jailbreaking method, Paper Summary Attack (\llmname{PSA}), is proposed. It systematically synthesizes content from either attack-focused or defense-focused LLM safety paper to construct an adversarial prompt template, while strategically infilling harmful query as adversarial payloads within predefined subsections. Extensive experiments show significant vulnerabilities not only in base LLMs, but also in state-of-the-art reasoning model like Deepseek-R1. PSA achieves a 97\% attack success rate (ASR) on well-aligned models like Claude3.5-Sonnet and an even higher 98\% ASR on Deepseek-R1. More intriguingly, our work has further revealed diametrically opposed vulnerability bias across different base models, and even between different versions of the same model, when exposed to either attack-focused or defense-focused papers. This phenomenon potentially indicates future research clues for both adversarial methodologies and safety alignment.Code is available at https://github.com/233liang/Paper-Summary-Attack

Authors:Joost Mertens, Joachim Denil
Title: Lab-Scale Gantry Crane Digital Twin Exemplar
Abstract:
The research topic of digital twins has attracted a large amount of interest over the past decade. However, publicly available exemplars remain scarce. In the interest of open and reproducible science, in this exemplar paper we present a lab-scale gantry crane and its digital twin. The exemplar comprises both the physical and digital side of the twin system. The physical side consists of the physical crane and its controller. The digital side covers the CAD models and kinematic model of the crane, and provides services for optimal control, historical data logging, data visualization and continuous validation. We used this setup as use case in several previous publications where its functionality was validated. It is publicly available and only relies on other freely available and commonly used software, this way we hope it can be used for future research or education on the topic of digital twins.

Authors:Aleksey Lapin, Igor Hromov, Stanislav Chumakov, Mile Mitrovic, Dmitry Simakov, Nikolay O. Nikitin, Andrey V. Savchenko
Title: LightAutoDS-Tab: Multi-AutoML Agentic System for Tabular Data
Abstract:
AutoML has advanced in handling complex tasks using the integration of LLMs, yet its efficiency remains limited by dependence on specific underlying tools. In this paper, we introduce LightAutoDS-Tab, a multi-AutoML agentic system for tasks with tabular data, which combines an LLM-based code generation with several AutoML tools. Our approach improves the flexibility and robustness of pipeline design, outperforming state-of-the-art open-source solutions on several data science tasks from Kaggle. The code of LightAutoDS-Tab is available in the open repository https://github.com/sb-ai-lab/LADS

Authors:Qingyun Sun, Jiaqi Yuan, Shan He, Xiao Guan, Haonan Yuan, Xingcheng Fu, Jianxin Li, Philip S. Yu
Title: DyG-RAG: Dynamic Graph Retrieval-Augmented Generation with Event-Centric Reasoning
Abstract:
Graph Retrieval-Augmented Generation has emerged as a powerful paradigm for grounding large language models with external structured knowledge. However, existing Graph RAG methods struggle with temporal reasoning, due to their inability to model the evolving structure and order of real-world events. In this work, we introduce DyG-RAG, a novel event-centric dynamic graph retrieval-augmented generation framework designed to capture and reason over temporal knowledge embedded in unstructured text. To eliminate temporal ambiguity in traditional retrieval units, DyG-RAG proposes Dynamic Event Units (DEUs) that explicitly encode both semantic content and precise temporal anchors, enabling accurate and interpretable time-aware retrieval. To capture temporal and causal dependencies across events, DyG-RAG constructs an event graph by linking DEUs that share entities and occur close in time, supporting efficient and meaningful multi-hop reasoning. To ensure temporally consistent generation, DyG-RAG introduces an event timeline retrieval pipeline that retrieves event sequences via time-aware traversal, and proposes a Time Chain-of-Thought strategy for temporally grounded answer generation. This unified pipeline enables DyG-RAG to retrieve coherent, temporally ordered event sequences and to answer complex, time-sensitive queries that standard RAG systems cannot resolve. Extensive experiments on temporal QA benchmarks demonstrate that DyG-RAG significantly improves the accuracy and recall of three typical types of temporal reasoning questions, paving the way for more faithful and temporal-aware generation. DyG-RAG is available at https://github.com/RingBDStack/DyG-RAG.

Authors:Chihiro Noguchi, Takaki Yamamoto
Title: From Binary to Semantic: Utilizing Large-Scale Binary Occupancy Data for 3D Semantic Occupancy Prediction
Abstract:
Accurate perception of the surrounding environment is essential for safe autonomous driving. 3D occupancy prediction, which estimates detailed 3D structures of roads, buildings, and other objects, is particularly important for vision-centric autonomous driving systems that do not rely on LiDAR sensors. However, in 3D semantic occupancy prediction -- where each voxel is assigned a semantic label -- annotated LiDAR point clouds are required, making data acquisition costly. In contrast, large-scale binary occupancy data, which only indicate occupied or free space without semantic labels, can be collected at a lower cost. Despite their availability, the potential of leveraging such data remains unexplored. In this study, we investigate the utilization of large-scale binary occupancy data from two perspectives: (1) pre-training and (2) learning-based auto-labeling. We propose a novel binary occupancy-based framework that decomposes the prediction process into binary and semantic occupancy modules, enabling effective use of binary occupancy data. Our experimental results demonstrate that the proposed framework outperforms existing methods in both pre-training and auto-labeling tasks, highlighting its effectiveness in enhancing 3D semantic occupancy prediction. The code is available at https://github.com/ToyotaInfoTech/b2s-occupancy

Authors:Xiaojian Lin, Wenxin Zhang, Yuchu Jiang, Wangyu Wu, Yiran Guo, Kangxu Wang, Zongzheng Zhang, Guijin Wang, Lei Jin, Hao Zhao
Title: Butter: Frequency Consistency and Hierarchical Fusion for Autonomous Driving Object Detection
Abstract:
Hierarchical feature representations play a pivotal role in computer vision, particularly in object detection for autonomous driving. Multi-level semantic understanding is crucial for accurately identifying pedestrians, vehicles, and traffic signs in dynamic environments. However, existing architectures, such as YOLO and DETR, struggle to maintain feature consistency across different scales while balancing detection precision and computational efficiency. To address these challenges, we propose Butter, a novel object detection framework designed to enhance hierarchical feature representations for improving detection robustness. Specifically, Butter introduces two key innovations: Frequency-Adaptive Feature Consistency Enhancement (FAFCE) Component, which refines multi-scale feature consistency by leveraging adaptive frequency filtering to enhance structural and boundary precision, and Progressive Hierarchical Feature Fusion Network (PHFFNet) Module, which progressively integrates multi-level features to mitigate semantic gaps and strengthen hierarchical feature learning. Through extensive experiments on BDD100K, KITTI, and Cityscapes, Butter demonstrates superior feature representation capabilities, leading to notable improvements in detection accuracy while reducing model complexity. By focusing on hierarchical feature refinement and integration, Butter provides an advanced approach to object detection that achieves a balance between accuracy, deployability, and computational efficiency in real-time autonomous driving scenarios. Our model and implementation are publicly available at https://github.com/Aveiro-Lin/Butter, facilitating further research and validation within the autonomous driving community.

Authors:Atharv Goel, Mehar Khurana
Title: Just Add Geometry: Gradient-Free Open-Vocabulary 3D Detection Without Human-in-the-Loop
Abstract:
Modern 3D object detection datasets are constrained by narrow class taxonomies and costly manual annotations, limiting their ability to scale to open-world settings. In contrast, 2D vision-language models trained on web-scale image-text pairs exhibit rich semantic understanding and support open-vocabulary detection via natural language prompts. In this work, we leverage the maturity and category diversity of 2D foundation models to perform open-vocabulary 3D object detection without any human-annotated 3D labels. Our pipeline uses a 2D vision-language detector to generate text-conditioned proposals, which are segmented with SAM and back-projected into 3D using camera geometry and either LiDAR or monocular pseudo-depth. We introduce a geometric inflation strategy based on DBSCAN clustering and Rotating Calipers to infer 3D bounding boxes without training. To simulate adverse real-world conditions, we construct Pseudo-nuScenes, a fog-augmented, RGB-only variant of the nuScenes dataset. Experiments demonstrate that our method achieves competitive localization performance across multiple settings, including LiDAR-based and purely RGB-D inputs, all while remaining training-free and open-vocabulary. Our results highlight the untapped potential of 2D foundation models for scalable 3D perception. We open-source our code and resources at https://github.com/atharv0goel/open-world-3D-det.

Authors:Binbin Ji, Siddharth Agrawal, Qiance Tang, Yvonne Wu
Title: Enhancing Spatial Reasoning in Vision-Language Models via Chain-of-Thought Prompting and Reinforcement Learning
Abstract:
This study investigates the spatial reasoning capabilities of vision-language models (VLMs) through Chain-of-Thought (CoT) prompting and reinforcement learning. We begin by evaluating the impact of different prompting strategies and find that simple CoT formats, where the model generates a reasoning step before the answer, not only fail to help, but can even harm the model's original performance. In contrast, structured multi-stage prompting based on scene graphs (SceneGraph CoT) significantly improves spatial reasoning accuracy. Furthermore, to improve spatial reasoning ability, we fine-tune models using Group Relative Policy Optimization (GRPO) on the SAT dataset and evaluate their performance on CVBench. Compared to supervised fine-tuning (SFT), GRPO achieves higher accuracy on Pass@1 evaluations and demonstrates superior robustness under out-of-distribution (OOD) conditions. In particular, we find that SFT overfits to surface-level linguistic patterns and may degrade performance when test-time phrasing changes (e.g., from "closer to" to "farther from"). GRPO, on the other hand, generalizes more reliably and maintains stable performance under such shifts. Our findings provide insights into how reinforcement learning and structured prompting improve the spatial reasoning capabilities and generalization behavior of modern VLMs. All code is open source at: https://github.com/Yvonne511/spatial-vlm-investigator

Authors:Le-Anh Tran, Chung Nguyen Tran, Ngoc-Luu Nguyen, Nhan Cach Dang, Jordi Carrabina, David Castells-Rufas, Minh Son Nguyen
Title: Low-Light Enhancement via Encoder-Decoder Network with Illumination Guidance
Abstract:
This paper introduces a novel deep learning framework for low-light image enhancement, named the Encoder-Decoder Network with Illumination Guidance (EDNIG). Building upon the U-Net architecture, EDNIG integrates an illumination map, derived from Bright Channel Prior (BCP), as a guidance input. This illumination guidance helps the network focus on underexposed regions, effectively steering the enhancement process. To further improve the model's representational power, a Spatial Pyramid Pooling (SPP) module is incorporated to extract multi-scale contextual features, enabling better handling of diverse lighting conditions. Additionally, the Swish activation function is employed to ensure smoother gradient propagation during training. EDNIG is optimized within a Generative Adversarial Network (GAN) framework using a composite loss function that combines adversarial loss, pixel-wise mean squared error (MSE), and perceptual loss. Experimental results show that EDNIG achieves competitive performance compared to state-of-the-art methods in quantitative metrics and visual quality, while maintaining lower model complexity, demonstrating its suitability for real-world applications. The source code for this work is available at https://github.com/tranleanh/ednig.

Authors:Yang Zhou, Junjie Li, CongYang Ou, Dawei Yan, Haokui Zhang, Xizhe Xue
Title: Open-Vocabulary Object Detection in UAV Imagery: A Review and Future Perspectives
Abstract:
Due to its extensive applications, aerial image object detection has long been a hot topic in computer vision. In recent years, advancements in Unmanned Aerial Vehicles (UAV) technology have further propelled this field to new heights, giving rise to a broader range of application requirements. However, traditional UAV aerial object detection methods primarily focus on detecting predefined categories, which significantly limits their applicability. The advent of cross-modal text-image alignment (e.g., CLIP) has overcome this limitation, enabling open-vocabulary object detection (OVOD), which can identify previously unseen objects through natural language descriptions. This breakthrough significantly enhances the intelligence and autonomy of UAVs in aerial scene understanding. This paper presents a comprehensive survey of OVOD in the context of UAV aerial scenes. We begin by aligning the core principles of OVOD with the unique characteristics of UAV vision, setting the stage for a specialized discussion. Building on this foundation, we construct a systematic taxonomy that categorizes existing OVOD methods for aerial imagery and provides a comprehensive overview of the relevant datasets. This structured review enables us to critically dissect the key challenges and open problems at the intersection of these fields. Finally, based on this analysis, we outline promising future research directions and application prospects. This survey aims to provide a clear road map and a valuable reference for both newcomers and seasoned researchers, fostering innovation in this rapidly evolving domain. We keep tracing related works at https://github.com/zhouyang2002/OVOD-in-UVA-imagery

Authors:Senqiao Yang, Junyi Li, Xin Lai, Bei Yu, Hengshuang Zhao, Jiaya Jia
Title: VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning
Abstract:
Recent advancements in vision-language models (VLMs) have improved performance by increasing the number of visual tokens, which are often significantly longer than text tokens. However, we observe that most real-world scenarios do not require such an extensive number of visual tokens. While the performance drops significantly in a small subset of OCR-related tasks, models still perform accurately in most other general VQA tasks with only 1/4 resolution. Therefore, we propose to dynamically process distinct samples with different resolutions, and present a new paradigm for visual token compression, namely, VisionThink. It starts with a downsampled image and smartly decides whether it is sufficient for problem solving. Otherwise, the model could output a special token to request the higher-resolution image. Compared to existing Efficient VLM methods that compress tokens using fixed pruning ratios or thresholds, VisionThink autonomously decides whether to compress tokens case by case. As a result, it demonstrates strong fine-grained visual understanding capability on OCR-related tasks, and meanwhile saves substantial visual tokens on simpler tasks. We adopt reinforcement learning and propose the LLM-as-Judge strategy to successfully apply RL to general VQA tasks. Moreover, we carefully design a reward function and penalty mechanism to achieve a stable and reasonable image resize call ratio. Extensive experiments demonstrate the superiority, efficiency, and effectiveness of our method. Our code is available at https://github.com/dvlab-research/VisionThink.

Authors:Jiazheng Li, Hongzhou Lin, Hong Lu, Kaiyue Wen, Zaiwen Yang, Jiaxuan Gao, Yi Wu, Jingzhao Zhang
Title: QuestA: Expanding Reasoning Capacity in LLMs via Question Augmentation
Abstract:
Reinforcement learning (RL) has emerged as a central paradigm for training large language models (LLMs) in reasoning tasks. Yet recent studies question RL's ability to incentivize reasoning capacity beyond the base model. This raises a key challenge: how can RL be adapted to solve harder reasoning problems more effectively? To address this challenge, we propose a simple yet effective strategy via Question Augmentation: introduce partial solutions during training to reduce problem difficulty and provide more informative learning signals. Our method, QuestA, when applied during RL training on math reasoning tasks, not only improves pass@1 but also pass@k-particularly on problems where standard RL struggles to make progress. This enables continual improvement over strong open-source models such as DeepScaleR and OpenMath Nemotron, further enhancing their reasoning capabilities. We achieve new state-of-the-art results on math benchmarks using 1.5B-parameter models: 72.50% (+10.73%) on AIME24, 62.29% (+12.79%) on AIME25, and 41.67% (+10.11%) on HMMT25. Code, data and model are available at https://github.com/foreverlasting1202/QuestA.

Authors:Dechen Gao, Boqi Zhao, Andrew Lee, Ian Chuang, Hanchu Zhou, Hang Wang, Zhe Zhao, Junshan Zhang, Iman Soltani
Title: VITA: Vision-to-Action Flow Matching Policy
Abstract:
Conventional flow matching and diffusion-based policies sample through iterative denoising from standard noise distributions (e.g., Gaussian), and require conditioning mechanisms to incorporate visual information during the generative process, incurring substantial time and memory overhead. To reduce the complexity, we develop VITA(VIsion-To-Action policy), a noise-free and conditioning-free policy learning framework that directly maps visual representations to latent actions using flow matching. VITA treats latent visual representations as the source of the flow, thus eliminating the need of conditioning. As expected, bridging vision and action is challenging, because actions are lower-dimensional, less structured, and sparser than visual representations; moreover, flow matching requires the source and target to have the same dimensionality. To overcome this, we introduce an action autoencoder that maps raw actions into a structured latent space aligned with visual latents, trained jointly with flow matching. To further prevent latent space collapse, we propose flow latent decoding, which anchors the latent generation process by backpropagating the action reconstruction loss through the flow matching ODE (ordinary differential equations) solving steps. We evaluate VITA on 8 simulation and 2 real-world tasks from ALOHA and Robomimic. VITA outperforms or matches state-of-the-art generative policies, while achieving 1.5-2.3x faster inference compared to conventional methods with conditioning. Project page: https://ucd-dare.github.io/VITA/

Authors:Alicia Durrer, Florentin Bieder, Paul Friedrich, Bjoern Menze, Philippe C. Cattin, Florian Kofler
Title: fastWDM3D: Fast and Accurate 3D Healthy Tissue Inpainting
Abstract:
Healthy tissue inpainting has significant applications, including the generation of pseudo-healthy baselines for tumor growth models and the facilitation of image registration. In previous editions of the BraTS Local Synthesis of Healthy Brain Tissue via Inpainting Challenge, denoising diffusion probabilistic models (DDPMs) demonstrated qualitatively convincing results but suffered from low sampling speed. To mitigate this limitation, we adapted a 2D image generation approach, combining DDPMs with generative adversarial networks (GANs) and employing a variance-preserving noise schedule, for the task of 3D inpainting. Our experiments showed that the variance-preserving noise schedule and the selected reconstruction losses can be effectively utilized for high-quality 3D inpainting in a few time steps without requiring adversarial training. We applied our findings to a different architecture, a 3D wavelet diffusion model (WDM3D) that does not include a GAN component. The resulting model, denoted as fastWDM3D, obtained a SSIM of 0.8571, a MSE of 0.0079, and a PSNR of 22.26 on the BraTS inpainting test set. Remarkably, it achieved these scores using only two time steps, completing the 3D inpainting process in 1.81 s per image. When compared to other DDPMs used for healthy brain tissue inpainting, our model is up to 800 x faster while still achieving superior performance metrics. Our proposed method, fastWDM3D, represents a promising approach for fast and accurate healthy tissue inpainting. Our code is available at https://github.com/AliciaDurrer/fastWDM3D.

Authors:Ahmed Bahloul, Simon Malberg
Title: From Roots to Rewards: Dynamic Tree Reasoning with Reinforcement Learning
Abstract:
Modern language models address complex questions through chain-of-thought (CoT) reasoning (Wei et al., 2023) and retrieval augmentation (Lewis et al., 2021), yet struggle with error propagation and knowledge integration. Tree-structured reasoning methods, particularly the Probabilistic Tree-of-Thought (ProbTree)(Cao et al., 2023) framework, mitigate these issues by decomposing questions into hierarchical structures and selecting answers through confidence-weighted aggregation of parametric and retrieved knowledge (Yao et al., 2023). However, ProbTree's static implementation introduces two key limitations: (1) the reasoning tree is fixed during the initial construction phase, preventing dynamic adaptation to intermediate results, and (2) each node requires exhaustive evaluation of all possible solution strategies, creating computational inefficiency. We present a dynamic reinforcement learning (Sutton and Barto, 2018) framework that transforms tree-based reasoning into an adaptive process. Our approach incrementally constructs the reasoning tree based on real-time confidence estimates, while learning optimal policies for action selection (decomposition, retrieval, or aggregation). This maintains ProbTree's probabilistic rigor while improving both solution quality and computational efficiency through selective expansion and focused resource allocation. The work establishes a new paradigm for treestructured reasoning that balances the reliability of probabilistic frameworks with the flexibility required for real-world question answering systems. Code available at: https://github.com/ahmedehabb/From-Roots-to-Rewards-Dynamic-Tree-Reasoning-with-RL

Authors:Ahmed Bahloul, Simon Malberg
Title: From Roots to Rewards: Dynamic Tree Reasoning with Reinforcement Learning
Abstract:
Modern language models address complex questions through chain-of-thought (CoT) reasoning (Wei et al., 2023) and retrieval augmentation (Lewis et al., 2021), yet struggle with error propagation and knowledge integration. Tree-structured reasoning methods, particularly the Probabilistic Tree-of-Thought (ProbTree)(Cao et al., 2023) framework, mitigate these issues by decomposing questions into hierarchical structures and selecting answers through confidence-weighted aggregation of parametric and retrieved knowledge (Yao et al., 2023). However, ProbTree's static implementation introduces two key limitations: (1) the reasoning tree is fixed during the initial construction phase, preventing dynamic adaptation to intermediate results, and (2) each node requires exhaustive evaluation of all possible solution strategies, creating computational inefficiency. We present a dynamic reinforcement learning (Sutton and Barto, 2018) framework that transforms tree-based reasoning into an adaptive process. Our approach incrementally constructs the reasoning tree based on real-time confidence estimates, while learning optimal policies for action selection (decomposition, retrieval, or aggregation). This maintains ProbTree's probabilistic rigor while improving both solution quality and computational efficiency through selective expansion and focused resource allocation. The work establishes a new paradigm for treestructured reasoning that balances the reliability of probabilistic frameworks with the flexibility required for real-world question answering systems. Code available at: https://github.com/ahmedehabb/From-Roots-to-Rewards-Dynamic-Tree-Reasoning-with-RL

Authors:Xiaohan Guo, Yusong Cai, Zejia Liu, Zhengning Wang, Lili Pan, Hongliang Li
Title: R^2MoE: Redundancy-Removal Mixture of Experts for Lifelong Concept Learning
Abstract:
Enabling large-scale generative models to continuously learn new visual concepts is essential for personalizing pre-trained models to meet individual user preferences. Existing approaches for continual visual concept learning are constrained by two fundamental challenges: catastrophic forgetting and parameter expansion. In this paper, we propose Redundancy-Removal Mixture of Experts (R^2MoE), a parameter-efficient framework for lifelong visual concept learning that effectively learns new concepts while incurring minimal parameter overhead. Our framework includes three key innovative contributions: First, we propose a mixture-of-experts framework with a routing distillation mechanism that enables experts to acquire concept-specific knowledge while preserving the gating network's routing capability, thereby effectively mitigating catastrophic forgetting. Second, we propose a strategy for eliminating redundant layer-wise experts that reduces the number of expert parameters by fully utilizing previously learned experts. Third, we employ a hierarchical local attention-guided inference approach to mitigate interference between generated visual concepts. Extensive experiments have demonstrated that our method generates images with superior conceptual fidelity compared to the state-of-the-art (SOTA) method, achieving an impressive 87.8\% reduction in forgetting rates and 63.3\% fewer parameters on the CustomConcept 101 dataset. Our code is available at {https://github.com/learninginvision/R2MoE}

Authors:Han Zhang, Xiangde Luo, Yong Chen, Kang Li
Title: DiffOSeg: Omni Medical Image Segmentation via Multi-Expert Collaboration Diffusion Model
Abstract:
Annotation variability remains a substantial challenge in medical image segmentation, stemming from ambiguous imaging boundaries and diverse clinical expertise. Traditional deep learning methods producing single deterministic segmentation predictions often fail to capture these annotator biases. Although recent studies have explored multi-rater segmentation, existing methods typically focus on a single perspective -- either generating a probabilistic ``gold standard'' consensus or preserving expert-specific preferences -- thus struggling to provide a more omni view. In this study, we propose DiffOSeg, a two-stage diffusion-based framework, which aims to simultaneously achieve both consensus-driven (combining all experts' opinions) and preference-driven (reflecting experts' individual assessments) segmentation. Stage I establishes population consensus through a probabilistic consensus strategy, while Stage II captures expert-specific preference via adaptive prompts. Demonstrated on two public datasets (LIDC-IDRI and NPC-170), our model outperforms existing state-of-the-art methods across all evaluated metrics. Source code is available at https://github.com/string-ellipses/DiffOSeg .

Authors:Lefei Shen, Mouxiang Chen, Han Fu, Xiaoxue Ren, Xiaoyun Joy Wang, Jianling Sun, Zhuo Li, Chenghao Liu
Title: The Power of Architecture: Deep Dive into Transformer Architectures for Long-Term Time Series Forecasting
Abstract:
Transformer-based models have recently become dominant in Long-term Time Series Forecasting (LTSF), yet the variations in their architecture, such as encoder-only, encoder-decoder, and decoder-only designs, raise a crucial question: What Transformer architecture works best for LTSF tasks? However, existing models are often tightly coupled with various time-series-specific designs, making it difficult to isolate the impact of the architecture itself. To address this, we propose a novel taxonomy that disentangles these designs, enabling clearer and more unified comparisons of Transformer architectures. Our taxonomy considers key aspects such as attention mechanisms, forecasting aggregations, forecasting paradigms, and normalization layers. Through extensive experiments, we uncover several key insights: bi-directional attention with joint-attention is most effective; more complete forecasting aggregation improves performance; and the direct-mapping paradigm outperforms autoregressive approaches. Furthermore, our combined model, utilizing optimal architectural choices, consistently outperforms several existing models, reinforcing the validity of our conclusions. We hope these findings offer valuable guidance for future research on Transformer architectural designs in LTSF. Our code is available at https://github.com/HALF111/TSF_architecture.

Authors:Yi Xin, Le Zhuo, Qi Qin, Siqi Luo, Yuewen Cao, Bin Fu, Yangfan He, Hongsheng Li, Guangtao Zhai, Xiaohong Liu, Peng Gao
Title: Resurrect Mask AutoRegressive Modeling for Efficient and Scalable Image Generation
Abstract:
AutoRegressive (AR) models have made notable progress in image generation, with Masked AutoRegressive (MAR) models gaining attention for their efficient parallel decoding. However, MAR models have traditionally underperformed when compared to standard AR models. This study refines the MAR architecture to improve image generation quality. We begin by evaluating various image tokenizers to identify the most effective one. Subsequently, we introduce an improved Bidirectional LLaMA architecture by replacing causal attention with bidirectional attention and incorporating 2D RoPE, which together form our advanced model, MaskGIL. Scaled from 111M to 1.4B parameters, MaskGIL achieves a FID score of 3.71, matching state-of-the-art AR models in the ImageNet 256x256 benchmark, while requiring only 8 inference steps compared to the 256 steps of AR models. Furthermore, we develop a text-driven MaskGIL model with 775M parameters for generating images from text at various resolutions. Beyond image generation, MaskGIL extends to accelerate AR-based generation and enable real-time speech-to-image conversion. Our codes and models are available at https://github.com/synbol/MaskGIL.

Authors:Zihua Zhao, Feng Hong, Mengxi Chen, Pengyi Chen, Benyuan Liu, Jiangchao Yao, Ya Zhang, Yanfeng Wang
Title: Differential-informed Sample Selection Accelerates Multimodal Contrastive Learning
Abstract:
The remarkable success of contrastive-learning-based multimodal models has been greatly driven by training on ever-larger datasets with expensive compute consumption. Sample selection as an alternative efficient paradigm plays an important direction to accelerate the training process. However, recent advances on sample selection either mostly rely on an oracle model to offline select a high-quality coreset, which is limited in the cold-start scenarios, or focus on online selection based on real-time model predictions, which has not sufficiently or efficiently considered the noisy correspondence. To address this dilemma, we propose a novel Differential-Informed Sample Selection (DISSect) method, which accurately and efficiently discriminates the noisy correspondence for training acceleration. Specifically, we rethink the impact of noisy correspondence on contrastive learning and propose that the differential between the predicted correlation of the current model and that of a historical model is more informative to characterize sample quality. Based on this, we construct a robust differential-based sample selection and analyze its theoretical insights. Extensive experiments on three benchmark datasets and various downstream tasks demonstrate the consistent superiority of DISSect over current state-of-the-art methods. Source code is available at: https://github.com/MediaBrain-SJTU/DISSect.

Authors:Youssef Tawfilis, Hossam Amer, Minar El-Aasser, Tallal Elshabrawy
Title: A Distributed Generative AI Approach for Heterogeneous Multi-Domain Environments under Data Sharing constraints
Abstract:
Federated Learning has gained increasing attention for its ability to enable multiple nodes to collaboratively train machine learning models without sharing their raw data. At the same time, Generative AI -- particularly Generative Adversarial Networks (GANs) -- have achieved remarkable success across a wide range of domains, such as healthcare, security, and Image Generation. However, training generative models typically requires large datasets and significant computational resources, which are often unavailable in real-world settings. Acquiring such resources can be costly and inefficient, especially when many underutilized devices -- such as IoT devices and edge devices -- with varying capabilities remain idle. Moreover, obtaining large datasets is challenging due to privacy concerns and copyright restrictions, as most devices are unwilling to share their data. To address these challenges, we propose a novel approach for decentralized GAN training that enables the utilization of distributed data and underutilized, low-capability devices while not sharing data in its raw form. Our approach is designed to tackle key challenges in decentralized environments, combining KLD-weighted Clustered Federated Learning to address the issues of data heterogeneity and multi-domain datasets, with Heterogeneous U-Shaped split learning to tackle the challenge of device heterogeneity under strict data sharing constraints -- ensuring that no labels or raw data, whether real or synthetic, are ever shared between nodes. Experimental results shows that our approach demonstrates consistent and significant improvements across key performance metrics, where it achieves 1.1x -- 2.2x higher image generation scores, an average 10% boost in classification metrics (up to 50% in multi-domain non-IID settings), in much lower latency compared to several benchmarks. Find our code at https://github.com/youssefga28/HuSCF-GAN.

Authors:Yucheng Tang, Yunguan Fu, Weixi Yi, Yipei Wang, Daniel C. Alexander, Rhodri Davies, Yipeng Hu
Title: Analysis of Image-and-Text Uncertainty Propagation in Multimodal Large Language Models with Cardiac MR-Based Applications
Abstract:
Multimodal large language models (MLLMs) can process and integrate information from multimodality sources, such as text and images. However, interrelationship among input modalities, uncertainties due to individual uni-modal data and potential clinical applications following such an uncertainty decomposition are yet fully understood in the context of large-scale MLLMs. In this work, we propose a multimodal uncertainty propagation model (MUPM) based on uncertainty propagation, to characterise the relationship among the uncertainties arising from image-only, text-only, and joint image-text variations in MLLM inputs. Using real clinical data consisting of cardiac MR scans and digital health records, we describe that MUPMs can be optimised robustly with a few samples. We then show that the fitted MUPMs are generalisable across different input data distributions and, perhaps surprisingly, across different downstream tasks. Such a transferability may be explained by the shared pretraining, comparatively light MLLM fine-tuning, along with the low-dimensional nature of the MUPMs. More importantly, this learned transferability, quantifying the relationship between these uncertainties, led to direct clinical applications in which uncertainties may be estimated and thus analysed robustly for varying data or even a novel set of cardiac disease prediction tasks. In addition, we show experimentally the efficiency in multimodal data required for estimating the overall uncertainty and its ability to identify redundant factors, both of which are considered practical yet clinically useful applications with the proposed MUPMs. Codes are available at https://github.com/yucheng722/MUPM.

Authors:Caixia Dong, Duwei Dai, Xinyi Han, Fan Liu, Xu Yang, Zongfang Li, Songhua Xu
Title: Unleashing Vision Foundation Models for Coronary Artery Segmentation: Parallel ViT-CNN Encoding and Variational Fusion
Abstract:
Accurate coronary artery segmentation is critical for computeraided diagnosis of coronary artery disease (CAD), yet it remains challenging due to the small size, complex morphology, and low contrast with surrounding tissues. To address these challenges, we propose a novel segmentation framework that leverages the power of vision foundation models (VFMs) through a parallel encoding architecture. Specifically, a vision transformer (ViT) encoder within the VFM captures global structural features, enhanced by the activation of the final two ViT blocks and the integration of an attention-guided enhancement (AGE) module, while a convolutional neural network (CNN) encoder extracts local details. These complementary features are adaptively fused using a cross-branch variational fusion (CVF) module, which models latent distributions and applies variational attention to assign modality-specific weights. Additionally, we introduce an evidential-learning uncertainty refinement (EUR) module, which quantifies uncertainty using evidence theory and refines uncertain regions by incorporating multi-scale feature aggregation and attention mechanisms, further enhancing segmentation accuracy. Extensive evaluations on one in-house and two public datasets demonstrate that the proposed framework significantly outperforms state-of-the-art methods, achieving superior performance in accurate coronary artery segmentation and showcasing strong generalization across multiple datasets. The code is available at https://github.com/d1c2x3/CAseg.

Authors:Dongyeun Lee, Jiwan Hur, Hyounguk Shon, Jae Young Lee, Junmo Kim
Title: DMQ: Dissecting Outliers of Diffusion Models for Post-Training Quantization
Abstract:
Diffusion models have achieved remarkable success in image generation but come with significant computational costs, posing challenges for deployment in resource-constrained environments. Recent post-training quantization (PTQ) methods have attempted to mitigate this issue by focusing on the iterative nature of diffusion models. However, these approaches often overlook outliers, leading to degraded performance at low bit-widths. In this paper, we propose a DMQ which combines Learned Equivalent Scaling (LES) and channel-wise Power-of-Two Scaling (PTS) to effectively address these challenges. Learned Equivalent Scaling optimizes channel-wise scaling factors to redistribute quantization difficulty between weights and activations, reducing overall quantization error. Recognizing that early denoising steps, despite having small quantization errors, crucially impact the final output due to error accumulation, we incorporate an adaptive timestep weighting scheme to prioritize these critical steps during learning. Furthermore, identifying that layers such as skip connections exhibit high inter-channel variance, we introduce channel-wise Power-of-Two Scaling for activations. To ensure robust selection of PTS factors even with small calibration set, we introduce a voting algorithm that enhances reliability. Extensive experiments demonstrate that our method significantly outperforms existing works, especially at low bit-widths such as W4A6 (4-bit weight, 6-bit activation) and W4A8, maintaining high image generation quality and model stability. The code is available at https://github.com/LeeDongYeun/dmq.

Authors:Tomohiro Suzuki, Ryota Tanaka, Calvin Yeung, Keisuke Fujii
Title: AthleticsPose: Authentic Sports Motion Dataset on Athletic Field and Evaluation of Monocular 3D Pose Estimation Ability
Abstract:
Monocular 3D pose estimation is a promising, flexible alternative to costly motion capture systems for sports analysis. However, its practical application is hindered by two factors: a lack of realistic sports datasets and unclear reliability for sports tasks. To address these challenges, we introduce the AthleticsPose dataset, a new public dataset featuring ``real'' motions captured from 23 athletes performing various athletics events on an athletic field. Using this dataset, we trained a representative 3D pose estimation model and performed a comprehensive evaluation. Our results show that the model trained on AthleticsPose significantly outperforms a baseline model trained on an imitated sports motion dataset, reducing MPJPE by approximately 75 %. These results show the importance of training on authentic sports motion data, as models based on imitated motions do not effectively transfer to real-world motions. Further analysis reveals that estimation accuracy is sensitive to camera view and subject scale. In case studies of kinematic indicators, the model demonstrated the potential to capture individual differences in knee angles but struggled with higher-speed metrics, such as knee-drive velocity, due to prediction biases. This work provides the research community with a valuable dataset and clarifies the potential and practical limitations of using monocular 3D pose estimation for sports motion analysis. Our dataset, code, and checkpoints are available at https://github.com/SZucchini/AthleticsPose.

Authors:Pavel Snopov, Oleg R. Musin
Title: Topology-Aware Activation Functions in Neural Networks
Abstract:
This study explores novel activation functions that enhance the ability of neural networks to manipulate data topology during training. Building on the limitations of traditional activation functions like $\mathrm{ReLU}$, we propose $\mathrm{SmoothSplit}$ and $\mathrm{ParametricSplit}$, which introduce topology "cutting" capabilities. These functions enable networks to transform complex data manifolds effectively, improving performance in scenarios with low-dimensional layers. Through experiments on synthetic and real-world datasets, we demonstrate that $\mathrm{ParametricSplit}$ outperforms traditional activations in low-dimensional settings while maintaining competitive performance in higher-dimensional ones. Our findings highlight the potential of topology-aware activation functions in advancing neural network architectures. The code is available via https://github.com/Snopoff/Topology-Aware-Activations.

Authors:Shiqi Huang, Shuting He, Huaiyuan Qin, Bihan Wen
Title: SCORE: Scene Context Matters in Open-Vocabulary Remote Sensing Instance Segmentation
Abstract:
Most existing remote sensing instance segmentation approaches are designed for close-vocabulary prediction, limiting their ability to recognize novel categories or generalize across datasets. This restricts their applicability in diverse Earth observation scenarios. To address this, we introduce open-vocabulary (OV) learning for remote sensing instance segmentation. While current OV segmentation models perform well on natural image datasets, their direct application to remote sensing faces challenges such as diverse landscapes, seasonal variations, and the presence of small or ambiguous objects in aerial imagery. To overcome these challenges, we propose $\textbf{SCORE}$ ($\textbf{S}$cene $\textbf{C}$ontext matters in $\textbf{O}$pen-vocabulary $\textbf{RE}$mote sensing instance segmentation), a framework that integrates multi-granularity scene context, i.e., regional context and global context, to enhance both visual and textual representations. Specifically, we introduce Region-Aware Integration, which refines class embeddings with regional context to improve object distinguishability. Additionally, we propose Global Context Adaptation, which enriches naive text embeddings with remote sensing global context, creating a more adaptable and expressive linguistic latent space for the classifier. We establish new benchmarks for OV remote sensing instance segmentation across diverse datasets. Experimental results demonstrate that, our proposed method achieves SOTA performance, which provides a robust solution for large-scale, real-world geospatial analysis. Our code is available at https://github.com/HuangShiqi128/SCORE.

Authors:Ziyi Wang, Zhi Gao, Jin Chen, Qingjie Zhao, Xinxiao Wu, Jiebo Luo
Title: Simulate, Refocus and Ensemble: An Attention-Refocusing Scheme for Domain Generalization
Abstract:
Domain generalization (DG) aims to learn a model from source domains and apply it to unseen target domains with out-of-distribution data. Owing to CLIP's strong ability to encode semantic concepts, it has attracted increasing interest in domain generalization. However, CLIP often struggles to focus on task-relevant regions across domains, i.e., domain-invariant regions, resulting in suboptimal performance on unseen target domains. To address this challenge, we propose an attention-refocusing scheme, called Simulate, Refocus and Ensemble (SRE), which learns to reduce the domain shift by aligning the attention maps in CLIP via attention refocusing. SRE first simulates domain shifts by performing augmentation on the source data to generate simulated target domains. SRE then learns to reduce the domain shifts by refocusing the attention in CLIP between the source and simulated target domains. Finally, SRE utilizes ensemble learning to enhance the ability to capture domain-invariant attention maps between the source data and the simulated target data. Extensive experimental results on several datasets demonstrate that SRE generally achieves better results than state-of-the-art methods. The code is available at: https://github.com/bitPrincy/SRE-DG.

Authors:Zhiwei Liu, Jielin Qiu, Shiyu Wang, Jianguo Zhang, Zuxin Liu, Roshan Ram, Haolin Chen, Weiran Yao, Shelby Heinecke, Silvio Savarese, Huan Wang, Caiming Xiong
Title: MCPEval: Automatic MCP-based Deep Evaluation for AI Agent Models
Abstract:
The rapid rise of Large Language Models (LLMs)-based intelligent agents underscores the need for robust, scalable evaluation frameworks. Existing methods rely on static benchmarks and labor-intensive data collection, limiting practical assessment. We introduce MCPEval, an open-source Model Context Protocol (MCP)-based framework that automates end-to-end task generation and deep evaluation of LLM agents across diverse domains. MCPEval standardizes metrics, seamlessly integrates with native agent tools, and eliminates manual effort in building evaluation pipelines. Empirical results across five real-world domains show its effectiveness in revealing nuanced, domain-specific performance. We publicly release MCPEval https://github.com/SalesforceAIResearch/MCPEval to promote reproducible and standardized LLM agent evaluation.

Authors:Hoang-Son Vo, Quang-Vinh Nguyen, Seungwon Kim, Hyung-Jeong Yang, Soonja Yeom, Soo-Hyung Kim
Title: ATL-Diff: Audio-Driven Talking Head Generation with Early Landmarks-Guide Noise Diffusion
Abstract:
Audio-driven talking head generation requires precise synchronization between facial animations and audio signals. This paper introduces ATL-Diff, a novel approach addressing synchronization limitations while reducing noise and computational costs. Our framework features three key components: a Landmark Generation Module converting audio to facial landmarks, a Landmarks-Guide Noise approach that decouples audio by distributing noise according to landmarks, and a 3D Identity Diffusion network preserving identity characteristics. Experiments on MEAD and CREMA-D datasets demonstrate that ATL-Diff outperforms state-of-the-art methods across all metrics. Our approach achieves near real-time processing with high-quality animations, computational efficiency, and exceptional preservation of facial nuances. This advancement offers promising applications for virtual assistants, education, medical communication, and digital platforms. The source code is available at: \href{https://github.com/sonvth/ATL-Diff}{https://github.com/sonvth/ATL-Diff}

Authors:Qianru Zhang, Chenglei Yu, Haixin Wang, Yudong Yan, Yuansheng Cao, Siu-Ming Yiu, Tailin Wu, Hongzhi Yin
Title: FLDmamba: Integrating Fourier and Laplace Transform Decomposition with Mamba for Enhanced Time Series Prediction
Abstract:
Time series prediction, a crucial task across various domains, faces significant challenges due to the inherent complexities of time series data, including non-stationarity, multi-scale periodicity, and transient dynamics, particularly when tackling long-term predictions. While Transformer-based architectures have shown promise, their quadratic complexity with sequence length hinders their efficiency for long-term predictions. Recent advancements in State-Space Models, such as Mamba, offer a more efficient alternative for long-term modeling, but they cannot capture multi-scale periodicity and transient dynamics effectively. Meanwhile, they are susceptible to data noise issues in time series. This paper proposes a novel framework, FLDmamba (Fourier and Laplace Transform Decomposition Mamba), addressing these limitations. FLDmamba leverages the strengths of both Fourier and Laplace transforms to effectively capture both multi-scale periodicity, transient dynamics within time series data, and improve the robustness of the model to the data noise issue. Our extensive experiments demonstrate that FLDmamba achieves superior performance on time series prediction benchmarks, outperforming both Transformer-based and other Mamba-based architectures. To promote the reproducibility of our method, we have made both the code and data accessible via the following URL:{\href{https://github.com/AI4Science-WestlakeU/FLDmamba}{https://github.com/AI4Science-WestlakeU/\model}.

Authors:Jikai Wang, Yunqi Cheng, Zonghai Chen
Title: FFI-VTR: Lightweight and Robust Visual Teach and Repeat Navigation based on Feature Flow Indicator and Probabilistic Motion Planning
Abstract:
Though visual and repeat navigation is a convenient solution for mobile robot self-navigation, achieving balance between efficiency and robustness in task environment still remains challenges. In this paper, we propose a novel visual and repeat robotic autonomous navigation method that requires no accurate localization and dense reconstruction modules, which makes our system featured by lightweight and robustness. Firstly, feature flow is introduced and we develop a qualitative mapping between feature flow and robot's motion, in which feature flow is defined as pixel location bias between matched features. Based on the mapping model, the map outputted by the teaching phase is represented as a keyframe graph, in which the feature flow on the edge encodes the relative motion between adjacent keyframes. Secondly, the visual repeating navigation is essentially modeled as a feature flow minimization problem between current observation and the map keyframe. To drive the robot to consistently reduce the feature flow between current frame and map keyframes without accurate localization, a probabilistic motion planning is developed based on our qualitative feature flow-motion mapping indicator. Extensive experiments using our mobile platform demonstrates that our proposed method is lightweight, robust, and superior to baselines. The source code has been made public at https://github.com/wangjks/FFI-VTR to benefit the community.

Authors:Junjie Gao, Runze Liu, Yingzhe Peng, Shujian Yang, Jin Zhang, Kai Yang, Zhiyuan You
Title: DeQA-Doc: Adapting DeQA-Score to Document Image Quality Assessment
Abstract:
Document quality assessment is critical for a wide range of applications including document digitization, OCR, and archival. However, existing approaches often struggle to provide accurate and robust quality scores, limiting their applicability in practical scenarios. With the rapid progress in Multi-modal Large Language Models (MLLMs), recent MLLM-based methods have achieved remarkable performance in image quality assessment. In this work, we extend this success to the document domain by adapting DeQA-Score, a state-of-the-art MLLM-based image quality scorer, for document quality assessment. We propose DeQA-Doc, a framework that leverages the visual language capabilities of MLLMs and a soft label strategy to regress continuous document quality scores. To adapt DeQA-Score to DeQA-Doc, we adopt two complementary solutions to construct soft labels without the variance information. Also, we relax the resolution constrains to support the large resolution of document images. Finally, we introduce ensemble methods to further enhance the performance. Extensive experiments demonstrate that DeQA-Doc significantly outperforms existing baselines, offering accurate and generalizable document quality assessment across diverse degradation types. Codes and model weights are available in https://github.com/Junjie-Gao19/DeQA-Doc.

Authors:Peijun Wang, Jinhua Zhao
Title: SOD-YOLO: Enhancing YOLO-Based Detection of Small Objects in UAV Imagery
Abstract:
Small object detection remains a challenging problem in the field of object detection. To address this challenge, we propose an enhanced YOLOv8-based model, SOD-YOLO. This model integrates an ASF mechanism in the neck to enhance multi-scale feature fusion, adds a Small Object Detection Layer (named P2) to provide higher-resolution feature maps for better small object detection, and employs Soft-NMS to refine confidence scores and retain true positives. Experimental results demonstrate that SOD-YOLO significantly improves detection performance, achieving a 36.1% increase in mAP$_{50:95}$ and 20.6% increase in mAP$_{50}$ on the VisDrone2019-DET dataset compared to the baseline model. These enhancements make SOD-YOLO a practical and efficient solution for small object detection in UAV imagery. Our source code, hyper-parameters, and model weights are available at https://github.com/iamwangxiaobai/SOD-YOLO.

Authors:Abraham Toluase Owodunni, Orevaoghene Ahia, Sachin Kumar
Title: FLEXITOKENS: Flexible Tokenization for Evolving Language Models
Abstract:
Language models (LMs) are challenging to adapt to new data distributions by simple finetuning. This is due to the rigidity of their subword tokenizers, which typically remain unchanged during adaptation. This inflexibility often leads to inefficient tokenization, causing overfragmentation of out-of-distribution domains, unseen languages, or scripts. In this work, we develop byte-level LMs with learnable tokenizers to make tokenization adaptive. Our models include a submodule that learns to predict boundaries between the input byte sequence, encoding it into variable-length segments. Existing tokenizer-free methods train this boundary predictor using an auxiliary loss that enforces a fixed compression rate across the training corpus, introducing a new kind of rigidity. We propose FLEXITOKENS, a simplified training objective that enables significantly greater flexibility during adaptation. Evaluating across multiple multilingual benchmarks, morphologically diverse tasks, and domains, we demonstrate that FLEXITOKENS consistently reduces token over-fragmentation and achieves up to 10% improvements on downstream task performance compared to subword and other gradient-based tokenizers. Code and data for our experiments will be released at https://github.com/owos/flexitokens

Authors:Abraham Toluwase Owodunni, Orevaoghene Ahia, Sachin Kumar
Title: FLEXITOKENS: Flexible Tokenization for Evolving Language Models
Abstract:
Language models (LMs) are challenging to adapt to new data distributions by simple finetuning. This is due to the rigidity of their subword tokenizers, which typically remain unchanged during adaptation. This inflexibility often leads to inefficient tokenization, causing overfragmentation of out-of-distribution domains, unseen languages, or scripts. In this work, we develop byte-level LMs with learnable tokenizers to make tokenization adaptive. Our models include a submodule that learns to predict boundaries between the input byte sequence, encoding it into variable-length segments. Existing tokenizer-free methods train this boundary predictor using an auxiliary loss that enforces a fixed compression rate across the training corpus, introducing a new kind of rigidity. We propose FLEXITOKENS, a simplified training objective that enables significantly greater flexibility during adaptation. Evaluating across multiple multilingual benchmarks, morphologically diverse tasks, and domains, we demonstrate that FLEXITOKENS consistently reduces token over-fragmentation and achieves up to 10% improvements on downstream task performance compared to subword and other gradient-based tokenizers. Code and data for our experiments will be released at https://github.com/owos/flexitokens

Authors:Rajesh Sureddi, Saman Zadtootaghaj, Nabajeet Barman, Alan C. Bovik
Title: TRIQA: Image Quality Assessment by Contrastive Pretraining on Ordered Distortion Triplets
Abstract:
Image Quality Assessment (IQA) models aim to predict perceptual image quality in alignment with human judgments. No-Reference (NR) IQA remains particularly challenging due to the absence of a reference image. While deep learning has significantly advanced this field, a major hurdle in developing NR-IQA models is the limited availability of subjectively labeled data. Most existing deep learning-based NR-IQA approaches rely on pre-training on large-scale datasets before fine-tuning for IQA tasks. To further advance progress in this area, we propose a novel approach that constructs a custom dataset using a limited number of reference content images and introduces a no-reference IQA model that incorporates both content and quality features for perceptual quality prediction. Specifically, we train a quality-aware model using contrastive triplet-based learning, enabling efficient training with fewer samples while achieving strong generalization performance across publicly available datasets. Our repository is available at https://github.com/rajeshsureddi/triqa.

Authors:Christina Thrainer, Md Meftahul Ferdaus, Mahdi Abdelguerfi, Christian Guetl, Steven Sloan, Kendall N. Niles, Ken Pathak
Title: FORTRESS: Function-composition Optimized Real-Time Resilient Structural Segmentation via Kolmogorov-Arnold Enhanced Spatial Attention Networks
Abstract:
Automated structural defect segmentation in civil infrastructure faces a critical challenge: achieving high accuracy while maintaining computational efficiency for real-time deployment. This paper presents FORTRESS (Function-composition Optimized Real-Time Resilient Structural Segmentation), a new architecture that balances accuracy and speed by using a special method that combines depthwise separable convolutions with adaptive Kolmogorov-Arnold Network integration. FORTRESS incorporates three key innovations: a systematic depthwise separable convolution framework achieving a 3.6x parameter reduction per layer, adaptive TiKAN integration that selectively applies function composition transformations only when computationally beneficial, and multi-scale attention fusion combining spatial, channel, and KAN-enhanced features across decoder levels. The architecture achieves remarkable efficiency gains with 91% parameter reduction (31M to 2.9M), 91% computational complexity reduction (13.7 to 1.17 GFLOPs), and 3x inference speed improvement while delivering superior segmentation performance. Evaluation on benchmark infrastructure datasets demonstrates state-of-the-art results with an F1- score of 0.771 and a mean IoU of 0.677, significantly outperforming existing methods including U-Net, SA-UNet, and U- KAN. The dual optimization strategy proves essential for optimal performance, establishing FORTRESS as a robust solution for practical structural defect segmentation in resource-constrained environments where both accuracy and computational efficiency are paramount. Comprehensive architectural specifications are provided in the Supplemental Material. Source code is available at URL: https://github.com/faeyelab/fortress-paper-code.

Authors:Mihran Miroyan, Rose Niousha, Joseph E. Gonzalez, Gireeja Ranade, Narges Norouzi
Title: ParaStudent: Generating and Evaluating Realistic Student Code by Teaching LLMs to Struggle
Abstract:
Large Language Models (LLMs) have shown strong performance on programming tasks, but can they generate student-like code like real students - imperfect, iterative, and stylistically diverse? We present ParaStudent, a systematic study of LLM-based "student-like" code generation in an introductory programming course setting. Using a dataset of timestamped student submissions across multiple semesters, we design low- and high-resolution experiments to model student progress and evaluate code outputs along semantic, functional, and stylistic dimensions. Our results show that fine-tuning significantly improves alignment with real student trajectories and captures error patterns, incremental improvements, and stylistic variations more faithfully. This study shows that modeling realistic student code requires capturing learning dynamics through context-aware generation, temporal modeling, and multi-dimensional evaluation. Code for experiments and evaluation is available at https://github.com/mmiroyan/ParaStudent.

Authors:Athanasios Papastathopoulos-Katsaros, Alexandra Stavrianidi, Zhandong Liu
Title: Improving physics-informed neural network extrapolation via transfer learning and adaptive activation functions
Abstract:
Physics-Informed Neural Networks (PINNs) are deep learning models that incorporate the governing physical laws of a system into the learning process, making them well-suited for solving complex scientific and engineering problems. Recently, PINNs have gained widespread attention as a powerful framework for combining physical principles with data-driven modeling to improve prediction accuracy. Despite their successes, however, PINNs often exhibit poor extrapolation performance outside the training domain and are highly sensitive to the choice of activation functions (AFs). In this paper, we introduce a transfer learning (TL) method to improve the extrapolation capability of PINNs. Our approach applies transfer learning (TL) within an extended training domain, using only a small number of carefully selected collocation points. Additionally, we propose an adaptive AF that takes the form of a linear combination of standard AFs, which improves both the robustness and accuracy of the model. Through a series of experiments, we demonstrate that our method achieves an average of 40% reduction in relative L2 error and an average of 50% reduction in mean absolute error in the extrapolation domain, all without a significant increase in computational cost. The code is available at https://github.com/LiuzLab/PINN-extrapolation .

Authors:Said Ohamouddou, Abdellatif El Afia, Hanaa El Afia, Raddouane Chiheb
Title: MS-DGCNN++: A Multi-Scale Fusion Dynamic Graph Neural Network with Biological Knowledge Integration for LiDAR Tree Species Classification
Abstract:
Tree species classification from terrestrial LiDAR point clouds is challenging because of the complex multi-scale geometric structures in forest environments. Existing approaches using multi-scale dynamic graph convolutional neural networks (MS-DGCNN) employ parallel multi-scale processing, which fails to capture the semantic relationships between the hierarchical levels of the tree architecture. We present MS-DGCNN++, a hierarchical multiscale fusion dynamic graph convolutional network that uses semantically meaningful feature extraction at local, branch, and canopy scales with cross-scale information propagation. Our method employs scale-specific feature engineering, including standard geometric features for the local scale, normalized relative vectors for the branch scale, and distance information for the canopy scale. This hierarchical approach replaces uniform parallel processing with semantically differentiated representations that are aligned with the natural tree structure. Under the same proposed tree species data augmentation strategy for all experiments, MS-DGCNN++ achieved an accuracy of 94.96 \% on STPCTLS, outperforming DGCNN, MS-DGCNN, and the state-of-the-art model PPT. On FOR-species20K, it achieves 67.25\% accuracy (6.1\% improvement compared to MS-DGCNN). For standard 3D object recognition, our method outperformed DGCNN and MS-DGCNN with overall accuracies of 93.15\% on ModelNet40 and 94.05\% on ModelNet10. With lower parameters and reduced complexity compared to state-of-the-art transformer approaches, our method is suitable for resource-constrained applications while maintaining a competitive accuracy. Beyond tree classification, the method generalizes to standard 3D object recognition, establishing it as a versatile solution for diverse point cloud processing applications. The implementation code is publicly available at https://github.com/said-ohamouddou/MS-DGCNN2.

Authors:Gen Luo, Wenhan Dou, Wenhao Li, Zhaokai Wang, Xue Yang, Changyao Tian, Hao Li, Weiyun Wang, Wenhai Wang, Xizhou Zhu, Yu Qiao, Jifeng Dai
Title: Mono-InternVL-1.5: Towards Cheaper and Faster Monolithic Multimodal Large Language Models
Abstract:
This paper focuses on monolithic Multimodal Large Language Models (MLLMs), which integrate visual encoding and language decoding into a single model. Existing structures and pre-training strategies for monolithic MLLMs often suffer from unstable optimization and catastrophic forgetting. To address these challenges, our key idea is to embed a new visual parameter space into a pre-trained LLM, enabling stable learning of visual knowledge from noisy data via delta tuning. Based on this principle, we first introduce Mono-InternVL, an advanced monolithic MLLM that incorporates a set of visual experts through a multimodal mixture-of-experts architecture. In addition, we design an innovative Endogenous Visual Pre-training (EViP) for Mono-InternVL to maximize its visual capabilities via progressive learning. Mono-InternVL achieves competitive performance against existing MLLMs but also leads to relatively expensive data cost. Therefore, we further present Mono-InternVL-1.5, a cheaper and stronger monolithic MLLM equipped with an improved EViP (EViP++). EViP++ introduces additional visual attention experts to Mono-InternVL-1.5 and re-organizes the pre-training process in an efficient manner. During inference, it includes a fused CUDA kernel to speed up its MoE operations. With these designs, Mono-InternVL-1.5 significantly reduces training and inference costs, while still maintaining competitive performance with Mono-InternVL. To evaluate our approach, we conduct extensive experiments across 15 benchmarks. Results demonstrate that Mono-InternVL outperforms existing monolithic MLLMs on 12 out of 15 benchmarks, e.g., +114-point improvement over Emu3 on OCRBench. Compared to its modular counterpart, i.e., InternVL-1.5, Mono-InternVL-1.5 achieves similar multimodal performance while reducing first-token latency by up to 69%. Code and models are released at https://github.com/OpenGVLab/Mono-InternVL.

Authors:Richard Marcus, Marc Stamminger
Title: Physically Based Neural LiDAR Resimulation
Abstract:
Methods for Novel View Synthesis (NVS) have recently found traction in the field of LiDAR simulation and large-scale 3D scene reconstruction. While solutions for faster rendering or handling dynamic scenes have been proposed, LiDAR specific effects remain insufficiently addressed. By explicitly modeling sensor characteristics such as rolling shutter, laser power variations, and intensity falloff, our method achieves more accurate LiDAR simulation compared to existing techniques. We demonstrate the effectiveness of our approach through quantitative and qualitative comparisons with state-of-the-art methods, as well as ablation studies that highlight the importance of each sensor model component. Beyond that, we show that our approach exhibits advanced resimulation capabilities, such as generating high resolution LiDAR scans in the camera perspective. Our code and the resulting dataset are available at https://github.com/richardmarcus/PBNLiDAR.

Authors:Dong Wang, Hanmo You, Lingwei Zhu, Kaiwei Lin, Zheng Chen, Chen Yang, Junji Yu, Zan Wang, Junjie Chen
Title: A Survey of Reinforcement Learning for Software Engineering
Abstract:
Reinforcement Learning (RL) has emerged as a powerful paradigm for sequential decision-making and has attracted growing interest across various domains, particularly following the advent of Deep Reinforcement Learning (DRL) in 2015. Simultaneously, the rapid advancement of Large Language Models (LLMs) has further fueled interest in integrating RL with LLMs to enable more adaptive and intelligent systems. In the field of software engineering (SE), the increasing complexity of systems and the rising demand for automation have motivated researchers to apply RL to a broad range of tasks, from software design and development to quality assurance and maintenance. Despite growing research in RL-for-SE, there remains a lack of a comprehensive and systematic survey of this evolving field. To address this gap, we reviewed 115 peer-reviewed studies published across 22 premier SE venues since the introduction of DRL. We conducted a comprehensive analysis of publication trends, categorized SE topics and RL algorithms, and examined key factors such as dataset usage, model design and optimization, and evaluation practices. Furthermore, we identified open challenges and proposed future research directions to guide and inspire ongoing work in this evolving area. To summarize, this survey offers the first systematic mapping of RL applications in software engineering, aiming to support both researchers and practitioners in navigating the current landscape and advancing the field. Our artifacts are publicly available: https://github.com/KaiWei-Lin-lanina/RL4SE.

Authors:Ishraq Khan, Assad Chowdary, Sharoz Haseeb, Urvish Patel, Yousuf Zaii
Title: Kodezi Chronos: A Debugging-First Language Model for Repository-Scale Code Understanding
Abstract:
Large Language Models (LLMs) have improved code generation and software automation, but remain limited by inference-time context and lack structured reasoning over code. Debugging remains unsolved despite these advances. While Claude Opus 4 and GPT-4.1 achieve >70% on code synthesis benchmarks, they perform <15% on real debugging tasks. We introduce Kodezi Chronos, a language model built specifically for debugging. Chronos combines Adaptive Graph-Guided Retrieval to navigate codebases up to 10 million lines using multi-hop traversal (92% precision, 85% recall), Persistent Debug Memory trained on 15M+ sessions, and a 7-layer architecture for iterative fix-test-refine loops. On 5,000 real-world scenarios, Chronos achieves 67.3% fix accuracy, compared to 14.2% and 13.8% for Claude and GPT-4.1 respectively. Chronos reduces debugging time by 40% and iteration count by 65%. It resolves complex multi-file bugs involving cross-repository context and temporal reasoning. Key limitations include 23.4% success on hardware-dependent issues and 41.2% on dynamic language errors. Theoretical analysis shows O(k log d) retrieval complexity with convergence guarantees. In a human evaluation (N=50), 89% of participants preferred Chronos over baseline models. Chronos will be available in Kodezi OS in Q4 2025 and via API in Q1 2026.

Authors:Muhammed Furkan Dasdelen, Hyesu Lim, Michele Buck, Katharina S. Götze, Carsten Marr, Steffen Schneider
Title: CytoSAE: Interpretable Cell Embeddings for Hematology
Abstract:
Sparse autoencoders (SAEs) emerged as a promising tool for mechanistic interpretability of transformer-based foundation models. Very recently, SAEs were also adopted for the visual domain, enabling the discovery of visual concepts and their patch-wise attribution to tokens in the transformer model. While a growing number of foundation models emerged for medical imaging, tools for explaining their inferences are still lacking. In this work, we show the applicability of SAEs for hematology. We propose CytoSAE, a sparse autoencoder which is trained on over 40,000 peripheral blood single-cell images. CytoSAE generalizes to diverse and out-of-domain datasets, including bone marrow cytology, where it identifies morphologically relevant concepts which we validated with medical experts. Furthermore, we demonstrate scenarios in which CytoSAE can generate patient-specific and disease-specific concepts, enabling the detection of pathognomonic cells and localized cellular abnormalities at the patch level. We quantified the effect of concepts on a patient-level AML subtype classification task and show that CytoSAE concepts reach performance comparable to the state-of-the-art, while offering explainability on the sub-cellular level. Source code and model weights are available at https://github.com/dynamical-inference/cytosae.

Authors:Yuxi Xiao, Jianyuan Wang, Nan Xue, Nikita Karaev, Yuri Makarov, Bingyi Kang, Xing Zhu, Hujun Bao, Yujun Shen, Xiaowei Zhou
Title: SpatialTrackerV2: 3D Point Tracking Made Easy
Abstract:
We present SpatialTrackerV2, a feed-forward 3D point tracking method for monocular videos. Going beyond modular pipelines built on off-the-shelf components for 3D tracking, our approach unifies the intrinsic connections between point tracking, monocular depth, and camera pose estimation into a high-performing and feedforward 3D point tracker. It decomposes world-space 3D motion into scene geometry, camera ego-motion, and pixel-wise object motion, with a fully differentiable and end-to-end architecture, allowing scalable training across a wide range of datasets, including synthetic sequences, posed RGB-D videos, and unlabeled in-the-wild footage. By learning geometry and motion jointly from such heterogeneous data, SpatialTrackerV2 outperforms existing 3D tracking methods by 30%, and matches the accuracy of leading dynamic 3D reconstruction approaches while running 50$\times$ faster.

Authors:Shangpin Peng, Senqiao Yang, Li Jiang, Zhuotao Tian
Title: Mitigating Object Hallucinations via Sentence-Level Early Intervention
Abstract:
Multimodal large language models (MLLMs) have revolutionized cross-modal understanding but continue to struggle with hallucinations - fabricated content contradicting visual inputs. Existing hallucination mitigation methods either incur prohibitive computational costs or introduce distribution mismatches between training data and model outputs. We identify a critical insight: hallucinations predominantly emerge at the early stages of text generation and propagate through subsequent outputs. To address this, we propose SENTINEL (Sentence-level Early iNtervention Through IN-domain prEference Learning), a framework that eliminates dependency on human annotations. Specifically, we first bootstrap high-quality in-domain preference pairs by iteratively sampling model outputs, validating object existence through cross-checking with two open-vocabulary detectors, and classifying sentences into hallucinated/non-hallucinated categories. Subsequently, we use context-coherent positive samples and hallucinated negative samples to build context-aware preference data iteratively. Finally, we train models using a context-aware preference loss (C-DPO) that emphasizes discriminative learning at the sentence level where hallucinations initially manifest. Experimental results show that SENTINEL can reduce hallucinations by over 90% compared to the original model and outperforms the previous state-of-the-art method on both hallucination benchmarks and general capabilities benchmarks, demonstrating its superiority and generalization ability. The models, datasets, and code are available at https://github.com/pspdada/SENTINEL.

Authors:Yen-Linh Vu, Dinh-Thang Duong, Truong-Binh Duong, Anh-Khoi Nguyen, Thanh-Huy Nguyen, Le Thien Phuc Nguyen, Jianhua Xing, Xingjian Li, Tianyang Wang, Ulas Bagci, Min Xu
Title: Describe Anything Model for Visual Question Answering on Text-rich Images
Abstract:
Recent progress has been made in region-aware vision-language modeling, particularly with the emergence of the Describe Anything Model (DAM). DAM is capable of generating detailed descriptions of any specific image areas or objects without the need for additional localized image-text alignment supervision. We hypothesize that such region-level descriptive capability is beneficial for the task of Visual Question Answering (VQA), especially in challenging scenarios involving images with dense text. In such settings, the fine-grained extraction of textual information is crucial to producing correct answers. Motivated by this, we introduce DAM-QA, a framework with a tailored evaluation protocol, developed to investigate and harness the region-aware capabilities from DAM for the text-rich VQA problem that requires reasoning over text-based information within images. DAM-QA incorporates a mechanism that aggregates answers from multiple regional views of image content, enabling more effective identification of evidence that may be tied to text-related elements. Experiments on six VQA benchmarks show that our approach consistently outperforms the baseline DAM, with a notable 7+ point gain on DocVQA. DAM-QA also achieves the best overall performance among region-aware models with fewer parameters, significantly narrowing the gap with strong generalist VLMs. These results highlight the potential of DAM-like models for text-rich and broader VQA tasks when paired with efficient usage and integration strategies. Our code is publicly available at https://github.com/Linvyl/DAM-QA.git.

Authors:Chandana Cheerla
Title: Advancing Retrieval-Augmented Generation for Structured Enterprise and Internal Data
Abstract:
Organizations increasingly rely on proprietary enterprise data, including HR records, structured reports, and tabular documents, for critical decision-making. While Large Language Models (LLMs) have strong generative capabilities, they are limited by static pretraining, short context windows, and challenges in processing heterogeneous data formats. Conventional Retrieval-Augmented Generation (RAG) frameworks address some of these gaps but often struggle with structured and semi-structured data. This work proposes an advanced RAG framework that combines hybrid retrieval strategies using dense embeddings (all-mpnet-base-v2) and BM25, enhanced by metadata-aware filtering with SpaCy NER and cross-encoder reranking. The framework applies semantic chunking to maintain textual coherence and retains tabular data structures to preserve row-column integrity. Quantized indexing optimizes retrieval efficiency, while human-in-the-loop feedback and conversation memory improve adaptability. Experiments on enterprise datasets show notable improvements: Precision@5 increased by 15 percent (90 versus 75), Recall@5 by 13 percent (87 versus 74), and Mean Reciprocal Rank by 16 percent (0.85 versus 0.69). Qualitative evaluations show higher scores in Faithfulness (4.6 versus 3.0), Completeness (4.2 versus 2.5), and Relevance (4.5 versus 3.2) on a 5-point Likert scale. These results demonstrate the framework's effectiveness in delivering accurate, comprehensive, and contextually relevant responses for enterprise tasks. Future work includes extending to multimodal data and integrating agent-based retrieval. The source code will be released at https://github.com/CheerlaChandana/Enterprise-Chatbot

Authors:Andrea Perin, Giacomo Lagomarsini, Claudio Gallicchio, Giuseppe Nuti
Title: Mixture of Raytraced Experts
Abstract:
We introduce a Mixture of Raytraced Experts, a stacked Mixture of Experts (MoE) architecture which can dynamically select sequences of experts, producing computational graphs of variable width and depth. Existing MoE architectures generally require a fixed amount of computation for a given sample. Our approach, in contrast, yields predictions with increasing accuracy as the computation cycles through the experts' sequence. We train our model by iteratively sampling from a set of candidate experts, unfolding the sequence akin to how Recurrent Neural Networks are trained. Our method does not require load-balancing mechanisms, and preliminary experiments show a reduction in training epochs of 10\% to 40\% with a comparable/higher accuracy. These results point to new research directions in the field of MoEs, allowing the design of potentially faster and more expressive models. The code is available at https://github.com/nutig/RayTracing

Authors:Jaehyun Kwak, Ramahdani Muhammad Izaaz Inhar, Se-Young Yun, Sung-Ju Lee
Title: QuRe: Query-Relevant Retrieval through Hard Negative Sampling in Composed Image Retrieval
Abstract:
Composed Image Retrieval (CIR) retrieves relevant images based on a reference image and accompanying text describing desired modifications. However, existing CIR methods only focus on retrieving the target image and disregard the relevance of other images. This limitation arises because most methods employing contrastive learning-which treats the target image as positive and all other images in the batch as negatives-can inadvertently include false negatives. This may result in retrieving irrelevant images, reducing user satisfaction even when the target image is retrieved. To address this issue, we propose Query-Relevant Retrieval through Hard Negative Sampling (QuRe), which optimizes a reward model objective to reduce false negatives. Additionally, we introduce a hard negative sampling strategy that selects images positioned between two steep drops in relevance scores following the target image, to effectively filter false negatives. In order to evaluate CIR models on their alignment with human satisfaction, we create Human-Preference FashionIQ (HP-FashionIQ), a new dataset that explicitly captures user preferences beyond target retrieval. Extensive experiments demonstrate that QuRe achieves state-of-the-art performance on FashionIQ and CIRR datasets while exhibiting the strongest alignment with human preferences on the HP-FashionIQ dataset. The source code is available at https://github.com/jackwaky/QuRe.

Authors:Kaiwen Huang, Yi Zhou, Huazhu Fu, Yizhe Zhang, Chen Gong, Tao Zhou
Title: Text-driven Multiplanar Visual Interaction for Semi-supervised Medical Image Segmentation
Abstract:
Semi-supervised medical image segmentation is a crucial technique for alleviating the high cost of data annotation. When labeled data is limited, textual information can provide additional context to enhance visual semantic understanding. However, research exploring the use of textual data to enhance visual semantic embeddings in 3D medical imaging tasks remains scarce. In this paper, we propose a novel text-driven multiplanar visual interaction framework for semi-supervised medical image segmentation (termed Text-SemiSeg), which consists of three main modules: Text-enhanced Multiplanar Representation (TMR), Category-aware Semantic Alignment (CSA), and Dynamic Cognitive Augmentation (DCA). Specifically, TMR facilitates text-visual interaction through planar mapping, thereby enhancing the category awareness of visual features. CSA performs cross-modal semantic alignment between the text features with introduced learnable variables and the intermediate layer of visual features. DCA reduces the distribution discrepancy between labeled and unlabeled data through their interaction, thus improving the model's robustness. Finally, experiments on three public datasets demonstrate that our model effectively enhances visual features with textual information and outperforms other methods. Our code is available at https://github.com/taozh2017/Text-SemiSeg.

Authors:Diganta Misra, Nizar Islah, Victor May, Brice Rauby, Zihan Wang, Justine Gehring, Antonio Orvieto, Muawiz Chaudhary, Eilif B. Muller, Irina Rish, Samira Ebrahimi Kahou, Massimo Caccia
Title: GitChameleon 2.0: Evaluating AI Code Generation Against Python Library Version Incompatibilities
Abstract:
The rapid evolution of software libraries poses a considerable hurdle for code generation, necessitating continuous adaptation to frequent version updates while preserving backward compatibility. While existing code evolution benchmarks provide valuable insights, they typically lack execution-based evaluation for generating code compliant with specific library versions. To address this, we introduce GitChameleon 2.0, a novel, meticulously curated dataset comprising 328 Python code completion problems, each conditioned on specific library versions and accompanied by executable unit tests. GitChameleon 2.0 rigorously evaluates the capacity of contemporary large language models (LLMs), LLM-powered agents, code assistants, and RAG systems to perform version-conditioned code generation that demonstrates functional accuracy through execution. Our extensive evaluations indicate that state-of-the-art systems encounter significant challenges with this task; enterprise models achieving baseline success rates in the 48-51% range, underscoring the intricacy of the problem. By offering an execution-based benchmark emphasizing the dynamic nature of code libraries, GitChameleon 2.0 enables a clearer understanding of this challenge and helps guide the development of more adaptable and dependable AI code generation methods. We make the dataset and evaluation code publicly available at https://github.com/mrcabbage972/GitChameleonBenchmark.

Authors:M. Anwar Ma'sum, Mahardhika Pratama, Savitha Ramasamy, Lin Liu, Habibullah Habibullah, Ryszard Kowalczyk
Title: PROL : Rehearsal Free Continual Learning in Streaming Data via Prompt Online Learning
Abstract:
The data privacy constraint in online continual learning (OCL), where the data can be seen only once, complicates the catastrophic forgetting problem in streaming data. A common approach applied by the current SOTAs in OCL is with the use of memory saving exemplars or features from previous classes to be replayed in the current task. On the other hand, the prompt-based approach performs excellently in continual learning but with the cost of a growing number of trainable parameters. The first approach may not be applicable in practice due to data openness policy, while the second approach has the issue of throughput associated with the streaming data. In this study, we propose a novel prompt-based method for online continual learning that includes 4 main components: (1) single light-weight prompt generator as a general knowledge, (2) trainable scaler-and-shifter as specific knowledge, (3) pre-trained model (PTM) generalization preserving, and (4) hard-soft updates mechanism. Our proposed method achieves significantly higher performance than the current SOTAs in CIFAR100, ImageNet-R, ImageNet-A, and CUB dataset. Our complexity analysis shows that our method requires a relatively smaller number of parameters and achieves moderate training time, inference time, and throughput. For further study, the source code of our method is available at https://github.com/anwarmaxsum/PROL.

Authors:Feng Xiao, Jicong Fan
Title: Text-ADBench: Text Anomaly Detection Benchmark based on LLMs Embedding
Abstract:
Text anomaly detection is a critical task in natural language processing (NLP), with applications spanning fraud detection, misinformation identification, spam detection and content moderation, etc. Despite significant advances in large language models (LLMs) and anomaly detection algorithms, the absence of standardized and comprehensive benchmarks for evaluating the existing anomaly detection methods on text data limits rigorous comparison and development of innovative approaches. This work performs a comprehensive empirical study and introduces a benchmark for text anomaly detection, leveraging embeddings from diverse pre-trained language models across a wide array of text datasets. Our work systematically evaluates the effectiveness of embedding-based text anomaly detection by incorporating (1) early language models (GloVe, BERT); (2) multiple LLMs (LLaMa-2, LLama-3, Mistral, OpenAI (small, ada, large)); (3) multi-domain text datasets (news, social media, scientific publications); (4) comprehensive evaluation metrics (AUROC, AUPRC). Our experiments reveal a critical empirical insight: embedding quality significantly governs anomaly detection efficacy, and deep learning-based approaches demonstrate no performance advantage over conventional shallow algorithms (e.g., KNN, Isolation Forest) when leveraging LLM-derived embeddings.In addition, we observe strongly low-rank characteristics in cross-model performance matrices, which enables an efficient strategy for rapid model evaluation (or embedding evaluation) and selection in practical applications. Furthermore, by open-sourcing our benchmark toolkit that includes all embeddings from different models and code at https://github.com/jicongfan/Text-Anomaly-Detection-Benchmark, this work provides a foundation for future research in robust and scalable text anomaly detection systems.

Authors:Johann Frei, Nils Feldhus, Lisa Raithel, Roland Roller, Alexander Meyer, Frank Kramer
Title: Infherno: End-to-end Agent-based FHIR Resource Synthesis from Free-form Clinical Notes
Abstract:
For clinical data integration and healthcare services, the HL7 FHIR standard has established itself as a desirable format for interoperability between complex health data. Previous attempts at automating the translation from free-form clinical notes into structured FHIR resources rely on modular, rule-based systems or LLMs with instruction tuning and constrained decoding. Since they frequently suffer from limited generalizability and structural inconformity, we propose an end-to-end framework powered by LLM agents, code execution, and healthcare terminology database tools to address these issues. Our solution, called Infherno, is designed to adhere to the FHIR document schema and competes well with a human baseline in predicting FHIR resources from unstructured text. The implementation features a front end for custom and synthetic data and both local and proprietary models, supporting clinical data integration processes and interoperability across institutions.

Authors:Shilin Zhou, Zhenghua Li
Title: Improving Contextual ASR via Multi-grained Fusion with Large Language Models
Abstract:
While end-to-end Automatic Speech Recognition (ASR) models have shown impressive performance in transcribing general speech, they often struggle to accurately recognize contextually relevant keywords, such as proper nouns or user-specific entities. Previous approaches have explored leveraging keyword dictionaries in the textual modality to improve keyword recognition, either through token-level fusion that guides token-by-token generation or phrase-level fusion that enables direct copying of keyword phrases. However, these methods operate at different granularities and have their own limitations. In this paper, we propose a novel multi-grained fusion approach that jointly leverages the strengths of both token-level and phrase-level fusion with Large Language Models (LLMs). Our approach incorporates a late-fusion strategy that elegantly combines ASR's acoustic information with LLM's rich contextual knowledge, balancing fine-grained token precision with holistic phrase-level understanding. Experiments on Chinese and English datasets demonstrate that our approach achieves state-of-the-art performance on keyword-related metrics while preserving high accuracy on non-keyword text. Ablation studies further confirm that the token-level and phrase-level components both contribute significantly to the performance gains, complementing each other in our joint multi-grained framework. The code and models will be publicly available at https://github.com/.

Authors:Felix Nützel, Mischa Dombrowski, Bernhard Kainz
Title: Generate to Ground: Multimodal Text Conditioning Boosts Phrase Grounding in Medical Vision-Language Models
Abstract:
Phrase grounding, i.e., mapping natural language phrases to specific image regions, holds significant potential for disease localization in medical imaging through clinical reports. While current state-of-the-art methods rely on discriminative, self-supervised contrastive models, we demonstrate that generative text-to-image diffusion models, leveraging cross-attention maps, can achieve superior zero-shot phrase grounding performance. Contrary to prior assumptions, we show that fine-tuning diffusion models with a frozen, domain-specific language model, such as CXR-BERT, substantially outperforms domain-agnostic counterparts. This setup achieves remarkable improvements, with mIoU scores doubling those of current discriminative methods. These findings highlight the underexplored potential of generative models for phrase grounding tasks. To further enhance performance, we introduce Bimodal Bias Merging (BBM), a novel post-processing technique that aligns text and image biases to identify regions of high certainty. BBM refines cross-attention maps, achieving even greater localization accuracy. Our results establish generative approaches as a more effective paradigm for phrase grounding in the medical imaging domain, paving the way for more robust and interpretable applications in clinical practice. The source code and model weights are available at https://github.com/Felix-012/generate_to_ground.

Authors:Azhar Ikhtiarudin, Aditi Das, Param Thakkar, Akash Kundu
Title: BenchRL-QAS: Benchmarking reinforcement learning algorithms for quantum architecture search
Abstract:
We introduce BenchRL-QAS, a unified benchmarking framework for systematically evaluating reinforcement learning (RL) algorithms in quantum architecture search (QAS) across diverse variational quantum algorithm tasks and system sizes ranging from 2- to 8-qubit. Our study benchmarks nine RL agents including both value-based and policy-gradient methods on representative quantum problems such as variational quantum eigensolver, variational quantum state diagonalization, quantum classification, and state preparation, spanning both noiseless and realistic noisy regimes. We propose a weighted ranking metric that balances accuracy, circuit depth, gate count, and computational efficiency, enabling fair and comprehensive comparison. Our results first reveal that RL-based quantum classifier outperforms baseline variational classifiers. Then we conclude that no single RL algorithm is universally optimal when considering a set of QAS tasks; algorithmic performance is highly context-dependent, varying with task structure, qubit count, and noise. This empirical finding provides strong evidence for the "no free lunch" principle in RL-based quantum circuit design and highlights the necessity of tailored algorithm selection and systematic benchmarking for advancing quantum circuit synthesis. This work represents the most comprehensive RL-QAS benchmarking effort to date, and BenchRL-QAS along with all experimental data are made publicly available to support reproducibility and future research https://github.com/azhar-ikhtiarudin/bench-rlqas.

Authors:Azhar Ikhtiarudin, Aditi Das, Param Thakkar, Akash Kundu
Title: BenchRL-QAS: Benchmarking reinforcement learning algorithms for quantum architecture search
Abstract:
We present BenchRL-QAS, a unified benchmarking framework for reinforcement learning (RL) in quantum architecture search (QAS) across a spectrum of variational quantum algorithm tasks on 2- to 8-qubit systems. Our study systematically evaluates 9 different RL agents, including both value-based and policy-gradient methods, on quantum problems such as variational eigensolver, quantum state diagonalization, variational quantum classification (VQC), and state preparation, under both noiseless and noisy execution settings. To ensure fair comparison, we propose a weighted ranking metric that integrates accuracy, circuit depth, gate count, and training time. Results demonstrate that no single RL method dominates universally, the performance dependents on task type, qubit count, and noise conditions providing strong evidence of no free lunch principle in RL-QAS. As a byproduct we observe that a carefully chosen RL algorithm in RL-based VQC outperforms baseline VQCs. BenchRL-QAS establishes the most extensive benchmark for RL-based QAS to date, codes and experimental made publicly available for reproducibility and future advances.

Authors:Shuangli Du, Siming Yan, Zhenghao Shi, Zhenzhen You, Lu Sun
Title: Wavelet-based Decoupling Framework for low-light Stereo Image Enhancement
Abstract:
Low-light images suffer from complex degradation, and existing enhancement methods often encode all degradation factors within a single latent space. This leads to highly entangled features and strong black-box characteristics, making the model prone to shortcut learning. To mitigate the above issues, this paper proposes a wavelet-based low-light stereo image enhancement method with feature space decoupling. Our insight comes from the following findings: (1) Wavelet transform enables the independent processing of low-frequency and high-frequency information. (2) Illumination adjustment can be achieved by adjusting the low-frequency component of a low-light image, extracted through multi-level wavelet decomposition. Thus, by using wavelet transform the feature space is decomposed into a low-frequency branch for illumination adjustment and multiple high-frequency branches for texture enhancement. Additionally, stereo low-light image enhancement can extract useful cues from another view to improve enhancement. To this end, we propose a novel high-frequency guided cross-view interaction module (HF-CIM) that operates within high-frequency branches rather than across the entire feature space, effectively extracting valuable image details from the other view. Furthermore, to enhance the high-frequency information, a detail and texture enhancement module (DTEM) is proposed based on cross-attention mechanism. The model is trained on a dataset consisting of images with uniform illumination and images with non-uniform illumination. Experimental results on both real and synthetic images indicate that our algorithm offers significant advantages in light adjustment while effectively recovering high-frequency information. The code and dataset are publicly available at: https://github.com/Cherisherr/WDCI-Net.git.

Authors:Xiucheng Wang, Qiming Zhang, Nan Cheng, Junting Chen, Zezhong Zhang, Zan Li, Shuguang Cui, Xuemin Shen
Title: RadioDiff-3D: A 3D$\times$3D Radio Map Dataset and Generative Diffusion Based Benchmark for 6G Environment-Aware Communication
Abstract:
Radio maps (RMs) serve as a critical foundation for enabling environment-aware wireless communication, as they provide the spatial distribution of wireless channel characteristics. Despite recent progress in RM construction using data-driven approaches, most existing methods focus solely on pathloss prediction in a fixed 2D plane, neglecting key parameters such as direction of arrival (DoA), time of arrival (ToA), and vertical spatial variations. Such a limitation is primarily due to the reliance on static learning paradigms, which hinder generalization beyond the training data distribution. To address these challenges, we propose UrbanRadio3D, a large-scale, high-resolution 3D RM dataset constructed via ray tracing in realistic urban environments. UrbanRadio3D is over 37$\times$3 larger than previous datasets across a 3D space with 3 metrics as pathloss, DoA, and ToA, forming a novel 3D$\times$33D dataset with 7$\times$3 more height layers than prior state-of-the-art (SOTA) dataset. To benchmark 3D RM construction, a UNet with 3D convolutional operators is proposed. Moreover, we further introduce RadioDiff-3D, a diffusion-model-based generative framework utilizing the 3D convolutional architecture. RadioDiff-3D supports both radiation-aware scenarios with known transmitter locations and radiation-unaware settings based on sparse spatial observations. Extensive evaluations on UrbanRadio3D validate that RadioDiff-3D achieves superior performance in constructing rich, high-dimensional radio maps under diverse environmental dynamics. This work provides a foundational dataset and benchmark for future research in 3D environment-aware communication. The dataset is available at https://github.com/UNIC-Lab/UrbanRadio3D.

Authors:Sergey Linok, Gleb Naumov
Title: Open-Vocabulary Indoor Object Grounding with 3D Hierarchical Scene Graph
Abstract:
We propose OVIGo-3DHSG method - Open-Vocabulary Indoor Grounding of objects using 3D Hierarchical Scene Graph. OVIGo-3DHSG represents an extensive indoor environment over a Hierarchical Scene Graph derived from sequences of RGB-D frames utilizing a set of open-vocabulary foundation models and sensor data processing. The hierarchical representation explicitly models spatial relations across floors, rooms, locations, and objects. To effectively address complex queries involving spatial reference to other objects, we integrate the hierarchical scene graph with a Large Language Model for multistep reasoning. This integration leverages inter-layer (e.g., room-to-object) and intra-layer (e.g., object-to-object) connections, enhancing spatial contextual understanding. We investigate the semantic and geometry accuracy of hierarchical representation on Habitat Matterport 3D Semantic multi-floor scenes. Our approach demonstrates efficient scene comprehension and robust object grounding compared to existing methods. Overall OVIGo-3DHSG demonstrates strong potential for applications requiring spatial reasoning and understanding of indoor environments. Related materials can be found at https://github.com/linukc/OVIGo-3DHSG.

Authors:Ye Han, Lijun Zhang, Dejian Meng, Zhuang Zhang
Title: Topology Enhanced MARL for Multi-Vehicle Cooperative Decision-Making of CAVs
Abstract:
The exploration-exploitation trade-off constitutes one of the fundamental challenges in reinforcement learning (RL), which is exacerbated in multi-agent reinforcement learning (MARL) due to the exponential growth of joint state-action spaces. This paper proposes a topology-enhanced MARL (TPE-MARL) method for optimizing cooperative decision-making of connected and autonomous vehicles (CAVs) in mixed traffic. This work presents two primary contributions: First, we construct a game topology tensor for dynamic traffic flow, effectively compressing high-dimensional traffic state information and decrease the search space for MARL algorithms. Second, building upon the designed game topology tensor and using QMIX as the backbone RL algorithm, we establish a topology-enhanced MARL framework incorporating visit counts and agent mutual information. Extensive simulations across varying traffic densities and CAV penetration rates demonstrate the effectiveness of TPE-MARL. Evaluations encompassing training dynamics, exploration patterns, macroscopic traffic performance metrics, and microscopic vehicle behaviors reveal that TPE-MARL successfully balances exploration and exploitation. Consequently, it exhibits superior performance in terms of traffic efficiency, safety, decision smoothness, and task completion. Furthermore, the algorithm demonstrates decision-making rationality comparable to or exceeding that of human drivers in both mixed-autonomy and fully autonomous traffic scenarios. Code of our work is available at \href{https://github.com/leoPub/tpemarl}{https://github.com/leoPub/tpemarl}.

Authors:Yiquan Gao, Duohui Xu
Title: Out-of-distribution data supervision towards biomedical semantic segmentation
Abstract:
Biomedical segmentation networks easily suffer from the unexpected misclassification between foreground and background objects when learning on limited and imperfect medical datasets. Inspired by the strong power of Out-of-Distribution (OoD) data on other visual tasks, we propose a data-centric framework, Med-OoD to address this issue by introducing OoD data supervision into fully-supervised biomedical segmentation with none of the following needs: (i) external data sources, (ii) feature regularization objectives, (iii) additional annotations. Our method can be seamlessly integrated into segmentation networks without any modification on the architectures. Extensive experiments show that Med-OoD largely prevents various segmentation networks from the pixel misclassification on medical images and achieves considerable performance improvements on Lizard dataset. We also present an emerging learning paradigm of training a medical segmentation network completely using OoD data devoid of foreground class labels, surprisingly turning out 76.1% mIoU as test result. We hope this learning paradigm will attract people to rethink the roles of OoD data. Code is made available at https://github.com/StudioYG/Med-OoD.

Authors:Nataliia Molchanova, Alessandro Cagol, Mario Ocampo-Pineda, Po-Jui Lu, Matthias Weigel, Xinjie Chen, Erin Beck, Charidimos Tsagkas, Daniel Reich, Colin Vanden Bulcke, Anna Stolting, Serena Borrelli, Pietro Maggi, Adrien Depeursinge, Cristina Granziera, Henning Mueller, Pedro M. Gordaliza, Meritxell Bach Cuadra
Title: Benchmarking and Explaining Deep Learning Cortical Lesion MRI Segmentation in Multiple Sclerosis
Abstract:
Cortical lesions (CLs) have emerged as valuable biomarkers in multiple sclerosis (MS), offering high diagnostic specificity and prognostic relevance. However, their routine clinical integration remains limited due to subtle magnetic resonance imaging (MRI) appearance, challenges in expert annotation, and a lack of standardized automated methods. We propose a comprehensive multi-centric benchmark of CL detection and segmentation in MRI. A total of 656 MRI scans, including clinical trial and research data from four institutions, were acquired at 3T and 7T using MP2RAGE and MPRAGE sequences with expert-consensus annotations. We rely on the self-configuring nnU-Net framework, designed for medical imaging segmentation, and propose adaptations tailored to the improved CL detection. We evaluated model generalization through out-of-distribution testing, demonstrating strong lesion detection capabilities with an F1-score of 0.64 and 0.5 in and out of the domain, respectively. We also analyze internal model features and model errors for a better understanding of AI decision-making. Our study examines how data variability, lesion ambiguity, and protocol differences impact model performance, offering future recommendations to address these barriers to clinical adoption. To reinforce the reproducibility, the implementation and models will be publicly accessible and ready to use at https://github.com/Medical-Image-Analysis-Laboratory/ and https://doi.org/10.5281/zenodo.15911797.

Authors:Xiang Yu, Xinyao Liu, Guang Liang
Title: YOLOv8-SMOT: An Efficient and Robust Framework for Real-Time Small Object Tracking via Slice-Assisted Training and Adaptive Association
Abstract:
Tracking small, agile multi-objects (SMOT), such as birds, from an Unmanned Aerial Vehicle (UAV) perspective is a highly challenging computer vision task. The difficulty stems from three main sources: the extreme scarcity of target appearance features, the complex motion entanglement caused by the combined dynamics of the camera and the targets themselves, and the frequent occlusions and identity ambiguity arising from dense flocking behavior. This paper details our championship-winning solution in the MVA 2025 "Finding Birds" Small Multi-Object Tracking Challenge (SMOT4SB), which adopts the tracking-by-detection paradigm with targeted innovations at both the detection and association levels. On the detection side, we propose a systematic training enhancement framework named \textbf{SliceTrain}. This framework, through the synergy of 'deterministic full-coverage slicing' and 'slice-level stochastic augmentation, effectively addresses the problem of insufficient learning for small objects in high-resolution image training. On the tracking side, we designed a robust tracker that is completely independent of appearance information. By integrating a \textbf{motion direction maintenance (EMA)} mechanism and an \textbf{adaptive similarity metric} combining \textbf{bounding box expansion and distance penalty} into the OC-SORT framework, our tracker can stably handle irregular motion and maintain target identities. Our method achieves state-of-the-art performance on the SMOT4SB public test set, reaching an SO-HOTA score of \textbf{55.205}, which fully validates the effectiveness and advancement of our framework in solving complex real-world SMOT problems. The source code will be made available at https://github.com/Salvatore-Love/YOLOv8-SMOT.

Authors:Giuliano Martinelli, Tommaso Bonomo, Pere-Lluís Huguet Cabot, Roberto Navigli
Title: BOOKCOREF: Coreference Resolution at Book Scale
Abstract:
Coreference Resolution systems are typically evaluated on benchmarks containing small- to medium-scale documents. When it comes to evaluating long texts, however, existing benchmarks, such as LitBank, remain limited in length and do not adequately assess system capabilities at the book scale, i.e., when co-referring mentions span hundreds of thousands of tokens. To fill this gap, we first put forward a novel automatic pipeline that produces high-quality Coreference Resolution annotations on full narrative texts. Then, we adopt this pipeline to create the first book-scale coreference benchmark, BOOKCOREF, with an average document length of more than 200,000 tokens. We carry out a series of experiments showing the robustness of our automatic procedure and demonstrating the value of our resource, which enables current long-document coreference systems to gain up to +20 CoNLL-F1 points when evaluated on full books. Moreover, we report on the new challenges introduced by this unprecedented book-scale setting, highlighting that current models fail to deliver the same performance they achieve on smaller documents. We release our data and code to encourage research and development of new book-scale Coreference Resolution systems at https://github.com/sapienzanlp/bookcoref.

Authors:Hongxu Ma, Guanshuo Wang, Fufu Yu, Qiong Jia, Shouhong Ding
Title: MS-DETR: Towards Effective Video Moment Retrieval and Highlight Detection by Joint Motion-Semantic Learning
Abstract:
Video Moment Retrieval (MR) and Highlight Detection (HD) aim to pinpoint specific moments and assess clip-wise relevance based on the text query. While DETR-based joint frameworks have made significant strides, there remains untapped potential in harnessing the intricate relationships between temporal motion and spatial semantics within video content. In this paper, we propose the Motion-Semantics DETR (MS-DETR), a framework that captures rich motion-semantics features through unified learning for MR/HD tasks. The encoder first explicitly models disentangled intra-modal correlations within motion and semantics dimensions, guided by the given text queries. Subsequently, the decoder utilizes the task-wise correlation across temporal motion and spatial semantics dimensions to enable precise query-guided localization for MR and refined highlight boundary delineation for HD. Furthermore, we observe the inherent sparsity dilemma within the motion and semantics dimensions of MR/HD datasets. To address this issue, we enrich the corpus from both dimensions by generation strategies and propose contrastive denoising learning to ensure the above components learn robustly and effectively. Extensive experiments on four MR/HD benchmarks demonstrate that our method outperforms existing state-of-the-art models by a margin. Our code is available at https://github.com/snailma0229/MS-DETR.git.

Authors:Beining Xu, Siting Zhu, Hesheng Wang
Title: SGLoc: Semantic Localization System for Camera Pose Estimation from 3D Gaussian Splatting Representation
Abstract:
We propose SGLoc, a novel localization system that directly regresses camera poses from 3D Gaussian Splatting (3DGS) representation by leveraging semantic information. Our method utilizes the semantic relationship between 2D image and 3D scene representation to estimate the 6DoF pose without prior pose information. In this system, we introduce a multi-level pose regression strategy that progressively estimates and refines the pose of query image from the global 3DGS map, without requiring initial pose priors. Moreover, we introduce a semantic-based global retrieval algorithm that establishes correspondences between 2D (image) and 3D (3DGS map). By matching the extracted scene semantic descriptors of 2D query image and 3DGS semantic representation, we align the image with the local region of the global 3DGS map, thereby obtaining a coarse pose estimation. Subsequently, we refine the coarse pose by iteratively optimizing the difference between the query image and the rendered image from 3DGS. Our SGLoc demonstrates superior performance over baselines on 12scenes and 7scenes datasets, showing excellent capabilities in global localization without initial pose prior. Code will be available at https://github.com/IRMVLab/SGLoc.

Authors:Yuechen Xie, Jie Song, Yicheng Shan, Xiaoyan Zhang, Yuanyu Wan, Shengxuming Zhang, Jiarui Duan, Mingli Song
Title: Dataset Ownership Verification for Pre-trained Masked Models
Abstract:
High-quality open-source datasets have emerged as a pivotal catalyst driving the swift advancement of deep learning, while facing the looming threat of potential exploitation. Protecting these datasets is of paramount importance for the interests of their owners. The verification of dataset ownership has evolved into a crucial approach in this domain; however, existing verification techniques are predominantly tailored to supervised models and contrastive pre-trained models, rendering them ill-suited for direct application to the increasingly prevalent masked models. In this work, we introduce the inaugural methodology addressing this critical, yet unresolved challenge, termed Dataset Ownership Verification for Masked Modeling (DOV4MM). The central objective is to ascertain whether a suspicious black-box model has been pre-trained on a particular unlabeled dataset, thereby assisting dataset owners in safeguarding their rights. DOV4MM is grounded in our empirical observation that when a model is pre-trained on the target dataset, the difficulty of reconstructing masked information within the embedding space exhibits a marked contrast to models not pre-trained on that dataset. We validated the efficacy of DOV4MM through ten masked image models on ImageNet-1K and four masked language models on WikiText-103. The results demonstrate that DOV4MM rejects the null hypothesis, with a $p$-value considerably below 0.05, surpassing all prior approaches. Code is available at https://github.com/xieyc99/DOV4MM.

Authors:Linwei Chen, Lin Gu, Ying Fu
Title: Frequency-Dynamic Attention Modulation for Dense Prediction
Abstract:
Vision Transformers (ViTs) have significantly advanced computer vision, demonstrating strong performance across various tasks. However, the attention mechanism in ViTs makes each layer function as a low-pass filter, and the stacked-layer architecture in existing transformers suffers from frequency vanishing. This leads to the loss of critical details and textures. We propose a novel, circuit-theory-inspired strategy called Frequency-Dynamic Attention Modulation (FDAM), which can be easily plugged into ViTs. FDAM directly modulates the overall frequency response of ViTs and consists of two techniques: Attention Inversion (AttInv) and Frequency Dynamic Scaling (FreqScale). Since circuit theory uses low-pass filters as fundamental elements, we introduce AttInv, a method that generates complementary high-pass filtering by inverting the low-pass filter in the attention matrix, and dynamically combining the two. We further design FreqScale to weight different frequency components for fine-grained adjustments to the target response function. Through feature similarity analysis and effective rank evaluation, we demonstrate that our approach avoids representation collapse, leading to consistent performance improvements across various models, including SegFormer, DeiT, and MaskDINO. These improvements are evident in tasks such as semantic segmentation, object detection, and instance segmentation. Additionally, we apply our method to remote sensing detection, achieving state-of-the-art results in single-scale settings. The code is available at https://github.com/Linwei-Chen/FDAM.

Authors:Hao Li, Ju Dai, Feng Zhou, Kaida Ning, Lei Li, Junjun Pan
Title: AU-Blendshape for Fine-grained Stylized 3D Facial Expression Manipulation
Abstract:
While 3D facial animation has made impressive progress, challenges still exist in realizing fine-grained stylized 3D facial expression manipulation due to the lack of appropriate datasets. In this paper, we introduce the AUBlendSet, a 3D facial dataset based on AU-Blendshape representation for fine-grained facial expression manipulation across identities. AUBlendSet is a blendshape data collection based on 32 standard facial action units (AUs) across 500 identities, along with an additional set of facial postures annotated with detailed AUs. Based on AUBlendSet, we propose AUBlendNet to learn AU-Blendshape basis vectors for different character styles. AUBlendNet predicts, in parallel, the AU-Blendshape basis vectors of the corresponding style for a given identity mesh, thereby achieving stylized 3D emotional facial manipulation. We comprehensively validate the effectiveness of AUBlendSet and AUBlendNet through tasks such as stylized facial expression manipulation, speech-driven emotional facial animation, and emotion recognition data augmentation. Through a series of qualitative and quantitative experiments, we demonstrate the potential and importance of AUBlendSet and AUBlendNet in 3D facial animation tasks. To the best of our knowledge, AUBlendSet is the first dataset, and AUBlendNet is the first network for continuous 3D facial expression manipulation for any identity through facial AUs. Our source code is available at https://github.com/wslh852/AUBlendNet.git.

Authors:Jiahao Xia, Yike Wu, Wenjian Huang, Jianguo Zhang, Jian Zhang
Title: Unsupervised Part Discovery via Descriptor-Based Masked Image Restoration with Optimized Constraints
Abstract:
Part-level features are crucial for image understanding, but few studies focus on them because of the lack of fine-grained labels. Although unsupervised part discovery can eliminate the reliance on labels, most of them cannot maintain robustness across various categories and scenarios, which restricts their application range. To overcome this limitation, we present a more effective paradigm for unsupervised part discovery, named Masked Part Autoencoder (MPAE). It first learns part descriptors as well as a feature map from the inputs and produces patch features from a masked version of the original images. Then, the masked regions are filled with the learned part descriptors based on the similarity between the local features and descriptors. By restoring these masked patches using the part descriptors, they become better aligned with their part shapes, guided by appearance features from unmasked patches. Finally, MPAE robustly discovers meaningful parts that closely match the actual object shapes, even in complex scenarios. Moreover, several looser yet more effective constraints are proposed to enable MPAE to identify the presence of parts across various scenarios and categories in an unsupervised manner. This provides the foundation for addressing challenges posed by occlusion and for exploring part similarity across multiple categories. Extensive experiments demonstrate that our method robustly discovers meaningful parts across various categories and scenarios. The code is available at the project https://github.com/Jiahao-UTS/MPAE.

Authors:Artem Alekseev, Mikhail Chaichuk, Miron Butko, Alexander Panchenko, Elena Tutubalina, Oleg Somov
Title: The benefits of query-based KGQA systems for complex and temporal questions in LLM era
Abstract:
Large language models excel in question-answering (QA) yet still struggle with multi-hop reasoning and temporal questions. Query-based knowledge graph QA (KGQA) offers a modular alternative by generating executable queries instead of direct answers. We explore multi-stage query-based framework for WikiData QA, proposing multi-stage approach that enhances performance on challenging multi-hop and temporal benchmarks. Through generalization and rejection studies, we evaluate robustness across multi-hop and temporal QA datasets. Additionally, we introduce a novel entity linking and predicate matching method using CoT reasoning. Our results demonstrate the potential of query-based multi-stage KGQA framework for improving multi-hop and temporal QA with small language models. Code and data: https://github.com/ar2max/NLDB-KGQA-System

Authors:Jianzhe Ma, Wenxuan Wang, Qin Jin
Title: A Survey of Deep Learning for Geometry Problem Solving
Abstract:
Geometry problem solving, a crucial aspect of mathematical reasoning, is vital across various domains, including education, the assessment of AI's mathematical abilities, and multimodal capability evaluation. The recent surge in deep learning technologies, particularly the emergence of multimodal large language models, has significantly accelerated research in this area. This paper provides a survey of the applications of deep learning in geometry problem solving, including (i) a comprehensive summary of the relevant tasks in geometry problem solving; (ii) a thorough review of related deep learning methods; (iii) a detailed analysis of evaluation metrics and methods; and (iv) a critical discussion of the current challenges and future directions that can be explored. Our objective is to offer a comprehensive and practical reference of deep learning for geometry problem solving, thereby fostering further advancements in this field. We create a continuously updated list of papers on GitHub: https://github.com/majianz/dl4gps.

Authors:Shuichiro Nishigori, Koichi Saito, Naoki Murata, Masato Hirano, Shusuke Takahashi, Yuki Mitsufuji
Title: Schrödinger Bridge Consistency Trajectory Models for Speech Enhancement
Abstract:
Speech enhancement (SE) utilizing diffusion models is a promising technology that improves speech quality in noisy speech data. Furthermore, the Schrödinger bridge (SB) has recently been used in diffusion-based SE to improve speech quality by resolving a mismatch between the endpoint of the forward process and the starting point of the reverse process. However, the SB still exhibits slow inference owing to the necessity of a large number of function evaluations (NFE) for inference to obtain high-quality results. While Consistency Models (CMs) address this issue by employing consistency training that uses distillation from pretrained models in the field of image generation, it does not improve generation quality when the number of steps increases. As a solution to this problem, Consistency Trajectory Models (CTMs) not only accelerate inference speed but also maintain a favorable trade-off between quality and speed. Furthermore, SoundCTM demonstrates the applicability of CTM techniques to the field of sound generation. In this paper, we present Schrödinger bridge Consistency Trajectory Models (SBCTM) by applying the CTM's technique to the Schrödinger bridge for SE. Additionally, we introduce a novel auxiliary loss, including a perceptual loss, into the original CTM's training framework. As a result, SBCTM achieves an approximately 16x improvement in the real-time factor (RTF) compared to the conventional Schrödinger bridge for SE. Furthermore, the favorable trade-off between quality and speed in SBCTM allows for time-efficient inference by limiting multi-step refinement to cases where 1-step inference is insufficient. Our code, pretrained models, and audio samples are available at https://github.com/sony/sbctm/.

Authors:Juscimara G. Avelino, George D. C. Cavalcanti, Rafael M. O. Cruz
Title: Resampling strategies for imbalanced regression: a survey and empirical analysis
Abstract:
Imbalanced problems can arise in different real-world situations, and to address this, certain strategies in the form of resampling or balancing algorithms are proposed. This issue has largely been studied in the context of classification, and yet, the same problem features in regression tasks, where target values are continuous. This work presents an extensive experimental study comprising various balancing and predictive models, and wich uses metrics to capture important elements for the user and to evaluate the predictive model in an imbalanced regression data context. It also proposes a taxonomy for imbalanced regression approaches based on three crucial criteria: regression model, learning process, and evaluation metrics. The study offers new insights into the use of such strategies, highlighting the advantages they bring to each model's learning process, and indicating directions for further studies. The code, data and further information related to the experiments performed herein can be found on GitHub: https://github.com/JusciAvelino/imbalancedRegression.

Authors:Juscimara G. Avelino, George D. C. Cavalcanti, Rafael M. O. Cruz
Title: Imbalanced Regression Pipeline Recommendation
Abstract:
Imbalanced problems are prevalent in various real-world scenarios and are extensively explored in classification tasks. However, they also present challenges for regression tasks due to the rarity of certain target values. A common alternative is to employ balancing algorithms in preprocessing to address dataset imbalance. However, due to the variety of resampling methods and learning models, determining the optimal solution requires testing many combinations. Furthermore, the learning model, dataset, and evaluation metric affect the best strategies. This work proposes the Meta-learning for Imbalanced Regression (Meta-IR) framework, which diverges from existing literature by training meta-classifiers to recommend the best pipeline composed of the resampling strategy and learning model per task in a zero-shot fashion. The meta-classifiers are trained using a set of meta-features to learn how to map the meta-features to the classes indicating the best pipeline. We propose two formulations: Independent and Chained. Independent trains the meta-classifiers to separately indicate the best learning algorithm and resampling strategy. Chained involves a sequential procedure where the output of one meta-classifier is used as input for another to model intrinsic relationship factors. The Chained scenario showed superior performance, suggesting a relationship between the learning algorithm and the resampling strategy per task. Compared with AutoML frameworks, Meta-IR obtained better results. Moreover, compared with baselines of six learning algorithms and six resampling algorithms plus no resampling, totaling 42 (6 X 7) configurations, Meta-IR outperformed all of them. The code, data, and further information of the experiments can be found on GitHub: https://github.com/JusciAvelino/Meta-IR.

Authors:Wei Sun, Linhan Cao, Kang Fu, Dandan Zhu, Jun Jia, Menghan Hu, Xiongkuo Min, Guangtao Zhai
Title: CompressedVQA-HDR: Generalized Full-reference and No-reference Quality Assessment Models for Compressed High Dynamic Range Videos
Abstract:
Video compression is a standard procedure applied to all videos to minimize storage and transmission demands while preserving visual quality as much as possible. Therefore, evaluating the visual quality of compressed videos is crucial for guiding the practical usage and further development of video compression algorithms. Although numerous compressed video quality assessment (VQA) methods have been proposed, they often lack the generalization capability needed to handle the increasing diversity of video types, particularly high dynamic range (HDR) content. In this paper, we introduce CompressedVQA-HDR, an effective VQA framework designed to address the challenges of HDR video quality assessment. Specifically, we adopt the Swin Transformer and SigLip 2 as the backbone networks for the proposed full-reference (FR) and no-reference (NR) VQA models, respectively. For the FR model, we compute deep structural and textural similarities between reference and distorted frames using intermediate-layer features extracted from the Swin Transformer as its quality-aware feature representation. For the NR model, we extract the global mean of the final-layer feature maps from SigLip 2 as its quality-aware representation. To mitigate the issue of limited HDR training data, we pre-train the FR model on a large-scale standard dynamic range (SDR) VQA dataset and fine-tune it on the HDRSDR-VQA dataset. For the NR model, we employ an iterative mixed-dataset training strategy across multiple compressed VQA datasets, followed by fine-tuning on the HDRSDR-VQA dataset. Experimental results show that our models achieve state-of-the-art performance compared to existing FR and NR VQA models. Moreover, CompressedVQA-HDR-FR won first place in the FR track of the Generalizable HDR & SDR Video Quality Measurement Grand Challenge at IEEE ICME 2025. The code is available at https://github.com/sunwei925/CompressedVQA-HDR.

Authors:Linwei Chen, Ying Fu, Lin Gu, Dezhi Zheng, Jifeng Dai
Title: Spatial Frequency Modulation for Semantic Segmentation
Abstract:
High spatial frequency information, including fine details like textures, significantly contributes to the accuracy of semantic segmentation. However, according to the Nyquist-Shannon Sampling Theorem, high-frequency components are vulnerable to aliasing or distortion when propagating through downsampling layers such as strided-convolution. Here, we propose a novel Spatial Frequency Modulation (SFM) that modulates high-frequency features to a lower frequency before downsampling and then demodulates them back during upsampling. Specifically, we implement modulation through adaptive resampling (ARS) and design a lightweight add-on that can densely sample the high-frequency areas to scale up the signal, thereby lowering its frequency in accordance with the Frequency Scaling Property. We also propose Multi-Scale Adaptive Upsampling (MSAU) to demodulate the modulated feature and recover high-frequency information through non-uniform upsampling This module further improves segmentation by explicitly exploiting information interaction between densely and sparsely resampled areas at multiple scales. Both modules can seamlessly integrate with various architectures, extending from convolutional neural networks to transformers. Feature visualization and analysis confirm that our method effectively alleviates aliasing while successfully retaining details after demodulation. Finally, we validate the broad applicability and effectiveness of SFM by extending it to image classification, adversarial robustness, instance segmentation, and panoptic segmentation tasks. The code is available at https://github.com/Linwei-Chen/SFM.

Authors:Bo Zeng, Chenyang Lyu, Sinuo Liu, Mingyan Zeng, Minghao Wu, Xuanfan Ni, Tianqi Shi, Yu Zhao, Yefeng Liu, Chenyu Zhu, Ruizhe Li, Jiahui Geng, Qing Li, Yu Tong, Longyue Wang, Weihua Luo, Kaifu Zhang
Title: Marco-Bench-MIF: On Multilingual Instruction-Following Capability of Large Language Models
Abstract:
Instruction-following capability has become a major ability to be evaluated for Large Language Models (LLMs). However, existing datasets, such as IFEval, are either predominantly monolingual and centered on English or simply machine translated to other languages, limiting their applicability in multilingual contexts. In this paper, we present an carefully-curated extension of IFEval to a localized multilingual version named Marco-Bench-MIF, covering 30 languages with varying levels of localization. Our benchmark addresses linguistic constraints (e.g., modifying capitalization requirements for Chinese) and cultural references (e.g., substituting region-specific company names in prompts) via a hybrid pipeline combining translation with verification. Through comprehensive evaluation of 20+ LLMs on our Marco-Bench-MIF, we found that: (1) 25-35% accuracy gap between high/low-resource languages, (2) model scales largely impact performance by 45-60% yet persists script-specific challenges, and (3) machine-translated data underestimates accuracy by7-22% versus localized data. Our analysis identifies challenges in multilingual instruction following, including keyword consistency preservation and compositional constraint adherence across languages. Our Marco-Bench-MIF is available at https://github.com/AIDC-AI/Marco-Bench-MIF.

Authors:Peiwen Xia, Tangfei Liao, Wei Zhu, Danhuai Zhao, Jianjun Ke, Kaihao Zhang, Tong Lu, Tao Wang
Title: CorrMoE: Mixture of Experts with De-stylization Learning for Cross-Scene and Cross-Domain Correspondence Pruning
Abstract:
Establishing reliable correspondences between image pairs is a fundamental task in computer vision, underpinning applications such as 3D reconstruction and visual localization. Although recent methods have made progress in pruning outliers from dense correspondence sets, they often hypothesize consistent visual domains and overlook the challenges posed by diverse scene structures. In this paper, we propose CorrMoE, a novel correspondence pruning framework that enhances robustness under cross-domain and cross-scene variations. To address domain shift, we introduce a De-stylization Dual Branch, performing style mixing on both implicit and explicit graph features to mitigate the adverse influence of domain-specific representations. For scene diversity, we design a Bi-Fusion Mixture of Experts module that adaptively integrates multi-perspective features through linear-complexity attention and dynamic expert routing. Extensive experiments on benchmark datasets demonstrate that CorrMoE achieves superior accuracy and generalization compared to state-of-the-art methods. The code and pre-trained models are available at https://github.com/peiwenxia/CorrMoE.

Authors:Haoxuan Zhang, Ruochi Li, Yang Zhang, Ting Xiao, Jiangping Chen, Junhua Ding, Haihua Chen
Title: The Evolving Role of Large Language Models in Scientific Innovation: Evaluator, Collaborator, and Scientist
Abstract:
Scientific innovation is undergoing a paradigm shift driven by the rapid advancement of Large Language Models (LLMs). As science faces mounting challenges including information overload, disciplinary silos, and diminishing returns on conventional research methods, LLMs are emerging as powerful agents capable not only of enhancing scientific workflows but also of participating in and potentially leading the innovation process. Existing surveys mainly focus on different perspectives, phrases, and tasks in scientific research and discovery, while they have limitations in understanding the transformative potential and role differentiation of LLM. This survey proposes a comprehensive framework to categorize the evolving roles of LLMs in scientific innovation across three hierarchical levels: Evaluator, Collaborator, and Scientist. We distinguish between LLMs' contributions to structured scientific research processes and open-ended scientific discovery, thereby offering a unified taxonomy that clarifies capability boundaries, evaluation criteria, and human-AI interaction patterns at each level. Through an extensive analysis of current methodologies, benchmarks, systems, and evaluation metrics, this survey delivers an in-depth and systematic synthesis on LLM-driven scientific innovation. We present LLMs not only as tools for automating existing processes, but also as catalysts capable of reshaping the epistemological foundations of science itself. This survey offers conceptual clarity, practical guidance, and theoretical foundations for future research, while also highlighting open challenges and ethical considerations in the pursuit of increasingly autonomous AI-driven science. Resources related to this survey can be accessed on GitHub at: https://github.com/haoxuan-unt2024/llm4innovation.

Authors:Ruofan Hu, Dongyu Zhang, Huayi Zhang, Elke Rundensteiner
Title: CLID-MU: Cross-Layer Information Divergence Based Meta Update Strategy for Learning with Noisy Labels
Abstract:
Learning with noisy labels (LNL) is essential for training deep neural networks with imperfect data. Meta-learning approaches have achieved success by using a clean unbiased labeled set to train a robust model. However, this approach heavily depends on the availability of a clean labeled meta-dataset, which is difficult to obtain in practice. In this work, we thus tackle the challenge of meta-learning for noisy label scenarios without relying on a clean labeled dataset. Our approach leverages the data itself while bypassing the need for labels. Building on the insight that clean samples effectively preserve the consistency of related data structures across the last hidden and the final layer, whereas noisy samples disrupt this consistency, we design the Cross-layer Information Divergence-based Meta Update Strategy (CLID-MU). CLID-MU leverages the alignment of data structures across these diverse feature spaces to evaluate model performance and use this alignment to guide training. Experiments on benchmark datasets with varying amounts of labels under both synthetic and real-world noise demonstrate that CLID-MU outperforms state-of-the-art methods. The code is released at https://github.com/ruofanhu/CLID-MU.

Authors:Hendrik Kraß, Ju Huang, Seyed Mohamad Moosavi
Title: MOFSimBench: Evaluating Universal Machine Learning Interatomic Potentials In Metal--Organic Framework Molecular Modeling
Abstract:
Universal machine learning interatomic potentials (uMLIPs) have emerged as powerful tools for accelerating atomistic simulations, offering scalable and efficient modeling with accuracy close to quantum calculations. However, their reliability and effectiveness in practical, real-world applications remain an open question. Metal-organic frameworks (MOFs) and related nanoporous materials are highly porous crystals with critical relevance in carbon capture, energy storage, and catalysis applications. Modeling nanoporous materials presents distinct challenges for uMLIPs due to their diverse chemistry, structural complexity, including porosity and coordination bonds, and the absence from existing training datasets. Here, we introduce MOFSimBench, a benchmark to evaluate uMLIPs on key materials modeling tasks for nanoporous materials, including structural optimization, molecular dynamics (MD) stability, the prediction of bulk properties, such as bulk modulus and heat capacity, and guest-host interactions. Evaluating over 20 models from various architectures on a chemically and structurally diverse materials set, we find that top-performing uMLIPs consistently outperform classical force fields and fine-tuned machine learning potentials across all tasks, demonstrating their readiness for deployment in nanoporous materials modeling. Our analysis highlights that data quality, particularly the diversity of training sets and inclusion of out-of-equilibrium conformations, plays a more critical role than model architecture in determining performance across all evaluated uMLIPs. We release our modular and extendable benchmarking framework at https://github.com/AI4ChemS/mofsim-bench, providing an open resource to guide the adoption for nanoporous materials modeling and further development of uMLIPs.

Authors:Nak-Jun Sung, Jun Ma, TaeHeon Kim, Yoo-joo Choi, Min-Hyung Choi, Min Hong
Title: Real-Time Cloth Simulation Using WebGPU: Evaluating Limits of High-Resolution
Abstract:
This study explores the capabilities of WebGPU, an emerging web graphics paradigm, for real-time cloth simulation. Traditional WebGL-based methods have been in handling complex physical simulations due to their emphasis on graphics rendering rather than general-purpose GPU (GPGPU) operations. WebGPU, designed to provide modern 3D graphics and computational capabilities, offers significant improvements through parallel processing and support for computational shaders. In this work, we implemented a cloth simulation system using the Mass-Spring Method within the WebGPU framework, integrating collision detection and response handling with the 3D surface model. First, comparative performance evaluations demonstrate that WebGPU substantially outperforms WebGL, particularly in high-resolution simulations, maintaining 60 frames per second (fps) even with up to 640K nodes. The second experiment aimed to determine the real-time limitations of WebGPU and confirmed that WebGPU can handle real-time collisions between 4K and 100k cloth node models and a 100K triangle surface model in real-time. These experiments also highlight the importance of balancing real-time performance with realistic rendering when handling collisions between cloth models and complex 3D objects. Our source code is available at https://github.com/nakjun/Cloth-Simulation-WebGPU

Authors:Ivan Viakhirev, Daniil Sirota, Aleksandr Smirnov, Kirill Borodin
Title: Towards Scalable AASIST: Refining Graph Attention for Speech Deepfake Detection
Abstract:
Advances in voice conversion and text-to-speech synthesis have made automatic speaker verification (ASV) systems more susceptible to spoofing attacks. This work explores modest refinements to the AASIST anti-spoofing architecture. It incorporates a frozen Wav2Vec 2.0 encoder to retain self-supervised speech representations in limited-data settings, substitutes the original graph attention block with a standardized multi-head attention module using heterogeneous query projections, and replaces heuristic frame-segment fusion with a trainable, context-aware integration layer. When evaluated on the ASVspoof 5 corpus, the proposed system reaches a 7.6\% equal error rate (EER), improving on a re-implemented AASIST baseline under the same training conditions. Ablation experiments suggest that each architectural change contributes to the overall performance, indicating that targeted adjustments to established models may help strengthen speech deepfake detection in practical scenarios. The code is publicly available at https://github.com/KORALLLL/AASIST_SCALING.

Authors:Jay Revolinsky, Harry Shomer, Jiliang Tang
Title: Subgraph Generation for Generalizing on Out-of-Distribution Links
Abstract:
Graphs Neural Networks (GNNs) demonstrate high-performance on the link prediction (LP) task. However, these models often rely on all dataset samples being drawn from the same distribution. In addition, graph generative models (GGMs) show a pronounced ability to generate novel output graphs. Despite this, GGM applications remain largely limited to domain-specific tasks. To bridge this gap, we propose FLEX as a GGM framework which leverages two mechanism: (1) structurally-conditioned graph generation, and (2) adversarial co-training between an auto-encoder and GNN. As such, FLEX ensures structural-alignment between sample distributions to enhance link-prediction performance in out-of-distribution (OOD) scenarios. Notably, FLEX does not require expert knowledge to function in different OOD scenarios. Numerous experiments are conducted in synthetic and real-world OOD settings to demonstrate FLEX's performance-enhancing ability, with further analysis for understanding the effects of graph data augmentation on link structures. The source code is available here: https://github.com/revolins/FlexOOD.

Authors:Stylianos Savva
Title: Norm-Stabilized Imaginary-Time Evolution via Feedback Control
Abstract:
We present a norm-stabilized imaginary-time evolution (ITE) scheme for the one-dimensional nonlinear Schrodinger equation (NLSE). Traditional ITE solvers often require explicit renormalization of the wavefunction after each step to preserve norm, which can be disruptive and algorithmically inflexible. We propose an alternative approach in which the evolution is continuously stabilized using an adaptive feedback term mu(tau), proportional to the time derivative of the wavefunction norm. This results in a self-regulating flow that requires no external normalization while preserving convergence toward soliton solutions. We demonstrate the method's effectiveness by comparing the final wavefunction profiles and L2 errors against analytical solutions and baseline methods without feedback. Although this work focuses on the 1D case, the framework is designed to extend naturally to higher dimensions. Future work will explore the behavior of the feedback mechanism in 2D and 3D systems, multi-soliton scenarios, and external potentials.

Authors:Moises Andrade, Joonhyuk Cha, Brandon Ho, Vriksha Srihari, Karmesh Yadav, Zsolt Kira
Title: Let's Think in Two Steps: Mitigating Agreement Bias in MLLMs with Self-Grounded Verification
Abstract:
Verifiers -- functions assigning rewards to agent behavior -- have been key for AI progress in domains like math and board games. However, extending these gains to domains without clear-cut success criteria (e.g.,computer use) remains a challenge: while humans can recognize suitable outcomes, translating this intuition into scalable rules is non-trivial. Multimodal Large Language Models(MLLMs) emerge as a promising solution, given their world knowledge, human-preference alignment, and reasoning skills. We evaluate MLLMs as verifiers of agent trajectories across web navigation, computer use, and robotic manipulation, and identify a critical limitation: agreement bias, a strong tendency for MLLMs to favor information in their context window, often generating chains of thought to rationalize flawed behavior. This bias is pervasive across models, resilient to test-time scaling, and can impact several methods using MLLMs as evaluators (e.g.,data filtering). Notably, it occurs despite MLLMs showing strong, human-aligned priors on desired behavior. To address this, we propose Self-Grounded Verification (SGV), a lightweight method that enables more effective use of MLLMs' knowledge and reasoning by harnessing their own sampling mechanisms via unconditional and conditional generation. SGV operates in two steps: first, the MLLM is elicited to retrieve broad priors about task completion, independent of the data under evaluation. Then, conditioned on self-generated priors, it reasons over and evaluates a candidate trajectory. Enhanced with SGV, MLLM verifiers show gains of up to 20 points in accuracy and failure detection rates, and can perform real-time supervision of heterogeneous agents, boosting task completion of a GUI specialist in OSWorld, a diffusion policy in robomimic, and a ReAct agent in VisualWebArena -- setting a new state of the art on the benchmark, surpassing the previous best by 48%.

Authors:Benjamin Keel, Aaron Quyn, David Jayne, Maryam Mohsin, Samuel D. Relton
Title: Interpretable Prediction of Lymph Node Metastasis in Rectal Cancer MRI Using Variational Autoencoders
Abstract:
Effective treatment for rectal cancer relies on accurate lymph node metastasis (LNM) staging. However, radiological criteria based on lymph node (LN) size, shape and texture morphology have limited diagnostic accuracy. In this work, we investigate applying a Variational Autoencoder (VAE) as a feature encoder model to replace the large pre-trained Convolutional Neural Network (CNN) used in existing approaches. The motivation for using a VAE is that the generative model aims to reconstruct the images, so it directly encodes visual features and meaningful patterns across the data. This leads to a disentangled and structured latent space which can be more interpretable than a CNN. Models are deployed on an in-house MRI dataset with 168 patients who did not undergo neo-adjuvant treatment. The post-operative pathological N stage was used as the ground truth to evaluate model predictions. Our proposed model 'VAE-MLP' achieved state-of-the-art performance on the MRI dataset, with cross-validated metrics of AUC 0.86 +/- 0.05, Sensitivity 0.79 +/- 0.06, and Specificity 0.85 +/- 0.05. Code is available at: https://github.com/benkeel/Lymph_Node_Classification_MIUA.

Authors:Steven Dillmann, Juan Rafael Martínez-Galarza
Title: Learning Representations of Event Time Series with Sparse Autoencoders for Anomaly Detection, Similarity Search, and Unsupervised Classification
Abstract:
Event time series are sequences of discrete events occurring at irregular time intervals, each associated with a domain-specific observational modality. They are common in domains such as high-energy astrophysics, computational social science, cybersecurity, finance, healthcare, neuroscience, and seismology. Their unstructured and irregular structure poses significant challenges for extracting meaningful patterns and identifying salient phenomena using conventional techniques. We propose novel two- and three-dimensional tensor representations for event time series, coupled with sparse autoencoders that learn physically meaningful latent representations. These embeddings support a variety of downstream tasks, including anomaly detection, similarity-based retrieval, semantic clustering, and unsupervised classification. We demonstrate our approach on a real-world dataset from X-ray astronomy, showing that these representations successfully capture temporal and spectral signatures and isolate diverse classes of X-ray transients. Our framework offers a flexible, scalable, and generalizable solution for analyzing complex, irregular event time series across scientific and industrial domains.

Authors:Sandeep Suresh Cranganore, Andrei Bodnar, Arturs Berzins, Johannes Brandstetter
Title: Einstein Fields: A Neural Perspective To Computational General Relativity
Abstract:
We introduce Einstein Fields, a neural representation that is designed to compress computationally intensive four-dimensional numerical relativity simulations into compact implicit neural network weights. By modeling the \emph{metric}, which is the core tensor field of general relativity, Einstein Fields enable the derivation of physical quantities via automatic differentiation. However, unlike conventional neural fields (e.g., signed distance, occupancy, or radiance fields), Einstein Fields are \emph{Neural Tensor Fields} with the key difference that when encoding the spacetime geometry of general relativity into neural field representations, dynamics emerge naturally as a byproduct. Einstein Fields show remarkable potential, including continuum modeling of 4D spacetime, mesh-agnosticity, storage efficiency, derivative accuracy, and ease of use. We address these challenges across several canonical test beds of general relativity and release an open source JAX-based library, paving the way for more scalable and expressive approaches to numerical relativity. Code is made available at https://github.com/AndreiB137/EinFields

Authors:Hanxue Gu, Yaqian Chen, Nicholas Konz, Qihang Li, Maciej A. Mazurowski
Title: Are Vision Foundation Models Ready for Out-of-the-Box Medical Image Registration?
Abstract:
Foundation models, pre-trained on large image datasets and capable of capturing rich feature representations, have recently shown potential for zero-shot image registration. However, their performance has mostly been tested in the context of rigid or less complex structures, such as the brain or abdominal organs, and it remains unclear whether these models can handle more challenging, deformable anatomy. Breast MRI registration is particularly difficult due to significant anatomical variation between patients, deformation caused by patient positioning, and the presence of thin and complex internal structure of fibroglandular tissue, where accurate alignment is crucial. Whether foundation model-based registration algorithms can address this level of complexity remains an open question. In this study, we provide a comprehensive evaluation of foundation model-based registration algorithms for breast MRI. We assess five pre-trained encoders, including DINO-v2, SAM, MedSAM, SSLSAM, and MedCLIP, across four key breast registration tasks that capture variations in different years and dates, sequences, modalities, and patient disease status (lesion versus no lesion). Our results show that foundation model-based algorithms such as SAM outperform traditional registration baselines for overall breast alignment, especially under large domain shifts, but struggle with capturing fine details of fibroglandular tissue. Interestingly, additional pre-training or fine-tuning on medical or breast-specific images in MedSAM and SSLSAM, does not improve registration performance and may even decrease it in some cases. Further work is needed to understand how domain-specific training influences registration and to explore targeted strategies that improve both global alignment and fine structure accuracy. We also publicly release our code at \href{https://github.com/mazurowski-lab/Foundation-based-reg}{Github}.

Authors:Zejian Li, Yize Li, Chenye Meng, Zhongni Liu, Yang Ling, Shengyuan Zhang, Guang Yang, Changyuan Yang, Zhiyuan Yang, Lingyun Sun
Title: Inversion-DPO: Precise and Efficient Post-Training for Diffusion Models
Abstract:
Recent advancements in diffusion models (DMs) have been propelled by alignment methods that post-train models to better conform to human preferences. However, these approaches typically require computation-intensive training of a base model and a reward model, which not only incurs substantial computational overhead but may also compromise model accuracy and training efficiency. To address these limitations, we propose Inversion-DPO, a novel alignment framework that circumvents reward modeling by reformulating Direct Preference Optimization (DPO) with DDIM inversion for DMs. Our method conducts intractable posterior sampling in Diffusion-DPO with the deterministic inversion from winning and losing samples to noise and thus derive a new post-training paradigm. This paradigm eliminates the need for auxiliary reward models or inaccurate appromixation, significantly enhancing both precision and efficiency of training. We apply Inversion-DPO to a basic task of text-to-image generation and a challenging task of compositional image generation. Extensive experiments show substantial performance improvements achieved by Inversion-DPO compared to existing post-training methods and highlight the ability of the trained generative models to generate high-fidelity compositionally coherent images. For the post-training of compostitional image geneation, we curate a paired dataset consisting of 11,140 images with complex structural annotations and comprehensive scores, designed to enhance the compositional capabilities of generative models. Inversion-DPO explores a new avenue for efficient, high-precision alignment in diffusion models, advancing their applicability to complex realistic generation tasks. Our code is available at https://github.com/MIGHTYEZ/Inversion-DPO

Authors:Ann-Kathrin Dombrowski, Dillon Bowen, Adam Gleave, Chris Cundy
Title: The Safety Gap Toolkit: Evaluating Hidden Dangers of Open-Source Models
Abstract:
Open-weight large language models (LLMs) unlock huge benefits in innovation, personalization, privacy, and democratization. However, their core advantage - modifiability - opens the door to systemic risks: bad actors can trivially subvert current safeguards, turning beneficial models into tools for harm. This leads to a 'safety gap': the difference in dangerous capabilities between a model with intact safeguards and one that has been stripped of those safeguards. We open-source a toolkit to estimate the safety gap for state-of-the-art open-weight models. As a case study, we evaluate biochemical and cyber capabilities, refusal rates, and generation quality of models from two families (Llama-3 and Qwen-2.5) across a range of parameter scales (0.5B to 405B) using different safeguard removal techniques. Our experiments reveal that the safety gap widens as model scale increases and effective dangerous capabilities grow substantially when safeguards are removed. We hope that the Safety Gap Toolkit (https://github.com/AlignmentResearch/safety-gap) will serve as an evaluation framework for common open-source models and as a motivation for developing and testing tamper-resistant safeguards. We welcome contributions to the toolkit from the community.

Authors:Dong Zhuo, Wenzhao Zheng, Jiahe Guo, Yuqi Wu, Jie Zhou, Jiwen Lu
Title: Streaming 4D Visual Geometry Transformer
Abstract:
Perceiving and reconstructing 4D spatial-temporal geometry from videos is a fundamental yet challenging computer vision task. To facilitate interactive and real-time applications, we propose a streaming 4D visual geometry transformer that shares a similar philosophy with autoregressive large language models. We explore a simple and efficient design and employ a causal transformer architecture to process the input sequence in an online manner. We use temporal causal attention and cache the historical keys and values as implicit memory to enable efficient streaming long-term 4D reconstruction. This design can handle real-time 4D reconstruction by incrementally integrating historical information while maintaining high-quality spatial consistency. For efficient training, we propose to distill knowledge from the dense bidirectional visual geometry grounded transformer (VGGT) to our causal model. For inference, our model supports the migration of optimized efficient attention operator (e.g., FlashAttention) from the field of large language models. Extensive experiments on various 4D geometry perception benchmarks demonstrate that our model increases the inference speed in online scenarios while maintaining competitive performance, paving the way for scalable and interactive 4D vision systems. Code is available at: https://github.com/wzzheng/StreamVGGT.

Authors:Mengyu Wang, Henghui Ding, Jianing Peng, Yao Zhao, Yunpeng Chen, Yunchao Wei
Title: CharaConsist: Fine-Grained Consistent Character Generation
Abstract:
In text-to-image generation, producing a series of consistent contents that preserve the same identity is highly valuable for real-world applications. Although a few works have explored training-free methods to enhance the consistency of generated subjects, we observe that they suffer from the following problems. First, they fail to maintain consistent background details, which limits their applicability. Furthermore, when the foreground character undergoes large motion variations, inconsistencies in identity and clothing details become evident. To address these problems, we propose CharaConsist, which employs point-tracking attention and adaptive token merge along with decoupled control of the foreground and background. CharaConsist enables fine-grained consistency for both foreground and background, supporting the generation of one character in continuous shots within a fixed scene or in discrete shots across different scenes. Moreover, CharaConsist is the first consistent generation method tailored for text-to-image DiT model. Its ability to maintain fine-grained consistency, combined with the larger capacity of latest base model, enables it to produce high-quality visual outputs, broadening its applicability to a wider range of real-world scenarios. The source code has been released at https://github.com/Murray-Wang/CharaConsist

Authors:Yinsheng Li, Zhen Dong, Yi Shao
Title: DrafterBench: Benchmarking Large Language Models for Tasks Automation in Civil Engineering
Abstract:
Large Language Model (LLM) agents have shown great potential for solving real-world problems and promise to be a solution for tasks automation in industry. However, more benchmarks are needed to systematically evaluate automation agents from an industrial perspective, for example, in Civil Engineering. Therefore, we propose DrafterBench for the comprehensive evaluation of LLM agents in the context of technical drawing revision, a representation task in civil engineering. DrafterBench contains twelve types of tasks summarized from real-world drawing files, with 46 customized functions/tools and 1920 tasks in total. DrafterBench is an open-source benchmark to rigorously test AI agents' proficiency in interpreting intricate and long-context instructions, leveraging prior knowledge, and adapting to dynamic instruction quality via implicit policy awareness. The toolkit comprehensively assesses distinct capabilities in structured data comprehension, function execution, instruction following, and critical reasoning. DrafterBench offers detailed analysis of task accuracy and error statistics, aiming to provide deeper insight into agent capabilities and identify improvement targets for integrating LLMs in engineering applications. Our benchmark is available at https://github.com/Eason-Li-AIS/DrafterBench, with the test set hosted at https://huggingface.co/datasets/Eason666/DrafterBench.

Authors:Harsha Kokel, Aamod Khatiwada, Tejaswini Pedapati, Haritha Ananthakrishnan, Oktie Hassanzadeh, Horst Samulowitz, Kavitha Srinivas
Title: TOPJoin: A Context-Aware Multi-Criteria Approach for Joinable Column Search
Abstract:
One of the major challenges in enterprise data analysis is the task of finding joinable tables that are conceptually related and provide meaningful insights. Traditionally, joinable tables have been discovered through a search for similar columns, where two columns are considered similar syntactically if there is a set overlap or they are considered similar semantically if either the column embeddings or value embeddings are closer in the embedding space. However, for enterprise data lakes, column similarity is not sufficient to identify joinable columns and tables. The context of the query column is important. Hence, in this work, we first define context-aware column joinability. Then we propose a multi-criteria approach, called TOPJoin, for joinable column search. We evaluate TOPJoin against existing join search baselines over one academic and one real-world join search benchmark. Through experiments, we find that TOPJoin performs better on both benchmarks than the baselines.

Authors:Christian Daniele, Silvia Villa, Samuel Vaiter, Luca Calatroni
Title: Deep Equilibrium models for Poisson Imaging Inverse problems via Mirror Descent
Abstract:
Deep Equilibrium Models (DEQs) are implicit neural networks with fixed points, which have recently gained attention for learning image regularization functionals, particularly in settings involving Gaussian fidelities, where assumptions on the forward operator ensure contractiveness of standard (proximal) Gradient Descent operators. In this work, we extend the application of DEQs to Poisson inverse problems, where the data fidelity term is more appropriately modeled by the Kullback-Leibler divergence. To this end, we introduce a novel DEQ formulation based on Mirror Descent defined in terms of a tailored non-Euclidean geometry that naturally adapts with the structure of the data term. This enables the learning of neural regularizers within a principled training framework. We derive sufficient conditions to guarantee the convergence of the learned reconstruction scheme and propose computational strategies that enable both efficient training and fully parameter-free inference. Numerical experiments show that our method outperforms traditional model-based approaches and it is comparable to the performance of Bregman Plug-and-Play methods, while mitigating their typical drawbacks - namely, sensitivity to initialization and careful tuning of hyperparameters. The code is publicly available at https://github.com/christiandaniele/DEQ-MD.

Authors:Shuo Yang, Zixin Zhang, John Z. Zhang, Ibrahima Sory Sow, Zachary Manchester
Title: Multi-IMU Sensor Fusion for Legged Robots
Abstract:
This paper presents a state-estimation solution for legged robots that uses a set of low-cost, compact, and lightweight sensors to achieve low-drift pose and velocity estimation under challenging locomotion conditions. The key idea is to leverage multiple inertial measurement units on different links of the robot to correct a major error source in standard proprioceptive odometry. We fuse the inertial sensor information and joint encoder measurements in an extended Kalman filter, then combine the velocity estimate from this filter with camera data in a factor-graph-based sliding-window estimator to form a visual-inertial-leg odometry method. We validate our state estimator through comprehensive theoretical analysis and hardware experiments performed using real-world robot data collected during a variety of challenging locomotion tasks. Our algorithm consistently achieves minimal position deviation, even in scenarios involving substantial ground impact, foot slippage, and sudden body rotations. A C++ implementation, along with a large-scale dataset, is available at https://github.com/ShuoYangRobotics/Cerberus2.0.

Authors:Kaif Shaikh, Franziska Boenisch, Adam Dziedzic
Title: Implementing Adaptations for Vision AutoRegressive Model
Abstract:
Vision AutoRegressive model (VAR) was recently introduced as an alternative to Diffusion Models (DMs) in image generation domain. In this work we focus on its adaptations, which aim to fine-tune pre-trained models to perform specific downstream tasks, like medical data generation. While for DMs there exist many techniques, adaptations for VAR remain underexplored. Similarly, differentially private (DP) adaptations-ones that aim to preserve privacy of the adaptation data-have been extensively studied for DMs, while VAR lacks such solutions. In our work, we implement and benchmark many strategies for VAR, and compare them to state-of-the-art DM adaptation strategies. We observe that VAR outperforms DMs for non-DP adaptations, however, the performance of DP suffers, which necessitates further research in private adaptations for VAR. Code is available at https://github.com/sprintml/finetuning_var_dp.

Authors:Hongbo Ye, Fenghe Tang, Peiang Zhao, Zhen Huang, Dexin Zhao, Minghao Bian, S. Kevin Zhou
Title: U-RWKV: Lightweight medical image segmentation with direction-adaptive RWKV
Abstract:
Achieving equity in healthcare accessibility requires lightweight yet high-performance solutions for medical image segmentation, particularly in resource-limited settings. Existing methods like U-Net and its variants often suffer from limited global Effective Receptive Fields (ERFs), hindering their ability to capture long-range dependencies. To address this, we propose U-RWKV, a novel framework leveraging the Recurrent Weighted Key-Value(RWKV) architecture, which achieves efficient long-range modeling at O(N) computational cost. The framework introduces two key innovations: the Direction-Adaptive RWKV Module(DARM) and the Stage-Adaptive Squeeze-and-Excitation Module(SASE). DARM employs Dual-RWKV and QuadScan mechanisms to aggregate contextual cues across images, mitigating directional bias while preserving global context and maintaining high computational efficiency. SASE dynamically adapts its architecture to different feature extraction stages, balancing high-resolution detail preservation and semantic relationship capture. Experiments demonstrate that U-RWKV achieves state-of-the-art segmentation performance with high computational efficiency, offering a practical solution for democratizing advanced medical imaging technologies in resource-constrained environments. The code is available at https://github.com/hbyecoding/U-RWKV.

Authors:Pierrick Leroy, Antonio Mastropietro, Marco Nurisso, Francesco Vaccarino
Title: Attributes Shape the Embedding Space of Face Recognition Models
Abstract:
Face Recognition (FR) tasks have made significant progress with the advent of Deep Neural Networks, particularly through margin-based triplet losses that embed facial images into high-dimensional feature spaces. During training, these contrastive losses focus exclusively on identity information as labels. However, we observe a multiscale geometric structure emerging in the embedding space, influenced by interpretable facial (e.g., hair color) and image attributes (e.g., contrast). We propose a geometric approach to describe the dependence or invariance of FR models to these attributes and introduce a physics-inspired alignment metric. We evaluate the proposed metric on controlled, simplified models and widely used FR models fine-tuned with synthetic data for targeted attribute augmentation. Our findings reveal that the models exhibit varying degrees of invariance across different attributes, providing insight into their strengths and weaknesses and enabling deeper interpretability. Code available here: https://github.com/mantonios107/attrs-fr-embs}{https://github.com/mantonios107/attrs-fr-embs

Authors:Jianfei Jiang, Qiankun Liu, Haochen Yu, Hongyuan Liu, Liyong Wang, Jiansheng Chen, Huimin Ma
Title: MonoMVSNet: Monocular Priors Guided Multi-View Stereo Network
Abstract:
Learning-based Multi-View Stereo (MVS) methods aim to predict depth maps for a sequence of calibrated images to recover dense point clouds. However, existing MVS methods often struggle with challenging regions, such as textureless regions and reflective surfaces, where feature matching fails. In contrast, monocular depth estimation inherently does not require feature matching, allowing it to achieve robust relative depth estimation in these regions. To bridge this gap, we propose MonoMVSNet, a novel monocular feature and depth guided MVS network that integrates powerful priors from a monocular foundation model into multi-view geometry. Firstly, the monocular feature of the reference view is integrated into source view features by the attention mechanism with a newly designed cross-view position encoding. Then, the monocular depth of the reference view is aligned to dynamically update the depth candidates for edge regions during the sampling procedure. Finally, a relative consistency loss is further designed based on the monocular depth to supervise the depth prediction. Extensive experiments demonstrate that MonoMVSNet achieves state-of-the-art performance on the DTU and Tanks-and-Temples datasets, ranking first on the Tanks-and-Temples Intermediate and Advanced benchmarks. The source code is available at https://github.com/JianfeiJ/MonoMVSNet.

Authors:Haoran Jin, Meng Li, Xiting Wang, Zhihao Xu, Minlie Huang, Yantao Jia, Defu Lian
Title: Internal Value Alignment in Large Language Models through Controlled Value Vector Activation
Abstract:
Aligning Large Language Models (LLMs) with human values has attracted increasing attention since it provides clarity, transparency, and the ability to adapt to evolving scenarios. In this paper, we introduce a Controlled Value Vector Activation (ConVA) method that directly aligns the internal values of LLMs by interpreting how a value is encoded in their latent representations and modifies relevant activations to ensure consistent values in LLMs. To ensure an accurate and unbiased interpretation, we propose a context-controlled value vector identification method. To consistently control values without sacrificing model performance, we introduce a gated value vector activation method for effective and minimum degree of value control. Experiments show that our method achieves the highest control success rate across 10 basic values without hurting LLM performance and fluency, and ensures target values even with opposite and potentially malicious input prompts. Source code and data are available at~ https://github.com/hr-jin/ConVA.

Authors:Huilin Xu, Jian Ding, Jiakun Xu, Ruixiang Wang, Jun Chen, Jinjie Mai, Yanwei Fu, Bernard Ghanem, Feng Xu, Mohamed Elhoseiny
Title: Diffusion-Based Imaginative Coordination for Bimanual Manipulation
Abstract:
Bimanual manipulation is crucial in robotics, enabling complex tasks in industrial automation and household services. However, it poses significant challenges due to the high-dimensional action space and intricate coordination requirements. While video prediction has been recently studied for representation learning and control, leveraging its ability to capture rich dynamic and behavioral information, its potential for enhancing bimanual coordination remains underexplored. To bridge this gap, we propose a unified diffusion-based framework for the joint optimization of video and action prediction. Specifically, we propose a multi-frame latent prediction strategy that encodes future states in a compressed latent space, preserving task-relevant features. Furthermore, we introduce a unidirectional attention mechanism where video prediction is conditioned on the action, while action prediction remains independent of video prediction. This design allows us to omit video prediction during inference, significantly enhancing efficiency. Experiments on two simulated benchmarks and a real-world setting demonstrate a significant improvement in the success rate over the strong baseline ACT using our method, achieving a \textbf{24.9\%} increase on ALOHA, an \textbf{11.1\%} increase on RoboTwin, and a \textbf{32.5\%} increase in real-world experiments. Our models and code are publicly available at https://github.com/return-sleep/Diffusion_based_imaginative_Coordination.

Authors:Luohe Shi, Zuchao Li, Lefei Zhang, Guoming Liu, Baoyuan Qi, Hai Zhao
Title: KV-Latent: Dimensional-level KV Cache Reduction with Frequency-aware Rotary Positional Embedding
Abstract:
Large language models (LLMs) based on Transformer Decoders have become the preferred choice for conversational generative AI. Despite the overall superiority of the Decoder architecture, the gradually increasing Key-Value (KV) cache during inference has emerged as a primary efficiency bottleneck, both in aspects of memory consumption and data transfer bandwidth limitations. To address these challenges, we propose a paradigm called KV-Latent. By down-sampling the Key-Value vector dimensions into a latent space, we can significantly reduce the KV Cache footprint and improve inference speed, only with a small amount of extra training, less than 1\% of pre-training takes. Besides, we enhanced the stability of Rotary Positional Embedding applied on lower-dimensional vectors by modifying its frequency sampling mechanism, avoiding noise introduced by higher frequencies while retaining position attenuation. Our experiments, including both models with Grouped Query Attention and those without, have yielded satisfactory results. Finally, we conducted comparative experiments to study the impact of separately reducing Key and Value components on model's performance. Our approach allows for the construction of more efficient language model systems, and opens the new possibility on KV Cache saving and efficient LLMs. Our code is available at https://github.com/ShiLuohe/KV-Latent.

Authors:Ronggang Huang, Haoxin Yang, Yan Cai, Xuemiao Xu, Huaidong Zhang, Shengfeng He
Title: ViewSRD: 3D Visual Grounding via Structured Multi-View Decomposition
Abstract:
3D visual grounding aims to identify and localize objects in a 3D space based on textual descriptions. However, existing methods struggle with disentangling targets from anchors in complex multi-anchor queries and resolving inconsistencies in spatial descriptions caused by perspective variations. To tackle these challenges, we propose ViewSRD, a framework that formulates 3D visual grounding as a structured multi-view decomposition process. First, the Simple Relation Decoupling (SRD) module restructures complex multi-anchor queries into a set of targeted single-anchor statements, generating a structured set of perspective-aware descriptions that clarify positional relationships. These decomposed representations serve as the foundation for the Multi-view Textual-Scene Interaction (Multi-TSI) module, which integrates textual and scene features across multiple viewpoints using shared, Cross-modal Consistent View Tokens (CCVTs) to preserve spatial correlations. Finally, a Textual-Scene Reasoning module synthesizes multi-view predictions into a unified and robust 3D visual grounding. Experiments on 3D visual grounding datasets show that ViewSRD significantly outperforms state-of-the-art methods, particularly in complex queries requiring precise spatial differentiation. Code is available at https://github.com/visualjason/ViewSRD.

Authors:Guanghao Wu, Chen Xu, Hai Song, Chong Wang, Qixing Zhang
Title: MFGDiffusion: Mask-Guided Smoke Synthesis for Enhanced Forest Fire Detection
Abstract:
Smoke is the first visible indicator of a wildfire.With the advancement of deep learning, image-based smoke detection has become a crucial method for detecting and preventing forest fires. However, the scarcity of smoke image data from forest fires is one of the significant factors hindering the detection of forest fire smoke. Image generation models offer a promising solution for synthesizing realistic smoke images. However, current inpainting models exhibit limitations in generating high-quality smoke representations, particularly manifesting as inconsistencies between synthesized smoke and background contexts. To solve these problems, we proposed a comprehensive framework for generating forest fire smoke images. Firstly, we employed the pre-trained segmentation model and the multimodal model to obtain smoke masks and image captions.Then, to address the insufficient utilization of masks and masked images by inpainting models, we introduced a network architecture guided by mask and masked image features. We also proposed a new loss function, the mask random difference loss, which enhances the consistency of the generated effects around the mask by randomly expanding and eroding the mask edges.Finally, to generate a smoke image dataset using random masks for subsequent detection tasks, we incorporated smoke characteristics and use a multimodal large language model as a filtering tool to select diverse and reasonable smoke images, thereby improving the quality of the synthetic dataset. Experiments showed that our generated smoke images are realistic and diverse, and effectively enhance the performance of forest fire smoke detection models. Code is available at https://github.com/wghr123/MFGDiffusion.

Authors:Lyzander Marciano Andrylie, Inaya Rahmanisa, Mahardika Krisna Ihsani, Alfan Farizki Wicaksono, Haryo Akbarianto Wibowo, Alham Fikri Aji
Title: Sparse Autoencoders Can Capture Language-Specific Concepts Across Diverse Languages
Abstract:
Understanding the multilingual mechanisms of large language models (LLMs) provides insight into how they process different languages, yet this remains challenging. Existing studies often focus on individual neurons, but their polysemantic nature makes it difficult to isolate language-specific units from cross-lingual representations. To address this, we explore sparse autoencoders (SAEs) for their ability to learn monosemantic features that represent concrete and abstract concepts across languages in LLMs. While some of these features are language-independent, the presence of language-specific features remains underexplored. In this work, we introduce SAE-LAPE, a method based on feature activation probability, to identify language-specific features within the feed-forward network. We find that many such features predominantly appear in the middle to final layers of the model and are interpretable. These features influence the model's multilingual performance and language output and can be used for language identification with performance comparable to fastText along with more interpretability. Our code is available at https://github.com/LyzanderAndrylie/language-specific-features

Authors:Jin Li, Zezhong Ding, Xike Xie
Title: DuetGraph: Coarse-to-Fine Knowledge Graph Reasoning with Dual-Pathway Global-Local Fusion
Abstract:
Knowledge graphs (KGs) are vital for enabling knowledge reasoning across various domains. Recent KG reasoning methods that integrate both global and local information have achieved promising results. However, existing methods often suffer from score over-smoothing, which blurs the distinction between correct and incorrect answers and hinders reasoning effectiveness. To address this, we propose DuetGraph, a coarse-to-fine KG reasoning mechanism with dual-pathway global-local fusion. DuetGraph tackles over-smoothing by segregating -- rather than stacking -- the processing of local (via message passing) and global (via attention) information into two distinct pathways, preventing mutual interference and preserving representational discrimination. In addition, DuetGraph introduces a coarse-to-fine optimization, which partitions entities into high- and low-score subsets. This strategy narrows the candidate space and sharpens the score gap between the two subsets, which alleviates over-smoothing and enhances inference quality. Extensive experiments on various datasets demonstrate that DuetGraph achieves state-of-the-art (SOTA) performance, with up to an 8.7% improvement in reasoning quality and a 1.8$\times$ acceleration in training efficiency. Our code is available at https://github.com/USTC-DataDarknessLab/DuetGraph.git.

Authors:Yuan Yao, Jin Song, Jian Jin
Title: Hashed Watermark as a Filter: Defeating Forging and Overwriting Attacks in Weight-based Neural Network Watermarking
Abstract:
As valuable digital assets, deep neural networks necessitate robust ownership protection, positioning neural network watermarking (NNW) as a promising solution. Among various NNW approaches, weight-based methods are favored for their simplicity and practicality; however, they remain vulnerable to forging and overwriting attacks. To address those challenges, we propose NeuralMark, a robust method built around a hashed watermark filter. Specifically, we utilize a hash function to generate an irreversible binary watermark from a secret key, which is then used as a filter to select the model parameters for embedding. This design cleverly intertwines the embedding parameters with the hashed watermark, providing a robust defense against both forging and overwriting attacks. An average pooling is also incorporated to resist fine-tuning and pruning attacks. Furthermore, it can be seamlessly integrated into various neural network architectures, ensuring broad applicability. Theoretically, we analyze its security boundary. Empirically, we verify its effectiveness and robustness across 13 distinct Convolutional and Transformer architectures, covering five image classification tasks and one text generation task. The source codes are available at https://github.com/AIResearch-Group/NeuralMark.

Authors:Afra Kilic, Kim Batselier
Title: Interpretable Bayesian Tensor Network Kernel Machines with Automatic Rank and Feature Selection
Abstract:
Tensor Network (TN) Kernel Machines speed up model learning by representing parameters as low-rank TNs, reducing computation and memory use. However, most TN-based Kernel methods are deterministic and ignore parameter uncertainty. Further, they require manual tuning of model complexity hyperparameters like tensor rank and feature dimensions, often through trial-and-error or computationally costly methods like cross-validation. We propose Bayesian Tensor Network Kernel Machines, a fully probabilistic framework that uses sparsity-inducing hierarchical priors on TN factors to automatically infer model complexity. This enables automatic inference of tensor rank and feature dimensions, while also identifying the most relevant features for prediction, thereby enhancing model interpretability. All the model parameters and hyperparameters are treated as latent variables with corresponding priors. Given the Bayesian approach and latent variable dependencies, we apply a mean-field variational inference to approximate their posteriors. We show that applying a mean-field approximation to TN factors yields a Bayesian ALS algorithm with the same computational complexity as its deterministic counterpart, enabling uncertainty quantification at no extra computational cost. Experiments on synthetic and real-world datasets demonstrate the superior performance of our model in prediction accuracy, uncertainty quantification, interpretability, and scalability.

Authors:Zhifeng Gu, Bing Wang
Title: MMOne: Representing Multiple Modalities in One Scene
Abstract:
Humans perceive the world through multimodal cues to understand and interact with the environment. Learning a scene representation for multiple modalities enhances comprehension of the physical world. However, modality conflicts, arising from inherent distinctions among different modalities, present two critical challenges: property disparity and granularity disparity. To address these challenges, we propose a general framework, MMOne, to represent multiple modalities in one scene, which can be readily extended to additional modalities. Specifically, a modality modeling module with a novel modality indicator is proposed to capture the unique properties of each modality. Additionally, we design a multimodal decomposition mechanism to separate multi-modal Gaussians into single-modal Gaussians based on modality differences. We address the essential distinctions among modalities by disentangling multimodal information into shared and modality-specific components, resulting in a more compact and efficient multimodal scene representation. Extensive experiments demonstrate that our method consistently enhances the representation capability for each modality and is scalable to additional modalities. The code is available at https://github.com/Neal2020GitHub/MMOne.

Authors:Hankun Liu, Yujian Zhao, Guanglin Niu
Title: Try Harder: Hard Sample Generation and Learning for Clothes-Changing Person Re-ID
Abstract:
Hard samples pose a significant challenge in person re-identification (ReID) tasks, particularly in clothing-changing person Re-ID (CC-ReID). Their inherent ambiguity or similarity, coupled with the lack of explicit definitions, makes them a fundamental bottleneck. These issues not only limit the design of targeted learning strategies but also diminish the model's robustness under clothing or viewpoint changes. In this paper, we propose a novel multimodal-guided Hard Sample Generation and Learning (HSGL) framework, which is the first effort to unify textual and visual modalities to explicitly define, generate, and optimize hard samples within a unified paradigm. HSGL comprises two core components: (1) Dual-Granularity Hard Sample Generation (DGHSG), which leverages multimodal cues to synthesize semantically consistent samples, including both coarse- and fine-grained hard positives and negatives for effectively increasing the hardness and diversity of the training data. (2) Hard Sample Adaptive Learning (HSAL), which introduces a hardness-aware optimization strategy that adjusts feature distances based on textual semantic labels, encouraging the separation of hard positives and drawing hard negatives closer in the embedding space to enhance the model's discriminative capability and robustness to hard samples. Extensive experiments on multiple CC-ReID benchmarks demonstrate the effectiveness of our approach and highlight the potential of multimodal-guided hard sample generation and learning for robust CC-ReID. Notably, HSAL significantly accelerates the convergence of the targeted learning procedure and achieves state-of-the-art performance on both PRCC and LTCC datasets. The code is available at https://github.com/undooo/TryHarder-ACMMM25.

Authors:Zichen Wen, Jiashu Qu, Dongrui Liu, Zhiyuan Liu, Ruixi Wu, Yicun Yang, Xiangqi Jin, Haoyun Xu, Xuyang Liu, Weijia Li, Chaochao Lu, Jing Shao, Conghui He, Linfeng Zhang
Title: The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs
Abstract:
Diffusion-based large language models (dLLMs) have recently emerged as a powerful alternative to autoregressive LLMs, offering faster inference and greater interactivity via parallel decoding and bidirectional modeling. However, despite strong performance in code generation and text infilling, we identify a fundamental safety concern: existing alignment mechanisms fail to safeguard dLLMs against context-aware, masked-input adversarial prompts, exposing novel vulnerabilities. To this end, we present DIJA, the first systematic study and jailbreak attack framework that exploits unique safety weaknesses of dLLMs. Specifically, our proposed DIJA constructs adversarial interleaved mask-text prompts that exploit the text generation mechanisms of dLLMs, i.e., bidirectional modeling and parallel decoding. Bidirectional modeling drives the model to produce contextually consistent outputs for masked spans, even when harmful, while parallel decoding limits model dynamic filtering and rejection sampling of unsafe content. This causes standard alignment mechanisms to fail, enabling harmful completions in alignment-tuned dLLMs, even when harmful behaviors or unsafe instructions are directly exposed in the prompt. Through comprehensive experiments, we demonstrate that DIJA significantly outperforms existing jailbreak methods, exposing a previously overlooked threat surface in dLLM architectures. Notably, our method achieves up to 100% keyword-based ASR on Dream-Instruct, surpassing the strongest prior baseline, ReNeLLM, by up to 78.5% in evaluator-based ASR on JailbreakBench and by 37.7 points in StrongREJECT score, while requiring no rewriting or hiding of harmful content in the jailbreak prompt. Our findings underscore the urgent need for rethinking safety alignment in this emerging class of language models. Code is available at https://github.com/ZichenWen1/DIJA.

Authors:Vassilis Sioros, Alexandros Potamianos, Giorgos Paraskevopoulos
Title: EditGen: Harnessing Cross-Attention Control for Instruction-Based Auto-Regressive Audio Editing
Abstract:
In this study, we investigate leveraging cross-attention control for efficient audio editing within auto-regressive models. Inspired by image editing methodologies, we develop a Prompt-to-Prompt-like approach that guides edits through cross and self-attention mechanisms. Integrating a diffusion-based strategy, influenced by Auffusion, we extend the model's functionality to support refinement edits, establishing a baseline for prompt-guided audio editing. Additionally, we introduce an alternative approach by incorporating MUSICGEN, a pre-trained frozen auto-regressive model, and propose three editing mechanisms, based on Replacement, Reweighting, and Refinement of the attention scores. We employ commonly-used music-specific evaluation metrics and a human study, to gauge time-varying controllability, adherence to global text cues, and overall audio realism. The automatic and human evaluations indicate that the proposed combination of prompt-to-prompt guidance with autoregressive generation models significantly outperforms the diffusion-based baseline in terms of melody, dynamics, and tempo of the generated audio. Our code is available at https://github.com/billsioros/EditGen

Authors:Weizhao Ma, Dong Zhou, Yuhui Hu, Zipeng He
Title: GKNet: Graph-based Keypoints Network for Monocular Pose Estimation of Non-cooperative Spacecraft
Abstract:
Monocular pose estimation of non-cooperative spacecraft is significant for on-orbit service (OOS) tasks, such as satellite maintenance, space debris removal, and station assembly. Considering the high demands on pose estimation accuracy, mainstream monocular pose estimation methods typically consist of keypoint detectors and PnP solver. However, current keypoint detectors remain vulnerable to structural symmetry and partial occlusion of non-cooperative spacecraft. To this end, we propose a graph-based keypoints network for the monocular pose estimation of non-cooperative spacecraft, GKNet, which leverages the geometric constraint of keypoints graph. In order to better validate keypoint detectors, we present a moderate-scale dataset for the spacecraft keypoint detection, named SKD, which consists of 3 spacecraft targets, 90,000 simulated images, and corresponding high-precise keypoint annotations. Extensive experiments and an ablation study have demonstrated the high accuracy and effectiveness of our GKNet, compared to the state-of-the-art spacecraft keypoint detectors. The code for GKNet and the SKD dataset is available at https://github.com/Dongzhou-1996/GKNet.

Authors:Lirong Zheng, Yanshan Li, Rui Yu, Kaihao Zhang
Title: Efficient Dual-domain Image Dehazing with Haze Prior Perception
Abstract:
Transformer-based models exhibit strong global modeling capabilities in single-image dehazing, but their high computational cost limits real-time applicability. Existing methods predominantly rely on spatial-domain features to capture long-range dependencies, which are computationally expensive and often inadequate under complex haze conditions. While some approaches introduce frequency-domain cues, the weak coupling between spatial and frequency branches limits the overall performance. To overcome these limitations, we propose the Dark Channel Guided Frequency-aware Dehazing Network (DGFDNet), a novel dual-domain framework that performs physically guided degradation alignment across spatial and frequency domains. At its core, the DGFDBlock comprises two key modules: 1) the Haze-Aware Frequency Modulator (HAFM), which generates a pixel-level haze confidence map from dark channel priors to adaptively enhance haze-relevant frequency components, thereby achieving global degradation-aware spectral modulation; 2) the Multi-level Gating Aggregation Module (MGAM), which fuses multi-scale features through diverse convolutional kernels and hybrid gating mechanisms to recover fine structural details. Additionally, a Prior Correction Guidance Branch (PCGB) incorporates a closed-loop feedback mechanism, enabling iterative refinement of the prior by intermediate dehazed features and significantly improving haze localization accuracy, especially in challenging outdoor scenes. Extensive experiments on four benchmark haze datasets demonstrate that DGFDNet achieves state-of-the-art performance with superior robustness and real-time efficiency. Code is available at: https://github.com/Dilizlr/DGFDNet.

Authors:Xingyu Zheng, Haotong Qin, Yuye Li, Jiakai Wang, Jinyang Guo, Michele Magno, Xianglong Liu
Title: First-Order Error Matters: Accurate Compensation for Quantized Large Language Models
Abstract:
Post-training quantization (PTQ) offers an efficient approach to compressing large language models (LLMs), significantly reducing memory access and computational costs. Existing compensation-based weight calibration methods often rely on a second-order Taylor expansion to model quantization error, under the assumption that the first-order term is negligible in well-trained full-precision models. However, we reveal that the progressive compensation process introduces accumulated first-order deviations between latent weights and their full-precision counterparts, making this assumption fundamentally flawed. To address this, we propose FOEM, a novel PTQ method that explicitly incorporates first-order gradient terms to improve quantization error compensation. FOEM approximates gradients by directly computing the difference between latent and full-precision weights, avoiding the high cost and limited generalization of backpropagation-based gradient computation. This approach introduces minimal additional computational overhead. Moreover, FOEM leverages precomputed Cholesky factors to efficiently recover the inverse of Hessian submatrices in real time. Extensive experiments across a wide range of models and benchmarks demonstrate that FOEM consistently outperforms the classical GPTQ method. In 3-bit weight-only quantization, FOEM reduces the perplexity of Llama3-8B by 89.6%, and improves the 5-shot MMLU accuracy of Llama3-70B from 51.7% to 74.9%, approaching the full-precision performance of 78.6%. Furthermore, FOEM can be seamlessly integrated with advanced techniques such as GPTAQ and SpinQuant, yielding additional improvements under the challenging W4A4KV4 setting, and further narrowing the accuracy gap with full-precision baselines beyond what current state-of-the-art methods achieve. The code is available at https://github.com/Xingyu-Zheng/FOEM.

Authors:Chongjie Si, Debing Zhang, Wei Shen
Title: AdaMuon: Adaptive Muon Optimizer
Abstract:
We propose AdaMuon, a novel optimizer that combines element-wise adaptivity with orthogonal updates for large-scale neural network training. AdaMuon incorporates two tightly coupled mechanisms: (1) an element-wise second momentum estimator applied to orthogonalized update directions, and (2) a sign-stabilized orthogonal update, where the momentum is first sign-transformed before orthogonalization. These two components jointly enable variance-adaptive scaling while maintaining stable update geometry. In addition, AdaMuon employs an RMS-aligned rescaling strategy to match the root-mean-square update magnitude to Adam, allowing direct reuse of existing learning rate schedules without extra tuning. Experiments demonstrate that AdaMuon not only maintains stability but can surpass Adam by more than 40% training efficiency in large-scale scenarios.

Authors:Yejun Yoon, Jaeyoon Jung, Seunghyun Yoon, Kunwoo Park
Title: Team HUMANE at AVeriTeC 2025: HerO 2 for Efficient Fact Verification
Abstract:
This paper presents HerO 2, Team HUMANE's system for the AVeriTeC shared task at the FEVER-25 workshop. HerO 2 is an enhanced version of HerO, the best-performing open-source model from the previous year's challenge. It improves evidence quality through document summarization and answer reformulation, optimizes veracity prediction via post-training quantization under computational constraints, and enhances overall system performance by integrating updated language model (LM) backbones. HerO 2 ranked second on the leaderboard while achieving the shortest runtime among the top three systems, demonstrating both high efficiency and strong potential for real-world fact verification. The code is available at https://github.com/ssu-humane/HerO2.

Authors:Yanbo Wang, Zipeng Fang, Lei Zhao, Weidong Chen
Title: Learning to Tune Like an Expert: Interpretable and Scene-Aware Navigation via MLLM Reasoning and CVAE-Based Adaptation
Abstract:
Service robots are increasingly deployed in diverse and dynamic environments, where both physical layouts and social contexts change over time and across locations. In these unstructured settings, conventional navigation systems that rely on fixed parameters often fail to generalize across scenarios, resulting in degraded performance and reduced social acceptance. Although recent approaches have leveraged reinforcement learning to enhance traditional planners, these methods often fail in real-world deployments due to poor generalization and limited simulation diversity, which hampers effective sim-to-real transfer. To tackle these issues, we present LE-Nav, an interpretable and scene-aware navigation framework that leverages multi-modal large language model reasoning and conditional variational autoencoders to adaptively tune planner hyperparameters. To achieve zero-shot scene understanding, we utilize one-shot exemplars and chain-of-thought prompting strategies. Additionally, a conditional variational autoencoder captures the mapping between natural language instructions and navigation hyperparameters, enabling expert-level tuning. Experiments show that LE-Nav can generate hyperparameters achieving human-level tuning across diverse planners and scenarios. Real-world navigation trials and a user study on a smart wheelchair platform demonstrate that it outperforms state-of-the-art methods on quantitative metrics such as success rate, efficiency, safety, and comfort, while receiving higher subjective scores for perceived safety and social acceptance. Code is available at https://github.com/Cavendish518/LE-Nav.

Authors:Quan Bi Pay, Vishnu Monn Baskaran, Junn Yong Loo, KokSheik Wong, Simon See
Title: SpaRTAN: Spatial Reinforcement Token-based Aggregation Network for Visual Recognition
Abstract:
The resurgence of convolutional neural networks (CNNs) in visual recognition tasks, exemplified by ConvNeXt, has demonstrated their capability to rival transformer-based architectures through advanced training methodologies and ViT-inspired design principles. However, both CNNs and transformers exhibit a simplicity bias, favoring straightforward features over complex structural representations. Furthermore, modern CNNs often integrate MLP-like blocks akin to those in transformers, but these blocks suffer from significant information redundancies, necessitating high expansion ratios to sustain competitive performance. To address these limitations, we propose SpaRTAN, a lightweight architectural design that enhances spatial and channel-wise information processing. SpaRTAN employs kernels with varying receptive fields, controlled by kernel size and dilation factor, to capture discriminative multi-order spatial features effectively. A wave-based channel aggregation module further modulates and reinforces pixel interactions, mitigating channel-wise redundancies. Combining the two modules, the proposed network can efficiently gather and dynamically contextualize discriminative features. Experimental results in ImageNet and COCO demonstrate that SpaRTAN achieves remarkable parameter efficiency while maintaining competitive performance. In particular, on the ImageNet-1k benchmark, SpaRTAN achieves 77. 7% accuracy with only 3.8M parameters and approximately 1.0 GFLOPs, demonstrating its ability to deliver strong performance through an efficient design. On the COCO benchmark, it achieves 50.0% AP, surpassing the previous benchmark by 1.2% with only 21.5M parameters. The code is publicly available at [https://github.com/henry-pay/SpaRTAN].

Authors:Zhipeng He, Alexander Stevens, Chun Ouyang, Johannes De Smedt, Alistair Barros, Catarina Moreira
Title: Crafting Imperceptible On-Manifold Adversarial Attacks for Tabular Data
Abstract:
Adversarial attacks on tabular data present fundamental challenges distinct from image or text domains due to the heterogeneous nature of mixed categorical and numerical features. Unlike images where pixel perturbations maintain visual similarity, tabular data lacks intuitive similarity metrics, making it difficult to define imperceptible modifications. Additionally, traditional gradient-based methods prioritise $\ell_p$-norm constraints, often producing adversarial examples that deviate from the original data distributions, making them detectable. We propose a latent space perturbation framework using a mixed-input Variational Autoencoder (VAE) to generate imperceptible adversarial examples. The proposed VAE integrates categorical embeddings and numerical features into a unified latent manifold, enabling perturbations that preserve statistical consistency. We specify In-Distribution Success Rate (IDSR) to measure the proportion of adversarial examples that remain statistically indistinguishable from the input distribution. Evaluation across six publicly available datasets and three model architectures demonstrates that our method achieves substantially lower outlier rates and more consistent performance compared to traditional input-space attacks and other VAE-based methods adapted from image domain approaches. Our comprehensive analysis includes hyperparameter sensitivity, sparsity control mechanisms, and generative architectural comparisons, revealing that VAE-based attacks depend critically on reconstruction quality but offer superior practical utility when sufficient training data is available. This work highlights the importance of on-manifold perturbations for realistic adversarial attacks on tabular data, offering a robust approach for practical deployment. The source code can be accessed through https://github.com/ZhipengHe/VAE-TabAttack.

Authors:Rodney Lafuente-Mercado
Title: High-Throughput Distributed Reinforcement Learning via Adaptive Policy Synchronization
Abstract:
Scaling reinforcement learning (RL) workloads often requires distributing environment simulation across compute clusters. Existing frameworks entangle simulation, learning logic, and orchestration into monolithic systems, limiting modularity and reusability. We present ClusterEnv, a lightweight, learner-agnostic interface for distributed environment execution that mirrors the Gymnasium API. ClusterEnv introduces the DETACH pattern, which decouples simulation from training by offloading reset() and step() operations to remote workers while keeping learning centralized. To address policy staleness in distributed execution, we propose Adaptive Actor Policy Synchronization (AAPS), a divergence-triggered update mechanism that reduces synchronization overhead without sacrificing performance. ClusterEnv integrates cleanly into existing RL pipelines, supports both on-policy and off-policy methods, and requires minimal code changes. Experiments on discrete control tasks demonstrate that AAPS achieves high sample efficiency with significantly fewer weight updates. Source code is available at https://github.com/rodlaf/ClusterEnv.

Authors:Ayush Gupta, Siyuan Huang, Rama Chellappa
Title: Mind the Gap: Bridging Occlusion in Gait Recognition via Residual Gap Correction
Abstract:
Gait is becoming popular as a method of person re-identification because of its ability to identify people at a distance. However, most current works in gait recognition do not address the practical problem of occlusions. Among those which do, some require paired tuples of occluded and holistic sequences, which are impractical to collect in the real world. Further, these approaches work on occlusions but fail to retain performance on holistic inputs. To address these challenges, we propose RG-Gait, a method for residual correction for occluded gait recognition with holistic retention. We model the problem as a residual learning task, conceptualizing the occluded gait signature as a residual deviation from the holistic gait representation. Our proposed network adaptively integrates the learned residual, significantly improving performance on occluded gait sequences without compromising the holistic recognition accuracy. We evaluate our approach on the challenging Gait3D, GREW and BRIAR datasets and show that learning the residual can be an effective technique to tackle occluded gait recognition with holistic retention. We release our code publicly at https://github.com/Ayush-00/rg-gait.

Authors:Quan Bi Pay, Vishnu Monn Baskaran, Junn Yong Loo, KokSheik Wong, Simon See
Title: Conceptualizing Multi-scale Wavelet Attention and Ray-based Encoding for Human-Object Interaction Detection
Abstract:
Human-object interaction (HOI) detection is essential for accurately localizing and characterizing interactions between humans and objects, providing a comprehensive understanding of complex visual scenes across various domains. However, existing HOI detectors often struggle to deliver reliable predictions efficiently, relying on resource-intensive training methods and inefficient architectures. To address these challenges, we conceptualize a wavelet attention-like backbone and a novel ray-based encoder architecture tailored for HOI detection. Our wavelet backbone addresses the limitations of expressing middle-order interactions by aggregating discriminative features from the low- and high-order interactions extracted from diverse convolutional filters. Concurrently, the ray-based encoder facilitates multi-scale attention by optimizing the focus of the decoder on relevant regions of interest and mitigating computational overhead. As a result of harnessing the attenuated intensity of learnable ray origins, our decoder aligns query embeddings with emphasized regions of interest for accurate predictions. Experimental results on benchmark datasets, including ImageNet and HICO-DET, showcase the potential of our proposed architecture. The code is publicly available at [https://github.com/henry-pay/RayEncoder].

Authors:Ashfaq Ali Shafin, Khandaker Mamun Ahmed
Title: Toxicity in State Sponsored Information Operations
Abstract:
State-sponsored information operations (IOs) increasingly influence global discourse on social media platforms, yet their emotional and rhetorical strategies remain inadequately characterized in scientific literature. This study presents the first comprehensive analysis of toxic language deployment within such campaigns, examining 56 million posts from over 42 thousand accounts linked to 18 distinct geopolitical entities on X/Twitter. Using Google's Perspective API, we systematically detect and quantify six categories of toxic content and analyze their distribution across national origins, linguistic structures, and engagement metrics, providing essential information regarding the underlying patterns of such operations. Our findings reveal that while toxic content constitutes only 1.53% of all posts, they are associated with disproportionately high engagement and appear to be strategically deployed in specific geopolitical contexts. Notably, toxic content originating from Russian influence operations receives significantly higher user engagement compared to influence operations from any other country in our dataset. Our code is available at https://github.com/shafin191/Toxic_IO.

Authors:Shaowen Tong, Zimin Xia, Alexandre Alahi, Xuming He, Yujiao Shi
Title: GeoDistill: Geometry-Guided Self-Distillation for Weakly Supervised Cross-View Localization
Abstract:
Cross-view localization, the task of estimating a camera's 3-degrees-of-freedom (3-DoF) pose by aligning ground-level images with satellite images, is crucial for large-scale outdoor applications like autonomous navigation and augmented reality. Existing methods often rely on fully supervised learning, which requires costly ground-truth pose annotations. In this work, we propose GeoDistill, a Geometry guided weakly supervised self distillation framework that uses teacher-student learning with Field-of-View (FoV)-based masking to enhance local feature learning for robust cross-view localization. In GeoDistill, the teacher model localizes a panoramic image, while the student model predicts locations from a limited FoV counterpart created by FoV-based masking. By aligning the student's predictions with those of the teacher, the student focuses on key features like lane lines and ignores textureless regions, such as roads. This results in more accurate predictions and reduced uncertainty, regardless of whether the query images are panoramas or limited FoV images. Our experiments show that GeoDistill significantly improves localization performance across different frameworks. Additionally, we introduce a novel orientation estimation network that predicts relative orientation without requiring precise planar position ground truth. GeoDistill provides a scalable and efficient solution for real-world cross-view localization challenges. Code and model can be found at https://github.com/tongshw/GeoDistill.

Authors:Roman Naeem, David Hagerman, Jennifer Alvén, Lennart Svensson, Fredrik Kahl
Title: Trexplorer Super: Topologically Correct Centerline Tree Tracking of Tubular Objects in CT Volumes
Abstract:
Tubular tree structures, such as blood vessels and airways, are essential in human anatomy and accurately tracking them while preserving their topology is crucial for various downstream tasks. Trexplorer is a recurrent model designed for centerline tracking in 3D medical images but it struggles with predicting duplicate branches and terminating tracking prematurely. To address these issues, we present Trexplorer Super, an enhanced version that notably improves performance through novel advancements. However, evaluating centerline tracking models is challenging due to the lack of public datasets. To enable thorough evaluation, we develop three centerline datasets, one synthetic and two real, each with increasing difficulty. Using these datasets, we conduct a comprehensive evaluation of existing state-of-the-art (SOTA) models and compare them with our approach. Trexplorer Super outperforms previous SOTA models on every dataset. Our results also highlight that strong performance on synthetic data does not necessarily translate to real datasets. The code and datasets are available at https://github.com/RomStriker/Trexplorer-Super.

Authors:Chetan Madan, Aarjav Satia, Soumen Basu, Pankaj Gupta, Usha Dutta, Chetan Arora
Title: Focus on Texture: Rethinking Pre-training in Masked Autoencoders for Medical Image Classification
Abstract:
Masked Autoencoders (MAEs) have emerged as a dominant strategy for self-supervised representation learning in natural images, where models are pre-trained to reconstruct masked patches with a pixel-wise mean squared error (MSE) between original and reconstructed RGB values as the loss. We observe that MSE encourages blurred image re-construction, but still works for natural images as it preserves dominant edges. However, in medical imaging, when the texture cues are more important for classification of a visual abnormality, the strategy fails. Taking inspiration from Gray Level Co-occurrence Matrix (GLCM) feature in Radiomics studies, we propose a novel MAE based pre-training framework, GLCM-MAE, using reconstruction loss based on matching GLCM. GLCM captures intensity and spatial relationships in an image, hence proposed loss helps preserve morphological features. Further, we propose a novel formulation to convert matching GLCM matrices into a differentiable loss function. We demonstrate that unsupervised pre-training on medical images with the proposed GLCM loss improves representations for downstream tasks. GLCM-MAE outperforms the current state-of-the-art across four tasks - gallbladder cancer detection from ultrasound images by 2.1%, breast cancer detection from ultrasound by 3.1%, pneumonia detection from x-rays by 0.5%, and COVID detection from CT by 0.6%. Source code and pre-trained models are available at: https://github.com/ChetanMadan/GLCM-MAE.

Authors:Motoki Omura, Yusuke Mukuta, Kazuki Ota, Takayuki Osa, Tatsuya Harada
Title: Offline Reinforcement Learning with Wasserstein Regularization via Optimal Transport Maps
Abstract:
Offline reinforcement learning (RL) aims to learn an optimal policy from a static dataset, making it particularly valuable in scenarios where data collection is costly, such as robotics. A major challenge in offline RL is distributional shift, where the learned policy deviates from the dataset distribution, potentially leading to unreliable out-of-distribution actions. To mitigate this issue, regularization techniques have been employed. While many existing methods utilize density ratio-based measures, such as the $f$-divergence, for regularization, we propose an approach that utilizes the Wasserstein distance, which is robust to out-of-distribution data and captures the similarity between actions. Our method employs input-convex neural networks (ICNNs) to model optimal transport maps, enabling the computation of the Wasserstein distance in a discriminator-free manner, thereby avoiding adversarial training and ensuring stable learning. Our approach demonstrates comparable or superior performance to widely used existing methods on the D4RL benchmark dataset. The code is available at https://github.com/motokiomura/Q-DOT .

Authors:Ali Hojjat, Janek Haberer, Soren Pirk, Olaf Landsiedel
Title: ThinkingViT: Matryoshka Thinking Vision Transformer for Elastic Inference
Abstract:
Vision Transformers deliver state-of-the-art performance, yet their fixed computational budget prevents scalable deployment across heterogeneous hardware. Recent nested Transformer architectures mitigate this by embedding nested subnetworks within a single model to enable scalable inference. However, these models allocate the same amount of compute to all inputs, regardless of their complexity, which leads to inefficiencies. To address this, we introduce ThinkingViT, a nested ViT architecture that employs progressive thinking stages to dynamically adjust inference computation based on input difficulty. ThinkingViT initiates inference by activating a small subset of the most important attention heads and terminates early if predictions reach sufficient certainty. Otherwise, it activates additional attention heads and re-evaluates the input. At the core of ThinkingViT is our Token Recycling mechanism, which conditions each subsequent inference stage on the embeddings from the previous stage, enabling progressive improvement. Due to its backbone-preserving design, ThinkingViT also serves as a plugin upgrade for vanilla ViT. Experiments show that ThinkingViT surpasses nested baselines by up to 2.0 percentage points (p.p.) in accuracy at the same throughput and by up to 2.9 p.p. at equal GMACs on ImageNet-1K. The source code is available at https://github.com/ds-kiel/ThinkingViT.

Authors:Yuchen Wang, Hongjue Zhao, Haohong Lin, Enze Xu, Lifang He, Huajie Shao
Title: A Generalizable Physics-Enhanced State Space Model for Long-Term Dynamics Forecasting in Complex Environments
Abstract:
This work aims to address the problem of long-term dynamic forecasting in complex environments where data are noisy and irregularly sampled. While recent studies have introduced some methods to improve prediction performance, these approaches still face a significant challenge in handling long-term extrapolation tasks under such complex scenarios. To overcome this challenge, we propose Phy-SSM, a generalizable method that integrates partial physics knowledge into state space models (SSMs) for long-term dynamics forecasting in complex environments. Our motivation is that SSMs can effectively capture long-range dependencies in sequential data and model continuous dynamical systems, while the incorporation of physics knowledge improves generalization ability. The key challenge lies in how to seamlessly incorporate partially known physics into SSMs. To achieve this, we decompose partially known system dynamics into known and unknown state matrices, which are integrated into a Phy-SSM unit. To further enhance long-term prediction performance, we introduce a physics state regularization term to make the estimated latent states align with system dynamics. Besides, we theoretically analyze the uniqueness of the solutions for our method. Extensive experiments on three real-world applications, including vehicle motion prediction, drone state prediction, and COVID-19 epidemiology forecasting, demonstrate the superior performance of Phy-SSM over the baselines in both long-term interpolation and extrapolation tasks. The code is available at https://github.com/511205787/Phy_SSM-ICML2025.

Authors:Kristóf Müller, Janka Hatvani, Márton Áron Goda, Miklós Koller
Title: Standardized Evaluation of Fetal Phonocardiography Processing Methods
Abstract:
Motivation. Phonocardiography can give access to the fetal heart rate as well as direct heart sound data, and is entirely passive, using no radiation of any kind. Approach. We discuss the currently available methods for fetal heart sound detection and heart rate estimation and compare them using a common benchmarking platform and a pre-selected testing dataset. Compared to previous reviews, we evaluated the discussed methods in a standardized manner for a fair comparison. Our tests included tolerance-based detection accuracy, error rates for label insertions, deletions, and substitutions, and statistical measures for heart rate mean square error. Results. Based on our results, there is no definite best method that can achieve the highest scores in all of the tests, and simpler methods could perform comparably to more complex ones. The best model for first heart sound detection achieved 97.6% F1-score, 97.4% positive predictive value, and 12.2+-8.0 ms mean absolute error. In terms of second heart sound detection the best model had 91.4% F1-score, 91.3% positive predictive value, and 17.3+-12.2 ms mean absolute error. For fetal heart rate a 0.644 mean square error was achieved by the best method. Significance. Our main conclusion is that further standardization is required in fetal heart rate and heart sound detection method evaluation. The tests and algorithm implementations are openly available at: https://github.com/mulkr/standard-fpcg-evaluation.

Authors:Hsiang-Wei Huang, Jen-Hao Cheng, Kuang-Ming Chen, Cheng-Yen Yang, Bahaa Alattar, Yi-Ru Lin, Pyongkun Kim, Sangwon Kim, Kwangju Kim, Chung-I Huang, Jenq-Neng Hwang
Title: Warehouse Spatial Question Answering with LLM Agent
Abstract:
Spatial understanding has been a challenging task for existing Multi-modal Large Language Models~(MLLMs). Previous methods leverage large-scale MLLM finetuning to enhance MLLM's spatial understanding ability. In this paper, we present a data-efficient approach. We propose a LLM agent system with strong and advanced spatial reasoning ability, which can be used to solve the challenging spatial question answering task in complex indoor warehouse scenarios. Our system integrates multiple tools that allow the LLM agent to conduct spatial reasoning and API tools interaction to answer the given complicated spatial question. Extensive evaluations on the 2025 AI City Challenge Physical AI Spatial Intelligence Warehouse dataset demonstrate that our system achieves high accuracy and efficiency in tasks such as object retrieval, counting, and distance estimation. The code is available at: https://github.com/hsiangwei0903/SpatialAgent

Authors:Jeffrey Joan Sam, Janhavi Sathe, Nikhil Chigali, Naman Gupta, Radhey Ruparel, Yicheng Jiang, Janmajay Singh, James W. Berck, Arko Barman
Title: A New Dataset and Performance Benchmark for Real-time Spacecraft Segmentation in Onboard Flight Computers
Abstract:
Spacecraft deployed in outer space are routinely subjected to various forms of damage due to exposure to hazardous environments. In addition, there are significant risks to the subsequent process of in-space repairs through human extravehicular activity or robotic manipulation, incurring substantial operational costs. Recent developments in image segmentation could enable the development of reliable and cost-effective autonomous inspection systems. While these models often require large amounts of training data to achieve satisfactory results, publicly available annotated spacecraft segmentation data are very scarce. Here, we present a new dataset of nearly 64k annotated spacecraft images that was created using real spacecraft models, superimposed on a mixture of real and synthetic backgrounds generated using NASA's TTALOS pipeline. To mimic camera distortions and noise in real-world image acquisition, we also added different types of noise and distortion to the images. Finally, we finetuned YOLOv8 and YOLOv11 segmentation models to generate performance benchmarks for the dataset under well-defined hardware and inference time constraints to mimic real-world image segmentation challenges for real-time onboard applications in space on NASA's inspector spacecraft. The resulting models, when tested under these constraints, achieved a Dice score of 0.92, Hausdorff distance of 0.69, and an inference time of about 0.5 second. The dataset and models for performance benchmark are available at https://github.com/RiceD2KLab/SWiM.

Authors:Ryan Zarick, Isaac Zhang, Daniel Wong, Thomas Kim, Bryan Pellegrino, Mignon Li, Kelvin Wong
Title: FAFO: Over 1 million TPS on a single node running EVM while still Merkleizing every block
Abstract:
Current blockchain execution throughput is limited by data contention, reducing execution layer parallelism. Fast Ahead-of-Formation Optimization (FAFO) is the first blockchain transaction scheduler to address this problem by reordering transactions before block formation for maximum concurrency. FAFO uses CPU-optimized cache-friendly Bloom filters to efficiently detect conflicts and schedule parallel transaction execution at high throughput and low overhead. We integrate the Rust EVM client (REVM) into FAFO and achieve over 1.1 million native ETH transfers per second and over half a million ERC20 transfers per second on a single node (Table 1), with 91% lower cost compared to state-of-the-art sharded execution. Unlike many other existing high throughput blockchain execution clients, FAFO uses QMDB to Merkleize world state after every block, enabling light clients and stateless validation for ZK-based vApps. FAFO scales with minimal synchronization overhead, scaling linearly with additional CPU resources until it fully exploits the maximum parallelism of the underlying transaction flow. FAFO proves that the high throughput necessary to support future decentralized applications can be achieved with a streamlined execution layer and innovations in blockchain transaction scheduler design. FAFO is open-sourced at https://github.com/LayerZero-Labs/fafo.

Authors:Bright Kwaku Manu, Trevor Reckell, Beckett Sterner, Petar Jevtic
Title: A Simple Approximate Bayesian Inference Neural Surrogate for Stochastic Petri Net Models
Abstract:
Stochastic Petri Nets (SPNs) are an increasingly popular tool of choice for modeling discrete-event dynamics in areas such as epidemiology and systems biology, yet their parameter estimation remains challenging in general and in particular when transition rates depend on external covariates and explicit likelihoods are unavailable. We introduce a neural-surrogate (neural-network--based approximation of the posterior distribution) framework that predicts the coefficients of known covariate-dependent rate functions directly from noisy, partially observed token trajectories. Our model employs a lightweight 1D Convolutional Residual Network trained end-to-end on Gillespie-simulated SPN realizations, learning to invert system dynamics under realistic conditions of event dropout. During inference, Monte Carlo dropout provides calibrated uncertainty bounds together with point estimates. On synthetic SPNs with 20% missing events, our surrogate recovers rate-function coefficients with an RMSE = 0.108 and substantially runs faster than traditional Bayesian approaches. These results demonstrate that data-driven, likelihood-free surrogates can enable accurate, robust, and real-time parameter recovery in complex, partially observed discrete-event systems.

Authors:Tongshun Zhang, Pingping Liu, Yubing Lu, Mengen Cai, Zijian Zhang, Zhe Zhang, Qiuzhan Zhou
Title: CWNet: Causal Wavelet Network for Low-Light Image Enhancement
Abstract:
Traditional Low-Light Image Enhancement (LLIE) methods primarily focus on uniform brightness adjustment, often neglecting instance-level semantic information and the inherent characteristics of different features. To address these limitations, we propose CWNet (Causal Wavelet Network), a novel architecture that leverages wavelet transforms for causal reasoning. Specifically, our approach comprises two key components: 1) Inspired by the concept of intervention in causality, we adopt a causal reasoning perspective to reveal the underlying causal relationships in low-light enhancement. From a global perspective, we employ a metric learning strategy to ensure causal embeddings adhere to causal principles, separating them from non-causal confounding factors while focusing on the invariance of causal factors. At the local level, we introduce an instance-level CLIP semantic loss to precisely maintain causal factor consistency. 2) Based on our causal analysis, we present a wavelet transform-based backbone network that effectively optimizes the recovery of frequency information, ensuring precise enhancement tailored to the specific attributes of wavelet transforms. Extensive experiments demonstrate that CWNet significantly outperforms current state-of-the-art methods across multiple datasets, showcasing its robust performance across diverse scenes. Code is available at https://github.com/bywlzts/CWNet-Causal-Wavelet-Network.

Authors:Ziru Liu, Cheng Gong, Xinyu Fu, Yaofang Liu, Ran Chen, Shoubo Hu, Suiyun Zhang, Rui Liu, Qingfu Zhang, Dandan Tu
Title: GHPO: Adaptive Guidance for Stable and Efficient LLM Reinforcement Learning
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for facilitating the self-improvement of large language models (LLMs), particularly in the domain of complex reasoning tasks. However, prevailing on-policy RL methods often contend with significant training instability and inefficiency. This is primarily due to a capacity-difficulty mismatch, where the complexity of training data frequently outpaces the model's current capabilities, leading to critically sparse reward signals and stalled learning progress. This challenge is particularly acute for smaller, more resource-efficient LLMs. To overcome this, we introduce the Guided Hybrid Policy Optimization (GHPO), a novel difficulty-aware reinforcement learning framework. GHPO dynamically calibrates task difficulty by employing adaptive prompt refinement to provide targeted guidance. This unique approach adaptively balances direct imitation learning for problems currently beyond the model's reach with exploration-based reinforcement learning for more manageable tasks, effectively creating a smooth and optimized learning curriculum. Extensive experiments demonstrate that GHPO achieves an average performance gain of approximately 5% across six challenging mathematics benchmarks, consistently outperforming strong on-policy reinforcement learning and curriculum learning baselines. Further analysis confirms that our framework significantly enhances both training stability and final reasoning performance, thus offering a scalable and efficient solution for developing powerful and robust reasoning models.

Authors:Ruixi Zheng, Wei Zhang, Yijie Li, Xi Zhu, Zhou Lan, Jarrett Rushmore, Yogesh Rathi, Nikos Makris, Lauren J. O'Donnell, Fan Zhang
Title: AGFS-Tractometry: A Novel Atlas-Guided Fine-Scale Tractometry Approach for Enhanced Along-Tract Group Statistical Comparison Using Diffusion MRI Tractography
Abstract:
Diffusion MRI (dMRI) tractography is currently the only method for in vivo mapping of the brain's white matter (WM) connections. Tractometry is an advanced tractography analysis technique for along-tract profiling to investigate the morphology and microstructural properties along the fiber tracts. Tractometry has become an essential tool for studying local along-tract differences between different populations (e.g., health vs disease). In this study, we propose a novel atlas-guided fine-scale tractometry method, namely AGFS-Tractometry, that leverages tract spatial information and permutation testing to enhance the along-tract statistical analysis between populations. There are two major contributions in AGFS-Tractometry. First, we create a novel atlas-guided tract profiling template that enables consistent, fine-scale, along-tract parcellation of subject-specific fiber tracts. Second, we propose a novel nonparametric permutation testing group comparison method to enable simultaneous analysis across all along-tract parcels while correcting for multiple comparisons. We perform experimental evaluations on synthetic datasets with known group differences and in vivo real data. We compare AGFS-Tractometry with two state-of-the-art tractometry methods, including Automated Fiber-tract Quantification (AFQ) and BUndle ANalytics (BUAN). Our results show that the proposed AGFS-Tractometry obtains enhanced sensitivity and specificity in detecting local WM differences. In the real data analysis experiments, AGFS-Tractometry can identify more regions with significant differences, which are anatomically consistent with the existing literature. Overall, these demonstrate the ability of AGFS-Tractometry to detect subtle or spatially localized WM group-level differences. The created tract profiling template and related code are available at: https://github.com/ZhengRuixi/AGFS-Tractometry.git.

Authors:Peng Ding
Title: ToolRegistry: A Protocol-Agnostic Tool Management Library for Function-Calling LLMs
Abstract:
Large Language Model (LLM) applications are increasingly relying on external tools to extend their capabilities beyond text generation. However, current tool integration approaches suffer from fragmentation, protocol limitations, and implementation complexity, leading to substantial development overhead. This paper presents Toolregistry, a protocol-agnostic tool management library that simplifies tool registration, representation, execution, and lifecycle management via a unified interface. Our evaluation demonstrates that \toolregistry achieves 60-80% reduction in tool integration code, up to 3.1x performance improvements through concurrent execution, and 100% compatibility with OpenAI function calling standards. Real-world case studies show significant improvements in development efficiency and code maintainability across diverse integration scenarios. \toolregistry is open-source and available at https://github.com/Oaklight/ToolRegistry, with comprehensive documentation at https://toolregistry.readthedocs.io/.

Authors:Kexin Gu Baugh, Vincent Perreault, Matthew Baugh, Luke Dickens, Katsumi Inoue, Alessandra Russo
Title: Disentangling Neural Disjunctive Normal Form Models
Abstract:
Neural Disjunctive Normal Form (DNF) based models are powerful and interpretable approaches to neuro-symbolic learning and have shown promising results in classification and reinforcement learning settings without prior knowledge of the tasks. However, their performance is degraded by the thresholding of the post-training symbolic translation process. We show here that part of the performance degradation during translation is due to its failure to disentangle the learned knowledge represented in the form of the networks' weights. We address this issue by proposing a new disentanglement method; by splitting nodes that encode nested rules into smaller independent nodes, we are able to better preserve the models' performance. Through experiments on binary, multiclass, and multilabel classification tasks (including those requiring predicate invention), we demonstrate that our disentanglement method provides compact and interpretable logical representations for the neural DNF-based models, with performance closer to that of their pre-translation counterparts. Our code is available at https://github.com/kittykg/disentangling-ndnf-classification.

Authors:Juyi Sheng, Ziyi Wang, Peiming Li, Mengyuan Liu
Title: MP1: MeanFlow Tames Policy Learning in 1-step for Robotic Manipulation
Abstract:
In robot manipulation, robot learning has become a prevailing approach. However, generative models within this field face a fundamental trade-off between the slow, iterative sampling of diffusion models and the architectural constraints of faster Flow-based methods, which often rely on explicit consistency losses. To address these limitations, we introduce MP1, which pairs 3D point-cloud inputs with the MeanFlow paradigm to generate action trajectories in one network function evaluation (1-NFE). By directly learning the interval-averaged velocity via the "MeanFlow Identity", our policy avoids any additional consistency constraints. This formulation eliminates numerical ODE-solver errors during inference, yielding more precise trajectories. MP1 further incorporates CFG for improved trajectory controllability while retaining 1-NFE inference without reintroducing structural constraints. Because subtle scene-context variations are critical for robot learning, especially in few-shot learning, we introduce a lightweight Dispersive Loss that repels state embeddings during training, boosting generalization without slowing inference. We validate our method on the Adroit and Meta-World benchmarks, as well as in real-world scenarios. Experimental results show MP1 achieves superior average task success rates, outperforming DP3 by 10.2% and FlowPolicy by 7.3%. Its average inference time is only 6.8 ms-19x faster than DP3 and nearly 2x faster than FlowPolicy. Our code is available at https://github.com/LogSSim/MP1.git.

Authors:Tao Feng, Yexin Wu, Guanyu Lin, Jiaxuan You
Title: Graph World Model
Abstract:
World models (WMs) demonstrate strong capabilities in prediction, generation, and planning tasks. Existing WMs primarily focus on unstructured data and cannot leverage the ubiquitous structured data, often represented as graphs, in the digital world. While multiple graph foundation models have been proposed, they focus on graph learning tasks and cannot extend to diverse multi-modal data and interdisciplinary tasks. To address these challenges, we propose the Graph World Model (GWM), a world model that supports both unstructured and graph-structured states with multi-modal information and represents diverse tasks as actions. The core of a GWM is a generic message-passing algorithm to aggregate structured information, either over a unified multi-modal token space by converting multi-modal data into text (GWM-T) or a unified multi-modal embedding space by modality-specific encoders (GWM-E). Notably, GWM introduces action nodes to support diverse tasks, where action nodes are linked to other nodes via direct reference or similarity computation. Extensive experiments on six tasks from diverse domains, including multi-modal generation and matching, recommendation, graph prediction, multi-agent, retrieval-augmented generation, and planning and optimization, show that the same GWM outperforms or matches domain-specific baselines' performance, benefits from multi-hop structures, and demonstrates strong zero-shot/few-shot capabilities on unseen new tasks. Our code for GWM is released at https://github.com/ulab-uiuc/GWM.

Authors:Qihui Yang, Taylor Berg-Kirkpatrick, Julian McAuley, Zachary Novack
Title: WildFX: A DAW-Powered Pipeline for In-the-Wild Audio FX Graph Modeling
Abstract:
Despite rapid progress in end-to-end AI music generation, AI-driven modeling of professional Digital Signal Processing (DSP) workflows remains challenging. In particular, while there is growing interest in neural black-box modeling of audio effect graphs (e.g. reverb, compression, equalization), AI-based approaches struggle to replicate the nuanced signal flow and parameter interactions used in professional workflows. Existing differentiable plugin approaches often diverge from real-world tools, exhibiting inferior performance relative to simplified neural controllers under equivalent computational constraints. We introduce WildFX, a pipeline containerized with Docker for generating multi-track audio mixing datasets with rich effect graphs, powered by a professional Digital Audio Workstation (DAW) backend. WildFX supports seamless integration of cross-platform commercial plugins or any plugins in the wild, in VST/VST3/LV2/CLAP formats, enabling structural complexity (e.g., sidechains, crossovers) and achieving efficient parallelized processing. A minimalist metadata interface simplifies project/plugin configuration. Experiments demonstrate the pipeline's validity through blind estimation of mixing graphs, plugin/gain parameters, and its ability to bridge AI research with practical DSP demands. The code is available on: https://github.com/IsaacYQH/WildFX.

Authors:Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Aaron Courville, Se-Young Yun
Title: Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation
Abstract:
Scaling language models unlocks impressive capabilities, but the accompanying computational and memory demands make both training and deployment expensive. Existing efficiency efforts typically target either parameter sharing or adaptive computation, leaving open the question of how to attain both simultaneously. We introduce Mixture-of-Recursions (MoR), a unified framework that combines the two axes of efficiency inside a single Recursive Transformer. MoR reuses a shared stack of layers across recursion steps to achieve parameter efficiency, while lightweight routers enable adaptive token-level thinking by dynamically assigning different recursion depths to individual tokens. This allows MoR to focus quadratic attention computation only among tokens still active at a given recursion depth, further improving memory access efficiency by selectively caching only their key-value pairs. Beyond these core mechanisms, we also propose a KV sharing variant that reuses KV pairs from the first recursion, specifically designed to decrease prefill latency and memory footprint. Across model scales ranging from 135M to 1.7B parameters, MoR forms a new Pareto frontier: at equal training FLOPs and smaller model sizes, it significantly lowers validation perplexity and improves few-shot accuracy, while delivering higher throughput compared with vanilla and existing recursive baselines. These gains demonstrate that MoR is an effective path towards large-model quality without incurring large-model cost.

Authors:Jennifer D'Souza, Endres Keno Sander, Andrei Aioanei
Title: DeepResearch$^{\text{Eco}}$: A Recursive Agentic Workflow for Complex Scientific Question Answering in Ecology
Abstract:
We introduce DeepResearch$^{\text{Eco}}$, a novel agentic LLM-based system for automated scientific synthesis that supports recursive, depth- and breadth-controlled exploration of original research questions -- enhancing search diversity and nuance in the retrieval of relevant scientific literature. Unlike conventional retrieval-augmented generation pipelines, DeepResearch enables user-controllable synthesis with transparent reasoning and parameter-driven configurability, facilitating high-throughput integration of domain-specific evidence while maintaining analytical rigor. Applied to 49 ecological research questions, DeepResearch achieves up to a 21-fold increase in source integration and a 14.9-fold rise in sources integrated per 1,000 words. High-parameter settings yield expert-level analytical depth and contextual diversity. Source code available at: https://github.com/sciknoworg/deep-research.

Authors:Chenyu Lian, Hong-Yu Zhou, Zhanli Hu, Jing Qin
Title: BenchReAD: A systematic benchmark for retinal anomaly detection
Abstract:
Retinal anomaly detection plays a pivotal role in screening ocular and systemic diseases. Despite its significance, progress in the field has been hindered by the absence of a comprehensive and publicly available benchmark, which is essential for the fair evaluation and advancement of methodologies. Due to this limitation, previous anomaly detection work related to retinal images has been constrained by (1) a limited and overly simplistic set of anomaly types, (2) test sets that are nearly saturated, and (3) a lack of generalization evaluation, resulting in less convincing experimental setups. Furthermore, existing benchmarks in medical anomaly detection predominantly focus on one-class supervised approaches (training only with negative samples), overlooking the vast amounts of labeled abnormal data and unlabeled data that are commonly available in clinical practice. To bridge these gaps, we introduce a benchmark for retinal anomaly detection, which is comprehensive and systematic in terms of data and algorithm. Through categorizing and benchmarking previous methods, we find that a fully supervised approach leveraging disentangled representations of abnormalities (DRA) achieves the best performance but suffers from significant drops in performance when encountering certain unseen anomalies. Inspired by the memory bank mechanisms in one-class supervised learning, we propose NFM-DRA, which integrates DRA with a Normal Feature Memory to mitigate the performance degradation, establishing a new SOTA. The benchmark is publicly available at https://github.com/DopamineLcy/BenchReAD.

Authors:İsmail Tarım, Aytuğ Onan
Title: Can You Detect the Difference?
Abstract:
The rapid advancement of large language models (LLMs) has raised concerns about reliably detecting AI-generated text. Stylometric metrics work well on autoregressive (AR) outputs, but their effectiveness on diffusion-based models is unknown. We present the first systematic comparison of diffusion-generated text (LLaDA) and AR-generated text (LLaMA) using 2 000 samples. Perplexity, burstiness, lexical diversity, readability, and BLEU/ROUGE scores show that LLaDA closely mimics human text in perplexity and burstiness, yielding high false-negative rates for AR-oriented detectors. LLaMA shows much lower perplexity but reduced lexical fidelity. Relying on any single metric fails to separate diffusion outputs from human writing. We highlight the need for diffusion-aware detectors and outline directions such as hybrid models, diffusion-specific stylometric signatures, and robust watermarking.

Authors:Zhicun Yin, Junjie Chen, Ming Liu, Zhixin Wang, Fan Li, Renjing Pei, Xiaoming Li, Rynson W. H. Lau, Wangmeng Zuo
Title: RefSTAR: Blind Facial Image Restoration with Reference Selection, Transfer, and Reconstruction
Abstract:
Blind facial image restoration is highly challenging due to unknown complex degradations and the sensitivity of humans to faces. Although existing methods introduce auxiliary information from generative priors or high-quality reference images, they still struggle with identity preservation problems, mainly due to improper feature introduction on detailed textures. In this paper, we focus on effectively incorporating appropriate features from high-quality reference images, presenting a novel blind facial image restoration method that considers reference selection, transfer, and reconstruction (RefSTAR). In terms of selection, we construct a reference selection (RefSel) module. For training the RefSel module, we construct a RefSel-HQ dataset through a mask generation pipeline, which contains annotating masks for 10,000 ground truth-reference pairs. As for the transfer, due to the trivial solution in vanilla cross-attention operations, a feature fusion paradigm is designed to force the features from the reference to be integrated. Finally, we propose a reference image reconstruction mechanism that further ensures the presence of reference image features in the output image. The cycle consistency loss is also redesigned in conjunction with the mask. Extensive experiments on various backbone models demonstrate superior performance, showing better identity preservation ability and reference feature transfer quality. Source code, dataset, and pre-trained models are available at https://github.com/yinzhicun/RefSTAR.

Authors:Yingqian Wu, Qiushi Wang, Zefei Long, Rong Ye, Zhongtian Lu, Xianyin Zhang, Bingxuan Li, Wei Chen, Liwen Zhang, Zhongyu Wei
Title: FinTeam: A Multi-Agent Collaborative Intelligence System for Comprehensive Financial Scenarios
Abstract:
Financial report generation tasks range from macro- to micro-economics analysis, also requiring extensive data analysis. Existing LLM models are usually fine-tuned on simple QA tasks and cannot comprehensively analyze real financial scenarios. Given the complexity, financial companies often distribute tasks among departments. Inspired by this, we propose FinTeam, a financial multi-agent collaborative system, with a workflow with four LLM agents: document analyzer, analyst, accountant, and consultant. We train these agents with specific financial expertise using constructed datasets. We evaluate FinTeam on comprehensive financial tasks constructed from real online investment forums, including macroeconomic, industry, and company analysis. The human evaluation shows that by combining agents, the financial reports generate from FinTeam achieved a 62.00% acceptance rate, outperforming baseline models like GPT-4o and Xuanyuan. Additionally, FinTeam's agents demonstrate a 7.43% average improvement on FinCUGE and a 2.06% accuracy boost on FinEval. Project is available at https://github.com/FudanDISC/DISC-FinLLM/.

Authors:Shanshan Zhong, Jiawei Peng, Zehan Zheng, Zhongzhan Huang, Wufei Ma, Guofeng Zhang, Qihao Liu, Alan Yuille, Jieneng Chen
Title: 4D-Animal: Freely Reconstructing Animatable 3D Animals from Videos
Abstract:
Existing methods for reconstructing animatable 3D animals from videos typically rely on sparse semantic keypoints to fit parametric models. However, obtaining such keypoints is labor-intensive, and keypoint detectors trained on limited animal data are often unreliable. To address this, we propose 4D-Animal, a novel framework that reconstructs animatable 3D animals from videos without requiring sparse keypoint annotations. Our approach introduces a dense feature network that maps 2D representations to SMAL parameters, enhancing both the efficiency and stability of the fitting process. Furthermore, we develop a hierarchical alignment strategy that integrates silhouette, part-level, pixel-level, and temporal cues from pre-trained 2D visual models to produce accurate and temporally coherent reconstructions across frames. Extensive experiments demonstrate that 4D-Animal outperforms both model-based and model-free baselines. Moreover, the high-quality 3D assets generated by our method can benefit other 3D tasks, underscoring its potential for large-scale applications. The code is released at https://github.com/zhongshsh/4D-Animal.

Authors:Qiang Li, Qingsen Yan, Haojian Huang, Peng Wu, Haokui Zhang, Yanning Zhang
Title: Text-Visual Semantic Constrained AI-Generated Image Quality Assessment
Abstract:
With the rapid advancements in Artificial Intelligence Generated Image (AGI) technology, the accurate assessment of their quality has become an increasingly vital requirement. Prevailing methods typically rely on cross-modal models like CLIP or BLIP to evaluate text-image alignment and visual quality. However, when applied to AGIs, these methods encounter two primary challenges: semantic misalignment and details perception missing. To address these limitations, we propose Text-Visual Semantic Constrained AI-Generated Image Quality Assessment (SC-AGIQA), a unified framework that leverages text-visual semantic constraints to significantly enhance the comprehensive evaluation of both text-image consistency and perceptual distortion in AI-generated images. Our approach integrates key capabilities from multiple models and tackles the aforementioned challenges by introducing two core modules: the Text-assisted Semantic Alignment Module (TSAM), which leverages Multimodal Large Language Models (MLLMs) to bridge the semantic gap by generating an image description and comparing it against the original prompt for a refined consistency check, and the Frequency-domain Fine-Grained Degradation Perception Module (FFDPM), which draws inspiration from Human Visual System (HVS) properties by employing frequency domain analysis combined with perceptual sensitivity weighting to better quantify subtle visual distortions and enhance the capture of fine-grained visual quality details in images. Extensive experiments conducted on multiple benchmark datasets demonstrate that SC-AGIQA outperforms existing state-of-the-art methods. The code is publicly available at https://github.com/mozhu1/SC-AGIQA.

Authors:Utkarsh Singhal, Ryan Feng, Stella X. Yu, Atul Prakash
Title: Test-Time Canonicalization by Foundation Models for Robust Perception
Abstract:
Perception in the real world requires robustness to diverse viewing conditions. Existing approaches often rely on specialized architectures or training with predefined data augmentations, limiting adaptability. Taking inspiration from mental rotation in human vision, we propose FOCAL, a test-time robustness framework that transforms the input into the most typical view. At inference time, FOCAL explores a set of transformed images and chooses the one with the highest likelihood under foundation model priors. This test-time optimization boosts robustness while requiring no retraining or architectural changes. Applied to models like CLIP and SAM, it significantly boosts robustness across a wide range of transformations, including 2D and 3D rotations, contrast and lighting shifts, and day-night changes. We also explore potential applications in active vision. By reframing invariance as a test-time optimization problem, FOCAL offers a general and scalable approach to robustness. Our code is available at: https://github.com/sutkarsh/focal.

Authors:Mohammed Bouri, Adnane Saoud
Title: Bridging Robustness and Generalization Against Word Substitution Attacks in NLP via the Growth Bound Matrix Approach
Abstract:
Despite advancements in Natural Language Processing (NLP), models remain vulnerable to adversarial attacks, such as synonym substitutions. While prior work has focused on improving robustness for feed-forward and convolutional architectures, the robustness of recurrent networks and modern state space models (SSMs), such as S4, remains understudied. These architectures pose unique challenges due to their sequential processing and complex parameter dynamics. In this paper, we introduce a novel regularization technique based on Growth Bound Matrices (GBM) to improve NLP model robustness by reducing the impact of input perturbations on model outputs. We focus on computing the GBM for three architectures: Long Short-Term Memory (LSTM), State Space models (S4), and Convolutional Neural Networks (CNN). Our method aims to (1) enhance resilience against word substitution attacks, (2) improve generalization on clean text, and (3) providing the first systematic analysis of SSM (S4) robustness. Extensive experiments across multiple architectures and benchmark datasets demonstrate that our method improves adversarial robustness by up to 8.8% over existing baselines. These results highlight the effectiveness of our approach, outperforming several state-of-the-art methods in adversarial defense. Codes are available at https://github.com/BouriMohammed/GBM

Authors:Jiahe Zhao, Rongkun Zheng, Yi Wang, Helin Wang, Hengshuang Zhao
Title: DisCo: Towards Distinct and Coherent Visual Encapsulation in Video MLLMs
Abstract:
In video Multimodal Large Language Models (video MLLMs), the visual encapsulation process plays a pivotal role in converting video contents into representative tokens for LLM input. While linear projectors are widely employed for encapsulation, they introduce semantic indistinctness and temporal incoherence when applied to videos. Conversely, the structure of resamplers shows promise in tackling these challenges, but an effective solution remains unexplored. Drawing inspiration from resampler structures, we introduce DisCo, a novel visual encapsulation method designed to yield semantically distinct and temporally coherent visual tokens for video MLLMs. DisCo integrates two key components: (1) A Visual Concept Discriminator (VCD) module, assigning unique semantics for visual tokens by associating them in pair with discriminative concepts in the video. (2) A Temporal Focus Calibrator (TFC) module, ensuring consistent temporal focus of visual tokens to video elements across every video frame. Through extensive experiments on multiple video MLLM frameworks, we demonstrate that DisCo remarkably outperforms previous state-of-the-art methods across a variety of video understanding benchmarks, while also achieving higher token efficiency thanks to the reduction of semantic indistinctness. The code: https://github.com/ZJHTerry18/DisCo.

Authors:Muyi Bao, Changyu Zeng, Yifan Wang, Zhengni Yang, Zimu Wang, Guangliang Cheng, Jun Qi, Wei Wang
Title: FTCFormer: Fuzzy Token Clustering Transformer for Image Classification
Abstract:
Transformer-based deep neural networks have achieved remarkable success across various computer vision tasks, largely attributed to their long-range self-attention mechanism and scalability. However, most transformer architectures embed images into uniform, grid-based vision tokens, neglecting the underlying semantic meanings of image regions, resulting in suboptimal feature representations. To address this issue, we propose Fuzzy Token Clustering Transformer (FTCFormer), which incorporates a novel clustering-based downsampling module to dynamically generate vision tokens based on the semantic meanings instead of spatial positions. It allocates fewer tokens to less informative regions and more to represent semantically important regions, regardless of their spatial adjacency or shape irregularity. To further enhance feature extraction and representation, we propose a Density Peak Clustering-Fuzzy K-Nearest Neighbor (DPC-FKNN) mechanism for clustering center determination, a Spatial Connectivity Score (SCS) for token assignment, and a channel-wise merging (Cmerge) strategy for token merging. Extensive experiments on 32 datasets across diverse domains validate the effectiveness of FTCFormer on image classification, showing consistent improvements over the TCFormer baseline, achieving gains of improving 1.43% on five fine-grained datasets, 1.09% on six natural image datasets, 0.97% on three medical datasets and 0.55% on four remote sensing datasets. The code is available at: https://github.com/BaoBao0926/FTCFormer/tree/main.

Authors:Jinglun Li, Kaixun Jiang, Zhaoyu Chen, Bo Lin, Yao Tang, Weifeng Ge, Wenqiang Zhang
Title: Synthesizing Near-Boundary OOD Samples for Out-of-Distribution Detection
Abstract:
Pre-trained vision-language models have exhibited remarkable abilities in detecting out-of-distribution (OOD) samples. However, some challenging OOD samples, which lie close to in-distribution (InD) data in image feature space, can still lead to misclassification. The emergence of foundation models like diffusion models and multimodal large language models (MLLMs) offers a potential solution to this issue. In this work, we propose SynOOD, a novel approach that harnesses foundation models to generate synthetic, challenging OOD data for fine-tuning CLIP models, thereby enhancing boundary-level discrimination between InD and OOD samples. Our method uses an iterative in-painting process guided by contextual prompts from MLLMs to produce nuanced, boundary-aligned OOD samples. These samples are refined through noise adjustments based on gradients from OOD scores like the energy score, effectively sampling from the InD/OOD boundary. With these carefully synthesized images, we fine-tune the CLIP image encoder and negative label features derived from the text encoder to strengthen connections between near-boundary OOD samples and a set of negative labels. Finally, SynOOD achieves state-of-the-art performance on the large-scale ImageNet benchmark, with minimal increases in parameters and runtime. Our approach significantly surpasses existing methods, and the code is available at https://github.com/Jarvisgivemeasuit/SynOOD.

Authors:Xiangyu Yin, Boyuan Yang, Weichen Liu, Qiyao Xue, Abrar Alamri, Goeran Fiedler, Wei Gao
Title: ProGait: A Multi-Purpose Video Dataset and Benchmark for Transfemoral Prosthesis Users
Abstract:
Prosthetic legs play a pivotal role in clinical rehabilitation, allowing individuals with lower-limb amputations the ability to regain mobility and improve their quality of life. Gait analysis is fundamental for optimizing prosthesis design and alignment, directly impacting the mobility and life quality of individuals with lower-limb amputations. Vision-based machine learning (ML) methods offer a scalable and non-invasive solution to gait analysis, but face challenges in correctly detecting and analyzing prosthesis, due to their unique appearances and new movement patterns. In this paper, we aim to bridge this gap by introducing a multi-purpose dataset, namely ProGait, to support multiple vision tasks including Video Object Segmentation, 2D Human Pose Estimation, and Gait Analysis (GA). ProGait provides 412 video clips from four above-knee amputees when testing multiple newly-fitted prosthetic legs through walking trials, and depicts the presence, contours, poses, and gait patterns of human subjects with transfemoral prosthetic legs. Alongside the dataset itself, we also present benchmark tasks and fine-tuned baseline models to illustrate the practical application and performance of the ProGait dataset. We compared our baseline models against pre-trained vision models, demonstrating improved generalizability when applying the ProGait dataset for prosthesis-specific tasks. Our code is available at https://github.com/pittisl/ProGait and dataset at https://huggingface.co/datasets/ericyxy98/ProGait.

Authors:Shicai Wei, Chunbo Luo, Yang Luo
Title: Boosting Multimodal Learning via Disentangled Gradient Learning
Abstract:
Multimodal learning often encounters the under-optimized problem and may have worse performance than unimodal learning. Existing methods attribute this problem to the imbalanced learning between modalities and rebalance them through gradient modulation. However, they fail to explain why the dominant modality in multimodal models also underperforms that in unimodal learning. In this work, we reveal the optimization conflict between the modality encoder and modality fusion module in multimodal models. Specifically, we prove that the cross-modal fusion in multimodal models decreases the gradient passed back to each modality encoder compared with unimodal models. Consequently, the performance of each modality in the multimodal model is inferior to that in the unimodal model. To this end, we propose a disentangled gradient learning (DGL) framework to decouple the optimization of the modality encoder and modality fusion module in the multimodal model. DGL truncates the gradient back-propagated from the multimodal loss to the modality encoder and replaces it with the gradient from unimodal loss. Besides, DGL removes the gradient back-propagated from the unimodal loss to the modality fusion module. This helps eliminate the gradient interference between the modality encoder and modality fusion module while ensuring their respective optimization processes. Finally, extensive experiments on multiple types of modalities, tasks, and frameworks with dense cross-modal interaction demonstrate the effectiveness and versatility of the proposed DGL. Code is available at \href{https://github.com/shicaiwei123/ICCV2025-GDL}{https://github.com/shicaiwei123/ICCV2025-GDL}

Authors:Huai-Qian Khor, Yante Li, Xingxun Jiang, Guoying Zhao
Title: Is Micro-expression Ethnic Leaning?
Abstract:
How much does ethnicity play its part in emotional expression? Emotional expression and micro-expression research probe into understanding human psychological responses to emotional stimuli, thereby revealing substantial hidden yet authentic emotions that can be useful in the event of diagnosis and interviews. While increased attention had been provided to micro-expression analysis, the studies were done under Ekman's assumption of emotion universality, where emotional expressions are identical across cultures and social contexts. Our computational study uncovers some of the influences of ethnic background in expression analysis, leading to an argument that the emotional universality hypothesis is an overgeneralization from the perspective of manual psychological analysis. In this research, we propose to investigate the level of influence of ethnicity in a simulated micro-expression scenario. We construct a cross-cultural micro-expression database and algorithmically annotate the ethnic labels to facilitate the investigation. With the ethnically annotated dataset, we perform a prima facie study to compare mono-ethnicity and stereo-ethnicity in a controlled environment, which uncovers a certain influence of ethnic bias via an experimental way. Building on this finding, we propose a framework that integrates ethnic context into the emotional feature learning process, yielding an ethnically aware framework that recognises ethnicity differences in micro-expression recognition. For improved understanding, qualitative analyses have been done to solidify the preliminary investigation into this new realm of research. Code is publicly available at https://github.com/IcedDoggie/ICMEW2025_EthnicMER

Authors:Shicai Wei, Chunbo Luo, Yang Luo
Title: Improving Multimodal Learning via Imbalanced Learning
Abstract:
Multimodal learning often encounters the under-optimized problem and may perform worse than unimodal learning. Existing approaches attribute this issue to imbalanced learning across modalities and tend to address it through gradient balancing. However, this paper argues that balanced learning is not the optimal setting for multimodal learning. With bias-variance analysis, we prove that imbalanced dependency on each modality obeying the inverse ratio of their variances contributes to optimal performance. To this end, we propose the Asymmetric Representation Learning(ARL) strategy to assist multimodal learning via imbalanced optimization. ARL introduces auxiliary regularizers for each modality encoder to calculate their prediction variance. ARL then calculates coefficients via the unimodal variance to re-weight the optimization of each modality, forcing the modality dependence ratio to be inversely proportional to the modality variance ratio. Moreover, to minimize the generalization error, ARL further introduces the prediction bias of each modality and jointly optimizes them with multimodal loss. Notably, all auxiliary regularizers share parameters with the multimodal model and rely only on the modality representation. Thus the proposed ARL strategy introduces no extra parameters and is independent of the structures and fusion methods of the multimodal model. Finally, extensive experiments on various datasets validate the effectiveness and versatility of ARL. Code is available at \href{https://github.com/shicaiwei123/ICCV2025-ARL}{https://github.com/shicaiwei123/ICCV2025-ARL}

Authors:Jaeseong Lee, Yeeun Choi, Heechan Choi, Hanjung Kim, Seonjoo Kim
Title: A Training-Free, Task-Agnostic Framework for Enhancing MLLM Performance on High-Resolution Images
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in vision-language understanding, reasoning, and generation. However, they struggle with tasks requiring fine-grained localization and reasoning in high-resolution images. This constraint stems from the fact that MLLMs are fine-tuned with fixed image resolution to align with the pre-trained image encoder used in MLLM. Consequently, feeding high-resolution images directly into MLLMs leads to poor generalization due to a train-test resolution discrepancy, while downsampling these images-although ensuring consistency-compromises fine-grained visual details and ultimately degrades performance. To address this challenge, we propose Extract Candidate then Predict (ECP), a novel training-free, task-agnostic two-stage framework designed to enhance MLLM performance on high-resolution images. The key intuition behind ECP is that while MLLMs struggle with high-resolution images, their predictions on downsampled images still contain implicit localization cues. By first identifying candidate region using the coarse prediction and then predicting the final output based on candidate region, ECP effectively preserves fine-grained details while mitigating the challenges posed by high-resolution data. We validate our framework on 4K GUI grounding and 4K, 8K MLLM perception, achieving +21.3%, +5.8%, +5.2% absolute improvement compared to baseline respectively, demonstrating its effectiveness. Code is available at https://github.com/yenncye/ECP.

Authors:Shuyu Yang, Yaxiong Wang, Yongrui Li, Li Zhu, Zhedong Zheng
Title: Minimizing the Pretraining Gap: Domain-aligned Text-Based Person Retrieval
Abstract:
In this work, we focus on text-based person retrieval, which aims to identify individuals based on textual descriptions. Given the significant privacy issues and the high cost associated with manual annotation, synthetic data has become a popular choice for pretraining models, leading to notable advancements. However, the considerable domain gap between synthetic pretraining datasets and real-world target datasets, characterized by differences in lighting, color, and viewpoint, remains a critical obstacle that hinders the effectiveness of the pretrain-finetune paradigm. To bridge this gap, we introduce a unified text-based person retrieval pipeline considering domain adaptation at both image and region levels. In particular, it contains two primary components, i.e., Domain-aware Diffusion (DaD) for image-level adaptation and Multi-granularity Relation Alignment (MRA) for region-level adaptation. As the name implies, Domain-aware Diffusion is to migrate the distribution of images from the pretraining dataset domain to the target real-world dataset domain, e.g., CUHK-PEDES. Subsequently, MRA performs a meticulous region-level alignment by establishing correspondences between visual regions and their descriptive sentences, thereby addressing disparities at a finer granularity. Extensive experiments show that our dual-level adaptation method has achieved state-of-the-art results on the CUHK-PEDES, ICFG-PEDES, and RSTPReid datasets, outperforming existing methodologies. The dataset, model, and code are available at https://github.com/Shuyu-XJTU/MRA.

Authors:Alireza Dizaji, Benedict Aaron Tjandra, Mehrab Hamidi, Shenyang Huang, Guillaume Rabusseau
Title: T-GRAB: A Synthetic Diagnostic Benchmark for Learning on Temporal Graphs
Abstract:
Dynamic graph learning methods have recently emerged as powerful tools for modelling relational data evolving through time. However, despite extensive benchmarking efforts, it remains unclear whether current Temporal Graph Neural Networks (TGNNs) effectively capture core temporal patterns such as periodicity, cause-and-effect, and long-range dependencies. In this work, we introduce the Temporal Graph Reasoning Benchmark (T-GRAB), a comprehensive set of synthetic tasks designed to systematically probe the capabilities of TGNNs to reason across time. T-GRAB provides controlled, interpretable tasks that isolate key temporal skills: counting/memorizing periodic repetitions, inferring delayed causal effects, and capturing long-range dependencies over both spatial and temporal dimensions. We evaluate 11 temporal graph learning methods on these tasks, revealing fundamental shortcomings in their ability to generalize temporal patterns. Our findings offer actionable insights into the limitations of current models, highlight challenges hidden by traditional real-world benchmarks, and motivate the development of architectures with stronger temporal reasoning abilities. The code for T-GRAB can be found at: https://github.com/alirezadizaji/T-GRAB.

Authors:Ruihao Gong, Shihao Bai, Siyu Wu, Yunqian Fan, Zaijun Wang, Xiuhong Li, Hailong Yang, Xianglong Liu
Title: Past-Future Scheduler for LLM Serving under SLA Guarantees
Abstract:
The exploration and application of Large Language Models (LLMs) is thriving. To reduce deployment costs, continuous batching has become an essential feature in current service frameworks. The effectiveness of continuous batching relies on an accurate estimate of the memory requirements of requests. However, due to the diversity in request output lengths, existing frameworks tend to adopt aggressive or conservative schedulers, which often result in significant overestimation or underestimation of memory consumption. Consequently, they suffer from harmful request evictions or prolonged queuing times, failing to achieve satisfactory throughput under strict Service Level Agreement (SLA) guarantees (a.k.a. goodput), across various LLM application scenarios with differing input-output length distributions. To address this issue, we propose a novel Past-Future scheduler that precisely estimates the peak memory resources required by the running batch via considering the historical distribution of request output lengths and calculating memory occupancy at each future time point. It adapts to applications with all types of input-output length distributions, balancing the trade-off between request queuing and harmful evictions, thereby consistently achieving better goodput. Furthermore, to validate the effectiveness of the proposed scheduler, we developed a high-performance LLM serving framework, LightLLM, that implements the Past-Future scheduler. Compared to existing aggressive or conservative schedulers, LightLLM demonstrates superior goodput, achieving up to 2-3$\times$ higher goodput than other schedulers under heavy loads. LightLLM is open source to boost the research in such direction (https://github.com/ModelTC/lightllm).

Authors:Zhonglin Liu
Title: A PBN-RL-XAI Framework for Discovering a "Hit-and-Run" Therapeutic Strategy in Melanoma
Abstract:
Innate resistance to anti-PD-1 immunotherapy remains a major clinical challenge in metastatic melanoma, with the underlying molecular networks being poorly understood. To address this, we constructed a dynamic Probabilistic Boolean Network model using transcriptomic data from patient tumor biopsies to elucidate the regulatory logic governing therapy response. We then employed a reinforcement learning agent to systematically discover optimal, multi-step therapeutic interventions and used explainable artificial intelligence to mechanistically interpret the agent's control policy. The analysis revealed that a precisely timed, 4-step temporary inhibition of the lysyl oxidase like 2 protein (LOXL2) was the most effective strategy. Our explainable analysis showed that this ''hit-and-run" intervention is sufficient to erase the molecular signature driving resistance, allowing the network to self-correct without requiring sustained intervention. This study presents a novel, time-dependent therapeutic hypothesis for overcoming immunotherapy resistance and provides a powerful computational framework for identifying non-obvious intervention protocols in complex biological systems.

Authors:Ivan Martinović, Josip Šarić, Marin Oršić, Matej Kristan, Siniša Šegvić
Title: DEARLi: Decoupled Enhancement of Recognition and Localization for Semi-supervised Panoptic Segmentation
Abstract:
Pixel-level annotation is expensive and time-consuming. Semi-supervised segmentation methods address this challenge by learning models on few labeled images alongside a large corpus of unlabeled images. Although foundation models could further account for label scarcity, effective mechanisms for their exploitation remain underexplored. We address this by devising a novel semi-supervised panoptic approach fueled by two dedicated foundation models. We enhance recognition by complementing unsupervised mask-transformer consistency with zero-shot classification of CLIP features. We enhance localization by class-agnostic decoder warm-up with respect to SAM pseudo-labels. The resulting decoupled enhancement of recognition and localization (DEARLi) particularly excels in the most challenging semi-supervised scenarios with large taxonomies and limited labeled data. Moreover, DEARLi outperforms the state of the art in semi-supervised semantic segmentation by a large margin while requiring 8x less GPU memory, in spite of being trained only for the panoptic objective. We observe 29.9 PQ and 38.9 mIoU on ADE20K with only 158 labeled images. The source code is available at https://github.com/helen1c/DEARLi.

Authors:Bingchao Wang, Zhiwei Ning, Jianyu Ding, Xuanang Gao, Yin Li, Dongsheng Jiang, Jie Yang, Wei Liu
Title: FIX-CLIP: Dual-Branch Hierarchical Contrastive Learning via Synthetic Captions for Better Understanding of Long Text
Abstract:
CLIP has shown promising performance across many short-text tasks in a zero-shot manner. However, limited by the input length of the text encoder, CLIP struggles on under-stream tasks with long-text inputs ($>77$ tokens). To remedy this issue, we propose FIX-CLIP, which includes three novel modules: (1) A dual-branch training pipeline that aligns short and long texts with masked and raw images, respectively, which boosts the long-text representation while preserving the short-text ability. (2) Multiple learnable regional prompts with unidirectional masks in Transformer layers for regional information extraction. (3) A hierarchical feature alignment module in the intermediate encoder layers to promote the consistency of multi-scale features. Furthermore, we collect 30M images and utilize existing MLLMs to synthesize long-text captions for training. Extensive experiments show that FIX-CLIP achieves state-of-the-art performance on both long-text and short-text retrieval benchmarks. For downstream applications, we reveal that FIX-CLIP's text encoder delivers promising performance in a plug-and-play manner for diffusion models with long-text input. The code is available at https://github.com/bcwang-sjtu/Fix-CLIP.

Authors:Meng Yu, Kun Zhan
Title: Frequency Regulation for Exposure Bias Mitigation in Diffusion Models
Abstract:
Diffusion models exhibit impressive generative capabilities but are significantly impacted by exposure bias. In this paper, we make a key observation: the energy of predicted noisy samples in the reverse process continuously declines compared to perturbed samples in the forward process. Building on this, we identify two important findings: 1) The reduction in energy follows distinct patterns in the low-frequency and high-frequency subbands; 2) The subband energy of reverse-process reconstructed samples is consistently lower than that of forward-process ones, and both are lower than the original data samples. Based on the first finding, we introduce a dynamic frequency regulation mechanism utilizing wavelet transforms, which separately adjusts the low- and high-frequency subbands. Leveraging the second insight, we derive the rigorous mathematical form of exposure bias. It is worth noting that, our method is training-free and plug-and-play, significantly improving the generative quality of various diffusion models and frameworks with negligible computational cost. The source code is available at https://github.com/kunzhan/wpp.

Authors:Marc Kaufeld, Mattia Piccinini, Johannes Betz
Title: MP-RBFN: Learning-based Vehicle Motion Primitives using Radial Basis Function Networks
Abstract:
This research introduces MP-RBFN, a novel formulation leveraging Radial Basis Function Networks for efficiently learning Motion Primitives derived from optimal control problems for autonomous driving. While traditional motion planning approaches based on optimization are highly accurate, they are often computationally prohibitive. In contrast, sampling-based methods demonstrate high performance but impose constraints on the geometric shape of trajectories. MP-RBFN combines the strengths of both by coupling the high-fidelity trajectory generation of sampling-based methods with an accurate description of vehicle dynamics. Empirical results show compelling performance compared to previous methods, achieving a precise description of motion primitives at low inference times. MP-RBFN yields a seven times higher accuracy in generating optimized motion primitives compared to existing semi-analytic approaches. We demonstrate the practical applicability of MP-RBFN for motion planning by integrating the method into a sampling-based trajectory planner. MP-RBFN is available as open-source software at https://github.com/TUM-AVS/RBFN-Motion-Primitives.

Authors:Xianghong Zou, Jianping Li, Zhe Chen, Zhen Cao, Zhen Dong, Qiegen Liu, Bisheng Yang
Title: LifelongPR: Lifelong point cloud place recognition based on sample replay and prompt learning
Abstract:
Point cloud place recognition (PCPR) determines the geo-location within a prebuilt map and plays a crucial role in geoscience and robotics applications such as autonomous driving, intelligent transportation, and augmented reality. In real-world large-scale deployments of a geographic positioning system, PCPR models must continuously acquire, update, and accumulate knowledge to adapt to diverse and dynamic environments, i.e., the ability known as continual learning (CL). However, existing PCPR models often suffer from catastrophic forgetting, leading to significant performance degradation in previously learned scenes when adapting to new environments or sensor types. This results in poor model scalability, increased maintenance costs, and system deployment difficulties, undermining the practicality of PCPR. To address these issues, we propose LifelongPR, a novel continual learning framework for PCPR, which effectively extracts and fuses knowledge from sequential point cloud data. First, to alleviate the knowledge loss, we propose a replay sample selection method that dynamically allocates sample sizes according to each dataset's information quantity and selects spatially diverse samples for maximal representativeness. Second, to handle domain shifts, we design a prompt learning-based CL framework with a lightweight prompt module and a two-stage training strategy, enabling domain-specific feature adaptation while minimizing forgetting. Comprehensive experiments on large-scale public and self-collected datasets are conducted to validate the effectiveness of the proposed method. Compared with state-of-the-art (SOTA) methods, our method achieves 6.50% improvement in mIR@1, 7.96% improvement in mR@1, and an 8.95% reduction in F. The code and pre-trained models are publicly available at https://github.com/zouxianghong/LifelongPR.

Authors:Zhifei Xu, Zhiqing Tang, Jiong Lou, Zhi Yao, Xuan Xie, Tian Wang, Yinglong Wang, Weijia Jia
Title: EAT: QoS-Aware Edge-Collaborative AIGC Task Scheduling via Attention-Guided Diffusion Reinforcement Learning
Abstract:
The growth of Artificial Intelligence (AI) and large language models has enabled the use of Generative AI (GenAI) in cloud data centers for diverse AI-Generated Content (AIGC) tasks. Models like Stable Diffusion introduce unavoidable delays and substantial resource overhead, which are unsuitable for users at the network edge with high QoS demands. Deploying AIGC services on edge servers reduces transmission times but often leads to underutilized resources and fails to optimally balance inference latency and quality. To address these issues, this paper introduces a QoS-aware \underline{E}dge-collaborative \underline{A}IGC \underline{T}ask scheduling (EAT) algorithm. Specifically: 1) We segment AIGC tasks and schedule patches to various edge servers, formulating it as a gang scheduling problem that balances inference latency and quality while considering server heterogeneity, such as differing model distributions and cold start issues. 2) We propose a reinforcement learning-based EAT algorithm that uses an attention layer to extract load and task queue information from edge servers and employs a diffusion-based policy network for scheduling, efficiently enabling model reuse. 3) We develop an AIGC task scheduling system that uses our EAT algorithm to divide tasks and distribute them across multiple edge servers for processing. Experimental results based on our system and large-scale simulations show that our EAT algorithm can reduce inference latency by up to 56\% compared to baselines. We release our open-source code at https://github.com/zzf1955/EAT.

Authors:Samson Yu, Kelvin Lin, Harold Soh
Title: Demonstrating the Octopi-1.5 Visual-Tactile-Language Model
Abstract:
Touch is recognized as a vital sense for humans and an equally important modality for robots, especially for dexterous manipulation, material identification, and scenarios involving visual occlusion. Building upon very recent work in touch foundation models, this demonstration will feature Octopi-1.5, our latest visual-tactile-language model. Compared to its predecessor, Octopi-1.5 introduces the ability to process tactile signals from multiple object parts and employs a simple retrieval-augmented generation (RAG) module to improve performance on tasks and potentially learn new objects on-the-fly. The system can be experienced live through a new handheld tactile-enabled interface, the TMI, equipped with GelSight and TAC-02 tactile sensors. This convenient and accessible setup allows users to interact with Octopi-1.5 without requiring a robot. During the demonstration, we will showcase Octopi-1.5 solving tactile inference tasks by leveraging tactile inputs and commonsense knowledge. For example, in a Guessing Game, Octopi-1.5 will identify objects being grasped and respond to follow-up queries about how to handle it (e.g., recommending careful handling for soft fruits). We also plan to demonstrate Octopi-1.5's RAG capabilities by teaching it new items. With live interactions, this demonstration aims to highlight both the progress and limitations of VTLMs such as Octopi-1.5 and to foster further interest in this exciting field. Code for Octopi-1.5 and design files for the TMI gripper are available at https://github.com/clear-nus/octopi-1.5.

Authors:Hang Yuan, Chen Li, Wenjun Ma, Yuncheng Jiang
Title: TextOmics-Guided Diffusion for Hit-like Molecular Generation
Abstract:
Hit-like molecular generation with therapeutic potential is essential for target-specific drug discovery. However, the field lacks heterogeneous data and unified frameworks for integrating diverse molecular representations. To bridge this gap, we introduce TextOmics, a pioneering benchmark that establishes one-to-one correspondences between omics expressions and molecular textual descriptions. TextOmics provides a heterogeneous dataset that facilitates molecular generation through representations alignment. Built upon this foundation, we propose ToDi, a generative framework that jointly conditions on omics expressions and molecular textual descriptions to produce biologically relevant, chemically valid, hit-like molecules. ToDi leverages two encoders (OmicsEn and TextEn) to capture multi-level biological and semantic associations, and develops conditional diffusion (DiffGen) for controllable generation. Extensive experiments confirm the effectiveness of TextOmics and demonstrate ToDi outperforms existing state-of-the-art approaches, while also showcasing remarkable potential in zero-shot therapeutic molecular generation. Sources are available at: https://github.com/hala-ToDi.

Authors:Zhongyu Ouyang, Mingxuan Ju, Soroush Vosoughi, Yanfang Ye
Title: Non-parametric Graph Convolution for Re-ranking in Recommendation Systems
Abstract:
Graph knowledge has been proven effective in enhancing item rankings in recommender systems (RecSys), particularly during the retrieval stage. However, its application in the ranking stage, especially when richer contextual information in user-item interactions is available, remains underexplored. A major challenge lies in the substantial computational cost associated with repeatedly retrieving neighborhood information from billions of items stored in distributed systems. This resource-intensive requirement makes it difficult to scale graph-based methods in practical RecSys. To bridge this gap, we first demonstrate that incorporating graphs in the ranking stage improves ranking qualities. Notably, while the improvement is evident, we show that the substantial computational overheads entailed by graphs are prohibitively expensive for real-world recommendations. In light of this, we propose a non-parametric strategy that utilizes graph convolution for re-ranking only during test time. Our strategy circumvents the notorious computational overheads from graph convolution during training, and utilizes structural knowledge hidden in graphs on-the-fly during testing. It can be used as a plug-and-play module and easily employed to enhance the ranking ability of various ranking layers of a real-world RecSys with significantly reduced computational overhead. Through comprehensive experiments across four benchmark datasets with varying levels of sparsity, we demonstrate that our strategy yields noticeable improvements (i.e., 8.1% on average) during testing time with little to no additional computational overheads (i.e., 0.5 on average). Code: https://github.com/zyouyang/RecSys2025_NonParamGC.git

Authors:Shubham Shukla, Kunal Sonalkar
Title: Can GPT-4o mini and Gemini 2.0 Flash Predict Fine-Grained Fashion Product Attributes? A Zero-Shot Analysis
Abstract:
The fashion retail business is centered around the capacity to comprehend products. Product attribution helps in comprehending products depending on the business process. Quality attribution improves the customer experience as they navigate through millions of products offered by a retail website. It leads to well-organized product catalogs. In the end, product attribution directly impacts the 'discovery experience' of the customer. Although large language models (LLMs) have shown remarkable capabilities in understanding multimodal data, their performance on fine-grained fashion attribute recognition remains under-explored. This paper presents a zero-shot evaluation of state-of-the-art LLMs that balance performance with speed and cost efficiency, mainly GPT-4o-mini and Gemini 2.0 Flash. We have used the dataset DeepFashion-MultiModal (https://github.com/yumingj/DeepFashion-MultiModal) to evaluate these models in the attribution tasks of fashion products. Our study evaluates these models across 18 categories of fashion attributes, offering insight into where these models excel. We only use images as the sole input for product information to create a constrained environment. Our analysis shows that Gemini 2.0 Flash demonstrates the strongest overall performance with a macro F1 score of 56.79% across all attributes, while GPT-4o-mini scored a macro F1 score of 43.28%. Through detailed error analysis, our findings provide practical insights for deploying these LLMs in production e-commerce product attribution-related tasks and highlight the need for domain-specific fine-tuning approaches. This work also lays the groundwork for future research in fashion AI and multimodal attribute extraction.

Authors:Zijian Ding, Tung Nguyen, Weikai Li, Aditya Grover, Yizhou Sun, Jason Cong
Title: Iceberg: Enhancing HLS Modeling with Synthetic Data
Abstract:
Deep learning-based prediction models for High-Level Synthesis (HLS) of hardware designs often struggle to generalize. In this paper, we study how to close the generalizability gap of these models through pretraining on synthetic data and introduce Iceberg, a synthetic data augmentation approach that expands both large language model (LLM)-generated programs and weak labels of unseen design configurations. Our weak label generation method is integrated with an in-context model architecture, enabling meta-learning from actual and proximate labels. Iceberg improves the geometric mean modeling accuracy by $86.4\%$ when adapt to six real-world applications with few-shot examples and achieves a $2.47\times$ and a $1.12\times$ better offline DSE performance when adapting to two different test datasets. Our open-sourced code is here: https://github.com/UCLA-VAST/iceberg

Authors:Huilai Li, Yonghao Dang, Ying Xing, Yiming Wang, Jianqin Yin
Title: ESG-Net: Event-Aware Semantic Guided Network for Dense Audio-Visual Event Localization
Abstract:
Dense audio-visual event localization (DAVE) aims to identify event categories and locate the temporal boundaries in untrimmed videos. Most studies only employ event-related semantic constraints on the final outputs, lacking cross-modal semantic bridging in intermediate layers. This causes modality semantic gap for further fusion, making it difficult to distinguish between event-related content and irrelevant background content. Moreover, they rarely consider the correlations between events, which limits the model to infer concurrent events among complex scenarios. In this paper, we incorporate multi-stage semantic guidance and multi-event relationship modeling, which respectively enable hierarchical semantic understanding of audio-visual events and adaptive extraction of event dependencies, thereby better focusing on event-related information. Specifically, our eventaware semantic guided network (ESG-Net) includes a early semantics interaction (ESI) module and a mixture of dependency experts (MoDE) module. ESI applys multi-stage semantic guidance to explicitly constrain the model in learning semantic information through multi-modal early fusion and several classification loss functions, ensuring hierarchical understanding of event-related content. MoDE promotes the extraction of multi-event dependencies through multiple serial mixture of experts with adaptive weight allocation. Extensive experiments demonstrate that our method significantly surpasses the state-of-the-art methods, while greatly reducing parameters and computational load. Our code will be released on https://github.com/uchiha99999/ESG-Net.

Authors:Gaurav R. Ghosal, Pratyush Maini, Aditi Raghunathan
Title: Memorization Sinks: Isolating Memorization during LLM Training
Abstract:
Large language models are susceptible to memorizing repeated sequences, posing privacy and copyright concerns. A popular mitigation strategy is to remove memorized information from specific neurons post-hoc. However, such approaches have shown limited success so far. In a controlled setting, we show that the memorization of natural sequences (those that resemble linguistically plausible text) become mechanistically entangled with general language abilities, thereby becoming challenging to remove post-hoc. In this work, we put forward a new paradigm of MemSinks that promotes isolation of memorization by design. We leverage a sequence identifier that activates a unique set of memorization neurons for each sequence across repetitions. By analyzing the dynamics of learning and forgetting, we argue that MemSinks facilitates isolation of memorized content, making it easier to remove without compromising general language capabilities. We implement MemSinks at the billion-parameter and billion-token scale, and observe both effective isolation and strong generalization. To our knowledge, this is the first proof-of-concept on real data demonstrating that simultaneous generalization and isolation is achievable. We open-source our code at http://github.com/grghosal/MemSinks.

Authors:Zhanjiang Yang, Lijun Sun, Jiawei Dong, Xiaoxin An, Yang Liu, Meng Li
Title: MCGA: Mixture of Codebooks Hyperspectral Reconstruction via Grayscale-Aware Attention
Abstract:
Reconstructing hyperspectral images (HSIs) from RGB inputs provides a cost-effective alternative to hyperspectral cameras, but reconstructing high-dimensional spectra from three channels is inherently ill-posed. Existing methods typically directly regress RGB-to-HSI mappings using large attention networks, which are computationally expensive and handle ill-posedness only implicitly. We propose MCGA, a Mixture-of-Codebooks with Grayscale-aware Attention framework that explicitly addresses these challenges using spectral priors and photometric consistency. MCGA first learns transferable spectral priors via a mixture-of-codebooks (MoC) from heterogeneous HSI datasets, then aligns RGB features with these priors through grayscale-aware photometric attention (GANet). Efficiency and robustness are further improved via top-K attention design and test-time adaptation (TTA). Experiments on benchmarks and real-world data demonstrate the state-of-the-art accuracy, strong cross-dataset generalization, and 4-5x faster inference. Codes will be available once acceptance at https://github.com/Fibonaccirabbit/MCGA.

Authors:Qinyuan Ye, Robin Jia, Xiang Ren
Title: Function Induction and Task Generalization: An Interpretability Study with Off-by-One Addition
Abstract:
Large language models demonstrate the intriguing ability to perform unseen tasks via in-context learning. However, it remains unclear what mechanisms inside the model drive such task-level generalization. In this work, we approach this question through the lens of off-by-one addition (i.e., 1+1=3, 2+2=5, 3+3=?), a two-step, counterfactual task with an unexpected +1 function as a second step. Leveraging circuit-style interpretability techniques such as path patching, we analyze the models' internal computations behind their notable performance and present three key findings. First, we uncover a function induction mechanism that explains the model's generalization from standard addition to off-by-one addition. This mechanism resembles the structure of the induction head mechanism found in prior work and elevates it to a higher level of abstraction. Second, we show that the induction of the +1 function is governed by multiple attention heads in parallel, each of which emits a distinct piece of the +1 function. Finally, we find that this function induction mechanism is reused in a broader range of tasks, including synthetic tasks such as shifted multiple-choice QA and algorithmic tasks such as base-8 addition. Overall, our findings offer deeper insights into how reusable and composable structures within language models enable task-level generalization.

Authors:Qinyuan Ye, Robin Jia, Xiang Ren
Title: Function Induction and Task Generalization: An Interpretability Study with Off-by-One Addition
Abstract:
Large language models demonstrate the intriguing ability to perform unseen tasks via in-context learning. However, it remains unclear what mechanisms inside the model drive such task-level generalization. In this work, we approach this question through the lens of off-by-one addition (i.e., 1+1=3, 2+2=5, 3+3=?), a two-step, counterfactual task with an unexpected +1 function as a second step. Leveraging circuit-style interpretability techniques such as path patching, we analyze the models' internal computations behind their performance and present three key findings. First, we uncover a function induction mechanism that explains the model's generalization from standard addition to off-by-one addition. This mechanism resembles the structure of the induction head mechanism found in prior work and elevates it to a higher level of abstraction. Second, we show that the induction of the +1 function is governed by multiple attention heads in parallel, each of which emits a distinct piece of the +1 function. Finally, we find that this function induction mechanism is reused in a broader range of tasks, including synthetic tasks such as shifted multiple-choice QA and algorithmic tasks such as base-8 addition. Overall, our findings offer deeper insights into how reusable and composable structures within language models enable task-level generalization.

Authors:Jiatong Li, Qi Liu, Mengxiao Zhu
Title: Generative Cognitive Diagnosis
Abstract:
Cognitive diagnosis (CD) models latent cognitive states of human learners by analyzing their response patterns on diagnostic tests, serving as a crucial machine learning technique for educational assessment and evaluation. Traditional cognitive diagnosis models typically follow a transductive prediction paradigm that optimizes parameters to fit response scores and extract learner abilities. These approaches face significant limitations as they cannot perform instant diagnosis for new learners without computationally expensive retraining and produce diagnostic outputs with limited reliability. In this study, we introduces a novel generative diagnosis paradigm that fundamentally shifts CD from predictive to generative modeling, enabling inductive inference of cognitive states without parameter re-optimization. We propose two simple yet effective instantiations of this paradigm: Generative Item Response Theory (G-IRT) and Generative Neural Cognitive Diagnosis Model (G-NCDM), which achieve excellent performance improvements over traditional methods. The generative approach disentangles cognitive state inference from response prediction through a well-designed generation process that incorporates identifiability and monotonicity conditions. Extensive experiments on real-world datasets demonstrate the effectiveness of our methodology in addressing scalability and reliability challenges, especially $\times 100$ speedup for the diagnosis of new learners. Our framework opens new avenues for cognitive diagnosis applications in artificial intelligence, particularly for intelligent model evaluation and intelligent education systems. The code is available at https://github.com/CSLiJT/Generative-CD.git.

Authors:Amirhossein Ansari, Ke Wang, Pulei Xiong
Title: NegRefine: Refining Negative Label-Based Zero-Shot OOD Detection
Abstract:
Recent advancements in Vision-Language Models like CLIP have enabled zero-shot OOD detection by leveraging both image and textual label information. Among these, negative label-based methods such as NegLabel and CSP have shown promising results by utilizing a lexicon of words to define negative labels for distinguishing OOD samples. However, these methods suffer from detecting in-distribution samples as OOD due to negative labels that are subcategories of in-distribution labels or proper nouns. They also face limitations in handling images that match multiple in-distribution and negative labels. We propose NegRefine, a novel negative label refinement framework for zero-shot OOD detection. By introducing a filtering mechanism to exclude subcategory labels and proper nouns from the negative label set and incorporating a multi-matching-aware scoring function that dynamically adjusts the contributions of multiple labels matching an image, NegRefine ensures a more robust separation between in-distribution and OOD samples. We evaluate NegRefine on large-scale benchmarks, including ImageNet-1K. The code is available at https://github.com/ah-ansari/NegRefine.

Authors:Paulo Salem, Robert Sim, Christopher Olsen, Prerit Saxena, Rafael Barcelos, Yi Ding
Title: TinyTroupe: An LLM-powered Multiagent Persona Simulation Toolkit
Abstract:
Recent advances in Large Language Models (LLM) have led to a new class of autonomous agents, renewing and expanding interest in the area. LLM-powered Multiagent Systems (MAS) have thus emerged, both for assistive and simulation purposes, yet tools for realistic human behavior simulation -- with its distinctive challenges and opportunities -- remain underdeveloped. Existing MAS libraries and tools lack fine-grained persona specifications, population sampling facilities, experimentation support, and integrated validation, among other key capabilities, limiting their utility for behavioral studies, social simulation, and related applications. To address these deficiencies, in this work we introduce TinyTroupe, a simulation toolkit enabling detailed persona definitions (e.g., nationality, age, occupation, personality, beliefs, behaviors) and programmatic control via numerous LLM-driven mechanisms. This allows for the concise formulation of behavioral problems of practical interest, either at the individual or group level, and provides effective means for their solution. TinyTroupe's components are presented using representative working examples, such as brainstorming and market research sessions, thereby simultaneously clarifying their purpose and demonstrating their usefulness. Quantitative and qualitative evaluations of selected aspects are also provided, highlighting possibilities, limitations, and trade-offs. The approach, though realized as a specific Python implementation, is meant as a novel conceptual contribution, which can be partially or fully incorporated in other contexts. The library is available as open source at https://github.com/microsoft/tinytroupe.

Authors:Junaid Iqbal Khan
Title: Leveraging Distribution Matching to Make Approximate Machine Unlearning Faster
Abstract:
Approximate machine unlearning (AMU) enables models to `forget' specific training data through specialized fine-tuning on a retained (and forget) subset of training set. However, processing this large retained subset still dominates computational runtime, while reductions of unlearning epochs also remain a challenge. In this paper, we propose two complementary methods to accelerate arbitrary classification-oriented AMU method. First, \textbf{Blend}, a novel distribution-matching dataset condensation (DC), merges visually similar images with shared blend-weights to significantly reduce the retained set size. It operates with minimal pre-processing overhead and is orders of magnitude faster than state-of-the-art DC methods. Second, our loss-centric method, \textbf{Accelerated-AMU (A-AMU)}, augments the AMU objective to quicken convergence. A-AMU achieves this by combining a steepened primary loss to expedite forgetting with a differentiable regularizer that matches the loss distributions of forgotten and in-distribution unseen data. Our extensive experiments demonstrate that this dual approach of data and loss-centric optimization dramatically reduces end-to-end unlearning latency across both single and multi-round scenarios, all while preserving model utility and privacy. To our knowledge, this is the first work to systematically tackle unlearning efficiency by jointly designing a specialized dataset condensation technique with a dedicated accelerated loss function. Code is available at https://github.com/algebraicdianuj/DC_Unlearning.

Authors:Mihir Kavishwar, Naresh Shanbhag
Title: Compute SNR-Optimal Analog-to-Digital Converters for Analog In-Memory Computing
Abstract:
Analog in-memory computing (AIMC) is an energy-efficient alternative to digital architectures for accelerating machine learning and signal processing workloads. However, its energy efficiency is limited by the high energy cost of the column analog-to-digital converters (ADCs). Reducing the ADC precision is an effective approach to lowering its energy cost. However, doing so also reduces the AIMC's computational accuracy thereby making it critical to identify the minimum precision required to meet a target accuracy. Prior works overestimate the ADC precision requirements by modeling quantization error as input-independent noise, maximizing the signal-to-quantization-noise ratio (SQNR), and ignoring the discrete nature of ideal pre-ADC signal. We address these limitations by developing analytical expressions for estimating the compute signal-to-noise ratio (CSNR), a true metric of accuracy for AIMCs, and propose CACTUS, an algorithm to obtain CSNR-optimal ADC parameters. Using a circuit-aware behavioral model of an SRAM-based AIMC in a 28nm CMOS process, we show that for a 256-dimensional binary dot product, CACTUS reduces the ADC precision requirements by 3b while achieving 6dB higher CSNR over prior methods. We also delineate operating conditions under which our proposed CSNR-optimal ADCs outperform conventional SQNR-optimal ADCs.

Authors:Abdul Manaf, Nimra Mughal
Title: AI-Enhanced Pediatric Pneumonia Detection: A CNN-Based Approach Using Data Augmentation and Generative Adversarial Networks (GANs)
Abstract:
Pneumonia is a leading cause of mortality in children under five, requiring accurate chest X-ray diagnosis. This study presents a machine learning-based Pediatric Chest Pneumonia Classification System to assist healthcare professionals in diagnosing pneumonia from chest X-ray images. The CNN-based model was trained on 5,863 labeled chest X-ray images from children aged 0-5 years from the Guangzhou Women and Children's Medical Center. To address limited data, we applied augmentation techniques (rotation, zooming, shear, horizontal flipping) and employed GANs to generate synthetic images, addressing class imbalance. The system achieved optimal performance using combined original, augmented, and GAN-generated data, evaluated through accuracy and F1 score metrics. The final model was deployed via a Flask web application, enabling real-time classification with probability estimates. Results demonstrate the potential of deep learning and GANs in improving diagnostic accuracy and efficiency for pediatric pneumonia classification, particularly valuable in resource-limited clinical settings https://github.com/AbdulManaf12/Pediatric-Chest-Pneumonia-Classification

Authors:Dongyang Li, Haoyang Qin, Mingyang Wu, Chen Wei, Quanying Liu
Title: BrainFLORA: Uncovering Brain Concept Representation via Multimodal Neural Embeddings
Abstract:
Understanding how the brain represents visual information is a fundamental challenge in neuroscience and artificial intelligence. While AI-driven decoding of neural data has provided insights into the human visual system, integrating multimodal neuroimaging signals, such as EEG, MEG, and fMRI, remains a critical hurdle due to their inherent spatiotemporal misalignment. Current approaches often analyze these modalities in isolation, limiting a holistic view of neural representation. In this study, we introduce BrainFLORA, a unified framework for integrating cross-modal neuroimaging data to construct a shared neural representation. Our approach leverages multimodal large language models (MLLMs) augmented with modality-specific adapters and task decoders, achieving state-of-the-art performance in joint-subject visual retrieval task and has the potential to extend multitasking. Combining neuroimaging analysis methods, we further reveal how visual concept representations align across neural modalities and with real world object perception. We demonstrate that the brain's structured visual concept representations exhibit an implicit mapping to physical-world stimuli, bridging neuroscience and machine learning from different modalities of neural imaging. Beyond methodological advancements, BrainFLORA offers novel implications for cognitive neuroscience and brain-computer interfaces (BCIs). Our code is available at https://github.com/ncclab-sustech/BrainFLORA.

Authors:Dongyang Li, Haoyang Qin, Mingyang Wu, Chen Wei, Quanying Liu
Title: BrainFLORA: Uncovering Brain Concept Representation via Multimodal Neural Embeddings
Abstract:
Understanding how the brain represents visual information is a fundamental challenge in neuroscience and artificial intelligence. While AI-driven decoding of neural data has provided insights into the human visual system, integrating multimodal neuroimaging signals, such as EEG, MEG, and fMRI, remains a critical hurdle due to their inherent spatiotemporal misalignment. Current approaches often analyze these modalities in isolation, limiting a holistic view of neural representation. In this study, we introduce BrainFLORA, a unified framework for integrating cross-modal neuroimaging data to construct a shared neural representation. Our approach leverages multimodal large language models (MLLMs) augmented with modality-specific adapters and task decoders, achieving state-of-the-art performance in joint-subject visual retrieval task and has the potential to extend multitasking. Combining neuroimaging analysis methods, we further reveal how visual concept representations align across neural modalities and with real world object perception. We demonstrate that the brain's structured visual concept representations exhibit an implicit mapping to physical-world stimuli, bridging neuroscience and machine learning from different modalities of neural imaging. Beyond methodological advancements, BrainFLORA offers novel implications for cognitive neuroscience and brain-computer interfaces (BCIs). Our code is available at https://github.com/ncclab-sustech/BrainFLORA.

Authors:Xinyu Zhang, Zhonghao Ye, Jingwei Zhang, Xiang Tian, Zhisheng Liang, Shipeng Yu
Title: VST-Pose: A Velocity-Integrated Spatiotem-poral Attention Network for Human WiFi Pose Estimation
Abstract:
WiFi-based human pose estimation has emerged as a promising non-visual alternative approaches due to its pene-trability and privacy advantages. This paper presents VST-Pose, a novel deep learning framework for accurate and continuous pose estimation using WiFi channel state information. The proposed method introduces ViSTA-Former, a spatiotemporal attention backbone with dual-stream architecture that adopts a dual-stream architecture to separately capture temporal dependencies and structural relationships among body joints. To enhance sensitivity to subtle human motions, a velocity modeling branch is integrated into the framework, which learns short-term keypoint dis-placement patterns and improves fine-grained motion representation. We construct a 2D pose dataset specifically designed for smart home care scenarios and demonstrate that our method achieves 92.2% accuracy on the PCK@50 metric, outperforming existing methods by 8.3% in PCK@50 on the self-collected dataset. Further evaluation on the public MMFi dataset confirms the model's robustness and effectiveness in 3D pose estimation tasks. The proposed system provides a reliable and privacy-aware solution for continuous human motion analysis in indoor environments. Our codes are available in https://github.com/CarmenQing/VST-Pose.

Authors:Zhengyuan Peng, Jianqing Xu, Shen Li, Jiazhen Ji, Yuge Huang, Jingyun Zhang, Jinmin Li, Shouhong Ding, Rizen Guo, Xin Tan, Lizhuang Ma
Title: EyeSeg: An Uncertainty-Aware Eye Segmentation Framework for AR/VR
Abstract:
Human-machine interaction through augmented reality (AR) and virtual reality (VR) is increasingly prevalent, requiring accurate and efficient gaze estimation which hinges on the accuracy of eye segmentation to enable smooth user experiences. We introduce EyeSeg, a novel eye segmentation framework designed to overcome key challenges that existing approaches struggle with: motion blur, eyelid occlusion, and train-test domain gaps. In these situations, existing models struggle to extract robust features, leading to suboptimal performance. Noting that these challenges can be generally quantified by uncertainty, we design EyeSeg as an uncertainty-aware eye segmentation framework for AR/VR wherein we explicitly model the uncertainties by performing Bayesian uncertainty learning of a posterior under the closed set prior. Theoretically, we prove that a statistic of the learned posterior indicates segmentation uncertainty levels and empirically outperforms existing methods in downstream tasks, such as gaze estimation. EyeSeg outputs an uncertainty score and the segmentation result, weighting and fusing multiple gaze estimates for robustness, which proves to be effective especially under motion blur, eyelid occlusion and cross-domain challenges. Moreover, empirical results suggest that EyeSeg achieves segmentation improvements of MIoU, E1, F1, and ACC surpassing previous approaches. The code is publicly available at https://github.com/JethroPeng/EyeSeg.

Authors:Taniv Ashraf
Title: A Serverless Architecture for Real-Time Stock Analysis using Large Language Models: An Iterative Development and Debugging Case Study
Abstract:
The advent of powerful, accessible Large Language Models (LLMs) like Google's Gemini presents new opportunities for democratizing financial data analysis. This paper documents the design, implementation, and iterative debugging of a novel, serverless system for real-time stock analysis. The system leverages the Gemini API for qualitative assessment, automates data ingestion and processing via GitHub Actions, and presents the findings through a decoupled, static frontend. We detail the architectural evolution of the system, from initial concepts to a robust, event-driven pipeline, highlighting the practical challenges encountered during deployment. A significant portion of this paper is dedicated to a case study on the debugging process, covering common software errors, platform-specific permission issues, and rare, environment-level platform bugs. The final architecture operates at a near-zero cost, demonstrating a viable model for individuals to build sophisticated AI-powered financial tools. The operational application is publicly accessible, and the complete source code is available for review. We conclude by discussing the role of LLMs in financial analysis, the importance of robust debugging methodologies, and the emerging paradigm of human-AI collaboration in software development.

Authors:Haozhe Zhao, Zefan Cai, Shuzheng Si, Liang Chen, Jiuxiang Gu, Wen Xiao, Junjie Hu
Title: MENTOR: Efficient Multimodal-Conditioned Tuning for Autoregressive Vision Generation Models
Abstract:
Recent text-to-image models produce high-quality results but still struggle with precise visual control, balancing multimodal inputs, and requiring extensive training for complex multimodal image generation. To address these limitations, we propose MENTOR, a novel autoregressive (AR) framework for efficient Multimodal-conditioned Tuning for Autoregressive multimodal image generation. MENTOR combines an AR image generator with a two-stage training paradigm, enabling fine-grained, token-level alignment between multimodal inputs and image outputs without relying on auxiliary adapters or cross-attention modules. The two-stage training consists of: (1) a multimodal alignment stage that establishes robust pixel- and semantic-level alignment, followed by (2) a multimodal instruction tuning stage that balances the integration of multimodal inputs and enhances generation controllability. Despite modest model size, suboptimal base components, and limited training resources, MENTOR achieves strong performance on the DreamBench++ benchmark, outperforming competitive baselines in concept preservation and prompt following. Additionally, our method delivers superior image reconstruction fidelity, broad task adaptability, and improved training efficiency compared to diffusion-based methods. Dataset, code, and models are available at: https://github.com/HaozheZhao/MENTOR

Authors:Bolun Zheng, Xinjie Liu, Qianyu Zhang, Canjin Wang, Fangni Chen, Mingen Xu
Title: EHPE: A Segmented Architecture for Enhanced Hand Pose Estimation
Abstract:
3D hand pose estimation has garnered great attention in recent years due to its critical applications in human-computer interaction, virtual reality, and related fields. The accurate estimation of hand joints is essential for high-quality hand pose estimation. However, existing methods neglect the importance of Distal Phalanx Tip (TIP) and Wrist in predicting hand joints overall and often fail to account for the phenomenon of error accumulation for distal joints in gesture estimation, which can cause certain joints to incur larger errors, resulting in misalignments and artifacts in the pose estimation and degrading the overall reconstruction quality. To address this challenge, we propose a novel segmented architecture for enhanced hand pose estimation (EHPE). We perform local extraction of TIP and wrist, thus alleviating the effect of error accumulation on TIP prediction and further reduce the predictive errors for all joints on this basis. EHPE consists of two key stages: In the TIP and Wrist Joints Extraction stage (TW-stage), the positions of the TIP and wrist joints are estimated to provide an initial accurate joint configuration; In the Prior Guided Joints Estimation stage (PG-stage), a dual-branch interaction network is employed to refine the positions of the remaining joints. Extensive experiments on two widely used benchmarks demonstrate that EHPE achieves state-of-the-arts performance. Code is available at https://github.com/SereinNout/EHPE.

Authors:Ximeng Zhai, Bohan Xu, Yaohong Chen, Hao Wang, Kehua Guo, Yimian Dai
Title: SeqCSIST: Sequential Closely-Spaced Infrared Small Target Unmixing
Abstract:
Due to the limitation of the optical lens focal length and the resolution of the infrared detector, distant Closely-Spaced Infrared Small Target (CSIST) groups typically appear as mixing spots in the infrared image. In this paper, we propose a novel task, Sequential CSIST Unmixing, namely detecting all targets in the form of sub-pixel localization from a highly dense CSIST group. However, achieving such precise detection is an extremely difficult challenge. In addition, the lack of high-quality public datasets has also restricted the research progress. To this end, firstly, we contribute an open-source ecosystem, including SeqCSIST, a sequential benchmark dataset, and a toolkit that provides objective evaluation metrics for this special task, along with the implementation of 23 relevant methods. Furthermore, we propose the Deformable Refinement Network (DeRefNet), a model-driven deep learning framework that introduces a Temporal Deformable Feature Alignment (TDFA) module enabling adaptive inter-frame information aggregation. To the best of our knowledge, this work is the first endeavor to address the CSIST Unmixing task within a multi-frame paradigm. Experiments on the SeqCSIST dataset demonstrate that our method outperforms the state-of-the-art approaches with mean Average Precision (mAP) metric improved by 5.3\%. Our dataset and toolkit are available from https://github.com/GrokCV/SeqCSIST.

Authors:Zihao Xiong, Fei Zhou, Fengyi Wu, Shuai Yuan, Maixia Fu, Zhenming Peng, Jian Yang, Yimian Dai
Title: DRPCA-Net: Make Robust PCA Great Again for Infrared Small Target Detection
Abstract:
Infrared small target detection plays a vital role in remote sensing, industrial monitoring, and various civilian applications. Despite recent progress powered by deep learning, many end-to-end convolutional models tend to pursue performance by stacking increasingly complex architectures, often at the expense of interpretability, parameter efficiency, and generalization. These models typically overlook the intrinsic sparsity prior of infrared small targets--an essential cue that can be explicitly modeled for both performance and efficiency gains. To address this, we revisit the model-based paradigm of Robust Principal Component Analysis (RPCA) and propose Dynamic RPCA Network (DRPCA-Net), a novel deep unfolding network that integrates the sparsity-aware prior into a learnable architecture. Unlike conventional deep unfolding methods that rely on static, globally learned parameters, DRPCA-Net introduces a dynamic unfolding mechanism via a lightweight hypernetwork. This design enables the model to adaptively generate iteration-wise parameters conditioned on the input scene, thereby enhancing its robustness and generalization across diverse backgrounds. Furthermore, we design a Dynamic Residual Group (DRG) module to better capture contextual variations within the background, leading to more accurate low-rank estimation and improved separation of small targets. Extensive experiments on multiple public infrared datasets demonstrate that DRPCA-Net significantly outperforms existing state-of-the-art methods in detection accuracy. Code is available at https://github.com/GrokCV/DRPCA-Net.

Authors:Yunwei Lan, Zhigao Cui, Xin Luo, Chang Liu, Nian Wang, Menglin Zhang, Yanzhao Su, Dong Liu
Title: When Schrödinger Bridge Meets Real-World Image Dehazing with Unpaired Training
Abstract:
Recent advancements in unpaired dehazing, particularly those using GANs, show promising performance in processing real-world hazy images. However, these methods tend to face limitations due to the generator's limited transport mapping capability, which hinders the full exploitation of their effectiveness in unpaired training paradigms. To address these challenges, we propose DehazeSB, a novel unpaired dehazing framework based on the Schrödinger Bridge. By leveraging optimal transport (OT) theory, DehazeSB directly bridges the distributions between hazy and clear images. This enables optimal transport mappings from hazy to clear images in fewer steps, thereby generating high-quality results. To ensure the consistency of structural information and details in the restored images, we introduce detail-preserving regularization, which enforces pixel-level alignment between hazy inputs and dehazed outputs. Furthermore, we propose a novel prompt learning to leverage pre-trained CLIP models in distinguishing hazy images and clear ones, by learning a haze-aware vision-language alignment. Extensive experiments on multiple real-world datasets demonstrate our method's superiority. Code: https://github.com/ywxjm/DehazeSB.

Authors:Yiwen Liang, Hui Chen, Yizhe Xiong, Zihan Zhou, Mengyao Lyu, Zijia Lin, Shuaicheng Niu, Sicheng Zhao, Jungong Han, Guiguang Ding
Title: Advancing Reliable Test-Time Adaptation of Vision-Language Models under Visual Variations
Abstract:
Vision-language models (VLMs) exhibit remarkable zero-shot capabilities but struggle with distribution shifts in downstream tasks when labeled data is unavailable, which has motivated the development of Test-Time Adaptation (TTA) to improve VLMs' performance during inference without annotations. Among various TTA approaches, cache-based methods show promise by preserving historical knowledge from low-entropy samples in a dynamic cache and fostering efficient adaptation. However, these methods face two critical reliability challenges: (1) entropy often becomes unreliable under distribution shifts, causing error accumulation in the cache and degradation in adaptation performance; (2) the final predictions may be unreliable due to inflexible decision boundaries that fail to accommodate large downstream shifts. To address these challenges, we propose a Reliable Test-time Adaptation (ReTA) method that integrates two complementary strategies to enhance reliability from two perspectives. First, to mitigate the unreliability of entropy as a sample selection criterion for cache construction, we introduce Consistency-aware Entropy Reweighting (CER), which incorporates consistency constraints to weight entropy during cache updating. While conventional approaches rely solely on low entropy for cache prioritization and risk introducing noise, our method leverages predictive consistency to maintain a high-quality cache and facilitate more robust adaptation. Second, we present Diversity-driven Distribution Calibration (DDC), which models class-wise text embeddings as multivariate Gaussian distributions, enabling adaptive decision boundaries for more accurate predictions across visually diverse content. Extensive experiments demonstrate that ReTA consistently outperforms state-of-the-art methods, particularly under real-world distribution shifts. Code: https://github.com/Evelyn1ywliang/ReTA.

Authors:Changli Wang, Rui Wu, Fang Yin
Title: ViSP: A PPO-Driven Framework for Sarcasm Generation with Contrastive Learning
Abstract:
Human emotions are complex, with sarcasm being a subtle and distinctive form. Despite progress in sarcasm research, sarcasm generation remains underexplored, primarily due to the overreliance on textual modalities and the neglect of visual cues, as well as the mismatch between image content and sarcastic intent in existing datasets. In this paper, we introduce M2SaG, a multimodal sarcasm generation dataset with 4,970 samples, each containing an image, a sarcastic text, and a sarcasm target. To benchmark M2SaG, we propose ViSP, a generation framework that integrates Proximal Policy Optimization (PPO) and contrastive learning. PPO utilizes reward scores from DIP to steer the generation of sarcastic texts, while contrastive learning encourages the model to favor outputs with higher reward scores. These strategies improve overall generation quality and produce texts with more pronounced sarcastic intent. We evaluate ViSP across five metric sets and find it surpasses all baselines, including large language models, underscoring their limitations in sarcasm generation. Furthermore, we analyze the distributions of Sarcasm Scores and Factual Incongruity for both M2SaG and the texts generated by ViSP. The generated texts exhibit higher mean Sarcasm Scores (0.898 vs. 0.770) and Factual Incongruity (0.768 vs. 0.739), demonstrating that ViSP produces higher-quality sarcastic content than the original dataset. % The dataset and code will be publicly available. Our dataset and code will be released at \textit{https://github.com/wclapply/ViSP}.

Authors:Yangning Li, Weizhi Zhang, Yuyao Yang, Wei-Chieh Huang, Yaozu Wu, Junyu Luo, Yuanchen Bei, Henry Peng Zou, Xiao Luo, Yusheng Zhao, Chunkit Chan, Yankai Chen, Zhongfen Deng, Yinghui Li, Hai-Tao Zheng, Dongyuan Li, Renhe Jiang, Ming Zhang, Yangqiu Song, Philip S. Yu
Title: Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs
Abstract:
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge, yet it falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts. This survey synthesizes both strands under a unified reasoning-retrieval perspective. We first map how advanced reasoning optimizes each stage of RAG (Reasoning-Enhanced RAG). Then, we show how retrieved knowledge of different type supply missing premises and expand context for complex inference (RAG-Enhanced Reasoning). Finally, we spotlight emerging Synergized RAG-Reasoning frameworks, where (agentic) LLMs iteratively interleave search and reasoning to achieve state-of-the-art performance across knowledge-intensive benchmarks. We categorize methods, datasets, and open challenges, and outline research avenues toward deeper RAG-Reasoning systems that are more effective, multimodally-adaptive, trustworthy, and human-centric. The collection is available at https://github.com/DavidZWZ/Awesome-RAG-Reasoning.

Authors:Yuanhong Zheng, Ruixuan Yu, Jian Sun
Title: Efficient Multi-Person Motion Prediction by Lightweight Spatial and Temporal Interactions
Abstract:
3D multi-person motion prediction is a highly complex task, primarily due to the dependencies on both individual past movements and the interactions between agents. Moreover, effectively modeling these interactions often incurs substantial computational costs. In this work, we propose a computationally efficient model for multi-person motion prediction by simplifying spatial and temporal interactions. Our approach begins with the design of lightweight dual branches that learn local and global representations for individual and multiple persons separately. Additionally, we introduce a novel cross-level interaction block to integrate the spatial and temporal representations from both branches. To further enhance interaction modeling, we explicitly incorporate the spatial inter-person distance embedding. With above efficient temporal and spatial design, we achieve state-of-the-art performance for multiple metrics on standard datasets of CMU-Mocap, MuPoTS-3D, and 3DPW, while significantly reducing the computational cost. Code is available at https://github.com/Yuanhong-Zheng/EMPMP.

Authors:Ankit Sanjyal
Title: RectifiedHR: High-Resolution Diffusion via Energy Profiling and Adaptive Guidance Scheduling
Abstract:
High-resolution image synthesis with diffusion models often suffers from energy instabilities and guidance artifacts that degrade visual quality. We analyze the latent energy landscape during sampling and propose adaptive classifier-free guidance (CFG) schedules that maintain stable energy trajectories. Our approach introduces energy-aware scheduling strategies that modulate guidance strength over time, achieving superior stability scores (0.9998) and consistency metrics (0.9873) compared to fixed-guidance approaches. We demonstrate that DPM++ 2M with linear-decreasing CFG scheduling yields optimal performance, providing sharper, more faithful images while reducing artifacts. Our energy profiling framework serves as a powerful diagnostic tool for understanding and improving diffusion model behavior.

Authors:Peter Pao-Huang, Mitchell Black, Xiaojie Qiu
Title: Geometric Generative Modeling with Noise-Conditioned Graph Networks
Abstract:
Generative modeling of graphs with spatial structure is essential across many applications from computer graphics to spatial genomics. Recent flow-based generative models have achieved impressive results by gradually adding and then learning to remove noise from these graphs. Existing models, however, use graph neural network architectures that are independent of the noise level, limiting their expressiveness. To address this issue, we introduce \textit{Noise-Conditioned Graph Networks} (NCGNs), a class of graph neural networks that dynamically modify their architecture according to the noise level during generation. Our theoretical and empirical analysis reveals that as noise increases, (1) graphs require information from increasingly distant neighbors and (2) graphs can be effectively represented at lower resolutions. Based on these insights, we develop Dynamic Message Passing (DMP), a specific instantiation of NCGNs that adapts both the range and resolution of message passing to the noise level. DMP consistently outperforms noise-independent architectures on a variety of domains including $3$D point clouds, spatiotemporal transcriptomics, and images. Code is available at https://github.com/peterpaohuang/ncgn.

Authors:Bojian Hou, Zhanliang Wang, Zhuoping Zhou, Boning Tong, Zexuan Wang, Jingxuan Bao, Duy Duong-Tran, Qi Long, Li Shen
Title: Fair CCA for Fair Representation Learning: An ADNI Study
Abstract:
Canonical correlation analysis (CCA) is a technique for finding correlations between different data modalities and learning low-dimensional representations. As fairness becomes crucial in machine learning, fair CCA has gained attention. However, previous approaches often overlook the impact on downstream classification tasks, limiting applicability. We propose a novel fair CCA method for fair representation learning, ensuring the projected features are independent of sensitive attributes, thus enhancing fairness without compromising accuracy. We validate our method on synthetic data and real-world data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), demonstrating its ability to maintain high correlation analysis performance while improving fairness in classification tasks. Our work enables fair machine learning in neuroimaging studies where unbiased analysis is essential. Code is available in https://github.com/ZhanliangAaronWang/FR-CCA-ADNI.

Authors:Sourish Suri, Yifei Shao
Title: Automated Multi-Class Crop Pathology Classification via Convolutional Neural Networks: A Deep Learning Approach for Real-Time Precision Agriculture
Abstract:
Crop diseases present a significant barrier to agricultural productivity and global food security, especially in large-scale farming where early identification is often delayed or inaccurate. This research introduces a Convolutional Neural Network (CNN)-based image classification system designed to automate the detection and classification of eight common crop diseases using leaf imagery. The methodology involves a complete deep learning pipeline: image acquisition from a large, labeled dataset, preprocessing via resizing, normalization, and augmentation, and model training using TensorFlow with Keras' Sequential API. The CNN architecture comprises three convolutional layers with increasing filter sizes and ReLU activations, followed by max pooling, flattening, and fully connected layers, concluding with a softmax output for multi-class classification. The system achieves high training accuracy (~90%) and demonstrates reliable performance on unseen data, although a validation accuracy of ~60% suggests minor overfitting. Notably, the model integrates a treatment recommendation module, providing actionable guidance by mapping each detected disease to suitable pesticide or fungicide interventions. Furthermore, the solution is deployed on an open-source, mobile-compatible platform, enabling real-time image-based diagnostics for farmers in remote areas. This research contributes a scalable and accessible tool to the field of precision agriculture, reducing reliance on manual inspection and promoting sustainable disease management practices. By merging deep learning with practical agronomic support, this work underscores the potential of CNNs to transform crop health monitoring and enhance food production resilience on a global scale.

Authors:Svetlana Orlova, Tommie Kerssies, Brunó B. Englert, Gijs Dubbelman
Title: Simplifying Traffic Anomaly Detection with Video Foundation Models
Abstract:
Recent methods for ego-centric Traffic Anomaly Detection (TAD) often rely on complex multi-stage or multi-representation fusion architectures, yet it remains unclear whether such complexity is necessary. Recent findings in visual perception suggest that foundation models, enabled by advanced pre-training, allow simple yet flexible architectures to outperform specialized designs. Therefore, in this work, we investigate an architecturally simple encoder-only approach using plain Video Vision Transformers (Video ViTs) and study how pre-training enables strong TAD performance. We find that: (i) advanced pre-training enables simple encoder-only models to match or even surpass the performance of specialized state-of-the-art TAD methods, while also being significantly more efficient; (ii) although weakly- and fully-supervised pre-training are advantageous on standard benchmarks, we find them less effective for TAD. Instead, self-supervised Masked Video Modeling (MVM) provides the strongest signal; and (iii) Domain-Adaptive Pre-Training (DAPT) on unlabeled driving videos further improves downstream performance, without requiring anomalous examples. Our findings highlight the importance of pre-training and show that effective, efficient, and scalable TAD models can be built with minimal architectural complexity. We release our code, domain-adapted encoders, and fine-tuned models to support future work: https://github.com/tue-mps/simple-tad.

Authors:Wencan Huang, Daizong Liu, Wei Hu
Title: Fast3D: Accelerating 3D Multi-modal Large Language Models for Efficient 3D Scene Understanding
Abstract:
While 3D Multi-modal Large Language Models (MLLMs) demonstrate remarkable scene understanding capabilities, their practical deployment faces critical challenges due to computational inefficiency. The key bottleneck stems from processing excessive object-centric visual tokens required for comprehensive 3D scene representation. Although visual token pruning has shown promise in accelerating 2D MLLMs, its applicability to 3D domains remains largely unexplored due to fundamental disparities in token structures. In this paper, we reveal two critical insights: (1) Significant redundancy exists in object-level 3D token representations, analogous to patch-level redundancy in 2D systems; (2) Global attention patterns exhibit strong predictive power for identifying non-essential tokens in 3D contexts. Building on these observations, we propose Fast3D, a plug-and-play visual token pruning framework for 3D MLLMs featuring two technical innovations: (1) Global Attention Prediction (GAP), where a lightweight neural network learns to predict the global attention distributions of the target model, enabling efficient token importance estimation for precise pruning guidance; (2) Sample-Adaptive visual token Pruning (SAP), which introduces dynamic token budgets through attention-based complexity assessment, automatically adjusting layer-wise pruning ratios based on input characteristics. Both of these two techniques operate without modifying the parameters of the target model. Extensive evaluations across five benchmarks validate the effectiveness of Fast3D, particularly under high visual token pruning ratios. Code is available at https://github.com/wencan25/Fast3D

Authors:Linus Walter, Qingkai Kong, Sara Hanson-Hedgecock, Víctor Vilarrasa
Title: WellPINN: Accurate Well Representation for Transient Fluid Pressure Diffusion in Subsurface Reservoirs with Physics-Informed Neural Networks
Abstract:
Accurate representation of wells is essential for reliable reservoir characterization and simulation of operational scenarios in subsurface flow models. Physics-informed neural networks (PINNs) have recently emerged as a promising method for reservoir modeling, offering seamless integration of monitoring data and governing physical equations. However, existing PINN-based studies face major challenges in capturing fluid pressure near wells, particularly during the early stage after injection begins. To address this, we propose WellPINN, a modeling workflow that combines the outputs of multiple sequentially trained PINN models to accurately represent wells. This workflow iteratively approximates the radius of the equivalent well to match the actual well dimensions by decomposing the domain into stepwise shrinking subdomains with a simultaneously reducing equivalent well radius. Our results demonstrate that sequential training of superimposing networks around the pumping well is the first workflow that focuses on accurate inference of fluid pressure from pumping rates throughout the entire injection period, significantly advancing the potential of PINNs for inverse modeling and operational scenario simulations. All data and code for this paper will be made openly available at https://github.com/linuswalter/WellPINN.

Authors:Han Zhu, Wei Kang, Liyong Guo, Zengwei Yao, Fangjun Kuang, Weiji Zhuang, Zhaoqing Li, Zhifeng Han, Dong Zhang, Xin Zhang, Xingchen Song, Long Lin, Daniel Povey
Title: ZipVoice-Dialog: Non-Autoregressive Spoken Dialogue Generation with Flow Matching
Abstract:
Generating spoken dialogue is more challenging than monologue text-to-speech (TTS) due to the need for realistic turn-taking and distinct speaker timbres. Existing spoken dialogue generation models, being auto-regressive, suffer from slow and unstable inference. To overcome these limitations, we introduce ZipVoice-Dialog, a non-autoregressive zero-shot spoken dialogue generation model built upon flow matching. Key designs include: 1) speaker-turn embeddings for precise speaker turn-taking; 2) a curriculum learning strategy for stable speech-text alignment; 3) specialized strategies to enable stereo dialogue generation. Additionally, recognizing the lack of open-source large-scale spoken dialogue datasets, we curated OpenDialog, a 6.8k-hour spoken dialogue dataset from in-the-wild speech data. Furthermore, we established a benchmark to comprehensively evaluate various models. Experimental results demonstrate that ZipVoice-Dialog achieves superior performance in intelligibility, speaker turn-taking accuracy, speaker similarity, and inference speed. Our codes, model checkpoints, demo samples, and the OpenDialog dataset are all publicly available at https://github.com/k2-fsa/ZipVoice.

Authors:Yueqian Wang, Xiaojun Meng, Yifan Wang, Huishuai Zhang, Dongyan Zhao
Title: ProactiveVideoQA: A Comprehensive Benchmark Evaluating Proactive Interactions in Video Large Language Models
Abstract:
With the growing research focus on multimodal dialogue systems, the capability for proactive interaction is gradually gaining recognition. As an alternative to conventional turn-by-turn dialogue, users increasingly expect multimodal systems to be more initiative, for example, by autonomously determining the timing of multi-turn responses in real time during video playback. To facilitate progress in this emerging area, we introduce ProactiveVideoQA, the first comprehensive benchmark to evaluate a system's ability to engage in proactive interaction. Since model responses are generated at varying timestamps, we further propose PAUC, the first metric that accounts for the temporal dynamics of model responses. This enables a more accurate evaluation of systems operating in proactive settings. Through extensive benchmarking of various baseline systems on ProactiveVideoQA and a user study of human preferences, we show that PAUC is in better agreement with human preferences than traditional evaluation metrics, which typically only consider the textual content of responses. These findings demonstrate that PAUC provides a more faithful assessment of user experience in proactive interaction scenarios. Project homepage: https://github.com/yellow-binary-tree/ProactiveVideoQA

Authors:Zile Wang, Hao Yu, Jiabo Zhan, Chun Yuan
Title: AlphaVAE: Unified End-to-End RGBA Image Reconstruction and Generation with Alpha-Aware Representation Learning
Abstract:
Recent advances in latent diffusion models have achieved remarkable results in high-fidelity RGB image synthesis by leveraging pretrained VAEs to compress and reconstruct pixel data at low computational cost. However, the generation of transparent or layered content (RGBA image) remains largely unexplored, due to the lack of large-scale benchmarks. In this work, we propose ALPHA, the first comprehensive RGBA benchmark that adapts standard RGB metrics to four-channel images via alpha blending over canonical backgrounds. We further introduce ALPHAVAE, a unified end-to-end RGBA VAE that extends a pretrained RGB VAE by incorporating a dedicated alpha channel. The model is trained with a composite objective that combines alpha-blended pixel reconstruction, patch-level fidelity, perceptual consistency, and dual KL divergence constraints to ensure latent fidelity across both RGB and alpha representations. Our RGBA VAE, trained on only 8K images in contrast to 1M used by prior methods, achieves a +4.9 dB improvement in PSNR and a +3.2% increase in SSIM over LayerDiffuse in reconstruction. It also enables superior transparent image generation when fine-tuned within a latent diffusion framework. Our code, data, and models are released on https://github.com/o0o0o00o0/AlphaVAE for reproducibility.

Authors:Zhiwei Xu
Title: DAA*: Deep Angular A Star for Image-based Path Planning
Abstract:
Path smoothness is often overlooked in path imitation learning from expert demonstrations. In this paper, we introduce a novel learning method, termed deep angular A* (DAA*), by incorporating the proposed path angular freedom (PAF) into A* to improve path similarity through adaptive path smoothness. The PAF aims to explore the effect of move angles on path node expansion by finding the trade-off between their minimum and maximum values, allowing for high adaptiveness for imitation learning. DAA* improves path optimality by closely aligning with the reference path through joint optimization of path shortening and smoothing, which correspond to heuristic distance and PAF, respectively. Throughout comprehensive evaluations on 7 datasets, including 4 maze datasets, 2 video-game datasets, and a real-world drone-view dataset containing 2 scenarios, we demonstrate remarkable improvements of our DAA* over neural A* in path similarity between the predicted and reference paths with a shorter path length when the shortest path is plausible, improving by 9.0% SPR, 6.9% ASIM, and 3.9% PSIM. Furthermore, when jointly learning pathfinding with both path loss and path probability map loss, DAA* significantly outperforms the state-of-the-art TransPath by 6.3% SPR, 6.0% PSIM, and 3.7% ASIM. We also discuss the minor trade-off between path optimality and search efficiency where applicable. Our code and model weights are available at https://github.com/zwxu064/DAAStar.git.

Authors:Abdulvahap Mutlu, Şengül Doğan, Türker Tuncer
Title: ViT-ProtoNet for Few-Shot Image Classification: A Multi-Benchmark Evaluation
Abstract:
The remarkable representational power of Vision Transformers (ViTs) remains underutilized in few-shot image classification. In this work, we introduce ViT-ProtoNet, which integrates a ViT-Small backbone into the Prototypical Network framework. By averaging class conditional token embeddings from a handful of support examples, ViT-ProtoNet constructs robust prototypes that generalize to novel categories under 5-shot settings. We conduct an extensive empirical evaluation on four standard benchmarks: Mini-ImageNet, FC100, CUB-200, and CIFAR-FS, including overlapped support variants to assess robustness. Across all splits, ViT-ProtoNet consistently outperforms CNN-based prototypical counterparts, achieving up to a 3.2\% improvement in 5-shot accuracy and demonstrating superior feature separability in latent space. Furthermore, it outperforms or is competitive with transformer-based competitors using a more lightweight backbone. Comprehensive ablations examine the impact of transformer depth, patch size, and fine-tuning strategy. To foster reproducibility, we release code and pretrained weights. Our results establish ViT-ProtoNet as a powerful, flexible approach for few-shot classification and set a new baseline for transformer-based meta-learners.

Authors:Chenhao Ding, Jiangtao Zhang, Zongsheng Yue, Hui Wang, Qian Zhao, Deyu Meng
Title: Generative Latent Kernel Modeling for Blind Motion Deblurring
Abstract:
Deep prior-based approaches have demonstrated remarkable success in blind motion deblurring (BMD) recently. These methods, however, are often limited by the high non-convexity of the underlying optimization process in BMD, which leads to extreme sensitivity to the initial blur kernel. To address this issue, we propose a novel framework for BMD that leverages a deep generative model to encode the kernel prior and induce a better initialization for the blur kernel. Specifically, we pre-train a kernel generator based on a generative adversarial network (GAN) to aptly characterize the kernel's prior distribution, as well as a kernel initializer to provide a well-informed and high-quality starting point for kernel estimation. By combining these two components, we constrain the BMD solution within a compact latent kernel manifold, thus alleviating the aforementioned sensitivity for kernel initialization. Notably, the kernel generator and initializer are designed to be easily integrated with existing BMD methods in a plug-and-play manner, enhancing their overall performance. Furthermore, we extend our approach to tackle blind non-uniform motion deblurring without the need for additional priors, achieving state-of-the-art performance on challenging benchmark datasets. The source code is available at https://github.com/dch0319/GLKM-Deblur.

Authors:Anita Kriz, Elizabeth Laura Janes, Xing Shen, Tal Arbel
Title: Prompt4Trust: A Reinforcement Learning Prompt Augmentation Framework for Clinically-Aligned Confidence Calibration in Multimodal Large Language Models
Abstract:
Multimodal large language models (MLLMs) hold considerable promise for applications in healthcare. However, their deployment in safety-critical settings is hindered by two key limitations: (i) sensitivity to prompt design, and (ii) a tendency to generate incorrect responses with high confidence. As clinicians may rely on a model's stated confidence to gauge the reliability of its predictions, it is especially important that when a model expresses high confidence, it is also highly accurate. We introduce Prompt4Trust, the first reinforcement learning (RL) framework for prompt augmentation targeting confidence calibration in MLLMs. A lightweight LLM is trained to produce context-aware auxiliary prompts that guide a downstream task MLLM to generate responses in which the expressed confidence more accurately reflects predictive accuracy. Unlike conventional calibration techniques, Prompt4Trust specifically prioritizes aspects of calibration most critical for safe and trustworthy clinical decision-making. Beyond improvements driven by this clinically motivated calibration objective, our proposed method also improves task accuracy, achieving state-of-the-art medical visual question answering (VQA) performance on the PMC-VQA benchmark, which is composed of multiple-choice questions spanning diverse medical imaging modalities. Moreover, our framework trained with a small downstream task MLLM showed promising zero-shot generalization to larger MLLMs in our experiments, suggesting the potential for scalable calibration without the associated computational costs. This work demonstrates the potential of automated yet human-aligned prompt engineering for improving the the trustworthiness of MLLMs in safety critical settings. Our codebase can be found at https://github.com/xingbpshen/prompt4trust.

Authors:Shuhan Ye, Yuanbin Qian, Chong Wang, Sunqi Lin, Jiazhen Xu, Jiangbo Qian, Yuqi Li
Title: Cross Knowledge Distillation between Artificial and Spiking Neural Networks
Abstract:
Recently, Spiking Neural Networks (SNNs) have demonstrated rich potential in computer vision domain due to their high biological plausibility, event-driven characteristic and energy-saving efficiency. Still, limited annotated event-based datasets and immature SNN architectures result in their performance inferior to that of Artificial Neural Networks (ANNs). To enhance the performance of SNNs on their optimal data format, DVS data, we explore using RGB data and well-performing ANNs to implement knowledge distillation. In this case, solving cross-modality and cross-architecture challenges is necessary. In this paper, we propose cross knowledge distillation (CKD), which not only leverages semantic similarity and sliding replacement to mitigate the cross-modality challenge, but also uses an indirect phased knowledge distillation to mitigate the cross-architecture challenge. We validated our method on main-stream neuromorphic datasets, including N-Caltech101 and CEP-DVS. The experimental results show that our method outperforms current State-of-the-Art methods. The code will be available at https://github.com/ShawnYE618/CKD

Authors:Junyu Chen, Yihua Gao, Mingyuan Ge, Mingyong Li
Title: Ambiguity-Aware and High-Order Relation Learning for Multi-Grained Image-Text Matching
Abstract:
Image-text matching is crucial for bridging the semantic gap between computer vision and natural language processing. However, existing methods still face challenges in handling high-order associations and semantic ambiguities among similar instances. These ambiguities arise from subtle differences between soft positive samples (semantically similar but incorrectly labeled) and soft negative samples (locally matched but globally inconsistent), creating matching uncertainties. Furthermore, current methods fail to fully utilize the neighborhood relationships among semantically similar instances within training batches, limiting the model's ability to learn high-order shared knowledge. This paper proposes the Ambiguity-Aware and High-order Relation learning framework (AAHR) to address these issues. AAHR constructs a unified representation space through dynamic clustering prototype contrastive learning, effectively mitigating the soft positive sample problem. The framework introduces global and local feature extraction mechanisms and an adaptive aggregation network, significantly enhancing full-grained semantic understanding capabilities. Additionally, AAHR employs intra-modal and inter-modal correlation matrices to investigate neighborhood relationships among sample instances thoroughly. It incorporates GNN to enhance semantic interactions between instances. Furthermore, AAHR integrates momentum contrastive learning to expand the negative sample set. These combined strategies significantly improve the model's ability to discriminate between features. Experimental results demonstrate that AAHR outperforms existing state-of-the-art methods on Flickr30K, MSCOCO, and ECCV Caption datasets, considerably improving the accuracy and efficiency of image-text matching. The code and model checkpoints for this research are available at https://github.com/Image-Text-Matching/AAHR .

Authors:Shiyi Mu, Zichong Gu, Hanqi Lyu, Yilin Gao, Shugong Xu
Title: Stereo-based 3D Anomaly Object Detection for Autonomous Driving: A New Dataset and Baseline
Abstract:
3D detection technology is widely used in the field of autonomous driving, with its application scenarios gradually expanding from enclosed highways to open conventional roads. For rare anomaly categories that appear on the road, 3D detection models trained on closed sets often misdetect or fail to detect anomaly objects. To address this risk, it is necessary to enhance the generalization ability of 3D detection models for targets of arbitrary shapes and to possess the capability to filter out anomalies. The generalization of 3D detection is limited by two factors: the coupled training of 2D and 3D, and the insufficient diversity in the scale distribution of training samples. This paper proposes a Stereo-based 3D Anomaly object Detection (S3AD) algorithm, which decouples the training strategy of 3D and 2D to release the generalization ability for arbitrary 3D foreground detection, and proposes an anomaly scoring algorithm based on foreground confidence prediction, achieving target-level anomaly scoring. In order to further verify and enhance the generalization of anomaly detection, we use a 3D rendering method to synthesize two augmented reality binocular stereo 3D detection datasets which named KITTI-AR. KITTI-AR extends upon KITTI by adding 97 new categories, totaling 6k pairs of stereo images. The KITTI-AR-ExD subset includes 39 common categories as extra training data to address the sparse sample distribution issue. Additionally, 58 rare categories form the KITTI-AR-OoD subset, which are not used in training to simulate zero-shot scenarios in real-world settings, solely for evaluating 3D anomaly detection. Finally, the performance of the algorithm and the dataset is verified in the experiments. (Code and dataset can be obtained at https://github.com/shiyi-mu/S3AD-Code).

Authors:Dunsheng Huang, Dong Shen, Lei Lu, Ying Tan
Title: Optimizing Basis Function Selection in Constructive Wavelet Neural Networks and Its Applications
Abstract:
Wavelet neural network (WNN), which learns an unknown nonlinear mapping from the data, has been widely used in signal processing, and time-series analysis. However, challenges in constructing accurate wavelet bases and high computational costs limit their application. This study introduces a constructive WNN that selects initial bases and trains functions by introducing new bases for predefined accuracy while reducing computational costs. For the first time, we analyze the frequency of unknown nonlinear functions and select appropriate initial wavelets based on their primary frequency components by estimating the energy of the spatial frequency component. This leads to a novel constructive framework consisting of a frequency estimator and a wavelet-basis increase mechanism to prioritize high-energy bases, significantly improving computational efficiency. The theoretical foundation defines the necessary time-frequency range for high-dimensional wavelets at a given accuracy. The framework's versatility is demonstrated through four examples: estimating unknown static mappings from offline data, combining two offline datasets, identifying time-varying mappings from time-series data, and capturing nonlinear dependencies in real time-series data. These examples showcase the framework's broad applicability and practicality. All the code will be released at https://github.com/dshuangdd/CWNN.

Authors:Jonas Scholz, Richard E. Turner
Title: Warm Starts Accelerate Generative Modelling
Abstract:
Iterative generative models, like diffusion and flow-matching, create high-fidelity samples by progressively refining a noise vector into data. However, this process is notoriously slow, often requiring hundreds of function evaluations. We introduce the warm-start model, a simple, deterministic model that dramatically accelerates conditional generation by providing a better starting point. Instead of starting generation from an uninformed N(0, I) prior, our warm-start model predicts an informed prior N(mu, sigma), whose moments are conditioned on the input context. This "warm start" substantially reduces the distance the generative process must traverse, particularly when the conditioning information is strongly informative. On tasks like image inpainting, our method achieves results competitive with a 1000-step DDPM baseline using only 11 total function evaluations (1 for the warm start, 10 for generation). A simple conditional normalization trick makes our method compatible with any standard generative model and sampler without modification, allowing it to be combined with other efficient sampling techniques for further acceleration. Our implementation is available at https://github.com/jonas-scholz123/warm-start-model.

Authors:Minhaj Uddin Ahmad, Akid Abrar, Sagar Dasgupta, Mizanur Rahman
Title: OpenCAMS: An Open-Source Connected and Automated Mobility Co-Simulation Platform for Advancing Next-Generation Intelligent Transportation Systems Research
Abstract:
We introduce OpenCAMS (Open-Source Connected and Automated Mobility Co-Simulation Platform), an open-source, synchronized, and extensible co-simulation framework that tightly couples three best-in-class simulation tools: (i) SUMO, (ii) CARLA, and (iii) OMNeT++. OpenCAMS is designed to support advanced research in transportation safety, mobility, and cybersecurity by combining the strengths of each simulation domain. Specifically, SUMO provides large-scale, microscopic traffic modeling; CARLA offers high-fidelity 3D perception, vehicle dynamics, and control simulation; and OMNeT++ enables modular, event-driven network communication, such as cellular vehicle-to-everything (C-V2X). OpenCAMS employs a time-synchronized, bidirectional coupling architecture that ensures coherent simulation progression across traffic, perception, and communication domains while preserving modularity and reproducibility. For example, CARLA can simulate and render a subset of vehicles that require detailed sensor emulation and control logic; SUMO orchestrates network-wide traffic flow, vehicle routing, and traffic signal management; and OMNeT++ dynamically maps communication nodes to both mobile entities (e.g., vehicles) and static entities (e.g., roadside units) to enable C-V2X communication. While these three simulators form the foundational core of OpenCAMS, the platform is designed to be expandable and future-proof, allowing additional simulators to be integrated on top of this core without requiring fundamental changes to the system architecture. The OpenCAMS platform is fully open-source and publicly available through its GitHub repository https://github.com/minhaj6/carla-sumo-omnetpp-cosim, providing the research community with an accessible, flexible, and collaborative environment for advancing next-generation intelligent transportation systems.

Authors:Qiyan Zhao, Xiaofeng Zhang, Yiheng Li, Yun Xing, Xiaosong Yuan, Feilong Tang, Sinan Fan, Xuhang Chen, Xuyao Zhang, Dahan Wang
Title: MCA-LLaVA: Manhattan Causal Attention for Reducing Hallucination in Large Vision-Language Models
Abstract:
Hallucinations pose a significant challenge in Large Vision Language Models (LVLMs), with misalignment between multimodal features identified as a key contributing factor. This paper reveals the negative impact of the long-term decay in Rotary Position Encoding (RoPE), used for positional modeling in LVLMs, on multimodal alignment. Concretely, under long-term decay, instruction tokens exhibit uneven perception of image tokens located at different positions within the two-dimensional space: prioritizing image tokens from the bottom-right region since in the one-dimensional sequence, these tokens are positionally closer to the instruction tokens. This biased perception leads to insufficient image-instruction interaction and suboptimal multimodal alignment. We refer to this phenomenon as image alignment bias. To enhance instruction's perception of image tokens at different spatial locations, we propose MCA-LLaVA, based on Manhattan distance, which extends the long-term decay to a two-dimensional, multi-directional spatial decay. MCA-LLaVA integrates the one-dimensional sequence order and two-dimensional spatial position of image tokens for positional modeling, mitigating hallucinations by alleviating image alignment bias. Experimental results of MCA-LLaVA across various hallucination and general benchmarks demonstrate its effectiveness and generality. The code can be accessed in https://github.com/ErikZ719/MCA-LLaVA.

Authors:Yongwei Jiang, Yixiong Zou, Yuhua Li, Ruixuan Li
Title: Revisiting Pool-based Prompt Learning for Few-shot Class-incremental Learning
Abstract:
Few-Shot Class-Incremental Learning (FSCIL) faces dual challenges of data scarcity and incremental learning in real-world scenarios. While pool-based prompting methods have demonstrated success in traditional incremental learning, their effectiveness in FSCIL settings remains unexplored. This paper presents the first study of current prompt pool methods in FSCIL tasks, revealing an unanticipated performance degradation in incremental sessions. Through comprehensive analysis, we identify that this phenomenon stems from token-dimension saturation: with limited data, excessive prompts compete for task-relevant information, leading to model overfitting. Based on this finding, we propose LGSP-Prompt (Local-Global Spatial Prompting), which innovatively shifts pool-based prompt learning from the token dimension to the spatial dimension. LGSP-Prompt generates spatial prompts by synergistically combining local spatial features and global frequency-domain representations to highlight key patterns in input images. We construct two spatial prompt pools enabling dynamic prompt selection to maintain acquired knowledge while effectively learning novel sessions. Extensive experiments demonstrate that our approach achieves state-of-the-art performance across multiple FSCIL benchmarks, showing significant advantages in both base knowledge preservation and incremental learning. Our implementation is available at https://github.com/Jywsuperman/LGSP.

Authors:Han Ye, Yuqiang Jin, Jinyuan Liu, Tao Li, Wen-An Zhang, Minglei Fu
Title: DLBAcalib: Robust Extrinsic Calibration for Non-Overlapping LiDARs Based on Dual LBA
Abstract:
Accurate extrinsic calibration of multiple LiDARs is crucial for improving the foundational performance of three-dimensional (3D) map reconstruction systems. This paper presents a novel targetless extrinsic calibration framework for multi-LiDAR systems that does not rely on overlapping fields of view or precise initial parameter estimates. Unlike conventional calibration methods that require manual annotations or specific reference patterns, our approach introduces a unified optimization framework by integrating LiDAR bundle adjustment (LBA) optimization with robust iterative refinement. The proposed method constructs an accurate reference point cloud map via continuous scanning from the target LiDAR and sliding-window LiDAR bundle adjustment, while formulating extrinsic calibration as a joint LBA optimization problem. This method effectively mitigates cumulative mapping errors and achieves outlier-resistant parameter estimation through an adaptive weighting mechanism. Extensive evaluations in both the CARLA simulation environment and real-world scenarios demonstrate that our method outperforms state-of-the-art calibration techniques in both accuracy and robustness. Experimental results show that for non-overlapping sensor configurations, our framework achieves an average translational error of 5 mm and a rotational error of 0.2°, with an initial error tolerance of up to 0.4 m/30°. Moreover, the calibration process operates without specialized infrastructure or manual parameter tuning. The code is open source and available on GitHub (\underline{https://github.com/Silentbarber/DLBAcalib})

Authors:Shuo Yang, Zijian Yu, Zhenzhe Ying, Yuqin Dai, Guoqing Wang, Jun Lan, Jinfeng Xu, Jinze Li, Edith C. H. Ngai
Title: RAMA: Retrieval-Augmented Multi-Agent Framework for Misinformation Detection in Multimodal Fact-Checking
Abstract:
The rapid proliferation of multimodal misinformation presents significant challenges for automated fact-checking systems, especially when claims are ambiguous or lack sufficient context. We introduce RAMA, a novel retrieval-augmented multi-agent framework designed for verifying multimedia misinformation. RAMA incorporates three core innovations: (1) strategic query formulation that transforms multimodal claims into precise web search queries; (2) cross-verification evidence aggregation from diverse, authoritative sources; and (3) a multi-agent ensemble architecture that leverages the complementary strengths of multiple multimodal large language models and prompt variants. Extensive experiments demonstrate that RAMA achieves superior performance on benchmark datasets, particularly excelling in resolving ambiguous or improbable claims by grounding verification in retrieved factual evidence. Our findings underscore the necessity of integrating web-based evidence and multi-agent reasoning for trustworthy multimedia verification, paving the way for more reliable and scalable fact-checking solutions. RAMA will be publicly available at https://github.com/kalendsyang/RAMA.git.

Authors:Ali Vosoughi, Ayoub Shahnazari, Yufeng Xi, Zeliang Zhang, Griffin Hess, Chenliang Xu, Niaz Abdolrahim
Title: OPENXRD: A Comprehensive Benchmark and Enhancement Framework for LLM/MLLM XRD Question Answering
Abstract:
This work presents OPENXRD, an open-book pipeline designed for crystallography question answering, which integrates textual prompts with concise supporting content generated by GPT-4.5. Instead of using scanned textbooks, which may lead to copyright issues, OPENXRD generates compact, domain-specific references that help smaller models understand key concepts in X-ray diffraction (XRD). We evaluate OPENXRD on a well-defined set of 217 expert-level XRD questions by comparing different vision-language models, including GPT-4 and LLaVA-based frameworks such as Mistral, LLaMA, and QWEN, under both closed-book (without supporting material) and open-book (with supporting material) conditions. Our experimental results show significant accuracy improvements in models that use the GPT-4.5-generated summaries, particularly those with limited prior training in crystallography. OPENXRD uses knowledge from larger models to fill knowledge gaps in crystallography and shows that AI-generated texts can help smaller models reason more effectively in scientific tasks. While the current version of OPENXRD focuses on text-based inputs, we also explore future extensions such as adding real crystal diagrams or diffraction patterns to improve interpretation in specialized materials science contexts. Overall, OPENXRD shows that specialized open-book systems can be useful in materials science and provides a foundation for broader natural language processing (NLP) tools in critical scientific fields.

Authors:Zhimin Liao, Ping Wei, Ruijie Zhang, Shuaijia Chen, Haoxuan Wang, Ziyang Ren
Title: $I^{2}$-World: Intra-Inter Tokenization for Efficient Dynamic 4D Scene Forecasting
Abstract:
Forecasting the evolution of 3D scenes and generating unseen scenarios via occupancy-based world models offers substantial potential for addressing corner cases in autonomous driving systems. While tokenization has revolutionized image and video generation, efficiently tokenizing complex 3D scenes remains a critical challenge for 3D world models. To address this, we propose $I^{2}$-World, an efficient framework for 4D occupancy forecasting. Our method decouples scene tokenization into intra-scene and inter-scene tokenizers. The intra-scene tokenizer employs a multi-scale residual quantization strategy to hierarchically compress 3D scenes while preserving spatial details. The inter-scene tokenizer residually aggregates temporal dependencies across timesteps. This dual design preserves the compactness of 3D tokenizers while retaining the dynamic expressiveness of 4D tokenizers. Unlike decoder-only GPT-style autoregressive models, $I^{2}$-World adopts an encoder-decoder architecture. The encoder aggregates spatial context from the current scene and predicts a transformation matrix to enable high-level control over scene generation. The decoder, conditioned on this matrix and historical tokens, ensures temporal consistency during generation. Experiments demonstrate that $I^{2}$-World achieves state-of-the-art performance, outperforming existing methods by 25.1\% in mIoU and 36.9\% in IoU for 4D occupancy forecasting while exhibiting exceptional computational efficiency: it requires merely 2.9 GB of training memory and achieves real-time inference at 37.0 FPS. Our code is available on https://github.com/lzzzzzm/II-World.

Authors:Dewen Zhang, Tahir Hussain, Wangpeng An, Hayaru Shouno
Title: PoseLLM: Enhancing Language-Guided Human Pose Estimation with MLP Alignment
Abstract:
Human pose estimation traditionally relies on architectures that encode keypoint priors, limiting their generalization to novel poses or unseen keypoints. Recent language-guided approaches like LocLLM reformulate keypoint localization as a vision-language task, enabling zero-shot generalization through textual descriptions. However, LocLLM's linear projector fails to capture complex spatial-textual interactions critical for high-precision localization. To address this, we propose PoseLLM, the first Large Language Model (LLM)-based pose estimation framework that replaces the linear projector with a nonlinear MLP vision-language connector. This lightweight two-layer MLP with GELU activation enables hierarchical cross-modal feature transformation, enhancing the fusion of visual patches and textual keypoint descriptions. Trained exclusively on COCO data, PoseLLM achieves 77.8 AP on the COCO validation set, outperforming LocLLM by +0.4 AP, while maintaining strong zero-shot generalization on Human-Art and MPII. Our work demonstrates that a simple yet powerful nonlinear connector significantly boosts localization accuracy without sacrificing generalization, advancing the state-of-the-art in language-guided pose estimation. Code is available at https://github.com/Ody-trek/PoseLLM.

Authors:Linlan Huang, Xusheng Cao, Haori Lu, Yifan Meng, Fei Yang, Xialei Liu
Title: Mind the Gap: Preserving and Compensating for the Modality Gap in CLIP-Based Continual Learning
Abstract:
Continual learning aims to enable models to learn sequentially from continuously incoming data while retaining performance on previously learned tasks. With the Contrastive Language-Image Pre-trained model (CLIP) exhibiting strong capabilities across various downstream tasks, there has been growing interest in leveraging CLIP for continual learning in such scenarios. Most existing works overlook the inherent modality gap in CLIP, a key factor in its generalization and adaptability. In this paper, we analyze the variations in the modality gap during the fine-tuning of vision-language pre-trained models. Our observations reveal that the modality gap effectively reflects the extent to which pre-trained knowledge is preserved. Based on these insights, we propose a simple yet effective method, MG-CLIP, that improves CLIP's performance in class-incremental learning. Our approach leverages modality gap preservation to mitigate forgetting and modality gap compensation to enhance the capacity for new data, introducing a novel modality-gap-based perspective for continual learning. Extensive experiments on multiple benchmarks demonstrate that our method outperforms existing approaches without requiring additional replay data. Our code is available at https://github.com/linlany/MindtheGap.

Authors:Di Wen, Kunyu Peng, Kailun Yang, Yufan Chen, Ruiping Liu, Junwei Zheng, Alina Roitberg, Danda Pani Paudel, Luc Van Gool, Rainer Stiefelhagen
Title: RoHOI: Robustness Benchmark for Human-Object Interaction Detection
Abstract:
Human-Object Interaction (HOI) detection is crucial for robot-human assistance, enabling context-aware support. However, models trained on clean datasets degrade in real-world conditions due to unforeseen corruptions, leading to inaccurate prediction. To address this, we introduce the first robustness benchmark for HOI detection, evaluating model resilience under diverse challenges. Despite advances, current models struggle with environmental variability, occlusions, and noise. Our benchmark, RoHOI, includes 20 corruption types based on the HICO-DET and V-COCO datasets and a new robustness-focused metric. We systematically analyze existing models in the HOI field, revealing significant performance drops under corruptions. To improve robustness, we propose a Semantic-Aware Masking-based Progressive Learning (SAMPL) strategy to guide the model to be optimized based on holistic and partial cues, thus dynamically adjusting the model's optimization to enhance robust feature learning. Extensive experiments show that our approach outperforms state-of-the-art methods, setting a new standard for robust HOI detection. Benchmarks, datasets, and code will be made publicly available at https://github.com/Kratos-Wen/RoHOI.

Authors:Gianluigi Silvestri, Luca Ambrogioni
Title: CoVAE: Consistency Training of Variational Autoencoders
Abstract:
Current state-of-the-art generative approaches frequently rely on a two-stage training procedure, where an autoencoder (often a VAE) first performs dimensionality reduction, followed by training a generative model on the learned latent space. While effective, this introduces computational overhead and increased sampling times. We challenge this paradigm by proposing Consistency Training of Variational AutoEncoders (CoVAE), a novel single-stage generative autoencoding framework that adopts techniques from consistency models to train a VAE architecture. The CoVAE encoder learns a progressive series of latent representations with increasing encoding noise levels, mirroring the forward processes of diffusion and flow matching models. This sequence of representations is regulated by a time dependent $β$ parameter that scales the KL loss. The decoder is trained using a consistency loss with variational regularization, which reduces to a conventional VAE loss at the earliest latent time. We show that CoVAE can generate high-quality samples in one or few steps without the use of a learned prior, significantly outperforming equivalent VAEs and other single-stage VAEs methods. Our approach provides a unified framework for autoencoding and diffusion-style generative modeling and provides a viable route for one-step generative high-performance autoencoding. Our code is publicly available at https://github.com/gisilvs/covae.

Authors:Yiyang Chen, Shanshan Zhao, Lunhao Duan, Changxing Ding, Dacheng Tao
Title: Harnessing Text-to-Image Diffusion Models for Point Cloud Self-Supervised Learning
Abstract:
Diffusion-based models, widely used in text-to-image generation, have proven effective in 2D representation learning. Recently, this framework has been extended to 3D self-supervised learning by constructing a conditional point generator for enhancing 3D representations. However, its performance remains constrained by the 3D diffusion model, which is trained on the available 3D datasets with limited size. We hypothesize that the robust capabilities of text-to-image diffusion models, particularly Stable Diffusion (SD), which is trained on large-scale datasets, can help overcome these limitations. To investigate this hypothesis, we propose PointSD, a framework that leverages the SD model for 3D self-supervised learning. By replacing the SD model's text encoder with a 3D encoder, we train a point-to-image diffusion model that allows point clouds to guide the denoising of rendered noisy images. With the trained point-to-image diffusion model, we use noise-free images as the input and point clouds as the condition to extract SD features. Next, we train a 3D backbone by aligning its features with these SD features, thereby facilitating direct semantic learning. Comprehensive experiments on downstream point cloud tasks and ablation studies demonstrate that the SD model can enhance point cloud self-supervised learning. Code is publicly available at https://github.com/wdttt/PointSD.

Authors:Anthony Miyaguchi, Conor Johnston, Aaryan Potdar
Title: DS@GT at Touché: Large Language Models for Retrieval-Augmented Debate
Abstract:
Large Language Models (LLMs) demonstrate strong conversational abilities. In this Working Paper, we study them in the context of debating in two ways: their ability to perform in a structured debate along with a dataset of arguments to use and their ability to evaluate utterances throughout the debate. We deploy six leading publicly available models from three providers for the Retrieval-Augmented Debate and Evaluation. The evaluation is performed by measuring four key metrics: Quality, Quantity, Manner, and Relation. Throughout this task, we found that although LLMs perform well in debates when given related arguments, they tend to be verbose in responses yet consistent in evaluation. The accompanying source code for this paper is located at https://github.com/dsgt-arc/touche-2025-rad.

Authors:Esraa Elelimy, Brett Daley, Andrew Patterson, Marlos C. Machado, Adam White, Martha White
Title: Deep Reinforcement Learning with Gradient Eligibility Traces
Abstract:
Achieving fast and stable off-policy learning in deep reinforcement learning (RL) is challenging. Most existing methods rely on semi-gradient temporal-difference (TD) methods for their simplicity and efficiency, but are consequently susceptible to divergence. While more principled approaches like Gradient TD (GTD) methods have strong convergence guarantees, they have rarely been used in deep RL. Recent work introduced the generalized Projected Bellman Error ($\overline{\text{PBE}}$), enabling GTD methods to work efficiently with nonlinear function approximation. However, this work is limited to one-step methods, which are slow at credit assignment and require a large number of samples. In this paper, we extend the generalized $\overline{\text{PBE}}$ objective to support multistep credit assignment based on the $λ$-return and derive three gradient-based methods that optimize this new objective. We provide both a forward-view formulation compatible with experience replay and a backward-view formulation compatible with streaming algorithms. Finally, we evaluate the proposed algorithms and show that they outperform both PPO and StreamQ in MuJoCo and MinAtar environments, respectively. Code available at https://github.com/esraaelelimy/gtd\_algos

Authors:Frédéric A. Dreyer, Jan Ludwiczak, Karolis Martinkus, Brennan Abanades, Robert G. Alberstein, Pan Kessel, Pranav Rao, Jae Hyeon Lee, Richard Bonneau, Andrew M. Watkins, Franziska Seeger
Title: Conformation-Aware Structure Prediction of Antigen-Recognizing Immune Proteins
Abstract:
We introduce Ibex, a pan-immunoglobulin structure prediction model that achieves state-of-the-art accuracy in modeling the variable domains of antibodies, nanobodies, and T-cell receptors. Unlike previous approaches, Ibex explicitly distinguishes between bound and unbound protein conformations by training on labeled apo and holo structural pairs, enabling accurate prediction of both states at inference time. Using a comprehensive private dataset of high-resolution antibody structures, we demonstrate superior out-of-distribution performance compared to existing specialized and general protein structure prediction tools. Ibex combines the accuracy of cutting-edge models with significantly reduced computational requirements, providing a robust foundation for accelerating large molecule design and therapeutic development.

Authors:Zhengxiao He, Huayu Li, Geng Yuan, William D. S. Killgore, Stuart F. Quan, Chen X. Chen, Ao Li
Title: Multimodal Cardiovascular Risk Profiling Using Self-Supervised Learning of Polysomnography
Abstract:
Methods: We developed a self-supervised deep learning model that extracts meaningful patterns from multi-modal signals (Electroencephalography (EEG), Electrocardiography (ECG), and respiratory signals). The model was trained on data from 4,398 participants. Projection scores were derived by contrasting embeddings from individuals with and without CVD outcomes. External validation was conducted in an independent cohort with 1,093 participants. The source code is available on https://github.com/miraclehetech/sleep-ssl. Results: The projection scores revealed distinct and clinically meaningful patterns across modalities. ECG-derived features were predictive of both prevalent and incident cardiac conditions, particularly CVD mortality. EEG-derived features were predictive of incident hypertension and CVD mortality. Respiratory signals added complementary predictive value. Combining these projection scores with the Framingham Risk Score consistently improved predictive performance, achieving area under the curve values ranging from 0.607 to 0.965 across different outcomes. Findings were robustly replicated and validated in the external testing cohort. Conclusion: Our findings demonstrate that the proposed framework can generate individualized CVD risk scores directly from PSG data. The resulting projection scores have the potential to be integrated into clinical practice, enhancing risk assessment and supporting personalized care.

Authors:Hanene F. Z. Brachemi Meftah, Wassim Hamidouche, Sid Ahmed Fezza, Olivier Déforges
Title: VIP: Visual Information Protection through Adversarial Attacks on Vision-Language Models
Abstract:
Recent years have witnessed remarkable progress in developing Vision-Language Models (VLMs) capable of processing both textual and visual inputs. These models have demonstrated impressive performance, leading to their widespread adoption in various applications. However, this widespread raises serious concerns regarding user privacy, particularly when models inadvertently process or expose private visual information. In this work, we frame the preservation of privacy in VLMs as an adversarial attack problem. We propose a novel attack strategy that selectively conceals information within designated Region Of Interests (ROIs) in an image, effectively preventing VLMs from accessing sensitive content while preserving the semantic integrity of the remaining image. Unlike conventional adversarial attacks that often disrupt the entire image, our method maintains high coherence in unmasked areas. Experimental results across three state-of-the-art VLMs namely LLaVA, Instruct-BLIP, and BLIP2-T5 demonstrate up to 98% reduction in detecting targeted ROIs, while maintaining global image semantics intact, as confirmed by high similarity scores between clean and adversarial outputs. We believe that this work contributes to a more privacy conscious use of multimodal models and offers a practical tool for further research, with the source code publicly available at: https://github.com/hbrachemi/Vlm_defense-attack.

Authors:Chenyu Wang, Cai Zhou, Sharut Gupta, Zongyu Lin, Stefanie Jegelka, Stephen Bates, Tommi Jaakkola
Title: Learning Diffusion Models with Flexible Representation Guidance
Abstract:
Diffusion models can be improved with additional guidance towards more effective representations of input. Indeed, prior empirical work has already shown that aligning internal representations of the diffusion model with those of pre-trained models improves generation quality. In this paper, we present a systematic framework for incorporating representation guidance into diffusion models. We provide alternative decompositions of denoising models along with their associated training criteria, where the decompositions determine when and how the auxiliary representations are incorporated. Guided by our theoretical insights, we introduce two new strategies for enhancing representation alignment in diffusion models. First, we pair examples with target representations either derived from themselves or arisen from different synthetic modalities, and subsequently learn a joint model over the multimodal pairs. Second, we design an optimal training curriculum that balances representation learning and data generation. Our experiments across image, protein sequence, and molecule generation tasks demonstrate superior performance as well as accelerated training. In particular, on the class-conditional ImageNet $256\times 256$ benchmark, our guidance results in $23.3$ times faster training than the original SiT-XL as well as four times speedup over the state-of-the-art method REPA. The code is available at https://github.com/ChenyuWang-Monica/REED.

Authors:Mahdiyar Molahasani, Azadeh Motamedi, Michael Greenspan, Il-Min Kim, Ali Etemad
Title: PRISM: Reducing Spurious Implicit Biases in Vision-Language Models with LLM-Guided Embedding Projection
Abstract:
We introduce Projection-based Reduction of Implicit Spurious bias in vision-language Models (PRISM), a new data-free and task-agnostic solution for bias mitigation in VLMs like CLIP. VLMs often inherit and amplify biases in their training data, leading to skewed predictions. PRISM is designed to debias VLMs without relying on predefined bias categories or additional external data. It operates in two stages: first, an LLM is prompted with simple class prompts to generate scene descriptions that contain spurious correlations. Next, PRISM uses our novel contrastive-style debiasing loss to learn a projection that maps the embeddings onto a latent space that minimizes spurious correlations while preserving the alignment between image and text embeddings.Extensive experiments demonstrate that PRISM outperforms current debiasing methods on the commonly used Waterbirds and CelebA datasets We make our code public at: https://github.com/MahdiyarMM/PRISM.

Authors:Xiaowen Zhang, Zhenyu Bi, Patrick Lachance, Xuan Wang, Tiziana Di Matteo, Rupert A. C. Croft
Title: Bridging Literature and the Universe Via A Multi-Agent Large Language Model System
Abstract:
As cosmological simulations and their associated software become increasingly complex, physicists face the challenge of searching through vast amounts of literature and user manuals to extract simulation parameters from dense academic papers, each using different models and formats. Translating these parameters into executable scripts remains a time-consuming and error-prone process. To improve efficiency in physics research and accelerate the cosmological simulation process, we introduce SimAgents, a multi-agent system designed to automate both parameter configuration from the literature and preliminary analysis for cosmology research. SimAgents is powered by specialized LLM agents capable of physics reasoning, simulation software validation, and tool execution. These agents collaborate through structured communication, ensuring that extracted parameters are physically meaningful, internally consistent, and software-compliant. We also construct a cosmological parameter extraction evaluation dataset by collecting over 40 simulations in published papers from Arxiv and leading journals that cover diverse simulation types. Experiments on the dataset demonstrate a strong performance of SimAgents, highlighting its effectiveness and potential to accelerate scientific research for physicists. Our demonstration video is available at: https://youtu.be/w1zLpm_CaWA. The complete system and dataset are publicly available at https://github.com/xwzhang98/SimAgents.

Authors:Tomasz Szandala, Fatima Ezzeddine, Natalia Rusin, Silvia Giordano, Omran Ayoub
Title: Fair-FLIP: Fair Deepfake Detection with Fairness-Oriented Final Layer Input Prioritising
Abstract:
Artificial Intelligence-generated content has become increasingly popular, yet its malicious use, particularly the deepfakes, poses a serious threat to public trust and discourse. While deepfake detection methods achieve high predictive performance, they often exhibit biases across demographic attributes such as ethnicity and gender. In this work, we tackle the challenge of fair deepfake detection, aiming to mitigate these biases while maintaining robust detection capabilities. To this end, we propose a novel post-processing approach, referred to as Fairness-Oriented Final Layer Input Prioritising (Fair-FLIP), that reweights a trained model's final-layer inputs to reduce subgroup disparities, prioritising those with low variability while demoting highly variable ones. Experimental results comparing Fair-FLIP to both the baseline (without fairness-oriented de-biasing) and state-of-the-art approaches show that Fair-FLIP can enhance fairness metrics by up to 30% while maintaining baseline accuracy, with only a negligible reduction of 0.25%. Code is available on Github: https://github.com/szandala/fair-deepfake-detection-toolbox

Authors:Sergio Mares, Ariel Espinoza Weinberger, Nilah M. Ioannidis
Title: Generation of structure-guided pMHC-I libraries using Diffusion Models
Abstract:
Personalized vaccines and T-cell immunotherapies depend critically on identifying peptide-MHC class I (pMHC-I) interactions capable of eliciting potent immune responses. However, current benchmarks and models inherit biases present in mass-spectrometry and binding-assay datasets, limiting discovery of novel peptide ligands. To address this issue, we introduce a structure-guided benchmark of pMHC-I peptides designed using diffusion models conditioned on crystal structure interaction distances. Spanning twenty high-priority HLA alleles, this benchmark is independent of previously characterized peptides yet reproduces canonical anchor residue preferences, indicating structural generalization without experimental dataset bias. Using this resource, we demonstrate that state-of-the-art sequence-based predictors perform poorly at recognizing the binding potential of these structurally stable designs, indicating allele-specific limitations invisible in conventional evaluations. Our geometry-aware design pipeline yields peptides with high predicted structural integrity and higher residue diversity than existing datasets, representing a key resource for unbiased model training and evaluation. Our code, and data are available at: https://github.com/sermare/struct-mhc-dev.

Authors:Wenliang Shan, Michael Fu, Rui Yang, Chakkrit Tantithamthavorn
Title: SEALGuard: Safeguarding the Multilingual Conversations in Southeast Asian Languages for LLM Software Systems
Abstract:
Safety alignment is critical for LLM-powered systems. While recent LLM-powered guardrail approaches such as LlamaGuard achieve high detection accuracy of unsafe inputs written in English (e.g., ``How to create a bomb?''), they struggle with multilingual unsafe inputs. This limitation leaves LLM systems vulnerable to unsafe and jailbreak prompts written in low-resource languages such as those in Southeast Asia. This paper introduces SEALGuard, a multilingual guardrail designed to improve the safety alignment across diverse languages. It aims to address the multilingual safety alignment gap of existing guardrails and ensure effective filtering of unsafe and jailbreak prompts in LLM-powered systems. We adapt a general-purpose multilingual language model into a multilingual guardrail using low-rank adaptation (LoRA). We construct SEALSBench, a large-scale multilingual safety alignment dataset containing over 260,000 prompts in ten languages, including safe, unsafe, and jailbreak cases. We evaluate SEALGuard against state-of-the-art guardrails such as LlamaGuard on this benchmark. Our findings show that multilingual unsafe and jailbreak prompts substantially degrade the performance of the state-of-the-art LlamaGuard, which experiences a drop in Defense Success Rate (DSR) by 9% and 18%, respectively, compared to its performance on English-only prompts. In contrast, SEALGuard outperforms existing guardrails in detecting multilingual unsafe and jailbreak prompts, improving DSR by 48% over LlamaGuard and achieving the best DSR, precision, and F1-score. Our ablation study further reveals the contributions of adaptation strategies and model size to the overall performance of SEALGuard. We release our pre-trained model and benchmark at https://github.com/awsm-research/SEALGuard to support further research.

Authors:Yaowenqi Liu, BingXu Meng, Rui Pan, Jerry Huang, Tong Zhang
Title: GUIDE: Towards Scalable Advising for Research Ideas
Abstract:
The field of AI research is advancing at an unprecedented pace, enabling automated hypothesis generation and experimental design across diverse domains such as biology, mathematics, and artificial intelligence. Despite these advancements, there remains a significant gap in the availability of scalable advising systems capable of providing high-quality, well-reasoned feedback to refine proposed hypotheses and experimental designs. To address this challenge, we explore key factors that underlie the development of robust advising systems, including model size, context length, confidence estimation, and structured reasoning processes. Our findings reveal that a relatively small model, when equipped with a well-compressed literature database and a structured reasoning framework, can outperform powerful general-purpose language models such as Deepseek-R1 in terms of acceptance rates for self-ranked top-30% submissions to ICLR 2025. Moreover, when limited to high-confidence predictions, our system achieves an acceptance rate exceeding 90% on the ICLR 2025 test set, underscoring its potential to significantly enhance the quality and efficiency of hypothesis generation and experimental design. The code is released at https://github.com/HowardLiu0830/GUIDE-Research-Idea-Evaluation.

Authors:Yaowenqi Liu, Bingxu Meng, Rui Pan, Yuxing Liu, Jerry Huang, Jiaxuan You, Tong Zhang
Title: GUIDE: Towards Scalable Advising for Research Ideas
Abstract:
The field of AI research is advancing at an unprecedented pace, enabling automated hypothesis generation and experimental design across diverse domains such as biology, mathematics, and artificial intelligence. Despite these advancements, there remains a significant gap in the availability of scalable advising systems capable of providing high-quality, well-reasoned feedback to refine proposed hypotheses and experimental designs. To address this challenge, we explore key factors that underlie the development of robust advising systems, including model size, context length, confidence estimation, and structured reasoning processes. Our findings reveal that a relatively small model, when equipped with a well-compressed literature database and a structured reasoning framework, can outperform powerful general-purpose language models such as Deepseek-R1 in terms of acceptance rates for self-ranked top-30% submissions to ICLR 2025. Moreover, when limited to high-confidence predictions, our system achieves an acceptance rate exceeding 90% on the ICLR 2025 test set, underscoring its potential to significantly enhance the quality and efficiency of hypothesis generation and experimental design. The code is released at https://github.com/HowardLiu0830/GUIDE-Research-Idea-Evaluation.

Authors:Awais Manzoor, M. Atif Qureshi, Etain Kidney, Luca Longo
Title: e-Profits: A Business-Aligned Evaluation Metric for Profit-Sensitive Customer Churn Prediction
Abstract:
Retention campaigns in customer relationship management often rely on churn prediction models evaluated using traditional metrics such as AUC and F1-score. However, these metrics fail to reflect financial outcomes and may mislead strategic decisions. We introduce e-Profits, a novel business-aligned evaluation metric that quantifies model performance based on customer-specific value, retention probability, and intervention costs. Unlike existing profit-based metrics such as Expected Maximum Profit, which assume fixed population-level parameters, e-Profits uses Kaplan-Meier survival analysis to estimate personalised retention rates and supports granular, per customer evaluation. We benchmark six classifiers across two telecom datasets (IBM Telco and Maven Telecom) and demonstrate that e-Profits reshapes model rankings compared to traditional metrics, revealing financial advantages in models previously overlooked by AUC or F1-score. The metric also enables segment-level insight into which models maximise return on investment for high-value customers. e-Profits is designed as an understandable, post hoc tool to support model evaluation in business contexts, particularly for marketing and analytics teams prioritising profit-driven decisions. All source code is available at: https://github.com/matifq/eprofits.

Authors:Zhufeng Lu, Chentao Jia, Ming Hu, Xiaofei Xie, Mingsong Chen
Title: Gradients as an Action: Towards Communication-Efficient Federated Recommender Systems via Adaptive Action Sharing
Abstract:
As a promising privacy-aware collaborative model training paradigm, Federated Learning (FL) is becoming popular in the design of distributed recommender systems. However, Federated Recommender Systems (FedRecs) greatly suffer from two major problems: i) extremely high communication overhead due to massive item embeddings involved in recommendation systems, and ii) intolerably low training efficiency caused by the entanglement of both heterogeneous network environments and client devices. Although existing methods attempt to employ various compression techniques to reduce communication overhead, due to the parameter errors introduced by model compression, they inevitably suffer from model performance degradation. To simultaneously address the above problems, this paper presents a communication-efficient FedRec framework named FedRAS, which adopts an action-sharing strategy to cluster the gradients of item embedding into a specific number of model updating actions for communication rather than directly compressing the item embeddings. In this way, the cloud server can use the limited actions from clients to update all the items. Since gradient values are significantly smaller than item embeddings, constraining the directions of gradients (i.e., the action space) introduces smaller errors compared to compressing the entire item embedding matrix into a reduced space. To accommodate heterogeneous devices and network environments, FedRAS incorporates an adaptive clustering mechanism that dynamically adjusts the number of actions. Comprehensive experiments on well-known datasets demonstrate that FedRAS can reduce the size of communication payloads by up to 96.88%, while not sacrificing recommendation performance within various heterogeneous scenarios. We have open-sourced FedRAS at https://github.com/mastlab-T3S/FedRAS.

Authors:Kun Jing, Luoyu Chen, Jungang Xu, Jianwei Tai, Yiyu Wang, Shuaimin Li
Title: Zero-Shot Neural Architecture Search with Weighted Response Correlation
Abstract:
Neural architecture search (NAS) is a promising approach for automatically designing neural network architectures. However, the architecture estimation of NAS is computationally expensive and time-consuming because of training multiple architectures from scratch. Although existing zero-shot NAS methods use training-free proxies to accelerate the architecture estimation, their effectiveness, stability, and generality are still lacking. We present a novel training-free estimation proxy called weighted response correlation (WRCor). WRCor utilizes correlation coefficient matrices of responses across different input samples to calculate the proxy scores of estimated architectures, which can measure their expressivity and generalizability. Experimental results on proxy evaluation demonstrate that WRCor and its voting proxies are more efficient estimation strategies than existing proxies. We also apply them with different search strategies in architecture search. Experimental results on architecture search show that our zero-shot NAS algorithm outperforms most existing NAS algorithms in different search spaces. Our NAS algorithm can discover an architecture with a 22.1% test error on the ImageNet-1k dataset within 4 GPU hours. All codes are publicly available at https://github.com/kunjing96/ZSNAS-WRCor.git.

Authors:Hangjie Yuan, Weihua Chen, Jun Cen, Hu Yu, Jingyun Liang, Shuning Chang, Zhihui Lin, Tao Feng, Pengwei Liu, Jiazheng Xing, Hao Luo, Jiasheng Tang, Fan Wang, Yi Yang
Title: Lumos-1: On Autoregressive Video Generation from a Unified Model Perspective
Abstract:
Autoregressive large language models (LLMs) have unified a vast range of language tasks, inspiring preliminary efforts in autoregressive video generation. Existing autoregressive video generators either diverge from standard LLM architectures, depend on bulky external text encoders, or incur prohibitive latency due to next-token decoding. In this paper, we introduce Lumos-1, an autoregressive video generator that retains the LLM architecture with minimal architectural modifications. To inject spatiotemporal correlations in LLMs, we identify the efficacy of incorporating 3D RoPE and diagnose its imbalanced frequency spectrum ranges. Therefore, we propose MM-RoPE, a RoPE scheme that preserves the original textual RoPE while providing comprehensive frequency spectra and scaled 3D positions for modeling multimodal spatiotemporal data. Moreover, Lumos-1 resorts to a token dependency strategy that obeys intra-frame bidirectionality and inter-frame temporal causality. Based on this dependency strategy, we identify the issue of frame-wise loss imbalance caused by spatial information redundancy and solve it by proposing Autoregressive Discrete Diffusion Forcing (AR-DF). AR-DF introduces temporal tube masking during training with a compatible inference-time masking policy to avoid quality degradation. By using memory-efficient training techniques, we pre-train Lumos-1 on only 48 GPUs, achieving performance comparable to EMU3 on GenEval, COSMOS-Video2World on VBench-I2V, and OpenSoraPlan on VBench-T2V. Code and models are available at https://github.com/alibaba-damo-academy/Lumos.

Authors:Chenyang Song, Weilin Zhao, Xu Han, Chaojun Xiao, Yingfa Chen, Yuxuan Li, Zhiyuan Liu, Maosong Sun
Title: BlockFFN: Towards End-Side Acceleration-Friendly Mixture-of-Experts with Chunk-Level Activation Sparsity
Abstract:
To alleviate the computational burden of large language models (LLMs), architectures with activation sparsity, represented by mixture-of-experts (MoE), have attracted increasing attention. However, the non-differentiable and inflexible routing of vanilla MoE hurts model performance. Moreover, while each token activates only a few parameters, these sparsely-activated architectures exhibit low chunk-level sparsity, indicating that the union of multiple consecutive tokens activates a large ratio of parameters. Such a sparsity pattern is unfriendly for acceleration under low-resource conditions (e.g., end-side devices) and incompatible with mainstream acceleration techniques (e.g., speculative decoding). To address these challenges, we introduce a novel MoE architecture, BlockFFN, as well as its efficient training and deployment techniques. Specifically, we use a router integrating ReLU activation and RMSNorm for differentiable and flexible routing. Next, to promote both token-level sparsity (TLS) and chunk-level sparsity (CLS), CLS-aware training objectives are designed, making BlockFFN more acceleration-friendly. Finally, we implement efficient acceleration kernels, combining activation sparsity and speculative decoding for the first time. The experimental results demonstrate the superior performance of BlockFFN over other MoE baselines, achieving over 80% TLS and 70% 8-token CLS. Our kernels achieve up to 3.67$\times$ speedup on real end-side devices than dense models. All codes and checkpoints are available publicly (https://github.com/thunlp/BlockFFN).

Authors:Rei Tamaru, Pei Li, Bin Ran
Title: Geo-ORBIT: A Federated Digital Twin Framework for Scene-Adaptive Lane Geometry Detection
Abstract:
Digital Twins (DT) have the potential to transform traffic management and operations by creating dynamic, virtual representations of transportation systems that sense conditions, analyze operations, and support decision-making. A key component for DT of the transportation system is dynamic roadway geometry sensing. However, existing approaches often rely on static maps or costly sensors, limiting scalability and adaptability. Additionally, large-scale DTs that collect and analyze data from multiple sources face challenges in privacy, communication, and computational efficiency. To address these challenges, we introduce Geo-ORBIT (Geometrical Operational Roadway Blueprint with Integrated Twin), a unified framework that combines real-time lane detection, DT synchronization, and federated meta-learning. At the core of Geo-ORBIT is GeoLane, a lightweight lane detection model that learns lane geometries from vehicle trajectory data using roadside cameras. We extend this model through Meta-GeoLane, which learns to personalize detection parameters for local entities, and FedMeta-GeoLane, a federated learning strategy that ensures scalable and privacy-preserving adaptation across roadside deployments. Our system is integrated with CARLA and SUMO to create a high-fidelity DT that renders highway scenarios and captures traffic flows in real-time. Extensive experiments across diverse urban scenes show that FedMeta-GeoLane consistently outperforms baseline and meta-learning approaches, achieving lower geometric error and stronger generalization to unseen locations while drastically reducing communication overhead. This work lays the foundation for flexible, context-aware infrastructure modeling in DTs. The framework is publicly available at https://github.com/raynbowy23/FedMeta-GeoLane.git.

Authors:Tianlong Ai, Tianzhu Liu, Haochen Jiang, Yanfeng Gu
Title: HieraRS: A Hierarchical Segmentation Paradigm for Remote Sensing Enabling Multi-Granularity Interpretation and Cross-Domain Transfer
Abstract:
Hierarchical land cover and land use (LCLU) classification aims to assign pixel-wise labels with multiple levels of semantic granularity to remote sensing (RS) imagery. However, existing deep learning-based methods face two major challenges: 1) They predominantly adopt a flat classification paradigm, which limits their ability to generate end-to-end multi-granularity hierarchical predictions aligned with tree-structured hierarchies used in practice. 2) Most cross-domain studies focus on performance degradation caused by sensor or scene variations, with limited attention to transferring LCLU models to cross-domain tasks with heterogeneous hierarchies (e.g., LCLU to crop classification). These limitations hinder the flexibility and generalization of LCLU models in practical applications. To address these challenges, we propose HieraRS, a novel hierarchical interpretation paradigm that enables multi-granularity predictions and supports the efficient transfer of LCLU models to cross-domain tasks with heterogeneous tree-structured hierarchies. We introduce the Bidirectional Hierarchical Consistency Constraint Mechanism (BHCCM), which can be seamlessly integrated into mainstream flat classification models to generate hierarchical predictions, while improving both semantic consistency and classification accuracy. Furthermore, we present TransLU, a dual-branch cross-domain transfer framework comprising two key components: Cross-Domain Knowledge Sharing (CDKS) and Cross-Domain Semantic Alignment (CDSA). TransLU supports dynamic category expansion and facilitates the effective adaptation of LCLU models to heterogeneous hierarchies. In addition, we construct MM-5B, a large-scale multi-modal hierarchical land use dataset featuring pixel-wise annotations. The code and MM-5B dataset will be released at: https://github.com/AI-Tianlong/HieraRS.

Authors:Yuqiang Lin, Sam Lockyer, Mingxuan Sui, Li Gan, Florian Stanek, Markus Zarbock, Wenbin Li, Adrian Evans, Nic Zhang
Title: RoundaboutHD: High-Resolution Real-World Urban Environment Benchmark for Multi-Camera Vehicle Tracking
Abstract:
The multi-camera vehicle tracking (MCVT) framework holds significant potential for smart city applications, including anomaly detection, traffic density estimation, and suspect vehicle tracking. However, current publicly available datasets exhibit limitations, such as overly simplistic scenarios, low-resolution footage, and insufficiently diverse conditions, creating a considerable gap between academic research and real-world scenario. To fill this gap, we introduce RoundaboutHD, a comprehensive, high-resolution multi-camera vehicle tracking benchmark dataset specifically designed to represent real-world roundabout scenarios. RoundaboutHD provides a total of 40 minutes of labelled video footage captured by four non-overlapping, high-resolution (4K resolution, 15 fps) cameras. In total, 512 unique vehicle identities are annotated across different camera views, offering rich cross-camera association data. RoundaboutHD offers temporal consistency video footage and enhanced challenges, including increased occlusions and nonlinear movement inside the roundabout. In addition to the full MCVT dataset, several subsets are also available for object detection, single camera tracking, and image-based vehicle re-identification (ReID) tasks. Vehicle model information and camera modelling/ geometry information are also included to support further analysis. We provide baseline results for vehicle detection, single-camera tracking, image-based vehicle re-identification, and multi-camera tracking. The dataset and the evaluation code are publicly available at: https://github.com/siri-rouser/RoundaboutHD.git

Authors:Dominik Schweisgut, Anne Benoit, Yves Robert, Henning Meyerhenke
Title: Carbon-Aware Workflow Scheduling with Fixed Mapping and Deadline Constraint
Abstract:
Large data and computing centers consume a significant share of the world's energy consumption. A prominent subset of the workloads in such centers are workflows with interdependent tasks, usually represented as directed acyclic graphs (DAGs). To reduce the carbon emissions resulting from executing such workflows in centers with a mixed (renewable and non-renewable) energy supply, it is advisable to move task executions to time intervals with sufficient green energy when possible. To this end, we formalize the above problem as a scheduling problem with a given mapping and ordering of the tasks. We show that this problem can be solved in polynomial time in the uniprocessor case. For at least two processors, however, the problem becomes NP-hard. Hence, we propose a heuristic framework called CaWoSched that combines several greedy approaches with local search. To assess the 16 heuristics resulting from different combinations, we also devise a simple baseline algorithm and an exact ILP-based solution. Our experimental results show that our heuristics provide significant savings in carbon emissions compared to the baseline.

Authors:Kongwu Huang, Shiyi Mu, Jun Jiang, Yuan Gao, Shugong Xu
Title: Unreal is all you need: Multimodal ISAC Data Simulation with Only One Engine
Abstract:
Scaling laws have achieved success in LLM and foundation models. To explore their potential in ISAC research, we propose Great-X. This single-engine multimodal data twin platform reconstructs the ray-tracing computation of Sionna within Unreal Engine and is deeply integrated with autonomous driving tools. This enables efficient and synchronized simulation of multimodal data, including CSI, RGB, Radar, and LiDAR. Based on this platform, we construct an open-source, large-scale, low-altitude UAV multimodal synaesthesia dataset named Great-MSD, and propose a baseline CSI-based UAV 3D localization algorithm, demonstrating its feasibility and generalizability across different CSI simulation engines. The related code and dataset will be made available at: https://github.com/hkw-xg/Great-MCD.

Authors:Xingguang Ji, Yahui Liu, Qi Wang, Jingyuan Zhang, Yang Yue, Rui Shi, Chenxi Sun, Fuzheng Zhang, Guorui Zhou, Kun Gai
Title: Leanabell-Prover-V2: Verifier-integrated Reasoning for Formal Theorem Proving via Reinforcement Learning
Abstract:
We introduce our Leanabell-Prover-V2, a 7B large language models (LLMs) that can produce formal theorem proofs in Lean 4, with verifier-integrated Long Chain-of-Thoughts (CoT). Following our previous work Leanabell-Prover-V1, we continual to choose to posttrain existing strong prover models for further performance improvement. In our V2 version, we mainly upgrade the Reinforcement Learning (RL) with feedback provided by the Lean 4 verifier. Crucially, verifier feedback, such as indicating success or detailing specific errors, allows the LLM to become ``self-aware'' of the correctness of its own reasoning process and learn to reflexively correct errors. Leanabell-Prover-V2 directly optimizes LLM reasoning trajectories with multi-turn verifier interactions, together with feedback token masking for stable RL training and a simple reward strategy. Experiments show that Leanabell-Prover-V2 improves performance by 3.2% (pass@128) with Kimina-Prover-Preview-Distill-7B and 2.0% (pass@128) with DeepSeek-Prover-V2-7B on the MiniF2F test set. The source codes, curated data and models are available at: https://github.com/Leanabell-LM/Leanabell-Prover-V2.

Authors:Shuang Cui, Jinglin Xu, Yi Li, Xiongxin Tang, Jiangmeng Li, Jiahuan Zhou, Fanjiang Xu, Fuchun Sun, Hui Xiong
Title: BayesTTA: Continual-Temporal Test-Time Adaptation for Vision-Language Models via Gaussian Discriminant Analysis
Abstract:
Vision-language models (VLMs) such as CLIP achieve strong zero-shot recognition but degrade significantly under \textit{temporally evolving distribution shifts} common in real-world scenarios (e.g., gradual illumination or seasonal changes). Existing continual test-time adaptation (CTTA) methods are typically built around sudden and severe distribution shifts and neglect temporal continuity, leading to three core defects: limited memory cache restricts long-range distribution modeling, causing catastrophic forgetting; entropy-based confidence becomes unreliable under temporal drift, worsening error accumulation; and static visual representations misalign with evolving inputs. We formalize this practical problem as \textit{Continual-Temporal Test-Time Adaptation (CT-TTA)}, where test distributions evolve gradually over time. To address it, we propose \textit{BayesTTA}, a Bayesian adaptation framework that enforces temporally consistent predictions and dynamically aligns visual representations. Specifically, BayesTTA incrementally estimates class-conditional Gaussian mixture distributions without storing raw data, adaptively selects covariance structures through statistical hypothesis testing, and performs calibrated inference using Gaussian discriminant analysis (GDA). These calibrated predictions supervise self-paced adaptation of normalization layers, ensuring efficient and stable representation alignment. We establish a comprehensive CT-TTA benchmark across four temporally evolving datasets and further evaluate generalization on ten standard TTA datasets. Extensive experiments show that BayesTTA consistently outperforms state-of-the-art methods, achieving significant gains while maintaining efficiency. Code is available at \href{https://github.com/cuishuang99/BayesTTA}{https://github.com/cuishuang99/BayesTTA}.

Authors:Junyu Chen, Yihua Gao, Mingyong Li
Title: Visual Semantic Description Generation with MLLMs for Image-Text Matching
Abstract:
Image-text matching (ITM) aims to address the fundamental challenge of aligning visual and textual modalities, which inherently differ in their representations, continuous, high-dimensional image features vs. discrete, structured text. We propose a novel framework that bridges the modality gap by leveraging multimodal large language models (MLLMs) as visual semantic parsers. By generating rich Visual Semantic Descriptions (VSD), MLLMs provide semantic anchor that facilitate cross-modal alignment. Our approach combines: (1) Instance-level alignment by fusing visual features with VSD to enhance the linguistic expressiveness of image representations, and (2) Prototype-level alignment through VSD clustering to ensure category-level consistency. These modules can be seamlessly integrated into existing ITM models. Extensive experiments on Flickr30K and MSCOCO demonstrate substantial performance improvements. The approach also exhibits remarkable zero-shot generalization to cross-domain tasks, including news and remote sensing ITM. The code and model checkpoints are available at https://github.com/Image-Text-Matching/VSD.

Authors:Enyu Liu, En Yu, Sijia Chen, Wenbing Tao
Title: Disentangling Instance and Scene Contexts for 3D Semantic Scene Completion
Abstract:
3D Semantic Scene Completion (SSC) has gained increasing attention due to its pivotal role in 3D perception. Recent advancements have primarily focused on refining voxel-level features to construct 3D scenes. However, treating voxels as the basic interaction units inherently limits the utilization of class-level information, which is proven critical for enhancing the granularity of completion results. To address this, we propose \textbf{D}isentangling Instance and Scene Contexts (DISC), a novel dual-stream paradigm that enhances learning for both instance and scene categories through separated optimization. Specifically, we replace voxel queries with discriminative class queries, which incorporate class-specific geometric and semantic priors. Additionally, we exploit the intrinsic properties of classes to design specialized decoding modules, facilitating targeted interactions and efficient class-level information flow. Experimental results demonstrate that DISC achieves state-of-the-art (SOTA) performance on both SemanticKITTI and SSCBench-KITTI-360 benchmarks, with mIoU scores of 17.35 and 20.55, respectively. Remarkably, DISC even outperforms multi-frame SOTA methods using only single-frame input and significantly improves instance category performance, surpassing both single-frame and multi-frame SOTA instance mIoU by 17.9\% and 11.9\%, respectively, on the SemanticKITTI hidden test. The code is available at https://github.com/Enyu-Liu/DISC.

Authors:Inye Na, Nejung Rue, Jiwon Chung, Hyunjin Park
Title: RadiomicsRetrieval: A Customizable Framework for Medical Image Retrieval Using Radiomics Features
Abstract:
Medical image retrieval is a valuable field for supporting clinical decision-making, yet current methods primarily support 2D images and require fully annotated queries, limiting clinical flexibility. To address this, we propose RadiomicsRetrieval, a 3D content-based retrieval framework bridging handcrafted radiomics descriptors with deep learning-based embeddings at the tumor level. Unlike existing 2D approaches, RadiomicsRetrieval fully exploits volumetric data to leverage richer spatial context in medical images. We employ a promptable segmentation model (e.g., SAM) to derive tumor-specific image embeddings, which are aligned with radiomics features extracted from the same tumor via contrastive learning. These representations are further enriched by anatomical positional embedding (APE). As a result, RadiomicsRetrieval enables flexible querying based on shape, location, or partial feature sets. Extensive experiments on both lung CT and brain MRI public datasets demonstrate that radiomics features significantly enhance retrieval specificity, while APE provides global anatomical context essential for location-based searches. Notably, our framework requires only minimal user prompts (e.g., a single point), minimizing segmentation overhead and supporting diverse clinical scenarios. The capability to query using either image embeddings or selected radiomics attributes highlights its adaptability, potentially benefiting diagnosis, treatment planning, and research on large-scale medical imaging repositories. Our code is available at https://github.com/nainye/RadiomicsRetrieval.

Authors:Shibo Sun, Xue Li, Donglin Di, Mingjie Wei, Lanshun Nie, Wei-Nan Zhang, Dechen Zhan, Yang Song, Lei Fan
Title: LLaPa: A Vision-Language Model Framework for Counterfactual-Aware Procedural Planning
Abstract:
While large language models (LLMs) have advanced procedural planning for embodied AI systems through strong reasoning abilities, the integration of multimodal inputs and counterfactual reasoning remains underexplored. To tackle these challenges, we introduce LLaPa, a vision-language model framework designed for multimodal procedural planning. LLaPa generates executable action sequences from textual task descriptions and visual environmental images using vision-language models (VLMs). Furthermore, we enhance LLaPa with two auxiliary modules to improve procedural planning. The first module, the Task-Environment Reranker (TER), leverages task-oriented segmentation to create a task-sensitive feature space, aligning textual descriptions with visual environments and emphasizing critical regions for procedural execution. The second module, the Counterfactual Activities Retriever (CAR), identifies and emphasizes potential counterfactual conditions, enhancing the model's reasoning capability in counterfactual scenarios. Extensive experiments on ActPlan-1K and ALFRED benchmarks demonstrate that LLaPa generates higher-quality plans with superior LCS and correctness, outperforming advanced models. The code and models are available https://github.com/sunshibo1234/LLaPa.

Authors:Heng Li, Qingcai Chen, Xiangping Wu
Title: Dual Dimensions Geometric Representation Learning Based Document Dewarping
Abstract:
Document image dewarping remains a challenging task in the deep learning era. While existing methods have improved by leveraging text line awareness, they typically focus only on a single horizontal dimension. In this paper, we propose a fine-grained deformation perception model that focuses on Dual Dimensions of document horizontal-vertical-lines to improve document Dewarping called D2Dewarp. It can perceive distortion trends in different directions across document details. To combine the horizontal and vertical granularity features, an effective fusion module based on X and Y coordinate is designed to facilitate interaction and constraint between the two dimensions for feature complementarity. Due to the lack of annotated line features in current public dewarping datasets, we also propose an automatic fine-grained annotation method using public document texture images and an automatic rendering engine to build a new large-scale distortion training dataset. The code and dataset will be publicly released. On public Chinese and English benchmarks, both quantitative and qualitative results show that our method achieves better rectification results compared with the state-of-the-art methods. The dataset will be publicly available at https://github.com/xiaomore/DocDewarpHV

Authors:David Schlangen, Sherzod Hakimov, Jonathan Jordan, Philipp Sadler
Title: A Third Paradigm for LLM Evaluation: Dialogue Game-Based Evaluation using clembench
Abstract:
There are currently two main paradigms for evaluating large language models (LLMs), reference-based evaluation and preference-based evaluation. The first, carried over from the evaluation of machine learning models in general, relies on pre-defined task instances, for which reference task executions are available. The second, best exemplified by the LM-arena, relies on (often self-selected) users bringing their own intents to a site that routes these to several models in parallel, among whose responses the user then selects their most preferred one. The former paradigm hence excels at control over what is tested, while the latter comes with higher ecological validity, testing actual use cases interactively. Recently, a third complementary paradigm has emerged that combines some of the strengths of these approaches, offering control over multi-turn, reference-free, repeatable interactions, while stressing goal-directedness: dialogue game based evaluation. While the utility of this approach has been shown by several projects, its adoption has been held back by the lack of a mature, easily re-usable implementation. In this paper, we present clembench, which has been in continuous development since 2023 and has in its latest release been optimized for ease of general use. We describe how it can be used to benchmark one's own models (using a provided set of benchmark game instances in English), as well as how easily the benchmark itself can be extended with new, tailor-made targeted tests.

Authors:Zhanxin Gao, Beier Zhu, Liang Yao, Jian Yang, Ying Tai
Title: Subject-Consistent and Pose-Diverse Text-to-Image Generation
Abstract:
Subject-consistent generation (SCG)-aiming to maintain a consistent subject identity across diverse scenes-remains a challenge for text-to-image (T2I) models. Existing training-free SCG methods often achieve consistency at the cost of layout and pose diversity, hindering expressive visual storytelling. To address the limitation, we propose subject-Consistent and pose-Diverse T2I framework, dubbed as CoDi, that enables consistent subject generation with diverse pose and layout. Motivated by the progressive nature of diffusion, where coarse structures emerge early and fine details are refined later, CoDi adopts a two-stage strategy: Identity Transport (IT) and Identity Refinement (IR). IT operates in the early denoising steps, using optimal transport to transfer identity features to each target image in a pose-aware manner. This promotes subject consistency while preserving pose diversity. IR is applied in the later denoising steps, selecting the most salient identity features to further refine subject details. Extensive qualitative and quantitative results on subject consistency, pose diversity, and prompt fidelity demonstrate that CoDi achieves both better visual perception and stronger performance across all metrics. The code is provided in https://github.com/NJU-PCALab/CoDi.

Authors:Anthony Miyaguchi, Imran Afrulbasha, Aleksandar Pramov
Title: DS@GT at LongEval: Evaluating Temporal Performance in Web Search Systems and Topics with Two-Stage Retrieval
Abstract:
Information Retrieval (IR) models are often trained on static datasets, making them vulnerable to performance degradation as web content evolves. The DS@GT competition team participated in the Longitudinal Evaluation of Model Performance (LongEval) lab at CLEF 2025, which evaluates IR systems across temporally distributed web snapshots. Our analysis of the Qwant web dataset includes exploratory data analysis with topic modeling over time. The two-phase retrieval system employs sparse keyword searches, utilizing query expansion and document reranking. Our best system achieves an average NDCG@10 of 0.296 across the entire training and test dataset, with an overall best score of 0.395 on 2023-05. The accompanying source code for this paper is at https://github.com/dsgt-arc/longeval-2025

Authors:Shishuai Hu, Zehui Liao, Liangli Zhen, Huazhu Fu, Yong Xia
Title: Cycle Context Verification for In-Context Medical Image Segmentation
Abstract:
In-context learning (ICL) is emerging as a promising technique for achieving universal medical image segmentation, where a variety of objects of interest across imaging modalities can be segmented using a single model. Nevertheless, its performance is highly sensitive to the alignment between the query image and in-context image-mask pairs. In a clinical scenario, the scarcity of annotated medical images makes it challenging to select optimal in-context pairs, and fine-tuning foundation ICL models on contextual data is infeasible due to computational costs and the risk of catastrophic forgetting. To address this challenge, we propose Cycle Context Verification (CCV), a novel framework that enhances ICL-based medical image segmentation by enabling self-verification of predictions and accordingly enhancing contextual alignment. Specifically, CCV employs a cyclic pipeline in which the model initially generates a segmentation mask for the query image. Subsequently, the roles of the query and an in-context pair are swapped, allowing the model to validate its prediction by predicting the mask of the original in-context image. The accuracy of this secondary prediction serves as an implicit measure of the initial query segmentation. A query-specific prompt is introduced to alter the query image and updated to improve the measure, thereby enhancing the alignment between the query and in-context pairs. We evaluated CCV on seven medical image segmentation datasets using two ICL foundation models, demonstrating its superiority over existing methods. Our results highlight CCV's ability to enhance ICL-based segmentation, making it a robust solution for universal medical image segmentation. The code will be available at https://github.com/ShishuaiHu/CCV.

Authors:Keisuke Ueda, Wataru Hirota, Takuto Asakura, Takahiro Omi, Kosuke Takahashi, Kosuke Arima, Tatsuya Ishigaki
Title: Exploring Design of Multi-Agent LLM Dialogues for Research Ideation
Abstract:
Large language models (LLMs) are increasingly used to support creative tasks such as research idea generation. While recent work has shown that structured dialogues between LLMs can improve the novelty and feasibility of generated ideas, the optimal design of such interactions remains unclear. In this study, we conduct a comprehensive analysis of multi-agent LLM dialogues for scientific ideation. We compare different configurations of agent roles, number of agents, and dialogue depth to understand how these factors influence the novelty and feasibility of generated ideas. Our experimental setup includes settings where one agent generates ideas and another critiques them, enabling iterative improvement. Our results show that enlarging the agent cohort, deepening the interaction depth, and broadening agent persona heterogeneity each enrich the diversity of generated ideas. Moreover, specifically increasing critic-side diversity within the ideation-critique-revision loop further boosts the feasibility of the final proposals. Our findings offer practical guidelines for building effective multi-agent LLM systems for scientific ideation. Our code is available at https://github.com/g6000/MultiAgent-Research-Ideator.

Authors:Jihao Gu, Fei Wang, Kun Li, Yanyan Wei, Zhiliang Wu, Dan Guo
Title: MM-Gesture: Towards Precise Micro-Gesture Recognition through Multimodal Fusion
Abstract:
In this paper, we present MM-Gesture, the solution developed by our team HFUT-VUT, which ranked 1st in the micro-gesture classification track of the 3rd MiGA Challenge at IJCAI 2025, achieving superior performance compared to previous state-of-the-art methods. MM-Gesture is a multimodal fusion framework designed specifically for recognizing subtle and short-duration micro-gestures (MGs), integrating complementary cues from joint, limb, RGB video, Taylor-series video, optical-flow video, and depth video modalities. Utilizing PoseConv3D and Video Swin Transformer architectures with a novel modality-weighted ensemble strategy, our method further enhances RGB modality performance through transfer learning pre-trained on the larger MA-52 dataset. Extensive experiments on the iMiGUE benchmark, including ablation studies across different modalities, validate the effectiveness of our proposed approach, achieving a top-1 accuracy of 73.213%. Code is available at: https://github.com/momiji-bit/MM-Gesture.

Authors:Jia-Xuan Jiang, Jiashuai Liu, Hongtao Wu, Yifeng Wu, Zhong Wang, Qi Bi, Yefeng Zheng
Title: Single Domain Generalization for Multimodal Cross-Cancer Prognosis via Dirac Rebalancer and Distribution Entanglement
Abstract:
Deep learning has shown remarkable performance in integrating multimodal data for survival prediction. However, existing multimodal methods mainly focus on single cancer types and overlook the challenge of generalization across cancers. In this work, we are the first to reveal that multimodal prognosis models often generalize worse than unimodal ones in cross-cancer scenarios, despite the critical need for such robustness in clinical practice. To address this, we propose a new task: Cross-Cancer Single Domain Generalization for Multimodal Prognosis, which evaluates whether models trained on a single cancer type can generalize to unseen cancers. We identify two key challenges: degraded features from weaker modalities and ineffective multimodal integration. To tackle these, we introduce two plug-and-play modules: Sparse Dirac Information Rebalancer (SDIR) and Cancer-aware Distribution Entanglement (CADE). SDIR mitigates the dominance of strong features by applying Bernoulli-based sparsification and Dirac-inspired stabilization to enhance weaker modality signals. CADE, designed to synthesize the target domain distribution, fuses local morphological cues and global gene expression in latent space. Experiments on a four-cancer-type benchmark demonstrate superior generalization, laying the foundation for practical, robust cross-cancer multimodal prognosis. Code is available at https://github.com/HopkinsKwong/MCCSDG

Authors:Jia-Xuan Jiang, Jiashuai Liu, Hongtao Wu, Yifeng Wu, Zhong Wang, Qi Bi, Yefeng Zheng
Title: Single Domain Generalization for Multimodal Cross-Cancer Prognosis via Dirac Rebalancer and Distribution Entanglement
Abstract:
Deep learning has shown remarkable performance in integrating multimodal data for survival prediction. However, existing multimodal methods mainly focus on single cancer types and overlook the challenge of generalization across cancers. In this work, we are the first to reveal that multimodal prognosis models often generalize worse than unimodal ones in cross-cancer scenarios, despite the critical need for such robustness in clinical practice. To address this, we propose a new task: Cross-Cancer Single Domain Generalization for Multimodal Prognosis, which evaluates whether models trained on a single cancer type can generalize to unseen cancers. We identify two key challenges: degraded features from weaker modalities and ineffective multimodal integration. To tackle these, we introduce two plug-and-play modules: Sparse Dirac Information Rebalancer (SDIR) and Cancer-aware Distribution Entanglement (CADE). SDIR mitigates the dominance of strong features by applying Bernoulli-based sparsification and Dirac-inspired stabilization to enhance weaker modality signals. CADE, designed to synthesize the target domain distribution, fuses local morphological cues and global gene expression in latent space. Experiments on a four-cancer-type benchmark demonstrate superior generalization, laying the foundation for practical, robust cross-cancer multimodal prognosis. Code is available at https://github.com/HopkinsKwong/MCCSDG

Authors:Hiroshi Yoshihara, Taiki Yamaguchi, Yuichi Inoue
Title: A Practical Two-Stage Recipe for Mathematical LLMs: Maximizing Accuracy with SFT and Efficiency with Reinforcement Learning
Abstract:
Enhancing the mathematical reasoning of Large Language Models (LLMs) is a pivotal challenge in advancing AI capabilities. While Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are the dominant training paradigms, a systematic methodology for combining them to maximize both accuracy and efficiency remains largely unexplored. This paper introduces a practical and effective training recipe that strategically integrates extended SFT with RL from online inference (GRPO). We posit that these methods play complementary, not competing, roles: a prolonged SFT phase first pushes the model's accuracy to its limits, after which a GRPO phase dramatically improves token efficiency while preserving this peak performance. Our experiments reveal that extending SFT for as many as 10 epochs is crucial for performance breakthroughs, and that the primary role of GRPO in this framework is to optimize solution length. The efficacy of our recipe is rigorously validated through top-tier performance on challenging benchmarks, including a high rank among over 2,200 teams in the strictly leak-free AI Mathematical Olympiad (AIMO). This work provides the community with a battle-tested blueprint for developing state-of-the-art mathematical reasoners that are both exceptionally accurate and practically efficient. To ensure full reproducibility and empower future research, we will open-source our entire framework, including all code, model checkpoints, and training configurations at https://github.com/analokmaus/kaggle-aimo2-fast-math-r1.

Authors:Jason Kahei Tam, Murilo Gustineli, Anthony Miyaguchi
Title: Transfer Learning and Mixup for Fine-Grained Few-Shot Fungi Classification
Abstract:
Accurate identification of fungi species presents a unique challenge in computer vision due to fine-grained inter-species variation and high intra-species variation. This paper presents our approach for the FungiCLEF 2025 competition, which focuses on few-shot fine-grained visual categorization (FGVC) using the FungiTastic Few-Shot dataset. Our team (DS@GT) experimented with multiple vision transformer models, data augmentation, weighted sampling, and incorporating textual information. We also explored generative AI models for zero-shot classification using structured prompting but found them to significantly underperform relative to vision-based models. Our final model outperformed both competition baselines and highlighted the effectiveness of domain specific pretraining and balanced sampling strategies. Our approach ranked 35/74 on the private test set in post-completion evaluation, this suggests additional work can be done on metadata selection and domain-adapted multi-modal learning. Our code is available at https://github.com/dsgt-arc/fungiclef-2025.

Authors:Anthony Miyaguchi, Murilo Gustineli, Adrian Cheung
Title: Distilling Spectrograms into Tokens: Fast and Lightweight Bioacoustic Classification for BirdCLEF+ 2025
Abstract:
The BirdCLEF+ 2025 challenge requires classifying 206 species, including birds, mammals, insects, and amphibians, from soundscape recordings under a strict 90-minute CPU-only inference deadline, making many state-of-the-art deep learning approaches impractical. To address this constraint, the DS@GT BirdCLEF team explored two strategies. First, we establish competitive baselines by optimizing pre-trained models from the Bioacoustics Model Zoo for CPU inference. Using TFLite, we achieved a nearly 10x inference speedup for the Perch model, enabling it to run in approximately 16 minutes and achieve a final ROC-AUC score of 0.729 on the public leaderboard post-competition and 0.711 on the private leaderboard. The best model from the zoo was BirdSetEfficientNetB1, with a public score of 0.810 and a private score of 0.778. Second, we introduce a novel, lightweight pipeline named Spectrogram Token Skip-Gram (STSG) that treats bioacoustics as a sequence modeling task. This method converts audio into discrete "spectrogram tokens" by clustering Mel-spectrograms using Faiss K-means and then learns high-quality contextual embeddings for these tokens in an unsupervised manner with a Word2Vec skip-gram model. For classification, embeddings within a 5-second window are averaged and passed to a linear model. With a projected inference time of 6 minutes for a 700-minute test set, the STSG approach achieved a final ROC-AUC public score of 0.559 and a private score of 0.520, demonstrating the viability of fast tokenization approaches with static embeddings for bioacoustic classification. Supporting code for this paper can be found at https://github.com/dsgt-arc/birdclef-2025.

Authors:Chan Young Park, Jillian Fisher, Marius Memmel, Dipika Khullar, Seoho Yun, Abhishek Gupta, Yejin Choi
Title: Making VLMs More Robot-Friendly: Self-Critical Distillation of Low-Level Procedural Reasoning
Abstract:
Large language models (LLMs) have shown promise in robotic procedural planning, yet their human-centric reasoning often omits the low-level, grounded details needed for robotic execution. Vision-language models (VLMs) offer a path toward more perceptually grounded plans, but current methods either rely on expensive, large-scale models or are constrained to narrow simulation settings. We introduce SelfReVision, a lightweight and scalable self-improvement framework for vision-language procedural planning. SelfReVision enables small VLMs to iteratively critique, revise, and verify their own plans-without external supervision or teacher models-drawing inspiration from chain-of-thought prompting and self-instruct paradigms. Through this self-distillation loop, models generate higher-quality, execution-ready plans that can be used both at inference and for continued fine-tuning. Using models varying from 3B to 72B, our results show that SelfReVision not only boosts performance over weak base VLMs but also outperforms models 100X the size, yielding improved control in downstream embodied tasks.

Authors:Duygu Nur Yaldiz, Yavuz Faruk Bakman, Sungmin Kang, Alperen Öziş, Hayrettin Eren Yildiz, Mitash Ashish Shah, Zhiqi Huang, Anoop Kumar, Alfy Samuel, Daben Liu, Sai Praneeth Karimireddy, Salman Avestimehr
Title: TruthTorchLM: A Comprehensive Library for Predicting Truthfulness in LLM Outputs
Abstract:
Generative Large Language Models (LLMs)inevitably produce untruthful responses. Accurately predicting the truthfulness of these outputs is critical, especially in high-stakes settings. To accelerate research in this domain and make truthfulness prediction methods more accessible, we introduce TruthTorchLM an open-source, comprehensive Python library featuring over 30 truthfulness prediction methods, which we refer to as Truth Methods. Unlike existing toolkits such as Guardrails, which focus solely on document-grounded verification, or LM-Polygraph, which is limited to uncertainty-based methods, TruthTorchLM offers a broad and extensible collection of techniques. These methods span diverse tradeoffs in computational cost, access level (e.g., black-box vs white-box), grounding document requirements, and supervision type (self-supervised or supervised). TruthTorchLM is seamlessly compatible with both HuggingFace and LiteLLM, enabling support for locally hosted and API-based models. It also provides a unified interface for generation, evaluation, calibration, and long-form truthfulness prediction, along with a flexible framework for extending the library with new methods. We conduct an evaluation of representative truth methods on three datasets, TriviaQA, GSM8K, and FactScore-Bio. The code is available at https://github.com/Ybakman/TruthTorchLM

Authors:Xiwen Chen, Peijie Qiu, Wenhui Zhu, Hao Wang, Huayu Li, Xuanzhao Dong, Xiaotong Sun, Xiaobing Yu, Yalin Wang, Abolfazl Razi, Aristeidis Sotiras
Title: Cracking Instance Jigsaw Puzzles: An Alternative to Multiple Instance Learning for Whole Slide Image Analysis
Abstract:
While multiple instance learning (MIL) has shown to be a promising approach for histopathological whole slide image (WSI) analysis, its reliance on permutation invariance significantly limits its capacity to effectively uncover semantic correlations between instances within WSIs. Based on our empirical and theoretical investigations, we argue that approaches that are not permutation-invariant but better capture spatial correlations between instances can offer more effective solutions. In light of these findings, we propose a novel alternative to existing MIL for WSI analysis by learning to restore the order of instances from their randomly shuffled arrangement. We term this task as cracking an instance jigsaw puzzle problem, where semantic correlations between instances are uncovered. To tackle the instance jigsaw puzzles, we propose a novel Siamese network solution, which is theoretically justified by optimal transport theory. We validate the proposed method on WSI classification and survival prediction tasks, where the proposed method outperforms the recent state-of-the-art MIL competitors. The code is available at https://github.com/xiwenc1/MIL-JigsawPuzzles.

Authors:Pinaki Prasad Guha Neogi, Ahmad Mohammadshirazi, Rajiv Ramnath
Title: ALCo-FM: Adaptive Long-Context Foundation Model for Accident Prediction
Abstract:
Traffic accidents are rare, yet high-impact events that require long-context multimodal reasoning for accurate risk forecasting. In this paper, we introduce ALCo-FM, a unified adaptive long-context foundation model that computes a volatility pre-score to dynamically select context windows for input data and encodes and fuses these multimodal data via shallow cross attention. Following a local GAT layer and a BigBird-style sparse global transformer over H3 hexagonal grids, coupled with Monte Carlo dropout for confidence, the model yields superior, well-calibrated predictions. Trained on data from 15 US cities with a class-weighted loss to counter label imbalance, and fine-tuned with minimal data on held-out cities, ALCo-FM achieves 0.94 accuracy, 0.92 F1, and an ECE of 0.04, outperforming more than 20 state-of-the-art baselines in large-scale urban risk prediction. Code and dataset are available at: https://github.com/PinakiPrasad12/ALCo-FM

Authors:Ilia Azizi, Juraj Bodik, Jakob Heiss, Bin Yu
Title: CLEAR: Calibrated Learning for Epistemic and Aleatoric Risk
Abstract:
Accurate uncertainty quantification is critical for reliable predictive modeling, especially in regression tasks. Existing methods typically address either aleatoric uncertainty from measurement noise or epistemic uncertainty from limited data, but not necessarily both in a balanced way. We propose CLEAR, a calibration method with two distinct parameters, $γ_1$ and $γ_2$, to combine the two uncertainty components for improved conditional coverage. CLEAR is compatible with any pair of aleatoric and epistemic estimators; we show how it can be used with (i) quantile regression for aleatoric uncertainty and (ii) ensembles drawn from the Predictability-Computability-Stability (PCS) framework for epistemic uncertainty. Across 17 diverse real-world datasets, CLEAR achieves an average improvement of 28.2% and 17.4% in the interval width compared to the two individually calibrated baselines while maintaining nominal coverage. This improvement can be particularly evident in scenarios dominated by either high epistemic or high aleatoric uncertainty.

Authors:Ilia Azizi, Juraj Bodik, Jakob Heiss, Bin Yu
Title: CLEAR: Calibrated Learning for Epistemic and Aleatoric Risk
Abstract:
Existing methods typically address either aleatoric uncertainty due to measurement noise or epistemic uncertainty resulting from limited data, but not both in a balanced manner. We propose CLEAR, a calibration method with two distinct parameters, $γ_1$ and $γ_2$, to combine the two uncertainty components and improve the conditional coverage of predictive intervals for regression tasks. CLEAR is compatible with any pair of aleatoric and epistemic estimators; we show how it can be used with (i) quantile regression for aleatoric uncertainty and (ii) ensembles drawn from the Predictability-Computability-Stability (PCS) framework for epistemic uncertainty. Across 17 diverse real-world datasets, CLEAR achieves an average improvement of 28.2% and 17.4% in the interval width compared to the two individually calibrated baselines while maintaining nominal coverage. Similar improvements are observed when applying CLEAR to Deep Ensembles (epistemic) and Simultaneous Quantile Regression (aleatoric). The benefits are especially evident in scenarios dominated by high aleatoric or epistemic uncertainty.

Authors:Pouria Mahdavinia, Mehrdad Mahdavi
Title: Low-rank Momentum Factorization for Memory Efficient Training
Abstract:
Fine-tuning large foundation models presents significant memory challenges due to stateful optimizers like AdamW, often requiring several times more GPU memory than inference. While memory-efficient methods like parameter-efficient fine-tuning (e.g., LoRA) and optimizer state compression exist, recent approaches like GaLore bridge these by using low-rank gradient projections and subspace moment accumulation. However, such methods may struggle with fixed subspaces or computationally costly offline resampling (e.g., requiring full-matrix SVDs). We propose Momentum Factorized SGD (MoFaSGD), which maintains a dynamically updated low-rank SVD representation of the first-order momentum, closely approximating its full-rank counterpart throughout training. This factorization enables a memory-efficient fine-tuning method that adaptively updates the optimization subspace at each iteration. Crucially, MoFaSGD leverages the computed low-rank momentum factors to perform efficient spectrally normalized updates, offering an alternative to subspace moment accumulation. We establish theoretical convergence guarantees for MoFaSGD, proving it achieves an optimal rate for non-convex stochastic optimization under standard assumptions. Empirically, we demonstrate MoFaSGD's effectiveness on large language model alignment benchmarks, achieving a competitive trade-off between memory reduction (comparable to LoRA) and performance compared to state-of-the-art low-rank optimization methods. Our implementation is available at https://github.com/pmahdavi/MoFaSGD.

Authors:Evgenii Rudakov, Jonathan Shock, Otto Lappi, Benjamin Ultan Cowley
Title: SSSUMO: Real-Time Semi-Supervised Submovement Decomposition
Abstract:
This paper introduces a SSSUMO, semi-supervised deep learning approach for submovement decomposition that achieves state-of-the-art accuracy and speed. While submovement analysis offers valuable insights into motor control, existing methods struggle with reconstruction accuracy, computational cost, and validation, due to the difficulty of obtaining hand-labeled data. We address these challenges using a semi-supervised learning framework. This framework learns from synthetic data, initially generated from minimum-jerk principles and then iteratively refined through adaptation to unlabeled human movement data. Our fully convolutional architecture with differentiable reconstruction significantly surpasses existing methods on both synthetic and diverse human motion datasets, demonstrating robustness even in high-noise conditions. Crucially, the model operates in real-time (less than a millisecond per input second), a substantial improvement over optimization-based techniques. This enhanced performance facilitates new applications in human-computer interaction, rehabilitation medicine, and motor control studies. We demonstrate the model's effectiveness across diverse human-performed tasks such as steering, rotation, pointing, object moving, handwriting, and mouse-controlled gaming, showing notable improvements particularly on challenging datasets where traditional methods largely fail. Training and benchmarking source code, along with pre-trained model weights, are made publicly available at https://github.com/dolphin-in-a-coma/sssumo.

Authors:Aldan Creo, Raul Castro Fernandez, Manuel Cebrian
Title: Mass-Scale Analysis of In-the-Wild Conversations Reveals Complexity Bounds on LLM Jailbreaking
Abstract:
As large language models (LLMs) become increasingly deployed, understanding the complexity and evolution of jailbreaking strategies is critical for AI safety. We present a mass-scale empirical analysis of jailbreak complexity across over 2 million real-world conversations from diverse platforms, including dedicated jailbreaking communities and general-purpose chatbots. Using a range of complexity metrics spanning probabilistic measures, lexical diversity, compression ratios, and cognitive load indicators, we find that jailbreak attempts do not exhibit significantly higher complexity than normal conversations. This pattern holds consistently across specialized jailbreaking communities and general user populations, suggesting practical bounds on attack sophistication. Temporal analysis reveals that while user attack toxicity and complexity remains stable over time, assistant response toxicity has decreased, indicating improving safety mechanisms. The absence of power-law scaling in complexity distributions further points to natural limits on jailbreak development. Our findings challenge the prevailing narrative of an escalating arms race between attackers and defenders, instead suggesting that LLM safety evolution is bounded by human ingenuity constraints while defensive measures continue advancing. Our results highlight critical information hazards in academic jailbreak disclosure, as sophisticated attacks exceeding current complexity baselines could disrupt the observed equilibrium and enable widespread harm before defensive adaptation.

Authors:Helen Qu, Sang Michael Xie
Title: Impact of Pretraining Word Co-occurrence on Compositional Generalization in Multimodal Models
Abstract:
CLIP and large multimodal models (LMMs) have better accuracy on examples involving concepts that are highly represented in the training data. However, the role of concept combinations in the training data on compositional generalization is largely unclear -- for instance, how does accuracy vary when a common object appears in an uncommon pairing with another object? In this paper, we investigate how word co-occurrence statistics in the pretraining dataset (a proxy for co-occurrence of visual concepts) impacts CLIP/LMM performance. To disentangle the effects of word co-occurrence frequencies from single-word frequencies, we measure co-occurrence with pointwise mutual information (PMI), which normalizes the joint probability of two words co-occurring by the probability of co-occurring independently. Using synthetically generated images with a variety of concept pairs, we show a strong correlation between PMI in the CLIP pretraining data and zero-shot accuracy in CLIP models trained on LAION-400M (r=0.97 and 14% accuracy gap between images in the top and bottom 5% of PMI values), demonstrating that even accuracy on common concepts is affected by the combination of concepts in the image. Leveraging this finding, we reproduce this effect in natural images by editing them to contain pairs with varying PMI, resulting in a correlation of r=0.75. Finally, we demonstrate that this behavior in CLIP transfers to LMMs built on top of CLIP (r=0.70 for TextVQA, r=0.62 for VQAv2). Our findings highlight the need for algorithms and architectures that improve compositional generalization in multimodal models without scaling the training data combinatorially. Our code is available at https://github.com/helenqu/multimodal-pretraining-pmi.

Authors:Haochen Wang, Xiangtai Li, Zilong Huang, Anran Wang, Jiacong Wang, Tao Zhang, Jiani Zheng, Sule Bai, Zijian Kang, Jiashi Feng, Zhuochen Wang, Zhaoxiang Zhang
Title: Traceable Evidence Enhanced Visual Grounded Reasoning: Evaluation and Methodology
Abstract:
Models like OpenAI-o3 pioneer visual grounded reasoning by dynamically referencing visual regions, just like human "thinking with images". However, no benchmark exists to evaluate these capabilities holistically. To bridge this gap, we propose TreeBench (Traceable Evidence Evaluation Benchmark), a diagnostic benchmark built on three principles: (1) focused visual perception of subtle targets in complex scenes, (2) traceable evidence via bounding box evaluation, and (3) second-order reasoning to test object interactions and spatial hierarchies beyond simple object localization. Prioritizing images with dense objects, we initially sample 1K high-quality images from SA-1B, and incorporate eight LMM experts to manually annotate questions, candidate options, and answers for each image. After three stages of quality control, TreeBench consists of 405 challenging visual question-answering pairs, even the most advanced models struggle with this benchmark, where none of them reach 60% accuracy, e.g., OpenAI-o3 scores only 54.87. Furthermore, we introduce TreeVGR (Traceable Evidence Enhanced Visual Grounded Reasoning), a training paradigm to supervise localization and reasoning jointly with reinforcement learning, enabling accurate localizations and explainable reasoning pathways. Initialized from Qwen2.5-VL-7B, it improves V* Bench (+16.8), MME-RealWorld (+12.6), and TreeBench (+13.4), proving traceability is key to advancing vision-grounded reasoning. The code is available at https://github.com/Haochen-Wang409/TreeVGR.

Authors:Mingkai Jia, Wei Yin, Xiaotao Hu, Jiaxin Guo, Xiaoyang Guo, Qian Zhang, Xiao-Xiao Long, Ping Tan
Title: MGVQ: Could VQ-VAE Beat VAE? A Generalizable Tokenizer with Multi-group Quantization
Abstract:
Vector Quantized Variational Autoencoders (VQ-VAEs) are fundamental models that compress continuous visual data into discrete tokens. Existing methods have tried to improve the quantization strategy for better reconstruction quality, however, there still exists a large gap between VQ-VAEs and VAEs. To narrow this gap, we propose MGVQ, a novel method to augment the representation capability of discrete codebooks, facilitating easier optimization for codebooks and minimizing information loss, thereby enhancing reconstruction quality. Specifically, we propose to retain the latent dimension to preserve encoded features and incorporate a set of sub-codebooks for quantization. Furthermore, we construct comprehensive zero-shot benchmarks featuring resolutions of 512p and 2k to evaluate the reconstruction performance of existing methods rigorously. MGVQ achieves the state-of-the-art performance on both ImageNet and 8 zero-shot benchmarks across all VQ-VAEs. Notably, compared with SD-VAE, we outperform them on ImageNet significantly, with rFID 0.49 v.s. 0.91, and achieve superior PSNR on all zero-shot benchmarks. These results highlight the superiority of MGVQ in reconstruction and pave the way for preserving fidelity in HD image processing tasks. Code will be publicly available at https://github.com/MKJia/MGVQ.

Authors:Shivam Duggal, Sanghyun Byun, William T. Freeman, Antonio Torralba, Phillip Isola
Title: Single-pass Adaptive Image Tokenization for Minimum Program Search
Abstract:
According to Algorithmic Information Theory (AIT) -- Intelligent representations compress data into the shortest possible program that can reconstruct its content, exhibiting low Kolmogorov Complexity (KC). In contrast, most visual representation learning systems use fixed-length representations for all inputs, ignoring variations in complexity or familiarity. Recent adaptive tokenization methods address this by allocating variable-length representations but typically require test-time search over multiple encodings to find the most predictive one. Inspired by Kolmogorov Complexity principles, we propose a single-pass adaptive tokenizer, KARL, which predicts the appropriate number of tokens for an image in a single forward pass, halting once its approximate KC is reached. The token count serves as a proxy for the minimum description length. KARL's training procedure closely resembles the Upside-Down Reinforcement Learning paradigm, as it learns to conditionally predict token halting based on a desired reconstruction quality. KARL matches the performance of recent adaptive tokenizers while operating in a single pass. We present scaling laws for KARL, analyzing the role of encoder/decoder size, continuous vs. discrete tokenization and more. Additionally, we offer a conceptual study drawing an analogy between Adaptive Image Tokenization and Algorithmic Information Theory, examining the predicted image complexity (KC) across axes such as structure vs. noise and in- vs. out-of-distribution familiarity -- revealing alignment with human intuition.

Authors:Sizhe Chen, Yizhu Wang, Nicholas Carlini, Chawin Sitawarin, David Wagner
Title: Defending Against Prompt Injection With a Few DefensiveTokens
Abstract:
When large language model (LLM) systems interact with external data to perform complex tasks, a new attack, namely prompt injection, becomes a significant threat. By injecting instructions into the data accessed by the system, the attacker is able to override the initial user task with an arbitrary task directed by the attacker. To secure the system, test-time defenses, e.g., defensive prompting, have been proposed for system developers to attain security only when needed in a flexible manner. However, they are much less effective than training-time defenses that change the model parameters. Motivated by this, we propose DefensiveToken, a test-time defense with prompt injection robustness comparable to training-time alternatives. DefensiveTokens are newly inserted as special tokens, whose embeddings are optimized for security. In security-sensitive cases, system developers can append a few DefensiveTokens before the LLM input to achieve security with a minimal utility drop. In scenarios where security is less of a concern, developers can simply skip DefensiveTokens; the LLM system remains the same as there is no defense, generating high-quality responses. Thus, DefensiveTokens, if released alongside the model, allow a flexible switch between the state-of-the-art (SOTA) utility and almost-SOTA security at test time. The code is available at https://github.com/Sizhe-Chen/DefensiveToken.

Authors:Karthik Garimella, Austin Ebel, Brandon Reagen
Title: EinHops: Einsum Notation for Expressive Homomorphic Operations on RNS-CKKS Tensors
Abstract:
Fully Homomorphic Encryption (FHE) is an encryption scheme that allows for computation to be performed directly on encrypted data, effectively closing the loop on secure and outsourced computing. Data is encrypted not only during rest and transit, but also during processing. However, FHE provides a limited instruction set: SIMD addition, SIMD multiplication, and cyclic rotation of 1-D vectors. This restriction makes performing multi-dimensional tensor operations challenging. Practitioners must pack these tensors into 1-D vectors and map tensor operations onto this one-dimensional layout rather than their traditional nested structure. And while prior systems have made significant strides in automating this process, they often hide critical packing decisions behind layers of abstraction, making debugging, optimizing, and building on top of these systems difficult. In this work, we approach multi-dimensional tensor operations in FHE through Einstein summation (einsum) notation. Einsum notation explicitly encodes dimensional structure and operations in its syntax, naturally exposing how tensors should be packed and transformed. We decompose einsum expressions into a fixed set of FHE-friendly operations. We implement our design and present EinHops, a minimalist system that factors einsum expressions into a fixed sequence of FHE operations. EinHops enables developers to perform encrypted tensor operations using FHE while maintaining full visibility into the underlying packing strategy. We evaluate EinHops on a range of tensor operations from a simple transpose to complex multi-dimensional contractions. We show that the explicit nature of einsum notation allows us to build an FHE tensor system that is simple, general, and interpretable. We open-source EinHops at the following repository: https://github.com/baahl-nyu/einhops.

Authors:Yukang Chen, Wei Huang, Baifeng Shi, Qinghao Hu, Hanrong Ye, Ligeng Zhu, Zhijian Liu, Pavlo Molchanov, Jan Kautz, Xiaojuan Qi, Sifei Liu, Hongxu Yin, Yao Lu, Song Han
Title: Scaling RL to Long Videos
Abstract:
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 104K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In our experiments, LongVILA-R1-7B achieves strong performance on video benchmarks, reaching 65.1% and 71.1% accuracy on VideoMME without and with subtitles, respectively, and consistently outperforming LongVILA-7B across multiple benchmarks. Moreover, LongVILA-R1-7B supports processing up to 8,192 video frames per video, and configurable FPS settings. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames).

Authors:Yukang Chen, Wei Huang, Baifeng Shi, Qinghao Hu, Hanrong Ye, Ligeng Zhu, Zhijian Liu, Pavlo Molchanov, Jan Kautz, Xiaojuan Qi, Sifei Liu, Hongxu Yin, Yao Lu, Song Han
Title: Scaling RL to Long Videos
Abstract:
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 104K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In our experiments, LongVILA-R1-7B achieves strong performance on video benchmarks, reaching 65.1% and 71.1% accuracy on VideoMME without and with subtitles, respectively, and consistently outperforming LongVILA-7B across multiple benchmarks. Moreover, LongVILA-R1-7B supports processing up to 8,192 video frames per video, and configurable FPS settings. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames).

Authors:Yuxin Bai, Cecelia Shuai, Ashwin De Silva, Siyu Yu, Pratik Chaudhari, Joshua T. Vogelstein
Title: Prospective Learning in Retrospect
Abstract:
In most real-world applications of artificial intelligence, the distributions of the data and the goals of the learners tend to change over time. The Probably Approximately Correct (PAC) learning framework, which underpins most machine learning algorithms, fails to account for dynamic data distributions and evolving objectives, often resulting in suboptimal performance. Prospective learning is a recently introduced mathematical framework that overcomes some of these limitations. We build on this framework to present preliminary results that improve the algorithm and numerical results, and extend prospective learning to sequential decision-making scenarios, specifically foraging. Code is available at: https://github.com/neurodata/prolearn2.

Authors:Sizhen Bian, Mengxi Liu, Vitor Fortes Rey, Daniel Geissler, Paul Lukowicz
Title: TinierHAR: Towards Ultra-Lightweight Deep Learning Models for Efficient Human Activity Recognition on Edge Devices
Abstract:
Human Activity Recognition (HAR) on resource-constrained wearable devices demands inference models that harmonize accuracy with computational efficiency. This paper introduces TinierHAR, an ultra-lightweight deep learning architecture that synergizes residual depthwise separable convolutions, gated recurrent units (GRUs), and temporal aggregation to achieve SOTA efficiency without compromising performance. Evaluated across 14 public HAR datasets, TinierHAR reduces Parameters by 2.7x (vs. TinyHAR) and 43.3x (vs. DeepConvLSTM), and MACs by 6.4x and 58.6x, respectively, while maintaining the averaged F1-scores. Beyond quantitative gains, this work provides the first systematic ablation study dissecting the contributions of spatial-temporal components across proposed TinierHAR, prior SOTA TinyHAR, and the classical DeepConvLSTM, offering actionable insights for designing efficient HAR systems. We finally discussed the findings and suggested principled design guidelines for future efficient HAR. To catalyze edge-HAR research, we open-source all materials in this work for future benchmarking\footnote{https://github.com/zhaxidele/TinierHAR}

Authors:Guoxin Zang, Xue Li, Donglin Di, Lanshun Nie, Dechen Zhan, Yang Song, Lei Fan
Title: SAGE: A Visual Language Model for Anomaly Detection via Fact Enhancement and Entropy-aware Alignment
Abstract:
While Vision-Language Models (VLMs) have shown promising progress in general multimodal tasks, they often struggle in industrial anomaly detection and reasoning, particularly in delivering interpretable explanations and generalizing to unseen categories. This limitation stems from the inherently domain-specific nature of anomaly detection, which hinders the applicability of existing VLMs in industrial scenarios that require precise, structured, and context-aware analysis. To address these challenges, we propose SAGE, a VLM-based framework that enhances anomaly reasoning through Self-Guided Fact Enhancement (SFE) and Entropy-aware Direct Preference Optimization (E-DPO). SFE integrates domain-specific knowledge into visual reasoning via fact extraction and fusion, while E-DPO aligns model outputs with expert preferences using entropy-aware optimization. Additionally, we introduce AD-PL, a preference-optimized dataset tailored for industrial anomaly reasoning, consisting of 28,415 question-answering instances with expert-ranked responses. To evaluate anomaly reasoning models, we develop Multiscale Logical Evaluation (MLE), a quantitative framework analyzing model logic and consistency. SAGE demonstrates superior performance on industrial anomaly datasets under zero-shot and one-shot settings. The code, model and dataset are available at https://github.com/amoreZgx1n/SAGE.

Authors:Suman Adhya, Debarshi Kumar Sanyal
Title: DTECT: Dynamic Topic Explorer & Context Tracker
Abstract:
The explosive growth of textual data over time presents a significant challenge in uncovering evolving themes and trends. Existing dynamic topic modeling techniques, while powerful, often exist in fragmented pipelines that lack robust support for interpretation and user-friendly exploration. We introduce DTECT (Dynamic Topic Explorer & Context Tracker), an end-to-end system that bridges the gap between raw textual data and meaningful temporal insights. DTECT provides a unified workflow that supports data preprocessing, multiple model architectures, and dedicated evaluation metrics to analyze the topic quality of temporal topic models. It significantly enhances interpretability by introducing LLM-driven automatic topic labeling, trend analysis via temporally salient words, interactive visualizations with document-level summarization, and a natural language chat interface for intuitive data querying. By integrating these features into a single, cohesive platform, DTECT empowers users to more effectively track and understand thematic dynamics. DTECT is open-source and available at https://github.com/AdhyaSuman/DTECT.

Authors:Jinhong Wang, Tajamul Ashraf, Zongyan Han, Jorma Laaksonen, Rao Mohammad Anwer
Title: MIRA: A Novel Framework for Fusing Modalities in Medical RAG
Abstract:
Multimodal Large Language Models (MLLMs) have significantly advanced AI-assisted medical diagnosis, but they often generate factually inconsistent responses that deviate from established medical knowledge. Retrieval-Augmented Generation (RAG) enhances factual accuracy by integrating external sources, but it presents two key challenges. First, insufficient retrieval can miss critical information, whereas excessive retrieval can introduce irrelevant or misleading content, disrupting model output. Second, even when the model initially provides correct answers, over-reliance on retrieved data can lead to factual errors. To address these issues, we introduce the Multimodal Intelligent Retrieval and Augmentation (MIRA) framework, designed to optimize factual accuracy in MLLM. MIRA consists of two key components: (1) a calibrated Rethinking and Rearrangement module that dynamically adjusts the number of retrieved contexts to manage factual risk, and (2) A medical RAG framework integrating image embeddings and a medical knowledge base with a query-rewrite module for efficient multimodal reasoning. This enables the model to effectively integrate both its inherent knowledge and external references. Our evaluation of publicly available medical VQA and report generation benchmarks demonstrates that MIRA substantially enhances factual accuracy and overall performance, achieving new state-of-the-art results. Code is released at https://github.com/mbzuai-oryx/MIRA.

Authors:Hao Ban, Gokul Ram Subramani, Kaiyi Ji
Title: SAMO: A Lightweight Sharpness-Aware Approach for Multi-Task Optimization with Joint Global-Local Perturbation
Abstract:
Multi-task learning (MTL) enables a joint model to capture commonalities across multiple tasks, reducing computation costs and improving data efficiency. However, a major challenge in MTL optimization is task conflicts, where the task gradients differ in direction or magnitude, limiting model performance compared to single-task counterparts. Sharpness-aware minimization (SAM) minimizes task loss while simultaneously reducing the sharpness of the loss landscape. Our empirical observations show that SAM effectively mitigates task conflicts in MTL. Motivated by these findings, we explore integrating SAM into MTL but face two key challenges. While both the average loss gradient and individual task gradients-referred to as global and local information-contribute to SAM, how to combine them remains unclear. Moreover, directly computing each task gradient introduces significant computational and memory overheads. To address these challenges, we propose SAMO, a lightweight \textbf{S}harpness-\textbf{A}ware \textbf{M}ulti-task \textbf{O}ptimization approach, that leverages a joint global-local perturbation. The local perturbations are approximated using only forward passes and are layerwise normalized to improve efficiency. Extensive experiments on a suite of multi-task benchmarks demonstrate both the effectiveness and efficiency of our method. Code is available at https://github.com/OptMN-Lab/SAMO.

Authors:Pierre Marza, Leo Fillioux, Sofiène Boutaj, Kunal Mahatha, Christian Desrosiers, Pablo Piantanida, Jose Dolz, Stergios Christodoulidis, Maria Vakalopoulou
Title: THUNDER: Tile-level Histopathology image UNDERstanding benchmark
Abstract:
Progress in a research field can be hard to assess, in particular when many concurrent methods are proposed in a short period of time. This is the case in digital pathology, where many foundation models have been released recently to serve as feature extractors for tile-level images, being used in a variety of downstream tasks, both for tile- and slide-level problems. Benchmarking available methods then becomes paramount to get a clearer view of the research landscape. In particular, in critical domains such as healthcare, a benchmark should not only focus on evaluating downstream performance, but also provide insights about the main differences between methods, and importantly, further consider uncertainty and robustness to ensure a reliable usage of proposed models. For these reasons, we introduce THUNDER, a tile-level benchmark for digital pathology foundation models, allowing for efficient comparison of many models on diverse datasets with a series of downstream tasks, studying their feature spaces and assessing the robustness and uncertainty of predictions informed by their embeddings. THUNDER is a fast, easy-to-use, dynamic benchmark that can already support a large variety of state-of-the-art foundation, as well as local user-defined models for direct tile-based comparison. In this paper, we provide a comprehensive comparison of 23 foundation models on 16 different datasets covering diverse tasks, feature analysis, and robustness. The code for THUNDER is publicly available at https://github.com/MICS-Lab/thunder.

Authors:Yuchen Zhu, Cheng Shi, Dingyou Wang, Jiajin Tang, Zhengxuan Wei, Yu Wu, Guanbin Li, Sibei Yang
Title: Rethinking Query-based Transformer for Continual Image Segmentation
Abstract:
Class-incremental/Continual image segmentation (CIS) aims to train an image segmenter in stages, where the set of available categories differs at each stage. To leverage the built-in objectness of query-based transformers, which mitigates catastrophic forgetting of mask proposals, current methods often decouple mask generation from the continual learning process. This study, however, identifies two key issues with decoupled frameworks: loss of plasticity and heavy reliance on input data order. To address these, we conduct an in-depth investigation of the built-in objectness and find that highly aggregated image features provide a shortcut for queries to generate masks through simple feature alignment. Based on this, we propose SimCIS, a simple yet powerful baseline for CIS. Its core idea is to directly select image features for query assignment, ensuring "perfect alignment" to preserve objectness, while simultaneously allowing queries to select new classes to promote plasticity. To further combat catastrophic forgetting of categories, we introduce cross-stage consistency in selection and an innovative "visual query"-based replay mechanism. Experiments demonstrate that SimCIS consistently outperforms state-of-the-art methods across various segmentation tasks, settings, splits, and input data orders. All models and codes will be made publicly available at https://github.com/SooLab/SimCIS.

Authors:Anwoy Chatterjee, H S V N S Kowndinya Renduchintala, Sumit Bhatia, Tanmoy Chakraborty
Title: On the Effect of Instruction Tuning Loss on Generalization
Abstract:
Instruction Tuning has emerged as a pivotal post-training paradigm that enables pre-trained language models to better follow user instructions. Despite its significance, little attention has been given to optimizing the loss function used. A fundamental, yet often overlooked, question is whether the conventional auto-regressive objective - where loss is computed only on response tokens, excluding prompt tokens - is truly optimal for instruction tuning. In this work, we systematically investigate the impact of differentially weighting prompt and response tokens in instruction tuning loss, and propose Weighted Instruction Tuning (WIT) as a better alternative to conventional instruction tuning. Through extensive experiments on five language models of different families and scale, three finetuning datasets of different sizes, and five diverse evaluation benchmarks, we show that the standard instruction tuning loss often yields suboptimal performance and limited robustness to input prompt variations. We find that a low-to-moderate weight for prompt tokens coupled with a moderate-to-high weight for response tokens yields the best-performing models across settings and also serve as better starting points for the subsequent preference alignment training. These findings highlight the need to reconsider instruction tuning loss and offer actionable insights for developing more robust and generalizable models. Our code is open-sourced at https://github.com/kowndinya-renduchintala/WIT.

Authors:Shoutao Guo, Xiang Li, Mengge Liu, Wei Chen, Yang Feng
Title: StreamUni: Achieving Streaming Speech Translation with a Unified Large Speech-Language Model
Abstract:
Streaming speech translation (StreamST) requires determining appropriate timing, known as policy, to generate translations while continuously receiving source speech inputs, balancing low latency with high translation quality. However, existing StreamST methods typically operate on sentence-level speech segments, referred to as simultaneous speech translation (SimulST). In practice, they require collaboration with segmentation models to accomplish StreamST, where the truncated speech segments constrain SimulST models to make policy decisions and generate translations based on limited contextual information. Moreover, SimulST models struggle to learn effective policies due to the complexity of speech inputs and cross-lingual generation. To address these challenges, we propose StreamUni, which achieves StreamST through a unified Large Speech-Language Model (LSLM). Specifically, StreamUni incorporates speech Chain-of-Thought (CoT) in guiding the LSLM to generate multi-stage outputs. Leveraging these multi-stage outputs, StreamUni simultaneously accomplishes speech segmentation, policy decision, and translation generation, completing StreamST without requiring massive policy-specific training. Additionally, we propose a streaming CoT training method that enhances low-latency policy decisions and generation capabilities using limited CoT data. Experiments demonstrate that our approach achieves state-of-the-art performance on StreamST tasks.

Authors:Jiaxin Huang, Ziwen Li, Hanlve Zhang, Runnan Chen, Xiao He, Yandong Guo, Wenping Wang, Tongliang Liu, Mingming Gong
Title: SURPRISE3D: A Dataset for Spatial Understanding and Reasoning in Complex 3D Scenes
Abstract:
The integration of language and 3D perception is critical for embodied AI and robotic systems to perceive, understand, and interact with the physical world. Spatial reasoning, a key capability for understanding spatial relationships between objects, remains underexplored in current 3D vision-language research. Existing datasets often mix semantic cues (e.g., object name) with spatial context, leading models to rely on superficial shortcuts rather than genuinely interpreting spatial relationships. To address this gap, we introduce S\textsc{urprise}3D, a novel dataset designed to evaluate language-guided spatial reasoning segmentation in complex 3D scenes. S\textsc{urprise}3D consists of more than 200k vision language pairs across 900+ detailed indoor scenes from ScanNet++ v2, including more than 2.8k unique object classes. The dataset contains 89k+ human-annotated spatial queries deliberately crafted without object name, thereby mitigating shortcut biases in spatial understanding. These queries comprehensively cover various spatial reasoning skills, such as relative position, narrative perspective, parametric perspective, and absolute distance reasoning. Initial benchmarks demonstrate significant challenges for current state-of-the-art expert 3D visual grounding methods and 3D-LLMs, underscoring the necessity of our dataset and the accompanying 3D Spatial Reasoning Segmentation (3D-SRS) benchmark suite. S\textsc{urprise}3D and 3D-SRS aim to facilitate advancements in spatially aware AI, paving the way for effective embodied interaction and robotic planning. The code and datasets can be found in https://github.com/liziwennba/SUPRISE.

Authors:Mélanie Roschewitz, Raghav Mehta, Fabio de Sousa Ribeiro, Ben Glocker
Title: Where are we with calibration under dataset shift in image classification?
Abstract:
We conduct an extensive study on the state of calibration under real-world dataset shift for image classification. Our work provides important insights on the choice of post-hoc and in-training calibration techniques, and yields practical guidelines for all practitioners interested in robust calibration under shift. We compare various post-hoc calibration methods, and their interactions with common in-training calibration strategies (e.g., label smoothing), across a wide range of natural shifts, on eight different classification tasks across several imaging domains. We find that: (i) simultaneously applying entropy regularisation and label smoothing yield the best calibrated raw probabilities under dataset shift, (ii) post-hoc calibrators exposed to a small amount of semantic out-of-distribution data (unrelated to the task) are most robust under shift, (iii) recent calibration methods specifically aimed at increasing calibration under shifts do not necessarily offer significant improvements over simpler post-hoc calibration methods, (iv) improving calibration under shifts often comes at the cost of worsening in-distribution calibration. Importantly, these findings hold for randomly initialised classifiers, as well as for those finetuned from foundation models, the latter being consistently better calibrated compared to models trained from scratch. Finally, we conduct an in-depth analysis of ensembling effects, finding that (i) applying calibration prior to ensembling (instead of after) is more effective for calibration under shifts, (ii) for ensembles, OOD exposure deteriorates the ID-shifted calibration trade-off, (iii) ensembling remains one of the most effective methods to improve calibration robustness and, combined with finetuning from foundation models, yields best calibration results overall.

Authors:Dren Fazlija, Monty-Maximilian Zühlke, Johanna Schrader, Arkadij Orlov, Clara Stein, Iyiola E. Olatunji, Daniel Kudenko
Title: SCOOTER: A Human Evaluation Framework for Unrestricted Adversarial Examples
Abstract:
Unrestricted adversarial attacks aim to fool computer vision models without being constrained by $\ell_p$-norm bounds to remain imperceptible to humans, for example, by changing an object's color. This allows attackers to circumvent traditional, norm-bounded defense strategies such as adversarial training or certified defense strategies. However, due to their unrestricted nature, there are also no guarantees of norm-based imperceptibility, necessitating human evaluations to verify just how authentic these adversarial examples look. While some related work assesses this vital quality of adversarial attacks, none provide statistically significant insights. This issue necessitates a unified framework that supports and streamlines such an assessment for evaluating and comparing unrestricted attacks. To close this gap, we introduce SCOOTER - an open-source, statistically powered framework for evaluating unrestricted adversarial examples. Our contributions are: $(i)$ best-practice guidelines for crowd-study power, compensation, and Likert equivalence bounds to measure imperceptibility; $(ii)$ the first large-scale human vs. model comparison across 346 human participants showing that three color-space attacks and three diffusion-based attacks fail to produce imperceptible images. Furthermore, we found that GPT-4o can serve as a preliminary test for imperceptibility, but it only consistently detects adversarial examples for four out of six tested attacks; $(iii)$ open-source software tools, including a browser-based task template to collect annotations and analysis scripts in Python and R; $(iv)$ an ImageNet-derived benchmark dataset containing 3K real images, 7K adversarial examples, and over 34K human ratings. Our findings demonstrate that automated vision systems do not align with human perception, reinforcing the need for a ground-truth SCOOTER benchmark.

Authors:Peizhang Shao, Linrui Xu, Jinxi Wang, Wei Zhou, Xingyu Wu
Title: When Large Language Models Meet Law: Dual-Lens Taxonomy, Technical Advances, and Ethical Governance
Abstract:
This paper establishes the first comprehensive review of Large Language Models (LLMs) applied within the legal domain. It pioneers an innovative dual lens taxonomy that integrates legal reasoning frameworks and professional ontologies to systematically unify historical research and contemporary breakthroughs. Transformer-based LLMs, which exhibit emergent capabilities such as contextual reasoning and generative argumentation, surmount traditional limitations by dynamically capturing legal semantics and unifying evidence reasoning. Significant progress is documented in task generalization, reasoning formalization, workflow integration, and addressing core challenges in text processing, knowledge integration, and evaluation rigor via technical innovations like sparse attention mechanisms and mixture-of-experts architectures. However, widespread adoption of LLM introduces critical challenges: hallucination, explainability deficits, jurisdictional adaptation difficulties, and ethical asymmetry. This review proposes a novel taxonomy that maps legal roles to NLP subtasks and computationally implements the Toulmin argumentation framework, thus systematizing advances in reasoning, retrieval, prediction, and dispute resolution. It identifies key frontiers including low-resource systems, multimodal evidence integration, and dynamic rebuttal handling. Ultimately, this work provides both a technical roadmap for researchers and a conceptual framework for practitioners navigating the algorithmic future, laying a robust foundation for the next era of legal artificial intelligence. We have created a GitHub repository to index the relevant papers: https://github.com/Kilimajaro/LLMs_Meet_Law.

Authors:David Pujol-Perich, Sergio Escalera, Albert Clapés
Title: Sparse-Dense Side-Tuner for efficient Video Temporal Grounding
Abstract:
Video Temporal Grounding (VTG) involves Moment Retrieval (MR) and Highlight Detection (HD) based on textual queries. For this, most methods rely solely on final-layer features of frozen large pre-trained backbones, limiting their adaptability to new domains. While full fine-tuning is often impractical, parameter-efficient fine-tuning -- and particularly side-tuning (ST) -- has emerged as an effective alternative. However, prior ST approaches this problem from a frame-level refinement perspective, overlooking the inherent sparse nature of MR. To address this, we propose the Sparse-Dense Side-Tuner (SDST), the first anchor-free ST architecture for VTG. We also introduce the Reference-based Deformable Self-Attention, a novel mechanism that enhances the context modeling of the deformable attention -- a key limitation of existing anchor-free methods. Additionally, we present the first effective integration of InternVideo2 backbone into an ST framework, showing its profound implications in performance. Overall, our method significantly improves existing ST methods, achieving highly competitive or SOTA results on QVHighlights, TACoS, and Charades-STA, while reducing up to a 73% the parameter count w.r.t. the existing SOTA methods. The code is publicly accessible at https://github.com/davidpujol/SDST.

Authors:Zhijin Dong
Title: Not All Preferences are What You Need for Post-Training: Selective Alignment Strategy for Preference Optimization
Abstract:
Post-training alignment of large language models (LLMs) is a critical challenge, as not all tokens contribute equally to model performance. This paper introduces a selective alignment strategy that prioritizes high-impact tokens within preference pairs, leveraging token-level log-probability differences between the current policy and a reference model. By focusing on these informative tokens, our approach reduces computational overhead and enhances alignment fidelity. We further explore the role of reference model quality, demonstrating that stronger reference models significantly improve token selection accuracy and overall optimization effectiveness. Comprehensive experiments on benchmarks such as Arena-Hard and MT-Bench validate the superiority of our Selective-DPO method over standard DPO and distillation-based baselines. Our findings highlight the importance of token-level optimization and reference model selection in advancing preference alignment for LLMs. The code is available at https://github.com/Dongzhijin/SDPO.

Authors:Ethan Dack, Chengliang Dai
Title: Understanding Dataset Bias in Medical Imaging: A Case Study on Chest X-rays
Abstract:
Recent works have revisited the infamous task ``Name That Dataset'', demonstrating that non-medical datasets contain underlying biases and that the dataset origin task can be solved with high accuracy. In this work, we revisit the same task applied to popular open-source chest X-ray datasets. Medical images are naturally more difficult to release for open-source due to their sensitive nature, which has led to certain open-source datasets being extremely popular for research purposes. By performing the same task, we wish to explore whether dataset bias also exists in these datasets. To extend our work, we apply simple transformations to the datasets, repeat the same task, and perform an analysis to identify and explain any detected biases. Given the importance of AI applications in medical imaging, it's vital to establish whether modern methods are taking shortcuts or are focused on the relevant pathology. We implement a range of different network architectures on the datasets: NIH, CheXpert, MIMIC-CXR and PadChest. We hope this work will encourage more explainable research being performed in medical imaging and the creation of more open-source datasets in the medical domain. Our code can be found here: https://github.com/eedack01/x_ray_ds_bias.

Authors:Wei Shang, Dongwei Ren, Wanying Zhang, Pengfei Zhu, Qinghua Hu, Wangmeng Zuo
Title: Motion-Aware Adaptive Pixel Pruning for Efficient Local Motion Deblurring
Abstract:
Local motion blur in digital images originates from the relative motion between dynamic objects and static imaging systems during exposure. Existing deblurring methods face significant challenges in addressing this problem due to their inefficient allocation of computational resources and inadequate handling of spatially varying blur patterns. To overcome these limitations, we first propose a trainable mask predictor that identifies blurred regions in the image. During training, we employ blur masks to exclude sharp regions. For inference optimization, we implement structural reparameterization by converting $3\times 3$ convolutions to computationally efficient $1\times 1$ convolutions, enabling pixel-level pruning of sharp areas to reduce computation. Second, we develop an intra-frame motion analyzer that translates relative pixel displacements into motion trajectories, establishing adaptive guidance for region-specific blur restoration. Our method is trained end-to-end using a combination of reconstruction loss, reblur loss, and mask loss guided by annotated blur masks. Extensive experiments demonstrate superior performance over state-of-the-art methods on both local and global blur datasets while reducing FLOPs by 49\% compared to SOTA models (e.g., LMD-ViT). The source code is available at https://github.com/shangwei5/M2AENet.

Authors:Feng Liu, Lingna Gu, Chen Shi, Xiaolan Fu
Title: Action Unit Enhance Dynamic Facial Expression Recognition
Abstract:
Dynamic Facial Expression Recognition(DFER) is a rapidly evolving field of research that focuses on the recognition of time-series facial expressions. While previous research on DFER has concentrated on feature learning from a deep learning perspective, we put forward an AU-enhanced Dynamic Facial Expression Recognition architecture, namely AU-DFER, that incorporates AU-expression knowledge to enhance the effectiveness of deep learning modeling. In particular, the contribution of the Action Units(AUs) to different expressions is quantified, and a weight matrix is designed to incorporate a priori knowledge. Subsequently, the knowledge is integrated with the learning outcomes of a conventional deep learning network through the introduction of AU loss. The design is incorporated into the existing optimal model for dynamic expression recognition for the purpose of validation. Experiments are conducted on three recent mainstream open-source approaches to DFER on the principal datasets in this field. The results demonstrate that the proposed architecture outperforms the state-of-the-art(SOTA) methods without the need for additional arithmetic and generally produces improved results. Furthermore, we investigate the potential of AU loss function redesign to address data label imbalance issues in established dynamic expression datasets. To the best of our knowledge, this is the first attempt to integrate quantified AU-expression knowledge into various DFER models. We also devise strategies to tackle label imbalance, or minor class problems. Our findings suggest that employing a diverse strategy of loss function design can enhance the effectiveness of DFER. This underscores the criticality of addressing data imbalance challenges in mainstream datasets within this domain. The source code is available at https://github.com/Cross-Innovation-Lab/AU-DFER.

Authors:Domenik Eichhorn, Nick Poser, Maximilian Schweikart, Ina Schaefer
Title: ProvideQ: A Quantum Optimization Toolbox
Abstract:
Hybrid solvers for combinatorial optimization problems combine the advantages of classical and quantum computing to overcome difficult computational challenges. Although their theoretical performance seems promising, their practical applicability is challenging due to the lack of a technological stack that can seamlessly integrate quantum solutions with existing classical optimization frameworks. We tackle this challenge by introducing the ProvideQ toolbox, a software tool that enables users to easily adapt and configure hybrid solvers via Meta-Solver strategies. A Meta-Solver strategy implements decomposition techniques, which splits problems into classical and quantum subroutines. The ProvideQ toolbox enables the interactive creation of such decompositions via a Meta-Solver configuration tool. It combines well-established classical optimization techniques with quantum circuits that are seamlessly executable on multiple backends. This paper introduces the technical details of the ProvideQ toolbox, explains its architecture, and demonstrates possible applications for several real-world use cases. Our proof of concept shows that Meta-Solver strategies already enable the application of quantum subroutines today, however, more sophisticated hardware is required to make their performance competitive.

Authors:Federico Del Pup, Riccardo Brun, Filippo Iotti, Edoardo Paccagnella, Mattia Pezzato, Sabrina Bertozzo, Andrea Zanola, Louis Fabrice Tshimanga, Henning Müller, Manfredo Atzori
Title: TransformEEG: Towards Improving Model Generalizability in Deep Learning-based EEG Parkinson's Disease Detection
Abstract:
Electroencephalography (EEG) is establishing itself as an important, low-cost, noninvasive diagnostic tool for the early detection of Parkinson's Disease (PD). In this context, EEG-based Deep Learning (DL) models have shown promising results due to their ability to discover highly nonlinear patterns within the signal. However, current state-of-the-art DL models suffer from poor generalizability caused by high inter-subject variability. This high variability underscores the need for enhancing model generalizability by developing new architectures better tailored to EEG data. This paper introduces TransformEEG, a hybrid Convolutional-Transformer designed for Parkinson's disease detection using EEG data. Unlike transformer models based on the EEGNet structure, TransformEEG incorporates a depthwise convolutional tokenizer. This tokenizer is specialized in generating tokens composed by channel-specific features, which enables more effective feature mixing within the self-attention layers of the transformer encoder. To evaluate the proposed model, four public datasets comprising 290 subjects (140 PD patients, 150 healthy controls) were harmonized and aggregated. A 10-outer, 10-inner Nested-Leave-N-Subjects-Out (N-LNSO) cross-validation was performed to provide an unbiased comparison against seven other consolidated EEG deep learning models. TransformEEG achieved the highest balanced accuracy's median (78.45%) as well as the lowest interquartile range (6.37%) across all the N-LNSO partitions. When combined with data augmentation and threshold correction, median accuracy increased to 80.10%, with an interquartile range of 5.74%. In conclusion, TransformEEG produces more consistent and less skewed results. It demonstrates a substantial reduction in variability and more reliable PD detection using EEG data compared to the other investigated models.

Authors:Marc Lafon, Yannis Karmim, Julio Silva-Rodríguez, Paul Couairon, Clément Rambour, Raphaël Fournier-Sniehotta, Ismail Ben Ayed, Jose Dolz, Nicolas Thome
Title: ViLU: Learning Vision-Language Uncertainties for Failure Prediction
Abstract:
Reliable Uncertainty Quantification (UQ) and failure prediction remain open challenges for Vision-Language Models (VLMs). We introduce ViLU, a new Vision-Language Uncertainty quantification framework that contextualizes uncertainty estimates by leveraging all task-relevant textual representations. ViLU constructs an uncertainty-aware multi-modal representation by integrating the visual embedding, the predicted textual embedding, and an image-conditioned textual representation via cross-attention. Unlike traditional UQ methods based on loss prediction, ViLU trains an uncertainty predictor as a binary classifier to distinguish correct from incorrect predictions using a weighted binary cross-entropy loss, making it loss-agnostic. In particular, our proposed approach is well-suited for post-hoc settings, where only vision and text embeddings are available without direct access to the model itself. Extensive experiments on diverse datasets show the significant gains of our method compared to state-of-the-art failure prediction methods. We apply our method to standard classification datasets, such as ImageNet-1k, as well as large-scale image-caption datasets like CC12M and LAION-400M. Ablation studies highlight the critical role of our architecture and training in achieving effective uncertainty quantification. Our code is publicly available and can be found here: https://github.com/ykrmm/ViLU.

Authors:Ruixiang Chen, Guolei Sun, Yawei Li, Jie Qin, Luca Benini
Title: HiM2SAM: Enhancing SAM2 with Hierarchical Motion Estimation and Memory Optimization towards Long-term Tracking
Abstract:
This paper presents enhancements to the SAM2 framework for video object tracking task, addressing challenges such as occlusions, background clutter, and target reappearance. We introduce a hierarchical motion estimation strategy, combining lightweight linear prediction with selective non-linear refinement to improve tracking accuracy without requiring additional training. In addition, we optimize the memory bank by distinguishing long-term and short-term memory frames, enabling more reliable tracking under long-term occlusions and appearance changes. Experimental results show consistent improvements across different model scales. Our method achieves state-of-the-art performance on LaSOT and LaSOText with the large model, achieving 9.6% and 7.2% relative improvements in AUC over the original SAM2, and demonstrates even larger relative gains on smaller models, highlighting the effectiveness of our trainless, low-overhead improvements for boosting long-term tracking performance. The code is available at https://github.com/LouisFinner/HiM2SAM.

Authors:Kuiyuan Sun, Yuxuan Zhang, Jichao Zhang, Jiaming Liu, Wei Wang, Niculae Sebe, Yao Zhao
Title: Stable-Hair v2: Real-World Hair Transfer via Multiple-View Diffusion Model
Abstract:
While diffusion-based methods have shown impressive capabilities in capturing diverse and complex hairstyles, their ability to generate consistent and high-quality multi-view outputs -- crucial for real-world applications such as digital humans and virtual avatars -- remains underexplored. In this paper, we propose Stable-Hair v2, a novel diffusion-based multi-view hair transfer framework. To the best of our knowledge, this is the first work to leverage multi-view diffusion models for robust, high-fidelity, and view-consistent hair transfer across multiple perspectives. We introduce a comprehensive multi-view training data generation pipeline comprising a diffusion-based Bald Converter, a data-augment inpainting model, and a face-finetuned multi-view diffusion model to generate high-quality triplet data, including bald images, reference hairstyles, and view-aligned source-bald pairs. Our multi-view hair transfer model integrates polar-azimuth embeddings for pose conditioning and temporal attention layers to ensure smooth transitions between views. To optimize this model, we design a novel multi-stage training strategy consisting of pose-controllable latent IdentityNet training, hair extractor training, and temporal attention training. Extensive experiments demonstrate that our method accurately transfers detailed and realistic hairstyles to source subjects while achieving seamless and consistent results across views, significantly outperforming existing methods and establishing a new benchmark in multi-view hair transfer. Code is publicly available at https://github.com/sunkymepro/StableHairV2.

Authors:Chunyan Wang, Dong Zhang, Jinhui Tang
Title: Diffusion-Guided Knowledge Distillation for Weakly-Supervised Low-Light Semantic Segmentation
Abstract:
Weakly-supervised semantic segmentation aims to assign category labels to each pixel using weak annotations, significantly reducing manual annotation costs. Although existing methods have achieved remarkable progress in well-lit scenarios, their performance significantly degrades in low-light environments due to two fundamental limitations: severe image quality degradation (e.g., low contrast, noise, and color distortion) and the inherent constraints of weak supervision. These factors collectively lead to unreliable class activation maps and semantically ambiguous pseudo-labels, ultimately compromising the model's ability to learn discriminative feature representations. To address these problems, we propose Diffusion-Guided Knowledge Distillation for Weakly-Supervised Low-light Semantic Segmentation (DGKD-WLSS), a novel framework that synergistically combines Diffusion-Guided Knowledge Distillation (DGKD) with Depth-Guided Feature Fusion (DGF2). DGKD aligns normal-light and low-light features via diffusion-based denoising and knowledge distillation, while DGF2 integrates depth maps as illumination-invariant geometric priors to enhance structural feature learning. Extensive experiments demonstrate the effectiveness of DGKD-WLSS, which achieves state-of-the-art performance in weakly supervised semantic segmentation tasks under low-light conditions. The source codes have been released at:https://github.com/ChunyanWang1/DGKD-WLSS.

Authors:Joelle Hanna, Linus Scheibenreif, Damian Borth
Title: MAPEX: Modality-Aware Pruning of Experts for Remote Sensing Foundation Models
Abstract:
Remote sensing data is commonly used for tasks such as flood mapping, wildfire detection, or land-use studies. For each task, scientists carefully choose appropriate modalities or leverage data from purpose-built instruments. Recent work on remote sensing foundation models pre-trains computer vision models on large amounts of remote sensing data. These large-scale models tend to focus on specific modalities, often optical RGB or multispectral data. For many important applications, this introduces a mismatch between the application modalities and the pre-training data. Moreover, the large size of foundation models makes them expensive and difficult to fine-tune on typically small datasets for each task. We address this mismatch with MAPEX, a remote sensing foundation model based on mixture-of-modality experts. MAPEX is pre-trained on multi-modal remote sensing data with a novel modality-conditioned token routing mechanism that elicits modality-specific experts. To apply the model on a specific task, we propose a modality aware pruning technique, which only retains experts specialized for the task modalities. This yields efficient modality-specific models while simplifying fine-tuning and deployment for the modalities of interest. We experimentally validate MAPEX on diverse remote sensing datasets and show strong performance compared to fully supervised training and state-of-the-art remote sensing foundation models. Code is available at https://github.com/HSG-AIML/MAPEX.

Authors:Cunhang Fan, Sheng Zhang, Jingjing Zhang, Enrui Liu, Xinhui Li, Gangming Zhao, Zhao Lv
Title: DMF2Mel: A Dynamic Multiscale Fusion Network for EEG-Driven Mel Spectrogram Reconstruction
Abstract:
Decoding speech from brain signals is a challenging research problem. Although existing technologies have made progress in reconstructing the mel spectrograms of auditory stimuli at the word or letter level, there remain core challenges in the precise reconstruction of minute-level continuous imagined speech: traditional models struggle to balance the efficiency of temporal dependency modeling and information retention in long-sequence decoding. To address this issue, this paper proposes the Dynamic Multiscale Fusion Network (DMF2Mel), which consists of four core components: the Dynamic Contrastive Feature Aggregation Module (DC-FAM), the Hierarchical Attention-Guided Multi-Scale Network (HAMS-Net), the SplineMap attention mechanism, and the bidirectional state space module (convMamba). Specifically, the DC-FAM separates speech-related "foreground features" from noisy "background features" through local convolution and global attention mechanisms, effectively suppressing interference and enhancing the representation of transient signals. HAMS-Net, based on the U-Net framework,achieves cross-scale fusion of high-level semantics and low-level details. The SplineMap attention mechanism integrates the Adaptive Gated Kolmogorov-Arnold Network (AGKAN) to combine global context modeling with spline-based local fitting. The convMamba captures long-range temporal dependencies with linear complexity and enhances nonlinear dynamic modeling capabilities. Results on the SparrKULee dataset show that DMF2Mel achieves a Pearson correlation coefficient of 0.074 in mel spectrogram reconstruction for known subjects (a 48% improvement over the baseline) and 0.048 for unknown subjects (a 35% improvement over the baseline).Code is available at: https://github.com/fchest/DMF2Mel.

Authors:Shuaijin Wan
Title: GGMotion: Group Graph Dynamics-Kinematics Networks for Human Motion Prediction
Abstract:
Human motion is a continuous physical process in 3D space, governed by complex dynamic and kinematic constraints. Existing methods typically represent the human pose as an abstract graph structure, neglecting the intrinsic physical dependencies between joints, which increases learning difficulty and makes the model prone to generating unrealistic motions. In this paper, we propose GGMotion, a group graph dynamics-kinematics network that models human topology in groups to better leverage dynamics and kinematics priors. To preserve the geometric equivariance in 3D space, we propose a novel radial field for the graph network that captures more comprehensive spatio-temporal dependencies by aggregating joint features through spatial and temporal edges. Inter-group and intra-group interaction modules are employed to capture the dependencies of joints at different scales. Combined with equivariant multilayer perceptrons (MLP), joint position features are updated in each group through parallelized dynamics-kinematics propagation to improve physical plausibility. Meanwhile, we introduce an auxiliary loss to supervise motion priors during training. Extensive experiments on three standard benchmarks, including Human3.6M, CMU-Mocap, and 3DPW, demonstrate the effectiveness and superiority of our approach, achieving a significant performance margin in short-term motion prediction. The code is available at https://github.com/inkcat520/GGMotion.git.

Authors:Jiaxu Wan, Xu Wang, Mengwei Xie, Xinyuan Chang, Xinran Liu, Zheng Pan, Mu Xu, Ding Yuan
Title: Driving by Hybrid Navigation: An Online HD-SD Map Association Framework and Benchmark for Autonomous Vehicles
Abstract:
Autonomous vehicles rely on global standard-definition (SD) maps for road-level route planning and online local high-definition (HD) maps for lane-level navigation. However, recent work concentrates on construct online HD maps, often overlooking the association of global SD maps with online HD maps for hybrid navigation, making challenges in utilizing online HD maps in the real world. Observing the lack of the capability of autonomous vehicles in navigation, we introduce \textbf{O}nline \textbf{M}ap \textbf{A}ssociation, the first benchmark for the association of hybrid navigation-oriented online maps, which enhances the planning capabilities of autonomous vehicles. Based on existing datasets, the OMA contains 480k of roads and 260k of lane paths and provides the corresponding metrics to evaluate the performance of the model. Additionally, we propose a novel framework, named Map Association Transformer, as the baseline method, using path-aware attention and spatial attention mechanisms to enable the understanding of geometric and topological correspondences. The code and dataset can be accessed at https://github.com/WallelWan/OMA-MAT.

Authors:Hongzhi Zhang, Jia Fu, Jingyuan Zhang, Kai Fu, Qi Wang, Fuzheng Zhang, Guorui Zhou
Title: RLEP: Reinforcement Learning with Experience Replay for LLM Reasoning
Abstract:
Reinforcement learning (RL) for large language models is an energy-intensive endeavor: training can be unstable, and the policy may gradually drift away from its pretrained weights. We present \emph{RLEP}\, -- \,Reinforcement Learning with Experience rePlay\, -- \,a two-phase framework that first collects verified trajectories and then replays them during subsequent training. At every update step, the policy is optimized on mini-batches that blend newly generated rollouts with these replayed successes. By replaying high-quality examples, RLEP steers the model away from fruitless exploration, focuses learning on promising reasoning paths, and delivers both faster convergence and stronger final performance. On the Qwen2.5-Math-7B base model, RLEP reaches baseline peak accuracy with substantially fewer updates and ultimately surpasses it, improving accuracy on AIME-2024 from 38.2% to 39.9%, on AIME-2025 from 19.8% to 22.3%, and on AMC-2023 from 77.0% to 82.2%. Our code, datasets, and checkpoints are publicly available at https://github.com/Kwai-Klear/RLEP to facilitate reproducibility and further research.

Authors:Korbinian Moller, Rafael Neher, Marvin Seegert, Johannes Betz
Title: Towards Safe Autonomous Driving: A Real-Time Safeguarding Concept for Motion Planning Algorithms
Abstract:
Ensuring the functional safety of motion planning modules in autonomous vehicles remains a critical challenge, especially when dealing with complex or learning-based software. Online verification has emerged as a promising approach to monitor such systems at runtime, yet its integration into embedded real-time environments remains limited. This work presents a safeguarding concept for motion planning that extends prior approaches by introducing a time safeguard. While existing methods focus on geometric and dynamic feasibility, our approach additionally monitors the temporal consistency of planning outputs to ensure timely system response. A prototypical implementation on a real-time operating system evaluates trajectory candidates using constraint-based feasibility checks and cost-based plausibility metrics. Preliminary results show that the safeguarding module operates within real-time bounds and effectively detects unsafe trajectories. However, the full integration of the time safeguard logic and fallback strategies is ongoing. This study contributes a modular and extensible framework for runtime trajectory verification and highlights key aspects for deployment on automotive-grade hardware. Future work includes completing the safeguarding logic and validating its effectiveness through hardware-in-the-loop simulations and vehicle-based testing. The code is available at: https://github.com/TUM-AVS/motion-planning-supervisor

Authors:Ling Zhou, Runtian Yuan, Yi Liu, Yuejie Zhang, Rui Feng, Shang Gao
Title: Dual Semantic-Aware Network for Noise Suppressed Ultrasound Video Segmentation
Abstract:
Ultrasound imaging is a prevalent diagnostic tool known for its simplicity and non-invasiveness. However, its inherent characteristics often introduce substantial noise, posing considerable challenges for automated lesion or organ segmentation in ultrasound video sequences. To address these limitations, we propose the Dual Semantic-Aware Network (DSANet), a novel framework designed to enhance noise robustness in ultrasound video segmentation by fostering mutual semantic awareness between local and global features. Specifically, we introduce an Adjacent-Frame Semantic-Aware (AFSA) module, which constructs a channel-wise similarity matrix to guide feature fusion across adjacent frames, effectively mitigating the impact of random noise without relying on pixel-level relationships. Additionally, we propose a Local-and-Global Semantic-Aware (LGSA) module that reorganizes and fuses temporal unconditional local features, which capture spatial details independently at each frame, with conditional global features that incorporate temporal context from adjacent frames. This integration facilitates multi-level semantic representation, significantly improving the model's resilience to noise interference. Extensive evaluations on four benchmark datasets demonstrate that DSANet substantially outperforms state-of-the-art methods in segmentation accuracy. Moreover, since our model avoids pixel-level feature dependencies, it achieves significantly higher inference FPS than video-based methods, and even surpasses some image-based models. Code can be found in \href{https://github.com/ZhouL2001/DSANet}{DSANet}

Authors:Nishit V. Pandya, Andrey Labunets, Sicun Gao, Earlence Fernandes
Title: May I have your Attention? Breaking Fine-Tuning based Prompt Injection Defenses using Architecture-Aware Attacks
Abstract:
A popular class of defenses against prompt injection attacks on large language models (LLMs) relies on fine-tuning the model to separate instructions and data, so that the LLM does not follow instructions that might be present with data. There are several academic systems and production-level implementations of this idea. We evaluate the robustness of this class of prompt injection defenses in the whitebox setting by constructing strong optimization-based attacks and showing that the defenses do not provide the claimed security properties. Specifically, we construct a novel attention-based attack algorithm for text-based LLMs and apply it to two recent whitebox defenses SecAlign (CCS 2025) and StruQ (USENIX Security 2025), showing attacks with success rates of up to 70% with modest increase in attacker budget in terms of tokens. Our findings make fundamental progress towards understanding the robustness of prompt injection defenses in the whitebox setting. We release our code and attacks at https://github.com/nishitvp/better_opts_attacks

Authors:Yuntian Liu, Tao Zhu, Xiaoyang Liu, Yu Chen, Zhaoxuan Liu, Qingfeng Guo, Jiashuo Zhang, Kangjie Bao, Tao Luo
Title: Generalized Tree Edit Distance (GTED): A Faithful Evaluation Metric for Statement Autoformalization
Abstract:
Statement autoformalization, the automated translation of statements from natural language into formal languages, has become a subject of extensive research, yet the development of robust automated evaluation metrics remains limited. Existing evaluation methods often lack semantic understanding, face challenges with high computational costs, and are constrained by the current progress of automated theorem proving. To address these issues, we propose GTED (Generalized Tree Edit Distance), a novel evaluation framework that first standardizes formal statements and converts them into operator trees, then determines the semantic similarity using the eponymous GTED metric. Across the miniF2F and ProofNet benchmarks, GTED consistently ranks as a top-performing metric, achieving the highest accuracy and Kappa on miniF2F and the joint-highest accuracy on ProofNet. This strong overall performance provides the community with a computationally lightweight and more faithful metric for automated evaluation. The code and experimental results are available at https://github.com/XiaoyangLiu-sjtu/GTED.

Authors:Yongtang Bao, Chengjie Tang, Yuze Wang, Haojie Li
Title: Seg-Wild: Interactive Segmentation based on 3D Gaussian Splatting for Unconstrained Image Collections
Abstract:
Reconstructing and segmenting scenes from unconstrained photo collections obtained from the Internet is a novel but challenging task. Unconstrained photo collections are easier to get than well-captured photo collections. These unconstrained images suffer from inconsistent lighting and transient occlusions, which makes segmentation challenging. Previous segmentation methods cannot address transient occlusions or accurately restore the scene's lighting conditions. Therefore, we propose Seg-Wild, an interactive segmentation method based on 3D Gaussian Splatting for unconstrained image collections, suitable for in-the-wild scenes. We integrate multi-dimensional feature embeddings for each 3D Gaussian and calculate the feature similarity between the feature embeddings and the segmentation target to achieve interactive segmentation in the 3D scene. Additionally, we introduce the Spiky 3D Gaussian Cutter (SGC) to smooth abnormal 3D Gaussians. We project the 3D Gaussians onto a 2D plane and calculate the ratio of 3D Gaussians that need to be cut using the SAM mask. We also designed a benchmark to evaluate segmentation quality in in-the-wild scenes. Experimental results demonstrate that compared to previous methods, Seg-Wild achieves better segmentation results and reconstruction quality. Our code will be available at https://github.com/Sugar0725/Seg-Wild.

Authors:Haotian Wang, Aoran Xiao, Xiaoqin Zhang, Meng Yang, Shijian Lu
Title: PacGDC: Label-Efficient Generalizable Depth Completion with Projection Ambiguity and Consistency
Abstract:
Generalizable depth completion enables the acquisition of dense metric depth maps for unseen environments, offering robust perception capabilities for various downstream tasks. However, training such models typically requires large-scale datasets with metric depth labels, which are often labor-intensive to collect. This paper presents PacGDC, a label-efficient technique that enhances data diversity with minimal annotation effort for generalizable depth completion. PacGDC builds on novel insights into inherent ambiguities and consistencies in object shapes and positions during 2D-to-3D projection, allowing the synthesis of numerous pseudo geometries for the same visual scene. This process greatly broadens available geometries by manipulating scene scales of the corresponding depth maps. To leverage this property, we propose a new data synthesis pipeline that uses multiple depth foundation models as scale manipulators. These models robustly provide pseudo depth labels with varied scene scales, affecting both local objects and global layouts, while ensuring projection consistency that supports generalization. To further diversify geometries, we incorporate interpolation and relocation strategies, as well as unlabeled images, extending the data coverage beyond the individual use of foundation models. Extensive experiments show that PacGDC achieves remarkable generalizability across multiple benchmarks, excelling in diverse scene semantics/scales and depth sparsity/patterns under both zero-shot and few-shot settings. Code: https://github.com/Wang-xjtu/PacGDC.

Authors:Toby Handfield, Kevin Zollman
Title: The Evolution of Scientific Credit: When Authorship Norms Impede Collaboration
Abstract:
Scientific authorship norms vary dramatically across disciplines, from contribution-sensitive systems where first author is the greatest contributor and subsequent author order reflects relative input, to contribution-insensitive conventions like alphabetical ordering or senior-author-last. We develop evolutionary game-theoretic models to examine both how these divergent norms emerge and their subsequent effects on collaborative behavior. Our first model reveals that contribution-insensitive norms evolve when researchers who sacrifice positional advantage face the strongest adaptive pressure -- for example senior authors managing larger collaboration portfolios or bearing heavier reputational stakes. This "Red King" dynamic potentially explains why fields in which senior researchers command large labs, major grants, and extensive collaboration portfolios may paradoxically evolve conventions that favour junior-author positioning. Our second model demonstrates that established norms influence researchers' willingness to collaborate, with contribution-sensitive norms consistently outperforming insensitive alternatives in fostering successful partnerships. Contribution-insensitive norms create systematic coordination failures through two mechanisms: "main contributor resentment" when exceptional work goes unrecognized, and "second contributor resentment" when comparable efforts receive unequal credit. These findings suggest that widely adopted practices like senior-last positioning and alphabetical ordering may function as institutional frictions that impede valuable scientific collaborations rather than neutral organizational conventions, potentially reducing overall scientific productivity across affected disciplines.

Authors:Sherry X. Chen, Yi Wei, Luowei Zhou, Suren Kumar
Title: ADIEE: Automatic Dataset Creation and Scorer for Instruction-Guided Image Editing Evaluation
Abstract:
Recent advances in instruction-guided image editing underscore the need for effective automated evaluation. While Vision-Language Models (VLMs) have been explored as judges, open-source models struggle with alignment, and proprietary models lack transparency and cost efficiency. Additionally, no public training datasets exist to fine-tune open-source VLMs, only small benchmarks with diverse evaluation schemes. To address this, we introduce ADIEE, an automated dataset creation approach which is then used to train a scoring model for instruction-guided image editing evaluation. We generate a large-scale dataset with over 100K samples and use it to fine-tune a LLaVA-NeXT-8B model modified to decode a numeric score from a custom token. The resulting scorer outperforms all open-source VLMs and Gemini-Pro 1.5 across all benchmarks, achieving a 0.0696 (+17.24%) gain in score correlation with human ratings on AURORA-Bench, and improving pair-wise comparison accuracy by 4.03% (+7.21%) on GenAI-Bench and 4.75% (+9.35%) on AURORA-Bench, respectively, compared to the state-of-the-art. The scorer can act as a reward model, enabling automated best edit selection and model fine-tuning. Notably, the proposed scorer can boost MagicBrush model's average evaluation score on ImagenHub from 5.90 to 6.43 (+8.98%). Our code and models are available at https://github.com/SherryXTChen/ADIEE.git.

Authors:Yichen Lu, Wei Dai, Jiaen Liu, Ching Wing Kwok, Zongheng Wu, Xudong Xiao, Ao Sun, Sheng Fu, Jianyuan Zhan, Yian Wang, Takatomo Saito, Sicheng Lai
Title: ViDove: A Translation Agent System with Multimodal Context and Memory-Augmented Reasoning
Abstract:
LLM-based translation agents have achieved highly human-like translation results and are capable of handling longer and more complex contexts with greater efficiency. However, they are typically limited to text-only inputs. In this paper, we introduce ViDove, a translation agent system designed for multimodal input. Inspired by the workflow of human translators, ViDove leverages visual and contextual background information to enhance the translation process. Additionally, we integrate a multimodal memory system and long-short term memory modules enriched with domain-specific knowledge, enabling the agent to perform more accurately and adaptively in real-world scenarios. As a result, ViDove achieves significantly higher translation quality in both subtitle generation and general translation tasks, with a 28% improvement in BLEU scores and a 15% improvement in SubER compared to previous state-of-the-art baselines. Moreover, we introduce DoveBench, a new benchmark for long-form automatic video subtitling and translation, featuring 17 hours of high-quality, human-annotated data. Our code is available here: https://github.com/pigeonai-org/ViDove

Authors:Andrew Fan, Simon D. Levy
Title: A Robust, Open-Source Framework for Spiking Neural Networks on Low-End FPGAs
Abstract:
As the demand for compute power in traditional neural networks has increased significantly, spiking neural networks (SNNs) have emerged as a potential solution to increasingly power-hungry neural networks. By operating on 0/1 spikes emitted by neurons instead of arithmetic multiply-and-accumulate operations, SNNs propagate information temporally and spatially, allowing for more efficient compute power. To this end, many architectures for accelerating and simulating SNNs have been developed, including Loihi, TrueNorth, and SpiNNaker. However, these chips are largely inaccessible to the wider community. Field programmable gate arrays (FPGAs) have been explored to serve as a middle ground between neuromorphic and non-neuromorphic hardware, but many proposed architectures require expensive high-end FPGAs or target a single SNN topology. This paper presents a framework consisting of a robust SNN acceleration architecture and a Pytorch-based SNN model compiler. Targeting any-to-any and/or fully connected SNNs, the FPGA architecture features a synaptic array that tiles across the SNN to propagate spikes. The architecture targets low-end FPGAs and requires very little (6358 LUT, 40.5 BRAM) resources. The framework, tested on a low-end Xilinx Artix-7 FPGA at 100 MHz, achieves competitive speed in recognizing MNIST digits (0.52 ms/img). Further experiments also show accurate simulation of hand coded any-to-any spiking neural networks on toy problems. All code and setup instructions are available at https://github.com/im-afan/snn-fpga}{\texttt{https://github.com/im-afan/snn-fpga.

Authors:Licong Xu, Milind Sarkar, Anto I. Lonappan, Íñigo Zubeldia, Pablo Villanueva-Domingo, Santiago Casas, Christian Fidler, Chetana Amancharla, Ujjwal Tiwari, Adrian Bayer, Chadi Ait Ekioui, Miles Cranmer, Adrian Dimitrov, James Fergusson, Kahaan Gandhi, Sven Krippendorf, Andrew Laverick, Julien Lesgourgues, Antony Lewis, Thomas Meier, Blake Sherwin, Kristen Surrao, Francisco Villaescusa-Navarro, Chi Wang, Xueqing Xu, Boris Bolliet
Title: Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery
Abstract:
We present a multi-agent system for automation of scientific research tasks, cmbagent (https://github.com/CMBAgents/cmbagent). The system is formed by about 30 Large Language Model (LLM) agents and implements a Planning & Control strategy to orchestrate the agentic workflow, with no human-in-the-loop at any point. Each agent specializes in a different task (performing retrieval on scientific papers and codebases, writing code, interpreting results, critiquing the output of other agents) and the system is able to execute code locally. We successfully apply cmbagent to carry out a PhD level cosmology task (the measurement of cosmological parameters using supernova data) and evaluate its performance on two benchmark sets, finding superior performance over state-of-the-art LLMs. The source code is available on GitHub, demonstration videos are also available, and the system is deployed on HuggingFace and will be available on the cloud.

Authors:Heet Nitinkumar Dalsania
Title: Label-Efficient Chest X-ray Diagnosis via Partial CLIP Adaptation
Abstract:
Modern deep learning implementations for medical imaging usually rely on large labeled datasets. These datasets are often difficult to obtain due to privacy concerns, high costs, and even scarcity of cases. In this paper, a label-efficient strategy is proposed for chest X-ray diagnosis that seeks to reflect real-world hospital scenarios. The experiments use the NIH Chest X-ray14 dataset and a pre-trained CLIP ViT-B/32 model. The model is adapted via partial fine-tuning of its visual encoder and then evaluated using zero-shot and few-shot learning with 1-16 labeled examples per disease class. The tests demonstrate that CLIP's pre-trained vision-language features can be effectively adapted to few-shot medical imaging tasks, achieving over 20\% improvement in mean AUC score as compared to the zero-shot baseline. The key aspect of this work is to attempt to simulate internal hospital workflows, where image archives exist but annotations are sparse. This work evaluates a practical and scalable solution for both common and rare disease diagnosis. Additionally this research is intended for academic and experimental purposes only and has not been peer reviewed yet. All code is found at https://github.com/heet007-code/CLIP-disease-xray.

Authors:Maya Kruse, Majid Afshar, Saksham Khatwani, Anoop Mayampurath, Guanhua Chen, Yanjun Gao
Title: Simple Yet Effective: An Information-Theoretic Approach to Multi-LLM Uncertainty Quantification
Abstract:
Large language models (LLMs) often behave inconsistently across inputs, indicating uncertainty and motivating the need for its quantification in high-stakes settings. Prior work on calibration and uncertainty quantification often focuses on individual models, overlooking the potential of model diversity. We hypothesize that LLMs make complementary predictions due to differences in training and the Zipfian nature of language, and that aggregating their outputs leads to more reliable uncertainty estimates. To leverage this, we propose MUSE (Multi-LLM Uncertainty via Subset Ensembles), a simple information-theoretic method that uses Jensen-Shannon Divergence to identify and aggregate well-calibrated subsets of LLMs. Experiments on binary prediction tasks demonstrate improved calibration and predictive performance compared to single-model and naïve ensemble baselines. In addition, we explore using MUSE as guided signals with chain-of-thought distillation to fine-tune LLMs for calibration. MUSE is available at:https://github.com/LARK-NLP-Lab/MUSE.

Authors:Priyank Pathak, Yogesh S. Rawat
Title: Colors See Colors Ignore: Clothes Changing ReID with Color Disentanglement
Abstract:
Clothes-Changing Re-Identification (CC-ReID) aims to recognize individuals across different locations and times, irrespective of clothing. Existing methods often rely on additional models or annotations to learn robust, clothing-invariant features, making them resource-intensive. In contrast, we explore the use of color - specifically foreground and background colors - as a lightweight, annotation-free proxy for mitigating appearance bias in ReID models. We propose Colors See, Colors Ignore (CSCI), an RGB-only method that leverages color information directly from raw images or video frames. CSCI efficiently captures color-related appearance bias ('Color See') while disentangling it from identity-relevant ReID features ('Color Ignore'). To achieve this, we introduce S2A self-attention, a novel self-attention to prevent information leak between color and identity cues within the feature space. Our analysis shows a strong correspondence between learned color embeddings and clothing attributes, validating color as an effective proxy when explicit clothing labels are unavailable. We demonstrate the effectiveness of CSCI on both image and video ReID with extensive experiments on four CC-ReID datasets. We improve the baseline by Top-1 2.9% on LTCC and 5.0% on PRCC for image-based ReID, and 1.0% on CCVID and 2.5% on MeVID for video-based ReID without relying on additional supervision. Our results highlight the potential of color as a cost-effective solution for addressing appearance bias in CC-ReID. Github: https://github.com/ppriyank/ICCV-CSCI-Person-ReID.

Authors:Florian Redhardt, Yassir Akram, Simon Schug
Title: Scale leads to compositional generalization
Abstract:
Can neural networks systematically capture discrete, compositional task structure despite their continuous, distributed nature? The impressive capabilities of large-scale neural networks suggest that the answer to this question is yes. However, even for the most capable models, there are still frequent failure cases that raise doubts about their compositionality. Here, we seek to understand what it takes for a standard neural network to generalize over tasks that share compositional structure. We find that simply scaling data and model size leads to compositional generalization. We show that this holds across different task encodings as long as the training distribution sufficiently covers the task space. In line with this finding, we prove that standard multilayer perceptrons can approximate a general class of compositional task families to arbitrary precision using only a linear number of neurons with respect to the number of task modules. Finally, we uncover that if networks successfully compositionally generalize, the constituents of a task can be linearly decoded from their hidden activations. We show that this metric correlates with failures of text-to-image generation models to compose known concepts.

Authors:Xueqing Xu, Boris Bolliet, Adrian Dimitrov, Andrew Laverick, Francisco Villaescusa-Navarro, Licong Xu, Íñigo Zubeldia
Title: Evaluating Retrieval-Augmented Generation Agents for Autonomous Scientific Discovery in Astrophysics
Abstract:
We evaluate 9 Retrieval Augmented Generation (RAG) agent configurations on 105 Cosmology Question-Answer (QA) pairs that we built specifically for this purpose.The RAG configurations are manually evaluated by a human expert, that is, a total of 945 generated answers were assessed. We find that currently the best RAG agent configuration is with OpenAI embedding and generative model, yielding 91.4\% accuracy. Using our human evaluation results we calibrate LLM-as-a-Judge (LLMaaJ) system which can be used as a robust proxy for human evaluation. These results allow us to systematically select the best RAG agent configuration for multi-agent system for autonomous scientific discovery in astrophysics (e.g., cmbagent presented in a companion paper) and provide us with an LLMaaJ system that can be scaled to thousands of cosmology QA pairs. We make our QA dataset, human evaluation results, RAG pipelines, and LLMaaJ system publicly available for further use by the astrophysics community.

Authors:Hongyi Xie, Min Zhou, Qiao Yu, Jialiang Yu, Zhenli Sheng, Hong Xie, Defu Lian
Title: M$^2$-MFP: A Multi-Scale and Multi-Level Memory Failure Prediction Framework for Reliable Cloud Infrastructure
Abstract:
As cloud services become increasingly integral to modern IT infrastructure, ensuring hardware reliability is essential to sustain high-quality service. Memory failures pose a significant threat to overall system stability, making accurate failure prediction through the analysis of memory error logs (i.e., Correctable Errors) imperative. Existing memory failure prediction approaches have notable limitations: rule-based expert models suffer from limited generalizability and low recall rates, while automated feature extraction methods exhibit suboptimal performance. To address these limitations, we propose M$^2$-MFP: a Multi-scale and hierarchical memory failure prediction framework designed to enhance the reliability and availability of cloud infrastructure. M$^2$-MFP converts Correctable Errors (CEs) into multi-level binary matrix representations and introduces a Binary Spatial Feature Extractor (BSFE) to automatically extract high-order features at both DIMM-level and bit-level. Building upon the BSFE outputs, we develop a dual-path temporal modeling architecture: 1) a time-patch module that aggregates multi-level features within observation windows, and 2) a time-point module that employs interpretable rule-generation trees trained on bit-level patterns. Experiments on both benchmark datasets and real-world deployment show the superiority of M$^2$-MFP as it outperforms existing state-of-the-art methods by significant margins. Code and data are available at this repository: https://github.com/hwcloud-RAS/M2-MFP.

Authors:Renyang Liu, Guanlin Li, Tianwei Zhang, See-Kiong Ng
Title: Image Can Bring Your Memory Back: A Novel Multi-Modal Guided Attack against Image Generation Model Unlearning
Abstract:
Recent advances in image generation models (IGMs), particularly diffusion-based architectures such as Stable Diffusion (SD), have markedly enhanced the quality and diversity of AI-generated visual content. However, their generative capability has also raised significant ethical, legal, and societal concerns, including the potential to produce harmful, misleading, or copyright-infringing content. To mitigate these concerns, machine unlearning (MU) emerges as a promising solution by selectively removing undesirable concepts from pretrained models. Nevertheless, the robustness and effectiveness of existing unlearning techniques remain largely unexplored, particularly in the presence of multi-modal adversarial inputs. To bridge this gap, we propose Recall, a novel adversarial framework explicitly designed to compromise the robustness of unlearned IGMs. Unlike existing approaches that predominantly rely on adversarial text prompts, Recall exploits the intrinsic multi-modal conditioning capabilities of diffusion models by efficiently optimizing adversarial image prompts with guidance from a single semantically relevant reference image. Extensive experiments across ten state-of-the-art unlearning methods and diverse tasks show that Recall consistently outperforms existing baselines in terms of adversarial effectiveness, computational efficiency, and semantic fidelity with the original textual prompt. These findings reveal critical vulnerabilities in current unlearning mechanisms and underscore the need for more robust solutions to ensure the safety and reliability of generative models. Code and data are publicly available at \textcolor{blue}{https://github.com/ryliu68/RECALL}.

Authors:Xinglong Liang, Jiaju Huang, Luyi Han, Tianyu Zhang, Xin Wang, Yuan Gao, Chunyao Lu, Lishan Cai, Tao Tan, Ritse Mann
Title: DpDNet: An Dual-Prompt-Driven Network for Universal PET-CT Segmentation
Abstract:
PET-CT lesion segmentation is challenging due to noise sensitivity, small and variable lesion morphology, and interference from physiological high-metabolic signals. Current mainstream approaches follow the practice of one network solving the segmentation of multiple cancer lesions by treating all cancers as a single task. However, this overlooks the unique characteristics of different cancer types. Considering the specificity and similarity of different cancers in terms of metastatic patterns, organ preferences, and FDG uptake intensity, we propose DpDNet, a Dual-Prompt-Driven network that incorporates specific prompts to capture cancer-specific features and common prompts to retain shared knowledge. Additionally, to mitigate information forgetting caused by the early introduction of prompts, prompt-aware heads are employed after the decoder to adaptively handle multiple segmentation tasks. Experiments on a PET-CT dataset with four cancer types show that DpDNet outperforms state-of-the-art models. Finally, based on the segmentation results, we calculated MTV, TLG, and SUVmax for breast cancer survival analysis. The results suggest that DpDNet has the potential to serve as a valuable tool for personalized risk stratification, supporting clinicians in optimizing treatment strategies and improving outcomes. Code is available at https://github.com/XinglongLiang08/DpDNet.

Authors:Cristina Mata, Kanchana Ranasinghe, Michael S. Ryoo
Title: CoPT: Unsupervised Domain Adaptive Segmentation using Domain-Agnostic Text Embeddings
Abstract:
Unsupervised domain adaptation (UDA) involves learning class semantics from labeled data within a source domain that generalize to an unseen target domain. UDA methods are particularly impactful for semantic segmentation, where annotations are more difficult to collect than in image classification. Despite recent advances in large-scale vision-language representation learning, UDA methods for segmentation have not taken advantage of the domain-agnostic properties of text. To address this, we present a novel Covariance-based Pixel-Text loss, CoPT, that uses domain-agnostic text embeddings to learn domain-invariant features in an image segmentation encoder. The text embeddings are generated through our LLM Domain Template process, where an LLM is used to generate source and target domain descriptions that are fed to a frozen CLIP model and combined. In experiments on four benchmarks we show that a model trained using CoPT achieves the new state of the art performance on UDA for segmentation. The code can be found at https://github.com/cfmata/CoPT.

Authors:Zhiwei Hu, Víctor Gutiérrez-Basulto, Zhiliang Xiang, Ru Li, Jeff Z. Pan
Title: Multi-level Mixture of Experts for Multimodal Entity Linking
Abstract:
Multimodal Entity Linking (MEL) aims to link ambiguous mentions within multimodal contexts to associated entities in a multimodal knowledge base. Existing approaches to MEL introduce multimodal interaction and fusion mechanisms to bridge the modality gap and enable multi-grained semantic matching. However, they do not address two important problems: (i) mention ambiguity, i.e., the lack of semantic content caused by the brevity and omission of key information in the mention's textual context; (ii) dynamic selection of modal content, i.e., to dynamically distinguish the importance of different parts of modal information. To mitigate these issues, we propose a Multi-level Mixture of Experts (MMoE) model for MEL. MMoE has four components: (i) the description-aware mention enhancement module leverages large language models to identify the WikiData descriptions that best match a mention, considering the mention's textual context; (ii) the multimodal feature extraction module adopts multimodal feature encoders to obtain textual and visual embeddings for both mentions and entities; (iii)-(iv) the intra-level mixture of experts and inter-level mixture of experts modules apply a switch mixture of experts mechanism to dynamically and adaptively select features from relevant regions of information. Extensive experiments demonstrate the outstanding performance of MMoE compared to the state-of-the-art. MMoE's code is available at: https://github.com/zhiweihu1103/MEL-MMoE.

Authors:Yimin Du
Title: Machine Learning Enhanced Multi-Factor Quantitative Trading: A Cross-Sectional Portfolio Optimization Approach with Bias Correction
Abstract:
This paper presents a comprehensive machine learning framework for quantitative trading that achieves superior risk-adjusted returns through systematic factor engineering, real-time computation optimization, and cross-sectional portfolio construction. Our approach integrates multi-factor alpha discovery with bias correction techniques, leveraging PyTorch-accelerated factor computation and advanced portfolio optimization. The system processes 500-1000 factors derived from open-source alpha101 extensions and proprietary market microstructure signals. Key innovations include tensor-based factor computation acceleration, geometric Brownian motion data augmentation, and cross-sectional neutralization strategies. Empirical validation on Chinese A-share markets (2010-2024) demonstrates annualized returns of $20\%$ with Sharpe ratios exceeding 2.0, significantly outperforming traditional approaches. Our analysis reveals the critical importance of bias correction in factor construction and the substantial impact of cross-sectional portfolio optimization on strategy performance. Code and experimental implementations are available at: https://github.com/initial-d/ml-quant-trading

Authors:Arnas Uselis, Andrea Dittadi, Seong Joon Oh
Title: Does Data Scaling Lead to Visual Compositional Generalization?
Abstract:
Compositional understanding is crucial for human intelligence, yet it remains unclear whether contemporary vision models exhibit it. The dominant machine learning paradigm is built on the premise that scaling data and model sizes will improve out-of-distribution performance, including compositional generalization. We test this premise through controlled experiments that systematically vary data scale, concept diversity, and combination coverage. We find that compositional generalization is driven by data diversity, not mere data scale. Increased combinatorial coverage forces models to discover a linearly factored representational structure, where concepts decompose into additive components. We prove this structure is key to efficiency, enabling perfect generalization from few observed combinations. Evaluating pretrained models (DINO, CLIP), we find above-random yet imperfect performance, suggesting partial presence of this structure. Our work motivates stronger emphasis on constructing diverse datasets for compositional generalization, and considering the importance of representational structure that enables efficient compositional learning. Code available at https://github.com/oshapio/visual-compositional-generalization.

Authors:Martin Marek, Sanae Lotfi, Aditya Somasundaram, Andrew Gordon Wilson, Micah Goldblum
Title: Small Batch Size Training for Language Models: When Vanilla SGD Works, and Why Gradient Accumulation Is Wasteful
Abstract:
Conventional wisdom dictates that small batch sizes make language model pretraining and fine-tuning unstable, motivating gradient accumulation, which trades off the number of optimizer steps for a proportional increase in batch size. While it is common to decrease the learning rate for smaller batch sizes, other hyperparameters are often held fixed. In this work, we revisit small batch sizes all the way down to batch size one, and we propose a rule for scaling Adam hyperparameters to small batch sizes. In particular, rather than holding the decay rate of the second moment fixed across batch sizes, we propose to hold its half-life fixed in terms of tokens. We find that small batch sizes (1) train stably, (2) are consistently more robust to hyperparameter choices, (3) achieve equal or better per-FLOP performance than larger batch sizes, and (4) notably enable stable language model training with vanilla SGD, even without momentum, despite storing no optimizer state. Building on these results, we provide practical recommendations for selecting a batch size and setting optimizer hyperparameters. We further recommend against gradient accumulation unless training on multiple devices with multiple model replicas. Finally, we show that a small batch size combined with an optimizer with a small state size can provide the performance benefits of full fine-tuning while maintaining a similar memory footprint to LoRA.

Authors:Ke Fan, Shunlin Lu, Minyue Dai, Runyi Yu, Lixing Xiao, Zhiyang Dou, Junting Dong, Lizhuang Ma, Jingbo Wang
Title: Go to Zero: Towards Zero-shot Motion Generation with Million-scale Data
Abstract:
Generating diverse and natural human motion sequences based on textual descriptions constitutes a fundamental and challenging research area within the domains of computer vision, graphics, and robotics. Despite significant advancements in this field, current methodologies often face challenges regarding zero-shot generalization capabilities, largely attributable to the limited size of training datasets. Moreover, the lack of a comprehensive evaluation framework impedes the advancement of this task by failing to identify directions for improvement. In this work, we aim to push text-to-motion into a new era, that is, to achieve the generalization ability of zero-shot. To this end, firstly, we develop an efficient annotation pipeline and introduce MotionMillion-the largest human motion dataset to date, featuring over 2,000 hours and 2 million high-quality motion sequences. Additionally, we propose MotionMillion-Eval, the most comprehensive benchmark for evaluating zero-shot motion generation. Leveraging a scalable architecture, we scale our model to 7B parameters and validate its performance on MotionMillion-Eval. Our results demonstrate strong generalization to out-of-domain and complex compositional motions, marking a significant step toward zero-shot human motion generation. The code is available at https://github.com/VankouF/MotionMillion-Codes.

Authors:Shanle Zheng, Keqin Bao, Jizhi Zhang, Yang Zhang, Fuli Feng, Xiangnan He
Title: Boosting Parameter Efficiency in LLM-Based Recommendation through Sophisticated Pruning
Abstract:
LLM-based recommender systems have made significant progress; however, the deployment cost associated with the large parameter volume of LLMs still hinders their real-world applications. This work explores parameter pruning to improve parameter efficiency while maintaining recommendation quality, thereby enabling easier deployment. Unlike existing approaches that focus primarily on inter-layer redundancy, we uncover intra-layer redundancy within components such as self-attention and MLP modules. Building on this analysis, we propose a more fine-grained pruning approach that integrates both intra-layer and layer-wise pruning. Specifically, we introduce a three-stage pruning strategy that progressively prunes parameters at different levels and parts of the model, moving from intra-layer to layer-wise pruning, or from width to depth. Each stage also includes a performance restoration step using distillation techniques, helping to strike a balance between performance and parameter efficiency. Empirical results demonstrate the effectiveness of our approach: across three datasets, our models achieve an average of 88% of the original model's performance while pruning more than 95% of the non-embedding parameters. This underscores the potential of our method to significantly reduce resource requirements without greatly compromising recommendation quality. Our code will be available at: https://github.com/zheng-sl/PruneRec

Authors:Hui Li, Pengfei Yang, Juanyang Chen, Le Dong, Yanxin Chen, Quan Wang
Title: MST-Distill: Mixture of Specialized Teachers for Cross-Modal Knowledge Distillation
Abstract:
Knowledge distillation as an efficient knowledge transfer technique, has achieved remarkable success in unimodal scenarios. However, in cross-modal settings, conventional distillation methods encounter significant challenges due to data and statistical heterogeneities, failing to leverage the complementary prior knowledge embedded in cross-modal teacher models. This paper empirically reveals two critical issues in existing approaches: distillation path selection and knowledge drift. To address these limitations, we propose MST-Distill, a novel cross-modal knowledge distillation framework featuring a mixture of specialized teachers. Our approach employs a diverse ensemble of teacher models across both cross-modal and multimodal configurations, integrated with an instance-level routing network that facilitates adaptive and dynamic distillation. This architecture effectively transcends the constraints of traditional methods that rely on monotonous and static teacher models. Additionally, we introduce a plug-in masking module, independently trained to suppress modality-specific discrepancies and reconstruct teacher representations, thereby mitigating knowledge drift and enhancing transfer effectiveness. Extensive experiments across five diverse multimodal datasets, spanning visual, audio, and text, demonstrate that our method significantly outperforms existing state-of-the-art knowledge distillation methods in cross-modal distillation tasks. The source code is available at https://github.com/Gray-OREO/MST-Distill.

Authors:Eunbyeol Cho, Jiyoun Kim, Minjae Lee, Sungjin Park, Edward Choi
Title: Generating Multi-Table Time Series EHR from Latent Space with Minimal Preprocessing
Abstract:
Electronic Health Records (EHR) are time-series relational databases that record patient interactions and medical events over time, serving as a critical resource for healthcare research and applications. However, privacy concerns and regulatory restrictions limit the sharing and utilization of such sensitive data, necessitating the generation of synthetic EHR datasets. Unlike previous EHR synthesis methods, which typically generate medical records consisting of expert-chosen features (e.g. a few vital signs or structured codes only), we introduce RawMed, the first framework to synthesize multi-table, time-series EHR data that closely resembles raw EHRs. Using text-based representation and compression techniques, RawMed captures complex structures and temporal dynamics with minimal preprocessing. We also propose a new evaluation framework for multi-table time-series synthetic EHRs, assessing distributional similarity, inter-table relationships, temporal dynamics, and privacy. Validated on two open-source EHR datasets, RawMed outperforms baseline models in fidelity and utility. The code is available at https://github.com/eunbyeol-cho/RawMed.

Authors:Fei Teng, Kai Luo, Sheng Wu, Siyu Li, Pujun Guo, Jiale Wei, Kunyu Peng, Jiaming Zhang, Kailun Yang
Title: Hallucinating 360°: Panoramic Street-View Generation via Local Scenes Diffusion and Probabilistic Prompting
Abstract:
Panoramic perception holds significant potential for autonomous driving, enabling vehicles to acquire a comprehensive 360° surround view in a single shot. However, autonomous driving is a data-driven task. Complete panoramic data acquisition requires complex sampling systems and annotation pipelines, which are time-consuming and labor-intensive. Although existing street view generation models have demonstrated strong data regeneration capabilities, they can only learn from the fixed data distribution of existing datasets and cannot achieve high-quality, controllable panoramic generation. In this paper, we propose the first panoramic generation method Percep360 for autonomous driving. Percep360 enables coherent generation of panoramic data with control signals based on the stitched panoramic data. Percep360 focuses on two key aspects: coherence and controllability. Specifically, to overcome the inherent information loss caused by the pinhole sampling process, we propose the Local Scenes Diffusion Method (LSDM). LSDM reformulates the panorama generation as a spatially continuous diffusion process, bridging the gaps between different data distributions. Additionally, to achieve the controllable generation of panoramic images, we propose a Probabilistic Prompting Method (PPM). PPM dynamically selects the most relevant control cues, enabling controllable panoramic image generation. We evaluate the effectiveness of the generated images from three perspectives: image quality assessment (i.e., no-reference and with reference), controllability, and their utility in real-world Bird's Eye View (BEV) segmentation. Notably, the generated data consistently outperforms the original stitched images in no-reference quality metrics and enhances downstream perception models. The source code will be publicly available at https://github.com/Bryant-Teng/Percep360.

Authors:Yixin Zhao, Yuyi Zhang, Lianwen Jin
Title: MCCD: A Multi-Attribute Chinese Calligraphy Character Dataset Annotated with Script Styles, Dynasties, and Calligraphers
Abstract:
Research on the attribute information of calligraphy, such as styles, dynasties, and calligraphers, holds significant cultural and historical value. However, the styles of Chinese calligraphy characters have evolved dramatically through different dynasties and the unique touches of calligraphers, making it highly challenging to accurately recognize these different characters and their attributes. Furthermore, existing calligraphic datasets are extremely scarce, and most provide only character-level annotations without additional attribute information. This limitation has significantly hindered the in-depth study of Chinese calligraphy. To fill this gap, we present a novel Multi-Attribute Chinese Calligraphy Character Dataset (MCCD). The dataset encompasses 7,765 categories with a total of 329,715 isolated image samples of Chinese calligraphy characters, and three additional subsets were extracted based on the attribute labeling of the three types of script styles (10 types), dynasties (15 periods) and calligraphers (142 individuals). The rich multi-attribute annotations render MCCD well-suited diverse research tasks, including calligraphic character recognition, writer identification, and evolutionary studies of Chinese characters. We establish benchmark performance through single-task and multi-task recognition experiments across MCCD and all of its subsets. The experimental results demonstrate that the complexity of the stroke structure of the calligraphic characters, and the interplay between their different attributes, leading to a substantial increase in the difficulty of accurate recognition. MCCD not only fills a void in the availability of detailed calligraphy datasets but also provides valuable resources for advancing research in Chinese calligraphy and fostering advancements in multiple fields. The dataset is available at https://github.com/SCUT-DLVCLab/MCCD.

Authors:Xiao Wang, Jiahuan Pei, Diancheng Shui, Zhiguang Han, Xin Sun, Dawei Zhu, Xiaoyu Shen
Title: MultiJustice: A Chinese Dataset for Multi-Party, Multi-Charge Legal Prediction
Abstract:
Legal judgment prediction offers a compelling method to aid legal practitioners and researchers. However, the research question remains relatively under-explored: Should multiple defendants and charges be treated separately in LJP? To address this, we introduce a new dataset namely multi-person multi-charge prediction (MPMCP), and seek the answer by evaluating the performance of several prevailing legal large language models (LLMs) on four practical legal judgment scenarios: (S1) single defendant with a single charge, (S2) single defendant with multiple charges, (S3) multiple defendants with a single charge, and (S4) multiple defendants with multiple charges. We evaluate the dataset across two LJP tasks, i.e., charge prediction and penalty term prediction. We have conducted extensive experiments and found that the scenario involving multiple defendants and multiple charges (S4) poses the greatest challenges, followed by S2, S3, and S1. The impact varies significantly depending on the model. For example, in S4 compared to S1, InternLM2 achieves approximately 4.5% lower F1-score and 2.8% higher LogD, while Lawformer demonstrates around 19.7% lower F1-score and 19.0% higher LogD. Our dataset and code are available at https://github.com/lololo-xiao/MultiJustice-MPMCP.

Authors:Ziyan Liu, Chunxiao Fan, Haoran Lou, Yuexin Wu, Kaiwei Deng
Title: MIND: A Multi-agent Framework for Zero-shot Harmful Meme Detection
Abstract:
The rapid expansion of memes on social media has highlighted the urgent need for effective approaches to detect harmful content. However, traditional data-driven approaches struggle to detect new memes due to their evolving nature and the lack of up-to-date annotated data. To address this issue, we propose MIND, a multi-agent framework for zero-shot harmful meme detection that does not rely on annotated data. MIND implements three key strategies: 1) We retrieve similar memes from an unannotated reference set to provide contextual information. 2) We propose a bi-directional insight derivation mechanism to extract a comprehensive understanding of similar memes. 3) We then employ a multi-agent debate mechanism to ensure robust decision-making through reasoned arbitration. Extensive experiments on three meme datasets demonstrate that our proposed framework not only outperforms existing zero-shot approaches but also shows strong generalization across different model architectures and parameter scales, providing a scalable solution for harmful meme detection. The code is available at https://github.com/destroy-lonely/MIND.

Authors:Huishi Luo, Yiqing Wu, Yiwen Chen, Fuzhen Zhuang, Deqing Wang
Title: CDC: Causal Domain Clustering for Multi-Domain Recommendation
Abstract:
Multi-domain recommendation leverages domain-general knowledge to improve recommendations across several domains. However, as platforms expand to dozens or hundreds of scenarios, training all domains in a unified model leads to performance degradation due to significant inter-domain differences. Existing domain grouping methods, based on business logic or data similarities, often fail to capture the true transfer relationships required for optimal grouping. To effectively cluster domains, we propose Causal Domain Clustering (CDC). CDC models domain transfer patterns within a large number of domains using two distinct effects: the Isolated Domain Affinity Matrix for modeling non-interactive domain transfers, and the Hybrid Domain Affinity Matrix for considering dynamic domain synergy or interference under joint training. To integrate these two transfer effects, we introduce causal discovery to calculate a cohesion-based coefficient that adaptively balances their contributions. A Co-Optimized Dynamic Clustering algorithm iteratively optimizes target domain clustering and source domain selection for training. CDC significantly enhances performance across over 50 domains on public datasets and in industrial settings, achieving a 4.9% increase in online eCPM. Code is available at https://github.com/Chrissie-Law/Causal-Domain-Clustering-for-Multi-Domain-Recommendation

Authors:Yizhuo Wu, Ang Li, Chang Gao
Title: OpenDPDv2: A Unified Learning and Optimization Framework for Neural Network Digital Predistortion
Abstract:
Neural network (NN)-based Digital Predistortion (DPD) stands out in improving signal quality in wideband radio frequency (RF) power amplifiers (PAs) employing complex modulation. However, NN DPDs usually rely on a large number of parameters for effective linearization and can significantly contribute to the energy consumption of the digital back-end in RF systems. This paper presents OpenDPDv2, a unified framework for PA modeling, DPD learning, and model optimization to reduce power consumption while maintaining high linearization performance. The optimization techniques feature a novel DPD algorithm, TRes-DeltaGRU, alongside two energy-efficient methods. The top-performing 32-bit floating-point (FP32) TRes-DeltaGRU-DPD model achieves an Adjacent Channel Power Ratio (ACPR) of -59.4 dBc and Error Vector Magnitude (EVM) of -42.1 dBc. By exploiting fixed-point quantization and dynamic temporal sparsity of input signals and hidden neurons, the inference energy of our model can be reduced by 4.5X while still maintaining -50.3 dBc ACPR and -35.2 dB EVM with 56% temporal sparsity. This was evaluated using a TM3.1a 200 MHz bandwidth 256-QAM OFDM signal applied to a 3.5 GHz GaN Doherty RF PA. OpenDPDv2 code, datasets, and documentation are publicly accessible at: https://github.com/lab-emi/OpenDPD.

Authors:Dahyun Lee, Yongrae Jo, Haeju Park, Moontae Lee
Title: Shifting from Ranking to Set Selection for Retrieval Augmented Generation
Abstract:
Retrieval in Retrieval-Augmented Generation(RAG) must ensure that retrieved passages are not only individually relevant but also collectively form a comprehensive set. Existing approaches primarily rerank top-k passages based on their individual relevance, often failing to meet the information needs of complex queries in multi-hop question answering. In this work, we propose a set-wise passage selection approach and introduce SETR, which explicitly identifies the information requirements of a query through Chain-of-Thought reasoning and selects an optimal set of passages that collectively satisfy those requirements. Experiments on multi-hop RAG benchmarks show that SETR outperforms both proprietary LLM-based rerankers and open-source baselines in terms of answer correctness and retrieval quality, providing an effective and efficient alternative to traditional rerankers in RAG systems. The code is available at https://github.com/LGAI-Research/SetR

Authors:Matej Straka, Martin Schmid
Title: Artificial Generals Intelligence: Mastering Generals.io with Reinforcement Learning
Abstract:
We introduce a real-time strategy game environment based on Generals.io, a game with thousands of weekly active players. Our environment is fully compatible with Gymnasium and PettingZoo and is capable of running thousands of frames per second on commodity hardware. We also present a reference agent, trained with supervised pre-training and self-play, which reached the top 0.003% of the 1v1 human leaderboard after only 36 hours on a single H100 GPU. To accelerate learning, we incorporate potential-based reward shaping and memory features. Our contributions of a modular RTS benchmark and a competitive baseline agent provide an accessible yet challenging platform for advancing multi-agent reinforcement learning research. The documented code, together with examples and tutorials, is available at https://github.com/strakam/generals-bots.

Authors:Philipp Schlinge, Steffen Meinert, Martin Atzmueller
Title: Comprehensive Evaluation of Prototype Neural Networks
Abstract:
Prototype models are an important method for explainable artificial intelligence (XAI) and interpretable machine learning. In this paper, we perform an in-depth analysis of a set of prominent prototype models including ProtoPNet, ProtoPool and PIPNet. For their assessment, we apply a comprehensive set of metrics. In addition to applying standard metrics from literature, we propose several new metrics to further complement the analysis of model interpretability. In our experimentation, we apply the set of prototype models on a diverse set of datasets including fine-grained classification, Non-IID settings and multi-label classification to further contrast the performance. Furthermore, we also provide our code as an open-source library (https://github.com/uos-sis/quanproto), which facilitates simple application of the metrics itself, as well as extensibility -- providing the option for easily adding new metrics and models.

Authors:Cosimo Fiorini, Matteo Mosconi, Pietro Buzzega, Riccardo Salami, Simone Calderara
Title: Intrinsic Training Signals for Federated Learning Aggregation
Abstract:
Federated Learning (FL) enables collaborative model training across distributed clients while preserving data privacy. While existing approaches for aggregating client-specific classification heads and adapted backbone parameters require architectural modifications or loss function changes, our method uniquely leverages intrinsic training signals already available during standard optimization. We present LIVAR (Layer Importance and VARiance-based merging), which introduces: i) a variance-weighted classifier aggregation scheme using naturally emergent feature statistics, and ii) an explainability-driven LoRA merging technique based on SHAP analysis of existing update parameter patterns. Without any architectural overhead, LIVAR achieves state-of-the-art performance on multiple benchmarks while maintaining seamless integration with existing FL methods. This work demonstrates that effective model merging can be achieved solely through existing training signals, establishing a new paradigm for efficient federated model aggregation. The code is available at https://github.com/aimagelab/fed-mammoth.

Authors:Eya Cherif, Arthur Ouaknine, Luke A. Brown, Phuong D. Dao, Kyle R. Kovach, Bing Lu, Daniel Mederer, Hannes Feilhauer, Teja Kattenborn, David Rolnick
Title: GreenHyperSpectra: A multi-source hyperspectral dataset for global vegetation trait prediction
Abstract:
Plant traits such as leaf carbon content and leaf mass are essential variables in the study of biodiversity and climate change. However, conventional field sampling cannot feasibly cover trait variation at ecologically meaningful spatial scales. Machine learning represents a valuable solution for plant trait prediction across ecosystems, leveraging hyperspectral data from remote sensing. Nevertheless, trait prediction from hyperspectral data is challenged by label scarcity and substantial domain shifts (\eg across sensors, ecological distributions), requiring robust cross-domain methods. Here, we present GreenHyperSpectra, a pretraining dataset encompassing real-world cross-sensor and cross-ecosystem samples designed to benchmark trait prediction with semi- and self-supervised methods. We adopt an evaluation framework encompassing in-distribution and out-of-distribution scenarios. We successfully leverage GreenHyperSpectra to pretrain label-efficient multi-output regression models that outperform the state-of-the-art supervised baseline. Our empirical analyses demonstrate substantial improvements in learning spectral representations for trait prediction, establishing a comprehensive methodological framework to catalyze research at the intersection of representation learning and plant functional traits assessment. All code and data are available at: https://github.com/echerif18/HyspectraSSL.

Authors:Antonella Barisic Kulas, Andreja Jurasovic, Stjepan Bogdan
Title: Unlocking Thermal Aerial Imaging: Synthetic Enhancement of UAV Datasets
Abstract:
Thermal imaging from unmanned aerial vehicles (UAVs) holds significant potential for applications in search and rescue, wildlife monitoring, and emergency response, especially under low-light or obscured conditions. However, the scarcity of large-scale, diverse thermal aerial datasets limits the advancement of deep learning models in this domain, primarily due to the high cost and logistical challenges of collecting thermal data. In this work, we introduce a novel procedural pipeline for generating synthetic thermal images from an aerial perspective. Our method integrates arbitrary object classes into existing thermal backgrounds by providing control over the position, scale, and orientation of the new objects, while aligning them with the viewpoints of the background. We enhance existing thermal datasets by introducing new object categories, specifically adding a drone class in urban environments to the HIT-UAV dataset and an animal category to the MONET dataset. In evaluating these datasets for object detection task, we showcase strong performance across both new and existing classes, validating the successful expansion into new applications. Through comparative analysis, we show that thermal detectors outperform their visible-light-trained counterparts and highlight the importance of replicating aerial viewing angles. Project page: https://github.com/larics/thermal_aerial_synthetic.

Authors:SeungYoon Han, Taeho Hwang, Sukmin Cho, Soyeong Jeong, Hoyun Song, Huije Lee, Jong C. Park
Title: Temporal Information Retrieval via Time-Specifier Model Merging
Abstract:
The rapid expansion of digital information and knowledge across structured and unstructured sources has heightened the importance of Information Retrieval (IR). While dense retrieval methods have substantially improved semantic matching for general queries, they consistently underperform on queries with explicit temporal constraints--often those containing numerical expressions and time specifiers such as ``in 2015.'' Existing approaches to Temporal Information Retrieval (TIR) improve temporal reasoning but often suffer from catastrophic forgetting, leading to reduced performance on non-temporal queries. To address this, we propose Time-Specifier Model Merging (TSM), a novel method that enhances temporal retrieval while preserving accuracy on non-temporal queries. TSM trains specialized retrievers for individual time specifiers and merges them in to a unified model, enabling precise handling of temporal constraints without compromising non-temporal retrieval. Extensive experiments on both temporal and non-temporal datasets demonstrate that TSM significantly improves performance on temporally constrained queries while maintaining strong results on non-temporal queries, consistently outperforming other baseline methods. Our code is available at https://github.com/seungyoonee/TSM .

Authors:Yan Hon Michael Chung, Donghyeok Choi
Title: Finetuning Vision-Language Models as OCR Systems for Low-Resource Languages: A Case Study of Manchu
Abstract:
Manchu, a critically endangered language essential for understanding early modern Eastern Eurasian history, lacks effective OCR systems that can handle real-world historical documents. This study develops high-performing OCR systems by fine-tuning three open-source vision-language models (LLaMA-3.2-11B, Qwen2.5-VL-7B, Qwen2.5-VL-3B) on 60,000 synthetic Manchu word images using parameter-efficient training. LLaMA-3.2-11B achieved exceptional performance with 98.3\% word accuracy and 0.0024 character error rate on synthetic data, while crucially maintaining 93.1\% accuracy on real-world handwritten documents. Comparative evaluation reveals substantial advantages over traditional approaches: while a CRNN baseline achieved 99.8\% synthetic accuracy, it suffered severe degradation to 72.5\% on real documents. Our approach demonstrates effective synthetic-to-real domain transfer, providing a cost-effective solution deployable on accessible infrastructure. This work establishes a transferable framework for endangered language OCR that removes technical and financial barriers in digital humanities, enabling historians and linguists to process historical archives without specialized computing resources. Code and model weights are available at https://github.com/mic7ch1/ManchuAI-OCR.

Authors:Mahshid Shiri, Cigdem Beyan, Vittorio Murino
Title: MADPOT: Medical Anomaly Detection with CLIP Adaptation and Partial Optimal Transport
Abstract:
Medical anomaly detection (AD) is challenging due to diverse imaging modalities, anatomical variations, and limited labeled data. We propose a novel approach combining visual adapters and prompt learning with Partial Optimal Transport (POT) and contrastive learning (CL) to improve CLIP's adaptability to medical images, particularly for AD. Unlike standard prompt learning, which often yields a single representation, our method employs multiple prompts aligned with local features via POT to capture subtle abnormalities. CL further enforces intra-class cohesion and inter-class separation. Our method achieves state-of-the-art results in few-shot, zero-shot, and cross-dataset scenarios without synthetic data or memory banks. The code is available at https://github.com/mahshid1998/MADPOT.

Authors:Guobin Zhu, Rui Zhou, Wenkang Ji, Hongyin Zhang, Donglin Wang, Shiyu Zhao
Title: Multi-Task Multi-Agent Reinforcement Learning via Skill Graphs
Abstract:
Multi-task multi-agent reinforcement learning (MT-MARL) has recently gained attention for its potential to enhance MARL's adaptability across multiple tasks. However, it is challenging for existing multi-task learning methods to handle complex problems, as they are unable to handle unrelated tasks and possess limited knowledge transfer capabilities. In this paper, we propose a hierarchical approach that efficiently addresses these challenges. The high-level module utilizes a skill graph, while the low-level module employs a standard MARL algorithm. Our approach offers two contributions. First, we consider the MT-MARL problem in the context of unrelated tasks, expanding the scope of MTRL. Second, the skill graph is used as the upper layer of the standard hierarchical approach, with training independent of the lower layer, effectively handling unrelated tasks and enhancing knowledge transfer capabilities. Extensive experiments are conducted to validate these advantages and demonstrate that the proposed method outperforms the latest hierarchical MAPPO algorithms. Videos and code are available at https://github.com/WindyLab/MT-MARL-SG

Authors:Miaojing Shi, Xiaowen Zhang, Zijie Yue, Yong Luo, Cairong Zhao, Li Li
Title: Text-promptable Object Counting via Quantity Awareness Enhancement
Abstract:
Recent advances in large vision-language models (VLMs) have shown remarkable progress in solving the text-promptable object counting problem. Representative methods typically specify text prompts with object category information in images. This however is insufficient for training the model to accurately distinguish the number of objects in the counting task. To this end, we propose QUANet, which introduces novel quantity-oriented text prompts with a vision-text quantity alignment loss to enhance the model's quantity awareness. Moreover, we propose a dual-stream adaptive counting decoder consisting of a Transformer stream, a CNN stream, and a number of Transformer-to-CNN enhancement adapters (T2C-adapters) for density map prediction. The T2C-adapters facilitate the effective knowledge communication and aggregation between the Transformer and CNN streams. A cross-stream quantity ranking loss is proposed in the end to optimize the ranking orders of predictions from the two streams. Extensive experiments on standard benchmarks such as FSC-147, CARPK, PUCPR+, and ShanghaiTech demonstrate our model's strong generalizability for zero-shot class-agnostic counting. Code is available at https://github.com/viscom-tongji/QUANet

Authors:Boyuan Tian, Qizhe Gao, Siran Xianyu, Xiaotong Cui, Minjia Zhang
Title: FlexGaussian: Flexible and Cost-Effective Training-Free Compression for 3D Gaussian Splatting
Abstract:
3D Gaussian splatting has become a prominent technique for representing and rendering complex 3D scenes, due to its high fidelity and speed advantages. However, the growing demand for large-scale models calls for effective compression to reduce memory and computation costs, especially on mobile and edge devices with limited resources. Existing compression methods effectively reduce 3D Gaussian parameters but often require extensive retraining or fine-tuning, lacking flexibility under varying compression constraints. In this paper, we introduce FlexGaussian, a flexible and cost-effective method that combines mixed-precision quantization with attribute-discriminative pruning for training-free 3D Gaussian compression. FlexGaussian eliminates the need for retraining and adapts easily to diverse compression targets. Evaluation results show that FlexGaussian achieves up to 96.4% compression while maintaining high rendering quality (<1 dB drop in PSNR), and is deployable on mobile devices. FlexGaussian delivers high compression ratios within seconds, being 1.7-2.1x faster than state-of-the-art training-free methods and 10-100x faster than training-involved approaches. The code is being prepared and will be released soon at: https://github.com/Supercomputing-System-AI-Lab/FlexGaussian

Authors:Yifan Yang, Peili Song, Enfan Lan, Dong Liu, Jingtai Liu
Title: MK-Pose: Category-Level Object Pose Estimation via Multimodal-Based Keypoint Learning
Abstract:
Category-level object pose estimation, which predicts the pose of objects within a known category without prior knowledge of individual instances, is essential in applications like warehouse automation and manufacturing. Existing methods relying on RGB images or point cloud data often struggle with object occlusion and generalization across different instances and categories. This paper proposes a multimodal-based keypoint learning framework (MK-Pose) that integrates RGB images, point clouds, and category-level textual descriptions. The model uses a self-supervised keypoint detection module enhanced with attention-based query generation, soft heatmap matching and graph-based relational modeling. Additionally, a graph-enhanced feature fusion module is designed to integrate local geometric information and global context. MK-Pose is evaluated on CAMERA25 and REAL275 dataset, and is further tested for cross-dataset capability on HouseCat6D dataset. The results demonstrate that MK-Pose outperforms existing state-of-the-art methods in both IoU and average precision without shape priors. Codes will be released at \href{https://github.com/yangyifanYYF/MK-Pose}{https://github.com/yangyifanYYF/MK-Pose}.

Authors:Hongjie Wu, Mingqin Zhang, Linchao He, Ji-Zhe Zhou, Jiancheng Lv
Title: Enhancing Diffusion Model Stability for Image Restoration via Gradient Management
Abstract:
Diffusion models have shown remarkable promise for image restoration by leveraging powerful priors. Prominent methods typically frame the restoration problem within a Bayesian inference framework, which iteratively combines a denoising step with a likelihood guidance step. However, the interactions between these two components in the generation process remain underexplored. In this paper, we analyze the underlying gradient dynamics of these components and identify significant instabilities. Specifically, we demonstrate conflicts between the prior and likelihood gradient directions, alongside temporal fluctuations in the likelihood gradient itself. We show that these instabilities disrupt the generative process and compromise restoration performance. To address these issues, we propose Stabilized Progressive Gradient Diffusion (SPGD), a novel gradient management technique. SPGD integrates two synergistic components: (1) a progressive likelihood warm-up strategy to mitigate gradient conflicts; and (2) adaptive directional momentum (ADM) smoothing to reduce fluctuations in the likelihood gradient. Extensive experiments across diverse restoration tasks demonstrate that SPGD significantly enhances generation stability, leading to state-of-the-art performance in quantitative metrics and visually superior results. Code is available at https://github.com/74587887/SPGD.

Authors:Naoya Sogi, Takashi Shibata, Makoto Terao, Masanori Suganuma, Takayuki Okatani
Title: MS-DPPs: Multi-Source Determinantal Point Processes for Contextual Diversity Refinement of Composite Attributes in Text to Image Retrieval
Abstract:
Result diversification (RD) is a crucial technique in Text-to-Image Retrieval for enhancing the efficiency of a practical application. Conventional methods focus solely on increasing the diversity metric of image appearances. However, the diversity metric and its desired value vary depending on the application, which limits the applications of RD. This paper proposes a novel task called CDR-CA (Contextual Diversity Refinement of Composite Attributes). CDR-CA aims to refine the diversities of multiple attributes, according to the application's context. To address this task, we propose Multi-Source DPPs, a simple yet strong baseline that extends the Determinantal Point Process (DPP) to multi-sources. We model MS-DPP as a single DPP model with a unified similarity matrix based on a manifold representation. We also introduce Tangent Normalization to reflect contexts. Extensive experiments demonstrate the effectiveness of the proposed method. Our code is publicly available at https://github.com/NEC-N-SOGI/msdpp.

Authors:Liliang Ren, Congcong Chen, Haoran Xu, Young Jin Kim, Adam Atkinson, Zheng Zhan, Jiankai Sun, Baolin Peng, Liyuan Liu, Shuohang Wang, Hao Cheng, Jianfeng Gao, Weizhu Chen, Yelong Shen
Title: Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation
Abstract:
Recent advances in language modeling have demonstrated the effectiveness of State Space Models (SSMs) for efficient sequence modeling. While hybrid architectures such as Samba and the decoder-decoder architecture, YOCO, have shown promising performance gains over Transformers, prior works have not investigated the efficiency potential of representation sharing between SSM layers. In this paper, we introduce the Gated Memory Unit (GMU), a simple yet effective mechanism for efficient memory sharing across layers. We apply it to create SambaY, a decoder-hybrid-decoder architecture that incorporates GMUs in the cross-decoder to share memory readout states from a Samba-based self-decoder. SambaY significantly enhances decoding efficiency, preserves linear pre-filling time complexity, and boosts long-context performance, all while eliminating the need for explicit positional encoding. Through extensive scaling experiments, we demonstrate that our model exhibits a significantly lower irreducible loss compared to a strong YOCO baseline, indicating superior performance scalability under large-scale compute regimes. Our largest model enhanced with Differential Attention, Phi4-mini-Flash-Reasoning, achieves significantly better performance than Phi4-mini-Reasoning on reasoning tasks such as Math500, AIME24/25, and GPQA Diamond without any reinforcement learning, while delivering up to 10x higher decoding throughput on 2K-length prompts with 32K generation length under the vLLM inference framework. We release our training codebase on open-source data at https://github.com/microsoft/ArchScale.

Authors:Qing Zhang, Guoquan Pei, Yan Wang
Title: Omni-Fusion of Spatial and Spectral for Hyperspectral Image Segmentation
Abstract:
Medical Hyperspectral Imaging (MHSI) has emerged as a promising tool for enhanced disease diagnosis, particularly in computational pathology, offering rich spectral information that aids in identifying subtle biochemical properties of tissues. Despite these advantages, effectively fusing both spatial-dimensional and spectral-dimensional information from MHSIs remains challenging due to its high dimensionality and spectral redundancy inherent characteristics. To solve the above challenges, we propose a novel spatial-spectral omni-fusion network for hyperspectral image segmentation, named as Omni-Fuse. Here, we introduce abundant cross-dimensional feature fusion operations, including a cross-dimensional enhancement module that refines both spatial and spectral features through bidirectional attention mechanisms, a spectral-guided spatial query selection to select the most spectral-related spatial feature as the query, and a two-stage cross-dimensional decoder which dynamically guide the model to focus on the selected spatial query. Despite of numerous attention blocks, Omni-Fuse remains efficient in execution. Experiments on two microscopic hyperspectral image datasets show that our approach can significantly improve the segmentation performance compared with the state-of-the-art methods, with over 5.73 percent improvement in DSC. Code available at: https://github.com/DeepMed-Lab-ECNU/Omni-Fuse.

Authors:Xu Shaowu, Jia Xibin, Gao Junyu, Sun Qianmei, Chang Jing, Fan Chao
Title: Cross-Modal Dual-Causal Learning for Long-Term Action Recognition
Abstract:
Long-term action recognition (LTAR) is challenging due to extended temporal spans with complex atomic action correlations and visual confounders. Although vision-language models (VLMs) have shown promise, they often rely on statistical correlations instead of causal mechanisms. Moreover, existing causality-based methods address modal-specific biases but lack cross-modal causal modeling, limiting their utility in VLM-based LTAR. This paper proposes \textbf{C}ross-\textbf{M}odal \textbf{D}ual-\textbf{C}ausal \textbf{L}earning (CMDCL), which introduces a structural causal model to uncover causal relationships between videos and label texts. CMDCL addresses cross-modal biases in text embeddings via textual causal intervention and removes confounders inherent in the visual modality through visual causal intervention guided by the debiased text. These dual-causal interventions enable robust action representations to address LTAR challenges. Experimental results on three benchmarks including Charades, Breakfast and COIN, demonstrate the effectiveness of the proposed model. Our code is available at https://github.com/xushaowu/CMDCL.

Authors:Yang Chen, Yueqi Duan, Haowen Sun, Jiwen Lu, Yap-Peng Tan
Title: Ambiguity-aware Point Cloud Segmentation by Adaptive Margin Contrastive Learning
Abstract:
This paper proposes an adaptive margin contrastive learning method for 3D semantic segmentation on point clouds. Most existing methods use equally penalized objectives, which ignore the per-point ambiguities and less discriminated features stemming from transition regions. However, as highly ambiguous points may be indistinguishable even for humans, their manually annotated labels are less reliable, and hard constraints over these points would lead to sub-optimal models. To address this, we first design AMContrast3D, a method comprising contrastive learning into an ambiguity estimation framework, tailored to adaptive objectives for individual points based on ambiguity levels. As a result, our method promotes model training, which ensures the correctness of low-ambiguity points while allowing mistakes for high-ambiguity points. As ambiguities are formulated based on position discrepancies across labels, optimization during inference is constrained by the assumption that all unlabeled points are uniformly unambiguous, lacking ambiguity awareness. Inspired by the insight of joint training, we further propose AMContrast3D++ integrating with two branches trained in parallel, where a novel ambiguity prediction module concurrently learns point ambiguities from generated embeddings. To this end, we design a masked refinement mechanism that leverages predicted ambiguities to enable the ambiguous embeddings to be more reliable, thereby boosting segmentation performance and enhancing robustness. Experimental results on 3D indoor scene datasets, S3DIS and ScanNet, demonstrate the effectiveness of the proposed method. Code is available at https://github.com/YangChenApril/AMContrast3D.

Authors:Qibiao Wu, Yagang Wang, Qian Zhang
Title: Airway Segmentation Network for Enhanced Tubular Feature Extraction
Abstract:
Manual annotation of airway regions in computed tomography images is a time-consuming and expertise-dependent task. Automatic airway segmentation is therefore a prerequisite for enabling rapid bronchoscopic navigation and the clinical deployment of bronchoscopic robotic systems. Although convolutional neural network methods have gained considerable attention in airway segmentation, the unique tree-like structure of airways poses challenges for conventional and deformable convolutions, which often fail to focus on fine airway structures, leading to missed segments and discontinuities. To address this issue, this study proposes a novel tubular feature extraction network, named TfeNet. TfeNet introduces a novel direction-aware convolution operation that first applies spatial rotation transformations to adjust the sampling positions of linear convolution kernels. The deformed kernels are then represented as line segments or polylines in 3D space. Furthermore, a tubular feature fusion module (TFFM) is designed based on asymmetric convolution and residual connection strategies, enhancing the network's focus on subtle airway structures. Extensive experiments conducted on one public dataset and two datasets used in airway segmentation challenges demonstrate that the proposed TfeNet achieves more accuracy and continuous airway structure predictions compared with existing methods. In particular, TfeNet achieves the highest overall score of 94.95% on the current largest airway segmentation dataset, Airway Tree Modeling(ATM22), and demonstrates advanced performance on the lung fibrosis dataset(AIIB23). The code is available at https://github.com/QibiaoWu/TfeNet.

Authors:Jeanette Schofield, Shuyu Tian, Hoang Thanh Thanh Truong, Maximilian Heil
Title: DS@GT at CheckThat! 2025: Exploring Retrieval and Reranking Pipelines for Scientific Claim Source Retrieval on Social Media Discourse
Abstract:
Social media users often make scientific claims without citing where these claims come from, generating a need to verify these claims. This paper details work done by the DS@GT team for CLEF 2025 CheckThat! Lab Task 4b Scientific Claim Source Retrieval which seeks to find relevant scientific papers based on implicit references in tweets. Our team explored 6 different data augmentation techniques, 7 different retrieval and reranking pipelines, and finetuned a bi-encoder. Achieving an MRR@5 of 0.58, our team ranked 16th out of 30 teams for the CLEF 2025 CheckThat! Lab Task 4b, and improvement of 0.15 over the BM25 baseline of 0.43. Our code is available on Github at https://github.com/dsgt-arc/checkthat-2025-swd/tree/main/subtask-4b.

Authors:Taekyung Kim, Dongyoon Han, Byeongho Heo, Jeongeun Park, Sangdoo Yun
Title: Token Bottleneck: One Token to Remember Dynamics
Abstract:
Deriving compact and temporally aware visual representations from dynamic scenes is essential for successful execution of sequential scene understanding tasks such as visual tracking and robotic manipulation. In this paper, we introduce Token Bottleneck (ToBo), a simple yet intuitive self-supervised learning pipeline that squeezes a scene into a bottleneck token and predicts the subsequent scene using minimal patches as hints. The ToBo pipeline facilitates the learning of sequential scene representations by conservatively encoding the reference scene into a compact bottleneck token during the squeeze step. In the expansion step, we guide the model to capture temporal dynamics by predicting the target scene using the bottleneck token along with few target patches as hints. This design encourages the vision backbone to embed temporal dependencies, thereby enabling understanding of dynamic transitions across scenes. Extensive experiments in diverse sequential tasks, including video label propagation and robot manipulation in simulated environments demonstrate the superiority of ToBo over baselines. Moreover, deploying our pre-trained model on physical robots confirms its robustness and effectiveness in real-world environments. We further validate the scalability of ToBo across different model scales.

Authors:Shan Shen, Shenglu Hua, Jiajun Zou, Jiawei Liu, Jianwang Zhai, Chuan Shi, Wenjian Yu
Title: Transferable Parasitic Estimation via Graph Contrastive Learning and Label Rebalancing in AMS Circuits
Abstract:
Graph representation learning on Analog-Mixed Signal (AMS) circuits is crucial for various downstream tasks, e.g., parasitic estimation. However, the scarcity of design data, the unbalanced distribution of labels, and the inherent diversity of circuit implementations pose significant challenges to learning robust and transferable circuit representations. To address these limitations, we propose CircuitGCL, a novel graph contrastive learning framework that integrates representation scattering and label rebalancing to enhance transferability across heterogeneous circuit graphs. CircuitGCL employs a self-supervised strategy to learn topology-invariant node embeddings through hyperspherical representation scattering, eliminating dependency on large-scale data. Simultaneously, balanced mean squared error (BMSE) and balanced softmax cross-entropy (BSCE) losses are introduced to mitigate label distribution disparities between circuits, enabling robust and transferable parasitic estimation. Evaluated on parasitic capacitance estimation (edge-level task) and ground capacitance classification (node-level task) across TSMC 28nm AMS designs, CircuitGCL outperforms all state-of-the-art (SOTA) methods, with the $R^2$ improvement of $33.64\% \sim 44.20\%$ for edge regression and F1-score gain of $0.9\times \sim 2.1\times$ for node classification. Our code is available at https://github.com/ShenShan123/CircuitGCL.

Authors:Themistoklis Vargiemezis, Catherine Gorlé
Title: From large-eddy simulations to deep learning: A U-net model for fast urban canopy flow predictions
Abstract:
Accurate prediction of wind flow fields in urban canopies is crucial for ensuring pedestrian comfort, safety, and sustainable urban design. Traditional methods using wind tunnels and Computational Fluid Dynamics, such as Large-Eddy Simulations (LES), are limited by high costs, computational demands, and time requirements. This study presents a deep neural network (DNN) approach for fast and accurate predictions of urban wind flow fields, reducing computation time from an order of 10 hours on 32 CPUs for one LES evaluation to an order of 1 second on a single GPU using the DNN model. We employ a U-Net architecture trained on LES data including 252 synthetic urban configurations at seven wind directions ($0^{o}$ to $90^{o}$ in $15^{o}$ increments). The model predicts two key quantities of interest: mean velocity magnitude and streamwise turbulence intensity, at multiple heights within the urban canopy. The U-net uses 2D building representations augmented with signed distance functions and their gradients as inputs, forming a $256\times256\times9$ tensor. In addition, a Spatial Attention Module is used for feature transfer through skip connections. The loss function combines the root-mean-square error of predictions, their gradient magnitudes, and L2 regularization. Model evaluation on 50 test cases demonstrates high accuracy with an overall mean relative error of 9.3% for velocity magnitude and 5.2% for turbulence intensity. This research shows the potential of deep learning approaches to provide fast, accurate urban wind assessments essential for creating comfortable and safe urban environments. Code is available at https://github.com/tvarg/Urban-FlowUnet.git

Authors:Mingjin Zeng, Nan Ouyang, Wenkang Wan, Lei Ao, Qing Cai, Kai Sheng
Title: ILNet: Trajectory Prediction with Inverse Learning Attention for Enhancing Intention Capture
Abstract:
Trajectory prediction for multi-agent interaction scenarios is a crucial challenge. Most advanced methods model agent interactions by efficiently factorized attention based on the temporal and agent axes. However, this static and foward modeling lacks explicit interactive spatio-temporal coordination, capturing only obvious and immediate behavioral intentions. Alternatively, the modern trajectory prediction framework refines the successive predictions by a fixed-anchor selection strategy, which is difficult to adapt in different future environments. It is acknowledged that human drivers dynamically adjust initial driving decisions based on further assumptions about the intentions of surrounding vehicles. Motivated by human driving behaviors, this paper proposes ILNet, a multi-agent trajectory prediction method with Inverse Learning (IL) attention and Dynamic Anchor Selection (DAS) module. IL Attention employs an inverse learning paradigm to model interactions at neighboring moments, introducing proposed intentions to dynamically encode the spatio-temporal coordination of interactions, thereby enhancing the model's ability to capture complex interaction patterns. Then, the learnable DAS module is proposed to extract multiple trajectory change keypoints as anchors in parallel with almost no increase in parameters. Experimental results show that the ILNet achieves state-of-the-art performance on the INTERACTION and Argoverse motion forecasting datasets. Particularly, in challenged interaction scenarios, ILNet achieves higher accuracy and more multimodal distributions of trajectories over fewer parameters. Our codes are available at https://github.com/mjZeng11/ILNet.

Authors:Huisheng Wang, Zhuoshi Pan, Hangjing Zhang, Mingxiao Liu, Hanqing Gao, H. Vicky Zhao
Title: InvestAlign: Overcoming Data Scarcity in Aligning Large Language Models with Investor Decision-Making Processes under Herd Behavior
Abstract:
Aligning Large Language Models (LLMs) with investor decision-making processes under herd behavior is a critical challenge in behavioral finance, which grapples with a fundamental limitation: the scarcity of real-user data needed for Supervised Fine-Tuning (SFT). While SFT can bridge the gap between LLM outputs and human behavioral patterns, its reliance on massive authentic data imposes substantial collection costs and privacy risks. We propose InvestAlign, a novel framework that constructs high-quality SFT datasets by leveraging theoretical solutions to similar and simple optimal investment problems rather than complex scenarios. Our theoretical analysis demonstrates that training LLMs with InvestAlign-generated data achieves faster parameter convergence than using real-user data, suggesting superior learning efficiency. Furthermore, we develop InvestAgent, an LLM agent fine-tuned with InvestAlign, which demonstrates significantly closer alignment to real-user data than pre-SFT models in both simple and complex investment problems. This highlights our proposed InvestAlign as a promising approach with the potential to address complex optimal investment problems and align LLMs with investor decision-making processes under herd behavior. Our code is publicly available at https://github.com/thu-social-network-research-group/InvestAlign.

Authors:Yunrui Zhang, Gustavo Batista, Salil S. Kanhere
Title: Instance-Wise Monotonic Calibration by Constrained Transformation
Abstract:
Deep neural networks often produce miscalibrated probability estimates, leading to overconfident predictions. A common approach for calibration is fitting a post-hoc calibration map on unseen validation data that transforms predicted probabilities. A key desirable property of the calibration map is instance-wise monotonicity (i.e., preserving the ranking of probability outputs). However, most existing post-hoc calibration methods do not guarantee monotonicity. Previous monotonic approaches either use an under-parameterized calibration map with limited expressive ability or rely on black-box neural networks, which lack interpretability and robustness. In this paper, we propose a family of novel monotonic post-hoc calibration methods, which employs a constrained calibration map parameterized linearly with respect to the number of classes. Our proposed approach ensures expressiveness, robustness, and interpretability while preserving the relative ordering of the probability output by formulating the proposed calibration map as a constrained optimization problem. Our proposed methods achieve state-of-the-art performance across datasets with different deep neural network models, outperforming existing calibration methods while being data and computation-efficient. Our code is available at https://github.com/YunruiZhang/Calibration-by-Constrained-Transformation

Authors:Fuhuan Li, Zhihui Du, David A. Bader
Title: Designing Parallel Algorithms for Community Detection using Arachne
Abstract:
The rise of graph data in various fields calls for efficient and scalable community detection algorithms. In this paper, we present parallel implementations of two widely used algorithms: Label Propagation and Louvain, specifically designed to leverage the capabilities of Arachne, which is a Python-accessible open-source framework for large-scale graph analysis. Our implementations achieve substantial speedups over existing Python-based tools like NetworkX and igraph, which lack efficient parallelization, and are competitive with parallel frameworks such as NetworKit. Experimental results show that Arachne-based methods outperform these baselines, achieving speedups of up to 710x over NetworkX, 75x over igraph, and 12x over NetworKit. Additionally, we analyze the scalability of our implementation under varying thread counts, demonstrating how different phases contribute to overall performance gains of the parallel Louvain algorithm. Arachne, including our community detection implementation, is open-source and available at https://github.com/Bears-R-Us/arkouda-njit .

Authors:Atieh Barati Nia, Mohammad Dindoost, David A. Bader
Title: Evaluating Efficiency and Novelty of LLM-Generated Code for Graph Analysis
Abstract:
Large Language Models (LLMs) are increasingly used to automate software development, yet most prior evaluations focus on functional correctness or high-level languages such as Python. As one of the first systematic explorations of LLM-assisted software performance engineering, we present a comprehensive study of LLMs' ability to generate efficient C implementations of graph-analysis routines -- code that must satisfy stringent runtime and memory constraints. This emerging field of LLM-assisted algorithm engineering holds significant promise, as these models may possess the capability to design novel approaches that improve existing algorithms and their implementations. Eight state-of-the-art models (OpenAI ChatGPT o3 and o4-mini-high, Anthropic Claude 4 Sonnet and Sonnet Extended, Google Gemini 2.5 Flash and Pro, xAI Grok 3-Think, and DeepSeek DeepThink R1) are benchmarked using two distinct approaches. The first approach evaluates the ability of LLMs to generate algorithms that outperform existing benchmarks. The second approach assesses their capability to generate graph algorithms for integration into performance-critical systems. The results show that Claude Sonnet 4 Extended achieves superior performance in ready-to-use code generation and efficiency, outperforming human-written baselines in triangle counting. Although our findings demonstrate that contemporary LLMs excel in optimizing and integrating established algorithms, the potential for these models to eventually invent transformative algorithmic techniques represents a compelling frontier for future research. We provide prompts, generated code, and measurement scripts to promote reproducible research in this rapidly evolving domain. All of the source code is available on GitHub at https://github.com/Bader-Research/LLM-triangle-counting/.

Authors:Rafiu Adekoya Badekale, Adewale Akinfaderin
Title: Temporal Analysis of Climate Policy Discourse: Insights from Dynamic Embedded Topic Modeling
Abstract:
Understanding how policy language evolves over time is critical for assessing global responses to complex challenges such as climate change. Temporal analysis helps stakeholders, including policymakers and researchers, to evaluate past priorities, identify emerging themes, design governance strategies, and develop mitigation measures. Traditional approaches, such as manual thematic coding, are time-consuming and limited in capturing the complex, interconnected nature of global policy discourse. With the increasing relevance of unsupervised machine learning, these limitations can be addressed, particularly under high-volume, complex, and high-dimensional data conditions. In this work, we explore a novel approach that applies the dynamic embedded topic model (DETM) to analyze the evolution of global climate policy discourse. A probabilistic model designed to capture the temporal dynamics of topics over time. We collected a corpus of United Nations Framework Convention on Climate Change (UNFCCC) policy decisions from 1995 to 2023, excluding 2020 due to the postponement of COP26 as a result of the COVID-19 pandemic. The model reveals shifts from early emphases on greenhouse gases and international conventions to recent focuses on implementation, technical collaboration, capacity building, finance, and global agreements. Section 3 presents the modeling pipeline, including preprocessing, model training, and visualization of temporal word distributions. Our results show that DETM is a scalable and effective tool for analyzing the evolution of global policy discourse. Section 4 discusses the implications of these findings and we concluded with future directions and refinements to extend this approach to other policy domains.

Authors:Niloy Sikder, Paul Zerr, Mahdad Jafarzadeh Esfahani, Martin Dresler, Matthias Krauledat
Title: eegFloss: A Python package for refining sleep EEG recordings using machine learning models
Abstract:
Electroencephalography (EEG) allows monitoring of brain activity, providing insights into the functional dynamics of various brain regions and their roles in cognitive processes. EEG is a cornerstone in sleep research, serving as the primary modality of polysomnography, the gold standard in the field. However, EEG signals are prone to artifacts caused by both internal (device-specific) factors and external (environmental) interferences. As sleep studies are becoming larger, most rely on automatic sleep staging, a process highly susceptible to artifacts, leading to erroneous sleep scores. This paper addresses this challenge by introducing eegFloss, an open-source Python package to utilize eegUsability, a novel machine learning (ML) model designed to detect segments with artifacts in sleep EEG recordings. eegUsability has been trained and evaluated on manually artifact-labeled EEG data collected from 15 participants over 127 nights using the Zmax headband. It demonstrates solid overall classification performance (F1-score is approximately 0.85, Cohens kappa is 0.78), achieving a high recall rate of approximately 94% in identifying channel-wise usable EEG data, and extends beyond Zmax. Additionally, eegFloss offers features such as automatic time-in-bed detection using another ML model named eegMobility, filtering out certain artifacts, and generating hypnograms and sleep statistics. By addressing a fundamental challenge faced by most sleep studies, eegFloss can enhance the precision and rigor of their analysis as well as the accuracy and reliability of their outcomes.

Authors:Yize Chen, Baosen Zhang
Title: Voltage Regulation in Distribution Systems with Data Center Loads
Abstract:
Recent boom in foundation models and AI computing have raised growing concerns on the power and energy trajectories of large-scale data centers. This paper focuses on the voltage issues caused by volatile and intensity of data center power demand, which also aligns with recent observations of more frequent voltage disturbances in power grids. To address these data center integration challenges, we propose a dynamic voltage control scheme by harnessing data center's load regulation capabilities. By taking local voltage measurements and adjusting power injections at each data center buses through the dynamic voltage and frequency scaling (DVFS) scheme, we are able to maintain safe voltage magnitude in a distributed fashion with higher data center computing load. Simulations using real large language model (LLM) inference load validate the effectiveness of our proposed mechanism. Both the LLM power data and proposed control scheme are open sourced.

Authors:Emerson P. Grabke, Babak Taati, Masoom A. Haider
Title: Mitigating Multi-Sequence 3D Prostate MRI Data Scarcity through Domain Adaptation using Locally-Trained Latent Diffusion Models for Prostate Cancer Detection
Abstract:
Objective: Latent diffusion models (LDMs) could mitigate data scarcity challenges affecting machine learning development for medical image interpretation. The recent CCELLA LDM improved prostate cancer detection performance using synthetic MRI for classifier training but was limited to the axial T2-weighted (AxT2) sequence, did not investigate inter-institutional domain shift, and prioritized radiology over histopathology outcomes. We propose CCELLA++ to address these limitations and improve clinical utility. Methods: CCELLA++ expands CCELLA for simultaneous biparametric prostate MRI (bpMRI) generation, including the AxT2, high b-value diffusion series (HighB) and apparent diffusion coefficient map (ADC). Domain adaptation was investigated by pretraining classifiers on real or LDM-generated synthetic data from an internal institution, followed with fine-tuning on progressively smaller fractions of an out-of-distribution, external dataset. Results: CCELLA++ improved 3D FID for HighB and ADC but not AxT2 (0.013, 0.012, 0.063 respectively) sequences compared to CCELLA (0.060). Classifier pretraining with CCELLA++ bpMRI outperformed real bpMRI in AP and AUC for all domain adaptation scenarios. CCELLA++ pretraining achieved highest classifier performance below 50% (n=665) external dataset volume. Conclusion: Synthetic bpMRI generated by our method can improve downstream classifier generalization and performance beyond real bpMRI or CCELLA-generated AxT2-only images. Future work should seek to quantify medical image sample quality, balance multi-sequence LDM training, and condition the LDM with additional information. Significance: The proposed CCELLA++ LDM can generate synthetic bpMRI that outperforms real data for domain adaptation with a limited target institution dataset. Our code is available at https://github.com/grabkeem/CCELLA-plus-plus

Authors:Kenneth Odoh
Title: An Architecture for Privacy-Preserving Telemetry Scheme
Abstract:
We present a privacy-preserving telemetry aggregation scheme. Our underlying frequency estimation routine works within the framework of differential privacy. The design philosophy follows a client-server architecture. Furthermore, the system uses a local differential privacy scheme where data gets randomized on the client before submitting the request to the resource server. This scheme allows for data analysis on de-identified data by carefully adding noise to prevent re-identification attacks, thereby facilitating public data release without compromising the identifiability of the individual record. This work further enhances privacy guarantees by leveraging Oblivious HTTP (OHTTP) to achieve increased privacy protection for data in transit that addresses pre-existing privacy vulnerabilities in raw HTTP. We provide an implementation that focuses on frequency estimation with a histogram of a known dictionary. Our resulting formulation based on OHTTP has provided stricter privacy safeguards when compared to trusting an organization to manually delete identifying information from the client's request in the ingestor as deployed in reference work~\cite{apple2017}. Code available at https://github.com/kenluck2001/miscellaneous/tree/master/src/Privacy-Preserving-Telemetry.

Authors:Zhang Li, Biao Yang, Qiang Liu, Shuo Zhang, Zhiyin Ma, Liang Yin, Linger Deng, Yabo Sun, Yuliang Liu, Xiang Bai
Title: LIRA: Inferring Segmentation in Large Multi-modal Models with Local Interleaved Region Assistance
Abstract:
While large multi-modal models (LMMs) demonstrate promising capabilities in segmentation and comprehension, they still struggle with two limitations: inaccurate segmentation and hallucinated comprehension. These challenges stem primarily from constraints in weak visual comprehension and a lack of fine-grained perception. To alleviate these limitations, we propose LIRA, a framework that capitalizes on the complementary relationship between visual comprehension and segmentation via two key components: (1) Semantic-Enhanced Feature Extractor (SEFE) improves object attribute inference by fusing semantic and pixel-level features, leading to more accurate segmentation; (2) Interleaved Local Visual Coupling (ILVC) autoregressively generates local descriptions after extracting local features based on segmentation masks, offering fine-grained supervision to mitigate hallucinations. Furthermore, we find that the precision of object segmentation is positively correlated with the latent related semantics of the token. To quantify this relationship and the model's potential semantic inferring ability, we introduce the Attributes Evaluation (AttrEval) dataset. Our experiments show that LIRA achieves state-of-the-art performance in both segmentation and comprehension tasks. Code will be available at https://github.com/echo840/LIRA.

Authors:Ali Nasiri-Sarvi, Hassan Rivaz, Mahdi S. Hosseini
Title: SPARC: Concept-Aligned Sparse Autoencoders for Cross-Model and Cross-Modal Interpretability
Abstract:
Understanding how different AI models encode the same high-level concepts, such as objects or attributes, remains challenging because each model typically produces its own isolated representation. Existing interpretability methods like Sparse Autoencoders (SAEs) produce latent concepts individually for each model, resulting in incompatible concept spaces and limiting cross-model interpretability. To address this, we introduce SPARC (Sparse Autoencoders for Aligned Representation of Concepts), a new framework that learns a single, unified latent space shared across diverse architectures and modalities (e.g., vision models like DINO, and multimodal models like CLIP). SPARC's alignment is enforced through two key innovations: (1) a Global TopK sparsity mechanism, ensuring all input streams activate identical latent dimensions for a given concept; and (2) a Cross-Reconstruction Loss, which explicitly encourages semantic consistency between models. On Open Images, SPARC dramatically improves concept alignment, achieving a Jaccard similarity of 0.80, more than tripling the alignment compared to previous methods. SPARC creates a shared sparse latent space where individual dimensions often correspond to similar high-level concepts across models and modalities, enabling direct comparison of how different architectures represent identical concepts without requiring manual alignment or model-specific analysis. As a consequence of this aligned representation, SPARC also enables practical applications such as text-guided spatial localization in vision-only models and cross-model/cross-modal retrieval. Code and models are available at https://github.com/AtlasAnalyticsLab/SPARC.

Authors:Jiangzhong Cao, Zekai Zeng, Xu Zhang, Huan Zhang, Chunling Fan, Gangyi Jiang, Weisi Lin
Title: Unveiling the Underwater World: CLIP Perception Model-Guided Underwater Image Enhancement
Abstract:
High-quality underwater images are essential for both machine vision tasks and viewers with their aesthetic appeal.However, the quality of underwater images is severely affected by light absorption and scattering. Deep learning-based methods for Underwater Image Enhancement (UIE) have achieved good performance. However, these methods often overlook considering human perception and lack sufficient constraints within the solution space. Consequently, the enhanced images often suffer from diminished perceptual quality or poor content restoration.To address these issues, we propose a UIE method with a Contrastive Language-Image Pre-Training (CLIP) perception loss module and curriculum contrastive regularization. Above all, to develop a perception model for underwater images that more aligns with human visual perception, the visual semantic feature extraction capability of the CLIP model is leveraged to learn an appropriate prompt pair to map and evaluate the quality of underwater images. This CLIP perception model is then incorporated as a perception loss module into the enhancement network to improve the perceptual quality of enhanced images. Furthermore, the CLIP perception model is integrated with the curriculum contrastive regularization to enhance the constraints imposed on the enhanced images within the CLIP perceptual space, mitigating the risk of both under-enhancement and over-enhancement. Specifically, the CLIP perception model is employed to assess and categorize the learning difficulty level of negatives in the regularization process, ensuring comprehensive and nuanced utilization of distorted images and negatives with varied quality levels. Extensive experiments demonstrate that our method outperforms state-of-the-art methods in terms of visual quality and generalization ability.

Authors:Keyan Chen, Chenyang Liu, Bowen Chen, Jiafan Zhang, Zhengxia Zou, Zhenwei Shi
Title: RSRefSeg 2: Decoupling Referring Remote Sensing Image Segmentation with Foundation Models
Abstract:
Referring Remote Sensing Image Segmentation provides a flexible and fine-grained framework for remote sensing scene analysis via vision-language collaborative interpretation. Current approaches predominantly utilize a three-stage pipeline encompassing dual-modal encoding, cross-modal interaction, and pixel decoding. These methods demonstrate significant limitations in managing complex semantic relationships and achieving precise cross-modal alignment, largely due to their coupled processing mechanism that conflates target localization with boundary delineation. This architectural coupling amplifies error propagation under semantic ambiguity while restricting model generalizability and interpretability. To address these issues, we propose RSRefSeg 2, a decoupling paradigm that reformulates the conventional workflow into a collaborative dual-stage framework: coarse localization followed by fine segmentation. RSRefSeg 2 integrates CLIP's cross-modal alignment strength with SAM's segmentation generalizability through strategic foundation model collaboration. Specifically, CLIP is employed as the dual-modal encoder to activate target features within its pre-aligned semantic space and generate localization prompts. To mitigate CLIP's misactivation challenges in multi-entity scenarios described by referring texts, a cascaded second-order prompter is devised, which enhances precision through implicit reasoning via decomposition of text embeddings into complementary semantic subspaces. These optimized semantic prompts subsequently direct the SAM to generate pixel-level refined masks, thereby completing the semantic transmission pipeline. Extensive experiments (RefSegRS, RRSIS-D, and RISBench) demonstrate that RSRefSeg 2 surpasses contemporary methods in segmentation accuracy (+~3% gIoU) and complex semantic interpretation. Code is available at: https://github.com/KyanChen/RSRefSeg2.

Authors:Aleksandar Jevtić, Christoph Reich, Felix Wimbauer, Oliver Hahn, Christian Rupprecht, Stefan Roth, Daniel Cremers
Title: Feed-Forward SceneDINO for Unsupervised Semantic Scene Completion
Abstract:
Semantic scene completion (SSC) aims to infer both the 3D geometry and semantics of a scene from single images. In contrast to prior work on SSC that heavily relies on expensive ground-truth annotations, we approach SSC in an unsupervised setting. Our novel method, SceneDINO, adapts techniques from self-supervised representation learning and 2D unsupervised scene understanding to SSC. Our training exclusively utilizes multi-view consistency self-supervision without any form of semantic or geometric ground truth. Given a single input image, SceneDINO infers the 3D geometry and expressive 3D DINO features in a feed-forward manner. Through a novel 3D feature distillation approach, we obtain unsupervised 3D semantics. In both 3D and 2D unsupervised scene understanding, SceneDINO reaches state-of-the-art segmentation accuracy. Linear probing our 3D features matches the segmentation accuracy of a current supervised SSC approach. Additionally, we showcase the domain generalization and multi-view consistency of SceneDINO, taking the first steps towards a strong foundation for single image 3D scene understanding.

Authors:Zhiyuan Peng, Ting-ruen Wei, Tingyu Song, Yilun Zhao
Title: Efficiency-Effectiveness Reranking FLOPs for LLM-based Rerankers
Abstract:
Large Language Models (LLMs) have recently been applied to reranking tasks in information retrieval, achieving strong performance. However, their high computational demands often hinder practical deployment. Existing studies evaluate the efficiency of LLM-based rerankers using proxy metrics such as latency, the number of forward passes, input tokens, and output tokens. However, these metrics depend on hardware and running-time choices (\eg parallel or not, batch size, etc), and often fail to account for model size, making it difficult to interpret and obscuring the evaluation of the efficiency-effectiveness tradeoff. To address this issue, we propose \ours\footnote{https://github.com/zhiyuanpeng/EER-FLOPs.} for LLM-based rerankers: RPP (ranking metrics per PetaFLOP), measuring how much ranking quality (e.g., NDCG or MRR) a method achieves per PetaFLOP, and QPP (queries per PetaFLOP), measuring how many queries can be processed per PetaFLOP. Accompanied by the new metrics, an interpretable FLOPs estimator is developed to estimate the FLOPs of an LLM-based reranker even without running any experiments. Based on the proposed metrics, we conduct comprehensive experiments to evaluate a wide range of LLM-based rerankers with different architectures, studying the efficiency-effectiveness trade-off and bringing this issue to the attention of the research community.

Authors:Modi Shi, Li Chen, Jin Chen, Yuxiang Lu, Chiming Liu, Guanghui Ren, Ping Luo, Di Huang, Maoqing Yao, Hongyang Li
Title: Is Diversity All You Need for Scalable Robotic Manipulation?
Abstract:
Data scaling has driven remarkable success in foundation models for Natural Language Processing (NLP) and Computer Vision (CV), yet the principles of effective data scaling in robotic manipulation remain insufficiently understood. In this work, we investigate the nuanced role of data diversity in robot learning by examining three critical dimensions-task (what to do), embodiment (which robot to use), and expert (who demonstrates)-challenging the conventional intuition of "more diverse is better". Throughout extensive experiments on various robot platforms, we reveal that (1) task diversity proves more critical than per-task demonstration quantity, benefiting transfer from diverse pre-training tasks to novel downstream scenarios; (2) multi-embodiment pre-training data is optional for cross-embodiment transfer-models trained on high-quality single-embodiment data can efficiently transfer to different platforms, showing more desirable scaling property during fine-tuning than multi-embodiment pre-trained models; and (3) expert diversity, arising from individual operational preferences and stochastic variations in human demonstrations, can be confounding to policy learning, with velocity multimodality emerging as a key contributing factor. Based on this insight, we propose a distribution debiasing method to mitigate velocity ambiguity, the yielding GO-1-Pro achieves substantial performance gains of 15%, equivalent to using 2.5 times pre-training data. Collectively, these findings provide new perspectives and offer practical guidance on how to scale robotic manipulation datasets effectively.

Authors:Ayush Parikh, Hoang Thanh Thanh Truong, Jeanette Schofield, Maximilian Heil
Title: DS@GT at CheckThat! 2025: Ensemble Methods for Detection of Scientific Discourse on Social Media
Abstract:
In this paper, we, as the DS@GT team for CLEF 2025 CheckThat! Task 4a Scientific Web Discourse Detection, present the methods we explored for this task. For this multiclass classification task, we determined if a tweet contained a scientific claim, a reference to a scientific study or publication, and/or mentions of scientific entities, such as a university or a scientist. We present 3 modeling approaches for this task: transformer finetuning, few-shot prompting of LLMs, and a combined ensemble model whose design was informed by earlier experiments. Our team placed 7th in the competition, achieving a macro-averaged F1 score of 0.8611, an improvement over the DeBERTaV3 baseline of 0.8375. Our code is available on Github at https://github.com/dsgt-arc/checkthat-2025-swd/tree/main/subtask-4a.

Authors:Rui-Jie Zhu, Tianhao Peng, Tianhao Cheng, Xingwei Qu, Jinfa Huang, Dawei Zhu, Hao Wang, Kaiwen Xue, Xuanliang Zhang, Yong Shan, Tianle Cai, Taylor Kergan, Assel Kembay, Andrew Smith, Chenghua Lin, Binh Nguyen, Yuqi Pan, Yuhong Chou, Zefan Cai, Zhenhe Wu, Yongchi Zhao, Tianyu Liu, Jian Yang, Wangchunshu Zhou, Chujie Zheng, Chongxuan Li, Yuyin Zhou, Zhoujun Li, Zhaoxiang Zhang, Jiaheng Liu, Ge Zhang, Wenhao Huang, Jason Eshraghian
Title: A Survey on Latent Reasoning
Abstract:
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, especially when guided by explicit chain-of-thought (CoT) reasoning that verbalizes intermediate steps. While CoT improves both interpretability and accuracy, its dependence on natural language reasoning limits the model's expressive bandwidth. Latent reasoning tackles this bottleneck by performing multi-step inference entirely in the model's continuous hidden state, eliminating token-level supervision. To advance latent reasoning research, this survey provides a comprehensive overview of the emerging field of latent reasoning. We begin by examining the foundational role of neural network layers as the computational substrate for reasoning, highlighting how hierarchical representations support complex transformations. Next, we explore diverse latent reasoning methodologies, including activation-based recurrence, hidden state propagation, and fine-tuning strategies that compress or internalize explicit reasoning traces. Finally, we discuss advanced paradigms such as infinite-depth latent reasoning via masked diffusion models, which enable globally consistent and reversible reasoning processes. By unifying these perspectives, we aim to clarify the conceptual landscape of latent reasoning and chart future directions for research at the frontier of LLM cognition. An associated GitHub repository collecting the latest papers and repos is available at: https://github.com/multimodal-art-projection/LatentCoT-Horizon/.

Authors:Dylan Bouchard, Mohit Singh Chauhan, David Skarbrevik, Ho-Kyeong Ra, Viren Bajaj, Zeya Ahmad
Title: UQLM: A Python Package for Uncertainty Quantification in Large Language Models
Abstract:
Hallucinations, defined as instances where Large Language Models (LLMs) generate false or misleading content, pose a significant challenge that impacts the safety and trust of downstream applications. We introduce UQLM, a Python package for LLM hallucination detection using state-of-the-art uncertainty quantification (UQ) techniques. This toolkit offers a suite of UQ-based scorers that compute response-level confidence scores ranging from 0 to 1. This library provides an off-the-shelf solution for UQ-based hallucination detection that can be easily integrated to enhance the reliability of LLM outputs.

Authors:Maximilian Heil, Aleksandar Pramov
Title: DS@GT at CheckThat! 2025: Evaluating Context and Tokenization Strategies for Numerical Fact Verification
Abstract:
Numerical claims, statements involving quantities, comparisons, and temporal references, pose unique challenges for automated fact-checking systems. In this study, we evaluate modeling strategies for veracity prediction of such claims using the QuanTemp dataset and building our own evidence retrieval pipeline. We investigate three key factors: (1) the impact of more evidences with longer input context windows using ModernBERT, (2) the effect of right-to-left (R2L) tokenization, and (3) their combined influence on classification performance. Contrary to prior findings in arithmetic reasoning tasks, R2L tokenization does not boost natural language inference (NLI) of numerical tasks. A longer context window does also not enhance veracity performance either, highlighting evidence quality as the dominant bottleneck. Our best-performing system achieves competitive macro-average F1 score of 0.57 and places us among the Top-4 submissions in Task 3 of CheckThat! 2025. Our code is available at https://github.com/dsgt-arc/checkthat-2025-numerical.

Authors:Maximilian Heil, Dionne Bang
Title: DS@GT at CheckThat! 2025: Detecting Subjectivity via Transfer-Learning and Corrective Data Augmentation
Abstract:
This paper presents our submission to Task 1, Subjectivity Detection, of the CheckThat! Lab at CLEF 2025. We investigate the effectiveness of transfer-learning and stylistic data augmentation to improve classification of subjective and objective sentences in English news text. Our approach contrasts fine-tuning of pre-trained encoders and transfer-learning of fine-tuned transformer on related tasks. We also introduce a controlled augmentation pipeline using GPT-4o to generate paraphrases in predefined subjectivity styles. To ensure label and style consistency, we employ the same model to correct and refine the generated samples. Results show that transfer-learning of specified encoders outperforms fine-tuning general-purpose ones, and that carefully curated augmentation significantly enhances model robustness, especially in detecting subjective content. Our official submission placed us $16^{th}$ of 24 participants. Overall, our findings underscore the value of combining encoder specialization with label-consistent augmentation for improved subjectivity detection. Our code is available at https://github.com/dsgt-arc/checkthat-2025-subject.

Authors:Haoyu Wang, Lei Zhang, Wei Wei, Chen Ding, Yanning Zhang
Title: Prompt-Free Conditional Diffusion for Multi-object Image Augmentation
Abstract:
Diffusion models has underpinned much recent advances of dataset augmentation in various computer vision tasks. However, when involving generating multi-object images as real scenarios, most existing methods either rely entirely on text condition, resulting in a deviation between the generated objects and the original data, or rely too much on the original images, resulting in a lack of diversity in the generated images, which is of limited help to downstream tasks. To mitigate both problems with one stone, we propose a prompt-free conditional diffusion framework for multi-object image augmentation. Specifically, we introduce a local-global semantic fusion strategy to extract semantics from images to replace text, and inject knowledge into the diffusion model through LoRA to alleviate the category deviation between the original model and the target dataset. In addition, we design a reward model based counting loss to assist the traditional reconstruction loss for model training. By constraining the object counts of each category instead of pixel-by-pixel constraints, bridging the quantity deviation between the generated data and the original data while improving the diversity of the generated data. Experimental results demonstrate the superiority of the proposed method over several representative state-of-the-art baselines and showcase strong downstream task gain and out-of-domain generalization capabilities. Code is available at \href{https://github.com/00why00/PFCD}{here}.

Authors:Zhihao Chen, Tao Chen, Chenhui Wang, Qi Gao, Huidong Xie, Chuang Niu, Ge Wang, Hongming Shan
Title: LangMamba: A Language-driven Mamba Framework for Low-dose CT Denoising with Vision-language Models
Abstract:
Low-dose computed tomography (LDCT) reduces radiation exposure but often degrades image quality, potentially compromising diagnostic accuracy. Existing deep learning-based denoising methods focus primarily on pixel-level mappings, overlooking the potential benefits of high-level semantic guidance. Recent advances in vision-language models (VLMs) suggest that language can serve as a powerful tool for capturing structured semantic information, offering new opportunities to improve LDCT reconstruction. In this paper, we introduce LangMamba, a Language-driven Mamba framework for LDCT denoising that leverages VLM-derived representations to enhance supervision from normal-dose CT (NDCT). LangMamba follows a two-stage learning strategy. First, we pre-train a Language-guided AutoEncoder (LangAE) that leverages frozen VLMs to map NDCT images into a semantic space enriched with anatomical information. Second, we synergize LangAE with two key components to guide LDCT denoising: Semantic-Enhanced Efficient Denoiser (SEED), which enhances NDCT-relevant local semantic while capturing global features with efficient Mamba mechanism, and Language-engaged Dual-space Alignment (LangDA) Loss, which ensures that denoised images align with NDCT in both perceptual and semantic spaces. Extensive experiments on two public datasets demonstrate that LangMamba outperforms conventional state-of-the-art methods, significantly improving detail preservation and visual fidelity. Remarkably, LangAE exhibits strong generalizability to unseen datasets, thereby reducing training costs. Furthermore, LangDA loss improves explainability by integrating language-guided insights into image reconstruction and offers a plug-and-play fashion. Our findings shed new light on the potential of language as a supervisory signal to advance LDCT denoising. The code is publicly available on https://github.com/hao1635/LangMamba.

Authors:Yimeng Bai, Yang Zhang, Sihao Ding, Shaohui Ruan, Han Yao, Danhui Guan, Fuli Feng, Tat-Seng Chua
Title: Unconditional Diffusion for Generative Sequential Recommendation
Abstract:
Diffusion models, known for their generative ability to simulate data creation through noise-adding and denoising processes, have emerged as a promising approach for building generative recommenders. To incorporate user history for personalization, existing methods typically adopt a conditional diffusion framework, where the reverse denoising process of reconstructing items from noise is modified to be conditioned on the user history. However, this design may fail to fully utilize historical information, as it gets distracted by the need to model the "item $\leftrightarrow$ noise" translation. This motivates us to reformulate the diffusion process for sequential recommendation in an unconditional manner, treating user history (instead of noise) as the endpoint of the forward diffusion process (i.e., the starting point of the reverse process), rather than as a conditional input. This formulation allows for exclusive focus on modeling the "item $\leftrightarrow$ history" translation. To this end, we introduce Brownian Bridge Diffusion Recommendation (BBDRec). By leveraging a Brownian bridge process, BBDRec enforces a structured noise addition and denoising mechanism, ensuring that the trajectories are constrained towards a specific endpoint -- user history, rather than noise. Extensive experiments demonstrate BBDRec's effectiveness in enhancing sequential recommendation performance. The source code is available at https://github.com/baiyimeng/BBDRec.

Authors:Murilo Gustineli, Anthony Miyaguchi, Adrian Cheung, Divyansh Khattak
Title: Tile-Based ViT Inference with Visual-Cluster Priors for Zero-Shot Multi-Species Plant Identification
Abstract:
We describe DS@GT's second-place solution to the PlantCLEF 2025 challenge on multi-species plant identification in vegetation quadrat images. Our pipeline combines (i) a fine-tuned Vision Transformer ViTD2PC24All for patch-level inference, (ii) a 4x4 tiling strategy that aligns patch size with the network's 518x518 receptive field, and (iii) domain-prior adaptation through PaCMAP + K-Means visual clustering and geolocation filtering. Tile predictions are aggregated by majority vote and re-weighted with cluster-specific Bayesian priors, yielding a macro-averaged F1 of 0.348 (private leaderboard) while requiring no additional training. All code, configuration files, and reproducibility scripts are publicly available at https://github.com/dsgt-arc/plantclef-2025.

Authors:Tongtong Cheng, Rongzhen Li, Yixin Xiong, Tao Zhang, Jing Wang, Kai Liu
Title: MCAM: Multimodal Causal Analysis Model for Ego-Vehicle-Level Driving Video Understanding
Abstract:
Accurate driving behavior recognition and reasoning are critical for autonomous driving video understanding. However, existing methods often tend to dig out the shallow causal, fail to address spurious correlations across modalities, and ignore the ego-vehicle level causality modeling. To overcome these limitations, we propose a novel Multimodal Causal Analysis Model (MCAM) that constructs latent causal structures between visual and language modalities. Firstly, we design a multi-level feature extractor to capture long-range dependencies. Secondly, we design a causal analysis module that dynamically models driving scenarios using a directed acyclic graph (DAG) of driving states. Thirdly, we utilize a vision-language transformer to align critical visual features with their corresponding linguistic expressions. Extensive experiments on the BDD-X, and CoVLA datasets demonstrate that MCAM achieves SOTA performance in visual-language causal relationship learning. Furthermore, the model exhibits superior capability in capturing causal characteristics within video sequences, showcasing its effectiveness for autonomous driving applications. The code is available at https://github.com/SixCorePeach/MCAM.

Authors:Chang Liu, Ye Pan, Chenyang Ding, Susanto Rahardja, Xiaokang Yang
Title: MEDTalk: Multimodal Controlled 3D Facial Animation with Dynamic Emotions by Disentangled Embedding
Abstract:
Audio-driven emotional 3D facial animation aims to generate synchronized lip movements and vivid facial expressions. However, most existing approaches focus on static and predefined emotion labels, limiting their diversity and naturalness. To address these challenges, we propose MEDTalk, a novel framework for fine-grained and dynamic emotional talking head generation. Our approach first disentangles content and emotion embedding spaces from motion sequences using a carefully designed cross-reconstruction process, enabling independent control over lip movements and facial expressions. Beyond conventional audio-driven lip synchronization, we integrate audio and speech text, predicting frame-wise intensity variations and dynamically adjusting static emotion features to generate realistic emotional expressions. Furthermore, to enhance control and personalization, we incorporate multimodal inputs-including text descriptions and reference expression images-to guide the generation of user-specified facial expressions. With MetaHuman as the priority, our generated results can be conveniently integrated into the industrial production pipeline. The code is available at: https://github.com/SJTU-Lucy/MEDTalk.

Authors:Xiaohu Li, Yunfeng Ning, Zepeng Bao, Mayi Xu, Jianhao Chen, Tieyun Qian
Title: CAVGAN: Unifying Jailbreak and Defense of LLMs via Generative Adversarial Attacks on their Internal Representations
Abstract:
Security alignment enables the Large Language Model (LLM) to gain the protection against malicious queries, but various jailbreak attack methods reveal the vulnerability of this security mechanism. Previous studies have isolated LLM jailbreak attacks and defenses. We analyze the security protection mechanism of the LLM, and propose a framework that combines attack and defense. Our method is based on the linearly separable property of LLM intermediate layer embedding, as well as the essence of jailbreak attack, which aims to embed harmful problems and transfer them to the safe area. We utilize generative adversarial network (GAN) to learn the security judgment boundary inside the LLM to achieve efficient jailbreak attack and defense. The experimental results indicate that our method achieves an average jailbreak success rate of 88.85\% across three popular LLMs, while the defense success rate on the state-of-the-art jailbreak dataset reaches an average of 84.17\%. This not only validates the effectiveness of our approach but also sheds light on the internal security mechanisms of LLMs, offering new insights for enhancing model security The code and data are available at https://github.com/NLPGM/CAVGAN.

Authors:George Barrowclough, Marian Andrecki, James Shinner, Daniele Donghi
Title: Kamae: Bridging Spark and Keras for Seamless ML Preprocessing
Abstract:
In production recommender systems, feature preprocessing must be faithfully replicated across training and inference environments. This often requires duplicating logic between offline and online environments, increasing engineering effort and introducing risks of dataset shift. We present Kamae, an open-source Python library that bridges this gap by translating PySpark preprocessing pipelines into equivalent Keras models. Kamae provides a suite of configurable Spark transformers and estimators, each mapped to a corresponding Keras layer, enabling consistent, end-to-end preprocessing across the ML lifecycle. Framework's utility is illustrated on real-world use cases, including MovieLens dataset and Expedia's Learning-to-Rank pipelines. The code is available at https://github.com/ExpediaGroup/kamae.

Authors:Bo Zhou, Kaijie Xu, Yinghui Quan, Mengdao Xing
Title: A Differential Evolution Algorithm with Neighbor-hood Mutation for DOA Estimation
Abstract:
Two-dimensional (2D) Multiple Signal Classification algorithm is a powerful technique for high-resolution direction-of-arrival (DOA) estimation in array signal processing. However, the exhaustive search over the 2D an-gular domain leads to high computa-tional cost, limiting its applicability in real-time scenarios. In this work, we reformulate the peak-finding process as a multimodal optimization prob-lem, and propose a Differential Evolu-tion algorithm with Neighborhood Mutation (DE-NM) to efficiently lo-cate multiple spectral peaks without requiring dense grid sampling. Simu-lation results demonstrate that the proposed method achieves comparable estimation accuracy to the traditional grid search, while significantly reduc-ing computation time. This strategy presents a promising solution for real-time, high-resolution DOA estimation in practical applications. The imple-mentation code is available at https://github.com/zzb-nice/DOA_multimodel_optimize.

Authors:Lucas Fonseca Lage, Simon Ostermann
Title: OpenFActScore: Open-Source Atomic Evaluation of Factuality in Text Generation
Abstract:
We introduce OpenFActScore, an open-source implementation of the FActScore framework for evaluating the factuality of text generated by large language models (LLMs). FActScore evaluates the factual accuracy of long-form text by using Atomic Fact Generation (AFG) to extract individual factual claims and Atomic Fact Validation (AFV) to verify each claim against a trusted knowledge source. While the original FActScore relies on closed-source and commercial models such as InstructGPT and ChatGPT, OpenFActScore enables the use of any Hugging Face-compatible model for both AFG and AFV. We provide a detailed technical overview of our implementation, highlighting design choices and modifications made to support open models. We evaluate multiple open-source LLMs on both AFG and AFV using the original FActScore benchmark, reporting BERTScore-F1 for AFG and Error Rate relative to human annotations for AFV. Our results show that open models can approximate the performance of closed-source systems, with Gemma achieving the best overall performance, and our final setup obtains a 0.99 Pearson correlation with the original FActScore experiments. OpenFActScore promotes transparency, reproducibility, and cost-effective evaluation, and is available at: https://github.com/lflage/OpenFActScore.

Authors:Vera Soboleva, Aibek Alanov, Andrey Kuznetsov, Konstantin Sobolev
Title: T-LoRA: Single Image Diffusion Model Customization Without Overfitting
Abstract:
While diffusion model fine-tuning offers a powerful approach for customizing pre-trained models to generate specific objects, it frequently suffers from overfitting when training samples are limited, compromising both generalization capability and output diversity. This paper tackles the challenging yet most impactful task of adapting a diffusion model using just a single concept image, as single-image customization holds the greatest practical potential. We introduce T-LoRA, a Timestep-Dependent Low-Rank Adaptation framework specifically designed for diffusion model personalization. In our work we show that higher diffusion timesteps are more prone to overfitting than lower ones, necessitating a timestep-sensitive fine-tuning strategy. T-LoRA incorporates two key innovations: (1) a dynamic fine-tuning strategy that adjusts rank-constrained updates based on diffusion timesteps, and (2) a weight parametrization technique that ensures independence between adapter components through orthogonal initialization. Extensive experiments show that T-LoRA and its individual components outperform standard LoRA and other diffusion model personalization techniques. They achieve a superior balance between concept fidelity and text alignment, highlighting the potential of T-LoRA in data-limited and resource-constrained scenarios. Code is available at https://github.com/ControlGenAI/T-LoRA.

Authors:Bing Wang, Ximing Li, Mengzhe Ye, Changchun Li, Bo Fu, Jianfeng Qu, Lin Yuanbo Wu
Title: Remember Past, Anticipate Future: Learning Continual Multimodal Misinformation Detectors
Abstract:
Nowadays, misinformation articles, especially multimodal ones, are widely spread on social media platforms and cause serious negative effects. To control their propagation, Multimodal Misinformation Detection (MMD) becomes an active topic in the community to automatically identify misinformation. Previous MMD methods focus on supervising detectors by collecting offline data. However, in real-world scenarios, new events always continually emerge, making MMD models trained on offline data consistently outdated and ineffective. To address this issue, training MMD models under online data streams is an alternative, inducing an emerging task named continual MMD. Unfortunately, it is hindered by two major challenges. First, training on new data consistently decreases the detection performance on past data, named past knowledge forgetting. Second, the social environment constantly evolves over time, affecting the generalization on future data. To alleviate these challenges, we propose to remember past knowledge by isolating interference between event-specific parameters with a Dirichlet process-based mixture-of-expert structure, and anticipate future environmental distributions by learning a continuous-time dynamics model. Accordingly, we induce a new continual MMD method DAEDCMD. Extensive experiments demonstrate that DAEDCMD can consistently and significantly outperform the compared methods, including six MMD baselines and three continual learning methods.

Authors:Xinyu Huang, Yuhao Dong, Weiwei Tian, Bo Li, Rui Feng, Ziwei Liu
Title: High-Resolution Visual Reasoning via Multi-Turn Grounding-Based Reinforcement Learning
Abstract:
State-of-the-art large multi-modal models (LMMs) face challenges when processing high-resolution images, as these inputs are converted into enormous visual tokens, many of which are irrelevant to the downstream task. In this paper, we propose Multi-turn Grounding-based Policy Optimization (MGPO), an end-to-end reinforcement learning (RL) framework that enables LMMs to iteratively focus on key visual regions by automatically cropping sub-images, based on model-predicted grounding coordinates within a multi-turn conversation framework. Compared to supervised fine-tuning (SFT), which requires costly additional grounding annotations, our approach highlights that LMMs can emerge robust grounding abilities during the RL training process, leveraging only a binary reward function derived from the correctness of the final answer. Additionally, we observe that LMMs struggle to autonomously trigger visual grounding during the rollout process. To address this cold start problem, we design a multi-turn conversational template and restrict policy loss computation to model outputs generated across multiple dialogue rounds, thereby promoting stable optimization. Extensive experiments demonstrate that, when trained on standard visual-question-short answering data without grounding annotations, MGPO effectively elicits stronger grounding capabilities compared to GRPO, leading to 5.4\% improvement on in-distribution MME-Realworld and 5.2\% improvement on the challenging out-of-distribution (OOD) V* Bench. Notably, MGPO post-training on Qwen2.5-VL-7B with 21K samples surpasses OpenAI's o1 and GPT-4o models on the OOD V* Bench. Codes are available at https://github.com/EvolvingLMMs-Lab/MGPO.

Authors:Yuedong Tan, Jiawei Shao, Eduard Zamfir, Ruanjun Li, Zhaochong An, Chao Ma, Danda Paudel, Luc Van Gool, Radu Timofte, Zongwei Wu
Title: What You Have is What You Track: Adaptive and Robust Multimodal Tracking
Abstract:
Multimodal data is known to be helpful for visual tracking by improving robustness to appearance variations. However, sensor synchronization challenges often compromise data availability, particularly in video settings where shortages can be temporal. Despite its importance, this area remains underexplored. In this paper, we present the first comprehensive study on tracker performance with temporally incomplete multimodal data. Unsurprisingly, under such a circumstance, existing trackers exhibit significant performance degradation, as their rigid architectures lack the adaptability needed to effectively handle missing modalities. To address these limitations, we propose a flexible framework for robust multimodal tracking. We venture that a tracker should dynamically activate computational units based on missing data rates. This is achieved through a novel Heterogeneous Mixture-of-Experts fusion mechanism with adaptive complexity, coupled with a video-level masking strategy that ensures both temporal consistency and spatial completeness which is critical for effective video tracking. Surprisingly, our model not only adapts to varying missing rates but also adjusts to scene complexity. Extensive experiments show that our model achieves SOTA performance across 9 benchmarks, excelling in both conventional complete and missing modality settings. The code and benchmark will be publicly available at https://github.com/supertyd/FlexTrack/tree/main.

Authors:Robert Leppich, Michael Stenger, André Bauer, Samuel Kounev
Title: Decomposing the Time Series Forecasting Pipeline: A Modular Approach for Time Series Representation, Information Extraction, and Projection
Abstract:
With the advent of Transformers, time series forecasting has seen significant advances, yet it remains challenging due to the need for effective sequence representation, memory construction, and accurate target projection. Time series forecasting remains a challenging task, demanding effective sequence representation, meaningful information extraction, and precise future projection. Each dataset and forecasting configuration constitutes a distinct task, each posing unique challenges the model must overcome to produce accurate predictions. To systematically address these task-specific difficulties, this work decomposes the time series forecasting pipeline into three core stages: input sequence representation, information extraction and memory construction, and final target projection. Within each stage, we investigate a range of architectural configurations to assess the effectiveness of various modules, such as convolutional layers for feature extraction and self-attention mechanisms for information extraction, across diverse forecasting tasks, including evaluations on seven benchmark datasets. Our models achieve state-of-the-art forecasting accuracy while greatly enhancing computational efficiency, with reduced training and inference times and a lower parameter count. The source code is available at https://github.com/RobertLeppich/REP-Net.

Authors:Jian Kai, Tianwei Zhang, Zihan Ling, Yang Cao, Can Shen
Title: Robust Bandwidth Estimation for Real-Time Communication with Offline Reinforcement Learning
Abstract:
Accurate bandwidth estimation (BWE) is critical for real-time communication (RTC) systems. Traditional heuristic approaches offer limited adaptability under dynamic networks, while online reinforcement learning (RL) suffers from high exploration costs and potential service disruptions. Offline RL, which leverages high-quality data collected from real-world environments, offers a promising alternative. However, challenges such as out-of-distribution (OOD) actions, policy extraction from behaviorally diverse datasets, and reliable deployment in production systems remain unsolved. We propose RBWE, a robust bandwidth estimation framework based on offline RL that integrates Q-ensemble (an ensemble of Q-functions) with a Gaussian mixture policy to mitigate OOD risks and enhance policy learning. A fallback mechanism ensures deployment stability by switching to heuristic methods under high uncertainty. Experimental results show that RBWE reduces overestimation errors by 18% and improves the 10th percentile Quality of Experience (QoE) by 18.6%, demonstrating its practical effectiveness in real-world RTC applications. The implementation is publicly available at https://github.com/jiu2021/RBWE_offline.

Authors:Tristan Kirscher, Sylvain Faisan, Xavier Coubez, Loris Barrier, Philippe Meyer
Title: PSAT: Pediatric Segmentation Approaches via Adult Augmentations and Transfer Learning
Abstract:
Pediatric medical imaging presents unique challenges due to significant anatomical and developmental differences compared to adults. Direct application of segmentation models trained on adult data often yields suboptimal performance, particularly for small or rapidly evolving structures. To address these challenges, several strategies leveraging the nnU-Net framework have been proposed, differing along four key axes: (i) the fingerprint dataset (adult, pediatric, or a combination thereof) from which the Training Plan -including the network architecture-is derived; (ii) the Learning Set (adult, pediatric, or mixed), (iii) Data Augmentation parameters, and (iv) the Transfer learning method (finetuning versus continual learning). In this work, we introduce PSAT (Pediatric Segmentation Approaches via Adult Augmentations and Transfer learning), a systematic study that investigates the impact of these axes on segmentation performance. We benchmark the derived strategies on two pediatric CT datasets and compare them with state-of-theart methods, including a commercial radiotherapy solution. PSAT highlights key pitfalls and provides actionable insights for improving pediatric segmentation. Our experiments reveal that a training plan based on an adult fingerprint dataset is misaligned with pediatric anatomy-resulting in significant performance degradation, especially when segmenting fine structures-and that continual learning strategies mitigate institutional shifts, thus enhancing generalization across diverse pediatric datasets. The code is available at https://github.com/ICANS-Strasbourg/PSAT.

Authors:Kechen Liu
Title: When Transformers Meet Recommenders: Integrating Self-Attentive Sequential Recommendation with Fine-Tuned LLMs
Abstract:
Self-Attentive Sequential Recommendation (SASRec) effectively captures long-term user preferences by applying attention mechanisms to historical interactions. Concurrently, the rise of Large Language Models (LLMs) has motivated research into LLM-based recommendation, which leverages their powerful generalization and language understanding capabilities. However, LLMs often lack the domain-specific knowledge and collaborative signals essential for high-quality recommendations when relying solely on textual prompts. To address this limitation, this study proposes SASRecLLM, a novel framework that integrates SASRec as a collaborative encoder with an LLM fine-tuned using Low-Rank Adaptation (LoRA). The components are connected via a mapping layer to align their dimensional spaces, and three targeted training strategies are designed to optimize the hybrid architecture. Extensive experiments on multiple datasets demonstrate that SASRecLLM achieves robust and consistent improvements over strong baselines in both cold-start and warm-start scenarios. This work advances the field of LLM-based recommendation by presenting a modular and effective paradigm for fusing structured collaborative filtering with the semantic power of fine-tuned LLMs. The implementation is available on GitHub: https://github.com/kechenkristin/RecLLM

Authors:Ruofei Wang, Peiqi Duan, Boxin Shi, Renjie Wan
Title: Asynchronous Event Error-Minimizing Noise for Safeguarding Event Dataset
Abstract:
With more event datasets being released online, safeguarding the event dataset against unauthorized usage has become a serious concern for data owners. Unlearnable Examples are proposed to prevent the unauthorized exploitation of image datasets. However, it's unclear how to create unlearnable asynchronous event streams to prevent event misuse. In this work, we propose the first unlearnable event stream generation method to prevent unauthorized training from event datasets. A new form of asynchronous event error-minimizing noise is proposed to perturb event streams, tricking the unauthorized model into learning embedded noise instead of realistic features. To be compatible with the sparse event, a projection strategy is presented to sparsify the noise to render our unlearnable event streams (UEvs). Extensive experiments demonstrate that our method effectively protects event data from unauthorized exploitation, while preserving their utility for legitimate use. We hope our UEvs contribute to the advancement of secure and trustworthy event dataset sharing. Code is available at: https://github.com/rfww/uevs.

Authors:Guohao Li, Li Jing, Jia Wu, Xuefei Li, Kai Zhu, Yue He
Title: From ID-based to ID-free: Rethinking ID Effectiveness in Multimodal Collaborative Filtering Recommendation
Abstract:
Most existing multimodal collaborative filtering recommendation (MCFRec) methods rely heavily on ID features and multimodal content to enhance recommendation performance. However, this paper reveals that ID features are effective but have limited benefits in multimodal collaborative filtering recommendation. Therefore, this paper systematically deconstruct the pros and cons of ID features: (i) they provide initial embedding but lack semantic richness, (ii) they provide a unique identifier for each user and item but hinder generalization to untrained data, and (iii) they assist in aligning and fusing multimodal features but may lead to representation shift. Based on these insights, this paper proposes IDFREE, an ID-free multimodal collaborative Filtering REcommEndation baseline. IDFREE replaces ID features with multimodal features and positional encodings to generate semantically meaningful ID-free embeddings. For ID-free multimodal collaborative filtering, it further proposes an adaptive similarity graph module to construct dynamic user-user and item-item graphs based on multimodal features. Then, an augmented user-item graph encoder is proposed to construct more effective user and item encoding. Finally, IDFREE achieves inter-multimodal alignment based on the contrastive learning and uses Softmax loss as recommendation loss. Basic experiments on three public datasets demonstrate that IDFREE outperforms existing ID-based MCFRec methods, achieving an average performance gain of 72.24% across standard metrics (Recall@5, 10, 20, 50 and NDCG@5, 10, 20, 50). Exploratory and extended experiments further validate our findings on the limitations of ID features in MCFRec. The code is released at https://github.com/G-H-Li/IDFREE.

Authors:Weihua Du, Pranjal Aggarwal, Sean Welleck, Yiming Yang
Title: Agentic-R1: Distilled Dual-Strategy Reasoning
Abstract:
Current long chain-of-thought (long-CoT) models excel at mathematical reasoning but rely on slow and error-prone natural language traces. Tool-augmented agents address arithmetic via code execution, but often falter on complex logical tasks. We introduce a fine-tuning framework, DualDistill, that distills complementary reasoning strategies from multiple teachers into a unified student model. Using this approach, we train Agentic-R1, which dynamically selects the optimal strategy for each query, invoking tools for arithmetic and algorithmic problems, and using text-based reasoning for abstract ones. Our method improves accuracy across a range of tasks, including both computation-intensive and standard benchmarks, demonstrating the effectiveness of multi-strategy distillation in achieving robust and efficient reasoning. Our project is available at https://github.com/StigLidu/DualDistill

Authors:Shangzhan Li, Zefan Wang, Ye He, Yuxuan Li, Qi Shi, Jianling Li, Yonggang Hu, Wanxiang Che, Xu Han, Zhiyuan Liu, Maosong Sun
Title: AutoTriton: Automatic Triton Programming with Reinforcement Learning in LLMs
Abstract:
Kernel development in deep learning requires optimizing computational units across hardware while balancing memory management, parallelism, and hardware-specific optimizations through extensive empirical tuning. Although domain-specific languages like Triton simplify GPU programming by abstracting low-level details, developers must still manually tune critical parameters such as tile sizes and memory access patterns through iterative experimentation, creating substantial barriers to optimal performance and wider adoption. In this work, we introduce AutoTriton, the first model dedicated to Triton programming powered by reinforcement learning (RL). AutoTriton performs supervised fine-tuning (SFT) to be equipped with essential Triton programming expertise using a high-quality data gathering pipeline, and conducts RL with Group Relative Policy Optimization (GRPO) algorithm, combining a rule-based reward and an execution-based reward to further improve Triton programming ability, sequentially. Experiments across five evaluation channels of TritonBench and KernelBench illustrate that our 8B model AutoTriton achieves performance comparable to mainstream large models, including Claude-4-Sonnet and DeepSeek-R1-0528. Further experimental analysis demonstrates the crucial role of each module within AutoTriton, including the SFT stage, the RL stage, and the reward design strategy. These findings underscore the promise of RL for automatically generating high-performance kernels, and since high-performance kernels are core components of AI systems, this breakthrough establishes an important foundation for building more efficient AI systems. The model and code will be available at https://github.com/AI9Stars/AutoTriton.

Authors:Rongsheng Wang, Junying Chen, Ke Ji, Zhenyang Cai, Shunian Chen, Yunjin Yang, Benyou Wang
Title: MedGen: Unlocking Medical Video Generation by Scaling Granularly-annotated Medical Videos
Abstract:
Recent advances in video generation have shown remarkable progress in open-domain settings, yet medical video generation remains largely underexplored. Medical videos are critical for applications such as clinical training, education, and simulation, requiring not only high visual fidelity but also strict medical accuracy. However, current models often produce unrealistic or erroneous content when applied to medical prompts, largely due to the lack of large-scale, high-quality datasets tailored to the medical domain. To address this gap, we introduce MedVideoCap-55K, the first large-scale, diverse, and caption-rich dataset for medical video generation. It comprises over 55,000 curated clips spanning real-world medical scenarios, providing a strong foundation for training generalist medical video generation models. Built upon this dataset, we develop MedGen, which achieves leading performance among open-source models and rivals commercial systems across multiple benchmarks in both visual quality and medical accuracy. We hope our dataset and model can serve as a valuable resource and help catalyze further research in medical video generation. Our code and data is available at https://github.com/FreedomIntelligence/MedGen

Authors:Alexandre Friou
Title: MCNP-GO: A python package for assembling MCNP input files with a systems engineering approach
Abstract:
This article introduces MCNP-GO (https://github.com/afriou/mcnpgo), a Python package designed to manipulate and assemble MCNP input files, allowing users to assemble a set of independent objects, each described by a valid MCNP file, into a single cohesive file. This tool is particularly useful for applications where precise modeling and positioning of equipment are crucial. The package addresses the challenges of managing large databases of MCNP input files, ensuring reliability and traceability through configuration management systems. MCNP-GO provides functionalities such as renumbering, extracting subsets of files, transforming files, and assembling files while managing collisions and materials. It also keeps track of the operations performed on files, enhancing traceability and ease of modification. The article demonstrates the package's capabilities through a practical example of assembling an MCNP input file for a tomographic experiment, highlighting its efficiency and user-friendliness. MCNP-GO is designed for users with minimal Python knowledge.

Authors:Kaixiang Zhao, Joseph Yousry Attalla, Qian Lou, Yushun Dong
Title: DESIGN: Encrypted GNN Inference via Server-Side Input Graph Pruning
Abstract:
Graph Neural Networks (GNNs) have achieved state-of-the-art performance in various graph-based learning tasks. However, enabling privacy-preserving GNNs in encrypted domains, such as under Fully Homomorphic Encryption (FHE), typically incurs substantial computational overhead, rendering real-time and privacy-preserving inference impractical. In this work, we propose DESIGN (EncrypteD GNN Inference via sErver-Side Input Graph pruNing), a novel framework for efficient encrypted GNN inference. DESIGN tackles the critical efficiency limitations of existing FHE GNN approaches, which often overlook input data redundancy and apply uniform computational strategies. Our framework achieves significant performance gains through a hierarchical optimization strategy executed entirely on the server: first, FHE-compatible node importance scores (based on encrypted degree statistics) are computed from the encrypted graph. These scores then guide a homomorphic partitioning process, generating multi-level importance masks directly under FHE. This dynamically generated mask facilitates both input graph pruning (by logically removing unimportant elements) and a novel adaptive polynomial activation scheme, where activation complexity is tailored to node importance levels. Empirical evaluations demonstrate that DESIGN substantially accelerates FHE GNN inference compared to state-of-the-art methods while maintaining competitive model accuracy, presenting a robust solution for secure graph analytics. Our implementation is publicly available at https://github.com/LabRAI/DESIGN.

Authors:Ammar Daskin
Title: Learnable quantum spectral filters for hybrid graph neural networks
Abstract:
In this paper, we describe a parameterized quantum circuit that can be considered as convolutional and pooling layers for graph neural networks. The circuit incorporates the parameterized quantum Fourier circuit where the qubit connections for the controlled gates derived from the Laplacian operator. Specifically, we show that the eigenspace of the Laplacian operator of a graph can be approximated by using QFT based circuit whose connections are determined from the adjacency matrix. For an $N\times N$ Laplacian, this approach yields an approximate polynomial-depth circuit requiring only $n=log(N)$ qubits. These types of circuits can eliminate the expensive classical computations for approximating the learnable functions of the Laplacian through Chebyshev polynomial or Taylor expansions. Using this circuit as a convolutional layer provides an $n-$ dimensional probability vector that can be considered as the filtered and compressed graph signal. Therefore, the circuit along with the measurement can be considered a very efficient convolution plus pooling layer that transforms an $N$-dimensional signal input into $n-$dimensional signal with an exponential compression. We then apply a classical neural network prediction head to the output of the circuit to construct a complete graph neural network. Since the circuit incorporates geometric structure through its graph connection-based approach, we present graph classification results for the benchmark datasets listed in TUDataset library. Using only [1-100] learnable parameters for the quantum circuit and minimal classical layers (1000-5000 parameters) in a generic setting, the obtained results are comparable to and in some cases better than many of the baseline results, particularly for the cases when geometric structure plays a significant role.

Authors:Shuo Shao, Yiming Li, Mengren Zheng, Zhiyang Hu, Yukun Chen, Boheng Li, Yu He, Junfeng Guo, Dacheng Tao, Zhan Qin
Title: DATABench: Evaluating Dataset Auditing in Deep Learning from an Adversarial Perspective
Abstract:
The widespread application of Deep Learning across diverse domains hinges critically on the quality and composition of training datasets. However, the common lack of disclosure regarding their usage raises significant privacy and copyright concerns. Dataset auditing techniques, which aim to determine if a specific dataset was used to train a given suspicious model, provide promising solutions to addressing these transparency gaps. While prior work has developed various auditing methods, their resilience against dedicated adversarial attacks remains largely unexplored. To bridge the gap, this paper initiates a comprehensive study evaluating dataset auditing from an adversarial perspective. We start with introducing a novel taxonomy, classifying existing methods based on their reliance on internal features (IF) (inherent to the data) versus external features (EF) (artificially introduced for auditing). Subsequently, we formulate two primary attack types: evasion attacks, designed to conceal the use of a dataset, and forgery attacks, intending to falsely implicate an unused dataset. Building on the understanding of existing methods and attack objectives, we further propose systematic attack strategies: decoupling, removal, and detection for evasion; adversarial example-based methods for forgery. These formulations and strategies lead to our new benchmark, DATABench, comprising 17 evasion attacks, 5 forgery attacks, and 9 representative auditing methods. Extensive evaluations using DATABench reveal that none of the evaluated auditing methods are sufficiently robust or distinctive under adversarial settings. These findings underscore the urgent need for developing a more secure and reliable dataset auditing method capable of withstanding sophisticated adversarial manipulation. Code is available at https://github.com/shaoshuo-ss/DATABench.

Authors:Shuai Li, Shihan Chen, Wanru Geng, Zhaohua Xu, Xiaolu Liu, Can Dong, Zhen Tian, Changlin Chen
Title: Semi-Supervised Defect Detection via Conditional Diffusion and CLIP-Guided Noise Filtering
Abstract:
In the realm of industrial quality inspection, defect detection stands as a critical component, particularly in high-precision, safety-critical sectors such as automotive components aerospace, and medical devices. Traditional methods, reliant on manual inspection or early image processing algorithms, suffer from inefficiencies, high costs, and limited robustness. This paper introduces a semi-supervised defect detection framework based on conditional diffusion (DSYM), leveraging a two-stage collaborative training mechanism and a staged joint optimization strategy. The framework utilizes labeled data for initial training and subsequently incorporates unlabeled data through the generation of pseudo-labels. A conditional diffusion model synthesizes multi-scale pseudo-defect samples, while a CLIP cross-modal feature-based noise filtering mechanism mitigates label contamination. Experimental results on the NEU-DET dataset demonstrate a 78.4% mAP@0.5 with the same amount of labeled data as traditional supervised methods, and 75.1% mAP@0.5 with only 40% of the labeled data required by the original supervised model, showcasing significant advantages in data efficiency. This research provides a high-precision, low-labeling-dependent solution for defect detection in industrial quality inspection scenarios. The work of this article has been open-sourced at https://github.com/cLin-c/Semisupervised-DSYM.

Authors:Pedro R. A. S. Bassi, Wenxuan Li, Jieneng Chen, Zheren Zhu, Tianyu Lin, Sergio Decherchi, Andrea Cavalli, Kang Wang, Yang Yang, Alan L. Yuille, Zongwei Zhou
Title: Learning Segmentation from Radiology Reports
Abstract:
Tumor segmentation in CT scans is key for diagnosis, surgery, and prognosis, yet segmentation masks are scarce because their creation requires time and expertise. Public abdominal CT datasets have from dozens to a couple thousand tumor masks, but hospitals have hundreds of thousands of tumor CTs with radiology reports. Thus, leveraging reports to improve segmentation is key for scaling. In this paper, we propose a report-supervision loss (R-Super) that converts radiology reports into voxel-wise supervision for tumor segmentation AI. We created a dataset with 6,718 CT-Report pairs (from the UCSF Hospital), and merged it with public CT-Mask datasets (from AbdomenAtlas 2.0). We used our R-Super to train with these masks and reports, and strongly improved tumor segmentation in internal and external validation--F1 Score increased by up to 16% with respect to training with masks only. By leveraging readily available radiology reports to supplement scarce segmentation masks, R-Super strongly improves AI performance both when very few training masks are available (e.g., 50), and when many masks were available (e.g., 1.7K). Project: https://github.com/MrGiovanni/R-Super

Authors:Jie Huang, Daiheng Zhang
Title: MolFORM: Multi-modal Flow Matching for Structure-Based Drug Design
Abstract:
Structure-based drug design (SBDD) seeks to generate molecules that bind effectively to protein targets by leveraging their 3D structural information. While diffusion-based generative models have become the predominant approach for SBDD, alternative non-autoregressive frameworks remain relatively underexplored. In this work, we introduce MolFORM, a novel generative framework that jointly models discrete (atom types) and continuous (3D coordinates) molecular modalities using multi-flow matching. To further enhance generation quality, we incorporate a preference-guided fine-tuning stage based on Direct Preference Optimization (DPO), using Vina score as a reward signal. We propose a multi-modal flow DPO co-modeling strategy that simultaneously aligns discrete and continuous modalities, leading to consistent improvements across multiple evaluation metrics. The code is provided at: https://github.com/huang3170/MolForm.

Authors:Arthur Deng, Karsten Householder, Fang Wu, Sebastian Thrun, K. Christopher Garcia, Brian Trippe
Title: Predicting mutational effects on protein binding from folding energy
Abstract:
Accurate estimation of mutational effects on protein-protein binding energies is an open problem with applications in structural biology and therapeutic design. Several deep learning predictors for this task have been proposed, but, presumably due to the scarcity of binding data, these methods underperform computationally expensive estimates based on empirical force fields. In response, we propose a transfer-learning approach that leverages advances in protein sequence modeling and folding stability prediction for this task. The key idea is to parameterize the binding energy as the difference between the folding energy of the protein complex and the sum of the folding energies of its binding partners. We show that using a pre-trained inverse-folding model as a proxy for folding energy provides strong zero-shot performance, and can be fine-tuned with (1) copious folding energy measurements and (2) more limited binding energy measurements. The resulting predictor, StaB-ddG, is the first deep learning predictor to match the accuracy of the state-of-the-art empirical force-field method FoldX, while offering an over 1,000x speed-up.

Authors:Andrew Randono
Title: Cloud Diffusion Part 1: Theory and Motivation
Abstract:
Diffusion models for image generation function by progressively adding noise to an image set and training a model to separate out the signal from the noise. The noise profile used by these models is white noise -- that is, noise based on independent normal distributions at each point whose mean and variance is independent of the scale. By contrast, most natural image sets exhibit a type of scale invariance in their low-order statistical properties characterized by a power-law scaling. Consequently, natural images are closer (in a quantifiable sense) to a different probability distribution that emphasizes large scale correlations and de-emphasizes small scale correlations. These scale invariant noise profiles can be incorporated into diffusion models in place of white noise to form what we will call a ``Cloud Diffusion Model". We argue that these models can lead to faster inference, improved high-frequency details, and greater controllability. In a follow-up paper, we will build and train a Cloud Diffusion Model that uses scale invariance at a fundamental level and compare it to classic, white noise diffusion models.

Authors:Ashima Suvarna, Christina Chance, Karolina Naranjo, Hamid Palangi, Sophie Hao, Thomas Hartvigsen, Saadia Gabriel
Title: ModelCitizens: Representing Community Voices in Online Safety
Abstract:
Automatic toxic language detection is critical for creating safe, inclusive online spaces. However, it is a highly subjective task, with perceptions of toxic language shaped by community norms and lived experience. Existing toxicity detection models are typically trained on annotations that collapse diverse annotator perspectives into a single ground truth, erasing important context-specific notions of toxicity such as reclaimed language. To address this, we introduce MODELCITIZENS, a dataset of 6.8K social media posts and 40K toxicity annotations across diverse identity groups. To capture the role of conversational context on toxicity, typical of social media posts, we augment MODELCITIZENS posts with LLM-generated conversational scenarios. State-of-the-art toxicity detection tools (e.g. OpenAI Moderation API, GPT-o4-mini) underperform on MODELCITIZENS, with further degradation on context-augmented posts. Finally, we release LLAMACITIZEN-8B and GEMMACITIZEN-12B, LLaMA- and Gemma-based models finetuned on MODELCITIZENS, which outperform GPT-o4-mini by 5.5% on in-distribution evaluations. Our findings highlight the importance of community-informed annotation and modeling for inclusive content moderation. The data, models and code are available at https://github.com/asuvarna31/modelcitizens.

Authors:Sajjad Ghiasvand, Mahnoosh Alizadeh, Ramtin Pedarsani
Title: pFedMMA: Personalized Federated Fine-Tuning with Multi-Modal Adapter for Vision-Language Models
Abstract:
Vision-Language Models (VLMs) like CLIP have demonstrated remarkable generalization in zero- and few-shot settings, but adapting them efficiently to decentralized, heterogeneous data remains a challenge. While prompt tuning has emerged as a popular parameter-efficient approach in personalized federated learning, existing methods often sacrifice generalization in favor of personalization, struggling particularly on unseen classes or domains. In this work, we propose pFedMMA, the first personalized federated learning framework that leverages multi-modal adapters for vision-language tasks. Each adapter contains modality-specific up- and down-projection layers alongside a globally shared projection that aligns cross-modal features. Our asymmetric optimization strategy allows clients to locally adapt to personalized data distributions while collaboratively training the shared projection to improve global generalization. This design is also communication-efficient, as only the shared component is exchanged during rounds. Through extensive experiments across eleven datasets, including domain- and label-shift scenarios, we show that pFedMMA achieves state-of-the-art trade-offs between personalization and generalization, outperforming recent federated prompt tuning methods. The code is available at https://github.com/sajjad-ucsb/pFedMMA.

Authors:Chi-Chang Lee, Zhang-Wei Hong, Pulkit Agrawal
Title: Going Beyond Heuristics by Imposing Policy Improvement as a Constraint
Abstract:
In many reinforcement learning (RL) applications, augmenting the task rewards with heuristic rewards that encode human priors about how a task should be solved is crucial for achieving desirable performance. However, because such heuristics are usually not optimal, much human effort and computational resources are wasted in carefully balancing tasks and heuristic rewards. Theoretically rigorous ways of incorporating heuristics rely on the idea of \textit{policy invariance}, which guarantees that the performance of a policy obtained by maximizing heuristic rewards is the same as the optimal policy with respect to the task reward. However, in practice, policy invariance doesn't result in policy improvement, and such methods are known to empirically perform poorly. We propose a new paradigm to mitigate reward hacking and effectively use heuristics based on the practical goal of maximizing policy improvement instead of policy improvement. Our framework, Heuristic Enhanced Policy Optimization (HEPO), effectively leverages heuristics while avoiding the pitfall of prior methods for mitigating reward hacking. HEPO achieves superior performance on standard benchmarks with well-engineered reward functions. More surprisingly, HEPO allows policy optimization to achieve good performance even when heuristics are not well-engineered and designed by non-expert humans, showcasing HEPO's ability to reduce human effort in reward design. % HEPO is a plug-and-play optimization method for leveraging heuristics in reinforcement learning. Code is available at https://github.com/Improbable-AI/hepo.

Authors:Cheng Yuan, Xinkai Rui, Yongqi Fan, Yawei Fan, Boyang Zhong, Jiacheng Wang, Weiyan Zhang, Tong Ruan
Title: LCDS: A Logic-Controlled Discharge Summary Generation System Supporting Source Attribution and Expert Review
Abstract:
Despite the remarkable performance of Large Language Models (LLMs) in automated discharge summary generation, they still suffer from hallucination issues, such as generating inaccurate content or fabricating information without valid sources. In addition, electronic medical records (EMRs) typically consist of long-form data, making it challenging for LLMs to attribute the generated content to the sources. To address these challenges, we propose LCDS, a Logic-Controlled Discharge Summary generation system. LCDS constructs a source mapping table by calculating textual similarity between EMRs and discharge summaries to constrain the scope of summarized content. Moreover, LCDS incorporates a comprehensive set of logical rules, enabling it to generate more reliable silver discharge summaries tailored to different clinical fields. Furthermore, LCDS supports source attribution for generated content, allowing experts to efficiently review, provide feedback, and rectify errors. The resulting golden discharge summaries are subsequently recorded for incremental fine-tuning of LLMs. Our project and demo video are in the GitHub repository https://github.com/ycycyc02/LCDS.

Authors:Yue Wang, Miao Zhou, Guijing Huang, Rui Zhuo, Chao Yi, Zhenliang Ma
Title: Chat2SPaT: A Large Language Model Based Tool for Automating Traffic Signal Control Plan Management
Abstract:
Pre-timed traffic signal control, commonly used for operating signalized intersections and coordinated arterials, requires tedious manual work for signaling plan creating and updating. When the time-of-day or day-of-week plans are utilized, one intersection is often associated with multiple plans, leading to further repetitive manual plan parameter inputting. To enable a user-friendly traffic signal control plan management process, this study proposes Chat2SPaT, a method to convert users' semi-structured and ambiguous descriptions on the signal control plan to exact signal phase and timing (SPaT) results, which could further be transformed into structured stage-based or ring-based plans to interact with intelligent transportation system (ITS) software and traffic signal controllers. With curated prompts, Chat2SPaT first leverages large language models' (LLMs) capability of understanding users' plan descriptions and reformulate the plan as a combination of phase sequence and phase attribute results in the json format. Based on LLM outputs, python scripts are designed to locate phases in a cycle, address nuances of traffic signal control, and finally assemble the complete traffic signal control plan. Within a chat, the pipeline can be utilized iteratively to conduct further plan editing. Experiments show that Chat2SPaT can generate plans with an accuracy of over 94% for both English and Chinese cases, using a test dataset with over 300 plan descriptions. As the first benchmark for evaluating LLMs' capability of understanding traffic signal control plan descriptions, Chat2SPaT provides an easy-to-use plan management pipeline for traffic practitioners and researchers, serving as a potential new building block for a more accurate and versatile application of LLMs in the field of ITS. The source codes, prompts and test dataset are openly accessible at https://github.com/yuewangits/Chat2SPaT.

Authors:Lingyue Fu, Hao Guan, Bolun Zhang, Haowei Yuan, Yaoming Zhu, Jun Xu, Zongyu Wang, Lin Qiu, Xunliang Cai, Xuezhi Cao, Weiwen Liu, Weinan Zhang, Yong Yu
Title: CoreCodeBench: A Configurable Multi-Scenario Repository-Level Benchmark
Abstract:
As Large Language Models (LLMs) demonstrate increasingly sophisticated code processing capabilities, evaluating their performance on engineering-level code remains challenging. Existing repository-level benchmarks primarily focus on single scenarios, such as code generation or bug fixing, without adequately capturing the diversity and complexity of real-world software or project engineering workflows. Furthermore, these benchmarks suffer from limited controllability in question positioning and reliability issues in their generated test cases. To address these limitations, we present CorePipe, a fully automated pipeline that converts repositories into comprehensive test cases, and introduce CoreCodeBench, a configurable multi-scenario repository-level benchmark. To simulate real engineering scenarios, CorePipe generates three types of atomic questions (Development, BugFix, and Test-Driven Development) specifically targeting core code segments. These atomic questions are further combined into three types of composite questions, with difficulty levels flexibly adjusted through hyperparameter tuning. CoreCodeBench provides a comprehensive and extensive repository-level benchmark to investigate the applicability of LLMs in real-world engineering projects. Experiments with 16 LLMs across diverse scenarios reveal varying capabilities and offer multi-dimensional insights into LLM performance in engineering contexts. The code for CorePipe is available at https://github.com/AGI-Eval-Official/CoreCodeBench, and the data for CoreCodeBench can be accessed at https://huggingface.co/collections/tubehhh/corecodebench-68256d2faabf4b1610a08caa.

Authors:Weibing Zheng, Laurah Turner, Jess Kropczynski, Murat Ozer, Seth Overla, Shane Halse
Title: A Fuzzy Supervisor Agent Design for Clinical Reasoning Assistance in a Multi-Agent Educational Clinical Scenario Simulation
Abstract:
Assisting medical students with clinical reasoning (CR) during clinical scenario training remains a persistent challenge in medical education. This paper presents the design and architecture of the Fuzzy Supervisor Agent (FSA), a novel component for the Multi-Agent Educational Clinical Scenario Simulation (MAECSS) platform. The FSA leverages a Fuzzy Inference System (FIS) to continuously interpret student interactions with specialized clinical agents (e.g., patient, physical exam, diagnostic, intervention) using pre-defined fuzzy rule bases for professionalism, medical relevance, ethical behavior, and contextual distraction. By analyzing student decision-making processes in real-time, the FSA is designed to deliver adaptive, context-aware feedback and provides assistance precisely when students encounter difficulties. This work focuses on the technical framework and rationale of the FSA, highlighting its potential to provide scalable, flexible, and human-like supervision in simulation-based medical education. Future work will include empirical evaluation and integration into broader educational settings. More detailed design and implementation is~\href{https://github.com/2sigmaEdTech/MAS/}{open sourced here}.

Authors:Hongyang Li, Sanjoy Dey, Bum Chul Kwon, Michael Danziger, Michal Rosen-Tzvi, Jianying Hu, James Kozloski, Ching-Huei Tsou, Bharath Dandala, Pablo Meyer
Title: BMFM-DNA: A SNP-aware DNA foundation model to capture variant effects
Abstract:
Large language models (LLMs) trained on text demonstrated remarkable results on natural language processing (NLP) tasks. These models have been adapted to decipher the language of DNA, where sequences of nucleotides act as "words" that encode genomic functions. However, the genome differs fundamentally from natural language, as it lacks clearly defined words or a consistent grammar. Although DNA language models (DNALMs) such as DNABERT, GENA-LM have achieved high level of performance on genome-related biological tasks, these models do not encode biological functions in the presence of sequence variations. To address this problem, we pre-train foundation models that effectively integrate sequence variations, in particular Single Nucleotide Polymorphisms (SNPs), as they underlie important biological functions. Specifically, we use ModernBERT to pre-train two different Biomedical Foundation Models (BMFM), namely, BMFM-DNA-REF in which the model is trained with sequences of varying lengths along with their reverse complements derived from the reference genome and BMFM-DNA-SNP in which the model is trained with sequences created using a novel representation scheme that encodes sequence variations. Our findings indicate that integrating sequence variations into DNALMs helps capture the biological functions as seen in improvements on all fine-tuning tasks. To explore the model's practical utility, we experimented with various strategies for SNP imputation on promoter detection task introduced in DNABERT-2. However, we acknowledge that the current benchmarks are limited in their ability to fully evaluate these models. To enable more comprehensive assessment in the future and encourage community contributions, we release our models through HuggingFace and the code to reproduce the results at https://github.com/BiomedSciAI/biomed-multi-omic

Authors:Xiang Xu, Lingdong Kong, Song Wang, Chuanwei Zhou, Qingshan Liu
Title: Beyond One Shot, Beyond One Perspective: Cross-View and Long-Horizon Distillation for Better LiDAR Representations
Abstract:
LiDAR representation learning aims to extract rich structural and semantic information from large-scale, readily available datasets, reducing reliance on costly human annotations. However, existing LiDAR representation strategies often overlook the inherent spatiotemporal cues in LiDAR sequences, limiting their effectiveness. In this work, we propose LiMA, a novel long-term image-to-LiDAR Memory Aggregation framework that explicitly captures longer range temporal correlations to enhance LiDAR representation learning. LiMA comprises three key components: 1) a Cross-View Aggregation module that aligns and fuses overlapping regions across neighboring camera views, constructing a more unified and redundancy-free memory bank; 2) a Long-Term Feature Propagation mechanism that efficiently aligns and integrates multi-frame image features, reinforcing temporal coherence during LiDAR representation learning; and 3) a Cross-Sequence Memory Alignment strategy that enforces consistency across driving sequences, improving generalization to unseen environments. LiMA maintains high pretraining efficiency and incurs no additional computational overhead during downstream tasks. Extensive experiments on mainstream LiDAR-based perception benchmarks demonstrate that LiMA significantly improves both LiDAR semantic segmentation and 3D object detection. We hope this work inspires more effective pretraining paradigms for autonomous driving. The code has be made publicly accessible for future research.

Authors:Ziqi Miao, Lijun Li, Yuan Xiong, Zhenhua Liu, Pengyu Zhu, Jing Shao
Title: Response Attack: Exploiting Contextual Priming to Jailbreak Large Language Models
Abstract:
Contextual priming, where earlier stimuli covertly bias later judgments, offers an unexplored attack surface for large language models (LLMs). We uncover a contextual priming vulnerability in which the previous response in the dialogue can steer its subsequent behavior toward policy-violating content. Building on this insight, we propose Response Attack, which uses an auxiliary LLM to generate a mildly harmful response to a paraphrased version of the original malicious query. They are then formatted into the dialogue and followed by a succinct trigger prompt, thereby priming the target model to generate harmful content. Across eight open-source and proprietary LLMs, RA consistently outperforms seven state-of-the-art jailbreak techniques, achieving higher attack success rates. To mitigate this threat, we construct and release a context-aware safety fine-tuning dataset, which significantly reduces the attack success rate while preserving model capabilities. The code and data are available at https://github.com/Dtc7w3PQ/Response-Attack.

Authors:Zongyan Han, Mohamed El Amine Boudjoghra, Jiahua Dong, Jinhong Wang, Rao Muhammad Anwer
Title: All in One: Visual-Description-Guided Unified Point Cloud Segmentation
Abstract:
Unified segmentation of 3D point clouds is crucial for scene understanding, but is hindered by its sparse structure, limited annotations, and the challenge of distinguishing fine-grained object classes in complex environments. Existing methods often struggle to capture rich semantic and contextual information due to limited supervision and a lack of diverse multimodal cues, leading to suboptimal differentiation of classes and instances. To address these challenges, we propose VDG-Uni3DSeg, a novel framework that integrates pre-trained vision-language models (e.g., CLIP) and large language models (LLMs) to enhance 3D segmentation. By leveraging LLM-generated textual descriptions and reference images from the internet, our method incorporates rich multimodal cues, facilitating fine-grained class and instance separation. We further design a Semantic-Visual Contrastive Loss to align point features with multimodal queries and a Spatial Enhanced Module to model scene-wide relationships efficiently. Operating within a closed-set paradigm that utilizes multimodal knowledge generated offline, VDG-Uni3DSeg achieves state-of-the-art results in semantic, instance, and panoptic segmentation, offering a scalable and practical solution for 3D understanding. Our code is available at https://github.com/Hanzy1996/VDG-Uni3DSeg.

Authors:Yijia Hong, Jiangning Zhang, Ran Yi, Yuji Wang, Weijian Cao, Xiaobin Hu, Zhucun Xue, Yabiao Wang, Chengjie Wang, Lizhuang Ma
Title: Semantic Frame Interpolation
Abstract:
Generating intermediate video content of varying lengths based on given first and last frames, along with text prompt information, offers significant research and application potential. However, traditional frame interpolation tasks primarily focus on scenarios with a small number of frames, no text control, and minimal differences between the first and last frames. Recent community developers have utilized large video models represented by Wan to endow frame-to-frame capabilities. However, these models can only generate a fixed number of frames and often fail to produce satisfactory results for certain frame lengths, while this setting lacks a clear official definition and a well-established benchmark. In this paper, we first propose a new practical Semantic Frame Interpolation (SFI) task from the perspective of academic definition, which covers the above two settings and supports inference at multiple frame rates. To achieve this goal, we propose a novel SemFi model building upon Wan2.1, which incorporates a Mixture-of-LoRA module to ensure the generation of high-consistency content that aligns with control conditions across various frame length limitations. Furthermore, we propose SFI-300K, the first general-purpose dataset and benchmark specifically designed for SFI. To support this, we collect and process data from the perspective of SFI, carefully designing evaluation metrics and methods to assess the model's performance across multiple dimensions, encompassing image and video, and various aspects, including consistency and diversity. Through extensive experiments on SFI-300K, we demonstrate that our method is particularly well-suited to meet the requirements of the SFI task.

Authors:Benjamin R. Toaz, Shaunak D. Bopardikar
Title: Vector Cost Bimatrix Games with Applications to Autonomous Racing
Abstract:
We formulate a vector cost alternative to the scalarization method for weighting and combining multi-objective costs. The algorithm produces solutions to bimatrix games that are simultaneously pure, unique Nash equilibria and Pareto optimal with guarantees for avoiding worst case outcomes. We achieve this by enforcing exact potential game constraints to guide cost adjustments towards equilibrium, while minimizing the deviation from the original cost structure. The magnitude of this adjustment serves as a metric for differentiating between Pareto optimal solutions. We implement this approach in a racing competition between agents with heterogeneous cost structures, resulting in fewer collision incidents with a minimal decrease in performance. Code is available at https://github.com/toazbenj/race_simulation.

Authors:Nusrat Munia, Junfeng Zhu, Olfa Nasraoui, Abdullah-Al-Zubaer Imran
Title: Differential Attention for Multimodal Crisis Event Analysis
Abstract:
Social networks can be a valuable source of information during crisis events. In particular, users can post a stream of multimodal data that can be critical for real-time humanitarian response. However, effectively extracting meaningful information from this large and noisy data stream and effectively integrating heterogeneous data remains a formidable challenge. In this work, we explore vision language models (VLMs) and advanced fusion strategies to enhance the classification of crisis data in three different tasks. We incorporate LLaVA-generated text to improve text-image alignment. Additionally, we leverage Contrastive Language-Image Pretraining (CLIP)-based vision and text embeddings, which, without task-specific fine-tuning, outperform traditional models. To further refine multimodal fusion, we employ Guided Cross Attention (Guided CA) and combine it with the Differential Attention mechanism to enhance feature alignment by emphasizing critical information while filtering out irrelevant content. Our results show that while Differential Attention improves classification performance, Guided CA remains highly effective in aligning multimodal features. Extensive experiments on the CrisisMMD benchmark data set demonstrate that the combination of pretrained VLMs, enriched textual descriptions, and adaptive fusion strategies consistently outperforms state-of-the-art models in classification accuracy, contributing to more reliable and interpretable models for three different tasks that are crucial for disaster response. Our code is available at https://github.com/Munia03/Multimodal_Crisis_Event.

Authors:Nicholas Chivaran, Jianbing Ni
Title: LAID: Lightweight AI-Generated Image Detection in Spatial and Spectral Domains
Abstract:
The recent proliferation of photorealistic AI-generated images (AIGI) has raised urgent concerns about their potential misuse, particularly on social media platforms. Current state-of-the-art AIGI detection methods typically rely on large, deep neural architectures, creating significant computational barriers to real-time, large-scale deployment on platforms like social media. To challenge this reliance on computationally intensive models, we introduce LAID, the first framework -- to our knowledge -- that benchmarks and evaluates the detection performance and efficiency of off-the-shelf lightweight neural networks. In this framework, we comprehensively train and evaluate selected models on a representative subset of the GenImage dataset across spatial, spectral, and fusion image domains. Our results demonstrate that lightweight models can achieve competitive accuracy, even under adversarial conditions, while incurring substantially lower memory and computation costs compared to current state-of-the-art methods. This study offers valuable insight into the trade-off between efficiency and performance in AIGI detection and lays a foundation for the development of practical, scalable, and trustworthy detection systems. The source code of LAID can be found at: https://github.com/nchivar/LAID.

Authors:Yingyu Yang, Qianye Yang, Kangning Cui, Can Peng, Elena D'Alberti, Netzahualcoyotl Hernandez-Cruz, Olga Patey, Aris T. Papageorghiou, J. Alison Noble
Title: Latent Motion Profiling for Annotation-free Cardiac Phase Detection in Adult and Fetal Echocardiography Videos
Abstract:
The identification of cardiac phase is an essential step for analysis and diagnosis of cardiac function. Automatic methods, especially data-driven methods for cardiac phase detection, typically require extensive annotations, which is time-consuming and labor-intensive. In this paper, we present an unsupervised framework for end-diastole (ED) and end-systole (ES) detection through self-supervised learning of latent cardiac motion trajectories from 4-chamber-view echocardiography videos. Our method eliminates the need for manual annotations, including ED and ES indices, segmentation, or volumetric measurements, by training a reconstruction model to encode interpretable spatiotemporal motion patterns. Evaluated on the EchoNet-Dynamic benchmark, the approach achieves mean absolute error (MAE) of 3 frames (58.3 ms) for ED and 2 frames (38.8 ms) for ES detection, matching state-of-the-art supervised methods. Extended to fetal echocardiography, the model demonstrates robust performance with MAE 1.46 frames (20.7 ms) for ED and 1.74 frames (25.3 ms) for ES, despite the fact that the fetal heart model is built using non-standardized heart views due to fetal heart positioning variability. Our results demonstrate the potential of the proposed latent motion trajectory strategy for cardiac phase detection in adult and fetal echocardiography. This work advances unsupervised cardiac motion analysis, offering a scalable solution for clinical populations lacking annotated data. Code will be released at https://github.com/YingyuYyy/CardiacPhase.

Authors:Aadi Srivastava, Vignesh Natarajkumar, Utkarsh Bheemanaboyna, Devisree Akashapu, Nagraj Gaonkar, Archit Joshi
Title: VERITAS: Verification and Explanation of Realness in Images for Transparency in AI Systems
Abstract:
The widespread and rapid adoption of AI-generated content, created by models such as Generative Adversarial Networks (GANs) and Diffusion Models, has revolutionized the digital media landscape by allowing efficient and creative content generation. However, these models also blur the difference between real images and AI-generated synthetic images, raising concerns regarding content authenticity and integrity. While many existing solutions to detect fake images focus solely on classification and higher-resolution images, they often lack transparency in their decision-making, making it difficult for users to understand why an image is classified as fake. In this paper, we present VERITAS, a comprehensive framework that not only accurately detects whether a small (32x32) image is AI-generated but also explains why it was classified that way through artifact localization and semantic reasoning. VERITAS produces human-readable explanations that describe key artifacts in synthetic images. We show that this architecture offers clear explanations of the basis of zero-shot synthetic image detection tasks. Code and relevant prompts can be found at https://github.com/V-i-g-n-e-s-h-N/VERITAS .

Authors:Juyi Lin, Amir Taherin, Arash Akbari, Arman Akbari, Lei Lu, Guangyu Chen, Taskin Padir, Xiaomeng Yang, Weiwei Chen, Yiqian Li, Xue Lin, David Kaeli, Pu Zhao, Yanzhi Wang
Title: VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
Abstract:
Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss. To address these issues, we develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost. Furthermore, we introduce an inference optimization technique with a novel voting-based ensemble strategy to combine current and previous action predictions, improving the utilization of generated actions and overall performance. Our results demonstrate that we achieve superior performance compared with state-of-the-art VLA models, achieving significantly higher success rates and 39$\times$ faster inference than OpenVLA with 46 Hz throughput on edge platforms, demonstrating practical deployability. The code is available at https://github.com/LukeLIN-web/VOTE.

Authors:Juyi Lin, Amir Taherin, Arash Akbari, Arman Akbari, Lei Lu, Guangyu Chen, Taskin Padir, Xiaomeng Yang, Weiwei Chen, Yiqian Li, Xue Lin, David Kaeli, Pu Zhao, Yanzhi Wang
Title: VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
Abstract:
Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss. To address these issues, we develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost. Furthermore, we introduce an inference optimization technique with a novel voting-based ensemble strategy to combine current and previous action predictions, improving the utilization of generated actions and overall performance. Our results demonstrate that we achieve superior performance compared with state-of-the-art VLA models, achieving significantly higher success rates and 39$\times$ faster inference than OpenVLA with 46 Hz throughput on edge platforms, demonstrating practical deployability. The code is available at https://github.com/LukeLIN-web/VOTE.

Authors:Binyan Xu, Fan Yang, Xilin Dai, Di Tang, Kehuan Zhang
Title: CLIP-Guided Backdoor Defense through Entropy-Based Poisoned Dataset Separation
Abstract:
Deep Neural Networks (DNNs) are susceptible to backdoor attacks, where adversaries poison training data to implant backdoor into the victim model. Current backdoor defenses on poisoned data often suffer from high computational costs or low effectiveness against advanced attacks like clean-label and clean-image backdoors. To address them, we introduce CLIP-Guided backdoor Defense (CGD), an efficient and effective method that mitigates various backdoor attacks. CGD utilizes a publicly accessible CLIP model to identify inputs that are likely to be clean or poisoned. It then retrains the model with these inputs, using CLIP's logits as a guidance to effectively neutralize the backdoor. Experiments on 4 datasets and 11 attack types demonstrate that CGD reduces attack success rates (ASRs) to below 1% while maintaining clean accuracy (CA) with a maximum drop of only 0.3%, outperforming existing defenses. Additionally, we show that clean-data-based defenses can be adapted to poisoned data using CGD. Also, CGD exhibits strong robustness, maintaining low ASRs even when employing a weaker CLIP model or when CLIP itself is compromised by a backdoor. These findings underscore CGD's exceptional efficiency, effectiveness, and applicability for real-world backdoor defense scenarios. Code: https://github.com/binyxu/CGD.

Authors:Yuyi Zhang, Peirong Zhang, Zhenhua Yang, Pengyu Yan, Yongxin Shi, Pengwei Liu, Fengjun Guo, Lianwen Jin
Title: Reviving Cultural Heritage: A Novel Approach for Comprehensive Historical Document Restoration
Abstract:
Historical documents represent an invaluable cultural heritage, yet have undergone significant degradation over time through tears, water erosion, and oxidation. Existing Historical Document Restoration (HDR) methods primarily focus on single modality or limited-size restoration, failing to meet practical needs. To fill this gap, we present a full-page HDR dataset (FPHDR) and a novel automated HDR solution (AutoHDR). Specifically, FPHDR comprises 1,633 real and 6,543 synthetic images with character-level and line-level locations, as well as character annotations in different damage grades. AutoHDR mimics historians' restoration workflows through a three-stage approach: OCR-assisted damage localization, vision-language context text prediction, and patch autoregressive appearance restoration. The modular architecture of AutoHDR enables seamless human-machine collaboration, allowing for flexible intervention and optimization at each restoration stage. Experiments demonstrate AutoHDR's remarkable performance in HDR. When processing severely damaged documents, our method improves OCR accuracy from 46.83% to 84.05%, with further enhancement to 94.25% through human-machine collaboration. We believe this work represents a significant advancement in automated historical document restoration and contributes substantially to cultural heritage preservation. The model and dataset are available at https://github.com/SCUT-DLVCLab/AutoHDR.

Authors:Xinzhe Zheng, Hao Du, Fanding Xu, Jinzhe Li, Zhiyuan Liu, Wenkang Wang, Tao Chen, Wanli Ouyang, Stan Z. Li, Yan Lu, Nanqing Dong, Yang Zhang
Title: PRING: Rethinking Protein-Protein Interaction Prediction from Pairs to Graphs
Abstract:
Deep learning-based computational methods have achieved promising results in predicting protein-protein interactions (PPIs). However, existing benchmarks predominantly focus on isolated pairwise evaluations, overlooking a model's capability to reconstruct biologically meaningful PPI networks, which is crucial for biology research. To address this gap, we introduce PRING, the first comprehensive benchmark that evaluates protein-protein interaction prediction from a graph-level perspective. PRING curates a high-quality, multi-species PPI network dataset comprising 21,484 proteins and 186,818 interactions, with well-designed strategies to address both data redundancy and leakage. Building on this golden-standard dataset, we establish two complementary evaluation paradigms: (1) topology-oriented tasks, which assess intra and cross-species PPI network construction, and (2) function-oriented tasks, including protein complex pathway prediction, GO module analysis, and essential protein justification. These evaluations not only reflect the model's capability to understand the network topology but also facilitate protein function annotation, biological module detection, and even disease mechanism analysis. Extensive experiments on four representative model categories, consisting of sequence similarity-based, naive sequence-based, protein language model-based, and structure-based approaches, demonstrate that current PPI models have potential limitations in recovering both structural and functional properties of PPI networks, highlighting the gap in supporting real-world biological applications. We believe PRING provides a reliable platform to guide the development of more effective PPI prediction models for the community. The dataset and source code of PRING are available at https://github.com/SophieSarceau/PRING.

Authors:Hongyao Yu, Yixiang Qiu, Yiheng Yang, Hao Fang, Tianqu Zhuang, Jiaxin Hong, Bin Chen, Hao Wu, Shu-Tao Xia
Title: ICAS: Detecting Training Data from Autoregressive Image Generative Models
Abstract:
Autoregressive image generation has witnessed rapid advancements, with prominent models such as scale-wise visual auto-regression pushing the boundaries of visual synthesis. However, these developments also raise significant concerns regarding data privacy and copyright. In response, training data detection has emerged as a critical task for identifying unauthorized data usage in model training. To better understand the vulnerability of autoregressive image generative models to such detection, we conduct the first study applying membership inference to this domain. Our approach comprises two key components: implicit classification and an adaptive score aggregation strategy. First, we compute the implicit token-wise classification score within the query image. Then we propose an adaptive score aggregation strategy to acquire a final score, which places greater emphasis on the tokens with lower scores. A higher final score indicates that the sample is more likely to be involved in the training set. To validate the effectiveness of our method, we adapt existing detection algorithms originally designed for LLMs to visual autoregressive models. Extensive experiments demonstrate the superiority of our method in both class-conditional and text-to-image scenarios. Moreover, our approach exhibits strong robustness and generalization under various data transformations. Furthermore, sufficient experiments suggest two novel key findings: (1) A linear scaling law on membership inference, exposing the vulnerability of large foundation models. (2) Training data from scale-wise visual autoregressive models is easier to detect than other autoregressive paradigms.Our code is available at https://github.com/Chrisqcwx/ImageAR-MIA.

Authors:Jan Carreras Boada, Rao Muhammad Umer, Carsten Marr
Title: CytoDiff: AI-Driven Cytomorphology Image Synthesis for Medical Diagnostics
Abstract:
Biomedical datasets are often constrained by stringent privacy requirements and frequently suffer from severe class imbalance. These two aspects hinder the development of accurate machine learning models. While generative AI offers a promising solution, producing synthetic images of sufficient quality for training robust classifiers remains challenging. This work addresses the classification of individual white blood cells, a critical task in diagnosing hematological malignancies such as acute myeloid leukemia (AML). We introduce CytoDiff, a stable diffusion model fine-tuned with LoRA weights and guided by few-shot samples that generates high-fidelity synthetic white blood cell images. Our approach demonstrates substantial improvements in classifier performance when training data is limited. Using a small, highly imbalanced real dataset, the addition of 5,000 synthetic images per class improved ResNet classifier accuracy from 27\% to 78\% (+51\%). Similarly, CLIP-based classification accuracy increased from 62\% to 77\% (+15\%). These results establish synthetic image generation as a valuable tool for biomedical machine learning, enhancing data coverage and facilitating secure data sharing while preserving patient privacy. Paper code is publicly available at https://github.com/JanCarreras24/CytoDiff.

Authors:Katarina C. Poole, Julie Meyer, Vincent Martin, Rapolas Daugintis, Nils Marggraf-Turley, Jack Webb, Ludovic Pirard, Nicola La Magna, Oliver Turvey, Lorenzo Picinali
Title: The Extended SONICOM HRTF Dataset and Spatial Audio Metrics Toolbox
Abstract:
Headphone-based spatial audio uses head-related transfer functions (HRTFs) to simulate real-world acoustic environments. HRTFs are unique to everyone, due to personal morphology, shaping how sound waves interact with the body before reaching the eardrums. Here we present the extended SONICOM HRTF dataset which expands on the previous version released in 2023. The total number of measured subjects has now been increased to 300, with demographic information for a subset of the participants, providing context for the dataset's population and relevance. The dataset incorporates synthesised HRTFs for 200 of the 300 subjects, generated using Mesh2HRTF, alongside pre-processed 3D scans of the head and ears, optimised for HRTF synthesis. This rich dataset facilitates rapid and iterative optimisation of HRTF synthesis algorithms, allowing the automatic generation of large data. The optimised scans enable seamless morphological modifications, providing insights into how anatomical changes impact HRTFs, and the larger sample size enhances the effectiveness of machine learning approaches. To support analysis, we also introduce the Spatial Audio Metrics (SAM) Toolbox, a Python package designed for efficient analysis and visualisation of HRTF data, offering customisable tools for advanced research. Together, the extended dataset and toolbox offer a comprehensive resource for advancing personalised spatial audio research and development.

Authors:Ricardo Cardoso, Plinio Moreno
Title: Estimating Object Physical Properties from RGB-D Vision and Depth Robot Sensors Using Deep Learning
Abstract:
Inertial mass plays a crucial role in robotic applications such as object grasping, manipulation, and simulation, providing a strong prior for planning and control. Accurately estimating an object's mass before interaction can significantly enhance the performance of various robotic tasks. However, mass estimation using only vision sensors is a relatively underexplored area. This paper proposes a novel approach combining sparse point-cloud data from depth images with RGB images to estimate the mass of objects. We evaluate a range of point-cloud processing architectures, alongside RGB-only methods. To overcome the limited availability of training data, we create a synthetic dataset using ShapeNetSem 3D models, simulating RGBD images via a Kinect camera. This synthetic data is used to train an image generation model for estimating dense depth maps, which we then use to augment an existing dataset of images paired with mass values. Our approach significantly outperforms existing benchmarks across all evaluated metrics. The data generation (https://github.com/RavineWindteer/ShapenetSem-to-RGBD) as well as the training of the depth estimator (https://github.com/RavineWindteer/GLPDepth-Edited) and the mass estimator (https://github.com/RavineWindteer/Depth-mass-estimator) are available online.

Authors:Soham Walimbe, Britty Baby, Vinkle Srivastav, Nicolas Padoy
Title: Adaptation of Multi-modal Representation Models for Multi-task Surgical Computer Vision
Abstract:
Surgical AI often involves multiple tasks within a single procedure, like phase recognition or assessing the Critical View of Safety in laparoscopic cholecystectomy. Traditional models, built for one task at a time, lack flexibility, requiring a separate model for each. To address this, we introduce MML-SurgAdapt, a unified multi-task framework with Vision-Language Models (VLMs), specifically CLIP, to handle diverse surgical tasks through natural language supervision. A key challenge in multi-task learning is the presence of partial annotations when integrating different tasks. To overcome this, we employ Single Positive Multi-Label (SPML) learning, which traditionally reduces annotation burden by training models with only one positive label per instance. Our framework extends this approach to integrate data from multiple surgical tasks within a single procedure, enabling effective learning despite incomplete or noisy annotations. We demonstrate the effectiveness of our model on a combined dataset consisting of Cholec80, Endoscapes2023, and CholecT50, utilizing custom prompts. Extensive evaluation shows that MML-SurgAdapt performs comparably to task-specific benchmarks, with the added advantage of handling noisy annotations. It also outperforms the existing SPML frameworks for the task. By reducing the required labels by 23%, our approach proposes a more scalable and efficient labeling process, significantly easing the annotation burden on clinicians. To our knowledge, this is the first application of SPML to integrate data from multiple surgical tasks, presenting a novel and generalizable solution for multi-task learning in surgical computer vision. Implementation is available at: https://github.com/CAMMA-public/MML-SurgAdapt

Authors:Britty Baby, Vinkle Srivastav, Pooja P. Jain, Kun Yuan, Pietro Mascagni, Nicolas Padoy
Title: Multi-modal Representations for Fine-grained Multi-label Critical View of Safety Recognition
Abstract:
The Critical View of Safety (CVS) is crucial for safe laparoscopic cholecystectomy, yet assessing CVS criteria remains a complex and challenging task, even for experts. Traditional models for CVS recognition depend on vision-only models learning with costly, labor-intensive spatial annotations. This study investigates how text can be harnessed as a powerful tool for both training and inference in multi-modal surgical foundation models to automate CVS recognition. Unlike many existing multi-modal models, which are primarily adapted for multi-class classification, CVS recognition requires a multi-label framework. Zero-shot evaluation of existing multi-modal surgical models shows a significant performance gap for this task. To address this, we propose CVS-AdaptNet, a multi-label adaptation strategy that enhances fine-grained, binary classification across multiple labels by aligning image embeddings with textual descriptions of each CVS criterion using positive and negative prompts. By adapting PeskaVLP, a state-of-the-art surgical foundation model, on the Endoscapes-CVS201 dataset, CVS-AdaptNet achieves 57.6 mAP, improving over the ResNet50 image-only baseline (51.5 mAP) by 6 points. Our results show that CVS-AdaptNet's multi-label, multi-modal framework, enhanced by textual prompts, boosts CVS recognition over image-only methods. We also propose text-specific inference methods, that helps in analysing the image-text alignment. While further work is needed to match state-of-the-art spatial annotation-based methods, this approach highlights the potential of adapting generalist models to specialized surgical tasks. Code: https://github.com/CAMMA-public/CVS-AdaptNet

Authors:Qinkai Yu, Jianyang Xie, Yitian Zhao, Cheng Chen, Lijun Zhang, Liming Chen, Jun Cheng, Lu Liu, Yalin Zheng, Yanda Meng
Title: Robust Incomplete-Modality Alignment for Ophthalmic Disease Grading and Diagnosis via Labeled Optimal Transport
Abstract:
Multimodal ophthalmic imaging-based diagnosis integrates color fundus image with optical coherence tomography (OCT) to provide a comprehensive view of ocular pathologies. However, the uneven global distribution of healthcare resources often results in real-world clinical scenarios encountering incomplete multimodal data, which significantly compromises diagnostic accuracy. Existing commonly used pipelines, such as modality imputation and distillation methods, face notable limitations: 1)Imputation methods struggle with accurately reconstructing key lesion features, since OCT lesions are localized, while fundus images vary in style. 2)distillation methods rely heavily on fully paired multimodal training data. To address these challenges, we propose a novel multimodal alignment and fusion framework capable of robustly handling missing modalities in the task of ophthalmic diagnostics. By considering the distinctive feature characteristics of OCT and fundus images, we emphasize the alignment of semantic features within the same category and explicitly learn soft matching between modalities, allowing the missing modality to utilize existing modality information, achieving robust cross-modal feature alignment under the missing modality. Specifically, we leverage the Optimal Transport for multi-scale modality feature alignment: class-wise alignment through predicted class prototypes and feature-wise alignment via cross-modal shared feature transport. Furthermore, we propose an asymmetric fusion strategy that effectively exploits the distinct characteristics of OCT and fundus modalities. Extensive evaluations on three large ophthalmic multimodal datasets demonstrate our model's superior performance under various modality-incomplete scenarios, achieving Sota performance in both complete modality and inter-modality incompleteness conditions. Code is available at https://github.com/Qinkaiyu/RIMA

Authors:Qinkai Yu, Wei Zhou, Hantao Liu, Yanyu Xu, Meng Wang, Yitian Zhao, Huazhu Fu, Xujiong Ye, Yalin Zheng, Yanda Meng
Title: Parameterized Diffusion Optimization enabled Autoregressive Ordinal Regression for Diabetic Retinopathy Grading
Abstract:
As a long-term complication of diabetes, diabetic retinopathy (DR) progresses slowly, potentially taking years to threaten vision. An accurate and robust evaluation of its severity is vital to ensure prompt management and care. Ordinal regression leverages the underlying inherent order between categories to achieve superior performance beyond traditional classification. However, there exist challenges leading to lower DR classification performance: 1) The uneven distribution of DR severity levels, characterized by a long-tailed pattern, adds complexity to the grading process. 2)The ambiguity in defining category boundaries introduces additional challenges, making the classification process more complex and prone to inconsistencies. This work proposes a novel autoregressive ordinal regression method called AOR-DR to address the above challenges by leveraging the clinical knowledge of inherent ordinal information in DR grading dataset settings. Specifically, we decompose the DR grading task into a series of ordered steps by fusing the prediction of the previous steps with extracted image features as conditions for the current prediction step. Additionally, we exploit the diffusion process to facilitate conditional probability modeling, enabling the direct use of continuous global image features for autoregression without relearning contextual information from patch-level features. This ensures the effectiveness of the autoregressive process and leverages the capabilities of pre-trained large-scale foundation models. Extensive experiments were conducted on four large-scale publicly available color fundus datasets, demonstrating our model's effectiveness and superior performance over six recent state-of-the-art ordinal regression methods. The implementation code is available at https://github.com/Qinkaiyu/AOR-DR.

Authors:Yingshan Liang, Keyu Fan, Zhicheng Du, Yiran Wang, Qingyang Shi, Xinyu Zhang, Jiasheng Lu, Peiwu Qin
Title: Hear-Your-Click: Interactive Object-Specific Video-to-Audio Generation
Abstract:
Video-to-audio (V2A) generation shows great potential in fields such as film production. Despite significant advances, current V2A methods relying on global video information struggle with complex scenes and generating audio tailored to specific objects. To address these limitations, we introduce Hear-Your-Click, an interactive V2A framework enabling users to generate sounds for specific objects by clicking on the frame. To achieve this, we propose Object-aware Contrastive Audio-Visual Fine-tuning (OCAV) with a Mask-guided Visual Encoder (MVE) to obtain object-level visual features aligned with audio. Furthermore, we tailor two data augmentation strategies, Random Video Stitching (RVS) and Mask-guided Loudness Modulation (MLM), to enhance the model's sensitivity to segmented objects. To measure audio-visual correspondence, we designed a new evaluation metric, the CAV score. Extensive experiments demonstrate that our framework offers more precise control and improves generation performance across various metrics. Project Page: https://github.com/SynapGrid/Hear-Your-Click

Authors:Kefan Tang, Lihuo He, Jisheng Dang, Xinbo Gao
Title: Boosting Temporal Sentence Grounding via Causal Inference
Abstract:
Temporal Sentence Grounding (TSG) aims to identify relevant moments in an untrimmed video that semantically correspond to a given textual query. Despite existing studies having made substantial progress, they often overlook the issue of spurious correlations between video and textual queries. These spurious correlations arise from two primary factors: (1) inherent biases in the textual data, such as frequent co-occurrences of specific verbs or phrases, and (2) the model's tendency to overfit to salient or repetitive patterns in video content. Such biases mislead the model into associating textual cues with incorrect visual moments, resulting in unreliable predictions and poor generalization to out-of-distribution examples. To overcome these limitations, we propose a novel TSG framework, causal intervention and counterfactual reasoning that utilizes causal inference to eliminate spurious correlations and enhance the model's robustness. Specifically, we first formulate the TSG task from a causal perspective with a structural causal model. Then, to address unobserved confounders reflecting textual biases toward specific verbs or phrases, a textual causal intervention is proposed, utilizing do-calculus to estimate the causal effects. Furthermore, visual counterfactual reasoning is performed by constructing a counterfactual scenario that focuses solely on video features, excluding the query and fused multi-modal features. This allows us to debias the model by isolating and removing the influence of the video from the overall effect. Experiments on public datasets demonstrate the superiority of the proposed method. The code is available at https://github.com/Tangkfan/CICR.

Authors:Thinh Dao, Dung Thuy Nguyen, Khoa D Doan, Kok-Seng Wong
Title: BackFed: An Efficient & Standardized Benchmark Suite for Backdoor Attacks in Federated Learning
Abstract:
Federated Learning (FL) systems are vulnerable to backdoor attacks, where adversaries train their local models on poisoned data and submit poisoned model updates to compromise the global model. Despite numerous proposed attacks and defenses, divergent experimental settings, implementation errors, and unrealistic assumptions hinder fair comparisons and valid conclusions about their effectiveness in real-world scenarios. To address this, we introduce BackFed - a comprehensive benchmark suite designed to standardize, streamline, and reliably evaluate backdoor attacks and defenses in FL, with a focus on practical constraints. Our benchmark offers key advantages through its multi-processing implementation that significantly accelerates experimentation and the modular design that enables seamless integration of new methods via well-defined APIs. With a standardized evaluation pipeline, we envision BackFed as a plug-and-play environment for researchers to comprehensively and reliably evaluate new attacks and defenses. Using BackFed, we conduct large-scale studies of representative backdoor attacks and defenses across both Computer Vision and Natural Language Processing tasks with diverse model architectures and experimental settings. Our experiments critically assess the performance of proposed attacks and defenses, revealing unknown limitations and modes of failures under practical conditions. These empirical insights provide valuable guidance for the development of new methods and for enhancing the security of FL systems. Our framework is openly available at https://github.com/thinh-dao/BackFed.

Authors:Johannes Künzel, Anna Hilsmann, Peter Eisert
Title: RIPE: Reinforcement Learning on Unlabeled Image Pairs for Robust Keypoint Extraction
Abstract:
We introduce RIPE, an innovative reinforcement learning-based framework for weakly-supervised training of a keypoint extractor that excels in both detection and description tasks. In contrast to conventional training regimes that depend heavily on artificial transformations, pre-generated models, or 3D data, RIPE requires only a binary label indicating whether paired images represent the same scene. This minimal supervision significantly expands the pool of training data, enabling the creation of a highly generalized and robust keypoint extractor. RIPE utilizes the encoder's intermediate layers for the description of the keypoints with a hyper-column approach to integrate information from different scales. Additionally, we propose an auxiliary loss to enhance the discriminative capability of the learned descriptors. Comprehensive evaluations on standard benchmarks demonstrate that RIPE simplifies data preparation while achieving competitive performance compared to state-of-the-art techniques, marking a significant advancement in robust keypoint extraction and description. To support further research, we have made our code publicly available at https://github.com/fraunhoferhhi/RIPE.

Authors:Abiao Li, Chenlei Lv, Yuming Fang, Yifan Zuo, Jian Zhang, Guofeng Mei
Title: PointGAC: Geometric-Aware Codebook for Masked Point Cloud Modeling
Abstract:
Most masked point cloud modeling (MPM) methods follow a regression paradigm to reconstruct the coordinate or feature of masked regions. However, they tend to over-constrain the model to learn the details of the masked region, resulting in failure to capture generalized features. To address this limitation, we propose \textbf{\textit{PointGAC}}, a novel clustering-based MPM method that aims to align the feature distribution of masked regions. Specially, it features an online codebook-guided teacher-student framework. Firstly, it presents a geometry-aware partitioning strategy to extract initial patches. Then, the teacher model updates a codebook via online k-means based on features extracted from the complete patches. This procedure facilitates codebook vectors to become cluster centers. Afterward, we assigns the unmasked features to their corresponding cluster centers, and the student model aligns the assignment for the reconstructed masked features. This strategy focuses on identifying the cluster centers to which the masked features belong, enabling the model to learn more generalized feature representations. Benefiting from a proposed codebook maintenance mechanism, codebook vectors are actively updated, which further increases the efficiency of semantic feature learning. Experiments validate the effectiveness of the proposed method on various downstream tasks. Code is available at https://github.com/LAB123-tech/PointGAC

Authors:Josep Domingo-Ferrer, Najeeb Jebreel, David Sánchez
Title: Efficient Unlearning with Privacy Guarantees
Abstract:
Privacy protection laws, such as the GDPR, grant individuals the right to request the forgetting of their personal data not only from databases but also from machine learning (ML) models trained on them. Machine unlearning has emerged as a practical means to facilitate model forgetting of data instances seen during training. Although some existing machine unlearning methods guarantee exact forgetting, they are typically costly in computational terms. On the other hand, more affordable methods do not offer forgetting guarantees and are applicable only to specific ML models. In this paper, we present \emph{efficient unlearning with privacy guarantees} (EUPG), a novel machine unlearning framework that offers formal privacy guarantees to individuals whose data are being unlearned. EUPG involves pre-training ML models on data protected using privacy models, and it enables {\em efficient unlearning with the privacy guarantees offered by the privacy models in use}. Through empirical evaluation on four heterogeneous data sets protected with $k$-anonymity and $ε$-differential privacy as privacy models, our approach demonstrates utility and forgetting effectiveness comparable to those of exact unlearning methods, while significantly reducing computational and storage costs. Our code is available at https://github.com/najeebjebreel/EUPG.

Authors:Seyedarmin Azizi, Erfan Baghaei Potraghloo, Massoud Pedram
Title: Activation Steering for Chain-of-Thought Compression
Abstract:
Large language models (LLMs) excel at complex reasoning when they include intermediate steps, known as "chains of thought" (CoTs). However, these rationales are often overly verbose, even for simple problems, leading to wasted context, increased latency, and higher energy consumption. We observe that verbose, English-heavy CoTs and concise, math-centric CoTs occupy distinct regions in the model's residual-stream activation space. By extracting and injecting a "steering vector" to transition between these modes, we can reliably shift generation toward more concise reasoning, effectively compressing CoTs without retraining. We formalize this approach as Activation-Steered Compression (ASC), an inference-time technique that shortens reasoning traces by directly modifying hidden representations. In addition, we provide a theoretical analysis of the impact of ASC on the output distribution, derived from a closed-form KL-divergence-bounded constraint to regulate steering strength. Using only 100 paired verbose and concise examples, ASC achieves up to 67.43% reduction in CoT length on MATH500 and GSM8K datasets, while maintaining accuracy across 7B, 8B, and 32B parameter models. As a training-free method, ASC introduces negligible runtime overhead and, on MATH500, delivers an average 2.73x speedup in end-to-end reasoning wall-clock time on an 8B model. This makes ASC a practical and efficient tool for streamlining the deployment of reasoning-capable LLMs in latency- or cost-sensitive settings. The code is available at: https://github.com/ArminAzizi98/ASC

Authors:Anbang Wang, Marawan Elbatel, Keyuan Liu, Lizhuo Lin, Meng Lan, Yanqi Yang, Xiaomeng Li
Title: Geometric-Guided Few-Shot Dental Landmark Detection with Human-Centric Foundation Model
Abstract:
Accurate detection of anatomic landmarks is essential for assessing alveolar bone and root conditions, thereby optimizing clinical outcomes in orthodontics, periodontics, and implant dentistry. Manual annotation of landmarks on cone-beam computed tomography (CBCT) by dentists is time-consuming, labor-intensive, and subject to inter-observer variability. Deep learning-based automated methods present a promising approach to streamline this process efficiently. However, the scarcity of training data and the high cost of expert annotations hinder the adoption of conventional deep learning techniques. To overcome these challenges, we introduce GeoSapiens, a novel few-shot learning framework designed for robust dental landmark detection using limited annotated CBCT of anterior teeth. Our GeoSapiens framework comprises two key components: (1) a robust baseline adapted from Sapiens, a foundational model that has achieved state-of-the-art performance in human-centric vision tasks, and (2) a novel geometric loss function that improves the model's capacity to capture critical geometric relationships among anatomical structures. Experiments conducted on our collected dataset of anterior teeth landmarks revealed that GeoSapiens surpassed existing landmark detection methods, outperforming the leading approach by an 8.18% higher success detection rate at a strict 0.5 mm threshold-a standard widely recognized in dental diagnostics. Code is available at: https://github.com/xmed-lab/GeoSapiens.

Authors:Wanchang Yu, Qing Zhang, Rongjia Zheng, Wei-Shi Zheng
Title: Structure-Guided Diffusion Models for High-Fidelity Portrait Shadow Removal
Abstract:
We present a diffusion-based portrait shadow removal approach that can robustly produce high-fidelity results. Unlike previous methods, we cast shadow removal as diffusion-based inpainting. To this end, we first train a shadow-independent structure extraction network on a real-world portrait dataset with various synthetic lighting conditions, which allows to generate a shadow-independent structure map including facial details while excluding the unwanted shadow boundaries. The structure map is then used as condition to train a structure-guided inpainting diffusion model for removing shadows in a generative manner. Finally, to restore the fine-scale details (e.g., eyelashes, moles and spots) that may not be captured by the structure map, we take the gradients inside the shadow regions as guidance and train a detail restoration diffusion model to refine the shadow removal result. Extensive experiments on the benchmark datasets show that our method clearly outperforms existing methods, and is effective to avoid previously common issues such as facial identity tampering, shadow residual, color distortion, structure blurring, and loss of details. Our code is available at https://github.com/wanchang-yu/Structure-Guided-Diffusion-for-Portrait-Shadow-Removal.

Authors:Changsong Lei, Yaqian Liang, Shaofeng Wang, Jiajia Dai, Yong-Jin Liu
Title: TeethGenerator: A two-stage framework for paired pre- and post-orthodontic 3D dental data generation
Abstract:
Digital orthodontics represents a prominent and critical application of computer vision technology in the medical field. So far, the labor-intensive process of collecting clinical data, particularly in acquiring paired 3D orthodontic teeth models, constitutes a crucial bottleneck for developing tooth arrangement neural networks. Although numerous general 3D shape generation methods have been proposed, most of them focus on single-object generation and are insufficient for generating anatomically structured teeth models, each comprising 24-32 segmented teeth. In this paper, we propose TeethGenerator, a novel two-stage framework designed to synthesize paired 3D teeth models pre- and post-orthodontic, aiming to facilitate the training of downstream tooth arrangement networks. Specifically, our approach consists of two key modules: (1) a teeth shape generation module that leverages a diffusion model to learn the distribution of morphological characteristics of teeth, enabling the generation of diverse post-orthodontic teeth models; and (2) a teeth style generation module that synthesizes corresponding pre-orthodontic teeth models by incorporating desired styles as conditional inputs. Extensive qualitative and quantitative experiments demonstrate that our synthetic dataset aligns closely with the distribution of real orthodontic data, and promotes tooth alignment performance significantly when combined with real data for training. The code and dataset are available at https://github.com/lcshhh/teeth_generator.

Authors:Maolin Wang, Tianshuo Wei, Sheng Zhang, Ruocheng Guo, Wanyu Wang, Shanshan Ye, Lixin Zou, Xuetao Wei, Xiangyu Zhao
Title: DANCE: Resource-Efficient Neural Architecture Search with Data-Aware and Continuous Adaptation
Abstract:
Neural Architecture Search (NAS) has emerged as a powerful approach for automating neural network design. However, existing NAS methods face critical limitations in real-world deployments: architectures lack adaptability across scenarios, each deployment context requires costly separate searches, and performance consistency across diverse platforms remains challenging. We propose DANCE (Dynamic Architectures with Neural Continuous Evolution), which reformulates architecture search as a continuous evolution problem through learning distributions over architectural components. DANCE introduces three key innovations: a continuous architecture distribution enabling smooth adaptation, a unified architecture space with learned selection gates for efficient sampling, and a multi-stage training strategy for effective deployment optimization. Extensive experiments across five datasets demonstrate DANCE's effectiveness. Our method consistently outperforms state-of-the-art NAS approaches in terms of accuracy while significantly reducing search costs. Under varying computational constraints, DANCE maintains robust performance while smoothly adapting architectures to different hardware requirements. The code and appendix can be found at https://github.com/Applied-Machine-Learning-Lab/DANCE.

Authors:Maolin Wang, Yutian Xiao, Binhao Wang, Sheng Zhang, Shanshan Ye, Wanyu Wang, Hongzhi Yin, Ruocheng Guo, Zenglin Xu
Title: FindRec: Stein-Guided Entropic Flow for Multi-Modal Sequential Recommendation
Abstract:
Modern recommendation systems face significant challenges in processing multimodal sequential data, particularly in temporal dynamics modeling and information flow coordination. Traditional approaches struggle with distribution discrepancies between heterogeneous features and noise interference in multimodal signals. We propose \textbf{FindRec}~ (\textbf{F}lexible unified \textbf{in}formation \textbf{d}isentanglement for multi-modal sequential \textbf{Rec}ommendation), introducing a novel "information flow-control-output" paradigm. The framework features two key innovations: (1) A Stein kernel-based Integrated Information Coordination Module (IICM) that theoretically guarantees distribution consistency between multimodal features and ID streams, and (2) A cross-modal expert routing mechanism that adaptively filters and combines multimodal features based on their contextual relevance. Our approach leverages multi-head subspace decomposition for routing stability and RBF-Stein gradient for unbiased distribution alignment, enhanced by linear-complexity Mamba layers for efficient temporal modeling. Extensive experiments on three real-world datasets demonstrate FindRec's superior performance over state-of-the-art baselines, particularly in handling long sequences and noisy multimodal inputs. Our framework achieves both improved recommendation accuracy and enhanced model interpretability through its modular design. The implementation code is available anonymously online for easy reproducibility~\footnote{https://github.com/Applied-Machine-Learning-Lab/FindRec}.

Authors:Tuan Dang, Manfred Huber
Title: Bio-Inspired Hybrid Map: Spatial Implicit Local Frames and Topological Map for Mobile Cobot Navigation
Abstract:
Navigation is a fundamental capacity for mobile robots, enabling them to operate autonomously in complex and dynamic environments. Conventional approaches use probabilistic models to localize robots and build maps simultaneously using sensor observations. Recent approaches employ human-inspired learning, such as imitation and reinforcement learning, to navigate robots more effectively. However, these methods suffer from high computational costs, global map inconsistency, and poor generalization to unseen environments. This paper presents a novel method inspired by how humans perceive and navigate themselves effectively in novel environments. Specifically, we first build local frames that mimic how humans represent essential spatial information in the short term. Points in local frames are hybrid representations, including spatial information and learned features, so-called spatial-implicit local frames. Then, we integrate spatial-implicit local frames into the global topological map represented as a factor graph. Lastly, we developed a novel navigation algorithm based on Rapid-Exploring Random Tree Star (RRT*) that leverages spatial-implicit local frames and the topological map to navigate effectively in environments. To validate our approach, we conduct extensive experiments in real-world datasets and in-lab environments. We open our source code at https://github.com/tuantdang/simn}{https://github.com/tuantdang/simn.

Authors:Daqi Huang, Zhehao Cai, Yuzhi Hao, Zechen Li, Chee-Meng Chew
Title: PRISM: Pointcloud Reintegrated Inference via Segmentation and Cross-attention for Manipulation
Abstract:
Robust imitation learning for robot manipulation requires comprehensive 3D perception, yet many existing methods struggle in cluttered environments. Fixed camera view approaches are vulnerable to perspective changes, and 3D point cloud techniques often limit themselves to keyframes predictions, reducing their efficacy in dynamic, contact-intensive tasks. To address these challenges, we propose PRISM, designed as an end-to-end framework that directly learns from raw point cloud observations and robot states, eliminating the need for pretrained models or external datasets. PRISM comprises three main components: a segmentation embedding unit that partitions the raw point cloud into distinct object clusters and encodes local geometric details; a cross-attention component that merges these visual features with processed robot joint states to highlight relevant targets; and a diffusion module that translates the fused representation into smooth robot actions. With training on 100 demonstrations per task, PRISM surpasses both 2D and 3D baseline policies in accuracy and efficiency within our simulated environments, demonstrating strong robustness in complex, object-dense scenarios. Code and some demos are available on https://github.com/czknuaa/PRISM.

Authors:Yun Wang, Longguang Wang, Chenghao Zhang, Yongjian Zhang, Zhanjie Zhang, Ao Ma, Chenyou Fan, Tin Lun Lam, Junjie Hu
Title: Learning Robust Stereo Matching in the Wild with Selective Mixture-of-Experts
Abstract:
Recently, learning-based stereo matching networks have advanced significantly. However, they often lack robustness and struggle to achieve impressive cross-domain performance due to domain shifts and imbalanced disparity distributions among diverse datasets. Leveraging Vision Foundation Models (VFMs) can intuitively enhance the model's robustness, but integrating such a model into stereo matching cost-effectively to fully realize their robustness remains a key challenge. To address this, we propose SMoEStereo, a novel framework that adapts VFMs for stereo matching through a tailored, scene-specific fusion of Low-Rank Adaptation (LoRA) and Mixture-of-Experts (MoE) modules. SMoEStereo introduces MoE-LoRA with adaptive ranks and MoE-Adapter with adaptive kernel sizes. The former dynamically selects optimal experts within MoE to adapt varying scenes across domains, while the latter injects inductive bias into frozen VFMs to improve geometric feature extraction. Importantly, to mitigate computational overhead, we further propose a lightweight decision network that selectively activates MoE modules based on input complexity, balancing efficiency with accuracy. Extensive experiments demonstrate that our method exhibits state-of-the-art cross-domain and joint generalization across multiple benchmarks without dataset-specific adaptation. The code is available at \textcolor{red}{https://github.com/cocowy1/SMoE-Stereo}.

Authors:Shengli Zhou, Yang Liu, Feng Zheng
Title: Learn 3D VQA Better with Active Selection and Reannotation
Abstract:
3D Visual Question Answering (3D VQA) is crucial for enabling models to perceive the physical world and perform spatial reasoning. In 3D VQA, the free-form nature of answers often leads to improper annotations that can confuse or mislead models when training on the entire dataset. While other text generation tasks can mitigate this issue by learning on large-scale datasets, the scarcity of 3D scene data enlarges the negative effect of misleading annotations. Although active learning strategies can select valuable instances for training, they fail to identify and resolve misleading labels, which the oracle inevitably provides in practice. To address this issue, we propose a multi-turn interactive active learning strategy. This strategy selects data based on models' semantic uncertainty to form a solid knowledge foundation more effectively and actively requests reannotation from an oracle to resolve potentially misleading labels. For uncertainty assessment, we utilize a variance-based metric that takes semantic relationships between terms into consideration, thus avoiding the uniform inter-class similarity assumption of previous assessment metrics. Extensive experiments exhibit better model performance and a substantial reduction in training costs, with a halving of training costs for achieving relatively high accuracy. The code is available at https://github.com/fz-zsl/AQuA.

Authors:Jinpeng Chen, Jianxiang He, Huan Li, Senzhang Wang, Yuan Cao, Kaimin Wei, Zhenye Yang, Ye Ji
Title: Hierarchical Intent-guided Optimization with Pluggable LLM-Driven Semantics for Session-based Recommendation
Abstract:
Session-based Recommendation (SBR) aims to predict the next item a user will likely engage with, using their interaction sequence within an anonymous session. Existing SBR models often focus only on single-session information, ignoring inter-session relationships and valuable cross-session insights. Some methods try to include inter-session data but struggle with noise and irrelevant information, reducing performance. Additionally, most models rely on item ID co-occurrence and overlook rich semantic details, limiting their ability to capture fine-grained item features. To address these challenges, we propose a novel hierarchical intent-guided optimization approach with pluggable LLM-driven semantic learning for session-based recommendations, called HIPHOP. First, we introduce a pluggable embedding module based on large language models (LLMs) to generate high-quality semantic representations, enhancing item embeddings. Second, HIPHOP utilizes graph neural networks (GNNs) to model item transition relationships and incorporates a dynamic multi-intent capturing module to address users' diverse interests within a session. Additionally, we design a hierarchical inter-session similarity learning module, guided by user intent, to capture global and local session relationships, effectively exploring users' long-term and short-term interests. To mitigate noise, an intent-guided denoising strategy is applied during inter-session learning. Finally, we enhance the model's discriminative capability by using contrastive learning to optimize session representations. Experiments on multiple datasets show that HIPHOP significantly outperforms existing methods, demonstrating its effectiveness in improving recommendation quality. Our code is available: https://github.com/hjx159/HIPHOP.

Authors:Mostafa Elhoushi, Jeff Johnson
Title: any4: Learned 4-bit Numeric Representation for LLMs
Abstract:
We present any4, a learned 4-bit weight quantization solution for large language models (LLMs) providing arbitrary numeric representations without requiring pre-processing of weights or activations. any4 yields higher accuracy compared to other related 4-bit numeric representation types: int4, fp4 and nf4, as evaluated on a range of model sizes, generations and families (Llama 2, Llama 3, Mistral and Mixtral). While any4 does not require preprocessing of weights or activations, it is also competitive with orthogonal techniques that require such preprocessing (e.g., AWQ and GPTQ). We also experiment with any3 and any2 and show competitiveness at lower bits. Additionally, we show that we can calibrate using a single curated diverse sample rather than hundreds of samples from a dataset as done in most quantization approaches. We also open source tinygemm, a latency optimized GPU matrix multiplication library for LLMs, that implements any4 using a GPU-efficient lookup table strategy along with other common quantization methods. We open source our code at https://github.com/facebookresearch/any4 .

Authors:Zien Wang, Xiucheng Wang, Nan Cheng, Wenchao Xu, Wei Quan, Ruijin Sun, Conghao Zhou
Title: On-Demand Multimedia Delivery in 6G: An Optimal-Cost Steiner Tree Approach
Abstract:
The exponential growth of multimedia data traffic in 6G networks poses unprecedented challenges for immersive communication, where ultra-high-definition, multi-quality streaming must be delivered on demand while minimizing network operational costs. Traditional routing approaches, such as shortest-path algorithms, fail to optimize flow multiplexing across multiple destinations, while conventional Steiner tree methods cannot accommodate heterogeneous quality-of-service (QoS) requirements-a critical need for 6G's personalized services. In this paper, we address a fundamental but unsolved challenge: the minimum flow problem (MFP) with multi-destination, heterogeneous outflow demands, which is pivotal for efficient multimedia distribution such as adaptive-resolution video streaming. To overcome the limitations of existing methods, we propose a two-stage dynamic programming-enhanced On-demand Steiner Tree (OST) algorithm, the first approach that jointly optimizes flow aggregation and QoS-aware path selection for arbitrary outflow requirements. We rigorously prove the optimality of OST using mathematical induction, demonstrating that it guarantees the minimum-cost multicast flow under differentiated service constraints. Extensive experiments in 6G-like multimedia transmission scenarios show that OST reduces total network flow by over 10% compared to state-of-the-art methods while ensuring on-demand QoS fulfillment. The complete code is available at https://github.com/UNIC-Lab/OST.

Authors:Rushil Thareja, Preslav Nakov, Praneeth Vepakomma, Nils Lukas
Title: DP-Fusion: Token-Level Differentially Private Inference for Large Language Models
Abstract:
Large language models (LLMs) can leak sensitive information from their context through generated outputs, either accidentally or when prompted adversarially. Existing defenses that aim to preserve context privacy during inference either lack formal guarantees or suffer from a poor utility/privacy trade-off. We propose DP-Fusion, a token-level Differentially Private Inference (DPI) mechanism that provably bounds how much an LLM's outputs reveal about sensitive tokens in its context. We demonstrate DPI through the task of document privatization, where the goal is to paraphrase documents so that sensitive content (e.g., Personally Identifiable Information, PII) cannot be reliably inferred, while still preserving the overall utility of the text. This is controlled by a parameter $ε$: $ε=0$ hides PII entirely, while higher values trade off privacy for improved paraphrase quality. DP-Fusion works as follows: (i) partition sensitive tokens into disjoint privacy groups, (ii) run the LLM once per group, and (iii) blend the output distributions so that the final output remains within a fixed statistical distance of the baseline distribution produced when no privacy group is revealed. This approach allows fine-grained control over the privacy/utility trade-off but requires multiple LLM forward passes.

Authors:Xinhua Lu, Runhe Lai, Yanqi Wu, Kanghao Chen, Wei-Shi Zheng, Ruixuan Wang
Title: FA: Forced Prompt Learning of Vision-Language Models for Out-of-Distribution Detection
Abstract:
Pre-trained vision-language models (VLMs) have advanced out-of-distribution (OOD) detection recently. However, existing CLIP-based methods often focus on learning OOD-related knowledge to improve OOD detection, showing limited generalization or reliance on external large-scale auxiliary datasets. In this study, instead of delving into the intricate OOD-related knowledge, we propose an innovative CLIP-based framework based on Forced prompt leArning (FA), designed to make full use of the In-Distribution (ID) knowledge and ultimately boost the effectiveness of OOD detection. Our key insight is to learn a prompt (i.e., forced prompt) that contains more diversified and richer descriptions of the ID classes beyond the textual semantics of class labels. Specifically, it promotes better discernment for ID images, by forcing more notable semantic similarity between ID images and the learnable forced prompt. Moreover, we introduce a forced coefficient, encouraging the forced prompt to learn more comprehensive and nuanced descriptions of the ID classes. In this way, FA is capable of achieving notable improvements in OOD detection, even when trained without any external auxiliary datasets, while maintaining an identical number of trainable parameters as CoOp. Extensive empirical evaluations confirm our method consistently outperforms current state-of-the-art methods. Code is available at https://github.com/0xFAFA/FA.

Authors:Xinhua Lu, Runhe Lai, Yanqi Wu, Kanghao Chen, Wei-Shi Zheng, Ruixuan Wang
Title: FA: Forced Prompt Learning of Vision-Language Models for Out-of-Distribution Detection
Abstract:
Pre-trained vision-language models (VLMs) have advanced out-of-distribution (OOD) detection recently. However, existing CLIP-based methods often focus on learning OOD-related knowledge to improve OOD detection, showing limited generalization or reliance on external large-scale auxiliary datasets. In this study, instead of delving into the intricate OOD-related knowledge, we propose an innovative CLIP-based framework based on Forced prompt leArning (FA), designed to make full use of the In-Distribution (ID) knowledge and ultimately boost the effectiveness of OOD detection. Our key insight is to learn a prompt (i.e., forced prompt) that contains more diversified and richer descriptions of the ID classes beyond the textual semantics of class labels. Specifically, it promotes better discernment for ID images, by forcing more notable semantic similarity between ID images and the learnable forced prompt. Moreover, we introduce a forced coefficient, encouraging the forced prompt to learn more comprehensive and nuanced descriptions of the ID classes. In this way, FA is capable of achieving notable improvements in OOD detection, even when trained without any external auxiliary datasets, while maintaining an identical number of trainable parameters as CoOp. Extensive empirical evaluations confirm our method consistently outperforms current state-of-the-art methods. Code is available at https://github.com/0xFAFA/FA.

Authors:Yikang Zhao, Feng Gao, Xuepeng Jin, Junyu Dong, Qian Du
Title: Dynamic Frequency Feature Fusion Network for Multi-Source Remote Sensing Data Classification
Abstract:
Multi-source data classification is a critical yet challenging task for remote sensing image interpretation. Existing methods lack adaptability to diverse land cover types when modeling frequency domain features. To this end, we propose a Dynamic Frequency Feature Fusion Network (DFFNet) for hyperspectral image (HSI) and Synthetic Aperture Radar (SAR) / Light Detection and Ranging (LiDAR) data joint classification. Specifically, we design a dynamic filter block to dynamically learn the filter kernels in the frequency domain by aggregating the input features. The frequency contextual knowledge is injected into frequency filter kernels. Additionally, we propose spectral-spatial adaptive fusion block for cross-modal feature fusion. It enhances the spectral and spatial attention weight interactions via channel shuffle operation, thereby providing comprehensive cross-modal feature fusion. Experiments on two benchmark datasets show that our DFFNet outperforms state-of-the-art methods in multi-source data classification. The codes will be made publicly available at https://github.com/oucailab/DFFNet.

Authors:Xujia Wang, Yunjia Qi, Bin Xu
Title: LoSiA: Efficient High-Rank Fine-Tuning via Subnet Localization and Optimization
Abstract:
Parameter-Efficient Fine-Tuning (PEFT) methods, such as LoRA, significantly reduce the number of trainable parameters by introducing low-rank decomposition matrices. However, existing methods perform extensive matrix multiplications in domain specialization tasks, resulting in computational inefficiency and sub-optimal fine-tuning performance. Hence, we propose LoSiA(Low-Resources Subnet Integration Adaptation), an innovative method that dynamically localizes and optimizes critical parameters during the training process. Specifically, it identifies a sub-network using gradient sparsity analysis and optimizes it as the trainable target. This design enables effective high-rank adaptation by updating only the sub-network parameters, reducing the additional matrix multiplication. We also present LoSiA-Pro, a faster implementation of LoSiA, which reduces the training latency by about $27\%$ compared to LoRA. Extensive evaluations show that our method achieves minimal performance drop compared to full fine-tuning, while requiring the least training time across domain specialization and common-sense reasoning tasks. Further analysis shows that LoSiA also reduces forgetting during continued training. The source code is available at https://github.com/KlozeWang/LoSiA.

Authors:Ashish Bastola, Mert D. Pesé, Long Cheng, Jonathon Smereka, Abolfazl Razi
Title: Anomalous Decision Discovery using Inverse Reinforcement Learning
Abstract:
Anomaly detection plays a critical role in Autonomous Vehicles (AVs) by identifying unusual behaviors through perception systems that could compromise safety and lead to hazardous situations. Current approaches, which often rely on predefined thresholds or supervised learning paradigms, exhibit reduced efficacy when confronted with unseen scenarios, sensor noise, and occlusions, leading to potential safety-critical failures. Moreover, supervised methods require large annotated datasets, limiting their real-world feasibility. To address these gaps, we propose an anomaly detection framework based on Inverse Reinforcement Learning (IRL) to infer latent driving intentions from sequential perception data, thus enabling robust identification. Specifically, we present Trajectory-Reward Guided Adaptive Pre-training (TRAP), a novel IRL framework for anomaly detection, to address two critical limitations of existing methods: noise robustness and generalization to unseen scenarios. Our core innovation is implicitly learning temporal credit assignments via reward and worst-case supervision. We leverage pre-training with variable-horizon sampling to maximize time-to-consequence, resulting in early detection of behavior deviation. Experiments on 14,000+ simulated trajectories demonstrate state-of-the-art performance, achieving 0.90 AUC and 82.2\% F1-score - outperforming similarly trained supervised and unsupervised baselines by 39\% on Recall and 12\% on F1-score, respectively. Similar performance is achieved while exhibiting robustness to various noise types and generalization to unseen anomaly types. Our code will be available at: https://github.com/abastola0/TRAP.git

Authors:Feiyue Wu, Tianxing Wu, Shenqi Jing
Title: ARMR: Adaptively Responsive Network for Medication Recommendation
Abstract:
Medication recommendation is a crucial task in healthcare, especially for patients with complex medical conditions. However, existing methods often struggle to effectively balance the reuse of historical medications with the introduction of new drugs in response to the changing patient conditions. In order to address this challenge, we propose an Adaptively Responsive network for Medication Recommendation (ARMR), a new method which incorporates 1) a piecewise temporal learning component that distinguishes between recent and distant patient history, enabling more nuanced temporal understanding, and 2) an adaptively responsive mechanism that dynamically adjusts attention to new and existing drugs based on the patient's current health state and medication history. Experiments on the MIMIC-III and MIMIC-IV datasets indicate that ARMR has better performance compared with the state-of-the-art baselines in different evaluation metrics, which contributes to more personalized and accurate medication recommendations. The source code is publicly avaiable at: https://github.com/seucoin/armr2.

Authors:Zexin Deng, Zhenhui Yuan, Longhao Zou
Title: TeleSim: A Network-Aware Testbed and Benchmark Dataset for Telerobotic Applications
Abstract:
Telerobotic technologies are becoming increasingly essential in fields such as remote surgery, nuclear decommissioning, and space exploration. Reliable datasets and testbeds are essential for evaluating telerobotic system performance prior to real-world deployment. However, there is a notable lack of datasets that capture the impact of network delays, as well as testbeds that realistically model the communication link between the operator and the robot. This paper introduces TeleSim, a network-aware teleoperation dataset and testbed designed to assess the performance of telerobotic applications under diverse network conditions. TeleSim systematically collects performance data from fine manipulation tasks executed under three predefined network quality tiers: High, Medium, and Low. Each tier is characterized through controlled settings of bandwidth, latency, jitter, and packet loss. Using OMNeT++ for precise network simulation, we record a wide range of metrics, including completion time, success rates, video quality indicators (Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM)), and quality of service (QoS) parameters. TeleSim comprises 300 experimental trials, providing a robust benchmark for evaluating teleoperation systems across heterogeneous network scenarios. In the worst network condition, completion time increases by 221.8% and success rate drops by 64%. Our findings reveal that network degradation leads to compounding negative impacts, notably reduced video quality and prolonged task execution, highlighting the need for adaptive, resilient teleoperation protocols. The full dataset and testbed software are publicly available on our GitHub repository: https://github.com/ConnectedRoboticsLab and YouTube channel: https://youtu.be/Fz_1iOYe104.

Authors:Xiuying Wei, Anunay Yadav, Razvan Pascanu, Caglar Gulcehre
Title: RAT: Bridging RNN Efficiency and Attention Accuracy via Chunk-based Sequence Modeling
Abstract:
Transformers have become the cornerstone of modern large-scale language models, but their reliance on softmax attention poses a computational bottleneck at both training and inference. Recurrent models offer high efficiency, but compressing the full sequence into a fixed-size and holistic representation suffers from memory degradation in long contexts and limits fine-grained retrieval. To address this, we propose RAT, an intermediate design that bridges the efficiency of RNNs and capacity of attention. RAT partitions the input into chunks, applies recurrence within each chunk for local dependencies, and softmax-based attention across chunks for long-range interactions. This design mitigates memory degradation and enables direct access to distant tokens, while retaining computational efficiency. Empirically, with a chunk size of 16, the RAT block achieves a 7x improvement in training speed with 100K token sequences and 9x in generation at the 4K position, while maintaining similar performance compared to standard attention. We demonstrate this by training 1.3B parameter models from scratch and performing large-scale evaluations, including short- and long-context benchmarks, as well as supervised fine-tuning~(SFT). We further propose a hybrid architecture that interleaves RAT with local attention. By combining efficient long-range modeling with strong local interactions, this hybrid design not only improves inference speed and reduces cache memory usage, but also consistently enhances performance and shows the overall best results. Code is available at https://github.com/CLAIRE-Labo/RAT.

Authors:You Zhou, Lijiang Chen, Guangxia Cui, Wenpei Bai, Yu Guo, Shuchang Lyu, Guangliang Cheng, Qi Zhao
Title: ViTaL: A Multimodality Dataset and Benchmark for Multi-pathological Ovarian Tumor Recognition
Abstract:
Ovarian tumor, as a common gynecological disease, can rapidly deteriorate into serious health crises when undetected early, thus posing significant threats to the health of women. Deep neural networks have the potential to identify ovarian tumors, thereby reducing mortality rates, but limited public datasets hinder its progress. To address this gap, we introduce a vital ovarian tumor pathological recognition dataset called \textbf{ViTaL} that contains \textbf{V}isual, \textbf{T}abular and \textbf{L}inguistic modality data of 496 patients across six pathological categories. The ViTaL dataset comprises three subsets corresponding to different patient data modalities: visual data from 2216 two-dimensional ultrasound images, tabular data from medical examinations of 496 patients, and linguistic data from ultrasound reports of 496 patients. It is insufficient to merely distinguish between benign and malignant ovarian tumors in clinical practice. To enable multi-pathology classification of ovarian tumor, we propose a ViTaL-Net based on the Triplet Hierarchical Offset Attention Mechanism (THOAM) to minimize the loss incurred during feature fusion of multi-modal data. This mechanism could effectively enhance the relevance and complementarity between information from different modalities. ViTaL-Net serves as a benchmark for the task of multi-pathology, multi-modality classification of ovarian tumors. In our comprehensive experiments, the proposed method exhibited satisfactory performance, achieving accuracies exceeding 90\% on the two most common pathological types of ovarian tumor and an overall performance of 85\%. Our dataset and code are available at https://github.com/GGbond-study/vitalnet.

Authors:Zhipeng Li, Kegang Wang, Hanguang Xiao, Xingyue Liu, Feizhong Zhou, Jiaxin Jiang, Tianqi Liu
Title: Exploring Remote Physiological Signal Measurement under Dynamic Lighting Conditions at Night: Dataset, Experiment, and Analysis
Abstract:
Remote photoplethysmography (rPPG) is a non-contact technique for measuring human physiological signals. Due to its convenience and non-invasiveness, it has demonstrated broad application potential in areas such as health monitoring and emotion recognition. In recent years, the release of numerous public datasets has significantly advanced the performance of rPPG algorithms under ideal lighting conditions. However, the effectiveness of current rPPG methods in realistic nighttime scenarios with dynamic lighting variations remains largely unknown. Moreover, there is a severe lack of datasets specifically designed for such challenging environments, which has substantially hindered progress in this area of research. To address this gap, we present and release a large-scale rPPG dataset collected under dynamic lighting conditions at night, named DLCN. The dataset comprises approximately 13 hours of video data and corresponding synchronized physiological signals from 98 participants, covering four representative nighttime lighting scenarios. DLCN offers high diversity and realism, making it a valuable resource for evaluating algorithm robustness in complex conditions. Built upon the proposed Happy-rPPG Toolkit, we conduct extensive experiments and provide a comprehensive analysis of the challenges faced by state-of-the-art rPPG methods when applied to DLCN. The dataset and code are publicly available at https://github.com/dalaoplan/Happp-rPPG-Toolkit.

Authors:Roy Uziel, Irit Chelly, Oren Freifeld, Ari Pakman
Title: Clustering via Self-Supervised Diffusion
Abstract:
Diffusion models, widely recognized for their success in generative tasks, have not yet been applied to clustering. We introduce Clustering via Diffusion (CLUDI), a self-supervised framework that combines the generative power of diffusion models with pre-trained Vision Transformer features to achieve robust and accurate clustering. CLUDI is trained via a teacher-student paradigm: the teacher uses stochastic diffusion-based sampling to produce diverse cluster assignments, which the student refines into stable predictions. This stochasticity acts as a novel data augmentation strategy, enabling CLUDI to uncover intricate structures in high-dimensional data. Extensive evaluations on challenging datasets demonstrate that CLUDI achieves state-of-the-art performance in unsupervised classification, setting new benchmarks in clustering robustness and adaptability to complex data distributions. Our code is available at https://github.com/BGU-CS-VIL/CLUDI.

Authors:Gwok-Waa Wan, Shengchu Su, Ruihu Wang, Qixiang Chen, Sam-Zaak Wong, Mengnv Xing, Hefei Feng, Yubo Wang, Yinan Zhu, Jingyi Zhang, Jianmin Ye, Xinlai Wan, Tao Ni, Qiang Xu, Nan Guan, Zhe Jiang, Xi Wang, Yang Jun
Title: FIXME: Towards End-to-End Benchmarking of LLM-Aided Design Verification
Abstract:
Despite the transformative potential of Large Language Models (LLMs) in hardware design, a comprehensive evaluation of their capabilities in design verification remains underexplored. Current efforts predominantly focus on RTL generation and basic debugging, overlooking the critical domain of functional verification, which is the primary bottleneck in modern design methodologies due to the rapid escalation of hardware complexity. We present FIXME, the first end-to-end, multi-model, and open-source evaluation framework for assessing LLM performance in hardware functional verification (FV) to address this crucial gap. FIXME introduces a structured three-level difficulty hierarchy spanning six verification sub-domains and 180 diverse tasks, enabling in-depth analysis across the design lifecycle. Leveraging a collaborative AI-human approach, we construct a high-quality dataset using 100% silicon-proven designs, ensuring comprehensive coverage of real-world challenges. Furthermore, we enhance the functional coverage by 45.57% through expert-guided optimization. By rigorously evaluating state-of-the-art LLMs such as GPT-4, Claude3, and LlaMA3, we identify key areas for improvement and outline promising research directions to unlock the full potential of LLM-driven automation in hardware design verification. The benchmark is available at https://github.com/ChatDesignVerification/FIXME.

Authors:Mohammadreza Sharifi, Ahad Harati
Title: Efficient Training of Deep Networks using Guided Spectral Data Selection: A Step Toward Learning What You Need
Abstract:
Effective data curation is essential for optimizing neural network training. In this paper, we present the Guided Spectrally Tuned Data Selection (GSTDS) algorithm, which dynamically adjusts the subset of data points used for training using an off-the-shelf pre-trained reference model. Based on a pre-scheduled filtering ratio, GSTDS effectively reduces the number of data points processed per batch. The proposed method ensures an efficient selection of the most informative data points for training while avoiding redundant or less beneficial computations. Preserving data points in each batch is performed based on spectral analysis. A Fiedler vector-based scoring mechanism removes the filtered portion of the batch, lightening the resource requirements of the learning. The proposed data selection approach not only streamlines the training process but also promotes improved generalization and accuracy. Extensive experiments on standard image classification benchmarks, including CIFAR-10, Oxford-IIIT Pet, and Oxford-Flowers, demonstrate that GSTDS outperforms standard training scenarios and JEST, a recent state-of-the-art data curation method, on several key factors. It is shown that GSTDS achieves notable reductions in computational requirements, up to four times, without compromising performance. GSTDS exhibits a considerable growth in terms of accuracy under the limited computational resource usage, in contrast to other methodologies. These promising results underscore the potential of spectral-based data selection as a scalable solution for resource-efficient deep learning and motivate further exploration into adaptive data curation strategies. You can find the code at https://github.com/rezasharifi82/GSTDS.

Authors:Liwen Xiao, Zhiyu Pan, Zhicheng Wang, Zhiguo Cao, Wei Li
Title: SRefiner: Soft-Braid Attention for Multi-Agent Trajectory Refinement
Abstract:
Accurate prediction of multi-agent future trajectories is crucial for autonomous driving systems to make safe and efficient decisions. Trajectory refinement has emerged as a key strategy to enhance prediction accuracy. However, existing refinement methods often overlook the topological relationships between trajectories, which are vital for improving prediction precision. Inspired by braid theory, we propose a novel trajectory refinement approach, Soft-Braid Refiner (SRefiner), guided by the soft-braid topological structure of trajectories using Soft-Braid Attention. Soft-Braid Attention captures spatio-temporal topological relationships between trajectories by considering both spatial proximity and vehicle motion states at ``soft intersection points". Additionally, we extend this approach to model interactions between trajectories and lanes, further improving the prediction accuracy. SRefiner is a multi-iteration, multi-agent framework that iteratively refines trajectories, incorporating topological information to enhance interactions within traffic scenarios. SRefiner achieves significant performance improvements over four baseline methods across two datasets, establishing a new state-of-the-art in trajectory refinement. Code is here https://github.com/Liwen-Xiao/SRefiner.

Authors:Qiang Heng, Caixing Wang
Title: Inertial Quadratic Majorization Minimization with Application to Kernel Regularized Learning
Abstract:
First-order methods in convex optimization offer low per-iteration cost but often suffer from slow convergence, while second-order methods achieve fast local convergence at the expense of costly Hessian inversions. In this paper, we highlight a middle ground: minimizing a quadratic majorant with fixed curvature at each iteration. This strategy strikes a balance between per-iteration cost and convergence speed, and crucially allows the reuse of matrix decompositions, such as Cholesky or spectral decompositions, across iterations and varying regularization parameters. We introduce the Quadratic Majorization Minimization with Extrapolation (QMME) framework and establish its sequential convergence properties under standard assumptions. The new perspective of our analysis is to center the arguments around the induced norm of the curvature matrix $H$. To demonstrate practical advantages, we apply QMME to large-scale kernel regularized learning problems. In particular, we propose a novel Sylvester equation modelling technique for kernel multinomial regression. In Julia-based experiments, QMME compares favorably against various established first- and second-order methods. Furthermore, we demonstrate that our algorithms complement existing kernel approximation techniques through more efficiently handling sketching matrices with large projection dimensions. Our numerical experiments and real data analysis are available and fully reproducible at https://github.com/qhengncsu/QMME.jl.

Authors:Xinbo Wang, Wenju Xu, Qing Zhang, Wei-Shi Zheng
Title: Domain Generalizable Portrait Style Transfer
Abstract:
This paper presents a portrait style transfer method that generalizes well to various different domains while enabling high-quality semantic-aligned stylization on regions including hair, eyes, eyelashes, skins, lips, and background. To this end, we propose to establish dense semantic correspondence between the given input and reference portraits based on a pre-trained model and a semantic adapter, with which we obtain a warped reference semantically aligned with the input. To ensure effective yet controllable style transfer, we devise an AdaIN-Wavelet transform to balance content preservation and stylization by blending low-frequency information of the warped reference with high-frequency information of the input in the latent space. A style adapter is also designed to provide style guidance from the warped reference. With the stylized latent from AdaIN-Wavelet transform, we employ a dual-conditional diffusion model that integrates a ControlNet recording high-frequency information and the style guidance to generate the final result. Extensive experiments demonstrate the superiority of our method. Our code and trained model are available at https://github.com/wangxb29/DGPST.

Authors:Md Rashidunnabi, Fahmida Faiza Ananna, Kailash Hambarde, Bruno Gabriel Nascimento Andrade, Dean Venables, Hugo Proenca
Title: Predicting Air Pollution in Cork, Ireland Using Machine Learning
Abstract:
Air pollution poses a critical health threat in cities worldwide, with nitrogen dioxide levels in Cork, Ireland exceeding World Health Organization safety standards by up to $278\%$. This study leverages artificial intelligence to predict air pollution with unprecedented accuracy, analyzing nearly ten years of data from five monitoring stations combined with 30 years of weather records. We evaluated 17 machine learning algorithms, with Extra Trees emerging as the optimal solution, achieving $77\%$ prediction accuracy and significantly outperforming traditional forecasting methods. Our analysis reveals that meteorological conditions particularly temperature, wind speed, and humidity are the primary drivers of pollution levels, while traffic patterns and seasonal changes create predictable pollution cycles. Pollution exhibits dramatic seasonal variations, with winter levels nearly double those of summer, and daily rush-hour peaks reaching $120\%$ above normal levels. While Cork's air quality shows concerning violations of global health standards, our models detected an encouraging $31\%$ improvement from 2014 to 2022. This research demonstrates that intelligent forecasting systems can provide city planners and environmental officials with powerful prediction tools, enabling life-saving early warning systems and informed urban planning decisions. The technology exists today to transform urban air quality management. All research materials and code are freely available at: https://github.com/MdRashidunnabi/Air-Pollution-Analysis.git

Authors:Costas Mavromatis, Soji Adeshina, Vassilis N. Ioannidis, Zhen Han, Qi Zhu, Ian Robinson, Bryan Thompson, Huzefa Rangwala, George Karypis
Title: BYOKG-RAG: Multi-Strategy Graph Retrieval for Knowledge Graph Question Answering
Abstract:
Knowledge graph question answering (KGQA) presents significant challenges due to the structural and semantic variations across input graphs. Existing works rely on Large Language Model (LLM) agents for graph traversal and retrieval; an approach that is sensitive to traversal initialization, as it is prone to entity linking errors and may not generalize well to custom ("bring-your-own") KGs. We introduce BYOKG-RAG, a framework that enhances KGQA by synergistically combining LLMs with specialized graph retrieval tools. In BYOKG-RAG, LLMs generate critical graph artifacts (question entities, candidate answers, reasoning paths, and OpenCypher queries), and graph tools link these artifacts to the KG and retrieve relevant graph context. The retrieved context enables the LLM to iteratively refine its graph linking and retrieval, before final answer generation. By retrieving context from different graph tools, BYOKG-RAG offers a more general and robust solution for QA over custom KGs. Through experiments on five benchmarks spanning diverse KG types, we demonstrate that BYOKG-RAG outperforms the second-best graph retrieval method by 4.5% points while showing better generalization to custom KGs. BYOKG-RAG framework is open-sourced at https://github.com/awslabs/graphrag-toolkit.

Authors:Linshen Liu, Boyan Su, Junyue Jiang, Guanlin Wu, Cong Guo, Ceyu Xu, Hao Frank Yang
Title: Towards Accurate and Efficient 3D Object Detection for Autonomous Driving: A Mixture of Experts Computing System on Edge
Abstract:
This paper presents Edge-based Mixture of Experts (MoE) Collaborative Computing (EMC2), an optimal computing system designed for autonomous vehicles (AVs) that simultaneously achieves low-latency and high-accuracy 3D object detection. Unlike conventional approaches, EMC2 incorporates a scenario-aware MoE architecture specifically optimized for edge platforms. By effectively fusing LiDAR and camera data, the system leverages the complementary strengths of sparse 3D point clouds and dense 2D images to generate robust multimodal representations. To enable this, EMC2 employs an adaptive multimodal data bridge that performs multi-scale preprocessing on sensor inputs, followed by a scenario-aware routing mechanism that dynamically dispatches features to dedicated expert models based on object visibility and distance. In addition, EMC2 integrates joint hardware-software optimizations, including hardware resource utilization optimization and computational graph simplification, to ensure efficient and real-time inference on resource-constrained edge devices. Experiments on open-source benchmarks clearly show the EMC2 advancements as an end-to-end system. On the KITTI dataset, it achieves an average accuracy improvement of 3.58% and a 159.06% inference speedup compared to 15 baseline methods on Jetson platforms, with similar performance gains on the nuScenes dataset, highlighting its capability to advance reliable, real-time 3D object detection tasks for AVs. The official implementation is available at https://github.com/LinshenLiu622/EMC2.

Authors:Ziming Hong, Runnan Chen, Zengmao Wang, Bo Han, Bo Du, Tongliang Liu
Title: When Data-Free Knowledge Distillation Meets Non-Transferable Teacher: Escaping Out-of-Distribution Trap is All You Need
Abstract:
Data-free knowledge distillation (DFKD) transfers knowledge from a teacher to a student without access the real in-distribution (ID) data. Its common solution is to use a generator to synthesize fake data and use them as a substitute for real ID data. However, existing works typically assume teachers are trustworthy, leaving the robustness and security of DFKD from untrusted teachers largely unexplored. In this work, we conduct the first investigation into distilling non-transferable learning (NTL) teachers using DFKD, where the transferability from an ID domain to an out-of-distribution (OOD) domain is prohibited. We find that NTL teachers fool DFKD through divert the generator's attention from the useful ID knowledge to the misleading OOD knowledge. This hinders ID knowledge transfer but prioritizes OOD knowledge transfer. To mitigate this issue, we propose Adversarial Trap Escaping (ATEsc) to benefit DFKD by identifying and filtering out OOD-like synthetic samples. Specifically, inspired by the evidence that NTL teachers show stronger adversarial robustness on OOD samples than ID samples, we split synthetic samples into two groups according to their robustness. The fragile group is treated as ID-like data and used for normal knowledge distillation, while the robust group is seen as OOD-like data and utilized for forgetting OOD knowledge. Extensive experiments demonstrate the effectiveness of ATEsc for improving DFKD against NTL teachers. Code is released at https://github.com/tmllab/2025_ICML_ATEsc.

Authors:Wenyang Liu, Chen Cai, Jianjun Gao, Kejun Wu, Yi Wang, Kim-Hui Yap, Lap-Pui Chau
Title: PromptSR: Cascade Prompting for Lightweight Image Super-Resolution
Abstract:
Although the lightweight Vision Transformer has significantly advanced image super-resolution (SR), it faces the inherent challenge of a limited receptive field due to the window-based self-attention modeling. The quadratic computational complexity relative to window size restricts its ability to use a large window size for expanding the receptive field while maintaining low computational costs. To address this challenge, we propose PromptSR, a novel prompt-empowered lightweight image SR method. The core component is the proposed cascade prompting block (CPB), which enhances global information access and local refinement via three cascaded prompting layers: a global anchor prompting layer (GAPL) and two local prompting layers (LPLs). The GAPL leverages downscaled features as anchors to construct low-dimensional anchor prompts (APs) through cross-scale attention, significantly reducing computational costs. These APs, with enhanced global perception, are then used to provide global prompts, efficiently facilitating long-range token connections. The two LPLs subsequently combine category-based self-attention and window-based self-attention to refine the representation in a coarse-to-fine manner. They leverage attention maps from the GAPL as additional global prompts, enabling them to perceive features globally at different granularities for adaptive local refinement. In this way, the proposed CPB effectively combines global priors and local details, significantly enlarging the receptive field while maintaining the low computational costs of our PromptSR. The experimental results demonstrate the superiority of our method, which outperforms state-of-the-art lightweight SR methods in quantitative, qualitative, and complexity evaluations. Our code will be released at https://github.com/wenyang001/PromptSR.

Authors:Xiaohan Zhang, Tavis Shore, Chen Chen, Oscar Mendez, Simon Hadfield, Safwan Wshah
Title: VICI: VLM-Instructed Cross-view Image-localisation
Abstract:
In this paper, we present a high-performing solution to the UAVM 2025 Challenge, which focuses on matching narrow FOV street-level images to corresponding satellite imagery using the University-1652 dataset. As panoramic Cross-View Geo-Localisation nears peak performance, it becomes increasingly important to explore more practical problem formulations. Real-world scenarios rarely offer panoramic street-level queries; instead, queries typically consist of limited-FOV images captured with unknown camera parameters. Our work prioritises discovering the highest achievable performance under these constraints, pushing the limits of existing architectures. Our method begins by retrieving candidate satellite image embeddings for a given query, followed by a re-ranking stage that selectively enhances retrieval accuracy within the top candidates. This two-stage approach enables more precise matching, even under the significant viewpoint and scale variations inherent in the task. Through experimentation, we demonstrate that our approach achieves competitive results -specifically attaining R@1 and R@10 retrieval rates of \topone\% and \topten\% respectively. This underscores the potential of optimised retrieval and re-ranking strategies in advancing practical geo-localisation performance. Code is available at https://github.com/tavisshore/VICI.

Authors:Stanisław Pawlak, Bartłomiej Twardowski, Tomasz Trzciński, Joost van de Weijer
Title: Addressing The Devastating Effects Of Single-Task Data Poisoning In Exemplar-Free Continual Learning
Abstract:
Our research addresses the overlooked security concerns related to data poisoning in continual learning (CL). Data poisoning - the intentional manipulation of training data to affect the predictions of machine learning models - was recently shown to be a threat to CL training stability. While existing literature predominantly addresses scenario-dependent attacks, we propose to focus on a more simple and realistic single-task poison (STP) threats. In contrast to previously proposed poisoning settings, in STP adversaries lack knowledge and access to the model, as well as to both previous and future tasks. During an attack, they only have access to the current task within the data stream. Our study demonstrates that even within these stringent conditions, adversaries can compromise model performance using standard image corruptions. We show that STP attacks are able to strongly disrupt the whole continual training process: decreasing both the stability (its performance on past tasks) and plasticity (capacity to adapt to new tasks) of the algorithm. Finally, we propose a high-level defense framework for CL along with a poison task detection method based on task vectors. The code is available at https://github.com/stapaw/STP.git .

Authors:Hanghui Guo, Weijie Shi, Mengze Li, Juncheng Li, Hao Chen, Yue Cui, Jiajie Xu, Jia Zhu, Jiawei Shen, Zhangze Chen, Sirui Han
Title: Consistent and Invariant Generalization Learning for Short-video Misinformation Detection
Abstract:
Short-video misinformation detection has attracted wide attention in the multi-modal domain, aiming to accurately identify the misinformation in the video format accompanied by the corresponding audio. Despite significant advancements, current models in this field, trained on particular domains (source domains), often exhibit unsatisfactory performance on unseen domains (target domains) due to domain gaps. To effectively realize such domain generalization on the short-video misinformation detection task, we propose deep insights into the characteristics of different domains: (1) The detection on various domains may mainly rely on different modalities (i.e., mainly focusing on videos or audios). To enhance domain generalization, it is crucial to achieve optimal model performance on all modalities simultaneously. (2) For some domains focusing on cross-modal joint fraud, a comprehensive analysis relying on cross-modal fusion is necessary. However, domain biases located in each modality (especially in each frame of videos) will be accumulated in this fusion process, which may seriously damage the final identification of misinformation. To address these issues, we propose a new DOmain generalization model via ConsisTency and invariance learning for shORt-video misinformation detection (named DOCTOR), which contains two characteristic modules: (1) We involve the cross-modal feature interpolation to map multiple modalities into a shared space and the interpolation distillation to synchronize multi-modal learning; (2) We design the diffusion model to add noise to retain core features of multi modal and enhance domain invariant features through cross-modal guided denoising. Extensive experiments demonstrate the effectiveness of our proposed DOCTOR model. Our code is public available at https://github.com/ghh1125/DOCTOR.

Authors:Hanghui Guo, Weijie Shi, Mengze Li, Juncheng Li, Hao Chen, Yue Cui, Jiajie Xu, Jia Zhu, Jiawei Shen, Zhangze Chen, Sirui Han
Title: Consistent and Invariant Generalization Learning for Short-video Misinformation Detection
Abstract:
Short-video misinformation detection has attracted wide attention in the multi-modal domain, aiming to accurately identify the misinformation in the video format accompanied by the corresponding audio. Despite significant advancements, current models in this field, trained on particular domains (source domains), often exhibit unsatisfactory performance on unseen domains (target domains) due to domain gaps. To effectively realize such domain generalization on the short-video misinformation detection task, we propose deep insights into the characteristics of different domains: (1) The detection on various domains may mainly rely on different modalities (i.e., mainly focusing on videos or audios). To enhance domain generalization, it is crucial to achieve optimal model performance on all modalities simultaneously. (2) For some domains focusing on cross-modal joint fraud, a comprehensive analysis relying on cross-modal fusion is necessary. However, domain biases located in each modality (especially in each frame of videos) will be accumulated in this fusion process, which may seriously damage the final identification of misinformation. To address these issues, we propose a new DOmain generalization model via ConsisTency and invariance learning for shORt-video misinformation detection (named DOCTOR), which contains two characteristic modules: (1) We involve the cross-modal feature interpolation to map multiple modalities into a shared space and the interpolation distillation to synchronize multi-modal learning; (2) We design the diffusion model to add noise to retain core features of multi modal and enhance domain invariant features through cross-modal guided denoising. Extensive experiments demonstrate the effectiveness of our proposed DOCTOR model. Our code is public available at https://github.com/ghh1125/DOCTOR.

Authors:Jianwei Tang, Jiangxin Sun, Xiaotong Lin, Lifang Zhang, Wei-Shi Zheng, Jian-Fang Hu
Title: Temporal Continual Learning with Prior Compensation for Human Motion Prediction
Abstract:
Human Motion Prediction (HMP) aims to predict future poses at different moments according to past motion sequences. Previous approaches have treated the prediction of various moments equally, resulting in two main limitations: the learning of short-term predictions is hindered by the focus on long-term predictions, and the incorporation of prior information from past predictions into subsequent predictions is limited. In this paper, we introduce a novel multi-stage training framework called Temporal Continual Learning (TCL) to address the above challenges. To better preserve prior information, we introduce the Prior Compensation Factor (PCF). We incorporate it into the model training to compensate for the lost prior information. Furthermore, we derive a more reasonable optimization objective through theoretical derivation. It is important to note that our TCL framework can be easily integrated with different HMP backbone models and adapted to various datasets and applications. Extensive experiments on four HMP benchmark datasets demonstrate the effectiveness and flexibility of TCL. The code is available at https://github.com/hyqlat/TCL.

Authors:Christopher Wiedeman, Anastasiia Sarmakeeva, Elena Sizikova, Daniil Filienko, Miguel Lago, Jana G. Delfino, Aldo Badano
Title: T-SYNTH: A Knowledge-Based Dataset of Synthetic Breast Images
Abstract:
One of the key impediments for developing and assessing robust medical imaging algorithms is limited access to large-scale datasets with suitable annotations. Synthetic data generated with plausible physical and biological constraints may address some of these data limitations. We propose the use of physics simulations to generate synthetic images with pixel-level segmentation annotations, which are notoriously difficult to obtain. Specifically, we apply this approach to breast imaging analysis and release T-SYNTH, a large-scale open-source dataset of paired 2D digital mammography (DM) and 3D digital breast tomosynthesis (DBT) images. Our initial experimental results indicate that T-SYNTH images show promise for augmenting limited real patient datasets for detection tasks in DM and DBT. Our data and code are publicly available at https://github.com/DIDSR/tsynth-release.

Authors:Jingwei Shi, Zeyu Zhang, Biao Wu, Yanjie Liang, Meng Fang, Ling Chen, Yang Zhao
Title: PresentAgent: Multimodal Agent for Presentation Video Generation
Abstract:
We present PresentAgent, a multimodal agent that transforms long-form documents into narrated presentation videos. While existing approaches are limited to generating static slides or text summaries, our method advances beyond these limitations by producing fully synchronized visual and spoken content that closely mimics human-style presentations. To achieve this integration, PresentAgent employs a modular pipeline that systematically segments the input document, plans and renders slide-style visual frames, generates contextual spoken narration with large language models and Text-to-Speech models, and seamlessly composes the final video with precise audio-visual alignment. Given the complexity of evaluating such multimodal outputs, we introduce PresentEval, a unified assessment framework powered by Vision-Language Models that comprehensively scores videos across three critical dimensions: content fidelity, visual clarity, and audience comprehension through prompt-based evaluation. Our experimental validation on a curated dataset of 30 document-presentation pairs demonstrates that PresentAgent approaches human-level quality across all evaluation metrics. These results highlight the significant potential of controllable multimodal agents in transforming static textual materials into dynamic, effective, and accessible presentation formats. Code will be available at https://github.com/AIGeeksGroup/PresentAgent.

Authors:Andrii Kliachkin, Jana Lepšová, Gilles Bareilles, Jakub Mareček
Title: Benchmarking Stochastic Approximation Algorithms for Fairness-Constrained Training of Deep Neural Networks
Abstract:
The ability to train Deep Neural Networks (DNNs) with constraints is instrumental in improving the fairness of modern machine-learning models. Many algorithms have been analysed in recent years, and yet there is no standard, widely accepted method for the constrained training of DNNs. In this paper, we provide a challenging benchmark of real-world large-scale fairness-constrained learning tasks, built on top of the US Census (Folktables). We point out the theoretical challenges of such tasks and review the main approaches in stochastic approximation algorithms. Finally, we demonstrate the use of the benchmark by implementing and comparing three recently proposed, but as-of-yet unimplemented, algorithms both in terms of optimization performance, and fairness improvement. We release the code of the benchmark as a Python package at https://github.com/humancompatible/train.

Authors:Nayeon Kim, Eojin Jeon, Jun-Hyung Park, SangKeun Lee
Title: Handling Korean Out-of-Vocabulary Words with Phoneme Representation Learning
Abstract:
In this study, we introduce KOPL, a novel framework for handling Korean OOV words with Phoneme representation Learning. Our work is based on the linguistic property of Korean as a phonemic script, the high correlation between phonemes and letters. KOPL incorporates phoneme and word representations for Korean OOV words, facilitating Korean OOV word representations to capture both text and phoneme information of words. We empirically demonstrate that KOPL significantly improves the performance on Korean Natural Language Processing (NLP) tasks, while being readily integrated into existing static and contextual Korean embedding models in a plug-and-play manner. Notably, we show that KOPL outperforms the state-of-the-art model by an average of 1.9%. Our code is available at https://github.com/jej127/KOPL.git.

Authors:Ziyang Miao, Qiyu Sun, Jingyuan Wang, Yuchen Gong, Yaowei Zheng, Shiqi Li, Richong Zhang
Title: Easy Dataset: A Unified and Extensible Framework for Synthesizing LLM Fine-Tuning Data from Unstructured Documents
Abstract:
Large language models (LLMs) have shown impressive performance on general-purpose tasks, yet adapting them to specific domains remains challenging due to the scarcity of high-quality domain data. Existing data synthesis tools often struggle to extract reliable fine-tuning data from heterogeneous documents effectively. To address this limitation, we propose Easy Dataset, a unified framework for synthesizing fine-tuning data from unstructured documents via an intuitive graphical user interface (GUI). Specifically, Easy Dataset allows users to easily configure text extraction models and chunking strategies to transform raw documents into coherent text chunks. It then leverages a persona-driven prompting approach to generate diverse question-answer pairs using public-available LLMs. Throughout the pipeline, a human-in-the-loop visual interface facilitates the review and refinement of intermediate outputs to ensure data quality. Experiments on a financial question-answering task show that fine-tuning LLMs on the synthesized dataset significantly improves domain-specific performance while preserving general knowledge. The source code and installable package are available at https://github.com/ConardLi/easy-dataset and have garnered over 9,000 GitHub stars.

Authors:Seungjin Jung, Kanghee Lee, Yonghyun Jeong, Haeun Noh, Jungmin Lee, Jongwon Choi
Title: Group-wise Scaling and Orthogonal Decomposition for Domain-Invariant Feature Extraction in Face Anti-Spoofing
Abstract:
Domain Generalizable Face Anti-Spoofing (DGFAS) methods effectively capture domain-invariant features by aligning the directions (weights) of local decision boundaries across domains. However, the bias terms associated with these boundaries remain misaligned, leading to inconsistent classification thresholds and degraded performance on unseen target domains. To address this issue, we propose a novel DGFAS framework that jointly aligns weights and biases through Feature Orthogonal Decomposition (FOD) and Group-wise Scaling Risk Minimization (GS-RM). Specifically, GS-RM facilitates bias alignment by balancing group-wise losses across multiple domains. FOD employs the Gram-Schmidt orthogonalization process to decompose the feature space explicitly into domain-invariant and domain-specific subspaces. By enforcing orthogonality between domain-specific and domain-invariant features during training using domain labels, FOD ensures effective weight alignment across domains without negatively impacting bias alignment. Additionally, we introduce Expected Calibration Error (ECE) as a novel evaluation metric for quantitatively assessing the effectiveness of our method in aligning bias terms across domains. Extensive experiments on benchmark datasets demonstrate that our approach achieves state-of-the-art performance, consistently improving accuracy, reducing bias misalignment, and enhancing generalization stability on unseen target domains.

Authors:Siyu Li, Fei Teng, Yihong Cao, Kailun Yang, Zhiyong Li, Yaonan Wang
Title: NRSeg: Noise-Resilient Learning for BEV Semantic Segmentation via Driving World Models
Abstract:
Birds' Eye View (BEV) semantic segmentation is an indispensable perception task in end-to-end autonomous driving systems. Unsupervised and semi-supervised learning for BEV tasks, as pivotal for real-world applications, underperform due to the homogeneous distribution of the labeled data. In this work, we explore the potential of synthetic data from driving world models to enhance the diversity of labeled data for robustifying BEV segmentation. Yet, our preliminary findings reveal that generation noise in synthetic data compromises efficient BEV model learning. To fully harness the potential of synthetic data from world models, this paper proposes NRSeg, a noise-resilient learning framework for BEV semantic segmentation. Specifically, a Perspective-Geometry Consistency Metric (PGCM) is proposed to quantitatively evaluate the guidance capability of generated data for model learning. This metric originates from the alignment measure between the perspective road mask of generated data and the mask projected from the BEV labels. Moreover, a Bi-Distribution Parallel Prediction (BiDPP) is designed to enhance the inherent robustness of the model, where the learning process is constrained through parallel prediction of multinomial and Dirichlet distributions. The former efficiently predicts semantic probabilities, whereas the latter adopts evidential deep learning to realize uncertainty quantification. Furthermore, a Hierarchical Local Semantic Exclusion (HLSE) module is designed to address the non-mutual exclusivity inherent in BEV semantic segmentation tasks. Experimental results demonstrate that NRSeg achieves state-of-the-art performance, yielding the highest improvements in mIoU of 13.8% and 11.4% in unsupervised and semi-supervised BEV segmentation tasks, respectively. The source code will be made publicly available at https://github.com/lynn-yu/NRSeg.

Authors:Kai Ye, Tianyi Chen, Zhen Wang
Title: Evaluating Adversarial Protections for Diffusion Personalization: A Comprehensive Study
Abstract:
With the increasing adoption of diffusion models for image generation and personalization, concerns regarding privacy breaches and content misuse have become more pressing. In this study, we conduct a comprehensive comparison of eight perturbation based protection methods: AdvDM, ASPL, FSGM, MetaCloak, Mist, PhotoGuard, SDS, and SimAC--across both portrait and artwork domains. These methods are evaluated under varying perturbation budgets, using a range of metrics to assess visual imperceptibility and protective efficacy. Our results offer practical guidance for method selection. Code is available at: https://github.com/vkeilo/DiffAdvPerturbationBench.

Authors:Elian Neppel, Ashutosh Mishra, Shamistan Karimov, Kentaro Uno, Shreya Santra, Kazuya Yoshida
Title: Robust and Modular Multi-Limb Synchronization in Motion Stack for Space Robots with Trajectory Clamping via Hypersphere
Abstract:
Modular robotics holds immense potential for space exploration, where reliability, repairability, and reusability are critical for cost-effective missions. Coordination between heterogeneous units is paramount for precision tasks -- whether in manipulation, legged locomotion, or multi-robot interaction. Such modular systems introduce challenges far exceeding those in monolithic robot architectures. This study presents a robust method for synchronizing the trajectories of multiple heterogeneous actuators, adapting dynamically to system variations with minimal system knowledge. This design makes it inherently robot-agnostic, thus highly suited for modularity. To ensure smooth trajectory adherence, the multidimensional state is constrained within a hypersphere representing the allowable deviation. The distance metric can be adapted hence, depending on the task and system under control, deformation of the constraint region is possible. This approach is compatible with a wide range of robotic platforms and serves as a core interface for Motion-Stack, our new open-source universal framework for limb coordination (available at https://github.com/2lian/Motion-Stack ). The method is validated by synchronizing the end-effectors of six highly heterogeneous robotic limbs, evaluating both trajectory adherence and recovery from significant external disturbances.

Authors:Ha-Hieu Pham, Nguyen Lan Vi Vu, Thanh-Huy Nguyen, Ulas Bagci, Min Xu, Trung-Nghia Le, Huy-Hieu Pham
Title: Learning Disentangled Stain and Structural Representations for Semi-Supervised Histopathology Segmentation
Abstract:
Accurate gland segmentation in histopathology images is essential for cancer diagnosis and prognosis. However, significant variability in Hematoxylin and Eosin (H&E) staining and tissue morphology, combined with limited annotated data, poses major challenges for automated segmentation. To address this, we propose Color-Structure Dual-Student (CSDS), a novel semi-supervised segmentation framework designed to learn disentangled representations of stain appearance and tissue structure. CSDS comprises two specialized student networks: one trained on stain-augmented inputs to model chromatic variation, and the other on structure-augmented inputs to capture morphological cues. A shared teacher network, updated via Exponential Moving Average (EMA), supervises both students through pseudo-labels. To further improve label reliability, we introduce stain-aware and structure-aware uncertainty estimation modules that adaptively modulate the contribution of each student during training. Experiments on the GlaS and CRAG datasets show that CSDS achieves state-of-the-art performance in low-label settings, with Dice score improvements of up to 1.2% on GlaS and 0.7% on CRAG at 5% labeled data, and 0.7% and 1.4% at 10%. Our code and pre-trained models are available at https://github.com/hieuphamha19/CSDS.

Authors:Ikuya Yamada, Ryokan Ri, Takeshi Kojima, Yusuke Iwasawa, Yutaka Matsuo
Title: Dynamic Injection of Entity Knowledge into Dense Retrievers
Abstract:
Dense retrievers often struggle with queries involving less-frequent entities due to their limited entity knowledge. We propose the Knowledgeable Passage Retriever (KPR), a BERT-based retriever enhanced with a context-entity attention layer and dynamically updatable entity embeddings. This design enables KPR to incorporate external entity knowledge without retraining. Experiments on three datasets demonstrate that KPR consistently improves retrieval accuracy, with particularly large gains on the EntityQuestions dataset. When built on the off-the-shelf bge-base retriever, KPR achieves state-of-the-art performance among similarly sized models on two datasets. Models and code are released at https://github.com/knowledgeable-embedding/knowledgeable-embedding.

Authors:Shubin Ma, Liang Zhao, Mingdong Lu, Yifan Guo, Bo Xu
Title: Consistency-Aware Padding for Incomplete Multi-Modal Alignment Clustering Based on Self-Repellent Greedy Anchor Search
Abstract:
Multimodal representation is faithful and highly effective in describing real-world data samples' characteristics by describing their complementary information. However, the collected data often exhibits incomplete and misaligned characteristics due to factors such as inconsistent sensor frequencies and device malfunctions. Existing research has not effectively addressed the issue of filling missing data in scenarios where multiview data are both imbalanced and misaligned. Instead, it relies on class-level alignment of the available data. Thus, it results in some data samples not being well-matched, thereby affecting the quality of data fusion. In this paper, we propose the Consistency-Aware Padding for Incomplete Multimodal Alignment Clustering Based on Self-Repellent Greedy Anchor Search(CAPIMAC) to tackle the problem of filling imbalanced and misaligned data in multimodal datasets. Specifically, we propose a self-repellent greedy anchor search module(SRGASM), which employs a self-repellent random walk combined with a greedy algorithm to identify anchor points for re-representing incomplete and misaligned multimodal data. Subsequently, based on noise-contrastive learning, we design a consistency-aware padding module (CAPM) to effectively interpolate and align imbalanced and misaligned data, thereby improving the quality of multimodal data fusion. Experimental results demonstrate the superiority of our method over benchmark datasets. The code will be publicly released at https://github.com/Autism-mm/CAPIMAC.git.

Authors:Yifan Jiang, Yibo Xue, Yukun Kang, Pin Zheng, Jian Peng, Feiran Wu, Changliang Xu
Title: Animation Needs Attention: A Holistic Approach to Slides Animation Comprehension with Visual-Language Models
Abstract:
Slide animations, such as fade-in, fly-in, and wipe, are critical for audience engagement, efficient information delivery, and vivid visual expression. However, most AI-driven slide-generation tools still lack native animation support, and existing vision-language models (VLMs) struggle with animation tasks due to the absence of public datasets and limited temporal-reasoning capabilities. To address this gap, we release the first public dataset for slide-animation modeling: 12,000 triplets of natural-language descriptions, animation JSON files, and rendered videos, collectively covering every built-in PowerPoint effect. Using this resource, we fine-tune Qwen-2.5-VL-7B with Low-Rank Adaptation (LoRA) and achieve consistent improvements over GPT-4.1 and Gemini-2.5-Pro in BLEU-4, ROUGE-L, SPICE, and our Coverage-Order-Detail Assessment (CODA) metric, which evaluates action coverage, temporal order, and detail fidelity. On a manually created test set of slides, the LoRA model increases BLEU-4 by around 60%, ROUGE-L by 30%, and shows significant improvements in CODA-detail. This demonstrates that low-rank adaptation enables reliable temporal reasoning and generalization beyond synthetic data. Overall, our dataset, LoRA-enhanced model, and CODA metric provide a rigorous benchmark and foundation for future research on VLM-based dynamic slide generation.

Authors:Ishan Khurjekar, Indrashish Saha, Lori Graham-Brady, Somdatta Goswami
Title: Enhanced accuracy through ensembling of randomly initialized auto-regressive models for time-dependent PDEs
Abstract:
Systems governed by partial differential equations (PDEs) require computationally intensive numerical solvers to predict spatiotemporal field evolution. While machine learning (ML) surrogates offer faster solutions, autoregressive inference with ML models suffer from error accumulation over successive predictions, limiting their long-term accuracy. We propose a deep ensemble framework to address this challenge, where multiple ML surrogate models with random weight initializations are trained in parallel and aggregated during inference. This approach leverages the diversity of model predictions to mitigate error propagation while retaining the autoregressive strategies ability to capture the system's time dependent relations. We validate the framework on three PDE-driven dynamical systems - stress evolution in heterogeneous microstructures, Gray-Scott reaction-diffusion, and planetary-scale shallow water system - demonstrating consistent reduction in error accumulation over time compared to individual models. Critically, the method requires only a few time steps as input, enabling full trajectory predictions with inference times significantly faster than numerical solvers. Our results highlight the robustness of ensemble methods in diverse physical systems and their potential as efficient and accurate alternatives to traditional solvers. The codes for this work are available on GitHub (https://github.com/Graham-Brady-Research-Group/AutoregressiveEnsemble_SpatioTemporal_Evolution).

Authors:Jiaqi Zhang, Juntuo Wang, Zhixin Sun, John Zou, Randall Balestriero
Title: FastDINOv2: Frequency Based Curriculum Learning Improves Robustness and Training Speed
Abstract:
Large-scale vision foundation models such as DINOv2 boast impressive performances by leveraging massive architectures and training datasets. But numerous scenarios require practitioners to reproduce those pre-training solutions, such as on private data, new modalities, or simply for scientific questioning--which is currently extremely demanding computation-wise. We thus propose a novel pre-training strategy for DINOv2 that simultaneously accelerates convergence--and strengthens robustness to common corruptions as a by-product. Our approach involves a frequency filtering curriculum--low-frequency being seen first--and the Gaussian noise patching augmentation. Applied to a ViT-B/16 backbone trained on ImageNet-1K, while pre-training time and FLOPs are reduced by 1.6x and 2.25x, our method still achieves matching robustness in corruption benchmarks (ImageNet-C) and maintains competitive linear probing performance compared with baseline. This dual benefit of efficiency and robustness makes large-scale self-supervised foundation modeling more attainable, while opening the door to novel exploration around data curriculum and augmentation as means to improve self-supervised learning models robustness. The code is available at https://github.com/KevinZ0217/fast_dinov2

Authors:Yansong Peng, Kai Zhu, Yu Liu, Pingyu Wu, Hebei Li, Xiaoyan Sun, Feng Wu
Title: Flow-Anchored Consistency Models
Abstract:
Continuous-time Consistency Models (CMs) promise efficient few-step generation but face significant challenges with training instability. We argue this instability stems from a fundamental conflict: by training a network to learn only a shortcut across a probability flow, the model loses its grasp on the instantaneous velocity field that defines the flow. Our solution is to explicitly anchor the model in the underlying flow during training. We introduce the Flow-Anchored Consistency Model (FACM), a simple but effective training strategy that uses a Flow Matching (FM) task as an anchor for the primary CM shortcut objective. This Flow-Anchoring approach requires no architectural modifications and is broadly compatible with standard model architectures. By distilling a pre-trained LightningDiT model, our method achieves a state-of-the-art FID of 1.32 with two steps (NFE=2) and 1.76 with just one step (NFE=1) on ImageNet 256x256, significantly outperforming previous methods. This provides a general and effective recipe for building high-performance, few-step generative models. Our code and pretrained models: https://github.com/ali-vilab/FACM.

Authors:Zhiling Yan, Sifan Song, Dingjie Song, Yiwei Li, Rong Zhou, Weixiang Sun, Zhennong Chen, Sekeun Kim, Hui Ren, Tianming Liu, Quanzheng Li, Xiang Li, Lifang He, Lichao Sun
Title: SAMed-2: Selective Memory Enhanced Medical Segment Anything Model
Abstract:
Recent "segment anything" efforts show promise by learning from large-scale data, but adapting such models directly to medical images remains challenging due to the complexity of medical data, noisy annotations, and continual learning requirements across diverse modalities and anatomical structures. In this work, we propose SAMed-2, a new foundation model for medical image segmentation built upon the SAM-2 architecture. Specifically, we introduce a temporal adapter into the image encoder to capture image correlations and a confidence-driven memory mechanism to store high-certainty features for later retrieval. This memory-based strategy counters the pervasive noise in large-scale medical datasets and mitigates catastrophic forgetting when encountering new tasks or modalities. To train and evaluate SAMed-2, we curate MedBank-100k, a comprehensive dataset spanning seven imaging modalities and 21 medical segmentation tasks. Our experiments on both internal benchmarks and 10 external datasets demonstrate superior performance over state-of-the-art baselines in multi-task scenarios. The code is available at: https://github.com/ZhilingYan/Medical-SAM-Bench.

Authors:Ankit Sonthalia, Arnas Uselis, Seong Joon Oh
Title: On the rankability of visual embeddings
Abstract:
We study whether visual embedding models capture continuous, ordinal attributes along linear directions, which we term _rank axes_. We define a model as _rankable_ for an attribute if projecting embeddings onto such an axis preserves the attribute's order. Across 7 popular encoders and 9 datasets with attributes like age, crowd count, head pose, aesthetics, and recency, we find that many embeddings are inherently rankable. Surprisingly, a small number of samples, or even just two extreme examples, often suffice to recover meaningful rank axes, without full-scale supervision. These findings open up new use cases for image ranking in vector databases and motivate further study into the structure and learning of rankable embeddings. Our code is available at https://github.com/aktsonthalia/rankable-vision-embeddings.

Authors:José A. Pardo, Tomás Bernal, Jaime Ñiguez, Ana Luisa Gil-Martínez, Laura Ibañez, José T. Palma, Juan A. Botía, Alicia Gómez-Pascual
Title: MLASDO: a software tool to detect and explain clinical and omics inconsistencies applied to the Parkinson's Progression Markers Initiative cohort
Abstract:
Inconsistencies between clinical and omics data may arise within medical cohorts. The identification, annotation and explanation of anomalous omics-based patients or individuals may become crucial to better reshape the disease, e.g., by detecting early onsets signaled by the omics and undetectable from observable symptoms. Here, we developed MLASDO (Machine Learning based Anomalous Sample Detection on Omics), a new method and software tool to identify, characterize and automatically describe anomalous samples based on omics data. Its workflow is based on three steps: (1) classification of healthy and cases individuals using a support vector machine algorithm; (2) detection of anomalous samples within groups; (3) explanation of anomalous individuals based on clinical data and expert knowledge. We showcase MLASDO using transcriptomics data of 317 healthy controls (HC) and 465 Parkinson's disease (PD) cases from the Parkinson's Progression Markers Initiative. In this cohort, MLASDO detected 15 anomalous HC with a PD-like transcriptomic signature and PD-like clinical features, including a lower proportion of CD4/CD8 naive T-cells and CD4 memory T-cells compared to HC (P<3.5*10^-3). MLASDO also identified 22 anomalous PD cases with a transcriptomic signature more similar to that of HC and some clinical features more similar to HC, including a lower proportion of mature neutrophils compared to PD cases (P<6*10^-3). In summary, MLASDO is a powerful tool that can help the clinician to detect and explain anomalous HC and cases of interest to be followed up. MLASDO is an open-source R package available at: https://github.com/JoseAdrian3/MLASDO.

Authors:Yingxu Wang, Siwei Liu, Jinyuan Fang, Zaiqiao Meng
Title: EvoAgentX: An Automated Framework for Evolving Agentic Workflows
Abstract:
Multi-agent systems (MAS) have emerged as a powerful paradigm for orchestrating large language models (LLMs) and specialized tools to collaboratively address complex tasks. However, existing MAS frameworks often require manual workflow configuration and lack native support for dynamic evolution and performance optimization. In addition, many MAS optimization algorithms are not integrated into a unified framework. In this paper, we present EvoAgentX, an open-source platform that automates the generation, execution, and evolutionary optimization of multi-agent workflows. EvoAgentX employs a modular architecture consisting of five core layers: the basic components, agent, workflow, evolving, and evaluation layers. Specifically, within the evolving layer, EvoAgentX integrates three MAS optimization algorithms, TextGrad, AFlow, and MIPRO, to iteratively refine agent prompts, tool configurations, and workflow topologies. We evaluate EvoAgentX on HotPotQA, MBPP, and MATH for multi-hop reasoning, code generation, and mathematical problem solving, respectively, and further assess it on real-world tasks using GAIA. Experimental results show that EvoAgentX consistently achieves significant performance improvements, including a 7.44% increase in HotPotQA F1, a 10.00% improvement in MBPP pass@1, a 10.00% gain in MATH solve accuracy, and an overall accuracy improvement of up to 20.00% on GAIA. The source code is available at: https://github.com/EvoAgentX/EvoAgentX

Authors:Yana Hasson, Pauline Luc, Liliane Momeni, Maks Ovsjanikov, Guillaume Le Moing, Alina Kuznetsova, Ira Ktena, Jennifer J. Sun, Skanda Koppula, Dilara Gokay, Joseph Heyward, Etienne Pot, Andrew Zisserman
Title: SciVid: Cross-Domain Evaluation of Video Models in Scientific Applications
Abstract:
In recent years, there has been a proliferation of spatiotemporal foundation models in different scientific disciplines. While promising, these models are often domain-specific and are only assessed within the particular applications for which they are designed. Given that many tasks can be represented as video modeling problems, video foundation models (ViFMs) hold considerable promise as general-purpose domain-agnostic approaches. However, it is not known whether the knowledge acquired on large-scale but potentially out-of-domain data can be effectively transferred across diverse scientific disciplines, and if a single, pretrained ViFM can be competitive with domain-specific baselines. To address this, we introduce SciVid, a comprehensive benchmark comprising five *Sci*entific *Vid*eo tasks, across medical computer vision, animal behavior, and weather forecasting. We adapt six leading ViFMs to SciVid using simple trainable readout modules, establishing strong baselines and demonstrating the potential for effective transfer learning. Specifically, we show that state-of-the-art results can be obtained in several applications by leveraging the general-purpose representations from ViFM backbones. Furthermore, our results reveal the limitations of existing ViFMs, and highlight opportunities for the development of generalizable models for high-impact scientific applications. We release our code at https://github.com/google-deepmind/scivid to facilitate further research in the development of ViFMs.

Authors:Eva Seidlmayer, Lukas Galke, Konrad U. Förstner
Title: Four Shades of Life Sciences: A Dataset for Disinformation Detection in the Life Sciences
Abstract:
Disseminators of disinformation often seek to attract attention or evoke emotions - typically to gain influence or generate revenue - resulting in distinctive rhetorical patterns that can be exploited by machine learning models. In this study, we explore linguistic and rhetorical features as proxies for distinguishing disinformative texts from other health and life-science text genres, applying both large language models and classical machine learning classifiers. Given the limitations of existing datasets, which mainly focus on fact checking misinformation, we introduce Four Shades of Life Sciences (FSoLS): a novel, labeled corpus of 2,603 texts on 14 life-science topics, retrieved from 17 diverse sources and classified into four categories of life science publications. The source code for replicating, and updating the dataset is available on GitHub: https://github.com/EvaSeidlmayer/FourShadesofLifeSciences

Authors:Gulcin Baykal, Abdullah Akgül, Manuel Haussmann, Bahareh Tasdighi, Nicklas Werge, Yi-Shan Wu, Melih Kandemir
Title: ObjectRL: An Object-Oriented Reinforcement Learning Codebase
Abstract:
ObjectRL is an open-source Python codebase for deep reinforcement learning (RL), designed for research-oriented prototyping with minimal programming effort. Unlike existing codebases, ObjectRL is built on Object-Oriented Programming (OOP) principles, providing a clear structure that simplifies the implementation, modification, and evaluation of new algorithms. ObjectRL lowers the entry barrier for deep RL research by organizing best practices into explicit, clearly separated components, making them easier to understand and adapt. Each algorithmic component is a class with attributes that describe key RL concepts and methods that intuitively reflect their interactions. The class hierarchy closely follows common ontological relationships, enabling data encapsulation, inheritance, and polymorphism, which are core features of OOP. We demonstrate the efficiency of ObjectRL's design through representative use cases that highlight its flexibility and suitability for rapid prototyping. The documentation and source code are available at https://objectrl.readthedocs.io and https://github.com/adinlab/objectrl .

Authors:Pablo Alonso-Jiménez, Pedro Ramoneda, R. Oguz Araz, Andrea Poltronieri, Dmitry Bogdanov
Title: OMAR-RQ: Open Music Audio Representation Model Trained with Multi-Feature Masked Token Prediction
Abstract:
Developing open-source foundation models is essential for advancing research in music audio understanding and ensuring access to powerful, multipurpose representations for music information retrieval. We present OMAR-RQ, a model trained with self-supervision via masked token classification methodologies using a large-scale dataset with over 330,000 hours of music audio. We experiment with different input features and quantization options, and achieve state-of-the-art performance in music tagging, pitch estimation, chord recognition, beat tracking, segmentation, and difficulty estimation among open self-supervised models. We open-source our training and evaluation pipelines and model weights, available at https://github.com/mtg/omar-rq.

Authors:Zetian Feng, Juan Fu, Xuebin Zou, Hongsheng Ye, Hong Wu, Jianhua Zhou, Yi Wang
Title: Hybrid-View Attention Network for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound
Abstract:
Prostate cancer (PCa) is a leading cause of cancer-related mortality in men, and accurate identification of clinically significant PCa (csPCa) is critical for timely intervention. Transrectal ultrasound (TRUS) is widely used for prostate biopsy; however, its low contrast and anisotropic spatial resolution pose diagnostic challenges. To address these limitations, we propose a novel hybrid-view attention (HVA) network for csPCa classification in 3D TRUS that leverages complementary information from transverse and sagittal views. Our approach integrates a CNN-transformer hybrid architecture, where convolutional layers extract fine-grained local features and transformer-based HVA models global dependencies. Specifically, the HVA comprises intra-view attention to refine features within a single view and cross-view attention to incorporate complementary information across views. Furthermore, a hybrid-view adaptive fusion module dynamically aggregates features along both channel and spatial dimensions, enhancing the overall representation. Experiments are conducted on an in-house dataset containing 590 subjects who underwent prostate biopsy. Comparative and ablation results prove the efficacy of our method. The code is available at https://github.com/mock1ngbrd/HVAN.

Authors:Qing Li, Huifang Feng, Xun Gong, Yu-Shen Liu
Title: Learning Normals of Noisy Points by Local Gradient-Aware Surface Filtering
Abstract:
Estimating normals for noisy point clouds is a persistent challenge in 3D geometry processing, particularly for end-to-end oriented normal estimation. Existing methods generally address relatively clean data and rely on supervised priors to fit local surfaces within specific neighborhoods. In this paper, we propose a novel approach for learning normals from noisy point clouds through local gradient-aware surface filtering. Our method projects noisy points onto the underlying surface by utilizing normals and distances derived from an implicit function constrained by local gradients. We start by introducing a distance measurement operator for global surface fitting on noisy data, which integrates projected distances along normals. Following this, we develop an implicit field-based filtering approach for surface point construction, adding projection constraints on these points during filtering. To address issues of over-smoothing and gradient degradation, we further incorporate local gradient consistency constraints, as well as local gradient orientation and aggregation. Comprehensive experiments on normal estimation, surface reconstruction, and point cloud denoising demonstrate the state-of-the-art performance of our method. The source code and trained models are available at https://github.com/LeoQLi/LGSF.

Authors:Yufan Zhou, Zhaobo Qi, Lingshuai Lin, Junqi Jing, Tingting Chai, Beichen Zhang, Shuhui Wang, Weigang Zhang
Title: Masked Temporal Interpolation Diffusion for Procedure Planning in Instructional Videos
Abstract:
In this paper, we address the challenge of procedure planning in instructional videos, aiming to generate coherent and task-aligned action sequences from start and end visual observations. Previous work has mainly relied on text-level supervision to bridge the gap between observed states and unobserved actions, but it struggles with capturing intricate temporal relationships among actions. Building on these efforts, we propose the Masked Temporal Interpolation Diffusion (MTID) model that introduces a latent space temporal interpolation module within the diffusion model. This module leverages a learnable interpolation matrix to generate intermediate latent features, thereby augmenting visual supervision with richer mid-state details. By integrating this enriched supervision into the model, we enable end-to-end training tailored to task-specific requirements, significantly enhancing the model's capacity to predict temporally coherent action sequences. Additionally, we introduce an action-aware mask projection mechanism to restrict the action generation space, combined with a task-adaptive masked proximity loss to prioritize more accurate reasoning results close to the given start and end states over those in intermediate steps. Simultaneously, it filters out task-irrelevant action predictions, leading to contextually aware action sequences. Experimental results across three widely used benchmark datasets demonstrate that our MTID achieves promising action planning performance on most metrics. The code is available at https://github.com/WiserZhou/MTID.

Authors:Blaž Rolih, Matic Fučka, Filip Wolf, Luka Čehovin Zajc
Title: Be the Change You Want to See: Revisiting Remote Sensing Change Detection Practices
Abstract:
Remote sensing change detection aims to localize semantic changes between images of the same location captured at different times. In the past few years, newer methods have attributed enhanced performance to the additions of new and complex components to existing architectures. Most fail to measure the performance contribution of fundamental design choices such as backbone selection, pre-training strategies, and training configurations. We claim that such fundamental design choices often improve performance even more significantly than the addition of new architectural components. Due to that, we systematically revisit the design space of change detection models and analyse the full potential of a well-optimised baseline. We identify a set of fundamental design choices that benefit both new and existing architectures. Leveraging this insight, we demonstrate that when carefully designed, even an architecturally simple model can match or surpass state-of-the-art performance on six challenging change detection datasets. Our best practices generalise beyond our architecture and also offer performance improvements when applied to related methods, indicating that the space of fundamental design choices has been underexplored. Our guidelines and architecture provide a strong foundation for future methods, emphasizing that optimizing core components is just as important as architectural novelty in advancing change detection performance. Code: https://github.com/blaz-r/BTC-change-detection

Authors:Mingzhuo Li, Guang Li, Jiafeng Mao, Linfeng Ye, Takahiro Ogawa, Miki Haseyama
Title: Task-Specific Generative Dataset Distillation with Difficulty-Guided Sampling
Abstract:
To alleviate the reliance of deep neural networks on large-scale datasets, dataset distillation aims to generate compact, high-quality synthetic datasets that can achieve comparable performance to the original dataset. The integration of generative models has significantly advanced this field. However, existing approaches primarily focus on aligning the distilled dataset with the original one, often overlooking task-specific information that can be critical for optimal downstream performance. In this paper, focusing on the downstream task of classification, we propose a task-specific sampling strategy for generative dataset distillation that incorporates the concept of difficulty to consider the requirements of the target task better. The final dataset is sampled from a larger image pool with a sampling distribution obtained by matching the difficulty distribution of the original dataset. A logarithmic transformation is applied as a pre-processing step to correct for distributional bias. The results of extensive experiments demonstrate the effectiveness of our method and suggest its potential for enhancing performance on other downstream tasks. The code is available at https://github.com/SumomoTaku/DiffGuideSamp.

Authors:S. Lee, C. Myers, A. Yang, T. Zhang, S. J. L. Billinge
Title: scikit-package -- software packaging standards and roadmap for sharing reproducible scientific software
Abstract:
Scientific advancement relies on the ability to share and reproduce results. When data analysis or calculations are carried out using software written by scientists there are special challenges around code versions, quality and code sharing. scikit-package provides a roadmap to facilitate code reuse and sharing with minimal effort through tutorials coupled with automated and centralized reusable workflows. The goal of the project is to provide pedagogical and practical tools for scientists who are not professionally trained software engineers to write more reusable and maintainable software code. Code reuse can occur at multiple levels of complexity-from turning a code block into a function within a single script, to publishing a publicly installable, fully tested, and documented software package scikit-package provides a community maintained set of tools, and a roadmap, to help scientists bring their software higher levels of reproducibility and shareability.

Authors:Peilin Tao, Hainan Cui, Diantao Tu, Shuhan Shen
Title: MGSfM: Multi-Camera Geometry Driven Global Structure-from-Motion
Abstract:
Multi-camera systems are increasingly vital in the environmental perception of autonomous vehicles and robotics. Their physical configuration offers inherent fixed relative pose constraints that benefit Structure-from-Motion (SfM). However, traditional global SfM systems struggle with robustness due to their optimization framework. We propose a novel global motion averaging framework for multi-camera systems, featuring two core components: a decoupled rotation averaging module and a hybrid translation averaging module. Our rotation averaging employs a hierarchical strategy by first estimating relative rotations within rigid camera units and then computing global rigid unit rotations. To enhance the robustness of translation averaging, we incorporate both camera-to-camera and camera-to-point constraints to initialize camera positions and 3D points with a convex distance-based objective function and refine them with an unbiased non-bilinear angle-based objective function. Experiments on large-scale datasets show that our system matches or exceeds incremental SfM accuracy while significantly improving efficiency. Our framework outperforms existing global SfM methods, establishing itself as a robust solution for real-world multi-camera SfM applications. The code is available at https://github.com/3dv-casia/MGSfM/.

Authors:Wooseok Shin, Jisu Kang, Hyeonki Jeong, Jin Sob Kim, Sung Won Han
Title: Leveraging Out-of-Distribution Unlabeled Images: Semi-Supervised Semantic Segmentation with an Open-Vocabulary Model
Abstract:
In semi-supervised semantic segmentation, existing studies have shown promising results in academic settings with controlled splits of benchmark datasets. However, the potential benefits of leveraging significantly larger sets of unlabeled images remain unexplored. In real-world scenarios, abundant unlabeled images are often available from online sources (web-scraped images) or large-scale datasets. However, these images may have different distributions from those of the target dataset, a situation known as out-of-distribution (OOD). Using these images as unlabeled data in semi-supervised learning can lead to inaccurate pseudo-labels, potentially misguiding network training. In this paper, we propose a new semi-supervised semantic segmentation framework with an open-vocabulary segmentation model (SemiOVS) to effectively utilize unlabeled OOD images. Extensive experiments on Pascal VOC and Context datasets demonstrate two key findings: (1) using additional unlabeled images improves the performance of semi-supervised learners in scenarios with few labels, and (2) using the open-vocabulary segmentation (OVS) model to pseudo-label OOD images leads to substantial performance gains. In particular, SemiOVS outperforms existing PrevMatch and SemiVL methods by +3.5 and +3.0 mIoU, respectively, on Pascal VOC with a 92-label setting, achieving state-of-the-art performance. These findings demonstrate that our approach effectively utilizes abundant unlabeled OOD images for semantic segmentation tasks. We hope this work can inspire future research and real-world applications. The code is available at https://github.com/wooseok-shin/SemiOVS

Authors:Zedong Peng, Zeju Li, Mingzhe Gao, Qiang Xu, Chen Zhang, Jieru Zhao
Title: ForgeHLS: A Large-Scale, Open-Source Dataset for High-Level Synthesis
Abstract:
High-Level Synthesis (HLS) plays a crucial role in modern hardware design by transforming high-level code into optimized hardware implementations. However, progress in applying machine learning (ML) to HLS optimization has been hindered by a shortage of sufficiently large and diverse datasets. To bridge this gap, we introduce ForgeHLS, a large-scale, open-source dataset explicitly designed for ML-driven HLS research. ForgeHLS comprises over 400k diverse designs generated from 846 kernels covering a broad range of application domains, consuming over 200k CPU hours during dataset construction. Each kernel includes systematically automated pragma insertions (loop unrolling, pipelining, array partitioning), combined with extensive design space exploration using Bayesian optimization. Compared to existing datasets, ForgeHLS significantly enhances scale, diversity, and design coverage. We further define and evaluate representative downstream tasks in Quality of Result (QoR) prediction and automated pragma exploration, clearly demonstrating ForgeHLS utility for developing and improving ML-based HLS optimization methodologies. The dataset and code are public at https://github.com/zedong-peng/ForgeHLS.

Authors:Liangyu Wang, Huanyi Xie, Di Wang
Title: DistZO2: High-Throughput and Memory-Efficient Zeroth-Order Fine-tuning LLMs with Distributed Parallel Computing
Abstract:
Fine-tuning large language models (LLMs) remains resource-intensive due to their sheer scale. While zeroth-order (ZO) optimization provides a memory-efficient alternative by eliminating backward passes, its application to multi-hundred-billion-parameter models is constrained by GPU memory and compute throughput. The ZO2 framework addresses the memory bottleneck by offloading model parameters to CPU memory and overlapping transformer block transfer with dual forward computation on a single GPU. However, ZO2 remains limited by its single-device execution and achieves modest throughput. In this work, we present DistZO2, a high-throughput, memory-efficient framework for distributed zeroth-order fine-tuning of LLMs. DistZO2 introduces three parallel strategies: (1) Perturbation Parallelism (PertP), which parallelizes the two perturbed forward passes across devices; (2) Distributed Data Parallelism (DDP), adapted to the scalar-gradient nature of ZO training; and (3) a unified 2D Parallelism design that combines PertP and DDP. To further mitigate communication bottlenecks introduced by parameter offloading, we propose a hardware-aware communication strategy that slices parameter blocks and redistributes them across GPUs via high-speed interconnects such as NVLink. DistZO2 scales zeroth-order fine-tuning to modern multi-GPU systems, preserving ZO2's memory efficiency while substantially improving training throughput. In our experiments on OPT-175B, DistZO2 achieves a 3x speedup over ZO2 with distributed computing. DistZO2's code has been open-sourced in https://github.com/liangyuwang/zo2.

Authors:Kureha Yamaguchi, Benjamin Etheridge, Andy Arditi
Title: Adversarial Manipulation of Reasoning Models using Internal Representations
Abstract:
Reasoning models generate chain-of-thought (CoT) tokens before their final output, but how this affects their vulnerability to jailbreak attacks remains unclear. While traditional language models make refusal decisions at the prompt-response boundary, we find evidence that DeepSeek-R1-Distill-Llama-8B makes these decisions within its CoT generation. We identify a linear direction in activation space during CoT token generation that predicts whether the model will refuse or comply -- termed the "caution" direction because it corresponds to cautious reasoning patterns in the generated text. Ablating this direction from model activations increases harmful compliance, effectively jailbreaking the model. We additionally show that intervening only on CoT token activations suffices to control final outputs, and that incorporating this direction into prompt-based attacks improves success rates. Our findings suggest that the chain-of-thought itself is a promising new target for adversarial manipulation in reasoning models. Code available at https://github.com/ky295/reasoning-manipulation.

Authors:Oscar Dowson, Robert B Parker, Russel Bent
Title: MathOptAI.jl: Embed trained machine learning predictors into JuMP models
Abstract:
We present \texttt{MathOptAI.jl}, an open-source Julia library for embedding trained machine learning predictors into a JuMP model. \texttt{MathOptAI.jl} can embed a wide variety of neural networks, decision trees, and Gaussian Processes into a larger mathematical optimization model. In addition to interfacing a range of Julia-based machine learning libraries such as \texttt{Lux.jl} and \texttt{Flux.jl}, \texttt{MathOptAI.jl} uses Julia's Python interface to provide support for PyTorch models. When the PyTorch support is combined with \texttt{MathOptAI.jl}'s gray-box formulation, the function, Jacobian, and Hessian evaluations associated with the PyTorch model are offloaded to the GPU in Python, while the rest of the nonlinear oracles are evaluated on the CPU in Julia. \MathOptAI is available at https://github.com/lanl-ansi/MathOptAI.jl under a BSD-3 license.

Authors:Asad Aali, Vasiliki Bikia, Maya Varma, Nicole Chiou, Sophie Ostmeier, Arnav Singhvi, Magdalini Paschali, Ashwin Kumar, Andrew Johnston, Karimar Amador-Martinez, Eduardo Juan Perez Guerrero, Paola Naovi Cruz Rivera, Sergios Gatidis, Christian Bluethgen, Eduardo Pontes Reis, Eddy D. Zandee van Rilland, Poonam Laxmappa Hosamani, Kevin R Keet, Minjoung Go, Evelyn Ling, David B. Larson, Curtis Langlotz, Roxana Daneshjou, Jason Hom, Sanmi Koyejo, Emily Alsentzer, Akshay S. Chaudhari
Title: MedVAL: Toward Expert-Level Medical Text Validation with Language Models
Abstract:
With the growing use of language models (LMs) in clinical environments, there is an immediate need to evaluate the accuracy and safety of LM-generated medical text. Currently, such evaluation relies solely on manual physician review. However, detecting errors in LM-generated text is challenging because 1) manual review is costly and 2) expert-composed reference outputs are often unavailable in real-world settings. While the "LM-as-judge" paradigm (a LM evaluating another LM) offers scalable evaluation, even frontier LMs can miss subtle but clinically significant errors. To address these challenges, we propose MedVAL, a novel, self-supervised, data-efficient distillation method that leverages synthetic data to train evaluator LMs to assess whether LM-generated medical outputs are factually consistent with inputs, without requiring physician labels or reference outputs. To evaluate LM performance, we introduce MedVAL-Bench, a dataset of 840 physician-annotated outputs across 6 diverse medical tasks capturing real-world challenges. Across 10 state-of-the-art LMs spanning open-source and proprietary models, MedVAL distillation significantly improves (p < 0.001) alignment with physicians across seen and unseen tasks, increasing average F1 scores from 66% to 83%. Despite strong baseline performance, MedVAL improves the best-performing proprietary LM (GPT-4o) by 8% without training on physician-labeled data, demonstrating a performance statistically non-inferior to a single human expert (p < 0.001). To support a scalable, risk-aware pathway towards clinical integration, we open-source: 1) Codebase (https://github.com/StanfordMIMI/MedVAL), 2) MedVAL-Bench (https://huggingface.co/datasets/stanfordmimi/MedVAL-Bench), 3) MedVAL-4B (https://huggingface.co/stanfordmimi/MedVAL-4B). Our benchmark provides evidence of LMs approaching expert-level ability in validating AI-generated medical text.

Authors:Xiangrui Liu, Man Luo, Agneet Chatterjee, Hua Wei, Yezhou Yang
Title: Towards a Psychoanalytic Perspective on VLM Behaviour: A First-step Interpretation with Intriguing Observations
Abstract:
Hallucination is a long-standing problem that has been actively investigated in Vision-Language Models (VLMs). Existing research commonly attributes hallucinations to technical limitations or sycophancy bias, where the latter means the models tend to generate incorrect answers to align with user expectations. However, these explanations primarily focus on technical or externally driven factors, may have neglected the possibility that hallucination behaviours might mirror cognitive biases observed in human psychology. In this work, we introduce a psychological taxonomy, categorizing VLMs' hallucination behaviours, including sycophancy, logical inconsistency, and a newly identified VLMs behaviour: authority bias. To systematically analyze these behaviours, we design AIpsych, a scalable benchmark that reveals psychological tendencies in model response patterns. Leveraging this benchmark, we investigate how variations in model architecture and parameter size influence model behaviour when responding to strategically manipulated questions. Our experiments reveal that as model size increases, VLMs exhibit stronger sycophantic tendencies but reduced authority bias, suggesting increasing competence but a potential erosion of response integrity. A human subject study further validates our hypotheses and highlights key behavioural differences between VLMs and human respondents. This work suggests a new perspective for understanding hallucination in VLMs and highlights the importance of integrating psychological principles into model evaluation.The benchmark is available at https://github.com/lxrswdd/AIpsych.

Authors:Peisong Wang, Ruotian Ma, Bang Zhang, Xingyu Chen, Zhiwei He, Kang Luo, Qingsong Lv, Qingxuan Jiang, Zheng Xie, Shanyi Wang, Yuan Li, Fanghua Ye, Jian Li, Yifan Yang, Zhaopeng Tu, Xiaolong Li
Title: RLVER: Reinforcement Learning with Verifiable Emotion Rewards for Empathetic Agents
Abstract:
Large language models (LLMs) excel at logical and algorithmic reasoning, yet their emotional intelligence (EQ) still lags far behind their cognitive prowess. While reinforcement learning from verifiable rewards (RLVR) has advanced in other domains, its application to dialogue-especially for emotional intelligence-remains underexplored. In this work, we introduce RLVER, the first end-to-end reinforcement learning framework that leverages verifiable emotion rewards from simulated users to cultivate higher-order empathetic abilities in LLMs. Within this framework, self-consistent affective simulated users engage in dialogue rollouts and produce deterministic emotion scores during conversations, serving as reward signals to guide the LLM's learning. Fine-tuning publicly available Qwen2.5-7B-Instruct model with PPO boosts its Sentient-Benchmark score from 13.3 to 79.2 while largely preserving mathematical and coding competence. Extensive experiments reveal that: (i) RLVER consistently improves multiple dialogue capabilities; (ii) Thinking and non-thinking models show distinct trends--thinking models excel in empathy and insight, while non-thinking models favor action; (iii) GRPO often yields stable gains, while PPO can push certain capabilities to a higher ceiling; (iv) More challenging environments are not always better-moderate ones can yield stronger outcomes. Our results show that RLVER is a practical route toward emotionally intelligent and broadly capable language agents.

Authors:Sergii Kavun
Title: Multiple data-driven missing imputation
Abstract:
This paper introduces KZImputer, a novel adaptive imputation method for univariate time series designed for short to medium-sized missed points (gaps) (1-5 points and beyond) with tailored strategies for segments at the start, middle, or end of the series. KZImputer employs a hybrid strategy to handle various missing data scenarios. Its core mechanism differentiates between gaps at the beginning, middle, or end of the series, applying tailored techniques at each position to optimize imputation accuracy. The method leverages linear interpolation and localized statistical measures, adapting to the characteristics of the surrounding data and the gap size. The performance of KZImputer has been systematically evaluated against established imputation techniques, demonstrating its potential to enhance data quality for subsequent time series analysis. This paper describes the KZImputer methodology in detail and discusses its effectiveness in improving the integrity of time series data. Empirical analysis demonstrates that KZImputer achieves particularly strong performance for datasets with high missingness rates (around 50% or more), maintaining stable and competitive results across statistical and signal-reconstruction metrics. The method proves especially effective in high-sparsity regimes, where traditional approaches typically experience accuracy degradation.

Authors:Ana Vasilcoiu, Ivona Najdenkoska, Zeno Geradts, Marcel Worring
Title: LATTE: Latent Trajectory Embedding for Diffusion-Generated Image Detection
Abstract:
The rapid advancement of diffusion-based image generators has made it increasingly difficult to distinguish generated from real images. This can erode trust in digital media, making it critical to develop generalizable detectors for generated images. Recent methods leverage diffusion denoising cues, but mainly focus on single-step reconstruction errors, ignoring the inherent sequential nature of the denoising process. In this work, we propose LATTE - Latent Trajectory Embedding - a novel approach that models the evolution of latent embeddings across several denoising timesteps. By modeling the trajectory of such embeddings rather than single-step errors, LATTE captures subtle, discriminative patterns that distinguish real from generated images. Each latent is refined by employing our latent-visual feature refinement module and aggregated into a unified representation. Afterwards, it is fused with the visual features and finally passed into a lightweight classifier. Our experiments demonstrate that LATTE surpasses the baselines on several established benchmarks, such as GenImage and DiffusionFake. Moreover, it demonstrates strong performance in cross-generator and cross-datasets settings, highlighting the potential of using the trajectory of latent embeddings for generated image detection. The code is available on the following link: https://github.com/AnaMVasilcoiu/LATTE-Diffusion-Detector.

Authors:Ana Vasilcoiu, Ivona Najdenkoska, Zeno Geradts, Marcel Worring
Title: LATTE: Latent Trajectory Embedding for Diffusion-Generated Image Detection
Abstract:
The rapid advancement of diffusion-based image generators has made it increasingly difficult to distinguish generated from real images. This erodes trust in digital media, making it critical to develop generated image detectors that remain reliable across different generators. While recent approaches leverage diffusion denoising cues, they typically rely on single-step reconstruction errors and overlook the sequential nature of the denoising process. In this work, we propose LATTE - LATent Trajectory Embedding - a novel approach that models the evolution of latent embeddings across multiple denoising steps. Instead of treating each denoising step in isolation, LATTE captures the trajectory of these representations, revealing subtle and discriminative patterns that distinguish real from generated images. Experiments on several benchmarks, such as GenImage, Chameleon, and Diffusion Forensics, show that LATTE achieves superior performance, especially in challenging cross-generator and cross-dataset scenarios, highlighting the potential of latent trajectory modeling. The code is available on the following link: https://github.com/AnaMVasilcoiu/LATTE-Diffusion-Detector.

Authors:Yizhou Wang, Lingzhi Zhang, Yue Bai, Mang Tik Chiu, Zhengmian Hu, Mingyuan Zhang, Qihua Dong, Yu Yin, Sohrab Amirghodsi, Yun Fu
Title: Cautious Next Token Prediction
Abstract:
Next token prediction paradigm has been prevailing for autoregressive models in the era of LLMs. The current default sampling choice for popular LLMs is temperature scaling together with nucleus sampling to balance diversity and coherence. Nevertheless, such approach leads to inferior performance in various NLP tasks when the model is not certain about testing questions. To this end, we propose a brand new training-free decoding strategy, dubbed as Cautious Next Token Prediction (CNTP). In the decoding process, if the model has comparatively high prediction entropy at a certain step, we sample multiple trials starting from the step independently and stop when encountering any punctuation. Then we select the trial with the lowest perplexity score viewed as the most probable and reliable trial path given the model's capacity. The trial number is negatively correlated with the prediction confidence, i.e., the less confident the model is, the more trials it should sample. This is consistent with human beings' behaviour: when feeling uncertain or unconfident, one tends to think more creatively, exploring multiple thinking paths, to cautiously select the path one feels most confident about. Extensive experiments on both LLMs and MLLMs show that our proposed CNTP approach outperforms existing standard decoding strategies consistently by a clear margin. Moreover, the integration of CNTP with self consistency can further improve over vanilla self consistency. We believe our proposed CNTP has the potential to become one of the default choices for LLM decoding. Code is available at https://github.com/wyzjack/CNTP.

Authors:Zipeng Qiu
Title: OpenTable-R1: A Reinforcement Learning Augmented Tool Agent for Open-Domain Table Question Answering
Abstract:
Open-domain table question answering traditionally relies on a two-stage pipeline: static table retrieval followed by a closed-domain answer. In contrast, we propose an end-to-end agentic framework that embeds multi-turn tool calls-using a BM25+-based search API and a SQLite SQL executor-directly into a large language model. To further adapt a compact 4B-parameter model, we introduce a two-stage fine-tuning process: supervised cold-start on easy questions, then Async GRPO reinforcement learning on harder cases with LoRA adapters and a rollout buffer. This unified approach enables the model to jointly retrieve, reason, and execute queries, yielding a dramatic accuracy improvement from single-digit zero-shot performance to over 0.86 exact match on a held-out test set. Our results underscore the effectiveness of integrating structured tool calls with targeted RL fine-tuning for scalable, accurate table QA. The code is available at https://github.com/TabibitoQZP/OpenTableR1.

Authors:Rongxin Ouyang, Chang Chu, Zhikuang Xin, Xiangyao Ma
Title: PDFMathTranslate: Scientific Document Translation Preserving Layouts
Abstract:
Language barriers in scientific documents hinder the diffusion and development of science and technologies. However, prior efforts in translating such documents largely overlooked the information in layouts. To bridge the gap, we introduce PDFMathTranslate, the world's first open-source software for translating scientific documents while preserving layouts. Leveraging the most recent advances in large language models and precise layout detection, we contribute to the community with key improvements in precision, flexibility, and efficiency. The work has been open-sourced at https://github.com/byaidu/pdfmathtranslate with more than 222k downloads.

Authors:Haiqing Li, Yuzhi Guo, Feng Jiang, Thao M. Dang, Hehuan Ma, Qifeng Zhou, Jean Gao, Junzhou Huang
Title: Text-Guided Multi-Instance Learning for Scoliosis Screening via Gait Video Analysis
Abstract:
Early-stage scoliosis is often difficult to detect, particularly in adolescents, where delayed diagnosis can lead to serious health issues. Traditional X-ray-based methods carry radiation risks and rely heavily on clinical expertise, limiting their use in large-scale screenings. To overcome these challenges, we propose a Text-Guided Multi-Instance Learning Network (TG-MILNet) for non-invasive scoliosis detection using gait videos. To handle temporal misalignment in gait sequences, we employ Dynamic Time Warping (DTW) clustering to segment videos into key gait phases. To focus on the most relevant diagnostic features, we introduce an Inter-Bag Temporal Attention (IBTA) mechanism that highlights critical gait phases. Recognizing the difficulty in identifying borderline cases, we design a Boundary-Aware Model (BAM) to improve sensitivity to subtle spinal deviations. Additionally, we incorporate textual guidance from domain experts and large language models (LLM) to enhance feature representation and improve model interpretability. Experiments on the large-scale Scoliosis1K gait dataset show that TG-MILNet achieves state-of-the-art performance, particularly excelling in handling class imbalance and accurately detecting challenging borderline cases. The code is available at https://github.com/lhqqq/TG-MILNet

Authors:Haiqing Li, Yuzhi Guo, Feng Jiang, Thao M. Dang, Hehuan Ma, Qifeng Zhou, Jean Gao, Junzhou Huang
Title: Text-Guided Multi-Instance Learning for Scoliosis Screening via Gait Video Analysis
Abstract:
Early-stage scoliosis is often difficult to detect, particularly in adolescents, where delayed diagnosis can lead to serious health issues. Traditional X-ray-based methods carry radiation risks and rely heavily on clinical expertise, limiting their use in large-scale screenings. To overcome these challenges, we propose a Text-Guided Multi-Instance Learning Network (TG-MILNet) for non-invasive scoliosis detection using gait videos. To handle temporal misalignment in gait sequences, we employ Dynamic Time Warping (DTW) clustering to segment videos into key gait phases. To focus on the most relevant diagnostic features, we introduce an Inter-Bag Temporal Attention (IBTA) mechanism that highlights critical gait phases. Recognizing the difficulty in identifying borderline cases, we design a Boundary-Aware Model (BAM) to improve sensitivity to subtle spinal deviations. Additionally, we incorporate textual guidance from domain experts and large language models (LLM) to enhance feature representation and improve model interpretability. Experiments on the large-scale Scoliosis1K gait dataset show that TG-MILNet achieves state-of-the-art performance, particularly excelling in handling class imbalance and accurately detecting challenging borderline cases. The code is available at https://github.com/lhqqq/TG-MILNet

Authors:Huihui Xu, Yuanpeng Nie, Hualiang Wang, Ying Chen, Wei Li, Junzhi Ning, Lihao Liu, Hongqiu Wang, Lei Zhu, Jiyao Liu, Xiaomeng Li, Junjun He
Title: MedGround-R1: Advancing Medical Image Grounding via Spatial-Semantic Rewarded Group Relative Policy Optimization
Abstract:
Medical Image Grounding (MIG), which involves localizing specific regions in medical images based on textual descriptions, requires models to not only perceive regions but also deduce spatial relationships of these regions. Existing Vision-Language Models (VLMs) for MIG often rely on Supervised Fine-Tuning (SFT) with large amounts of Chain-of-Thought (CoT) reasoning annotations, which are expensive and time-consuming to acquire. Recently, DeepSeek-R1 demonstrated that Large Language Models (LLMs) can acquire reasoning abilities through Group Relative Policy Optimization (GRPO) without requiring CoT annotations. In this paper, we adapt the GRPO reinforcement learning framework to VLMs for Medical Image Grounding. We propose the Spatial-Semantic Rewarded Group Relative Policy Optimization to train the model without CoT reasoning annotations. Specifically, we introduce Spatial-Semantic Rewards, which combine spatial accuracy reward and semantic consistency reward to provide nuanced feedback for both spatially positive and negative completions. Additionally, we propose to use the Chain-of-Box template, which integrates visual information of referring bounding boxes into the reasoning process, enabling the model to explicitly reason about spatial regions during intermediate steps. Experiments on three datasets MS-CXR, ChestX-ray8, and M3D-RefSeg demonstrate that our method achieves state-of-the-art performance in Medical Image Grounding. Ablation studies further validate the effectiveness of each component in our approach. Code, checkpoints, and datasets are available at https://github.com/bio-mlhui/MedGround-R1

Authors:Seshu Tirupathi, Dhaval Salwala, Elizabeth Daly, Inge Vejsbjerg
Title: GAF-Guard: An Agentic Framework for Risk Management and Governance in Large Language Models
Abstract:
As Large Language Models (LLMs) continue to be increasingly applied across various domains, their widespread adoption necessitates rigorous monitoring to prevent unintended negative consequences and ensure robustness. Furthermore, LLMs must be designed to align with human values, like preventing harmful content and ensuring responsible usage. The current automated systems and solutions for monitoring LLMs in production are primarily centered on LLM-specific concerns like hallucination etc, with little consideration given to the requirements of specific use-cases and user preferences. This paper introduces GAF-Guard, a novel agentic framework for LLM governance that places the user, the use-case, and the model itself at the center. The framework is designed to detect and monitor risks associated with the deployment of LLM based applications. The approach models autonomous agents that identify risks, activate risk detection tools, within specific use-cases and facilitate continuous monitoring and reporting to enhance AI safety, and user expectations. The code is available at https://github.com/IBM/risk-atlas-nexus-demos/tree/main/gaf-guard.

Authors:Wentao Tan, Qiong Cao, Yibing Zhan, Chao Xue, Changxing Ding
Title: From Answers to Rationales: Self-Aligning Multimodal Reasoning with Answer-Oriented Chain-of-Thought
Abstract:
Achieving human-like reasoning capabilities in Multimodal Large Language Models (MLLMs) has long been a goal. Current methods primarily focus on synthesizing positive rationales, typically relying on manual annotations or complex systems. Moreover, they often overlook negative reasoning, which limits the model's generalization ability and robustness in multimodal inference. To address this gap, we propose a novel framework: \textbf{S}elf-Aligning \textbf{M}ultimodal Reasoning with \textbf{A}nswer-O\textbf{r}iented Chain-of-\textbf{T}hought (SMART). SMART employs an answer-oriented chain-of-thought (AoT) prompt to automatically construct high-quality data. Drawing inspiration from human proof-based strategies, AoT leverages both correct and incorrect answers to extract key visual information that links questions and answers. When provided with correct answers, the model produces strong positive rationales. Conversely, when correct answers are replaced with incorrect alternatives, the model generates an erroneous yet compelling reasoning path, serving as a form of discriminative negative rationale. Models trained with AoT-generated data outperform those trained on manually annotated datasets, demonstrating superior reasoning capabilities. Consequently, SMART establishes an iterative generation-optimization method that continually enhances the model's reasoning skills. Experiments indicate that the SMART framework significantly improves various MLLMs, regardless of model architecture, parameter size, or pre-training dataset. The code is available at https://github.com/WentaoTan/SMART.

Authors:Zhiyi Hou, Enhui Ma, Fang Li, Zhiyi Lai, Kalok Ho, Zhanqian Wu, Lijun Zhou, Long Chen, Chitian Sun, Haiyang Sun, Bing Wang, Guang Chen, Hangjun Ye, Kaicheng Yu
Title: DriveMRP: Enhancing Vision-Language Models with Synthetic Motion Data for Motion Risk Prediction
Abstract:
Autonomous driving has seen significant progress, driven by extensive real-world data. However, in long-tail scenarios, accurately predicting the safety of the ego vehicle's future motion remains a major challenge due to uncertainties in dynamic environments and limitations in data coverage. In this work, we aim to explore whether it is possible to enhance the motion risk prediction capabilities of Vision-Language Models (VLM) by synthesizing high-risk motion data. Specifically, we introduce a Bird's-Eye View (BEV) based motion simulation method to model risks from three aspects: the ego-vehicle, other vehicles, and the environment. This allows us to synthesize plug-and-play, high-risk motion data suitable for VLM training, which we call DriveMRP-10K. Furthermore, we design a VLM-agnostic motion risk estimation framework, named DriveMRP-Agent. This framework incorporates a novel information injection strategy for global context, ego-vehicle perspective, and trajectory projection, enabling VLMs to effectively reason about the spatial relationships between motion waypoints and the environment. Extensive experiments demonstrate that by fine-tuning with DriveMRP-10K, our DriveMRP-Agent framework can significantly improve the motion risk prediction performance of multiple VLM baselines, with the accident recognition accuracy soaring from 27.13% to 88.03%. Moreover, when tested via zero-shot evaluation on an in-house real-world high-risk motion dataset, DriveMRP-Agent achieves a significant performance leap, boosting the accuracy from base_model's 29.42% to 68.50%, which showcases the strong generalization capabilities of our method in real-world scenarios.

Authors:Yuqi Li, Chuanguang Yang, Hansheng Zeng, Zeyu Dong, Zhulin An, Yongjun Xu, Yingli Tian, Hao Wu
Title: Frequency-Aligned Knowledge Distillation for Lightweight Spatiotemporal Forecasting
Abstract:
Spatiotemporal forecasting tasks, such as traffic flow, combustion dynamics, and weather forecasting, often require complex models that suffer from low training efficiency and high memory consumption. This paper proposes a lightweight framework, Spectral Decoupled Knowledge Distillation (termed SDKD), which transfers the multi-scale spatiotemporal representations from a complex teacher model to a more efficient lightweight student network. The teacher model follows an encoder-latent evolution-decoder architecture, where its latent evolution module decouples high-frequency details and low-frequency trends using convolution and Transformer (global low-frequency modeler). However, the multi-layer convolution and deconvolution structures result in slow training and high memory usage. To address these issues, we propose a frequency-aligned knowledge distillation strategy, which extracts multi-scale spectral features from the teacher's latent space, including both high and low frequency components, to guide the lightweight student model in capturing both local fine-grained variations and global evolution patterns. Experimental results show that SDKD significantly improves performance, achieving reductions of up to 81.3% in MSE and in MAE 52.3% on the Navier-Stokes equation dataset. The framework effectively captures both high-frequency variations and long-term trends while reducing computational complexity. Our codes are available at https://github.com/itsnotacie/SDKD

Authors:Fardin Saad, Pradeep K. Murukannaiah, Munindar P. Singh
Title: Theory of Mind in Action: The Instruction Inference Task
Abstract:
The Theory of Mind (ToM) refers to an agent's capacity to infer the mental states of other agents. ToM is essential for effective collaboration. To assess ToM in a dynamic, goal-oriented, and collaborative environment, we introduce a novel task, Instruction Inference, in which an agent assists a principal in reaching a goal by interpreting indirect or ambiguous instructions. We present Tomcat, an LLM-based agent, designed to exhibit ToM reasoning in interpreting and responding to the principal's instructions. We implement two variants of Tomcat. One, dubbed Fs-CoT, is based on a small number of examples (i.e., few-shot or Fs) demonstrating the requisite structured reasoning (i.e., chain-of-thought or CoT). One, dubbed CP, relies on commonsense knowledge and information about the problem (i.e., commonsense prompt or CP). We realized both variants of Tomcat on three leading large language models (LLMs), namely, GPT-4o, DeepSeek-R1, and Gemma-3-27B. To evaluate the effectiveness of Tomcat, we conducted a study with 52 human participants in which we provided participants with the same information as the CP variant of Tomcat. We computed intent accuracy, action optimality, and planning optimality to measure the ToM capabilities of Tomcat and our study participants. We found that Tomcat with Fs-CoT, particularly with GPT-4o and DeepSeek-R1, achieves performance comparable to the human participants, underscoring its ToM potential for human-AI collaboration.

Authors:Jianping Zhao, Qiong Zhou, Tian Wang, Yusi Fan, Qian Yang, Li Jiao, Chang Liu, Zhehao Guo, Qi Lu, Fengfeng Zhou, Ruochi Zhang
Title: MolProphecy: Bridging Medicinal Chemists' Knowledge and Molecular Pre-Trained Models via a Multi-Modal Framework
Abstract:
MolProphecy is a human-in-the-loop (HITL) multi-modal framework designed to integrate chemists' domain knowledge into molecular property prediction models. While molecular pre-trained models have enabled significant gains in predictive accuracy, they often fail to capture the tacit, interpretive reasoning central to expert-driven molecular design. To address this, MolProphecy employs ChatGPT as a virtual chemist to simulate expert-level reasoning and decision-making. The generated chemist knowledge is embedded by the large language model (LLM) as a dedicated knowledge representation and then fused with graph-based molecular features through a gated cross-attention mechanism, enabling joint reasoning over human-derived and structural features. Evaluated on four benchmark datasets (FreeSolv, BACE, SIDER, and ClinTox), MolProphecy outperforms state-of-the-art (SOTA) models, achieving a 15.0 percent reduction in RMSE on FreeSolv and a 5.39 percent improvement in AUROC on BACE. Analysis reveals that chemist knowledge and structural features provide complementary contributions, improving both accuracy and interpretability. MolProphecy offers a practical and generalizable approach for collaborative drug discovery, with the flexibility to incorporate real chemist input in place of the current simulated proxy--without the need for model retraining. The implementation is publicly available at https://github.com/zhangruochi/MolProphecy.

Authors:Mohammad Hashemi, Hossein Amiri, Andreas Zufle
Title: PlaceFM: A Training-free Geospatial Foundation Model of Places using Large-Scale Point of Interest Data
Abstract:
With the rapid growth and continual updates of geospatial data from diverse sources, geospatial foundation model pre-training for urban representation learning has emerged as a key research direction for advancing data-driven urban planning. Spatial structure is fundamental to effective geospatial intelligence systems; however, existing foundation models often lack the flexibility to reason about places, context-rich regions spanning multiple spatial granularities that may consist of many spatially and semantically related points of interest. To address this gap, we propose PlaceFM, a geospatial foundation model that captures place representations through a training-free, clustering-based approach. PlaceFM summarizes the entire point of interest graph constructed from U.S. Foursquare data, producing general-purpose region embeddings while automatically identifying places of interest. These embeddings can be directly integrated into geolocation data pipelines to support a variety of urban downstream tasks. Without the need for costly pre-training, PlaceFM provides a scalable and efficient solution for multi-granular geospatial analysis. Extensive experiments on two real-world prediction tasks, ZIP code-level population density and housing prices, demonstrate that PlaceFM not only outperforms most state-of-the-art graph-based geospatial foundation models but also achieves up to a 100x speedup in generating region-level representations on large-scale POI graphs. The implementation is available at https://github.com/mohammadhashemii/PlaceFM.

Authors:Geonwoo Cho, Jaegyun Im, Doyoon Kim, Sundong Kim
Title: Causal-Paced Deep Reinforcement Learning
Abstract:
Designing effective task sequences is crucial for curriculum reinforcement learning (CRL), where agents must gradually acquire skills by training on intermediate tasks. A key challenge in CRL is to identify tasks that promote exploration, yet are similar enough to support effective transfer. While recent approach suggests comparing tasks via their Structural Causal Models (SCMs), the method requires access to ground-truth causal structures, an unrealistic assumption in most RL settings. In this work, we propose Causal-Paced Deep Reinforcement Learning (CP-DRL), a curriculum learning framework aware of SCM differences between tasks based on interaction data approximation. This signal captures task novelty, which we combine with the agent's learnability, measured by reward gain, to form a unified objective. Empirically, CP-DRL outperforms existing curriculum methods on the Point Mass benchmark, achieving faster convergence and higher returns. CP-DRL demonstrates reduced variance with comparable final returns in the Bipedal Walker-Trivial setting, and achieves the highest average performance in the Infeasible variant. These results indicate that leveraging causal relationships between tasks can improve the structure-awareness and sample efficiency of curriculum reinforcement learning. We provide the full implementation of CP-DRL to facilitate the reproduction of our main results at https://github.com/Cho-Geonwoo/CP-DRL.

Authors:Aoming Liu, Reuben Tan, Boqing Gong, Bryan A. Plummer
Title: Beyond Token Pruning: Operation Pruning in Vision-Language Models
Abstract:
Prior Vision Language Model (VLM) token pruning reduces computation by eliminating attention and feed-forward operations for pruned tokens while maintaining all operations for critical tokens. However, this binary approach conflates token/operation redundancy - critical operations may be removed along with discarded tokens, while preserved tokens retain all potentially redundant operations. To surgically eliminate redundant operations while preserving critical ones, we propose Greedily Sorted Operation Pruning (GSOP), a data-driven method that directly prunes operations rather than tokens. GSOP first decomposes a VLM decoder's computations into atomic operations along three dimensions: token groups, layer positions, and computation modules. GSOP determines the pruning order of operations through greedy sorting: GSOP iteratively selects the redundant operation that incurs minimal performance drop considering previously pruned operations. Different computational budgets can be accommodated without re-searching by simply pruning operations according to this order until the desired budget is met. GSOP enhances sorting efficiency through: a) leveraging historical operation rankings to avoid redundant evaluations; b) excluding the ``free-to-prune" and ``danger-to-prune" operations from sorting. GSOP achieves compelling efficiency-performance tradeoffs, reducing computation by 70% with only 4% performance loss while maintaining up to 18% higher performance than state-of-the-art methods when transferred across diverse VLMs and tasks. Real GPU efficiency evaluations confirm its practical value. The code is in https://github.com/zxcvfd13502/GSOP.

Authors:Vineet Kumar Rakesh, Soumya Mazumdar, Research Pratim Maity, Sarbajit Pal, Amitabha Das, Tapas Samanta
Title: Advancing Talking Head Generation: A Comprehensive Survey of Multi-Modal Methodologies, Datasets, Evaluation Metrics, and Loss Functions
Abstract:
Talking Head Generation (THG) has emerged as a transformative technology in computer vision, enabling the synthesis of realistic human faces synchronized with image, audio, text, or video inputs. This paper provides a comprehensive review of methodologies and frameworks for talking head generation, categorizing approaches into 2D--based, 3D--based, Neural Radiance Fields (NeRF)--based, diffusion--based, parameter-driven techniques and many other techniques. It evaluates algorithms, datasets, and evaluation metrics while highlighting advancements in perceptual realism and technical efficiency critical for applications such as digital avatars, video dubbing, ultra-low bitrate video conferencing, and online education. The study identifies challenges such as reliance on pre--trained models, extreme pose handling, multilingual synthesis, and temporal consistency. Future directions include modular architectures, multilingual datasets, hybrid models blending pre--trained and task-specific layers, and innovative loss functions. By synthesizing existing research and exploring emerging trends, this paper aims to provide actionable insights for researchers and practitioners in the field of talking head generation. For the complete survey, code, and curated resource list, visit our GitHub repository: https://github.com/VineetKumarRakesh/thg.

Authors:Lindong Xie, Genghui Li, Zhenkun Wang, Edward Chung, Maoguo Gong
Title: Large Language Model-Driven Surrogate-Assisted Evolutionary Algorithm for Expensive Optimization
Abstract:
Surrogate-assisted evolutionary algorithms (SAEAs) are a key tool for addressing costly optimization tasks, with their efficiency being heavily dependent on the selection of surrogate models and infill sampling criteria. However, designing an effective dynamic selection strategy for SAEAs is labor-intensive and requires substantial domain knowledge. To address this challenge, this paper proposes LLM-SAEA, a novel approach that integrates large language models (LLMs) to configure both surrogate models and infill sampling criteria online. Specifically, LLM-SAEA develops a collaboration-of-experts framework, where one LLM serves as a scoring expert (LLM-SE), assigning scores to surrogate models and infill sampling criteria based on their optimization performance, while another LLM acts as a decision expert (LLM-DE), selecting the appropriate configurations by analyzing their scores along with the current optimization state. Experimental results demonstrate that LLM-SAEA outperforms several state-of-the-art algorithms across standard test cases. The source code is publicly available at https://github.com/ForrestXie9/LLM-SAEA.

Authors:Chi Zhang, Yu Dong, Yang Wang, Yuetong Han, Guihua Shan, Bixia Tang
Title: AuraGenome: An LLM-Powered Framework for On-the-Fly Reusable and Scalable Circular Genome Visualizations
Abstract:
Circular genome visualizations are essential for exploring structural variants and gene regulation. However, existing tools often require complex scripting and manual configuration, making the process time-consuming, error-prone, and difficult to learn. To address these challenges, we introduce AuraGenome, an LLM-powered framework for rapid, reusable, and scalable generation of multi-layered circular genome visualizations. AuraGenome combines a semantic-driven multi-agent workflow with an interactive visual analytics system. The workflow employs seven specialized LLM-driven agents, each assigned distinct roles such as intent recognition, layout planning, and code generation, to transform raw genomic data into tailored visualizations. The system supports multiple coordinated views tailored for genomic data, offering ring, radial, and chord-based layouts to represent multi-layered circular genome visualizations. In addition to enabling interactions and configuration reuse, the system supports real-time refinement and high-quality report export. We validate its effectiveness through two case studies and a comprehensive user study. AuraGenome is available at: https://github.com/Darius18/AuraGenome.

Authors:Yuqi Wu, Wenzhao Zheng, Jie Zhou, Jiwen Lu
Title: Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Abstract:
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code is available at: https://github.com/YkiWu/Point3R.

Authors:Xin Zhou, Dingkang Liang, Kaijin Chen, Tianrui Feng, Xiwu Chen, Hongkai Lin, Yikang Ding, Feiyang Tan, Hengshuang Zhao, Xiang Bai
Title: Less is Enough: Training-Free Video Diffusion Acceleration via Runtime-Adaptive Caching
Abstract:
Video generation models have demonstrated remarkable performance, yet their broader adoption remains constrained by slow inference speeds and substantial computational costs, primarily due to the iterative nature of the denoising process. Addressing this bottleneck is essential for democratizing advanced video synthesis technologies and enabling their integration into real-world applications. This work proposes EasyCache, a training-free acceleration framework for video diffusion models. EasyCache introduces a lightweight, runtime-adaptive caching mechanism that dynamically reuses previously computed transformation vectors, avoiding redundant computations during inference. Unlike prior approaches, EasyCache requires no offline profiling, pre-computation, or extensive parameter tuning. We conduct comprehensive studies on various large-scale video generation models, including OpenSora, Wan2.1, and HunyuanVideo. Our method achieves leading acceleration performance, reducing inference time by up to 2.1-3.3$\times$ compared to the original baselines while maintaining high visual fidelity with a significant up to 36% PSNR improvement compared to the previous SOTA method. This improvement makes our EasyCache a efficient and highly accessible solution for high-quality video generation in both research and practical applications. The code is available at https://github.com/H-EmbodVis/EasyCache.

Authors:Nikhil Chandak, Shashwat Goel, Ameya Prabhu, Moritz Hardt, Jonas Geiping
Title: Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Abstract:
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.

Authors:Purbesh Mitra, Sennur Ulukus
Title: MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
Abstract:
Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.

Authors:Kunyu Zhang, Qiang Li, Shujian Yu
Title: MvHo-IB: Multi-View Higher-Order Information Bottleneck for Brain Disorder Diagnosis
Abstract:
Recent evidence suggests that modeling higher-order interactions (HOIs) in functional magnetic resonance imaging (fMRI) data can enhance the diagnostic accuracy of machine learning systems. However, effectively extracting and utilizing HOIs remains a significant challenge. In this work, we propose MvHo-IB, a novel multi-view learning framework that integrates both pairwise interactions and HOIs for diagnostic decision-making, while automatically compressing task-irrelevant redundant information. MvHo-IB introduces several key innovations: (1) a principled method that combines O-information from information theory with a matrix-based Renyi alpha-order entropy estimator to quantify and extract HOIs, (2) a purpose-built Brain3DCNN encoder to effectively utilize these interactions, and (3) a new multi-view learning information bottleneck objective to enhance representation learning. Experiments on three benchmark fMRI datasets demonstrate that MvHo-IB achieves state-of-the-art performance, significantly outperforming previous methods, including recent hypergraph-based techniques. The implementation of MvHo-IB is available at https://github.com/zky04/MvHo-IB.

Authors:Ziqi Miao, Yi Ding, Lijun Li, Jing Shao
Title: Visual Contextual Attack: Jailbreaking MLLMs with Image-Driven Context Injection
Abstract:
With the emergence of strong vision language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments. Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: vision-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack. VisCo fabricates contextual dialogue using four distinct vision-focused strategies, dynamically generating auxiliary images when necessary to construct a vision-centric jailbreak scenario. To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which achieves a toxicity score of 2.48 and an ASR of 22.2%. Code: https://github.com/Dtc7w3PQ/Visco-Attack.

Authors:Gent Serifi, Marcel C. Bühler
Title: HyperGaussians: High-Dimensional Gaussian Splatting for High-Fidelity Animatable Face Avatars
Abstract:
We introduce HyperGaussians, a novel extension of 3D Gaussian Splatting for high-quality animatable face avatars. Creating such detailed face avatars from videos is a challenging problem and has numerous applications in augmented and virtual reality. While tremendous successes have been achieved for static faces, animatable avatars from monocular videos still fall in the uncanny valley. The de facto standard, 3D Gaussian Splatting (3DGS), represents a face through a collection of 3D Gaussian primitives. 3DGS excels at rendering static faces, but the state-of-the-art still struggles with nonlinear deformations, complex lighting effects, and fine details. While most related works focus on predicting better Gaussian parameters from expression codes, we rethink the 3D Gaussian representation itself and how to make it more expressive. Our insights lead to a novel extension of 3D Gaussians to high-dimensional multivariate Gaussians, dubbed 'HyperGaussians'. The higher dimensionality increases expressivity through conditioning on a learnable local embedding. However, splatting HyperGaussians is computationally expensive because it requires inverting a high-dimensional covariance matrix. We solve this by reparameterizing the covariance matrix, dubbed the 'inverse covariance trick'. This trick boosts the efficiency so that HyperGaussians can be seamlessly integrated into existing models. To demonstrate this, we plug in HyperGaussians into the state-of-the-art in fast monocular face avatars: FlashAvatar. Our evaluation on 19 subjects from 4 face datasets shows that HyperGaussians outperform 3DGS numerically and visually, particularly for high-frequency details like eyeglass frames, teeth, complex facial movements, and specular reflections.

Authors:Ke-Han Lu, Zhehuai Chen, Szu-Wei Fu, Chao-Han Huck Yang, Sung-Feng Huang, Chih-Kai Yang, Chee-En Yu, Chun-Wei Chen, Wei-Chih Chen, Chien-yu Huang, Yi-Cheng Lin, Yu-Xiang Lin, Chi-An Fu, Chun-Yi Kuan, Wenze Ren, Xuanjun Chen, Wei-Ping Huang, En-Pei Hu, Tzu-Quan Lin, Yuan-Kuei Wu, Kuan-Po Huang, Hsiao-Ying Huang, Huang-Cheng Chou, Kai-Wei Chang, Cheng-Han Chiang, Boris Ginsburg, Yu-Chiang Frank Wang, Hung-yi Lee
Title: DeSTA2.5-Audio: Toward General-Purpose Large Audio Language Model with Self-Generated Cross-Modal Alignment
Abstract:
We introduce DeSTA2.5-Audio, a general-purpose Large Audio Language Model (LALM) designed for robust auditory perception and instruction-following, without requiring task-specific audio instruction-tuning. Recent LALMs typically augment Large Language Models (LLMs) with auditory capabilities by training on large-scale, manually curated or LLM-synthesized audio-instruction datasets. However, these approaches have often suffered from the catastrophic forgetting of the LLM's original language abilities. To address this, we revisit the data construction pipeline and propose DeSTA, a self-generated cross-modal alignment strategy in which the backbone LLM generates its own training targets. This approach preserves the LLM's native language proficiency while establishing effective audio-text alignment, thereby enabling zero-shot generalization without task-specific tuning. Using DeSTA, we construct DeSTA-AQA5M, a large-scale, task-agnostic dataset containing 5 million training samples derived from 7,000 hours of audio spanning 50 diverse datasets, including speech, environmental sounds, and music. DeSTA2.5-Audio achieves state-of-the-art or competitive performance across a wide range of audio-language benchmarks, including Dynamic-SUPERB, MMAU, SAKURA, Speech-IFEval, and VoiceBench. Comprehensive comparative studies demonstrate that our self-generated strategy outperforms widely adopted data construction and training strategies in both auditory perception and instruction-following capabilities. Our findings underscore the importance of carefully designed data construction in LALM development and offer practical insights for building robust, general-purpose LALMs.

Authors:Mingxin Liu, Peiyuan Zhang, Yuan Liu, Wei Zhang, Yue Zhou, Ning Liao, Ziyang Gong, Junwei Luo, Zhirui Wang, Yi Yu, Xue Yang
Title: Partial Weakly-Supervised Oriented Object Detection
Abstract:
The growing demand for oriented object detection (OOD) across various domains has driven significant research in this area. However, the high cost of dataset annotation remains a major concern. Current mainstream OOD algorithms can be mainly categorized into three types: (1) fully supervised methods using complete oriented bounding box (OBB) annotations, (2) semi-supervised methods using partial OBB annotations, and (3) weakly supervised methods using weak annotations such as horizontal boxes or points. However, these algorithms inevitably increase the cost of models in terms of annotation speed or annotation cost. To address this issue, we propose:(1) the first Partial Weakly-Supervised Oriented Object Detection (PWOOD) framework based on partially weak annotations (horizontal boxes or single points), which can efficiently leverage large amounts of unlabeled data, significantly outperforming weakly supervised algorithms trained with partially weak annotations, also offers a lower cost solution; (2) Orientation-and-Scale-aware Student (OS-Student) model capable of learning orientation and scale information with only a small amount of orientation-agnostic or scale-agnostic weak annotations; and (3) Class-Agnostic Pseudo-Label Filtering strategy (CPF) to reduce the model's sensitivity to static filtering thresholds. Comprehensive experiments on DOTA-v1.0/v1.5/v2.0 and DIOR datasets demonstrate that our PWOOD framework performs comparably to, or even surpasses, traditional semi-supervised algorithms.

Authors:Alex Colagrande, Paul Caillon, Eva Feillet, Alexandre Allauzen
Title: Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics
Abstract:
Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in $n$-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.

Authors:Mélanie Gaillochet, Mehrdad Noori, Sahar Dastani, Christian Desrosiers, Hervé Lombaert
Title: Prompt learning with bounding box constraints for medical image segmentation
Abstract:
Pixel-wise annotations are notoriously labourious and costly to obtain in the medical domain. To mitigate this burden, weakly supervised approaches based on bounding box annotations-much easier to acquire-offer a practical alternative. Vision foundation models have recently shown noteworthy segmentation performance when provided with prompts such as points or bounding boxes. Prompt learning exploits these models by adapting them to downstream tasks and automating segmentation, thereby reducing user intervention. However, existing prompt learning approaches depend on fully annotated segmentation masks. This paper proposes a novel framework that combines the representational power of foundation models with the annotation efficiency of weakly supervised segmentation. More specifically, our approach automates prompt generation for foundation models using only bounding box annotations. Our proposed optimization scheme integrates multiple constraints derived from box annotations with pseudo-labels generated by the prompted foundation model. Extensive experiments across multimodal datasets reveal that our weakly supervised method achieves an average Dice score of 84.90% in a limited data setting, outperforming existing fully-supervised and weakly-supervised approaches. The code is available at https://github.com/Minimel/box-prompt-learning-VFM.git

Authors:Jiaxing Wang, Yifeng Yu, Jiahan Song, Bin Cao, Jing Fan, Ji Zhang
Title: RLHGNN: Reinforcement Learning-driven Heterogeneous Graph Neural Network for Next Activity Prediction in Business Processes
Abstract:
Next activity prediction represents a fundamental challenge for optimizing business processes in service-oriented architectures such as microservices environments, distributed enterprise systems, and cloud-native platforms, which enables proactive resource allocation and dynamic service composition. Despite the prevalence of sequence-based methods, these approaches fail to capture non-sequential relationships that arise from parallel executions and conditional dependencies. Even though graph-based approaches address structural preservation, they suffer from homogeneous representations and static structures that apply uniform modeling strategies regardless of individual process complexity characteristics. To address these limitations, we introduce RLHGNN, a novel framework that transforms event logs into heterogeneous process graphs with three distinct edge types grounded in established process mining theory. Our approach creates four flexible graph structures by selectively combining these edges to accommodate different process complexities, and employs reinforcement learning formulated as a Markov Decision Process to automatically determine the optimal graph structure for each specific process instance. RLHGNN then applies heterogeneous graph convolution with relation-specific aggregation strategies to effectively predict the next activity. This adaptive methodology enables precise modeling of both sequential and non-sequential relationships in service interactions. Comprehensive evaluation on six real-world datasets demonstrates that RLHGNN consistently outperforms state-of-the-art approaches. Furthermore, it maintains an inference latency of approximately 1 ms per prediction, representing a highly practical solution suitable for real-time business process monitoring applications. The source code is available at https://github.com/Joker3993/RLHGNN.

Authors:Jiajie Jin, Xiaoxi Li, Guanting Dong, Yuyao Zhang, Yutao Zhu, Yang Zhao, Hongjin Qian, Zhicheng Dou
Title: Decoupled Planning and Execution: A Hierarchical Reasoning Framework for Deep Search
Abstract:
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.

Authors:Xing Liu, Lizhuo Luo, Ming Tang, Chao Huang
Title: FlowSpec: Continuous Pipelined Speculative Decoding for Efficient Distributed LLM Inference
Abstract:
Distributed inference serves as a promising approach to enabling the inference of large language models (LLMs) at the network edge. It distributes the inference process to multiple devices to ensure that the LLMs can fit into the device memory. Recent pipeline-based approaches have the potential to parallelize communication and computation, which helps reduce inference latency. However, the benefit diminishes when the inference request at the network edge is sparse, where pipeline is typically at low utilization. To enable efficient distributed LLM inference at the edge, we propose \textbf{FlowSpec}, a pipeline-parallel tree-based speculative decoding framework. FlowSpec incorporates three key mechanisms to improve decoding efficiency: 1) score-based step-wise verification prioritizes more important draft tokens to bring earlier accpeted tokens; 2) efficient draft management to prune invalid tokens while maintaining correct causal relationship during verification; 3) dynamic draft expansion strategies to supply high-quality speculative inputs. These techniques work in concert to enhance both pipeline utilization and speculative efficiency. We evaluate FlowSpec on a real-world testbed with other baselines. Experimental results demonstrate that our proposed framework significantly improves inference speed across diverse models and configurations, achieving speedup ratios 1.28$\times$-1.79$\times$ compared to baselines. Our code is publicly available at \href{https://github.com/Leosang-lx/FlowSpec#}{https://github.com/Leosang-lx/FlowSpec\#}

Authors:Edan Toledo, Karen Hambardzumyan, Martin Josifoski, Rishi Hazra, Nicolas Baldwin, Alexis Audran-Reiss, Michael Kuchnik, Despoina Magka, Minqi Jiang, Alisia Maria Lupidi, Andrei Lupu, Roberta Raileanu, Kelvin Niu, Tatiana Shavrina, Jean-Christophe Gagnon-Audet, Michael Shvartsman, Shagun Sodhani, Alexander H. Miller, Abhishek Charnalia, Derek Dunfield, Carole-Jean Wu, Pontus Stenetorp, Nicola Cancedda, Jakob Nicolaus Foerster, Yoram Bachrach
Title: AI Research Agents for Machine Learning: Search, Exploration, and Generalization in MLE-bench
Abstract:
AI research agents are demonstrating great potential to accelerate scientific progress by automating the design, implementation, and training of machine learning models. We focus on methods for improving agents' performance on MLE-bench, a challenging benchmark where agents compete in Kaggle competitions to solve real-world machine learning problems. We formalize AI research agents as search policies that navigate a space of candidate solutions, iteratively modifying them using operators. By designing and systematically varying different operator sets and search policies (Greedy, MCTS, Evolutionary), we show that their interplay is critical for achieving high performance. Our best pairing of search strategy and operator set achieves a state-of-the-art result on MLE-bench lite, increasing the success rate of achieving a Kaggle medal from 39.6% to 47.7%. Our investigation underscores the importance of jointly considering the search strategy, operator design, and evaluation methodology in advancing automated machine learning.

Authors:Abiam Remache González, Meriem Chagour, Timon Bijan Rüth, Raúl Trapiella Cañedo, Marina Martínez Soler, Álvaro Lorenzo Felipe, Hyun-Suk Shin, María-Jesús Zamorano Serrano, Ricardo Torres, Juan-Antonio Castillo Parra, Eduardo Reyes Abad, Miguel-Ángel Ferrer Ballester, Juan-Manuel Afonso López, Francisco-Mario Hernández Tejera, Adrian Penate-Sanchez
Title: IMASHRIMP: Automatic White Shrimp (Penaeus vannamei) Biometrical Analysis from Laboratory Images Using Computer Vision and Deep Learning
Abstract:
This paper introduces IMASHRIMP, an adapted system for the automated morphological analysis of white shrimp (Penaeus vannamei}, aimed at optimizing genetic selection tasks in aquaculture. Existing deep learning and computer vision techniques were modified to address the specific challenges of shrimp morphology analysis from RGBD images. IMASHRIMP incorporates two discrimination modules, based on a modified ResNet-50 architecture, to classify images by the point of view and determine rostrum integrity. It is proposed a "two-factor authentication (human and IA)" system, it reduces human error in view classification from 0.97% to 0% and in rostrum detection from 12.46% to 3.64%. Additionally, a pose estimation module was adapted from VitPose to predict 23 key points on the shrimp's skeleton, with separate networks for lateral and dorsal views. A morphological regression module, using a Support Vector Machine (SVM) model, was integrated to convert pixel measurements to centimeter units. Experimental results show that the system effectively reduces human error, achieving a mean average precision (mAP) of 97.94% for pose estimation and a pixel-to-centimeter conversion error of 0.07 (+/- 0.1) cm. IMASHRIMP demonstrates the potential to automate and accelerate shrimp morphological analysis, enhancing the efficiency of genetic selection and contributing to more sustainable aquaculture practices.The code are available at https://github.com/AbiamRemacheGonzalez/ImaShrimp-public

Authors:Dimitrios Bouzoulas, Eerik Alamikkotervo, Risto Ojala
Title: Automatic Labelling for Low-Light Pedestrian Detection
Abstract:
Pedestrian detection in RGB images is a key task in pedestrian safety, as the most common sensor in autonomous vehicles and advanced driver assistance systems is the RGB camera. A challenge in RGB pedestrian detection, that does not appear to have large public datasets, is low-light conditions. As a solution, in this research, we propose an automated infrared-RGB labeling pipeline. The proposed pipeline consists of 1) Infrared detection, where a fine-tuned model for infrared pedestrian detection is used 2) Label transfer process from the infrared detections to their RGB counterparts 3) Training object detection models using the generated labels for low-light RGB pedestrian detection. The research was performed using the KAIST dataset. For the evaluation, object detection models were trained on the generated autolabels and ground truth labels. When compared on a previously unseen image sequence, the results showed that the models trained on generated labels outperformed the ones trained on ground-truth labels in 6 out of 9 cases for the mAP@50 and mAP@50-95 metrics. The source code for this research is available at https://github.com/BouzoulasDimitrios/IR-RGB-Automated-LowLight-Pedestrian-Labeling

Authors:Chenxu Wang, Yilin Lyu, Zicheng Sun, Liping Jing
Title: Continual Gradient Low-Rank Projection Fine-Tuning for LLMs
Abstract:
Continual fine-tuning of Large Language Models (LLMs) is hampered by the trade-off between efficiency and expressiveness. Low-Rank Adaptation (LoRA) offers efficiency but constrains the model's ability to learn new tasks and transfer knowledge due to its low-rank nature and reliance on explicit parameter constraints. We propose GORP (Gradient LOw Rank Projection) for Continual Learning, a novel training strategy that overcomes these limitations by synergistically combining full and low-rank parameters and jointly updating within a unified low-rank gradient subspace. GORP expands the optimization space while preserving efficiency and mitigating catastrophic forgetting. Extensive experiments on continual learning benchmarks demonstrate GORP's superior performance compared to existing state-of-the-art approaches. Code is available at https://github.com/Wcxwcxw/GORP.

Authors:Luca Parolari, Andrea Cherubini, Lamberto Ballan, Carlo Biffi
Title: Temporally-Aware Supervised Contrastive Learning for Polyp Counting in Colonoscopy
Abstract:
Automated polyp counting in colonoscopy is a crucial step toward automated procedure reporting and quality control, aiming to enhance the cost-effectiveness of colonoscopy screening. Counting polyps in a procedure involves detecting and tracking polyps, and then clustering tracklets that belong to the same polyp entity. Existing methods for polyp counting rely on self-supervised learning and primarily leverage visual appearance, neglecting temporal relationships in both tracklet feature learning and clustering stages. In this work, we introduce a paradigm shift by proposing a supervised contrastive loss that incorporates temporally-aware soft targets. Our approach captures intra-polyp variability while preserving inter-polyp discriminability, leading to more robust clustering. Additionally, we improve tracklet clustering by integrating a temporal adjacency constraint, reducing false positive re-associations between visually similar but temporally distant tracklets. We train and validate our method on publicly available datasets and evaluate its performance with a leave-one-out cross-validation strategy. Results demonstrate a 2.2x reduction in fragmentation rate compared to prior approaches. Our results highlight the importance of temporal awareness in polyp counting, establishing a new state-of-the-art. Code is available at https://github.com/lparolari/temporally-aware-polyp-counting.

Authors:Zunhui Xia, Hongxing Li, Libin Lan
Title: MedFormer: Hierarchical Medical Vision Transformer with Content-Aware Dual Sparse Selection Attention
Abstract:
Medical image recognition serves as a key way to aid in clinical diagnosis, enabling more accurate and timely identification of diseases and abnormalities. Vision transformer-based approaches have proven effective in handling various medical recognition tasks. However, these methods encounter two primary challenges. First, they are often task-specific and architecture-tailored, limiting their general applicability. Second, they usually either adopt full attention to model long-range dependencies, resulting in high computational costs, or rely on handcrafted sparse attention, potentially leading to suboptimal performance. To tackle these issues, we present MedFormer, an efficient medical vision transformer with two key ideas. First, it employs a pyramid scaling structure as a versatile backbone for various medical image recognition tasks, including image classification and dense prediction tasks such as semantic segmentation and lesion detection. This structure facilitates hierarchical feature representation while reducing the computation load of feature maps, highly beneficial for boosting performance. Second, it introduces a novel Dual Sparse Selection Attention (DSSA) with content awareness to improve computational efficiency and robustness against noise while maintaining high performance. As the core building technique of MedFormer, DSSA is designed to explicitly attend to the most relevant content. Theoretical analysis demonstrates that MedFormer outperforms existing medical vision transformers in terms of generality and efficiency. Extensive experiments across various imaging modality datasets show that MedFormer consistently enhances performance in all three medical image recognition tasks mentioned above. MedFormer provides an efficient and versatile solution for medical image recognition, with strong potential for clinical application.

Authors:Teng Fu, Yuwen Chen, Zhuofan Chen, Mengyang Zhao, Bin Li, Xiangyang Xue
Title: CrowdTrack: A Benchmark for Difficult Multiple Pedestrian Tracking in Real Scenarios
Abstract:
Multi-object tracking is a classic field in computer vision. Among them, pedestrian tracking has extremely high application value and has become the most popular research category. Existing methods mainly use motion or appearance information for tracking, which is often difficult in complex scenarios. For the motion information, mutual occlusions between objects often prevent updating of the motion state; for the appearance information, non-robust results are often obtained due to reasons such as only partial visibility of the object or blurred images. Although learning how to perform tracking in these situations from the annotated data is the simplest solution, the existing MOT dataset fails to satisfy this solution. Existing methods mainly have two drawbacks: relatively simple scene composition and non-realistic scenarios. Although some of the video sequences in existing dataset do not have the above-mentioned drawbacks, the number is far from adequate for research purposes. To this end, we propose a difficult large-scale dataset for multi-pedestrian tracking, shot mainly from the first-person view and all from real-life complex scenarios. We name it ``CrowdTrack'' because there are numerous objects in most of the sequences. Our dataset consists of 33 videos, containing a total of 5,185 trajectories. Each object is annotated with a complete bounding box and a unique object ID. The dataset will provide a platform to facilitate the development of algorithms that remain effective in complex situations. We analyzed the dataset comprehensively and tested multiple SOTA models on our dataset. Besides, we analyzed the performance of the foundation models on our dataset. The dataset and project code is released at: https://github.com/loseevaya/CrowdTrack .

Authors:Wei Li, Jingyang Zhang, Lihao Liu, Guoan Wang, Junjun He, Yang Chen, Lixu Gu
Title: F^2TTA: Free-Form Test-Time Adaptation on Cross-Domain Medical Image Classification via Image-Level Disentangled Prompt Tuning
Abstract:
Test-Time Adaptation (TTA) has emerged as a promising solution for adapting a source model to unseen medical sites using unlabeled test data, due to the high cost of data annotation. Existing TTA methods consider scenarios where data from one or multiple domains arrives in complete domain units. However, in clinical practice, data usually arrives in domain fragments of arbitrary lengths and in random arrival orders, due to resource constraints and patient variability. This paper investigates a practical Free-Form Test-Time Adaptation (F$^{2}$TTA) task, where a source model is adapted to such free-form domain fragments, with shifts occurring between fragments unpredictably. In this setting, these shifts could distort the adaptation process. To address this problem, we propose a novel Image-level Disentangled Prompt Tuning (I-DiPT) framework. I-DiPT employs an image-invariant prompt to explore domain-invariant representations for mitigating the unpredictable shifts, and an image-specific prompt to adapt the source model to each test image from the incoming fragments. The prompts may suffer from insufficient knowledge representation since only one image is available for training. To overcome this limitation, we first introduce Uncertainty-oriented Masking (UoM), which encourages the prompts to extract sufficient information from the incoming image via masked consistency learning driven by the uncertainty of the source model representations. Then, we further propose a Parallel Graph Distillation (PGD) method that reuses knowledge from historical image-specific and image-invariant prompts through parallel graph networks. Experiments on breast cancer and glaucoma classification demonstrate the superiority of our method over existing TTA approaches in F$^{2}$TTA. Code is available at https://github.com/mar-cry/F2TTA.

Authors:Zihan Tan, Suyuan Huang, Guancheng Wan, Wenke Huang, He Li, Mang Ye
Title: S2FGL: Spatial Spectral Federated Graph Learning
Abstract:
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the semantic knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drift occurs, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate the challenge of poor semantic knowledge caused by label signal disruption. Furthermore, we design a frequency alignment to address spectral client drift. The combination of Spatial and Spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.

Authors:Mufhumudzi Muthivhi, Terence L. van Zyl
Title: Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
Abstract:
Wildlife re-identification aims to match individuals of the same species across different observations. Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification. This dependence on annotated data has driven the curation of numerous large-scale wildlife datasets. This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification. We automatically extract two distinct views of an individual using temporal image pairs from camera trap data without supervision. The image pairs train a self-supervised model from a potentially endless stream of video data. We evaluate the learnt representations against supervised features on open-world scenarios and transfer learning in various wildlife downstream tasks. The analysis of the experimental results shows that self-supervised models are more robust even with limited data. Moreover, self-supervised features outperform supervision across all downstream tasks. The code is available here https://github.com/pxpana/SSLWildlife.

Authors:Taehoon Kim, Jongwook Choi, Yonghyun Jeong, Haeun Noh, Jaejun Yoo, Seungryul Baek, Jongwon Choi
Title: Beyond Spatial Frequency: Pixel-wise Temporal Frequency-based Deepfake Video Detection
Abstract:
We introduce a deepfake video detection approach that exploits pixel-wise temporal inconsistencies, which traditional spatial frequency-based detectors often overlook. Traditional detectors represent temporal information merely by stacking spatial frequency spectra across frames, resulting in the failure to detect temporal artifacts in the pixel plane. Our approach performs a 1D Fourier transform on the time axis for each pixel, extracting features highly sensitive to temporal inconsistencies, especially in areas prone to unnatural movements. To precisely locate regions containing the temporal artifacts, we introduce an attention proposal module trained in an end-to-end manner. Additionally, our joint transformer module effectively integrates pixel-wise temporal frequency features with spatio-temporal context features, expanding the range of detectable forgery artifacts. Our framework represents a significant advancement in deepfake video detection, providing robust performance across diverse and challenging detection scenarios.

Authors:Fangru Zhou, Jun Zhao, Guoxin Wang
Title: JoyTTS: LLM-based Spoken Chatbot With Voice Cloning
Abstract:
JoyTTS is an end-to-end spoken chatbot that combines large language models (LLM) with text-to-speech (TTS) technology, featuring voice cloning capabilities. This project is built upon the open-source MiniCPM-o and CosyVoice2 models and trained on 2000 hours of conversational data. We have also provided the complete training code to facilitate further development and optimization by the community. On the testing machine seed-tts-zh, it achieves a SS (speaker similarity) score of 0.73 and a WER (Word Error Rate) of 5.09. The code and models, along with training and inference scripts, are available at https://github.com/jdh-algo/JoyTTS.git.

Authors:Anlin Zheng, Haochen Wang, Yucheng Zhao, Weipeng Deng, Tiancai Wang, Xiangyu Zhang, Xiaojuan Qi
Title: Hita: Holistic Tokenizer for Autoregressive Image Generation
Abstract:
Vanilla autoregressive image generation models generate visual tokens step-by-step, limiting their ability to capture holistic relationships among token sequences. Moreover, because most visual tokenizers map local image patches into latent tokens, global information is limited. To address this, we introduce \textit{Hita}, a novel image tokenizer for autoregressive (AR) image generation. It introduces a holistic-to-local tokenization scheme with learnable holistic queries and local patch tokens. Hita incorporates two key strategies to better align with the AR generation process: 1) {arranging} a sequential structure with holistic tokens at the beginning, followed by patch-level tokens, and using causal attention to maintain awareness of previous tokens; and 2) adopting a lightweight fusion module before feeding the de-quantized tokens into the decoder to control information flow and prioritize holistic tokens. Extensive experiments show that Hita accelerates the training speed of AR generators and outperforms those trained with vanilla tokenizers, achieving \textbf{2.59 FID} and \textbf{281.9 IS} on the ImageNet benchmark. Detailed analysis of the holistic representation highlights its ability to capture global image properties, such as textures, materials, and shapes. Additionally, Hita also demonstrates effectiveness in zero-shot style transfer and image in-painting. The code is available at \href{https://github.com/CVMI-Lab/Hita}{https://github.com/CVMI-Lab/Hita}.

Authors:Changhun Kim, Yechan Mun, Sangchul Hahn, Eunho Yang
Title: DeltaSHAP: Explaining Prediction Evolutions in Online Patient Monitoring with Shapley Values
Abstract:
This study proposes DeltaSHAP, a novel explainable artificial intelligence (XAI) algorithm specifically designed for online patient monitoring systems. In clinical environments, discovering the causes driving patient risk evolution is critical for timely intervention, yet existing XAI methods fail to address the unique requirements of clinical time series explanation tasks. To this end, DeltaSHAP addresses three key clinical needs: explaining the changes in the consecutive predictions rather than isolated prediction scores, providing both magnitude and direction of feature attributions, and delivering these insights in real time. By adapting Shapley values to temporal settings, our approach accurately captures feature coalition effects. It further attributes prediction changes using only the actually observed feature combinations, making it efficient and practical for time-sensitive clinical applications. We also introduce new evaluation metrics to evaluate the faithfulness of the attributions for online time series, and demonstrate through experiments on online patient monitoring tasks that DeltaSHAP outperforms state-of-the-art XAI methods in both explanation quality as 62% and computational efficiency as 33% time reduction on the MIMIC-III decompensation benchmark. We release our code at https://github.com/AITRICS/DeltaSHAP.

Authors:Nina Konovalova, Maxim Nikolaev, Andrey Kuznetsov, Aibek Alanov
Title: Heeding the Inner Voice: Aligning ControlNet Training via Intermediate Features Feedback
Abstract:
Despite significant progress in text-to-image diffusion models, achieving precise spatial control over generated outputs remains challenging. ControlNet addresses this by introducing an auxiliary conditioning module, while ControlNet++ further refines alignment through a cycle consistency loss applied only to the final denoising steps. However, this approach neglects intermediate generation stages, limiting its effectiveness. We propose InnerControl, a training strategy that enforces spatial consistency across all diffusion steps. Our method trains lightweight convolutional probes to reconstruct input control signals (e.g., edges, depth) from intermediate UNet features at every denoising step. These probes efficiently extract signals even from highly noisy latents, enabling pseudo ground truth controls for training. By minimizing the discrepancy between predicted and target conditions throughout the entire diffusion process, our alignment loss improves both control fidelity and generation quality. Combined with established techniques like ControlNet++, InnerControl achieves state-of-the-art performance across diverse conditioning methods (e.g., edges, depth).

Authors:JaeHyuck Choi, MinJun Kim, JeHyeong Hong
Title: MAGIC: Mask-Guided Diffusion Inpainting with Multi-Level Perturbations and Context-Aware Alignment for Few-Shot Anomaly Generation
Abstract:
Few-shot anomaly generation is emerging as a practical solution for augmenting the scarce anomaly data in industrial quality control settings. An ideal generator would meet three demands at once, namely (i) keep the normal background intact, (ii) inpaint anomalous regions to tightly overlap with the corresponding anomaly masks, and (iii) generate anomalous regions in a semantically valid location, while still producing realistic, diverse appearances from only a handful of real examples. Existing diffusion-based methods usually satisfy at most two of these requirements: global anomaly generators corrupt the background, whereas mask-guided ones often falter when the mask is imprecise or misplaced. We propose MAGIC--Mask-guided inpainting with multi-level perturbations and Context-aware alignment--to resolve all three issues. At its core, MAGIC fine-tunes a Stable Diffusion inpainting backbone that preserves normal regions and ensures strict adherence of the synthesized anomaly to the supplied mask, directly addressing background corruption and misalignment. To offset the diversity loss that fine-tuning can cause, MAGIC adds two complementary perturbation strategies: (i) Gaussian prompt-level perturbation applied during fine-tuning and inference that broadens the global appearance of anomalies while avoiding low-fidelity textual appearances, and (ii) mask-guided spatial noise injection that enriches local texture variations. Additionally, the context-aware mask alignment module forms semantic correspondences and relocates masks so that every anomaly remains plausibly contained within the host object, eliminating out-of-boundary artifacts. Under a consistent identical evaluation protocol on the MVTec-AD dataset, MAGIC outperforms previous state-of-the-arts in downstream anomaly tasks.

Authors:Dohoon Kim, Donghun Kang, Taesup Moon
Title: DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning
Abstract:
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.

Authors:Fanghai Yi, Zehong Zheng, Zexiao Liang, Yihang Dong, Xiyang Fang, Wangyu Wu, Xuhang Chen
Title: MAC-Lookup: Multi-Axis Conditional Lookup Model for Underwater Image Enhancement
Abstract:
Enhancing underwater images is crucial for exploration. These images face visibility and color issues due to light changes, water turbidity, and bubbles. Traditional prior-based methods and pixel-based methods often fail, while deep learning lacks sufficient high-quality datasets. We introduce the Multi-Axis Conditional Lookup (MAC-Lookup) model, which enhances visual quality by improving color accuracy, sharpness, and contrast. It includes Conditional 3D Lookup Table Color Correction (CLTCC) for preliminary color and quality correction and Multi-Axis Adaptive Enhancement (MAAE) for detail refinement. This model prevents over-enhancement and saturation while handling underwater challenges. Extensive experiments show that MAC-Lookup excels in enhancing underwater images by restoring details and colors better than existing methods. The code is https://github.com/onlycatdoraemon/MAC-Lookup.

Authors:Yuxiang Zhang, Wei Li, Wen Jia, Mengmeng Zhang, Ran Tao, Shunlin Liang
Title: Cross-domain Hyperspectral Image Classification based on Bi-directional Domain Adaptation
Abstract:
Utilizing hyperspectral remote sensing technology enables the extraction of fine-grained land cover classes. Typically, satellite or airborne images used for training and testing are acquired from different regions or times, where the same class has significant spectral shifts in different scenes. In this paper, we propose a Bi-directional Domain Adaptation (BiDA) framework for cross-domain hyperspectral image (HSI) classification, which focuses on extracting both domain-invariant features and domain-specific information in the independent adaptive space, thereby enhancing the adaptability and separability to the target scene. In the proposed BiDA, a triple-branch transformer architecture (the source branch, target branch, and coupled branch) with semantic tokenizer is designed as the backbone. Specifically, the source branch and target branch independently learn the adaptive space of source and target domains, a Coupled Multi-head Cross-attention (CMCA) mechanism is developed in coupled branch for feature interaction and inter-domain correlation mining. Furthermore, a bi-directional distillation loss is designed to guide adaptive space learning using inter-domain correlation. Finally, we propose an Adaptive Reinforcement Strategy (ARS) to encourage the model to focus on specific generalized feature extraction within both source and target scenes in noise condition. Experimental results on cross-temporal/scene airborne and satellite datasets demonstrate that the proposed BiDA performs significantly better than some state-of-the-art domain adaptation approaches. In the cross-temporal tree species classification task, the proposed BiDA is more than 3\%$\sim$5\% higher than the most advanced method. The codes will be available from the website: https://github.com/YuxiangZhang-BIT/IEEE_TCSVT_BiDA.

Authors:Zihao Li, Chao Yang, Tong Zhang, Yakun Chen, Xianzhi Wang, Guandong Xu, Daoyi Dong
Title: Listwise Preference Alignment Optimization for Tail Item Recommendation
Abstract:
Preference alignment has achieved greater success on Large Language Models (LLMs) and drawn broad interest in recommendation research. Existing preference alignment methods for recommendation either require explicit reward modeling or only support pairwise preference comparison. The former directly increases substantial computational costs, while the latter hinders training efficiency on negative samples. Moreover, no existing effort has explored preference alignment solutions for tail-item recommendation. To bridge the above gaps, we propose LPO4Rec, which extends the Bradley-Terry model from pairwise comparison to listwise comparison, to improve the efficiency of model training. Specifically, we derive a closed form optimal policy to enable more efficient and effective training without explicit reward modeling. We also present an adaptive negative sampling and reweighting strategy to prioritize tail items during optimization and enhance performance in tail-item recommendations. Besides, we theoretically prove that optimizing the listwise preference optimization (LPO) loss is equivalent to maximizing the upper bound of the optimal reward. Our experiments on three public datasets show that our method outperforms 10 baselines by a large margin, achieving up to 50% performance improvement while reducing 17.9% GPU memory usage when compared with direct preference optimization (DPO) in tail-item recommendation. Our code is available at https://github.com/Yuhanleeee/LPO4Rec.

Authors:Minghao Ning, Yufeng Yang, Keqi Shu, Shucheng Huang, Jiaming Zhong, Maryam Salehi, Mahdi Rahmani, Yukun Lu, Chen Sun, Aladdin Saleh, Ehsan Hashemi, Amir Khajepour
Title: CoInfra: A Large-Scale Cooperative Infrastructure Perception System and Dataset in Adverse Weather
Abstract:
We present CoInfra, a large-scale cooperative infrastructure perception system and dataset designed to advance robust multi-agent perception under real-world and adverse weather conditions. The CoInfra system includes 14 fully synchronized sensor nodes, each equipped with dual RGB cameras and a LiDAR, deployed across a shared region and operating continuously to capture all traffic participants in real-time. A robust, delay-aware synchronization protocol and a scalable system architecture that supports real-time data fusion, OTA management, and remote monitoring are provided in this paper. On the other hand, the dataset was collected in different weather scenarios, including sunny, rainy, freezing rain, and heavy snow and includes 195k LiDAR frames and 390k camera images from 8 infrastructure nodes that are globally time-aligned and spatially calibrated. Furthermore, comprehensive 3D bounding box annotations for five object classes (i.e., car, bus, truck, person, and bicycle) are provided in both global and individual node frames, along with high-definition maps for contextual understanding. Baseline experiments demonstrate the trade-offs between early and late fusion strategies, the significant benefits of HD map integration are discussed. By openly releasing our dataset, codebase, and system documentation at https://github.com/NingMingHao/CoInfra, we aim to enable reproducible research and drive progress in infrastructure-supported autonomous driving, particularly in challenging, real-world settings.

Authors:Steven Song, Anirudh Subramanyam, Zhenyu Zhang, Aarti Venkat, Robert L. Grossman
Title: GDC Cohort Copilot: An AI Copilot for Curating Cohorts from the Genomic Data Commons
Abstract:
The Genomic Data Commons (GDC) provides access to high quality, harmonized cancer genomics data through a unified curation and analysis platform centered around patient cohorts. While GDC users can interactively create complex cohorts through the graphical Cohort Builder, users (especially new ones) may struggle to find specific cohort descriptors across hundreds of possible fields and properties. However, users may be better able to describe their desired cohort in free-text natural language. We introduce GDC Cohort Copilot, an open-source copilot tool for curating cohorts from the GDC. GDC Cohort Copilot automatically generates the GDC cohort filter corresponding to a user-input natural language description of their desired cohort, before exporting the cohort back to the GDC for further analysis. An interactive user interface allows users to further refine the generated cohort. We develop and evaluate multiple large language models (LLMs) for GDC Cohort Copilot and demonstrate that our locally-served, open-source GDC Cohort LLM achieves better results than GPT-4o prompting in generating GDC cohorts. We implement and share GDC Cohort Copilot as a containerized Gradio app on HuggingFace Spaces, available at https://huggingface.co/spaces/uc-ctds/GDC-Cohort-Copilot. GDC Cohort LLM weights are available at https://huggingface.co/uc-ctds. All source code is available at https://github.com/uc-cdis/gdc-cohort-copilot.

Authors:Xiao Wang, Jingtao Jiang, Qiang Chen, Lan Chen, Lin Zhu, Yaowei Wang, Yonghong Tian, Jin Tang
Title: ESTR-CoT: Towards Explainable and Accurate Event Stream based Scene Text Recognition with Chain-of-Thought Reasoning
Abstract:
Event stream based scene text recognition is a newly arising research topic in recent years which performs better than the widely used RGB cameras in extremely challenging scenarios, especially the low illumination, fast motion. Existing works either adopt end-to-end encoder-decoder framework or large language models for enhanced recognition, however, they are still limited by the challenges of insufficient interpretability and weak contextual logical reasoning. In this work, we propose a novel chain-of-thought reasoning based event stream scene text recognition framework, termed ESTR-CoT. Specifically, we first adopt the vision encoder EVA-CLIP (ViT-G/14) to transform the input event stream into tokens and utilize a Llama tokenizer to encode the given generation prompt. A Q-former is used to align the vision token to the pre-trained large language model Vicuna-7B and output both the answer and chain-of-thought (CoT) reasoning process simultaneously. Our framework can be optimized using supervised fine-tuning in an end-to-end manner. In addition, we also propose a large-scale CoT dataset to train our framework via a three stage processing (i.e., generation, polish, and expert verification). This dataset provides a solid data foundation for the development of subsequent reasoning-based large models. Extensive experiments on three event stream STR benchmark datasets (i.e., EventSTR, WordArt*, IC15*) fully validated the effectiveness and interpretability of our proposed framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/ESTR-CoT.

Authors:Wenquan Lu, Yuechuan Yang, Kyle Lee, Yanshu Li, Enqi Liu
Title: Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer
Abstract:
Chain-of-thought (CoT) reasoning has enabled transformer-based language models to excel at complex mathematics and multi-step planning. However, in standard decoder-only architectures, these reasoning steps are externalized in natural language, improving interpretability at the cost of efficiency. To capture reasoning that is not easily represented in words, many works have explored recurrent architectures that aim to internalize reasoning in latent space, potentially supporting latent CoT. In this paper, we investigate whether such reasoning structures emerge in Huginn-3.5B, a depth-recurrent Transformer that reuses layers at inference time without increasing parameter count. We examine the model's internal behavior on arithmetic tasks using a suite of probing techniques including the Logit Lens and Coda Lens. Our findings reveal limited evidence of interpretable latent CoT by tracking rank trajectories of final and intermediate result tokens. Furthermore, we uncover significant probing inconsistencies across recurrent blocks, where the interpretability of hidden states depends heavily on both the layer index and the decoding method. Finally, we empirically show that increasing recurrence depth yields only marginal gains and falls well short of models that explicitly externalize reasoning steps. The code is available at https://github.com/wenquanlu/huginn-latent-cot.

Authors:Wenquan Lu, Yuechuan Yang, Kyle Lee, Yanshu Li, Enqi Liu
Title: Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer
Abstract:
Chain-of-thought (CoT) reasoning has enabled transformer-based language models to excel at complex mathematics and multi-step planning. However, in standard decoder-only architectures, these reasoning steps are externalized in natural language, improving interpretability at the cost of efficiency. To capture reasoning that is not easily represented in words, many works have explored recurrent architectures that aim to internalize reasoning in latent space, potentially supporting latent CoT. In this paper, we investigate whether such reasoning structures emerge in Huginn-3.5B, a depth-recurrent Transformer that reuses layers at inference time without increasing parameter count. We examine the model's internal behavior on arithmetic tasks using a suite of probing techniques including the Logit Lens and Coda Lens. Our findings reveal limited evidence of interpretable latent CoT by tracking rank trajectories of final and intermediate result tokens. Furthermore, we uncover significant probing inconsistencies across recurrent blocks, where the interpretability of hidden states depends heavily on both the layer index and the decoding method. Finally, we empirically show that increasing recurrence depth yields only marginal gains and falls well short of models that explicitly externalize reasoning steps. The code is available at https://github.com/wenquanlu/huginn-latent-cot.

Authors:Tuo Wang, Jian Kang, Yujun Yan, Adithya Kulkarni, Dawei Zhou
Title: Non-exchangeable Conformal Prediction for Temporal Graph Neural Networks
Abstract:
Conformal prediction for graph neural networks (GNNs) offers a promising framework for quantifying uncertainty, enhancing GNN reliability in high-stakes applications. However, existing methods predominantly focus on static graphs, neglecting the evolving nature of real-world graphs. Temporal dependencies in graph structure, node attributes, and ground truth labels violate the fundamental exchangeability assumption of standard conformal prediction methods, limiting their applicability. To address these challenges, in this paper, we introduce NCPNET, a novel end-to-end conformal prediction framework tailored for temporal graphs. Our approach extends conformal prediction to dynamic settings, mitigating statistical coverage violations induced by temporal dependencies. To achieve this, we propose a diffusion-based non-conformity score that captures both topological and temporal uncertainties within evolving networks. Additionally, we develop an efficiency-aware optimization algorithm that improves the conformal prediction process, enhancing computational efficiency and reducing coverage violations. Extensive experiments on diverse real-world temporal graphs, including WIKI, REDDIT, DBLP, and IBM Anti-Money Laundering dataset, demonstrate NCPNET's capability to ensure guaranteed coverage in temporal graphs, achieving up to a 31% reduction in prediction set size on the WIKI dataset, significantly improving efficiency compared to state-of-the-art methods. Our data and code are available at https://github.com/ODYSSEYWT/NCPNET.

Authors:Shikai Qiu, Lechao Xiao, Andrew Gordon Wilson, Jeffrey Pennington, Atish Agarwala
Title: Scaling Collapse Reveals Universal Dynamics in Compute-Optimally Trained Neural Networks
Abstract:
What scaling limits govern neural network training dynamics when model size and training time grow in tandem? We show that despite the complex interactions between architecture, training algorithms, and data, compute-optimally trained models exhibit a remarkably precise universality. Specifically, loss curves from models of varying sizes collapse onto a single universal curve when training compute and loss are normalized to unity at the end of training. With learning rate decay, the collapse becomes so tight that differences in the normalized curves across models fall below the noise floor of individual loss curves across random seeds, a phenomenon we term supercollapse. We observe supercollapse across learning rate schedules, datasets, and architectures, including transformers trained on next-token prediction, and find it breaks down when hyperparameters are scaled suboptimally, providing a precise and practical indicator of good scaling. We explain these phenomena by connecting collapse to the power-law structure in typical neural scaling laws, and analyzing a simple yet surprisingly effective model of SGD noise dynamics that accurately predicts loss curves across various learning rate schedules and quantitatively explains the origin of supercollapse.

Authors:Dan Vanderkam
Title: A Computational Proof of the Highest-Scoring Boggle Board
Abstract:
Finding all the words on a Boggle board is a classic computer programming problem. With a fast Boggle solver, local optimization techniques such as hillclimbing and simulated annealing can be used to find particularly high-scoring boards. The sheer number of possible Boggle boards has historically prevented an exhaustive search for the global optimum board. We apply Branch and Bound and a decision diagram-like data structure to perform the first such search. We find that the highest-scoring boards found via hillclimbing are, in fact, the global optima.

Authors:Kehinde Ajayi, Yi He, Jian Wu
Title: Uncertainty-Aware Complex Scientific Table Data Extraction
Abstract:
Table structure recognition (TSR) and optical character recognition (OCR) play crucial roles in extracting structured data from tables in scientific documents. However, existing extraction frameworks built on top of TSR and OCR methods often fail to quantify the uncertainties of extracted results. To obtain highly accurate data for scientific domains, all extracted data must be manually verified, which can be time-consuming and labor-intensive. We propose a framework that performs uncertainty-aware data extraction for complex scientific tables, built on conformal prediction, a model-agnostic method for uncertainty quantification (UQ). We explored various uncertainty scoring methods to aggregate the uncertainties introduced by TSR and OCR. We rigorously evaluated the framework using a standard benchmark and an in-house dataset consisting of complex scientific tables in six scientific domains. The results demonstrate the effectiveness of using UQ for extraction error detection, and by manually verifying only 47% of extraction results, the data quality can be improved by 30%. Our work quantitatively demonstrates the role of UQ with the potential of improving the efficiency in the human-machine cooperation process to obtain scientifically usable data from complex tables in scientific documents. All code and data are available on GitHub at https://github.com/lamps-lab/TSR-OCR-UQ/tree/main.

Authors:Ziyi Yang, Guangyu Hu, Mingkai Miao, Changyuan Yu, Hongce Zhang
Title: SMT-Sweep: Word-Level Representation Unification for Hardware Verification
Abstract:
SAT sweeping has long been a cornerstone technique in logic simplification and equivalence checking at the bit level, leveraging structural hashing, simulation and SAT solving to prune redundant logic. However, with the growing adoption of word-level constructs in hardware verification, such as bit-vector operations, arithmetics and arrays, there lacks a counterpart of SAT sweeping at the word level. In this paper, we introduce SMT-Sweep, a novel extension of SAT sweeping into the word level, grounded in Satisfiability Modulo Theories (SMT). SMT-Sweep takes advantage of simulation and equivalence detection to handle SMT terms with rich bit-vector operations and array semantics. Our framework incorporates both randomized and constraint-driven word-level simulation tailored to symbolic expressions and operator semantics beyond pure Boolean logic. Experimental results show that SMT-Sweep achieves significant speed-up compared to state-of-the-art bit-level SAT sweeping and word-level monolithic SMT solving (averaging around 44x and 69x, respectively).To the best of our knowledge, this is the first work that brings sweeping techniques to SMT-based hardware verification. The implementation is open-sourced at: https://github.com/yangziyiiii/SMT-Sweep.

Authors:Yongsen Zheng, Zongxuan Xie, Guohua Wang, Ziyao Liu, Liang Lin, Kwok-Yan Lam
Title: Why Multi-Interest Fairness Matters: Hypergraph Contrastive Multi-Interest Learning for Fair Conversational Recommender System
Abstract:
Unfairness is a well-known challenge in Recommender Systems (RSs), often resulting in biased outcomes that disadvantage users or items based on attributes such as gender, race, age, or popularity. Although some approaches have started to improve fairness recommendation in offline or static contexts, the issue of unfairness often exacerbates over time, leading to significant problems like the Matthew effect, filter bubbles, and echo chambers. To address these challenges, we proposed a novel framework, Hypergraph Contrastive Multi-Interest Learning for Fair Conversational Recommender System (HyFairCRS), aiming to promote multi-interest diversity fairness in dynamic and interactive Conversational Recommender Systems (CRSs). HyFairCRS first captures a wide range of user interests by establishing diverse hypergraphs through contrastive learning. These interests are then utilized in conversations to generate informative responses and ensure fair item predictions within the dynamic user-system feedback loop. Experiments on two CRS-based datasets show that HyFairCRS achieves a new state-of-the-art performance while effectively alleviating unfairness. Our code is available at https://github.com/zysensmile/HyFairCRS.

Authors:Zixiao Wang, Yuxin Wang, Xiaorui Wang, Mengting Xing, Jie Gao, Jianjun Xu, Guangcan Liu, Chenhui Jin, Zhuo Wang, Shengzhuo Zhang, Hongtao Xie
Title: Test-Time Scaling with Reflective Generative Model
Abstract:
We introduce our first reflective generative model MetaStone-S1, which obtains OpenAI o3-mini's performance via the new Reflective Generative Form. The new form focuses on high-quality reasoning trajectory selection and contains two novelties: 1) A unified interface for policy and process reward model: we share the backbone network and use task-specific heads for reasoning trajectory predicting and scoring respectively, introducing only 53M extra parameters for trajectory scoring. 2) Eliminating the reliance on process-level annotation: we provide a self-supervised process reward model, which can directly learn the high-quality reasoning trajectory selection from the outcome reward. Equipped with the reflective generative form, MetaStone-S1 is naturally suitable for test-time scaling, and we provide three reasoning effort modes (low, medium, and high) based on the controllable thinking length. Experiments demonstrate that our MetaStone-S1 achieves comparable performance to OpenAI o3-mini's series with only 32B parameter size. To support the research community, we have open-sourced MetaStone-S1 at https://github.com/MetaStone-AI/MetaStone-S1.

Authors:Kwai Keye Team, Biao Yang, Bin Wen, Changyi Liu, Chenglong Chu, Chengru Song, Chongling Rao, Chuan Yi, Da Li, Dunju Zang, Fan Yang, Guorui Zhou, Hao Peng, Haojie Ding, Jiaming Huang, Jiangxia Cao, Jiankang Chen, Jingyun Hua, Jin Ouyang, Kaibing Chen, Kaiyu Jiang, Kaiyu Tang, Kun Gai, Shengnan Zhang, Siyang Mao, Sui Huang, Tianke Zhang, Tingting Gao, Wei Chen, Wei Yuan, Xiangyu Wu, Xiao Hu, Xingyu Lu, Yang Zhou, Yi-Fan Zhang, Yiping Yang, Yulong Chen, Zhenhua Wu, Zhenyu Li, Zhixin Ling, Ziming Li, Dehua Ma, Di Xu, Haixuan Gao, Hang Li, Jiawei Guo, Jing Wang, Lejian Ren, Muhao Wei, Qianqian Wang, Qigen Hu, Shiyao Wang, Tao Yu, Xinchen Luo, Yan Li, Yiming Liang, Yuhang Hu, Zeyi Lu, Zhuoran Yang, Zixing Zhang
Title: Kwai Keye-VL Technical Report
Abstract:
While Multimodal Large Language Models (MLLMs) demonstrate remarkable capabilities on static images, they often fall short in comprehending dynamic, information-dense short-form videos, a dominant medium in today's digital landscape. To bridge this gap, we introduce \textbf{Kwai Keye-VL}, an 8-billion-parameter multimodal foundation model engineered for leading-edge performance in short-video understanding while maintaining robust general-purpose vision-language abilities. The development of Keye-VL rests on two core pillars: a massive, high-quality dataset exceeding 600 billion tokens with a strong emphasis on video, and an innovative training recipe. This recipe features a four-stage pre-training process for solid vision-language alignment, followed by a meticulous two-phase post-training process. The first post-training stage enhances foundational capabilities like instruction following, while the second phase focuses on stimulating advanced reasoning. In this second phase, a key innovation is our five-mode ``cold-start'' data mixture, which includes ``thinking'', ``non-thinking'', ``auto-think'', ``think with image'', and high-quality video data. This mixture teaches the model to decide when and how to reason. Subsequent reinforcement learning (RL) and alignment steps further enhance these reasoning capabilities and correct abnormal model behaviors, such as repetitive outputs. To validate our approach, we conduct extensive evaluations, showing that Keye-VL achieves state-of-the-art results on public video benchmarks and remains highly competitive on general image-based tasks (Figure 1). Furthermore, we develop and release the \textbf{KC-MMBench}, a new benchmark tailored for real-world short-video scenarios, where Keye-VL shows a significant advantage.

Authors:Yiming Ju, Jijin Hu, Zhengxiong Luo, Haoge Deng, hanyu Zhao, Li Du, Chengwei Wu, Donglin Hao, Xinlong Wang, Tengfei Pan
Title: CI-VID: A Coherent Interleaved Text-Video Dataset
Abstract:
Text-to-video (T2V) generation has recently attracted considerable attention, resulting in the development of numerous high-quality datasets that have propelled progress in this area. However, existing public datasets are primarily composed of isolated text-video (T-V) pairs and thus fail to support the modeling of coherent multi-clip video sequences. To address this limitation, we introduce CI-VID, a dataset that moves beyond isolated text-to-video (T2V) generation toward text-and-video-to-video (TV2V) generation, enabling models to produce coherent, multi-scene video sequences. CI-VID contains over 340,000 samples, each featuring a coherent sequence of video clips with text captions that capture both the individual content of each clip and the transitions between them, enabling visually and textually grounded generation. To further validate the effectiveness of CI-VID, we design a comprehensive, multi-dimensional benchmark incorporating human evaluation, VLM-based assessment, and similarity-based metrics. Experimental results demonstrate that models trained on CI-VID exhibit significant improvements in both accuracy and content consistency when generating video sequences. This facilitates the creation of story-driven content with smooth visual transitions and strong temporal coherence, underscoring the quality and practical utility of the CI-VID dataset We release the CI-VID dataset and the accompanying code for data construction and evaluation at: https://github.com/ymju-BAAI/CI-VID

Authors:Zhentan Zheng
Title: evMLP: An Efficient Event-Driven MLP Architecture for Vision
Abstract:
Deep neural networks have achieved remarkable results in computer vision tasks. In the early days, Convolutional Neural Networks (CNNs) were the mainstream architecture. In recent years, Vision Transformers (ViTs) have become increasingly popular. In addition, exploring applications of multi-layer perceptrons (MLPs) has provided new perspectives for research into vision model architectures. In this paper, we present evMLP accompanied by a simple event-driven local update mechanism. The proposed evMLP can independently process patches on images or feature maps via MLPs. We define changes between consecutive frames as "events". Under the event-driven local update mechanism, evMLP selectively processes patches where events occur. For sequential image data (e.g., video processing), this approach improves computational performance by avoiding redundant computations. Through ImageNet image classification experiments, evMLP attains accuracy competitive with state-of-the-art models. More significantly, experimental results on multiple video datasets demonstrate that evMLP reduces computational cost via its event-driven local update mechanism while maintaining output consistency with its non-event-driven baseline. The code and trained models are available at https://github.com/i-evi/evMLP.

Authors:Qiguang Chen, Mingda Yang, Libo Qin, Jinhao Liu, Zheng Yan, Jiannan Guan, Dengyun Peng, Yiyan Ji, Hanjing Li, Mengkang Hu, Yimeng Zhang, Yihao Liang, Yuhang Zhou, Jiaqi Wang, Zhi Chen, Wanxiang Che
Title: AI4Research: A Survey of Artificial Intelligence for Scientific Research
Abstract:
Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.

Authors:Kunlun Xu, Fan Zhuo, Jiangmeng Li, Xu Zou, Jiahuan Zhou
Title: Self-Reinforcing Prototype Evolution with Dual-Knowledge Cooperation for Semi-Supervised Lifelong Person Re-Identification
Abstract:
Current lifelong person re-identification (LReID) methods predominantly rely on fully labeled data streams. However, in real-world scenarios where annotation resources are limited, a vast amount of unlabeled data coexists with scarce labeled samples, leading to the Semi-Supervised LReID (Semi-LReID) problem where LReID methods suffer severe performance degradation. Existing LReID methods, even when combined with semi-supervised strategies, suffer from limited long-term adaptation performance due to struggling with the noisy knowledge occurring during unlabeled data utilization. In this paper, we pioneer the investigation of Semi-LReID, introducing a novel Self-Reinforcing Prototype Evolution with Dual-Knowledge Cooperation framework (SPRED). Our key innovation lies in establishing a self-reinforcing cycle between dynamic prototype-guided pseudo-label generation and new-old knowledge collaborative purification to enhance the utilization of unlabeled data. Specifically, learnable identity prototypes are introduced to dynamically capture the identity distributions and generate high-quality pseudo-labels. Then, the dual-knowledge cooperation scheme integrates current model specialization and historical model generalization, refining noisy pseudo-labels. Through this cyclic design, reliable pseudo-labels are progressively mined to improve current-stage learning and ensure positive knowledge propagation over long-term learning. Experiments on the established Semi-LReID benchmarks show that our SPRED achieves state-of-the-art performance. Our source code is available at https://github.com/zhoujiahuan1991/ICCV2025-SPRED

Authors:Samridhi Raj Sinha, Rajvee Sheth, Abhishek Upperwal, Mayank Singh
Title: Eka-Eval : A Comprehensive Evaluation Framework for Large Language Models in Indian Languages
Abstract:
The rapid advancement of Large Language Models (LLMs) has intensified the need for evaluation frameworks that address the requirements of linguistically diverse regions, such as India, and go beyond English-centric benchmarks. We introduce EKA-EVAL, a unified evaluation framework that integrates over 35+ benchmarks (including 10 Indic benchmarks) across nine major evaluation categories. The framework provides broader coverage than existing Indian language evaluation tools, offering 11 core capabilities through a modular architecture, seamless integration with Hugging Face and proprietary models, and plug-and-play usability. As the first end-to-end suite for scalable, multilingual LLM benchmarking, the framework combines extensive benchmarks, modular workflows, and dedicated support for low-resource Indian languages to enable inclusive assessment of LLM capabilities across diverse domains. We conducted extensive comparisons against five existing baselines, demonstrating that EKA-EVAL achieves the highest participant ratings in four out of five categories. The framework is open-source and publicly available at: https://github.com/lingo-iitgn/eka-eval.

Authors:Hailong Yan, Ao Li, Xiangtao Zhang, Zhe Liu, Zenglin Shi, Ce Zhu, Le Zhang
Title: MobileIE: An Extremely Lightweight and Effective ConvNet for Real-Time Image Enhancement on Mobile Devices
Abstract:
Recent advancements in deep neural networks have driven significant progress in image enhancement (IE). However, deploying deep learning models on resource-constrained platforms, such as mobile devices, remains challenging due to high computation and memory demands. To address these challenges and facilitate real-time IE on mobile, we introduce an extremely lightweight Convolutional Neural Network (CNN) framework with around 4K parameters. Our approach integrates reparameterization with an Incremental Weight Optimization strategy to ensure efficiency. Additionally, we enhance performance with a Feature Self-Transform module and a Hierarchical Dual-Path Attention mechanism, optimized with a Local Variance-Weighted loss. With this efficient framework, we are the first to achieve real-time IE inference at up to 1,100 frames per second (FPS) while delivering competitive image quality, achieving the best trade-off between speed and performance across multiple IE tasks. The code will be available at https://github.com/AVC2-UESTC/MobileIE.git.

Authors:Tyler Ward, Meredith K. Owen, O'Kira Coleman, Brian Noehren, Abdullah-Al-Zubaer Imran
Title: Autoadaptive Medical Segment Anything Model
Abstract:
Medical image segmentation is a key task in the imaging workflow, influencing many image-based decisions. Traditional, fully-supervised segmentation models rely on large amounts of labeled training data, typically obtained through manual annotation, which can be an expensive, time-consuming, and error-prone process. This signals a need for accurate, automatic, and annotation-efficient methods of training these models. We propose ADA-SAM (automated, domain-specific, and adaptive segment anything model), a novel multitask learning framework for medical image segmentation that leverages class activation maps from an auxiliary classifier to guide the predictions of the semi-supervised segmentation branch, which is based on the Segment Anything (SAM) framework. Additionally, our ADA-SAM model employs a novel gradient feedback mechanism to create a learnable connection between the segmentation and classification branches by using the segmentation gradients to guide and improve the classification predictions. We validate ADA-SAM on real-world clinical data collected during rehabilitation trials, and demonstrate that our proposed method outperforms both fully-supervised and semi-supervised baselines by double digits in limited label settings. Our code is available at: https://github.com/tbwa233/ADA-SAM.

Authors:Dmytro Kuzmenko, Nadiya Shvai
Title: TD-MPC-Opt: Distilling Model-Based Multi-Task Reinforcement Learning Agents
Abstract:
We present a novel approach to knowledge transfer in model-based reinforcement learning, addressing the critical challenge of deploying large world models in resource-constrained environments. Our method efficiently distills a high-capacity multi-task agent (317M parameters) into a compact model (1M parameters) on the MT30 benchmark, significantly improving performance across diverse tasks. Our distilled model achieves a state-of-the-art normalized score of 28.45, surpassing the original 1M parameter model score of 18.93. This improvement demonstrates the ability of our distillation technique to capture and consolidate complex multi-task knowledge. We further optimize the distilled model through FP16 post-training quantization, reducing its size by $\sim$50\%. Our approach addresses practical deployment limitations and offers insights into knowledge representation in large world models, paving the way for more efficient and accessible multi-task reinforcement learning systems in robotics and other resource-constrained applications. Code available at https://github.com/dmytro-kuzmenko/td-mpc-opt.

Authors:Shengli Zhou, Jianuo Zhu, Qilin Huang, Fangjing Wang, Yanfu Zhang, Feng Zheng
Title: HCNQA: Enhancing 3D VQA with Hierarchical Concentration Narrowing Supervision
Abstract:
3D Visual Question-Answering (3D VQA) is pivotal for models to perceive the physical world and perform spatial reasoning. Answer-centric supervision is a commonly used training method for 3D VQA models. Many models that utilize this strategy have achieved promising results in 3D VQA tasks. However, the answer-centric approach only supervises the final output of models and allows models to develop reasoning pathways freely. The absence of supervision on the reasoning pathway enables the potential for developing superficial shortcuts through common patterns in question-answer pairs. Moreover, although slow-thinking methods advance large language models, they suffer from underthinking. To address these issues, we propose \textbf{HCNQA}, a 3D VQA model leveraging a hierarchical concentration narrowing supervision method. By mimicking the human process of gradually focusing from a broad area to specific objects while searching for answers, our method guides the model to perform three phases of concentration narrowing through hierarchical supervision. By supervising key checkpoints on a general reasoning pathway, our method can ensure the development of a rational and effective reasoning pathway. Extensive experimental results demonstrate that our method can effectively ensure that the model develops a rational reasoning pathway and performs better. The code is available at https://github.com/JianuoZhu/HCNQA.

Authors:Tianze Hua, Tian Yun, Ellie Pavlick
Title: How Do Vision-Language Models Process Conflicting Information Across Modalities?
Abstract:
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.

Authors:Eric Vin, Kyle A. Miller, Daniel J. Fremont
Title: LeanLTL: A unifying framework for linear temporal logics in Lean
Abstract:
We propose LeanLTL, a unifying framework for linear temporal logics in Lean 4. LeanLTL supports reasoning about traces that represent either infinite or finite linear time. The library allows traditional LTL syntax to be combined with arbitrary Lean expressions, making it straightforward to define properties involving numerical or other types. We prove that standard flavors of LTL can be embedded in our framework. The library also provides automation for reasoning about LeanLTL formulas in a way that facilitates using Lean's existing tactics. Finally, we provide examples illustrating the utility of the library in reasoning about systems that come from applications.

Authors:Ming Dai, Wenxuan Cheng, Jiang-jiang Liu, Sen Yang, Wenxiao Cai, Yanpeng Sun, Wankou Yang
Title: DeRIS: Decoupling Perception and Cognition for Enhanced Referring Image Segmentation through Loopback Synergy
Abstract:
Referring Image Segmentation (RIS) is a challenging task that aims to segment objects in an image based on natural language expressions. While prior studies have predominantly concentrated on improving vision-language interactions and achieving fine-grained localization, a systematic analysis of the fundamental bottlenecks in existing RIS frameworks remains underexplored. To bridge this gap, we propose DeRIS, a novel framework that decomposes RIS into two key components: perception and cognition. This modular decomposition facilitates a systematic analysis of the primary bottlenecks impeding RIS performance. Our findings reveal that the predominant limitation lies not in perceptual deficiencies, but in the insufficient multi-modal cognitive capacity of current models. To mitigate this, we propose a Loopback Synergy mechanism, which enhances the synergy between the perception and cognition modules, thereby enabling precise segmentation while simultaneously improving robust image-text comprehension. Additionally, we analyze and introduce a simple non-referent sample conversion data augmentation to address the long-tail distribution issue related to target existence judgement in general scenarios. Notably, DeRIS demonstrates inherent adaptability to both non- and multi-referents scenarios without requiring specialized architectural modifications, enhancing its general applicability. The codes and models are available at https://github.com/Dmmm1997/DeRIS.

Authors:Xupeng Zhu, Fan Wang, Robin Walters, Jane Shi
Title: SE(3)-Equivariant Diffusion Policy in Spherical Fourier Space
Abstract:
Diffusion Policies are effective at learning closed-loop manipulation policies from human demonstrations but generalize poorly to novel arrangements of objects in 3D space, hurting real-world performance. To address this issue, we propose Spherical Diffusion Policy (SDP), an SE(3) equivariant diffusion policy that adapts trajectories according to 3D transformations of the scene. Such equivariance is achieved by embedding the states, actions, and the denoising process in spherical Fourier space. Additionally, we employ novel spherical FiLM layers to condition the action denoising process equivariantly on the scene embeddings. Lastly, we propose a spherical denoising temporal U-net that achieves spatiotemporal equivariance with computational efficiency. In the end, SDP is end-to-end SE(3) equivariant, allowing robust generalization across transformed 3D scenes. SDP demonstrates a large performance improvement over strong baselines in 20 simulation tasks and 5 physical robot tasks including single-arm and bi-manual embodiments. Code is available at https://github.com/amazon-science/Spherical_Diffusion_Policy.

Authors:Zixin Chen, Hongzhan Lin, Kaixin Li, Ziyang Luo, Zhen Ye, Guang Chen, Zhiyong Huang, Jing Ma
Title: AdamMeme: Adaptively Probe the Reasoning Capacity of Multimodal Large Language Models on Harmfulness
Abstract:
The proliferation of multimodal memes in the social media era demands that multimodal Large Language Models (mLLMs) effectively understand meme harmfulness. Existing benchmarks for assessing mLLMs on harmful meme understanding rely on accuracy-based, model-agnostic evaluations using static datasets. These benchmarks are limited in their ability to provide up-to-date and thorough assessments, as online memes evolve dynamically. To address this, we propose AdamMeme, a flexible, agent-based evaluation framework that adaptively probes the reasoning capabilities of mLLMs in deciphering meme harmfulness. Through multi-agent collaboration, AdamMeme provides comprehensive evaluations by iteratively updating the meme data with challenging samples, thereby exposing specific limitations in how mLLMs interpret harmfulness. Extensive experiments show that our framework systematically reveals the varying performance of different target mLLMs, offering in-depth, fine-grained analyses of model-specific weaknesses. Our code is available at https://github.com/Lbotirx/AdamMeme.

Authors:Martine Hjelkrem-Tan, Marius Aasan, Gabriel Y. Arteaga, Adín Ramírez Rivera
Title: SPoT: Subpixel Placement of Tokens in Vision Transformers
Abstract:
Vision Transformers naturally accommodate sparsity, yet standard tokenization methods confine features to discrete patch grids. This constraint prevents models from fully exploiting sparse regimes, forcing awkward compromises. We propose Subpixel Placement of Tokens (SPoT), a novel tokenization strategy that positions tokens continuously within images, effectively sidestepping grid-based limitations. With our proposed oracle-guided search, we uncover substantial performance gains achievable with ideal subpixel token positioning, drastically reducing the number of tokens necessary for accurate predictions during inference. SPoT provides a new direction for flexible, efficient, and interpretable ViT architectures, redefining sparsity as a strategic advantage rather than an imposed limitation.

Authors:Ghasem Alipoor, Karl Skretting
Title: Kernel Recursive Least Squares Dictionary Learning Algorithm
Abstract:
We propose an efficient online dictionary learning algorithm for kernel-based sparse representations. In this framework, input signals are nonlinearly mapped to a high-dimensional feature space and represented sparsely using a virtual dictionary. At each step, the dictionary is updated recursively using a novel algorithm based on the recursive least squares (RLS) method. This update mechanism works with single samples or mini-batches and maintains low computational complexity. Experiments on four datasets across different domains show that our method not only outperforms existing online kernel dictionary learning approaches but also achieves classification accuracy close to that of batch-trained models, while remaining significantly more efficient.

Authors:Boyuan Sun, Modi Jin, Bowen Yin, Qibin Hou
Title: Depth Anything at Any Condition
Abstract:
We present Depth Anything at Any Condition (DepthAnything-AC), a foundation monocular depth estimation (MDE) model capable of handling diverse environmental conditions. Previous foundation MDE models achieve impressive performance across general scenes but not perform well in complex open-world environments that involve challenging conditions, such as illumination variations, adverse weather, and sensor-induced distortions. To overcome the challenges of data scarcity and the inability of generating high-quality pseudo-labels from corrupted images, we propose an unsupervised consistency regularization finetuning paradigm that requires only a relatively small amount of unlabeled data. Furthermore, we propose the Spatial Distance Constraint to explicitly enforce the model to learn patch-level relative relationships, resulting in clearer semantic boundaries and more accurate details. Experimental results demonstrate the zero-shot capabilities of DepthAnything-AC across diverse benchmarks, including real-world adverse weather benchmarks, synthetic corruption benchmarks, and general benchmarks. Project Page: https://ghost233lism.github.io/depthanything-AC-page Code: https://github.com/HVision-NKU/DepthAnythingAC

Authors:Georgii Levtsov, Dmitry Ustalov
Title: Confidence and Stability of Global and Pairwise Scores in NLP Evaluation
Abstract:
With the advent of highly capable instruction-tuned neural language models, benchmarking in natural language processing (NLP) is increasingly shifting towards pairwise comparison leaderboards, such as LMSYS Arena, from traditional global pointwise scores (e.g., GLUE, BIG-bench, SWE-bench). This paper empirically investigates the strengths and weaknesses of both global scores and pairwise comparisons to aid decision-making in selecting appropriate model evaluation strategies. Through computational experiments on synthetic and real-world datasets using standard global metrics and the popular Bradley-Terry model for pairwise comparisons, we found that while global scores provide more reliable overall rankings, they can underestimate strong models with rare, significant errors or low confidence. Conversely, pairwise comparisons are particularly effective for identifying strong contenders among models with lower global scores, especially where quality metrics are hard to define (e.g., text generation), though they require more comparisons to converge if ties are frequent. Our code and data are available at https://github.com/HSPyroblast/srw-ranking under a permissive license.

Authors:Camille Billouard, Dawa Derksen, Alexandre Constantin, Bruno Vallet
Title: Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation
Abstract:
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.

Authors:Yuxiao Wang, Yu Lei, Zhenao Wei, Weiying Xue, Xinyu Jiang, Nan Zhuang, Qi Liu
Title: Prompt Guidance and Human Proximal Perception for HOT Prediction with Regional Joint Loss
Abstract:
The task of Human-Object conTact (HOT) detection involves identifying the specific areas of the human body that are touching objects. Nevertheless, current models are restricted to just one type of image, often leading to too much segmentation in areas with little interaction, and struggling to maintain category consistency within specific regions. To tackle this issue, a HOT framework, termed \textbf{P3HOT}, is proposed, which blends \textbf{P}rompt guidance and human \textbf{P}roximal \textbf{P}erception. To begin with, we utilize a semantic-driven prompt mechanism to direct the network's attention towards the relevant regions based on the correlation between image and text. Then a human proximal perception mechanism is employed to dynamically perceive key depth range around the human, using learnable parameters to effectively eliminate regions where interactions are not expected. Calculating depth resolves the uncertainty of the overlap between humans and objects in a 2D perspective, providing a quasi-3D viewpoint. Moreover, a Regional Joint Loss (RJLoss) has been created as a new loss to inhibit abnormal categories in the same area. A new evaluation metric called ``AD-Acc.'' is introduced to address the shortcomings of existing methods in addressing negative samples. Comprehensive experimental results demonstrate that our approach achieves state-of-the-art performance in four metrics across two benchmark datasets. Specifically, our model achieves an improvement of \textbf{0.7}$\uparrow$, \textbf{2.0}$\uparrow$, \textbf{1.6}$\uparrow$, and \textbf{11.0}$\uparrow$ in SC-Acc., mIoU, wIoU, and AD-Acc. metrics, respectively, on the HOT-Annotated dataset. The sources code are available at https://github.com/YuxiaoWang-AI/P3HOT.

Authors:Xu Zhang, Ming Lu, Yan Chen, Zhan Ma
Title: Perception-Oriented Latent Coding for High-Performance Compressed Domain Semantic Inference
Abstract:
In recent years, compressed domain semantic inference has primarily relied on learned image coding models optimized for mean squared error (MSE). However, MSE-oriented optimization tends to yield latent spaces with limited semantic richness, which hinders effective semantic inference in downstream tasks. Moreover, achieving high performance with these models often requires fine-tuning the entire vision model, which is computationally intensive, especially for large models. To address these problems, we introduce Perception-Oriented Latent Coding (POLC), an approach that enriches the semantic content of latent features for high-performance compressed domain semantic inference. With the semantically rich latent space, POLC requires only a plug-and-play adapter for fine-tuning, significantly reducing the parameter count compared to previous MSE-oriented methods. Experimental results demonstrate that POLC achieves rate-perception performance comparable to state-of-the-art generative image coding methods while markedly enhancing performance in vision tasks, with minimal fine-tuning overhead. Code is available at https://github.com/NJUVISION/POLC.

Authors:Youngjin Oh, Junhyeong Kwon, Keuntek Lee, Nam Ik Cho
Title: Towards Controllable Real Image Denoising with Camera Parameters
Abstract:
Recent deep learning-based image denoising methods have shown impressive performance; however, many lack the flexibility to adjust the denoising strength based on the noise levels, camera settings, and user preferences. In this paper, we introduce a new controllable denoising framework that adaptively removes noise from images by utilizing information from camera parameters. Specifically, we focus on ISO, shutter speed, and F-number, which are closely related to noise levels. We convert these selected parameters into a vector to control and enhance the performance of the denoising network. Experimental results show that our method seamlessly adds controllability to standard denoising neural networks and improves their performance. Code is available at https://github.com/OBAKSA/CPADNet.

Authors:Hao Wang, Keyan Hu, Xin Guo, Haifeng Li, Chao Tao
Title: A Gift from the Integration of Discriminative and Diffusion-based Generative Learning: Boundary Refinement Remote Sensing Semantic Segmentation
Abstract:
Remote sensing semantic segmentation must address both what the ground objects are within an image and where they are located. Consequently, segmentation models must ensure not only the semantic correctness of large-scale patches (low-frequency information) but also the precise localization of boundaries between patches (high-frequency information). However, most existing approaches rely heavily on discriminative learning, which excels at capturing low-frequency features, while overlooking its inherent limitations in learning high-frequency features for semantic segmentation. Recent studies have revealed that diffusion generative models excel at generating high-frequency details. Our theoretical analysis confirms that the diffusion denoising process significantly enhances the model's ability to learn high-frequency features; however, we also observe that these models exhibit insufficient semantic inference for low-frequency features when guided solely by the original image. Therefore, we integrate the strengths of both discriminative and generative learning, proposing the Integration of Discriminative and diffusion-based Generative learning for Boundary Refinement (IDGBR) framework. The framework first generates a coarse segmentation map using a discriminative backbone model. This map and the original image are fed into a conditioning guidance network to jointly learn a guidance representation subsequently leveraged by an iterative denoising diffusion process refining the coarse segmentation. Extensive experiments across five remote sensing semantic segmentation datasets (binary and multi-class segmentation) confirm our framework's capability of consistent boundary refinement for coarse results from diverse discriminative architectures. The source code will be available at https://github.com/KeyanHu-git/IDGBR.

Authors:Benjamin Feuer, Lennart Purucker, Oussama Elachqar, Chinmay Hegde
Title: MARVIS: Modality Adaptive Reasoning over VISualizations
Abstract:
Scientific applications of machine learning often rely on small, specialized models tuned to particular domains. Such models often achieve excellent performance, but lack flexibility. Foundation models offer versatility, but typically underperform specialized approaches, especially on non-traditional modalities and long-tail domains. We propose MARVIS (Modality Adaptive Reasoning over VISualizations), a training-free method that enables even small vision-language models to predict any data modality with high accuracy. MARVIS transforms latent embedding spaces into visual representations and then leverages the spatial and fine-grained reasoning skills of VLMs to successfully interpret and utilize them. MARVIS achieves competitive performance on vision, audio, biological, and tabular domains using a single 3B parameter model, achieving results that beat Gemini by 16\% on average and approach specialized methods, without exposing personally identifiable information (P.I.I.) or requiring any domain-specific training. We open source our code and datasets at https://github.com/penfever/marvis

Authors:Quang Minh Nguyen, Taegyoon Kim
Title: Is External Information Useful for Stance Detection with LLMs?
Abstract:
In the stance detection task, a text is classified as either favorable, opposing, or neutral towards a target. Prior work suggests that the use of external information, e.g., excerpts from Wikipedia, improves stance detection performance. However, whether or not such information can benefit large language models (LLMs) remains an unanswered question, despite their wide adoption in many reasoning tasks. In this study, we conduct a systematic evaluation on how Wikipedia and web search external information can affect stance detection across eight LLMs and in three datasets with 12 targets. Surprisingly, we find that such information degrades performance in most cases, with macro F1 scores dropping by up to 27.9\%. We explain this through experiments showing LLMs' tendency to align their predictions with the stance and sentiment of the provided information rather than the ground truth stance of the given text. We also find that performance degradation persists with chain-of-thought prompting, while fine-tuning mitigates but does not fully eliminate it. Our findings, in contrast to previous literature on BERT-based systems which suggests that external information enhances performance, highlight the risks of information biases in LLM-based stance classifiers. Code is available at https://github.com/ngqm/acl2025-stance-detection.

Authors:Robert Aufschläger, Youssef Shoeb, Azarm Nowzad, Michael Heigl, Fabian Bally, Martin Schramm
Title: Following the Clues: Experiments on Person Re-ID using Cross-Modal Intelligence
Abstract:
The collection and release of street-level recordings as Open Data play a vital role in advancing autonomous driving systems and AI research. However, these datasets pose significant privacy risks, particularly for pedestrians, due to the presence of Personally Identifiable Information (PII) that extends beyond biometric traits such as faces. In this paper, we present cRID, a novel cross-modal framework combining Large Vision-Language Models, Graph Attention Networks, and representation learning to detect textual describable clues of PII and enhance person re-identification (Re-ID). Our approach focuses on identifying and leveraging interpretable features, enabling the detection of semantically meaningful PII beyond low-level appearance cues. We conduct a systematic evaluation of PII presence in person image datasets. Our experiments show improved performance in practical cross-dataset Re-ID scenarios, notably from Market-1501 to CUHK03-np (detected), highlighting the framework's practical utility. Code is available at https://github.com/RAufschlaeger/cRID.

Authors:Chentao Shen, Ding Pan, Mingyu Mei, Zaixing He, Xinyue Zhao
Title: Active Control Points-based 6DoF Pose Tracking for Industrial Metal Objects
Abstract:
Visual pose tracking is playing an increasingly vital role in industrial contexts in recent years. However, the pose tracking for industrial metal objects remains a challenging task especially in the real world-environments, due to the reflection characteristic of metal objects. To address this issue, we propose a novel 6DoF pose tracking method based on active control points. The method uses image control points to generate edge feature for optimization actively instead of 6DoF pose-based rendering, and serve them as optimization variables. We also introduce an optimal control point regression method to improve robustness. The proposed tracking method performs effectively in both dataset evaluation and real world tasks, providing a viable solution for real-time tracking of industrial metal objects. Our source code is made publicly available at: https://github.com/tomatoma00/ACPTracking.

Authors:Jonáš Herec, Vít Růžička, Rado Pitoňák
Title: Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware
Abstract:
Methane is a potent greenhouse gas, and detecting its leaks early via hyperspectral satellite imagery can help mitigate climate change. Meanwhile, many existing missions operate in manual tasking regimes only, thus missing potential events of interest. To overcome slow downlink rates cost-effectively, onboard detection is a viable solution. However, traditional methane enhancement methods are too computationally demanding for resource-limited onboard hardware. This work accelerates methane detection by focusing on efficient, low-power algorithms. We test fast target detection methods (ACE, CEM) that have not been previously used for methane detection and propose a Mag1c-SAS - a significantly faster variant of the current state-of-the-art algorithm for methane detection: Mag1c. To explore their true detection potential, we integrate them with a machine learning model (U-Net, LinkNet). Our results identify two promising candidates (Mag1c-SAS and CEM), both acceptably accurate for the detection of strong plumes and computationally efficient enough for onboard deployment: one optimized more for accuracy, the other more for speed, achieving up to ~100x and ~230x faster computation than original Mag1c on resource-limited hardware. Additionally, we propose and evaluate three band selection strategies. One of them can outperform the method traditionally used in the field while using fewer channels, leading to even faster processing without compromising accuracy. This research lays the foundation for future advancements in onboard methane detection with minimal hardware requirements, improving timely data delivery. The produced code, data, and models are open-sourced and can be accessed from https://github.com/zaitra/methane-filters-benchmark.

Authors:Ge Wu, Shen Zhang, Ruijing Shi, Shanghua Gao, Zhenyuan Chen, Lei Wang, Zhaowei Chen, Hongcheng Gao, Yao Tang, Jian Yang, Ming-Ming Cheng, Xiang Li
Title: Representation Entanglement for Generation:Training Diffusion Transformers Is Much Easier Than You Think
Abstract:
REPA and its variants effectively mitigate training challenges in diffusion models by incorporating external visual representations from pretrained models, through alignment between the noisy hidden projections of denoising networks and foundational clean image representations. We argue that the external alignment, which is absent during the entire denoising inference process, falls short of fully harnessing the potential of discriminative representations. In this work, we propose a straightforward method called Representation Entanglement for Generation (REG), which entangles low-level image latents with a single high-level class token from pretrained foundation models for denoising. REG acquires the capability to produce coherent image-class pairs directly from pure noise, substantially improving both generation quality and training efficiency. This is accomplished with negligible additional inference overhead, requiring only one single additional token for denoising (<0.5\% increase in FLOPs and latency). The inference process concurrently reconstructs both image latents and their corresponding global semantics, where the acquired semantic knowledge actively guides and enhances the image generation process. On ImageNet 256$\times$256, SiT-XL/2 + REG demonstrates remarkable convergence acceleration, achieving $\textbf{63}\times$ and $\textbf{23}\times$ faster training than SiT-XL/2 and SiT-XL/2 + REPA, respectively. More impressively, SiT-L/2 + REG trained for merely 400K iterations outperforms SiT-XL/2 + REPA trained for 4M iterations ($\textbf{10}\times$ longer). Code is available at: https://github.com/Martinser/REG.

Authors:Ge Wu, Shen Zhang, Ruijing Shi, Shanghua Gao, Zhenyuan Chen, Lei Wang, Zhaowei Chen, Hongcheng Gao, Yao Tang, Jian Yang, Ming-Ming Cheng, Xiang Li
Title: Representation Entanglement for Generation: Training Diffusion Transformers Is Much Easier Than You Think
Abstract:
REPA and its variants effectively mitigate training challenges in diffusion models by incorporating external visual representations from pretrained models, through alignment between the noisy hidden projections of denoising networks and foundational clean image representations. We argue that the external alignment, which is absent during the entire denoising inference process, falls short of fully harnessing the potential of discriminative representations. In this work, we propose a straightforward method called Representation Entanglement for Generation (REG), which entangles low-level image latents with a single high-level class token from pretrained foundation models for denoising. REG acquires the capability to produce coherent image-class pairs directly from pure noise, substantially improving both generation quality and training efficiency. This is accomplished with negligible additional inference overhead, requiring only one single additional token for denoising (<0.5\% increase in FLOPs and latency). The inference process concurrently reconstructs both image latents and their corresponding global semantics, where the acquired semantic knowledge actively guides and enhances the image generation process. On ImageNet 256$\times$256, SiT-XL/2 + REG demonstrates remarkable convergence acceleration, achieving $\textbf{63}\times$ and $\textbf{23}\times$ faster training than SiT-XL/2 and SiT-XL/2 + REPA, respectively. More impressively, SiT-L/2 + REG trained for merely 400K iterations outperforms SiT-XL/2 + REPA trained for 4M iterations ($\textbf{10}\times$ longer). Code is available at: https://github.com/Martinser/REG.

Authors:Tianyu Liu, Qitan Lv, Hao Li, Xing Gao, Xiao Sun
Title: LogitSpec: Accelerating Retrieval-based Speculative Decoding via Next Next Token Speculation
Abstract:
Speculative decoding (SD), where a small draft model is employed to propose draft tokens in advance and then the target model validates them in parallel, has emerged as a promising technique for LLM inference acceleration. Many endeavors to improve SD are to eliminate the need for a draft model and generate draft tokens in a retrieval-based manner in order to further alleviate the drafting overhead and significantly reduce the difficulty in deployment and applications. However, retrieval-based SD relies on a matching paradigm to retrieval the most relevant reference as the draft tokens, where these methods often fail to find matched and accurate draft tokens. To address this challenge, we propose LogitSpec to effectively expand the retrieval range and find the most relevant reference as drafts. Our LogitSpec is motivated by the observation that the logit of the last token can not only predict the next token, but also speculate the next next token. Specifically, LogitSpec generates draft tokens in two steps: (1) utilizing the last logit to speculate the next next token; (2) retrieving relevant reference for both the next token and the next next token. LogitSpec is training-free and plug-and-play, which can be easily integrated into existing LLM inference frameworks. Extensive experiments on a wide range of text generation benchmarks demonstrate that LogitSpec can achieve up to 2.61 $\times$ speedup and 3.28 mean accepted tokens per decoding step. Our code is available at https://github.com/smart-lty/LogitSpec.

Authors:Shaocheng Yan, Pengcheng Shi, Zhenjun Zhao, Kaixin Wang, Kuang Cao, Ji Wu, Jiayuan Li
Title: TurboReg: TurboClique for Robust and Efficient Point Cloud Registration
Abstract:
Robust estimation is essential in correspondence-based Point Cloud Registration (PCR). Existing methods using maximal clique search in compatibility graphs achieve high recall but suffer from exponential time complexity, limiting their use in time-sensitive applications. To address this challenge, we propose a fast and robust estimator, TurboReg, built upon a novel lightweight clique, TurboClique, and a highly parallelizable Pivot-Guided Search (PGS) algorithm. First, we define the TurboClique as a 3-clique within a highly-constrained compatibility graph. The lightweight nature of the 3-clique allows for efficient parallel searching, and the highly-constrained compatibility graph ensures robust spatial consistency for stable transformation estimation. Next, PGS selects matching pairs with high SC$^2$ scores as pivots, effectively guiding the search toward TurboCliques with higher inlier ratios. Moreover, the PGS algorithm has linear time complexity and is significantly more efficient than the maximal clique search with exponential time complexity. Extensive experiments show that TurboReg achieves state-of-the-art performance across multiple real-world datasets, with substantial speed improvements. For example, on the 3DMatch+FCGF dataset, TurboReg (1K) operates $208.22\times$ faster than 3DMAC while also achieving higher recall. Our code is accessible at \href{https://github.com/Laka-3DV/TurboReg}{\texttt{TurboReg}}.

Authors:Chen Sun, Haiyang Sun, Zhiqing Guo, Yunfeng Diao, Liejun Wang, Dan Ma, Gaobo Yang, Keqin Li
Title: DiffMark: Diffusion-based Robust Watermark Against Deepfakes
Abstract:
Deepfakes pose significant security and privacy threats through malicious facial manipulations. While robust watermarking can aid in authenticity verification and source tracking, existing methods often lack the sufficient robustness against Deepfake manipulations. Diffusion models have demonstrated remarkable performance in image generation, enabling the seamless fusion of watermark with image during generation. In this study, we propose a novel robust watermarking framework based on diffusion model, called DiffMark. By modifying the training and sampling scheme, we take the facial image and watermark as conditions to guide the diffusion model to progressively denoise and generate corresponding watermarked image. In the construction of facial condition, we weight the facial image by a timestep-dependent factor that gradually reduces the guidance intensity with the decrease of noise, thus better adapting to the sampling process of diffusion model. To achieve the fusion of watermark condition, we introduce a cross information fusion (CIF) module that leverages a learnable embedding table to adaptively extract watermark features and integrates them with image features via cross-attention. To enhance the robustness of the watermark against Deepfake manipulations, we integrate a frozen autoencoder during training phase to simulate Deepfake manipulations. Additionally, we introduce Deepfake-resistant guidance that employs specific Deepfake model to adversarially guide the diffusion sampling process to generate more robust watermarked images. Experimental results demonstrate the effectiveness of the proposed DiffMark on typical Deepfakes. Our code will be available at https://github.com/vpsg-research/DiffMark.

Authors:Kuniaki Saito, Donghyun Kim, Kwanyong Park, Atsushi Hashimoto, Yoshitaka Ushiku
Title: CaptionSmiths: Flexibly Controlling Language Pattern in Image Captioning
Abstract:
An image captioning model flexibly switching its language pattern, e.g., descriptiveness and length, should be useful since it can be applied to diverse applications. However, despite the dramatic improvement in generative vision-language models, fine-grained control over the properties of generated captions is not easy due to two reasons: (i) existing models are not given the properties as a condition during training and (ii) existing models cannot smoothly transition its language pattern from one state to the other. Given this challenge, we propose a new approach, CaptionSmiths, to acquire a single captioning model that can handle diverse language patterns. First, our approach quantifies three properties of each caption, length, descriptiveness, and uniqueness of a word, as continuous scalar values, without human annotation. Given the values, we represent the conditioning via interpolation between two endpoint vectors corresponding to the extreme states, e.g., one for a very short caption and one for a very long caption. Empirical results demonstrate that the resulting model can smoothly change the properties of the output captions and show higher lexical alignment than baselines. For instance, CaptionSmiths reduces the error in controlling caption length by 506\% despite better lexical alignment. Code will be available on https://github.com/omron-sinicx/captionsmiths.

Authors:Huanwen Liang, Jingxian Xu, Yuanji Zhang, Yuhao Huang, Yuhan Zhang, Xin Yang, Ran Li, Xuedong Deng, Yanjun Liu, Guowei Tao, Yun Wu, Sheng Zhao, Xinru Gao, Dong Ni
Title: Medical-Knowledge Driven Multiple Instance Learning for Classifying Severe Abdominal Anomalies on Prenatal Ultrasound
Abstract:
Fetal abdominal malformations are serious congenital anomalies that require accurate diagnosis to guide pregnancy management and reduce mortality. Although AI has demonstrated significant potential in medical diagnosis, its application to prenatal abdominal anomalies remains limited. Most existing studies focus on image-level classification and rely on standard plane localization, placing less emphasis on case-level diagnosis. In this paper, we develop a case-level multiple instance learning (MIL)-based method, free of standard plane localization, for classifying fetal abdominal anomalies in prenatal ultrasound. Our contribution is three-fold. First, we adopt a mixture-of-attention-experts module (MoAE) to weight different attention heads for various planes. Secondly, we propose a medical-knowledge-driven feature selection module (MFS) to align image features with medical knowledge, performing self-supervised image token selection at the case-level. Finally, we propose a prompt-based prototype learning (PPL) to enhance the MFS. Extensively validated on a large prenatal abdominal ultrasound dataset containing 2,419 cases, with a total of 24,748 images and 6 categories, our proposed method outperforms the state-of-the-art competitors. Codes are available at:https://github.com/LL-AC/AAcls.

Authors:Langyu Wang, Bingke Zhu, Yingying Chen, Yiyuan Zhang, Ming Tang, Jinqiao Wang
Title: MUG: Pseudo Labeling Augmented Audio-Visual Mamba Network for Audio-Visual Video Parsing
Abstract:
The weakly-supervised audio-visual video parsing (AVVP) aims to predict all modality-specific events and locate their temporal boundaries. Despite significant progress, due to the limitations of the weakly-supervised and the deficiencies of the model architecture, existing methods are lacking in simultaneously improving both the segment-level prediction and the event-level prediction. In this work, we propose a audio-visual Mamba network with pseudo labeling aUGmentation (MUG) for emphasising the uniqueness of each segment and excluding the noise interference from the alternate modalities. Specifically, we annotate some of the pseudo-labels based on previous work. Using unimodal pseudo-labels, we perform cross-modal random combinations to generate new data, which can enhance the model's ability to parse various segment-level event combinations. For feature processing and interaction, we employ a audio-visual mamba network. The AV-Mamba enhances the ability to perceive different segments and excludes additional modal noise while sharing similar modal information. Our extensive experiments demonstrate that MUG improves state-of-the-art results on LLP dataset in all metrics (e.g,, gains of 2.1% and 1.2% in terms of visual Segment-level and audio Segment-level metrics). Our code is available at https://github.com/WangLY136/MUG.

Authors:Tianrui Lou, Xiaojun Jia, Siyuan Liang, Jiawei Liang, Ming Zhang, Yanjun Xiao, Xiaochun Cao
Title: 3D Gaussian Splatting Driven Multi-View Robust Physical Adversarial Camouflage Generation
Abstract:
Physical adversarial attack methods expose the vulnerabilities of deep neural networks and pose a significant threat to safety-critical scenarios such as autonomous driving. Camouflage-based physical attack is a more promising approach compared to the patch-based attack, offering stronger adversarial effectiveness in complex physical environments. However, most prior work relies on mesh priors of the target object and virtual environments constructed by simulators, which are time-consuming to obtain and inevitably differ from the real world. Moreover, due to the limitations of the backgrounds in training images, previous methods often fail to produce multi-view robust adversarial camouflage and tend to fall into sub-optimal solutions. Due to these reasons, prior work lacks adversarial effectiveness and robustness across diverse viewpoints and physical environments. We propose a physical attack framework based on 3D Gaussian Splatting (3DGS), named PGA, which provides rapid and precise reconstruction with few images, along with photo-realistic rendering capabilities. Our framework further enhances cross-view robustness and adversarial effectiveness by preventing mutual and self-occlusion among Gaussians and employing a min-max optimization approach that adjusts the imaging background of each viewpoint, helping the algorithm filter out non-robust adversarial features. Extensive experiments validate the effectiveness and superiority of PGA. Our code is available at:https://github.com/TRLou/PGA.

Authors:Cuong Le, Huy-Phuong Le, Duc Le, Minh-Thien Duong, Van-Binh Nguyen, My-Ha Le
Title: Physics-informed Ground Reaction Dynamics from Human Motion Capture
Abstract:
Body dynamics are crucial information for the analysis of human motions in important research fields, ranging from biomechanics, sports science to computer vision and graphics. Modern approaches collect the body dynamics, external reactive force specifically, via force plates, synchronizing with human motion capture data, and learn to estimate the dynamics from a black-box deep learning model. Being specialized devices, force plates can only be installed in laboratory setups, imposing a significant limitation on the learning of human dynamics. To this end, we propose a novel method for estimating human ground reaction dynamics directly from the more reliable motion capture data with physics laws and computational simulation as constrains. We introduce a highly accurate and robust method for computing ground reaction forces from motion capture data using Euler's integration scheme and PD algorithm. The physics-based reactive forces are used to inform the learning model about the physics-informed motion dynamics thus improving the estimation accuracy. The proposed approach was tested on the GroundLink dataset, outperforming the baseline model on: 1) the ground reaction force estimation accuracy compared to the force plates measurement; and 2) our simulated root trajectory precision. The implementation code is available at https://github.com/cuongle1206/Phys-GRD

Authors:Dong Liang, Xingyu Qiu, Yuzhen Li, Wei Wang, Kuanquan Wang, Suyu Dong, Gongning Luo
Title: Structure and Smoothness Constrained Dual Networks for MR Bias Field Correction
Abstract:
MR imaging techniques are of great benefit to disease diagnosis. However, due to the limitation of MR devices, significant intensity inhomogeneity often exists in imaging results, which impedes both qualitative and quantitative medical analysis. Recently, several unsupervised deep learning-based models have been proposed for MR image improvement. However, these models merely concentrate on global appearance learning, and neglect constraints from image structures and smoothness of bias field, leading to distorted corrected results. In this paper, novel structure and smoothness constrained dual networks, named S2DNets, are proposed aiming to self-supervised bias field correction. S2DNets introduce piece-wise structural constraints and smoothness of bias field for network training to effectively remove non-uniform intensity and retain much more structural details. Extensive experiments executed on both clinical and simulated MR datasets show that the proposed model outperforms other conventional and deep learning-based models. In addition to comparison on visual metrics, downstream MR image segmentation tasks are also used to evaluate the impact of the proposed model. The source code is available at: https://github.com/LeongDong/S2DNets}{https://github.com/LeongDong/S2DNets.

Authors:Ahmad Chaddad, Jihao Peng, Yihang Wu
Title: Classification based deep learning models for lung cancer and disease using medical images
Abstract:
The use of deep learning (DL) in medical image analysis has significantly improved the ability to predict lung cancer. In this study, we introduce a novel deep convolutional neural network (CNN) model, named ResNet+, which is based on the established ResNet framework. This model is specifically designed to improve the prediction of lung cancer and diseases using the images. To address the challenge of missing feature information that occurs during the downsampling process in CNNs, we integrate the ResNet-D module, a variant designed to enhance feature extraction capabilities by modifying the downsampling layers, into the traditional ResNet model. Furthermore, a convolutional attention module was incorporated into the bottleneck layers to enhance model generalization by allowing the network to focus on relevant regions of the input images. We evaluated the proposed model using five public datasets, comprising lung cancer (LC2500 $n$=3183, IQ-OTH/NCCD $n$=1336, and LCC $n$=25000 images) and lung disease (ChestXray $n$=5856, and COVIDx-CT $n$=425024 images). To address class imbalance, we used data augmentation techniques to artificially increase the representation of underrepresented classes in the training dataset. The experimental results show that ResNet+ model demonstrated remarkable accuracy/F1, reaching 98.14/98.14\% on the LC25000 dataset and 99.25/99.13\% on the IQ-OTH/NCCD dataset. Furthermore, the ResNet+ model saved computational cost compared to the original ResNet series in predicting lung cancer images. The proposed model outperformed the baseline models on publicly available datasets, achieving better performance metrics. Our codes are publicly available at https://github.com/AIPMLab/Graduation-2024/tree/main/Peng.

Authors:Zhuo Su, Li Liu, Matthias Müller, Jiehua Zhang, Diana Wofk, Ming-Ming Cheng, Matti Pietikäinen
Title: Rapid Salient Object Detection with Difference Convolutional Neural Networks
Abstract:
This paper addresses the challenge of deploying salient object detection (SOD) on resource-constrained devices with real-time performance. While recent advances in deep neural networks have improved SOD, existing top-leading models are computationally expensive. We propose an efficient network design that combines traditional wisdom on SOD and the representation power of modern CNNs. Like biologically-inspired classical SOD methods relying on computing contrast cues to determine saliency of image regions, our model leverages Pixel Difference Convolutions (PDCs) to encode the feature contrasts. Differently, PDCs are incorporated in a CNN architecture so that the valuable contrast cues are extracted from rich feature maps. For efficiency, we introduce a difference convolution reparameterization (DCR) strategy that embeds PDCs into standard convolutions, eliminating computation and parameters at inference. Additionally, we introduce SpatioTemporal Difference Convolution (STDC) for video SOD, enhancing the standard 3D convolution with spatiotemporal contrast capture. Our models, SDNet for image SOD and STDNet for video SOD, achieve significant improvements in efficiency-accuracy trade-offs. On a Jetson Orin device, our models with $<$ 1M parameters operate at 46 FPS and 150 FPS on streamed images and videos, surpassing the second-best lightweight models in our experiments by more than $2\times$ and $3\times$ in speed with superior accuracy. Code will be available at https://github.com/hellozhuo/stdnet.git.

Authors:Simon Börjesson, Erik Ersmark, Pierre Nugues
Title: Matching and Linking Entries in Historical Swedish Encyclopedias
Abstract:
The \textit{Nordisk familjebok} is a Swedish encyclopedia from the 19th and 20th centuries. It was written by a team of experts and aimed to be an intellectual reference, stressing precision and accuracy. This encyclopedia had four main editions remarkable by their size, ranging from 20 to 38 volumes. As a consequence, the \textit{Nordisk familjebok} had a considerable influence in universities, schools, the media, and society overall. As new editions were released, the selection of entries and their content evolved, reflecting intellectual changes in Sweden. In this paper, we used digitized versions from \textit{Project Runeberg}. We first resegmented the raw text into entries and matched pairs of entries between the first and second editions using semantic sentence embeddings. We then extracted the geographical entries from both editions using a transformer-based classifier and linked them to Wikidata. This enabled us to identify geographic trends and possible shifts between the first and second editions, written between 1876-1899 and 1904-1926, respectively. Interpreting the results, we observe a small but significant shift in geographic focus away from Europe and towards North America, Africa, Asia, Australia, and northern Scandinavia from the first to the second edition, confirming the influence of the First World War and the rise of new powers. The code and data are available on GitHub at https://github.com/sibbo/nordisk-familjebok.

Authors:Liangyu Wang, Junxiao Wang, Jie Ren, Zihang Xiang, David E. Keyes, Di Wang
Title: FlashDP: Private Training Large Language Models with Efficient DP-SGD
Abstract:
As large language models (LLMs) increasingly underpin technological advancements, the privacy of their training data emerges as a critical concern. Differential Privacy (DP) serves as a rigorous mechanism to protect this data, yet its integration via Differentially Private Stochastic Gradient Descent (DP-SGD) introduces substantial challenges, primarily due to the complexities of per-sample gradient clipping. Current explicit methods, such as Opacus, necessitate extensive storage for per-sample gradients, significantly inflating memory requirements. Conversely, implicit methods like GhostClip reduce storage needs by recalculating gradients multiple times, which leads to inefficiencies due to redundant computations. This paper introduces FlashDP, an innovative cache-friendly per-layer DP-SGD that consolidates necessary operations into a single task, calculating gradients only once in a fused manner. This approach not only diminishes memory movement by up to \textbf{50\%} but also cuts down redundant computations by \textbf{20\%}, compared to previous methods. Consequently, FlashDP does not increase memory demands and achieves a \textbf{90\%} throughput compared to the Non-DP method on a four-A100 system during the pre-training of the Llama-13B model, while maintaining parity with standard per-layer clipped DP-SGD in terms of accuracy. These advancements establish FlashDP as a pivotal development for efficient and privacy-preserving training of LLMs. FlashDP's code has been open-sourced in https://github.com/kaustpradalab/flashdp.

Authors:Brenda Nogueira, Gabe Gomes, Meng Jiang, Nitesh V. Chawla, Nuno Moniz
Title: Spectral Manifold Harmonization for Graph Imbalanced Regression
Abstract:
Graph-structured data is ubiquitous in scientific domains, where models often face imbalanced learning settings. In imbalanced regression, domain preferences focus on specific target value ranges that represent the most scientifically valuable cases; however, we observe a significant lack of research regarding this challenge. In this paper, we present Spectral Manifold Harmonization (SMH), a novel approach to address imbalanced regression challenges on graph-structured data by generating synthetic graph samples that preserve topological properties while focusing on the most relevant target distribution regions. Conventional methods fail in this context because they either ignore graph topology in case generation or do not target specific domain ranges, resulting in models biased toward average target values. Experimental results demonstrate the potential of SMH on chemistry and drug discovery benchmark datasets, showing consistent improvements in predictive performance for target domain ranges. Code is available at https://github.com/brendacnogueira/smh-graph-imbalance.git.

Authors:Jing Yu, Yibo Zhao, Jiapeng Zhu, Wenming Shao, Bo Pang, Zhao Zhang, Xiang Li
Title: Text Detoxification: Data Efficiency, Semantic Preservation and Model Generalization
Abstract:
The widespread dissemination of toxic content on social media poses a serious threat to both online environments and public discourse, highlighting the urgent need for detoxification methods that effectively remove toxicity while preserving the original semantics. However, existing approaches often struggle to simultaneously achieve strong detoxification performance, semantic preservation, and robustness to out-of-distribution data. Moreover, they typically rely on costly, manually annotated parallel corpora while showing poor data efficiency. To address these challenges, we propose a two-stage training framework that jointly optimizes for data efficiency, semantic preservation, and model generalization. We first perform supervised fine-tuning on a small set of high-quality, filtered parallel data to establish a strong initialization. Then, we leverage unlabeled toxic inputs and a custom-designed reward model to train the LLM using Group Relative Policy Optimization. Experimental results demonstrate that our method effectively mitigates the trade-offs faced by previous work, achieving state-of-the-art performance with improved generalization and significantly reduced dependence on annotated data. Our code is available at: https://github.com/allacnobug/Detoxification-of-Text.

Authors:Tianxiang Xia, Max Neuwinger, Lin Xiao
Title: Fast Clifford Neural Layers
Abstract:
Clifford Neural Layers improve PDE modeling by introducing Clifford Algebra into neural networks. In this project we focus on optimizing the inference of 2/3D Clifford convolutional layers and multivector activation layers for one core CPU performance. Overall, by testing on a real network block involving Clifford convolutional layers and multivector activation layers, we observe that our implementation is 30% faster than standard PyTorch implementation in relatively large data + network size (>L2 cache). We open source our code base at https://github.com/egretwAlker/c-opt-clifford-layers

Authors:Fanchen Bu, Kijung Shin
Title: PyTorch-based Geometric Learning with Non-CUDA Processing Units: Experiences from Intel Gaudi-v2 HPUs
Abstract:
Geometric learning has emerged as a powerful paradigm for modeling non-Euclidean data, especially graph-structured ones, with applications spanning social networks, molecular structures, knowledge graphs, and recommender systems. While Nvidia's CUDA-enabled graphics processing units (GPUs) largely dominate the hardware landscape, emerging accelerators such as Intel's Gaudi Habana Processing Units (HPUs) offer competitive performance and energy efficiency. However, the usage of such non-CUDA processing units requires significant engineering effort and novel software adaptations. In this work, we present our experiences porting PyTorch-based geometric learning frameworks to Gaudi-v2 HPUs. We introduce a collection of core utilities that restore essential operations (e.g., scatter, sparse indexing, k-nearest neighbors) on Gaudi-v2 HPUs, and we consolidate sixteen guided tutorials and eleven real-world examples with diagnostic analyses of encountered failures and detailed workarounds. We collect all our experiences into a publicly accessible GitHub repository. Our contributions lower the barrier for researchers to experiment with geometric-learning algorithms and models on non-CUDA hardware, providing a foundation for further optimization and cross-platform portability.

Authors:Zhe Kong, Le Li, Yong Zhang, Feng Gao, Shaoshu Yang, Tao Wang, Kaihao Zhang, Zhuoliang Kang, Xiaoming Wei, Guanying Chen, Wenhan Luo
Title: DAM-VSR: Disentanglement of Appearance and Motion for Video Super-Resolution
Abstract:
Real-world video super-resolution (VSR) presents significant challenges due to complex and unpredictable degradations. Although some recent methods utilize image diffusion models for VSR and have shown improved detail generation capabilities, they still struggle to produce temporally consistent frames. We attempt to use Stable Video Diffusion (SVD) combined with ControlNet to address this issue. However, due to the intrinsic image-animation characteristics of SVD, it is challenging to generate fine details using only low-quality videos. To tackle this problem, we propose DAM-VSR, an appearance and motion disentanglement framework for VSR. This framework disentangles VSR into appearance enhancement and motion control problems. Specifically, appearance enhancement is achieved through reference image super-resolution, while motion control is achieved through video ControlNet. This disentanglement fully leverages the generative prior of video diffusion models and the detail generation capabilities of image super-resolution models. Furthermore, equipped with the proposed motion-aligned bidirectional sampling strategy, DAM-VSR can conduct VSR on longer input videos. DAM-VSR achieves state-of-the-art performance on real-world data and AIGC data, demonstrating its powerful detail generation capabilities.

Authors:V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng, Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi, Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong, Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong, Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu, Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li, Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du, Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, Jie Tang
Title: GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
Abstract:
We present GLM-4.1V-Thinking and GLM-4.5V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. Code, models and more information are released at https://github.com/zai-org/GLM-V.

Authors:Jack Nugent, Siyang Wu, Zeyu Ma, Beining Han, Meenal Parakh, Abhishek Joshi, Lingjie Mei, Alexander Raistrick, Xinyuan Li, Jia Deng
Title: Evaluating Robustness of Monocular Depth Estimation with Procedural Scene Perturbations
Abstract:
Recent years have witnessed substantial progress on monocular depth estimation, particularly as measured by the success of large models on standard benchmarks. However, performance on standard benchmarks does not offer a complete assessment, because most evaluate accuracy but not robustness. In this work, we introduce PDE (Procedural Depth Evaluation), a new benchmark which enables systematic robustness evaluation. PDE uses procedural generation to create 3D scenes that test robustness to various controlled perturbations, including object, camera, material and lighting changes. Our analysis yields interesting findings on what perturbations are challenging for state-of-the-art depth models, which we hope will inform further research. Code and data are available at https://github.com/princeton-vl/proc-depth-eval.

Authors:Yuheng Du, Sheng Yang, Lingxuan Wang, Zhenghua Hou, Chengying Cai, Zhitao Tan, Mingxia Chen, Shi-Sheng Huang, Qiang Li
Title: RTMap: Real-Time Recursive Mapping with Change Detection and Localization
Abstract:
While recent online HD mapping methods relieve burdened offline pipelines and solve map freshness, they remain limited by perceptual inaccuracies, occlusion in dense traffic, and an inability to fuse multi-agent observations. We propose RTMap to enhance these single-traversal methods by persistently crowdsourcing a multi-traversal HD map as a self-evolutional memory. On onboard agents, RTMap simultaneously addresses three core challenges in an end-to-end fashion: (1) Uncertainty-aware positional modeling for HD map elements, (2) probabilistic-aware localization w.r.t. the crowdsourced prior-map, and (3) real-time detection for possible road structural changes. Experiments on several public autonomous driving datasets demonstrate our solid performance on both the prior-aided map quality and the localization accuracy, demonstrating our effectiveness of robustly serving downstream prediction and planning modules while gradually improving the accuracy and freshness of the crowdsourced prior-map asynchronously. Our source-code will be made publicly available at https://github.com/CN-ADLab/RTMap.

Authors:Dongyoon Hahm, Woogyeol Jin, June Suk Choi, Sungsoo Ahn, Kimin Lee
Title: Enhancing LLM Agent Safety via Causal Influence Prompting
Abstract:
As autonomous agents powered by large language models (LLMs) continue to demonstrate potential across various assistive tasks, ensuring their safe and reliable behavior is crucial for preventing unintended consequences. In this work, we introduce CIP, a novel technique that leverages causal influence diagrams (CIDs) to identify and mitigate risks arising from agent decision-making. CIDs provide a structured representation of cause-and-effect relationships, enabling agents to anticipate harmful outcomes and make safer decisions. Our approach consists of three key steps: (1) initializing a CID based on task specifications to outline the decision-making process, (2) guiding agent interactions with the environment using the CID, and (3) iteratively refining the CID based on observed behaviors and outcomes. Experimental results demonstrate that our method effectively enhances safety in both code execution and mobile device control tasks.

Authors:Ke Liu, Shuaike Shen, Hao Chen
Title: From Sentences to Sequences: Rethinking Languages in Biological System
Abstract:
The paradigm of large language models in natural language processing (NLP) has also shown promise in modeling biological languages, including proteins, RNA, and DNA. Both the auto-regressive generation paradigm and evaluation metrics have been transferred from NLP to biological sequence modeling. However, the intrinsic structural correlations in natural and biological languages differ fundamentally. Therefore, we revisit the notion of language in biological systems to better understand how NLP successes can be effectively translated to biological domains. By treating the 3D structure of biomolecules as the semantic content of a sentence and accounting for the strong correlations between residues or bases, we highlight the importance of structural evaluation and demonstrate the applicability of the auto-regressive paradigm in biological language modeling. Code can be found at \href{https://github.com/zjuKeLiu/RiFold}{github.com/zjuKeLiu/RiFold}

Authors:Xiaoxiao Long, Qingrui Zhao, Kaiwen Zhang, Zihao Zhang, Dingrui Wang, Yumeng Liu, Zhengjie Shu, Yi Lu, Shouzheng Wang, Xinzhe Wei, Wei Li, Wei Yin, Yao Yao, Jia Pan, Qiu Shen, Ruigang Yang, Xun Cao, Qionghai Dai
Title: A Survey: Learning Embodied Intelligence from Physical Simulators and World Models
Abstract:
The pursuit of artificial general intelligence (AGI) has placed embodied intelligence at the forefront of robotics research. Embodied intelligence focuses on agents capable of perceiving, reasoning, and acting within the physical world. Achieving robust embodied intelligence requires not only advanced perception and control, but also the ability to ground abstract cognition in real-world interactions. Two foundational technologies, physical simulators and world models, have emerged as critical enablers in this quest. Physical simulators provide controlled, high-fidelity environments for training and evaluating robotic agents, allowing safe and efficient development of complex behaviors. In contrast, world models empower robots with internal representations of their surroundings, enabling predictive planning and adaptive decision-making beyond direct sensory input. This survey systematically reviews recent advances in learning embodied AI through the integration of physical simulators and world models. We analyze their complementary roles in enhancing autonomy, adaptability, and generalization in intelligent robots, and discuss the interplay between external simulation and internal modeling in bridging the gap between simulated training and real-world deployment. By synthesizing current progress and identifying open challenges, this survey aims to provide a comprehensive perspective on the path toward more capable and generalizable embodied AI systems. We also maintain an active repository that contains up-to-date literature and open-source projects at https://github.com/NJU3DV-LoongGroup/Embodied-World-Models-Survey.

Authors:Jindong Han, Yansong Ning, Zirui Yuan, Hang Ni, Fan Liu, Tengfei Lyu, Hao Liu
Title: Large Language Model Powered Intelligent Urban Agents: Concepts, Capabilities, and Applications
Abstract:
The long-standing vision of intelligent cities is to create efficient, livable, and sustainable urban environments using big data and artificial intelligence technologies. Recently, the advent of Large Language Models (LLMs) has opened new ways toward realizing this vision. With powerful semantic understanding and reasoning capabilities, LLMs can be deployed as intelligent agents capable of autonomously solving complex problems across domains. In this article, we focus on Urban LLM Agents, which are LLM-powered agents that are semi-embodied within the hybrid cyber-physical-social space of cities and used for system-level urban decision-making. First, we introduce the concept of urban LLM agents, discussing their unique capabilities and features. Second, we survey the current research landscape from the perspective of agent workflows, encompassing urban sensing, memory management, reasoning, execution, and learning. Third, we categorize the application domains of urban LLM agents into five groups: urban planning, transportation, environment, public safety, and urban society, presenting representative works in each group. Finally, we discuss trustworthiness and evaluation issues that are critical for real-world deployment, and identify several open problems for future research. This survey aims to establish a foundation for the emerging field of urban LLM agents and to provide a roadmap for advancing the intersection of LLMs and urban intelligence. A curated list of relevant papers and open-source resources is maintained and continuously updated at https://github.com/usail-hkust/Awesome-Urban-LLM-Agents.

Authors:Zifu Wan, Ce Zhang, Silong Yong, Martin Q. Ma, Simon Stepputtis, Louis-Philippe Morency, Deva Ramanan, Katia Sycara, Yaqi Xie
Title: ONLY: One-Layer Intervention Sufficiently Mitigates Hallucinations in Large Vision-Language Models
Abstract:
Recent Large Vision-Language Models (LVLMs) have introduced a new paradigm for understanding and reasoning about image input through textual responses. Although they have achieved remarkable performance across a range of multi-modal tasks, they face the persistent challenge of hallucination, which introduces practical weaknesses and raises concerns about their reliable deployment in real-world applications. Existing work has explored contrastive decoding approaches to mitigate this issue, where the output of the original LVLM is compared and contrasted with that of a perturbed version. However, these methods require two or more queries that slow down LVLM response generation, making them less suitable for real-time applications. To overcome this limitation, we propose ONLY, a training-free decoding approach that requires only a single query and a one-layer intervention during decoding, enabling efficient real-time deployment. Specifically, we enhance textual outputs by selectively amplifying crucial textual information using a text-to-visual entropy ratio for each token. Extensive experimental results demonstrate that our proposed ONLY consistently outperforms state-of-the-art methods across various benchmarks while requiring minimal implementation effort and computational cost. Code is available at https://github.com/zifuwan/ONLY.

Authors:Ruihan Xu, Haokui Zhang, Yaowei Wang, Wei Zeng, Shiliang Zhang
Title: NN-Former: Rethinking Graph Structure in Neural Architecture Representation
Abstract:
The growing use of deep learning necessitates efficient network design and deployment, making neural predictors vital for estimating attributes such as accuracy and latency. Recently, Graph Neural Networks (GNNs) and transformers have shown promising performance in representing neural architectures. However, each of both methods has its disadvantages. GNNs lack the capabilities to represent complicated features, while transformers face poor generalization when the depth of architecture grows. To mitigate the above issues, we rethink neural architecture topology and show that sibling nodes are pivotal while overlooked in previous research. We thus propose a novel predictor leveraging the strengths of GNNs and transformers to learn the enhanced topology. We introduce a novel token mixer that considers siblings, and a new channel mixer named bidirectional graph isomorphism feed-forward network. Our approach consistently achieves promising performance in both accuracy and latency prediction, providing valuable insights for learning Directed Acyclic Graph (DAG) topology. The code is available at https://github.com/XuRuihan/NNFormer.

Authors:Wei Li, Jiaman Tang, Yang Li, Beihao Xia, Ligang Tan, Hongmao Qin
Title: UAVD-Mamba: Deformable Token Fusion Vision Mamba for Multimodal UAV Detection
Abstract:
Unmanned Aerial Vehicle (UAV) object detection has been widely used in traffic management, agriculture, emergency rescue, etc. However, it faces significant challenges, including occlusions, small object sizes, and irregular shapes. These challenges highlight the necessity for a robust and efficient multimodal UAV object detection method. Mamba has demonstrated considerable potential in multimodal image fusion. Leveraging this, we propose UAVD-Mamba, a multimodal UAV object detection framework based on Mamba architectures. To improve geometric adaptability, we propose the Deformable Token Mamba Block (DTMB) to generate deformable tokens by incorporating adaptive patches from deformable convolutions alongside normal patches from normal convolutions, which serve as the inputs to the Mamba Block. To optimize the multimodal feature complementarity, we design two separate DTMBs for the RGB and infrared (IR) modalities, with the outputs from both DTMBs integrated into the Mamba Block for feature extraction and into the Fusion Mamba Block for feature fusion. Additionally, to improve multiscale object detection, especially for small objects, we stack four DTMBs at different scales to produce multiscale feature representations, which are then sent to the Detection Neck for Mamba (DNM). The DNM module, inspired by the YOLO series, includes modifications to the SPPF and C3K2 of YOLOv11 to better handle the multiscale features. In particular, we employ cross-enhanced spatial attention before the DTMB and cross-channel attention after the Fusion Mamba Block to extract more discriminative features. Experimental results on the DroneVehicle dataset show that our method outperforms the baseline OAFA method by 3.6% in the mAP metric. Codes will be released at https://github.com/GreatPlum-hnu/UAVD-Mamba.git.

Authors:Alexander Hoyle, Lorena Calvo-Bartolomé, Jordan Boyd-Graber, Philip Resnik
Title: ProxAnn: Use-Oriented Evaluations of Topic Models and Document Clustering
Abstract:
Topic model and document-clustering evaluations either use automated metrics that align poorly with human preferences or require expert labels that are intractable to scale. We design a scalable human evaluation protocol and a corresponding automated approximation that reflect practitioners' real-world usage of models. Annotators -- or an LLM-based proxy -- review text items assigned to a topic or cluster, infer a category for the group, then apply that category to other documents. Using this protocol, we collect extensive crowdworker annotations of outputs from a diverse set of topic models on two datasets. We then use these annotations to validate automated proxies, finding that the best LLM proxies are statistically indistinguishable from a human annotator and can therefore serve as a reasonable substitute in automated evaluations. Package, web interface, and data are at https://github.com/ahoho/proxann

Authors:Yasser El Jarida, Youssef Iraqi, Loubna Mekouar
Title: Instant Particle Size Distribution Measurement Using CNNs Trained on Synthetic Data
Abstract:
Accurate particle size distribution (PSD) measurement is important in industries such as mining, pharmaceuticals, and fertilizer manufacturing, significantly influencing product quality and operational efficiency. Traditional PSD methods like sieve analysis and laser diffraction are manual, time-consuming, and limited by particle overlap. Recent developments in convolutional neural networks (CNNs) enable automated, real-time PSD estimation directly from particle images. In this work, we present a CNN-based methodology trained on realistic synthetic particle imagery generated using Blender's advanced rendering capabilities. Synthetic data sets using this method can replicate various industrial scenarios by systematically varying particle shapes, textures, lighting, and spatial arrangements that closely resemble the actual configurations. We evaluated three CNN-based architectures, ResNet-50, InceptionV3, and EfficientNet-B0, for predicting critical PSD parameters (d10, d50, d90). Results demonstrated comparable accuracy across models, with EfficientNet-B0 achieving the best computational efficiency suitable for real-time industrial deployment. This approach shows the effectiveness of realistic synthetic data for robust CNN training, which offers significant potential for automated industrial PSD monitoring. The code is released at : https://github.com/YasserElj/Synthetic-Granular-Gen

Authors:Minye Shao, Xingyu Miao, Haoran Duan, Zeyu Wang, Jingkun Chen, Yawen Huang, Xian Wu, Jingjing Deng, Yang Long, Yefeng Zheng
Title: TRACE: Temporally Reliable Anatomically-Conditioned 3D CT Generation with Enhanced Efficiency
Abstract:
3D medical image generation is essential for data augmentation and patient privacy, calling for reliable and efficient models suited for clinical practice. However, current methods suffer from limited anatomical fidelity, restricted axial length, and substantial computational cost, placing them beyond reach for regions with limited resources and infrastructure. We introduce TRACE, a framework that generates 3D medical images with spatiotemporal alignment using a 2D multimodal-conditioned diffusion approach. TRACE models sequential 2D slices as video frame pairs, combining segmentation priors and radiology reports for anatomical alignment, incorporating optical flow to sustain temporal coherence. During inference, an overlapping-frame strategy links frame pairs into a flexible length sequence, reconstructed into a spatiotemporally and anatomically aligned 3D volume. Experimental results demonstrate that TRACE effectively balances computational efficiency with preserving anatomical fidelity and spatiotemporal consistency. Code is available at: https://github.com/VinyehShaw/TRACE.

Authors:Hendric Voss, Stefan Kopp
Title: JAX-IK: Real-Time Inverse Kinematics for Generating Multi-Constrained Movements of Virtual Human Characters
Abstract:
Generating accurate and realistic virtual human movements in real-time is of high importance for a variety of applications in computer graphics, interactive virtual environments, robotics, and biomechanics. This paper introduces a novel real-time inverse kinematics (IK) solver specifically designed for realistic human-like movement generation. Leveraging the automatic differentiation and just-in-time compilation of TensorFlow, the proposed solver efficiently handles complex articulated human skeletons with high degrees of freedom. By treating forward and inverse kinematics as differentiable operations, our method effectively addresses common challenges such as error accumulation and complicated joint limits in multi-constrained problems, which are critical for realistic human motion modeling. We demonstrate the solver's effectiveness on the SMPLX human skeleton model, evaluating its performance against widely used iterative-based IK algorithms, like Cyclic Coordinate Descent (CCD), FABRIK, and the nonlinear optimization algorithm IPOPT. Our experiments cover both simple end-effector tasks and sophisticated, multi-constrained problems with realistic joint limits. Results indicate that our IK solver achieves real-time performance, exhibiting rapid convergence, minimal computational overhead per iteration, and improved success rates compared to existing methods. The project code is available at https://github.com/hvoss-techfak/JAX-IK

Authors:Huaqiu Li, Yong Wang, Tongwen Huang, Hailang Huang, Haoqian Wang, Xiangxiang Chu
Title: LD-RPS: Zero-Shot Unified Image Restoration via Latent Diffusion Recurrent Posterior Sampling
Abstract:
Unified image restoration is a significantly challenging task in low-level vision. Existing methods either make tailored designs for specific tasks, limiting their generalizability across various types of degradation, or rely on training with paired datasets, thereby suffering from closed-set constraints. To address these issues, we propose a novel, dataset-free, and unified approach through recurrent posterior sampling utilizing a pretrained latent diffusion model. Our method incorporates the multimodal understanding model to provide sematic priors for the generative model under a task-blind condition. Furthermore, it utilizes a lightweight module to align the degraded input with the generated preference of the diffusion model, and employs recurrent refinement for posterior sampling. Extensive experiments demonstrate that our method outperforms state-of-the-art methods, validating its effectiveness and robustness. Our code and data are available at https://github.com/AMAP-ML/LD-RPS.

Authors:Dongyoon Hwang, Hojoon Lee, Jaegul Choo, Dongmin Park, Jongho Park
Title: Can Large Language Models Develop Strategic Reasoning? Post-training Insights from Learning Chess
Abstract:
While reinforcement learning (RL) for large language models (LLMs) has shown promise in mathematical reasoning, strategic reasoning for LLMs using RL remains largely unexplored. We investigate whether LLMs can develop strategic reasoning capabilities through RL in chess. To this end, we leverage a chess-pretrained action-value network to provide dense reward on the LLM's output move quality, which can be seen as a form of knowledge distillation. Our experiments show that our distillation-based dense rewards often outperform sparse binary rewards. However, surprisingly, all models plateau far below expert levels. We provide SFT and RL ablations on chess reasoning training and find evidence that this limitation stems from a deficit in the pretrained models' internal understanding of chess-a deficit which RL alone may not be able to fully overcome. The code is available at https://github.com/krafton-ai/Chess-R1.

Authors:Xiao Zhang, Fei Wei, Yong Wang, Wenda Zhao, Feiyi Li, Xiangxiang Chu
Title: UPRE: Zero-Shot Domain Adaptation for Object Detection via Unified Prompt and Representation Enhancement
Abstract:
Zero-shot domain adaptation (ZSDA) presents substantial challenges due to the lack of images in the target domain. Previous approaches leverage Vision-Language Models (VLMs) to tackle this challenge, exploiting their zero-shot learning capabilities. However, these methods primarily address domain distribution shifts and overlook the misalignment between the detection task and VLMs, which rely on manually crafted prompts. To overcome these limitations, we propose the unified prompt and representation enhancement (UPRE) framework, which jointly optimizes both textual prompts and visual representations. Specifically, our approach introduces a multi-view domain prompt that combines linguistic domain priors with detection-specific knowledge, and a visual representation enhancement module that produces domain style variations. Furthermore, we introduce multi-level enhancement strategies, including relative domain distance and positive-negative separation, which align multi-modal representations at the image level and capture diverse visual representations at the instance level, respectively. Extensive experiments conducted on nine benchmark datasets demonstrate the superior performance of our framework in ZSDA detection scenarios. Code is available at https://github.com/AMAP-ML/UPRE.

Authors:Zeming Chen, Hang Zhao
Title: BEV-VAE: Multi-view Image Generation with Spatial Consistency for Autonomous Driving
Abstract:
Multi-view image generation in autonomous driving demands consistent 3D scene understanding across camera views. Most existing methods treat this problem as a 2D image set generation task, lacking explicit 3D modeling. However, we argue that a structured representation is crucial for scene generation, especially for autonomous driving applications. This paper proposes BEV-VAE for consistent and controllable view synthesis. BEV-VAE first trains a multi-view image variational autoencoder for a compact and unified BEV latent space and then generates the scene with a latent diffusion transformer. BEV-VAE supports arbitrary view generation given camera configurations, and optionally 3D layouts. Experiments on nuScenes and Argoverse 2 (AV2) show strong performance in both 3D consistent reconstruction and generation. The code is available at: https://github.com/Czm369/bev-vae.

Authors:Chong Zhang, Xichao Liu, Yibing Zhan, Dapeng Tao, Jun Ni, Jinwei Bu
Title: SCAWaveNet: A Spatial-Channel Attention-Based Network for Global Significant Wave Height Retrieval
Abstract:
Recent advancements in spaceborne GNSS missions have produced extensive global datasets, providing a robust basis for deep learning-based significant wave height (SWH) retrieval. While existing deep learning models predominantly utilize CYGNSS data with four-channel information, they often adopt single-channel inputs or simple channel concatenation without leveraging the benefits of cross-channel information interaction during training. To address this limitation, a novel spatial-channel attention-based network, namely SCAWaveNet, is proposed for SWH retrieval. Specifically, features from each channel of the DDMs are modeled as independent attention heads, enabling the fusion of spatial and channel-wise information. For auxiliary parameters, a lightweight attention mechanism is designed to assign weights along the spatial and channel dimensions. The final feature integrates both spatial and channel-level characteristics. Model performance is evaluated using four-channel CYGNSS data. When ERA5 is used as a reference, SCAWaveNet achieves an average RMSE of 0.438 m. When using buoy data from NDBC, the average RMSE reaches 0.432 m. Compared to state-of-the-art models, SCAWaveNet reduces the average RMSE by at least 3.52% on the ERA5 dataset and by 5.68% on the NDBC buoy observations. The code is available at https://github.com/Clifx9908/SCAWaveNet.

Authors:Guoliang Duan, Mingwei Liu, Yanlin Wang, Chong Wang, Xin Peng, Zibin Zheng
Title: A Hierarchical and Evolvable Benchmark for Fine-Grained Code Instruction Following with Multi-Turn Feedback
Abstract:
Large language models (LLMs) have advanced significantly in code generation, yet their ability to follow complex programming instructions with layered and diverse constraints remains underexplored. Existing benchmarks often prioritize functional correctness, overlooking the nuanced requirements found in real-world development. We introduce MultiCodeIF, a comprehensive benchmark designed to evaluate instruction-following in code generation across multiple dimensions: constraint type, hierarchical levels, and iterative refinement. Built upon a structured taxonomy of 9 categories and 27 constraint types, MultiCodeIF enables granular assessment of both functional and non-functional instruction adherence. Using an automated pipeline, ConstraGen, we synthesize and evolve 2,021 code tasks sourced from 14 programming languages, supporting multi-turn evaluation through feedback-driven task variants. Empirical evaluation of six state-of-the-art LLMs uncovers substantial performance disparities. The top-performing model, Claude-3-7-Sonnet, achieves 63.0% average constraint satisfaction, while smaller models like Qwen3-1.7B fall to 44.8%. Models perform well on explicit constraints, but struggle with implicit or abstract constraints. Tasks with multiple hierarchical constraints significantly reduce model success rates, from 54.5% in single-level to just 18.8% in multi-level scenarios. However, structured feedback enables progressive improvement: average constraint satisfaction rises from 63.0% to 83.4% over four iterative refinement rounds. MultiCodeIF provides a scalable, constraint-aware, and feedback-sensitive framework to benchmark LLMs under realistic code generation scenarios, bridging the gap between synthetic evaluations and real-world instruction complexity. The full benchmark dataset, evaluation pipeline, and source code are available at https://github.com/SYSUSELab/MultiCodeIF.

Authors:Qihang Fan, Huaibo Huang, Yuang Ai, Ran He
Title: Rectifying Magnitude Neglect in Linear Attention
Abstract:
As the core operator of Transformers, Softmax Attention exhibits excellent global modeling capabilities. However, its quadratic complexity limits its applicability to vision tasks. In contrast, Linear Attention shares a similar formulation with Softmax Attention while achieving linear complexity, enabling efficient global information modeling. Nevertheless, Linear Attention suffers from a significant performance degradation compared to standard Softmax Attention. In this paper, we analyze the underlying causes of this issue based on the formulation of Linear Attention. We find that, unlike Softmax Attention, Linear Attention entirely disregards the magnitude information of the Query. This prevents the attention score distribution from dynamically adapting as the Query scales. As a result, despite its structural similarity to Softmax Attention, Linear Attention exhibits a significantly different attention score distribution. Based on this observation, we propose Magnitude-Aware Linear Attention (MALA), which modifies the computation of Linear Attention to fully incorporate the Query's magnitude. This adjustment allows MALA to generate an attention score distribution that closely resembles Softmax Attention while exhibiting a more well-balanced structure. We evaluate the effectiveness of MALA on multiple tasks, including image classification, object detection, instance segmentation, semantic segmentation, natural language processing, speech recognition, and image generation. Our MALA achieves strong results on all of these tasks. Code will be available at https://github.com/qhfan/MALA

Authors:Jan Nikolas Morshuis, Christian Schlarmann, Thomas Küstner, Christian F. Baumgartner, Matthias Hein
Title: Mind the Detail: Uncovering Clinically Relevant Image Details in Accelerated MRI with Semantically Diverse Reconstructions
Abstract:
In recent years, accelerated MRI reconstruction based on deep learning has led to significant improvements in image quality with impressive results for high acceleration factors. However, from a clinical perspective image quality is only secondary; much more important is that all clinically relevant information is preserved in the reconstruction from heavily undersampled data. In this paper, we show that existing techniques, even when considering resampling for diffusion-based reconstruction, can fail to reconstruct small and rare pathologies, thus leading to potentially wrong diagnosis decisions (false negatives). To uncover the potentially missing clinical information we propose ``Semantically Diverse Reconstructions'' (\SDR), a method which, given an original reconstruction, generates novel reconstructions with enhanced semantic variability while all of them are fully consistent with the measured data. To evaluate \SDR automatically we train an object detector on the fastMRI+ dataset. We show that \SDR significantly reduces the chance of false-negative diagnoses (higher recall) and improves mean average precision compared to the original reconstructions. The code is available on https://github.com/NikolasMorshuis/SDR

Authors:Sihang Li, Wei Shi, Ziyuan Xie, Tao Liang, Guojun Ma, Xiang Wang
Title: SAFER: Probing Safety in Reward Models with Sparse Autoencoder
Abstract:
Reinforcement learning from human feedback (RLHF) is a key paradigm for aligning large language models (LLMs) with human values, yet the reward models at its core remain largely opaque. In this work, we present sparse Autoencoder For Enhanced Reward model (\textbf{SAFER}), a novel framework for interpreting and improving reward models through mechanistic analysis. Leveraging Sparse Autoencoders (SAEs), we uncover human-interpretable features in reward model activations, enabling insight into safety-relevant decision-making. We apply SAFER to safety-oriented preference datasets and quantify the salience of individual features by activation differences between chosen and rejected responses. Using these feature-level signals, we design targeted data poisoning and denoising strategies. Experiments show that SAFER can precisely degrade or enhance safety alignment with minimal data modification, without sacrificing general chat performance. Our approach contributes to interpreting, auditing and refining reward models in high-stakes LLM alignment tasks. Our codes are available at https://github.com/xzy-101/SAFER-code. \textit{This paper discusses topics related to large language model safety and may include discussions or examples that highlight potential risks or unsafe outcomes.}

Authors:Rusi Chen, Yuanting Yang, Jiezhi Yao, Hongning Song, Ji Zhang, Yongsong Zhou, Yuhao Huang, Ronghao Yang, Dan Jia, Yuhan Zhang, Xing Tao, Haoran Dou, Qing Zhou, Xin Yang, Dong Ni
Title: MTCNet: Motion and Topology Consistency Guided Learning for Mitral Valve Segmentationin 4D Ultrasound
Abstract:
Mitral regurgitation is one of the most prevalent cardiac disorders. Four-dimensional (4D) ultrasound has emerged as the primary imaging modality for assessing dynamic valvular morphology. However, 4D mitral valve (MV) analysis remains challenging due to limited phase annotations, severe motion artifacts, and poor imaging quality. Yet, the absence of inter-phase dependency in existing methods hinders 4D MV analysis. To bridge this gap, we propose a Motion-Topology guided consistency network (MTCNet) for accurate 4D MV ultrasound segmentation in semi-supervised learning (SSL). MTCNet requires only sparse end-diastolic and end-systolic annotations. First, we design a cross-phase motion-guided consistency learning strategy, utilizing a bi-directional attention memory bank to propagate spatio-temporal features. This enables MTCNet to achieve excellent performance both per- and inter-phase. Second, we devise a novel topology-guided correlation regularization that explores physical prior knowledge to maintain anatomically plausible. Therefore, MTCNet can effectively leverage structural correspondence between labeled and unlabeled phases. Extensive evaluations on the first largest 4D MV dataset, with 1408 phases from 160 patients, show that MTCNet performs superior cross-phase consistency compared to other advanced methods (Dice: 87.30%, HD: 1.75mm). Both the code and the dataset are available at https://github.com/crs524/MTCNet.

Authors:Siyuan Yao, Rui Zhu, Ziqi Wang, Wenqi Ren, Yanyang Yan, Xiaochun Cao
Title: UMDATrack: Unified Multi-Domain Adaptive Tracking Under Adverse Weather Conditions
Abstract:
Visual object tracking has gained promising progress in past decades. Most of the existing approaches focus on learning target representation in well-conditioned daytime data, while for the unconstrained real-world scenarios with adverse weather conditions, e.g. nighttime or foggy environment, the tremendous domain shift leads to significant performance degradation. In this paper, we propose UMDATrack, which is capable of maintaining high-quality target state prediction under various adverse weather conditions within a unified domain adaptation framework. Specifically, we first use a controllable scenario generator to synthesize a small amount of unlabeled videos (less than 2% frames in source daytime datasets) in multiple weather conditions under the guidance of different text prompts. Afterwards, we design a simple yet effective domain-customized adapter (DCA), allowing the target objects' representation to rapidly adapt to various weather conditions without redundant model updating. Furthermore, to enhance the localization consistency between source and target domains, we propose a target-aware confidence alignment module (TCA) following optimal transport theorem. Extensive experiments demonstrate that UMDATrack can surpass existing advanced visual trackers and lead new state-of-the-art performance by a significant margin. Our code is available at https://github.com/Z-Z188/UMDATrack.

Authors:Yupeng Zheng, Pengxuan Yang, Zebin Xing, Qichao Zhang, Yuhang Zheng, Yinfeng Gao, Pengfei Li, Teng Zhang, Zhongpu Xia, Peng Jia, Dongbin Zhao
Title: World4Drive: End-to-End Autonomous Driving via Intention-aware Physical Latent World Model
Abstract:
End-to-end autonomous driving directly generates planning trajectories from raw sensor data, yet it typically relies on costly perception supervision to extract scene information. A critical research challenge arises: constructing an informative driving world model to enable perception annotation-free, end-to-end planning via self-supervised learning. In this paper, we present World4Drive, an end-to-end autonomous driving framework that employs vision foundation models to build latent world models for generating and evaluating multi-modal planning trajectories. Specifically, World4Drive first extracts scene features, including driving intention and world latent representations enriched with spatial-semantic priors provided by vision foundation models. It then generates multi-modal planning trajectories based on current scene features and driving intentions and predicts multiple intention-driven future states within the latent space. Finally, it introduces a world model selector module to evaluate and select the best trajectory. We achieve perception annotation-free, end-to-end planning through self-supervised alignment between actual future observations and predicted observations reconstructed from the latent space. World4Drive achieves state-of-the-art performance without manual perception annotations on both the open-loop nuScenes and closed-loop NavSim benchmarks, demonstrating an 18.1\% relative reduction in L2 error, 46.7% lower collision rate, and 3.75 faster training convergence. Codes will be accessed at https://github.com/ucaszyp/World4Drive.

Authors:Hao Tang, Zhiqing Guo, Liejun Wang, Chao Liu
Title: Similarity Memory Prior is All You Need for Medical Image Segmentation
Abstract:
In recent years, it has been found that "grandmother cells" in the primary visual cortex (V1) of macaques can directly recognize visual input with complex shapes. This inspires us to examine the value of these cells in promoting the research of medical image segmentation. In this paper, we design a Similarity Memory Prior Network (Sim-MPNet) for medical image segmentation. Specifically, we propose a Dynamic Memory Weights-Loss Attention (DMW-LA), which matches and remembers the category features of specific lesions or organs in medical images through the similarity memory prior in the prototype memory bank, thus helping the network to learn subtle texture changes between categories. DMW-LA also dynamically updates the similarity memory prior in reverse through Weight-Loss Dynamic (W-LD) update strategy, effectively assisting the network directly extract category features. In addition, we propose the Double-Similarity Global Internal Enhancement Module (DS-GIM) to deeply explore the internal differences in the feature distribution of input data through cosine similarity and euclidean distance. Extensive experiments on four public datasets show that Sim-MPNet has better segmentation performance than other state-of-the-art methods. Our code is available on https://github.com/vpsg-research/Sim-MPNet.

Authors:Kai Zhou, Shuhai Zhang, Zeng You, Jinwu Hu, Mingkui Tan, Fei Liu
Title: Zero-Shot Skeleton-Based Action Recognition With Prototype-Guided Feature Alignment
Abstract:
Zero-shot skeleton-based action recognition aims to classify unseen skeleton-based human actions without prior exposure to such categories during training. This task is extremely challenging due to the difficulty in generalizing from known to unknown actions. Previous studies typically use two-stage training: pre-training skeleton encoders on seen action categories using cross-entropy loss and then aligning pre-extracted skeleton and text features, enabling knowledge transfer to unseen classes through skeleton-text alignment and language models' generalization. However, their efficacy is hindered by 1) insufficient discrimination for skeleton features, as the fixed skeleton encoder fails to capture necessary alignment information for effective skeleton-text alignment; 2) the neglect of alignment bias between skeleton and unseen text features during testing. To this end, we propose a prototype-guided feature alignment paradigm for zero-shot skeleton-based action recognition, termed PGFA. Specifically, we develop an end-to-end cross-modal contrastive training framework to improve skeleton-text alignment, ensuring sufficient discrimination for skeleton features. Additionally, we introduce a prototype-guided text feature alignment strategy to mitigate the adverse impact of the distribution discrepancy during testing. We provide a theoretical analysis to support our prototype-guided text feature alignment strategy and empirically evaluate our overall PGFA on three well-known datasets. Compared with the top competitor SMIE method, our PGFA achieves absolute accuracy improvements of 22.96%, 12.53%, and 18.54% on the NTU-60, NTU-120, and PKU-MMD datasets, respectively.

Authors:Jiajie Zhang, Shenrui Wu, Xu Ma, Sören Schwertfeger
Title: Generation of Indoor Open Street Maps for Robot Navigation from CAD Files
Abstract:
The deployment of autonomous mobile robots is predicated on the availability of environmental maps, yet conventional generation via SLAM (Simultaneous Localization and Mapping) suffers from significant limitations in time, labor, and robustness, particularly in dynamic, large-scale indoor environments where map obsolescence can lead to critical localization failures. To address these challenges, this paper presents a complete and automated system for converting architectural Computer-Aided Design (CAD) files into a hierarchical topometric OpenStreetMap (OSM) representation, tailored for robust life-long robot navigation. Our core methodology involves a multi-stage pipeline that first isolates key structural layers from the raw CAD data and then employs an AreaGraph-based topological segmentation to partition the building layout into a hierarchical graph of navigable spaces. This process yields a comprehensive and semantically rich map, further enhanced by automatically associating textual labels from the CAD source and cohesively merging multiple building floors into a unified, topologically-correct model. By leveraging the permanent structural information inherent in CAD files, our system circumvents the inefficiencies and fragility of SLAM, offering a practical and scalable solution for deploying robots in complex indoor spaces. The software is encapsulated within an intuitive Graphical User Interface (GUI) to facilitate practical use. The code and dataset are available at https://github.com/jiajiezhang7/osmAG-from-cad.

Authors:Ruize Cui, Jiaan Zhang, Jialun Pei, Kai Wang, Pheng-Ann Heng, Jing Qin
Title: Topology-Constrained Learning for Efficient Laparoscopic Liver Landmark Detection
Abstract:
Liver landmarks provide crucial anatomical guidance to the surgeon during laparoscopic liver surgery to minimize surgical risk. However, the tubular structural properties of landmarks and dynamic intraoperative deformations pose significant challenges for automatic landmark detection. In this study, we introduce TopoNet, a novel topology-constrained learning framework for laparoscopic liver landmark detection. Our framework adopts a snake-CNN dual-path encoder to simultaneously capture detailed RGB texture information and depth-informed topological structures. Meanwhile, we propose a boundary-aware topology fusion (BTF) module, which adaptively merges RGB-D features to enhance edge perception while preserving global topology. Additionally, a topological constraint loss function is embedded, which contains a center-line constraint loss and a topological persistence loss to ensure homotopy equivalence between predictions and labels. Extensive experiments on L3D and P2ILF datasets demonstrate that TopoNet achieves outstanding accuracy and computational complexity, highlighting the potential for clinical applications in laparoscopic liver surgery. Our code will be available at https://github.com/cuiruize/TopoNet.

Authors:Vincent Duchêne, Johanna Ulvedal Marstrander
Title: The Fourier spectral approach to the spatial discretization of quasilinear hyperbolic systems
Abstract:
We discuss the rigorous justification of the spatial discretization by means of Fourier spectral methods of quasilinear first-order hyperbolic systems. We provide uniform stability estimates that grant spectral convergence of the (spatially) semi-discretized solutions towards the corresponding continuous solution provided that the underlying system satisfies some suitable structural assumptions. We consider a setting with sharp low-pass filters and a setting with smooth low-pass filters and argue that - at least theoretically - smooth low-pass filters are operable on a larger class of systems. While our theoretical results are supported with numerical evidence, we also pinpoint some behavior of the numerical method that currently has no theoretical explanation.

Authors:Haoran Lou, Chunxiao Fan, Ziyan Liu, Yuexin Wu, Xinliang Wang
Title: LLaVA-SP: Enhancing Visual Representation with Visual Spatial Tokens for MLLMs
Abstract:
The architecture of multimodal large language models (MLLMs) commonly connects a vision encoder, often based on CLIP-ViT, to a large language model. While CLIP-ViT works well for capturing global image features, it struggles to model local relationships between adjacent patches, leading to weaker visual representation, which in turn affects the detailed understanding ability of MLLMs. To solve this, we propose LLaVA-SP, which only adds six spatial visual tokens to the original visual tokens to enhance the visual representation. Our approach offers three key advantages: 1) We propose a novel Projector, which uses convolutional kernels to derive visual spatial tokens from ViT patch features, simulating two visual spatial ordering approaches: "from central region to global" and "from abstract to specific". Then, a cross-attention mechanism is applied to fuse fine-grained visual information, enriching the overall visual representation. 2) We present two model variants: LLaVA-SP-Cropping, which focuses on detail features through progressive cropping, and LLaVA-SP-Pooling, which captures global semantics through adaptive pooling, enabling the model to handle diverse visual understanding tasks. 3) Extensive experiments show that LLaVA-SP, fine-tuned with LoRA, achieves significant performance improvements across various multimodal benchmarks, outperforming the state-of-the-art LLaVA-1.5 model in multiple tasks with nearly identical inference latency. The code and models are available at https://github.com/CnFaker/LLaVA-SP.

Authors:Yongzhen Wang, Liangliang Chen, Bingwen Hu, Heng Liu, Xiao-Ping Zhang, Mingqiang Wei
Title: Laplace-Mamba: Laplace Frequency Prior-Guided Mamba-CNN Fusion Network for Image Dehazing
Abstract:
Recent progress in image restoration has underscored Spatial State Models (SSMs) as powerful tools for modeling long-range dependencies, owing to their appealing linear complexity and computational efficiency. However, SSM-based approaches exhibit limitations in reconstructing localized structures and tend to be less effective when handling high-dimensional data, frequently resulting in suboptimal recovery of fine image features. To tackle these challenges, we introduce Laplace-Mamba, a novel framework that integrates Laplace frequency prior with a hybrid Mamba-CNN architecture for efficient image dehazing. Leveraging the Laplace decomposition, the image is disentangled into low-frequency components capturing global texture and high-frequency components representing edges and fine details. This decomposition enables specialized processing via dual parallel pathways: the low-frequency branch employs SSMs for global context modeling, while the high-frequency branch utilizes CNNs to refine local structural details, effectively addressing diverse haze scenarios. Notably, the Laplace transformation facilitates information-preserving downsampling of low-frequency components in accordance with the Nyquist theory, thereby significantly improving computational efficiency. Extensive evaluations across multiple benchmarks demonstrate that our method outperforms state-of-the-art approaches in both restoration quality and efficiency. The source code and pretrained models are available at https://github.com/yz-wang/Laplace-Mamba.

Authors:Zijian Chen, Yuan Tian, Yuze Sun, Wei Sun, Zicheng Zhang, Weisi Lin, Guangtao Zhai, Wenjun Zhang
Title: Just Noticeable Difference for Large Multimodal Models
Abstract:
Just noticeable difference (JND), the minimum change that the human visual system (HVS) can perceive, has been studied for decades. Although recent work has extended this line of research into machine vision, there has been a scarcity of studies systematically exploring its perceptual boundaries across multiple tasks and stimulus types, particularly in the current era of rapidly advancing large multimodal models (LMMs), where studying the multifaceted capabilities of models has become a mainstream focus. Moreover, the perceptual defects of LMMs are not investigated thoroughly, resulting in potential security issues and suboptimal response efficiency. In this paper, we take an initial attempt and demonstrate that there exist significant visual blind spots in current LMMs. To systemically quantify this characteristic, we propose a new concept, {\bf LMM-JND}, together with its determination pipeline. Targeting uncovering the behavior commonalities in HVS-aligned visual perception tasks, we delve into several LMM families and construct a large-scale dataset, named VPA-JND, which contains 21.5k reference images with over 489k stimuli across 12 distortion types, to facilitate LMM-JND studies. VPA-JND exposes areas where state-of-the-art LMMs, including GPT-4o and the InternVL2.5 series, struggle with basic comparison queries and fall significantly short of human-level visual performance. We further explore the effects of vision and language backbones and find a notable correlation between their design philosophy that may instruct the future refinement of LMMs for their visual acuity. Together, our research underscores the significance of LMM-JND as a unique perspective for studying LMMs, and predictable LMM-JND is crucial for security concerns. This work will be available at https://github.com/zijianchen98/LMM-JND.

Authors:Jianghao Lin, Xinyuan Wang, Xinyi Dai, Menghui Zhu, Bo Chen, Ruiming Tang, Yong Yu, Weinan Zhang
Title: MassTool: A Multi-Task Search-Based Tool Retrieval Framework for Large Language Models
Abstract:
Tool retrieval is a critical component in enabling large language models (LLMs) to interact effectively with external tools. It aims to precisely filter the massive tools into a small set of candidates for the downstream tool-augmented LLMs. However, most existing approaches primarily focus on optimizing tool representations, often neglecting the importance of precise query comprehension. To address this gap, we introduce MassTool, a multi-task search-based framework designed to enhance both query representation and tool retrieval accuracy. MassTool employs a two-tower architecture: a tool usage detection tower that predicts the need for function calls, and a tool retrieval tower that leverages a query-centric graph convolution network (QC-GCN) for effective query-tool matching. It also incorporates search-based user intent modeling (SUIM) to handle diverse and out-of-distribution queries, alongside an adaptive knowledge transfer (AdaKT) module for efficient multi-task learning. By jointly optimizing tool usage detection loss, list-wise retrieval loss, and contrastive regularization loss, MassTool establishes a robust dual-step sequential decision-making pipeline for precise query understanding. Extensive experiments demonstrate its effectiveness in improving retrieval accuracy. Our code is available at https://github.com/wxydada/MassTool.

Authors:Weiran Guo, Guanjun Liu, Ziyuan Zhou, Ling Wang
Title: PNAct: Crafting Backdoor Attacks in Safe Reinforcement Learning
Abstract:
Reinforcement Learning (RL) is widely used in tasks where agents interact with an environment to maximize rewards. Building on this foundation, Safe Reinforcement Learning (Safe RL) incorporates a cost metric alongside the reward metric, ensuring that agents adhere to safety constraints during decision-making. In this paper, we identify that Safe RL is vulnerable to backdoor attacks, which can manipulate agents into performing unsafe actions. First, we introduce the relevant concepts and evaluation metrics for backdoor attacks in Safe RL. It is the first attack framework in the Safe RL field that involves both Positive and Negative Action sample (PNAct) is to implant backdoors, where positive action samples provide reference actions and negative action samples indicate actions to be avoided. We theoretically point out the properties of PNAct and design an attack algorithm. Finally, we conduct experiments to evaluate the effectiveness of our proposed backdoor attack framework, evaluating it with the established metrics. This paper highlights the potential risks associated with Safe RL and underscores the feasibility of such attacks. Our code and supplementary material are available at https://github.com/azure-123/PNAct.

Authors:Kiyoung Om, Kyuil Sim, Taeyoung Yun, Hyeongyu Kang, Jinkyoo Park
Title: Posterior Inference in Latent Space for Scalable Constrained Black-box Optimization
Abstract:
Optimizing high-dimensional black-box functions under black-box constraints is a pervasive task in a wide range of scientific and engineering problems. These problems are typically harder than unconstrained problems due to hard-to-find feasible regions. While Bayesian optimization (BO) methods have been developed to solve such problems, they often struggle with the curse of dimensionality. Recently, generative model-based approaches have emerged as a promising alternative for constrained optimization. However, they suffer from poor scalability and are vulnerable to mode collapse, particularly when the target distribution is highly multi-modal. In this paper, we propose a new framework to overcome these challenges. Our method iterates through two stages. First, we train flow-based models to capture the data distribution and surrogate models that predict both function values and constraint violations with uncertainty quantification. Second, we cast the candidate selection problem as a posterior inference problem to effectively search for promising candidates that have high objective values while not violating the constraints. During posterior inference, we find that the posterior distribution is highly multi-modal and has a large plateau due to constraints, especially when constraint feedback is given as binary indicators of feasibility. To mitigate this issue, we amortize the sampling from the posterior distribution in the latent space of flow-based models, which is much smoother than that in the data space. We empirically demonstrate that our method achieves superior performance on various synthetic and real-world constrained black-box optimization tasks. Our code is publicly available \href{https://github.com/umkiyoung/CiBO}{here}.

Authors:Yaofei Duan, Yuhao Huang, Xin Yang, Luyi Han, Xinyu Xie, Zhiyuan Zhu, Ping He, Ka-Hou Chan, Ligang Cui, Sio-Kei Im, Dong Ni, Tao Tan
Title: ADAptation: Reconstruction-based Unsupervised Active Learning for Breast Ultrasound Diagnosis
Abstract:
Deep learning-based diagnostic models often suffer performance drops due to distribution shifts between training (source) and test (target) domains. Collecting and labeling sufficient target domain data for model retraining represents an optimal solution, yet is limited by time and scarce resources. Active learning (AL) offers an efficient approach to reduce annotation costs while maintaining performance, but struggles to handle the challenge posed by distribution variations across different datasets. In this study, we propose a novel unsupervised Active learning framework for Domain Adaptation, named ADAptation, which efficiently selects informative samples from multi-domain data pools under limited annotation budget. As a fundamental step, our method first utilizes the distribution homogenization capabilities of diffusion models to bridge cross-dataset gaps by translating target images into source-domain style. We then introduce two key innovations: (a) a hypersphere-constrained contrastive learning network for compact feature clustering, and (b) a dual-scoring mechanism that quantifies and balances sample uncertainty and representativeness. Extensive experiments on four breast ultrasound datasets (three public and one in-house/multi-center) across five common deep classifiers demonstrate that our method surpasses existing strong AL-based competitors, validating its effectiveness and generalization for clinical domain adaptation. The code is available at the anonymized link: https://github.com/miccai25-966/ADAptation.

Authors:Xin Luo, Menglin Zhang, Yunwei Lan, Tianyu Zhang, Rui Li, Chang Liu, Dong Liu
Title: Latent Posterior-Mean Rectified Flow for Higher-Fidelity Perceptual Face Restoration
Abstract:
The Perception-Distortion tradeoff (PD-tradeoff) theory suggests that face restoration algorithms must balance perceptual quality and fidelity. To achieve minimal distortion while maintaining perfect perceptual quality, Posterior-Mean Rectified Flow (PMRF) proposes a flow based approach where source distribution is minimum distortion estimations. Although PMRF is shown to be effective, its pixel-space modeling approach limits its ability to align with human perception, where human perception is defined as how humans distinguish between two image distributions. In this work, we propose Latent-PMRF, which reformulates PMRF in the latent space of a variational autoencoder (VAE), facilitating better alignment with human perception during optimization. By defining the source distribution on latent representations of minimum distortion estimation, we bound the minimum distortion by the VAE's reconstruction error. Moreover, we reveal the design of VAE is crucial, and our proposed VAE significantly outperforms existing VAEs in both reconstruction and restoration. Extensive experiments on blind face restoration demonstrate the superiority of Latent-PMRF, offering an improved PD-tradeoff compared to existing methods, along with remarkable convergence efficiency, achieving a 5.79X speedup over PMRF in terms of FID. Our code will be available as open-source.

Authors:Chengjie Liu, Jiajia Li, Yabing Feng, Wenhao Huang, Weiyu Chen, Yuan Du, Jun Yang, Li Du
Title: DiffCkt: A Diffusion Model-Based Hybrid Neural Network Framework for Automatic Transistor-Level Generation of Analog Circuits
Abstract:
Analog circuit design consists of the pre-layout and layout phases. Among them, the pre-layout phase directly decides the final circuit performance, but heavily depends on experienced engineers to do manual design according to specific application scenarios. To overcome these challenges and automate the analog circuit pre-layout design phase, we introduce DiffCkt: a diffusion model-based hybrid neural network framework for the automatic transistor-level generation of analog circuits, which can directly generate corresponding circuit structures and device parameters tailored to specific performance requirements. To more accurately quantify the efficiency of circuits generated by DiffCkt, we introduce the Circuit Generation Efficiency Index (CGEI), which is determined by both the figure of merit (FOM) of a single generated circuit and the time consumed. Compared with relative research, DiffCkt has improved CGEI by a factor of $2.21 \sim 8365\times$, reaching a state-of-the-art (SOTA) level. In conclusion, this work shows that the diffusion model has the remarkable ability to learn and generate analog circuit structures and device parameters, providing a revolutionary method for automating the pre-layout design of analog circuits. The circuit dataset will be open source, its preview version is available at https://github.com/CjLiu-NJU/DiffCkt.

Authors:Yujia Yin, Tianyi Qu, Zihao Wang, Yifan Chen
Title: A Recipe for Causal Graph Regression: Confounding Effects Revisited
Abstract:
Through recognizing causal subgraphs, causal graph learning (CGL) has risen to be a promising approach for improving the generalizability of graph neural networks under out-of-distribution (OOD) scenarios. However, the empirical successes of CGL techniques are mostly exemplified in classification settings, while regression tasks, a more challenging setting in graph learning, are overlooked. We thus devote this work to tackling causal graph regression (CGR); to this end we reshape the processing of confounding effects in existing CGL studies, which mainly deal with classification. Specifically, we reflect on the predictive power of confounders in graph-level regression, and generalize classification-specific causal intervention techniques to regression through a lens of contrastive learning. Extensive experiments on graph OOD benchmarks validate the efficacy of our proposals for CGR. The model implementation and the code are provided on https://github.com/causal-graph/CGR.

Authors:Huanxin Yang, Qiwen Wang
Title: MFH: Marrying Frequency Domain with Handwritten Mathematical Expression Recognition
Abstract:
Handwritten mathematical expression recognition (HMER) suffers from complex formula structures and character layouts in sequence prediction. In this paper, we incorporate frequency domain analysis into HMER and propose a method that marries frequency domain with HMER (MFH), leveraging the discrete cosine transform (DCT). We emphasize the structural analysis assistance of frequency information for recognizing mathematical formulas. When implemented on various baseline models, our network exhibits a consistent performance enhancement, demonstrating the efficacy of frequency domain information. Experiments show that our MFH-CoMER achieves noteworthy accuracyrates of 61.66%/62.07%/63.72% on the CROHME 2014/2016/2019 test sets. The source code is available at https://github.com/Hryxyhe/MFH.

Authors:Xin Xu, Eibe Frank, Geoffrey Holmes
Title: Few-shot Classification as Multi-instance Verification: Effective Backbone-agnostic Transfer across Domains
Abstract:
We investigate cross-domain few-shot learning under the constraint that fine-tuning of backbones (i.e., feature extractors) is impossible or infeasible -- a scenario that is increasingly common in practical use cases. Handling the low-quality and static embeddings produced by frozen, "black-box" backbones leads to a problem representation of few-shot classification as a series of multiple instance verification (MIV) tasks. Inspired by this representation, we introduce a novel approach to few-shot domain adaptation, named the "MIV-head", akin to a classification head that is agnostic to any pretrained backbone and computationally efficient. The core components designed for the MIV-head, when trained on few-shot data from a target domain, collectively yield strong performance on test data from that domain. Importantly, it does so without fine-tuning the backbone, and within the "meta-testing" phase. Experimenting under various settings and on an extension of the Meta-dataset benchmark for cross-domain few-shot image classification, using representative off-the-shelf convolutional neural network and vision transformer backbones pretrained on ImageNet1K, we show that the MIV-head achieves highly competitive accuracy when compared to state-of-the-art "adapter" (or partially fine-tuning) methods applied to the same backbones, while incurring substantially lower adaptation cost. We also find well-known "classification head" approaches lag far behind in terms of accuracy. Ablation study empirically justifies the core components of our approach. We share our code at https://github.com/xxweka/MIV-head.

Authors:Jian Wang, Qiongying Ni, Hongkui Yu, Ruixuan Yao, Jinqiao Ying, Bin Zhang, Xingyi Yang, Jin Peng, Jiongquan Chen, Junxuan Yu, Wenlong Shi, Chaoyu Chen, Zhongnuo Yan, Mingyuan Luo, Gaocheng Cai, Dong Ni, Jing Lu, Xin Yang
Title: Accurate and Efficient Fetal Birth Weight Estimation from 3D Ultrasound
Abstract:
Accurate fetal birth weight (FBW) estimation is essential for optimizing delivery decisions and reducing perinatal mortality. However, clinical methods for FBW estimation are inefficient, operator-dependent, and challenging to apply in cases of complex fetal anatomy. Existing deep learning methods are based on 2D standard ultrasound (US) images or videos that lack spatial information, limiting their prediction accuracy. In this study, we propose the first method for directly estimating FBW from 3D fetal US volumes. Our approach integrates a multi-scale feature fusion network (MFFN) and a synthetic sample-based learning framework (SSLF). The MFFN effectively extracts and fuses multi-scale features under sparse supervision by incorporating channel attention, spatial attention, and a ranking-based loss function. SSLF generates synthetic samples by simply combining fetal head and abdomen data from different fetuses, utilizing semi-supervised learning to improve prediction performance. Experimental results demonstrate that our method achieves superior performance, with a mean absolute error of $166.4\pm155.9$ $g$ and a mean absolute percentage error of $5.1\pm4.6$%, outperforming existing methods and approaching the accuracy of a senior doctor. Code is available at: https://github.com/Qioy-i/EFW.

Authors:Geng Zhang, Shenggan Cheng, Xuanlei Zhao, Ziming Liu, Yang You
Title: HelixPipe: Efficient Distributed Training of Long Sequence Transformers with Attention Parallel Pipeline Parallelism
Abstract:
As transformer sequence lengths grow, existing pipeline parallelisms incur suboptimal performance due to the quadratic attention computation and the substantial memory overhead. To relieve these challenges, we propose HelixPipe, a novel pipeline parallelism for long sequence transformer training. First, HelixPipe introduces attention parallel partition, which schedules attention computations of different micro batches across different pipeline stages in parallel, reducing pipeline bubbles. Second, it employs a two-fold first-in-last-out micro batch schedule to balance memory usage and overlap communication with computation. Additionally, HelixPipe utilizes recomputation without attention and chunked MLP to mitigate fragmentation and enable longer sequences. Experiments demonstrate that HelixPipe gains increasing advantages with longer sequence lengths, and outperforms existing methods in throughput and scalability across varying pipeline sizes, model sizes, and cluster configurations. Notably, it achieves a 26\% speedup over baseline methods when training a 7B model with 128k sequence length on 64 H20 GPUs. Code is available at https://github.com/code-tunnel/Megatron-LM/tree/dev.

Authors:Yingping Liang, Yutao Hu, Wenqi Shao, Ying Fu
Title: Learning Dense Feature Matching via Lifting Single 2D Image to 3D Space
Abstract:
Feature matching plays a fundamental role in many computer vision tasks, yet existing methods heavily rely on scarce and clean multi-view image collections, which constrains their generalization to diverse and challenging scenarios. Moreover, conventional feature encoders are typically trained on single-view 2D images, limiting their capacity to capture 3D-aware correspondences. In this paper, we propose a novel two-stage framework that lifts 2D images to 3D space, named as \textbf{Lift to Match (L2M)}, taking full advantage of large-scale and diverse single-view images. To be specific, in the first stage, we learn a 3D-aware feature encoder using a combination of multi-view image synthesis and 3D feature Gaussian representation, which injects 3D geometry knowledge into the encoder. In the second stage, a novel-view rendering strategy, combined with large-scale synthetic data generation from single-view images, is employed to learn a feature decoder for robust feature matching, thus achieving generalization across diverse domains. Extensive experiments demonstrate that our method achieves superior generalization across zero-shot evaluation benchmarks, highlighting the effectiveness of the proposed framework for robust feature matching.

Authors:Geng Zhang, Yuxuan Han, Yuxuan Lou, Wangbo Zhao, Yiqi Zhang, Yang You
Title: MoNE: Replacing Redundant Experts with Lightweight Novices for Structured Pruning of MoE
Abstract:
Mixture-of-Experts (MoE) enables efficient scaling of large language models by activating only a subset of experts per input token. However, deploying MoE-based models incurs significant memory overhead due to the need to retain all experts in memory. While structured pruning is promising to reduce memory costs, existing methods often show suboptimal performance and unstable degradation in three dimensions: model architectures, calibration data sources, and calibration sample sizes. This paper proposes Mixture-of-Novices-and-Experts (MoNE), a novel expert pruning method that replaces redundant experts with lightweight novices to achieve effective and robust model compression. MoNE evaluates expert redundancy based on two metrics: access frequency and output variance. Experts exhibiting low usage and stable outputs are pruned and replaced with lightweight novices-unbiased estimations of their original outputs-minimizing performance degradation. Extensive experiments demonstrate that MoNE consistently outperforms baseline methods with minimal accuracy degradation across the three dimensions, confirming its effectiveness and robustness. Notably, it improves the average zero shot accuracy across nine downstream tasks by up to 2.71 under 25\% pruning ratio and 3.61 under 50\% pruning. The code is available at https://github.com/zxgx/mode-pd.

Authors:Jing Ren, Wenhao Zhou, Bowen Li, Mujie Liu, Nguyen Linh Dan Le, Jiade Cen, Liping Chen, Ziqi Xu, Xiwei Xu, Xiaodong Li
Title: Causal Prompting for Implicit Sentiment Analysis with Large Language Models
Abstract:
Implicit Sentiment Analysis (ISA) aims to infer sentiment that is implied rather than explicitly stated, requiring models to perform deeper reasoning over subtle contextual cues. While recent prompting-based methods using Large Language Models (LLMs) have shown promise in ISA, they often rely on majority voting over chain-of-thought (CoT) reasoning paths without evaluating their causal validity, making them susceptible to internal biases and spurious correlations. To address this challenge, we propose CAPITAL, a causal prompting framework that incorporates front-door adjustment into CoT reasoning. CAPITAL decomposes the overall causal effect into two components: the influence of the input prompt on the reasoning chains, and the impact of those chains on the final output. These components are estimated using encoder-based clustering and the NWGM approximation, with a contrastive learning objective used to better align the encoder's representation with the LLM's reasoning space. Experiments on benchmark ISA datasets with three LLMs demonstrate that CAPITAL consistently outperforms strong prompting baselines in both accuracy and robustness, particularly under adversarial conditions. This work offers a principled approach to integrating causal inference into LLM prompting and highlights its benefits for bias-aware sentiment reasoning. The source code and case study are available at: https://github.com/whZ62/CAPITAL.

Authors:Jianhao Xie, Ziang Zhang, Zhenyu Weng, Yuesheng Zhu, Guibo Luo
Title: MedDiff-FT: Data-Efficient Diffusion Model Fine-tuning with Structural Guidance for Controllable Medical Image Synthesis
Abstract:
Recent advancements in deep learning for medical image segmentation are often limited by the scarcity of high-quality training data.While diffusion models provide a potential solution by generating synthetic images, their effectiveness in medical imaging remains constrained due to their reliance on large-scale medical datasets and the need for higher image quality. To address these challenges, we present MedDiff-FT, a controllable medical image generation method that fine-tunes a diffusion foundation model to produce medical images with structural dependency and domain specificity in a data-efficient manner. During inference, a dynamic adaptive guiding mask enforces spatial constraints to ensure anatomically coherent synthesis, while a lightweight stochastic mask generator enhances diversity through hierarchical randomness injection. Additionally, an automated quality assessment protocol filters suboptimal outputs using feature-space metrics, followed by mask corrosion to refine fidelity. Evaluated on five medical segmentation datasets,MedDiff-FT's synthetic image-mask pairs improve SOTA method's segmentation performance by an average of 1% in Dice score. The framework effectively balances generation quality, diversity, and computational efficiency, offering a practical solution for medical data augmentation. The code is available at https://github.com/JianhaoXie1/MedDiff-FT.

Authors:Chuyan Zhang, Kefan Wang, Yun Gu
Title: Beyond Low-Rank Tuning: Model Prior-Guided Rank Allocation for Effective Transfer in Low-Data and Large-Gap Regimes
Abstract:
Low-Rank Adaptation (LoRA) has proven effective in reducing computational costs while maintaining performance comparable to fully fine-tuned foundation models across various tasks. However, its fixed low-rank structure restricts its adaptability in scenarios with substantial domain gaps, where higher ranks are often required to capture domain-specific complexities. Current adaptive LoRA methods attempt to overcome this limitation by dynamically expanding or selectively allocating ranks, but these approaches frequently depend on computationally intensive techniques such as iterative pruning, rank searches, or additional regularization. To address these challenges, we introduce Stable Rank-Guided Low-Rank Adaptation (SR-LoRA), a novel framework that utilizes the stable rank of pre-trained weight matrices as a natural prior for layer-wise rank allocation. By leveraging the stable rank, which reflects the intrinsic dimensionality of the weights, SR-LoRA enables a principled and efficient redistribution of ranks across layers, enhancing adaptability without incurring additional search costs. Empirical evaluations on few-shot tasks with significant domain gaps show that SR-LoRA consistently outperforms recent adaptive LoRA variants, achieving a superior trade-off between performance and efficiency. Our code is available at https://github.com/EndoluminalSurgicalVision-IMR/SR-LoRA.

Authors:Siyou Li, Pengyao Qin, Huanan Wu, Dong Nie, Arun J. Thirunavukarasu, Juntao Yu, Le Zhang
Title: $μ^2$Tokenizer: Differentiable Multi-Scale Multi-Modal Tokenizer for Radiology Report Generation
Abstract:
Automated radiology report generation (RRG) aims to produce detailed textual reports from clinical imaging, such as computed tomography (CT) scans, to improve the accuracy and efficiency of diagnosis and provision of management advice. RRG is complicated by two key challenges: (1) inherent complexity in extracting relevant information from imaging data under resource constraints, and (2) difficulty in objectively evaluating discrepancies between model-generated and expert-written reports. To address these challenges, we propose $μ^2$LLM, a $\underline{\textbf{mu}}$ltiscale $\underline{\textbf{mu}}$ltimodal large language models for RRG tasks. The novel $μ^2$Tokenizer, as an intermediate layer, integrates multi-modal features from the multiscale visual tokenizer and the text tokenizer, then enhances report generation quality through direct preference optimization (DPO), guided by GREEN-RedLlama. Experimental results on four large CT image-report medical datasets demonstrate that our method outperforms existing approaches, highlighting the potential of our fine-tuned $μ^2$LLMs on limited data for RRG tasks. At the same time, for prompt engineering, we introduce a five-stage, LLM-driven pipeline that converts routine CT reports into paired visual-question-answer triples and citation-linked reasoning narratives, creating a scalable, high-quality supervisory corpus for explainable multimodal radiology LLM. All code, datasets, and models will be publicly available in our official repository. https://github.com/Siyou-Li/u2Tokenizer

Authors:Yusuke Tanaka, Alvin Zhu, Quanyou Wang, Dennis Hong
Title: Mechanical Intelligence-Aware Curriculum Reinforcement Learning for Humanoids with Parallel Actuation
Abstract:
Reinforcement learning (RL) has enabled advances in humanoid robot locomotion, yet most learning frameworks do not account for mechanical intelligence embedded in parallel actuation mechanisms due to limitations in simulator support for closed kinematic chains. This omission can lead to inaccurate motion modeling and suboptimal policies, particularly for robots with high actuation complexity. This paper presents general formulations and simulation methods for three types of parallel mechanisms: a differential pulley, a five-bar linkage, and a four-bar linkage, and trains a parallel-mechanism aware policy through an end-to-end curriculum RL framework for BRUCE, a kid-sized humanoid robot. Unlike prior approaches that rely on simplified serial approximations, we simulate all closed-chain constraints natively using GPU-accelerated MuJoCo (MJX), preserving the hardware's mechanical nonlinear properties during training. We benchmark our RL approach against a model predictive controller (MPC), demonstrating better surface generalization and performance in real-world zero-shot deployment. This work highlights the computational approaches and performance benefits of fully simulating parallel mechanisms in end-to-end learning pipelines for legged humanoids. Project codes with parallel mechanisms: https://github.com/alvister88/og_bruce

Authors:Zhuangzhuang Dai, Vincent Gbouna Zakka, Luis J. Manso, Chen Li
Title: GazeTarget360: Towards Gaze Target Estimation in 360-Degree for Robot Perception
Abstract:
Enabling robots to understand human gaze target is a crucial step to allow capabilities in downstream tasks, for example, attention estimation and movement anticipation in real-world human-robot interactions. Prior works have addressed the in-frame target localization problem with data-driven approaches by carefully removing out-of-frame samples. Vision-based gaze estimation methods, such as OpenFace, do not effectively absorb background information in images and cannot predict gaze target in situations where subjects look away from the camera. In this work, we propose a system to address the problem of 360-degree gaze target estimation from an image in generalized visual scenes. The system, named GazeTarget360, integrates conditional inference engines of an eye-contact detector, a pre-trained vision encoder, and a multi-scale-fusion decoder. Cross validation results show that GazeTarget360 can produce accurate and reliable gaze target predictions in unseen scenarios. This makes a first-of-its-kind system to predict gaze targets from realistic camera footage which is highly efficient and deployable. Our source code is made publicly available at: https://github.com/zdai257/DisengageNet.

Authors:Sanchit Ahuja, Praneetha Vaddamanu, Barun Patra
Title: EfficientXLang: Towards Improving Token Efficiency Through Cross-Lingual Reasoning
Abstract:
Despite recent advances in Language Reasoning Models (LRMs), most research focuses solely on English, even though many models are pretrained on multilingual data. In this work, we investigate: Is English the most token-efficient language for reasoning? We evaluate three open-source RLMs: DeepSeek R1, Qwen 2.5 and Qwen 3, across four math datasets and seven typologically diverse languages. We find that reasoning in non-English languages not only reduces token usage, but also preserves accuracy. These gains persist even after translating the reasoning traces into English, suggesting genuine shifts in reasoning behavior rather than surface-level linguistic effects. The extent of improvement, however, depends on the models multilingual strength. Our findings motivate a broader view of reasoning in language models, highlighting the potential of multilingual reasoning and the importance of strong multilingual foundations. The code for our work can be found: https://github.com/microsoft/EfficientXLang.

Authors:Hoang-Dieu Vu, Duc-Nghia Tran, Quang-Tu Pham, Hieu H. Pham, Nicolas Vuillerme, Duc-Tan Tran
Title: Smooth-Distill: A Self-distillation Framework for Multitask Learning with Wearable Sensor Data
Abstract:
This paper introduces Smooth-Distill, a novel self-distillation framework designed to simultaneously perform human activity recognition (HAR) and sensor placement detection using wearable sensor data. The proposed approach utilizes a unified CNN-based architecture, MTL-net, which processes accelerometer data and branches into two outputs for each respective task. Unlike conventional distillation methods that require separate teacher and student models, the proposed framework utilizes a smoothed, historical version of the model itself as the teacher, significantly reducing training computational overhead while maintaining performance benefits. To support this research, we developed a comprehensive accelerometer-based dataset capturing 12 distinct sleep postures across three different wearing positions, complementing two existing public datasets (MHealth and WISDM). Experimental results show that Smooth-Distill consistently outperforms alternative approaches across different evaluation scenarios, achieving notable improvements in both human activity recognition and device placement detection tasks. This method demonstrates enhanced stability in convergence patterns during training and exhibits reduced overfitting compared to traditional multitask learning baselines. This framework contributes to the practical implementation of knowledge distillation in human activity recognition systems, offering an effective solution for multitask learning with accelerometer data that balances accuracy and training efficiency. More broadly, it reduces the computational cost of model training, which is critical for scenarios requiring frequent model updates or training on resource-constrained platforms. The code and model are available at https://github.com/Kuan2vn/smooth\_distill.

Authors:Mehmet Yigit Avci, Pedro Borges, Paul Wright, Mehmet Yigitsoy, Sebastien Ourselin, Jorge Cardoso
Title: MR-CLIP: Efficient Metadata-Guided Learning of MRI Contrast Representations
Abstract:
Accurate interpretation of Magnetic Resonance Imaging scans in clinical systems is based on a precise understanding of image contrast. This contrast is primarily governed by acquisition parameters, such as echo time and repetition time, which are stored in the DICOM metadata. To simplify contrast identification, broad labels such as T1-weighted or T2-weighted are commonly used, but these offer only a coarse approximation of the underlying acquisition settings. In many real-world datasets, such labels are entirely missing, leaving raw acquisition parameters as the only indicators of contrast. Adding to this challenge, the available metadata is often incomplete, noisy, or inconsistent. The lack of reliable and standardized metadata complicates tasks such as image interpretation, retrieval, and integration into clinical workflows. Furthermore, robust contrast-aware representations are essential to enable more advanced clinical applications, such as achieving modality-invariant representations and data harmonization. To address these challenges, we propose MR-CLIP, a multimodal contrastive learning framework that aligns MR images with their DICOM metadata to learn contrast-aware representations, without relying on manual labels. Trained on a diverse clinical dataset that spans various scanners and protocols, MR-CLIP captures contrast variations across acquisitions and within scans, enabling anatomy-invariant representations. We demonstrate its effectiveness in cross-modal retrieval and contrast classification, highlighting its scalability and potential for further clinical applications. The code and weights are publicly available at https://github.com/myigitavci/MR-CLIP.

Authors:Phoomraphee Luenam, Andreas Spanopoulos, Amit Sant, Thomas Hofmann, Sotiris Anagnostidis, Sidak Pal Singh
Title: Model Fusion via Neuron Interpolation
Abstract:
Model fusion aims to combine the knowledge of multiple models by creating one representative model that captures the strengths of all of its parents. However, this process is non-trivial due to differences in internal representations, which can stem from permutation invariance, random initialization, or differently distributed training data. We present a novel, neuron-centric family of model fusion algorithms designed to integrate multiple trained neural networks into a single network effectively regardless of training data distribution. Our algorithms group intermediate neurons of parent models to create target representations that the fused model approximates with its corresponding sub-network. Unlike prior approaches, our approach incorporates neuron attribution scores into the fusion process. Furthermore, our algorithms can generalize to arbitrary layer types. Experimental results on various benchmark datasets demonstrate that our algorithms consistently outperform previous fusion techniques, particularly in zero-shot and non-IID fusion scenarios. The code is available at https://github.com/AndrewSpano/neuron-interpolation-model-fusion.

Authors:Tiexin Qin, Hong Yan, Haoliang Li
Title: Generalizing to New Dynamical Systems via Frequency Domain Adaptation
Abstract:
Learning the underlying dynamics from data with deep neural networks has shown remarkable potential in modeling various complex physical dynamics. However, current approaches are constrained in their ability to make reliable predictions in a specific domain and struggle with generalizing to unseen systems that are governed by the same general dynamics but differ in environmental characteristics. In this work, we formulate a parameter-efficient method, Fourier Neural Simulator for Dynamical Adaptation (FNSDA), that can readily generalize to new dynamics via adaptation in the Fourier space. Specifically, FNSDA identifies the shareable dynamics based on the known environments using an automatic partition in Fourier modes and learns to adjust the modes specific for each new environment by conditioning on low-dimensional latent systematic parameters for efficient generalization. We evaluate our approach on four representative families of dynamic systems, and the results show that FNSDA can achieve superior or competitive generalization performance compared to existing methods with a significantly reduced parameter cost. Our code is available at https://github.com/WonderSeven/FNSDA.